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Preface

This volume is dedicated to the 15th Symposium on Fundamentals of Compu-
tation Theory FCT 2005, held in Lübeck, Germany, on August 17–20, 2005.

The FCT symposium was established in 1977 as a biennial event for re-
searchers interested in all aspects of theoretical computer science, in particular
in algorithms, complexity, and formal and logical methods. The previous FCT
conferences were held in the following places: Poznań (Poland, 1977), Wendisch-
Rietz (Germany, 1979), Szeged (Hungary, 1981), Borgholm (Sweden, 1983),
Cottbus (Germany, 1985), Kazan (Russia, 1987), Szeged (Hungary, 1989), Gosen-
Berlin (Germany, 1991), Szeged (Hungary, 1993), Dresden (Germany, 1995),
Kraków (Poland, 1997), Iasi (Romania, 1999), Riga (Latvia, 2001) and Malmö
(Sweden, 2003). The FCT conference series is coordinated by a steering commit-
tee. Its current members are B. Chlebus (Denver/Warsaw), Z. Esik (Szeged), M.
Karpinski (Bonn), A. Lingas (Lund), M. Santha (Paris), E. Upfal (Providence)
and I. Wegener (Dortmund).

The call for papers for FCT 2005 sought contributions on original research
in all aspects of theoretical computer science including design and analysis of
algorithms, abstract data types, approximation algorithms, automata and formal
languages, categorical and topological approaches, circuits, computational and
structural complexity, circuit and proof theory, computational biology, compu-
tational geometry, computer systems theory, concurrency theory, cryptography,
domain theory, distributed algorithms and computation, molecular computation,
quantum computation and information, granular computation, probabilistic com-
putation, learning theory, rewriting, semantics, logic in computer science, speci-
fication, transformation and verification, and algebraic aspects of computer sci-
ence. A total of 105 papers were submitted – most of them focusing on funda-
mental questions in these areas of computing. Thanks to all the authors who
gave the program committee the chance to select 46 top papers for presentation
at the conference. An extended abstract of these results can be found in these
proceedings.

Our thanks go to the 15 members of the program committee that took their
duty very seriously. Each submitted paper was carefully reviewed by at least five
members – some with the help of subreferees. The Easy-Chair evaluation system
turned out to be of great help in our electronic discussion and decision process –
many thanks to Andrei Voronkov for developing such a useful and professional
tool.

In addition to the presentation of the accepted papers, invited lectures on
current research topics in theoretical computer science were given by Martin
Dyer (Leeds), Martin Grohe (Berlin), and Daniel Spielman (Cambridge, MA).

We are grateful to the German Science Foundation (DFG) and the Gesell-
schaft der Freunde und Förderer der Universität zu Lübeck for their financial
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support, and all members of the Institute for Theoretical Computer Science
(ITCS) of the University of Lübeck for their help in preparing and running this
conference.

August 2005 Rüdiger Reischuk (Program Chair)
Maciej Lískiewicz (Conference Chair)
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Bernd Gärtner, Leo Rüst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Visual Cryptography and Computational Geometry

Perfect Reconstruction of Black Pixels Revisited
Hans Ulrich Simon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221



Table of Contents XIII

Adaptive Zooming in Point Set Labeling
Sheung-Hung Poon, Chan-Su Shin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

Query Complexity

On the Black-Box Complexity of Sperner’s Lemma
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Jérôme Monnot, Sophie Toulouse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

The Maximum Resource Bin Packing Problem
Joan Boyar, Leah Epstein, Lene M. Favrholdt, Jens S. Kohrt,
Kim S. Larsen, Morten Monrad Pedersen, Sanne Wøhlk . . . . . . . . . . . . 397

Average-Case Complexity

Average-Case Non-approximability of Optimisation Problems
Birgit Schelm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

Relations Between Average-Case and Worst-Case Complexity
Aduri Pavan, N. Variyam Vinodchandran . . . . . . . . . . . . . . . . . . . . . . . . . 422

Algorithms

Reconstructing Many Partitions Using Spectral Techniques
Joachim Giesen, Dieter Mitsche . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433

Constant Time Generation of Linear Extensions
Akimitsu Ono, Shin-ichi Nakano . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

Complexity II

On Approximating Real-World Halting Problems
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The Complexity of Querying External Memory

and Streaming Data

Martin Grohe1, Christoph Koch2, and Nicole Schweikardt1

1 Institut für Informatik, Humboldt-Universität Berlin, Germany
{grohe, schweika}@informatik.hu-berlin.de

2 Database Group, Universität des Saarlandes, Saarbrücken, Germany
koch@cs.uni-sb.de

Abstract. We review a recently introduced computation model for
streaming and external memory data. An important feature of this model
is that it distinguishes between sequentially reading (streaming) data
from external memory (through main memory) and randomly accessing
external memory data at specific memory locations; it is well-known that
the latter is much more expensive in practice. We explain how a number
of lower bound results are obtained in this model and how they can be
applied for proving lower bounds for XML query processing.

1 Introduction

Modern computers rely on a hierarchy of storage media from tapes and disks
at the bottom through what is usually called random-access memory or main
memory up to various levels of (even on-CPU) memory caches at the top. The
storage media at the bottom of this hierarchy are the slowest and least expensive
and those at the top the fastest and dearest. The need for this memory hierarchy
is dictated by the ever-growing amounts of data that have to be managed and
processed by computers. Currently, the most pronounced performance and price
gap in this hierarchy is between (random access) main memory and the next-
lower level in the memory hierarchy, usually magnetic disks, which have to rely on
mechanical, physically moving parts. One often refers to the upper layers above
this gap by internal memory and the lower layers of the memory hierarchy by
external memory. The technological reality is such that the time for accessing a
given bit of information in external memory is five to six orders of magnitude
greater than the time required to access a bit in internal memory.

Current external storage technology (disks and tapes) renders algorithms
that can read and write their data to and from external memory in few sequential
scans much faster than algorithms that require many random data accesses.
Indeed, the time required to move a read/write head to a certain position of a
disk or tape – a slow mechanical operation – is by orders of magnitude greater
than actually reading a considerable amount of data stored in sequence once the
read/write head has been placed at the starting position of the data in question.

Managing and processing huge amounts of data has been traditionally the
domain of database research. It is generally assumed that databases have to

M. Lískiewicz and R. Reischuk (Eds.): FCT 2005, LNCS 3623, pp. 1–16, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 M. Grohe, C. Koch, and N. Schweikardt

reside in external, inexpensive storage because of their sheer size. There has
been a wealth of research on query processing and optimization respecting the
mentioned physical realities and distinguishing between internal and external
memory (cf. e.g. [20, 10, 24, 16]). In fact, this distinction is in a sense the defining
essence of database techniques.

The fundamental problems that have to be faced in processing very large
datasets have generated a recent renewed interest in theoretical aspects of ex-
ternal memory processing. In the classical model of external memory algorithms
(see, for example, [24, 16]), the cost measure is simply the number of bits read
from external memory divided by the page size. This model ignores the very
important distinction mentioned above between random access to data in par-
ticular external memory locations and sequential scans of the disks. More recent
models focus on data processing with few sequential scans of the external mem-
ory [2, 14, 4, 12]. An important special case is data stream processing, in which
only one sequential scan of the data is permitted. This is yet another field that
has seen much activity in recent years [18, 1, 5].

In [11, 12], we introduced a formal model for external memory processing
that allows to distinguish between sequential scans and random access. The two
most significant cost measures in our setting are the number of random accesses
to external memory and the size of the internal memory. Our model is based
on standard multi-tape Turing machines. Our machines have several tapes of
unbounded size, among them the input and output tapes, which represent the
external memory (for example, each of these tapes may represent a disk). In
addition, the machine has several tapes of restricted size which represent the
internal memory.

We model the number of scans of the external memory data, respectively the
number of random accesses, by the number of reversals of the Turing machine’s
read/write heads on the external memory tapes. Anything close to random I/O
will result in a very considerable number of reversals, while a full sequential
scan of an external memory tape can be effected cheaply. The reversals done
by a read/write head are a clean and fundamental notion [25], but of course
real external storage technology based on disks does not allow to reverse their
direction of rotation. On the other hand, we can of course simulate k forward
scans by 2k reversals in our machine model — and allowing for forward as well
as backward scans makes the lower bound results presented in this paper even
stronger.

Note that our model puts no restriction on the number of head reversals
on the internal memory tapes, the size of the external memory tapes, or the
running time of the machine.

In this paper, we give a survey of the above-mentioned machine model and
strong lower bounds that were recently obtained for it [11, 12, 13]. We start in
Section 2 by formally introducing the machine model and showing a number of
basic properties for it. In Section 3, we consider the case of machines with only
a single external memory tape. Here we can employ techniques from communi-
cation complexity to obtain lower bounds. In Section 4, we apply the results of
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Section 3 to XML query processing problems. XML is a data exchange format
that is currently drawing much attention in data management research. In [11],
we obtained lower bounds for processing queries in the languages XQuery and
XPath, the two most widely used query languages for XML data (in fact, XPath
is basically a sublanguage of XQuery that is also often used in isolation and
has become part of other XML-related data transformation languages such as
XSLT). Section 5 goes beyond the case of machines with a single external mem-
ory tape. We will see that techniques from communication complexity fail to
prove lower bounds. In [12], we introduced a new technique to establish lower
bounds in this model. These are based on a new (non-uniform) machine model,
so-called list machines, which allow us to analyze the flow of information in a
Turing machine computation. The main result is a lower bound for the sorting
problem.

Related Work
Most results presented in this survey are due to [11, 12, 13].

Strong lower bounds for a number of problems are known in models which
permit a small number of sequential scans of the input data, but no auxiliary
external memory (that is, the version of our model with no external memory
tapes besides the input tape) [1, 2, 3, 4, 5, 6, 14, 17, 18]. All these lower bounds
are obtained by communication complexity.

In [3], the problem of determining whether a given relational query can be
evaluated scalably on a data stream or not at all is addressed. The complexity
of XML query evaluation in a streaming model is also addressed in [5, 6]. The
time and space complexity of XPath query evaluation in the standard (main
memory) model is studied in [8, 9, 23].

Obviously, our model is also related to the bounded reversal Turing machines,
which have been studied in classical complexity theory (see, for example, [25]).
However, in bounded reversal Turing machines, the number of head reversals
is limited on all tapes, whereas in our model there is no such restriction on
the internal memory tapes. This makes our model considerably stronger. In
particular, in our lower bound results we allow internal memory size that is
polynomially related to the input size.

2 The Machine Model

Our model is based on standard multitape Turing machines. If not explicitly
mentioned otherwise, we assume our machines to be deterministic. The machines
we consider have t+u tapes. The first t tapes are called external memory tapes;
they represent external memory devices such as hard disks. The other u tapes are
called internal memory tapes; they represent the internal memory. The first tape
is always viewed as the input tape. If necessary, the machines have an additional
write-only output tape. Configurations, runs, and acceptance are defined in the
usual way. Figure 1 illustrates our model.

Let M be such a Turing machine and ρ a run of M . The (internal) space
required by ρ, space(ρ), is the total number of cells on the internal memory tapes
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Fig. 1. Our machine model

visited during the run ρ. For 1 ≤ i ≤ t, the number of head reversals on the i-th
external memory tape, rev(ρ, i), is the number of times the read/write head on
tape i changes its direction during the run ρ.

For functions r, s : N → N (where N denote the set of positive integers),
we call the machine M (r, s, t)-bounded if it has t external memory tapes and
for every run ρ of M with an input of length N and i ∈ {1, . . , t} we have
1 +
∑t

i=1 rev(ρ, i) ≤ r(N) and space(ρ) ≤ s(N).

Definition 1. (1) For functions r, s : N → N and t ∈ N we let ST(r, s, t) be
the class of all problems that can be decided by an (r, s, t)-bounded Turing
machine.

(2) For classes R,S of functions we let ST(R,S, t) =
⋃

r∈R
s∈S

ST(r, s, t).

Furthermore, we let ST(R,S,O(1)) =
⋃

t∈N ST(R,S, t).
(3) We let ST(R,S) = ST(R,S, 1).

While usually by “problem” we mean “decision problem”, that is, language
over some finite alphabet, occasionally we are more liberal and also view partial
functions as problems. In particular, we may write f ∈ ST(r, s, t) for a partial
function f : Σ∗ → Σ∗.

Occasionally, we also consider the nondeterministic versions NST(. . .) of our
ST(. . .) classes.

Note that we do not restrict the running time of an (r, s, t)-bounded machine
in any way. Neither do we restrict the external space, that is, the number of cells
on the external memory tapes that are visited during a run. However, it is not
hard to see that implicitly the running time and hence the external space are
bounded in terms of reversals and internal space:

Lemma 2 ([12]). Let r, s : N → N and t ∈ N, and let M be an (r, s, t)-bounded
Turing machine. Then the length of every finite run of M is at most

N · 2O(r(N)·(t+s(N))).

For (r, s, 1)-bounded Turing machines, the bound can be improved to

(N + r(N)) · r(N) · 2O(s(N)),

as an easy induction on r(N) shows.



The Complexity of Querying External Memory and Streaming Data 5

Random Access
If we think of the first t tapes of an (r, s, t)-bounded Turing machine as repre-
senting hard disks, then admitting heads to reverse their direction may not be
very realistic. But as we mainly use our model to prove lower bounds, it does
not do any harm either. Head reversals are a convenient way to simulate random
access in our model.

Alternatively, we can explicitly include random access into our model as
follows: A random access Turing machine is a Turing machine which has a special
address tape on which only binary strings can be written. These binary strings are
interpreted as nonnegative integers specifying external memory addresses, that
is, numbers of cells on the external memory tapes. For each external memory
tape i ∈ {1, . . . , t} the machine has a special state rai. If rai is entered, then in
one step the head on tape i is moved to the cell that is specified by the number
on the address tape, and the content of the address tape is deleted. Figure 2
illustrates the augmented model.

Fig. 2. Random access Turing machine

Let q, r, s : N → N and t ∈ N. A random access Turing machine T is (q, r, s, t)-
bounded if it is (r, s, t)-bounded (in the sense of a standard Turing machine) and,
in addition, every run ρ of T on an input of length N involves at most q(N)
random accesses.

The address tape is considered as part of the internal memory; thus in a
(q, r, s, t)-bounded random access Turing machine the length of the address tape
is bounded by s(N), where N is the length of the input. This implies that we
can only address the first 2s(N) cells of the external memory tapes. If during
a computation, these tapes get longer, we only have random access to initial
segments of length 2s(N).

The following lemma follows from the simple observation that each random
access can be simulated by moving the head to the desired position. This simula-
tion is possible with at most two head reversals (if we want the head to be headed
in the same direction before and after the simulation of the random access) and
a slight space overhead.

Lemma 3 ([12]). Let q, r, s : N → N and t ∈ N. Then if a problem can be solved
by a (q, r, s, t)-bounded random access Turing machine, it can also be solved by
an (r + 2q,O(s), t)-bounded Turing machine.
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From now on, we will focus on standard Turing machines without address tapes.
Let us summarize the classes we have defined. For functions r, s on the natural

numbers:

– ST(O(r), O(s), O(1)) is the class of all problems that can be solved on a ma-
chine with internal memory size O(s(N)) and an arbitrary (albeit constant)
number of arbitrarily large external memory devices, which can be read se-
quentially, in addition allowing at most O(r(N)) head reversals and random
accesses. The first external memory device contains the input data.

– ST(O(r), O(s)) is the class of all problems that can be solved on a machine
that only has one external memory device and is otherwise restricted as
above. Essentially, ST(O(r), O(s)) is the class of all problems that can be
solved on an O(s(N))-space bounded machine allowing at most O(r(N))
sequential scans of the input.1

– ST(1, O(s)) is the class of all problems that can be solved on an O(s(N))-
space bounded machine if the input is a data stream.

We always use N to denote the input size.

3 Lower Bounds via Communication Complexity

Lower bounds for the ST(r, s)-model can be obtained fairly easily by employing
known results from communication complexity. The idea is to divide the input
tape into two parts, which induces a split of the input data into two parts. Now
we ask how much information must be communicated between the two parts to
answer a specific query. Suppose we can prove a lower bound of c(N) for the
number of bits that need to be communicated, where N denotes the size of the
input. Then we also have a lower bound r(N) · s(N) ≥ Ω(c(N)) for functions
r, s such that the query can be answered in ST(r, s), because each time we cross
the dividing line between the two parts of the input, we can only “transport”
O(s(N)) bits of information.

In the basic model of communication complexity [26], two players, Alice and
Bob, jointly want to evaluate F (x, y), where F : A×B → C is a function defined
on finite sets A, B. Alice is given the first argument x ∈ A and Bob the second
argument y ∈ B. The two players exchange messages according to some fixed
protocol until one of them has gathered enough information to compute F (x, y).
The cost of the protocol is the maximum number of bits communicated, where
the maximum is taken over all argument pairs (x, y) ∈ A×B. The communication
complexity of F is the minimum of the costs of all protocols computing F .

A function that almost obviously has a high communication complexity is
the disjointness function disj�, defined on subsets x, y ⊆ {0, . . . , �− 1} by

disj�(x, y) =

{
1 if x ∩ y = ∅,
0 otherwise.

1 ST(O(r), O(s)) is slightly more powerful because the input can be overwritten and
the external memory device can be used for storing auxiliary data.
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Indeed, it is easy to see that the communication complexity of disj� is �. It
will be convenient for us to work with a slight modification of the disjointness
function. For k ≤ �, let disj�,k be the restriction of disj� to pairs of k-element
subsets of {0, . . . , �− 1}.

Theorem 4 ([21], cf. Example 2.12 in [15]). The communication complexity
of disj�,k is Ω

(
log
(

�
k

))
.

Let us now consider the following decision problem:

Disjoint-Sets
Instance: Strings x1, . . . , xm, y1, . . . , ym ∈ {0, 1}n.
Question: Is {x1, . . . , xm} ∩ {y1, . . . , ym} = ∅ ?

Formally, the input may either be specified as the string

x1#x2# . . .#xm#y1# . . .#ym

over {0, 1,#} or as an XML-document as described in Section 4 (see Figure 3).
In both cases, the input size N is Θ(m · n).

The lower bound of the following corollary follows easily from Theorem 4. To
see this, we consider instances with n = 2 logm and note that for such instances
we have N = Θ(m · logm) and, with � = 2n and k = m,

log
(
�

k

)
= log
(
m2

m

)
≥ log
(
mm
)

= m · logm.

The upper bound of the corollary is trivial.

Corollary 5. (1) Disjoint-Sets ∈ ST(1, N).
(2) For all functions r, s : N → N with r(N) · s(N) ∈ o(N),

Disjoint-Sets 	∈ ST(r, s).

In the next section, we will apply this simple result to prove lower bounds
for querying XML-documents.

Next, we separate the deterministic from the nondeterministic ST-classes. We
observe that the complement of Disjoint-Sets can be decided by a (1, n, 1)-
bounded nondeterministic Turing machine by guessing an input string xi, storing
it in the internal memory, and comparing with all strings yj . Thus the restric-
tion of the complement of Disjoint-Sets to inputs with n = 2 · logm is in
NST(1, O(logN)). The proof of Corollary 5 shows that it is not in ST(r, s) for
all functions r, s with r(N) · s(N) ∈ o(N). Thus:

Corollary 6. For all functions r, s with r(N) · s(N) ∈ o(N)

NST(1, O(logN)) 	⊆ ST(r, s).
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The following hierarchy theorem is based on a more sophisticated result from
communication complexity that deals with the number (and not only size) of
messages Alice has to send Bob in a communication protocol. For functions
s : N → N and k ∈ N, let ST(k, s) denote the class ST(r, s) with r(N) = k for
all N ∈ N.

Theorem 7 ([11], based on [7]). For every fixed k ∈ N and all classes S of
functions from N to N such that O(log n) ⊆ S ⊆ o

( √
N

(lg n)3
)

we have

ST(k, S) � ST(k+1, S).

4 Applications to XML Query Processing

In this section, we show how the results and techniques of the previous section
can be applied to prove lower bounds for the complexity of XML-query process-
ing. We assume that the reader is vaguely familiar with XML-syntax. We will
only use very basic XML consisting of opening tags <t> and the corresponding
closing tags </t> and plain text (no attributes, no DTDs, et cetera).

As an example, let us encode instances of the Disjoint-Sets problem in
XML. An instance x1, . . . , xm, y1, . . . , ym ∈ {0, 1}n is represented by the XML-
document displayed in Figure 3.

<instance>
<set1>
<string> x1 </string> ... <string> xm </string>

</set1>
<set2>
<string> y1 </string> ... <string> ym </string>

</set2>
</instance>

Fig. 3. XML-representation of the two m-element sets {x1, . . . , xm} and {y1, . . . , ym}

We will talk about the XML query languages XQuery and XPath, but the
reader is not expected to know these languages. To avoid the awkward term
“XQuery query”, we refer to queries in the language XQuery as xqueries. An
xquery Q transforms a given document D into a document Q(D).

As an example, consider the xquery displayed in Figure 4. The syntax is, to
a certain extent, self-explanatory. The query transforms the XML-document in
Figure 3 to the document in Figure 5, where 1 ≤ i1 < i2 < · · · < i� ≤ m such
that {x1, . . . , xm} ∩ {y1, . . . , ym} = {xi1 , . . . , xi�

}. Thus the query computes the
intersection of the two sets. By the results of the previous section, the query
cannot be evaluated by an (r, s, 1)-bounded Turing machine for any functions
r, s with r(N) · s(N) ∈ o(N).
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<result>
for $x in /instance/set1/string
where some $y in /instance/set2/string satisfies $x = $y
return $x

</result>

Fig. 4. An xquery computing the intersection of two sets

<result>
<string> xi1 </string> ... <string> xi� </string>

</result>

Fig. 5. Result of applying the query in Figure 4 to the document in Figure 3

We can associate the following decision problem with the evaluation problem
for a query Q:

Q-Filtering
Instance: XML-document D.
Question: Is Q(D) nonempty ?

Here we call an XML-document empty if it just consists of an opening and closing
tag, as for example <result> </result>. We ignore whitespaces.

The Q-Filtering problem for the query Q of Figure 4 is the complement of
Disjoint-Sets. Thus we get:

Corollary 8. There is an xquery Q such that for all functions r, s with r(N) ·
s(N) ∈ o(N),

Q-Filtering 	∈ ST(r, s).

XPath is a node selecting language; the result of applying an XPath query
to an XML-document is a set of nodes of this document. A node of a document
is pair of corresponding opening- and closing tags. The nodes are arranged in
a tree-like fashion in the obvious way. Thus we can view XML-documents as
labeled rooted trees. Inner nodes are labeled by tags and leaves by the text
parts of the document. Node selection in XPath works by regular expressions
over the tags which specify paths in a document (tree). There is no need for the
reader to know any details about the language here. XPath is mainly used as
a tool in more complicated XML-related formalisms such as XQuery or XML-
Schema. As far as expressive power is concerned, XPath is strictly a fragment
of XQuery. For our complexity lower bounds, we only consider a small fragment
of XPath called Core-XPath [8]. It is a clean logical fragment that captures the
core functionality of the much larger and messier language XPath. We define
Q-Filtering for XPath queries Q as for xqueries. Here, Q(D) is a set of nodes
of D and emptiness has the natural meaning.
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To measure the complexity of Q-Filtering for XPath queries Q, the appro-
priate parameter is not the size of the input document but its height if viewed
as a tree. We use the notation ST(r, s) for functions r, s depending on the height
and not the size of the input document with the obvious meaning.

Theorem 9 ([11]).

(1) For every Core-XPath query Q,

Q-Filtering ∈ ST(1, O(h)).

(2) There is a Core-XPath query Q such that for all functions r, s with r(h) ·
s(h) ∈ o(h),

Q-Filtering 	∈ ST(r(h), s(h)).

Here h denote the height of the input document.

The upper bound is proved by standard automata theoretic techniques (im-
plicitly, the result can be found in [19, 22]). For the lower bound, we again use
the Disjoint-Sets problem, but encoded as an XML-document in a different
way than before.

5 Lower Bounds via List Machines

In this section, we turn to the classes ST(r, s, t) for t > 1. To prove lower bounds
for these classes, communication complexity based arguments as used in Sec-
tion 3 utterly fail. The reason is that we can easily communicate arbitrarily
many bits from one part of the input to any other part just by copying the first
part to a second external memory tape and then reading it in parallel with the
second part. This requires no internal memory and just two head reversals.

This idea can be used to prove that the ST(r, s, 2) classes are much more pow-
erful than the ST(r, s) = ST(r, s, 1) classes. Observe that Theorem 4 not only
yields a lower bound for the Disjoint-Sets problem, but also for its restriction
to input sets which are ordered in any specific way, because the communication
complexity lower bound of Theorem 4 is independent of the way the two argu-
ments are given to the function disjk,�. Moreover, we obtained the lower bound
of Corollary 5 for instances with n = 2 · logm. Thus for all functions r, s : N → N
with r(N) · s(N) ∈ o(N) the following problem is not in ST(r, s).

Instance: Strings x1, . . . , xm, y1, . . . , ym ∈ {0, 1}2·logm such that
xm ≤ xm−1 ≤ · · · ≤ x1 and y1 ≤ y2 ≤ . . . ≤ ym.

Question: Is {x1, . . . , xm} ∩ {y1, . . . , ym} = ∅ ?

Here ≤ denotes the lexicographical order of strings over {0, 1}.
By copying all xi in the order they are given to the second tape and then

comparing them in reverse order with the yj, it is easy to see that the problem
is in ST(2, O(logN), 2), where N = Θ(m · logm) is the size of the input. Thus
we get:
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Proposition 10. For all functions r, s : N → N with r(N) · s(N) ∈ o(N),

ST(2, O(logN), 2) 	⊆ ST(r, s) = ST(r, s, 1).

Note that several external memory tapes do not help if no head reversals are
permitted, that is, ST(1, s, t) = ST(1, s) for all s : N → N and t ≥ 1.

While several external memory tapes enable us to copy large segments of
the input tape from one place to another, the segments themselves remain un-
changed. In particular, there seems no easy way to “significantly” re-order the
input or large parts of it. This leads to the idea that sorting should be hard even
in the model with several external memory tapes.

Sort
Input: x1, . . . , xm ∈ {0, 1}n.

Output: x1, . . . , xm sorted in ascending lexicographical order.

It is not hard to see that the standard merge-sort algorithm achieves the follow-
ing bound:

Proposition 11. Sort can be solved by an
(
O(logm), O(n), 3

)
-bounded Turing

machine.

The main lower bound result is the following:

Theorem 12 ([12]).

Sort 	∈ ST

(
o(logN), O

(
5
√
N

logN

)
, O(1)

)
.

The main ideas of the proof will be outlined in Subsection 5.1 below.
Unfortunately there is still a considerable gap between the lower bound of

Theorem 12 and the upper bound of Proposition 11. However, for the important
special case of sorting strings of length O(logm), or equivalently integers in the
range {0, . . . ,mO(1)}, with a little more effort we obtain tight bounds. Let us
denote the restriction of Sort to instances with n = 6 · logm by Short-Sort.
The factor 6 is needed for technical reasons, any constant above 6 would work
as well. Proposition 11 shows that Short-Sort ∈ ST(O(logm), O(logm), 3),
which yields the upper bound of the following theorem. The lower bound is ob-
tained by reducing a restricted version of the sorting problem for “long” strings,
which is used in the proof of Theorem 12, to Short-Sort.

Theorem 13 ([12]). Short-Sort is in ST(O(logN), O(logN), 3), but not in

ST
(
o(logN), O

(
6
√
N
)
, O(1)
)
.

By further refining the techniques underlying the proof of Theorem 12, we
also obtain lower bounds for the following two related decision problems:
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Set-Equality
Instance: x1, . . . , xm, y1, . . . , ym ∈ {0, 1}n.
Question: Is {x1, . . . , xm} = {y1, . . . , ym} ?

Checksort
Instance: x1, . . . , xm, y1, . . . , ym ∈ {0, 1}n.
Question: Is (y1, . . . , ym) the sorted version of (x1, . . . , xm), that

is, {x1, . . . , xm} = {y1, . . . , ym} and y1 ≤ . . . ≤ ym with
respect to the lexicographical order ?

Theorem 14 ([13]).

Set-Equality, Checksort 	∈ ST

(
o(logN), O

(
5
√
N

logN

)
, O(1)

)
.

Since both Set-Equality and Checksort are easily reducible to Sort,
similarly as for Short-Sort, we obtain matching upper bounds for the restric-
tions of the problems to input strings of length O(logm).

The complement of the restriction of Set-Equality to instances with
n = 6 · logm can be decided by an (1, O(logm), 1)-bounded nondeterministic
Turing machine, which just guesses an xi which is different from all yj, stores it
on an internal memory tape, and compares it to all yj . Thus we get:

Corollary 15 ([13]).

NST(1, O(logN), 1) 	⊆ ST

(
o(logN), O

(
5
√
N

logN

)
, O(1)

)
.

On the other hand, the Set-Equality problem can be expressed by the
xquery of Figure 6.

<result>
if ( every $x in /instance/set1/string satisfies

some $y in /instance/set2/string satisfies $x = $y )
and
( every $y in /instance/set2/string satisfies

some $x in /instance/set1/string satisfies $x = $y )
then <true/>
else ()

</result>

Fig. 6. An xquery that checks whether two sets are equal
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We therefore obtain:

Corollary 16. There is an xquery Q such that

Q-Filtering 	∈ ST

(
o(logN), O

(
5
√
N

logN

)
, O(1)

)
.

5.1 List Machines and the Proof of Theorem 12

As pointed out at the beginning of Section 5, arguments that are solely based
on communication complexity do not lead to lower bound proofs for the classes
ST(r, s, t) where t ≥ 2 external memory tapes are available, because the second
external memory tape can be used to transfer large parts of the input tape from
one place to another.

On the other hand, even with additional external memory tapes, there seems
no easy way of significantly re-order large parts of the input. In fact, it is well-
known that the sorting problem cannot be solved by a comparison exchange
algorithm that performs significantly less than m· logm comparisons. Conse-
quently, for sufficiently small r(N) and s(N), even with t > 1 external memory
tapes, sorting by solely comparing and moving around the input strings is impos-
sible. However, this does not lead to a proof of Theorem 12, because the Turing
machines, on which the ST(. . .) classes are based, can perform much more com-
plicated operations than just “compare and move input strings”. Indeed, many
algorithms that solve certain data stream problems in a surprisingly efficient
way are based on much more intricate operations (cf. [18]).

For proving the lower bound of Theorem 12 we introduce a new machine
model, so-called list machines, which enable us to analyze the flow of information
in a Turing machine computation. On the one hand, list machines can only
compare and move around input strings as a whole and in this sense are “weaker”
than Turing machines. We exploit this weakness in our proof that (appropriately
restricted) list machines cannot sort. On the other hand, list machines are non-
uniform and have a large number of tape symbols and states. In this sense, they
are much stronger than Turing machines.

Here, we only describe list machines informally. For a formal definition and a
precise statement of the following Simulation Lemma, we refer the reader to [12].

List machines are similar to Turing machines, with the following important
differences:

– They are non-uniform; the input consists of m bit strings each of which has
length n, for fixed m,n.

– They work on lists instead of tapes. In particular, this means that a new cell
can be inserted between two existing cells.

– Instead of single symbols, list cells contain strings over the alphabet

A = I ∪ states ∪
{
〈, 〉
}
,

where I = {0, 1}n is the set of potential input strings.
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– The transition function only determines the list machine’s new state and the
head movements and not what is written into the list cells.

– If (at least) one head moves, the information w on the current state and
the content of all list cells that are seen by the machine’s read/write heads
directly before the transition, is stored on every single list as follows: On
those lists whose heads are about to move a step to the left or the right, the
information w overwrites the current cell entry. On each of the other lists
(i.e., those whose heads do not move in the current step), a new list cell,
containing the information w, is inserted behind the current head position.

The operation of a list machine is illustrated by Figure 7.

x2x1 x3 x4 x5

y1 y2 y3 y4 y5

z1 z2 z3 z4 z5

=⇒

x2x1 x3 x4

y1

z1 z2

x5

z3 z4 z5

y3 y4 y5

w

w

w

Fig. 7. A transition of a list machine. The example transition is of the form

(q, x4, y2, z3) → (q′, stay, right, stay . The new string w that is written into the tape

cells consists of the current state q and the content of the list cells read before the

transition. Formally, we let w = q〈x4〉〈y2〉〈z3〉.

The crucial fact is that Turing machines can be simulated by list machines.
Informally, the Simulation Lemma states that every (r, s, t)-bounded Turing ma-
chine can be simulated by a family of list machines with

– r(N) head reversals;
– t lists;
– 2O(s(N)+log N) states.

As usual, N denotes the input size.
The proof of the Simulation Lemma is the technically most difficult part of

the proof of Theorem 12.
The next step in the proof of Theorem 12 is to show a lower bound for

sorting on list machines. Very roughly, the idea is to analyze the skeleton of
a list machine computation. The skeleton of a configuration or run of a list
machine is obtained by replacing all input strings (of size n) by their indices (of
size logm). Intuitively, the skeleton determines the flow of information during a
run, but not the outcome of the comparisons. Here we say that two input strings
are compared if they appear together in a list cell in the run. Now counting
arguments, based on the fact that there are not too many skeletons, show that
there is are inputs v̄ := (v1, . . . , vm) and v̄′ := (v′1, . . . , v

′
m) in Im and an index

i ∈ {1, . . . ,m} such that in the computation of the list machine:

– v̄ and v̄′ generate the same skeleton.
– vi 	= v′i, but vj = v′j for all j 	= i.



The Complexity of Querying External Memory and Streaming Data 15

– When vi printed as part of the output, then no head reads a list cell that
contains vi (this information depends only on the skeleton), and thus the
machine cannot know if is supposed to print vi or v′i. Thus for one of the
two inputs, it will print the wrong string.

This shows that the machine cannot sort. Combined with the Simulation Lemma,
it yields a proof of Theorem 12.
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The Smoothed Analysis of Algorithms

Daniel A. Spielman

Department of Mathematics, Massachusetts Institute of Technology

Abstract. We survey the progress that has been made in the smoothed
analysis of algorithms.

1 Introduction

Theorists have long been challenged by the existence of remarkable algorithms
that are known by scientists and engineers to work well in practice, but whose
theoretical analyses have been negative or unconvincing. The root of the problem
is that algorithms are usually analyzed in one of two ways: by worst-case or
average-case analysis. The former can improperly suggest that an algorithm will
perform poorly, while the latter can be unconvincing because the random inputs
it considers may fail to resemble those encountered in practice.

Teng and I [1] introduced smoothed analysis to help explain the success of
some of these algorithms and heuristics. Smoothed analysis is a hybrid of worst-
case and average-case analyses that inherits advantages of both. The smoothed
complexity of an algorithm is the maximum over its inputs of the expected
running time of the algorithm under slight random perturbations of that input.
The smoothed complexity is then measured as a function of both the input
length and the magnitude of the perturbations. If an algorithm has low smoothed
complexity, then it should perform well on most inputs in every neighborhood of
inputs. Smoothed analysis makes sense for algorithms whose inputs are subject
to slight amounts of noise in their low-order digits, which is typically the case if
they are derived from measurements of real-world phenomena.

In this talk, I discuss how smoothed analysis can help explain the excellent
observed behavior of the simplex method for linear programming, and provide
an overview of other algorithms to which it has been applied. The attached
bibliography is a list of papers on smothed analysis of which I am aware.
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Abstract. We analyse the mixing time of Markov chains using path cou-
pling with stopping times. We apply this approach to two hypergraph
problems. We show that the Glauber dynamics for independent sets in a
hypergraph mixes rapidly as long as the maximum degree Δ of a vertex
and the minimum size m of an edge satisfy m ≥ 2Δ+1. We also state re-
sults that the Glauber dynamics for proper q-colourings of a hypergraph
mixes rapidly if m ≥ 4 and q > Δ, and if m = 3 and q ≥ 1.65Δ. We
give related results on the hardness of exact and approximate counting
for both problems.

1 Introduction

In this paper, we develop a new approach to using path coupling with stopping
times to bound the convergence of time of Markov chains. Our interest is in ap-
plying these results to randomised approximate counting. For an introduction,
see [16]. We illustrate our methods by considering the approximation of the num-
bers of independent sets and q-colourings in hypergraphs with upper-bounded
degree Δ, and lower-bounded edge size m. These problems in hypergraphs are
of interest in their own right but, while approximate optimisation in this setting
has received considerable attention [5,6,13,17], there has been surprisingly little
work on approximate counting other than in the graph case m = 2. The tools we
develop here may also allow study of approximate counting for several related
hypergraph problems. Note, for example, that independent sets in hypergraphs
correspond to edge covers under hypergraph duality.

Our results are achieved by considering, in the context of path coupling [4],
the stopping time at which the distance first changes between two coupled chains.
The first application of these stopping times to path coupling was given by Dyer,
Goldberg, Greenhill, Jerrum and Mitzenmacher [9]. Their analysis was later
improved by Hayes and Vigoda [12], using results closely related to those which
we develop in this paper. Mitzenmacher and Niklova [19] had earlier stated a
similar theorem, but could not provide a conclusive proof. Their approach had
many similarities to our Theorem 2.1, but conditioning problems necessitate a
proof along somewhat different lines.

Our main technical result, Theorem 2.1, shows that the chain mixes rapidly if
the expected distance between the two chains has decreased at this stopping time.

M. Lískiewicz and R. Reischuk (Eds.): FCT 2005, LNCS 3623, pp. 19–31, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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We note that a similar conclusion follows from [12, Corollary 4]. However, we give
a simpler and more transparent proof of this result, without initially assuming
bounded stopping times as is done in the approach of [12]. As a consequence,
our Theorem 2.1 will usually give a moderate improvement in the mixing time
bound in comparison with [12, Corollary 4]. See Remark 2.3 below.

The problem of approximately counting independent sets in graphs has been
widely studied, see for example [8,10,18,20,22], but the only previous work on the
approximate counting of independent sets in hypergraphs seems to that of Dyer
and Greenhill [10]. They showed rapid mixing to the uniform distribution of a
simple Markov chain on independent sets in a hypergraph with maximum degree
3 and maximum edge size 3. However, this was the only interesting case resolved.
Their results imply rapid mixing only for m ≤ Δ/(Δ − 2), which gives m ≤ 3
when Δ = 3 and m ≤ 2 when Δ ≥ 4. In Theorem 3.1 we prove rapid mixing
of a simple Markov chain, the Glauber dynamics, for any hypergraph such that
m ≥ 2Δ+1, where m is the smallest edge size andΔ is the maximum degree. This
is a marked improvement for large m. More generally, we consider the hardcore
distribution on independent sets with fugacity λ. (See, for example, [10,18,22].)
In [10], it is proved that rapid mixing occurs if λ ≤ m/((m − 1)Δ −m). Here
we improve this considerably for larger values of m, to λ ≤ (m − 1)/2Δ. We
also give two hardness results: that computing the number of independent sets
in hypergraphs is #P-complete except in trivial cases, and that there can be
no approximation for the number of independent sets in a hypergraphs if the
minimum edge size is at most logarithmic in Δ. It may be noted that our upper
and lower bounds are exponentially different. We have no strong belief that
either is close to the threshold at which approximate counting becomes possible,
if such a threshold exists.

Counting q-colourings of hypergraphs was considered by Bubley [3], who
showed that the Glauber dynamics was rapidly mixing if q ≥ 2Δ, generalising a
result for graphs of Jerrum [15] and Salas and Sokal [21]. Much work has been
done on improving this result for graph colourings, see [7] and its references,
but little attention appears to have been given to the hypergraph case. Here we
prove rapid mixing of Glauber dynamics for proper colourings of hypergraphs if
m ≥ 4, q > Δ, and if m = 3, q ≥ 1.65Δ. For a precise statement of our result
see Theorem 5.2. We give hardness results showing that computing the number
of colourings in hypergraphs is #P-complete except in trivial cases, and that
there can be no approximation for the number of colourings of hypergraphs if
q ≤ (1− 1/m)Δ1/(m−1). Again, there is a considerable discrepancy between the
upper and lower bounds for large m.

The paper is organised as follows. Section 1.1 gives an intuitive motivation for
the stopping time approach of the paper. Section 2 contains the full description
and proof of Theorem 2.1 for path coupling with stopping times. We apply
this to hypergraph independent sets in Section 3. Section 4 contains the related
hardness results. Section 5 contains our results on the Glauber dynamics for
hypergraph colouring. Finally, Section 6 gives the hardness results for counting
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colourings in hypergraphs. For reasons of space, most of the proofs are omitted
in Sections 4–6. These may be found in [1].

1.1 Intuition

Let H = (V , E) be a hypergraph of maximum degree Δ and minimum edge
size m. A subset S ⊆ V of the vertices is independent if no edge is a sub-
set of S. Let Ω(H) be the set of all independent sets of H. Let λ be the fu-
gacity, which weights independent sets. (See [10].) The most important case is
λ = 1, which weights all independent sets equally and gives rise to the uniform
distribution on all independent sets. We define the Markov chain M(H) with
state space Ω(H) by the following transition process (Glauber dynamics). If the
state of M at time t is Xt, the state at t + 1 is determined by the following
procedure.

(i) Select a vertex v ∈ V uniformly at random,
(ii) (a) if v ∈ Xt let Xt+1 = Xt\{v} with probability 1/(1 + λ),

(b) if v 	∈ Xt and Xt ∪ {v} is independent, let Xt+1 = Xt ∪ {v} with proba-
bility λ/(1 + λ),

(c) otherwise let Xt+1 = Xt.

This chain is easily shown to be ergodic with stationary probability proportional
to λ|I| for each independent set I ⊆ V . In particular, λ = 1 gives the uniform
distribution. The natural coupling for this chain is the “identity” coupling, the
same transition is attempted in both copies of the chain. If we try to apply stan-
dard path coupling to this chain, we immediately run into difficulties. Consider
two chainsXt and Yt such that Yt = Xt∪{w}, where w /∈ Xt (the change vertex )
is of degree Δ. An edge e ∈ E is critical in Yt if it has only one vertex z ∈ V
which is not in Yt, and we call z critical for e. If each of the edges through w
is critical for Yt, then there are Δ choices of v in the transition which can be
added in Xt but not in Yt. Thus, if λ = 1, the change in the expected Hamming
distance between Xt and Yt after one step could be as high as Δ

2n −
1
n . Thus

we obtain rapid mixing only in the case Δ = 2. This case has some intrinsic
interest, since the complement of an independent set corresponds, under hyper-
graph duality, to an edge cover [11] in a graph. Thus we may uniformly generate
edge covers, but the scope for unmodified path coupling is obviously severely
limited.

The insight on which this paper is based is as follows. Although in one step it
could be more likely that a bad vertex (increasing Hamming distance) is chosen
than a good vertex (decreasing Hamming distance), it is even more likely that
one of the other vertices in an edge containing w is chosen and removed from the
independent set. Once the edge has two unoccupied vertices other than w, then
any vertex in that edge can be added in both chains. This observation enables
us to show that, if T is defined to be the stopping time at which the distance
between Xt and Yt first changes, the expected distance between XT and YT will
be less than 1. Theorem 2.1 below shows that under these circumstances path
coupling can easily be adapted to prove rapid mixing.
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Having established this general result, we use it to prove thatM(H) is rapidly
mixing for hypergraphs with m ≥ 2λΔ + 1. Note that, though all the results
in this paper will be proved for uniform hypergraphs of edge size m, they carry
through trivially for hypergraphs of minimum edge size m.

2 Path Coupling Using a Stopping Time

First we prove the main result discussed above.

Theorem 2.1. Let M be a Markov chain on state space Ω. Let d be an integer
valued metric on Ω × Ω, and let (Xt,Yt) be a path coupling for M, where S is
the set of pairs of states (X,Y ) such that d(X,Y ) = 1. For any initial states
(X0,Y0) ∈ S let T be the stopping time given by the minimum t such that
d(Xt,Yt) 	= 1. Suppose, for some p > 0, that

(i) Pr(T = t |T ≥ t) ≥ p, independently for each t,
(ii) E[d(XT ,YT )] ≤ α < 1.

Then M mixes rapidly. In particular the mixing time τ(ε) of M satisfies

τ(ε) ≤ 1
p

3
1− α ln(eD2) ln

( 2D1

ε(1− α)

)
,

where D1 = max{d(X,Y ) : X,Y ∈ Ω} and D2 = max{d(XT ,YT ) : X0,Y0 ∈
Ω, d(X0,Y0) = 1}.

Proof. Consider the following game. In each round a gambler either wins £1,
loses some amount £(l − 1) or continues to the next round. If he loses £(l − 1)
in a game, he starts l separate (but possibly dependent) games simultaneously
in an effort to win back his money. If he has several games going and loses one
at a certain time, he starts l more games, while continuing with the others that
did not conclude. We know that the probability he finishes a game in a given
step is at least p, and the expected winnings in each game is at least 1−α. The
question is: does his return have positive expectation at any fixed time ? We will
show that it does. But first a justification for our interest in this game.

Each game represents a single step on the path between two states of the
coupled Markov chain. We start with X0 and Y0 differing at a single vertex.
The first game is won if the first time the distance between the coupled chains
changes is in convergence. The game is lost if the distance increases to l. At that
point we consider the distance l path Xt to Yt, and the l games played represent
the l steps in the path. Although these games are clearly dependent, they each
satisfy the conditions given. The gambler’s return at time t is one minus the
length of the path at time t, so a positive expected return corresponds to an
expected path length less than one. We will show that the expected path length
is sufficiently small to ensure coupling.

For the initial game we define the level to be zero, for any other possible
game we define the level to be one greater than the level of the game whose loss
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precipitated it. We define the random variables Mk, ljk and Ijk(t) as follows. Mk

is the number of games at level k that are played, ljk, for j = 1 . . .Mk, is the
number of games in level k + 1 which are started as a result of the outcome of
game j in level k, and Ijk(t) is an indicator function which takes the value 1
ifgame j in level k is active at time t, and 0 otherwise. Let N(t) be the number
of games active at time t. Then, by linearity of expectations,

E[N(t)] =
∞∑

k=0

E

⎡⎣Mk∑
j=1

Ijk(t)

⎤⎦ . (1)

We will bound this sum in two parts, splitting it at a point k = K to be
determined. For k ≤ K we observe that Mk ≤ Dk

2 . Since Pr(Ijk(t) = 1) is at
most the probability that exactly k−1 games of a sequence are complete at time
t, regardless of outcome, we have

E

⎡⎣Mk∑
j=1

Ijk(t)

⎤⎦ ≤ Dk
2 max

j
E[Ijk(t)]

≤ Dk
2 Pr(exactly k − 1 games complete by time t).

So that
K∑

k=0

E

⎡⎣Mk∑
j=1

Ijk(t)

⎤⎦ ≤ K∑
k=0

Dk
2 Pr(exactly k − 1 games complete by time t)

≤ D2
K Pr(at most K games complete by t). (2)

On the other hand, for k > K we observe that

E
[ Mk∑

j=1

Ijk(t)
]
≤ E[Mk] = EMk−1

[
E[Mk|Mk−1]

]
= EMk−1

[
E[

Mk−1∑
j=1

ljk−1|Mk−1]
]

Since E[ljk−1] ≤ α for any starting conditions, we may apply this bound even
when conditioning on Mk−1. So

E

⎡⎣Mk∑
j=1

Ijk(t)

⎤⎦ ≤ E[αMk−1] ≤ αk, (3)

using linearity of expectation, induction and E[M1] ≤ α. Putting (2) and (3)
together we get

E[N(t)] ≤ D2
K Pr(at most K games complete by t) +

∞∑
k=K+1

αk

= D2
K Pr(at most K games complete by t) +

αK+1

1− α
. (4)
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We now set K = �(lnα)−1 ln( ε(1−α)
2D1

)�, hence the final term is at most ε/2D1.
The probability that a game completes in any given step is at least p. If we select
a time τ ≥ c/p for c ≥ K + 1 ≥ 1, then the probability that at most K games
are complete is clearly maximised by taking this probability to be exactly p in
all games. Hence, by Chernoff’s bound (see, for example, [14, Theorem 2.1]),

E[N(τ)] ≤ D2
K

K∑
k=0

(
τ

k

)
pk(1− p)τ−k +

ε

2D1

≤ eK lnD2− (c−K)2

2c +
ε

2D1

≤ eK lnD2+K−c/2 +
ε

2D1
.

Choosing c = 2K ln(eD2) + 2 ln 2D1
ε , we obtain E[N(τ)] < ε

D1
, where τ =⌈3 ln(eD2)

p(1−α) ln
( 2D1

ε(1−α)

)⌉
.

We conclude that the gambler’s expected return at time τ is positive. More
importantly, for any initial states X0,Y0 ∈ Ω, the expected distance at time τ
is at most ε by linearity of expectations, and so the probability that the chain
has not coupled is at most ε. The mixing time claimed now follows by standard
arguments. See, for example, [16].

Remark 2.2. The assumption that the stopping time occurs when the distance
changes is not essential. The assumption that S contains only pairs of states
at distance 1 can be removed at the expense of a more complicated proof. We
clearly cannot dispense with assumption (ii), or we cannot bound mixing time.
Assumption (i) may appear a restriction, but appears to be naturally satisfied
in most applications. It seems more natural than the assumption of bounded
stopping time, used in [12]. Assumption (i) can easily be replaced by something
weaker, for example by allowing p to vary with time rather than remain constant.
Provided p 	= 0 sufficiently often, a similar proof will be valid.

Remark 2.3. Let γ = 1/(1−α). It seems likely that D2 will be small in compar-
ison to γ in most applications, so we might suppose D2 < γ < D1. The mixing
time bound from Theorem 2.1 can then be written O(p−1γ log D2 log(D1/ε)). We
may compare this with the bound which can be derived using [12, Corollary 4].
This can be written in similar form as O(p−1γ log γ log(D1/ε)). In such cases
we obtain a reduction in the estimate of mixing time by a factor log γ/ logD2.
In the applications below, for example, we have D2 = 2 and γ = Ω(Δ), so the
improvement is Ω(logΔ).

Remark 2.4. The reason for our improvement on the result of [12] is that the
use of an upper bound on the stopping time, as is done in [12], will usually
underestimate the number of stopping times which occur in a long interval, and
hence the mixing rate.
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3 Hypergraph Independent Sets

We now use the approach of path coupling via stopping times to prove that
the chain discussed in Section 1.1 is rapidly mixing. The metric used in path
coupling analyses throughout the paper will be Hamming distance between the
coupled chains. We prove the following theorem.

Theorem 3.1. Let λ,Δ be fixed, and let H be a hypergraph such that m ≥
2λΔ+ 1. Then the Markov chain M(H) has mixing time O(n log n).

Before commencing the proof itself, we analyse the stopping time T for this
problem.

3.1 Edge Process

Let Xt and Yt be copies of M which we wish to couple, with Y0 = X0 ∪ {w}.
Let e be any edge containing w, with m = |e|. We consider only the times at
which some vertex in e is chosen. The progress of the coupling on e can then
be modelled by the following “game”. We will call the number of unoccupied
vertices in e (excluding w) units. At a typical step of the game we have k units,
and we either win the game, win a unit, keep the same state or lose a unit. These
events happen with the following probabilities: we win the game with probability
1/m, win a unit with probability at least (m− k− 1)/(1 +λ)m, lose a unit with
probability at most λk/(1 + λ)m and stay in the same state otherwise. If ever
k = 0, we are bankrupt and we lose the game. Winning the game models the
“good event” that the vertex v is chosen and the two chains couple. Losing the
game models the “bad event” that the coupling increases the distance to 2. We
wish to know the probability that the game ends in bankruptcy. We are most
interested in the case where k = 1 initially, which models e being critical. Note
that the value of k in the process on hypergraph independent sets dominates the
value in our model, since we can always delete (win in the game), but we may
not be able to insert (lose in the game) because the chosen vertex is critical in
some other edge.

Let pk denote the probability that a game is lost, given that we start with k
units. We have the following system of simultaneous equations.

(m− 1 + 2λ)p1 − (m− 2)p2 = λ

−kλpk−1+(m− k+(k + 1)λ)pk − (m− k − 1)pk+1 = 0 (k=2, 3, . . . , m− 1)
(5)

Solving these yields the following, which may be confirmed by substituting
into Equations (5).

pk =
1(

m−1
k

)(λk−
∑k

i=1

(
m
i

)
λm+k−i

(1 + λ)m − λm

)
=

∑m
i=k+1

(
m
i

)
λm+k−i(

(1 + λ)m − λm
)(

m−1
k

) (k=1, 2, . . . , m−1).

(6)
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In particular

p1 =
λ

m− 1

(
1− mλm−1

(1 + λ)m − λm

)
. (7)

3.2 The Expected Distance Between XT and YT

The stopping time for the pair of chains Xt and Yt will be when the distance
between them changes, in other words either a good or bad event occurs. The
probability that we observe the bad event on a particular edge e with w ∈ e is
at most pk as calculated above. Let ξt denote the number of empty vertices in
e at time t when the process is started with ξ0 = k. Now ξt can never reach 0
without first reaching k − 1 and, since the process is Markovian, it follows that

pk =Pr(∃t ξt =0|ξ0 =k)=Pr(∃t ξt = 0|ξs = k−1)Pr(∃s ξs = k−1|ξ0 = k)<pk−1.

Since w is in at most Δ edges, the probability that we observe the bad event on
any edge is at most Δp1. The probability that the stopping time ends with the
good event is therefore at least 1−Δp1. The path coupling calculation is then

E[d(XT ,YT )] ≤ 2Δp1.

This is required to be less than 1 in ordered to apply Theorem 2.1. If m ≥ 2λΔ+1,
then by (7)

2Δp1 = 1− (2λΔ+ 1)λ2λΔ

(1 + λ)2λΔ+1 − λ2λΔ+1 .

Proof of Theorem 3.1. The above work puts us in a position to apply Theo-
rem 2.1. Let m ≥ 2λΔ+ 1. Then for M(H) we have

(i) Pr(d(Xt,Yt) 	= 1|d(Xt−1,Yt−1) = 1) ≥ 1
n for all t, and

(ii) E[d(XT ,YT )] < 1 − (2λΔ+ 1)λ2λΔ

(1 + λ)2λΔ+1 − λ2λΔ+1 .

Also for M(H) we have D1 = n and D2 = 2. Hence by Theorem 2.1, M(H)
mixes in time

τ(ε) ≤ 6n
(1 + λ)2λΔ+1 − λ2λΔ+1

(2λΔ+ 1)λ2λΔ
ln
(
nε−1 (1 + λ)2λΔ+1 − λ2λΔ+1

(2λΔ+ 1)λ2λΔ

)
.

This is O(n log n) for fixed λ,Δ.

Remark 3.2. In the most important case, λ = 1, we require m ≥ 2Δ + 1. This
does not include the case m = 3, Δ = 3 considered in [10]. We have attempted
to improve the bound by employing the chain proposed by Dyer and Greenhill
in [10, Section 4]. However, this gives only a marginal improvement. For large
λΔ, we obtain convergence for m ≥ 2λΔ + 1

2 + o(1). For λ = 1, this gives a
better bound on mixing time for m = 2Δ+ 1, with dependence on Δ similar to
Remark 3.3 below, but does not even achieve mixing for m = 2Δ. We omit the
details in order to deal with the Glauber dynamics, and to simplify the analysis.
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Remark 3.3. The terms in the running time which are exponential in λ,Δ would
disappear if we instead took graphs for which m ≥ 2λΔ + 2. In this case the
running time would be

τ(ε) ≤ 6(2λΔ+ 1)n ln(nε−1(2λΔ+ 1)) ≤ 12(2λΔ+ 1)n ln(nε−1).

Furthermore, if we took graphs such that m > (2 + δ)λΔ, for some δ > 0,
then the running time would no longer depend on λ,Δ at all, but would be
τ(ε) ≤ cδn ln(nε−1) for some constant cδ.

Remark 3.4. It seems that path coupling cannot show anything better than m
linear in λΔ. Suppose the initial configuration has edges {w, v1, . . . , vm−2, xi}
for i = 1, . . . ,Δ, with w, v1, . . . , vm−2 ∈ X0, x1, . . . , xΔ 	∈ X0 and w the change
vertex. Consider the first step where any vertex changes state. Let μ = (1 +
λ)(m − 1 +Δ). The good event occurs with probability (1 + λ)/μ, insertion of
a critical vertex with probability λΔ/μ, and deletion of a non-critical vertex
with probability (m − 1)/μ. We therefore need (m − 1) + (1 + λ) ≥ λΔ, i.e.
m ≥ λ(Δ − 1), to show convergence by path coupling.

Remark 3.5. It seems we could improve our bound m ≥ 2λΔ+1 for rapid mixing
of the Glauber dynamics somewhat if we could analyse the process on all edges
simultaneously. Examination of the extreme cases, where all edges adjacent to
w are otherwise independent, or where they are dependent except for one vertex
(as in Remark 3.4), suggests that improvement to (1+o(1))λΔ may be possible,
where the o(1) is relative to λΔ. However, the analysis in the general case seems
difficult, since edges can intersect arbitrarily.

4 Hardness Results for Independent Sets

We have established that the number of independent sets of a hypergraph can
be approximated efficiently using the Markov Chain Monte Carlo technique for
hypergraphs with edge size linear in Δ. We next state hardness results, in par-
ticular that exact counting is unlikely to be possible, and that unless NP=RP,
there can be no fpras for the number of independent sets of all hypergraphs with
edge size Ω(logΔ).

Theorem 4.1. Let G(m,Δ) be the class of uniform hypergraphs with minimum
edge size m ≥ 3 and maximum degree Δ. Computing the number of independent
sets of hypergraphs in G(m,Δ) is #P-complete if Δ ≥ 2. If Δ ≤ 1, it is in P.

Let G = (V,E), with |V | = n, be a graph with maximum degree Δ and Ni

independent sets of size i (i = 0, 2, . . . , n). For λ > 0 let ZG(λ) =
∑n

i=0 Niλ
i

define the hard core partition function. The following is a combination of results
in Luby and Vigoda [18] and Berman and Karpinski [2].

Theorem 4.2. If λ > 694/Δ, there is no fpras for ZG(λ) unless NP=RP.

We note that Theorem 4.2 could probably be strengthened using the ap-
proach of [8]. However, this has yet to be done.
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Theorem 4.3. Unless NP=RP, there is no fpras for counting independent sets
in hypergraphs with maximum degree Δ and minimum edge size m < 2 lg(1 +
Δ/694)− 1 = Ω(logΔ).

5 Hypergraph Colouring

In this section we present without proof another result obtained using Theo-
rem 2.1. We now consider Glauber dynamics on the set of proper colourings of
a hypergraph. Again our hypergraph H will have maximum degree Δ, minimum
edge size m, and we will have a set of q colours. A colouring of the vertices of
H is proper if no edge is monochromatic. Let Ω′(H) be the set of all proper
q-colourings of H. We define the Markov chain C(H) with state space Ω′(H) by
the following transition process. If the state of C at time t is Xt, the state at
t + 1 is determined by

(i) selecting a vertex v ∈ V and a colour k ∈ {1, 2, . . . , q} uniformly at random,
(ii) let X ′

t be the colouring obtained by recolouring v colour k
(iii) if X ′

t is a proper colouring let Xt+1 = X ′
t

otherwise let Xt+1 = Xt.

This chain is easily shown to be ergodic with the uniform stationary distribution.
Again we may use Theorem 2.1 to prove rapid mixing of this chain under certain
conditions, however first we note that the following result may be obtained using
standard path coupling techniques.

Theorem 5.1. For m ≥ 4, q > Δ, the Markov chain C(H) mixes in time
O(n log n).

This leaves little room for improvement in the case m ≥ 4, indeed it is
not clear whether the Markov chain described is even ergodic for q ≤ Δ. The
following simple construction does show that the chain is not in general ergodic
if q ≤ Δ

m + 1. Let q = Δ
m + 1, and take a hypergraph H on q(m − 1) vertices.

We will group the vertices into q groups V = V1,V2, . . . ,Vq, each of size m− 1.
Then the edge set of H is E = {{v} ∪ Vj : v ∈ V , v 	∈ Vj}. The degree of each
vertex is (q−1)+ (q−1)(m−1) = Δ. If we now colour each group Vj a different
colour, we obtain q! distinct colourings, but for each of these the Markov chain
is frozen (no transition is valid).

The case m = 2 is graph colouring and has been extensively studied. See,
for example, [7]. This leaves the case m = 3, hypergraphs with 3 vertices in
each edge. The standard path coupling argument only shows rapid mixing for
q ≥ 2Δ, since there may be two vertices in each edge that can be selected and
lead to a divergence of the two chains. This occurs if, of the two vertices in an
edge which are not w, one is coloured red and the other blue. However, we can
do better using Theorem 2.1. The proof is omitted, but again hinges on the fact
that an edge is very unlikely to persist in such a critical state.

Theorem 5.2. There exists Δ0 such that, if H is a 3-uniform hypergraph with
maximum degree Δ > Δ0 and q ≥ 1.65Δ, the Markov chain C(H) mixes rapidly.
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6 Hardness Results for Colouring

Again we state a theorem that exact counting is #P-complete except in the few
cases where it is clearly in P. Let G(m,Δ) be as in Theorem 4.1.

Theorem 6.1. Computing the number of q-colourings of hypergraphs in G(m,Δ)
is #P-complete if Δ, q > 1. If Δ ≤ 1 or q ≤ 1 it is in P.

Again let G(m,Δ) be as defined in Theorem 4.1. The hardness of approxima-
tion result, Corollary 6.3, follows directly from the following NP-completeness
result.

Theorem 6.2. Determining whether a hypergraph in G(m,Δ) has any q-
colouring is NP-complete for any m > 1 and 2 < q ≤ (1− 1/m)Δ1/(m−1).

Corollary 6.3. Unless NP=RP, there is no fpras for counting q-colourings of
a hypergraphs with maximum degree Δ and minimum edge size m if 2 < q ≤
(1− 1/m)Δ1/(m−1).

Remark 6.4. It is clearly a weakness that our lower bound for approximate
counting is based entirely on an NP-completeness result. However, we note that
the same situation pertains for graph colouring, which has been the subject of
more intensive study.

7 Conclusions

We have presented an approach to the analysis of path coupling with stopping
times which improves on the method of [12] in most applications. Our method
may itself permit further development.

We apply the method to independent sets and q-colourings in hypergraphs
with maximum degree Δ and minimum edge size m. In the case of independent
sets, there seems scope for improving the bound m ≥ 2Δ+1, but anything better
than m ≥ Δ + o(Δ) would seem to require new methods. For colourings, there
is probably little improvement possible in our result q > Δ for m ≥ 4, but many
questions remain for q ≤ Δ. For example, even the ergodicity of the Glauber
(or any other) dynamics is not clearly established. For the most interesting case,
m = 3, the bound q > 1.65Δ (for large Δ) can almost certainly be reduced, but
substantial improvement may prove difficult.

Our #P-completeness results seem best possible for both of the problems
we consider. On the other hand, our lower bounds for hardness of approximate
counting seem very weak in both cases, and are far from our upper bounds. These
lower bounds can probably be improved, but we have no plausible conjecture as
to what may be the truth.
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Abstract. We prove optimal lower bounds for multilinear circuits and
for monotone circuits with bounded depth. These lower bounds state
that, in order to compute certain functions, these circuits need exactly
as many OR gates as the respective DNFs. The proofs exploit a property
of the functions that is based solely on prime implicant structure. Due
to this feature, the lower bounds proved also hold for approximations of
the considered functions that are similar to slice functions. Known lower
bound arguments cannot handle these kinds of approximations. In order
to show limitations of our approach, we prove that cliques of size n − 1
can be detected in a graph with n vertices by monotone formulae with
O (log n) OR gates.

Our lower bound for multilinear circuits improves a lower bound due
to Borodin, Razborov and Smolensky for nondeterministic read-once
branching programs computing the clique function.

1 Introduction

In this paper we consider Boolean circuits consisting of AND and OR gates.
These circuits have variables and negated variables as inputs. Unless otherwise
noted, all gates have fanin 2. A circuit without any negated inputs is called
monotone. A circuit whose gates have fanout 1 is a formula. A monom is a
conjunction of variables and negated variables. In this paper we regard monoms
also as sets. An implicant of a Boolean function f is a monom that does not
evaluate to 1 unless f does. An implicant is a prime implicant (minterm) if
no new implicant can be obtained by removing variables or negated variables
from the conjunction. For a Boolean function f , we denote the set of its prime
implicants by PI (f).

Until now the best known lower bounds for non-monotone circuits are linear.
However, there has been considerable success in proving superpolynomial lower
bounds for monotone circuits. Nowadays we have several powerful techniques
to prove lower bounds for monotone circuits: the method of approximations
(Razborov [1]); the method of probabilistic amplifications for estimating the
depth of monotone circuits (Karchmer and Wigderson [2]); the rank argument
for formulas (Razborov [3]) and span programs (Gál [4], Gál and Pudlák [5]).
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Also, it is known that negation is almost powerless for so-called slice functions
(see e.g. monographs [6,7,8]). The t-slice function of f is a function of the form
f ∧ T n

t ∨ T n
t+1, where T n

t is the t-th threshold function in n variables. A super-
polynomial lower bound for the monotone complexity of a slice function implies
a lower bound of the same order for its non-monotone complexity. Unfortunately,
the currently available arguments for proving monotone lower bounds seem to
be incapable of yielding sufficient lower bounds for slice functions. Therefore it
is justified to seek new methods for proving monotone lower bounds.

One property of t-slice functions which seems to make the known arguments
unsuitable for them is that they accept all inputs with more than t ones. The
available proof methods rely on adequate sets of inputs which are mapped to 0 by
the function considered. That t-slice functions accept all inputs with more than
t ones seems to be an obstacle to constructing adequate sets of rejected inputs.
Therefore it is justified to seek lower bound arguments for functions of the form
f ∨ T n

t+1 that share this problematic property with slice functions; because of
this similarity, we will refer to functions of the form f ∨ T n

t+1 as t-pseudoslice
functions in the sequel.

In this paper we make some steps in this direction. We propose proof methods
for some restricted circuit models that avoid these shortcomings. In particular,
the properties of functions that we exploit are based solely on the prime im-
plicant structure and do not rely on any additional information about prime
clauses or rejected inputs. In this sense our lower bound arguments are “asym-
metric”. Unlike the currently available arguments, they are applicable to certain
pseudoslice functions as well.

Moreover, the lower bounds we prove are optimal for the circuit classes con-
sidered. They state that multilinear circuits and circuits with sufficiently small
alternation depth require exactly as many OR gates as the DNFs of the consid-
ered functions. This means that by using these circuit types instead of DNFs,
we cannot even save a single OR gate! In other words, the DNFs are “incom-
pressible” when we restrict ourselves to the respective circuit classes.

2 Results

A Boolean circuit is multilinear if the inputs to each of its AND gates are com-
puted from disjoint sets of variables. To be more precise, for a gate g let var (g)
be the set of variables that occur in the subcircuit rooted at g. A Boolean circuit
is multilinear if var (g1) ∩ var (g2) = ∅ for each of its AND gates g with inputs
g1 and g2. Multilinear circuits have been studied in [9,10] ([10] uses a slightly
less restrictive definition). Multilinear circuits are a generalization of nonde-
terministic read-once branching programs, which have received much attention
(see e.g. monograph [11]). Boolean multilinear circuits are related to arithmetic
multilinear circuits which are characterized by the restriction that the highest
power of the polynomials computed at their gates is no larger than 1. Arithmetic
multilinear circuits have been studied in [12,13,14]. The direct arithmetic coun-
terpart to Boolean multilinear circuits are syntactic multilinear circuits, defined
by Raz [14].
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It is clear that every Boolean function f can be computed by a multilinear
circuit with |PI (f)| − 1 OR gates: just take the DNF of f . Many functions
commonly referred to have multilinear circuits that are much smaller than their
DNFs. Consider the threshold function T n

k as an example. The threshold function
T n

k has
(
n
k

)
prime implicants, but can be computed by a multilinear circuit of size

O (nk) [11, chapter 4]. Thus, the gap between the size of a smallest multilinear
circuit which computes a certain function and the size of the DNF of this function
can be exponential. It is also known that the gap between multilinear complexity
and monotone complexity is exponential [9].

We identify a class of functions whose multilinear circuits require exactly
as many OR gates as their DNF, the so-called union-free functions. We call
a monotone Boolean function union-free if the union of any two of its prime
implicants does not contain a new prime implicant.

Theorem 1. Let f be a monotone union-free function. Then any multilinear
circuit for f must have at least |PI (f)| − 1 OR gates.

In the proof of this theorem we establish the following property of union-free
functions: among the optimal (with respect to the number of OR gates) circuits
there is one which is a formula, and for each of its AND gates, at least one input
to the gate computes a monom.

The clique function CLIQUE (n, s) is the function on
(
n
2

)
variables repre-

senting the edges of an undirected graph G whose value is 1 iff G contains an
s-clique. The clique function is a prominent example of a union-free function.

Lemma 1. The function CLIQUE (n, s) is union-free.

Proof. Suppose the union of two distinct s-cliques A and B contains all edges
of some third clique C. Since all three cliques are distinct and have the same
number of vertices, C must contain a vertex u which does not belong to A and
a vertex v which does not belong to B. This already leads to a contradiction
because either the vertex u (if u = v) or the edge {u, v} (if u 	= v) of C would
remain uncovered by the cliques A and B. ��

Corollary 1. Multilinear circuits for CLIQUE (n, s) require
(
n
s

)
− 1 OR gates

(just as many as the DNF of this function).

Because nondeterministic read-once branching programs can be simulated by
multilinear circuits in a natural way, Corollary 1 improves the lower bound of
exp (Ω (min (s, n− s))) given in [15] for nondeterministic read-once branching
programs computing CLIQUE (n, s).

Our lower bound for multilinear circuits also holds for certain pseudoslices
of union-free functions. We call a monotone function k-homogeneous if each of
its prime implicants has k variables.

Theorem 2. Let f be a monotone k-homogeneous union-free function. Then
any monotone multilinear circuit which computes the t-pseudoslice of f such
that t ≥ 2k must have at least |PI (f)| − 1 OR gates.
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The next result we discuss shows that the union-freeness property is not suf-
ficient for proving good lower bounds for general monotone circuits. By Corol-
lary 1, CLIQUE (n, n− 1) requires n − 1 OR gates to be computed by a mul-
tilinear circuit. On the other hand, we have the following upper bound.

Theorem 3. The function CLIQUE (n, n− 1) can be computed by a monotone
formula with O (log n) OR gates.

This is apparently the first non-trivial upper bound for the monotone com-
plexity of the clique function. The only other upper bound for the clique function
that we are aware of is given in [6] and is only for its non-monotone complexity.

A circuit has alternation depth d iff d is the highest number of blocks of OR
gates and blocks of AND gates on paths from input to output gates. A Σd-circuit
(respectively, Πd-circuit) is a circuit with alternation depth d such that the
output gate is an OR gate (AND gate, respectively). We give incompressibility
results, similar to those for multilinear circuits, also for monotone Σ4-circuits.
A Boolean function is s-disjoint if any two of its prime implicants do not have
s variables in common.

Theorem 4. Let f be a monotone k-homogeneous s-disjoint function such that
|PI (f)| ≤ (k/2s)k/2s. Then every monotone Σ4-circuit for f must have at least
|PI (f)| − 1 OR gates.

The same also holds for any t-pseudoslice of f such that t ≥ k2/2s.
Let POLY (q, s) be the polynomial function introduced by Andreev [16].

This function has n = q2 variables corresponding to the points in the grid
GF (q)×GF (q), where q is a prime power. The function POLY (q, s) accepts a
q× q 0-1 matrix X = (xi,j) iff there is a polynomial p (z) of degree at most s− 1
over GF (q) such that xi,p(i) = 1 for all i ∈ GF (q). If s < q/2, then POLY (q, s)
is another example of a union-free function.

The function POLY (q, s) is q-homogeneous. This function is also s-disjoint
because the graphs of two distinct polynomials of degree at most s − 1 cannot
share s points. This together with |PI (POLY (q, s))| = qs and Theorem 4 leads
to the following corollary.

Corollary 2. If s ≤ √q/2, then any Σ4-circuit for POLY (q, s) must have at
least qs − 1 OR gates (just as many as the DNF of this function).

The construction used in the proof of Theorem 3 yields a Π3-formula. Hence,
Theorem 4 suggests that it is harder to prove upper bounds for sufficiently
disjoint functions because an efficient monotone circuit for them must be more
complicated than a Σ4-circuit. It is not even clear whether these polynomial
functions POLY (q, s) with s ≤ √

q/2 can be computed by general monotone
circuits that are smaller than the respective DNFs.

The rest of the paper is devoted to the proof of our theorems.



36 M.P. Krieger

3 Lower Bounds for Multilinear Circuits

In this section we prove Theorems 1 and 2. The following lemma allows us
to restrict ourselves to monotone multilinear circuits. It is a special case of a
theorem given in [17] for read-once nondeterministic machines.

Lemma 2. If f is a monotone function, then any optimal multilinear circuit
for f is monotone.

Our next lemma describes a restriction of multilinear circuits which leads
to exponential lower bounds for certain monotone Boolean functions. Given a
prime implicant p, we show that certain variables of p can be substituted by
some variables of another prime implicant p′, yielding a “derived” implicant of
the function. We say a path from a gate to the output of a circuit is consistent
with a monom m if m is an implicant of all the functions computed at the gates
along this path. We call a gate g necessary for an implicant m of a circuit S if
m is not an implicant of the circuit Sg→0 we obtain from S by replacing g with
the constant 0. Clearly, for every gate g which is necessary for an implicant m
of S, there is a path from g to the output of S which is consistent with m. Let
PIg (f) denote the set of prime implicants of f that g is necessary for. By PI (g)
we denote the set of prime implicants of the function computed at gate g.

Lemma 3 (Exchange Lemma). Let g be a gate in a monotone multilinear
circuit S for a function f and p, p′ be prime implicants in PIg (f). Let m ⊆ p
and m′ ⊆ p′ be distinct prime implicants in PI (g).

(i) If w is a path from g to the output of S that is consistent with p, then
w is consistent with the derived monom (p \m) ∪m′. This means in particular
that the derived monom (p \m) ∪m′ is also an implicant of f .

(ii) If f is union-free, then the identity p = (p′ \m′) ∪m holds.
(iii) If f is a t-pseudoslice of a monotone k-homogeneous union-free function

f∗ such that t ≥ 2k and p, p′ are prime implicants of f∗ as well, then the same
identity p = (p′ \m′) ∪m also holds.

Proof. (i) We have to show that (p \m) ∪ m′ is an implicant of all functions
computed along w (g = g1, . . . , gt). We prove this by induction on the length
of the path w. For g1 = g the claim is correct since (p \m) ∪m′ is a superset
of m′ ∈ PI (g1). For the inductive step, assume that q ∈ PI (gi) such that
q ⊆ (p \m) ∪ m′. If gi+1 is an OR gate, then q is an implicant of gi+1. If
gi+1 is an AND gate, then let h be the other gate feeding it. We know that p
is an implicant of the function computed at gi+1. Hence, there must be some
mh ∈ PI (h) such that mh ⊆ p. Because the circuit is multilinear, we have
var (gi) ∩ var (h) = ∅. Gate g belongs to the subcircuit rooted at gate gi. We
conclude that var (g) ⊆ var (gi) and that var (g) ∩ var (h) = ∅. Since a variable
of a prime implicant of a gate must occur somewhere in the subcircuit rooted
at that gate, we conclude from m ∈ PI (g) and mh ∈ PI (h) that m ∩mh = ∅.
Now we can see that q ∪mh, an implicant of the function computed at gi+1, is
a subset of (p \m) ∪m′.
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(ii) According to (i), the monom (p \m) ∪m′ is an implicant of f . Clearly,
(p \m) ∪ m′ ⊆ p ∪ p′. Since f is union-free, this implies p ⊆ (p \m) ∪ m′ or
p′ ⊆ (p \m) ∪ m′. Because m and m′ are distinct prime implicants, we have
m 	⊆ m′ and m 	⊇ m′. The inclusion p ⊆ (p \m) ∪ m′ is impossible because
m 	⊆ m′. So p′ ⊆ (p \m) ∪m′ holds, this implies m′ ⊇ p′ \ p.

Since its assumptions are symmetrical, claim (i) also implies that (p′ \m′)∪m
is an implicant of f . Arguing in the same way as above we conclude that p ⊆
(p′ \m′)∪m. Since m′ ⊇ p′ \ p, we have (p′ \m′)∪m ⊆ p. Because p is a prime
implicant of f , this means p = (p′ \m′) ∪m.

(iii) We observe that the assumptions allow us to reason the same way as in
(ii). Again, the monom (p \m)∪m′ is an implicant of f . We have |(p \m) ∪m′| ≤
2k because |p| = k and |m′| ≤ |p′| = k. Thus, (p \m) ∪ m′ must also be an
implicant of f∗. Since f∗ is union-free, we can conclude in the same way as in
(ii) that m′ ⊇ p′ \ p. As in (ii), (p′ \m′) ∪ m is an implicant of f and also of
f∗ since |(p′ \m′) ∪m| ≤ 2k. We may now proceed as in (ii) and conclude that
p = (p′ \m′) ∪m. ��

We call a monotone circuit broom-like if, for each of its AND gates with
inputs g1 and g2, |PI (g1)| = 1 or |PI (g2)| = 1 (or both). Thus, broom-like
circuits have a particularly simple structure, and there is a direct correspondence
between their prime implicants and their OR gates.

Lemma 4. Every monotone multilinear circuit S for a union-free function f
can be transformed into a broom-like formula for f with at most as many OR
gates as S.

Proof. We first transform S into a broom-like multilinear circuit for f without
an increase in the number of OR gates. For this we need to know the following.

Claim 1. Let g be an AND gate with inputs g1 and g2. Then there exists m in
PI (g1) ∪ PI (g2) such that m ⊆ p for all p ∈ PIg (f).

Proof. Suppose there is no suitable m in PI (g1). We show that then there must
be an m in PI (g2) such that m ⊆ p for all p in PIg (f). Since there is no suitable
m in PI (g1), PIg (f) cannot be empty. We pick some arbitrary p′ in PIg (f).
Because p′ is an implicant of the function computed at g, there must be some
m′

2 in PI (g2) such that m′
2 ⊆ p′. We prove that in fact

m′
2 ⊆ p for all p ∈ PIg (f) .

We distinguish two cases. First note that there must be an m′
1 in PI (g1) such

that m′
1 ⊆ p′.

Case 1 : m′
1 	⊆ p. Then there is some m1 in PI (g1) such that m1 ⊆ p,

since p is an implicant of the function computed at g. Lemma 3(ii) yields that
p = (p′ \m′

1) ∪m1. Hence, m′
2 ⊆ p because m′

2 ⊆ p′ and m′
1 ∩m′

2 = ∅ due to
the multilinearity of the circuit.

Case 2 : m′
1 ⊆ p. Note that there must be some p′′ ∈ PIg (f) such that

m′
1 	⊆ p′′ because, by our initial assumption, m′

1 ∈ PI (g1) cannot be a suitable
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choice of m. Case 1 applies to p′′ because m′
1 	⊆ p′′, and we conclude m′

2 ⊆ p′′.
There must be some m′′

1 in PI (g1) with m′′
1 ⊆ p′′. We use Lemma 3 again and

find that p = (p′′ \m′′
1)∪m′

1. Hence, m′
2 ⊆ p because m′

2 ⊆ p′′ and m′′
1 ∩m′

2 = ∅
due to the multilinearity of the circuit. ��

We describe a modification that can be applied to every AND gate g which
prevents S from being broom-like. Let g1 and g2 be the gates that feed g. The
gate g prevents S from being broom-like, so |PI (g1)| > 1 and |PI (g2)| > 1. Let
m be the monom in PI (gi) (i ∈ {1, 2}) given by Claim 1. We add a new gate h
that computes m (along with the corresponding subcircuit for this computation).
Then we disconnect g from gi and feed g from h instead of gi. Clearly, the
resulting circuit S′ rejects all the inputs that the original circuit rejected, since
we are dealing with monotone circuits. Because S′ accepts all inputs that Sg→0
accepts, g must be necessary for any prime implicant p of S that is not a prime
implicant of S′. But according to Claim 1, after the modification every such
p remains an implicant of the function computed at g. This way we obtain a
broom-like multilinear circuit S∗ for f without an increase in the number of OR
gates.

We now describe a way of transforming a broom-like multilinear circuit S∗

for f into a broom-like formula F for f without an increase in the number of
OR gates.

Claim 2. Let g be a gate in S∗. Then
(i) there is some m in PI (g) such that m ⊆ p for all p in PIg (f), or
(ii) there is some path w from g to the output of S∗ that is consistent with

all p ∈ PIg (f).

Proof. We show that if (i) does not hold, then (ii) follows. This proof has a
similar structure compared to the proof of the first claim. Since (i) does not
hold, PIg (f) cannot be empty. So there is some p′ ∈ PIg (f) and some path w′

from g to the output of S∗ that is consistent with p′. We prove that in fact

w′ is consistent with p for all p ∈ PIg (f) .

We distinguish two cases. First note that there is some m′ ∈ PI (g) with m′ ⊆ p′

because p′ is an implicant of the function computed at g.
Case 1 : m′ 	⊆ p. There must be some m ∈ PI (g) such that m ⊆ p because p is

an implicant of the function computed at g. Lemma 3 yields that p = (p′ \m′)∪m
and that w′ is consistent with p.

Case 2 : m′ ⊆ p. Because (i) does not hold, there is some p′′ in PIg (f) such
that m′ 	⊆ p′′. Case 1 applies to p′′ because m′ 	⊆ p′′, and we conclude that w′ is
consistent with p′′. There must be some m′′ in PI (g) with m′′ ⊆ p′′. Lemma 3
tells us that p = (p′′ \m′′) ∪m′ and that w′ is consistent with p. ��

We now describe a modification that we carry out for every gate g of S∗ with
fanout larger than 1 in order to reduce its fanout to 1. As with the modification
for making the circuit broom-like, we only have to check the prime implicants
for which g is necessary. We distinguish two cases according to Claim 2.
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Case 1 : There is some m in PI (g) such that m ⊆ p for all p in PIg (f). We
remove g from the circuit and replace all wires from g by subcircuits that each
compute m. The resulting circuit computes a function that is clearly implied by
all prime implicants p in PIg (f).

Case 2 : There is some path w from g to the output of S∗ that is consistent
with all p in PIg (f). We then cut all wires stemming from g that are not on
path w, i.e. we replace inputs to other gates from g by the constant 0. All
prime implicants in PIg (f) are preserved because after the modification w is
still consistent with all of them. To see this, note that, due to the multilinearity
of the circuit, every AND gate on w can have at most one input that depends
on g (such an input must be on w itself). ��

The following lemma enables us to count the prime implicants of monotone
functions by counting the OR gates of their monotone broom-like formulas.

Lemma 5. Let F be a monotone broom-like formula computing f . Then F has
at least |PI (f)| − 1 OR gates.

Proof. The lemma can be proved by induction on the size of the formula. The
details are omitted. ��

Theorem 1 follows immediately from Lemma 4 together with Lemma 5.
To verify Theorem 2, we use Lemma 3(iii) in place of Lemma 3(ii). The

construction of Lemma 4 then yields a broom-like formula for a function f̃ such
that PI

(
f̃
)
⊇ PI (f). The lower bound then follows with Lemma 5.

4 An Upper Bound for the Clique Function

We will use the following lemma.

Lemma 6. Let G be a graph with n vertices. If its complement G does not
contain a triangle and does not have two edges which are not incident with a
common vertex, then G has an (n− 1)-clique.

Proof. Suppose G does not have an n−1-clique. Then G is not a star. Suppose G
does not have two edges which are not incident with a common vertex. Choose
arbitrary distinct edges e1 and e2 in G. Let e1 and e2 be incident with the
common vertex u. Since G is not a star, there is an edge e3 which is not incident
with u. Let e2 and e3 be incident with the common vertex v 	= u. e1 and e3 must
share the common vertex w, which is distinct from u and v. Hence, u, v and w
form a triangle in G. ��

Proof of Theorem 3. To design the desiredΠ3-formula for CLIQUE (n, n− 1)
we use a code C ⊆ Ak for some k over an alphabet A with a constant number
of symbols (independent of n) such that |C| ≥ n and the minimal distance d of
C is larger than 3k/4. The existence of such a code of length k = O(log n) is
guaranteed by the Gilbert bound (see e.g. [18]).
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We assign to each vertex x (and hence, to each (n− 1)-clique V \ {x}) its
own codeword code (x) ∈ C. For each 1 ≤ i ≤ k and a ∈ A, let Si,a be the
intersection of all (n−1)-cliques whose codes have symbol a in the i-th position.
Hence,

Si,a = V \ {x ∈ V | code (x) has symbola in position i} . (1)
Let mi,a be the monom consisting of all variables which correspond to edges
having both their endpoints in Si,a (if |Si,a| ≤ 1, we set mi,a = 1). We give the
following Π3-formula F for CLIQUE (n, n− 1):

F =
k∧

i=1

∨
a∈A

mi,a .

Every (n− 1)-clique V \ {x} with code (x) = (a1, . . . , ak) is accepted by the
monom

∧k
i=1 mi,ai because the clique V \ {x} contains all the cliques Si,ai ,

i = 1, . . . , k. Hence, every (n− 1)-clique is accepted by F . It remains to show
that F does not accept any graph without an (n− 1)-clique.

Let G be a graph accepted by F . Then there is a sequence a1, . . . , ak of
symbols in A such that G is accepted by the monom

∧k
i=1 mi,ai . For a vertex

x ∈ V , let
Px = {i | code (x) has symbolai in position i} .

Since the code C has minimal distance d > 3k/4, this implies that for every two
distinct vertices x and y,

|Px ∩ Py| ≤ k − d < k/4 . (2)

Let {x, y} be an edge of the complement graph G. Then the edge {x, y}
cannot belong to any of the monoms m1,a1 , . . . , mk,ak

, implying that x 	∈ Si,ai or
y 	∈ Si,ai for all i = 1, . . . , k. According to (1) this means that for all i = 1, . . . , k,
code (x) or code (y) has symbol ai at position i. So we have

Px ∪ Py = [k] = {1, . . . , k} . (3)

Now we are able to show that G must contain an (n− 1)-clique. We do so by
showing that its complement G does not contain a triangle and does not contain
a pair of vertex disjoint edges. The result then follows with Lemma 6.

Assume first that G contains a triangle with vertices u, v and w. By (3), we
have that Pu ∪Pw = [k] and Pv ∪Pw = [k]. Taking the intersection of these two
equations yields

(Pu ∩ Pv) ∪ Pw = [k] .
But by (2), we have that |Pu ∩ Pv| < k/4, so |Pw | > 3k/4. Similarly we obtain
|Pu| > 3k/4, implying that |Pu ∩ Pw| > k/2, a contradiction with (2).

Assume now that G contains a pair of vertex disjoint edges {u, v} and {x, y}.
By (3), we have Pu∪Pv = [k] and Px∪Py = [k]. Assume w.l.o.g. that |Pu| ≥ |Pv|.
Then |Pu| ≥ k/2. We know that

Pu = Pu ∩ [k] = Pu ∩ (Px ∪ Py) = (Pu ∩ Px) ∪ (Pu ∩ Py) .

Assume w.l.o.g. that |Pu ∩ Px| ≥ |Pu ∩ Py|. Then |Pu ∩ Px| ≥ |Pu|/2 ≥ k/4, a
contradiction with (2). ��
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5 Lower Bounds for Monotone Σ4-Circuits

The following lemma shows that the union-freeness property is a special case
of the disjointness property. This lemma names the properties of sufficiently
disjoint functions that we exploit when proving the lower bound of Theorem 4.

Lemma 7. Let p1, ..., pr be prime implicants of a monotone Boolean function f
and m be an implicant of f . Let f be k-homogeneous and k/r-disjoint.

(i) If
⋃r

i=1 pi ⊇ m, then m ⊇ pi for some i.
(ii) If x1, . . . , xr are variables such that xi ∈ pi and xi 	∈ pj for i 	= j, then⋃r

i=1 (pi \ {xi}) is not an implicant of f .

Proof. (i) There must be some prime implicant p of f with m ⊇ p. Since⋃r
i=1 pi ⊇ p, p must share at least k/r variables with some pi. Because f is

k/r-disjoint, this implies p = pi. Claim (ii) is a direct consequence of (i). ��

The following lemma deals with Π3-circuits with gates of unbounded fanin.

Lemma 8. Let f be a monotone k-homogeneous and s-disjoint function. If r ≤
k/2s and h is a function such that h ≤ f (i.e., f evaluates to 1 if h does) and
|PI (h) ∩ PI (f)| ≥ r, then any monotone Π3-circuit for h with bottom fanin at
most s− 1 must have top fanin at least (k/2s)r.

Proof. Let S be a monotone Π3-circuit with top fanin a and bottom fanin at
most s − 1. Let F1, . . . , Fa be the functions computed by the Σ2-subcircuits of
S that are inputs to the AND gate which is the output gate of S. The function
F computed by S can be represented in the form

F =
a∧

i=1

Fi .

Let a < (k/2s)r. We now show that the circuit S must then make an error,
i.e. that F 	= h. For the sake of contradiction, assume that F = h. We choose
arbitrary prime implicants p1, . . . , pr ∈ PI (h) ∩ PI (f). Our goal is to pick
x1 ∈ p1, . . . , xr ∈ pr suitable for Lemma 7(ii), yielding F 	= h.

We pick the xis in the order indicated by their indices. During this process
we consider the preliminary monoms

mt =
t⋃

i=1

(pi \ {xi}) , t = 1, . . . , r .

The preliminary monom mt is available after the t-th step of the process. Finally,
mr is the desired implicant needed for the contradiction with Lemma 7(ii). Let
At denote the set of indices of the functions Fi which are not implied by mt,
i.e. i ∈ At iff mt is not an implicant of Fi.

Claim 3. There is always a choice of xt in order to make

|At| ≤
|At−1|
k/2s

.
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Proof. We describe a choice of xt that makes At sufficiently small. For every i
in At−1 we choose some mi ∈ PI (Fi) with pt ⊇ mi. Every Fi has such a prime
implicant because pt is a prime implicant of h = F . As xt, we pick a variable of pt

that does not belong to any other of the prime implicants p1, . . . , pr. Since each
of the prime implicants can share at most s− 1 variables with each of the other
r − 1 prime implicants, the prime implicant pt has at least k − (s− 1) (r − 1)
variables which do not belong to any of the other prime implicants. Of these
“private” variables of pt, at most s − 1 can belong to some particular monom
mi we chose. If we add all the occurrences of the private variables of pt in the
monoms mi together, we count at most (s− 1) |At−1| occurrences. Using that
pt has at least k − (s− 1) (r − 1) private variables, we find that at least one of
these variables is in not more than |At−1| / (k/2s) of the chosen monoms. This
sufficiently “rare” variable is our choice of xt. Since only those i ∈ At−1 remain
in At for which xt belongs to the chosen monom mi, the desired bound for |At|
follows. ��

We now finish the proof of Lemma 8. We start with |A0| = a < (k/2s)r.
According to the claim, we can always choose the x1, . . . , xr such that Ar is
empty. This means the finally constructed monom mr is in fact an implicant
of F . ��

Proof of Theorem 4 (Sketch). Let S be a monotone Σ4-circuit with gates
of fanin 2 which computes a monotone k-homogeneous s-disjoint function f . We
assume that S has the smallest possible number of OR gates. The function f can
be represented, according to the structure of S, as a disjunction of functions fi

which are computed by the Π3-subcircuits of S: f =
∨

fi. Let fi be computed
by the Π3-circuit Si. Without loss of generality we can assume that no Π1-
subcircuit of any Si depends on more than s − 1 variables, i.e. every Si has
bottom fanin at most s− 1 when regarded as a circuit of unbounded fanin.

Every prime implicant of f must be a prime implicant of at least one of the fi.
Let R be the largest number of prime implicants of f that are prime implicants
of one particular fi = h. Let h be computed by the Π3-circuit Si = H . Under
our assumption that S is optimal with respect to the number of OR gates used,
we conclude that the case 2 ≤ R < k/2s cannot occur. Otherwise, by Lemma 8,
H would require at least (k/2s)R − 1 ≥ R2 − 1 OR gates and could be replaced
by a simple two-level circuit requiring only R− 1 OR gates.

In the case R = 1 the circuit S is essentially a DNF and needs |PI (f)| − 1
OR gates. In the remaining case R ≥ k/2s Lemma 8 yields that H has a top
fanin of at least (k/2s)k/2s. The inequality (k/2s)k/2s ≥ |PI (f)| is assumed
by Theorem 4, so the desired lower bound for the number of OR gates in S
follows.

Acknowledgement. I am grateful to Stasys Jukna for helpful discussions.
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Abstract. We show that if a language is recognized within certain error
bounds by constant-depth quantum circuits over a finite family of gates,
then it is computable in (classical) polynomial time. In particular, for 0 <
ε ≤ δ ≤ 1, we define BQNC0

ε,δ to be the class of languages recognized
by constant depth, polynomial-size quantum circuits with acceptance
probability either < ε (for rejection) or ≥ δ (for acceptance). We show
that BQNC0

ε,δ ⊆ P, provided that 1 − δ ≤ 2−2d(1 − ε), where d is the
circuit depth.

On the other hand, we adapt and extend ideas of Terhal & DiVin-
cenzo [1] to show that, for any family F of quantum gates including
Hadamard and CNOT gates, computing the acceptance probabilities of
depth-five circuits over F is just as hard as computing these probabil-
ities for arbitrary quantum circuits over F . In particular, this implies
that NQNC0 = NQACC = NQP = coC=P, where NQNC0 is the
constant-depth analog of the class NQP. This essentially refutes a con-
jecture of Green et al. that NQACC ⊆ TC0 [2].

1 Introduction

This paper investigates QNC0 circuits, that is, families of quantum circuits with
polynomial size and constant depth, using quantum gates of bounded width.
Informally speaking, we show that

1. decision problems computed by QNC0 circuits within certain error bounds
can be computed classically in polynomial time (Corollary 2), yet

2. computing probability amplitudes of QNC0 circuits exactly is as hard as
computing arbitrary #P functions, even when we restrict the circuits to
depth three over a fixed finite set of quantum gates (Theorem 1).
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The second result extends and improves work of Terhal & DiVincenzo [1]. Com-
bined with recent results of Aaronson [3] it shows that

postBQNC0 = postBQP = PP (Theorem 2),

where postBQNC0 (respectively, postBQP) is the class of languages com-
putable by QNC0 (respectively, polynomial-size quantum) circuits with bounded
error and postselection.

Much can be done with O(log n)-depth quantum circuits (QNC1 circuits).
Moore & Nilsson showed that many circuits can be parallelized to log depth—
in particular, those implementing stabilizer error-correcting codes [4]. Cleve &
Watrous were able to approximate the Quantum Fourier Transform over mod-
ulus 2n with O(log n)-depth circuits [5]. At first glance, QNC0 circuits appear
extremely weak; one might expect that nothing can be computed with QNC0

circuits that cannot already be computed classically in polynomial time (even in
NC0), since each output qubit can only be connected to a constant number of
input qubits. This is certainly the case for decision problems if we restrict our-
selves to observing a single output qubit, but surprisingly, this is still open in
the more reasonable case where we observe several outputs at once, then apply
some classical Boolean acceptance criterion on the results. The reason why these
circuits are probably hard to simulate classically is that, although each individ-
ual output probability amplitude is easy to compute, it may be the case that
different output qubits are correlated with each other, and the correlation graph
has a high rate of expansion. (Terhal & DiVincenzo show that this is not the
case for a depth two circuit, which can thus be simulated easily classically [1].)

To get use out of o(log n)-depth quantum circuits, people have augmented
them with quantum gates of unbounded fan-in. There are a number of unbounded-
width gate classes studied in the literature, most being defined in analogy with
classical Boolean gates. The generalized Toffoli gate (see Section 2.1) is the
quantum equivalent of the unbounded Boolean AND-gate. Likewise, there are
quantum equivalents of Mod-gates and threshold gates. One particular quantum
gate corresponds to something taken almost completely for granted in Boolean
circuits—fan-out. A fan-out gate copies the (classical) value of a qubit to sev-
eral other qubits at once.1 Using these gates, one can define quantum versions
of various classical circuit classes: the previously mentioned QNCk (Moore &
Nilsson [4]), QACk and QACCk (Moore [6], Green et al. [2]), and QTCk are
analogous to NCk, ACk, ACC, and TCk, respectively. The case of particular
interest is when k = 0. All these classes are allowed constant-width gates drawn
from a finite family. The classes differ in the additional gates allowed.

Although small-depth quantum circuit classes are defined analogously to
Boolean classes, their properties have turned out to be quite different from their
classical versions. A simple observation of Moore [6] shows that the n-qubit fan-
out gate and the n-qubit parity (Mod2) gate are equivalent up to constant depth,
i.e., each can be simulated by a constant-depth circuit using the other. This is
1 There is no violation of the No-Cloning Theorem here; only the classical value is

copied.
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completely different from the classical case, where parity cannot be computed
even with AC0 circuits where fan-out is unrestricted [7,8]. Later, Green et al.
showed that all quantum Modq-gates are constant-depth equivalent for q > 1,
and are thus all equivalent to fan-out. Thus QNC0

f = QACC0(q) = QACC0

for any q > 1. (The f subscript means, “with fan-out.”) The classical analogs of
these classes are provably different. In particular, classical Modp and Modq gates
are not constant-depth equivalent if p and q are distinct primes, and neither can
be simulated by AC0 circuits [9,10].

Building on ideas in [4], Høyer & Špalek used QNC0 circuits with unbounded
fan-out gates to parallelize a sequence of commuting gates applied to the same
qubits, and thus greatly reduced the depth of circuits for various purposes [11].
They showed that threshold gates can be approximated in constant depth this
way, and they can be implemented exactly if Toffoli gates are also allowed.
Thus QTC0

f = QACC0 as well. Threshold gates, and hence fanout gates, are
quite powerful; many important arithmetic operations can be computed in con-
stant depth with threshold gates [12]. This implies that the quantum Fourier
transform—the quantum part of Shor’s factoring algorithm—can be approxi-
mated in constant depth using fanout gates.

All these results rely for their practicality on unbounded-width quantum
gates being available, especially fan-out or some (any) Mod gate. Unfortunately,
making such a gate in the lab remains a daunting prospect; it is hard enough
just to fabricate a reliable CNOT gate. Much more likely in the short term is
that only one- and two-qubit gates will be available, which brings us back to the
now more interesting question of QNC0. How powerful is this class?

A handful of hardness results about simulating constant-depth quantum cir-
cuits with constant-width gates are given by Terhal & DiVincenzo [1]. They show
that if one can classically efficiently simulate, via sampling, the acceptance prob-
ability of quantum circuits of depth at least three using one- and two-qubit gates,
then BQP ⊆ AM. They also showed that the polynomial hierarchy collapses if
one can efficiently compute the acceptance probability exactly for such circuits.
(Actually, a much stronger result follows from their proof, namely, P = PP.)
Their technique uses an idea of Gottesman & Chuang for teleporting CNOT
gates [13] to transform an arbitrary quantum circuit with CNOT and single-qubit
gates into a depth-three circuit whose acceptance probability is proportional to,
though exponentially smaller than, the original circuit. Their results, however,
only hold on the supposition that depth-three circuits with arbitrary single-qubit
and CNOT gates are simulatable. We weaken their hypothesis by showing how
to produce a depth-three circuit with essentially the same gates as the original
circuit. In addition, we can get by with only simple qubit state teleportation
[14]. Our results immediately show that the class NQNC0 (the constant-depth
analog of NQP, see below), is actually the same as NQP, which is known to
be as hard as the polynomial hierarchy [15]. We give this result in Section 3.1.
It underscores yet another drastic difference between the quantum and classical
case: while AC0 is well contained in P, QNC0 circuits (even just depth-three)
can have amazingly complex behavior. Our result is also tight; Terhal & DiVin-
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cenzo showed that the acceptance probabilities of depth-two circuits over one-
and two-qubit gates are computable in polynomial time.

In Section 3.2, we give contrasting upper bounds for QNC0-related lan-
guage classes. We show that various bounded-error versions of QNC0 (defined
below) are contained in P. Particularly, EQNC0 ⊆ P, where EQNC0 is the
constant-depth analog of the class EQP (see below). Our proof uses elementary
probability theory, together with the fact that single output qubit measure-
ment probabilities can be computed directly, and the fact that output qubits are
“largely” independent of each other. In hindsight, it is not too surprising that
EQNC0 ⊆ P. EQNC0 sets a severe limitation on the behavior of the circuit:
it must accept with certainty or reject with certainty. This containment is more
surprising (to us) for the bounded-error QNC0 classes.

We give open questions and suggestions for further research in Section 4.
An unabridged version of this paper is available as http://www.cse.sc.edu/

~fenner/papers/eqnc.ps.

2 Preliminaries

2.1 Gates and Circuits

We assume prior knowledge of basic concepts in computational complexity: poly-
nomial time, P, NP, as well as the counting class #P [16]. Information can be
found, for example, in Papadimitriou [17]. The class C 	=P (coC=P) was defined
by Wagner [18]. One way of defining C 	=P is as follows: a language L is in C 	=P iff
there are two #P functions f and g such that, for all x, x ∈ L ⇐⇒ f(x) 	= g(x).
C 	=P was shown to be hard for the polynomial hierarchy by Toda & Ogihara [19].

We will also assume some background in quantum computation and the quan-
tum circuit model. See Nielsen and Chuang [20] for a good reference of basic
concepts and notation.

Our notion of quantum circuits is fairly standard (again see, for example,
[20]): a series of quantum gates, drawn from some specified set of unitary op-
erators, acting on some specified number of qubits, labeled 1, . . . , m. The first
few qubits are considered input qubits, which are assumed to be in some basis
state initially (i.e., classical input); the rest are ancillæ, each assumed to be in
the |0〉 state initially. Thus the initial state of the qubits is |x, 00 · · · 0〉, for some
binary string x. Some arbitrary set of qubits are specified as output qubits, and
these qubits are measured in the computational basis at the final state. We as-
sume that the sets of input and output qubits are part of the description of the
circuit. For the purposes of computing decision problems, we will say that the
circuit accepts its input if all the output qubits are observed to be 0 in the final
state. Otherwise the circuit rejects. This acceptance criterion is simple, and it
is essentially the one given in [2]. Although we do not study it here, one may
consider other acceptance criteria, for example, feeding the observed outputs
into an arbitrary polynomial time classical computation. To our knowledge, the
power of such a model has not been studied.

We let Pr[C(x)] denote the probability that C accepts input x.
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If C is any quantum circuit, it will be convenient for us to define |C|, the size
of C, to be the number of output qubits plus the sum of the arities of all the
gates occurring in the circuit. C may be laid out by partitioning its gates into
layers 1, . . . , d, such that (i) gates in the same layer act on pairwise disjoint sets
of qubits, and (ii) all gates in layer i are applied before any gates in layer i + 1,
for 1 ≤ i < d. The depth of C is then the smallest possible value of d. The width
of C is the number of qubits in C.

The standard quantum complexity classes (of languages) can be defined
in terms of quantum circuit families. A quantum circuit family is a sequence
{Cn}n≥0 of quantum circuits, where each Cn has n inputs. We say that {Cn}
is uniform if there is a (classical) polynomial-time algorithm that outputs a de-
scription of Cn on input 0n. The classes BQP, EQP, and NQP are defined
using polynomial size quantum circuits with gates drawn from some fixed finite
universal set of gates (see [21,22,23]). It was shown in [15,24] that NQP = C 	=P,
and is thus hard for the polynomial hierarchy.

2.2 Complexity Classes Using QNC Circuits

The circuit class QNC was first suggested by Moore and Nilsson [4] as the
quantum analog of the class NC of bounded fan-in Boolean circuits with poly-
logarithmic depth and polynomial size. We define the class QNCk in the same
fashion as definitions in Green et al. [2] with some minor modifications, needed
for technical reasons (see the unabridged paper for more details).

Definition 1 ([4]). QNCk is the class of quantum circuit families {Cn}n≥0
for which there exists a polynomial p such that each Cn contains n input qubits
and at most p(n) many ancillæ. Each Cn has depth O(logk n) and uses only
single-qubit gates and CNOT gates. The single-qubit gates must be from a fixed
finite set.

Next we define the language classes NQNCk and EQNCk. These are QNCk

analogs of the classes NQP and EQP, respectively.

Definition 2 ([2]). Let k ≥ 0 be an integer.

– NQNCk is the class of languages L such that there is a uniform {Cn} ∈
QNCk such that, for all x, x ∈ L ⇐⇒ Pr[C|x|(x)] > 0.

– EQNCk is the class of all L such that there is a uniform {Cn} ∈ QNCk so
that, for all x, Pr[C|x|(x)] ∈ {0, 1}, and x ∈ L ⇐⇒ Pr[C|x|(x)] = 1.

Bounded-error QACk classes were mentioned in [2], and one can certainly
ask about similar classes for QNCk circuits. It is not obvious that there is one
robust definition of BQNC0—perhaps because it is not clear how to reduce
error significantly by amplification in constant depth.2 In the next definition, we
2 One can always reduce error classically by just running the circuit several times on

the same input. In this case, the best definition of BQNC0 may be that the gap
between the allowed accept and reject probabilities should be at least 1/poly.
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will try to be as general as possible while still maintaining our assumption that
0 is the only accepting output.

Definition 3. Let ε and δ be functions mapping (descriptions of) quantum cir-
cuits into real numbers such that, for all quantum circuits C, 0 < ε(C) ≤
δ(C) ≤ 1. We write εC and δC to denote ε(C) and δ(C), respectively. BQNCk

ε,δ

is the class of languages L such that there is a uniform {Cn} ∈ QNCk such that
for any string x of length n,

x ∈ L =⇒ Pr[Cn(x)] ≥ δCn ,

x /∈ L =⇒ Pr[Cn(x)] < εCn .

An interesting special case is when εC = δC = 1, that is, the input is accepted
iff the circuit accepts with probability 1, and there is no promise on the accep-
tance probability. One might expect that, by the symmetry of the definitions,
this class BQNC0

1,1 is the same as NQNC0, but it is almost certainly not, as
we will see.

3 Main Results

3.1 Simulating QNC0 Circuits Exactly is Hard

Theorem 1. NQNC0 = NQP = C	=P.

As a corollary, we essentially solve an open problem of Green et al. [2]. They
conjectured that NQACC ⊆ TC0, the class of constant-depth Boolean circuits
with threshold gates.

Corollary 1. NQNC0 = NQNCk = NQACk = NQACC = C 	=P for any
k ≥ 0. Thus, NQACC 	⊆ TC0 unless C 	=P = TC0.

Let B be the two-qubit Bell gate, consisting of a Hadamard gate applied to
the first qubit, followed by a CNOT gate applied to the first qubit as control
and the second as target. Also let

|0〉

|0〉
:= B

which produces the EPR state (|00〉+ |11〉)/
√

2. Theorem 1 follows immediately
from the following lemma (see the unabridged paper).

Lemma 1. For any quantum circuit C using gates drawn from any family F ,
there is a depth-three quantum circuit C′ of size linear in |C| using gates drawn
from F∪{B, B†} such that for any input x of the appropriate length, Pr[C′(x)] =
2−m Pr[C(x)], for some m ≤ 2|C| depending only on C. The middle layer of C′
contains each gate in C exactly once and no others. The third layer contains only
B†-gates, and the first layer contains only B-gates, which are used only to create
EPR states.
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Proof. Our construction is a simplified version of the main construction in Terhal
& DiVincenzo [1], but ours is stronger in two respects, discussed below: it works
for any family of gates allowed in the original circuit, and introduces no new
gates except B and B†. To construct C′, we start with C and simply insert, for
each qubit q of C, the nonadaptive teleportation module

q

q

r1

r2

B†

between any two consecutive quantum gates of C acting on q. No further gates
involve the qubits r1 and r2 to the right of the B†-gate. This module, which
lacks the usual corrective Pauli gates, is a nonadaptive version of the standard
single-qubit teleportation circuit [14]. It faithfully teleports the state if and only
if the observed output of the B†-gate on the right is 00 [1]. After inserting
each teleportation circuit, the gates acting before and after it are now acting on
different qubits. Further, any entanglement the qubit state has with other qubits
is easily seen to be preserved in the teleported qubit. The input qubits of C′ are
those of C. The output qubits of C′ are of two kinds: output qubits corresponding
to outputs of C are the original outputs ; the other outputs are the check qubits
(in pairs) coming from the added B†-gates. We’ll call the measurement of each
such pair a check measurement.

In addition to the gates in C, C′ uses only B-gates to make the initial EPR
pairs and B†-gates for the check measurements. A sample transformation is
shown below.

4
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3

2

2
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The circuit C on the left has five gates: S, T , U , V , and W , with subscripts added
to mark which qubits each gate is applied to. The qubits in C′ are numbered
corresponding to those in C. C′ has depth three since it uses the first layer to
make the initial EPR states and the third layer to rotate the Bell basis back to
the computational basis. All the gates of C appear on the second layer. From the
above constuction and the properties of the teleportation module, it is not hard
to see that for all x of the appropriate length,

Pr[C(x)] = Pr[all orig. outputs of C′ are 0 | all qubits are teleported correctly]
= Pr[all orig. outputs of C′ are 0 | all check meas. results are 00]
= Pr[C′(x)]/Pr[all check meas. results are 00],

since the check measurements are among the output measurements of C′. Let
k be the number of B†-gates on layer 3. Clearly, k ≤ |C|, and it is well-known
that each check measurement will give 00 with probability 1/4, independent of
all other measurements. So the lemma follows by setting m = 2k.

Remarks. Using the gate teleportation apparatus of Gottesmann and Chuang
[13], Terhal & DiVincenzo also construct a depth-three3 quantum circuit C′ out
of an arbitrary circuit C (over CNOT and single-qubit gates) with a similar re-
lationship of acceptance probabilities. However, they only teleport the CNOT
gate, and their C′ may contain single-qubit gates formed by compositions of
arbitrary numbers of single-qubit gates from C. (Such gates may not even be
approximable in constant depth by circuits over a fixed finite family of gates.)
When their construction is applied to each circuit in a uniform family, the re-
sulting circuits are thus not generally over a finite gate set, even if the original
circuits were. Our construction solves this problem by teleporting every qubit
state in between all gates involving it. Besides B and B†, we only use the gates
of the original circuit. We also are able to bypass the CNOT gate teleportation
technique of [13], using instead basic single-qubit teleportation [14], which works
with arbitrary gates.

Aaronson [3] has recently considered the power of postselection in quan-
tum circuits, defining a “new” class postBQP and showing that, actually,
postBQP = PP, thereby giving an new quantum proof of a celebrated result of
Beigel, Reingold, & Spielman [25] stating that PP is closed under intersection.
The class postBQP is defined using uniform families of polynomial-size quan-
tum circuits C with two distinguished qubits: a regular output qubit q and a
postselection qubit p, subject to the promise that in the final state, p is observed
to be 1 with positive probability. Pr[C(x)] is then defined as the conditional
probability that q is observed to be 1, given that p is observed to be 1. The
acceptance criterion on Pr[C(x)] is the same as with BQP.

Clearly, the definition of postBQP remains unchanged if we swap the roles
of 0 and 1 in the measurement of p, and if we allow multiple postselection qubits
3 They count the depth as four, but they include the final measurement as an addi-

tional layer whereas we do not.
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and condition Pr[C(x)] on their all being 0. Thus the following definition gives
a reasonable constant-depth version of postBQP:

Definition 4. A language L is in postBQNC0 if there is a uniform family
{Cn}n≥0 of constant-depth, polynomial-size quantum circuits (over some fixed
finite universal set of gates) with output qubit q and postselection qubits p1, . . . , pk

such that, for all inputs x of length n, Pr[p1, . . . , pk of Cn are all 0] > 0, and the
quantity Pr[Cn(x)] = Pr[q is 1 | p1, . . . , pk are all 0] is in [0, 1

3 ]∪[23 , 1], and x ∈ L
iff Pr[Cn(x)] ≥ 1/2.

The construction in the proof of Lemma 1 immediately yields the following
(see the unabridged paper for a proof):

Theorem 2. postBQNC0 = postBQP, and hence postBQNC0 = PP.

3.2 Simulating QNC0 Circuits Approximately Is Easy

In this section we prove that BQNC0
ε,δ ⊆ P for certain ε, δ. For convenience we

will assume that all gates used in quantum circuits are either one- or two-qubit
gates that have “reasonable” matrix elements—algebraic numbers, for instance.
Our results apply more broadly, but they then require greater care to prove.

Definition 5. Let C be a quantum circuit and let p and q be qubits of C. We
say that q depends on p if there is a forward path in C starting at p before the
first layer, possibly passing through gates, and ending at q after the last layer.
More formally, we can define dependence by induction on the depth of C. For
depth zero, q depends on p iff q = p. For depth d > 0, let C′ be the same as C
but missing the first layer. Then q depends on p (in C) iff there is a qubit r such
that q depends on r (in C′) and either p = r or there is a gate on the first layer
of C that involves both p and r.

Definition 6. For C a quantum circuit and q a qubit of C, define Dq = {p |
q depends on p}. If S is a set of qubits of C, define DS =

⋃
q∈S Dq. Let the

dependency graph of C be the undirected graph with the output qubits of C as
vertices, and with an edge between two qubits q1 and q2 iff Dq1 ∩Dq2 	= ∅.

If C has depth d, then the degree of its dependency graph is clearly less than
22d. The following lemma is straightforward.

Lemma 2. Let C be a quantum circuit and let S and T be sets of output qubits
of C. Fix an input x and bit vectors u and v with lengths equal to the sizes of S
and T , respectively. Let ES=u (respectively ET=v) be the event that the qubits in
S (respectively T ) are observed to be in the state u (respectively v) in the final
state of C on input x. If DS ∩DT = ∅, then ES=u and ET=v are independent.

For an algebraic number a, we let ‖a‖ be the size of some reasonable repre-
sentation of a. The results in this section follow from the next theorem.
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Theorem 3. There is a deterministic decision algorithm A which takes as input

1. a quantum circuit C with depth d and n input qubits,
2. a binary string x of length n, and
3. an algebraic number t ∈ [0, 1],

and behaves as follows: Let D be one plus the degree of the dependency graph of
C. A runs in time Poly(|C|, 22d

, ‖t‖), and

– if Pr[C(x)] ≥ 1− t, then A accepts, and
– if Pr[C(x)] < 1−Dt, then A rejects.

Note that since D ≤ 22d, if t < 2−2d, then A will reject when Pr[C(x)] <
1− 22dt.

Proof (of Theorem 3). On input (C, x, t) as above,

1. A computes the dependency graph G = (V,E) of C and its degree, and sets
D to be the degree plus one.

2. A finds a D-coloring c : V → {1, . . . , D} of G via a standard greedy algo-
rithm.

3. For each output qubit q ∈ V , A computes Pq—the probability that 0 is
measured on qubit q in the final state (given input x).

4. For each color i ∈ {1, . . . , D}, let Bi = {q ∈ V | c(q) = i}. A computes

PBi =
∏

q∈Bi

Pq,

which by Lemma 2 is the probability that all qubits colored i are observed
to be 0 in the final state.

5. If PBi ≥ 1− t for all i, the A accepts; otherwise, A rejects.

We show that A is correct. The proof that A runs in the given time is reason-
ably straightforward (see the unabridged paper for details). If Pr[C(x)] ≥ 1− t,
then for each i ∈ {1, . . . , D}, we have 1− t ≤ Pr[C(x)] ≤ PBi , and so A accepts.
On the other hand, if Pr[C(x)] < 1−Dt, then

Dt < 1− Pr[C(x)] ≤
D∑

i=1

(1− PBi) ,

so there must exist an i such that t < 1− PBi , and thus A rejects.

Corollary 2. Suppose ε and δ are polynomial-time computable, and for any
quantum circuit C of depth d, δC = 1− 2−2d(1 − εC). Then BQNC0

ε,δ ⊆ P.

Proof. For each C of depth d in the circuit family and each input x, apply the
algorithm A of Theorem 3 with t = 1− δC = 2−2d(1− εC), noting that D ≤ 22d.

The following two corollaries are instances of Corollary 2.
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Corollary 3. For quantum circuit C, let δC = 1−2−(2d+1), where d is the depth
of C. Then BQNC0

(1/2),δ ⊆ P.

Corollary 4. BQNC0
1,1 ⊆ P, and hence EQNC0 ⊆ P.

Corollary 4 can actually be proven directly: for each output, comput its
probability of being 0. We accept iff all probabilities are 1.

We observe here that by a simple proof using our techniques, one can show
that a QNC0 circuit cannot implement the generalized Toffoli gate, because its
target depends on nonconstantly many input qubits.

4 Conclusions, Open Questions, and Further Research

Our upper bound results in Section 3.2 can be improved in certain ways. For
example, the containment in P is easily seen to apply to (log log n+O(1))-depth
circuits as well. Can we increase the depth further? We can perhaps also put
BQNC0

ε,δ into classes smaller than P. L seems managable. How about NC1?
Beyond that, we are unsure how BQNC0

ε,δ compares with other complexity
classes, and we currently know of no interesting language in this class, for any
interesting values of ε and δ.

It would be nice to temper the admittedly bizarre conditions of Corollary 2,
which are an artifact of the limitations of the algorithm in the proof of The-
orem 3. Ideally, we would like to narrow the probability gap between ε and δ
in Corollary 2 to 1/poly, say, independent of the circuit depth, and still get
containment in P.

Finally, there are some general questions about whether we have the “right”
definitions for these classes. For example, the accepting outcome is defined to be
all outputs being 0. One can imagine more general accepting conditions, such as
arbitrary classical polynomial-time postprocessing. If we allow this, then all our
classes will obviously contain P. If we allow arbitrary classical polynomial-time
preprocessing, then all our classes will be closed under Karp reductions.

We would like to thank David DiVincenzo, Mark Heiligman, and Scott Aaron-
son for helpful conversations.
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Abstract. We consider biautomatic semigroups. There are two different
definitions of a biautomatic structure for a group in the literature; whilst
these definitions are not equivalent, the idea of a biautomatic group is
well defined, in that a group possesses one type of biautomatic structure
if and only if it possesses the other. However the two definitions give rise
to different notions of biautomaticity for semigroups and we study these
ideas in this paper. In particular, we settle the question as to whether
automaticity and biautomaticity are equivalent for semigroups by giving
examples of semigroups which are automatic but not biautomatic.

Keywords: Automata and formal languages, semigroups, automatic,
biautomatic.

1 Introduction

The notion of automaticity has been widely studied in groups (see [2,6,14] for
example) and some progress has been made in understanding this notion in the
wider context of semigroups (see [4,5,8] for example).

Initially the definition of automaticity in semigroups took the multiplica-
tion by generators and the insertion of paddings both to be on the right (as in
the conventional definition for groups). Whilst these choices make no difference
for groups, it was pointed out in [9] that the different conventions do make a
significant difference for semigroups.

In this paper we consider biautomatic semigroups. The notion of biauto-
maticity in groups has been a subject of considerable interest; however, it is still
an open question as to whether an automatic group is necessarily biautomatic.

There are (at least) two different definitions of a biautomatic structure for
a group in the literature; whilst these definitions are not equivalent, the idea
of a biautomatic group is well defined, in that a group possesses one type of
biautomatic structure if and only if it possesses the other (see Proposition 11
below). However the two definitions give rise to different notions of biautomatic-
ity for semigroups (although they do coincide for cancellative semigroups; see
Theorem 1).

We study these ideas in Section 4. In particular, we settle the question as
to whether automaticity and biautomaticity are equivalent for semigroups by
giving an example of a semigroup which is automatic (in all the ways that have
been proposed so far) but not biautomatic in any of the ways we introduce here
(see Theorem 2).
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2 Preliminaries

For any finite set (or alphabet) A, let A+ denote the set of all non-empty words
over A and A∗ denote the set of all words over A including the empty word ε.
A set of words in A∗ is called a language over A. For any word α in A∗, let |α|
denote the length of α (where |ε| is taken to be 0). For any k ∈ N, let Ak denote
the set of all words α in A∗ with |α| = k, A�k the set of all words α in A∗ with
|α| � k, and A<k the set of all words α in A∗ with |α| < k.

We now turn to semigroups; we refer the reader to [10,12] as general refer-
ences. If S is a semigroup and A ⊆ S is a set of generators of S, then there is a
natural homomorphism θ : A+ → S where each word α in A+ is mapped to the
corresponding element of S; we write S = 〈A〉 if S is generated by A. Note that
we will be considering semigroup generating sets even when our semigroup S is
a monoid or group (i.e. sets that generate S as a semigroup). We will normally
be concerned with finite sets A, so that the semigroup S is finitely generated.

Where there is no danger of confusion, we will sometimes suppress the refer-
ence to θ, simply writing α for the element of the semigroup represented by the
word α. In this context, if α and β are elements of A+, we will write α ≡ β if α
and β are identical as words, and α = β if α and β represent the same element
of S (i.e. if αθ = βθ). If we wish to stress which semigroup we are working in,
we will write α =S β if α and β represent the same element of the semigroup S.
We may also write α = s (or α =S s), where α ∈ A+ and s ∈ S, which says that
αθ = s in S.

A semigroup can be extended by adding an identity; we write S1 for the
semigroup obtained by adjoining an external identity element to S.

As in the case of automatic groups (see [6] for example), we consider automata
accepting pairs (α,β) with α,β ∈ A+. If α ≡ a1a2 . . . an and β ≡ b1b2 . . . bm,
this is accomplished by having an automaton with input alphabet A × A and
reading pairs (a1, b1), (a2, b2), and so on. To deal with the case where n 	= m, we
introduce a padding symbol $. More formally, we define δR

A : A∗×A∗ → A(2, $)∗,
where $ /∈ A and A(2, $) = (A ∪ {$})× (A ∪ {$})− {($, $)}, by

(α,β)δR
A =

⎧⎨⎩
(a1, b1) . . . (an, bn) if n = m
(a1, b1) . . . (an, bn)($, bn+1) . . . ($, bm) if n < m
(a1, b1) . . . (am, bm)(am+1, $) . . . (an, $) if n > m.

We also want to have a map that inserts paddings on the left instead of on the
right; so we define δL

A : A∗ ×A∗ → A(2, $)∗ by

(α,β)δL
A = ((αrev ,βrev)δR

A)rev,

where αrev denotes the reversal of the word α.

3 Notions of Automaticity

We now recall the definitions of the various notions of automaticity in semi-
groups; these will be central to the ideas explored in this paper.
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If S is a semigroup generated by a finite set A, L is a regular subset of A+

and a ∈ A ∪ {ε}, then we define:

L$
a = {(α,β)δR

A : α,β ∈ L,αa = β}; $La = {(α,β)δL
A : α,β ∈ L,αa = β};

aL
$ = {(α,β)δR

A : α,β ∈ L, aα = β}; $
aL = {(α,β)δL

A : α,β ∈ L, aα = β}.

Given this, we make the following definition:

Definition 1. Let S be a semigroup generated by a finite set A and suppose that
L is a regular language over A that maps onto S. The pair (A,L) is said to be

a left-left automatic structure for S if $
aL is regular for all a ∈ A ∪ {ε};

a left-right automatic structure for S if $La is regular for all a ∈ A ∪ {ε};
a right-left automatic structure for S if aL

$ is regular for all a ∈ A ∪ {ε};
a right-right automatic structure for S if L$

a is regular for all a ∈ A ∪ {ε}.
A finitely generated semigroup S is said to be

left-left automatic if it has a left-left automatic structure;
left-right automatic if it has a left-right automatic structure;
right-left automatic if it has a right-left automatic structure;
right-right automatic if it has a right-right automatic structure.

Note that the notion of “automatic” as defined in [4] (for example) is equivalent
to the notion of “right-right automatic” here.

Remark 1. A natural question to ask is that of the relationship between the four
notions given in Definition 1. In general, they are independent of each other. To
be more precise, for any subset T of the four notions, there is a semigroup
satisfying all the notions in T but none of the notions outside T ; furthermore,
there is an automatic structure which is an automatic structure for all the notions
in T simultaneously [9]. �
Let S = 〈A : R〉 be a semigroup, where R ⊆ A+ ×A+, and let Rrev denote

{(ω1,ω2) : (ωrev
1 ,ωrev

2 ) ∈ R}.

We let Srev denote the semigroup 〈A : Rrev〉. We recall Lemma 3.4 of [9]:

Proposition 1. If S is a finitely generated semigroup then:
S is left-left automatic if and only if Srev is right-right automatic.
S is left-right automatic if and only if Srev is right-left automatic.

The proof of Proposition 5.3 in [4] generalizes to all four types of automaticity
and we have:

Proposition 2. Let (A,L) be an X-Y automatic structure for a semigroup S
for some X, Y ∈ {left, right}, K be a regular subset of L and suppose that K
maps onto S; then (A,K) is an X-Y automatic structure for S.

Remark 2. Let S be a semigroup and let (A,L) be a pair which is simultaneously
an X-Y automatic structure for S for some pairs (X, Y) with X, Y ∈ {left, right}.
It follows from Proposition 2 that, if there exists a regular subset K of L such
that K maps onto S, then (A,K) is also an X-Y automatic structure for S for
the same set of pairs (X, Y). �
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Let (A,L) be an X-Y automatic structure for S for some X, Y ∈ {left, right}.
We say that (A,L) is an automatic structure with uniqueness for S if L maps
bijectively onto S. As in [9] one can use Proposition 2 to deduce:

Proposition 3. If S is a semigroup with an X-Y automatic structure (A,L) for
some X, Y ∈ {left, right}, then there exists a X-Y automatic structure (A,K)
with uniqueness for S with K ⊆ L.

We will use the following result frequently in this paper (see Corollary 4.2 of [9]):

Proposition 4. Let L ⊆ A∗ × A∗ and suppose there is a constant k such that
| |α| − |β| | � k for all (α,β) ∈ L; then the set {(α,β)δL

A : (α,β) ∈ L} is regular
if and only if the set {(α,β)δR

A : (α,β) ∈ L} is regular.

The notions of automaticity are connected in groups (see Lemma 5.6 of [9]):

Proposition 5. Let G be a group and A be a finite generating set for G which
is closed under inversion; then (A,L) is a right-right automatic structure for G
if and only if (A,L−1) is a left-left automatic structure for G.

Here L−1 denotes the language obtained from L by reversing each word and
replacing each symbol by the corresponding inverse symbol. Using Proposition 5,
it was shown in [9] that all four notions of automaticity coincide for groups.

We also recall Lemma 7.7 from [9]:

Proposition 6. Let S be a cancellative semigroup with a right-right automatic
structure (A,L); then there exists a constant N such that, for any α ∈ L, any
a ∈ A ∪ {ε} and any s ∈ S with s = αa or sa = α, we have the following:

1. there exists β ∈ L such that |β| � |α|+ N and s = β, and
2. if there exists γ ∈ L such that |γ| > |α| + N and γ = s, then there exist

infinitely many η ∈ L with η = s.

Remark 3. As noted in [9], Proposition 6 can be generalized to the other notions
of automaticity with the proviso that, when we are considering right-left or left-
left automaticity, we have a constant N such that, for any α ∈ L and any s ∈ S
with s = aα or as = α for some a ∈ A ∪ {ε}, we have that the conclusions of
Proposition 6 hold. �

In cancellative semigroups, we do have some connections between these no-
tions as follows (see Lemma 8.2 and Remark 8.3 of [9]):

Proposition 7. If S is a cancellative semigroup with a right-right and left-
left automatic structure (A,L) then (A,L) is also a right-left and a left-right
automatic structure.

Proposition 8. For any cancellative semigroup S, we have

S right-left automatic ⇐⇒ S left-left automatic,
S left-right automatic ⇐⇒ S right-right automatic.
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The following result gives a new sufficient condition for right-right automaticity:

Proposition 9. Let S be a semigroup defined by a presentation of the form
〈{x} ∪A : R〉 with A finite, x 	∈ A and

R = {(α1x, xβ1), (α2x, xβ2), . . . . . . , (αnx, xβn)}

where αi,βi ∈ A+ for each i. Then S is right-right automatic if R satisfies the
following two hypotheses:

(H1) βiγ 	≡ βj for all i and j with 1 � i, j � n and i 	= j and for all γ ∈ A∗;
(H2) αi 	≡ γ1βjγ2, where μγ1 ≡ βk and γ1 ∈ A+ and γ2,μ ∈ A∗, for all

i, j and k with 1 � i, j, k � n.

The proof of Proposition 9 is rather lengthy and we do not include it here. The
basic idea is to move all the occurrences of x in a word as far as possible to
the right to get a set of normal forms that maps bijectively to the semigroup.
After post-multiplying a word ω in normal form by a generator, the new word
can be transformed to a word in normal form by using at most one relation
for each occurrence of x in ω. This is enough to determine a set of finite state
automata which only accept pairs of the form (ω,ωa) with ω in normal form
and a a generator.

Whilst the hypotheses may seem rather technical, Proposition 9 will prove to
be useful when we construct semigroups that are automatic but not biautomatic
(see Corollary 1 and Theorem 2 in Section 5).

4 Biautomatic Semigroups

There are (at least) two equivalent definitions of a biautomatic group in the
literature. Recalling that when we talk of a “generating set” for a group G, we
are referring to a set that generates G as a semigroup, we first have (as in [7] for
example):

Definition 2. Let G be a group with a finite generating set A. If L is a subset
of A+, then the pair (A,L) is said to be a biautomatic structure for G if L is
regular, L$

ε is regular, and, for all a ∈ A, both L$
a and aL

$ are regular. A group
G is said to be biautomatic if it has a biautomatic structure.

Remark 4. Saying that (A,L) is a biautomatic structure for G in the sense of
Definition 2 is equivalent to saying that (A,L) is simultaneously both a right-
right and a right-left automatic structure for G in our terminology. �
There is another definition of biautomaticity (see [6] for example); to distinguish
these two concepts, we will call this one (for the moment) biautomatic�:

Definition 3. Let G be a group with a finite subset A that generates G and
which is closed under taking inverses. If L is a subset of A+, then the pair
(A,L) is said to be a biautomatic� structure for G if both (A,L) and (A,L−1)
are automatic structures for G. A group is said to be biautomatic� if it has a
biautomatic� structure.
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Remark 5. Remember that “automatic” when applied to groups means right-
right automatic in our terminology. Insisting that (A,L−1) is a right-right auto-
matic structure for G is equivalent to insisting that (A,L) is a left-left automatic
structure for G by Proposition 5. So (A,L) is a biautomatic� structure for G if
and only if A is closed under taking inverses and (A,L) is both a right-right and
a left-left automatic structure for G. Given that the notion of being a right-right
or left-left automatic structure does not necessitate A being closed under taking
inverses, one could drop that assumption with this formulation. �

The relationship between biautomatic and biautomatic� structures is summed
up in the following consequence of Proposition 7 (given Remarks 4 and 5):

Proposition 10. If G is a group with a biautomatic� structure (A,L), then
(A,L) is a biautomatic structure for G.

It was pointed out in Remark 8.4 of [9] that, if G = Z = 〈x : 〉, A = {x,X} where
X represents x−1 and L = {x}∗{xX}∗∪{X}∗{xX}∗, then (A,L) is a right-right
and right-left automatic structure for G but not a left-left automatic structure;
so a biautomatic structure (A,L) for a group is not necessarily a biautomatic�

structure. Notwithstanding this, we do have (rather reassuringly):

Proposition 11. A group G is biautomatic if and only if G is biautomatic�.

Proof. If G is biautomatic�, then G is biautomatic by Proposition 10; so it re-
mains to prove the converse.

If G is biautomatic then we can find a biautomatic structure (A,L) with
uniqueness by Remark 2. Note that (A,L) is a right-right and a right-left auto-
matic structure as in Remark 4; in particular, aL

$ is regular for each a ∈ A. By
Remark 3, there is a constant k such that, if (α,β)δR

A ∈ aL
$, then | |α|−|β| | � k.

Using Proposition 4, we see that $
aL is regular for each a ∈ A, so that (A,L) is

also a left-left automatic structure. So (A,L) is also a biautomatic� structure by
Remark 5 and then G is biautomatic�. �

As in [13] (for example), where the notion of a biautomatic structure was used
to define biautomatic monoids, we take the two definitions of a biautomatic
structure for groups to define various notions of biautomaticity in semigroups:

Definition 4. If S is a finitely generated semigroup then (A,L) is said to be

– a left-biautomatic structure if (A,L) is both a left-left and a left-right auto-
matic structure;

– a right-biautomatic structure if (A,L) is both a right-left and a right-right
automatic structure.

A finitely generated semigroup S is said to be

– left-biautomatic if it has a left-biautomatic structure;
– right-biautomatic if it has a right-biautomatic structure.
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Note that the notion of a biautomatic structure for a group is the same as the
notion of a right-biautomatic structure for a semigroup here. We are using the
terms “right” and “left” to denote the sides on which we take the paddings (on
the right both times or on the left both times); we do not need to refer to the
side on which we take the multiplications as the point of biautomaticity is that
we have a structure where we can perform multiplications by generators on both
the left and the right.

Now a semigroup S is left-biautomatic if and only if Srev is right-biautomatic.
Since G is isomorphic to Grev for a group G, the two notions coincide for groups.
In fact, we can extend this to cancellative semigroups, as the next result shows:

Proposition 12. A cancellative semigroup S is right-biautomatic if and only if
S is left-biautomatic.

Proof. Let S be right-biautomatic. By Proposition 3 and Remark 4, there exists
a pair (A,L) such that (A,L) is both a right-right and a right-left automatic
structure with uniqueness for S. By Proposition 6 and Remark 3, we have that
there exists k ∈ N such that | |α| − |β| | < k for all α and β with (α,β)δR

A ∈ L$
a

and for all α and β with (α,β)δR
A ∈ aL

$ (where a ∈ A). By Proposition 4 we
have that (A,L) is both a left-right and left-left automatic structure for S; hence
S is left-biautomatic.

The proof of the converse is similar. �
However, given Remark 1, we see that Proposition 12 does not hold for non-
cancellative semigroups.

In a similar way we can define notions of biautomaticity in semigroups based
on the notion of biautomatic� in groups:

Definition 5. If S is a finitely generated semigroup then (A,L) is said to be

– a cross-biautomatic structure if (A,L) is both a right-left and a left-right
automatic structure for S;

– a same-biautomatic structure if (A,L) is both a left-left and a right-right
automatic structure for S.

A finitely generated semigroup S is said to be

– cross-biautomatic if it has a cross-biautomatic structure;
– same-biautomatic if it has a same-biautomatic structure.

Note that the notion of a biautomatic� structure for a group is the same as
the notion of a same-biautomatic structure for a semigroup. We use “cross” to
denote the fact that the padding is on the opposite side to the multiplication
and “same” to denote that it is on the same side as the multiplication.

Remark 6. The example given in [13] of a right-biautomatic monoid M that has
no finite complete rewriting system is also left-biautomatic, same-biautomatic
and cross-biautomatic. The right-right and right-left automatic structure (A,L)
for M given in [13] satisfies the property that, for α,β ∈ L with αa = β or
aα = β, the difference between |α| and |β| is globally bounded. Proposition 4
gives that (A,L) is also a left-right and left-left automatic structure for M . �



Biautomatic Semigroups 63

A semigroup S is cross-biautomatic if and only if Srev is cross-biautomatic
and a semigroup S is same-biautomatic if and only if Srev is same-biautomatic.
As in the case of right-biautomatic and left-biautomatic, the notions of cross-
biautomatic and same-biautomatic coincide in groups; in fact we have:

Proposition 13. A cancellative semigroup S is cross-biautomatic if and only if
S is same-biautomatic.

Proof. Let S be same-biautomatic. By Proposition 3, there exists a pair (A,L)
such that (A,L) is both a right-right and a left-left automatic structure with
uniqueness for S. By Proposition 6 and Remark 3, we have that there exists
k ∈ N such that | |α| − |β| | < k for all α and β such that (α,β)δR

A ∈ L$
a and for

all α and β such that (α,β)δL
A ∈ $

aL (where a ∈ A). By Proposition 4 we have
that (A,L) is both a left-right and a right-left automatic structure for S; hence
S is cross-biautomatic.

The proof of the converse is similar. �

We now tie these together and show that all these notions of biautomaticity
are equivalent for cancellative semigroups:

Theorem 1. If S is a cancellative semigroup, then the following are equivalent:

1. S is right-biautomatic;
2. S is left-biautomatic;
3. S is same-biautomatic;
4. S is cross-biautomatic.

Proof. By Propositions 12 and 13, we only need show that S is right-biautomatic
if and only if S is same-biautomatic. The proof now follows the proofs of those
two results. If S is right-biautomatic we have a pair (A,L) which is a right-right
and right-left automatic structure with uniqueness, and we then use Remark 3
and Proposition 4 to show that (A,L) is also a left-left automatic structure. So
S is same-biautomatic.

The proof of the converse is similar. �

Remark 7. Theorem 1 does not hold for non-cancellative semigroups. Using Re-
mark 1 we see that we can have a semigroup that satisfies any one of our four
notions of biautomaticity but none of the other three. �

5 Examples

We now consider semigroup presentations of the form

℘ = 〈a, b : abm = bna〉.

If we consider ℘ as a group presentation, we get the Baumslag-Solitar group
B(m, n) which is known to be automatic if and only if m = n (see [6] for
example). As in [11], we will refer to semigroups defined by presentations of this
form as Baumslag-Solitar semigroups.
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Proposition 14. The Baumslag-Solitar semigroup S defined by the presenta-
tion

℘ = 〈a, b : abm = bna〉
with m > n is not right-left automatic.

Proof. If S is a right-left automatic semigroup, then T = S1 is a right-left
automatic monoid by Proposition 5.1 of [9]. As noted in [11], T embeds in the
group defined by ℘ by the results in [1], and so T is cancellative.

In [5] it was shown that, if M is a monoid which is right-right automatic,
and if A is any finite (semigroup) generating set for M , then there is a regular
language L over A such that (A,L) is a right-right automatic structure for M .
This was generalized to the other three notions of automaticity in [9]. So there
exists an automatic structure for T over every generating set of T .

Let A = {a, b, e} (where e represents the identity of T ) and suppose that L
is a regular language over A such that (A,L) is a right-left automatic structure
for T . We can further assume, by Proposition 3, that (A,L) is a right-left auto-
matic structure with uniqueness. Let N be the number of states in a finite state
automaton accepting L. Let ϕ : A∗ → L be defined by αϕ ≡ β where β ∈ L and
α =T β. We have that

|bkϕ| � k for all k. (1)

Since L has uniqueness and T is cancellative, Remark 3 (applied k times, pre-
multiplying by a in each case) gives that there exists a constant c1 > 0 such that

|bm
p

ϕ| − |(akbm
p

)ϕ| � c1k for all k and p. (2)

Using the inequalities (1) and (2), we have that

|(akbm
p

)ϕ| � |bmp

ϕ| − c1k � mp − c1k for all k and p. (3)

Since apbm
p

and bn
p

ap represent the same element in T , we have that

|(apbm
p

)ϕ| = |(bnp

ap)ϕ| for all p. (4)

We can obviously obtain bn
p

ap from e by premultiplying e by a a total of p times,
and then premultiplying the result by b a total of np times; so, using Remark 3
again, we have

|(bn
p

ap)ϕ| � c1(p+ np) for all p. (5)

We therefore have that, for all p,

c1(p+ np) � |(bnp

ap)ϕ| by inequality (5)
= |(apbm

p

)ϕ| by equation (4)
� mp − c1p by inequality (3),

which is a contradiction for sufficiently large p since m > n. Hence S is not
right-left automatic. �
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So we have:

Corollary 1. There exists a cancellative semigroup that is right-right automatic
but not right biautomatic.

Proof. Consider the Baumslag-Solitar semigroup S(m, n) = 〈a, b : abm = bna〉
with m > n. It follows from the Propositions 9 and 14 that S is not right-left
automatic but that it is right-right automatic. �

In the light of Corollary 1, one might ask whether a semigroup that satisfies
more than one notion of automaticity must satisfy some notion of biautomaticity;
there are obviously a great many such questions one could ask (depending on
which notions one chooses) but, even if we assume that we have a cancellative
monoid, the answers to all such questions are “no” as is shown by the following:

Theorem 2. Let M be the monoid with (monoid) presentation

℘ = 〈a, b, c, d, f, g, x : abcx = xdfg, bx = xf, cax = xgdfgd〉.

Then:

1. M is a cancellative monoid.
2. M is right-right, right-left, left-right and left-left automatic.
3. M has none of the properties of being right-biautomatic, left-biautomatic,

same-biautomatic or cross-biautomatic.

Proof. We see that M embeds in the group G defined by ℘ by the results in [1];
in particular, M is cancellative.

Note that M is right-right automatic by Proposition 9. We can also use
Proposition 9 to show that M rev is right-right automatic, and so M is left-left
automatic by Proposition 1. By Proposition 8, we see that M is also right-left
and left-right automatic. So M satisfies all four of our notions of automaticity.
However, as we will see, M is not right-biautomatic and so, by Theorem 1, M
satisfies none of the four notions of biautomaticity.

Let A = {a, b, c, d, e, f, g, x}, where e represents the identity element of the
monoid, and let B be any set of (semigroup) generators for M . No element of A
is a product of two or more elements of M ; so we must have A ⊆ B. Now suppose
that there exists a right-biautomatic structure (B,L) for M ; we can assume, by
Proposition 3, that (B,L) is a right-biautomatic structure with uniqueness.

Let ϕ : B∗ → L be the map defined by αϕ ≡ β if β ∈ L and α =M β. Let
θ : B∗ → N be the map defined by αθ = |αϕ|. Let N be the constant referred
to in Remark 3. We then write n �i m (where i, n, m ∈ N) if |n−m| < iN . For
every i ∈ N we see, by Remark 3 that

((dfg)i)θ �1 (x(dfg)i)θ = ((abc)ix)θ �1 ((abc)i)θ
�2 ((bca)i)θ �1 ((bca)ix)θ = (x(fgdfgd)i)θ
�1 ((fgdfgd)i)θ �2 ((dfgdfg)i)θ = ((dfg)2i)θ.

Hence ((dfg)i)θ �8 ((dfg)2i)θ. As A and B = {b1, . . . , bk} are generating sets
for M and e ∈ A, there exists a constant m and a map ξ : B → A+ with
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biξ = αi where αi =T βi and |αi| = m for each i. Let γi = ((dfg)i)ϕξ, so that
|γi| �8m |γ2i|. There is no relation in M to rewrite a word of the form (dfg)i

except for inserting or deleting occurrences of e’s; hence |γi| � 3i. This gives
that

3× 2i � |γ2i | � |γ1|+ 8miN,

which gives a contradiction for i big enough. Hence there is no right-biautomatic
structure for M over any generating set as required. �

There is an intriguing open problem (see [6] for example) as to whether or
not an automatic group (i.e. right-right automatic group in our terminology,
although all the notions coincide for groups as noted above) is necessarily bi-
automatic (right-biautomatic in our sense, although this is equivalent to the
other notions of biautomaticity for groups by Theorem 1). Corollary 1 and The-
orem 2 show that the answer to this question is “no” in the wider context of
semigroups. In addition, these examples give rise to some further questions.

Let ℘ be an semigroup presentation, S(℘) be the semigroup defined by ℘
and G(℘) be the group defined by ℘. Assume that S(℘) embeds in G(℘); this is
the case in Corollary 1 and Theorem 2 (as we mentioned above) by the results
in [1]. In the first case, G(℘) is the Baumslag-Solitar group with presentation

〈a, b : a−1bna = bm〉
with m > n which is not right-right automatic. In the second case, we have the
group G = G(℘) with presentation

〈a, b, c, d, f, g, x : abcx = xdfg, bx = xf, cax = xgdfgd〉.
Introducing h = dfg, and then eliminating d = hg−1f−1 and f = x−1bx, yields

〈a, b, c, g, h, x : abcx = xh, ca = xgh2g−1x−1b−1〉.
We now eliminate c = b−1a−1xhx−1 to get

〈a, b, g, h, x : b−1a−1xhx−1a = xgh2g−1x−1b−1〉,
or, equivalently,

〈a, b, g, h, x : (x−1abxg)−1hx−1abxg = h2〉.
If we introduce u = x−1abxg and then delete g = x−1b−1a−1xu, we get

〈a, b, h, u, x : u−1hu = h2〉.
We see that G is a free product of the free group on the generators a, b and x
with the Baumslag-Solitar group 〈h, u : u−1hu = h2〉.

Recall (see [2] or [6] for example) that, if a group H is a free product H1 ∗H2
of groupsH1 andH2, thenH is (right-right) automatic if and only if bothH1 and
H2 are (right-right) automatic. In our case, since the Baumslag-Solitar group is
not automatic, G is not automatic.

So these examples show that G(℘) may not be (right-right) automatic even
when S(℘) satisfies all four notions of automaticity. As far as the situation
the other way round is concerned, Cain [3] has constructed an example of a
presentation ℘ such that G(℘) is (right-right) automatic but S(℘) is not.
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Deterministic Automata on Unranked Trees
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Abstract. We investigate bottom-up and top-down deterministic au-
tomata on unranked trees. We show that for an appropriate definition of
bottom-up deterministic automata it is possible to minimize the number
of states efficiently and to obtain a unique canonical representative of
the accepted tree language. For top-down deterministic automata it is
well known that they are less expressive than the non-deterministic ones.
By generalizing a corresponding proof from the theory of ranked tree au-
tomata we show that it is decidable whether a given regular language
of unranked trees can be recognized by a top-down deterministic au-
tomaton. The standard deterministic top-down model is slightly weaker
than the model we use, where at each node the automaton can scan the
sequence of the labels of its successors before deciding its next move.

1 Introduction

Finite automata over finite unranked trees are a natural model in classical lan-
guage theory as well as in the more recent study of XML document type def-
initions (cf. [Nev02]). In the theory of context-free languages, unranked trees
(trees with finite but unbounded branching) arise as derivation trees of gram-
mars in which the right-hand sides are regular expressions rather than single
words ([BB02]). The feature of finite but unbounded branching appears also in
the tree representation of XML documents.

The generalization of tree automata from the case of ranked label alphabets
to the unranked case is simple: A transition, e.g., of a bottom-up automaton is
of the form (L, a, q), allowing the automaton to assume state q at an a-labeled
node with say n successors if the sequence q1 . . . qn of states reached at the
roots of the n subtrees of these successors belongs to L. Most core results of
tree automata theory (logical closure properties, decidability of non-emptiness,
inclusion, and equivalence) are easily transferred to this framework of “unranked
tree automata” and “regular sets of unranked trees” (cf. [BWM01, Nev02]).

For certain other results of classical tree automata theory, however, such a
transfer is less obvious and does not seem to be covered by existing work. In
the present paper we deal with two such questions: the problem of automaton
minimization, and the definition and expressive power of top-down automata
(automata working from the root to the leaves, more closely following the pattern
of XML query processing than the bottom-up version). We confine ourselves to
the question of tree language recognition; so we do not address models like the
query automata of [NS02] or the transducers of [MSV03].

M. Lískiewicz and R. Reischuk (Eds.): FCT 2005, LNCS 3623, pp. 68–79, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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The minimization problem has be reconsidered for the unranked case because
two types of automata are involved: the finite tree automatonA used for building
up run trees (on given input trees), and the finite word automata BL accepting
the languages L that occur in the A-transitions. The A-states are the input
letters to the BL, and the BL-states are needed to produce the “next A-state”
(in bottom-up mode). It is not clear a priori how and in which order to minimize
these automata. Using a natural definition of BL-automaton (which depends on
a label a and produces an A-state as output), we show in Section 3 below that
a simultaneous and efficient minimization of A and the BL is possible, moreover
resulting in a minimal tree automaton that is unique up to isomorphism.

For the question of deterministic top-down processing of input trees, we start
with well known results of [Vir80, GS84] on the ranked case. The generalization
to the unranked case requires introducing a finite automaton that proceeds from
state q at an a-labeled node deterministically to new states q1 . . . qn at the n
successor nodes. A natural option is to provide the numbers n and i as input
in order to compute qi. A second option, closer to the idea of XML document
processing, is to provide as inputs the sequence a1 . . . an of successor labels and
the position i. In both cases, the simple approach to define transitions via a finite
table does not suffice, instead one has to introduce appropriate transducers to
implement transitions. In Section 4, we present such transducers (in the form of
bimachines [Eil74, Ber79]), introduce the corresponding top-down tree automata,
and show that for a regular set of unranked trees one can decide whether it
is recognizable by either of these top-down tree automata. For the technical
presentation we focus on the second option mentioned above. The main point
is an appropriate definition of “path language”, recording the possible paths of
trees in a given tree language; the derived notion of “path-closed” tree language
then captures those tree languages that are recognizable deterministically in
top-down mode.

The paper starts (in Section 2) with some technical preliminaries, gives in
Section 3 the results on minimization, in Section 4 the study of top-down au-
tomata, and closes in Section 5 with some pointers to current and future work.

We thank S. Abiteboul, F. Neven, and Th. Schwentick for comments on a
preliminary version of this work.

2 Automata on Unranked Trees

In this section we define unranked trees and different models of automata running
on such trees. In the following, Σ always denotes a finite alphabet, i.e., a finite
set of symbols, N denotes the set of natural numbers, and N>0 denotes the set
of positive natural numbers. For a set X we denote by X∗ the set of all finite
words over X . The empty word is denoted by ε.

A tree domain D is a non-empty, prefix-closed subset of N∗
>0 satisfying the

following condition: if xi ∈ D for x ∈ N∗
>0 and i ∈ N>0, then xj ∈ D for all j

with 1 ≤ j ≤ i.
An unranked tree t over Σ (simply tree in the following) is a mapping t :

domt → Σ with a finite tree domain domt. The elements of domt are called the
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nodes of t. For x ∈ domt we call nodes of the form xi ∈ domt with i ∈ N>0 the
successors of x (where xi is the ith successor). As usual, a leaf of t is a node
without successor. If the root of t is labeled by a, i.e., t(ε) = a, and if the root
has k successors at which the subtrees t1, . . . , tk are rooted, then we denote this
by t = a(t1 · · · tk). The set of all unranked trees over Σ is denoted by TΣ . For
a ∈ Σ we denote by T a

Σ the set of all trees from TΣ whose root is labeled by a.
A non-deterministic bottom-up tree automaton (↑NTA) A = (Q, Σ,Δ, F )

consists of a finite set Q of states, a finite input alphabet Σ, a finite set Δ ⊆
Reg(Q)×Σ×Q of transitions (Reg(Q) denotes the set of regular languages over
Q), and a set F ⊆ Q of final states.

A run of A on a tree t is a function ρ : domt → Q with the following
property: for each x ∈ domt with n successors x1, . . . , xn there is a transition
(L, t(x), ρ(x)) ∈ Δ such that the word ρ(x1) · · · ρ(xn) is in L. If x is a leaf, this
means that there must be a transition (L, t(x), ρ(x)) ∈ Δ with ε ∈ L. If for some
run ρ of A on t the root of ρ is labeled with q, then we write t →A q. For Q′ ⊆ Q
we write t →A Q′ if t →A q for some q ∈ Q′. We call ρ accepting if ρ(ε) ∈ F and
say that t is accepted by A if there is an accepting run of A on t. The language
T (A) accepted by A is T (A) := {t ∈ TΣ | A accepts t}. The regular languages
of unranked trees are those that can be accepted by ↑NTAs.

In the definition of ↑NTA we did not specify how the regular languages used
in the transitions are given. First of all, note that it is not necessary to have
two transitions (L1, a, q) and (L2, a, q) because these can be merged into a single
transition (L1 ∪L2, a, q). Usually, one then assumes that the transition function
is given by a set of regular expressions or non-deterministic finite automata
defining for each q ∈ Q and a ∈ Σ the language La,q with (La,q, a, q) ∈ Δ.

One can also define non-deterministic tree automata that work in a top-down
fashion. For this purpose it is sufficient to view the final states as initial states.
Thus, for non-deterministic automata it does not make any difference whether we
consider top-down or bottom-up automata. In contrast, to obtain a deterministic
model with the same expressive power as the corresponding non-deterministic
model one has to consider bottom-up automata as introduced in the following.
Deterministic top-down automata are treated in Section 4.

The standard definition of deterministic bottom-up tree automata (↑DTA)
is obtained by imposing a semantic restriction on the set of transitions: it is re-
quired that for each letter a and all states q1, q2 if there are transitions (L1, a, q1)
and (L2, a, q2), then L1 ∩L2 = ∅. Each ↑NTA can be transformed into an equiv-
alent ↑DTA using a standard subset construction [BWM01]. Here, we do not
use this semantic approach to define determinism but require a representation
of the transition function that syntactically enforces determinism. Besides the
advantage of not needing any semantic restrictions, our model is obtained in a
natural way when applying the subset construction to ↑NTAs. Since minimiza-
tion is often applied to reduce the result of a determinization construction, the
choice of this model is a natural one for our purposes.

A ↑DTA A is given by a tuple A = (Q, Σ, (Da)a∈Σ , F ) with Q, Σ, and F as
for ↑NTA, and deterministic finite automata Da with output defining the tran-
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D0 : sin
0 | q0 D∧ : sin

∧ | q⊥
q1

q0

s1
∧ | q1

q1

q0
s2

∧ | q0

q0,q1

D1 : sin
1 | q1 D∨ : sin

∨ | q⊥ q0

q1

s1
∨ | q0

q0

q1
s2

∨ | q1

q0,q1

Fig. 1. A ↑DTA recognizing all ∧-∨-trees that evaluate to 1

sitions of A. Each of the Da (with a ∈ Σ) is of the form Da = (Sa, Q, sin
a , δa,λa)

with a finite set Sa of states, input alphabet Q, initial state sin
a , transition func-

tion δa : Sa × Q → Sa, and output function λa : Sa → Q. As usual, we define
δ∗a : Sa ×Q∗ → Sa by δ∗a(s, ε) = s and δ∗a(s, uq) = δa(δ∗a(s, u), q).

Such a ↑DTA can be transformed into the standard representation as follows.
For each q ∈ Q and a ∈ Σ let La,q = {w ∈ Q∗ | λa(δ∗a(sin

a , w)) = q}. Then, the set
of transitions defined by the family (Da)a∈Σ consists of all transitions (La,q, a, q).

Example 1. For Σ = {∧,∨, 0, 1} we consider trees whose leaves are labeled by 0
or 1, and whose inner nodes are labeled by ∧ or ∨. Such trees can be evaluated
in a natural way to 0 or 1. Let T be the language of all trees that evaluate to 1.
We define a ↑DTA for T with state set Q = {q0, q1, q⊥}, final states F = {q1},
and automata Da, a ∈ Σ, as depicted in Figure 1. An entry s | q in the picture
means that the output at state s is q, e.g., λ∧(sin

∧ ) = q⊥. For readability we have
omitted the transitions leading to rejection. All missing transitions are assumed
to lead to a sink state of the respective automaton with output q⊥.

3 Minimization of Deterministic Bottom-Up Automata

In this section A always denotes a ↑DTA A = (Q, Σ, (Da)a∈Σ , F ) with Da =
(Sa, Q, sin

a , δa,λa) for each a ∈ Σ. Furthermore, we let S =
⋃

a∈Σ Sa. For com-
plexity considerations we define the size of A as |A| = |Q| · |S|. This is a reason-
able measure since the sizes of the transition functions of the automata Da are
of order |Q| · |Sa|.

For minimization it is necessary to ensure that all states (from Q and S) are
reachable. Note that there is an interdependence since a state in Q is reachable
if it is the output of some reachable state in S, and a state in S is reachable if
it can be reached by some input consisting of reachable states in Q.

Lemma 1. The set of reachable states of a given ↑DTA can be computed in
linear time.

Proof. The algorithm maintains a set S′ of reachable states from S and a set
Q′ of reachable states from Q. These sets are initialized to S′ = {sin

a | a ∈ Σ}
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and Q′ = {λa(sin
a ) | a ∈ Σ}. Starting from S′ the transition graphs of the Da

are traversed in a breadth-first manner using only the transition labels from Q′.
Whenever we encounter a state s ∈ Sa with q = λa(s) /∈ Q′, then q is added to
Q′ and the targets of the transitions with label q departing from those states in
S′ that have already been processed by the breadth first search are added to S′.
This algorithm traverses each transition of the automata Da at most once. and
hence can be implemented to run in linear time. ��

From now on we assume that all states in A are reachable. For each q ∈ Q we
define Tq = {t ∈ TΣ | t →A q}, and for each a ∈ Σ and s ∈ Sa we define

Ts = {a(t1 · · · tk) | ∃q1, . . . , qk : ti ∈ Tqi and δ∗a(sin
a , q1 · · · qk) = s}.

If all states are reachable, then these sets are non-empty, and we can fix for each
q ∈ Q some tq ∈ Tq and for each s ∈ S some ts ∈ Ts.

To prove the existence of a unique minimal ↑DTA for a regular tree language
we introduce two equivalence relations in the spirit of Nerode’s congruence for
word languages. To this aim we first define two different kinds of concatenations
for trees.

The set TΣ,X of pointed trees over Σ contains all trees t from TΣ∪{X} (for a
new symbol X) such that exactly one leaf of t is labeled by X . For t ∈ TΣ,X and
t′ ∈ TΣ ∪ TΣ,X we denote by t ◦ t′ the tree obtained from t by replacing the leaf
labeled X by t′. For T ⊆ TΣ the equivalence relation ∼T ⊆ TΣ × TΣ is defined
by

t1 ∼T t2 iff ∀t ∈ TΣ,X : t ◦ t1 ∈ T ⇔ t ◦ t2 ∈ T .

This relation is called ‘top-congruence’ in [BWM01]. In the case of ranked trees
it is the natural extension of Nerode’s congruence from words to trees. However,
as already noted in [BWM01], for T being regular in the unranked setting it is
not sufficient that ∼T is of finite index. One also has to impose a condition that
ensures the regularity of the ‘horizontal languages’ that are used in the transition
function. For this we need another concatenation operation on trees.

For trees t = a(t1 . . . tk) and t′ = a(t′1 · · · t′�) let t  t′ = a(t1 · · · tkt′1 · · · t′�).
The equivalence relation →∼T is defined for all a ∈ Σ and t1, t2 ∈ T a

Σ by

t1
→∼T t2 iff ∀t ∈ T a

Σ : t1  t ∼T t2  t

To simplify notation we write [t] for the ∼T -class of t and [t]→ for the →∼T -class
of t. If T is accepted by a ↑DTA A, then A has to distinguish trees that are not
equivalent. This is expressed in the following lemma.

Lemma 2. If A accepts the language T , then Tq ⊆ [tq] for each q ∈ Q and
Ts ⊆ [ts]→ for each a ∈ Σ and s ∈ Sa.

The above lemma implies that →∼T is of finite index if T is regular. On the other
hand, if →∼T is of finite index, then this ensures the regularity of what is called
‘local views’ in [BWM01] and hence T is regular. In the following we show that
the equivalence classes of ∼T and →∼T can be used to define a canonical minimal



Deterministic Automata on Unranked Trees 73

↑DTA AT for T . The equivalence classes of ∼T correspond to the states of the
tree automaton, and the equivalence classes of →∼T restricted to T a

Σ correspond
to the states of the automaton defining the transitions for label a.

For the definition of AT we need the following lemma stating that →∼T refines
∼T and that →∼T is a right-congruence (w.r.t.  ). The proof of this lemma is
straightforward.

Lemma 3. (a) If t1
→∼T t2, then t1 ∼T t2 for all t1, t2 ∈ TΣ.

(b) If t1
→∼T t2 and t′1 ∼T t′2, then t1  a(t′1)

→∼T t2  a(t′2) for all t1, t2 ∈ T a
Σ

and all t′1, t
′
2 ∈ TΣ.

The assignment of →∼T -classes to ∼T -classes that is induced by (a) corresponds
to the mappings λa that assign to each state from Sa a state from Q.

The following theorem states the existence of a unique (up to isomorphism)
↑DTA for every regular language T of unranked trees. The notion of homo-
morphism that we use in the statement of the theorem is the natural one: a
homomorphism from A1 = (Q1, Σ, (D1

a)a∈Σ , F1) to A2 = (Q2, Σ, (D2
a)a∈Σ , F2)

maps the states from Q1 to states from Q2 while respecting final and non-final
states, and maps for each a ∈ Σ the set S1

a to S2
a (Si

a denotes the state set of
Di

a) while respecting the initial state, the transition function, and the output
function.

Theorem 1. For every regular T ⊆ TΣ there is a unique minimal ↑DTA AT

and for each ↑DTA A recognizing T there is a surjective homomorphism from A
to AT .

Proof. Define AT = (QT , Σ, (DT
a )a∈Σ , FT ) by QT = TΣ/∼T , F = {[t] | t ∈ T },

and DT
a = (ST

a , QT , [a]→, δT
a ,λT

a ) with ST
a = T a

Σ/
→∼T , δT

a ([t]→, [t′]) = [t a(t′)]→
for t ∈ T a

Σ and t′ ∈ TΣ , and λT
a ([t]→) = [t]. Using Lemma 3 one can easily show

that t →AT [t] and hence T (AT ) = T . Furthermore, if A is some ↑DTA for T ,
then it is not difficult to see that mapping each state q ∈ Q to [tq] and each
s ∈ S to [ts]→ defines a surjective homomorphism from A to AT . ��

We now give an algorithm that computes this minimal ↑DTA AT starting from
any automaton A for T . This minimization procedure is an extension of the
classical minimization procedure for finite automata (cf. [HU79]). We define
equivalence relations on the state sets Q and S that correspond to the relations
∼T and →∼T and obtain the minimal automaton by merging equivalent states.
For q1, q2 ∈ Q let q1 ∼A q2 iff (t ◦ tq1 →A F ⇔ t ◦ tq2 →A F ) for all t ∈ TΣ,X .
For a ∈ Σ and s1, s2 ∈ Sa let s1 ∼A s2 iff λa(δ∗a(s1, u)) ∼A λa(δ∗a(s2, u)) for all
u ∈ Q∗. The following lemma states that it is indeed possible to group equivalent
states into a single state.

Lemma 4. If q1 ∼A q2 for q1, q2 ∈ Q and s1 ∼A s2 for s1, s2 ∈ Sa, then
δa(s1, q1) ∼A δa(s2, q2).

For q ∈ Q and s ∈ S we denote by [q] and [s] the ∼A-class of q and s, respectively.
The reduced automaton A∼ is defined as A∼ = (Q/∼A, Σ, (D∼

a )a∈Σ , F/∼A)
with D∼

a = (Sa/∼A, Q/∼A, [sin
a ], δ∼a ,λ∼a ), δ∼a ([s], [q]) = [δa(s, q)], and λ∼a ([s]) =
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[λa(s)]. Lemma 4 ensures that the definitions of δa and λa do not depend on the
chosen representatives of the equivalence classes.

Theorem 2. If A is an automaton for the language T , then AT and A∼ are
isomorphic.

Proof. From the definitions of ∼A, ∼T , and →∼T one can easily deduce that
q1 ∼A q2 iff [tq1 ] = [tq2 ], and s1 ∼A s2 iff [ts1 ]→ = [ts2 ]→. This implies that in
the reduced automaton every state [q] can be identified with [tq] and each state
[s] can be identified with [ts]→. ��

Hence, to compute the unique minimal automaton for T it suffices to compute
the relation ∼A. The algorithm shown in Figure 2 marks all pairs of states that
are not in the relation ∼A.

INPUT: ↑DTA A = (Q, Σ, (Da)a∈Σ, F ) with Da = (Sa, Q, sin
a , δa, λa)

1. Mark each pair (q1, q2) ∈ Q2 with q1 ∈ F ⇔ q2 /∈ F .
2. repeat
3. For each a ∈ Σ mark (s1, s2) ∈ S2

a if (λa(s1), λa(s2)) is marked.
4. For each a ∈ Σ and q ∈ Q mark (s1, s2) ∈ S2

a if (δa(s1, q), δa(s2, q)) is marked.
5. For each a ∈ Σ and s ∈ Sa mark (q1, q2) ∈ Q2 if (δa(s, q1), δa(s, q2)) is marked.
6. until no new pairs are marked

OUTPUT: R = {(q1, q2) ∈ Q2 | (q1, q2) not marked}
∪ {(s1, s2) ∈ S2

a | a ∈ Σ and (s1, s2) not marked}

Fig. 2. Algorithm Equivalent-States

Theorem 3. The algorithm Equivalent-States from Figure 2 computes for
input A the relation ∼A.

Proof. We first show that all pairs marked by the algorithm are non-equivalent.
For the pairs marked in lines 1,3, and 4 this is a direct consequence of the defi-
nition of ∼A. For pairs (q1, q2) marked in line 5 the claim follows from Lemma 4
applied to q1, q2, and s = s1 = s2.

To show that all pairs of non-equivalent states are marked, we look at the
minimal ‘size’ of a witness that separates the two states. For the states from Q
these witnesses are pointed trees. The size we are interested in is the depth of
the leaf labeled by X , i.e., for t ∈ TΣ,X we define |t|X to be the depth of X in t.
For q1, q2 ∈ Q and n ∈ N we define q1 ∼n q2 iff (t◦ tq1 →A F ⇔ t◦ tq2 →A F ) for
all t ∈ TΣ,X with |t|X ≤ n. For s1, s2 ∈ Sa we let s1 ∼n s2 iff λa(δ∗a(s1, u)) ∼n

λa(δ∗a(s2, u)) for all u ∈ Q∗. Using this definition one can show that a pair of
states is marked in the ith iteration of the loop iff i is the minimal number
such that the states are not in the relation ∼i. For this we assume that each of
the lines 3–5 is executed as long as there are pairs that can be marked in the
respective line. ��
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For readability we have used the technique of marking pairs of non-equivalent
states to compute the relation ∼A. A concrete implementation of the algorithm
should rather use the technique of refining an equivalence relation represented
by its equivalence classes. This technique is used to improve the complexity
of minimization of finite automata on words [Hop71] and can also be applied
to the minimization of automata on finite ranked trees (cf. [CDG+97]). Using
this technique one can obtain an algorithm running in quadratic time. A more
detailed analysis on whether this bound can be improved is still to be done.

Theorem 4. Given a ↑DTA A one can compute in quadratic time the minimal
↑DTA that is equivalent to A.

4 Deterministic Top-Down Automata

As in the case of ranked trees, deterministic automata that work in a top-down
fashion are not as expressive as non-deterministic ones. In this section we intro-
duce such a model for unranked trees and show that it is decidable whether a
given regular tree language can be accepted by a deterministic top-down automa-
ton. When directly adapting the definition of top-down deterministic automata
on ranked trees, one obtains a model that, depending on its current state, the
current label, and the number of successors of the current node, decides which
states it sends to the successors. Here, we have decided to make the model a bit
more expressive by allowing for a transition to take into account not only the
number of successors but also their labeling. All the results from this section can
be adapted in a straightforward way to the weaker model as described above.

To define the transitions as just mentioned we use a certain kind of transducer
to convert the sequence of labels of the successors of a node into a sequence of
states of the tree automaton. Since this transducer should have information on
the whole successor sequence before deciding which state to put at a certain
successor we use the formalism of bimachines (cf. [Eil74, Ber79]).

A bimachine is of the form B = (Σ,Γ,
−→B ,
←−B , f), where Σ is the input alpha-

bet, Γ is the output alphabet,
−→B = (

−→
S , Σ, s→0 ,

−→
δ ) and

←−B = (
←−
S , Σ, s←0 ,

←−
δ ) are

deterministic finite automata over Σ (without final states), and f :
−→
S ×Σ×←−S →

Γ is the output function.
Given a word u ∈ Σ∗ consisting of k letters u = a1 · · · ak, B produces an

output v = b1 · · · bk over Γ that is defined as follows. Let s→0 s→1 · · · s→k be the
run of

−→B on a1 · · · ak, and let s←0 s←1 · · · s←k be the run of
←−B on the reversed input

ak · · · a1. Then the ith output letter bi is given by bi = f(s→i , ai, s
←
k−i+1). This

definition is illustrated in Figure 3.
We denote the function computed by B by fB. One should note that using

bimachines we remain inside the domain of regular languages in the sense that
fB(L) for a regular language L is again regular. For further results on bimachines
see, e.g., [Ber79] or [Eil74].

A deterministic top-down tree automaton (↓DTA) uses such bimachines for
its transitions. It is of the form A = (Q, Σ, fin, (Bq)q∈Q, F ), where Q is finite set
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−→B : s→
0 s→

1 s→
2 · · · s→

k−1 s→
k

a1 a2 · · · ak

s←
k s←

k−1 s←
k−2 · · · s←

1 s←
0 :

←−B
b1 b2 · · · bk

Fig. 3. Computation of a bimachine

of states, Σ is the input alphabet, fin : Σ → Q is the initial function, F ⊆ Q
is a set of final states, and each Bq is a bimachine with input alphabet Σ and
output alphabet Q.

A run ofA on a tree t is mapping ρ : domt → Q such that ρ(ε) = fin(t(ε)) and
for each node x of t with n > 0 successors x1, . . . , xn we have ρ(x1) · · · ρ(xn) =
fBρ(x)(t(x1) · · · t(xn)). Note that for each t there is exactly one run of A on t.
The run ρ is accepting if each leaf is labeled with a final state. The language
accepted by A consists of all trees t such that the run of A on t is accepting.

It is not difficult to see that not all regular tree languages can be recognized
by ↓DTAs. Consider for example the language Tcd = {a(a(c)a(d)), a(a(d)a(c))}.
Every ↓DTA recognizing the two trees from Tcd will also recognize the trees
a(a(c)a(c)) and a(a(d)a(d)).

We show that it is decidable whether a given regular tree language can be
recognized by a ↓DTA. The proof follows the same lines as for ranked trees using
the notions of path language and path closure ([Vir80, GS84]). When a ↓DTA
descends a tree, then on each path it can only see the sequence of labels of
this path and on each level the sequence of labels of the siblings. For example,
the information known to a ↓DTA on the leftmost path in the first tree from
Tcd can be coded as a � �a � a � � � c. The letters outside the segments � · · · �
code the sequence of labels on the path, and the letters between the pairs �, �
show the labels of the siblings with the position corresponding to the node of the
considered path marked by �. This idea leads to a corresponding concept of path
language. Note that this generalizes the standard concept of path language over
ranked alphabets where a path code has the form a1i1a2i2 · · · i�−1a� indicating
that successively the successors i1, i2, . . . are taken. In our setting, the rank of aj

is captured by the length of the subsequent segment � · · · � and ij by the position
of � in this segment.

The alphabet we use for path languages is Σpath = Σ ∪ {�, �, �}. The
path language π(t) of a tree t is defined inductively as π(a) = a for each
a ∈ Σ and π(t) =

⋃k
i=1{a � a1 · · · ai−1�ai+1 · · ·ak � w | w ∈ π(ai(ti))} for

t = a(a1(t1) · · · ak(tk)). In this definition we allow that ti is empty. In this case
ai(ti) = ai. The path language of T ⊆ TΣ is π(T ) =

⋃
t∈T π(t). The path closure

of T is cl(T ) = {t ∈ TΣ | π(t) ⊆ π(T )}. A language with T = cl(T ) is called path
closed. In the following we show that the ↓DTA-recognizable languages are ex-
actly the path closed regular tree languages. The proof goes through a sequence
of lemmas.
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Lemma 5. If T ⊆ TΣ is regular, then π(T ) is a regular language of words.

Proof. Let A be a ↑NTA for T with one transition (La,q, a, q) for each pair of
state q and letter a. We assume that for each state q of A there is a tree t
with t →A q. Note that by applying a straightforward procedure for identifying
reachable states, we can restrict to this case.

One can easily define a non-deterministic finite automaton C accepting π(T ).
This automaton, on reading the first symbol of the input word w, remembers
this first symbol a and guesses a final state q of A such that t →A q for some t
with w ∈ π(t). So, after this first step, C is in state (q, a).

The next part of the input is of the form �a1 · · · ai−1�ai+1 · · · ak�ai (if it is not
of this form the input is rejected). The automaton C guesses a sequence q1 · · · qk

such that q1 · · · qk ∈ La,q. For this purpose, on reaching the gap �, it guesses ai

and verifies this guess after reading �. Furthermore, it simulates an automaton
for La,q to verify that the guessed sequence is indeed in La,q. On passing the
gap � it remembers the state qi and then moves to a state (qi, ai) after having
read �ai. The final states of C are those pairs (q, a) for which ε ∈ La,q. ��

Lemma 6. If T ⊆ TΣ is regular, then cl(T ) is recognizable by a ↓DTA.

Proof. If T is regular, then π(T ) is a regular word language by Lemma 5. Let
C = (Q, Σpath, q0, δ, F ) be a deterministic finite automaton for π(T ). We briefly
sketch how to construct a ↓DTA A = (Q, Σ, fin, (Bq)q∈Q, F ) for T that simulates
C on every path. Note that A has the same set of states as C and the same set
of final states as C. The initial function is defined by fin(a) = δ(q0, a).

For every state q ∈ Q the behavior of Bq is as follows. When processing the
word a1 · · ·ak the machine Bq should output the sequence q1 · · · qk where qi is the
state reached by C when reading the word �a1 · · · ai−1�ai+1 · · ·ak � ai starting
from q. To realize this idea Bq has for each i (1) to compute the behavior of C on
�a1 · · · ai−1� starting from q, and (2) the behavior of C on ai+1 · · · ak� starting
from any state. For this purpose we define

−→B q by
−→
S q = Q×Q, with initial state

(δ(q, �), δ(q, �)) and δ→q ((s1, s2), a) = (δ(s1, a), δ(s1, �)). In this way at letter i
we have access to the information described in (1).

To define the machine
←−B q we denote by QQ the set of mappings from Q

to Q and by IdQ the identity mapping on Q. We let
←−
S q = {IdQ} ∪ (QQ ×

Σ) with IdQ as initial state. Furthermore, we let δ←q (IdQ, a) = (h, a) with
h : Q → Q defined by h(q) = δ(q, �), and for h ∈ QQ and a, a′ ∈ Σ we
let δ←q ((h, a), a′) = (h′, a′) with h′ : Q → Q defined by h′(q) = h(δ(q, a)).
This provides the information described in (2). These two informations are then
combined by the output function fq of Bq as follows: fq((q1, q2), a, (h, b)) =
δ(h(q2), a). ��

Lemma 7. If T ⊆ TΣ is recognizable by a ↓DTA, then T is path closed.

Proof. Let A = (Q, Σ, fin, (Bq)q∈Q, F ) be a ↓DTA recognizing T . Note that it is
sufficient to show cl(T ) ⊆ T since the other inclusion always holds.
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For q ∈ Q and a ∈ Σ let Aa→q = (Q, Σ, fa→q
in , (Bq)q∈Q, F ) with fa→q

in (a) = q
and fa→q

in (b) = fin(b) for b ∈ Σ \{a}, and let Ta→q denote the language accepted
by Aa→q. By induction on the height of t one shows that π(t) ⊆ π(Ta→q) implies
that t ∈ Ta→q for each q ∈ Q, a ∈ Σ, and t ∈ T a

Σ . Since Ta→fin(a) = T we obtain
the desired result that t ∈ cl(T ) (i.e., π(t) ⊆ π(T )) implies that t ∈ T . The
details of the induction are left to the reader. ��

As an immediate consequence of the previous lemmas we get the following
theorem.

Theorem 5. Let T ⊆ TΣ be regular. Then T is ↓DTA recognizable if and only
if T is path closed.

To obtain the desired decidability result we simply note that the construction
from Lemma 6 is effective. Furthermore, language inclusion is decidable in ex-
ponential time for finite automata over unranked trees. Most easily, this can be
seen by using an encoding of unranked trees by ranked trees [Suc02] and then
using algorithms for ranked tree automata (cf. [CDG+97]).

Theorem 6. Given a regular language T ⊆ TΣ it is decidable whether T can be
recognized by a ↓DTA. Furthermore, such a ↓DTA can be effectively constructed.

Let us address two restricted models of deterministic top-down tree automata
that are as well natural, mutually incompatible in expressive power, and lead
to completely analogous results for suitable adaptions of the notion of path
language.

The first model was already indicated in the introduction. Precisely as for
the case of deterministic top-down automata over ranked trees, one requires the
automaton to assume states at the successor nodes of a tree node x solely on the
basis of the label a at x, the state q assumed there, and the rank of a, i.e., the
number n of successors, but independent of the labels of the successor nodes.
This leads to a special model of bimachine where the input sequence is a word
•n rather than a label sequence a1 . . . an. Accordingly, in the definition of path
language we have to use between pairs �, � just the symbol • instead of the label
letters, besides � of course.

The second model is based on a left-to-right scanning process of successor
labels; so a standard sequential machine (cf. [Eil74, Ber79]) is used to produce
the successor states, hence without reference to the rank (the number n of the
respective successor nodes altogether). In this case, our coding of paths has to
be modified by canceling the segments between a symbol � and the respective
next � in order to obtain results analogous Theorems 5 and 6 above.

A similar concept has been used in [MNS05] in the context of typing
streaming XML documents in a single pass. Recognizability by the second model
from above (using sequential machines for labeling the successors), corres-
ponds to definability by specialized DTDs with ancestor-sibling-based types
in [MNS05].
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5 Conclusion

In this paper we have extended the list of properties that carry over from tree
automata for ranked trees to the unranked setting. We have shown that, using
appropriate definitions, it is possible to minimize bottom-up deterministic tree
automata over unranked trees in quadratic time. This minimization yields unique
representatives for regular languages of unranked trees that can, e.g., be used
to speed up equivalence tests. We have also transferred the characterization
of deterministic top-down tree languages in terms of path languages and path
closure from the ranked to the unranked case. This characterization can be used
to decide for a given regular language of unranked trees whether it is top-down
deterministic. A refinement of the minimization algorithm and a detailed analysis
of the complexity, as well as the problem of minimizing deterministic top-down
automata are subject of current and future research.
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Abstract. A finite recurrent system over the power set of the natural
numbers of dimension n is a pair composed of n n-ary functions over
the power set of the natural numbers and an n-tuple of singleton sets
of naturals. Every function is applied to the components of the tuple
and computes a set of natural numbers, that might also be empty. The
results are composed into another tuple, and the process is restarted.
Thus, a finite recurrent system generates an infinite sequence of n-tuples
of sets of natural numbers. The last component of a generated n-tuple
is the output of one step, and the union of all outputs is the set defined
by the system. We will consider only special finite recurrent systems:
functions are built from the set operations union (∪), intersection (∩)
and complementation ( ) and the arithmetic operations addition (⊕) and
multiplication (⊗). Sum and product of two sets of natural numbers are
defined elementwise. We will study two types of membership problems:
given a finite recurrent system and a natural number, does the set defined
by the system contain the queried number, and does the output of a
specified step contain the queried number? We will determine upper and
lower bounds for such problems where we restrict the allowed operations
to subsets of {∪, ∩, , ⊕, ⊗}. We will show completeness results for the
complexity classes NL, NP and PSPACE.

1 Introduction

Sets of natural numbers can be represented by a variety of mathematical objects.
Finite sets or co-finite sets, the complements of finite sets, can be represented
by words over {0, 1}, i.e., by natural numbers, with a canonical interpretation.
However, large sets require large numbers in this model. If these sets possess
regularities a more efficient representation would be desirable. In case of sets
that are neither finite nor co-finite such a simple representation does not work
at all. Stockmeyer and Meyer defined integer expressions, which are expressions
built from naturals, the set operations union, intersection and complementation
and an addition operation [7]. Wagner studied a hierarchical model of a similar
flavour that can be understood as arithmetic circuits [9], [10]. Such concise rep-
resentations however make it difficult to derive information about the set from
its representation. The membership problem for natural numbers in general can
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be understood as the problem, given a set M of natural numbers represented in
a certain model and a number b, to decide whether b belongs to set M . The com-
plexity of the membership problem heavily depends on the representation and
can generally be described by the formula: the more concise the representation
the more complex the membership problem.

McKenzie and Wagner recently studied a large number of membership prob-
lems [2]. Given an arithmetic circuit over sets of natural numbers involving the
standard set operations union, intersection, complementation and the arithmetic
operations addition and multiplication (both operations are defined on sets, and
sum and product of two sets are defined elementwise) and a natural number b,
does the circuit represent a set that contains b? It was shown that restricting the
set of possible operations as well as restricting circuits to formulas cover a wide
range of complexity classes. Here, a formula is an arithmetic circuit where every
vertex has at most one successor. Their work extends past works by Stockmeyer
and Meyer [7], Wagner [9] and Yang [11].

The standard approach to circuits is via functions, and circuits represent
these functions efficiently. In this sense, all problems above concern such circuits
but applied only to fixed inputs. Circuits of various types have been studied
deeply, and they are an interesting model to obtain lower bounds complexity
results. A lot of information on this subject can be found in the book by Vollmer
[8]. In this paper, we combine ideas that have been sketched above to obtain set
representations by special recurrent systems.

Recurrences are well-known. The sequence 1, 1, 2, 3, 5, 8, . . . of numbers—the
Fibonacci numbers—is generated by the simple formula F (n+2) =def F (n+1)+
F (n) where F (0) =def F (1) =def 1. Numerical simulations of single-particle or
multi-particle systems in physics use systems of recurrences instead of differen-
tial equations. Recurrences play an important role in mathematics, computer
and other sciences. Though recurrences normally involve only basic arithmetic
operations such as addition and multiplication over the natural or the real num-
bers, operations do not have to be limited to this small collection. A recurrent
system over sets of natural numbers of dimension n is a pair consisting of a
set of n n-ary functions f1, . . . , fn over sets of natural numbers and an n-tuple
of naturals. Starting from singleton sets defined by the n-tuple the result of
function fi in one step is used as the i-th input in the next step (the precise
definition is provided in Section 3). So, a recurrent system iteratively generates
an infinite sequence of tuples of sets of natural numbers. The last component
of each tuple is the output of the system in the corresponding evaluation step.
Then, the union of all outputs defines a set that may be finite or infinite. The
existential membership problem Mex for recurrent systems asks whether there
is an evaluation step such that the corresponding output contains a given num-
ber, and the exact membership problem Mtm asks whether a given number is
contained in the result of a specified evaluation step. Functions are represented
by arithmetic circuits.

We examine membership problems for recurrent systems for a restricted set
of operations. Functions are built from the three known set operations and addi-
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tion and multiplication. The general problems in this restricted sense are denoted
by Mex(∪,∩, ,⊕,⊗) and Mtm(∪,∩, ,⊕,⊗). Reducing the set of allowed oper-
ations leads to problems like Mex(∪,⊕), where functions are built only from
∪ and ⊕, or Mtm(⊕,⊗). We will study the complexity of such membership
problems with respect to the set of allowed operations. We will see that such
problems are complete for a number of complexity classes where we will focus on
NP- and PSPACE-complete problems. The general existential membership prob-
lem over {∪,∩, ,⊕,⊗} is undecidable [4]; however, the exact complexity is not
known in that sense that the currently best known lower bound (RE-hardness)
does not meet the upper bound Σ2. It is a most interesting question whether
Mex(∪,∩, ,⊕,⊗) is coRE-hard. This would imply undecidability of the general
problem considered by McKenzie and Wagner [2]. Some evidence for undecid-
ability was given by showing that a decision algorithm would prove or disprove
Goldbach’s conjecture about sums of primes.

This presentation is composed as follows. In Section 3, finite recurrent sys-
tems are defined, an example is discussed and basic and supplementary results
are mentioned. The following sections classify a range of membership problems
for recurrent systems. Section 4 considers membership problems that are con-
tained in P. These problems are related to number-of-paths problems in graphs,
whose complexities were studied in [3]. In Section 5, NP-complete problems, such
as Mex(∩) and Mex(∩,⊕), are considered, Section 6 considers PSPACE-complete
problems, e.g., Mex(∪,∩) and Mex(∪,⊕,⊗), and in Section 7, problems with-
out exact classification are delt with. The conclusions section contains a table
summarising the best known upper and lower complexity bounds for all pos-
sible problems. In most cases, proofs are omitted or reduced to just the main
ideas.

2 Preliminaries

We fix the alphabet Σ =def {0, 1}. The set of all words over Σ is denoted by
Σ∗. All inputs are assumed to be given as words over Σ. For definitions and
notations of complexity classes we refer to the book by Papadimitriou [5]. If
the computation mode is not mentioned we mean deterministic computations;
nondeterminism is always indicated. The class FL contains all functions that
can be computed deterministically by a Turing machine with output tape using
logarithmic working space. A set A is log-space reducible to set B, A ≤L

m B, if
there is f ∈ FL such that, for all x ∈ Σ∗, x ∈ A ↔ f(x) ∈ B. We will also say
that A reduces to B. For complexity class C, set A is ≤L

m-complete for C, if A ∈ C
and B ≤L

m A for all B ∈ C. We will shortly say that A is C-complete.

Numbers. The set of the natural numbers is denoted by IN and surely contains
0. If we talk about numbers, we always mean natural numbers. Unless otherwise
stated numbers are represented in binary form. The power set of IN is the set
of all subsets of IN. For natural numbers a, b, a ≤ b, [a, b] =def {a, a+1, . . . , b}.
Two numbers are relatively prime, if their greatest common devisor is 1.
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Theorem 1 (Chinese Remainder Theorem). Let b1, . . . , bk be pairwise rel-
atively prime numbers, and let n1, n2 ∈ IN. Let b =def b1 · · · bk. Then, n1 ≡
n2 (mod b) if and only if n1 ≡ n2 (mod bi) for every i ∈ [1, k].

For set A and two binary operations & and ◦ over A, the triple (A, &, ◦) is a
semiring if (A, &) and (A, ◦) are commutative monoids and the two distributive
laws hold. For + and · denoting addition and multiplication over IN, (IN, +, ·) is
a semiring. By SR(b) we denote the semiring ([0, b+1], sumb, prodb) where the
binary operations sumb and prodb are defined as follows. Let a1, a2 ∈ IN.

sumb(a1, a2) =def

{
a1 + a2 , if a1 + a2 ≤ b
b+1 otherwise

Similarly for prodb. So, matrix multiplication over SR(b) is well-defined.

Graphs. A simple, finite, directed graph is a pair G = (V, A) where V is a
finite set and A ⊆ V × V . For two vertices u, v ∈ V there is a u, v-path in G, if
there is a sequence (x0, . . . , xk) such that x0 = u, xk = v and (xi, xi+1) ∈ A for
all i ∈ [0, k−1]. The graph accessibility problem for directed graphs, denoted by
Gap, is the set of all triples (G, u, v) where G is a directed graph, u and v are
vertices of G and there is a u, v-path in G. The problem Gap is NL-complete [6].
G is acyclic, if there is no sequence P = (x0, . . . , xn) for n the number of vertices
of G such that P is an x0, xn-path in G for any pair of vertices x0, xn of G. The
problem ACYC is the set of all directed acyclic graphs. Since Gap restricted to
acyclic graphs is NL-complete, ACYC is NL-complete. For vertices u and v of
G, u is a predecessor of v, if (u, v) ∈ A.

Circuits. Let O be a set of commutative operations over set M . C = (G, gc,α) is
an n-ary arithmetic O-circuit over M for n ≥ 0, if G = (V, A) is a (simple, finite)
acyclic graph, gC ∈ V is a specified vertex of G, the output vertex, and α : V →
O∪[1, n] such that α establishes a 1-1 correspondence between n vertices without
predecessor and [1, n] and all other vertices are assigned operations fromO whose
arities correspond with the numbers of predecessors of the vertices. Vertices
assigned a number are called input vertices of C. The arithmetic O-circuit C over
M represents a function fC over M in the following way. Let (a1, . . . , an) ∈ Mn.
The value of the input vertex assigned number i is ai, the value of vertex u where
u is assigned an operation from O is the result of α(u) applied to the values of
the predecessors of u. Then, fC(a1, . . . , an) is the value of the output vertex gC .
Let fC be an n-ary function represented by circuit C, and let fC1 , . . . , fCn be
n′-ary functions represented by circuits C1, . . . , Cn. A circuit representation of
function f(x1, . . . , xn′) = fC(fC1(x1, . . . , xn′), . . . , fCn(x1, . . . , xn′)) is obtained
from C, C1, . . . , Cn by identifying the input vertices of C1, . . . , Cn assigned the
same numbers and identifying the vertices of C assigned numbers with the output
vertex of the corresponding circuit Ci.

3 Finite Recurrent Systems

A recurrence is a pair composed of a function and initial values. From recur-
rences one can generate infinite sequences of objects by applying the function to
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certain of already generated objects. Usual recurrences are defined over natural,
real or complex numbers and involve only basic arithmetical operations like ad-
dition and multiplication. We extend this notion to recurrent systems over sets
of numbers.

Definition 1. A finite recurrent system over sets of natural numbers of
dimension n ≥ 1 is a pair S = (F , A) where F =def 〈f1, . . . , fn〉 for f1, . . . , fn

n-ary functions over sets of natural numbers and A ∈ INn. The dimension n of
S is denoted by dimS.

Let S = (F , A) be a finite recurrent system over sets of natural numbers
where F = 〈f1, . . . , fn〉 and A = (a1, . . . , an). We define for every t ∈ IN:

Si(0) =def S[fi](0) =def {ai}, i ∈ [1, n]
Si(t+1) =def S[fi](t+1) =def fi(S1(t), . . . , Sn(t)), i ∈ [1, n]

F(t) =def (S1(t), . . . , Sn(t))
S(t) =def Sn(t) .

So, Si(t) denotes the result of fi in the t-th evaluation step. We can say that
a finite recurrent system over sets of naturals defines or represents an infinite
sequence of sets of naturals. By [S] we denote the union of these sets, i.e., [S] =def⋃

t≥0 S(t). We are interested in two problems that arise from our definitions. We
ask whether a number b is generated in step t and whether b is generated in
some step at all, i.e., contained in [S].

Several authors studied membership problems of sets of natural numbers
that can be built from singleton sets of natural numbers by applying the set
operations union, intersection, complementation and the two arithmetic set op-
erations addition and multiplication, denoted by ⊕ and ⊗ [7], [9], [11], [2]. Ad-
dition and multiplication on sets are defined elementwise. Let A, B ⊆ IN. Then,
A⊕B =def {r+s : r ∈ A and s ∈ B} and A⊗B =def {r·s : r ∈ A and s ∈ B}. Let
O ⊆ {∪,∩, ,⊕,⊗}. An n-ary O-function f = f(x1, . . . , xn) is a function over
the variables x1, . . . , xn defined by using only operations from O. An O-function
is an n-ary O-function for some n ≥ 1.

Definition 2. Let O ⊆ {∪,∩, ,⊕,⊗}. A finite recurrent O-system S =
(F , A) over sets of natural numbers is a finite recurrent system over sets of
natural numbers where every function in F is an O-function.

Our introductory sample sequence, the sequence of Fibonacci numbers, can
be generated by a finite recurrent {⊕}-system. Let

F =def 〈f1, f2〉 where f1(x1, x2) =def x2 and f2(x1, x2) =def x1 ⊕ x2

A =def (0, 1) .

Let S =def (F , A). Then,

S(0) = S2(0) = {1}
S(1) = S2(1) = f2(S1(0), S2(0)) = f2({0}, {1}) = {1}
S(2) = S2(2) = f2(S1(1), S2(1)) = f2({1}, {1}) = {2} ,
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and so on. We will often speak of recurrent systems for short, which always
means finite recurrent {∪,∩, ,⊕,⊗}-systems over sets of naturals. Every re-
current system S defines a possibly infinite set [S] of natural numbers. The
existential membership problem Mex for recurrent systems asks whether a given
number is contained in the defined set, and the exact membership problem Mtm

asks whether a given number is contained in the result of a specified evaluation
step. We want to study the complexities of these membership problems with
respect to the allowed operations. Let O ⊆ {∪,∩, ,⊕,⊗}.

Mex(O) =def {(S, b) : S a recurrent O-system and b ∈ [S]}
Mtm(O) =def {(S, t, b) : S a recurrent O-system and b ∈ S(t)}

Instead of writing Mex({∪,∩,⊕}) we will write Mex(∪,∩,⊕) for short; similarly
for the other problems. The complexities of our problems strongly depend on the
input representation. We assume that natural numbers are given in binary form
and functions are represented by arithmetic circuits with appropriate labels. For
circuits we require any (standard) encoding that permits adjacency tests of two
vertices and detection of labels of vertices in logarithmic space. It can be verified
in nondeterministic logarithmic space whether an input represents anO-function
for O ⊆ {∪,∩, ,⊕,⊗}. Using our notations, McKenzie and Wagner studied the
complexity of the question, for given recurrent O-system S and number b ≥ 0,
whether (S, 1, b) ∈Mtm(O) [2]. Their input representation additionally required
a topological ordering of the vertices of the circuits, but this is only of importance
for problems that are contained in NL. We will denote the problems investigated
by McKenzie and Wagner by MC(O). It follows for every O ⊆ {∪,∩, ,⊕,⊗}
that Mtm(O) is decidable if and only if MC(O) is decidable. The only such
problems that have not yet been proved decidable are MC(∪,∩, ,⊕,⊗) and
MC( ,⊕,⊗) (see also [2]).

Proposition 1.

(i) Mtm(∪,∩, ,⊕,⊗) is either decidable or not recursively enumerable.
(ii) Mex(∪,∩, ,⊕,⊗) is recursively enumerable if and only if MC(∪,∩, ,⊕,⊗)

is decidable.
(iii) Mex( ,⊕,⊗) is recursively enumerable if and only if MC( ,⊕,⊗) is decid-

able.

Glaßer showed that MC(∪,∩, ,⊕,⊗) is contained in Δ2 = Σ2 ∩Π2 [1].

Theorem 2. [4]

(i) Mex(∪,∩,⊕,⊗) is Σ1-complete.
(ii) Mex( ,⊕,⊗) is Σ1-hard.
(iii) Mtm(∪,∩, ,⊕,⊗) ∈ Δ2.
(iv) Mex(∪,∩, ,⊕,⊗) ∈ Σ2.
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4 Easiest Membership Problems

In this section we consider membership problems that are contained in P. These
problems have a strong connection to graph problems concerning the numbers
of paths of certain lengths between two vertices. Such problems are investi-
gated in [3]. In the same paper connections to matrix problems are established.
This matrix interpretation is also of great advantage in the study of the prob-
lem Mtm(∩,⊕).

As a general model, proofs showing containment results for existential mem-
bership problems have a common structure. First, an upper bound for the com-
plexity of deciding Mtm(O) for O ⊆ {∪,∩, ,⊕,⊗} is given. Second, the value
of t is bounded by some number r for which holds that (S, b) ∈ Mex(O) if and
only if there is t < r such that (S, t, b) ∈ Mtm(O). Bound r normally depends
on b and the dimension of S.

Lemma 1. Mtm( ) is in L.

The problem NMDP(2,β) for β ≥ 1 is the set of all tuples (G, M, k, ν, u, v)
where G = (V, A) is a simple finite directed graph, M ⊆ V , u, v ∈ V , k, ν ∈ IN,
k is represented in binary form, ν is represented in β-ary form, and there are
ν u, v-paths in G each of which containing exactly k vertices from set M . Let
ExNMDP(2,β) denote the problem corresponding to NMDP(2,β) where we
ask for exactly ν paths.

Theorem 3. [3]

(i) NMDP(2, 1) and ExNMDP(2, 1) are NL-complete.
(ii) ExNMDP(2, 2) is in P and C=L-hard.

Lemma 2. Mtm(∪) and Mtm(∩) are NL-complete.

Proof. For showing Mtm(∪) ∈ NL and Mtm(∩) ∈ NL, both problems are reduced
to NMDP(2, 1). Hardness of Mtm(∪) and Mtm(∩) follows by the canonical re-
duction from the accessibility problem for acyclic graphs.

Theorem 4. (i) Mex(∅) and Mex( ) are in L.
(ii) Mex(∪) is NL-complete.

McKenzie and Wagner showed that MC(⊗) is NL-complete and that MC(⊕)
is C=L-complete [2].

Theorem 5. Mtm(⊗) is NL-complete, and Mtm(⊕) is in P and C=L-hard.

Proof. Containment of both problems is shown by using ExNMDP(2, 1) or
ExNMDP(2, 2) as oracle set. Hardness of both problems follows by the results
of McKenzie and Wagner [2].

Let M+
tm(∩,⊗) denote the set of tuples (S, t, b) ∈ Mtm(∩,⊗) where b > 0.

By a construction that replaces numbers by a representation over a basis of
relatively prime numbers we can show the following lemma. The same idea with
a different construction was used by McKenzie and Wagner to obtain similar
results [2].
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Lemma 3. M+
tm(∩,⊗) ≤P

m Mtm(∩,⊕).

A thorough analysis of recurrent {∩,⊕}-systems and results from linear alge-
bra yield the following theorem. The main part of its proof shows how to decide
in polynomial time whether S(t) for S a recurrent {∩,⊕}-system is empty. This
problem is not solved entirely. However, in the uncertain case the result of S(t)
is either empty or too large. A complete solution of the emptyness problem is of
great importance for solving Mtm(∩,⊗).

Theorem 6. Mtm(∩,⊕) is in P.

Corollary 1. M+
tm(∩,⊗) is in P.

5 NP-Complete Membership Problems

To show hardness of the problems considered in this section, we define a new
problem. This problem can be considered a generalization of the Chinese Re-
mainder Theorem. The Chinese Remainder Theorem shows that a system of
congruence equations where the moduli are pairwise relatively prime numbers
has a solution that is unique in a determined interval of natural numbers. We
extend this problem with respect to two aspects. Moduli are arbitrary numbers,
and for each modulus we find a set of congruence equations. A solution of this
Set-system of congruence equations fulfills one equation from each set. Formally,
we define the problem Set-SCE as follows.

Solving a Set-System of Congruence Equations (Set-SCE).
Instance. ((A1, b1), . . . , (Ak, bk)) where A1, . . . , Ak are finite sets of natural
numbers, and b1, . . . , bk are natural numbers greater than 1 represented in unary
form.
Question. Are there n ∈ IN and a1 ∈ A1, . . . , ak ∈ Ak such that n ≡ ai (mod bi)
for all i ∈ [1, k]?

Note that it is not important to require binary representation of the numbers
in A1, . . . , Ak. However, we assume a binary representation of them to fix a
system.

Lemma 4. Set-SCE is NP-hard.

Theorem 7. Mex(∩), Mex(⊕), Mex(⊗), Mex(∩,⊕), M+
ex(∩,⊗) are NP-complete.

Proof. We only show that Mex(∩) is NP-complete by reducing Set-SCE to
Mex(∩). Let S =def ((A1, b1), . . . , (Ak, bk)) be an instance of Set-SCE. We
assume that Ai only contains numbers that are smaller than bi. We define a
recurrent {∩}-system S = (F , A) as follows. For every i ∈ [1, k], for every j ∈
[1, bi−1] we define

f
(i)
j (x) =def x

(i)
j−1 and f

(i)
0 (x) =def x

(i)
bi−1
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where x =def (x(1)
0 , . . . , x

(1)
b1−1, x

(2)
0 , . . . , x

(k)
bk−1, x

′). Let A =def (c(1)
0 , . . . , c

(k)
bk−1, 0)

where c
(i)
j ∈ {0, 1} and c

(i)
j = 1 if and only if j ∈ Ai. Furthermore, let f ′(x) =def

x
(1)
0 ∩ · · · ∩ x

(k)
0 and F =def 〈f (1)

0 , . . . , f
(k)
bk−1, f

′〉. It holds that S[f (i)
j ](t) = 1 if

and only if c
(i)
r = 1 for r < bi and r ≡ t− j (mod bi). Hence, (S, 1) ∈ Mex(∩) if

and only if S ∈ Set-SCE. By Lemma 4, Mex(∩) is NP-hard.

Corollary 2. Set-SCE is NP-complete.

It remains open not only whether Mtm(∩,⊗) is polynomial-time decidable
but also whether Mex(∩,⊗) is contained in NP. We do not know any upper
bound c for t such that 0 ∈ [S] if and only if 0 ∈ S(t) for some t < c where S is
a recurrent {∩,⊗}-system.

6 PSPACE-Complete Membership Problems

This section contains three interesting results. First, we will see that the ex-
istential membership problem for finite recurrent {∪,∩}-systems is PSPACE-
complete. Containment is a mere observation. Hardness is shown by a reduction
from QBF. Astoundingly at first glance, the corresponding exact membership
problem is PSPACE-complete, too. Second, we will see that Mtm(∪,⊕,⊗) can
be decided in polynomial space. This result is surprising when we keep in mind
that MC(∪,⊕,⊗) is PSPACE-complete [11]. Third, we will see that a recurrent
{∪,⊕,⊗}-system S needs at most (b+1) ·2n3

evaluation steps to generate num-
ber b where n =def dimS. This leads to a polynomial-space decision algorithm
for Mex(∪,⊕,⊗).

Theorem 8. [7] QBF is PSPACE-complete.

Theorem 9. QBF ≤L
m Mex(∪,∩).

We turn to recurrent {∪,⊕,⊗}-systems.

Lemma 5. Let S = (F , A) be a recurrent {∪,⊕,⊗}-system, n =def dimS. Let
b ∈ IN. Then, b ∈ [S] if and only if there is t < (b+ 1) · 2n3

such that b ∈ S(t).

As we have already discussed the problems Mtm(O) for O ⊆ {∪,∩, ,⊕,⊗}
can be considered similar to the problems MC(O) with succinct input repre-
sentation. For most of our problems succinctness led to an increase of com-
plexity. With this phenomenon in mind it is surprising that we can show that
Mtm(∪,⊕,⊗) is solvable in polynomial space. It is known that MC(∪,⊕,⊗) is
PSPACE-complete [11].

Theorem 10. Mtm(∪,⊕,⊗) is in PSPACE.

Theorem 11. Mex(∪,∩), Mex(∪,∩, ), Mex(⊕,⊗), Mex(∪,⊕), Mex(∪,⊗) and
Mex(∪,⊕,⊗) are PSPACE-complete.

Corollary 3. Mtm(∪,∩), Mtm(∪,∩, ), Mtm(⊕,⊗), Mtm(∪,⊕), Mtm(∪,⊗) and
Mtm(∪,⊕,⊗) are PSPACE-complete.
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7 More Complicated Problems

In this final section we consider those problems that are not yet solved en-
tirely. These are most of the problems that allow ∩- and ⊗-operations. But also
Mtm(∪,∩, ,⊕) and Mex(∪,∩, ,⊕) are still open. We will not give tight upper
and lower bounds. In most cases, we obtain upper bounds by adequately restat-
ing results by McKenzie and Wagner. However, the complexity of the mentioned
problem Mtm(∪,∩, ,⊕) can significantly be improved with respect to the cor-
responding result from [2]. Let us first recall some necessary results.

Theorem 12. [2]

(i) MC(∩,⊗) is in P.
(ii) MC(∩,⊕,⊗) is in coNP.
(iii) MC(∪,∩, ,⊕) and MC(∪,∩, ,⊗) are in PSPACE.
(iv) MC(∪,∩,⊕,⊗) is NEXP-complete.

Given a recurrent system S and some number t, we find a circuit represen-
tation of S(t) by concatenating circuits. We obtain the following corollary.

Corollary 4. (i) Mtm(∩,⊗) is in EXP.
(ii) Mtm(∩,⊕,⊗) is in coNEXP.
(iii) Mtm(∪,∩, ,⊕) and Mtm(∪,∩, ,⊗) are in EXPSPACE.
(iv) Mtm(∪,∩,⊕,⊗) is in 2−NEXP.

In case of recurrent {∪,∩, ,⊕}-systems, we can improve the trivial exponen-
tial-space upper bound.

Lemma 6. Mtm(∪,∩, ,⊕) is in EXP.

Observe that Mtm(∪,∩) reduces to Mtm(∪,∩,⊕) and Mtm( ,⊕). The latter
reduction is done by replacing ∩ by ⊕, A∪B by A⊕B, the queried number b by
0 and every other number by 1. So, Mtm(∪,∩,⊕), Mtm( ,⊕) and Mtm(∪,∩, ,⊕)
are PSPACE-hard.

Proposition 2. Mex(∪,∩, ,⊕) is in EXPSPACE.

In a way similar to the reduction from Mtm(∪,∩) to Mtm( ,⊕), the former
problem reduces to Mtm( ,⊗). Replace every ∪ by ⊗ and every A∩B by A⊗B,
replace the queried number b by 0 and every other number by 1. Note that
no { ,⊗}-function on inputs only {0} or {1} can compute ∅, since no such
function can compute a set that contains 0 and 1. This shows PSPACE-hardness
of Mtm( ,⊗).

8 Concluding Remarks

In this extended abstract we introduced and studied two types of membership
problems for recurrent {∪,∩, ,⊕,⊗}-systems. Table 1 summarises our results.
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Table 1. Currently best known complexity bounds for the membership problems for

finite recurrent systems. The question marks stand for Δ2 or Σ2.

Operation set Exact problem Mtm Existential problem Mex

Lower bound Upper bound Lower bound Upper bound

∪ ∩ ⊕ ⊗ NEXP ? RE ?

∪ ∩ ⊕ ⊗ NEXP 2−NEXP RE

⊕ ⊗ PSPACE ? RE ?

∪ ⊕ ⊗ PSPACE

∩ ⊕ ⊗ PSPACE coNEXP PSPACE RE

⊕ ⊗ PSPACE

∪ ∩ ⊕ PSPACE EXP PSPACE EXPSPACE

∪ ∩ ⊕ PSPACE EXP PSPACE EXPSPACE

⊕ PSPACE EXP PSPACE EXPSPACE

∪ ⊕ PSPACE

∩ ⊕ C=L P NP

⊕ C=L P NP

∪ ∩ ⊗ PSPACE EXPSPACE PSPACE RE

∪ ∩ ⊗ PSPACE EXPSPACE PSPACE RE

⊗ PSPACE EXPSPACE PSPACE RE

∪ ⊗ PSPACE

∩ ⊗ NL EXP NP RE

⊗ NL NP

∪ ∩ PSPACE

∪ ∩ PSPACE

∩ NL NP

∪ NL

L

L

The question marks stand for complexity classes beyond the class of recursively
enumerable sets. Future work should tighten upper and lower bounds. There
are especially two open problems that the author finds worth being considered:
undecidability of Mtm(∪,∩, ,⊕,⊗) and an interesting upper—or lower—bound
for Mex(∩,⊗). McKenzie and Wagner studied the emptyness problem for some
circuits as an auxiliary problem. It would be interesting to solve the emptyness
problem for recurrent {∩,⊕}-systems.
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Abstract. We refine the genericity concept of [1], by assigning a real
number in [0, 1] to every generic set, called its generic density. We con-
struct sets of generic density any E-computable real in [0, 1]. We also
introduce strong generic density, and show that it is related to pack-
ing dimension [2]. We show that all four notions are different. We show
that whereas dimension notions depend on the underlying probability
measure, generic density does not, which implies that every dimension
result proved by generic density arguments, simultaneously holds under
any (biased coin based) probability measure. We prove such a result: we
improve the small span theorem of Juedes and Lutz [3], to the packing
dimension [2] setting, for k-bounded-truth-table reductions, under any
(biased coin) probability measure.

1 Introduction

Resource-bounded genericity [1] yields a randomness concept for the class E
which interacts nicely with Lutz resource-bounded measure [4]. Informally speak-
ing, generic sets are sets which cannot be predicted correctly infinitely often.
Genericity has been used for the investigation of structural properties of NP
(under appropriate assumptions) and E, see [5] for a survey; and yielded an im-
proved version of the small span theorem of [3], to a stronger reduction notion [6],
based on the relationship between measure and genericity.

Resource-bounded measure has recently been refined via effective dimension
which is an effectivization of Hausdorff dimension, yielding applications in a
variety of topics, including algorithmic information theory, computational com-
plexity, prediction, and data compression [7,8,9,10,2,11]. Hausdorff dimension is
a refinement of measure theory, where every measure zero class of languages is
assigned a dimension, which is a real number between 0 and 1. Another widely
used dimension concept in fractal geometry, known as packing dimension (or
strong dimension), was effectivized in [2]. A simple characterization of strong
dimension via martingales has been given in [2], where the martingales’ capital
is required to grow unbounded and is not allowed to decrease too much after a
certain number of rounds.

In this paper we connect genericity to resource-bounded dimension by intro-
ducing a quantified version of genericity, which is a refinement of genericity, as
� This research was supported in part by Swiss National Science Foundation Grant

PBGE2–104820.
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resource-bounded dimension is a refinement of resource-bounded measure. The
idea is that every generic set is assigned a real number between 0 and 1, called
its generic density, and which corresponds to the density such a set cannot be
predicted with. We construct sets of generic density any E-computable real s.
Similarly to resource-bounded strong dimension [2], we also introduce strong
generic density. We show that strong generic density is related to strong dimen-
sion [2], in the sense that sets with a certain amount of randomness relatively
to strong dimension, keep that amount of unpredictability relatively to strong
generic density.

Next we show that all these four concepts, i.e. dimension, strong dimension,
generic density and strong generic density, are indeed different.

All notions exposed so far are implicitly considered within the Cantor space
of all languages under the uniform probability measure. This corresponds to the
random experiment in which every membership bit of a language L is chosen
according to the toss of a fair coin. Probability measures other than the uniform
probability measure occur naturally in applications, and the corresponding gale
notion (resp. dimension notion) has been investigated in [9,2] (resp. [12]). In
section 6, we highlight a main difference between generic density and resource-
bounded dimension, that is whereas the latter notion is dependent on the under-
lying probability measure, generic density is not; a similar result for genericity
vs resource-bounded measure was given in [13]. More precisely we show that if
the coin in the above random experiment is biased, then for two different biases
the corresponding dimension notions differ, whereas the generic density notion
remains the same. This outlines a nice feature of the generic density method over
martingale based dimension: proofs obtained by generic density arguments are
in some sense more informative, because all dimension results proved by generic
density methods (i.e. showing some class contains some s-generic set) simulta-
neously hold in a wide variety of probability measure spaces. Such an example
is given in the last section of this paper, where a small span theorem under any
biased coin based probability measure is proved.

More precisely we prove a small span theorem in the strong dimension setting,
for k-bounded-truth-table reductions (k-tt-reductions are a special case of Turing
reductions, where only k non-adaptive queries are allowed) under any biased
coin based probability measure. The small span theorem [3] asserts that for
every language L in E, either the set of languages reducible to L, called the
lower span, or the set of languages to which L reduces, called the upper span,
has E-measure zero. The question whether the small span theorem still holds in
the resource-bounded dimension setting – i.e. can E-measure zero be replaced
by E-dimension zero – was partially disproved in [14], where E-languages with
both lower and upper span of E-dimension one were constructed. Nevertheless
the small span theorem under polynomial many-one reductions holds for scaled
dimension [15] and partially holds in the dimension setting as shown in [15], i.e.
either the lower span has E-dimension zero or the upper span has E-measure
zero. By adapting the proof in [6] combined with generic frequency arguments,
we prove a small span theorem in the strong dimension setting for k-bounded
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truth table reductions, under any (biased coin) probability measure, i.e. we show
that for any L in E, either the lower span (under k-tt-reductions) has E-β-strong
dimension zero (where β denotes the sequence of biases), or the upper span has E-
β-measure zero. k-bounded-truth-table reductions and nα-tt reductions (α < 1)
were considered in [6,16], but only in the resource-bounded measure setting.

2 Preliminaries

We use standard notation for traditional complexity classes, see for instance
[17,18]. Let us fix some notations for strings and languages. A string is an el-
ement of {0, 1}n for some integer n. For a string x, its length is denoted by
|x|. s0, s1, s2 . . . denotes the standard enumeration of the strings in {0, 1}∗ in
lexicographical order, where s0 = λ denotes the empty string. We sometimes
enumerate the strings of size n by sn

0 , sn
2 , sn

2n−1. Note that |w| = 2O(|s|w||). For
a string si define its position by pos(si) = i. If x, y are strings, we write x ≤ y
if |x| < |y| or |x| = |y| and x precedes y in alphabetical order. A sequence is an
element of {0, 1}N. If w is a string or a sequence and 1 ≤ i ≤ |w| then w[i] and
w[si] denotes the ith bit of w. Similarly w[i . . . j] and w[si . . . sj ] denote the ith
through jth bits.

For two string x, y, the concatenation of x and y is denoted xy. If x is a string
and y is a string or a sequence extending x i.e. y = xu, where u is a string or a
sequence, we write x ' y. We write x � y if x ' y and x 	= y.

A language is a set of strings. A class is a set of languages. The cardinal of
a language L is denoted |L|. Let n be any integer. The set of strings of size n
of language L is denoted L=n. Similarly L≤n denotes the set of strings in L of
size at most n. Denote by L=n

k = L∩{sn
0 , · · · sn

k−1}. We identify language L with
its characteristic function χL, where χL is the sequence such that χL[i] = 1 iff
si ∈ L. Thus a language can be seen as a sequence in {0, 1}N. We denote by C the
Cantor space of all infinite binary sequences. L|sn denotes the initial segment of
L up to sn−1 given by L[s0 · · · sn−1], whereas L � sn denotes L[s0 · · · sn].

We consider bounded truth-table reductions, here is a definition. Let k ∈ N+.
We say language A is k-truth-table reducible to language B, denoted A ≤p

k−tt B

if there exists a family of polynomial computable function f : {0, 1}∗×{0, 1}k →
{0, 1} (the evaluator) and gi : {0, 1}∗ → {0, 1}∗ (1 ≤ i ≤ k, the queries), such
that for every string x: A(x) = f(x, B(g1(x)), · · · , B(gk(x))). Such a reduction
is denoted f(g1, · · · , gk). A is bounded truth-table reducible to B if it is k-truth-
table reducible to B for some k.

For a reducibility notion r, the lower span (resp. upper span) of a language
A, denoted A≥r (resp. A≤r ) is the set of languages B such that B ≤r A (resp.
A ≤r B).

2.1 Lutz Resource-Bounded Measure

Lutz measure on E [4] is obtained by imposing appropriate resource-bounds on a
game theoretical characterization of classical Lebesgue measure, via martingales.



Generic Density and Small Span Theorem 95

A martingale is a function d : {0, 1}∗ → R+ such that, for every w ∈ {0, 1}∗,
d(w) = (d(w0) + d(w1))/2. This definition can be motivated by the following
betting game in which a gambler puts bets on the successive membership bits of
a hidden language A. The game proceeds in infinitely many rounds where at the
end of round n, it is revealed to the gambler whether sn ∈ A or not. The game
starts with capital 1. Then, in round n, depending on the first n−1 outcomes w =
χA[0 . . .n− 1], the gambler bets a certain fraction εwd(w) of his current capital
d(w), that the nth word sn ∈ A, and bets the remaining capital (1− εw)d(w) on
the complementary event sn 	∈ A. The game is fair, i.e. the amount put on the
correct event is doubled, the one put on the wrong guess is lost. The value of
d(w), where w = χA[0 . . .n] equals the capital of the gambler after round n on
language A. The player wins on a language A if he manages to make his capital
arbitrarily large during the game, i.e. lim supn→∞ d(χA[0 . . .n]) = ∞ and we say
that martingale d succeeds on A. The success set S∞[d] of a martingale d is the
class of all languages on which d succeeds.

Lutz’s idea to define a measure notion on the class E is to consider only
martingales computable in a certain time bound, i.e. martingales d such that
d(w) can be computed in time 2c|s|w|| for some c > 0. Such a martingale is
called E-computable. E-computable martingales are the main tool for defining a
measure notion on E, as the following definition shows.

Definition 1. A class C has E-measure zero if there is an E-computable mar-
tingale d that succeeds on every language of C.

This property is monotone in the following sense: If class D is contained in
class C, and C has E-measure zero, then D has E-measure zero.

Definition 2. A class C has E-measure one if its complement E − C has E-
measure zero.

Lutz showed in [4] that E does not have E-measure zero, which is known as
the measure conservation property. Since finite unions of measure zero sets have
measure zero it’s impossible for a class to have both measure zero and one.

Lutz also proved in [4] that enumerable infinite unions of measure zero sets
have measure zero, more precisely.

Theorem 1 (Lutz). Suppose {di}i≥1 is a set of martingales, each covering
class Ci; where d(i, w) := di(w) is computable in time 2c|s|w|| + ic for a some
constant c > 0. Then ∪i≥1Ci has E-measure zero.

The following result shows that approximable martingales can be replaced
by exactly computable ones.

Lemma 1. Exact Computation Lemma [4]
Let d : {0, 1}∗ → R+ be a martingale such that there exists a family of

approximations {d̂k}k where d̂k(w) is computable in time 2c|s|w|| + kc for some
c > 0, and such that |d̂k(w) − d(w)| ≤ 2−k. Then there exists an E-computable
martingale d′ : {0, 1}∗ → Q+ such that S∞[d] = S∞[d′].

For a survey on resource-bounded measure see [19].
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2.2 Resource-Bounded Dimension

Lutz’s idea for defining a dimension notion via martingales, is to perceive taxes
on the martingales’ wins, so that only martingales whose capital grows quickly
are considered. This motivates the following definition.

Definition 3. For a real number s ≥ 0, a martingale is said s-successful on a
language A, if lim supm→∞

d(A�sm−1)
2(1−s)m = ∞. A martingale is s-successful on a

class if it is s-successful on every language of the class.

Remark 1. Similarly d is said strongly s-successful on A, if lim sup in Definition
3 is replaced by lim inf.

The dimension of a class is defined as the largest tax rate which can be
perceived on the martingales’ benefits, without preventing them from winning.

Definition 4. Let C be any complexity class. The E-dimension of C (resp. E-
strong-dimension ) is the infimum over all s ∈ [0, 1], such that there exists an
E-computable martingale which s-succeeds (resp. strongly s-succeeds) on C.

Lutz proved in [7] that the E-dimension notion satisfies all three basic measure
properties, namely that E has E-dimension one, every language in E has E-
dimension zero, and finally enumerable infinite unions of sets of E-dimension s
have E-dimension s. More precisely,

Definition 5. Let X,X0,X1,X2, · · · be complexity classes. X is a E-union of
the E-dimensioned sets X0,X1,X2, · · · if X =

⋃
k≥0Xk, and for each s >

supk∈N dimE(Xk), there is a function d : N× {0, 1}∗ → [0,∞[ with the following
properties: d is E-computable, for each k ∈ N, the function dk(w) := d(k, w) is
a martingale, and for each k ∈ N, dk s-succeeds on Xk.

The following Lemma states that the E-dimension of a E-union of sets is the
supremum of the E-dimension of all sets.

Lemma 2. [7]
Let X,X0,X1,X2,· · · , be a E-union of the E-dimensioned sets X0,X1,X2,· · · .

Then dimE(X) = supk∈N dimE(Xk).

3 Generic Density

Whereas Lutz resource-bounded measure is defined via martingales, genericity
is defined via strategies. Here is a definition.

Definition 6. A function h : {0, 1}∗ → {0, 1}∗ ∪ {⊥} is a partial one-bit exten-
sion strategy, if for every string τ ∈ {0, 1}∗ either h(τ) is not defined, denoted
h(τ) =⊥, or h extends τ by one bit i.e. h(τ) = τb with b ∈ {0, 1} (the bit b is
denoted exth(τ)).
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For simplicity we use the word strategy for partial one-bit extension strategy.
We denote h(τ) ↓ whenever h(τ) is defined, i.e. h(τ) 	=⊥. We say language A
meets strategy h if h(τ) � χA for some string τ ∈ {0, 1}∗. We are interested in
a genericity notion on the class E. This motivates the following definition.

Definition 7. Let c > 0. A strategy h : {0, 1}∗ → {0, 1}∗ ∪ {⊥} is 2cn-
computable if there is a Turing machine which on input σ computes h(σ), in
time 2c|sσ|.

A strategy is E-computable if it is 2cn-computable for some c > 0.
As mentioned earlier, we want to quantify the genericity notion of [1]. This

motivates the following definition.

Definition 8. Strategy h is s-dense along some language A, with s ∈ [0, 1], if
lim supn→∞ |{x ∈ {s0, s1, · · · , sn} : h(A|x) ↓}| − sn = ∞.

Remember that strategies are supposed to predict characteristic sequences of
languages, so the higher the density of a strategy is, the more prediction it tries
to make. s-strongly-dense is defined similarly with lim sup replaced by lim inf.

Let us introduce our notion of generic density.

Definition 9. A language G is said (s, 2cn)-generic if it meets every 2cn-
computable strategy which is (1 − s)-dense along G.

Informally s-generic sets cannot be predicted correctly by strategies, and the
bigger s is, the bigger the set of defeated strategy is. For s = 1 all strategies
halting on at least a small portion of the strings are to be met, s = 0 is the other
extreme, where only strategies halting on a huge fraction of all strings are to be
met. For the genericity notion of [1], all strategies halting on at least infinitely
many strings are to be met. s-strongly-generic is defined similarly with s-dense
replaced by s-strongly-dense.

Definition 10. Let c > 0. The 2cn-generic density of a language A, denoted
gendens2cn(A), is the supremum over all s ∈ [0, 1] such that A is (s, 2cn)-generic.

Intuitively the bigger the generic density of a sequence is, the more unpredictabil-
ity it contains.

Similarly the E-generic density of A, denoted gendensE(A), is the sup over all
s ∈ [0, 1] for which A is (s, 2cn)-generic for some c > 0. Strong generic density
Gendens2cn(A) and GendensE(A) are defined by replacing generic with strongly
generic in Definition 10.

The following result shows that s-generic sequences do exist for any com-
putable s, but contrary to random sequences, they can be sparse.

Theorem 2. For every E-computable real s ∈ [0, 1] and every c ≥ 1, there exists
a sparse set G such that gendens2cn(G) = s.

Remark 2. Similar arguments show that Theorem 2 also holds by replacing
gendens with Gendens.
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4 Generic Density vs Resource-Bounded Dimension

As mentioned earlier, the strong generic density of a sequence is related to
its strong dimension [2], more precisely every s-strongly random set is also s-
strongly-generic, i.e. every set with a certain amount of randomness relatively to
strong dimension, also contains a certain amount of unpredictability in regard
to strong generic density.

Whereas s-generic sets are the typical sets for generic density, the following
standard notion characterizes the typical sets for strong dimension.

Definition 11. Let s ∈ [0, 1]. A language R is (s, 2cn) strongly random if no
martingale computable in 2cn steps is strongly s-successful on R.

A set R is (s, E)-strongly random if it is (s, 2cn)-strongly random for every c > 0.
s-strongly random sets are typical because they determine the E-strong di-

mension of a class that contains them, as the following standard result shows.

Lemma 3. Let s ∈ [0, 1], c > 0 and let C be a class of languages such that C
does not contain any (s, 2cn)-strongly random languages. Then DimE(C) ≤ s.

Corollary 1. Lemma 3 still holds if we replace strongly random with random
and Dim with dim.

The following result shows that every s-strongly random set is s-strongly-
generic, i.e. quantified randomness implies quantified unpredictability. We prove
a more general result in Section 6.

Theorem 3. Let c > 0. Let R be (s, 2(c+2)n)-strongly random, then R is (s, 2cn)-
strongly-generic.

Corollary 2. Let c > 0. Let R be (s, 2(c+2)n)-random, then R is (s, 2cn)-generic.

The converse of Theorem 3 is not true as the following section shows.

5 Comparing the Density Notions

As the following result shows, quantified unpredictability and quantified ran-
domness are different notions.

Theorem 4. There exists a language S such that DimE(S) < gendensE(S) and

DimE(S) < GendensE(S)

< <

dimE(S) < gendensE(S)
(1)

And for any sequence S, Equation 1 holds with less or equal inequalities.
As the previous result shows , there exists a set whose strong dimension is

smaller than its generic density. The following result shows that the converse
also holds, i.e. these two notions are incomparable.
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Theorem 5. There exists a languages S such that DimE(S) = 1 and
gendensE(S) = 0.

Theorem 4 and 5 yield the following corollary.

Corollary 3. DimE and gendensE are incomparable.

6 Generic Density Under Different Probability Measures

In this section we highlight a main feature of generic density over resource-
bounded dimension, that is whereas the latter notion depends on the underlying
probability measure, generic density does not. As we shall see, this implies that
dimension results obtained by generic density methods, are somehow more in-
formative, because they hold in a wide variety of probability measure spaces.
Let us give some preliminary definitions from [2]. A probability measure on the
Cantor space is a function ν : {0, 1}∗ → [0, 1] such that ν(λ) = 1 and for all
strings w, ν(w) = ν(w0)+ν(w1). Informally, ν(w) is the probability that w � L,
where the sequence L is chosen according to ν. A bias sequence is a sequence
β = (β0,β1, . . .) of real numbers βi ∈ [0, 1]. Intuitively, βi is the probability
that the ith toss of a biased coin yields 1. For a bias sequence β, define the β-
probability measure on C by μβ(w) =

∏|w|−1
i=0 βi(w), where βi(w) = βi if wi = 1

and 1−βi otherwise. μβ represents the probability that some language L satisfies
w � L, where the ith bit of L is determined by a coin toss with bias βi. For
simplicity μβ is sometimes denoted β. The usual probability measure is called
the uniform probability measure, denoted μ(w) = 2−|w|, and corresponds to the
toss of a fair coin.

Resource-bounded dimension on spaces with probability measure ν is defined
via ν-s-gales, here is a definition.

Definition 12. [2] Let ν be a probability measure on C, let s ∈ [0, 1] and t(n) ≥
2O(n) be a time bound. A t(n)-computable ν-s-gale is a function d : {0, 1}∗ →
[0,∞) such that for all strings w, d(w)νs(w) = d(w0)νs(w0)+d(w1)νs(w1) and
d(w) is computable in t(|s|w||) steps.

Intuitively the s in Definition 12 represents the tax taken on the martingale’s
wins, whereas the factors ν adjust the wins according to the probability measure
ν: if some bit appears with higher probability, then the payoff while betting on
this bit ought to be smaller. An E-computable ν-s-gale is a t(n)-computable
ν-s-gale for some t(n) = 2O(n).

Similarly to the usual notion, the E-ν-dimension of a language L, denoted
dimν

E(L), is the supremum over all s such that there is an E-computable ν-s-gale
d such that lim supm→∞ d(L|m) = ∞. It is easy to check that Lemma 3 also
holds in spaces with any biased coin based probability measure.

For s ∈ [0, 1], denote by DIMν
E(≥ s) (resp. GENDENSE(≥ s)) the set of

languages with E-ν-dimension (resp. E-generic density) greater than s. Denote
by SDIM the strong dimension analogue and SGENDENS the strong-genericity
analogue.
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The following result requires the weighted binary entropy function
H : (0, 1)2 → [0,∞) where H(x, y) = x log 1

y + (1 − x) log 1
1−y which is con-

tinuous on (0, 1)2.
It is clear by the work of [9,2,12,12] that resource-bounded dimension de-

pends on the underlying probability measure, i.e. for two biases sequences α, β
converging to different values, DIMα

E (≥ s) 	= DIMβ
E (≥ s), i.e. sequences with high

dimension in a space with underlying probability α can have smaller dimension
in a space with underlying probability β.

The following result shows that this is not the case for generic density,
i.e. it is independent of the underlying probability measure. More precisely we
show that for a sequence of biases β converging to some number β, the se-
quences with β-dimension s log(1/β)/H(s,β) have generic density s. The factor
log(1/β)/H(s,β) that appears when going from dimension to generic density is
because the payoffs are not equal whether the bit that is bet on is zero or one,
i.e. if for example β < 1/2 then the probability of the bit 0 is bigger, therefore
the payoff on such bits is smaller. So if the bits of the non-generic i.e. easily
predicted sequence, are always predicted to be 0, the dimension has to drop,
which explains this factor. Note that when β = 1/2, the factor is equal to 1, i.e.
disappears.

The following result highlights an advantage of the generic density method
over the martingales based one, for dimension results that are proved by showing
that a class contains an s-generic set. Such results simultaneously hold in a large
range of biased-coin based probability measure spaces. Such an example is given
in Section 7. Note that of course such an approach is not always possible for
dimension results, see for example [2].

Theorem 6. Let β = (β0,β1, . . .) be an E-computable bias sequence, converging
to β ∈ (0, 1

2 ). Let s ∈ [0, 1], then GENDENSE(≥ s) ⊇ DIMβ
E (≥ s log(1/β)

H(s,β) ).

Corollary 4. The same holds by replacing GENDENSE(≥ s) with
SGENDENSE(≥ s) and DIMβ

E (≥ s log(1/β)
H(s,β) ) with SDIMβ

E (≥ s log(1/β)
H(s,β) ).

7 Small Span Theorem in Dimension

In this section we prove a small span theorem for bounded-truth-table reduction,
in the strong dimension setting, in spaces with any biased coin based probability
measure. The proof is adapted from [6] combined with results of the previous
sections. This is an example where the generic density method is more informa-
tive than the martingale based approach, because we simultaneously prove the
result for any biased coin based probability measure.

To clarify the proofs, we assume that all bounded truth-table reductions are
in the following normal form, where all queries are ordered in decreasing order,
and redundant ones are replaced by λ.

Definition 13. A p-k-tt reduction f(g1, . . . , gk) is normal if for every x ∈
{0, 1}∗ there exists k′ ≤ k such that gi(x) > gi+1(x) for 1 ≤ i ≤ k′, and gi(x) = λ
for i ≥ k′.
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It is easy to check that any p-k-tt reduction f(g1, . . . , gk) can be transformed
into an equivalent normal reduction.

Definition 14. The collision set of a p-k-tt reduction f(g1, . . . , gk) denoted
Coll(f) is the set of strings x, for which there exists y < x such that gi(x) = gi(y)
(for i = 1, . . . , k) and fx = fy, where fx = f(x, ·, . . . , ·).

A p-k-tt reduction f(g1, . . . , gk) is consistent with some language A, if for all
strings x, y s.t. gi(x) = gi(y) (for i = 1, . . . , k) and fx = fy, we have A(x) = A(y).

Definition 15. Let c > 0 be some constant, and let f(g1, · · · , gk) be a p-k-tt
reduction. The c-rank of f(g1, · · · , gk) is the largest integer 1 ≤ r ≤ k such that
∃∞x : |x|−c

k ≤ |gr(x)|. The c-rank is zero if no such integer exists.

The following is the main result of this section.

Theorem 7. (Small span theorem) Let β = (β0,β1, . . .) be an E-computable
bias sequence, converging to β ∈ (0, 1

2 ). Let A in E be any language, and k ∈ N.
Then either Dimβ

E (A≥p
k−tt ∩ E) = 0 or μβ

E (A≤p
k−tt) = 0.

8 Conclusion

We have introduced a refined notion of genericity, in the same sense that
resource-bounded dimension is a refinement of resource-bounded measure. We
have exhibited a relationship between generic density and dimension, as well as
a main difference regarding the underlying probability measure of the Cantor
space, with the consequence that generic density based proof are in some sense
more informative than martingale based ones. We give an example of such a
proof by showing a small span theorem in any (biased coin) probability measure
space, for stronger reductions as previously considered in the dimension setting.
We expect generic density to be useful for further resource-bounded dimension
investigations.

Acknowledgments. I thank J. Lutz for suggesting the possible measure prob-
ability independence of generic density, and for bringing [13] to my attention.
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Abstract. This paper introduces logspace optimization problems as
analogues of the well-studied polynomial-time optimization problems.
Similarly to them, logspace optimization problems can have vastly dif-
ferent approximation properties, even though the underlying decision
problems have the same computational complexity. Natural problems,
including the shortest path problems for directed graphs, undirected
graphs, tournaments, and forests, exhibit such a varying complexity. In
order to study the approximability of logspace optimization problems in
a systematic way, polynomial-time approximation classes are transferred
to logarithmic space. Appropriate reductions are defined and optimiza-
tion problems are presented that are complete for these classes. It is
shown that under the assumption L �= NL some logspace optimization
problems cannot be approximated with a constant ratio; some can be
approximated with a constant ratio, but do not permit a logspace ap-
proximation scheme; and some have a logspace approximation scheme,
but cannot be solved in logarithmic space. A new natural NL-complete
problem is presented that has a logspace approximation scheme.

1 Introduction

In the introduction to Chapter 13 of his book Computational Complexity [9],
Papadimitriou writes: ‘Although all NP-complete problems share the same worst-
case complexity, they have little else in common. When seen from almost any
other perspective, they resume their healthy, confusing diversity. Approximability
is a case in point.’ The aim of the present paper is to show that if we shift our
focus from time to low space complexity, NL-complete problems turn out to be
as diverse as their polynomial-time brethren.

As an example, consider the problem of telling whether the distance of two
vertices in a directed graph is at most d. This problem is NL-complete and
this remains even true if we restrict ourselves to undirected graphs [13] or to
tournaments [8] (which are directed graphs in which for any two vertices u and
v there is an edge from u to v or an edge from v to u). However, when asked
� Supported in part by a postdoc research fellowship grant of the German Academic
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to find a path, we do not know how to do this in logarithmic space for directed
graphs, but Reingold [10] has shown how to do this for undirected graphs and
it is also possible for tournaments [8]. Finally, when asked to construct a path
that is, say, twice as long as the shortest one, we only know how to do this in
logarithmic space for tournaments [8].

lvarez and Jenner [1], see also [5], started the systematic study of logspace
optimization problems by introducing the class OptL, the logspace analogue of
Krentel’s class OptP [7], and identifying complete problems for this class. How-
ever, the study of OptL suffers from the same problem as the study of OptP: In
Krentel’s approach an optimization problem is just a function mapping instances
to optimal solutions. Though appealing because of its formal simplicity, this ap-
proach has the disadvantage that, similarly to decision problems, the functions
hide the solutions we are actually interested in.

In the present paper, the structural research begun by lvarez and Jenner [1]
and the more algorithmic results from [8] are expanded in two directions.

On the structural side, a complexity-theoretic framework for the study of
logspace optimization problems is introduced that parallels the existing frame-
work for studying polynomial-time optimization problems. In this framework,
logspace optimization problems are structured entities consisting of an instance
set, a solution relation, a measure function, and a type. In this framework more
fine-grained results can be stated. For example, problems can be differentiated
according to how well they can be approximated.

On the algorithmic side, a new NL-complete problem is presented that admits
a logspace approximation scheme: the ‘hot potato problem’. For this problem, a
hot potato must be passed around between people for a given number of rounds
(until it has cooled off). Passing the potato from one person to another causes
a certain cost, which depends on the two people involved. The objective is to
minimize the total cost.

This paper is organised as follows. In Section 2 the structural framework is es-
tablished. Logspace optimization classes, including the classes NLO and LO and
different logspace approximation classes in between, are formally defined. Fol-
lowing the class definitions, reductions between polynomial-time approximation
problems are transfered to logarithmic space and closure properties are estab-
lished. Next, it is then shown that different variants of the most valuable vertex
problem (mvv) are complete for the introduced classes under approximation-
preserving reductions. These completeness results also allow us to establish a
class hierarchy under the assumption L 	= NL. In Section 3 different versions of
the NL-complete hot potato problem are presented and it is shown that they
have logspace approximation schemes.

2 A Framework for Logspace Optimization Problems

In this section the framework for the study of logspace optimization problems
is established. We start with a definition block, in which logspace optimization
problems, logspace approximation classes, and reductions between logspace opti-
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mization problems are defined formally. We then show that most of these classes
have fairly natural complete problems. Building on the completeness results we
show that the optimization classes form a proper hierarchy under the assumption
L 	= NL.

2.1 Polynomial-Time and Logspace Optimization Problems

Definition 1 ([2]). An optimization problem is a tuple consisting of an in-
stance set I ⊆ Σ∗, a solution relation S ⊆ I ×Σ∗, a measure function m : S →
N+, and a type t ∈ {min, max}.

For example, the optimization problem max-clique is defined as follows: its
instance set is the set of (the codes of) all undirected graphs, the solution relation
relates graphs to cliques within these graphs, the measure function maps pairs
consisting of a graph and a clique to the size of the clique, and the type is max.
The next definition fixes basic notations and terminology.

Definition 2. Let P = (I, S, m, t) be an optimization problem. Let x ∈ I.

1. Let S(x) := {y ∈ Σ∗ | (x, y) ∈ S} denote the solutions for x.
2. For minimization problems let m∗(x) := min{m(x, y) | y ∈ S(x)} de-

note the optimal measure for x. For maximization problems let m∗(x) :=
max{m(x, y) | y ∈ S(x)}. Let m∗(x) be undefined if S(x) = ∅.

3. Let S∗(x) := {y ∈ Σ∗ | m(x, y) = m∗(x)} denote the set of optimal solutions
for x.

4. Let R(x, y) := max{m(x, y)/m∗(x), m∗(x)/m(x, y)} denote the performance
ratio of the solution y.

5. The existence problem P∃sol is the set {x | S(x) 	= ∅}.
6. The budget problems are the sets Popt< := {(x, z) | ∃y. m(x, y) < z} and

Popt> := {(x, z) | ∃y. m(x, y) > z}.
7. A function f : Σ∗ → Σ∗ produces solutions for P if for every x ∈ P∃sol we

have f(x) ∈ S(x). It produces optimal solutions if for every x ∈ P∃sol we
have f(x) ∈ S∗(x).

By restricting the computational complexity of the set I, the relation S,
and the function m, different optimization classes can be defined. The two most
widely-studied ones are PO and NPO. For optimization problems (I, S, m, t) in
NPO, the set I must be decidable in polynomial time, S must also be decidable
in polynomial time and furthermore polynomially length-bounded, and m must
be computable in polynomial time. For a problem in PO there must furthermore
exist a function in FP that computes optimal solutions for it.

Let us now transfer these definitions to logarithmic space.

Definition 3. An optimization problem (I, S, m, t) in the class NLO if

1. I is decidable in logarithmic space,
2. S is decidable in logarithmic space via a machine MS that reads the alleged

solution in a one-way fashion and S is polynomially length-bounded, and
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3. m is computable in logarithmic space via a machine Mm that reads the so-
lution and writes the output in a one-way fashion.

A problem in NLO is furthermore in LO if there exists a function in FL that
produces optimal solutions for it.

The main technical peculiarity of the definition of NLO is the one-way access
to the solution tape. This restriction is necessary to ensure that a nondeter-
ministic logspace machine can ‘guess’ such a solution, see the following lemma,
whose straightforward proof can be found in the full version of this paper [12].
The below theorem follows directly from the definitions and the lemma.

Lemma 4. Let (I, S, m, t) ∈ NLO. Then there exists a nondeterministic log-
space machine M with at most two nondeterministic choices per state such that
for every instance x ∈ I the following holds: If y ∈ S(x), then y, regarded as a
bitstring, is a string of nondeterministic choices that makes M accept and output
m(x, y) on that path. If y /∈ S(x), then y is a string of nondeterministic choices
that make M reject. All outputs m(x, y) of M for an instance x on accepting
paths y have the same length.

Theorem 5. If P ∈ NLO, then P∃sol, Popt<, Popt> ∈ NL. If P ∈ LO, then
P∃sol, Popt<, Popt> ∈ L.

Many optimization problems have the special property that the measure of
any solution is polynomially bounded in the length of the instance. For instance,
max-clique has this property since the size of the largest clique in a graph is
bounded by the number of vertices of the graph. The notation Cpb is commonly
used to denote the restriction of a class C of optimization problems to those
problems (I, S, m, t) for which there exists a polynomial p with m(x, y) ≤ p(|x|)
for all (x, y) ∈ S.

Snuggled between NLOpb and NLO, there is an interesting intermediate class
NLOdo that does not have a counter-part in the polynomial-time setting. The
subscript ‘do’ stands for deterministic output.

Definition 6. Let P = (I, S, m, t) ∈ NLO. Then P ∈ NLOdo if the machine Mm

that computes m has deterministic output. This means that Mm writes the first
output bit only after the one-way tape containing the alleged solution has been
read completely.

As pointed out in [1], for machines that produce deterministic output, the
output depends only on the last configuration reached before the first output bit
is produced. Thus, such machines can only produce polynomially many different
outputs, which shows NLOpb � NLOdo � NLO. These inclusions are strict due
to entirely ‘syntactic reasons’, no deep complexity-theoretic results are involved.

2.2 Logspace Approximation Classes

We next define logspace approximation classes as analogues of the corresponding
polynomial-time approximation classes. All of the classes are subclasses of NLO

by definition, just as, say, APX is a subclass of NPO by definition.
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Definition 7. Let P be an optimization problem and let r : N → Q be a function.
A function f : I → Σ∗ is an r-approximator for P if it produces solutions for P
and R

(
x, f(x)

)
≤ r(|x|) for all x ∈ P∃sol.

Definition 8. Let P be an optimization problem. A function f : I ×N → Σ∗ is
an approximation scheme for P if for all x ∈ P∃sol and all positive integers k we
have f(x, k) ∈ S(x) and R

(
x, f(x, k)

)
≤ 1 + 1/k.

Definition 9. Let P ∈ NLO.

1. P ∈ exp-ApxLO if there exists a 2nO(1)
-approximator in FL for P .

2. P ∈ poly-ApxLO if there exists an nO(1)-approximator in FL for P .
3. P ∈ ApxLO if there exists a c-approximator in FL for P for some constant c.
4. P ∈ LAS if there exists an approximation scheme f for P such that f(., k) ∈

FL for all k.
5. P ∈ FLAS if there exists an approximation scheme for P that can be com-

puted in space O
(
log k log |x|

)
.

The approximation schemes for problems in FLAS are the best schemes we
can reasonably hope for; at least for problems in NLOpb whose budget problems
are NL-complete. Suppose we had an approximation scheme for such a problem
that needs only space O(log1−ε k log n) where n = |x| is the length of the input x.
Then we could decide the budget problem in space O(log2−ε n) since if the
optimal solution is known to be an element of {1, . . . , nd}, then a solution of ratio
less than 1+1/nd is actually optimal. This would show NL ⊆ DSPACE(log2−ε n),
which would improve Savitch’s Theorem and be a major breakthrough.

Approximating means ‘coming up with good solutions efficiently’. In par-
ticular, for approximable problems we are able to come up with some solution
efficiently. Thus, for every P ∈ exp-ApxLO we have P∃sol ∈ L.

2.3 Reductions Between Optimization Problems

In this paper we will consider only one notion of reducibility between optimiza-
tion problems: E-reductions, where the ‘E’ stands for error preserving. They
were introduced in [6] for the polynomial-time case. They are slightly more re-
strictive than the popular AP-reductions introduced in [3]: where an E-reduction
must map an optimal solution to an optimal one, this is not necessary for AP-
reductions. Since E-reduction is a stronger reduction than AP-reduction, all
completeness results established in this paper for E-reductions also hold for AP-
reductions. For the definition of the logspace versions of the reductions one can
simply take their standard definitions and replace ‘polynomial time’ by ‘loga-
rithmic space’ everywhere. Unlike the definition of NLO, no special restrictions
(like one-way tape access) are necessary.

Definition 10. Let P and P ′ be optimization problems. We write P ≤log
E P ′ if

there exists a triple (f, g,α), where f and g are logspace-computable functions and
α ∈ Q, such that for all x ∈ P∃sol we have f(x) ∈ P ′

∃sol and for all y ∈ S′(f(x)
)

we have g(x, y) ∈ S(x) and R
(
x, g(x, y)

)
− 1 ≤ α

(
R′(f(x), y

)
− 1
)
.
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All classes introduced in this paper contain both minimization and maximiza-
tion problems. As is well-recognized in polynomial-time approximation theory,
one must be careful when claiming that a problem is complete for classes con-
taining both minimization and maximization problems, since reductions between
them are seldomly straight-forward. This is especially true if, as in this paper,
one is also interested in approximation-preserving reductions. For subclasses of
NLO such reductions are possible, but it is not clear whether NLO itself has a
complete problem with respect to approximation-preserving reductions.

2.4 Closure Properties of Logspace Optimization Classes

None of the introduced classes is closed under ≤log
E -reductions, but the reason

for this is a bit annoying: Any optimization problem (logspace or not) for which
we can produce optimal solution in logarithmic space is ≤log

E -reducible to all
reasonable problems in LOpb. However, there exist problems outside even NPO

for which we can produce optimal solutions in logspace: their solution relation is
made very hard (for example NEXP-complete), but we always make the optimal
solution trivial.

The following theorems show that if we restrict ourselves to problems in NLO,
the introduced classes enjoy the expected closure properties. Let Rlog

E (C) := {P |
P ≤log

E P ′ ∈ C} denote the reduction closure of C.

Theorem 11. We have Rlog
E (C) ∩ NLO = C for C ∈ {LO, FLAS, LAS, ApxLO,

poly-ApxLO, exp-ApxLO}.

Proof. Let P ≤log
E P ′ ∈ C via (f, g,α) and let P ∈ NLO. Let P ′ ∈ C via

a approximator h, an approximation scheme h, or a function h that produces
optimal solutions. Then P ∈ C via a function e with e(x) := g

(
x, h
(
f(x)
))

.
The properties of E-reductions ensure that e is a sufficiently good approximator,
a sufficiently good approximation scheme, or a function that produces optimal
solutions. ��

2.5 Problems Complete for Logspace Optimization Classes

In this section we prove that the introduced classes have≤log
E -complete problems.

Many natural optimization problems like the shortest path problem for directed
graphs are examples of such complete problems, but for initial completeness
results it is technically easier to use a slightly more artificial problem instead:
This problems asks us to find a vertex in a graph that is reachable from a start
vertex and that is ‘as valuable as possible’ (all results on these problems are
also true if we search for the least valuable vertex). Variants of this problem are
complete for different logspace optimization and approximation classes. Due to
lack of space, proofs are given in the full version of this paper [12].

Before we proceed, let us fix some graph-theoretic terminology. A directed
graph is a pair (V,E) with E ⊆ V × V . An undirected graph is a directed graph
with a symmetric edge relation. A walk of length � is a sequence (v1, . . . , v�+1) of
vertices such that (vi, vi+1) ∈ E for all i ∈ {1, . . . , �}, and for simplicity also � ≤
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|V |. A walk is a path if all its vertices are distinct. The distance function dG : V ×
V → N ∪ {∞} maps each pair (s, t) to the length of the shortest path between
them (which is the same as the length of the shortest walk between them).

Problem 12. partial-most-valuable-vertex (partial-mvv)
Instances. Directed graph G = (V,E), a vertex s ∈ V , and a partial weight

function w : V → N+.
Solutions. Walk starting at s in G that ends at some vertex t for which w(t) is

defined.
Measure. Weight w(t) of the vertex t at which the walk ends.

Theorem 13.
1. partial-mvv is ≤log

E -complete for NLOdo.
2. partial-mvv ∈ exp-ApxLO iff partial-mvv ∈ LO iff L = NL.
3. partial-mvv∃sol and partial-mvvopt> are ≤log

m -complete for NL.

We can restrict the problem in several ways. First, we can allow only small
weights, that is, weights taken from the set {1, . . . , n}. The resulting problem,
called partial-mvv-pb, has the same properties as the unrestricted version
except that it is ≤log

E -complete for NLOpb instead of NLOdo. Second, we can
require the weight function to be a total function, which yields the problem
mvv, whose properties are stated in Theorem 14. Third, we can fix a rational
r > 1 and furthermore require that the ratio of the most valuable vertex (in the
whole graph, reachable or not) to the least valuable vertex is at most r. The
properties of this problem, denoted mvv-ratio-r, are stated in Theorem 15.

Theorem 14.
1. mvv is ≤log

E -complete for exp-ApxLOdo.
2. mvv ∈ poly-ApxLO iff mvv ∈ LO iff L = NL.
3. mvv∃sol ∈ AC0 and mvvopt> is ≤log

m -complete for NL.

Theorem 15.
1. mvv-ratio-r is ≤log

E -complete for ApxLOdo for all r > 1.
2. mvv-ratio-r ∈ LAS for any r > 1, iff L = NL.
3. mvv-ratio-r∃sol ∈ L and mvv-ratio-ropt> is ≤log

m -complete for NL for all
r > 1.

2.6 Hierarchies of Logspace Optimization Classes

We can now (nearly) establish a strict hierarchy among logspace approximation
classes, assuming L 	= NL. The problems studied in the previous section all had
the property that they are in one of the classes named in the following theorem,
but not in the one before, unless L = NL. For example, Theorem 13 tells us that
partial-mvv ∈ NLOpb, but also that it is not an element of exp-ApxLO, or of
exp-ApxLOpb for that matter, unless L = NL. The ‘(nearly)’ refers to the fact
that we are still missing a problem that separates FLAS from LO. This will be
remedied in the Section 3.
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Theorem 16. Suppose L 	= NL. Then

LO � FLAS ⊆ LAS � ApxLO � poly-ApxLO � exp-ApxLO � NLO

LOdo � FLASdo ⊆ LASdo � ApxLOdo � poly-ApxLOdo � exp-ApxLOdo � NLOdo

LOpb � FLASpb ⊆ LASpb � ApxLOpb � poly-ApxLOpb = exp-ApxLOpb � NLOpb

We can also ask the inverse question: Do these hierarchies collapse if NL = L?
In the polynomial-time setting it is well-known that P = NP iff PO = NPO.
For logarithmic space, the following theorem holds, see the full version of the
paper [12] for a proof.

Theorem 17. NLOdo ⊆ LO iff NL = L.

Note that the implication ‘if NL = L, then NLO = LO’ is not known to hold.
For problems in NLO−NLOdo it is not clear how we can construct a solution, let
alone an optimal one, in logarithmic space even with access to an NL-complete
oracle, see [5] for a detailed discussion of the involved difficulties.

3 The Hot Potato Problem

In this section we study an optimization problem whose budget problem is NL-
complete, but that admits a fully logspace approximation scheme. The only other
know example of such a problem is the reachability problem for tournaments [8].

A hot potato (or, more realistically, a piece of news, a task, a packet, a to-
ken) must be passed around among a group of people (organizations, processors,
machines) for � rounds. After � rounds it will have cooled off (become invalid,
outdated, finished). The ‘value’ (or ‘cost’) of getting rid of the potato by passing
it to another person is given by a matrix and the objective is to maximize (or
minimize) the total value (cost) of the path taken by the potato. The potato is
allowed to go round in cycles and may even be held by a person for any num-
ber of rounds (though, typically, this will not be attractive value-wise). Let us
concentrate on the maximization version (the same results also hold for the min-
imization version). The hot potato problem has a fully logspace approximation
scheme, but its budget problem is NL-complete.

Problem 18. maximum-hot-potato-problem (max-hpp)
Instances. An n × n matrix A with entries drawn from {1, . . . , n}, a number

� ≤ n, and a start index i1.
Solutions. Index sequence (i1, . . . , i�).
Measure. Maximize sA(i1, . . . , i�) :=

∑�−1
p=1 Aip,ip+1 .

Theorem 19.
1. Optimal solutions for max-hpp can be computed in space O(log � log n).
2. max-hpp ∈ FLAS.
3. max-hpp ∈ LO iff L = NL.
4. max-hpp∃sol ∈ AC0, max-hppopt> is ≤log

m -complete for NL.
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Proof. 1. We use the divide-and-conquer technique that lies at the heart of Sav-
itch’s theorem [11]. We define a two recursive procedures reachable(u, v, �, c)
and construct(u, v, �, c). The first returns true if there exists a sequence σ =
(u, j1, . . . , j�−1, v) with sA(σ) ≥ c. Note that the length of this sequence is �+ 1.
To check whether the sequence exists, the algorithm tries to find a z ∈ V and a
c′ ∈ {1, . . . , c−1} such that both reachable

(
u, z, c′, ��/2�

)
and reachable

(
z, v, c−

c′, � − ��/2�
)

hold. This check can be done recursively and, thus, in space
O(log � logn) if c is polynomial in n. The second algorithm returns the desired
sequence, provided it exists. It, too, recursively first constructs the first part of
the list and then the second part.

The algorithm that produces optimal solutions works as follows: For each
c ∈ {1, . . . , n2} it tries to find an index i such that reachable(i1, i, c, �− 1) holds.
For the largest c for which this is the case, it calls construct(i1, i, c, �− 1) for the
corresponding i.

2. The logspace approximation scheme for max-hpp works as follows: Let
A, �, and r = 1 + 1/k be given. Let σ∗ = (i1, . . . , i�) denote a sequence that
maximizes sA(σ∗). Our aim is to construct a sequence σ of length � such that
sA(σ∗)/ sA(σ) ≤ r = 1 + 1/k.

For ‘small’ values � ≤ 8k2 + 10k + 4 we perform a brute-force search to
find the sequence σ∗. By the first claim, this brute-force search takes space
O(log k2 log n) = O(log k log n).

For ‘large’ values � > 8k2 + 10k + 4 we find a sequence of 2k + 1 indices
(j1, . . . , j2k+1) such that c := sA(j1, . . . , j2k+1) is maximal. That is, we find a
short walk of maximal value in the matrix. By iterating over all possible start
points, it can be found in space O(log k log n). We output the following sequence:

t := (i1, . . . , i1︸ ︷︷ ︸
q times

, j1, j2, . . . , j2k+1, j1, j2, . . . , j2k+1, . . . , j1, . . . , j2k+1),

where q = 1 + (�− 1) mod (2k + 1). Then sA(σ) ≥ c
⌊
(�− 1)/(2k + 1)

⌋
.

Now consider the sequence σ∗ = (i1, . . . , i�). For each index p ∈ {1, . . . , �−2k}
we have sA(ip, ip+1, . . . , ip+2k) ≤ c. To see this note that if this were not the case,
then we would have sA(ip, ip+1, . . . , ip+2k) > c, which contradicts the optimality
of the sequence (j1, . . . , j2k+1). This shows sA(σ∗) ≤ c

⌈
�/2k
⌉
.

We can now bound the performance ratio of the sequence σ as follows:

sA(σ∗)
sA(σ)

≤
c
⌈
�/2k
⌉

c
⌊
(�− 1)/(2k + 1)

⌋ ≤ �/2k + 1
(�− 1)/(2k + 1)− 1

=
(2k + 1)(� + 2k)
2k(�− 2− 2k)

≤ (2k + 1)(8k2 + 10k + 4 + 2k)
2k(8k2 + 10k + 4− 2− 2k)

=
(k + 1)(4k2 + 4k + 1)

k(4k2 + 4k + 1)
= 1 +

1
k
.

3. This follows easily from the next claim.
4. For the completeness of the budget problem, we reduce the canonically

NL-complete graph accessibility problem gap to max-hppopt>. Let (G, s, t) be
an instance for gap. Let n := |V |. The reduction maps this instance to the query
‘Is the optimal measure for the instance (A, n + 1, 1) for max-hpp at least 2n?’
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Here, A is a matrix (whose construction is described below) that has n2 +n rows
and columns.

For the construction of the matrix A we construct a directed graph G′ with
V ′ = {1, . . . , n + 1} × V as follows. For rows r1, r2 < n + 1, we insert edges as
follows: there is an edge from (r1, v1) to (r2, v2) iff r2 = r1 + 1 and (v1, v2) ∈
E ∪ {(v, v) | v ∈ V }. For the edges between row n and n + 1 there is a special
rule: there is just one edge from (n, t) to (n + 1, t). Note that this construction
ensures that any walk in G′ of length n must end at (n + 1, t).

Let us enumerate the elements of V ′ via a bijection ν : V ′ → {1, . . . , |V ′|}
with ν(1, s) = 1. Construct the |V ′|×|V ′| matrix A as follows: let Aν(v′

1),ν(v′
2) = 2

if (v′1, v′2) ∈ E′ and let Aν(v′
1),ν(v′

2) = 1 if (v′1, v′2) /∈ E′. Thus, A is the adjacency
matrix of the graph G′, only with the modification that all entries are increased
by 1.

The matrix A has the following property: there is a sequence σ = (j1, . . . ,
jn+1) starting at j1 = 1 with sA(σ) ≥ 2n iff there is a path from s to t in G
of length at most n − 1. To see this, first assume that such a sequence exists.
Since all matrix entries are at most 2 and since the sequence has length n + 1,
we have sA(σ) = 2n. Thus, we have Ajp,jp+1 = 2 for all p ∈ {1, . . . , n}. This
means that the sequence (v′1, . . . , v′n+1) with ν(v′p) = jp is a walk in G′. Since
the length of this walk is n, as pointed out above, it must end at (n +1, t). This
in turn means that there is a walk from s to t in G of length at most n− 1. It
can be obtained by removing the first components from each v′p and omitting
consecutive duplicates and cycles. Second, let us assume that there exists a path
from s to t in G of length at most n− 1. Then there exists a path (v′1, . . . , v′n+1)
from (1, s) to (n + 1, t) in G′. Let jp := ν(v′p). Then for each p ∈ {1, . . . , n} we
have Ajp,jp+1 = 2. This in turn yields sA(j1, . . . , jn+1) = 2n. ��

The above proof breaks down for the ‘undirected’ version of max-hpp, where
the matrix is required to be symmetric: We cannot simply take the symmetric
closure of the graph G′ and then define the matrix A as above. An optimal
sequence would then consist of constantly going back and forth along an edge
of weight 2. However, the symmetric version turns out to be as difficult as the
general problem.

Problem 20. maximum-symmetric-hot-potato-problem
Instances. A symmetric n× n matrix A with entries drawn from {1, . . . , n}, a

number � ≤ n, and a start index i1.
Solutions. An index sequence (i1, . . . , i�).
Goal. Maximize sA(i1, . . . , i�) :=

∑�−1
p=1 Aip,ip+1 .

Theorem 21.
1. max-symmetric-hpp ∈ FLAS.
2. max-symmetric-hpp ∈ LO iff L = NL.
3. max-symmetric-hpp∃sol ∈ AC0, max-symmetric-hppopt> is ≤log

m -com-
plete for NL.

Proof. The ‘new’ part of this theorem compared to Theorem 19 is the claim
that the problem max-symmetric-hppopt> is also ≤log

m -complete for NL. We
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construct the graph G′ as the symmetric closure of the graph G′ constructed in
Theorem 19, but define the matrix A differently: For r1, r2 < n + 1, if there is
an edge v′1 := (r1, v1) to v′2 := (r2, v2) in G′, let Aν(v′

1),ν(v′
2) = n. For the edge

between v′1 := (n, t) and v′2 := (n+1, t) let Aν(v′
1),ν(v′

2) = n+1 and symmetrically
Aν(v′

2),ν(v′
1) = n + 1. All other entries of A are 1.

This time, there is a path from s to t in G iff there is a sequence σ =
(j1, . . . , jn+1) staring at j1 = 1 such that sA(σ) ≥ (n − 1)n + (n + 1) = n2 + 1.
To see this, first let us assume that such a sequence exists. Since it has length
n + 1, we must have Ajp,jp+1 ≥ n for all p ∈ {1, . . . , n} and we must have
Ajp,jp+1 ≥ n + 1 at least once. This means that the sequence v′1, . . . , v′n+1
with ν(v′p) = jp is a walk in G′ (‘standing still’ from time to time) that visits
the edge between (n, t) and (n + 1, t). Thus, there is a path from s to t in G.
Second, let us assume that there exists a path from s to t in G. Then for a
path (v′1, . . . , v

′
n+1) from (1, s) to (n + 1, t) in G′ and for jp := ν(v′p) we have

sA(j1, . . . , jn+1) = (n− 1)n + (n + 1) = n2 + 1. ��

In the proof of Theorem 19 the matrix has just two different entries (1 and 2),
in the proof of Theorem 21 there are three (1, n, and n+1). We may ask whether
the construction of Theorem 21 can be modified to also use only two different
entries. However, this is presumably not possible: Suppose a and b with a ≤ b are
these entries. If there exists an index i with A1,i = b, then an optimal sequence is
given by (1, i, 1, i, . . . ). If there is no such index and if Ai,j = b, then an optimal
sequence is given by (1, i, j, i, j, . . . ). This proves the following theorem:

Theorem 22.

1. max-hpp-2-entriesopt> is ≤log
m -complete for NL.

2. max-symmetric-hpp-3-entriesopt> is ≤log
m -complete for NL.

3. max-symmetric-hpp-2-entries ∈ LO.

4 Conclusion

Different logspace optimization problems can have different approximation prop-
erties, even though their underlying budget or existence problems have the same
complexity. Research on logspace problems has been preoccupied with existence
problems. The results of this paper suggest that we should broaden our perspec-
tive.

We have seen that natural logspace optimization problems can have different
approximation properties. Most logspace optimization problems are complete for
an appropriate logspace approximation class or for NLO. Under the assumption
L 	= NL, we have ApxLO � NLO as demonstrated by the problem partial-mvv;
we have LAS � ApxLO as demonstrated by mvv-ratio-2; and we have LO �
FLAS as demonstrated by max-hpp.

The framework of this paper can be applied to many problems that have
already been studied in the literature. For example, Reingold [10] gives a logspace
algorithm for the reachability problem in undirected graphs and the algorithm
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can be used to construct a path between any two vertices. We may now ask
whether anything can be said about how long this path will be, relative to the
shortest path. This path will not always be the shortest one unless NL = L, but it
might well be possible that the shortest path can be approximated in logarithmic
space. Another example is the reachability algorithm of Jakoby, Lískiewicz, and
Reischuk [4] for series-parallel graphs. Their algorithm can be used to show
that the reachability problem for series-parallel graphs is in poly-ApxLO, but it
is not clear whether their algorithm finds a shortest path nor is it clear how
difficult finding a shortest path is. As a final example, consider the problem of
telling whether an undirected graph has a cycle. This problem can be solved in
logarithmic space, but how difficult is it to compute the size of the smallest cycle
in the graph (also known as the girth)?
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Abstract. Block sorting is used in connection with optical character
recognition (OCR). Recent work has focused on finding good strategies
which perform well in practice. Block sorting is NP-hard and all of
the previously known heuristics lack proof of any approximation ratio.
We present here an approximation algorithm for the block sorting prob-
lem with approximation ratio of 2 and run time O(n2). The approxima-
tion algorithm is based on finding an optimal sequence of absolute block
deletions.

Keywords: Design and analysis of algorithms; approximation algori-
thms; block sorting; transposition sorting; optical character recognition.

1 Introduction

Define a permutation of length n to be a list x = (x1, . . . , xn) consisting of the in-
tegers {1, . . . , n} where each number occurs exactly once. For any 1 ≤ i ≤ j ≤ n
we denote the sublist of x that starts at position i and ends with position j
by xi...j . If j < i, let xi...j be the empty list. We call a nonempty sublist of x
consisting of consecutive integers, such as (3, 4, 5) in (6, 3, 4, 5, 2, 1), a block of x.

The block sorting problem is to find a minimal length sequence of block move
steps , or simply block moves for short, which sorts an initial permutation x,
where a block move consists of moving one block of a list to a different position
in the list. For example, the list (4, 2, 5, 1, 3) can be block sorted in two moves:
first move (2) to obtain (4, 5, 1, 2, 3), then move (4, 5) to obtain (1, 2, 3, 4, 5).

Sorting problems under various operations have been studied extensively. We
mention work on sorting with prefix reversals [4,5,9], transpositions [1,2], and
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M. Lískiewicz and R. Reischuk (Eds.): FCT 2005, LNCS 3623, pp. 115–124, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



116 W.W. Bein et al.

Table 1. How to block sort “How ? they did it do”

A F C B E D How ? they did it do

A C B E F D move F How they did it ? do

A C B E D and combine How they did –E– do

A B C E D move C How did they –E– do

A E D and combine ——–A——– –E– do

A D E move D ——–A——– do –E–

A and combine —————A————–

block moves [7,8,12,12]. In particular, block sorting is not the same as transpo-
sition sorting, and thus the 1.5-approximation to optimality obtained by Bafna
and Pevzner [1,2] does not imply a 1.5-approximation to optimal block sorting.
Furthermore, optimal block sorting is known to be NP-hard [3], while the ques-
tion of NP-hardness for optimal transposition sorting is currently open. The two
problems are related in the sense that every sequence of block sorting moves de-
fines a sequence of transpositions (but not vice-versa). Thus, the study of block
sorting might give further insights into transposition sorting.

Block sorting is motivated by applications in optical character recognition;
see [6,10,11]. Text regions, referred to as zones are selected by drawing rectan-
gles (or piecewise rectangles, polygons) around them. Here the order of zones is
significant, but in practice the output generated by a zoning procedure may be
different from the correct text. A situation prone to such misidentification might
arise from multi-column documents, for example, as part of “de-columnizing”
such a multi-column document. Zones which are not in the correct order must
be further processed (sometimes by a human editor). In the OCR community
the number of editing operations, such as different kinds of deletions, inser-
tions and moves is used to define a zoning metric. We refer the reader to the
work in [6,10,11] for details, but mention here that the block sorting problem
plays a significant part in defining the zoning metric: moving the pieces to the
correct order corresponds to a block sorting problem. To evaluate the perfor-
mance of a given zoning procedure it is of interest to find the minimum num-
ber of steps needed to obtain the correct string from the zones generated by
the zoning procedure. An example motivating such an application is given in
Table 1.

The research history of the block sorting is as follows: initially, Latifi et al. [6]
have performed various experiments to test a number of strategies that seem to
perform well in practice; however, no ratio better than three has been proved
for any of these schemes. (The approximation ratio of three arises trivially: if
the list is not sorted, simply pick an arbitrary maximal block and move it to a
position where it can be combined into a larger block. The number of maximal
blocks can be decreased by at most three for any block sorting step, while the
trivial algorithm decreases that number by at least one at each step, and hence
has approximation ratio three.) As a next step, [3] Bein et al. have shown that
the block sorting problem is NP-hard [3]. In the same paper they show how to
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implement the strategies of [6] in linear time, which is significant in practice.
However, no approximation ratio (other than the trivial) is given.

The first approximation algorithm with a non-trivial approximation ratio
for the block sorting problem is given in [12,13] by Mahajan et al. They give
an O(n3)-time block sorting algorithm with approximation ratio 2. Their algo-
rithm first solves a related problem, the block merging problem, by constructing
a crossing graph in O(n3) and then deriving a block merging sequence. (Even
though not explicitly stated in their paper, it appears that the derivation of the
actual sequence does not increase the time complexity of the overall procedure
beyond O(n3).) The solution to the block merging problem is then used to get
a 2-approximation for block sorting.

In this paper, we improve that result by giving a quadratic time block sorting
algorithm with approximation ratio 2. Central to our method is a problem,
closely related to the block sorting problem, but which is in the polynomial class,
the abs-block deletion problem. We note that the abs-block deletion problem is
not equivalent to the block merging problem; see our final remarks in Section 4.
We call the deletion of a block an absolute block deletion, or abs-block deletion
for short. The abs-block deletion problem is the problem of finding the minimum
length sequence of abs-block deletions to transform a list of distinct integers into
a monotone increasing list. The complete abs-block deletion problem is the same,
except that the final list must be empty.

As we will show in the next section, the abs-block deletion problem can be
solved in O(n2) time. In Section 3 we show, given a permutation x, that (a) if
there is an abs-block deletion sequence of length m for x, there is a block sorting
sequence of length m for x and that (b) if there is a block sorting sequence of
length m for x, then there is an abs-block deletion sequence of length at most
2m− 1 for x. From this we derive the 2-approximation algorithm.

2 Finding Optimal Absolute Block Deletion Sequences in
Quadratic Time

2.1 Preliminaries

We note the difference between absolute block deletions and relative block dele-
tions. We make both concepts precise here.

Given a list x of distinct integers and a sublist y of x, we say y is a relative
block (rel-block for short) of x if the following conditions hold:

– y is monotone increasing.
– If r < u < s are integers such that r and s are in y, then either u is in y or

u is not in x.

Given x, we define a relative block deletion (rel-block deletion, for short) to be
the deletion of a relative block from x.

We define a relative block deletion sequence for x to be a sequence of rel-block
deletions, starting with x and ending with a monotone sequence. From [3] we
have the following result.
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Fig. 1. Block Sorting Moves (left) and corresponding Relative Block Deletions (right)

Theorem 2.1. Let x be a permutation. Then the minimum number of block
sorting moves needed to sort x is the same as the minimum length of a rel-block
deletion sequence for x.

(Figure 1 shows a sequence of block moves with a corresponding sequence of
relative block deletions.)

We say that a list y is a subsequence of x if y is obtained from x by deleting
any number of elements. For example, (2, 3) is a subsequence of (2, 4, 3, 1), but
not a sublist. A subsequence of x is uniquely characterized by its set of items.
By a slight abuse of notation, we shall sometimes identify a subsequence with
the set of its items.

Define the closure of a subsequence of x to be the smallest sublist of x which
contains it. For example, the closure of the subsequence (2, 3) of (2, 4, 3, 1) is the
sublist (2, 4, 3). If A and A′ are subsequences of a list x, we say that A and A′

are separated if the closures of A and A′ are disjoint.
An abs-block deletion sequence for a subsequence y of x consists of a sequence

A1, . . . , Am of disjoint non-empty subsequences of y such that y −
⋃m

u=1 Au is
monotone, and each Av is a block of the subsequence y −

⋃
u<v Au. For example,

the minimum length abs-block deletion sequence for the list (1, 4, 2, 5, 3) consists
of two steps. First delete the abs-block (2), obtaining (1, 4, 5, 3), then delete the
abs-block (4, 5), obtaining the sorted list (1, 3). The left part of Figure 3 shows
another example of an abs-block deletion sequence.

A complete abs-block deletion sequence for a subsequence y of x consists of
an abs-block deletion sequence A1, . . . , Am of y such that y −

⋃m
u=1 Au is the

empty list.

2.2 A Dynamic Program for Absolute Block Deletion

We first consider the complete abs-block deletion problem for all sublists of x,
which we solve in quadratic time. Once the O(n2) answers to this problem are
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obtained, the original abs-block deletion problem can be solved in quadratic
time.

For all 1 ≤ i, j ≤ n, let ti,j to be the minimum length of any complete abs-
block deletion sequence for the sublist xi...j . Our algorithm first computes all
ti,j by dynamic programming. Trivially, ti,i = 1, and ti,j = 0 for j < i.

Lemma 2.2. If A1, . . . , Am is an abs-block deletion sequence for a sublist of y
of x, and 1 ≤ u < v ≤ m, then either Au and Av are separated, or Au is a subset
of the closure of Av.

Proof. The closure of Au cannot contain any item of Av, since otherwise Au

could not be deleted before Av. Thus, every item of Av is entirely before Au or
entirely after Au in x. If all items of Av are before Au or all items of Av are after
Au, then Au and Av are separated. If some items of Av are before Au and some
items are after Au, then Au is a subset of the closure of Av.

Lemma 2.3. If A1, . . . , At, At+1, . . . , Am is any abs-block deletion sequence for
a sublist y of x, and if At and At+1 are separated, then At and At+1 may be
transposed, i.e., A1, . . . , At+1, At, . . . , Am is an abs-block deletion sequence for y.

Proof. For any u, let yu = x −
⋃

v<u Av. By definition, At is a block of yt, and
At+1 is a block of yt+1 = yt −At. Since At and At+1 are separated, At+1 is also
a block of yt. Thus, At+1 can be deleted before At.

Lemma 2.4. For any 1 ≤ i ≤ j ≤ n, if there is a complete abs-block deletion se-
quence for xi...j of length m, then there is a complete abs-block deletion sequence
for xi...j of length m such that xi is deleted in the last step.

Proof. Let A1, . . . , Am be a complete abs-block deletion sequence of xi...j . Sup-
pose that xi ∈ At for some t < m. For any v > t, xi cannot be an item of the
closure of Av, hence, by Lemma 2.2, At and Av must be separated. By Lemma
2.3, we can transpose At with Av for each v > t in turn, moving At to the end
of the deletion sequence.

Let z be the inverse permutation of x, i.e., xi = k if and only if zk = i. Note
that z can be computed in O(n) preprocessing time.

Theorem 2.5. Let 1 ≤ i ≤ j ≤ n. Then

ti,j =

⎧⎨⎩min
{

1 + ti+1,j

ti+1,�−1 + t�,j

}
if i < n and i < � ≤ j, where � = zxi+1

1 + ti+1,j otherwise
(1)

Proof. If i = j, the recurrence is trivial, so assume i < j. Let a = xi. We first
prove that the left side of (1) is less than or equal to the right side. If A1, . . . , Au

is a complete abs-block deletion of xi+1...j , then A1, . . . , Au, (i) is a complete
abs-block deletion of xi...j , hence ti,j ≤ 1 + ti+1,j .

If x� = a + 1 for some i < � ≤ j, A1, . . . , Au is a complete abs-block dele-
tion of xi,�−1, and Au+1, . . . , Am is a complete abs-block deletion of x�,j, then
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Fig. 2. The Recurrence for the ti,j Values

A1, . . . , Au, Au+1, . . . , Am−1, Am + {a} is a complete abs-block deletion of xi,j .
Thus, the left side of (1) is less than or equal to the right side.

We now show that the left side of (1) is greater than or equal to the right
side. Let m = ti,j , and let A1, . . . , Am be a minimum length complete abs-
block deletion sequence of xi...j . By Lemma 2.4, we can insist that xi = a is an
item of Am. If Am = (a), then A1, . . . , Am−1 is a complete abs-block deletion
sequence of xi+1...j , which must be optimal by the optimality principle. Thus,
ti+1,j = m−1. Otherwise, Am contains a+1 = x�, where i < � ≤ j. If 1 ≤ t < m,
then At is either completely before or completely after a+1, since a+1 is deleted
after At. By Lemma 2.3, we can permute the indices so that, for some u < m,
At ⊆ xi+1...�−1 if t ≤ u and At ⊆ x�...j for u < t < m. By the optimality
principle, A1, . . . , Au is a minimum length complete abs-block deletion sequence
for xi+1...�−1, while Au+1, . . . , Am−1, Am − {a} is a minimum length complete
abs-block deletion sequence for x�...m Thus, u = ti+1,� and m− u = t�,m. In any
case, the left side of (1) is greater than or equal to the right side.

We now turn to the analysis of the run time of the corresponding dynamic
program. We note the following crucial fact:

Lemma 2.6. If tu,v are already known for all i < u ≤ v ≤ j, then ti,j can be
computed in O(1) time.

Proof. If i ≥ j, the result is trivial. Henceforth, assume that i < j. Let m = ti,j ,
and let At be the subsequence of xi...j that is deleted at step t of the complete
abs-block deletion sequence of xi...j of length m. By Lemma 2.4, we can assume
that xi ∈ Am. If |Am| > 1, � = zxi+1 can be found in O(1) time, since we have
already spent O(n) preprocessing time to compute the array z. The recurrence
thus takes O(1) time to execute for each i, j.
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Corollary 2.7. The values of ti,j for all i, j can be computed in O(n2) time.

We finally note that the optimal complete absolute block deletion sequence can
be recovered by keeping appropriate pointers as the ti,j are computed.

We now show how to obtain a solution to the abs-block deletion problem for
x in O(n2)-time. Define a weighted acyclic directed graph G with one node for
each i ∈ {0, . . .n + 1}. There is an edge of G from i to j if and only if i < j and
xi < xj , and the weight of that edge is ti+1,j−1. If there is an abs-block deletion
sequence of x of length m, there must be a path from 0 to n+1 in G of weight m,
and vice-versa. Using standard dynamic programming, a minimum weight path
from 0 to n + 1 can be found in O(n2) time. Let 0 = i0 < i1 < · · · < i� = n + 1
be such a minimum weight path, and let m =

∑�
u=1 tiu−1+1,iu−1 be the weight

of that minimum path. Since every deletion is a block deletion, the entire list
can be deleted to a monotone list in m block deletions. Thus we have:

Theorem 2.8. The abs-block deletion problem can be solved in time O(n2).

3 Absolute Block Deletion and Block Sorting

We now derive an approximation algorithm “Block2” for the block sorting
problem. We say that an algorithm A has approximation ratio C if, for any
permutation x of {1, . . . , n}, A finds a block sorting of x of length at most
C · p+ O(1), where p is the minimum number of block sorting moves needed to
sort x. Given a permutation x, Block2 performs the following steps:

1. Compute a minimum length abs-block deletion sequence of x. Let A1, . . . , Am

be the blocks that are deleted in this sequence. For each 1 ≤ t ≤ m, let at

be the first item of At.
2. Let x0 be the augmentation of x, i.e., x0

0 = 0 and x0
n+1 = n + 1, and x0

i = xi

for 1 ≤ i ≤ n.
3. Let M = {0, 1, . . . , n, n + 1}−

⋃m
t=1 At, the monotone increasing subsequence

consisting of the items of x0 that remain after those deletions. Note that
0, n + 1 ∈ M .

4. Loop: For each t from 1 to m, do the following:
(a) Let Bt be the maximal block of xt−1 which contains at.
(b) If at is not the first item of Bt, let xt = xt−1. Otherwise, let xt be

obtained by deleting Bt from xt−1 and reinserting it just after at − 1.

Figure 3 gives an example which illustrates how block sorting moves are
obtained from an abs-block deletion sequence. Elements in M are underlined in
the figure.

Clearly, Block2 uses at most m block moves. Our result then follows from
the lemma below.
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Fig. 3. Obtaining Block Sorting Moves from Abs-Block Deletions

Lemma 3.1. The list xm is sorted.

Proof. Assume that xm is not sorted. Define a jump of xt to be an item xt
i = a

such that xt
i−1 	= a − 1. We say that a jump xt

i = a is an inversion of xt if
xt

i−1 > a. Note that if a is a jump of xt, it is a jump of xu for all u < t, since no
iteration of the loop of Block2 creates a new jump.

We first claim that, if a is any jump of xm, then a ∈ M . If a ∈ At, then a is
not a jump of xt, hence not a jump of xm. This proves the claim.

If xm is not sorted, then xm must have an inversion xm
i = a. By the claim,

a ∈ M . Let b be the smallest item in the maximal block B of xm that contains
xm

i−1. We know that b > a, since xm
i−1 > a, B does not contain a, and B contains

all integers between b and xm
i−1. By the claim, b ∈ M . But b is before a in xm,

and hence in M , since the items of M are never moved, and M is increasing:
contradiction. Thus xm is sorted.

We now show that Block2 gives a 2-approximation for the block sorting
problem.

Lemma 3.2. If there is a block sorting for a permutation x which has m steps,
then there is an abs-block deletion sequence for x of length at most 2m− 1.

Proof. Suppose we are given a block sorting sequence of x of length m. Let Bt

be the block that is moved at the tth step. Let M be the monotone increasing
subsequence of x consisting of all items of x which are never moved. In the
construction below, we think of each Bt as a set of integers. Let B be the forest
whose nodes are B1, . . . , Bm, where Bt is in the subtree rooted at Bu if and only
if Bt ⊆ Bu.

We now place one credit on each root of B and two credits on each Bt which
is not a root of B. Thus, we place at most 2m− 1 credits. Each Bt which is not
a root then passes one credit up to its parent.

We claim that each Bt has enough credits to pay for its deletion in an abs-
block deletion sequence for x, where each abs-block deletion takes one credit.

Suppose we have deleted B1, . . . , Bt−1. Then Bt may have been partially
deleted. The remaining items form a rel-block of the remaining list, but not
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necessarily an abs-block. However, the number of “holes” in Bt cannot exceed
the number of children of Bt in the forest B. That is, if Bt has r children, the
undeleted items of Bt form the disjoint union of at most r + 1 intervals, and are
thus the items of at most r + 1 blocks in x. To delete these blocks, we use the
r + 1 credits on Bt. After all block deletions, the remaining list is M , which is
sorted.

As an immediate corollary of Lemma 3.2, we have

Theorem 3.3. Algorithm Block2 has an approximation ratio of 2.

Regarding the time complexity of Block2 we have:

Theorem 3.4. The time complexity of Block2 is O(n2).

Proof. It takes O(n2) time to find a minimal abs-block deletion sequence. The
remaining parts of the algorithm, such as additional steps to keep track of in-
termediate results, take O(n2) time.

4 Final Remarks and Open Problems

The block merging problem of Mahajan et al. [12] is defined as follows: At each
step, a configuration of the problem consists of a set of lists of integers, where
the set of all integers in the lists is {1, ..., n}, and no integer appears in two
lists, or more than once in one list. One or more of the lists may be empty. A
move consists of deleting a block from one of the lists and inserting that same
block into one of the other lists in such a way that the moved block merges with
another block. We are given an initial configuration, and we want to find the
minimum number of moves to reach the configuration where there is only one
non-empty list and it is sorted.

It is entirely possible that block merging and abs-block deletion are related,
but they are not identical: the set of lists {(3, 7, 9), (4, 8), (1, 5), (2, 6)} takes 8
steps to sort by block merging, as follows:

{(3, 7, 9), (4, 8), (5), (1, 2, 6)}
{(1, 2, 3, 7, 9), (4, 8), (5), (6)}
{(7, 9), (1, 2, 3, 4, 8), (5), (6)}
{(7, 9), (8), (1, 2, 3, 4, 5), (6)}
{(7, 9), (8), ε, (1, 2, 3, 4, 5, 6)}
{(1, 2, 3, 4, 5, 6, 7, 9), (8), ε, ε}
{(9), (1, 2, 3, 4, 5, 6, 7, 8), ε, ε}
{(1, 2, 3, 4, 5, 6, 7, 8, 9), ε, ε, ε}

However, abs-block deletion takes 4 steps to get to a monotone sequence from,
(3, 7, 9, 4, 8, 5, 1, 2, 6): delete (2), delete (8), delete (1), and then delete (4, 5, 6).
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We have given a better non-trivial approximation algorithm with a provable
approximation ratio for the block sorting problem. There may be, however, room
for further improvement. We mention two lines of further investigation:

1. We conjecture that a polynomial time approximation algorithm with a ratio
better than 2 exists.

2. It would be interesting to see how our algorithm compares with some of the
heuristics given in [6]. All of those heuristics lack proof of any approximation
ratio; their advantage is that they have linear run time. Indeed, it would be
desirable to give a 2-approximation with run time better than O(n2).

Finally we mention that the study of block merging, block sorting and abs-
block deletions might lead to insights for other sorting problems, such as sorting
by transpositions.
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Abstract. Recently, the property of unambiguity in alternating Turing
machines has received considerable attention in the context of analyzing
globally-unique games by Aida et al. [1] and in the design of efficient pro-
tocols involving globally-unique games by Crâsmaru et al. [7]. This paper
investigates the power of unambiguity in alternating Turing machines in
the following settings:

1. We construct a relativized world where unambiguity based hierar-
chies—AUPH, UPH, and UPH—are infinite. We construct another
relativized world where UAP (unambiguous alternating polynomial-
time) is not contained in the polynomial hierarchy.

2. We define the bounded-level unambiguous alternating solution class
UAS(k), for every k ≥ 1, as the class of sets for which strings in the
set are accepted unambiguously by some polynomial-time alternat-
ing Turing machine N with at most k alternations, while strings not
in the set either are rejected or are accepted with ambiguity by N . We
construct a relativized world where, for all k ≥ 1, UP≤k ⊂ UP≤k+1

and UAS(k) ⊂ UAS(k + 1).
3. Finally, we show that robustly k-level unambiguous polynomial-time

alternating Turing machines accept languages that are computable
in PΣ

p
k

⊕A, for every oracle A. This generalizes a result of Hartmanis
and Hemachandra [11].

1 Introduction

Chandra, Kozen, and Stockmeyer [6] introduced the notion of alternation as a
generalization of nondeterminism: Alternation allows switching of existential and
universal quantifiers, whereas nondeterminism allows only existential quantifiers
throughout the computation. Alternation has proved to be a central notion in
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complexity theory. For instance, the polynomial hierarchy has a characterization
in terms of bounded-level alternation [6,23], the complexity class PSPACE can be
characterized in terms of polynomial length-bounded alternation [6], and many
important classes have characterizations based on variants of alternation (see
Chapter 19 of [20]).

Unambiguity in nondeterministic computation is related to issues such as
worst-case cryptography and the closure properties of #P (the class of functions
that count the number of accepting paths of NP machines). The complexity class
UP captures the notion of unambiguity in nondeterministic polynomial-time
Turing machines. It is known that one-to-one one-way functions exist if and only
if P 	= UP [10,14] and that UP equals probabilistic polynomial-time if and only if
#P is closed under every polynomial-time computable operation [19]. Factoring,
a natural problem with cryptographic applications, belongs to UP ∩ coUP and
is not known to belong to a subclass of UP ∩ coUP nontrivially.

This paper studies the power of unambiguity in alternating computations.
Niedermeier and Rossmanith [18] gave the following definition of unambiguity
in alternating Turing machines: An alternating Turing machine is unambiguous
if every accepting existential configuration has exactly one move to an accepting
configuration and every rejecting universal configuration has exactly one move
to a rejecting configuration. They introduced a natural analog UAP (unambigu-
ous alternating polynomial-time) of UP for alternating Turing machines. Lange
and Rossmanith [17] proposed three different approaches to define a hierarchy for
unambiguous computations: The alternating unambiguous polynomial hierarchy
AUPH, the unambiguous polynomial hierarchy UPH, and the promise unam-
biguous hierarchy UPH. Though it is known that Few ⊆ UAP ⊆ SPP [18] and
AUPH ⊆ UPH ⊆ UPH ⊆ UAP [7,17], a number of questions—such as, whether
UAP is contained in the polynomial hierarchy, whether the unambiguity based
hierarchies intertwine, whether these hierarchies are infinite, or whether some
hierarchy is contained in a fixed level of the other hierarchy—related to these
hierarchies have remained open [17]. Relatedly, Hemaspaandra and Rothe [13]
showed that the existence of a sparse Turing-complete set for UP has conse-
quences on the structure of unambiguity based hierarchies.

Recently, Aida et al. [1] introduced “uniqueness” properties for two-player
games of perfect information such as Checker, Chess, and Go. A two-person per-
fect information game has global uniqueness property if every winning position
of player 1 has a unique move to win and every mis-step by player 1 is punishable
by a unique winning reply by player 2 throughout the course of the game. Aida et
al. [1] showed that the class of languages that reduce to globally-unique games,
i.e., games with global uniqueness property, is the same as the class UAP. In
another recent paper, Crâsmaru et al. [7] designed a protocol by which a series
of globally-unique games can be combined into a single globally-unique game,
even under the condition that the result of the new game is a non-monotone
function of the results of the individual games that are unknown to the play-
ers. In complexity theoretic terms, they showed that the class UAP is self-low,
i.e., UAPUAP = UAP. They also observed that the graph isomorphism problem,



On the Power of Unambiguity in Alternating Machines 127

whose membership in SPP was shown by Arvind and Kurur [2], in fact belongs
to the subclass UAP of SPP.

In this paper, we investigate the power of unambiguity based alternating
computation in three different settings. First, we construct a relativized world
in which the unambiguity based hierarchies—AUPH, UPH, and UPH—are in-
finite. We construct another relativized world where UAP is not contained in
the polynomial hierarchy. This latter oracle result strengthens a result (relative
to an oracle, UAP differs from the second level of UPH) of Crâsmaru et al. [7].
Our results show that proving that any of the unambiguity based hierarchies
is finite or that UAP is contained in the polynomial hierarchy is impossible by
relativizable proof techniques. We mention that the structure of relativized hi-
erarchies of classes has been investigated extensively in complexity theory (see,
for instance [5,12,15,16,25]) and our investigation is a work in this direction.

Second, for every k ≥ 1, we define a complexity class UAS(k) as the class
of sets for which every string in the set is accepted unambiguously by some
polynomial-time alternating Turing machine N with at most k alternations,
while strings not in the set either are rejected or are accepted with ambiguity
by N . A variant of this class (denoted by UAS in this paper), where the number
of alternations is allowed to be unbounded, was studied by Wagner [24] as the
class∇P of all sets which can be accepted by polynomial-time alternating Turing
machines using partially defined AND and OR functions.1 Beigel [3] defined the
class UP≤k(n) as the class of sets in NP that are accepted by nondeterministic
polynomial-time Turing machines with at most k(n) accepting paths on each
input of length n. Beigel [3] constructed an oracle A such that PA ⊂ UPA ⊂
UPA

≤k(n) ⊂ UPA
≤k(n)+1 ⊂ FewPA ⊂ NPA, for every polynomial k(n) ≥ 2. We

show that there is a relativized world B such that, for all k ≥ 1, UPB
≤k ⊂ UPB

≤k+1,
UAS(k)B ⊂ UAS(k + 1)B, and relative to B, the second level of UPH is not
contained in any level of AUPH.

Finally, we investigate the power of alternating Turing machines that pre-
serve the bounded-level unambiguity property for every oracle. We show that a
polynomial-time alternating Turing machine that preserves k-level alternation
unambiguously in every relativized world requires only weak oracle access in
every relativized world, i.e., for every oracle A, the language of such a machine
can be computed in PΣp

k⊕A. This is a generalization of a result of Hartmanis
and Hemachandra [11], which states that if a nondeterministic polynomial-time
Turing machine is robustly categorical (i.e., for no oracle and for no input, the
machine has more than one accepting path), then for every oracleA, the machine
accepts a language in PNP⊕A.

The paper is organized as follows. Section 2 describes the notations and the
definitions that are relevant to this paper. In Section 3, we describe our results
on relativized separations of unambiguity based hierarchies and relativized non-

1 The partial counterparts AND∗ and OR∗ differ from boolean functions AND and
OR, respectively, as follows: AND∗ is undefined for input (0, 0) and OR∗ is undefined
for input (1, 1). Thus, these partially defined boolean functions are the unambiguous
counterparts of boolean AND and OR functions, respectively.



128 H. Spakowski and R. Tripathi

inclusion of UAP in the polynomial hierarchy. In Section 4, for every k ≥ 1, we
define a complexity class UAS(k) and study its relativized complexity w.r.t. the
bounded-ambiguity class UP≤k+1. Finally, Section 5 includes our results on the
power of robustly bounded-level unambiguous polynomial-time alternating Tur-
ing machines. (Proofs omitted due to space limitations can be found in the
detailed version available at http://www.cs.rochester.edu/trs/theory-trs.html.)

2 Preliminaries

Let N+ denote the set of positive integers. We assume that the root of a computa-
tion tree of every alternating Turing machine (or, ATM in short) is an existential
node. We recursively assign levels in a computation tree T of an ATM as follows:
(a) the root of T is at level 1, (b) if a node v is assigned a level i and if v is
an existential node, then the first nonexistential (i.e., universal or leaf) node w
reachable along some path from v to a leaf node of T is assigned level i + 1,
(c) if a node v is assigned a level i and if v is a universal node, then the first
nonuniversal (i.e., existential or leaf) node w reachable along some path from v
to a leaf node of T is assigned level i + 1, and (d) for all other nodes of T , the
concept of levels is insignificant to this work and so the levels are undefined. We
term the nonleaf nodes for which levels are defined as the salient nodes in the
computation tree of an ATM. For any k ∈ N+, a k-level ATM is one for which,
on any input, the maximum level assigned to a salient node in the computation
tree of the ATM is at most k.

For every polynomial p(.) and for every predicate R(x, y, z) of variables x, y, z,
we use (∃p!y)(∀p!z)R(x, y, z) to indicate that there exists a unique value y1 for
the y variable with |y1| ≤ p(|x|), such that for all values z1 for the z variable
with |z1| ≤ p(|x|), R(x, y1, z1) is true, and for all values y2 	= y1 for the y
variable with |y2| ≤ p(|x|), there exists a unique value z(y2) for the z variable
with |z(y2)| ≤ p(|x|), such that R(x, y2, z(y2)) is false. In the same way, we
interpret expressions, such as (∃p!y1)(∀p!y2)(∃p!y3) . . .R(x, y1, y2, y3, . . .), with
an arbitrary number of unambiguous alternations.

Definition 1 (Unambiguity Based Hierarchies [17,18]).

1. The alternating unambiguous polynomial hierarchy AUPH =df

⋃
k≥0 AUΣp

k ,
where AUΣp

0 =df P and for every k ≥ 1, AUΣp
k is the class of all sets L ⊆ Σ∗

for which there exist a polynomial p(.) and a polynomial-time computable
predicate R such that, for all x ∈ Σ∗,

x ∈ L =⇒ (∃p!y1)(∀p!y2) . . . (Qp!yk)R(x, y1, y2, . . . , yk), and
x /∈ L =⇒ (∀p!y1)(∃p!y2) . . . (Q

p
!yk)¬R(x, y1, y2, . . . , yk),

where Q = ∃ and Q = ∀ if k is odd, and Q = ∀ and Q = ∃ if k is even.
2. The unambiguous polynomial hierarchy is UPH =df

⋃
k≥0 UΣp

k , where UΣp
0

=df P and for every k ≥ 1, UΣp
k =df UPUΣp

k−1 .
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3. The promise unambiguous polynomial hierarchy is UPH =df

⋃
k≥0 UΣp

k ,
where UΣp

0 =df P, UΣp
1 =df UP, and for every k ≥ 2, UΣp

k is the class
of all sets L ∈ Σp

k such that for some oracle NPTMs N1, N2, . . ., Nk,

L = L(NL(N ···
L(Nk)

2 )
1 ), and for every x ∈ Σ∗ and for every 1 ≤ i ≤ k −

1, N
L(N ···

L(Nk)

2 )
1 (x) has at most one accepting path and if Ni asks a query

w to its oracle L(N ··
·L(Nk)

i+1 ) during the computation of N ··
·L(Nk)

1 (x), then

N ··
·L(Nk)

i+1 (w) has at most one accepting path.

Definition 2. [18] UAP is the class of all sets accepted by unambiguous ATMs
in polynomial time.

Theorem 3. 1. For all k ≥ 0, AUΣp
k ⊆ UΣp

k ⊆ UΣp
k ⊆ Σp

k [17].
2. For all k ≥ 1, UP≤k ⊆ AUΣp

k ⊆ UΣp
k ⊆ UΣp

k ⊆ UAP ([7] + [17]).
3. Few ⊆ UAP ⊆ SPP ([17] + [18]).

3 Relativized Separations of Unambiguity Based
Hierarchies

In this section, we apply random restrictions of circuits for separating the levels
of unambiguity based hierarchies. Sheu and Long [22] constructed an oracle
A relative to which UP contains a language that is not in any level of the
low hierarchy in NP. Formally, Sheu and Long [22] showed that (∃A)(∀k ≥
1)[Σp,UPA

k � Σp,A
k ]. In their proof, they introduced special kinds of random

restrictions that were motivated by, but different from, the restrictions used by
H̊astad [12]. Using the random restrictions of Sheu and Long [22], we construct a
relativized world A in which the unambiguity based hierarchies—AUPH, UPH,
and UPH—are infinite. This extends the separation of relativized polynomial
hierarchy [25,12] to the separations of unambiguity based relativized hierarchies.
We use the same restrictions to construct an oracle A relative to which UAP
is not contained in the polynomial hierarchy. Our separation results imply that
proving that any of the unambiguity based hierarchies extend up to a finite level
or proving that UAP is contained in the polynomial hierarchy is beyond the
limits of relativizable proof techniques.

We now introduce certain notions that are prevalent in the theory of circuit
lower bounds. We represent the variables of a circuit by vz, for some z ∈ Σ∗. The
dual of a circuit C is obtained from C by replacing OR gates with ANDs, AND
gates with ORs, variables xi with xi, and variables xj with xj . A restriction ρ
of a circuit C is a mapping from the variables of C to {0, 1, �}. We say that
a restriction ρ of a circuit C is a full restriction if ρ assigns 0 or 1 to all the
variables in C. Given a circuit C and a restriction ρ, C,ρ denotes the circuit
obtained from C by substituting each variable x with ρ(x) if ρ(x) 	= �. For every
A ⊆ Σ∗, the restriction ρA on the variables vz of a circuit C is ρA(vz) = 1 if
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z ∈ A, and ρA(vz) = 0 if z 	∈ A. The composition of two restrictions ρ1 and ρ2,
denoted by ρ1ρ2, is defined as follows: For every x ∈ Σ∗, ρ1ρ2(x) = ρ2(ρ1(x)).

We define specialized circuits, Σk(m)-circuits and Πk(m)-circuits, used for
constructing relativized worlds involving Σk and Πk classes.

Definition 4. For every m ≥ 1 and k ≥ 1, a Σk(m)-circuit is a depth k + 1
circuit with alternating OR and AND gates such that

1. the top gate, i.e., the gate at level 1, is an OR gate,
2. the number of gates at level 1 to level k − 1 is bounded by 2m,
3. the fanin of gates at level k + 1 is ≤ m.

A Πk(m)-circuit is the dual circuit of a Σk(m)-circuit.

For every k ≥ 1, we say that σ is a Σ
p,(.)
k -predicate if there exist a predicate

R(A; x, y1, . . . , yk) over a set variable A and string variables x, y1, y2, . . . , yk, and
a polynomial q such that the following hold: (i) R(A; x, y1, y2, . . . , yk) is com-
putable in polynomial time by a deterministic oracle Turing machine that uses
A as the oracle and 〈x, y1, . . . , yk〉 as the input and (ii) for every set A and string
x, σ(A; x) is true if and only if (∃qy1)(∀qy2) . . . (Q

q
kyk)R(A; x, y1, y2, . . . , yk) is

true, where Qk = ∃ if k is odd and Qk = ∀ if k is even. We say that σ is a
Π

p,(.)
k -predicate, for k ≥ 1, if ¬σ is a Σ

p,(.)
k -predicate.

The following proposition states the relationship between Σ
p,(.)
k -predicates

(Πp,(.)
k -predicates) and Σk(m)-circuits (respectively, Πk(m)-circuits).

Proposition 5 (see [15,21,22]). Let k ≥ 1. For every Σ
p,(.)
k -predicate (Πp,(.)

k -
predicate) σ, there is a polynomial q(.) such that, for all x ∈ Σ∗, there is a
Σk(q(|x|))-circuit (respectively, Πk(q(|x|))-circuit) Cσ,x with the following prop-
erties:

1. For every A ⊆ Σ∗, Cσ,x,ρA= 1 if and only if σ(A; x) is true, and
2. if vz represents a variable in Cσ,x, then |z| ≤ q(|x|).

Let B = {Bi}r
i=1, where Bi’s are disjoint sets that cover the variables of C,

and let q be a real number between 0 and 1. Sheu and Long [22] defined two
probability spaces of restrictions, R̂+

q,B and R̂−
q,B, and a function g′ that maps a

random restriction to a restriction. A random restriction ρ ∈ R̂+
q,B (ρ ∈ R̂−

q,B) is
defined as follows: For every 1 ≤ i ≤ r and for every variable x ∈ Bi, let ρ(x) = �
with probability q and ρ(x) = 1 (respectively, ρ(x) = 0) with probability 1− q.
We now define the function g′ for ρ ∈ R̂+

q,B. For every 1 ≤ i ≤ r, let si = � with
probability q and let si = 0 with probability 1 − q. Let Vi ⊆ Bi be the set of
variables x such that ρ(x) = �. g′(ρ) selects the variable v with the highest index
in Vi, assigns value si to v, and assigns value 1 to all other variables in Vi. The
function g′(ρ) for ρ ∈ R̂−

q,B is defined in an analogous way by replacing 0 with 1
and vice versa.
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Lemma 6 (Switching Lemma [22]). Let C be a circuit consisting of an AND
of ORs with bottom fanin ≤ t. Let B = {Bi}r

i=1 be disjoint sets that cover the
variables of C, and let q be a real number between 0 and 1. Then, for a random
restriction ρ ∈ R̂+

q,B, Prob[C,ρg′(ρ) is not equivalent to an OR of ANDs with
bottom fanin ≤ s] ≤ αs, where α < 6qt. The above probability holds even when
R̂+

q,B is replaced by R̂−
q,B, or when C is an OR of ANDs and is being converted

to an AND of ORs.

Sheu and Long [22] defined a kind of restriction, called U condition, on the
assignment of variables in certain circuits. A restriction ρ is said to satisfy the U
condition if the following holds: At most one variable is assigned � or 0 in each
set Bi if ρ is a random restriction from R̂+

q,B, and at most one variable is assigned
� or 1 in each set Bi if ρ is a random restriction from R̂−

q,B [22]. Below, we define
a global uniqueness condition (also called GU condition) on full restrictions of
any circuit C.

Definition 7. We say that a full restriction ρ satisfies the GU condition for a
circuit C, if the assignment of variables by ρ leads to the following characteristics
in the computation of C:

1. If an OR gate Gi in C outputs 1, then there is exactly one input gate to Gi

that outputs 1, and
2. if an AND gate Gi in C outputs 0, then there is exactly one input gate to

Gi that outputs 0.

Theorem 8. (∃A)(∀k ≥ 1)[AUΣp,A
k � Πp,A

k ].

Proof. Our proof is inspired from that of Theorem 4.2 (relative to some oracle
D, for all k ≥ 1, Σp,UPD

k � Σp,D
k ) by Sheu and Long [22]. For every k ≥ 1, we

define a test language Lk(B) as follows: Lk(B) ⊆ 0∗ such that, for every n ∈ N+,

0n ∈ Lk(B) =⇒ (∃n!y1)(∀n!y2) . . . (Qn!yk)
[
0k1y1y2 . . . yk ∈ B

]
, and

0n 	∈ Lk(B) =⇒ (∀n!y1)(∃n!y2) . . . (Q
n
!yk)
[
0k1y1y2 . . . yk 	∈ B

]
,

where Q = ∃ and Q = ∀ if k is odd, and Q = ∀ and Q = ∃ if k is even. Choose
O ⊆ Σ∗ such that, for every k ≥ 1, Lk(O) = 0∗. For every k ≥ 1, let σk,1,σk,2, . . .

be an enumeration of Σ
p,(.)
k -predicates. In stage 〈k, i〉, we diagonalize against σk,i

and change O at a certain length. Finally, let A := limn→∞ ∪n∈N+ O=n. We now
define the stages involved in the construction of the oracle.

Stage 〈k, i〉: Choose a very large integer n so that the construction in this
stage does not spoil the constructions in previous stages. Also, n must be large
enough to meet the requirements in the proof of Claim 1. SetO := O−Σk(n+1)+1.
Choose a set B ⊆ 0k1Σkn such that the following requirement is satisfied:

0n ∈ Lk(B)⇐⇒ σk,i(O ∪B; 0n) is true. (1)

In Claim 1, we show that there is always a set B ⊆ 0k1Σkn satisfying Eqn. (1).
Let O := O ∪B and move to the next stage.
End of Stage
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Clearly, the existence of a set B satisfying Eqn. (1) suffices to successfully finish
stage 〈k, i〉. We now prove the statement in Claim 1.

Claim 1. In every stage 〈k, i〉, there is a set B ⊆ 0k1Σkn satisfying Eqn. (1).

Proof. Assume to the contrary that in some stage 〈k, i〉, Eqn. (1) is not satis-
fied. Then, the following holds: For every B ⊆ 0k1Σkn, 0n ∈ Lk(B) if and only
if ¬σk,i(O ∪B; 0n) is true. We define a C(n, k) circuit as follows: The depth of
C(n, k) is k, the top gate of C(n, k) is an OR gate, the fanin of all the gates at
level 1 to k is 2n, and every leaf of C(n, k) is a positive variable represented by
vz, where z ∈ 0k1Σkn. The following proposition is evident.

Proposition 9. For every B ⊆ 0k1Σkn,

0n ∈ Lk(B)⇐⇒ [ρB satisfies the GU condition for C(n, k) and C(n, k),ρB = 1],
and

0n 	∈ Lk(B)⇐⇒ [ρB satisfies the GU condition for C(n, k) and C(n, k),ρB = 0].

For every h ≥ 1, we define a family of circuits Fh
k . Ko [15] defined a Ch

k circuit
to be a depth k circuit in Fh

k with fanin of gates at level k exactly equal to
√

h
and used these circuits to separate the relativized polynomial hierarchy.

Family Fh
k of circuits, where h ≥ 1: A circuit C of depth �, where 1 ≤ � ≤ k,

is in Fh
k if and only if the following holds:

1. C has alternating OR and AND gates, and the top gate, i.e., the gate at
level 1, of C is an OR gate,

2. the fanin of gates at level 1 to �− 1 is h,
3. the fanin of gates at level � is ≥

√
h,

4. every leaf of C is a unique positive variable.

Let Cσk,i
be the Πk(pi(n))-circuit corresponding to ¬σk,i((.); 0n), for some poly-

nomial pi(.). From Proposition 9, we wish to find a set B ⊆ 0k1Σkn such that (i)
if ρB satisfies the GU condition for C(n, k) and C(n, k),ρB = 1, then Cσk,i

,ρO∪B =
0, and (ii) if ρB satisfies the GU condition for C(n, k) and C(n, k),ρB = 0, then
Cσk,i

,ρO∪B = 1. Clearly, the existence of a set B satisfying (i) and (ii) suffices to
prove the claim. Next, we describe our approach to show the existence of such a
set B.

We define a restriction ρ̂O on Cσk,i
as follows: For every variable vz in Cσk,i

,
if z ∈ O then let ρ̂O(vz) = 1, if z 	∈ O ∪ 0k1Σkn then let ρ̂O(vz) = 0, and
if z ∈ 0k1Σkn then let ρ̂O(vz) = �. Let Cσk,i(O) =df Cσk,i

,ρ̂O . Thus, the only
variables vz appearing in Cσk,i(O) are the ones for which z ∈ 0k1Σkn. Suppose
that no set B ⊆ 0k1Σkn satisfying (i) and (ii) exists. Then, the following holds:
For every B ⊆ 0k1Σkn,

ρB satisfies the GU condition for C(n, k) and C(n, k),ρB = Cσk,i(O),ρB= 1,

or (2)
ρB satisfies the GU condition for C(n, k) and C(n, k),ρB = Cσk,i(O),ρB= 0.
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Lemma 10. For every 1 ≤ � ≤ k and for all sufficiently large h, for any circuit
CF ∈ Fh

k of depth �, and for any Π�(m)-circuit Cπ, if it holds that

(for every full restriction ρ satisfying the GU condition for CF )[CF,ρ= Cπ,ρ],
then m ≥ δ · h1/3, where δ = 1/12.

Since C(n, k) ∈ F2n

k , Cσk,i(O) is a Πk(pi(n)) circuit, and pi(n) = o(2n/3), we get
a contradiction with Eqn. (2) and Lemma 10. (Claim 1 and Theorem 8)

Corollary 11. There is an oracle A relative to which the alternating unambigu-
ous polynomial hierarchy AUPH, the unambiguous polynomial hierarchy UPH,
the promise unambiguous polynomial hierarchy UPH, and the polynomial hier-
archy PH are infinite.

Note that Theorem 8 does not imply relativized separation of UAP from PH
in any obvious way. We achieve this separation, using the proof techniques of
Theorem 8, in Theorem 12.

Theorem 12. (∃A)[UAPA � PHA].

Crâsmaru et al. [7] showed that there is an oracle relative to which UAP 	= UΣp
2 .

Corollary 13 shows that in some relativized world, UAP is much more powerful
than the promise unambiguous polynomial hierarchy UPH. Thus, Corollary 13
is a strengthening of their result.

Corollary 13. There is an oracle relative to which UPH ⊂ UAP.

4 Complexity of Unambiguous Alternating Solution

Wagner studied the class ∇P, denoted by UAS in this paper, of all sets that are
accepted by polynomial-time alternating Turing machines with partially defined
AND and OR functions. UAS is a natural class with complete sets and is related
to UAP in the same way as US [4] is related to UP. We define a variant of UAS,
denoted by UAS(k), where the number of alternations allowed is bounded by
some constant k ≥ 1, instead of the unbounded number of alternations in the
definition of UAS. (Thus, UAS(1) is the same as the unique solution class US.)

Definition 14. [24] The class UAS, denoted by ∇P in [24], is the class of all
sets L ⊆ Σ∗ for which there exist polynomials p(.) and q(.), and a polynomial-
time computable predicate R such that, for all x ∈ Σ∗,

x ∈ L⇐⇒ (∃p! y1)(∀p! y2) . . . (Qp! yq)R(x, y1, y2, . . . , yq)

where Q = ∃ if q(|x|) is odd and Q = ∀ if q(|x|) is even.

The class UAS(k), for every k ≥ 1, consists of all sets for which strings in the
set are accepted unambiguously by some polynomial-time alternating Turing
machine N with at most k alternations, while strings not in the set either are
rejected or are accepted with ambiguity by N . A formal definition is as follows.
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Definition 15. The class UAS(k), for k ≥ 1, is the class of all sets L ⊆ Σ∗ for
which there exist a polynomial p(.) and a polynomial-time computable predicate
R such that, for all x ∈ Σ∗,

x ∈ L⇐⇒ (∃p!y1)(∀p!y2) . . . (Qp!yk)R(x, y1, y2, . . . , yk)

where Q = ∃ if k is odd and Q = ∀ if k is even.

Theorem 16. 1. US ⊆ UAS ⊆ C= P and UAS ⊆ ∀⊕P [24].
2. For every k ≥ 1, UP ⊆ US ⊆ UAS(k) ⊆ UAS(k + 1) ⊆ UAS.
3. For every k ≥ 1, AUΣp

k ⊆ UAS(k) ⊆ PΣp
k .

Recall from Theorem 3(2) that UP≤k ⊆ AUΣp
k , for every k ≥ 1. Thus, it follows

from Theorem 16(3) that UP≤k ⊆ UAS(k). However, Theorem 17 shows that
relative to an oracle A, for all k ≥ 1, UP≤k+1 is not contained in UAS(k).
Thus relative to the same oracle, the bounded ambiguity classes UP≤k and the
bounded-level unambiguous alternating solution classes UAS(k), for k ≥ 1, form
infinite hierarchies. Theorem 17 also implies that there is a relativized world
where for all k ≥ 1, UP≤k+1 is not contained in AUΣp

k . In contrast, Lange and
Rossmanith [17] proved that FewP ⊆ UΣp

2 in every relativized world. It follows
that relative to the oracle of Theorem 17, for all k ≥ 1, UΣp

2 � AUΣp
k .

Theorem 17. (∃A)(∀k ≥ 1)[UPA
≤k+1 � UAS(k)A].

Corollary 18. There is an oracle A such that, for every k ≥ 1, UPA
≤k ⊂

UPA
≤k+1, AUΣp,A

k ⊂AUΣp,A
k+1, UASA(k)⊂UASA(k +1), and UΣp,A

2 � AUΣp,A
k .

5 Power of Robustly Unambiguous Alternating Machines

Hartmanis and Hemachandra [11] showed that robustly categorical nondeter-
ministic polynomial-time Turing machines (i.e., NPTMs that for no oracle and
no input have more than one accepting path) accept simple languages in the
sense that, for every oracle A, the languages accepted by such machines are in
PNP⊕A. Thus, if P = NP, then NPTMs satisfying robustly categorical prop-
erty cannot separate PA from NPA, for any oracle A. Theorem 19 generalizes
this result of Hartmanis and Hemachandra [11] and shows that, for every oracle
A, robustly k-level unambiguous polynomial-time alternating Turing machines
accept languages that are in PΣp

k⊕A. Thus, similar to the case of robustly cate-
gorical NPTMs, if P = NP, then robustly k-level unambiguous polynomial-time
alternating Turing machines cannot separate PA from Σp,A

k , and consequently
cannot separate PA from NPA.

Theorem 19. For all k ∈ N+, the following holds:

(∀A)[NA is a k-level unambiguous polynomial-time ATM]=⇒(∀A)[L(NA)

∈ PΣp
k
⊕A].
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Corollary 20. For all k ∈ N+, if P = NP and (∀A)[NA is a k-level unambigu-
ous polynomial-time ATM], then (∀A)[L(NA) ∈ PA].

Crescenzi and Silvestri [8] showed that languages accepted by robustly comple-
mentary and categorical oracle NPTMs are in P(UP∪coUP)⊕A. In fact, their proof
actually shows that the languages of such machines are in P(UP∩coUP)⊕A. Theo-
rem 21 is a generalization of this result of Crescenzi and Silvestri [8] for robustly
bounded-level unambiguous polynomial-time alternating Turing machines.

Theorem 21. For all ki, kj ∈ N+, if for all oracles A, NA
i and NA

j are, respec-
tively, ki-level and kj-level unambiguous polynomial-time ATMs and

L(NA
i )=L(NA

j ), then for all oracles A, L(NA
i )∈P(UP

Σ
p
k−1∩coUP

Σ
p
k−1 )⊕A, where

k = max{ki, kj}.

6 Open Questions

We now mention some future research directions. Theorem 8 implies that there
is a relativized world where the unambiguity based hierarchies are infinite. How-
ever, a number of questions related to the relativized structure of unambiguity
based hierarchies remain open. For instance, is there a relativized world where
AUPH is finite, but UPH and UPH are infinite? Is there a relativized world
where the polynomial hierarchy is infinite, but AUPH and UPH collapse?

Hemaspaandra and Rothe [13] showed that if UP has a sparse
Turing-complete set, then for every k ≥ 3, UΣp

k ⊆ UΣp
k−1. Are there other

complexity-theoretic assumptions that can help in concluding about the struc-
ture of unambiguity based hierarchies?

Fortnow [9] showed that PH ⊂ SPP relative to a random oracle. Theorem 12
shows that there is a relativized world where UAP � PH. Can we extend the
oracle separation of UAP from PH to a random oracle separation?

Aida et al. [1] and Crâsmaru et al. [7] discussed whether UAP equals SPP.
In fact, Crâsmaru et al. [7] pointed out their difficulty in building an oracle A
such that UAPA 	= SPPA. Can the ideas involved in oracle constructions in this
paper be used to attack this problem?

Finally, is it the case that similar to robustly bounded-level unambiguous
polynomial-time ATMs, robustly unbounded-level unambiguous polynomial-
time ATMs require weak oracle access in every relativized world?

Acknowledgment. We thank Lane Hemaspaandra for helpful advice and guid-
ance throughout the project.
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Abstract. We present translational lemmas for alternating Turing ma-
chines (ATMs) and parallel random access machines (PRAMs), and ap-
ply them to obtain tight hierarchy results on ATM- and PRAM-based
complexity classes. It is shown that, for any small rational constant ε,
there is a language which can be accepted by a c(9 + ε) logr n-time
d(4 + ε) log n-space ATM with l worktapes but not by any c logr n-time
d log n-space ATM with the same l worktapes if the number of tape
symbols is fixed. Here, c, d > 0 and r > 1 are arbitrary rational con-
stants, and l ≥ 2 is an arbitrary integer. It is also shown that, for any
small rational constant ε, there is a language which can be accepted by a
c(1+ε) logr1 n-time PRAM with nr2 processors but not by any c logr1 n-
time PRAM with nr2(1+ε) processors, where c > 0, r1 > 1, and r2 ≥ 1
are arbitrary rational constants.

1 Introduction

The most standard models for parallel computation are alternating Turing ma-
chines (ATMs) [2], uniform circuit families [9], and parallel random access ma-
chines (PRAMs) [10]. It is well known that showing a proper hierarchy of parallel
complexity classes is very difficult. A typical example is a famous open question
whether NCk � NCk+1. This open problem seems to be very difficult, since it
is not even known whether NC1 � NP. Here, NCk is the class of languages ac-
cepted by O(logk n)-time O(log n)-space ATMs. Thus, it is open whether there
is a language accepted by an O(logk+1 n)-time O(log n)-space ATM but not by
any O(logk n)-time O(log n)-space ATM. (Throughout this paper, all logarithms
are base 2, and logk n is the logarithm of n raised to the kth power.)

On the other hand, if constant factors are taken into account, a proper hi-
erarchy can be derived from known results. In order to investigate “precise”
complexities of ATMs, we assume that the number of worktapes is fixed l ≥ 2
and tape symbols are 0 and 1. Under this assumption, the following simulation
and separation results hold. (i) There are constants c1 and d1 such that every
t(n)-time s(n)-space ATM can be simulated by a UE-uniform circuit family of
depth c1t(n) and size 2d1s(n) [9]. (ii) There are constants c2, d2 and a language L
such that L can be accepted by a UE-uniform circuit family of depth c2t(n)
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and size (z(n))d2 but not by any UE-uniform circuit family of depth t(n) and
size z(n) [6]. (iii) There are constants c3 and d3 such that every UE-uniform
circuit family of depth t(n) and size z(n) can be simulated by a c3t(n)-time
d3 log z(n)-space ATM if t(n) 	= O(log z(n) log log z(n)) [9]. (In this paper, we
say “f(n) 	= O(g(n))” if f(n) grows faster than g(n), i.e., limn→∞ g(n)/f(n)
exists and is 0.) Therefore, there are constants c ≥ c1c2c3, d ≥ d1d2d3, and a
language which can be accepted by a ct(n)-time ds(n)-space ATM but not by
any t(n)-time s(n)-space ATM. (Although the model used in [9] is multi-tape
multi-symbol ATMs, a careful analysis shows that the above simulation (iii)
holds for two-tape two-symbol ATMs if t(n) 	= O(log z(n) log log z(n)), where
O(log log z(n)) is the overhead of simulating a multi-tape O(log z(n))-time DTM
by a two-tape DTM.)

In this paper, we tighten this hierarchy of ATMs by using a translational
method. Suppose that the number of worktapes is fixed l ≥ 2 and tape symbols
are 0 and 1. We show that if every 3(1+ε)t1(n)-time 2(1+ε)s1(n)-space ATM can
be simulated by a t2(n)-time s2(n)-space ATM, then every t1(2kn)-time s1(2kn)-
space ATM can be simulated by a 3(1 + ε)t2(2kn)-time 2(1 + ε)s2(2kn)-space
ATM, where ε > 0 is an arbitrary constant and k ≥ 1 is an arbitrary integer. By
using this translational lemma, it is shown that, for any small rational constant ε,
there is a language which can be accepted by a c(9+ ε) logr n-time d(4+ ε) logn-
space ATM but not by any c logr n-time d log n-space ATM, where c, d > 0 and
r > 1 are arbitrary rational constants. Therefore, constant factors 9+ε and 4+ ε
in time and space, respectively, strictly enlarge the complexity classes defined
by time- and space-bounded ATMs. Translational lemmas for deterministic and
nondeterministic TMs with restricted tape alphabet size were presented in [4].

We turn our attention to the second model, uniform circuit families. The
class NCk is also defined as the set of languages accepted by UE-uniform cir-
cuit families of depth O(logk n) and size nO(1) [9]. It was shown that there is
a language which can be recognized by a UE-uniform circuit family of depth
d(1 + ε)(log n)r1 and size nr2(1+ε) but not by any UE-uniform circuit family of
depth d(log n)r1 and size nr2 , where ε > 0, d > 0, r1 > 1, and r2 ≥ 1 are ar-
bitrary rational constants [7]. (UE-uniform is also called DLOGTIME-uniform
using the Extended connection language.) In this hierarchy, the constant factor
in depth and the exponent in size are both 1 + ε. In our ATM hierarchy, the
constant factors in time and space are 9+ ε and 4+ ε, respectively. The essential
difference between two models is due to uniformity. One of the tasks for proving
a translational lemma is to compute the value of 2kn from n. If we consider
the uniform circuit model, such a computation is done by circuit constructors
(i.e., logarithmic-time DTMs). The complexity of these TMs is not included in
circuit complexity. Namely, circuit complexity considers only depth and size of
pre-constructed circuits. On the other hand, the complexity of an ATM does
take account of the computation of 2kn. Constant factors 9 + ε and 4 + ε are
caused by this computation. Improving these constant factors toward 1+ ε is an
interesting future work.
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It remains to consider the third model, PRAMs. The class of languages ac-
cepted by O(logk n)-time PRAMs with a polynomial number of processors is
between NCk and NCk+1 [8]. It was shown that there are a constant c and a
language L such that L can be accepted by a ct(n)-time PRAM with p(n) pro-
cessors but not by any t(n)-time PRAM with p(n) processors [6]. Unfortunately,
the value of c was not mentioned, or no attempt was made to minimize the con-
stant c in [6]. In this paper, we show that if every (1 + ε)t1(n)-time PRAM with
p1(n) processors can be simulated by a t2(n)-time PRAM with p2(n) processors,
then every t1(2kn)-time PRAM with p1(2kn) processors can be simulated by a
(1 + ε)t2(2kn)-time PRAM with p2(2kn) processors, where ε > 0 is an arbitrary
constant and k ≥ 1 is an arbitrary integer. By using this translational lemma, it
is shown that, for any small rational constant ε, there is a language which can
be accepted by a c(1+ε) logr1 n-time PRAM with nr2(1+ε) processors but not by
any c logr1 n-time PRAM with nr2 processors, where c > 0, r1 > 1, and r2 ≥ 1
are arbitrary rational constants. Here, the complexity of PRAMs is measured
according to the uniform cost criterion.

In Section 2, we give definitions of ATMs and PRAMs. The main results are
also given in that section. The proofs are given in Sections 3 and 4.

2 Definitions and Results

We assume familiarity with nondeterministic Turing machines [3]. Our l-
worktape TM has a finite control, a semi-infinite input tape, and l semi-infinite
read-write worktapes. The left end of each of the input tape and worktapes is
delimited by a special end-marker $. The tape symbols are 0 and 1 only. Ini-
tially, every cell in each worktape contains blank symbol B, the head of each
worktape is placed at the leftmost cell, and the input tape contains a string
over {0, 1} followed by an infinite number of blank symbols BB · · ·. Non-blank
symbols cannot be overwritten with blank symbol B.

The definition of an alternating TM (ATM) is mostly from [9]. The states are
partitioned into existential and universal states. A tree is said to be a computa-
tion tree of an ATM M on a string w if its nodes are labeled with configurations
of M on w such that the descendants of any non-leaf labeled by a universal
(existential) configuration include all (resp. one) of the successors of that con-
figuration. A computation tree is accepting if it is finite and all the leaves are
accepting configurations. M accepts w if there is an accepting computation tree
whose root is labeled with the initial configuration of M on w.

Since we consider polylogarithmic-time computations, our ATM is a so-called
“random access ATM” [9]. Our ATM has no input head. Instead, it has a special
read state, and the first worktape is regarded as an index tape. Whenever it
enters the read state read(a) with integer i written on the index tape, it halts,
and accepts if and only if the ith input symbol is a.

An ATM M is defined to be t(n)-time bounded (s(n)-space bounded) if, for
every accepted input w of length n, there is an accepting computation tree of
height at most t(n) (resp. each of whose nodes is labeled by a configuration using
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space at most s(n)). In this paper, we denote by Atime,space(t(n), s(n)) the class
of languages accepted by t(n)-time s(n)-space ATMs with l worktapes whose
tape symbols are 0 and 1. Note that we are taking account of constant factors
in this paper. (Strictly speaking, Atime,space(t(n), s(n)) should be written as
Atime,space(t(n); s(n), l, 2). For simplicity of notation, we omit the numbers l, 2
of worktapes and symbols.)

Our PRAM is essentially the same model as defined in [10]. A PRAM has
a common memory, M [1], M [2], . . ., and a sequence of processors (RAMs) oper-
ating synchronously in parallel (see [1] for RAM). Each processor of a PRAM
has its own local memory, R[1], R[2], . . ., and has instructions for addition, sub-
traction, logical OR, AND, conditional branches based on predicates = and <,
and reading from and writing into its local memory. Processors can access to
the common memory, and each processor has instructions for reading from and
writing into the common memory using its local memory to specify the common
memory address. If more than one processor attempts to write the same location
in common memory at the same time, the lowest numbered processor succeeds.
All processors have the same program.

The input string of length n is given in M [1], M [2], . . . , M [n]. The computa-
tion halts when all processors have halted. The PRAM operates in time t(n) if it
halts within t(n) steps on any input of length n. When the PRAM accepts (re-
jects) the input string, symbol 1 (resp. 0) appears in M [1] after t(n) steps. The
complexity of a PRAM program is measured according to the uniform cost crite-
rion. Let Ptime,proc(t(n), p(n)) be the class of languages accepted by t(n)-time
PRAMs with p(n) processors.

We first present a translational lemma for ATMs.

Lemma 1. Suppose that t1(n), t2(n) 	= O(log n) and s1(n), s2(n) = Θ(log n)
are arbitrary functions computable by O(log n)-time ATMs with l worktapes if
input n is given as a binary string of length �log n�+ 1. Then, for any rational
constant ε > 0,

Atime,space(3(1 + ε)t1(n), 2(1 + ε)s1(n)) ⊆ Atime,space(t2(n), s2(n))

implies

Atime,space(t1(2kn), s1(2kn)) ⊆ Atime,space(3(1 + ε)t2(2kn), 2(1 + ε)s2(2kn)),

where k ≥ 1 is an arbitrary integer, and all ATMs have only 0 and 1 as their
tape symbols.

The proof of this lemma will be given in Section 3.1. By using this lemma, the
following hierarchy theorem is derived.

Theorem 1. Suppose that c, d > 0 and r > 1 are arbitrary rational constants,
and l ≥ 2 is an arbitrary integer. For any small rational constant ε > 0, there is a
language L ⊆ {0, 1}∗ which can be accepted by a c(9+ε) logr n-time d(4+ε) log n-
space ATM with l worktapes but not by any c logr n-time d log n-space ATM with
l worktapes. Here, all ATMs have only 0 and 1 as their tape symbols.
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The proof of this theorem is given in Section 3.2. Theorem 1 implies that con-
stant factors 9 + ε and 4 + ε in time and space, respectively, strictly enlarge the
complexity classes defined by time- and space-bounded ATMs.

Another result of this paper is a translational lemma for PRAMs.

Lemma 2. Suppose that t1(n), t2(n) 	= O(log n) and p1(n), p2(n) ≥ n are arbi-
trary functions computable by O(log n)-time PRAMs with n processors. For any
rational constant ε > 0,

Ptime,proc((1 + ε)t1(n), p1(n)) ⊆ Ptime,proc(t2(n), p2(n))

implies

Ptime,proc(t1(2kn), p1(2kn)) ⊆ Ptime,proc((1 + ε)t2(2kn), p2(2kn)),

where k ≥ 1 is an arbitrary integer.

Theorem 2. Suppose that c > 0, r1 > 1, and r2 ≥ 1 are arbitrary rational
constants. For any small rational constant ε > 0, there is a language which can
be accepted by a c(1 + ε) logr1 n-time PRAM with nr2(1+ε) processors but not by
any c logr1 n-time PRAM with nr2 processors.

The proofs of Lemma 2 and Theorem 2 are given in Sections 4.1 and 4.2,
respectively.

3 Translation and Tight Hierarchy of Alternating TMs

3.1 Translational Lemma for Alternating TMs

In this section, we will prove Lemma 1. Let M1 be a t1(2kn)-time s1(2kn)-space
ATM with l worktapes. Let L ⊆ {0, 1}∗ be the language accepted by M1. We will
construct a 3(1+ε)t2(2kn)-time 2(1+ε)s2(2kn)-space ATM M2 with l worktapes
accepting the language L. Note that all ATMs in this paper have only 0 and 1
as their tape symbols.

For all n ≥ 1, let

pad(x1x2 · · ·xn) = x10x20 · · ·xn0,

where x1x2 · · ·xn ∈ {0, 1}n. We define a language L′ as

L′ = {pad(x) 11 0h−2 | x ∈ L, 2|x|+ h = 2k|x|},

where 0h−2 is a padding sequence of length h− 2, and 11 is a “boundary” string
between pad(x) and the padding sequence 0h−2.

The outline of the proof is as follows: (I) We will construct an ATM M ′
1 which

accepts L′ within time 3(1 + ε)t1(N) and space 2(1 + ε)s1(N), where N is the
length of M ′

1’s input string. (II) From the assumption of Lemma 1 and (I), there
is an ATM M ′

2 which accepts L′ within time t2(N) and space s2(N). (III) We
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will construct an ATM M2 which accepts L within time 3(1 + ε)t2(2kn) and
space 2(1 + ε)s2(2kn).

(I) M ′
1 existentially generates (guesses) the values of n and N satisfying 2kn =

N in the second worktape. Let bin(i) denote the string over {0, 1} representing
value i in binary, where the leftmost bit is the least significant bit. For example,
bin(6) = 011. The values n and N are represented by string

pad(bin(n)) 11 pad(bin(N)) 11,

where 11 is a “boundary” string. M ′
1 starts to perform the following (1) through

(4) universally.
(1) M ′

1 verifies whether the guessed value N is equal to the length of the
input string as follows. M ′

1 performs (1a) and (1b) universally. (1a) M ′
1 gener-

ates bin(N + 1) in the first worktape (= index tape). Then M ′
1 enters the read

state read(B) with the first worktape having value N + 1 (for simplicity, we say
M ′

1 enters the read state with “B, N + 1” in the rest of this section). M ′
1 halts

with an accepting state if the (N + 1)st input symbol is blank symbol B (i.e.,
if the input has length at most N). (1b) M ′

1 performs the following (i) and (ii)
existentially in order to verify whether the input has length at least N . (i) M ′

1
enters the read state with “0, N”. (ii) M ′

1 enters the read state with “1, N”.
(2) Now M ′

1 can assume that it has correctly generated the value N . M ′
1 gen-

erates the value of 2kn in the first worktape. Note that bin(2kn) is string 00 · · · 01
of length kn+1. M ′

1 compares the value 2kn in the first worktape with the value N
in the second worktape. If 2kn = N , then M ′

1 halts with an accepting state (i.e.,
M ′

1 enters the read state with “B, N + 1”).
(3) Under the assumption that the values of N and n are correct, M ′

1 verifies
the following three conditions universally: (a) Symbol 0 appears every even cell
in the first 2n cells in the input tape, (b) 11 are in the (2n+1)st and (2n+2)nd
cells, and (c) each of the (2n + 3)rd through Nth cells contains 0. For (a), M ′

1
universally generates i ∈ {2, 4, . . . , 2n} in the first worktape and enters the read
state with “0, i”. (b) and (c) are left to the reader.

(4) It remains to verify whether x = x1x2 · · ·xn ∈ L. M ′
1 first “erases” the

value N , i.e., M ′
1 changes all non-blank symbols following the leftmost 11 in

the second worktape into 0. Note that there remains the value n (i.e., string
pad(bin(n))11) in the first 2(�log n�+ 1) + 2 cells in the second worktape. Now,
M ′

1 starts to simulate M1. Since ATMs have no input head, the simulation does
not depend on the input string except when the TM is in a read state. When
M1 enters the read state with “a, i”, M ′

1 compares i with n by sweeping non-
blank symbols in the first worktape and pad(bin(n))11 in the second worktape.
If 1 ≤ i ≤ n and a is a non-blank symbol, then M ′

1 enters the read state with
“a, 2i− 1”. If i = 0 and a = $, or if i > n and a = B, then M ′

1 halts with an
accepting state (i.e., M ′

1 enters the read state with “0, 2”). Otherwise, M ′
1 halts

with a rejecting state (i.e., M1 enters the read state with “1, 2”). Note that the
2nd symbol of x10x20 · · · is 0.

The time and space complexities of paragraphs (I), (1), (2), and (3) are
bounded by O(log N). The complexity of M ′

1 depends on (4). The worktapes
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of M1 are simulated by the corresponding worktapes of M ′
1. Here, it should

be noted that the second worktape of M ′
1 contains the value n, i.e., the string

pad(bin(n))11 is in the first 2(�log n�+ 1) + 2 cells. Thus, the second worktape
of M1 should be simulated by using the remaining area of M ′

1’s second worktape.
In order to recognize the boundary string 11, symbol 0 appears every other cell
in this remaining area. So, the space complexity of M ′

1 is 2s1(2kn) + O(log n),
which is bounded by 2(1 + ε)s1(N) because N = 2kn and s1(N) = Θ(log N).

For example, suppose that M1 has visited five cells in the second worktape,
the five cells contain 11010, and the head is placed at the third cell.

$110̌10BB · · ·

Then, M ′
1’s second worktape is

$ pad(bin(n)) 11 010100̌01001100 · · · ,

where the end-marker $ and the leftmost B in M1’s second worktape are sim-
ulated by 11 in M ′

1’s second worktape. (i) If M1’s head moves one position to
the left, then M ′

1’s head moves two positions to the left; at this point, if the
head is scanning 1, then the head moves one position to the left and then moves
one position to the right in order to verify whether M1’s head is scanning $ or
not (i.e., M ′

1’s head is scanning 11). (ii) If M1’s head moves one position to the
right, then M ′

1’s head moves two positions to the right. At this point, if M ′
1’s

head reaches right “end-marker” 11, then M ′
1 moves 11 two positions to the right

(which requires additive 6s1(2kn) steps in total). So, the time complexity of the
simulation is at most (4t1(2kn) + 2t1(2kn))/2 + 6s1(2kn) = 3t1(2kn) + 6s1(2kn)
in total. (Note that M ′

1’s head moves to the left (resp. right) at most t1(2kn)/2
times (resp. at least t1(2kn)/2 times). This is a reason why we padded the zeros
to the left of the symbols in M ′

1’s second worktape.) When M1 enters the read
state, M ′

1’s head in the second worktape must go back to the leftmost cell in
order to access the value n, which requires additive 2s1(2kn) + O(log n) steps.
Erasing N in (4) needs O(log N) steps. Therefore, the time complexity of M ′

1 is
3t1(2kn) + 8s1(2kn) + O(log n) + O(log N), which is bounded by 3(1 + ε)t1(N)
because t1(N) 	= O(s1(N)), N = 2kn, and s1(N) = Θ(log N).

(II) From the assumption of the lemma and (I), there is an ATM M ′
2 which

accepts L′ within time t2(N) and space s2(N).
(III) We will construct an ATM M2 which accepts L within time 3(1 +

ε)t2(2kn) and space 2(1 + ε)s2(2kn). By a method similar to (I) and (1), M2
correctly guesses the length n of the input string (i.e., generates pad(bin(n))11)
in the second worktape in O(log n) steps.

M2 starts to simulate M ′
2. When M ′

2 enters the reading state with “a, i”,
M2 compares the value i in the first worktape (= index tape) with value 2n by
sweeping non-blank symbols and pad(bin(n))11 in M2’s first and second work-
tapes, respectively. If i ≤ 2n and i is odd, then M2 enters the read state with
“a, (i + 1)/2”. If 1 ≤ i ≤ 2n, i is even, and a = 0 (a 	= 0), then M2 halts with
an accepting (resp. rejecting) state. If i = 0 and a = $, then M2 halts with an
accepting state. If i ∈ {2n+1, 2n+2} and a = 1 (a 	= 1), then M2 halts with an
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accepting (resp. rejecting) state. If i > 2n + 2, then M2 compares values i with
N = 2kn as follows: Note that if i is represented by a binary string of length at
most kn, then i is less than N . Thus, M2 can decide whether i ≤ N by using
the “binary counter” pad(bin(n))11 in the second worktape and value k in the
finite control. The time and space complexities for this task are O(s2(N)) and
s2(N) + O(1), respectively (note that the value i in M ′

2’ index tape is stored
in space s2(N), since M ′

2 is s2(N)-space bounded). If i ≤ N and a = 0, then
M2 halts with an accepting state. If i > N and a = B, then M2 halts with an
accepting state. Otherwise, M2 halts with a rejecting state.

The time and space complexities of guessing n are both O(log n). By the
same analysis as in the last paragraph of task (I), the time and space complexi-
ties of M2 are 3t2(N) + 8s2(N) + O(log n) + O(s2(N)) and 2s2(N) + O(log n),
respectively. They are bounded by 3(1 + ε)t2(2kn) and 2(1 + ε)s2(2kn), since
t2(N) 	= O(s2(N)), N = 2kn, and s2(N) = Θ(log N). This completes the proof
of Lemma 1.

3.2 Tight Hierarchy Theorem for Alternating TMs

In this section, we will prove Theorem 1, i.e.,

Atime,space(c logr n, d log n) � Atime,space(c(9 + ε) logr n, d(4 + ε) log n). (1)

Let q be a sufficiently large integer such that 9(1 + 1/q)r+2 ≤ 9 + ε and
4(1 + 1/q)3 ≤ 4 + ε. In order to show the separation (1), it is enough to prove

Atime,space(c logr n, d log n)
� Atime,space(9c(1 + 1/q)r+2 logr n, 4d(1 + 1/q)3 log n).

The following proof is based on the same idea as in [5,7], but our proof is simpler.
For example, two parameters p and q were used in [5,7], while only q is used here.
Assume for contradiction that the following relation holds.

Atime,space(c logr n, d log n)
= Atime,space(9c(1 + 1/q)r+2 logr n, 4d(1 + 1/q)3 log n).

Then,

Atime,space(9c(1 + 1/q)r+2 logr n, 4d(1 + 1/q)3 log n)
⊆ Atime,space(c logr n, d log n).

We regard 1 + 1/q in this relation as 1 + ε in Lemma 1. By applying Lemma 1
to this relation, we obtain

Atime,space(3c(1 + 1/q)r+1(kn)r, 2d(1 + 1/q)2kn)
⊆ Atime,space(3c(1 + 1/q)(kn)r, 2d(1 + 1/q)kn). (2)

Let c′ = 3c(1 + 1/q) and d′ = 2d(1 + 1/q). Then the inclusion relation (2) can
be written as

Atime,space(c′(1 + 1/q)r(kn)r, d′(1 + 1/q)kn) ⊆ Atime,space(c′(kn)r, d′kn).
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Substituting k = (q + i)q into this relation yields

Atime,space(c′((q + 1)(q + i)n)r, d′(q + 1)(q + i)n)
⊆ Atime,space(c′((q + i)qn)r, d′(q + i)qn), (3)

where i is an integer. When i ≥ 1, (q + i)q ≤ (q + 1)(q + i− 1) holds. Hence, for
i ≥ 1,

Atime,space(c′((q + 1)(q + i)n)r, d′(q + 1)(q + i)n)
⊆ Atime,space(c′((q + 1)(q + i− 1)n)r, d′(q + 1)(q + i− 1)n). (4)

By substituting i = 0 into (3), we obtain

Atime,space(c′((q + 1)qn)r, d′(q + 1)qn) ⊆ Atime,space(c′(q2n)r, d′q2n). (5)

Let ĉ be an integer (the value of ĉ will be fixed later). By substituting i =
1, 2, 3, . . . , ĉq − q into (4), we obtain

Atime,space(c′((q + 1)(q + 1)n)r, d′(q + 1)(q + 1)n)
⊆ Atime,space(c′((q + 1)qn)r, d′(q + 1)qn),

Atime,space(c′((q + 1)(q + 2)n)r, d′(q + 1)(q + 2)n)
⊆ Atime,space(c′((q + 1)(q + 1)n)r, d′(q + 1)(q + 1)n),

Atime,space(c′((q + 1)(q + 3)n)r, d′(q + 1)(q + 3)n)
⊆ Atime,space(c′((q + 1)(q + 2)n)r, d′(q + 1)(q + 2)n),
...

Atime,space(c′((q + 1)ĉqn)r, d′(q + 1)ĉqn)
⊆ Atime,space(c′((q + 1)(ĉq − 1)n)r, d′(q + 1)(ĉq − 1)n).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(6)

Since r > 1,

Atime,space(ĉ · c′(q2n)r, ĉ · d′q2n) ⊆ Atime,space(c′((q + 1)ĉqn)r, d′(q + 1)ĉqn).
(7)

By connecting relations (5),(6), and (7), we obtain

Atime,space(ĉ · c′(q2n)r, ĉ · d′q2n) ⊆ Atime,space(c′(q2n)r, d′q2n). (8)

On the other hand, it is known [6,7,9] that, for all functions s(n) ≥ log n and
t(n) 	= O(s(n) log s(n)) which are computable by O(s(n))-time TMs, there are
constants c̃ and d̃ such that

Atime,space(t(n), s(n)) � Atime,space(c̃ · t(n), d̃ · s(n)). (9)

If t(n) and s(n) are the appropriate functions from (8) and the constants ful-
fill (9), and if we fix ĉ ≥ max{c̃, d̃}, inclusion (8) contradicts separation (9). This
completes the proof of Theorem 1.
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4 Translation and Tight Hierarchy of PRAMs

4.1 Translational Lemma for PRAMs

In this section, we will prove Lemma 2. Let M1 be a t1(2kn)-time PRAM with
p1(2kn) processors. Let L be the language accepted by M1. We will construct a
(1+ε)t2(2kn)-time PRAM M2 with p2(2kn) processors accepting the language L.

We define a language L′ as L′ = {x$h |x ∈ L, |x| + h = 2k|x|}, where $h

is a padding sequence of length h, and the symbol $ does not appear in x.
First, we will construct a (1 + ε)t1(N)-time PRAM M ′

1 with p1(N) processors
accepting L′, where N is the length of M ′

1’s input. Processors of M ′
1 are denoted

by P ′
1, P

′
2, · · ·. M ′

1 verifies whether the position n + 1 of the leftmost $ satisfies
N = 2kn. Computing the value n from N = 2kn can be done by using addition
log N times. Then, every processor P ′

i (n + 1 ≤ i ≤ N) verifies whether the ith
input is $. Note that p1(N) ≥ N . Now M ′

1 starts to simulate p1(2kn)-processor
PRAM M1 on the input x of length n. If M1 accepts x (i.e., x ∈ L), then M ′

1
accepts the input of length N . The time complexity of M ′

1 is t1(2kn)+O(log N),
which is bounded by (1 + ε)t1(N) because N = 2kn and t1(N) 	= O(log N). The
number of M ′

1’s processors is p1(2kn) = p1(N).
From the assumption of Lemma 2 and the previous paragraph, there is a

t2(N)-time PRAM M ′
2 with p2(N) processors accepting the language L′.

Finally, we will construct a (1 + ε)t2(2kn)-time PRAM M2 with p2(2kn) pro-
cessors accepting L. M2 computes the value N = 2kn from n by using addition
kn times. Processors Pn+1, Pn+2, . . . , P2kn of M2 write symbol $ into common
memory M [n + 1], M [n + 2], . . . , M [2kn], respectively. Note that p2(2kn) ≥ 2kn.
Then, M2 starts to simulate p2(N)-processor PRAM M ′

2 on input x$$ · · · $ of
length N = 2k|x|. The time complexity of M2 is t2(N) + O(n) in total, which is
bounded by (1+ ε)t2(2kn) because N = 2kn and t2(N) 	= O(log N). The number
of M2’s processors is p2(N) = p2(2kn). This completes the proof of Lemma 2.

4.2 Tight Hierarchy Theorem for PRAMs

In this section, we will prove Theorem 2, i.e.,

Ptime,proc(c logr1 n, nr2) � Ptime,proc(c(1 + ε) logr1 n, nr2(1+ε)). (10)

The proof is similar to Theorem 1. Constant factors of time and space were trans-
lated in Section 3.2; both a constant factor and an exponent will be translated
simultaneously in this section.

Let q be a sufficiently large integer such that (1 + 1/q)r1+2 ≤ 1 + ε. In order
to show the separation (10), it is enough to prove

Ptime,proc(c logr1 n, nr2) � Ptime,proc(c(1 + 1/q)r1+2 logr1 n, nr2(1+1/q)).

Assume for contradiction that the following relation holds.

Ptime,proc(c logr1 n, nr2) = Ptime,proc(c(1 + 1/q)r1+2 logr1 n, nr2(1+1/q)).
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Then,

Ptime,proc(c(1 + 1/q)r1+2 logr1 n, nr2(1+1/q)) ⊆ Ptime,proc(c logr1 n, nr2).

We regard 1 + 1/q in this relation as 1 + ε in Lemma 2. By applying Lemma 2
to this relation, we obtain

Ptime,proc(c(1 + 1/q)r1+1(kn)r1 , 2r2(1+1/q)kn)
⊆ Ptime,proc(c(1 + 1/q)(kn)r1 , 2r2kn).

(11)

Let c′ = c(1 + 1/q). Then the inclusion relation (11) can be written as

Ptime,proc(c′(1 + 1/q)r1(kn)r1 , 2r2(1+1/q)kn) ⊆ Ptime,proc(c′(kn)r1 , 2r2kn).

Substituting k = (q + i)q into this relation yields

Ptime,proc(c′((q + 1)(q + i)n)r1 , 2r2(q+1)(q+i)n)
⊆ Ptime,proc(c′((q + i)qn)r1 , 2r2(q+i)qn),

(12)

where i is an integer. When i ≥ 1, (q + i)q ≤ (q + 1)(q + i− 1) holds. Hence, for
i ≥ 1,

Ptime,proc(c′((q + 1)(q + i)n)r1 , 2r2(q+1)(q+i)n)
⊆ Ptime,proc(c′((q + 1)(q + i− 1)n)r1 , 2r2(q+1)(q+i−1)n).

(13)

By substituting i = 0 into (12), we obtain

Ptime,proc(c′((q + 1)qn)r1 , 2r2(q+1)qn) ⊆ Ptime,proc(c′(q2n)r1 , 2r2q2n). (14)

Let ĉ be an integer (the value of ĉ will be fixed later). By substituting i =
1, 2, 3, . . . , ĉq − q into (13), we obtain

Ptime,proc(c′((q + 1)(q + 1)n)r1 , 2r2(q+1)(q+1)n)
⊆ Ptime,proc(c′((q + 1)qn)r1 , 2r2(q+1)qn),

Ptime,proc(c′((q + 1)(q + 2)n)r1 , 2r2(q+1)(q+2)n)
⊆ Ptime,proc(c′((q + 1)(q + 1)n)r1 , 2r2(q+1)(q+1)n),

Ptime,proc(c′((q + 1)(q + 3)n)r1 , 2r2(q+1)(q+3)n)
⊆ Ptime,proc(c′((q + 1)(q + 2)n)r1 , 2r2(q+1)(q+2)n),
...

Ptime,proc(c′((q + 1)ĉqn)r1 , 2r2(q+1)ĉqn)
⊆ Ptime,proc(c′((q + 1)(ĉq − 1)n)r1 , 2r2(q+1)(ĉq−1)n).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(15)

Since r1 > 1,

Ptime,proc(ĉ · c′(q2n)r1 , 2ĉ·r2q2n) ⊆ Ptime,proc(c′((q + 1)ĉqn)r1 , 2r2(q+1)ĉqn).
(16)

By connecting relations (14),(15), and (16), we obtain

Ptime,proc(ĉ · c′(q2n)r1 , 2ĉ·r2q2n) ⊆ Ptime,proc(c′(q2n)r1 , 2r2q2n). (17)
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On the other hand, it is known [6] that, for all functions t(n) and p(n) which are
not constant and are computable by a t(n)-time PRAM with p(n) processors,
there is a constant c̃ such that

Ptime,proc(t(n), p(n)) � Ptime,proc(c̃ · t(n), p(n)). (18)

If t(n) and p(n) are the appropriate functions from (17) and the constant ful-
fills (18), and if we fix ĉ ≥ c̃, inclusion (17) contradicts separation (18). This
completes the proof of Theorem 2.

5 Conclusion

In this paper, we discussed tight hierarchy theorems for three major parallel com-
putation models: ATMs, PRAMs, and uniform circuit families. For PRAMs and
uniform circuit families, complexity classes are strictly enlarged by the constant
factor 1 + ε in time (depth) and the exponent 1 + ε in the number of proces-
sors (size). As for ATMs, on the other hand, there is no uniform-cost criterion
or no uniformity conditions. From this reason, the constant factors in time and
space of the ATM-hierarchy are 9 + ε and 4 + ε, respectively. Improving these
factors toward 1 + ε is an interesting future work.
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Collapsing Recursive Oracles for

Relativized Polynomial Hierarchies�

(Extended Abstract)

Tomoyuki Yamakami
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Peterborough, Ontario, Canada K9J 7B8

Abstract. Certain recursive oracles can force the polynomial hierarchy
to collapse to any fixed level. All collections of such oracles associated
with each collapsing level form an infinite hierarchy, called the collapsing
recursive oracle polynomial (CROP) hierarchy. This CROP hierarchy is
a significant part of the extended low hierarchy (note that the assump-
tion P = NP makes the both hierarchies coincide). We prove that all
levels of the CROP hierarchy are distinct by showing “strong” types of
separation. First, we prove that each level of the hierarchy contains a set
that is immune to its lower level. Second, we show that any two adja-
cent levels of the CROP hierarchy can be separated by another level of
the CROBPP hierarchy—a bounded-error probabilistic analogue of the
CROP hierarchy. Our proofs extend the circuit lower-bound techniques
of Yao, H̊astad, and Ko.

1 Collapsing Recursive Oracles

The polynomial hierarchy (simply called the P hierarchy) was introduced by
Meyer and Stockmeyer [13] in the early 1970s as a resource-bounded variant of
the arithmetical hierarchy in recursion theory. Unable to prove the separation
of any level of the P hierarchy (for instance, the separation between P and NP),
Baker, Gill, and Solovay [2] looked into an “oracle model” and developed the
so-called theory of relativization, which sheds insightful light on the mechanism
of oracle access. The theory has also nurtured fundamental proof techniques and
tools for, e.g., circuit lower bounds. Oracle models have been since then adopted
into various schemes, such as pseudorandom functions and interactive protocols.
Construction of oracles (or relativized worlds) has become a routine to assert that
separating (or collapsing) complexity classes in question requires nonrelativizable
proof techniques. In relativized P hierarchies, Ko [9] later discovered recursive
oracles that force a relativized P hierarchy to collapse to any desired level. For
simplicity, we call such an oracle a collapsing oracle. Of particular interest are
collapsing “recursive” oracles. All PSPACE-complete sets C are examples of
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collapsing recursive oracles, which force NPC to collapse to PC . A more explicit
recursive construction of Baker, Gill, Solovay [2] gives rise to the set A satisfying

A = {〈1i, x, 1t〉 | NA
i (x) outputs 1 within t steps},

where Ni is the ith nondeterministic oracle Turing machine, which also makes
NPA collapse to PA. Intuitively, collapsing oracles possess rich information on
the behaviors of sets in a given level. We can view such a collapsing oracle as an
encoding of membership information of input strings to languages. To collapse
NPA to PA, for instance, we need to encode into A the information on “x ∈ LA”
for any string x ∈ Σ∗ and any set L(·) ∈ NP(·) so that an appropriate PA-
machine can retrieve such information from A. What kind of information should
be stored inside a collapsing oracle A? How much information is necessary to
store in the oracle A?

In this paper, we study the collection of collapsing recursive oracles. Our
goals are to study and analyze the internal structure of a class of collapsing
recursive oracles that collapse the P hierarchy to a certain level. Now, we formally
introduce a collection of such classes. We call it the collapsing recursive oracle
polynomial (CROP) hierarchy. For convenience, let REC denote the class of all
recursive languages. We follow the standard convention thatΔP

0 = ΣP
0 = ΘP

0 = P
(thus, ΔP

1 = ΘP
1 = P).

Definition 1. Let k ≥ 1.

1. CROΣp
k = {A ∈ REC | ΣP

k (A) = ΣP
k+1(A)}.

2. CROΔp
k = {A ∈ REC | ΔP

k (A) = ΔP
k+1(A)}.

3. CROΘp
k = {A ∈ REC | ΘP

k (A) = ΘP
k+1(A)}.

4. CROH =
⋃

i≥1 CROΔp
i .

It is not difficult to show that CROΔp
k ⊆ CROΣp

k ⊆ CROΘp
k+1 ⊆ CROΔp

k+1
for each index k ≥ 1. It is useful to note the following alternative characterization
of the CROP hierarchy: for any class D ∈ {ΘP

k ,ΔP
k , ΣP

k | k ≥ 1}, CRO · D
coincides with the class {A ∈ REC | ΣP

k (A) = co-D(A)}. This characterization
is the consequence of the so-called upward collapse property (e.g., ΣP

k = ΠP
k

implies ΣP
k = ΣP

k+1) of the P hierarchy.
As mentioned earlier, any PSPACE-complete set and the set A of Baker et

al. are typical examples of recursive sets that belong to the complexity class
CROΔp

1 . Even all P-T-complete sets satisfying NP(C) ⊆ C for any given class C
belong to CROΔp

1 .

Lemma 1. Let C be any complexity class of languages such that NP(C) ⊆ C.
Any P-T-complete set for C is in CROΔp

1 .

Notice that the CROP hierarchy has been implicitly discussed in the lit-
erature. For instance, Heller [8] constructed recursive oracles A, B such that
ΔP

2 (A) 	= ΣP
2 (A) = ΠP

2 (A) and ΣP
1 (B) 	= ΔP

2 (B) = ΣP
2 (B). Later Bruschi [5]

extended Heller’s separation to any level of the P hierarchy; that is, ΔP
k (A) 	=

ΣP
k (A) = ΠP

k (A) and ΣP
k−1(B) 	= ΔP

k (B) = ΣP
k (B) for every k ≥ 3. Sheu
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and Long [16] constructed two recursive oracles A and B such that ΘP
k (A) 	=

ΔP
k (A) = ΣP

k (A) and ΣP
k−1(B) 	= ΘP

k (B) = ΣP
k (B), where k ≥ 2. These results

implicitly prove that the CROP hierarchy is indeed an infinite hierarchy:

Theorem 1. For any k ≥ 1, CROΘp
k 	= CROΔp

k 	= CROΣp
k 	= CROΘp

k+1.

Theorem 1 shows a clear gap among all levels of the CROP hierarchy. In other
words, a certain collapsing recursive oracle in each level of the CROP hierarchy
encodes a different type of information. The theorem, however, fails to address
how large such a gap is and how different such coded information is. In later
sections, we strengthen the theorem by showing that much stronger separations
are possible.

The CROP hierarchy is a significant “part” of the so-called extended low hier-
archy. This hierarchy was originally introduced by Balcázar, Book, and Schöning
[3] for the Σ-levels and later expanded by Allender and Hemachandra [1] and
by Long and Sheu [12] to the Δ- and Θ-levels. For our discussion, we limit our
attention to the recursive segment of this hierarchy; that is, all elements of the
hierarchy are limited to recursive sets. We use the special prefix “r” to signify our
“recursive” restriction in the following definition of the extended low hierarchy.

Definition 2. Let k ≥ 1.

1. rELΣp
k = {A ∈ REC | ∃B ∈ NP[ΣP

k (A) ⊆ ΣP
k−1(A⊕B)]}.

2. rELΔp
k+1 = {A ∈ REC | ∃B ∈ NP[ΔP

k+1(A) ⊆ ΔP
k (A⊕B)]}.

3. rELΘp
k+1 = {A ∈ REC | ∃B ∈ NP[ΘP

k+1(A) ⊆ ΘP
k (A⊕B)]}.

The following lemma shows the close connection between the CROP hierar-
chy and the extended low hierarchy.

Lemma 2. Let k ≥ 1.

1. CROΘp
k ⊆ rELΘp

k+1, CROΔp
k ⊆ rELΔp

k+1, and CROΣp
k ⊆ rELΣp

k+1.
2. If P = NP, then CROΘp

k = rELΘp
k+1, CROΔp

k = rELΔp
k+1, and CROΣp

k =
rELΣp

k+1.

Although we believe that the CROP hierarchy is different from the extended
low hierarchy, we may not be able to prove the separation by currently known
proof techniques because such a separation implies that P 	= NP. Nonetheless,
there is certain evidence that supports the difference between the CROP hierar-
chy and the extended low hierarchy. We show such evidence in the subsequent
section.

2 Basic Properties of the CROP Hierarchy

We highlight basic properties of the CROP hierarchy. These properties signify
the importance of the hierarchy in the theory of relativization. We begin with a
simple lemma concerning the density of sets in the hierarchy. A set A is called
coinfinite if its complement A (= Σ∗−A) is infinite. If ΔP

k 	= ΣP
k , then CROΔp

k

contains no finite sets.
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Lemma 3. Assume that ΔP
k 	= ΣP

k . Every set in CROΣp
k is both infinite and

coinfinite.

Next, we state a closure property of the CROP hierarchy. We review the
notion of strong nondeterministic Turing reduction. For any two sets A, B, let
A ≤sn

T B mean that A ∈ NP(B)∩co-NP(B), which is equivalent to the inclusion
NP(A) ⊆ NP(B). Write A ≡sn

T B if A ≤sn
T B and B ≤sn

T A.

Lemma 4. Let A, B be any two sets.

1. If A ≡p
T B and B ∈ CROΔp

1 , then A ∈ CROΔp
1 .

2. Let k ≥ 2. If A ≡sn
T B and B ∈ CROΔp

k, then A ∈ CROΔp
k.

The following result relates to the nonexistence of complete sets in the CROP
hierarchy. The proof uses a simple diagonalization argument.

Proposition 1. For each k ≥ 1, CROΔp
k has no P-m-complete set; that is, for

any set A ∈ CROΔp
k, there exists a set B ∈ CROΔp

k such that A ≤p
m B and

B 	≤p
m A.

Proof. Take any set A in CROΔp
k. Our goal is to construct a set B such that

(i) ΔP
k (B) = ΣP

k (B), (ii) A ≤p
m B, and (iii) B 	≤p

m A. Our oracle B is of the
form A⊕C for a certain set C such that C 	≤p

m A and ΔP
k (A⊕C) = ΣP

k (A⊕C),
where A ⊕ C = {0x | x ∈ A} ∪ {1x | x ∈ C}. This B satisfies B 	≤p

m A
because, otherwise, A⊕C ≤p

m A via a certain reduction f and thus C ≤p
m A via

g(x) =def f(1x) for all x ∈ Σ∗, a contradiction. The set C is split into two parts:
C = C0 ∪ C1 with C0 ⊆ 0Σ∗ and C1 ⊆ 1Σ∗. The construction of C0 and C1 is
given as follows. We fix an effective enumeration {fi}i∈N of all polynomial-time
total computable functions. For convenience, set C0(−1) = C1(−1) = Ø.

Stage i ≥ 0: First, we define C0(i). Assume that there exists a string x ∈ Σi−1

such that fi(0x) ∈ A. We then define C0(i) = C0(i− 1). Assume otherwise that
fi(0x) 	∈ A for any x ∈ Σi−1. In this case, let C0(i) = C0(i − 1) ∪ 0Σi−1. In
either case, for a certain x ∈ Σi−1, fi(0x) ∈ A iff 0x 	∈ C. Next, we define C1(i).
Let C(i − 1) = C0(i − 1) ∪ C1(i − 1) and consider the value of N

A⊕C(i−1)
i (·).

Define C1(i) = C1(i − 1) ∪ {1〈1j, z, 1t〉 | |〈1j , z, 1t〉| = i − 1 ∧ N
A⊕C(i−1)
j (z) =

1 within t steps}. Note that Ni(z) cannot query any string of length > i − 1.
This makes N

A⊕C(i−1)
j (z) = 1 exactly when 1〈1j, z, 1t〉 ∈ C1(i).

Finally, we set C0 =
⋃

i∈N C0(i), C1 =
⋃

i∈N C1(i), and C = C0 ∪ C1. Obvi-
ously, the set B = A⊕ C satisfies the desired conditions (i)-(iii). �

There is a direct connection between NP and the CROP hierarchy.

Lemma 5. Let k ≥ 1. (1) NP ⊆ CROΔp
k ⇐⇒ ΔP

k = ΣP
k ; (2) NP ⊆ CROΣp

k

⇐⇒ ΣP
k = ΠP

k ; and (3) NP ⊆ CROΘp
k ⇐⇒ ΘP

k = ΣP
k .

Sparse sets play an intriguing role in the CROP hierarchy. A set S is called
(polynomially) sparse if there exists a polynomial p such that |S ∩ Σn| ≤ p(n)
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for all n ∈ N. Let SPARSE denote the collection of all sparse sets. As discussed
earlier, the CROP hierarchy is a part of the extended low hierarchy. However,
there seems to be an obvious difference between them. It is well-known in [14]
that rSPARSE ⊆ rELΣp

3 ; however, it is unknown whether rSPARSE ⊆ CROΣp
k

even for any k ≥ 2. Lemma 6 and a common belief ΔP
k 	= ΣP

k for every k ≥ 1
imply that rSPARSE � CROΣp

k for any k ≥ 1.
Long and Selman [11] proved that, for every k ≥ 2, PH = ΣP

k iff PH(A) =
ΣP

k (A) for every oracle A ∈ SPARSE. For simplicity, let rSPARSE = SPARSE∩
REC. In our terminology, for every k ≥ 2, ΔP

k = ΣP
k iff rSPARSE ⊆ CROΔp

k.
This claim is also true if we replace rSPARSE by any subclass C of rEXTSPARSE
with Ø ∈ C, where rEXTSPARSE is the recursive class of extended sparse sets
defined as {A ∈ REC | ∃S ∈ rSPARSE[A ≡sn

T S]}. An example of such a subclass
C is (NP ∩ co-NP)/poly ∩ REC.

Lemma 6. Let k ≥ 2 and let C be any subclass of rEXTSPARSE with Ø ∈ C.
(1) C ⊆ CROΔp

k ⇐⇒ ΔP
k = ΣP

k ; (2) C ⊆ CROΣp
k ⇐⇒ ΣP

k = ΠP
k ; and (3)

C ⊆ CROΘp
k ⇐⇒ ΘP

k = ΣP
k .

On the contrary, Balcázar, Book, and Schöning [4] proved that PH is fi-
nite iff PH(A) is finite for every A ∈ SPARSE. The main argument is that if
∃S ∈ SPARSE[PH(S) = ΣP

k (S)] then PH = ΣP
k+2. They used the following

transference property: A ∈ ΣP
k /poly and A ∈ Pld(A) imply ΣP

2 (A) ⊆ ΣP
k+2,

where the notation “A ∈ Pld(A)” means that A is polynomial-time Turing-self-
reducible with length-decreasing queries. In the following lemma, we show the
relationship between sparse sets in the CROP hierarchy and advice complexity
classes.

Lemma 7. Let k ≥ 2.
1. rSPARSE ∩CROΔp

k 	= Ø ⇐⇒ ΣP
k ⊆ ΔP

k /poly.
2. rSPARSE ∩CROΣp

k 	= Ø ⇐⇒ ΠP
k ⊆ ΣP

k /poly.
3. rSPARSE ∩CROΘp

k 	= Ø ⇐⇒ ΣP
k ⊆ ΘP

k /poly.

The proof of Lemma 7 easily follows from the argument of Balcázar et al. [4].
Lemmas 6 and 7 lead to the following consequence.

Corollary 1. For each integer k ≥ 1, if rSPARSE ∩ CROΔp
k 	= Ø, then

rSPARSE ⊆ CROΣp
k+1.

Corollary 1 immediately follows from the recent result of Cai, et al. [6], who
proved that A ∈ ΔP

k /poly and A ∈ Pld(A) imply Sp
2(A) ⊆ Sp

2(ΣP
k−1).

3 Strong Separation by Immune Sets

The main theme of this paper is to strengthen the separation of the CROP
hierarchy given in Theorem 1. Of particular interest is the question of how large
the gap is between any two adjacent levels of the hierarchy. We wish to show the
separation in a “stronger” sense using immune sets. We first review the notions
of C-immune sets, C-bi-immune sets, and C-simple sets for any complexity class
C of languages.
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Definition 3. Let C be any complexity class of languages. A set S is called C-
immune if S is infinite and no infinite subset of S belongs to C. A C-bi-immune
set is a set C such that both C and C are C-immune. In addition, a set S is
C-simple if S is infinite and its complement S is C-immune.

The separation of two complexity classes by immune sets is often referred to
as a strong separation. We show such a strong separation of any two adjacent
levels of the CROP hierarchy by proving the existence of bi-immune sets at each
level of the hierarchy.

Theorem 2. Let k ≥ 1.

1. There is no CRO · C-simple set for any C ∈ {ΘP
k+1,Δ

P
k , ΣP

k }.
2. There exists a CROΔp

k-bi-immune set in CROΣp
k .

3. There exists a CROΣp
k -bi-immune set in CROΘp

k+1.
4. There exists a CROΘp

k-bi-immune set in CROΔp
k.

In fact, we can prove the existence of much more complex immune sets (such
as hyperimmune sets in [19]).

For the proof of Theorem 2, we assume the reader’s familiarity with basics of
constant-depth Boolean circuits and circuit lower bound techniques of Yao [20],
H̊astad [7], Ko [9,10], and Sheu and Long [16]. Any gate of a Boolean circuit
is limited to AND, OR, or XOR with unbounded fanin and one fanout. We
set our alphabet Σ to be {0, 1}. Let λ denote the empty string as well as the
empty “symbol.” Let k ≥ 1. For each symbol b ∈ {0, 1,λ}, let L(b)

k (A) denote
the set {x ∈ Σ∗ | ∃y1 ∈ Σ|x|∀y2 ∈ Σ|x| · · ·Qkyk ∈ Σ|x|[bxy1y2 · · · yk ∈ A]},
where Qk is ∀ if k is even, and Qk is ∃ if k is odd. Obviously, L(b)

k (A) ∈ ΣP
k (A)

for any oracle A. Let Kk(A) be the P-T-complete set for ΣP
k (A) defined as:

K1(A) = {〈1i, x, 1t〉 | NA
i (x) = 1 within t steps } and Kk(A) = K1(Kk−1(A))

for each k ≥ 2. For convenience, we set K0(A) to be A. Note that there exists
a polynomial q satisfying the following: for every x ∈ Σ∗, there is a Σk(q(|x|))-
circuit Cx such that, for every set A, Cx,ρA= 1 iff x ∈ Kk(A).

Proof of Theorem 2. 1) Obviously, each level of the CROP hierarchy is closed
under complementation. For instance, we have CROΣp

k = co-CROΣp
k . Therefore,

there is no CROΣp
k -simple set.

2) Letting k ≥ 1, we want to prove the existence of a CROΔp
k-immune set

in CROΣp
k . The other claims (3)-(4) are similarly proven. For simplicity, write

Lk(A) for L(λ)
k (A) in this proof. Let {Mi}i∈N and {M̌i}i∈N be respectively fixed

effective enumerations of all oracle P-machines and of all deterministic Turing
machines (TMs) without any specific time bound.

We build the desired oracle A by stages. During these stages, we attempt to
satisfy the following two requirements.

i) ∀x[x ∈ Kk(A) ⇐⇒ x 	∈ Lk(A)].
ii) ∀S ∈ REC[|S| =∞∧ (S ⊆ A ∨ S ⊆ A)

=⇒ ∃y(y ∈ Lk(S)⇐⇒M
Kk−1(S)
i (y) = 0)].
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The first requirement states that Kk(A) ∈ ΠP
k (A), which implies that ΣP

k (A) =
ΠP

k (A) since Kk(A) is P-T-complete for ΣP
k (A). This yields the membership

that A ∈ CROΣp
k . The second requirement states that, for any infinite recursive

subset S of either A or A, Lk(S) is not in ΔP
k (S). From this, it follows that

ΔP
k (S) 	= ΣP

k (S), and therefore S 	∈ CROΔp
k. In other words, A is CROΔp

k-bi-
immune. Combining the above two requirements, we obtain the desired conse-
quence that A is CROΔp

k-bi-immune and is indeed in CROΣp
k .

The proof is done by induction on k ≥ 1. Since the basis case k = 1 is similar
to the induction step k ≥ 2, we prove only the induction step. For each pair
(i, t) ∈ N2, let ρi,t be the restriction defined as ρi,t(x) = M̌i(x) if M̌i(x) halts
within t steps; otherwise, ρi,t(x) = ∗. Moreover, let Sρi,t be the set defined as
Sρi,t = {x ∈ Σ∗ | ρi,t(x) = 1}.

Now, we formally describe the construction procedure of A by stages. We
define the set A(�) at each stage � ∈ N and finally set A =

⋃
�∈N A(�). We later

show that A satisfies the aforementioned two requirements.
Stage t = 0: Let A(0) = Ø and R = N. Moreover, let b(0) = 0.
Stage t ≥ 1: Let m = b(t−1)+1. Assume that A(t−1) ⊆ Σ<m. We determine

the membership of all the strings of length m to A. Choose the minimal index
i ∈ R such that i ≤ t, ∀x ∈ Σ≤m[ρi,t(x) 	= ∗], and S=m

ρi,t
	= Ø. If there is no such

i, then skip the following and go to the next stage by setting b(t) = b(t− 1) and
A(t) = A(t − 1). (This does not make the procedure an infinite loop because
eventually we will find such an i.) For simplicity, write ρ for ρi,t and let S =
L(M̌i). Note that S is in general an r.e. set whereas Sρ is recursive. Hereafter,
we assume that such i exists. We need to consider two cases.

Case m 	≡ 0 (mod k + 1): We want to satisfy the requirement (ii). If S<m
ρ �

A(t − 1) and S<m
ρ � A(t− 1), then we skip the rest and go to the next stage

by letting R = R − {i}, A(t) = A(t − 1), and b(t) = m, because this implies
that S � A and S � A. Next, assume otherwise that either S<m

ρ ⊆ A(t− 1) or
S<m

ρ ⊆ A(t− 1). This indicates that there is a chance of either S ⊆ A or S ⊆ A
after the construction. Let n = max{j ∈ N | pi(j) ≤ m ∧ (k + 1)j ≤ m}. Note
that, by the choice of n, M

Kk−1(ρ)
i (y)↓ (“well-defined”) for all y ∈ Σ≤n. Check

whether there exists a string y ∈ Σ≤n such that y ∈ Lk(ρ) iff M
Kk−1(ρ)
i (y) = 0.

If so, then let A(t) = A(t − 1). Assume otherwise. There are three cases to
consider. If S=m

ρ = Σm, then let A(t) be A(t−1)∪0Σm−1. Thus, neither S ⊆ A

nor S ⊆ A. Assume that this is not the case. If S<m
ρ ⊆ A(t− 1), then let A(t)

be A(t − 1) ∪ S=m
ρ . This implies S � A. If S<m

ρ ⊆ A(t − 1), then let A(t) be
A(t− 1) ∪ Sρ

=m
, implying S � A. Finally, let R = R− {i} and b(t) = m. Go to

the next stage.
Case m ≡ 0 (mod k + 1): We target the two requirements simultaneously.

Let m = (k + 1)n. Consider all strings x in Σn. By employing the standard
diagonalization argument, we choose a minimal set B ⊆ Σm such that (a) for
all x ∈ Σn, x 	∈ Lk(A(t − 1) ∪ B) iff x ∈ Kk(A(t − 1) ∪ B) and (b) S=m

ρ �
A(t − 1) ∪ B and S=m

ρ � Σm − (A(t − 1) ∪ B). Such a set B exists because
the membership question “x ∈ Kk(·)?” depends only on the query strings in
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Σ≤n whereas the question “x ∈ Lk(·)?” does on the strings in Σm. Using this
B, we define A(t) = A(t − 1) ∪ B. This guarantees that Lk(A)=n = Kk(A)

=n
,

S=m � A=m, and S=m � A
=m

. Finally, let b(�) = m and update R as R − {i}.
Go to the next stage.

By the construction of A, it is not difficult to verify that A satisfies the
requirements (i)-(ii). �

How much can we strengthen Theorem 2? We exhibit a simple upper bound.
For any complexity class C, we call a set L effectively C-random if, for every set
A ∈ C and every polynomial p, |L

=n�A=n|
|Σn| − 1

2 | ≤
1

p(n) for all but finitely many
n ∈ N. (This is a slightly modified version of Wilber’s [18] notion of randomness.)
Note that such an effectively C-random set is C-bi-immune. It is relatively easy to
prove that, for each k ≥ 1, no effectively CROΔp

k-random set exists in CROΣp
k .

4 The BP-Operator and the CROBPP Hierarchy

We further introduce a bounded-error analogue of the CROP hierarchy. We first
formulate this new hierarchy from Schöning’s bounded-error probabilistic poly-
nomial (BPP) hierarchy {BPΔp

k, BPΣp
k , BPΠp

k | k ∈ N} [15], which is induced
from the P hierarchy by an application of the so-called BP-operator1 as follows:
BPΔp

k = BP · ΔP
k , BPΣp

k = BP · ΣP
k , and BPΠp

k = BP · ΠP
k . In particular,

BPP = BPΔp
1 and AM = BPΣp

1 . We also define BPΘp
k as BP · ΘP

k . The BPP
hierarchy seems quite different from the P hierarchy. Most significantly, it is
unknown whether the upward collapse property holds for the BPP hierarchy;
for instance, the following implication is not yet proven: BPΣp

k = BPΠp
k =⇒

BPΣp
k = BPΣp

k+1. Moreover, BPΣp
k = BPΠp

k might not imply ΣP
k = ΠP

k , where
k ≥ 1, because Ko [10] earlier constructed an oracle A for which BPΣp

k (A) =
ΣP

k (A) 	= ΠP
k (A), which immediately implies both BPΣp

k (A) = BPΠp
k (A) and

ΣP
k (A) 	= ΠP

k (A). Now, we define the CROBPP hierarchy.

Definition 4. Let k ≥ 1.

1. CROBPΣp
k = {A ∈ REC | BPΣp

k (A) = BPΣp
k+1(A)}.

2. CROBPΔp
k = {A ∈ REC | BPΔp

k(A) = BPΔp
k+1(A)}.

3. CROBPΘp
k+1 = {A ∈ REC | BPΘp

k+1(A) = BPΘp
k+2(A)}.

4. CROBPH =
⋃

i≥1 CROBPΔp
i .

Since the upward collapse property fails for relativized BPP hierarchies, the
CROBPP hierarchy behaves differently from the CROP hierarchy. Inspired by
the alternative characterization of the CROP hierarchy, we introduce the generic
class wCROBP · C for any relativizable complexity class C of languages.

1 Let C be any complexity class. A set L is in BP · C iff there exist a polynomial p and
a set A ∈ C such that (i) for every x ∈ L, Proby∈Σp(|x|) [(x, y) ∈ A] ≥ 3/4 and (ii)
for every x �∈ L, Proby∈Σp(|x|) [(x, y) �∈ A] ≥ 3/4.
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Definition 5. Let C be any relativizable complexity class of languages. Assume
that there exists a number k ∈ N such that ΣP

k (A) ⊆ C(A) ⊆ ΣP
k+1(A) for any

oracle A. Define wCROBP · C = {A ∈ REC | BPΣp
k+1(A) = co-BP · C(A)}.

The prefix “w” in Definition 5 refers to “weaker collapsing criteria.” In par-
ticular, we obtain the following complexity classes: wCROBPΣp

k , wCROBPΔp
k,

and wCROBPΘp
k+1 for each index k ≥ 1. The following basic inclusions hold.

Lemma 8. Let k ≥ 1.

1. CRO · C ⊆ CROBP · C ⊆ wCROBP · C for any class C ∈ {ΘP
k ,ΔP

k , ΣP
k }.

2. wCROBPΘp
k ⊆ CROBPΔp

k.
3. wCROBPΣp

k ⊆ CROBPΘp
k+1.

4. wCROBPΔp
k ⊆ wCROBPΣp

k ⊆ CROΣp
k+1.

We show the following separations, which greatly strengthen Theorem 1

Theorem 3. Let k ≥ 1. (1) CROΣp
k � wCROBPΔp

k; (2) CROΔp
k �

wCROBPΘp
k ; and (3) CROΘp

k+1 � wCROBPΣp
k .

As an immediate consequence of Theorem 3, we obtain the following separa-
tion of the (weak) CROBPP hierarchy.

Corollary 2. Let k ≥ 1.

1. CROBPΘp
k 	= CROBPΔp

k 	= CROBPΣp
k 	= CROBPΘp

k+1.
2. wCROBPΘp

k 	= wCROBPΔp
k 	= wCROBPΣp

k 	= wCROBPΘp
k+1.

Now, we give the proof of Theorem 3. In this proof, we use the terminology
given in Section 3.

Proof of Theorem 3. We prove only (1). The other claims are similarly
proven. Now, our goal is to prove that CROΣp

k � wCROBPΔp
k for each k ≥ 1.

It suffices to construct, for each k ≥ 1, a recursive set S such that BPΔp
k(S) �

ΣP
k (S) = ΠP

k (S). Before giving the proof, we observe that ΣP
k ⊆ BPΔp

k implies
that ΣP

k+1 = BPΣp
k , which further implies ΣP

k+1 = ΠP
k+1. Under the common

belief that all levels of the P hierarchy are different, we obtain ΣP
k � BPΔp

k.
Note that the initial case k = 1 is already shown by Ko [10], who constructed

a recursive oracle A such that P(A) = BPP(A) 	= NP(A) = co-NP(A). This
immediately implies that BPP(A) 	= AM(A) and NP(A) = co-NP(A). Hence, we
obtain CRONP � wCROBPP. Therefore, the remaining of our proof is dedicated
to the general case k ≥ 2. This is shown by induction on k ≥ 2. First, we prove
a key lemma on a circuit lower bound necessary in our construction process. Let
[m, n]Z = {m, m + 1, . . . , n} for any two integers m, n with m ≤ n.

Lemma 9. Let k ≥ 2. Let p, q be polynomials and let r < 2n/2. Let {Dy}y∈Σp(n)

be any collection of Δk(r)-circuits. For each string x with n < |x| ≤ q(n), let Cx

be any Σk(|x|)-circuit computing an f2|x|
k function (with disjoint variable sets).

Then, there exists a restriction ρ such that (i) for all strings x with n < |x| ≤
q(n), Cx,ρ= ∗ and (ii) |{y ∈ Σp(n) | Dy,ρ 	= ∗}| ≥ 2p(n)−n.
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Proof. We begin with the basis case k = 2. Toward a contradiction, we
assume that, for every restriction ρ, if Cx,ρ= ∗ for any x’s with n < |x| ≤ q(n)
then |{y ∈ Σp(n) | Dy,ρ 	= ∗}| < 2p(n)−n. Take 2n restrictions {ρj}2

n

j=1, each
of which is defined as follows: let ρj(v) = ∗ if variable v appears in the jth
subcircuit of the top OR gate of Cx for a certain x; let ρj(v) = 0 for the other
v’s. Note that Cx,ρj = ∗ for any j ∈ [1, 2n]Z since Cx is a Σ2(|x|)-circuit with all
literals being distinct positive variables. The number of y’s in Σp(n) satisfying
∃j ∈ [1, 2n]Z(Dy,ρj 	= ∗) is less than

∑2n

j=1 2p(n)−n = 2p(n). Hence, there is at
least one index y ∈ Σp(n) such that Dy,ρj = ∗ for all j ∈ [1, 2n]Z. Fix this y.

Consider the minimal number � of variables to evaluate in order to force
Dy to output a Boolean value. Since Dy is a Δk(r)-circuit, it suffices to assign
values to at most r2 variables in each subcircuit of the top OR gate of Dy. Thus,
� ≤ r2 < 2n. Take a set Q of such � variables. Since |Q| < 2n, there is an index
j such that ρj(w) 	= ∗ for all w ∈ Q. This implies Dy,ρj 	= ∗, a contradiction.
Therefore, the lemma holds for k = 2.

Next, we show the induction step. Let k > 2. We apply H̊astad’s switch-
ing lemma [7] to reduce this case to the case k − 1. By the switching lemma,
the probability that every subcircuit Dy,ρ contains a Δk−1(r)-circuit is ≥ 2/3.
Moreover, the probability that every Cu,ρ has a subcircuit computing an f2|u|

k−1
is ≥ 2/3. Hence, by the induction hypothesis, there exists a restriction ρ such
that (i) for all x’s, Cx,ρ= ∗ and (ii) |{y | Dy,ρ 	= ∗}| ≥ 2p(n)−n. �

Now, we describe how to construct the desired oracle A. Let {Mi}i∈N denote
any fixed effective enumeration of all oracle ΔP

k -machines and, for each i ∈ N, let
pi and qi be two increasing polynomials such that, for any x and any y ∈ Σpi(|x|),
qi(|x|) bounds the running time of MS

i (x, y) with any oracle S. We say that M
is p-good at x with oracle S if either Proby∈Σp(|x|) [MS(x, y) = 1] ≥ 1 − 2−2|x|

or Proby∈Σp(|x|) [MS(x, y) = 0] ≥ 1− 2−2|x|. Our requirements for the set A are
described as follows.

i) ∀x[x ∈ Kk(S)⇐⇒ x 	∈ L(1)
k (S)].

ii) For any i ∈ N, if Mi is pi-good at every string with oracle S, then
∃m ≥ 1(0m ∈ L(0)

k (S) ⇐⇒ Proby∈Σpi(m) [MS
i (0m, y) = 0] ≥ 2−m−2).

The first requirement implies that ΣP
k (S) = ΠP

k (S) and the second requirement
implies that ΣP

k (S) � BPΔp
k(S).

Without loss of generality, we assume that m ≤ pn(m) ≤ qn(m) for all
n, m ∈ N. We define the marker t(n) as follows: let t(0) = 0 and let t(n) =
min{r ∈ N | ∃m[t(n− 1) < m ∧ qn(m) < r < 2m ∧m ≡ 0 (mod k + 1)]} for each
integer n ≥ 1. Let A(0) = A(0) = Ø. Assume that we are in stage n ≥ 1. This
stage consists of four steps. At this stage, we want to determine the membership
of all strings in Σ≤t(n) −Σ≤t(n−1) to the set A. Let m = min{l ∈ N | t(n− 1) <
l ≤ t(n), l ≡ 0 (mod k+1)}. Initially, we set A(n) = A(n−1) and A(n) = A(n−1)
and then update them during the following steps.

Step 1: Let Sn be the set of all strings x satisfying that t(n − 1) < (k +
1)|x| + 1 < m. Consider any string x in Sn. Let Gx be any Σk(q(|x|))-circuit
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computing Kk(·) on x for a certain polynomial q. In addition, let C
(0)
x be the

depth-k circuit computing f2|x|
k , which computes L(0)

k (·) on x, and let C
(1)
x be

the circuit computing L(1)
k (·) on x. For each b ∈ {0, 1}, let V (b)

x denote the set of
all variables in C

(b)
x . Note that V (b)

x ∩ V (b)
y = Ø if x 	= y. Note also that C

(b)
x ’s

variables are in Σ<|x|. Define Vm,n =
⋃

x∈Sn
(V (1)

x ∪Σ<|x|). Now, we replace all
variables v in Gx corresponding to A(n)∪A(n) by 0 or 1 if v is in A(n) or A(n),
respectively. Choose a minimal restriction ρ such that C

(1)
x ,ρ 	= ∗, Gx,ρ 	= ∗, and

C
(1)
x ,ρ 	= Gx,ρ for all x ∈ Sn. Finally, set A(n) to be A(n)∪{v ∈ Vm,n | ρ(v) = 1}

and set A(n) to be A(n) ∪ {v ∈ Vm,n | ρ(v) = 0}. This satisfies the requirement
(i) for each string x ∈ Sn.

Step 2: We satisfy the requirement (ii) in this step for 0m. Let S′
n be the set of

all strings x satisfying that m ≤ (k+1)|x|+1 ≤ t(n). Note that |S′
n| ≤ 2pn(m)+1.

For each y ∈ Σpn(m), let Dy be any Δk(qn(m))-circuit computing M
(·)
i (0m, y).

Lemma 9 gives a restriction ρ such that (i) for all x ∈ S′
n, C

(0)
x ,ρ= C

(1)
x ,ρ= ∗

and (ii) |{y ∈ Σpn(m) | Dy,ρ 	= ∗}| ≥ 2pn(m)−m. Choose the bit b ∈ {0, 1}
such that |{y ∈ Σpn(m) | Dy,ρ= b}| ≥ |{y ∈ Σpn(m) | Dy,ρ= b}|. Hence, |{y ∈
Σpn(m) | Dy,ρ= b}| ≥ 2pn(m)−m−1. Define V ′

m,n =
⋃

x∈S′
n
(V (0)

x ∪V (1)
x ∪Σ≤qn(m)).

There exists a restriction ρ′ such that |{y ∈ Σpn(m) | C
(1)
x ,ρρ′= ∗ ∧ C

(0)
x ,ρρ′ 	=

∗∧Dy,ρρ′ 	= ∗∧Dy,ρρ′ 	= C
(0)
x ,ρρ′}| ≥ 2pn(m)−m−2. Update A(n) to be A(n)∪{v ∈

V ′
m,n | ρρ′(v) = 1} and update A(n) to be A(n) ∪ {v ∈ V ′

m,n | ρρ′(v) = 0}.
Step 3: We replace all variables v corresponding to A(n) ∪A(n) by 0 or 1 if

v ∈ A(n) or A(n), respectively. Step 2 left the room for finding a restriction ρ

such that C
(1)
x ,ρ 	= ∗, Gx,ρ 	= ∗, and C

(1)
x ,ρ 	= Gx,ρ for every x ∈ S′

n. Update the
sets A(n) and A(n) as in Step 1. The requirement (i) is thus met.

Step 4: To finish Stage n, we need to determine the values of all the strings
in Σ≤t(n) that are left unassigned. This is done simply by updating A(n) as
A(n) ∪ (Σ≤t(n) −Σ≤t(n−1) ∪A(n)).

The above construction clearly ensures that the two requirements are met at
every stage. Therefore, we obtain the desired oracle separation. �

5 Further Discussion

We can further generalize our definition of collapsing recursive oracles to many
other complexity classes. As an example, we define a “complementary” collapsing
recursive oracle class cCRO ·C as cCRO ·C = {A ∈ REC | C(A) = co-C(A)}. This
definition enables us to define meaningful complexity classes, such as cCROMA
(induced from MA). We demonstrate the separations among CRONP, cCROMA,
and cCROAM in the following proposition.

Proposition 2. CRONP 	= cCROMA 	= cCROAM.

To our best knowledge, the above separations are new. The proof can be
obtained by modifying the proof of Theorem 3.



160 T. Yamakami

Final Note. All the proofs omitted from this extended abstract will appear in
its forthcoming complete version.
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Abstract. Graph homomorphism, also called H-coloring, is a natural
generalization of graph coloring: There is a homomorphism from a graph
G to a complete graph on k vertices if and only if G is k-colorable. Dur-
ing the recent years the topic of exact (exponential-time) algorithms for
NP-hard problems in general, and for graph coloring in particular, has
led to extensive research. Consequently, it is natural to ask how the tech-
niques developed for exact graph coloring algorithms can be extended to
graph homomorphisms. By the celebrated result of Hell and Nešetřil,
for each fixed simple graph H , deciding whether a given simple graph
G has a homomorphism to H is polynomial-time solvable if H is a bi-
partite graph, and NP-complete otherwise. The case where H is a cycle
of length 5 is the first NP-hard case different from graph coloring. We
show that, for a given graph G on n vertices and an odd integer k ≥ 5,
whether G is homomorphic to a cycle of length k can be decided in time
min{( n

n/k

)
, 2n/2}·nO(1). We extend the results obtained for cycles, which

are graphs of treewidth two, to graphs of bounded treewidth as follows:
If H is of treewidth at most t, then whether G is homomorphic to H can
be decided in time (2t + 1)n · nO(1).

1 Introduction

Given two undirected graphs G and H , a homomorphism from G to H is a
mapping ϕ : V (G) −→ V (H) that satisfies the following: {x, y} ∈ E(G) =⇒
{ϕ(x),ϕ(y)} ∈ E(H) for every x, y ∈ V (G). When there is a homomorphism
from G to H we say that G is homomorphic to H . The problem of deciding
whether graphG is homomorphic to graphH is called HOM(G,H). This problem
can be seen as labeling, or coloring, the vertices of G by the vertices of H , and
this is why it is often also called the H-coloring problem. Note that for the
special case when H is a complete graph on k vertices, G is homomorphic to H
if and only if the chromatic number of G is at most k. We refer to the recent
book [13] for a thorough introduction to the topic.

� This work is supported by the AURORA mobility programme for research collabo-
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For graph classes G and H we denote by HOM(G,H) the restriction of the
graph homomorphism problem to input graphs G ∈ G and H ∈ H. If G or
H is the class of all graphs then they are denoted by the placeholder ‘ ’. The
computational complexity of graph homomorphism was studied from different
‘sides’.

‘Left Side’ of Homomorphisms. For any fixed graph G, HOM(G, ) is triv-
ially solvable in polynomial time. Several authors independently showed that
HOM(G, ) is solvable in polynomial time if all graphs in G have bounded
treewidth. In this case polynomial-time algorithms can be obtained even for
counting homomorphisms [8]. Grohe, concluding from the results of Dalmau et
al. [7], showed that HOM(G, ) is solvable in polynomial time if and only if the
cores of all graphs in G have bounded treewidth (under some parameterized
complexity theoretic assumptions) [11].

‘Right Side’ of Homomorphisms. Hell and Nešetřil showed that for any fixed
simple graph H , the problem HOM( ,H) is solvable in polynomial time if H is
bipartite, and NP-complete if H is not bipartite [12]. This resolves the complex-
ity classification of the whole right side of homomorphisms, and provides a P
vs. NP dichotomy. Consequently the study of the right side of homomorphisms
for undirected graphs almost stopped, as research has been mainly concentrated
on finding polynomial-time algorithms for special graph classes from the ’left’
side.

However for the special case of graph homomorphism, graph coloring, exten-
sive work has been done recently resulting in faster and faster exponential-time
algorithms. The recent best bounds are an O(1.3289n)-time algorithm for 3-
coloring [4], anO(1.7504n)-time algorithm for 4-coloring [5], anO(2.1020n)-time
algorithm for 5-coloring [6], and an O(2.1809n)-time algorithm for 6-coloring [6].
For k ≥ 7, the k-coloring problem can be solved in time O(2.4023n) [5].

Despite considerable progress on exponential-time algorithms for graph col-
oring problems, not much is known on exponential-time algorithms for the
graph homomorphism problem. By the result of Hell and Nešetřil, HOM( ,H)
is polynomial-time solvable when H is bipartite. Another ‘easy’ case is when
χ(H) = ω(H), i.e., the chromatic number of H is equal to its maximum clique
size. It is not hard to show that in this case the HOM( ,H) problem is equivalent
to the k-coloring problem with k = χ(H). Consequently the HOM( ,H) problem
is equivalent to the χ(H)-coloring problem for all perfect graphs H .

All this motivates us to study exact exponential-time algorithms for
HOM( ,H) with graphsH satisfying χ(H) > ω(H). Thus chordless cycles of odd
length are the first natural candidates to study exponential-time algorithms for
graph homomorphisms. For the cycle C3 on 3 vertices HOM( , C3) is equivalent
to 3-coloring, but already for the cycle C5 on 5 vertices no better deterministic al-
gorithm than the brute-force O∗(5n) time algorithm has been known. (Through-
out this paper, in addition to the standard big-Oh notation O, we sometimes
use a modified big-Oh notation O∗ that suppresses all polynomially bounded
factors. For functions f and g we write f(n) = O∗(g(n)) if f(n) = g(n) · nO(1).)
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Our Results. In this paper we initiate the study of exponential time complexity
of graph homomorphism problems beyond graph coloring. We show that for an
input graph G on n vertices and an odd integer k ≥ 5, HOM(G, Ck) is solvable
in O∗(min{

(
n

n/k

)
, 2n/2}) time, where Ck is the cycle on k vertices. In particular,

the running time of our algorithm is O(1.64939n) when k = 5, O(1.50700n)
when k = 7, O(1.41742n) when k = 9, and O(αn) with α <

√
2 for all k ≥ 11.

It is interesting to note that, for k ≥ 13, our algorithm for homomorphism
to Ck is faster than the fastest known 3-coloring algorithm. Hence the natural
conjecture that HOM( , Ck) is at least as difficult as 3-coloring for every odd k ≥
5 might be mistaken. Our algorithms use 2-SAT expressions to search for suitable
extensions of an initial partial homomorphism: a maximal independent set of G
to be mapped to a carefully chosen subset of vertices of H . To enumerate all
possible preliminary choices we use known algorithms to enumerate all maximal
independent sets.

Treewidth and tree decompositions are of great importance in structural
graph theory and graph algorithms. Many NP-hard problems become
polynomial-time or even linear-time solvable when the input is restricted to
graphs of bounded treewidth. We refer to [3] for a survey on this parameter.
It seems that the treewidth can be a useful tool to design exponential-time al-
gorithms as well. We use dynamic programming techniques similar to bounded
treewidth techniques to solve HOM(G,H) in time O∗((2 · tw(H) + 1)|V (G)|),
assuming that an optimal tree decomposition of H is known in advance.

2 Preliminaries

We consider undirected and simple graphs, where V (G) denotes the set of ver-
tices and E(G) denotes the set of edges of a graph G. For a given subset S of
V (G), G[S] denotes the subgraph of G induced by S, and G − S denotes the
graph G[V (G) \ S]. S is an independent set if G[S] is a graph with no edges,
and S is a clique if G[S] is a complete graph. The set of neighbors of a ver-
tex v in G is denoted by NG(v), and the set of neighbors of a vertex set S is
NG(S) =

⋃
v∈S NG(v) \ S.

Kk denotes the complete graph on k vertices and Ck denotes the chordless
cycle on k vertices. A coloring of a graph G is a function f assigning a color to
each vertex of G such that adjacent vertices have different colors. A k-coloring
of a graph uses at most k colors, and the smallest number of colors in a coloring
of G is denoted by χ(G). The maximum size of a clique in a graph G is denoted
by ω(G)

Given a mapping ϕ : V (G) −→ V (H) and a set S ⊆ V (H), we denote by
ϕ−1(S) the set of all those vertices of G that are mapped to a vertex of S.

The notion of treewidth was introduced by Robertson and Seymour. A tree
decomposition of a graph G = (V,E) is a pair ({Xi : i ∈ I}, T ), where {Xi : i ∈
I} is a collection of subsets of G (these subsets are called bags) and T = (I, F )
is a tree such that the following three conditions are satisfied:
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1.
⋃

i∈I Xi = V (G).
2. For all {v, w} ∈ E(G), there is an i ∈ I such that v, w ∈ Xi.
3. For all i, j, k ∈ I, if j is on a path from i to k in T then Xi ∩Xk ⊆ Xj.

The width of a tree decomposition ({Xi : i ∈ I}, T ) is maxi∈I |Xi| − 1. The
treewidth of a graph G, denoted by tw(G), is the minimum width over all its
tree decompositions. A tree decomposition of G of width tw(G) is called an
optimal tree decomposition of G.

3 Homomorphisms to Odd Cycles

Recall that, for an input graph G, HOM(G, Ck) is solvable in polynomial time if
k is even, and NP-complete if k is odd. We study the case when k ≥ 5 is an odd
integer. Throughout the remainder of this section we assume the input graph G
to be non bipartite, since every bipartite graph is homomorphic to K2, and thus
also homomorphic to Ck for all k ≥ 3.

For a given graph G and a vertex subset S ⊆ V (G), we define the levels of
breadth first search starting at S as follows:

– L0(S) = S;
– Li(S) = NG(Li−1(S)) \

⋃
j<i Lj(S), for i > 0.

Lemma 1. Let k ≥ 3 be an odd integer. A non bipartite graph G = (V,E) is
homomorphic to Ck if and only if there is a set S ⊂ V such that

– |S| ≤ |V (G)|/k,
– the levels L0(S),L1(S),L2(S), . . . ,L� k

2 �−1(S) are independent sets in G,
– the graph G− S is bipartite, and
– there is a coloring of vertices of L1(S),L2(S), . . . ,L� k

2 �
(S) in Red and Blue

such that every two adjacent vertices from different levels have the same
color, and every two adjacent vertices from L� k

2 �
(S) have different colors.

Proof. Let us choose a vertex v ∈ V (Ck) and let R = (v, r1, r2, . . . , r�k/2�) and
B = (v, b1, b2, . . . , b�k/2�) be the two edge disjoint paths in Ck of length �k/2�
starting at v.

Let G be homomorphic to Ck. Since G is not bipartite, every homomor-
phism from G to Ck is surjective. Hence there is a homomorphism τ from G
to Ck such that |τ−1(v)| ≤ |V (G)|/k. We define S = τ−1(v). We then choose a
homomorphism ϕ : G −→ Ck that minimizes∑

1≤i≤�k/2�

|ϕ−1(ri)|+ |ϕ−1(bi)|
i

(1)

subject to ϕ−1(v) = S.
By (1), every vertex of ϕ−1(ri), i ∈ {1, 2, . . . , �k/2� − 1}, is adjacent in G

to a vertex of ϕ−1(ri−1). In fact, suppose on the contrary that there is a vertex
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x ∈ ϕ−1(ri) that is not adjacent in G to any vertex of ϕ−1(ri−1). Then there
is a homomorphism φ from G to Ck such that φ(y) = ϕ(y) for all y 	= x, and
φ(x) = ri+2 if i ≤ �k/2�−2 and φ(x) = b�k/2� if i = �k/2�−1. But the existence
of such a homomorphism contradicts (1). By similar arguments, every vertex of
ϕ−1(bi) i ∈ {1, 2, . . . , �k/2� − 1} is adjacent to a vertex of ϕ−1(bi−1).

Thus for every i ∈ {1, 2, . . . , �k/2� − 1}, the vertices of ϕ−1(ri) ∪ ϕ−1(bi)
form the level Li(S) of breadth first search starting at S in G. Furthermore,
each of these sets is an independent set. The graph G − S is bipartite because
it is homomorphic to a path. For i ∈ {1, 2, . . . , �k/2�}, we color the vertices of
ϕ−1(ri) in Red and the vertices of ϕ−1(bi) in Blue. Such a coloring satisfies the
conditions of the lemma.

Now suppose that there is a vertex set S ⊆ V (G) and a breadth first search
starting at S satisfying the conditions of the lemma. We construct a homomor-
phism from G to Ck by mapping S to v. For i ∈ {1, 2, . . . , �k/2� − 1}, all Red
vertices from level Li(S) are mapped to ri and all Blue vertices from level Li(S)
are mapped to bi. For i ≥ �k/2�, Red vertices from level Li(S) are mapped to
r�k/2� and Blue vertices from level Li(S) are mapped to b�k/2�. ��

We need the following algorithmic version of the result from [14] which is due
to Byskov [5].

Proposition 1 ([5]). All maximal independent sets in a triangle-free graph on
n vertices can be listed in time O∗(2n/2).

Lemma 2. For a given graph G on n vertices, HOM(G, Ck) can be solved in
O∗(
(

n
n/k

)
) time.

Proof. By Lemma 1, a non bipartite graph G is homomorphic to Ck if and only
if there is a set S ⊆ V (G) satisfying the conditions of the lemma.

For a given (independent) set S, one can decide whether S satisfies the con-
ditions of Lemma 1 as follows.

1. Find the levels L0(S),L1(S),L2(S), . . . ,Lm(S) of breadth first search at
S. If all sets L0(S),L1(S),L2(S), . . . ,L� k

2 �−1(S) are independent sets in G

proceed to step 2.
2. Check if G− S is bipartite. If it is bipartite proceed to step 3.
3. To decide whether there is a coloring of L1(S)∪L2(S)∪ · · ·∪L� k

2 �
(S) which

meets the condition of Lemma 1, we reduce the problem to 2-SAT as follows.
We encode every vertex x of L1(S) ∪ L2(S) ∪ · · · ∪ L� k

2 �
(S) by a boolean

variable x such that x = true means that vertex x is colored Red, and
variable x = false means that vertex x is colored Blue. Every edge {x, y}
between Li(S) and Li+1(S), for each 1 ≤ i ≤ �k

2� − 1, is encoded by two
clauses (x̄ ∨ y) and (x ∨ ȳ). This forces vertex x and vertex y to receive the
same color. Every edge {u, v} with both endpoints in L� k

2 �
(S) is encoded by

two clauses (u ∨ v) and (ū ∨ v̄). This forces vertex u and vertex v to receive
opposite colors. The corresponding 2-SAT formula is satisfiable if and only
if S satisfies the conditions of Lemma 1 and there is a homomorphism from
G to Ck that can be derived from S.
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Consequently, for each given set S, constructing a homomorphism from G
to Ck using S or concluding that S cannot be used can be done by solving the
corresponding 2-SAT formula, and thus requires polynomial time. There are less
than (n/k)

(
n

n/k

)
different subsets S of size at most n/k. Hence the total running

time is O∗(
(

n
n/k

)
). ��

The following algorithm improves upon the running time of the previous one
for k ∈ {5, 7, 9}.

Lemma 3. For a given graph G on n vertices, and an odd integer k ≥ 5,
HOM(G, Ck) can be solved in O∗(2n/2) = O(1.41422n) time.

Proof. We may assume that G = (V,E) is not bipartite. Furthermore Ck is 3-
colorable and triangle-free for every odd integer k ≥ 5. Thus G is homomorphic
to Ck implies that G is 3-colorable and triangle-free.

Let v1, v2, v3, . . . , vk−1, vk be the vertices of Ck, with vi adjacent to vi+1
(where indices are taken modulo k). We choose the following maximal indepen-
dent set of Ck: U = {v2, v4, . . . , vk−3, vk−1}. Suppose there is a homomorphism
ϕ : G −→ Ck. Then ϕ−1(U) is an independent set of G. We claim that in this
case there is even a homomorphism ψ : G −→ Ck such that ψ−1(U) is a maxi-
mal independent set of G. Let x ∈ V (G) \ ϕ−1(U) such that {x} ∪ϕ−1(U) is an
independent set of G, and let y be a neighbor of x in G. Then {x, y} ∈ E(G)
implies {ϕ(x),ϕ(y)} = {v1, vk}. Thus the following modification of ϕ is a homo-
morphism from G to Ck. Let I ′ ⊆ V (G) \ ϕ−1(U) such that I = I ′ ∪ ϕ−1(U)
is a maximal independent set of G. We define a homomorphism ψ : G −→ Ck

such that ψ−1(U) = I ′. For every vertex v ∈ V (G) \ I ′, we let ψ(v) = ϕ(v). For
every vertex v ∈ I ′, we let ψ(v) = v2 if ϕ(v) = vk, and we let ψ(v) = vk−1 if
ϕ(v) = v1.

The goal of our algorithm is to test, for every maximal independent set I of
G, whether there is a homomorphism ψ : G −→ Ck such that ψ−1(U) = I. By
the above claim, ψ must exist if G is homomorphic to Ck. For every maximal
independent set I in G the test is done as follows: First, if G− I is not bipartite,
then reject I since a non bipartite graph cannot be homomorphic to H−U which
consists of a K2 and (k − 1)/2 isolated vertices. If G − I is bipartite, let A be
the set of isolated vertices of G− I, and let J be the set of vertices in connected
components of G− I that have at least two vertices. Clearly V (G) = I ∪A ∪ J .
Furthermore, since G is not bipartite, J 	= ∅.

Every vertex of J must be mapped to v1 or vk since each component of G[J ]
has at least two vertices. Then every vertex of N(J) must be mapped to v2
or vk−1. Clearly N(J) ⊆ I. Following Lemma 1, we map the vertices of G in a
breadth first search manner starting from J , with levels L0(J)=J, L1(J)=N(J),
L2(J), ..., L(k−1)/2(J). At any stage we consider only the vertices that have to
be mapped due to adjacencies in G to already mapped vertices. Therefore the
vertices of L2(J) must be mapped to v3 or vk−2. Clearly L2(J) ⊆ A. The vertices
of L3(J) must be mapped to v4 or vk−3, . . ., the vertices of L(k−3)/2(J) must be
mapped to v(k−1)/2 or v(k+3)/2, and finally the vertices of L(k−1)/2(J) must be
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mapped to v(k+1)/2. Now, there may be some remaining vertices of G that are
not assigned to any vertex of H by the above procedure. If (k+1)/2 is even, then
all remaining vertices should be mapped to v(k−1)/2 or v(k+3)/2 if they belong
to A, and to v(k+1)/2 if they belong to I. If (k + 1)/2 is odd, then we should do
the reverse: the remaining vertices should be mapped to v(k+1)/2 if they belong
to A and to v(k−1)/2 or v(k+3)/2 if they belong to I. Consequently, in the end,
vertices of A ∪ J are mapped to V (H) \ U , and vertices of I are mapped to U .

To check whether our partial mapping can be transformed into a homomor-
phism we shall use a 2-SAT formula. For all vertices of G except those mapped
to v(k+1)/2 there is a choice between two vertices of the host graph Ck. Fur-
thermore adjacent vertices of G must be mapped to adjacent vertices of Ck.
For every vertex x of G with ϕ(x) ∈ {vi, vk−i+1} we define a boolean vari-
able x such that variable x = true means that vertex x is mapped to vi with
i = 1, 2, . . . , (k − 1)/2, and variable x = false means that vertex x is mapped
to vi with i = (k + 3)/2, (k + 5)/2, . . . , k. For each edge {x, y} ∈ E(G[J ]), either
ϕ(x) = v1 and ϕ(y) = vk, or vice versa. Otherwise, for each edge {x, y} ∈ E(G)
with {x, y} 	⊆ J , either ϕ(x) = vi and ϕ(y) = vj with i, j ∈ {1, 2, . . . , (k− 1)/2},
or ϕ(x) = vi and ϕ(y) = vj with i, j ∈ {(k + 3)/2, . . . , k}. Therefore, for each
edge {x, y} ∈ E(G[J ]), we insert the following two clauses in our 2-SAT formula:
(x̄∨y) and (x∨ ȳ). For all other edges {x, y} ∈ E(G), i.e., at least one of x and y
does not belong to J , we insert the following two clauses in our 2-SAT formula:
(x̄ ∨ ȳ) and (x ∨ y).

The corresponding 2-SAT formula is satisfiable if and only if there is a homo-
morphism ϕ from G to Ck such that ϕ−1(U) = I. Consequently, for each maxi-
mal independent set I of G, constructing a homomorphism from G to Ck using
I or concluding that I cannot be used can be done by solving the corresponding
2-SAT formula, and thus requires linear time (see [1]). By Proposition 1, the
number of maximal independent sets in a triangle free graph on n vertices is
at most 2n/2 and all maximal independent sets of a triangle free graph can be
enumerated in time O∗(2n/2). Thus the overall running time of our algorithm is
O∗(2n/2). ��

The algorithm of Lemma 2 has running time O(1.64939n) when k = 5,
O(1.50700n) when k = 7, and O(1.41742n) when k = 9, and its running time is
O(αn) with α <

√
2 for all k ≥ 11. Hence the algorithm of Lemma 2 is faster for

all k ≥ 11, and the algorithm of Lemma 3 is faster for k ∈ {5, 7, 9}. Combining
Lemmata 2 and 3 we obtain the following theorem.

Theorem 1. For a given graph G on n vertices and an odd integer k ≥ 5,
HOM(G, Ck) can be solved in O∗(min{

(
n

n/k

)
, 2n/2}) time.

4 Homomorphisms to Graphs of Bounded Treewidth

A tree decomposition ({Xi : i ∈ I}, T ) of a graph G is said to be nice if a root
of T can be chosen such that every node i ∈ I of T has at most two children in
the rooted tree T , and
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1. if a node i ∈ I has two children j1 and j2 then Xi = Xj1 = Xj2 . (i is called
a join node.)

2. if a node i ∈ I has one child j, then either Xi ⊂ Xj and |Xi| = |Xj | − 1
(i is called a forget node), or Xj ⊂ Xi and |Xj | = |Xi| − 1 (i is called an
introduce node).

3. if a node i ∈ I is a leaf of T , then |Xi| = 1. (i is called a leaf node.)

Given a nice tree decomposition ({Xi : i ∈ I}, T ), we denote by Ti the
subtree of T rooted at node i, for each i ∈ I. The parent of node i is denoted
by p(i).

It is known that every graph G with n vertices and of treewidth at most t has
a nice tree decomposition ({Xi : i ∈ I}, T ) of width t such that |I| = O(t · n).
Furthermore, given a tree decomposition of G of width t, a nice tree decompo-
sition of G of width t can be computed in time O(n).

There is an O(1.9601n) algorithm to compute the treewidth and an optimal
tree decomposition of a given graph [10]. There is also a well-known linear-
time algorithm to compute the treewidth and an optimal tree decomposition for
graphs of bounded treewidth [2].

We now present an algorithm to decide whether for given graphs G and H
there is an homomorphism from G to H . The algorithm is based on dynamic
programming on a nice tree decomposition of H .

Theorem 2. There is an O∗((2 · tw(H) + 1)|V (G)|) time algorithm taking as
input a graph G, a graph H, and an optimal tree decomposition of H, that solves
HOM(G,H) and produces a homomorphism ϕ : G −→ H if the answer is yes.

Proof. Let n = |V (G)| and t = tw(H). First our algorithm transforms the given
optimal tree decomposition of H into a nice tree decomposition ({Yi : i ∈ J}, U)
of width t. Then we modify this nice tree decomposition as follows. For every
non leaf node i ∈ J of tree U we add a new nochange node i′ as the parent of
i, and we let the old parent of i in tree U become the parent of i′ in the new
tree. We let Xi′ = Xi = Yi. In this way we obtain a new nice tree decomposition
({Xi : i ∈ I}, T ) of H of width t. In the new tree T , the parent of every node of
U is a nochange node, which is more convenient for our following argumentation,
because there is a difference of at most one vertex between a child and the parent
of a node i in T .

We define two auxiliary subsets of vertices of H for each node i ∈ I of T :
Vi = ∪j∈TiXj , and X̃i = Xi ∩Xp(i). Notice that X̃i = Xi if p(i) is an introduce,
join, or nochange node, and that X̃i = Xi \ {u} if p(i) is a forget node with
Xp(i) = Xi \ {u}. For r, the root of T , we define X̃r = Xr.

Our algorithm computes for each node i ∈ I of T in a bottom-up fashion all
characteristics of i, defined as follows.

Definition 1. A tuple (S; (v1, S1), (v2, S2), . . . , (vli , Sli); i) is a characteristic of
node i ∈ I of T if S ⊆ V (G) and {S1, S2, . . . , Sli} is a partition of S such that
there is a homomorphism ϕ : G[S] −→ H [Vi] that satisfies the following two
conditions.
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– X̃i = {v1, v2, . . . , vli}
– For every j ∈ {1, 2, . . . , li}, ϕ−1(vj) = Sj.

Notice that characteristics are defined in such a way thatG is homomorphic to H
if and only if there is at least one characteristic for the root r of T . Furthermore
the number of characteristics of a node of T is at most

∑n
i=0

(
n
i

)
· ti = (t + 1)n.

For each forget, introduce, nochange, and join node i ∈ I of T , our algorithm
computes by dynamic programming all characteristics (S; (v1, S1),. . . ,(vli , Sli);i)
of i using the full set of characteristics of i’s children. Thus it suffices to describe
how the full set of characteristics can be computed from the characteristics of
the children for the different types of nodes in T .

Leaf Node:
Let i be a leaf node, thus Xi = {u} for some vertex u of H . For a subset S
of V (G), there is a homomorphism ϕ from G[S] to H [Vi] with Vi = {u} if and
only if ϕ−1({u}) = S, and hence S is an independent set. Thus (S; (u, S); i) is a
characteristic of the leaf node i if and only if S is an independent set of G.

Introduce Node:
Let i be an introduce node with child j. Thus Xi = Xj ∪ {u} for some vertex
u ∈ V (H) \ Vj , and consequently X̃j = Xj . Notice that the parent of i is a
nochange node, and thus Xi = Xp(i) and X̃i = X̃j ∪ {u}.

All characteristics of node i can be obtained by extending a characteristic of
j. Since X̃i = X̃j ∪ {u}, each characteristic of i obtained from (S; (v1, S1), . . . ,
(vlj , Slj ); j) is of the form (S ∪ S′; (v1, S1), . . . , (vlj , Slj ), (u, S′); i) where S′ ⊆
V (G) \ S is an independent set in G, and for all x ∈ NG[S](S′), ϕ(x) ∈ NH(u).
These conditions can be checked in polynomial time. Finally one characteristic of
j extends to at most 2n−|S| characteristics of i, since S′ must be an independent
set of G − S. Therefore we compute at most

∑n
i=0

(
n
i

)
· ti · 2n−i = (t + 2)n

characteristics to obtain a full set of characteristics of an introduce node.

Forget Node:
Let i be a forget node with child j. Thus Xi = Xj \ {u} for some vertex u ∈ Xj ,
and consequently X̃j = Xi. The parent of i is a nochange node, and thus Xi =
Xp(i) and X̃i = X̃j.

X̃i = X̃j implies that each characteristic of i can be obtained directly from
a characteristic of j by simply replacing j with i. Thus each characteristic of j
is a characteristic of i.

Nochange Node:
Let i be nochange node with child j. Thus Xi = Xj . If the parent of i is a forget
node then Xp(i) = Xi \ {u} for some vertex u ∈ Xi, and thus X̃i = X̃j \ {u}. If
the parent of i is an introduce or join node, then X̃i = X̃j .

If X̃i = X̃j then each characteristic of i extends into one characteristic of j by
simply replacing j by i. Otherwise, X̃i = X̃j \{u} implies that each characteristic
of i can be obtained from a characteristic of j, say (S; (v1, S1), . . . , (vlj , Slj ); j),



170 F.V. Fomin, P. Heggernes, and D. Kratsch

by simply removing the pair (vq, Sq) where u = vq. One obtains (S; (v1, S1), . . . ,
(vq−1, Sq−1), (vq+1, Sq+1), . . . , (vli , Sli); i).

Thus again each characteristic of j extends into a characteristic of i.

Join Node:
This is the most interesting node type. Let i be a join node with children j1 and
j2; thus Xi = Xj1 = Xj2 . The parent of i is a nochange node, thus X̃i = X̃j1 =
X̃j2 = Xi.

Let (S′; (v1, S1), . . . , (vlj1
, Slj1

); j1) be a characteristic of j1. It extends into a
characteristic of node i if there is a characteristic (S′′; (v1, S1), . . . , (vlj2

, Slj2
); j2)

of j2, i.e., both characteristics have the same set of pairs (vi, Si) which requires
that li = lj1 = lj2 . In this case (S′∪S′′; (v1, S1), . . . , (vli , Sli); i) is a characteristic
of i, if there are no edges between S′ \ S′′ and S′′ \ S′ in G.

Thus we compute characteristics (S′ ∪ S′′; (v1, S1), . . . , (vli , Sli); i) of i, for
each subset S′ ∪S′′ of V (G), each partition of S into at most t subsets, and any
choice of a subset S′. Therefore we compute at most

∑n
i=0

(
n
i

)
· ti · 2i = (2t+1)n

characteristics to obtain a full set of characteristics of a join node.

Finally, notice that the number of nodes in the decomposition is a polyno-
mial in |V (H)|, and that suitable data structures guarantee that the charac-
teristics of a node can be stored such that find and insert operations can be
done in polynomial time. Thus the overall running time of our algorithm is
O∗((2 · tw(H) + 1)|V (G)|). ��

5 Concluding Remarks and Open Questions

For given graphs G and H , within which time bound can we solve HOM(G,H)?
The trivial solution brings us O(|V (G)||V (H)|) running time. There is a random-
ized O((0.4518 · |V (H)|)|V (G)|)-time algorithm solving HOM(G,H) which is a
consequence of a more general result on constraint satisfaction problems [4].

In this paper we observed that if the right side graph H is of bounded
treewidth, then HOM(G,H) can be solved in time c|V (G)| · |V (H)|O(1) for some
constant c. Can it be that for any graphs G and H the problem HOM(G,H)
is solvable with running times 1. f(|V (H)|) · |V (G)|O(1), or 2. f(|V (G)|) ·
|V (H)|O(1) for some computable function f : N → N? (Unfortunately) the an-
swer to each of the questions is negative up to some widely believed assumptions
in complexity theory.

In fact, for question 1, an f(|V (H)|) · |V (G)|O(1) time algorithm is also a
polynomial-time algorithm for the NP-complete 3-coloring problem implying
that P = NP. To answer question 2, we use the widely believed assumption from
parameterized complexity [9] that the p-clique problem is not fixed parameter
tractable, or in other words, that there is no algorithm for finding a clique of
size p in a graph on n vertices in time f(p) ·nO(1) unless FPT = W[1], a collapse
of a parameterized hierarchy which is considered to be very unlikely. Since Kp is
homomorphic to H if only if H has a clique of size at least p, the HOM(Kp,H)
problem is equivalent to finding a p-clique in H . Therefore, the existence of an
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f(|V (G)|) · |V (H)|O(1) time algorithm for HOM(G,H) would imply that the
p-clique problem is fixed parameter tractable, thus FPT = W[1].

Now our question is whether a running time of O((c · |V (H)|)|V (G)|) for some
constant c is the best that we can hope for solving HOM(G,H). Can it be solved,
say by an O(c|V (G)|+|V (H)| · |V (G)|O(1) · |V (H)|O(1))-time algorithm?
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Abstract. The Power Dominating Set problem is a variant of the
classical domination problem in graphs: Given an undirected graph G =
(V, E), find a minimum P ⊆ V such that all vertices in V are “observed”
by vertices in P . Herein, a vertex observes itself and all its neighbors, and
if an observed vertex has all but one of its neighbors observed, then the re-
maining neighbor becomes observed as well. We show that Power Dom-
inating Set can be solved by “bounded-treewidth dynamic programs.”
Moreover, we simplify and extend several NP-completeness results, par-
ticularly showing that Power Dominating Set remains NP-complete
for planar graphs, for circle graphs, and for split graphs. Specifically,
our improved reductions imply that Power Dominating Set param-
eterized by |P | is W[2]-hard and cannot be better approximated than
Dominating Set.

1 Introduction

Domination is a central theme in graph theory. The basic problem is: given an
undirected graph G = (V,E), determine a minimum vertex set D ⊆ V such that
each v ∈ V is contained in D or v is a neighbor of at least one vertex in D. The
corresponding decision problem Dominating Set (DS) is NP-complete. Unless
unlikely collapses in structural complexity theory occur, the polynomial-time
approximation factor is Θ(log n) [7]. Numerous variations of Dominating Set
exist. For instance, the Connected Dominating Set additionally requires that
the dominating set D induces a connected subgraph of G. Opposite to Domi-
nating Set, Connected Dominating Set carries some form of non-locality:
the correctness of the dominating set cannot be decided by locally checking ev-
ery direct neighborhood. In this work, we study another “non-local” variant of
domination which appears in electric power networks [8]—Power Dominating
Set (PDS). This variant is motivated by monitoring an electric power network,
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where one is asked to place a minimum number of so-called phase measurement
units (PMU) at some locations in the system to measure the state variables
(for example, the voltage magnitude etc.). Intuitively, we have a more complex
degree of non-locality in PDS. Whereas Connected Dominating Set only
refers to a property of the solution set, PDS has the non-locality in its domi-
nation mechanism: A vertex may dominate vertices at arbitrary distance when
certain conditions are fulfilled.

For Dominating Set, we have one “observation rule” concerning vertices in
the dominating set: these vertices observe (dominate) themselves and all their
neighbors (and nothing else). The goal is to get all vertices observed by a min-
imum number of observers. By way of contrast, we have an additional observa-
tion rule in the case of PDS. This rule says that for an already observed vertex
whose all but one neighbors are already observed, the one remaining neighbor
becomes observed as well.1 Note that the second observation rule brings in non-
locality. The graph-theoretical and algorithmic study of PDS has been initiated
by Haynes et al. [8]. They show that PDS is NP-complete for general graphs as
well as for bipartite and chordal graphs. Moreover, they present a linear-time
algorithm to solve PDS in trees. We improve their results in the following ways.

1. We present simplified and “stronger” NP-completeness proofs, giving all re-
sults of Haynes et al. in a less technical way and additionally implying NP-
completeness also for planar graphs, circle graphs, and split graphs. Moreover,
our simple reductions preserve parameterized complexity and approximabil-
ity. So we can conclude that, in case of general graphs, PDS is W[2]-hard
and it is only Θ(log n)-approximable unless unlikely collapses in structural
complexity theory occur.2

2. We present a much simpler linear-time algorithm for PDS in trees than the
one presented in [8].

3. Our main result is a dynamic programming algorithm for PDS in graphs of
bounded treewidth, answering an open question of Haynes et al. [8]. Indepen-
dently, fixed-parameter tractability with respect to parameter treewidth was
also shown by Kneis et al. [10] using descriptive complexity tools. They ex-
press PDS in monadic second-order logic3, which implies algorithms of highly
super-exponential running time. The dependence of the combinatorial explo-
sion on the parameter treewidth is non-elementary. In contrast, we describe
and analyze a direct algorithm for PDS with much improved running time.

Let us return to the issue of non-locality. Demaine and Hajiaghayi [5], an-
swering an open question from [1], showed that Connected Dominating Set
can be solved by bounded-treewidth dynamic programs. It was not believed in [1]

1 The original definition of Haynes et al. [8] is a bit more complicated and the equiv-
alent definition presented here is due to Kneis et al. [10].

2 Basically the same reduction was independently shown in [10].
3 This confirms a statement made by Petr Hliněný in a discussion with Peter Ross-

manith and Rolf Niedermeier at the IWPEC 2004 meeting in Bergen, Norway,
September 2004.
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that such non-local properties as “connectedness” could be captured in this way.
In case of PDS, the “even worse” degree of non-locality appears to make things
even harder. Still, a dynamic programming solution exists. Due to the lack of
space, some proofs are deferred to a long version of this extended abstract.

2 Preliminaries

All graphs in this work are simple and without self-loops. For the definitions of
the considered graph classes, we refer to [4]. For a vertex v in graph G, we denote
by NG(v) the open neighborhood of v in G. By NG[v], we refer to the closed
neighborhood of v. This naturally generalizes to NG(U) and NG[U ] for U being
a set of vertices. Moreover, for notion concerning approximation algorithms we
refer to [2] and for parameterized complexity we refer to [6].

To define power domination in graphs, we use two (simplified) observation
rules due to [10].
Observation Rule 1 (OR1): A vertex in the power domination set observes itself

and all of its neighbors.
Observation Rule 2 (OR2): If an observed vertex v of degree d ≥ 2 is adjacent

to d − 1 observed vertices, then the remaining unobserved vertex becomes
observed as well.
Given an undirected graph G = (V,E) and an integer k ≥ 0, Power Dom-

inating Set (PDS) asks whether there is a set P ⊆ V with |P | ≤ k which
observes all vertices in V with respect to the two observation rules OR1 and
OR2. Herein, P is called the power dominating set of G. Note that every con-
nected graph of maximum vertex degree 2 has a power dominating set of size 1.
The classical Dominating Set problem can be defined by simply omitting OR2.

Lemma 1. If G is a connected graph with at least one vertex of degree three or
higher, then there is always a minimum power dominating set which contains
only vertices with degree at least three.

Lemma 1 is due to Haynes et al. [8] who also show that, given an arbitrary
power dominating set P for a connected graph with maximum degree at least
three, one can construct in linear time a power dominating set P ′ with |P ′| ≤ |P |
containing only vertices with degree at least three.

The central concept of this work are tree decompositions of graphs and their
use with respect to dynamic programming as, e.g., described in [3,9].

Definition 1. Let G = (V,E) be a graph. A tree decomposition of G is a pair
〈{Xi | i ∈ I}, T 〉, where each Xi is a subset of V , called a bag, and T is a tree
with the elements of I as nodes. The following three properties must hold:

1.
⋃

i∈I Xi = V ;
2. for every edge {u, v} ∈ E, there is an i ∈ I such that {u, v} ⊆ Xi;
3. for all i, j, k ∈ I, if j lies on the path between i and k in T , then Xi∩Xk ⊆ Xj.
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The width of 〈{Xi | i ∈ I}, T 〉 equals max{|Xi| | i ∈ I} − 1. The treewidth of G
is the minimum k such that G has a tree decomposition of width k.

Definition 2. A tree decomposition 〈{Xi | i ∈ I}, T 〉 is called a nice tree de-
composition if T is rooted and the following conditions are satisfied:

1. Every node of the tree T has at most 2 children.
2. If a node i has two children j and k, then Xi = Xj = Xk (in this case i is

called a join node).
3. If a node i has one child j, then one of the following holds:
(1) |Xi| = |Xj|+ 1 and Xj ⊂ Xi (in this case i is called an insert node),
(2) |Xi| = |Xj| − 1 and Xi ⊂ Xj (in this case i is called a forget node).

Every tree decomposition can be transformed into a nice tree decomposi-
tion [9, Lemma 13.1.3].

Lemma 2. Given a width-k tree decomposition with O(n) nodes of a graph G,
where n is the number of vertices of G, then we can find a nice tree decomposition
of G that also has width k and O(n) nodes in O(n) time.

3 Power Dominating Set vs. Dominating Set

Haynes et al. [8] show the NP-completeness of PDS by giving a reduction from
3-SAT. This also shows that PDS is NP-complete even when the input graph
is bipartite or chordal. We show, for general graphs, that PDS is at least as
hard to solve as DS by reducing DS to PDS. Moreover, this implies the NP-
completeness of PDS also in case of bipartite, chordal, circle, and planar graphs,
and the inapproximability and parameterized intractability results for DS also
transfer to PDS in this way. The second reduction (from Vertex Cover) in
this section shows the NP-completeness of PDS for split graphs.

Theorem 1. Power Dominating Set is NP-complete for bipartite, chordal,
circle, and planar graphs.

Proof. Since it can be easily decided whether a vertex set P is a power domi-
nating set, PDS is in NP. To show NP-hardness, we give a reduction from DS.

Given a DS-instance G = (V,E), we construct a PDS-instance G′ = (V ∪
V1,E∪E1) simply by attaching newly introduced degree-1 vertices to all vertices
from V .

For a dominating set D of G, we set P := D. By definition, all vertices
from V are observed by OR1. Applying OR2 to every vertex in V , the vertices
in V1 become observed as well. Thus, P is a power dominating set of G′.

If G′ has a power dominating set P with |P | = k, then we can assume due
to Lemma 1 that each vertex of P has degree at least three. This implies that
P ∩ V1 = ∅. The proof is by contradiction. Assume that P is not a dominating
set of G. Then, there is a vertex v ∈ V with NG[v] ∩ P = ∅. We also have
that NG′ [v] ∩ P = ∅. Vertex v can get observed in G′ only by applying OR2
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Table 1. The first column is from [11]. Partial k-trees are the same as graphs of

bounded treewidth; the polynomial-time result for this row is shown in Section 4.

Empty entries mean that this has not been studied yet.

Graph classes Dominating Set Power Dominating Set

bipartite NP-c NP-c
chordal NP-c NP-c
circle NP-c NP-c
comparability NP-c NP-c
planar NP-c NP-c
split NP-c NP-c
AT-free poly. time
cocomparability poly. time
distance hereditary poly. time
dually chordal poly. time
interval poly. time
k-polygon (k ≥ 3) poly. time
partial k-tree (k ≥ 1) poly. time poly. time
permutation poly. time
strongly chordal poly. time

to one of its neighbors in G′. Denote this neighbor by u. Let v′ denote the
newly introduced degree-1 neighbor of v in G′. It is easy to see that u cannot
be v′. Hence, u ∈ V . Furthermore, u has also a degree-1 neighbor u′ ∈ V1 in G′.
Since u /∈ P and u′ /∈ P , u′ can be observed only by applying OR2 to u. However,
this is impossible since u has two unobserved neighbors v and u′. Thus, P cannot
be a power domination set of G′, yielding a contradiction.

It is easy to verify that the reduction preserves the properties “bipartite,”
“chordal,” “circle,” and “planar.” Hence, the NP-completeness of PDS follows
from the NP-completeness of DS for these graph classes [11]. ��

The reduction in the proof of Theorem 1 was independently achieved in [10].
Observe that it is a gap-preserving as well as a parameterized reduction. This
implies that all negative results with respect to the approximability and param-
eterized tractability with respect to the solution size valid for DS also are valid
for PDS. It is hard to approximate PDS better than Θ(log n) [7] and PDS is
W[2]-hard with the size of the power dominating set as parameter [6].

Next, we show that PDS is NP-complete for split graphs. The reduction is
from the NP-complete Vertex Cover problem: Given an undirected graphG =
(V,E) and an integer k ≥ 1, is there a set C ⊆ V with |C| ≤ k such that each
edge has at least one endpoint in C.

Theorem 2. Power Dominating Set is NP-complete on split graphs.

Proof. For a VC-instance with graph G = (V,E), we construct a split graph G′

from G as follows. For each edge e = {u, v} ∈ E we add a new vertex we and
two edges between we and u and between we and v to G. We denote the set
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of the vertices we by VE . Moreover, we introduce for each vertex v ∈ V a new
degree-1 vertex v′ and an edge between v and v′. The set of these vertices is
denoted by V1. Finally, we complete the graph induced by V into a clique. Note
that the subgraph of G′ induced by the vertices in Ve∪V1 is an independent set.
Thus, G′ is a split graph. The proof for the claim that G has a vertex cover of
size k iff G′ has a power dominating set of size k uses a similar argument as the
proof of Theorem 1. ��

Altogether, Table 1 compares the computational complexity of PDS and DS.

4 Dynamic Program for Graphs of Bounded Treewidth

Haynes et al. [8] give a linear-time algorithm for PDS in trees. As a warm-up, we
start with a much simpler linear-time algorithm for these “treewidth-1 graphs.”
Without loss of generality, we assume that the input tree T is rooted at a degree-
1 node r and the depth of a node v is defined as the length of the path between v
and r. The algorithm follows a bottom-up strategy:

1. Sort the inner nodes of T in a list L according to the non-increasing order of
their depths in T ;

2. while L 	= {r} do
2.1 v ← the first node in L; L← L \ {v};
2.2 if v has at least two unobserved children then
2.2.1 P ← P ∪ {v};
2.2.2 Apply the two observation rules as long as possible;
3. if r is unobserved then
3.1 P ← P ∪ {r};
4. return P ;

The linear running time of the algorithm is due to the fact that the algorithm
examines for each inner node only its children. With proper data structures, the
application of the observation rules can be performed in linear time.

Our linear-time algorithm for graphs of bounded treewidth uses the same
strategy as the algorithms for DS [12,1], i.e., bottom-up dynamic programming
from the leaves to the root. In the following, we demonstrate that there are two
difficulties associated with OR2 that make PDS “harder” than DS and which
cannot be solved by a simple modification of the algorithms for DS.

Firstly, with OR2, there are more possibilities for a vertex to be observed: it
can be observed by OR1 or OR2. More precisely, the application of OR2 implies
that there is a certain “observation dependency” between two vertices, i.e., one
vertex not in the power dominating set that becomes observed can make one
of its neighbors observed. This observation dependency does not exist in DS.
There, the domination status of one vertex that is not in the dominating set
has no effect on the domination status of other vertices. Therefore, in order to
describe this observation dependency in the dynamic programming, the three
states defined in the algorithm for DS for the vertices in a bag, namely, “belong-
ing to the dominating set,” “already dominated at the current bag,” and “not
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yet dominated at the current bag,” are not sufficient. Secondly, only introducing
further vertex states cannot settle the problem with the observation dependency.
For example, assume that one defines the following additional state for the ver-
tices in a bag: “already observed at the current bag by applying OR2 to one of
its neighbors.” Then, there could emerge a “cycle of observation dependencies:”
Consider a simple cycle as the input graph, one might assign the new state “ob-
served due to OR2” to each vertex of the cycle. This is “locally correct” but
globally it is false because the reasoning is done in a circular fashion without
“global justification.”

Our answer to these two difficulties is to define, in addition to the vertex
states, three states for the edges in the subgraph induced by the vertices in a
bag. In fact, these states give one of three possible orientations to an undirected
edge {u, v}, orienting it from u to v, orienting it from v to u, or leaving it
unoriented. These orientations express observation dependencies.

4.1 Valid Orientations of Undirected Graphs

Definition 3. An orientation of an undirected graph G = (V,E) is a graph D =
(V,E1 ∪ E2) such that for each {u, v} ∈ E there is either a directed edge (u, v)
or (v, u) in E1 or an undirected edge {u, v} in E2, and {u, v} ∈ E for each
directed edge (u, v) ∈ E1 and undirected edge {u, v} ∈ E2. The indegree of a
vertex v in D, denoted by d−(v), is defined as |{(u, v) | (u, v) ∈ E1}| and the
outdegree of v, denoted by d+(v), as |{(v, u) | (v, u) ∈ E1}|. The subgraph D[V ′]
induced by V ′ ⊆ V in D is called a suborientation.

Note that in the standard graph theory literature, an orientation of an undi-
rected graphG is a directed graph D where there is exactly one of (u, v) and (v, u)
in D for each edge {u, v} in G. Here, we abuse the term orientation to denote a
graph that results from orienting only a subset of edges.

Definition 4. A dependency path in an orientation D = (V,E1 ∪ E2) is a
subgraph of D consisting of a sequence of vertices and edges v1, e1, v2, e2, . . . , vi,
i ≥ 3, satisfying:

(1) for all 1 ≤ j, k ≤ i, vj = vk ⇔ j = k,
(2) for all 1 ≤ j ≤ i− 1, either ej = (vj , vj+1) ∈ E1 or ej = {vj , vj+1} ∈ E2,
(3) and for all 1 ≤ j ≤ i− 1, at least one of ej and ej+1 is from E1.

The vertices v1 and vi are called the tail endpoint and the head endpoint of
the dependency path, respectively. A dependency cycle in an orientation is a
dependency path with an edge between v1 and vi which can be undirected only
if (v1, v2) ∈ E1 and (vi−1, vi) ∈ E1; otherwise, it is directed. A directed path is
a dependency path with only directed edges.

Observe that a dependency path contains at least one directed edge.

Definition 5. A valid orientation D = (V,E1∪E2) of an undirected graph G =
(V,E) is an orientation such that ∀v ∈ V : d−(v) ≤ 1, ∀v ∈ V : d−(v) = 1 ⇒
d+(v) ≤ 1, and there is no dependency cycle in D. We call the set of vertices
with d−(v) = 0 the origin of D.



Improved Algorithms and Complexity Results 179

G D

Fig. 1. An example of a valid orientation D of an undirected graph G. The origin O

of D contains only one vertex, marked with a rectangular box.

See Figure 1 for an example of a valid orientation. Note that one can easily
decide in O(|E1 ∪E2|) time whether an orientation D is valid and, if so, find the
origin of D. The following lemma is also easy to show.

Lemma 3. Let D = (V,E1 ∪E2) denote a valid orientation with origin O ⊆ V .
(1) For each vertex v ∈ (V \ O), there is exactly one directed path from the

vertices in O to v.
(2) Two directed paths from O to two vertices in V \O are vertex-disjoint except

for their tail endpoints in O.

The following orientation problem is a reformulation of PDS: Given an undi-
rected graph G = (V,E) and an integer k ≥ 0, Valid Orientation With
Minimum Origin (VOMO) asks whether there is a vertex subset O ⊆ V
with |O| ≤ k such that G has a valid orientation with O as origin.

Lemma 4. An undirected graph G has a power dominating set P iff G has a
valid orientation with P as origin.

With VOMO and Lemma 4, we have an alternative formulation of PDS. The
advantage of VOMO is that, by giving each undirected edge an orientation, a
dependency cycle, which corresponds to a cycle of observation dependencies, can
be easily detected in the dynamic programming on the tree decomposition.

4.2 Dynamic Programming on Tree Decompositions

Given an undirected, connected graph G = (V,E) with V := {v1, v2, . . . , vn}
and a nice tree decomposition 〈{Xi | i ∈ V (T )}, T 〉 of G with treewidth k. Let Ti

denote the subtree of T rooted at node i andGi denote the subgraph ofG induced
by the vertices in the bags in Ti, i.e., Gi := G[

⋃
j∈V (Ti)Xj ]. Furthermore, we

use Yi to denote (
⋃

j∈V (Ti)Xj) \Xi and set G′
i := G[Xi].

Definition of States: During the bottom-up process of our dynamic program-
ming algorithm, it computes for a bag Xi the possible valid orientations of the
subgraph Gi and stores the origin sizes of the valid orientations. Here, the valid
orientations of Gi are characterized by the bag states. A bag state s is a combi-
nation of the states for all ordered pairs of vertices in Xi, the states of vertices
in Xi, and the states of edges in G′

i. In the following, we will define the states for
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vertex pairs, for vertices, and for edges, respectively. Herein, we use s(uv), s(v),
and s(e) to denote the state of an ordered pair of vertices v ∈ Xi and u ∈ Xi,
the state of vertex v ∈ Xi, and the state of an edge e ∈ E(G′

i).
The decisive point in the dynamic programming is to detect the dependency

cycles in the orientations Di forGi while reaching bagXi. The dependency cycles
inside suborientation Di[Xi] can be detected by exhaustive search in Di[Xi]
which contains at most k vertices. However, the detection of dependency cycles
over some vertices in Yi depends on, for each pair of vertices u and v in Xi

with u 	= v, the information about the dependency paths between u and v
in Di[Yi ∪ {u, v}]. We solve this problem by defining for each pair of vertices
in Xi several states reflecting the information about such dependency paths.
Herein, let V (p) be the set of the vertices on the dependency path p. We use puv

to denote a dependency path with u and v as the tail and head endpoints,
respectively. The path puv is called a dependency path from u to v.

Definition 6. There are four types of dependency paths from u to v, puv, in an
orientation D:

Type 1: The first edge (between u and its successor on puv) as well as the last
edge (between v and its predecessor on puv) of puv are directed edges.

Type 2: The first edge of puv is a directed edge but the last edge is not.
Type 3: The last edge of puv is a directed edge but the first edge is not.
Type 4: The last edge as well as the first edge of puv are undirected edges.

In addition, the function g maps a dependency path p to one of the four types,
i.e., g(p) ∈ {Type 1, Type 2, Type 3, Type 4}.

Observe that, if there are two dependency paths puv and pvu in a valid
orientation D, then g(puv) 	= Type 1 and g(pvu) 	= Type 1, and at least one
of puv and pvu is Type 4 or one is Type 2 and the other is Type 3; otherwise,
there is a dependency cycle in the suborientation D[V (puv) ∪ V (pvu)] and we
say that there is a “path type conflict.” The states for an ordered vertex pair uv
with u 	= v in Xi are defined according to the possible types of dependency paths
from u to v in Di[Yi ∪ {u, v}]: there are 16 states for an ordered vertex pair uv
according to the 16 possible subsets of {Type 1, Type 2, Type 3, Type 4}. With
these vertex pair states, we can simply detect a dependency cycle at a bag Xi:
check, for each ordered vertex pair uv with u ∈ Xi and v ∈ Xi, whether there
is a dependency path from v to u in Di[Xi] whose type together with one type
in s(uv) builds a path type conflict.

Next, we define five vertex states s(v) for every vertex v in a bag Xi:

– s(v) = 1: there is exactly one directed edge from a vertex in Yi to v and no
directed edge from v to vertices in Yi;

– s(v) = 2: there is exactly one directed edge from a vertex in Yi to v and
there is exactly one directed edge from v to a vertex in Yi;

– s(v) = 3: there is no directed edge between v and the vertices in Yi;
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– s(v) = 4: there are at least two directed edges from v to the vertices in Yi

and no directed edge from the vertices in Yi to v;
– s(v) = 5: there is exactly one directed edge from v to a vertex in Yi and no

directed edge from the vertices in Yi to v.

Furthermore, we define three edge states s(e) for the edges e = {u, v} in G′
i:

– s(e) = uv: edge e is directed from u to v;
– s(e) = vu: edge e is directed from v to u;
– s(e) =⊥: edge e is undirected.

As a consequence, for a bag Xi with |Xi| ≤ k, we have at most 16k2 · 5k · 3k2

bag states. In the following, we say that a valid orientation D is under the
restriction of a bag state s of the bag Xi if D satisfies the following conditions:

– the orientations in D of the edges in G′
i coincide with their states in s;

– for each ordered vertex pair uv with u ∈ Xi and v ∈ Xi, the types of the
dependency paths from u to v in D[Yi ∪ {u, v}] coincide with s(uv); and

– for each vertex v ∈ Xi, the orientations of the edges between v and vertices
in Yi coincide with s(v).

In the bottom-up dynamic programming, we use a mapping Ai for each
bag Xi, which stores, for each bag state, the minimum size of the origins of all
possible valid orientations of Gi under the restriction of the bag state. Due to
the following easy-to-prove lemma, in the computation of the values for Ai, we
do not count vertices v for the size of an origin with d−(v) = 0 and d+(v) ≤ 1.

Lemma 5. For a connected, undirected graph G = (V,E), there is always a valid
orientation with origin O ⊆ V such that each v ∈ O has at least two neighbors
in V \O which are not neighbors of other vertices in O.

In the following, we use valid(G′
i, si) to denote the procedure deciding

whether the edge states si(e) of the edges e in G′
i form a valid orientation of G′

i.
Since G′

i contains at most k vertices, valid(G′
i, si) needs at most O(k!) time by

enumerating all cycles in G′
i. Procedure valid(G′

i, si) returns true if si implies a
valid orientation of G′

i; otherwise, it returns false.

Initialization: For each leaf node i with bag Xi of the tree decomposition T ,
we initialize Ai as follows. For each bag state si, we set Ai(si) := +∞ if

(∃v∈ Xi : si(v) 	= 3)∨(∃uv : u∈ Xi∧v∈ Xi∧si(uv) 	= ∅)∨(valid(G′
i, si) = false);

and, otherwise,

Ai(si) :=|{v ∈ Xi | ∃e = {v, u} ∈ E(G′
i) : ∃e′ = {v, w} ∈ E(G′

i) :
u 	= w ∧ si(e) = vu ∧ si(e′) = vw}|.

Updating Process: After the initialization, we visit the bags of our tree de-
composition bottom-up from the leaves to the root, evaluating the corresponding
mappings in each step. For each bag state si of a bag Xi, do the following:
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– Check whether the edge states contained in si form a valid orientation of G′
i.

– Compute the set Ssi containing the “compatible bag states” sj (or “com-
patible bag state pairs” for join nodes) of the child bag Xj. The formal
definition of compatible bag states (and compatible bag state pairs) will be
given individually for forget, insert, and join nodes.

– For each compatible bag state sj (or each compatible bag state pair) in Ssi ,
check whether a valid orientation for Gj under the restriction of sj is a valid
orientation for Gi under the restriction of si.

– Based on the mappings Aj for all compatible bag states (or bag state pairs)
in Ssi , evaluate Ai(si).

Due to the lack of space, we only treat the (most interesting) case of “Insert
Nodes” of the tree decomposition here.

Insert Nodes: Suppose that node i is an insert node with child node j, Xi :=
{xj1 , . . . , xjnj

, x} and Xj := {xj1 , . . . , xjnj
}.

Procedure valid(G′
i, si) can decide whether the edge states contained in si

form a valid orientation of G′
i in O(k!) time by enumerating all cycles. For each

bag state si of node i, we consider the set Ssi containing the compatible bag
states sj of node j which satisfy

(∀e ∈ E(G′
j) : si(e) = sj(e)) ∧ (∀v : si(v) = sj(v)) ∧ (∀uv : si(uv) = sj(uv)),

where u, v ∈ Xj .
Note that the introduction of a new vertex x does not change the number of

directed edges between a vertex v ∈ Xj and the vertices in Yi; thus, si(v) = sj(v).
The types of the dependency paths remain the same for each ordered vertex
pair uv with u ∈ Xj and v ∈ Xj , i.e., si(uv) = sj(uv). Moreover, since there is
no edge between the new vertex x in Xi and the vertices in Yi, we set Ssi := ∅
for bag states si if si(x) 	= 3 or if there is a vertex v ∈ Xj with si(vx) 	= ∅
or si(xv) 	= ∅.

The most difficult task here is to decide whether a valid orientation of Gj

under the restriction of a bag state in Ssi is still a valid orientation of Gi under
the restriction of si. Herein, we have to take into account the states of the edges
incident to x in G′

i. Observe that the conditions for a valid orientation can be
violated either by a vertex in Xi having x as neighbor or by a dependency cycle
over vertex x. Thus, based on the information saved in sj(v) for vertices v ∈
Xj and in sj(uv) for the ordered vertex pairs with u ∈ Xj and v ∈ Xj, this
task can be fulfilled by firstly checking for each vertex v in Xi having x as
neighbor whether v violates the vertex-degree conditions of a valid orientation,
i.e., d−(v) ≤ 1 and d−(v) = 1 ⇒ d+(v) ≤ 1, by taking sj(v) and si(e) for e =
{v, x} into account. Secondly, check for every two vertices u and v in Xi whether
they now have a dependency path over x in Di[Xi] built by the edge states in si

whose type together with one path type in sj(uv) or sj(vu) forms a path type
conflict. It is easy to see that these two checks can be done in O(k!) time by
enumerating all dependency paths in Di[Xi]. Finally, if for a bag state si there
is no sj in Ssi which passes both checks, then Ssi := ∅.



Improved Algorithms and Complexity Results 183

Evaluate the mapping Ai of Xi as follows: for each bag state si, set

Ai(si) := min
sj∈Ssi

{Aj(sj) + fsi(x) + |B|},

where fsi(x) = 1 if there exist at least two edges e = {u, x} and e′ = {v, x}
in G′

i with si(e) = xu and si(e′) = xv; otherwise, fsi(x) = 0. The set B contains
the vertices v ∈ Xj which either have sj(v) = 5 and exactly one edge e = {v, x}
in G′

i with si(e) = vx or have sj(v) = 3 and exactly two edges e = {v, x}
and e′ = {u, v} in G′

i with si(e) = vx and si(e′) = vu. Roughly speaking,
fsi(x) = 1 covers the case that x has to be added to the origin and the set B
contains the vertices which are in the origin of the valid orientation of Gi but
not in the origin of the valid orientation of Gj . Note that, if Ssi = ∅ for a si,
then Ai(si) = +∞.

When reaching the root of T , we can determine the minimum size of the
origin of a valid orientation of G in the mappings A of the root node. Together
with Lemma 4, we obtain our main result.

Theorem 3. For an n-vertex graph with a given width-k tree decomposition,
Power Dominating Set can be solved in O(ck2 · n) time for a constant c.

5 Conclusion

There are several avenues for future work. Table 1 contains several empty en-
tries concerning the complexity of Power Dominating Set in particular graph
classes we did not address but which have been addressed for Dominating
Set [11]. In particular, is there a “significant” difference between the complex-
ities of DS and PDS? How do fixed-parameter tractability results for DS in
planar graphs transfer to PDS? Are there nontrivial data reduction rules for
PDS? So far, we are not aware of a graph class where DS is polynomial-time
solvable and PDS is NP-complete or vice versa.
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Abstract. Clique-width of graphs is a major new concept with respect
to efficiency of graph algorithms. The notion of clique-width extends the
one of treewidth, since bounded treewidth implies bounded clique-width.
We give a complete classification of all graph classes defined by forbidden
induced subgraphs of at most four vertices with respect to bounded or
unbounded clique-width.

1 Introduction

Recently, in connection with graph grammars, in [17] the notion of clique-width
of a graph was introduced which, by now, has attracted much attention since,
in [18], Courcelle, Makowsky and Rotics have shown that every graph problem
expressible in LinEMSOL(τ1,L) (a variant of Monadic Second Order Logic) is
linear-time solvable on graphs with bounded clique-width if the input graph is
given together with a k-expression defining it. (The time complexity may be
sublinear with respect to the size of the input graph G if the input is just a
k-expression of G).

Various NP-complete problems such as Vertex Cover, Maximum Weight
Stable Set (MWS), Maximum Weight Clique, Steiner Tree, Domination, k-
colorability for fixed k ≥ 3 and Maximum Induced Matching are LinEMSOL
(τ1,L) expressible.

Restricting the input to some graph classes defined by forbidding small graphs
leads to polynomial time algorithms for some problems; for example, Minty [28]
gave a polynomial time algorithm for the MWS problem on claw-free graphs
(see also [33]), Randerath [31] and Randerath et al. [32] discussed k-colorability
of graph classes defined by small forbidden subgraphs, and Corneil et al. [15]
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Fig. 1. All four-vertex graphs
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Fig. 2. Essential classes for all combinations of forbidden 4-vertex graphs; + (−) de-

notes bounded (unbounded) clique-width

described how MWS and related problems can be solved bottom-up along the
cotree of a P4-free graph (also called cograph).

It is known that a graph is P4-free if and only if its clique-width is at most
2, and a 2-expression can be found in linear time along its cotree. Thus, it is
a natural question to ask which other forbidden 4-vertex graphs (and which
of their combinations) will lead to bounded clique-width. Figure 1 contains all
4-vertex graphs.
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In [11], the clique-width (and some structure results) of (H ,co-H)-free graphs
was described for any 4-vertex graph H (see Theorem 2). Thus e.g., the (dia-
mond, co-diamond)-free graphs and the (claw,co-claw)-free graphs have bounded
clique-width (and simple structure). See also [1] for bounded clique-width of
(claw,co-claw)-free graphs as well as (claw,paw)-free graphs.

We extend these results by giving a complete classification of all graph classes
defined in terms of some forbidden graphs with at most four vertices with respect
to bounded or unbounded clique-width. This is done by identifying 14 inclusion-
maximal classes of bounded clique-width and four inclusion-minimal classes of
unbounded clique-width (see Figure 2). In particular, it will turn out that for
a 4-vertex graph H , the class of H-free graphs has bounded clique-width if
and only if H is the P4, and every class defined by six (or more) forbidden 4-
vertex graphs has bounded clique-width. This also continues research done in
[2,3,4,5,6,7,8,10,11,12,13,23] and is partially based on some of the results of these
papers.

For space limitations, almost all proofs in this paper are omitted but can be
found in the corresponding full version available on the first author’s homepage.

2 Basic Notions

Throughout this paper, let G = (V,E) with vertex set V and edge set E be a
finite undirected graph without self-loops and multiple edges and let |V | = n,
|E| = m. For a vertex v ∈ V , let N(v) = {u | uv ∈ E}.

Disjoint vertex sets X,Y form a join (co-join, respectively if for all pairs
x ∈ X , y ∈ Y , xy ∈ E (xy /∈ E, respectively) holds. We will also say that X
has a join to Y , that there is a join between X and Y , or that X and Y are
connected by join (and similarly for co-join). Subsequently, we will consider join
and co-join also as operations, i.e., the co-join operation for disjoint vertex sets
X and Y is the disjoint union of the subgraphs induced byX and Y , and the join
operation for X and Y consists of the co-join operation for X and Y followed
by adding all edges xy, x ∈ X , y ∈ Y .

A vertex z ∈ V distinguishes vertices x, y ∈ V if zx ∈ E and zy /∈ E. A
vertex set M ⊆ V is a module if no vertex from V \M distinguishes two vertices
of M , i.e., every vertex v ∈ V \M has either a join or a co-join to M . A module
is trivial if it is either the empty set, a one-vertex set or the entire vertex set
V . A graph is prime if it contains only trivial modules. The notion of module
plays a crucial role in the modular (or substitution) decomposition of graphs (and
other discrete structures) which is of basic importance for the design of efficient
algorithms - see e.g. [29] for modular decomposition of discrete structures and
its algorithmic use and [27] for a linear-time algorithm constructing the modular
decomposition tree of a given graph.

For U ⊆ V , let G[U ] denote the subgraph of G induced by U . Throughout
this paper, all subgraphs are understood to be induced subgraphs. Let F denote
a set of graphs. A graph G is F-free if none of its induced subgraphs is in F .
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A vertex set U ⊆ V is stable (or independent) in G if the vertices in U are
pairwise nonadjacent. Let co-G = G = (V,E) denote the complement graph of
G. A vertex set U ⊆ V is a clique in G if U is a stable set in G. Let K� denote
the clique with � vertices, and let �K1 denote the stable set with � vertices.

For k ≥ 1, let Pk denote a chordless path with k vertices and k − 1 edges,
and for k ≥ 3, let Ck denote a chordless cycle with k vertices and k edges. The
2K2 is the complement of C4 (see Figure 1). A graph is chordal if it contains no
induced Ck, k ≥ 4.

A graph is a split graph if its vertex set is partitionable into a clique and a
stable set.

Lemma 1 ([20]). G is a split graph if and only if G is (2K2, C4, C5)-free.

We will also need the following classes of graphs:

– G is a thin spider if its vertex set is partitionable into a clique C and a stable
set S with |C| = |S| or |C| = |S|+ 1 such that the edges between C and S
are a matching and at most one vertex is not covered by the matching. The
thin spider with 6 vertices is also called net. A graph is a thick spider if it
is the complement of a thin spider. The complement of the net is called the
3-sun.

– G is matched co-bipartite if its vertex set is partitionable into two cliques
C1, C2 with |C1| = |C2| or |C1| = |C2| − 1 such that the edges between
C1 and C2 are a matching and at most one vertex is not covered by the
matching. G is co-matched bipartite if G is the complement of a matched
co-bipartite graph.

– A bipartite graph B = (X,Y,E) is a bipartite chain graph [34] if there is an
ordering x1, x2, . . . , xk of all vertices in X such that N(xi) ⊆ N(xj) for all
1 ≤ i < j ≤ k. (Note that then also the neighborhoods of the vertices from
Y are linearly ordered by set inclusion.) If, moreover, |X | = |Y | = k and
N(xi) = {y1, . . . , yi} for all 1 ≤ i ≤ k, then B is prime. G is a co-bipartite
chain graph if it is the complement of a bipartite chain graph.

– G is a tractable graph if G is (4K1,C4,claw)-free and its vertex set can be
partitioned into four (possibly empty) pairwise disjoint vertex sets Q1, Q2,
Q3 and Q4 which induce cliques in G such that there are no edges between
Qi and Qi+2 for both i = 1 and i = 2. Note that G[Qi∪Qi+1], i ∈ {1, . . . , 4},
are co-bipartite chain graphs. The P6 and the C7 are examples of (prime)
tractable graphs.

3 Cographs, Clique-Width and Logical Expressibility of
Problems

The P4-free graphs (also called cographs) play a fundamental role in graph de-
composition; see [16] for linear time recognition of cographs, [14,15,16] for more
information on P4-free graphs and [9] for a survey on this graph class and re-
lated ones. For a cograph G, either G or its complement is disconnected, and the
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cotree of G expresses how the graph is recursively generated from single vertices
by repeatedly applying join and co-join operations. Note that the cographs are
those graphs whose modular decomposition tree contains only join and co-join
nodes as internal nodes.

Based on the following operations on vertex-labeled graphs, namely

(i) create a vertex u labeled by integer �, denoted by �(u),
(ii) disjoint union (i.e., co-join), denoted by ⊕,

(iii) join between all vertices with label i and all vertices with label j for i 	= j,
denoted by ηi,j , and

(iv) relabeling all vertices of label i by label j, denoted by ρi→j ,

the notion of clique-width cwd(G) of a graph G is defined in [17] as the minimum
number of labels which are necessary to generate G by using the operations
(i) − (iv). It is easy to see that cographs are exactly the graphs whose clique-
width is at most two. A k-expression for a graph G of clique-width k describes
how G is recursively generated by repeatedly applying the operations (i)− (iv)
using at most k different labels. Observe that, trivially, the clique-width of a
graph with n vertices is at most n. The following result by Johansson gives a
slightly sharper bound.

Lemma 2 ([24]). If G has n vertices then cwd(G) ≤ n−k as long as 2k+2k ≤ n.

Thus, the clique-width of a graph with nine vertices is at most seven.

Proposition 1 ([18,19]).

(i) The clique-width cwd(G) of a graph G is the maximum of the clique-width
of its prime induced subgraphs.

(ii) cwd(G) ≤ 2 · cwd(G).

In [18], it is shown that every problem expressible in a certain kind of Monadic
Second Order Logic, called LinEMSOL(τ1,L), is linear-time solvable on any graph
class with bounded clique-width for which a k-expression can be constructed in
linear time. Roughly speaking, MSOL(τ1) is Monadic Second Order Logic with
quantification over subsets of vertices but not of edges; MSOL(τ1,L) is MSOL(τ1)
with additional vertex labels, and LinEMSOL(τ1,L) is the variant of MSOL(τ1,L)
which allows to search for sets of vertices which are optimal with respect to some
linear evaluation functions.

Theorem 1 ([18]). Let C be a class of graphs of clique-width at most k such
that there is an O(f(|E|, |V |)) algorithm, which for each graph G in C, constructs
a k-expression defining it. Then for every LinEMSOL(τ1,L) problem on C, there
is an algorithm solving this problem in time O(f(|E|, |V |)).

The next, straightforward, proposition was already stated in [3].

Proposition 2. The clique-width is at most 3 for chordless paths as well as
for their complements, 4 for chordless cycles as well as for their complements,
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Fig. 3. The typical graph T4

3 for thin spiders, 4 for thick spiders, 3 for bipartite chain graphs, 3 for co-
bipartite chain graphs, 4 for matched co-bipartite as well as for co-matched bi-
partite graphs, and corresponding k-expressions, k ∈ {3, 4}, can be obtained in
linear time.

Finally in this section, we mention that tractable graphs have bounded clique-
width which is used later for the proof that (4K1,C4,claw)-free graphs have
bounded clique-width. As a preparing step, we define typical graphs Tn (see
Figure 3 for an example):

Let Tn be the graph with vertex set {1, 2, . . . , n} × {1, 2, 3, 4} and edge set

{(s, t)(x, y) | (y = t + 1 and x ≤ s) or (x 	= s and y = t)}
(index arithmetic modulo 4). We call {1, 2, . . . , n} × {i} the ith column of Tn,
i ∈ {1, 2, 3, 4}. Note that the four columns of Tn are cliques, Tn is 4K1- and
claw-free and there are no edges between non-consecutive columns but Tn is not
tractable since it contains C4.

Lemma 3. The clique-width of typical graphs is at most 8.

Proof. We give an 8-expression τn for the typical graph Tn: For 1 ≤ i ≤ n, let
τi be the expression defined inductively as follows:

τ1 := η4,1(η3,4(η2,3(η1,2(1(1, 1)⊕ 2(1, 2)⊕ 3(1, 3)⊕ 4(1, 4)))));
for i := 2 to n do

begin
α := τi−1 ⊕ 5(i, 1)⊕ 6(i, 2)⊕ 7(i, 3)⊕ 8(i, 4);
β := η1,5(η2,6(η3,7(η4,8(α))));
γ := η5,2(η5,6(η6,3(η6,7(η7,4(η7,8(η8,1(η8,5(β))))))));
τi := ρ5→1(ρ6→2(ρ7→3(ρ8→4(γ))))

end

Obviously, τn constructs Tn. ��
Lemma 4. Every tractable graph with n vertices is an induced subgraph of Tn.

Corollary 1. The clique-width of tractable graphs is at most 8.



Clique-Width for Four-Vertex Forbidden Subgraphs 191

4 Bounded Clique-Width

By Ramsey theory (see [22]), it is known that (K4,K4)-free graphs have at most
17 vertices. Moreover, the following is known:

Theorem 2 ([11]). Let G be a prime graph.

(i) If G is (diamond,co-diamond)-free then G or G is a matched co-bipartite
graph or G has at most nine vertices.

(ii) If G is (claw,co-claw)-free then G or G is an induced path or cycle or G
has at most nine vertices.

(iii) If G is (paw,co-paw)-free then G is a P4 or C5.

The following theorem collects the other inclusion-maximal classes of bounded
clique-width defined by two forbidden 4-vertex subgraphs.

Theorem 3. The following classes have bounded clique-width:

(i) (diamond,co-paw)-free graphs;
(ii) (diamond,2K2)-free graphs;

(iii) (2K2,paw)-free graphs;
(iv) (claw,paw)-free graphs;
(v) (K4,co-paw)-free graphs;

(vi) (K4,co-diamond)-free graphs.

The inclusion-maximal classes of bounded clique-width defined by three for-
bidden 4-vertex graphs are the following:

Theorem 4.

(i) Prime (K4,C4,2K2)-free graphs have at most nine vertices;
(ii) Prime (C4,claw,2K2)-free graphs are thin spiders or have at most six ver-

tices;
(iii) Prime (K4,claw,2K2)-free graphs have at most nine vertices.

The most involved case is the following:

Theorem 5. The clique-width of (4K1,C4,claw)-free graphs is bounded.

If G is a 4K1-free graph then obviously, G is Cj-free for j ≥ 8. The proof of
Theorem 5 (given on 9 pages of the full version of this paper) can be done by a
suitable case analysis:

Lemma 5.

(i) Prime (4K1, claw)-free chordal graphs containing a net have at most seven
vertices.

(ii) A prime (4K1, claw, net)-free chordal graph containing a 3-sun is a 3-sun
itself.

(iii) Prime (4K1, claw)-free chordal graphs are tractable or have at most seven
vertices.
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(iv) The clique-width of prime (4K1,C4,claw)-free graphs containing C5 is
bounded.

(v) The clique-width of prime (4K1,C4,C5,claw)-free graphs containing C6 is
bounded.

(vi) A prime (4K1, C4, C5, C6, claw)-free graph containing C7 is the C7 itself.

In case (iv), we show that the graph can be partitioned into five tractable
graphs in a suitable way, and in case (v), we show that the graph can be parti-
tioned into twelve co-bipartite chain graphs in a suitable way.

5 Unbounded Clique-Width

In this section, we identify four inclusion-minimal classes of unbounded clique-
width which are defined by forbidden 4-vertex graphs. Two of them are an
immediate consequence of the following result by Makowsky and Rotics:

Theorem 6 ([26]). The following graph classes have unbounded clique-width:

(i) split graphs;
(ii) Hn,q grids.

The Hn,q grid is a variant of the n × n square grid. Theorem 6, Lemma 1 and
the fact that Hn,q grids contain no C4 and no K3, and thus no K4, diamond,
paw, and co-claw, imply:

Corollary 2. The following classes have unbounded clique-width:

(i) (C4,2K2)-free graphs;
(ii) (K4, diamond, C4, paw, co-claw)-free graphs.

For the other two cases, we show the following theorem:

Theorem 7. The following classes have unbounded clique-width:

(i) (K4,2K2)-free graphs;
(ii) (K4,diamond,C4 ,claw)-free graphs.

Theorem 7 (i) is an immediate consequence of the following stronger result:

Theorem 8. K4-free co-chordal graphs and, equivalently, 4K1-free chordal
graphs, have unbounded clique-width.

For the proof of Theorem 8, we analyze the following family of grids. For
each integer n ≥ 1, let Gn be the graph with vertex set A ∪B ∪C and edge set
E1 ∪ E2 ∪E3 defined as follows:

Consider a (n + 1)× (n + 1) square grid with vertex vij in row i and column
j, i, j ∈ {0, . . . , n}. Omit the vertex v00, take the vertices of the 0-th column
as the A-vertices ai = vi0, take the vertices of the 0-th row as the B-vertices
bi = v0i and take the other vertices as the C-vertices cij = vij , 1 ≤ i, j ≤ n.
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The edges between A, B and C are defined as follows.

– A and B induce a complete bipartite graph; E1 is the set of all edges aibj ,
1 ≤ i, j ≤ n.

– Every vertex ai ∈ A is adjacent to every j-th row, 1 ≤ j ≤ i; E2 is the set
of all edges aivj�, 1 ≤ j ≤ i, 1 ≤ �, i ≤ n.

– Every vertex bi ∈ B is adjacent to every j-th column, 1 ≤ j ≤ i; E3 is the
set of all edges biv�j , 1 ≤ j ≤ i, 1 ≤ �, i ≤ n.

Thus, A, B, and C are stable sets, |A| = |B| = n, and |C| = n2 such that
A ∪B induces a complete bipartite graph, and A ∪C as well as B ∪C induce a
bipartite chain graph.

Observation 1. For each n ≥ 1, Gn is a K4-free co-chordal graph.

Lemma 6. For each n ≥ 1, cwd(Gn) ≥ n.

This may be surprising at first glance, since Gn consists of a pair of bipartite
chain graphs G[A ∪ C], G[B ∪ C] with the property that A and B form a join,
and is thus quite close to bipartite chain graphs whose clique-width is at most
3 but Gn has unbounded clique-width.

Observation 1 and Lemma 6 together show that K4-free co-chordal graphs
have unbounded clique-width which finishes the proof of Theorem 8.

Note that in exactly the same way, unbounded clique-width can be shown for
the modified graphs G′

n, n ≥ 1, which are defined like Gn but, instead of a join
between A and B, there is a co-join between A and B. Obviously, these graphs
G′

n, n ≥ 1, are bipartite, and it is straightforward to show that they are P8-free.

Corollary 3. P8-free bipartite graphs have unbounded clique-width.

This is in contrast to the bounded clique-width of P6-free bipartite graphs (see
[21,25]). It seems to be an open question whether P7-free bipartite graphs have
unbounded clique-width.

The proof of Theorem 7 (ii) follows similar grid techniques.

6 Conclusion

The preceding results give a complete classification of all graph classes defined
by forbidden induced subgraphs of four vertices with respect to bounded or
unbounded clique-width.

Let F denote the set of the 10 graphs with four vertices (see Figure 1) different
from P4 (since the clique-width of P4-free graphs is at most 2, we exclude P4 from
F). For F ′ ⊆ F , there are 1024 classes of F ′-free graphs. For F ′ = ∅, the class
of F ′-free graphs is the class of all graphs (which has unbounded clique-width).

Recall that by Proposition 1 (ii), a class has bounded clique-width if and only
if the class of its complement graphs has bounded clique-width. Thus, for each
pair of classes of (F1, . . ., Fk)-free graphs and (co-F1, . . ., co-Fk)-free graphs, it
suffices to mention only one of them (see Figure 2).
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Note that any subclass of a class of bounded clique-width has bounded clique-
width as well, whereas any superclass of a class of unbounded clique-width has
unbounded clique-width as well. Thus, the classification is obtained by two types
of key results:

– bounded clique-width of inclusion-maximal classes;
– unbounded clique-width of inclusion-minimal classes

such that all the other classes will be a subclass of a class of bounded clique-
width or a superclass of a class of unbounded clique-width. These key results are
Theorems 3, 4, and 5 for bounded clique-width and Corollary 2 and Theorems
7 and 8 for unbounded clique-width.

Then, a straightforward case analysis leads to a complete classification of
all other classes defined by any subset of forbidden induced 4-vertex subgraphs.
Thus, for |F ′| = 1, all classes have unbounded clique-width, for |F ′| = 2, there
are 10 inclusion-maximal classes of bounded clique-width and two inclusion-
minimal classes of unbounded clique-width, for |F ′| = 3, there are four inclusion-
maximal classes of bounded clique-width, and for |F ′| = 4 and |F ′| = 5, there
is one inclusion-minimal class of unbounded clique-width (see Figure 2).

For 6 ≤ |F ′| ≤ 10, all classes of F ′-free graphs have bounded clique-width.
Now we consider forbidden subgraphs of at most four vertices. There are only

four subgraphs H containing three vertices: the K3, its complement 3K1, the P3
and its complement. If a graph is P3-free or P3-free then it is a cograph. Thus,
the only interesting cases are the combinations of K3 with four-vertex graphs.

– The class of (K3,C4)-free graphs has unbounded clique-width since Hn,q

grids are (K3,C4)-free (see Theorem 6).
– The class of (K3,claw)-free graphs has bounded clique-width since these

graphs are (claw,co-claw)-free (see Theorem 2).
– The class of (K3,co-paw)-free graphs has bounded clique-width since (K4,co-

paw)-free graphs have bounded clique-width (see Theorem 3).
– The class of (K3,2K2)-free graphs has bounded clique-width since

(P5,diamond)-free graphs have bounded clique-width (see [2]).
– The class of (K3,co-diamond)-free graphs has bounded clique-width since

(K4,co-diamond)-free graphs have bounded clique-width (see Theorem 3).
– The class of (K3,4K1)-free graphs has bounded clique-width since, by Ram-

sey theory, (K3,4K1)-free graphs have at most eight vertices.

This implies that for all H ∈ {claw, co-paw, 2K2, co-diamond, 4K1}, the class
of (K3,C4,H)-free graphs has bounded clique-width.

As mentioned in Section 3, bounded clique-width has important algorith-
mic consequences. However, for the time bounds, it is essential to determine
corresponding k-expressions efficiently. For (K4,co-diamond)-free graphs and for
(K4,co-claw,2K2)-free graphs, however, we do not have linear-time algorithms
for determining corresponding k-expressions.
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Open Problems

– What is the time complexity of determining k-expressions of (K4,co-
diamond)-free graphs and of (K4,co-claw,2K2)-free graphs?

– What is the clique-width of P7-free bipartite graphs? (cf. Corollary 3)
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9. A. Brandstädt, V.B. Le and J.P. Spinrad, Graph Classes: A Survey, SIAM Mono-
graphs on Discrete Math. Appl., Vol. 3, SIAM, Philadelphia (1999)
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18. B. Courcelle, J.A. Makowsky and U. Rotics, Linear time solvable optimization
problems on graphs of bounded clique width, Theory of Computing Systems 33
(2000) 125-150

19. B. Courcelle and S. Olariu, Upper bounds to the clique-width of graphs, Discrete
Appl. Math. 101 (2000) 77-114
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Abstract. We investigate the complexity of finding uniformly mixed
Nash equilibria (that is, equilibria in which all played strategies are
played with the same probability). We show that, even in very simple
win/lose bimatrix games, deciding the existence of uniformly mixed equi-
libria in which the support of one (or both) of the players is at most or at
least a given size is an NP-complete problem. Motivated by these results,
we also give NP-completeness results for problems related to finding a
regular induced subgraph of a certain size or regularity in a given graph,
which can be of independent interest.

Classification: computational complexity, game theory, graph theory.

1 Introduction

The recent interaction between Game Theory and Theoretical Computer Sci-
ence has led to a deep study of the computational issues underlying the basic
game theoretic notions. A prominent object of these studies is the hardness
of computing Nash equilibria in non-cooperative games [8]. Despite these at-
tempts, however, the precise complexity of finding a Nash equilibrium in a given
game is still unknown. Even in the two player case, the best algorithm known
has an exponential worst-case running time [9]. Furthermore, when one requires
equilibria with simple additional properties, the problem immediately becomes
NP-hard [2, 5].

Motivated by these negative results, recent studies considered the problem
of computing classes of simpler equilibria, such as pure equilibria [3]. Here we
consider uniformly mixed equilibria, that is, Nash equilibria in which all the
strategies played with nonzero probability by a player are played with the same
probability. Uniformly mixed equilibria can be viewed, in a sense, as falling
between pure and mixed Nash equilibria; playing a uniformly mixed strategy is
probably the simplest way of mixing pure strategies.

Despite this apparent simplicity, we give NP-completeness results which hold
even for a very constrained class of games, called imitation simple bimatrix games
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[1, 6]. An imitation simple bimatrix game is a two player game in which the
payoffs of both players are in the set {0, 1} and the payoff of one of the players
(the imitator) is 1 if and only if he makes the same move as the opponent.
Obviously, this can only strengthen our results, which continue to hold in the
case of general games. Specifically, we show that it is NP-complete to decide if a
given imitation simple bimatrix game has a uniformly mixed Nash equilibrium
in which one (or both) of the players has a support of size at most, or at least,
or precisely equal to a given size k.

Finally, motivated by the relation between these problems and the problem
of deciding the existence of a regular induced subgraph with certain properties
in a given graph, we give NP-completeness results for other natural variations of
this last problem. In particular, we prove that it is NP-complete to decide if a
graph has an induced regular subgraph of size at least k, or if it has an induced
regular subgraph of regularity at least d, where k or d are given in the input.

The structure of this paper is as follows. In Section 2, we give the necessary
definitions and notation. Then, in Section 3, we explain how the game-theoretic
results follow from the graph-theoretic hardness results. The actual reductions
are presented in Section 4, where we also present the completeness results for
the other regular subgraph problems.

2 Definitions and Notation

In this section we explain the basic game-theoretical and graph-theoretical no-
tions that we will use and we introduce our notation.

A bimatrix game is specified by two n× n matrices A and B, where n is the
number of pure strategies; we will identify the set of pure strategies with the
set N = {1, 2, . . . , n}. The first player is called the row player and the second
player is called the column player. If the row player plays strategy i and the
column player strategy j, the payoff will be Aij for the first player and Bij for
the second player.

A mixed strategy is a probability distribution over pure strategies, that is,
a vector x ∈ Rn such that

∑
i xi = 1 and for every i ∈ N , xi ≥ 0. The support

supp(x) of a mixed strategy x is the set of pure strategies i such that xi > 0.
When the row player plays mixed strategy x and the column player plays mixed
strategy y, their expected payoffs will be, respectively, xtAy and xtBy (xt is the
transpose of vector x). A mixed strategy x will be called uniformly mixed, or
uniform, if, for every i ∈ supp(x), xi = 1/|supp(x)|.

A Nash equilibrium [7] of the game (A, B) is a pair of mixed strategies (x, y)
such that for all mixed strategies x and y, xtAy ≥ xtAy and xtBy ≥ xtBy.
A Nash equilibrium strategy for a player is a mixed strategy that is played in
some Nash equilibrium by that player. A uniformly mixed Nash equilibrium is
an equilibrium in which both players play uniformly mixed strategies.

We will consider only imitation, simple bimatrix games. A bimatrix game is
simple if the entries of the matrices A and B can be only 0 or 1. A bimatrix
game is an imitation game if one of the players, called the imitator has payoff
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1 if he plays the same pure strategy as the opponent and payoff 0 otherwise.
We will assume the row player to be the imitator. Thus, in an imitation simple
bimatrix game matrix A is the identity matrix I. Actually, we will consider only
imitation simple games (I, M) where M is the adjacency matrix of some simple
undirected graph; that is, M is symmetric and for every i, Mii = 0. Notice that
in such games, the two players cannot win at the same time, that is, at least one
player has payoff zero. However, they can both lose.

We now describe our graph-theoretical notation. Given a simple undirected
graph G = (V,E), we will use G(S) to denote the subgraph induced by the
vertices in the subset S ⊆ V . As a shorthand for S ∪ {v} (where v ∈ V ), we
will write S + v. We will use dG(S)(x) to denote the degree of node x ∈ S in the
subgraph of G induced by S.

3 Game-Theoretical Results

In this section we formulate our results on uniformly mixed equilibria and explain
their connection with regular subgraph problems.

Let G = (V,E) be an undirected graph. We will say that a subset S of
vertices determines a dominant-regularity induced subgraph if there is a positive
integer r such that

(i) G(S) is r-regular;
(ii) for every v ∈ V \ S, the degree of v in G(S + v) is at most r.

Our results on equilibria are based on the following Lemma.

Lemma 1. Let (I, M) be an imitation simple bimatrix game where M is the
adjacency matrix of some undirected graph G. Then the uniform Nash equilib-
rium strategies of the row player in (I, M) are in one-to-one correspondence with
the dominant-regularity induced subgraphs of G. Moreover, for every equilibrium
(x, y) such that x is uniformly mixed, there is a uniformly mixed symmetric
equilibrium (x, x).

Proof. Let S be a dominant-regularity induced subgraph with regularity r. Con-
sider the unique uniformly mixed strategy x having support S (that is, xi = 1/|S|
if i ∈ S and xi = 0 otherwise). By definition of S, we have that |S|xtM is a
vector giving the degrees of every node v in the graph G(S + v). But then xtM
is maximal on coordinates i ∈ S; thus, if the row player plays x, the column
player has no incentive to deviate from x. But if the second player plays x, the
vector of incentives for the first player is Ix = x and hence (x, x) is a uniformly
mixed Nash equilibrium for (I, M).

For the other direction, let (x, y) be a Nash equilibrium such that x is uni-
formly mixed. Since the game is an imitation game, it can be easily checked that
the support of x has to be included in the support of y. Let S = supp(x). Since
the column player has no incentive to deviate, for every l ∈ N and for every i
in the support of y, and in particular for every i ∈ S, (xtM)i ≥ (xtM)l. Now
|S|(xtM)i =

∑
j∈S Mji so we have
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j∈S

Mji ≥
∑
j∈S

Mjl

for every i ∈ S and l ∈ N . But this last quantity is exactly the degree of l in
G(S + l). Thus S induces a dominant-regularity subgraph in G.

Reasoning as in the first part of the proof we can conclude that (x, x) has to
be an equilibrium. ��

We can now state our main results.

Theorem 1. It is NP-complete to decide, given a game and an integer k,
whether the game has Nash equilibria in which the row player plays a uniformly
mixed strategy having a support of size

(i) at most k;
(ii) at least k;
(iii) equal to k.

Proof. The theorem follows from Lemma 1 and the fact that the graph-
theoretical problems corresponding to (i) and (ii) (namely, finding a dominant-
regularity induced subgraph of size at most or at least k) are NP-complete as
shown in Section 4. Result (iii) follows1 from a trivial reduction of (i) to (iii):
since the maximum value of k is n, we can solve (i) by calling n times the proce-
dure which decides (iii), with k taking all the possible values in {1, 2, . . . , n}. ��

Theorem 2. It is NP-complete to decide, given a game and an integer k,
whether the game has Nash equilibria in which both players play the same uni-
formly mixed strategy having a support of size

(i) at most k;
(ii) at least k;
(iii) equal to k.

Proof. Similar to the proof of Theorem 1, except that we also use the last part
of Lemma 1. ��

Finally, we notice that the problem of deciding the existence of a uniformly
mixed Nash equilibrium has always a positive answer. Indeed, such an equilib-
rium can be found by the following greedy algorithm for finding a dominant-
regularity induced subgraph: let S = {v0} where v0 is any vertex in G. Either
G(S) is a dominant-regularity induced subgraph (in which case we can stop), or
there must be a vertex v1 such that its degree in G(S + v1) is 1; in this case we
add v1 to S. We continue in this fashion, by adding to S vertices vj such that
the degree of vj in G(S + vj) is j. If we reach j = n− 1 then the algorithm stops
anyway since G(N) would be a clique.

1 This problem (like the others) is easily in NP since once the supports have been
guessed, the equilibrium can be found by solving an appropriate linear program.



On the Complexity of Uniformly Mixed Nash Equilibria 201

4 Hardness Results

In this section we give the NP-completeness results for the various regular sub-
graph problems. We observe that, despite a superficial similarity, these results
do not follow from the results of Yannakakis about induced subgraphs with an
hereditary property [10], since regularity and dominant-regularity are not hered-
itary. All of the problems we consider are trivially in NP since a nondeterministic
machine can guess the vertices of the induced subgraph and easily check the re-
quired conditions in polynomial time.

We first consider the following problem.

Problem 1. MINIMUM DOMINANT-REGULARITY INDUCED
SUBGRAPH (MIN-DIS)

INSTANCE: a graph G = (V,E) and an integer k ≤ |V |.
QUESTION: Is there a subset Ṽ ⊆ V , with |Ṽ | ≤ k, such that i) G(Ṽ ) is a

r-regular graph for some r and ii) ∀v ∈ V − Ṽ it holds that dG(Ṽ )(v) ≤ r?

Our reduction is from 3-Satisfiability [4], defined below.

Problem 2. 3-SATISFIABILITY (3SAT)
INSTANCE: Collection C = {c1, c2, . . . , cm} of clauses on a finite set X =

{x1, x2, . . . , xn} of variables such that |ci| = 3 for 1 ≤ i ≤ m.
QUESTION: Is there a truth assignment for U that satisfies all the clauses

in C?

Theorem 3. MIN-DIS is NP-complete.

Proof. We transform 3SAT to MIN-DIS. Without loss of generality we assume
that no clause includes both a literal and its opposite; we map a generic instance
of 3SAT, i.e. a set of variables U and a set of clauses C to an instance of MIN-DIS
in the following way:

– for each variable xi ∈ U we add two nodes xi and xi to V ; we refer to this
set of nodes as X ;

– for each clause cj ∈ C we add one node cj to V ; for simplicity we refer to
this set as C;

– we connect each node xi to each other node inX except itself and its opposite
xi;

– we connect each clause cj to all the nodes in X except the three nodes that
correspond to the literals that form the clause cj itself;

– we pose k = |U |.

We now want to show that a) every solution of this instance of 3SAT is mapped
to a solution of MIN-DIS and b) every solution of MIN-DIS is the preimage of
a solution of the corresponding instance of 3SAT.

Proof of a). Consider a truth assignment that is solution of the instance of
3SAT. Let us denote by T the subset of X that corresponds to the literals that
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has the value true in this solution of 3SAT. Note that |T | = n, since for each
variable only one between xi and xi has the value true. Let Ṽ = T , it is easy
to verify that the graph G(Ṽ ), induced by Ṽ is a solution of MIN-DIS because:
i) G(Ṽ ) is (n − 1)-regular, and ii) ∀x ∈ X − T we have dG(Ṽ )(x) = n − 1 and
∀c ∈ C we have n− 3 ≤ d̃(c) ≤ n− 1 because at least one (at most three) of the
literals of the clause is true.

Proof of b). We first prove that Ṽ ⊂ X (this means Ṽ ∩C = ∅). Let us assume
that it exists c ∈ C ∩ Ṽ ; by the definition of MIN-DIS it follows that the graph
G(Ṽ ) is dG(Ṽ )(c)-regular and dG(Ṽ )(c) ≤ n; note that in this case it holds, for at
least one variable xi, that both xi /∈ Ṽ and xi /∈ Ṽ (otherwise |Ṽ | ≥ n + 1 and
this is not possible because Ṽ is a solution). At least one between xi and xi is
connected to c (because we assumed that no clause includes both a literal and
its opposite), wlog assume that is xi, but this means that dG(Ṽ )(xi) > dG(Ṽ )(c),
therefore Ṽ is not a solution because it violates condition ii) of MIN-DIS.

Now from Ṽ we can derive a truth assignment that satisfies the formula.
Note that for each couple xi, xi at most one literal is in Ṽ , otherwise, since
|Ṽ | = n, there would be one couple xj , xj where both the nodes are outside Ṽ
and, therefore, they both violates the condition ii) of MIN-DIS because their
degree is higher than the one of the nodes in Ṽ . The same argument holds to
show that, for each couple xi, xi at least one node must belong to Ṽ otherwise
both nodes would violate condition ii). Therefore we have that, for each couple
xi, xi, exactly one is in Ṽ , and for each clause c ∈ C there exists at least one
x ∈ Ṽ such that x and c do not share an edge, and this implies that each clause
has at least one literal that satisfies it. ��

We now consider the maximization version of MIN-DIS.

Problem 3. MAXIMUM DOMINANT-REGULARITY INDUCED
SUBGRAPH (MAX-DIS)

INSTANCE: a graph G = (V,E) and an integer k ≤ |V |.
QUESTION: Is there a subset Ṽ ⊆ V , with |Ṽ | ≥ k, such that i) G(Ṽ ) is a

r-regular graph for some r and ii) ∀v ∈ V − Ṽ it holds that dG(Ṽ )(v) ≤ r?

The NP-hardness proof is by a reduction from Exact Cover by 3-Sets [4].

Problem 4. EXACT COVER BY 3-SETS (X3C)
INSTANCE: A finite set X with |X | = 3q and a collection C of 3-element

subsets of X .
QUESTION: Does C contain an exact cover for X , that is, a subcollection

C′ ⊆ C such that every element of X occurs in exactly one member of C′?

Theorem 4. MAX-DIS is NP-complete.

Proof. We transform X3C to MAX-DIS. We build an instance of MAX-DIS from
a generic instance of X3C:
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– for each element x ∈ X we add one node, that we still denote by x, to V ;
we denote by X the set of these nodes;

– for each collection c ∈ C we add on node , that we still denote by c, to V ;
we denote by C the set of these nodes;

– (note that V = X ∪ C)
– we fix an order over the nodes in X and we connect each node with the

previous and the following one; the last node is connected to the first one,
therefore all the nodes are connected in a cycle;

– we connect each node c ∈ C to a node x ∈ X if the subset c includes the
element x;

– we pose k = 4|X | = 4q.

To prove that this is a transformation, we show that a) every solution of this
instance of X3C is mapped to a solution of MAX-DIS and b) every solution of
MAX-DIS is the preimage of a solution of the corresponding instance of X3C.

Proof of a). Let us still denote by C′ the set of nodes in the instance of MAX-
DIS that corresponds to the subsets solution of X3C. It holds that Ṽ = X ∪ C′

is a solution of MAX-DIS because:

– |Ṽ | = |X |+ |C′| = 3q + q = 4q = k;
– G(Ṽ ) is 3-regular because i) each xi ∈ X is connected to the nodes xi−1,

xi+1 and exactly one node c ∈ C′ that corresponds to the subset including
Xi in the solution of X3C; ii) each c ∈ C′, by definition, is connected to
exactly three nodes in X ;

– for each c ∈ C −C′ we have dG(Ṽ )(c) = 3, therefore condition ii) of problem
MAX-DIS holds.

Proof of b). If we denote by r the regularity of graphG(Ṽ ), it is easy to see that
r ≤ 3 because |Ṽ | = 4q > 3q = |X | therefore it must exist one node c ∈ Ṽ ∩ C
for which it holds dG(Ṽ )(c) ≤ dG(V )(c) = 3. We now prove the following points:

1. r 	= 0;
2. r 	= 1;
3. r 	= 2;
4. X ⊂ Ṽ and there exists an exact cover of set X in the instance of X3C.

(1) To show that r 	= 0 we recall that at least one node c ∈ C is also in Ṽ and
therefore it must exist one node x ∈ X , connected to c, for which dG(Ṽ )(c) ≥ 1.
(2) Now let us assume r = 1, this means thatG(Ṽ ) is a matching. Since the nodes
in C are not connected each other, at least one node of each couple must be an
element x ofX , therefore at least one half of Ṽ are nodes inX , i.e. |Ṽ | ≤ 2|X∩Ṽ |.
But from k = 4q ≤ |Ṽ | ≤ 2|X ∩ Ṽ | we derive that |X ∩ Ṽ | ≥ 2q > 3/2q = |X |/2;
if this holds it means that more than half of X is in Ṽ , consequently at least one
node xi is in Ṽ together with xi−1, xi+1, and the graph G(Ṽ ) is not regular. So
r 	= 1.

Note that, for any subsets V ′,V ′′ ⊆ V such that V = V ′ ∪ V ′′, we have

dG(V )(v) = dG(V ′)(v) + dG(V ′′)(v)− dG(V ′∩V ′′)(v). (1)
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(3) Now we assume r = 2. If X ⊂ Ṽ there would not be any v ∈ Ṽ ∩C, contrarily
to what we observed above. Let l be the number of nodes x that do not belong
to Ṽ , i.e. l = |X − Ṽ | > 0 and let j = |C ∩ Ṽ | > 0 ; by Equation 1 we see that∑

x∈X∩Ṽ

dG(Ṽ )(x) =
∑

x∈X∩Ṽ

dG(X∩Ṽ )(x) +
∑

x∈X∩Ṽ

dG((C+x)∩Ṽ )(x) (2)

∑
x∈X∩Ṽ

dG(Ṽ )(x) = 2(3q − l) (3)

∑
x∈X∩Ṽ

dG(X∩Ṽ )(x) ≥ 2(3q)− 4l = 6q − 4l (4)

the last one because every node xi /∈ Ṽ decreases the overall degree by at most
4, and this happens only if both xi−1 and xi+1 belong to Ṽ ; furthermore∑

x∈X∩Ṽ

dG((C+x)∩Ṽ )(x) = 2j ≥ 2(q + l)

where j = |C ∩ Ṽ | = |V | − (3q − l) ≥ 4q − 3q + l. This implies 2(3q − l) ≥
6q− 4l+ 2(q + l) = 2(3q− l) + 2q > 2(3q− l), but this is not possible; therefore
r 	= 2.
(4) From what we said before we know that G(Ṽ ) is 3-regular. Again let l =
|X − Ṽ | > 0, from the above considerations and Equation 2 we can write∑

x∈X∩Ṽ

dG(Ṽ )(x) = 3(3q − l)

∑
x∈X∩Ṽ

dG(X∩Ṽ )(x) ≥ 2(3q)− 4l = 6q − 4l

∑
x∈X∩Ṽ

dG((C+x)∩Ṽ )(x) = 3j ≥ 3(q + l)

analogously as the proof of previous point it follows 3(3q−l) ≥ 6q−4l+3(q+l) =
3(3q − l) + 2l > 3(3q − l); therefore |X − Ṽ | = 0, i.e. X ⊂ Ṽ . Now G(Ṽ ) being
3-regular implies that each x ∈ X is connected to one and only one node c ∈ Ṽ :
if we denote by C′ the subsets corresponding to these nodes c ∈ Ṽ it holds that
C′ is an exact cover of the set X . ��

The following two problems, although not directly related to equilibrium
problems, are of independent interest.

Problem 5. MAXIMUM SIZE REGULAR INDUCED SUBGRAPH
(MAX-SRIS)

INSTANCE: A graph G(V,E) and an integer k ≤ |V |.
QUESTION: Does there exist a set Ṽ ⊆ V such that |Ṽ | ≥ k and G(Ṽ ) is

regular?

Theorem 5. MAX-SRIS is NP-complete.
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Proof. Let us consider a generic instance of 3SAT consisting of a formula F
with m clauses over n variables (n ≥ 1); we assume, wlog, that m = 2q for some
integer q > 1: note that it is always possible to build a formula F ′, satisfiable
if and only if F is, by adding at most m copies of a clause of F . We create the
corresponding instance of MAX-SRIS as follows:

– for each clause ci we add three nodes, denoted by ci,1, ci,2 and ci,3, one for
each literal in ci; let us denote by L the set of all these nodes.

– for each clause ci we also add three auxiliary nodes, denoted by ci,0, c′i,0 and
c′i,1;

– for 1 ≤ i ≤ m we connect
• ci,0 with ci,1, ci,2 and ci,3;
• c′i,1 with ci,1, ci,2 and ci,3;
• c′i,0 with ci,0 and c′i,1;

– we add two binary trees T1 and T2, where |T1| = |T2| = 2m − 1. Note that
both T1 and T2 have m leaves; for 1 ≤ i ≤ m we connect the i-th leaf of
T1 with ci,0, ci,1, ci,2 e ci,3; the i-th leaf of T2 is connected with c′i,0 e c′i,1;
finally we connect together the two roots;

– for 1 ≤ i, j ≤ m and 1 ≤ t, t′ ≤ 3 we connect ci,t with cj,t′ if and only if they
correspond to opposed literals.

– we pose k = 8m− 2

Note that, in the graph defined above, the following nodes have degree 3: all the
internal nodes in T1, all the nodes in T2 and the nodes c′i,0. Let us denote by Q
the set of all the other nodes, i.e. the nodes x such that dG(V )(x) 	= 3. We will
show that a) every solution of this instance of 3SAT is mapped to a solution of
MAX-SRIS and b) every solution of MAX-SRIS is the preimage of a solution of
the corresponding instance of 3SAT.

Proof of a). Let s be a truth assignment function that satisfies F ; consider
now, for each clause ci only one literal ci,t which is true. Let Ṽ include all the
nodes in V − L together with the m nodes, in L, corresponding to the true
valued chosen literals. It holds |Ṽ | = 8m− 2 = k; since s satisfies F there can’t
be an edge between any two nodes in Ṽ ∩ L. Therefore ∀v ∈ Ṽ we have that
dG(Ṽ )(v) = 3, i.e. G(Ṽ ) is regular.

Proof of b). Given Ṽ , solution of MAX-SRIS, such that G(Ṽ ) is r-regular and
|Ṽ | ≥ 8m − 2, we show that this implies that F is satisfiable by proving the
following points:

1. r ≥ 3
2. Ṽ � Q

3. from Ṽ it is possible to derive a truth assignment that satisfies the formula.

(1) Let us assume that r ≤ 2; note that at most three nodes between ci,0, ci,1,
ci,2, ci,3 and the i-th leaf of T1 belong to Ṽ . Furthermore not all the internal
nodes of T1 and the nodes of T2 (remember that the size of both T1 and T2 is
2m−1) can be included in Ṽ because there will be at least two nodes (the roots)
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with degree 3. It follows that |Ṽ | < 3m + (3m− 2) + 2m = 8m− 2, where 2m is
the total number of nodes c′i,0 and c′i,1.
(2) If Ṽ = Q, for every 1 ≤ i ≤ m, dG(Ṽ )(ci,0) = 4 and dG(Ṽ )(c

′
i,1) = 3, it follows

that G(Ṽ ) is not regular. If Ṽ ⊂ Q then |Ṽ | < 6m ≤ 8m− 2.
(3) From the previous points it follows that |Ṽ −Q| > 0, therefore it must exists
in Ṽ one node x such that dG(V )(x) = 3; from (1) all the nodes connected to x

must belong to Ṽ , and, in particular, at least one node either in T1 or in T2; due
to the recursive structure of the trees all the nodes of T1 and T2 must belong to
Ṽ . Let us focus on the leaves of T2, their degree must be 3, and this implies that
∀i c′i,0 ∈ Ṽ and c′i,1 ∈ Ṽ where 1 ≤ i ≤ m; analogously for each c′i,0 we have
ci,0 ∈ Ṽ . Hence, for each triple ci,1, ci,2 and ci,3, exactly one node must belong
to Ṽ so that, for each i, dG(Ṽ )(c

′
i,1) = dG(Ṽ )(leaves of T1) = 3.

Let us denote by L̃ the set of nodes in L that belong to Ṽ , i.e. L̃ = Ṽ ∩ L.
Note that i) |L̃| = m, and there is exactly one node for each clause, and ii)
there can’t be any edge between two nodes in L̃ otherwise their degree would be
greater than 3. Therefore from L̃ we can derive a truth assignment by setting
true the literals of F corresponding to nodes in L̃: F is satisfied because i) there
is exactly one literal for each clause and ii) there is at most one between a literal
and its opposite. ��

Problem 6. MAXIMUM REGULARITY REGULAR INDUCED SUB-
GRAPH (MAX-RRIS)

INSTANCE: A graph G(V,E) and an integer r ≤ |V |.
QUESTION: Does there exist a set Ṽ ⊆ V such that G(Ṽ ) is γ-regular, with

γ ≥ r?

Theorem 6. MAX-RRIS is NP-complete.

Proof. We transform 3SAT to MAX-RRIS. The instance of 3SAT is a formula
F with m clauses and n variables (n ≥ 1) and, without loss of generality, let us
assume that m ≥ 2 and there is no clause c that includes both a literal and its
opposite. Note that, for each formula F , it exists F ′, with m′ = 3(m−1) clauses
and n′ = n+1 variables, such that F ′ is satisfiable if and only if F is satisfiable:
we build F ′ by adding 2m − 3 identical clauses that includes only one literal,
corresponding to a new variable, repeated three times. We now transform the
generic instance of F ′ into an instance of MAX-RRIS in the following way:

– for each clause ci we add
• three nodes, that we denote by ci,1, ci,2 and ci,3; they represent the literals

of the clause and we refer to all of them, for 1 ≤ i ≤ m′, as the set L;
• three nodes ai, bi and ci; let A, B e C denotes, respectively, the set of

all the nodes ai, bi and ci for 1 ≤ i ≤ m′;
• the following set of nodes: Ai,1, Ai,2, Ai,3, Bi, Ci, Ci,1, Ci,2 and Ci,3;

each of these sets has cardinality equals to m′.
– we add two nodes, denoted by r1 and r2;
– we connect each node in the sets Ai,1, Ai,2, Ai,3, Bi, Ci, Ci,1 Ci,2 and Ci,3

with all the nodes in the same set, i.e. all the sets are m′ elements cliques;
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– we connect
• each node ai with all the nodes in Ai,1 ∪Ai,2 ∪Ai,3;
• each node bi with all the nodes in Bi;
• each node ci with all the nodes in Ci;
• each node ci,1 with all the nodes in Ci,1;
• each node ci,2 with all the nodes in Ci,2;
• each node ci,3 with all the nodes in Ci,3;

– we fix an ordering over the nodes of each set X ∈ {Ai,1, Ai,2, Ai,3, Bi, Ci,
Ci,1, Ci,2, Ci,3}, let us denote by X [i] the i-th node of X , with 1 ≤ i ≤ m′;
we then connect
• each node Ai,t[j] with the node Ci,t[j] for all i, j, t such that 1 ≤ i, j ≤ m′

and 1 ≤ t ≤ 3;
• each node Bi[j] with the node Ci[j] for all i, j such that 1 ≤ i, j ≤ m′

– we connect each node ci with the nodes ci,1, ci,2 and ci,3;
– we connect r1 with each node ai and the node r2 with each node bi;
– we connect r1 to r2

– each literal is connected to its opposite: we connect each node ci,t to the ones
cι,τ that correspond to its opposite literal;

– let r = m′ + 1.

We now show that is F ′ is satisfiable then it exists Ṽ solution of the corre-
sponding instance of MAX-RRIS. Let s be a truth assignment function satisfies
F ′. We build Ṽ in the following way: for each clause we take one and only one
node ci,t such that the corresponding literal has the value true in s; for each
of such nodes we include i) the set Ci,t of the connected nodes and ii) the set
Ai,t connected to Ci,t; then we include all the nodes ai (i.e. the set A), all the
nodes ci (i.e. the set C), all the nodes bi (i.e. the set B), all the sets Bi and Ci,
and, finally, the nodes r1 and r2. It is easy to verify that the set Ṽ induces a
(m′ + 1)-regular graph on G (because the nodes ci,t are chosen according to a
truth assignment function there is no one connected to its opposite).
Now let us assume that it exists Ṽ ⊆ V solution of MAX-RRIS; to show that
this implies that F is satisfiable we prove the following points:

1. Ṽ � L
2. For each set X ∈ {Ai,1, Ai,2, Ai,3, Bi, Ci, Ci,1, Ci,2, Ci,3}, for all the value

of j such that 1 ≤ j ≤ m′ it holds that X [j] ∈ Ṽ if and only if X ⊂ Ṽ .
Moreover Ai,t ⊂ Ṽ if and only if Ci,t ⊂ Ṽ where 1 ≤ i ≤ m′ and 1 ≤ t ≤ 3;
it also holds that Ci ⊂ Ṽ if and only if Bi ⊂ Ṽ where 1 ≤ i ≤ m′;

3. for each ai ∈ A it holds that ai ∈ Ṽ if and only if it exists one and only one
set Ai,t, amongst the sets Ai,1,Ai,2 and Ai,3 such that Ai,t ⊂ Ṽ ; moreover
ci ∈ Ṽ if and only if it exists Ci ⊂ Ṽ ;

4. From L ∩ Ṽ is possible to derive a truth assignment that satisfies F .

(1) Each node ci,t is connected to at most 3(m−1) nodes of L, where 3(m−1) <
3m − 2 = m′ + 1: we built F ′ from F , and only the nodes that correspond to
the literals in F (that has m clauses and therefore 3m literals) can be connected
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together. If we consider only nodes in L it is not possible to reach the minimum
degree r = m′ + 1.
(2) Note that each set form a clique of size m′, and every node in the set is also
connected to only two external nodes. Therefore to reach the minimum degree
r if a node X [j] is in Ṽ also all the ones connected to it must belong to Ṽ and
this, in particular, implies that X ⊂ Ṽ .
(3) Consider a node ai ∈ Ṽ , from m′ + 1 = 3m − 2 > 3 we can derive that it
must exists one node Ai,t[j] ∈ Ṽ , where 1 ≤ j ≤ m′ and 1 ≤ t ≤ 3. From (2)
it follows that Ai,t ⊂ Ṽ , and also that Ci,t ⊂ Ṽ . Assume now that there are
two distinct nodes Ai,t[j] and Ai,t′ [j′], where t 	= t′, that belong to Ṽ ; from (2)
we derive Ai,t ⊂ Ṽ and Ai,t′ ⊂ Ṽ , but since ai is connected to both the sets, it
would have a degree dG(Ṽ )(ai) ≥ 2m > m+1, and, therefore, the induced graph
would not be a regular one. This proves the uniqueness of Ai,t. Moreover, if it
holds that ci ∈ Ṽ , since m′ + 1 = 3m− 2 > 3, it must exist Ci[j] ∈ Ṽ , and this,
from (2), implies Ci ⊂ Ṽ .
(4) From (1) we can derive that it must exist x ∈ Ṽ − L. Since dG(V )(r1) =
dG(V )(r2) = dG(V )(bi) = m′ + 1, from (2) and (3) we can derive that, for each
triples ci,1, ci,2, ci,3, it exists only one t such that ci,t ∈ Ṽ and Ci,t ⊂ Ṽ . This im-
plies that there can’t be in Ṽ ∩L two nodes connected each other: among the cor-
responding literals there aren’t, in the set, both a literal and its opposite. There-
fore it is possible to set true all the literals whose corresponding nodes are in Ṽ ∩
L; this truth assignment is feasible and satisfies F ′ and, hence, it satisfies F . ��
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Abstract. We show that the problem of finding optimal strategies for
both players in a simple stochastic game reduces to the generalized lin-
ear complementarity problem (GLCP) with a P-matrix, a well-studied
problem whose hardness would imply NP = co-NP. This makes the
rich GLCP theory and numerous existing algorithms available for simple
stochastic games. As a special case, we get a reduction from binary simple
stochastic games to the P-matrix linear complementarity problem (LCP).

1 Introduction

Simple stochastic games (SSG) form a subclass of general stochastic games, intro-
duced by Shapley in 1953 [1]. SSG are two-player games on directed graphs, with
certain random moves. If both players play optimally, their respective strategies
assign values v(i) to the vertices i, with the property that the first player wins
with probability v(i), given the game starts at vertex i. For a given start vertex
s, the optimization problem associated with the SSG is to compute the game
value v(s); the decision problem asks whether the game value is at least 1/2.

Previous Work. Condon was first to study the complexity-theoretic aspects of
SSG [2]. She showed that the decision problem is in NP∩ co-NP. This is consid-
ered as evidence that the problem is not NP-complete, because the existence of
an NP-complete problem in NP∩ co-NP would imply NP = co-NP. Despite this
evidence and a lot of research, the question whether a polynomial time algorithm
exists remains open.

SSG are significant because they allow polynomial-time reductions from other
interesting classes of games. Zwick and Paterson proved a reduction from mean
payoff games [3] which in turn admit a reduction from parity games, a result of
Puri [4].

In her survey article from 1992, Condon reviews a number of algorithms for
the optimization problem (and shows some of them to be incorrect) [5]. These
algorithms compute optimal strategies for both players (we will say that they
solve the game). For none of these algorithms, the (expected) worst-case behavior
is known to be better than exponential in the number of graph vertices.
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Ludwig was first to show that simple stochastic games can be solved in subex-
ponential time [6], in the binary case where all outdegrees of the underlying graph
are two. Under the known polynomial-time reduction from the general case to
the binary case [3], Ludwig’s algorithm becomes exponential, though. Björklund
et al. [7] and independently Halman [8] established a subexponential algorithm
also in the general case.

These subexponential methods had originally been developed for linear pro-
gramming and the more general class of LP-type problems, independently by
Kalai [9,10] as well as Matoušek, Sharir and Welzl [11]. Ludwig’s contribution
was to extract the combinatorial structure underlying binary SSG, and to show
that this structure allows the subexponential algorithms to be applied. Halman
was first to show that the problem of finding an optimal strategy for one of
the players can actually be formulated as an LP-type problem [12]. Given a
strategy, the other player’s best response can be computed by a linear program.
In a later result, Halman avoided linear programming by computing the other
player’s best response again by an LP-type algorithm. This resulted in strongly
subexponential algorithms, the best known to date [8].

Independently, Björklund et al. arrived at subexponential methods by show-
ing that SSG (as well as mean payoff and parity games) give rise to very specific
LP-type problems [7]. Their contribution was to map all three classes of games
to the single combinatorial problem of optimizing a completely local-global func-
tion over the Cartesian product of sets. Along with this, they also carried out
an extensive study concerning the combinatorial properties of such functions.

Our Contribution. In this paper, we show that the problem of solving a general
(not necessarily binary) simple stochastic game can be written as a generalized
linear complementarity problem (GLCP) with a P-matrix. The GLCP, as intro-
duced by Cottle and Dantzig [13], consists of a vertical block (m × n)-matrix
M where m ≥ n and a right-hand side m-vector q. M and q are partitioned in
conformity into n horizontal blocks M i and qi, i = 1, . . .n, where the size of
block i is mi×n in M and mi in q. Solving a GLCP means to find a nonnegative
m-vector w partitioned in conformity with M and q and a nonnegative n-vector
z such that

w −Mz = q, (1)
mi∏
j=1

wi
jzi = 0, ∀i ∈ {1, . . . , n}.

Here and in the following, wi
j is the j-th element in the i-th block of w. M i

j will
denote the j-th row of the i-th block of M . A representative submatrix of M is
an (n× n)-matrix whose i-th row is M i

j for some j ∈ {1, . . . , mi}. M is defined
to be a P-matrix, if all principal minors of all its representative submatrices are
positive [13].

In this paper, we will consider SSG with vertices of arbitrary outdegree and
with average vertices determining the next vertex according to an arbitrary prob-
ability distribution. This is a natural generalization of binary SSG introduced
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by Condon [2]. A binary SSG will reduce to the more popular linear complemen-
tarity problem (LCP) where mi = 1 for all n blocks.

The fact that there is a connection between games and LCP is not entirely
surprising, as for example bimatrix games can be formulated as LCP [14]. Also
Cottle, Pang and Stone [15, Section 1.2] list a simple game on Markov chains
as an application for LCP, and certain (very easy) SSG are actually of the type
considered.

LCP and methods for solving them are well-studied for general matrices M ,
and for specific matrix classes. The book by Cottle, Pang and Stone is the most
comprehensive source for the rich theory of LCP, and for the various algorithms
that have been developed to solve general and specific LCP [15]. A lot of results
carry over to the GLCP. The significance of the class of P-matrices comes from
the fact that M is a P-matrix if and only if the GLCP has a unique solution
(w, z) for any right-hand side q [16]. Given this, the fact that our reduction yields
a P-matrix already follows from Shapley’s results. His class of games contains a
superclass of SSG for which our reduction may yield any right-hand side q in
(1). Shapley’s theorem proving uniqueness of game values then implies that the
matrix M in (1) must be a P-matrix. Our result provides an alternative proof of
Shapley’s theorem, specialized to SSG, and it makes the connection to matrix
theory explicit.

No polynomial-time methods are known to solve P-matrix LCP, but Megiddo
has shown that NP-hardness of the problem implies NP = co-NP [17], meaning
that the problem has an unresolved complexity status, similar to that of SSG.
Megiddo’s proof easily carries over to P-matrix GLCP.

Gärtner et al. proved that the combinatorial structure of P-matrix GLCP is
very similar to the structure derived by Björklund et al. for the games [18]. The
latter authors also describe a reduction to what they call controlled linear pro-
gramming [19]; controlled linear programs are easily mapped to (non-standard)
LCP. Independently from our work, Björklund et al. have made this mapping ex-
plicit by deriving LCP-formulations for mean payoff games [20]. Their reduction
is very similar to ours, but the authors do not prove that the resulting matrices
are P-matrices, or belong to some other known class. In fact, Björklund et al.
point out that the matrices they get are in general not P-matrices, and this stops
them from further investigating the issue. We have a similar phenomenon here:
Applying our reduction to non-stopping SSG (see next section), we may also
obtain matrices that are not P-matrices. The fact that comes to our rescue is
that the stopping assumption incurs no loss of generality. It would be interesting
to see whether the matrices of Björklund et al. are actually P-matrices as well,
after some transformation applied to the mean payoff game.

Matrix Classes and Algorithms. Various solution methods have been devised for
GLCP, and when we specialize to the P-matrix GLCP we get from SSG, some of
them are already familiar to the game community. Most notably, principal pivot
algorithms in the GLCP world correspond to switching algorithms. Such an
algorithm maintains a pair of strategies for both players and gradually improves
them by locally switching to a different behavior. There exist examples of SSG



212 B. Gärtner and L. Rüst

where switching algorithms may cycle [5]. However, if switching is defined with
respect to only one player (where after each switch the optimal counterstrategy
of the other player is recomputed by solving a linear program), cycling is not
possible. The latter is the setup of Björklund et al. [7].

In order to assess the power of the GLCP approach, we must understand the
class of matrices resulting from SSG. Our result that these are P-matrices puts
SSG into the realm of ‘well-behaved’ GLCP, but it does not give improved run-
time bounds, let alone a polynomial-time algorithm. The major open question
resulting from our approach is therefore the following: Can we characterize the
subclass of P-matrices resulting from SSG? Is this subclass equal (or related) to
some known class? In order to factor out the peculiarities of our reduction, we
should require the subclass to be closed under scaling of rows and/or columns.
Without having a concrete example, we believe that we obtain a proper sub-
class of the class of all P-matrices. This is because the GLCP restricted to (the
variables coming from) any one of the two players is easy to solve by linear
programming, a phenomenon that will not occur for a generic P-matrix.

The class of hidden K-matrices is one interesting subclass of P-matrices for
which the GLCP can be solved in polynomial time. Mohan and Neogy [21] have
generalized results by Pang [22] and Mangasarian [23,24] to show that a vertical
block hidden K-matrix can be recognized in polynomial time through a linear
program and that the solution to this linear program can in turn be used to set
up another linear program for solving the GLCP itself.

The matrices we get from SSG are in general not hidden K-matrices. Still,
properties of the subclass of matrices we ask for might allow their GLCP to be
solved in polynomial time.

2 Simple Stochastic Games

We are given a finite directed graph G whose vertex set has the form

V = {1,0} ∪ Vmax ∪ Vmin ∪ Vavg,

where 1, the 1-sink, and 0, the 0-sink, are the only two vertices with no outgoing
edges. For reasons that become clear later, we allow multiple edges in G (in which
case G is actually a multigraph).

Vertices in Vmax belong to the first player which we call the max player, while
vertices in Vmin are owned by the second player, the min player. Vertices in Vavg

are average vertices. For i ∈ V \ {1,0}, we let N (i) be the set of neighbors of
i along the outgoing edges of i. The elements of N (i) are {η1(i), . . . , η |N (i)|(i)}.
An average vertex i is associated with a probability distribution P(i) that assigns
to each outgoing edge (i, j) of i a probability pij > 0,

∑
j∈N (i) pij = 1.

The SSG defined by G is played by moving a token from vertex to vertex,
until it reaches either the 1-sink or the 0-sink. If the token is at vertex i, it is
moved according to the following rules.
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vertex type rule
i = 1 the game is over and the max player wins
i = 0 the game is over and the min player wins
i ∈ Vmax the max player moves the token to a vertex in N (i)
i ∈ Vmin the min player moves the token to a vertex in N (i)
i ∈ Vavg the token moves to a vertex in N (i) according to P(i)

An SSG is called stopping, if no matter what the players do, the token even-
tually reaches 1 or 0 with probability 1, starting from any vertex. In a stopping
game, there are no directed cycles involving only vertices in Vmax ∪ Vmin. The
following is well-known and has first been proved by Shapley [1], see also the
papers by Condon [2,5]. Our reduction yields an independent proof of part (i).

Lemma 1. Let G define a stopping SSG.
(i) There are unique numbers v(i), i ∈ G, satisfying the equations

v(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, i = 1
0, i = 0

max
j∈N (i)

(v(j)), i ∈ Vmax

min
j∈N (i)

(v(j)), i ∈ Vmin∑
j∈N (i)

pijv(j), i ∈ Vavg

. (2)

(ii) The value v(i) is the probability for reaching the 1-sink from vertex i, if
both players play optimally.

For a discussion about what it means that ‘both players play optimally’, we
refer to Condon’s paper [5]. The important point here is that computing the
numbers v(i) solves the optimization version of the SSG in the sense that for
every possible start vertex s, we know the value v(s) of the game. It also solves
the decision version which asks whether v(s) ≥ 1/2. Additionally, the lemma
shows that there are pure optimal strategies that can be read off the numbers
v(i): If v is a solution to (2), then an optimal pure strategy is given by moving
from vertex i along one outoing edge to a vertex j with v(j) = v(i).

The stopping assumption can be made without loss of generality: In a non-
stopping game, replace every edge (i, j) by a new average vertex tij and new edges
(i, tij) (with the same probability as (i, j) if i ∈ Vavg), (tij , j) with probability
1 − ε and (tij ,0) with probability ε. Optimal strategies to this stopping game
(which are given by the v(i) values) correspond to optimal strategies in the
original game if ε is chosen small enough [2].

3 Reduction to P-Matrix GLCP

In the following, we silently assume that G defines a stopping SSG and that every
non-sink vertex of G has at least two outgoing edges (a vertex of outdegree 1
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can be removed from the game without affecting the values of other vertices). In
order to solve (2), we first write down an equivalent system of linear equations
and inequalities, along with (nonlinear) complementarity conditions for certain
pairs of variables. The system has one variable xi for each vertex i and one slack
variable yij for each edge (i, j) with i ∈ Vmax ∪Vmin. It has equality constraints

xi =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, i = 1
0, i = 0

yij + xj , i ∈ Vmax, j ∈ N (i)
−yij + xj , i ∈ Vmin, j ∈ N (i)∑

j∈N (i)

pijxj , i ∈ Vavg,

(3)

inequality constraints

yij ≥ 0, i ∈ Vmax ∪ Vmin, j ∈ N (i), (4)

and complementarity constraints∏
j∈N (i)

yij = 0, i ∈ Vmax ∪ Vmin (5)

to model the max- and min-behavior in (2).
The statement of Lemma 1 (i) is equivalent to the statement that the system

consisting of (3), (4) and (5) has a unique solution x = (x1, . . . , xn), and we
will prove the latter statement. From the solution x, we can recover the game
values via v(i) = xi, and we also get the yij . Note that edges with yij = 0 in the
solution correspond to strategy edges of the players.

It turns out that the variables xi are redundant, and in order to obtain a
proper GLCP formulation, we will remove them. For variables xi, i /∈ Vavg, this
is easy.

Definition 1. Fix i ∈ V .

(i) The first path of i is the unique directed path that starts from i, consists
only of edges (j, η1(j)) with j ∈ Vmax ∪ Vmin, and ends at some vertex in
{1,0} ∪ Vavg. The second path is defined analogously, with edges of the
form (j, η2(j)).

(ii) The substitution Si of xi is recursively defined as the linear polynomial

Si =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, i = 1
0, i = 0

yiη1(i) + Sη1(i), i ∈ Vmax

−yiη1(i) + Sη1(i), i ∈ Vmin

xi, i ∈ Vavg

. (6)

(iii) S̄i is the homogeneous polynomial obtained from Si by removing the con-
stant term (which is 0 or 1, as a consequence of (ii)).
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Note that the first and the second path always exist, because there are no cycles
involving only vertices in Vmax ∪ Vmin and each non-sink vertex has outdegree
at least 2. The substitution Si expresses xi in terms of the y-variables associated
with the first path edges of i, and in terms of the substitution of the last vertex
on the first path, which is either an average vertex, or a sink.

Lemma 2. The following system of equations is equivalent to (3).

yij = yiη1(i) + Sη1(i) − Sj, i ∈ Vmax, j ∈ N (i) \ η1(i)
yij = yiη1(i) − Sη1(i) + Sj, i ∈ Vmin, j ∈ N (i) \ η1(i)

0 = xi −
∑

j∈N (i)

pijSj , i ∈ Vavg.
(7)

Proof. By induction on the length of the first path, it can be shown that in every
feasible solution to (3), xi has the same value as its substitution. The system (3)
therefore implies (7). Vice versa, given any solution to (7), we can simply set

xi =

⎧⎪⎪⎨⎪⎪⎩
1, i = 1
0, i = 0

yiη1(i) + Sη1(i), i ∈ Vmax

−yiη1(i) + Sη1(i), i ∈ Vmin

to guarantee that xi and Si have the same value for all i. Then, the equations
of (7) imply that xi satisfies (3), for all i. ��

3.1 A Non-standard GLCP

Let us assume that Vmax ∪ Vmin = {1, . . . , u},Vavg = {u + 1, . . . , n}. Moreover,
for i, j ∈ {1, . . . , u} and i < j, we assume that there is no directed path from
j to i that avoids average vertices. This is possible, because G restricted to
V \Vavg is acyclic, by our stopping assumption. In other words, the order 1, . . . , u
topologically sorts the vertices in Vmax ∪ Vmin, with respect to the subgraph
induced by V \ Vavg . Defining vectors

z = (y1η1(1), . . . , yuη1(u))T , w = (w1, . . . , wu)T , x = (xu+1, . . . , xn)T , (8)

where wi = (yiη2(i), . . . , yiη |N(i)|(i)) is the vector consisting of the yij for all
j ∈ N (i) \ η1(i), conditions (4), (5) and (7)— and therefore the problem of
computing the v(i)—can now be written as

find w, z
subject to w ≥ 0, z ≥ 0,

|N (i)|−1∏
j=1

wi
jzi = 0, i ∈ Vmax ∪ Vmin

(
w
0

)
−
(

Q C
A B

)(
z
x

)
=
(

s
t

)
,

(9)
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where

P =
(

Q C
A B

)
, q =

(
s
t

)
are a suitable matrix and a suitable vector. The vertical block matrix Q is
partitioned according to w and encodes the connections between player vertices
(along first paths), whereas the square matrix B encodes the connections between
average vertices. A and C describe how player and average vertices interconnect.

3.2 The Structure of the Matrix P

The following three lemmas are needed to show that P is a P-matrix, i.e. all
principal minors of all representative submatrices of P are positive.

Lemma 3. Q is a P-matrix.

Proof. Every representative submatrix of Q is upper-triangular, with all diagonal
entries being equal to 1. The latter fact is a direct consequence of (7), and the
former follows from our topological sorting: For any k ∈ N (j)\η1(j), the variable
yiη1(i) cannot occur in the equation of (7) for yjk, j > i, because this would
mean that i is on the first path of either η1(j) > j > i or k > j > i. Thus, every
representative submatrix has determinant 1. ��

It can even be shown that Q is a hidden K-matrix [25].

Lemma 4. B is a P-matrix.

Proof. We may assume that the average vertices are ‘topologically sorted’ in
the following sense. For i, j ∈ {u + 1, . . . , n} and i ≤ j, there is a neighbor
k ∈ N (i) such that the first path of k avoids j. To construct this order, we
use our stopping assumption again. Assume we have built a prefix of the order.
Starting the game in one of the remaining average vertices, and with both players
always moving the token along edges (i, η1(i)), we eventually reach a sink. The
last of the remaining average vertices on this path is the next vertex in our order.

Theorem 3.11.10 in the book by Cottle, Pang and Stone [15] states that a
square matrix M with all off-diagonal entries nonpositive is a P-matrix if there
exists a positive vector s such that Ms > 0. As B has all off-diagonal entries
nonpositive by construction (last line of (7)), it thus remains to provide the
vector s. We define s to be the monotone increasing vector

st = 1− εt, t = 1, . . . , |Vavg|,

where ε = min
i,j

pij is the smallest probability occuring in the average vertices’

probability distributions over the outgoing edges. s > 0 as 0 < ε ≤ 1/2, and we
claim that also Bs > 0. Consider the row of B corresponding to average vertex
i, see (7). Its diagonal entry is a positive number x. We have ε ≤ x ≤ 1 by our
stopping assumption (x < 1 occurs if the first path of any neighbor of i comes
back to i). The off-diagonal values of the row are all nonpositive and sum up to
at least −x. Our topological sorting on the average vertices implies that the row
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elements to the right of x sum up to −(x− ε) at least. Assume that the diagonal
element x is at position t in the row. Under these considerations, the value of
the scalar product of the row with s is minimized if the last element of the row
has value −(x − ε) and the element at position t− 1 has value −ε. As claimed,
by the following formula the value is then positive (at least for 1 < t < |Vavg |,
but the cases t = 1 and t = |Vavg| can be checked in the same way):

−ε(1− εt−1) + x(1 − εt)− (x− ε)(1− ε|Vavg |) = εt(1− x) + ε|Vavg |(x− ε) > 0.

��
We note that B is even a K-matrix. K-matrices form a proper subclass of

hidden K-matrices [15]

Property 1. An (n× n) representative submatrix

Prep =
(

Qrep Crep

A B

)
of P is given by a representative submatrix Qrep of Q and Crep which consists of
the rows of C corresonding to the rows of Qrep. Prep corresponds to a subgame
where edges have been deleted such that every player vertex has exactly two
outgoing edges.

Such a subgame is a slightly generalized binary SSG, as average vertices can
have more than two outgoing edges and arbitrary probability distributions on
them.

Lemma 5. Using elementary row operations, we can transform a representative
submatrix Prep of P into a matrix P ′

rep of the form

P ′
rep =

(
Qrep Crep

0 B′

)
with B′ being a P-matrix.

Proof. We process the rows of the lower part (AB) of Prep one by one. In the
following, first and second paths (and thus also substitutions S̄i) are defined
w.r.t. the subgame corresponding to Prep.

For k ∈ {1, . . . , n}, let Rk be the k-th row of Prep and assume that we are
about to process Ri, i ∈ {u + 1, . . . , n}. According to (7), we have

Ri

(
z
x

)
= xi −

∑
j∈N (i)

pijS̄j . (10)

We will eliminate the contribution of S̄j for all j ∈ N (i), by adding suitable
multiples of rows Rk, k ∈ {1, . . . , u}. For such a k, (7) together with (6) implies

Rk

(
z
x

)
=
{

S̄k − S̄η1(i), k ∈ Vmax

S̄η1(i) − S̄k, k ∈ Vmin
. (11)
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Let η∗2(j) be the last vertex on the second path of j. Summing up (11) over all
vertices on the second path of vertex k with suitable multiples from {1,−1}, the
sum telescopes, and we get that for all j ∈ {1, . . . , u}, S̄j − S̄η∗

2 (j) is obtainable
as a linear combination of the row vectors

Rk

(
z
x

)
, k ≤ u.

Actually, if j is an average vertex or a sink, we have η∗2(j) = j, so that S̄j −
S̄η∗

2 (j) = 0 is also obtainable as a (trivial) linear combination in this case.
Thus, adding (S̄j − S̄η∗

2 (j))pij to (10) for all j ∈ N (i) transforms our current
matrix into a new matrix whose i-th row has changed and yields

R′
i

(
z
x

)
= xi −

∑
j∈N (i)

pijS̄η∗
2 (j). (12)

Moreover, this transformation is realized through elementary row operations.
Because (12) does not contain any y-variables anymore, we get the claimed
structure after all rows Ri, i ∈ {u + 1, . . . , n} have been processed.

We still need to show that B′ is a P-matrix, but this is easy. B encodes
for each average vertex the average vertices reached along the first paths of its
successors. According to (12), B′ does the same thing, but replacing first paths
with second paths. The two situations are obviously completely symmetric, so
the fact that B is a P-matrix also yields that B′ is a P-matrix. Note that in
order to obtain a monotone vector s as in the proof of Lemma 4, we need to
reshuffle rows and columns so that the corresponding vertices are ‘topologically
sorted’ according to second paths. ��
Lemma 6. P is a P-matrix.

Proof. We show that every representative submatrix Prep of P is a P-matrix.
By Lemma 5, det(Prep) = det(P ′

rep) = det(Qrep) det(B′), so Prep has positive
determinant as both Q and B′ are P-matrices by Lemmas 3 and 4. To see that all
proper principal minors are positive, we can observe that any principal submatrix
of Prep is again the matrix resulting from a SSG. The subgame corresponding
to a principal submatrix can be derived from the SSG by deleting vertices and
redirecting edges. This may generate multiple edges, which is the reason why we
allowed them in the definition of the SSG. (The easy details are omitted.) ��

3.3 A Standard GLCP

Problem (9) is a non-standard GLCP because there are variables x with no
complementarity conditions. But knowing that B is regular (as B is a P-matrix),
we can express x in terms of z and obtain an equivalent standard GLCP, whose
matrix is a Schur complement of B in P .

find w, z
subject to w ≥ 0, z ≥ 0,

wT z = 0,
w − (Q− CB−1A)z = s− CB−1t.

(13)
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Lemma 7. Q− CB−1A, is a P-matrix.

Proof. We have to show that every representative submatrix of Q− CB−1A is
a P-matrix. Such submatrices are derived through Qrep − CrepB

−1A. It thus
suffices to show that Qrep−CrepB

−1A is a P-matrix, given that Prep (as defined
in Property 1) is a P-matrix. This is well known (see for example Tsatsomeros
[26]). ��

We have finally derived our main theorem:

Theorem 1. A simple stochastic game is reducible in polynomial time to a gen-
eralized linear complementarity problem with a P-matrix.

This theorem also provides a proof of Lemma 1: going through our chain of
reductions again yields that the equation system in Lemma 1 (i) for the values
v(i) has a unique solution if and only if the GLCP (13) has a unique solution for
the slack variables yij . The latter holds because the matrix of (13) is a P-matrix.

As mentioned earlier, the reduction works for a superclass of SSGin which
edges are associated with a payoff. But for general stochastic games as introduced
by Shapley [1], the reduction (as described in this paper) is not possible. This
follows from two facts. First, optimal strategies for stochastic games are generally
non-pure. Second, it is possible to get irrational solutions (vertex values) for the
stochastic game even if all input data is rational. This is not possible for GLCP.
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Abstract. It has been shown recently in [5] that the visual secret shar-
ing scheme proposed in [1] leads to the largest possible visual contrast
among all schemes that perfectly reconstruct black pixels. The main pur-
pose of this paper is to demonstrate that the largest optimal contrast (for
this kind of schemes) equals the smallest possible error when we try to
approximate a polynomial of degree k on k + 1 interpolation points by
a polynomial of degree k − 1. Thus, the problem of finding a contrast-
optimal scheme with perfect reconstruction of black pixels boils down
to a well-known problem (with a well-known solution) in Approximation
Theory. A second purpose of this paper is to present a tight asymp-
totic analysis for the contrast parameter. Furthermore, the connection
between visual cryptography and approximation theory discussed in this
paper (partially known before) may also find some interest in its own
right.

1 Introduction

Visual cryptography and k-out-of-n secret sharing schemes are notions intro-
duced by Naor and Shamir in [9]. A sender wishing to transmit a secret mes-
sage distributes n transparencies among n recipients, where the transparencies
contain seemingly random pictures. A k-out-of-n scheme achieves the following
situation. If any k recipients stack their transparencies together, then a secret
message is revealed visually. On the other hand, if only k − 1 recipients stack
their transparencies, or analyze them by any other means, they are not able to
obtain any information about the secret message. The reader interested in more
background information about secret sharing schemes is referred to [9].

An important parameter associated with a scheme is its contrast. It attains
values in the range from 0 to 1 that indicate the clarity with which the message
becomes visible. Value 1 means that black pixels are visualized “perfectly black”
and white pixels “perfectly white”. Contrast 0 means that black and white pixels
cannot be distinguished in the visualization. In general, the contrast parameter
measures to which extent black pixels appear “more black” than white pixels in
the reproduced image.
� This work was supported in part by the IST Programme of the European Commu-

nity, under the PASCAL Network of Excellence, IST-2002-506778. This publication
only reflects the authors’ views.
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A general construction of a k-out-of-n secret sharing scheme whose contrast
comes close to optimality was provided by a series of three papers. In [3] (full
paper in [4]), the authors present a linear program LP (k, n) whose optimal
solution represents a contrast-optimal k-out-of-n secret sharing scheme such that
its value, say C(k, n), equals the largest possible contrast. In [6] (full paper in [7]),
it is shown that 4−(k−1) ≤ C(k, n) ≤ 4−(k−1) nk

n(n−1)···(n−(k−1)) . This implies that
C(k, n) equals 4−(k−1) in the limit when n approaches infinity. These bounds
were proven by revealing a central relation between the largest possible contrast
in a secret sharing scheme and the smallest possible error in problems occurring
in Approximation Theory. This work has been extended in [8], where it is shown
how one can actually construct an almost contrast-optimal scheme (a question
that had been left open in [6]).

In [12], the authors (motivated by studies on visual perception) propose a
variant of secret sharing schemes where black pixels are always perfectly recon-
structed in the reproduced image. This notion was further developed in [2,1].
In [5], it is shown that the scheme proposed in [1] leads to the largest possible
contrast, say CPB(k, n), among all schemes with perfect reconstruction of black
pixels. The authors show furthermore that

CPB(k, n) =
2

1 +
∑k−1

i=0

(
n−k+i

i

)(
n

k−1−i

) (1)

and present the following bound in closed form:

2
1 + n

n−k+1

(
n−1
k−1

)
2k−1

< CPB(k, n) <
2

2k−1
(
n−1
k−1

) (2)

The main purpose of this paper is to demonstrate that the deep connections
between Visual Cryptography and Approximation Theory allow for a surpri-
singly easy computation of CPB(k, n). In fact, we show (by means of duality)
that CPB(k, n) equals the smallest possible error when we try to approximate a
polynomial of degree k on k + 1 interpolation points by a polynomial of degree
k − 1. This, however, is a classical problem in approximation theory1 and has a
well-known solution.

Clearly, the formula for CPB(k, n) revealed by the approximation-theoretic
considerations coincides with (1). Note that the bounds in (2) are only tight
for fixed k and n approaching infinity. If k = n, then lower and upper bound
differ by factor n. A second purpose of this paper is to tighten this asymptotic
analysis. We present lower and upper bounds in closed form that differ at most
by factor 1 + 1/n (for every choice of k and n).

The paper is structured as follows. Section 2 recalls the definition of a secret
sharing scheme from [9] and the linear program LP (k, n) from [3], and makes
some notational conventions. Section 3 recalls some classical notions and facts
from Approximation Theory. The central Section 4 is devoted to the connection
1 Actually a relative of the problems corresponding to ordinary schemes without per-

fect reconstruction of black pixels.
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between Visual Cryptography and Approximation Theory. Here, we present the
approximation-theoretic interpretation of CPB(k, n) and show that it is actually
a well-known parameter in disguise. The final section 5 presents the improved
asymptotic analysis for CPB(k, n).

There are clearly more papers in Visual Cryptography (part of which deal
with still other variants of the basic problem) than we are able to mention
properly in this abstract. The reader interested in finding more pointers to the
relevant literature is referred to the full paper.

2 Definitions and Notations

For the sake of completeness, we recall the definition of visual secret sharing
schemes given in [9]. In the sequel, we simply refer to them under the notion
VSSS. For a 0-1–vector v, let H(v) denote the Hamming weight of v, i.e., the
number of ones in v.

Definition 1 (VSSS,PBVSSS). A k-out-of-n VSSS C = (C0, C1) with m sub-
pixels, contrast C and threshold d consists of two collections of Boolean n ×m
matrices C0 = [C0,1, . . . , C0,r] and C1 = [C1,1, . . . , C1,s] , such that the following
properties are valid:

1. For any matrix S ∈ C0, the OR v of any k out of the n rows of S satisfies
H(v) ≤ d−mC.

2. For any matrix S ∈ C1, the OR v of any k out of the n rows of S satisfies
H(v) ≥ d.

3. For any q < k and any q-element subset {i1, . . . , iq} ⊆ {1, . . . , n}, the two
collections of q ×m matrices D0 and D1 obtained by restricting each n×m
matrix in C0 and C1 to rows i1, . . . , iq are indistinguishable in the sense that
they contain the same matrices with the same relative frequencies.

If d = m the VSSS is called visual secret sharing scheme with perfect recon-
struction of black pixels (or simply PBVSSS).

k-out-of-n schemes are used in the following way to achieve the situation
described in the introduction. The sender translates every pixel of the secret
image into n sets of subpixels in the following way. If the sender wishes to
transmit a white pixel, then she chooses one of the matrices from C0 according
to the uniform distribution. In the case of a black pixel, one of the matrices from
C1 is chosen. For all 1 ≤ i ≤ n, recipient i obtains the i-th row of the chosen
matrix as an array of subpixels, where a 1 in the row corresponds to a black
subpixel and a 0 corresponds to a white subpixel. The subpixels are arranged in
a fixed pattern, e.g. a rectangle. (Note that in this model, stacking transparencies
corresponds to “computing” the OR of the subpixel arrays.)

The third condition in Definition 1 is often referred to as the “security prop-
erty” which guarantees that any k − 1 of the recipients cannot obtain any in-
formation out of their transparencies. The “contrast property”, represented by
the first two conditions in Definition 1, guarantees that k recipients are able to
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recognize black pixels visually since any array of subpixels representing a black
pixel contains a “significant” amount of black subpixels more than any array
representing a white pixel. If the threshold parameter d equals m, any subpixel
of a black pixel is black.

Definition 2 (Generator Matrices). We say that a VSSS has generator ma-
trices G0,G1 ∈ {0, 1}n×m if Ci consists of the m! matrices that are obtained from
Gi by column permutations.

It is well-known that any VSSS can be normalized (without changing the con-
trast) such as to have generator matrices.

In [3], it was shown that the largest possible contrast C(k, n) in a k-out-of-n
VSSS coincides with the optimal value in the following linear program (with
variables ξ0, . . . , ξn and η0, . . . , ηn):

Linear Program LP(k,n)

max
∑n−k

j=0

(
n−k

j

)(
n
j

)−1(ξj − ηj) subject to
1. For j = 0, . . . , n : ξj ≥ 0, ηj ≥ 0.
2.
∑n

j=0 ξj =
∑n

j=0 ηj = 1

3. For l = 0, . . . , k − 1:
∑n−k+l+1

j=l

(
n−k+1

j−l

)(
n
j

)−1(ξj − ηj) = 0.

Moreover, the variables ξj , ηj have the following interpretation for a VSSS that
achieves the largest possible contrast with generator matrices G0 and G1:

– ξj is the fraction of columns of Hamming weight j in G0.
– ηj is the fraction of columns of Hamming weight j in G1.

Note that we obtain a PBVSSS iff any column in G1 has Hamming weight at
least n − k + 1 (such that any subpixel is colored black for at least 1-out-of-
k recipients). Thus, in order to obtain a linear program whose optimal value
coincides with the largest possible contrast in a k-out-of-n PBVSSS, we have
only to add the following constraints to LP (k, n):

4. η0 = η1 = · · · = ηn−k = 0.

We denote this linear program as LPPB(k, n).
The following sections only use this linear program (and do not explicitly

refer to Definition 1. We assume the reader to be familiar with the theory of
linear programming (including the concept of duality). However, we do not go
beyond the contents of standard books (like [10], for instance).

We make the following notational conventions. A vector with components vi

is denoted as v. The all-zeros vector is denoted as 0. The analogous conven-
tion holds for 1. For sake of simplicity, we do not properly distinguish between
row and column vectors when the meaning is well understood without this dis-
tinction. For instance, the inner product of two vectors u, v is simply written
as uv.

We close this section with the definition of a central notion in this paper. A
vector (w0, w1, . . . , wn) is the evaluation vector of function f if wj = f(j) for
j = 0, . . . , n.
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3 Prerequisites from Approximation Theory

In this subsection, we mention several classical results from Approximation The-
ory. The corresponding proofs can be looked up in any standard book (e.g.,
Chapter 1 in [11]).

Let Pd denote the set of polynomials (over the reals) of degree at most d.
With each finite set J ⊂ , each continuous function f : → , and each
nonnegative integer d, we associate the following quantity:

Ed(f, J) = min
q∈Pd

max
x∈J

|f(x)− q(x)|. (3)

f − q is called the error function (of polynomial q as approximation for f), and

E(f, J, q) = max
x∈J

|f(x)− q(x)|

is called approximation error (of polynomial q as approximation for f on domain
J). Given f and J , term Ed(f, J) can therefore be interpreted as the smallest
possible approximation error that can be achieved by a polynomial of degree at
most d.

Assume |J | ≥ d + 1. It is well-known that the minimum in equation (3) is
attained for a unique polynomial in Pd, called the best approximating polynomial
of degree at most d for f on domain J and denoted by qd,f,J , or simply by q∗ if
d, f, J are evident from context.2

In this paper, we will be mainly interested in the following situation:

– f is a polynomial of degree k with leading coefficient λf .
– The approximating polynomials have degree at most k − 1.
– Domain J consists of k + 1 points, say x0 < x1 < · · · < xk.

Consider the auxiliary functions ω and I given by

ω(x) :=
k∏

i=0

(x− xi) and I(x) :=
k∑

i=0

∏
j 	=i

(x− xj) ·
(−1)i

ω′(xi)
, (4)

where the first derivation ω′ of ω satisfies the equations

ω′(x) =
k∑

i=0

∏
j 	=i

(x−xj) , ω′(xi) =
∏
j 	=i

(xi−xj) and sign(ω′(xi)) = (−1)k−i . (5)

From these properties of ω, it is easy to infer the following properties of I:

1. I(x) is the polynomial of degree k that takes value (−1)i on xi for i =
0, 1, . . . , k.

2. The k − 1 local extrema of I (zeroes of I ′) are found in the open intervals
(xi, xi+1) for i = 0, . . . , k − 1, respectively. This implies that I(x) ≤ +1 for
xi ≤ x ≤ xi+1 and even i. Symmetrically, I(x) ≥ −1 for xi ≤ x ≤ xi+1 and
odd i.

2 Clearly, we have approximation error 0 if |J | = d + 1.
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3. For the leading coefficient of I, denoted by λI , we get

λI =
k∑

i=0

(−1)i

ω′(xi)
and sign(λI) = (−1)k . (6)

With these notations, the following holds (e.g., see [11]):

Theorem 1. The best approximating polynomial for f on J is given by

q∗(x) := f − λf

λI
I ∈ Pk−1 .

The error polynomial

r∗(x) := f(x)− q∗(x) =
λf

λI
I

satisfies

r∗(xi) = (−1)iλf

λI

such that

Ek−1(f, J) =
|λf |
|λI |

.

For ease of later reference, we say that r∗ alternates on J with alternation type
± if λf/λI > 0. Symmetrically, r∗ alternates on J with alternation type ∓ if
λf/λI < 0.

For index i ranging from 0 to k, define

E±
k (f, J, q) := min{s| f(xi)− q(xi) ≤ +s if i is even and

f(xi)− q(xi) ≥ −s if i is odd} ,

E±
k (f, J) := min

q∈Pk−1
E±

k (f, J, q) ,

E∓
k (f, J, q) := min{s| f(xi)− q(xi) ≥ −s if i is even and

f(xi)− q(xi) ≤ +s if i is odd} ,

E∓
k (f, J) := min

q∈Pk−1
E∓

k (f, J, q) .

Intuitively, E±
k−1(f, J, q) is a kind of one-sided approximation error, where q (as

an approximating polynomial for f) is penalized on xi only if it differs from
f(xi) in the “wrong direction”. By symmetry, the analogous remark is valid for
E∓

k−1(f, J, q). With these notations, the following holds (e.g., see [8]):

Theorem 2. If r∗ = f − q∗ alternates on J with alternation type α ∈ {±,∓},
then q∗ (on top of being the minimizer for Ek−1(f, J, q)) is also the (unique)
minimizer for Eα

k−1(f, J, q). In particular,

Eα
k−1(f, J) = Ek−1(f, J) .

We briefly note that Eα
k−1(f, J, q∗) = 0 if r∗ = f − q∗ alternates on J with the

alternation type opposite to α.
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4 Approximation Error and Contrast

4.1 Known Results

As explained in section 2, the largest possible contrast in a k-out-of-n scheme
is the optimal value in linear program LP (k, n). The particular structure of
LP (k, n) is captured in more abstract terms by the following definition. We say
that a linear program LP is of type BAP (Best Approximating Polynomial) if
there exists a matrix A ∈ k×(1+n) and a vector c ∈ n+1 such that LP (with
variables ξ = (ξ0, . . . , ξn) and η = (η0, . . . , ηn)) can be written in the following
form:

The primal linear program LP (A, c) of type BAP

max c(ξ − η) subject to
(LP1) ξ ≥ 0, η ≥ 0
(LP2)

∑n
j=0 ξj =

∑n
j=0 ηj = 1

(LP3) A(ξ − η) = 0

Furthermore, A and c must satisfy the following conditions:

(LP4) c is the evaluation vector of a polynomial of degree k.
(LP5) Matrix A ∈ k×(1+n) has rank k, i.e., its row vectors are linearly inde-

pendent.
(LP6) Each row vector in A is the evaluation vector of a polynomial of degree

at most k − 1.

Conditions (LP5) and (LP6) imply that the vector space spanned by the rows
of A consists of all evaluation vectors of polynomials from Pk−1.
We introduce the notation

nk = n(n− 1) · · · (n− (k − 1))

for so-called “falling factorial powers” and proceed with the following result:

Lemma 1 ([6]). The linear program LP (k, n) is of type BAP. The leading co-
efficient of the polynomial f with evaluation vector c is (−1)k/nk.

In order to discuss subproblems of LP (A, c), we introduce the following ge-
neral notation. For all J1, J2 ⊆ {0, 1, . . . , n}, let LP (A, c|J1, J2) be the linear
program resulting from LP (A, c) by adding the constraints ξj = 0 for all j /∈ J1
and ηj = 0 for all j /∈ J2. With these notations the following holds:

Theorem 3 ([8]). Let LP (A, c) be a problem of type BAP and let f denote the
polynomial of degree k with evaluation vector c. Let J1, J2 ⊆ {0, 1, . . . , n}. Then
the following holds for LP (A, c|J1, J2) and its dual DLP (A, c|J1, J2):

1. DLP (A, c|J1, J2) is equivalent to the problem of finding a polynomial q ∈
Pk−1 with minimal loss. Here, the loss induced by q, is the smallest s ∈
(strictly speaking: 2 times the smallest s ∈ ) such that

∀j ∈ J1 : f(j)− q(j) ≤ +s and ∀j ∈ J2 : f(j)− q(j) ≥ −s .
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2. If s∗ is the optimal value for DLP (A, c|J1, J2), then 2s∗ is the optimal value
for LP (A, c|J1, J2).

The loss induced by q (as defined in Theorem 3) is again a kind of one-sided
error. We may therefore wonder whether Theorem 2 (relating one- and two-
sided errors with each other) applies. This is however not readily possible for
the following reasons:

– J := J1 ∪ J2 may consist of more than k + 1 points.
– The ordered sequence of points in J is not necessarily distributed among J1

and J2 in an alternating fashion.

We will however see in the next subsection that the special problems correspond-
ing to PBVSSS’s are equivalent to problems that are covered by Theorem 2.

4.2 Linear Programs Induced by PBVSSS’s

Recall that the problem LPPB(k, n) coincides with LP (k, n) augmented by the
constraints η0 = · · · = ηn−k = 0. In our general notation from the previous
subsection, this is the problem LP (A, c|{0, . . . , n}, {n − k + 1, . . . , n}). In this
section, we abstract again from the specific form of matrix A and vector c in
LPPB(k, n). Instead we consider the subproblem LP (A, c|{0, . . . , n}, {n − k +
1, . . . , n}) of an arbitrary problem LP (A, c) of type BAP. In section 5, we come
back to the specific problem LPPB(k, n) and extrapolate the largest possible
contrast CPB(k, n) from our general results.

Let f ∈ Pk denote the polynomial with evaluation vector c. According to
Theorem 3, the dual of LP (A, c|{0, . . . , n}, {n− k + 1, . . . , n}) looks as follows:

Problem 1: Find the polynomial q ∈ Pk−1 that minimizes s subject to

∀j = 0, . . . , n : f(j)− q(j) ≤ +s
∀j = n− k + 1, . . . , n : f(j)− q(j) ≥ −s .

For technical reasons, we consider also the following two problems:

Problem 2: Find the polynomial q ∈ Pk−1 that minimizes s subject to

∀j = 0, n− k + 1, n− k + 2, . . . , n : |f(j)− q(j)| ≤ s .

Problem 3: Find the polynomial q ∈ Pk−1 that minimizes s subject to

∀j = 0, n− k + 2, n− k + 4, . . . : f(j)− q(j) ≤ +s
∀j = n− k + 1, n− k + 3, . . . : f(j)− q(j) ≥ −s .

Note that the optimal solution q∗ for problem 2 and its error polynomial
r∗ = f − q∗ are given in Theorem 1. Now, we show that the same polynomial q∗
is also the optimal solution for problems 1 and 3:

Lemma 2. Assume that LP (A, c) is a problem of type BAP such that c is the
evaluation vector of a polynomial f ∈ Pk. Assume furthermore that sign(λf ) =
(−1)k for the leading coefficient λf of f . Then, the optimal solution q∗ for prob-
lem 2 is also an optimal solution for problems 1 and 3.



Perfect Reconstruction of Black Pixels Revisited 229

Proof. For sake of brevity, set x0 = 0, xi = n − k + i for i = 1, . . . , k, and
J := {x0, x1, . . . , xk}.

We first consider problems 2 and 3. Note that the optimal value for prob-
lem 2 is Ek−1(f, J). The optimal value for problem 3 is E±

k−1(f, J). We know
from Theorem 2 that both optimal values coincide (and are actually achieved
by the same polynomial) if r∗ = f − q∗ alternates on J with alternation type ±,
i.e., if λf/λI > 0. This is however the case since sign(λI) = (−1)k and λf has
the same sign by assumption. Thus, problems 2 and 3 are equivalent.

Let’s now bring problem 1 into play. Clearly, problem 3 (and thus problem 2)
is a relaxation of problem 1. Thus, the equivalence between problems 2 and 1
would follow if the optimal solution q∗ for problem 2 were a feasible solution (of
the same cost) for problem 1. This can be seen as follows. Recall from Theorem 1
that the error polynomial has the form r∗(x) = f(x) − q∗(x) = s∗I(x) with
s∗ = |λf |/|λI | = λf/λI as the optimal value. According to the properties of I,
we have I(x) ≤ 1 for all x ∈ [x0, x1] = [0, n − k + 1]. Thus, r∗(x) ≤ s∗ for all
x ∈ [0, n− k + 1]. Thus, q∗, s∗ satisfy the constraints for j = 1, . . . , n− k within
problem 1. The remaining constraints within problem 1 are obviously satisfied.

Corollary 1. All three problems have the same optimal value λf/λI , respec-
tively. The corresponding primal problems have the optimal value 2λf/λI , re-
spectively.

5 Calculation of the Optimal Contrast

We now return to our special problem LPPB(k, n). We will first calculate
CPB(k, n) exactly (and clearly confirm formula (1) from [5]). Our main technical
contribution in this section can be seen in the following bounds on CPB(k, n)
(being in closed form and matching each other up to factor 1 + 1/n):

2
1 +
(
n−1
k−1

)
2k−1 n+1

n−(k−1)/2

< CPB(k, n) <
2

1 +
(
n−1
k−1

)
2k−1 n

n−(k−1)/2

(7)

As mentioned in the beginning of section 4.2, LPPB(k, n) coincides with the
problem LP (A, c|J1, J2) for J1 = {0, 1, . . . , n} and J2 = {n − k + 1, n − k +
2, . . . , n}. According to Lemma 1, c is the evaluation vector of a polynomial
f ∈ Pk with leading coefficient λf = (−1)k/nk.

In Corollary 1 (that we would like to apply), the optimal value of
LP (A, c|J1, J2) is given in terms of λf (here: (−1)k/nk) and λI . For this rea-
son, we first calculate λI . Let I(x) be the function obtained from (4) by setting
x0 := 0 and xi := n− k + i for i = 1, . . . , k. According to (6) and (5), the lead-
ing coefficient of I is given by λI =

∑k
i=0

(−1)i∏
j �=i(xi−xj)

. Plugging in the concrete
values x0 = 0 and xi = n− k + i for i = 1, . . . , k, we obtain

λI = (−1)k

(
1
nk

+
k∑

i=1

1
(i− 1)!(k − i)!(n− k + i)

)
. (8)
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We may now apply Corollary 1 and obtain CPB(k, n) = 2λf/λI . However,
just plugging in the formulas λf = (−1)k/nk and (8) leads to a result which is
not easy to grasp. In the sequel, we try to find simple (exact and approximate)
re-formations.

It will be technically convenient to study the expression λI/λf . Plugging in
the definitions of λI and λf , we get λI/λf = 1 + Sk,n for

Sk,n =
k∑

i=1

nk

(i− 1)!(k − i)!(n− k + i)
.

Note that CPB(k, n) can be written in terms of Sk,n as follows:

CPB(k, n) =
2

λI/λf
=

2
1 + Sk,n

(9)

Clearly, the challenge is to evaluate Sk,n. To this end, we proceed as follows:

Sk,n =
k∑

i=1

nk

(i− 1)!(k − i)!(n− k + i)
(10)

=
k−1∑
i=0

(
n

k − i− 1

)(
n + i− k

i

)
(11)

=
k−1∑
i=0

(
n

i

)(
n− 1− i

k − 1− i

)
(12)

=
k−1∑
i=0

n

n− i

(
n− 1

i

)(
n− 1− i

k − 1− i

)
(13)

=
k−1∑
i=0

n

n− i

(n− 1)!
i!(k − 1− i)!(n− k)!

(14)

=
(n− 1)!

(n− k)!(k − 1)!

k−1∑
i=0

n

n− i

(k − 1)!
i!(k − 1− i)!

(15)

=
(

n− 1
k − 1

)
2k−1

k−1∑
i=0

n

n− i

(
k − 1

i

)
2−(k−1) (16)

In (11), we made use of

nk

(i− 1)!(k − i)!(n− k + i)
=

nk−i(n− k + i)(n− k + i− 1)i−1

(k − i)!(n− k + i)(i− 1)!

=
(

n

k − i

)(
n− k + i− 1

i− 1

)
and shifted index i such that it now ranges from 0 to k−1. In (12), we substituted
k − 1− i for i. In (13), we made use of(

n

i

)
=

n

n− i

(
n− 1

i

)
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and in (14), we have rewritten the product of two binomial coefficients as trino-
mial coefficient: (

n− 1
i

)(
n− 1− i

k − 1− i

)
=

(n− 1)!
i!(k − 1− i)!(n− k)!

Equations (15) and (16) are straightforward. Note that (9) and (11) lead to the
formula (1) for CPB(k, n) that was proven in [5].

From (12), we get immediately

S1,n = 1 , S2,n = 2n− 1 , Sn,n = 2n − 1 . (17)

Equation (16) shows that Sk,n can be interpreted as
(

n−1
k−1

)
2k−1 times the expec-

tation of n/(n− i) when i is binomially distributed with respect to parameters
k − 1, 1/2, i.e., i represents the number of “heads” in k − 1 independent tosses
of a fair coin. Since the binomial distribution is centered around its average, the
following seems to be a good guess for Sk,n:

S̃k,n :=
(

n− 1
k − 1

)
2k−1 n

n− (k − 1)/2
(18)

For example,

S̃1,n = 1 , S̃2,n =
4n(n− 1)

2n− 1
, S̃n,n =

n

n + 1
2n = 2n

(
1− 1

n + 1

)
. (19)

We could clearly use Chernov’s inequalities to bound in probability the absolute
difference between Sk,n and S̃k,n. However, we can do much better:

Lemma 3. Sk,n/S̃k,n strictly increases with k.

The somewhat technical proof can be looked up in the full paper. We conclude
from Lemma 3 and from (17) and (19) that

1=
S1,n

S̃1,n

≤ Sk,n

S̃k,n

≤ Sn,n

S̃n,n

=
2n − 1

2n(1− 1/(n + 1))
<

1
1− 1/(n + 1)

=
n + 1

n
= 1+

1
n
.

For all 2 ≤ k ≤ n, we can use 2/(1 + S̃k,n) as a strict upper bound and

2/
(
1 + S̃k,n(n + 1)/n

)
as a strict lower bound on CPB(k, n) = 2/(1 + Sk,n).

This leads to the bounds (7) on CPB(k, n) that we announced in the beginning
of this section.

We finally briefly note without proof the following nice equality:

CPB(k, n) =
k−1∑
i=0

(
n− k + i

i

)
2i
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Abstract. A set of points shown on the map usually represents special
sites like cities or towns in a country. If the map in the interactive geo-
graphical information system (GIS) is browsed by users on the computer
screen or on the web, the points and their labels can be viewed in a query
window at different resolutions by zooming in or out according to the
users’ requirements. How can we make use of the information obtained
from different resolutions to avoid doing the whole labeling from scratch
every time the zooming factor changes? We investigate this important
issue in the interactive GIS system. In this paper, we build low-height
hierarchies for one and two dimensions so that optimal and approximat-
ing solutions for adaptive zooming queries can be answered efficiently.
To the best of our knowledge, no previous results have been known on
this issue with theoretical guarantees.

Keywords: Computational geometry, GIS, map-labeling, zooming.

1 Introduction

Point set labeling is a classical and important issue in the geographic informa-
tion systems (GIS). An extensive bibliography about the map labeling can be
found in [13]. The ACM Computational Geometry Impact Task Force report [5]
identifies the label placement as an important research area. Nowadays, user
interactivity is extremely crucial in such systems, especially for those systems
available on the web. For the success of the interactivity and real-time navi-
gation on maps in the system, the internal paradigm of the database needs to
be carefully designed so that the system adjusts accordingly to satisfy the user
requirements and efficiently answer the user queries.

Several aspects of the interactivity and adaption for GIS have been studied
in [2,3,11,16]. In [11,9,14], it is pointed out that the zooming operation in the
interactive GIS is an important issue. Petzold et al. [11] considered the problem
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of zooming the map by using a data structure called the reactive conflict graph.
Its purpose is to minimize the dynamic query time after extensive preprocessing.
At the preprocessing stage, they created a complete graph between any pair of
points. Each edge of the graph stores the scaling ratio when the labels of the
two points start to overlap. Firstly this process is definitely slow. Secondly at
any specific zooming factor, this process cannot guarantee the size of the query
output when comparing to the optimal size at that resolution. The obvious reason
is that this data structure does not store any clue about the optimal solution at
a specific resolution.

At any resolution, we consider the following problem. Given n distinct points
P = {pi : 1 ≤ i ≤ n} in the plane, each pi is associated with a constant
number, say κ, of axis-parallel rectangular labels of unit height and of width
ωi such that pi lies on the left boundary of its κ labels. The goal is to max-
imize the number of non-overlapping labels for P . We call this problem the
κ-fixed-position problem. We note that the one dimensional version of this prob-
lem considers all the points of P lying on the x-axis. Even the 1-fixed problem
in two dimensions is NP-complete [7] although Roy et al. [12] showed that a
special variant of the one-fixed-position problem can be solved in O(n log n)
time. Moreover, several variants of the above stated problem are proven to
be NP-complete [7,8,10]. Agarwal, van Kreveld and Suri [1] showed that a 2-
approximation of the κ-fixed-position problem can be computed in O(n log n)
time, and a (1+ ε)-approximation of the problem for any ε > 0 can be computed
in O(n log n + n

2
ε −1) time. Chan [4] improved the running time for finding a

(1 + ε)-approximation to O(n log n + nΔ
1
ε −1), where Δ ≤ n denotes the maxi-

mum number of labels a point lies inside. Moreover, several sliding versions of
this problem were extensively studied in [15]. In this paper, we define the zoom-
ing problem properly and precisely, and the we build a low-height hierarchy for
efficient adaptive queries with theoretically guaranteed output.

A zooming on a set of point means that while the point-to-point distances
are scaled by a constant factor, the label sizes of the points remain fixed. The
zooming query within a rectangular query window W is that given any zooming
scale, we want to find the optimal solution for the κ-fixed-position solution for
the labels completely inside the query window W . Instead of directly considering
the zooming problem, we consider another equivalent problem. Now suppose we
do not perform any zooming, meaning that we fix the point-to-point distances,
and we instead scale the font-size of the label texts by a constant scaling factor.
The font-scaling query within a rectangular query window W is that by applying
any scaling factor on the font of the label texts, we want to find the optimal
solution for the κ-fixed-position solution for those labels completely inside the
query window W . It is clear that our original zooming problem is equivalent to
the font-scaling problem. For the simplicity of notations, we will only consider
the font-scaling problem for the rest of the paper. See Figure 1 for an example
of labels in two different font sizes, in which optimal sets of labels are drawn
with solid lines. We denote the scaling factor at a resolution γ by ργ . The point
set is said to be at the coarser resolution and has a larger scaling factor if it
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(a) (b)

Fig. 1. An example when κ = 2. The font size/scaling factor in the right figure (b) is

twice as larger as that in the left figure (a). Note that the collections of all the solid

labels in both figures are optimal solutions.

has a relatively larger font size; otherwise the point set is said to be at finer
resolution and has a smaller scaling factor. We will use these two terminologies
interchangeably to mean the same thing. For example, in Figure 1, the point set
in Figure 1 (a) lies at a resolution α finer than the resolution β at which the
point set in Figure 1 (b) lies. This means that the left figure has a scaling factor
ρα smaller than the scaling factor ρβ of the right figure.

In this paper, in order to achieve efficient adaptive zooming querying, the
main backbone structure we build is a hierarchy of O(log n) levels, where each
level represents one resolution, the lowest level has the finest resolution, and the
resolutions become coarser and coarser when the levels in the hierarchy increase.
On each level of the hierarchy, we store some data structures so that we can effi-
ciently find the optimal or approximating solutions for adaptive zooming queries
for the resolutions between any pair of consecutive levels. In one dimension, we
build an O(log n)-height hierarchy in O(n log n) time and in O(n) space as stated
in Theorem 1, and we can answer a zooming query for optimal solution efficiently
as stated in Theorem 2. In two dimensions, we build an O(log n)-height hierar-
chy in O(n2) time and in O(n log n) space as stated in Theorem 3, and we can
answer a zooming query for approximating solution efficiently as stated in Theo-
rem 4. In Section 2, we investigate the one-dimensional zooming problem. The
two-dimensional version is studied in Section 3. Finally we conclude in Section 4.

2 Adaptive Zooming in One Dimension

Consider all the points pi in P lies on x-axis. Each point pi can choose to take
any label say σi from its κ fixed-position choices. Label σi at point pi can be
represented as an interval [pi, pi + ωi]. Now finding the maximum number of
non-overlapping labels is equivalent to finding the maximum independent set
of the intervals [pi, pi + ωi] where ωi is the width of σi. The optimal solution
can be computed using a greedy algorithm as described below. First, sort the
right endpoints pi + ωi of the labels. Then select the label successively whose
right endpoint is leftmost and moreover which does not intersect the label just
selected. This algorithm runs in O(n log n) time. For any subset S of P , let
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OPT γ(S) denote the optimal solution at resolution γ obtained by running the
above greedy algorithm on the labels at points in S. We denote OPT γ(P ) by
simply OPT γ . Using the same greedy fashion, we describe a way to find the
optimal solution at some resolution β by making use of the optimal solution at a
finer resolution α in the following section. It will later serve as a main subroutine
to build the hierarchy and to answer the zooming queries.

2.1 Computing OPTβ(S) from OPTα

Assume that the label at pi is represented as intervals [pi, p
′
i,α] and [pi, p

′
i,β ] on

x-axis at resolutions α and β respectively. It is clear that p′i,β > p′i,α as ρβ > ρα.
Let [qk, q′k] denote the kth label of OPTα in the order from left to right. The
algorithm to construct OPTβ(S) in a greedy fashion by using OPTα is presented
in Algorithm ComputeOPT . In the algorithm, Bk denotes the subset of labels
for points in S at resolution β such that the right endpoints (in sorted order) of
the labels lie inside the interval [q′k, q′k+1) for some 1 ≤ k ≤ |OPTα|. Note that
Bk includes [qk, q′k] itself. We assume q′|OPTα|+1 = ∞. Moreover, σ denotes the
most recently selected label in the solution OPT β(S) by the algorithm.

Algorithm ComputeOPT (S)
Input. OPTα and a set S ⊂ P .
Output. OPT β(S).
1. for each label [pi, p

′
i,β ] for points in S,

2. do Put [pi, p
′
i,β] into Bk if p′i,β ∈ [q′k, q′k+1) for some k.

3. Initialize OPTβ(S) = ∅, and σ = nil.
4. for each Bk by incrementing k iteratively,
5. do Select the label σ′ from Bk such that σ′ does not overlap σ and has

the leftmost right endpoint among the labels of Bk.
6. Put σ′ into OPTβ(S).
7. Set σ = σ′.

The idea is simply that as all the labels in Bk intersect q′k, there is at most
one label in Bk can be selected to put into OPTβ(S). Note that binary search
is used to put [pi, p

′
i,β] into Bk in the first for-loop. The algorithm runs in

O(|S| log |OPTα|) time.

Lemma 1. ComputeOPT (S) computes the optimal solution OPTβ(S) at reso-
lution β by making use of OPTα in O(|S| log |OPTα|) time.

2.2 Building O(log n)-Height Hierarchy

At each level of the hierarchy, we store the optimal solution at the resolution of
the current level. The lowest level corresponds to the finest resolution, at which
no labels can overlap, and the highest level corresponds to the coarsest resolution,
at which the optimal solution has only a constant size. Between any pair of
consecutive levels with resolutions α,β where ρβ > ρα, we have to determine a
scaling factor ρ = ρβ/ρα so that the size of the optimal solution |OPT β| drops
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significantly, say by a constant factor, from |OPTα|. If this can be done for each
pair of consecutive levels, it results in an O(log n)-height hierarchy. We show
below how this can be done.

Building the Lowest Level. We need to decide a resolution, at which no labels
overlap. Observe that |pi+1 − pi|/ωi is the minimum scaling ratio for the label
at pi to intersect the label at pi+1. Let ρ = mini{|pi+1 − pi|/ωi}. If we scale all
labels by a factor a little smaller than ρ, no labels can overlap anymore. Thus
we set ρ − ε (where ε > 0 is small) to be the scaling factor for the lowest level.
This step takes O(n log n) time as we need to first sort the points in P .

Building One Level Higher. As we have just discussed, to construct a level higher
with resolution β from a level with finer resolution α, we need to decide a scaling
factor ρ = ρβ/ρα such that |OPTβ | is a constant fraction of |OPTα|.

Let σk = [qk, q′k] be the kth label of OPTα in the order from left to right. We
associate Ak to σk, where Ak is the subset of labels of points in P at resolution α
such that their right endpoints lie inside interval [q′k, q′k+1). Note that Ak includes
σk itself. For convenience, we set q′|OPTα|+1 = ∞. For each label σ = [p, p′] in
Ak, observe that ρk(σ) = (q′k+1 − p)/(p′ − p) is the smallest scaling ratio for σ
to intersect q′k+1. Thus ρk = maxσ∈Ak

ρk(σ) for Ak is the smallest scaling ratio
such that all labels in Ak intersect q′k+1. Note that as σk ∈ Ak, ρk(σ) ≤ ρk. We
call the label of Ak which constitutes ρk the dominating label of Ak. Then it is
clear that the following observation holds.

Lemma 2. Consider Ak associated with a label σk = [qk, q′k] ∈ OPTα. If Δk =
[δk, δ′k] is the dominating label of Ak, then qk ≤ δk.

The above observation says that the dominating label of Ak has its left
endpoint in the right of qk. We set ρ (= ρβ/ρα) to be the median value of all the
ρk’s. Then we claim that there are constants c1 and c2 such that c1|OPTα| ≤
|OPTβ | ≤ c2|OPTα| as stated in the following lemma. Remark that we will
assume all ρk’s are different for simplicity to convey our idea. In fact, if some
ρk’s are the same, the following arguments still hold although the constants
would deviate slightly.

Lemma 3. 1
4 |OPTα| ≤ |OPTβ | ≤ 3

4 |OPTα|.

Proof. We first prove the former part of the inequality. Let L = {Ak|ρk > ρ},
where we suppose the elements of L are ordered from left to right. Then |L| =
|OPTα|/2 as by definition ρ is the median value of all the ρk. Note that at
most one label from Ak ∈ L can be selected for any labeling. Now we claim
that the dominating labels of every other sets Ak in L do not overlap. Suppose
Ai, Aj , Ak (i < j < k) be three consecutive sets in L. Let Δi = [δi, δ′i] and
Δk = [δk, δ′k] be the dominating labels of Ai and Ak respectively. At resolution
β, Let Δi,β = [δi, δ′i,β] and Δk,β = [δk, δ′k,β ] be the scaled labels of Δi and
Δk at resolution β respectively. We claim that Δi,β does not intersect Δk,β .
It suffice for us to prove δ′i,β < δk. As Ai ∈ L, δi,β ≤ q′i+1 ≤ q′j . On the
other hand, by Lemma 2, qk ≤ δk as Δk is dominating Ak. Also it is clear
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q′j < qj+1 ≤ qk. Thus we have δi,β < qk. This implies if we select all the
dominating labels of every other sets Ak in L from left to right, they cannot
overlap. Hence |OPT β| ≥ |L|/2 ≥ 1

4 |OPTα|.
We then prove the latter part of the inequality. Let S = {Ak|ρk ≤ ρ}. Then

|S| = |OPTα|/2, and |OPTα| = |S| + |L|. Let us also divide the OPTβ into
two subsets L′ and S′ where L′ = {σ ∈ OPTβ | σ ∈ Ak for some Ak ∈ L}, and
S′ = {σ ∈ OPTβ | σ ∈ Ak for some Ak ∈ S}. Then |OPTβ | = |L′| + |S′|. As a
label σ in Ak ∈ S′ must overlap q′k+1, which means that σ overlaps all the labels
in Ak+1. Thus if a label σ in Ak ∈ S′ lies in OPT β , then no labels in Ak+1 can lie
in OPTβ . We call Ak+1 is abandoned when σ is selected in OPT β . Now we put
all the abandoned sets Ak+1 (due to those labels from all the Ak in S′ selected
into OPTβ) into sets La or Sa such that La ⊂ L and Sa ⊂ S. Then we have that
|S′| ≤ |La|+ |Sa| as each Ak ∈ S can contribute at most one label in OPTβ . Also
it holds that |L′|+ |La| ≤ |L| = |OPTα|/2 and |S′|+ |Sa| ≤ |S| = |OPTα|/2. If
|Sa| ≥ |OPTα|/4, then |OPT β | = |L′|+ |S′| ≤ |L′|+ (|S| − |Sa|) ≤ |L|+ (|S| −
|Sa|) ≤ |OPTα|/2 + |OPTα|/4 = 3

4 |OPTα|. Otherwise when |Sa| < |OPTα|/4,
|OPTβ | = |L′|+ |S′| ≤ |L′|+ (|La|+ |Sa|) ≤ |L|+ |Sa| ≤ 3

4 |OPTα|.

Building the Whole Hierarchy. Build the lowest level takes O(n log n) time. We
then construct the levels one by one upwards. To construct one level higher with
resolution β from the level with resolution α, we need to first determine the
scaling factor ρ = ρβ/ρα as described previously so that 1

4 |OPTα| ≤ |OPT β| ≤
3
4 |OPTα|. This takes O(n log n) time. Then we can construct OPTβ in time
n log |OPTα| by using ComputeOPT (P ). We compute levels upwards until we
reach a level at which the size of the optimal solution is a constant, and we stop.
This gives us a O(log n)-height hierarchy. It needs O(n log2 n) time and O(n)
space in total. We summarize these in the following theorem.

Theorem 1. A hierarchy of height O(log n) for the adaptive zooming query
problem in one dimension can be built in time O(n log2 n) using O(n) space.

2.3 Adaptive Querying

With the low-height hierarchy, it is possible for us to answer zooming queries
efficiently at any resolution.

Theorem 2. Given a zooming query Q with window W = [q, q′] at resolution γ.
Let OPT γ be the optimal set of non-overlapping labels for points in P at resolu-
tion γ by running the greedy algorithm. Then with the O(log n)-height hierarchy,
the optimal solution for Q can be computed in O(|ΦW

γ | log(|OPT γ |) + log log n)
time, where ΦW

γ is the set of labels intersecting the window W at resolution γ.

Proof. First by binary search, use ργ to locate the consecutive levels of resolutions
α and β (where ρα < ργ < ρβ) in the hierarchy. As the height of the hierarchy
is O(log n), the location is done in O(log log n) time.

Then we search for q and q′, the endpoints of W . Suppose q′1, q
′
2, . . . , q

′
|OPTα|

be the right endpoints of the greedy solution at resolution α. We need to locate
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q and q′ in these right endpoints. This needs O(log |OPTα|) = O(log |OPT γ |)
time. Suppose q lies in [q′i, q

′
i+1] and q′ lies in [q′j , q

′
j+1].

For each label whose right endpoints lying inside [q′k, q′k+1] (where i + 1 ≤
k ≤ j), check whether it completely lies inside W . So we can collect the set ΞW

γ

of all the labels completely lying inside W at resolution γ. This needs O(|ΦW
γ |)

time.
Finally we use ΞW

γ to compute the optimal set of non-overlapping labels in
W at resolution γ by using ComputeOPT (ΞW

γ ). This takes O(|ΞW
γ | log |OPTα|)

= O(|ΦW
γ | log |OPT γ |) time.

3 Adaptive Zooming in Two Dimensions

We then extend our idea to build the low-height hierarchy in two dimensions
for efficient adaptive zooming queries. At each level of the hierarchy, we store
the stabbing line structures as used in [1,4]. This helps us build the hierarchy
and efficiently answer adaptive zooming queries. Let OPT γ denote the optimal
solution the labels of P at resolution γ.

Suppose all the labels have unit height at the current resolution α. We sup-
pose a label does not include its lower boundary for convenience. We can stab all
the labels by a set of horizontal lines �1, �2, . . . , �k, ordered from top to bottom,
satisfying three conditions: (i) each �i must stab at least one label; (ii) a label
must intersect exactly one stabbing line; and (iii) two consecutive stabbing lines
are separated with distance at least one. Let Ai be the set of labels stabbed
by �i, and let OPTα(Ai) be optimal labeling for labels Ai by running the one
dimensional greedy algorithm on {σ ∩ �i|σ ∈ Ai}. We define the stabbing line
structure Lα at resolution α to be the set all the stabbing lines �i at resolution
α together with Ai and OPTα(Ai).

Unlike in one dimension, OPTα cannot be derived easily from the stab-
bing line data structure Lα in two dimensions. However, a 2-approximation to
OPTα can be obtained easily from Lα. Let Xodd

α (resp., Xeven
α ) be the union

of OPTα(Ai) for odd i (resp., for even i). As any pair of consecutive stabbing
lines is separated by a distance at least one, the labels in Xodd

α never overlap
those in Xeven

α and vice versa. Thus if we take the maximum-size labeling of
OPT (Xodd

α ) and OPT (Xeven
α ), it is a 2-approximation for OPTα. Moreover, Lα

can help us find the (1 + ε)-approximation [1,4]. We then describe a way to find
Lβ at resolution β (which is coarser than α) by making use of Lα. This will serve
as the main subroutine to build the hierarchy.

3.1 Computing Lβ from Lα

For convenience, we assume ρα = 1, ρβ = ρ, and labels at resolution α has unit
height. Let � be any horizontal line at resolution β with y-coordinate y(�). Let
B� be the set of labels that intersect � at resolution β. Let H be the horizontal
strip bounded by the horizontal lines at y(�)− ρ and at y(�) + ρ. Suppose that
{�i, . . . , �j}(i < j) is the set of the stabbing lines at resolution α lying inside H .
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Observe that the labels in B� can only be members of Ai, . . . , Aj at resolution
α. Now suppose that S� is the ordered sequence of the right endpoints of the
intervals in OPTα(Ai), . . . ,OPTα(Aj) projected onto �. Then we can obtain the
optimal labeling OPTβ(B�) for the labels in B� by executing ComputeOPT (B�)
using the points in S� as separators to partition the labels in groups. This takes
O(|B�| log |S�|) time.

Now we describe how we draw the stabbing lines �′1, �
′
2, . . . from top to bottom

to stab all the labels at resolution β. First, we draw the first line �′1 = �1, and
collect B�′1 and compute OPTβ(B�′1) as described in the previous paragraph. We
then draw the second stabbing line �′2 with y-coordinate y(�′1)− ρ if it intersects
some labels at resolution β. Otherwise we set �′2 to be the stabbing line �i below
and nearest to the y-coordinate y(�′1) − ρ. We continue this process until all
labels at resolution β are stabbed. Note that the right endpoints of labels in
OPTα(Ai) at resolution α may be used twice to compute OPT β(B�) for two
consecutive stabbing lines at resolution β. In total, it takes O(n log |OPTα|) time
to compute Lβ . We summarize the result as the following lemma.

Lemma 4. Given Lα at resolution α. Then Lβ at a coarser resolution β can be
computed from Lα in O(n log |OPTα|) time.

3.2 Building O(log n)-Height Hierarchy

Building the Lowest Level. We build the lowest level at which the labels at
distinct points do not overlap. By considering the projections of the labels onto
x- and y-axes respectively, it is not hard to decide a resolution such that for each
pair of points, either the x-projections or the y-projections of their labels do not
overlap. This can be done in O(n log n) time.

Building One Level Higher. We have known how to construct the stabbing line
structure Lβ for a resolution β by making use of Lα at a finer resolution α if the
scaling factor ρ = ρβ/ρα is known. In order to have a low-height hierarchy, it
suffices for us to find a scaling factor ρ such that |OPTβ | is a constant fraction
of |OPTα|. For convenience, we assume that the height of labels at resolution
α is unit.

At resolution α, a set A� of labels that intersect a stabbing line � is par-
titioned into several groups by labels in OPTα(A�) (as in the one-dimensional
case). Each of the groups consists of labels whose right endpoints lie between
the right endpoints of two consecutive labels in OPTα(A�). The intersection of
labels in such a group in A� is called a kernel (denoted by Kα), and those labels
in that group are said to be associated with the kernel Kα. Let Kodd

α and Keven
α

be the collections of all the kernels intersecting odd and even stabbing lines at
resolution α, respectively. Let Kα = Kodd

α ∪Keven
α . Let Aodd and Aeven be the set

of all labels intersecting odd and even stabbing lines at resolution α, respectively.
We then use the interactions of the scaled versions of the kernels in Kα to decide
the scaling factor ρ.

The labels at resolution β are obtained by scaling the labels of resolution α by
factor ρ. The kernels in Kodd

α and Keven
α are enlarged to the kernels at resolution
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β and we denote the corresponding sets of enlarged kernels at resolution β simply
by Kodd and Keven respectively. Let K = Kodd ∪ Keven. The labels in Aodd and
Aeven become Bodd and Beven respectively. We also denote the scaled version of
kernel Kα by K. Two kernels (resp. labels) are said to be of the same parity if
they are contained in the same kernel (resp. label) collection Kodd or Keven (resp.
Aodd or Aeven). For each kernel Kα at resolution α, scale it until it intersects the
left sides of first three other kernels of the same parity. We denote this scaling
ratio for Kα by ρ(Kα). We set the scaling factor ρ to be the (10|Kα|

11 )-th smallest
value of ρ(Kα) for all kernels Kα ∈ Kα. With this ratio ρ, we claim that the
optimal labeling at resolution β is a constant fraction of that at resolution α.
Note that as the one-dimensional case, we will assume all the ρ(Kα) are distinct
for convenience to convey our idea.

For a kernel K, let R(K) be a label whose right side constitutes the right
side of K. We call R(K) the right representative of K. We denote the height and
width of a kernel or label by τ(·) and ω(·) respectively. Also we denote by xl(K)
and xr(K) the x-coordinates of the left and right sides of a kernelK respectively.
First of all, the following two observations are clear.

Lemma 5. Suppose K ∈ K at resolution β is obtained by scaling ρ times a
kernel Kα at resolution α. Then its height τ(Kα) ≤ τ(K) ≤ τ(Kα) + (ρ − 1),
and its width ω(K) ≥ ω(Kα) +

(
ρ−1

ρ

)
ω(R(K)). Moreover if R(K) is different

from R(Kα), then xl(R(K)) > xl(R(Kα)).

Lemma 6. Let J,K be two non-intersecting kernels on the same stabbing line
ordered from left to right at resolution β, where J,K are obtained by scaling ρ
times the kernels Jα,Kα at resolution α respectively. Then xr(R(J)) < xr(K)
and xl(J) < xl(R(K)).

Let Sodd (resp. Lodd) be the subset of kernels K in Kodd with ρ(Kα) smaller
(resp. not smaller) than ρ. Similarly, we define Seven and Leven. Let S = Sodd ∪
Seven and L = Lodd ∪ Leven. The following lemma tells us that there is a large
set of non-intersecting kernels in Lodd or Leven.

Lemma 7. For any i ∈ {odd, even}, each kernel in Li can intersect at most
1.5ρ + 12 kernels in Li.

Proof. Let K be any kernel in Li. For a kernel J in Li intersecting K, we put it
into I1 if xl(J) ≤ xl(K) and into I2 otherwise. As K intersects the left sides of
all kernels in I2, |I2| ≤ 3.

To determine |I1|, we divide I1 into three subsets depending on whether the
kernels in I1 intersect the supporting lines �t and �b of the top and bottom sides
of K. If those kernels intersects �t (resp., �b), then put them into It

1 (resp. Ib
1).

Otherwise, i.e., if they lie between �t and �b, they are put into Im
1 . We first claim

that |It
1| ≤ 3. Suppose for the contradiction that |It

1| ≥ 4. All the kernels in
It
1 must contain the top-left corner of K. This means that the kernel J in It

1
with the smallest xl(J) would intersect the left sides of at least four kernels of
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same parity. This implies that J 	∈ Li, which is a contradiction. Thus |It
1| ≤ 3.

A similar argument proves |Ib
1 | ≤ 3.

Then we bound |Im
1 |. As the height of K is at most ρ. There are at most

ρ
2 + 1 stabbing lines with the same parity between �t and �b. As on any of these
stabbing line, there are at most three non-intersecting kernels in Li stabbed
before K, |Im

1 | ≤ 3(ρ
2 + 1) = 1.5ρ + 3.

Considering all together, |I1|+ |I2| ≤ 1.5ρ + 12.

Let Ni be any maximal subset of non-intersecting kernels in Li for i ∈
{odd, even}. By Lemma 7, we have |Ni| ≥ |Li|/(1.5ρ + 13). Although no two
kernels in Ni intersect each other, their right representatives may intersect. The
following lemma proves that the number of those right representatives which
intersect R(K) for a kernel K ∈ Ni is bounded above by O(ρ). The argument
is similar to Lemma 7 by packing kernels and labels around R(K). This in turn
implies that there are at least Ω(|Li|) non-intersecting labels in Bi as stated in
Lemma 9.

Lemma 8. Let K ∈ Ni be the kernel with its right representative label R(K) of
the shortest width among all other kernels in Ni. Then R(K) can intersect the
right representative labels of less than 6ρ + 4 kernels in Ni.

Lemma 9. There are at least |Li|
(3ρ+2)(3ρ+26) non-intersecting labels in Bi for any

i ∈ {odd, even}.

Now we are well-equipped to show the main lemma, whose proof uses the
similar idea as Lemma 3 in one dimensional case.

Lemma 10. There exist constants 0 < c1, c2 < 1 such that c1|OPTα| ≤ |OPT β |
≤ c2|OPTα|.

Note that the details of the proofs of Lemma 8, 9 and 10 are omitted in
this preliminary version. We then describe the algorithm to compute the scaling
factor ρ, and analyze its running time.

For each kernel Kα, ρ(Kα,K ′
α) can be determined in |Kα| · |K ′

α| time, where
|Kα| is the number of the associated labels of Kα. For a fixed Kα, to compute all
ρ(Kα,K ′

α) for different K ′
α, it takes n|Kα| time. To determine the third smallest

value ρ(Kα) out of all ρ(Kα,K ′
α), it requires at most 3|Kα| time. In total, to

determine ρ(Kα), it takes at most n(|Kα|+ 3) time.
To determine all ρ(Kα) for all Kα, it takes time n(|Kα|+3) summing over all

kernels Kα ∈ Kα. This takes time O(n2) to determine all ρ(Kα). Furthermore,
the 10

11m-th value ρ of all ρ(Kα) can be determined in O(n log n) time. In all, ρ
can be computed in O(n2) time.

Auxiliary Structures for Efficient Querying. In order to efficiently locate all
the labels intersecting a specific window, we associate a range tree Rα with
each hierarchy level say at resolution α. We collect all the intersection points
S of the boundaries of all kernels with all the stabbing lines. We then build a
2-dimensional range tree Rα on the point set S. This takes O(|S| log(|S|)) =
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O(|OPTα| log |OPTα|) time and space [6]. The query time to report all the
points from S inside a rectangular windowW is O(log(|S|)+k) = O(log(|OPTα|)
+ k) where k is the number of points inside W . Remark that we suppose the
technique of fractional cascading is applied to the range tree; otherwise, the
query time can go up to O(log2(|S|) + k).

Building the whole hierarchy. Combining the above statements, we have the
following theorem.

Theorem 3. A hierarchy of height O(log n) for the adaptive zooming query prob-
lem in two dimensions can be built in O(n2 log n) time using O(n log n) space.

3.3 Adaptive Querying

Theorem 4. Given any zooming query Q with window W = [x, x′] × [y, y′] at
resolution γ. Let OPT γ be the optimal set of non-overlapping labels for points
in P at resolution γ. Let ΦW

γ be the set of labels intersecting the window W at
resolution γ. Suppose the O(log n)-height hierarchy is given. Then

(i) The 2-approximation for Q can be computed in O(|ΦW
γ | log(|OPT γ |) +

log log n) time.
(ii) The (1+ε)-approximation for Q can be computed in O(|ΦW

γ |
1
ε +log(|OPT γ |)

+ log log n) time.

Proof. First by binary search, use ργ to locate the consecutive levels of resolutions
α and β where ρα < ργ < ρβ in the hierarchy. As the height of the hierarchy is
O(log n), the location is done in O(log log n) time.

Search the auxiliary range tree Rα at resolution α to find all points lying
inside W . This takes O(log(|OPTα|) + k) time, where k is the number of points
of Rα inside W . Note that log(|OPTα|) = O(log(|OPT γ |)). As the labels inter-
secting W at resolution α will continue intersecting W at resolution γ, we have
k = O(|ΦW

γ |). For groups of labels corresponding to these k kernels, we check
one by one whether they are inside W or not. So we can collect all the labels
ΞW

γ completely lying inside W at resolution γ in O(|ΦW
γ |) time.

(i) We use ΞW
γ to compute the 2-approximation solution for Q by apply-

ing the one-dimensional greedy algorithm on related stabbing lines. This takes
O(|ΞW

γ | log |OPTα|) = O(|ΦW
γ | log |OPT γ |) time.

(ii) We use ΞW
γ to compute the (1+ ε)-approximation for Q by applying the

algorithm by Chan [4]. This takes O(|ΞW
γ |

1
ε ) = O(|ΦW

γ |
1
ε ) time.

4 Conclusion and Discussion

In this paper, we build low-height hierarchies for one and two dimensions for
answering adaptive zooming queries efficiently. In the model we have considered,
the labels at any point are restricted to several fixed positions lying on the right
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of the point. One interesting research direction is to extend our results to point
labeling for more general models, for example sliding models. Can some notion of
point importance be added into the data structure? Can we build a hierarchy for
a subdivision map to help us query the map area in a window at any resolution?
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Abstract. We present several results on the complexity of various forms
of Sperner’s Lemma in the black-box model of computing. We give a
deterministic algorithm for Sperner problems over pseudo-manifolds of
arbitrary dimension. The query complexity of our algorithm is linear in
the separation number of the skeleton graph of the manifold and the
size of its boundary. As a corollary we get an O(

√
n) deterministic query

algorithm for the black-box version of the problem 2D-SPERNER, a
well studied member of Papadimitriou’s complexity class PPAD. This
upper bound matches the Ω(

√
n) deterministic lower bound of Crescenzi

and Silvestri. The tightness of this bound was not known before. In an-
other result we prove for the same problem an Ω( 4

√
n) lower bound for

its probabilistic, and an Ω( 8
√

n) lower bound for its quantum query com-
plexity, showing that all these measures are polynomially related.

Classification: computational and structural complexity, quantum
computation and information.

1 Introduction

Papadimitriou defined in [18,19] the complexity classes PPA, PPAD, and PSK
in order to classify total search problems which have always a solution.The class
PSK was renamed PPADS in [5]. These classes can be characterized by some un-
derlying combinatorial principles. The class Polynomial Parity Argument (PPA)
is the class of NP search problems, where the existence of the solution is guar-
anteed by the fact that in every finite graph the number of vertices with odd
degree is even. The class PPAD is the directed version of PPA, and its basic
search problem is the following: in a directed graph, where the in-degree and the
out-degree of every vertex is at most one, given a source, find another source or
a sink. In the class PPADS the basic search problem is more restricted than in
PPAD: given a source, find a sink.

M. Lískiewicz and R. Reischuk (Eds.): FCT 2005, LNCS 3623, pp. 245–257, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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These classes are in fact subfamilies of TFNP, the family of all total NP-
search problems, introduced by Megiddo and Papadimitriou [17]. Other impor-
tant subclasses of TFNP are Polynomial Pigeonhole Principle (PPP) and Poly-
nomial Local Search (PLS). The elements of PPP are problems which by their
combinatorial nature obey the pigeonhole principle and therefore have a solution.
In a PLS problem, one is looking for a local optimum for a particular objective
function, in some neighborhood structure. All these classes are interesting be-
cause they contain search problems not known to be solvable in polynomial time,
but which are also somewhat easy in the sense that they can not be NP-hard
unless NP = co-NP.

Another point that makes the parity argument classes interesting is that there
are several natural problems from different branches of mathematics that belong
to them. For example, in a graph with odd degrees, when a Hamiltonian path is
given, a theorem of Smith [26] ensures that there is another Hamiltonian path.
It turns out that finding this second path belongs to the class PPA [19]. A search
problem coming from a modulo 2 version of Chevalley’s theorem [19] from num-
ber theory is also in PPA. Complete problems in PPAD are the search versions
of Brouwer’s fixed point theorem, Kakutani’s fixed point theorem, Borsuk-Ulam
theorem, and Nash equilibrium (see [19]).

The classical Sperner’s Lemma [23] states that in a triangle with a regular
triangulation whose vertices are labeled with three colors, there is always a
trichromatic triangle. This lemma is of special interest since some customary
proofs for the above topological fixed point theorems rely on its combinatorial
content. However, it is unknown whether the corresponding search problem,
that Papadimitriou [19] calls 2D-SPERNER, is complete in PPAD. Variants
of Sperner’s Lemma also give rise to other problems in the parity argument
classes. Papadimitriou [19] has proven that a 3-dimensional analogue of 2D-
SPERNER is in fact complete in PPAD.

The study of query complexities of the black-box versions of several prob-
lems in TFNP is an active field of research. Several recent results point into the
direction that quantum algorithms can give only a limited speedup over deter-
ministic ones in this framework. The collision lower bound of Aaronson [1] and
Shi [21] about PPP, and the recent result of Santha and Szegedy [20] on PLS
imply that the respective deterministic and quantum complexities are polyno-
mially related. As a consequence, if an efficient quantum algorithm exists for a
problem in these classes, it must exploit its specific structure. In a related issue,
Buresh-Oppenheim and Morioka [8] have obtained relative separation results
among PLS and the polynomial parity argument classes.

2 Results

A black-box problem is a relation R ⊆ S × T where T is a finite set and S ⊆ Σn

for some finite set Σ. The oracle input is a function x ∈ S, hidden by a black-
box, such that xi, for i ∈ {1, . . . , n} can be accessed via a query parameterized
by i. The output of the problem is some y ∈ T such that (x, y) ∈ R. A special
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case is the functional oracle problem when the relation is given by a function
A : S → T , the (unique) output is then A(x). We say that A is total if S = Σn.

In the query model of computation each query adds one to the complexity of
the algorithm, but all other computations are free. The state of the computation
is represented by three registers, the query register i ∈ {1, . . . , n}, the answer
register a ∈ Σ, and the work register z. The computation takes place in the vector
space spanned by all basis states |i〉|a〉|z〉. In the quantum query model introduced
by Beals et al. [4] the state of the computation is a complex combination of all
basis states which has unit length in the norm l2. In the randomized model it
is a non-negative real combination of unit length in the norm l1, and in the
deterministic model it is always one of the basis states.

The query operation Ox maps the basis state |i〉|a〉|z〉 into the state
|i〉|(a + xi) mod |Σ|〉|z〉 (here we identify Σ with the residue classes mod|Σ|).
Non-query operations are independent of x. A k-query algorithm is a sequence
of (k + 1) operations (U0,U1, . . . ,Uk) where Ui is unitary in the quantum and
stochastic in the randomized model, and it is a permutation in the deterministic
case. Initially the state of the computation is set to some fixed value |0〉|0〉|0〉,
and then the sequence of operations U0, Ox,U1, Ox, . . . ,Uk−1, Ox,Uk is applied.
A quantum or randomized algorithm computes (with two-sided error) R if the
observation of the appropriate last bits of the work register yield some y ∈ T
such that (x, y) ∈ R with probability at least 2/3. Then QQC(R) (resp. RQC(R))
is the smallest k for which there exists a k-query quantum (resp. randomized)
algorithm which computes R. In the case of deterministic algorithms of course
exact computation is required, and the deterministic query complexity DQC(R)
is defined then analogously. We have DQC(R) ≥ RQC(R) ≥ QQC(R).

Beals et al. [4] have shown that in the case of total functional oracle problems
the deterministic and quantum complexities are polynomially related. For several
partial functional problems exponential quantum speedups are known [10,22].

In this paper we will give several results about Sperner problems in the
black-box framework. In Section 5, we will prove that the deterministic query
complexity of REGULAR 2-SPM, the black-box version of 2D-SPERNER
is O(

√
n). This matches the deterministic Ω(

√
n) lower bound of Crescenzi and

Silvestri [9]. The tightness of this bound was not known before. In fact, this
result is the corollary of a general algorithm that solves the Sperner problems
over pseudo-manifolds of arbitrary dimension. The complexity analysis of the
algorithm will be expressed in Theorem 4 in two combinatorial parameters of
the pseudo-manifold: the size of its boundary and the separation number of its
skeleton graph. In Section 6, we show that quantum, probabilistic, and deter-
ministic query complexities of REGULAR 2-SPM are polynomially related.
More precisely, in Theorem 8 we will prove that its randomized complexity is
Ω( 4
√

n) and that its quantum complexity is Ω( 8
√

n). This result is analogous to
the polynomial relations obtained for the respective query complexities of PPP
and PLS. Because of lack of space, most proofs are absent from this extended
abstract, but can be found in the full paper [12].
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3 Mathematical Background on Simplicial Complexes

For an undirected graph G = (V,E), and for a subset V ′ ⊆ V of the vertices,
we denote by G[V ′] the induced subgraph of G by V ′. A graph G′′ = (V ′′,E′′)
is a subgraph of G, in notation G′′ ⊆ G, if V ′′ ⊆ V and E′′ ⊆ E. The ring Z/(2)
denotes the ring with 2 elements.

Definition 1 (Simplicial Complex). A simplicial complex K is a non-empty
collection of subsets of a finite set U , such that whenever S ∈ K then S′ ∈ K for
every S′ ⊆ S. An element S of K of cardinality d + 1 is called a d-simplex. A
d′-simplex S′ ⊆ S is called a d′-face of S. We denote by Kd the set of d-simplices
of K. An elementary d-complex is a simplicial complex that contains exactly one
d-simplex and its subsets. The dimension of K, denoted by dim(K), is the largest
d such that K contains a d-simplex. The elements of K0 are called the vertices
of K, and the elements of K1 are called the edges of K. The skeleton graph
GK = (VK ,EK) is the graph whose vertices are the vertices of K, and the edges
are the edges of K.

Without loss of generality, we suppose that U consists of integers, and we
identify {u} with u, for u ∈ U .

Fact 1. Let d be a positive integer. If S is an elementary d-complex, then GS is
the complete graph.

Definition 2 (Oriented Simplex). For every positive integer n, we define an
equivalence relation ≡n over Zn, by a ≡n b if there exists an even permutation σ
such that σ · a = b. For every a ∈ Zn we denote by [a]≡n the equivalence class of
a for ≡n. The two equivalence classes of the orderings of the 0-faces of a simplex
are called its orientations. An oriented simplex is a pair formed of a simplex and
one of its orientations.

For an oriented d-simplex (S, [τ ]≡d+1), where τ is an ordering of the 0-faces
of S, and a permutation σ over {1, . . . , d + 1}, we denote by σ · (S, [τ ]≡d+1)
the oriented d-simplex (S, [σ · τ ]≡d+1). For every integer d, and every simplicial
complex K whose simplices have been oriented, we denote by Kd the set of
oriented d-simplices of K. From now on, S may denote an oriented or a non-
oriented simplex. When S is an oriented simplex, S̄ will denote the same simplex
with the opposite orientation. We also define S(i) to be S if i is even, and to
be S̄ if i is odd. We will often specify an oriented simplex by an ordering of its
0-faces.

Definition 3. Let S = (v0, . . . , vd) be an oriented d-simplex. For every 0 ≤ i ≤
d, for every (d−1)-face {v0, . . . , vi−1, vi+1, . . . , vd} of S, the induced orientation
is the oriented (d− 1)-simplex (v0, . . . , vi−1, vi+1, . . . , vd)(i).

Definition 4. Let K be a simplicial complex whose simplices have been oriented,
and let R be a ring. We define Cd(K; R) as the submodule of the free R-module
over the d-simplices of K with both possible orientations, whose elements are of
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the form
∑

S∈Kd
(cS · S + cS̄ · S̄), with cS ∈ R, satisfying the relation cS = −cS̄.

The elements of Cd(K; R) are called d-chains. For every oriented simplex S of
K, we denote by 〈S〉 the element S − S̄ of Cd(K; R).

Let S be an oriented d-simplex (v0, v1, . . . vd) of K. The algebraic boundary
of 〈S〉, denoted by ∂d 〈S〉, is the (d−1)-chain of Cd−1(K; R) defined as ∂d 〈S〉 =∑d

i=0(−1)i〈(v0, . . . , vi−1, vi+1, . . . , vd)〉.

Since ∂d 〈S〉 = −∂d 〈S̄〉, the operator ∂d has been correctly defined on a
basis of Cd(K; R) and can therefore be uniquely extended into a homomorphism
∂d : Cd(K; R) → Cd−1(K; R). The proof of the next Lemma is straightforward.

Lemma 1. Let S be an oriented d-simplex of a simplicial complex K. Denote
by FS the set of (d − 1)-faces of S, and for every S′ ∈ FS by τS

S′ the induced
orientation on S′. Then ∂d 〈S〉 =

∑
S′∈FS

〈(S′, τS
S′)〉.

Following an early version of a paper of Bloch [7], in the next definition
we generalize the notion of pseudo-manifold, without the usual requirements of
connectivity and pure dimensionality.

Definition 5. A simplicial complex M is a pseudo d-manifold, for a positive
integer d, if (i) M is a union of elementary d-complexes, and (ii) every (d− 1)-
simplex in M is a (d− 1)-face of at most two d-simplices of M. The boundary
of M is the set of elementary (d− 1)-complexes in M that belong exactly to one
d-simplex of M. We denote it by ∂M. A pseudo d-manifold M is said to be
orientable if it is possible to assign an orientation to each d-simplex of M, such
that for all (d − 1)-simplex of M that is not on its boundary the orientations
induced by the two d-simplices to which it belongs are opposite. Such a choice of
orientations for all the d-simplices of M makes M oriented.

If the d-simplices of M are oriented, then there is a natural orientation of
the (d − 1)-simplices of ∂M, where each (d − 1)-simplex has the orientation
induced by the oriented d-simplex of which it is a (d − 1)-face. Notice that if
M is a pseudo d-manifold, then ∂M need not be a pseudo (d − 1)-manifold.
From now, all the simplicial complexes will be pseudo-manifolds. Observe that
if R = Z/(2), then for any oriented d-simplex S, we have 〈S〉 = 〈S̄〉.

Definition 6. Given a simplicial complex K of dimension d, the standard d-
chain K̂ of K will be defined depending on whether K is oriented as follows:
− if K is non-oriented, then K̂ =

∑
S∈Kd

〈(S, τS)〉 ∈ Cd(K, Z/(2)), for an arbi-
trary choice of orientations τS of the d-simplices S in K,
− if K is oriented, then K̂ =

∑
S∈Kd

〈(S, τS)〉 ∈ Cd(K, Z) where τS is the ori-
entation of S in K.

Fact 2. Let d be an integer, and let M be a pseudo d-manifold. Then, if M is
not oriented the equality ∂̂M = ∂d M̂ holds in Cd−1(∂M, Z/(2)), and if M is
oriented the equality ∂̂M = ∂d M̂ holds in Cd−1(∂M, Z).
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4 Sperner Problems

Definition 7. Let K be a simplicial complex. A labeling of K is a mapping �
of the vertices of K into the set {0, . . . , dim(K)}. If a simplex S of K is labeled
with all possible labels, then we say that S is fully labeled.

A labeling � naturally maps every oriented d-simplex S = (v0, . . . , vd) to the
equivalence class �(S) = [(�(v0), . . . , �(vd))]≡d+1 .

Definition 8. Given a labeling � of a simplicial complex K, and an integer
0 ≤ d ≤ dim(K), we define the d-dimensional flow Nd[〈S〉] by Nd[〈S〉] = 1 if
�(S) = [(0, 1, 2 . . . , d)]≡d+1 , Nd[〈S〉] = −1 if �(S) = [(1, 0, 2, . . . , d)]≡d+1 , and
Nd[〈S〉] = 0 otherwise, and then extend it by linearity into a homomorphism
Nd : Cd(K; R) → R.

Sperner’s Lemma [23] has been generalized in several ways. The following
statement from [25] is also a straightforward consequence of results of [11].

Theorem 1 (Sperner’s Lemma [23,11,25]). Let K be a simplicial complex
of dimension d, let � be a labeling of K, and let R be a ring. For an element C
of Cd(K; R), we have Nd[C] = (−1)dNd−1[∂d C].

Using Fact 2, we translate Theorem 1 into terms of pseudo-manifolds.

Theorem 2 (Sperner’s Lemma on pseudo-manifolds). Let d be an integer,
let M be a pseudo d-manifold, and let � be a labeling of M. Then Nd[M̂] =
(−1)dNd−1[∂̂M] where M̂ ∈ Cd(M, Z/(2)), ∂̂M ∈ Cd−1(∂M, Z/(2)) if M is
not oriented, and M̂ ∈ Cd(M, Z), ∂̂M ∈ Cd−1(∂M, Z) if M is oriented.

This version of Sperner’s lemma can be viewed, from a physicist’s point of
view, as a result equivalent to a global conservation law of a flow. If there is a
source for the flow and the space is bounded then there must be a sink for that
flow. More concretely, the lines of flow can be drawn over d-simplices, that goes
from one d-simplex to another if they share a (d − 1)-face that has all possible
labels in {0, . . . , d − 1}. The sources and sinks of the flow are the fully labeled
d-simplices. The lemma basically says that if the amount of flow entering the
manifold at the boundary is larger than the exiting flow, then there must exist
sinks inside. The local conservation is stated by the fact that if there is an ingoing
edge, there will not be two outgoing edges, and conversely. Formally, we have
the following.

Fact 3. Let (S, τS) be an oriented d-simplex. Then at most two of its oriented
(d− 1)-faces have a non-zero image by Nd−1. Moreover, if there are exactly two
(d − 1)-faces (S′, τS

S′) and (S′′, τS
S′′) that have non-zero image by Nd−1, then

Nd[〈(S, τS)〉] = 0 and Nd−1[〈(S′, τS
S′)〉] = −Nd−1[〈(S′′, τS

S′′)〉].

This gives a relation between the problem of finding fully labeled d-simplices
and the natural complete problems for the parity argument classes. We can
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consider an oriented d-simplex (S, τS) with Nd[〈(S, τS)〉] = 1 as a source for the
flow, and (S′, τS′) with Nd[〈(S′, τS′)〉] = −1 as a sink.

We now state the non-oriented black-box Sperner problems we will consider.
The statement of d-OSPM, the general oriented problem can be found in the
full paper.

Sperner on Pseudo d-Manifolds (d-SPM)
Input: a pseudo d-manifold M, and S ∈ Md.
Oracle input: a labeling 	 : M0 → {0, 1, . . . , d}.
Promise: one of the two conditions holds, with R = Z/(2):

a) Nd−1[∂̂ M] = 1,

b) Nd−1[∂̂ M] = 0 and Nd[〈S〉] = 1.
Output: S′ ∈ Md such that Nd[〈S′〉] = 1, with S �= S′ for case b.

We will deal in particular with the following important special case of 2-SPM.
Let Vm = {(i, j) ∈ N2 | 0 ≤ i + j ≤ m}. Observe that |Vm| =

(
m+2

2

)
.

Regular Sperner (REGULAR 2-SPM)
Input: n =

(
m+2

2

)
for some integer m.

Oracle input: a labeling 	 : Vm → {0, 1, 2}.
Promise: for 0 ≤ k ≤ m, 	(0, k) �= 1, 	(k, 0) �= 0, and 	(k, m − k) �= 2.
Output: p, p′ and p′′ ∈ V , such that p′ = p + (ε, 0), p′′ = p + (0, ε) for

some ε ∈ {−1, 1}, and {	(p), 	(p′), 	(p′′)} = {0, 1, 2}.
In fact, REGULAR 2-SPM on input n =

(
m+2

2

)
is the instance of d-SPM

on the regular m-subdivision of an elementary 2-simplex. Theorem 2 states that
both d-SPM and d-OSPM have always a solution. The solution is not necessarily
unique as it can be easily checked on simple instances. Thus the problems are
not functional oracle problems.

5 Black-Box Algorithms for Pseudo d-Manifolds

The purpose of this section is to give a black-box algorithm for d-SPM. The
corresponding algorithm for d-OSPM can be found in the full paper. To solve
these problems, we adopt a divide and conquer approach. This kind of approach
was successfully used in [16,15] and [20], to study the query complexity of the
oracle version of the Local Search problem. However, the success of the divide
and conquer paradigm for Sperner problems relies heavily on the use of the very
strong statement of Sperner’s Lemma that is given in Theorem 2. The usual,
simpler version of Sperner’s Lemma, like the one given in [19] does not appear
to be strong enough for this purpose. Observe that though the standard proof
of Sperner’s Lemma is constructive, it yields only an algorithm of complexity
O(n). In our algorithms the division of the pseudo d-manifold M will be done
according to the combinatorial properties of its skeleton graph. The particular
parameter we will need is its iterated separation number that we introduce now
for general graphs.

Definition 9. Let G = (V,E) be a graph. If A and C are subsets of V such that
V = A ∪ C, and that there is no edge between A \ C and C \ A, then (A, C) is
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said to be a separation of the graph G, in notation (A, C) ≺ G. The set A ∩ C
is called a separator of the graph G.

The iterated separation number is defined by induction on the size of the
graph G by s(G) = min(A,C)≺G {|A ∩ C|+ max(s(G[A \ C]), s(G[C \A]))}. A
pair (A, C) ≺ G such that s(G) = |A ∩ C| + max(s(G[A \ C]), s(G[C \ A])) is
called a best separation of G.

The iterated separation number of a graph is equal to the value of the sepa-
ration game on the graph G, which was introduced in [16]. In that article, that
value was defined as the gain of a player in a certain game. Notice, also, that
the iterated separation number is at most log |V | times the separation number
as defined in [20]. Before giving the algorithms, and their analyses, we still need
a few observations.

Lemma 2. Let A and B be two pseudo d-manifolds, such that A ∪ B is also a
pseudo d-manifold. Let � be a labeling of A ∪ B. If A and B have no d-simplex
in their intersection, then Nd[Â ∪ B] = Nd[Â] + Nd[B̂].

Lemma 3. Let M be a pseudo d-manifold, and M′ be a union of elementary
d-complexes such that M′ ⊆M. Then M′ is a pseudo d-manifold.

Theorem 3. Let M be a pseudo d-manifold, H a subset of M0, and � be a
labeling of the vertices of M. Let (A, C) ≺ GM[M0 \H ], B = H ∪ (A∩C), and
M ′ = A \C and M ′′ = C \A. Denote by B the set of elementary d-complexes of
M whose vertices are all in B, and by M′ (resp. M′′) the set of elementary d-
complexes of which at least one of the vertices belongs to M ′ (resp. M ′′). Denote
also by B′ the set of elementary (d − 1)-complexes of M whose vertices are all
in B. Then,

(i) B, M′, M′′ and M′ ∪M′′ are pseudo d-manifolds,
(ii) if H 	=M0 then B, M′ and M′′ are proper subsets of M,
(iii) Nd[M̂] = Nd[B̂] + Nd[M̂′] + Nd[M̂′′],
(iv) the inclusions ∂M′ ⊆ (∂M) ∪ B′ and ∂M′′ ⊆ (∂M) ∪ B′ hold,

We are now ready to state Algorithm 1 which solves d-SPM when the labels
of the 0-faces of ∂M are also known. We next give the result which states the
correctness of our algorithm and specifies its complexity.

Lemma 4. If M and S satisfy the promises of d-SPM, then Algorithms 1
returns a solution and uses at most s(GM[M0 \H ]) queries.

Theorem 4. DQC(d-SPM) = O(s(GM[M0 \ (∂M)0])) + |(∂M)0| and
DQC(d-OSPM) = O(s(GM[M0 \ (∂M)0])) + |(∂M)0|.

Proof. The algorithms consist in querying the labels of the vertices of ∂M and
then running Algorithm 1 with the initial choice H = (∂M)0. For the oriented
case, an appropriate modification of Algorithm 1 works.
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Algorithm 1. Main routine for solving d-SPM

Input: A pseudo d-manifold M, S ∈ Md, a set H ⊇ (∂M)0 together with the labels
of its elements.

Let (A, C) ≺ GM[M0 \ H ] be a best separation, and B = H ∪ (A ∩ C).
Let the complexes B, M′ and M′′ be defined as in Theorem 3.
Query the labels of the vertices in A ∩ C.
if B contains a fully labeled elementary d-complex then

Return the corresponding oriented d-simplex.
end if
Evaluate Nd−1[∂̂ B], Nd−1[∂̂ M′] and Nd−1[∂̂ M′′].
if Nd−1[∂̂ K] = 1 for K ∈ {B, M′, M′′} then

Iterate on K, any d-simplex S ∈ K, and B with the labels of its elements.
else

Iterate on K ∈ {B, M′, M′′} containing S, S and B with the labels of its elements.
end if

To bound the complexity of our algorithms we need an upper-bound on the
iterated separator number of the skeleton graph. The following theorem gives, for
any graph, an upper bound on the size of a balancing separator, whose deletion
leaves the graph with two roughly equal size components. The bound depends
on the genus and the number of vertices of the graph.

Theorem 5 (Gilbert, Hutchinson, Tarjan [13]). A graph of genus g with
n vertices has a set of at most 6

√
g · n+ 2

√
2n+ 1 vertices whose removal leaves

no component with more than 2n/3 vertices.

For our purposes we can immediately derive an upper bound on the iterated
separation number.

Corollary 1. For graphs G = (V,E) of size n and genus g we have s(G) ≤
λ(6
√
g · n + 2

√
2n) + log3/2 n, where λ is solution of λ = 1 + λ

√
2/3.

In general, there is no immediate relationship between the genus of a pseudo
d-manifold and the genus of its skeleton graph. However, if the pseudo d-manifold
M is a triangulated oriented surface, then the genus of the graph is equal to the
genus of M. Used in conjunction with Corollary 1, Theorem 4 gives an effective
upper bound for pseudo d-manifolds.

Corollary 2. Let M be a pseudo d-manifold such that GM is of size n and of
genus g. Then, DQC(d-SPM) = O(

√
g) ·

√
n + |(∂M)0| and DQC(d-OSPM) =

O(
√
g) ·

√
n + |(∂M)0|.

Since the skeleton graph of the underlying pseudo 2-manifold of REGULAR
2-SPM is planar, it has genus 0. Thus we get:

Theorem 6. DQC(REGULAR 2-SPM) = O(
√

n).

In the next section, we show nontrivial lower bounds on the randomized and
the quantum query complexity of the REGULAR 2-SPM problem. Observe
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that for some general instances of the 2-SPM over the same pseudo 2-manifold
we can easily derive exact lower bounds from the known complexity of Grover’s
search problem [6]. For example, if a labeling is 2 everywhere, except on two
consecutive vertices on the boundary where it takes respectively the values 0
and 1, then finding a fully labeled 2-simplex is of the same complexity as finding
a distinguished element on the boundary.

6 Lower Bounds for REGULAR 2-SPM

We denote by UNIQUE-SPERNER all those instances of REGULAR 2-
SPM for which there exists a unique fully labeled triangle. There exist several
equivalent adversary methods for proving quantum lower bounds in the query
model [24]. Here, we will use the weighted adversary method [2,3,14].

Theorem 7. Let Σ be a finite set, let n ≥ 1 be an integer, and let S ⊆ Σn and
S′ be sets. Let f : S → S′. Let Γ be an arbitrary S × S nonnegative symmetric
matrix that satisfies Γ [x, y] = 0 whenever f(x) = f(y). For 1 ≤ k ≤ n, let Γk

be the matrix such that Γk[x, y] = 0 if xk = yk, and Γk[x, y] = Γ [x, y] otherwise.
For all S × S matrix M and x ∈ S, let σ(M, x) =

∑
y∈S M [x, y]. Then

QQC(f) = Ω

(
min

Γ [x,y] 	=0,xk 	=yk

√
σ(Γ, x)σ(Γ, y)
σ(Γk, x)σ(Γk , y)

)
,

RQC(f) = Ω

(
min

Γ [x,y] 	=0,xk 	=yk

max
(
σ(Γ, x)
σ(Γk, x)

,
σ(Γ, y)
σ(Γk, y)

))
.

For the lower bound we will consider specific instances of REGULAR 2-
SPM. For that, we need a few definitions. For any binary sequence b, let |b|
denote the length of the sequence b, and for i = 0, 1 let wi(b) be the number of
bits i in b. For 0 ≤ t ≤ |b|, let bt = b1 . . . bt denote the prefix of length t of b.

The instances of REGULAR 2-SPM we will consider are those whose
oracle inputs Cb are induced by binary sequences b = b1 . . . bm−2 of length m−2
as follows:

Cb(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if j = 0 and i �= 0,

2 if i = 0 and j �= m,

0 if i + j = m and j �= 0,

1 if there exists 0 ≤ t ≤ m − 2 with (i, j) = (w0(b
t) + 1, w1(b

t)),

2 if there exists 0 ≤ t ≤ m − 2 with (i, j) = (w0(b
t), w1(b

t) + 1),

0 otherwise.

Notice that the first and fourth (resp. second and fifth) conditions can be
simultaneously satisfied, but the labeling definition is consistent. Also observe
that, for any b, there is a unique fully labeled triangle, whose coordinates are
{(w0(b)+1, w1(b)), (w0(b), w1(b)+1), (w0(b)+1, w1(b)+1)}. Therefore Cb is an
instance of UNIQUE-SPERNER. We illustrate an instance of Cb in Figure 1.
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Fig. 1. In the coordinates system of the Figure, the point (0, 0) is the highest corner of

the triangles, the x coordinates increase by going down and left, and the y coordinates

increase by going down and right. On sub-figure (i), the labeling Cb corresponds to the

binary sequence b = 0100110. On sub-figure (ii), the labeling Ob corresponds to the

same sequence b. The unmarked vertices are all labeled 0.

It turns out that technically it will be easier to prove the lower bound for a
problem which is closely related to the above instances of REGULAR 2-SPM,
that we call SNAKE. Recall that Vm = {(i, j) ∈ N2 | 0 ≤ i + j ≤ m}. For every
binary sequence b = b1 . . . bm−2, we denote by Ob the function Vm → {0, 1}
defined for p ∈ Vm by

Ob(p) =

{
1 if there exists 0 ≤ t ≤ m − 2 with (i, j) = (w0(b

t) + 1, w1(b
t)),

0 otherwise.

See again Figure 1 for an example.

SNAKE
Input: n =

(
m
2

)
for some integer m.

Oracle input: a function f : Vm → {0, 1}.
Promise: there exists a binary sequence b = b1 . . . bm−2 such that f = Ob.
Output: (w0(b), w1(b)).

We recall here the definition of [20] of c-query reducibility between black-box
problems, which we will use to prove our lower bound.

Definition 10. For an integer c > 0, a functional oracle problem A : S1 → T1
with S1 ⊆ Σn

1 is c-query reducible to a functional oracle problem B : S2 → T2
with S2 ⊆ Σn′

2 if the following two conditions hold:

(i) ∃α : S1 → S2, ∃β : T2 → T1, such that ∀x ∈ S1, A(x) = β(B(α(x))),
(ii) ∃γ1, . . . , γc : {1, . . . , n′} → {1, . . . , n} and γ : {1, . . . , n′} × Σc

1 → Σ2 such
that ∀x ∈ S1, k ∈ {1, . . . , n′}, α(x)(k) = γ(k, xγ1(k), . . . , xγc(k)).

Lemma 5 ([20]). If A is c-query reducible to B then QQC(B) ≥ QQC(A)/2c,
and RQC(B) ≥ RQC(A)/c.
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Lemma 6. SNAKE is 3-query reducible to UNIQUE-SPERNER.

Lemma 7. RQC(SNAKE) = Ω( 4
√

n) and QQC(SNAKE) = Ω( 8
√

n).

Theorem 8. The query complexity of REGULAR 2-SPM satisfies
RQC(REGULAR 2-SPM) = Ω( 4

√
n) and QQC(REGULAR 2-SPM) =

Ω( 8
√

n).

Proof. By Lemma 5 and 6, the lower bounds of Lemma 7 for SNAKE also
apply to REGULAR 2-SPM.
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12. K. Friedl, Gábor Ivanyos, Miklos Santha and Yves Verhoeven. On the black-box
complexity of Sperner’s Lemma. http://xxx.lanl.gov/abs/quant-ph/0505185.

13. J. Gilbert, J. Hutchinson and R. Tarjan. A separator theorem for graphs of bounded
genus. J. Algorithms, 5(3):391–407, 1984.

14. S. Laplante and F. Magniez. Lower bounds for randomized and quantum query
complexity using kolmogorov arguments. In 19th Conference on Computational
Complexity, pp. 294–304, 2004.

15. D. Llewellyn and C. Tovey. Dividing and conquering the square. Discrete Appl.
Math., 43(2):131–153, 1993.

16. D. Llewellyn, C. Tovey and M. Trick. Local optimization on graphs. Discrete Appl.
Math., 23(2):157–178, 1989.

17. N. Megiddo and C. Papadimitriou. On total functions, existence theorems and
computational complexity. Theoret. Comput. Sci., 81:317–324, 1991.



On the Black-Box Complexity of Sperner’s Lemma 257

18. C. Papadimitriou. On graph-theoretic lemmata and complexity classes. In 31st
FOCS, pp. 794–801, 1990.

19. C. Papadimitriou. On the complexity of the parity argument and other inefficient
proofs of existence. J. Comput. System Sci., 48(3):498–532, 1994.

20. M. Santha and M. Szegedy. Quantum and classical query complexities of local
search are polynomially related. In 36th STOC, pp. 494–501, 2004.

21. Y. Shi. Quantum lower bounds for the collision and the element distinctness prob-
lems. In 43rd FOCS, pp. 513–519, 2002.

22. D. Simon. On the power of quantum computation. SIAM J. on Computing (26):5,
pp. 1474–1783, 1997.

23. E. Sperner. Neuer Beweis für die Invarianz der Dimensionzahl und des Gebietes.
Abh. Math. Sem. Hamburg Univ. 6:265–272, 1928.
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Abstract. Combinatorial property testing, initiated formally by Gol-
dreich, Goldwasser, and Ron (1998) and inspired by Rubinfeld and Sudan
(1996), deals with the relaxation of decision problems. Given a property
P the aim is to decide whether a given input satisfies the property P or is
far from having the property. For a family of boolean functions f = (fn)
the associated property is the set of 1-inputs of f . Newman (2002) has
proved that properties characterized by oblivious read-once branching
programs of constant width are testable, i.e., a number of queries that
is independent of the input size is sufficient. We show that Newman’s
result cannot be generalized to oblivious read-once branching programs
of almost linear size. Moreover, we present a property identified by re-
stricted oblivious read-twice branching programs of constant width and
by CNFs with a linear number of clauses, where almost all clauses have
constant length, but for which the query complexity is Ω(n1/4).

1 Introduction and Results

1.1 Property Testing

Property testing is a field in computational theory that deals with the informa-
tion that can be deduced from the input, when the number of allowable queries
(reads from the input) is significantly smaller than its size. Applications could be
practical situations in which the input is so large that even taking linear time in
its size to provide an answer is too much. Given a particular set, called property,
and an input x one wants to decide whether x has the property or is far from
it. Far usually means that many characters of the input have to be modified to
obtain an element in the set. The definition of property testing is a relaxation
of the standard definition of a decision problem in the sense that the tester is
allowed arbitrary behavior when the object does not have the property and yet
is close to an object having the property.

Now we make this idea a little bit more precise. Let P be a property, i.e., a
non-empty family of binary words. A word w of length n is called εn-far from
satisfying P if no word w′ of the same length, which differs in at most εn places
(Hamming distance), satisfies P . An ε-test for P is a randomized algorithm,
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c© Springer-Verlag Berlin Heidelberg 2005
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which queries the quantity n, has the ability to make queries about the value of
any desired bit of an input word w of length n, and distinguishes with probability
2/3 between the case of w ∈ P and the case of w being εn-far from satisfying
P . (The choice of the success probability 2/3 is not crucial since any constant
strictly greater than 1/2 is sufficient because of probability amplification.) A
property P is said to be (ε, q(ε, n))-testable if there is an ε-test that for every
input x of size n queries at most q(ε, n) bits of the input string. If a property
P is (ε, q(ε, n))-testable with q = q(ε) (i.e., q is a function of ε only, and is
independent of n), P is said to be ε-testable. Finally, we say that property P is
testable if P is ε-testable for every fixed ε > 0.

Properties can be identified with the collection of their characteristic boolean
functions, i.e., a property P ⊆ {0, 1}∗ is identified with a family of boolean
function f = (fn), where fn : {0, 1}n → {0, 1} so that fn(x) = 1 iff x ∈ P and
|x| = n. Let x, y ∈ {0, 1}n. If g : {0, 1}n → {0, 1} and g is not the constant
function 0, we define dist(x, g) = min{H(x, y)|y ∈ g−1(1)}|, where H(x, y) is
the Hamming distance. An input x is εn-close to a function g iff dist(x, g) ≤ εn.
Otherwise the input x is εn-far.

The general notion of property testing was first formulated by Rubinfeld and
Sudan [18] and first studied for combinatorial objects by Goldreich, Goldwasser,
and Ron [14]. These investigations were motivated by the notion of testing serv-
ing as a new notion of approximation and by some related questions that arise in
computational learning theory. Recently, it has become quite an active research
area, see e.g. [1] - [6], [8] - [13], [15] for an incomplete list and [7], [17] for excellent
surveys on the topic.

1.2 Branching Programs

A branching program (BP) on the variable set Xn = {x1, . . . , xn} is a directed
acyclic graph with one source and two sinks labeled by the constants 0 and 1.
Each non-sink node (or decision node) is labeled by a boolean variable and has
two outgoing edges, one labeled by 0 and the other by 1.

An input a ∈ {0, 1}n activates all edges consistent with a, i.e., the edges
labeled by ai which leave nodes labeled by xi. The computation path for an
input a in a BP G is the path of edges activated by a which leads from the
source to a sink. A computation path for an input a is called accepting if it
reaches the 1-sink.

Let Bn denote the set of all boolean functions f : {0, 1}n → {0, 1}. The BP
G represents the function f ∈ Bn for which f(a) = 1 iff the computation path
for the input a is accepting. The size of a branching program G is the number of
its nodes. The branching program size of a boolean function f is the size of the
smallest BP representing f . The length of a branching program is the maximum
length of a path.

A branching program is called (syntactically) read k times (BPk) if each
variable is tested on each path at most k times.

A branching program is called s-oblivious, for a sequence of variables s =
(s1, . . . , sl), si ∈ Xn, if the set of decision nodes can be partitioned into disjoint
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sets Vi, 1 ≤ i ≤ l, such that all nodes from Vi are labeled by si and the edges
which leave Vi-nodes reach only Vi+1-nodes. The level i, 1 ≤ i ≤ l, contains
the Vi-nodes. The level l + 1 contains the 0- and the 1-sink. If the sequence of
variables is unimportant we call an s-oblivious branching program an oblivious
branching program. An oblivious branching program is of width w if its largest
level contains w nodes.

An oblivious read k times branching program for a sequence s = (s1, . . . , skn)
is called k-IBDD if s can be partitioned into k subsequences (s(i−1)n+1, . . . , sin),
1 ≤ i ≤ k, for which {s(i−1)n+1, . . . , sin} = Xn.

1.3 Property Testing and the Branching Program Size of Boolean
Functions

There are properties that are hard to decide but are testable such as 3-colorability
[14] and properties that are easy to decide but are hard to test, e.g. in [2] exam-
ples of NC1 functions have been presented that require Θ(n1/2) queries. Since
a logical characterization of the properties testable with a constant number of
queries is far from achieved, one goal is to identify whole classes of properties
(instead of individual properties) that are testable and to formulate sufficient
conditions for problems to be testable. Alon, Krivelevich, Newman, and Szegedy
[2] have proved that membership in any regular language is testable, hence ob-
taining a general result identifying a non-trivial class of properties each being
testable.

Newman [15] has extended the result described in [2] asserting that regular
languages are testable by considering a non-uniform counterpart of the notion
of a finite automaton. He has proved the following result. If g = (gn) where
gn : {0, 1}n → {0, 1} is a family of boolean functions representable by oblivious
read-once branching programs of width w then for every n and ε > 0 there is
a randomized algorithm that always accepts every x ∈ {0, 1}n if gn(x) = 1 and
rejects it with high probability if at least εn bits of x should be modified to
obtain some x′ ∈ g−1

n (1). His algorithm makes (2w/ε)O(w) queries. Therefore, for
constant ε and w the query complexity is O(1).

Recently, Fischer, Newman, and Sgall [13] put a bound on the branching
program complexity of boolean functions that still guarantees testability by pre-
senting a property identified by an oblivious read-twice branching program of
width 3 for which at least Ω(n1/3) queries are necessary. Newman’s result can be
generalized to nonoblivious read-once branching programs of constant width [16].
Now it is quite natural to make one step further and to investigate whether New-
man’s result can be generalized to boolean functions representable by (oblivi-
ous) read-once branching programs of superlinear size. Bollig and Wegener [6]
have shown that functions representable by read-once branching programs of
quadratic size are not necessarily testable. Nevertheless, the presented lower
bound on the query complexity is very small. Here we present a boolean func-
tion that can be represented by read-once branching programs of quadratic size
but for which o(n1/2) queries are insufficient in the sense of property testing.
This is the best known lower bound on the query complexity of a property iden-
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tified by boolean functions representable by restricted branching programs of
small size. As a corollary we present boolean functions that can be represented
by (oblivious) read-once branching programs of almost linear size which are not
testable. This result is astonishing since the boolean functions representable by
oblivious read-once branching programs of almost linear size are very simple.

1.4 Testing CNF Properties

A boolean formula is in conjunctive normal form (CNF) if it is a conjunction
of clauses, where every clause is a disjunction of literals. (A literal is a boolean
variable or a negated boolean variable.) The size of a CNF is the number of
its clauses. If all clauses contain at most k literals, the formula is a kCNF. A
boolean function f is said to have O(1) size 0-witnesses if it can be represented
by a kCNF, where k = O(1). For a long time all properties that were known to
be hard for two-sided error testing were functions whose 0-witnesses were large.
E.g., the linear lower bound of Bogdanov, Obata, and Trevisan [5] capitalizes
on the existence of inputs that are far from having the property, yet any local
view of a constant fraction of them can be extended to an input having the
property. If the property is defined by a kCNF, k = O(1), this cannot happen.
For each input that does not satisfy the property, there exists a set of k queries
that witnesses the fact that the input does not have the property. Ben-Sasson,
Harsha, and Raskhodnikova [4] have shown the existence of families of 3CNF
formulas that require a linear number of queries. Fischer, Newman, and Sgall
[13] have proved that there exists a property with O(1) size 0-witnesses that
can be represented by a width 3 oblivious read-twice branching program but
for which a 5/8 · 10−7-test requires Ω(n1/10) queries. Like the result in [4] the
existence of the property involves a probabilistic argument and the proof is not
constructive. In Section 3 we present a boolean function that can be represented
by restricted oblivious read-twice branching programs of constant width and
by CNFs of linear size, where almost all clauses have constant length, but for
which the query complexity is Ω(n1/4) for any ε-test, ε ≤ 1/8 − δ′ and δ′ a
constant.

Table 1 presents some lower bounds on the query complexity of boolean func-
tions representable by CNFs of small size.

Table 1. Some results for boolean functions representable by CNFs of small size

Source Proof constructive Representable by 2IBDDs Query complexity
of constant width

[4] no no γn, 0 < γ < 1

[13] no yes Ω(n1/10)

New yes yes Ω(n1/4)
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2 Non-testability of Functions with Almost Linear
(Oblivious) Read-Once Branching Program Size

Bollig and Wegener [6] have already proved that boolean functions representable
by read-once branching programs of quadratic size are not necessarily testable.
Here we investigate a function which has some similarities to the function de-
scribed in [6] but for the lower bound on the query complexity we have to use
a proof which is more complicated since the number of allowable queries is not
bounded by a constant.

W.l.o.g. let � be an even number and m := 2�. The function MP∗
n (mixed

pairs) is defined on n := 2m+ � · 2�/2 a-, x-, and y-variables, namely

a0, . . . , a�·2�/2−1, x0, . . . , xm−1, y0, . . . , ym−1.

The � · 2�/2 a-variables serve as address variables in the following way. First, we
define the auxiliary h-variables as

hi := ai·2�/2 ⊕ · · · ⊕ a(i+1)·2�/2−1,

where the sum is computed mod 2 and 0 ≤ i ≤ �− 1. Then, the address value is
defined as val(a) := 2�−1 · h�−1 + · · ·+ 20 · h0 and

MP∗
n(a, x, y) =

∧
0≤i≤m−1

(xi ⊕ y(i+val(a))),

where all indices are considered mod m.
The idea for the construction of the address value is the following one. On

the one hand there are not too many a-variables in comparison to the number
of x- and y-variables which serve as data variables. Moreover, we only have to
modify at most � a-variables to change a given address value to a different one.
On the other hand we have to know at least 2�/2 a-variables to fix one of the
auxiliary h-variables.

Theorem 1. The function MP∗
n can be represented by read-once branching pro-

grams of quadratic size but for any ε-test, ε ≤ 1/4 − δ, δ a constant, o(n1/2)
queries are insufficient.

Proof. First, we prove the upper bound on the size of read-once branching
programs representing MP∗

n. In the following all indices are considered mod m.
We start with a complete binary tree of the h-variables, afterwards we replace
each hi-node, 0 ≤ i ≤ � − 1, by a read-once branching program representing
ai·2�/2 ⊕ · · · ⊕ a(i+1)·2�/2−1. Altogether the size is

(2� − 1) · (2 · 2�/2 − 1) = 2(3/2)�+1 − 2�/2+1 − 2� + 1.

If val(a) is fixed, the function fval(a) :=
∧

0≤i≤m−1(xi ⊕ y(i+val(a))) can be com-
puted by a BP1 in size 3m, where the variables are tested in the order

x0, y(0+val(a)), x1, y(1+val(a)), . . . , xm−1y(m−1+val(a)).
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Altogether the function MP∗
n can be represented by a read-once branching pro-

gram of size 2(3/2)�+1 − 2�/2+1 + 1 + 2� · (3m− 1) = O(m2) = O(n2).
For the non-testability result we use Yao’s minimax principle [19] which says

that to show a lower bound on the complexity of a randomized test, it is enough
to present an input distribution on which any deterministic test with that com-
plexity is likely to fail. Positive instances are generated according to the distri-
bution P which is the uniform distribution on all 1-inputs of MP∗

n. This can be
realized as follows. Because of the symmetric properties of MP∗

n, the a-variables
or, equivalently, the value val(a) can be chosen according to the uniform distri-
bution. Also the x-bits are chosen according to the uniform distribution. After-
wards, it is necessary to set yi := 1−xi−val(a). Negative instances are generated
according to the distribution N which is the uniform distribution on the set of all
inputs which are εn-far from MP∗

n. The probability distribution D over all inputs
is now defined by choosing with probability 1/2 positive instances according to
P and with probability 1/2 negative instances according to N .

The following claims which are similar to claims that have already been
proved in [6] are helpful in order to show that any deterministic algorithm will
fail with high probability.

Let U be the uniform distribution on all inputs.

Claim 1. For each ε ≤ 1/4−δ, δ > 0 a constant, the probability that an instance
generated according to U is εn-close to MP∗

n is exponentially small with respect
to n.

Claim 2. A pair (xi, yj) is called k-pair if j ≡ i+ k mod m. Let S be a set of d
variables from {x0, . . . , xm−1, y0, . . . , ym−1} and let w be an instance generated
according to P (or to N). Let k be the address value of w. The probability that
S contains a k-pair is bounded above by d2/(4m) which is o(1) if d = o(m1/2) =
o(n1/2).

Now the idea is to prove that even an adaptive deterministic algorithm that
queries at most d = o(n1/2) bits has an error probability of more than 1/6
on inputs taken from the distribution D. By probability amplification we can
conclude that every adaptive deterministic algorithm that queries at most d/9 =
o(n1/2) bits must have an error probability of more than 1/3.

Let T be an adaptive algorithm that queries at most d bits. Every leaf in
the decision tree that represents T is labeled by either accept or reject. We
may assume that T queries each input bit at most once for a randomly chosen
input w according to D and that the decision tree is a complete binary tree
of depth d, because we can transform each decision tree in such a tree without
increasing the error probability. Let L be the set of all leaves that are labeled
by reject. Let B(L) be the event to reach a leaf from the set L. We assume
that ProbN (B(L)) ≥ 2/3 as otherwise the algorithm errs on inputs which are
εn-far from MP∗

n with probability of more than 1/6. Our aim is to prove that
from this assumption it follows that ProbP (B(L)) ≥ (1− o(1))2/3 > 1/3 which
implies that the algorithm errs by rejecting positive inputs with probability of
more than 1/6.
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Every leaf α ∈ L corresponds to a set of variables Sα that were queried along
the way to α and an assignment bSα to these variables. The algorithm reaches
for an input w the leaf α if the assignment to the variables in Sα is consistent
with bSα . The assignment to variables that are queried in other branches of the
decision tree is irrelevant.

Let B(α) be the event that the algorithm reaches the leaf α, Mε the event
that an input is εn-far, and A(Sα) the event that for an input w the set Sα

contains no k-pair, where k is the address value of w. The distribution N equals
the uniform distribution U on all inputs with the restriction that the input is
εn-far from MP∗

n. Using Claim 1 we know that ProbU(Mε) ≥ 1−o(1) if n is large
enough. Furthermore, if the input is chosen according to the uniform distribution
on all inputs all leaves are reached with the same probability. Therefore,

ProbN (B(α)) = ProbU (B(α) | Mε) = ProbU (B(α) ∩Mε)/ProbU (Mε)
≤ ProbU (B(α))/ProbU (Mε)
≤ (1 + o(1))2−d.

Since there are at most o(n1/2) = o(2�/2) a-variables in Sα and because of the
definition of val(a), all address values are still possible with equal probability.
Using Claim 2 we know that

ProbP (B(α)) ≥ ProbP (B(α) ∩A(Sα))
= ProbP (B(α) | A(Sα)) · ProbP (A(Sα))
≥ (1− o(1))2−d.

Using the fact that (1 − o(1))(1 − o(1)) is equal to (1 − o(1)) we can conclude
that

ProbP (B(L)) =
∑
α∈L

ProbP (B(α)) ≥ (1 − o(1))
∑
α∈L

ProbN (B(α))

= (1− o(1))ProbN (B(L)) ≥ (1− o(1))2/3
> 1/3

if n is large enough. This completes the proof of Theorem 1. �

The lower bound on the query complexity is determined by the number of
different boolean functions fi if we choose the number of a-variables in the right
way. Using nγ different boolean functions fi, 0 ≤ i ≤ nγ − 1, and 0 < γ < 1, we
get the following result.

Corollary 1. There exist boolean functions that can be represented by read-once
branching programs of size O(n1+γ), γ an arbitrary constant with 0 < γ < 1,
but for any ε-test, ε ≤ 1/4− δ, δ a constant, o(nγ/2) queries are insufficient.

For oblivious read-once branching programs we cannot choose different vari-
able order for different address values. Therefore, it is impossible to represent
a large number of different boolean functions fi in small size. Using ,lognγ/2/
different boolean functions we get the following result.
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Corollary 2. There exist boolean functions that can be represented by oblivious
read-once branching programs of size O(n1+γ), γ an arbitrary constant with 0 <
γ < 1, but for any ε-test, ε ≤ 1/4 − δ, δ a constant, o(log1/2 n) queries are
insufficient.

3 Large Query Complexity for a Function with Constant
Width 2IBDDs and CNFs of Small Size

In this section we construct a property identified by a family of boolean functions
g = (gn) that can be represented by 2IBDDs of constant width and by CNFs
of linear size, where even most of the clauses have constant length, but for
which any ε-test requires nδ queries for some 0 < ε < 1 and 0 < δ < 1. First, we
reinvestigate a function fn : {0, 1, 2}n2 → {0, 1} that has already been considered
by Fischer and Newman [11] to present a ∀∃ property that is not testable but we
use a different proof to present a larger lower bound on the query complexity.
Afterwards we consider a boolean encoding of that function. Since our aim is
to construct a boolean function that can be represented by 2IBDDs of constant
width and by CNFs of linear size, we have to use a different approach as described
in [11].

The property symmetric permutation uses the alphabet {0, 1, 2}. We say that
a matrix satisfies the property symmetric permutation if it is a row permutation
of a symmetric matrix with all 2’s on its primary diagonal, and no 2’s anywhere
else. Obviously, this requirement is equivalent to the following two conditions:

1. In every row and in every column there exists exactly one 2-entry.
2. The matrix contains none of the following 2× 2 matrices as a submatrix (to

ensure that the original matrix was symmetric):(
2 0
1 2

)
,
(

2 1
0 2

)
,
(

0 2
2 1

)
,
(

1 2
2 0

)
.

As usual we identify the property symmetric permutation with its character-
istic function f = (fn), where fn is defined on n×n matrices M on the variables
mij , 1 ≤ i, j ≤ n.

Proposition 1. For any ε-test for fn, ε ≤ 1/4−δ and δ a constant, o(n) queries
are insufficient, where n2 is the number of variables of fn.

Sketch of proof. The proof follows the lines of the proof of Theorem 1 but we
have to take into consideration that fn is a non-boolean function and therefore
the decision tree that represents an adaptive algorithm for fn is a ternary tree.
Furthermore, negative instances are generated according to the distribution N
which is the uniform distribution on the set of all boolean n × n matrices that
are εn2-far from fn (and not on the set of all inputs that are εn2-far from fn).
Moreover, we need the following two claims.
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Claim 3. Let U be the uniform distribution on all boolean n× n matrices. For
each ε ≤ 1/4−δ, δ a constant, the probability that an instance generated according
to U is εn2-close to fn is o(1).

A pair (mij ,mi′,j′), i 	= i′ and j 	= j′, is called a σ-pair for a permutation
σ ∈ Sn if σ(i) = j′ and σ(i′) = j.

Claim 4. Let S be a set of d = o(n) variables from {m11, . . . ,mnn} and M be an
instance generated according to P , the uniform distribution on f−1

n (1). Let σM

be the corresponding permutation to M . Let A(S) be the event that S contains no
σM -pair and no variable mij for which σM (i) = j. Then ProbP (A(S)) ≥ 1−o(1).

�

The function fA,B
n : {0, 1}2n2 → {0, 1} is a boolean encoding of the function

fn and is defined on two n × n boolean matrices A and B on the variables aij

and bij , 1 ≤ i, j ≤ n. The function fA,B
n outputs 1 iff the following conditions

are fulfilled:

i) A is a permutation matrix, i.e., there exists exactly one 1-entry in each row
and one 1-entry in each column.

ii) If aij and ai′j′ are equal to 1 then bij′ is equal to bi′j .

Using a so-called distance preserving reduction we can prove the following
claim.

Claim 5. If there exists an ε-test with q(ε, 2n2) queries for fA,B
n then there

exists a 2ε-test with the same number of queries for fn.

Proof. For brevity we denote an ε-test with q(ε, n) queries by (ε, q(ε, n))-test in
the following. Assume that there exists an (ε, q(ε, 2n2))-test T for fA,B

n . Our aim
is to construct an (2ε, q(ε, 2n2))-test for fn. For this reason we define a mapping
p from inputs M to fn to inputs (A,B) for fA,B

n . For every M = (mij)1≤i,j≤n ∈
{0, 1, 2}n2

let p(M) be defined as follows:

- aij := mij(mij − 1)/2,
- bij := mij(mij − 1)/2− (mij − 2)mij .

If mij = 0 then aij = bij = 0, if mij = 1 then aij = 0 and bij = 1, and if mij = 2
then aij = 1 and bij = 1. Obviously, M ∈ f−1

n (1) implies fA,B
n (p(M)) = 1.

In order to obtain an input from f−1
n (1) there have to be at least as many bit

positions in M to be changed as bit positions in p(M) in order to get a 1-input
from fA,B

n . Therefore, if dist(p(M), fA,B
n ) ≤ ε(2n2) then dist(M, fn) ≤ 2εn2.

To (2ε, q(ε, 2n2))-test fn on an input M , we perform the (ε, q(ε, 2n2))-test
T on p(M). The only difference is that each time that aij (bij) is queried for
p(M) we just query mij and compute aij (bij). Since the reduction is distance
preserving we can inherit the result of T without changing the error probability
on 1-inputs and inputs that are 2εn2-far from fn. �
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Now we transform the function fA,B
n to a boolean function gn that can be

represented by 2IBDDs of constant width and by CNFs of linear size, where
most of the clauses have constant length. The idea for the construction of gn

is the following one. We use the same number of copies for the variables in the
matrices A and B. For every original variable aij (bij) we generate (n− 1)2 new
variables ai′j′

ij (bi′j′
ij ), where i 	= i′ and j 	= j′. Then we add for each aij (bij) two

new variables ar
ij and ac

ij (br
ij and bc

ij). Altogether the function gn is defined on
N := 2n2((n − 1)2 + 2) variables and outputs 1 iff the following conditions are
fulfilled:

a) For 1 ≤ i, j ≤ n, all variables ai′j′
ij , i 	= i′ and j 	= j′, ar

ij , and ac
ij have the

same value. The same holds for the bij-variables.
b) For each row i, 1 ≤ i ≤ n, there exists exactly one variable ar

ij , 1 ≤ j ≤ n,
that is set to 1.

c) For each column j, 1 ≤ j ≤ n, there exists exactly one variable ac
ij , 1 ≤ i ≤ n,

that is set to 1.
d) If ai′j′

ij = aij
i′j′ = 1 then bi′j

ij′ and bij′
i′j are equal.

Claim 6. If there exists an (ε, q(ε, N))-test for gn then there exists an
(ε, q(ε, N))-test for fA,B

n .

The proof of Claim 6 is similar to the proof of Claim 5.

Claim 7. The function gn can be represented by 2IBDDs of width 3 and by
CNFs of linear size.

Proof. In the first part of the 2IBDD we verify the requirements b), c), and d)
one after another. Since the requirements are defined on different sets of variables
we obtain an oblivious read-once branching program for these requirements by
glueing the oblivious read-once branching programs together, i.e., the 1-sink of
one branching program is replaced by the source of the next one and so on.
The requirements b) and c) can be verified by an oblivous read-once branching
program of width 3. The requirement d) can be checked for each group of four
variables ai′j′

ij , aij
i′j′ , bi′j

ij′ , and bij′
i′j by an oblivious read-once branching program

of width 3 realising the function

¬((ai′j′
ij ∧ aij

i′j′ ) ∧ ((bi′j
ij′ ∧ ¬bij′

i′j) ∨ (¬bi′j
ij′ ∧ bij′

i′j))).

In the second part of the oblivious 2IBDD we just check the requirement a),
i.e., if all copies of the same variable of the original function fA,B

n have the same
value. All copies of the same variable are tested one after another. Width 3 is
sufficient.

The resulting CNF is a conjunction of CNFs checking the requirements a)-d)
separately. The requirement that for each row i (column j) there exists exactly
one variable ar

ij , 1 ≤ j ≤ n, (ac
ij , 1 ≤ i ≤ n) that is set to 1 is equivalent to the

requirement that there exists for each row i (column j) at least one variable that
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is set to 1 and that there do not exist two variables in the same row (column)
that are set to 1. Hence, we obtain

(ai1 ∨ ai2 ∨ · · · ∨ ain)
∧

1≤j1<j2≤n

(¬aij1 ∨ ¬aij2 ).

Altogether there are 2n ·n(n− 1)/2 = n3−n2 clauses of length 2 and 2n clauses
of length n to check the requirements b) and c). The requirement d) can be
tested for each group of variables by a 4CNF with 2 clauses

(¬ai′j′
ij ∨ ¬aij

i′j′ ∨ ¬bi′j
ij′ ∨ bij′

i′j) ∧ (¬ai′j′
ij ∨ ¬aij

i′j′ ∨ bi′j
ij′ ∨ ¬bij′

i′j).

Altogether there are n2 · 2(n − 1)2 clauses of length 4 to verify condition d).
Finally, the test whether some variables have the same value can be done by
pairwise checking that two of them are equal or in a more clever way by checking
whether the first one is equal to the second one, the second one to the third one
and so on. Therefore, the requirement a) can be tested by a 2CNF with 2n2 ·
2((n− 1)2 + 1) clauses. Summarizing, the function gn has a CNF representation
with 4n4−7n3 +7n2 clauses of length 2, 2n4−4n3 +2n2 clauses of length 4 and
2n clauses of length n, where N = Θ(n4) is the number of variables. �

Combining Proposition 1 and Claims 5 - 7 we obtain the following main
result.

Theorem 2. The function gn can be represented by 2IBDDs of width 3 and by
CNFs of linear size but for any ε-test, ε ≤ 1/8−δ′, δ′ a constant, o(N1/4) queries
are insufficient, where N is the number of variables of gn.

4 Concluding Remarks

As we have seen Newman’s result [15] that properties representable by read-
once branching programs of constant width are testable cannot be generalized
to functions of almost linear (oblivious) read-once branching program size. We
have improved the best known lower bound on the query complexity of properties
identified by boolean functions representable by very restricted branching pro-
grams up toΩ(n1/2). The question whether there exist linear lower bounds on the
query complexity of properties identified by some restricted branching programs
of small size or whether there exist sublinear ε-tests remains unsolved. Further-
more, we have presented a boolean function with 2IBDDs of constant width and
CNFs with a linear number of clauses, where almost all clauses have constant
length, that has query complexity Ω(n1/4), where n is the input length. A con-
structive proof that there exists a non-testable boolean function with 2IBDDs
of constant width and constant size 0-witnesses, i.e., where not almost all but
all clauses of its CNF representation have constant length, would be interesting.
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Abstract. We understand selection by intersection as distinguishing
a single element of a set by the uniqueness of its occurrence in some
other set. More precisely, given two sets A and B, if A ∩ B = {z},
then element z ∈ A is selected by set B. Selectors are such families
S of sets B of some domain that allow to select many elements from
sufficiently small subsets A of the domain. Selectors are used in com-
munication protocols for the multiple-access channel, in implementa-
tions of distributed-computing primitives in radio networks, and in algo-
rithms for group testing. We give new explicit (n, k, r)-selectors of size

O(min
[
n, k2

k−r+1 polylog n
]
), for any parameters r ≤ k ≤ n. We es-

tablish a lower bound Ω(min
[
n, k2

k−r+1 · log(n/k)
log(k/(k−r+1))

]
) on the length

of (n, k, r)-selectors, which demonstrates that our construction is within
a polylog n factor close to optimal. The new selectors are applied to
develop explicit implementations of selection resolution on the multiple-
access channel, gossiping in radio networks and an algorithm for group
testing with inhibitors.

1 Introduction

Selection by intersection means distinguishing a single element of a set as the
only element of some other set. More precisely, given a subset A ⊆ X of a finite
domain X , element z ∈ A is selected by a set B ⊆ X when A ∩B = {z}.

The power of such a selection is often considered in quantitative terms, which
translate into efficiency in applications. A natural parameter to consider is the
size of sets A from which we select. A family S of subsets ofX is called k-selective,
following Chlebus et al. [4], if we can select an element from any subset A ⊆ X
of size |A| ≤ k by a set in S. Families S that are useful in application, because
of their selection-related properties, are typically parametrized by the size n of
the domain X , and we want the number k to be close to n, while keeping the
size of S small. Additionally, we may want to have many elements z ∈ A to be
selected, for any A ⊆ X of size k.
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This is captured by the following definition. Let n, k and r be positive integers
so that r ≤ k ≤ n. Let S be a family of subsets of [n] = [1..n]. We say that S
is an (n, k, r)-selector if, for each set A ⊆ [n] of size |A| = k, there are at least
r elements in A that can be selected from A by sets in S.

The name “selectors” was coined by De Bonis, G ↪asieniec and Vaccaro [13]
in the context of their work on group testing. Their definition of selectors is
in terms of binary matrices and corresponds to certain generalized superim-
posed codes. The notion of a selector generalizes many popular combinato-
rial structures. Among them there are (n, k)-selective families, introduced by
Chlebus et al. [4], which are (n, k, 1)-selectors in selector terminology. Objects
called simply (n, k)-selectors by Chrobak, G ↪asieniec and Rytter [7] correspond
to (n, 2k, 3k/2)-selectors. Finally, (n, k)-strongly-selective families introduced by
Clementi, Monti and Silvestri [11] are nothing but (n, k, k)-selectors. Such
(n, k, k)-selectors are closely related to (k − 1)-cover-free families, in the hyper-
graph terminology [23], and to superimposed codes [17,24]. See Section 2 for an
overview of the related combinatorics and matrix representations.

Selection by intersection is a notion that occurs in many disguises in combina-
torial settings and in algorithmic and communication applications. Selectors can
be applied in deterministic conflict resolution in multiple-access channels [3,25],
in broadcasting and gossiping algorithms for ad-hoc radio networks [1,4,7,12,26]
and in deterministic algorithms for group testing [13,14,15,16]. Related combina-
torial structures called radio synchronizers are directly applicable in algorithms
for waking up radio networks [5,6,20] and to implement distributed-computing
primitives in radio networks [5,6], like leader election and synchronization of
local clocks.

Combinatorial structures used in implementations of algorithms as part of
their code are said to be explicit when there are algorithms that produce them
in time that is polynomial in the size of the output.

Our Results. The contributions are summarized as follows.

I. We construct explicit (n, k, r)-selectors of sizeO(min
[
n, k2

k−r+1 polylog n
]
),

for any configuration of parameters r ≤ k ≤ n. The design involves explicit
dispersers. This result extends the ranges of two previously known explicit
constructions. One is that of explicit superimposed codes of n codewords
of length O(min[ n, k2 log2 n ] ) that are k-disjunct. This is the classical de-
sign by Kautz and Singleton [24]. The codes can be interpreted as (n, k, k)-
selectors of size given by the length of codewords. The other is that of
explicit (n, k, 3k/4)-selectors of size O(k polylog n) given by Indyk [22].

II. We show that the length of an (n, k, r)-selector has to be Ω(min
[
n, k2

k−r+1 ·
log(n/k)

log(k/(k−r+1))

]
). This demonstrates that the above mentioned explicit con-

struction is within a polylog n factor close to optimal.
III. The new selectors are applied to obtain the following specific applications:

(i) an explicit oblivious solution to a variant of a static selection problem
for the multiple-access channel, (ii) an explicit implementation of gossiping
in radio networks, and (iii) an algorithm for group testing with inhibitors.
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Previous Work. Selectors generalize many kinds of families of finite sets, and
the work on special cases of selectors has been motivated by either purely combi-
natorial interests, as in the case of cover-free families, or by applications of combi-
natorics, as in group testing and in communication in the multiple-access channel
and ad-hoc radio networks. We summarize briefly the known facts about upper
and lower bounds on the size of selectors, and on explicitness of known selectors.
Existence of small selectors: Komlós and Greenberg [25] showed that there are
(n, k, 1) selectors of size O(k log(n/k)). Dyachkov and Rykov [18] showed that
there exist (n, k, k)-selectors of size O(k2 log n); see [19,23] for a simple proof and
also [16] for a detailed account of existential upper bounds for superimposed
codes. De Bonis, G ↪asieniec and Vaccaro [13] showed that there exist (n, k, r)-
selectors of size O

(
k2

k−r+1 log(n/k)
)
.

Lower bounds on size of selectors: Clementi, Monti and Silvestri [11] showed that
(n, k, 1)-selectors have to be of size Ω(k log(n/k)). Lower bounds on (n, k, r)-
selectors with r close to k are stronger. In particular, (n, k, k)-selectors obey a
lower bound Ω(min[n, k2 log n/ log k ]) on their size. The first component n in
this bound follows from the observation that a family of all n singletons is an
(n, k, k)-selector for any k ≤ n. This lower bound was first showed by Dyachkov
and Rykov [17] in a slightly weaker form Ω(ck · n), where ck = Θ(k2/ log k). It
was rediscovered by Chaudhuri and Radhakrishnan [2] in a stronger form k2 ln n

100 ln k

for k ≤ n1/3, which was later improved by Clementi, Monti and Silvestri [11]
who showed that the constant 100 can be replaced by 16, for k ≤

√
2n. See

also [16] for a detailed account of lower bounds for superimposed codes. De
Bonis, G ↪asieniec and Vaccaro [13] gave a general lower bound Ω

(
min
[
n, (r−1)2

k−r+1 ·
log(n/(k−r+1))

log((r−1)/(k−r+1))

])
on the size of (n, k, r)-selectors.

Explicit constructions: Explicit (n, k, k)-selectors of size O(min[ n, k2 log2 n ]) were
given by Kautz and Singleton [24]. Indyk [22] was the first to observe a rela-
tion between selectors and dispersers. He gave explicit (n, k, 3k/4)-selectors of
size O(min[ n, k polylog n ]). Clementi et. al [10] explicitly constructed (n, k, 1)-
selectors of size O(min[ n, k log k log(n/k) ]).

Explicit graphs with good expansion properties, on which we rely in our
constructions, were given by Ta-Shma, Umans and Zuckerman [28].

Structure of This Document. Section 2 discusses interrelations between se-
lection, in the sense of obtaining singleton sets as intersections, and superimposed
coding. Section 3 describes the construction of explicit selectors with a matching
lower bound. Section 4 discusses applications in the areas of multiple-access chan-
nel, radio networks and group testing. We conclude with a discussion in Section 5.

2 Selection and Superimposed Coding

Given a finite domain of size �, or simply [1..�], a subset A can be uniquely
represented by its binary characteristic vector of length �: an occurrence of 1 in
position i means that number i belongs to A. This allows to represent families of
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subsets of a finite domain as binary two-dimensional arrays. This may be defined
in two ways, depending on the role of rows and columns. A representation is
called primal when rows represent elements of the domain and columns represent
subsets. A representation is called dual when columns represent elements of the
domain and rows represent subsets. In the literature on selection in families of
sets and on superimposed codes, the primal representation is typically used.

2.1 Selection by Intersection

Selection of elements of a finite set can be defined in terms of binary matrices as
follows: for a subset A of the domain, represented as a set of rows, row z ∈ A is
selected by a column if there is exactly one occurrence of 1 in this column among
the rows in A and this occurrence is at row z.

Let B be an n ×m binary array. It represents, in a primal way, m subsets
of set [1..n]. Array B is an (n, k, 1)-selector of size m if for any set A ⊆ [1..n]
of rows of B, where |A| = k, there is a column with exactly one occurrence of 1
among the rows in A. In general, array B is an (n, k, r)-selector of size m if for
any set A ⊆ [1..n] of rows of B, where |A| = k, there are at least r columns with
exactly one occurrence of 1 among the rows in A.

A dynamic adversarial component, in binary arrays representing families of
subsets of a finite domain, is added by a possibility to have rows shifted. By
this we mean that the distance of a shift is at most the original number of
columns and the obtained array has new entries filled with zeroes. We say that
an array B has good synchronization properties when, for any set A of rows of
a sufficiently small size, some column selects a single row among the rows in A
after these rows have been shifted by arbitrary distances. When we want to be
able to select against such adversaries from all sets A of size |A| = k, then B
could be called k-synchronizing, following [5,6,20].

This synchronization terminology is motivated by the application in the
multiple-access channel with collision detection we describe next. It was first
considered by G ↪asieniec, Pelc and Peleg [20]; see [3] for a detailed exposition of
this model of communication. The model has the following properties. A single
transmission by an attached station is heard by all stations. More than one si-
multaneous transmissions interfere with one another, and none can be heard by
the stations, but the stations receive a feedback notifying them of the interfer-
ence. Suppose there are n stations, some k of which wake up spontaneously and
immediately start attempts to broadcast a message to all. The first successful
transmission wakes up the whole network and allows to synchronize local clocks.
A schedule of transmissions, for a station, is specified as a binary sequence. An
occurrence of 1 as the i-th bit represents a transmission in the i-th step according
to the local clock.

We say that a binary n ×m array B is a (n, k)-synchronizer of length m if
for any nonempty set A ⊆ [1..n] of rows of size at most k, and for any shifts of
rows in A, there is a column that selects exactly one (shifted) row in A. Such
synchronizers were defined by Chrobak, G ↪asieniec and Kowalski [6] in the context
of their work on the problems of wake-up, leader election and synchronization
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of local clocks in multi-hop radio networks. This notion was also implicitly used
by G ↪asieniec, Pelc and Peleg [20] in their work on waking up a multiple-access
channel. The fastest known algorithm to wake up a multi-hop radio networks,
given by Chlebus and Kowalski [5], uses universal synchronizers, which are arrays
with properties stronger than those of radio synchronizers.

A construction of a (n, n)-synchronizers of length O(n1+ε), for any constant
ε > 0, was given by Indyk [22]; it can be performed in a quasi-polynomial time
O(2polylog n). Chlebus and Kowalski [5] described explicit (n, k)-synchronizers of
a length O(k2 polylog n).

Radio synchronizers have the properties of selective families. It follows that
(n, k)-synchronizers have to be of lengths Ω(k log(n/k)). Using the probabilistic
method, G ↪asieniec, Pelc and Peleg [20] showed that there are (n, n)-synchronizers
of a length O(n log2 n), and Chrobak, G ↪asieniec and Kowalski [6] showed that
there are (n, k)-synchronizers of a length O(k2 log n).

2.2 Superimposed Coding

Superimposed codes are typically represented as binary arrays, with columns
used as binary codewords. Take an a× b binary array with the property that no
boolean sum of columns in any set D of d = |D| columns can cover a column not
in D. This is a superimposed code of b binary codewords of length a each that is
d-disjunct. When columns are representing sets, then d-disjunctness means that
no union of up to d sets in any family of sets D could cover a set outside D.

A book by Du and Hwang [16] provides a contemporary exposition of super-
imposed coding and its relevance to nonadaptive group testing. There is a natu-
ral correspondence between such codes and strongly selective families, which we
give for completeness sake. Using this correspondence, the explicit superimposed
codes given by Kautz and Singleton [24] can be interpreted as (n, k, k)-selectors
of size O(k2 log2 n).

The correspondence is obtained by using the representations, primal and
dual, of families of sets as boolean arrays. Take a (n, k)-strongly-selective fam-
ily S, that is, an (n, k, k)-selector, of some length m. This means there are m sets
in S, and the domain is of size n. A dual boolean representation of S is an m×n
binary arrayA. Let us interpret this array in the primal way. This representation
yields a superimposed code: it consists of n codewords of length m each. Observe
that this code is (k − 1)-disjunct. To show this, suppose, to the contrary, that
some (k − 1) columns of a set C of columns can cover column x of A. Then the
columns in C ∪ {x} represent a subset of [1..n] of size k. By the property of S
being a strongly selective family, there is a row in A with an occurrence of 1 in
column x and only occurrences of 0 in columns in C. This means that column x
is not covered by the columns in C, which is a contradiction. A reasoning in the
opposite direction is similar.

Generalizations of superimposed codes can be proposed, which correspond to
(n, k, r)-selectors being a generalization of (n, k)-strongly-selective families. This
was already done by Dyachkov and Rykov [17]. De Bonis and Vaccaro [14,15]
considered such generalizations in the context of their work on group testing.
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Similar, but more restricted, generalized superimposed codes were considered by
Chu, Colbourn and Syrotiuk [8,9] in their work on distributed communication
in ad-hoc multi-hop radio networks.

3 Explicit Selectors

We show how to construct (n, k, r)-selectors of sizeO(min
[
n, k2

k−r+1 polylog n
]
),

for any configuration of parameters r ≤ k ≤ n, in time polynomial in n. The
construction is by combining strongly selective families with dispersers. Strongly
selective families are (n, k, k)-selectors. We show how to use dispersers to decrease
the third parameter r in (n, k, r)-selectors while also gracefully decreasing the
size of the family of sets.

If r ≤ 3k/4 then we can use the construction of an (n, k, 3k/4)-selector given
by Indyk [22]. Assume that r > 3k/4. Let 0 < ε < 1/2 be a constant.

A bipartite graph H = (V,W,E), with set V of inputs and set W of outputs
and set E of edges, is a (�, d, ε)-disperser if it has the following two properties:

Dispersion: for each A ⊆ V such that |A| ≥ �, the set of neighbors of A
is of size at least (1 − ε)|W |.

Regularity: H is d-left-regular.

Let graph G = (V,W,E), where |V | = n, |W | = Θ((k − r + 1)d/δ), be a
(k− r + 1, d, ε)-disperser, for some numbers d and δ. (The amount log δ is called
the entropy loss of this disperser.) An explicit construction of such graphs, that
is, in time polynomial in n, was given by Ta-Shma, Umans and Zuckerman [28],
for any n ≥ k ≥ r, and some δ = O(log3 n), where d = O(polylog n) is a bound
on the left-degrees.

LetM = {M1, . . . , Mm} be an explicit (n, cδ k
k−r+1 )-strongly-selective family,

for a sufficiently large constant c > 0 that will be fixed later, of size m =
O(min

[
n, δ2( k

k−r+1 )2 log2 n
]
), as constructed by Kautz and Singleton [24].

We define an (n, k, r)-selector S(n, k, r) of size min[ n, m|W | ], which consists
of sets F (i), for 1 ≤ i ≤ min[ n, m|W | ]. There are two cases to consider, depend-
ing on the relation between n and m|W |. The case of n ≤ m|W | is simple: take
the singleton containing only the i-th element of V as F (i). Consider a more
interesting case when n > m|W |. For i = am + b ≤ m|W |, where a and b are
non-negative integers satisfying a + b > 0, let F (i) contain all the nodes v ∈ V
such that v is a neighbor of the a-th node in W and v ∈ Mb.

Theorem 1. The family S(n, k, r) is an (n, k, r)-selector of size

O(min
[
n,

k2

k − r + 1
polylog n

]
) .

Proof. First we show that S(n, k, r) is an (n, k, r)-selector. The case n ≤ m|W | is
clear, since each node in a set A of size k occurs as a singleton in some set F (i).
Consider the case n > m|W |. Let set A ⊆ V be of size k. Suppose, to the
contrary, that there is a set C ⊆ A of size k − r + 1 so that none among the
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elements in C is selected by sets from S(n, k, r), that is, F (i)∩A 	= {v}, for each
v ∈ C and 1 ≤ i ≤ m|W |.
Claim: Every w ∈ NG(C) has more than cδ k

k−r+1 neighbors in A.
The proof is by contradiction. Assume, for simplicity of notation, that w ∈ W

is the w-th element of set W . Suppose, to the contrary, that there is w ∈ NG(C)
which has at most cδ k

k−r+1 neighbors in A, that is, |NG(w) ∩ A| ≤ cδ k
k−r+1 .

By the fact that M is a (n, cδ k
k−r+1 )-strongly-selective family we have that, for

every v ∈ NG(w) ∩A, the equalities

F (w ·m + b) ∩A = (Mb ∩NG(w)) ∩A = Mb ∩ (NG(w) ∩A) = {v}

hold, for some 1 ≤ b ≤ m. This holds in particular for every v ∈ C ∩NG(w) ∩
A. There is at least one such v ∈ C ∩ NG(w) ∩ A because set C ∩ NG(w) ∩
A is nonempty since w ∈ NG(C) and C ⊆ A. The existence of such v is in
contradiction with the choice of C. Namely, C contains only elements which are
not selected by sets from S(n, k, r) but v ∈ C ∩NG(w) ∩ A is selected by some
set F (w ·m + b). This makes the proof of Claim complete.

Recall that |C| = k − r + 1. By dispersion, the set NG(C) is of size larger
than (1− ε)|W |, hence, by the Claim above, the total number of edges between
the nodes in A and NG(C) in graph G is larger than

(1− ε)|W | · cδ k

k − r + 1
= (1− ε)Θ((k − r + 1)d/δ) · cδ k

k − r + 1
> kd ,

for a sufficiently large constant c. This is a contradiction, since the total number
of edges incident to nodes in A is at most |A|d = kd. It follows that S(n, k, r) is
an (n, k, r)-selector.

The size of this selector is

min[ n, m|W | ] = O(min
[
n, δ2(

k

k − r + 1
)2 log2 n · (k − r + 1)d/δ

]
)

= O(min
[
n, dδ

k2

k − r + 1
log2 n

]
)

= O(min
[
n,

k2

k − r + 1
polylog n

]
) ,

since d = O( polylog n) and δ = O(log3 n).

Indyk [22] gave an explicit construction of (n, k, 3k/4 + 1)-selectors of size
O(k polylog n). His method does not appear to be directly adaptable to produce
(n, k, r)-selectors in the case when k − r is significantly smaller than k.

Theorem 2. The length of an (n, k, r)-selector has to be

Ω(min
[
n,

k2

k − r + 1
· log(n/k)
log(k/(k − r + 1))

]
) .
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Proof. We show that this fact follows from the lower bounds given in [11] and
[13]. We may assume that k2

k−r+1 ·
log(n/k)

log(k/(k−r+1)) = o(n), because otherwise it is
sufficient to take a family of n singletons to obtain a selector of size n.

A bound on the size of (n, k, 1)-selectors given in [11] is Ω(k log(n/k)); we
call it CMS.

A bound on the size of (n, k, r)-selectors given in [13] is Ω(min
[
n, (r−1)2

k−r+1 ·
log(n/(k−r+1))

log((r−1)/(k−r+1))

]
); we call it DGV.

Suppose the parameters k and r are functions of n. If k = O(1), then the
size of an (n, k, r)-selector is Ω(log n), which is consistent with the three bounds
mentioned. Suppose k = ω(1). We consider two cases.
Case 1 ≤ r ≤ k/2:

Apply the CMS bound. Observe that k2

k−r+1 = Θ(k) since k/(k − r + 1)
is Θ(1).
Case k/2 < r ≤ k:

Apply the DGV bound. Observe that (r−1) = Θ(k) and log(n/(k−r+1)) =
Ω(log(n/k)).

This completes the proof.

4 Applications

Theorem 2 demonstrates that the construction of Theorem 1 is close to optimal
within a polylog n factor. It follows that any algorithmic application of selectors
can be made explicitly instantiated with only an additional poly-logarithmic
overhead factor in performance. We describe three such applications.

4.1 Multiple Access Channel

There are n stations attached to a multiple-access channel. A transmission per-
formed by exactly one station is heard by every station, while more simultane-
ous transmissions interfere with one another, which prevents hearing any of the
transmitted messages. The channel is said to be with collision detection if each
station receives a feedback notifying about an interference of many messages
sent simultaneously. We consider the weaker channel without collision detection.

The problem of k-selection is defined as follows. Suppose each among some
k of the stations stores its own input value, and the goal is to make at least one
such a value heard on the channel. This problem can be solved deterministically
in time O(log n) applying the binary-search paradigm. It requires expected time
Ω(log n), as was shown by Kushilevitz and Mansour [27]. This selection problem
can be generalized to (k, r)-selection as follows: we want to hear at least r values
from among k held by the stations.

Corollary 1. The (k, r)-selection problem for n stations, where r ≤ k ≤ n, can
be solved deterministically by an explicitly instantiated oblivious algorithm in the
multiple-access channel without collision detection in time

O(min
[
n,

k2

k − r + 1
polylog n

]
) .
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Proof. An (n, k, r)-selector S can be used to provide an oblivious deterministic
solution to the selection problem as follows. The sets in S are ordered, and
station i performs a transmission if i is in the i-th set of S. The performance
bound follows from Theorem 1.

4.2 Gossiping in Radio Networks

The fastest known distributed algorithm for gossiping in directed ad-hoc multi-
hop radio networks, given by G ↪asieniec, Radzik and Xin [21], employs general
(n, k, r)-selectors. The bound O(n4/3 log4 n) on time obtained in [21] relies on
existence of (n, k, r)-selectors of size O

(
k2

k−r+1 log(n/k)
)

shown in [13].

Corollary 2. Gossiping in directed ad-hoc radio networks of n nodes can be
performed in time O(n4/3 polylog n) by an explicitly instantiated distributed al-
gorithm.

Proof. Use our explicit selectors in the algorithm of [21], instead of those known
to exist only, to make the algorithm explicit. The performance bound follows
from the estimates in [21] and Theorem 1. The additional overhead is of order
polylog n.

4.3 Group Testing with Inhibitors

There is a set of n objects, some k of which are categorized as positive. The
task of group testing it to determine all positive elements by asking queries of
the following form: does the given subset of objects contain at least one positive
element? The efficiency is measured by the number of queries.

The c-stage group testing consists of partitioning all objects c times into dis-
joint pools and testing the pools separately in parallel in each among c stages.
Groups testing with inhibitors allows a category of some r objects, called in-
hibitors, so that a presence of such an element in a query hides the presence of
a positive item. De Bonis, G ↪asieniec and Vaccaro [13] showed how to implement
4-stage group testing with inhibitors relying on (n, k, r)-selectors.

Corollary 3. There is an explicit implementation of a 4-stage group testing
on a set of n objects with k positive items and r inhibitors, which consist of
O(min

[
n, k2

k−r+1 polylog n
]
) queries, if only k < n− 2r.

Proof. Instantiate the scheme of tests developed in [13] with our explicit selec-
tors. The bound on the number of tests follows from the estimates given in [13]
and from Theorem 1. The additional overhead for explicitness is of order poly-
log n.

5 Conclusion

We showed how to construct (n, k, r)-selectors in time that is polynomial in n,
for any configuration r ≤ k ≤ n of parameters. The obtained selectors are close
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to optimal, in terms of size, within a polylog n factor. Our construction is by
way of combining explicit dispersers with explicit superimposed codes to obtain
a family of a prescribed size with the desired degree of selectiveness.

This construction has a number of applications, as exemplified in Section 4.
Such applications are fairly direct in the case of selection in multiple-access
channel. A general scheme of application works by using any algorithm relying
on selectors and making it explicit by plugging in the explicit selectors given in
Theorem 1. We presented this for gossiping in radio networks and group testing
with inhibitors. Since our construction is within a polylog-n factor from optimal,
the additional overhead factor in efficiency is always of order polylog n.

Synchronizers are closely related to selectors. They are more robust, in that
they exhibit selection-related properties even if rows of arrays representing them
are shifted arbitrarily. The best know explicit (n, k)-synchronizers of a length
O(k2 polylog n) were given in [5]. It is an open problem if explicit synchronizers
of length O(k polylog n) can be developed.

Known explicit constructions of dispersers, of a quality we need in construc-
tion of almost optimal selectors, are fairly complex. Simpler explicit dispersers
applicable to obtain close to optimal selectors would be interesting to construct.

Exploring further a connection between selectors and graphs with expansion
properties is an interesting topic of research.
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Abstract. We introduce a new version of the server problem: the
delayed server problem. In this problem, once a server moves to serve
a request, it must wait for one round to move again, but could serve a
repeated request to the same point. We show that the delayed k-server
problem is equivalent to the (k − 1)-server problem in the uniform case,
but not in general.

Keywords: Design and analysis of algorithms; approximation and ran-
domized algorithms.

1 Introduction

The k-server problem is defined as follows: We are given k ≥ 2 mobile servers
that reside in a metric space M . A sequence of requests is issued, where each
request is specified by a point r ∈M . To service this request, one of the servers
must be moved to r, at a cost equal to the distance moved. The goal is to
minimize the total cost over all requests. A is said to be online if it must decide
which server, or servers, to move without the knowledge of future requests.

We say that an online algorithm A for any online problem is C-competitive
if the cost incurred by A for any input sequence is at most C times the optimal
(offline) cost for that same input sequence, plus possibly an additive constant
independent of the input. The competitive ratio of A is the smallest C for which
A is C-competitive. The competitiveness of any online problem is then defined
to be the smallest competitive ratio of any online algorithm for that problem.

The competitive ratio is frequently used to study the performance of online
algorithms for the k-server problem, as well as other optimization problems. We
refer the reader to the book of Borodin and El-Yaniv [2] for a comprehensive
discussion of competitive analysis.
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The k-server problem is originally given by Manasse, McGeoch and Sleator
[11], who prove that no online algorithm for the k server problem in a metric
space M has competitive ratio smaller than k, if M has at least k + 1 points.
They also present an algorithm for the 2-server problem which is 2-competitive,
and thus optimal, for any metric space. They furthermore state the k-server
conjecture, namely that for each k, there exists an online algorithm for the k
server problem which is k-competitive in any metric space. For k > 2, this
conjecture has been settled only in a number of special cases, including trees and
spaces with at most k+2 points [4,5,10]. Bein et al. [1] have shown that the work
function algorithm for the 3-server problem is 3-competitive in the Manhattan
plane, while Koutsoupias and Papadimitriou have shown that the work function
algorithm for the k-server problem is (2k − 1)-competitive in arbitrary metric
spaces [8,9].

We study here a modified problem, the delayed k-server problem. Informally,
in the delayed server problem, once a server serves a request, it must wait for
one round. This problem is motivated by applications where there are latencies
to be considered or service periods to be scheduled.

More precisely, we consider the following two versions of the problem. Let
r1, r2, . . . , be a given request sequence.

(a): If a server serves the request at time t, it must stay at that request point
until time t + 2. However, if rt+1 = rt, the server may serve the request at
time t + 1.

(b): If a server is used to serve the request at time t, it cannot be used to serve
the request at time t + 1.

In practice, the difference between these two versions is that, in Version (b),
it may be necessary to have two servers at the same point, while in Version (a)
that is never necessary.

We refer to the server which served the last request as frozen. We will assume
an initial configuration of servers, one of which will be initially designated to be
frozen.

Lemma 1.1. Let Ca,M,k and Cb,M,k to be the competitiveness of the delayed
k-server problem in a metric space M , for Versions (a) and (b), respectively.
Then Ca,M,k ≤ Cb,M,k.

Proof. Let A be a C-competitive online algorithm for Version (b). We can then
construct a C-competitive online algorithm A′ for Version (a), as follows. For
any request sequence &, let &′ be the request sequence obtained from & by delet-
ing consecutive duplicate requests. Then A′ services & by emulating A on the
requests of &′, except that A′ services any consecutive duplicate request at zero
cost and then forgets that it happened.

Let OPT be the optimal offline algorithm for Version (b), and let OPT′ be the
optimal offline algorithm for Version (a). Note that the optimal cost to service
a request sequence with no consecutive duplicates is the same for both versions.
We know that there exists a constant K such that costA ≤ C · costopt + K for
every request sequence. Thus, for every request sequence &,
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costA′(&)− C · costopt′(&) =
costA′(&′)− C · costopt′(&′) =
costA(&′)− C · costopt(&′) ≤ K

We remark that, trivially, the delayed k-server problem is only defined for
k ≥ 2 and that it is 1-competitive if k = 2 in all situations.

In the cache problem, we consider a two-level memory system, consisting
of fast memory (the cache), which can hold k memory units (commonly called
pages) and an area of slow memory capable of holding a much larger number of
pages. For fixed k, we refer to the cache problem as the k-cache problem if the
cache size is k.

In the most basic model, if a page in slow memory is needed in fast memory
this is called a page request. Such a request causes a hit if the page is already
in the cache at the time of the request. But in the case of a fault, i.e. when the
page is not in the cache, the requested page must be brought into the cache – we
assume unit cost for such a move – while a page in the cache must be evicted to
make room for the new page. An online paging algorithm must make decisions
about such evictions as the request sequence is presented to the algorithm. The
k-cache problem is equivalent to the k-server problem in a uniform metric space
and thus the definition of the delayed server problem implies the following two
versions of the delayed k-cache problem:

(a): If a page in the cache is read at time t, it cannot be ejected at time t + 1.
(b): If a page in the cache is read at time t, it can neither be read nor ejected

at time t + 1. (That implies that duplication of pages in the cache must be
allowed.)

We remark that Version (a) of the delayed k-cache problem is equivalent to
Version (a) of the delayed k-server problem in uniform spaces, while Version
(b) of the delayed k-cache problem is equivalent to Version (b) of the delayed
k-server problem in uniform spaces.

We refer to the cache location which was read in the previous step as frozen.
We will assume an initial cache configuration, and one of the cache locations will
be initially frozen.

Henceforth, we shall consider only Version (a) of the delayed k-server prob-
lem. We claim that it makes more sense for applications, such as the cache
problem described above, but we have included a short section (Section 5, at
the end of the paper) which discusses Version (b). In the Section 2 we show
that the classic online algorithm LRU can be adapted to the delayed k-cache
problem, and is (k− 1)-competitive. More generally, we show that the (random-
ized or deterministic) delayed k-cache problem is equivalent to the (randomized
or deterministic) (k − 1)-cache problem. This implies that the (randomized or
deterministic) delayed k-server problem in uniform spaces is equivalent to the
(randomized or deterministic) (k−1)-server problem in uniform spaces. This re-
sult might prompt the conjecture that the delayed k-server problem is equivalent
to the (k − 1)-server problem in all metric spaces. This is however not the case,
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as we show in Section 3. In Section 4, we give a k-competitive algorithm for the
delayed k-server problem in a tree. Finally, we discuss future work in Section 6.

2 The Delayed k-Cache Problem

2.1 LRU is (k − 1)-Competitive

It is well-known that least recently used (LRU) a deterministic algorithm for
the k-cache problem (and hence for the k-server problem in a uniform space)
is k-competitive. At each fault, the least recently used page is ejected. (In the
terminology of the server problem this means that at each step the least recently
used server is moved to serve the request, if the request is at a point which does
not already have a server.)

Theorem 2.1. The algorithm LRU is (k−1)-competitive for the delayed k-cache
problem.

Proof. Let a request sequence & = r1 . . . rn be given. Let OPT be an optimal
offline algorithm. The most recently used page is the frozen page. We insist that
LRU eject all other initial pages before it ejects the initially frozen page.

We partition & into phases σ0,σ1, . . . We will show that OPT faults once
during the phase σt for each t > 0, and that LRU faults at most k − 1 times
during any phase. The result follows.

Define σ0 to be the (possibly empty) sequence of requests that precedes the
first fault of OPT. For t > 0, let σt consists of all requests starting with the tth

fault of OPT, up to but not including the (t + 1)st fault of OPT.
Clearly, OPT faults at most once during each phase. We need to prove that

LRU faults at most k − 1 times during a phase.
Initially, mark all pages in the cache. If a page p is requested, and if OPT

does not fault on that request, mark p, unless it is already marked. If OPT faults
on that that request, unmark all pages except the frozen page, and then mark p.

We observe that OPT never ejects a marked page, because the only time
OPT faults is when a phase begins, and at that time all pages are unmarked
except for the frozen page, which cannot be ejected. Thus, at any given step, all
marked pages are in OPT’s cache. LRU also never ejects a marked page. If there
are unmarked pages in the cache, each of the marked pages has been used more
recently than any of the unmarked pages, and if all of LRU’s cache pages are
marked and LRU faults, then OPT must have those same pages in the cache, so
OPT must fault also, ending the phase, and unmarking the least recently used
page before it is ejected. Thus, at any given step, all marked pages are in LRU’s
cache.

During the phase σt, for t > 0, each time LRU faults, the number of marks
increases by 1. Since σt begins with one page marked, LRU faults at most k− 1
times during that phase.
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2.2 Equivalence of the Delayed (k − 1)-Cache Problem and the
k-Cache Problem

We now generalize Theorem 2.1 by showing that the delayed k-cache problem
and the (k−1)-cache problem are equivalent in a very strong sense, and thus have
the same competitiveness. This equivalence is valid for both the deterministic
and the randomized cases. This result implies that the delayed k-server prob-
lem for uniform spaces is equivalent to the (k − 1)-server problem for uniform
spaces. In particular, given any algorithm for the k-cache problem we construct
an algorithm for the (k − 1)-cache problem, and vice versa.

To formally construct the equivalence, it helps to assign standard names to
all pages. Let {p1, p2, . . .} be the set of pages for the (k− 1)-cache problem, and
let Q = {q0, q1, q2, . . .} be the set of pages for the delayed k-cache problem. To
simplify our construction below, it helps if both caches are the same size. Thus,
we introduce a fictitious page p0 for the (k − 1)-cache problem, which is never
requested, and which is always in a fictitious cache location which can never be
used. Write P = {p0, p1, p2, . . .}. We will designate q0 to be the initially frozen
page.

Without loss of generality, a request sequence for the delayed k-cache problem
has no duplicate consecutive request, since such a request can be serviced at
zero cost by doing nothing. Let R be the set of all request sequences for the
(k−1)-cache problem, and S the set of all request sequences with no consecutive
duplicate requests for the delayed k-cache problem. We will first construct a 1-1
onto mapping f : S → R. Let s0 = p0. Given any ς = s1s2 . . . sn ∈ S, we
inductively construct a sequence of one-to-one and onto functions f t : Q → P ,
for 0 ≤ t < n, as follows:

1. f 0(qi) = pi for all i ≥ 0.

2. If t > 0, then f t(qi) =

⎧⎨⎩
p0 if qi = st

f t−1(st) if qi = st−1

f t−1(qi) otherwise

Now, define f(ς) = & = r1r2 . . . rn, where rt = f t−1(st). Note that & can be
defined online, i.e., rt is determined by s1 . . . su.

If A is an algorithm for the (k−1)-cache problem, we construct an algorithm
B = F (A) for the delayed k-cache problem, as follows. Given a request sequence
ς ∈ S for the delayed k-cache problem, let & = f(ς) and f t : S → R be defined
as above. For each step t, let rt = f t−1(st). If A ejects pi at step t with request
rt, then B ejects f t−1(pi) at step t with request st. The following two lemmas
can be verified inductively:

Lemma 2.2. Let A be an algorithm for the (k− 1)-cache problem, and let B =
F (A). Then

1. for any i ≥ 0 and any t ≥ 0, qi is in B’s cache after t steps if and only if
either f t(qi) = p0 or f t(qi) is in A’s cache after t steps,

2. for any t ≥ 0, costtB(ς) = costtA(&).
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Lemma 2.3. If B is an algorithm for the delayed k-cache problem, then there
is a unique algorithm A for the (k − 1)-cache problem such that F (A) = B.

The following theorem reduces the delayed cache problem to the cache
problem.

Theorem 2.4. Let k ≥ 2. There is a C-competitive online algorithm, deter-
ministic or randomized, for the (k − 1)-cache problem, if and only if there is
a C-competitive online algorithm, deterministic or randomized, respectively, for
the delayed k-cache problem.

Proof. We will only give the proof for the deterministic case, and in only one
direction, as the converse has a similar proof, and the randomized case has the
same proof where cost is replaced by expected value of cost.

Suppose that A is a C-competitive online algorithm for the (k − 1)-cache
problem. Let OPT be an optimal offline algorithm for the (k−1)-cache problem,
and let OPT′ be an optimal offline algorithm for the delayed k-cache problem.
Let B = F (A). Note that B is online. By Lemma 2.3, there exists an offline
algorithm D for the (k − 1)-cache problem such that F (D) = OPT′.

We know there is some constant K such that costA(&) ≤ C · costopt(&) +K
for any & ∈ R. If ς ∈ S, let & = f(ς). Then, by Lemma 2.2,

costB(ς)− C · costopt′(ς) =
costA(&)− C · costD(&) ≤

costA(&)− C · costopt(&) ≤ K

2.3 An Example

Figure 1 illustrates the equivalence of the delayed 3-cache problem and the
2-cache problem in an example. Suppose that ς = q3q2q3q1q0. Then & = f(ς) =
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Fig. 1. Equivalence of 2-Cache and Delayed 3-Cache
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p3p2p2p1p3. The vertical arrows show the one-to-one correspondence f t for each
0 ≤ t ≤ 5.

Let A be LRU for the 2-cache problem, and OPT an optimal offline al-
gorithm for the 2-cache problem. Then the contents of A’s cache and F (A)’s
cache, after each number of steps, are enclosed in solid lines. The contents
of OPT’s cache and F (OPT)’s cache are enclosed in dotted lines. Note that
costA(&) = costF (A)(ς) = 4 and costopt(&) = costF (opt)(ς) = 2.

3 Lower Bounds for the Delayed k-Server Problem

In this section we show lower bounds for the delayed k-server problem. Our first
theorem shows that a lower bound of (k − 1) holds for arbitrary metric spaces
of k + 1 or more points.

Theorem 3.1. In any metric space M of at least k + 1 points, the competitive-
ness of the delayed k-server problem is at least k − 1.

Proof. Pick a set X = {x1, . . . , xk+1} ⊆ M . Initially, all servers are in X , and,
without loss of generality, there is a server at xk+1. We then consider the follow-
ing adversary:

– For each odd t, rt = xk+1.
– For each even t, rt is the point in X where the algorithm does not have a

server.

Note that the server which was initially at xk+1 will serve all odd requests, but
will never move, yielding a cost of zero for all requests at odd-numbered steps,
for both the online algorithm and the optimal algorithm. Thus, we can ignore
all requests for odd t, and consider the sequence r2, r4, . . . , r2t, . . . in the metric
space M∗ = M − xk+1, which is the sequence created by the cruel adversary for
the (k − 1)-server problem in M∗. The remainder of the proof is the same as
the classic proof that the cruel adversary gives a lower bound of k − 1 for the
(k−1)-server problem in any space with at least k points. (See, for example, [11].)

From this, the results of Section 2, and from the well-known k-server con-
jecture [11], we might be tempted to conjecture that the competitiveness of the
delayed k-server problem is k−1. That conjecture can be immediately shown to
be false, however. In fact, we give a proof of a lower bound of 3 for the delayed
3-server problem.

Let M be the metric space with four points, {a, b, c, d}, where ab = bc =
cd = ad = 1 and ac = bd = 2. We call this metric space the square.

Theorem 3.2. The competitiveness of the delayed 3-server problem in the
square is at least 3.

Proof. Let A be an online algorithm for the delayed 3-server problem in the
square. We show that the adversary can construct a request sequence consisting
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Fig. 2. One Phase Costs 3 for the Square, Optimal Cost is 1

of phases , where in each phase, A is forced to pay 3, while the optimal offline
algorithm pays 1.

At the beginning and end of each phase, the servers are at three points, and
the middle point is frozen. Without loss of generality, the servers are at {a, b, c}
and the server at b is frozen.

The adversary then constructs the phase as follows:

A1. The adversary requests d.
B1. Without loss of generality, A serves from c. A’s servers are now at {a, b, d}.
A2. The adversary requests c(dbc)N for sufficiently large N .
B2. The algorithm responds. No possible response costs less than 2. The phase

ends when the algorithm’s servers are at {b, c, d}, if ever.

We now analyze the cost. The optimal cost to serve the phase is 1, since
the optimal offline algorithm moves a server from a to d at A1. The optimal
algorithm’s servers will now be at {b, c, d}, and move A2 is free.

If A ever moves its servers to {b, c, d}, it pays 1 for B1, and at least 2 for B2;
the configuration is symmetric to the initial configuration, and the next phase
begins. If A never moves its servers to {b, c, d}, the phase never ends, but A pays
unbounded cost.

Figure 2 shows one phase where A pays 3. The frozen server is enclosed by
a dotted circle at each step.

We note that M cannot be embedded in a Euclidean space. However, if one
models M with an ordinary square in the Euclidean plane, where the diagonal
distance is

√
2 instead of 2, the above request sequence gives a lower bound of

1 +
√

2 for the competitiveness of the delayed 3-server problem in the Euclidean
plane.

4 k-Competitiveness for Trees

In this section we prove that the deterministic competitiveness of the delayed
k-server problem is at most k for all continuous trees. The proof is similar to
that for the regular k-server problem given in [5].

We define a continuous tree to be a metric space where there is exactly
one continuous simple path between any two points. For example, the line is a
continuous tree. We note that a continuous tree is called simply a tree in [5].
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Fig. 3. One Step of Tree Algorithm Showing Three Phases

Let T be a continuous tree. We define an online algorithm, A, which we call
the tree algorithm, for the delayed k-server problem in T . A is very similar to
the algorithm given in [5].

Suppose that s1, . . . , sk are the positions of A’s servers in T , and r is the
request point. Without loss of generality, sk is the frozen page.

In response to a request, A moves servers continuously toward r according
to a protocol given below, stopping when one of them reaches r. We call this
movement a service step. The movement consists of phases , where during each
phase, the number of servers moving remains constant, and all of the moving
servers move toward r. At the end of each phase, one or more servers stop. Once
a server stops moving, it does not start up again during that service step.

We say that a server si is blocked by a server sj if sj is unfrozen and sj lies on
the simple path from si to r. (In the special case that si and sj are at the same
point, we say that sj blocks si if i > j, but not if i < j.) During each phase, all
unblocked servers move toward r at the same speed. If one of the moving servers
becomes blocked, the phase ends.

Figure 3 shows an example of a step of the tree algorithm. In the figure, k = 5,
and initially, in (a), s5 is frozen, and none of the other servers are blocked. During
the first phase, s1, s2, s3, and s4 move toward r. When s1 blocks s3, as shown in
(b), the second phase begins, during which s1, s2, and s4 move toward r. When
s1 and s4 reach the same point, s1 blocks s4, as shown in (c), starting the third
phase, during which s1 and s2 move towards r. Finally, s2 reaches r and services
the request, ending the step, as shown in (d).

Theorem 4.1. The tree algorithm is k-competitive for the delayed k-server
problem in a tree T .

Proof. Let OPT be an optimal offline algorithm. We need to prove that, for some
constant K,

costA(&) ≤ k · costopt(&) +K (1)
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Just as in [5], we use the Coppersmith-Doyle-Raghavan-Snir potential [7] to
prove k-competitiveness. If X = {x1, . . .xk} is any multiset of size k of points in
T , define ΣX =

∑
1≤i<j≤k xixj . If Y = {y1, . . . yk} is another multiset of size k,

define ||X,Y || to be the minimum matching distance between X and Y , i.e., the
smallest possible value of

∑k
i=1 xiyπ(i), over all permutations π of {1, . . . , k}. If

S and O are multisets of size k, we define

Φ(S, O) = ΣS + k||S, O||

Let S0 be the initial configuration of the servers, a multiset of points in T of
size k. Let r0 be the initial position of the initially frozen server. If & = r1r2 . . . rn

is a request sequence, let St be the configuration of A’s servers after servicing
r0 . . . rt, and let Ot be the multiset of positions of OPT’s servers after t steps,
and let Φt = Φ(St, Ot), the potential after t steps. Let costtA be the cost of A
during Step t, and let costtopt be the cost of OPT during Step t. Then costA(&) =∑n

t=1 costtA, and costopt(&) =
∑n

t=1 costtopt.
Let St,i be the multiset of positions of A’s servers after i phases of Step t; for

example, St,0 = St−1 and St,mt = St, where mt is the number of phases of Step
t. Let pt,i be the number of moving servers during the ith phase of Step t. and
let �t,i be the distance that each of those servers moves. We verify the following
sequence of equalities and inequalities.∣∣∣∣St,i−1, St,i

∣∣∣∣ = pt,i�t,i for all t and all 1 ≤ i ≤ mt (2)

ΣSt,i −ΣSt,i−1 ≤ (2k − (1 + k)pt,i)�t,i (3)
for all t and all 1 ≤ i ≤ mt∣∣∣∣St,i, Ot

∣∣∣∣− ∣∣∣∣St,i−1, Ot
∣∣∣∣ ≤ (pt,i − 2)�t,i for all t and all 1 ≤ i ≤ mt (4)∣∣∣∣St,i−1, St,i

∣∣∣∣+ Φ(St,i, Ot) ≤ Φ(St,i−1, Ot) for all t and all 1 ≤ i ≤ mt (5)

Φ(St−1, Ot) ≤ k ·
∣∣∣∣Ot−1, Ot

∣∣∣∣+ Φ(St−1, Ot−1) for all t (6)∣∣∣∣St−1, St
∣∣∣∣+ Φ(St, Ot) ≤ Φ(St−1, Ot) for all t (7)

costtA + Φt =∣∣∣∣St−1, St
∣∣∣∣+ Φ(St, Ot) ≤ k ·

∣∣∣∣Ot−1, Ot
∣∣∣∣+ Φ(St−1, Ot−1) (8)

= k · costtopt + Φt−1 for all t

(2) follows from the fact that pt,i servers move a distance of �t,i each.
During Phase i of Step t, each stationary server sj gets farther away from

at most one server, namely the moving server, if any, that blocks it; and sj gets
closer to each other moving server. Furthermore, any two moving servers get
closer to each other. (3) follows from routine calculation.

During Phase i of Step t, in the minimum matching of Ot with S, as S varies
from St,i−1 to St,i, the server of OPT which served rt−1 can be matched with
sk, and the server of OPT which served rt can be matched with one moving
server, say sj . Since sj gets closer to its partner during the phase, and since,
in the worst case, the other pt,i − 1 moving servers get farther away from their
partners, (4) holds. Then, (5) follows from Inequalities (2), (3) and (4).
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By the triangle inequality for minimum matching,

k ·
∣∣∣∣Ot−1, Ot

∣∣∣∣+ Φ(St−1, Ot−1)− Φ(St−1, Ot) =

k ·
∣∣∣∣Ot−1, Ot

∣∣∣∣+ k ·
∣∣∣∣St−1, Ot−1

∣∣∣∣− k ·
∣∣∣∣St−1, Ot

∣∣∣∣ ≥ 0

which verifies (6). Then (7) follows from (5) for each phase, while (8) follows
from (6) and (7). Note that Φn ≥ 0; summing (8) over all t and letting K = Φ0,
we obtain (1).

We give the following lemma without proof:

Lemma 4.2. If M1 ⊂ M2, then Ca,M1,k ≤ Ca,M2,k and Cb,M1,k ≤ Cb,M2,k.

From this we have:

Theorem 4.3. If a metric space M can be embedded into a continuous tree T ,
then the delayed k-server problem is k-competitive in M .

5 Version (b)

We remark that Theorem 2.1 holds if we use Version (b) of the delayed k-cache
problem. In this case, we must be sure to define LRU properly; LRU keeps track
of when each cache location was used, and in case of a fault, ejects the page in
the cache that was least recently read. The proof of (k − 1)-competitiveness is
very similar to that for Version (a). In the proof, if a page is read, the cache
location of that page is marked. If there are two copies of the page in the cache,
it is important not to mark both of them unless forced to do so. More precisely,
if a page p is requested, and there is one copy of p in the cache, that copy is
read and its location marked, unless it is frozen, in which case another copy is
moved into the cache and its location marked. But if p is requested and there are
already two copies in the cache and their locations are not both marked, only
the location of the copy that was most recently moved into the cache is marked.

We remark that, using essentially the same proof as that of Theorem 4.3, we
can show that the tree algorithm is k-competitive for Version (b).

6 Open Problems

We conjecture that there is a lower bound of k for the delayed k-server problem in
general spaces. In fact, it could well be that a lower bound of k could be provable
for tree metric spaces. We also conjecture that Ca,M,k ≤ Cb,M,k ≤ CM,k for any
metric space M , where CM,k is the competitiveness of the k-server problem
in M .

Further work is necessary to give a competitive algorithm for the delayed
server problem in general spaces. We conjecture that a modification of the Work
Function Algorithm (see, for example, [3,6,9]) could yield such an algorithm.
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Tomasz Jurdziński and Krzysztof Loryś	
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Abstract. Leftist grammars can be characterized in terms of rules of
the form a → ba and cd → d, without distinction between terminals and
nonterminals. They were introduced by Motwani et. al. [9], where the
accessibility problem for some general protection system was related to
the membership problem of these grammars. This protection system was
originally proposed in [3,10] in the context of Java virtual worlds. We
show that the set of languages defined by general leftist grammars is not
included in CFL, answering in negative a question from [9]. Moreover, we
relate some restricted but naturally defined variants of leftist grammars
to the language classes of the Chomsky hierarchy.

1 Introduction

Leftist grammars were introduced by Motwani et. al. [9] and related to the ac-
cessibility problem for some general protection system of computer systems. A
protection system is a set of policies that prescribes the ways in which objects
interact with each other. By objects we mean users, processes or other entities
and interactions can include access rights, information sharing privileges and so
on. The accessibility problem for the protection system is formulated in the form
“Can object p gain (illegal) access to object q by a series of legal moves (as pre-
scribed by the policy)?”. A formal treatment of accessibility was first presented
by Harrison, Ruzzo and Ullman [5] who showed that the accessibility problem
is undecidable for a general access-matrix model of object-resource interaction.
This result prompted a broad research on tradeoffs between expressibility and
verifiability in protection systems. The work on protection systems took place
mainly in the context of operating systems and currently, operating systems
have efficient protection mechanisms. However, these mechanisms often fail at
the scale necessary for today’s Internet [1].

The protection system related to leftist grammars was originally proposed
in [3,10] in the context of Java virtual worlds. The model of this protection
system strictly generalizes grammatical protection systems [2,7] and the take
grant model [8], it is a special case of the general access-matrix model [5]. Its
advantage over the general access-matrix model is the fact that accessibility is
decidable for this model what was obtained by the reduction to the membership
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problem of leftist grammars [9]. For a formal definition of this protection systems
and the accessibility problem we refer the reader to [9]. Intuitively, the resources
of the computer system are represented by vertices of the graph with labels, and
access rights are represented by edges. Some additional constraints define the
rules which allow to add/remove objects and change access rights (i.e. modify
the graph). The accessibility problem is, given two vertices p and q, to decide
if there exists a set of allowed operations on the graph such that finally there
exists an edge between p and q.

Leftist grammars can be characterized in terms of rules of the form a → ba
and cd→ d over the alphabet Σ (there is no distinction between terminals and
nonterminals). A symbol x ∈ Σ is called a final symbol and a word w ∈ Σ∗

belongs to the language defined by a grammar G iff there exists a derivation
which starts at wx and ends at x. Intuitively, the rules of leftist grammars
correspond to the rules of the evolution of the graphs describing the protection
system. And the derivations correspond to changes on one path of such a graph.

As pointed out above, the membership problem for these grammars is decid-
able [9]. Moreover, the problem of emptiness of the intersection of the language
defined by a leftist grammar and a regular language is decidable. This result
implied decidability of the accessibility problem for the protection system from
[9]. However, no efficient algorithm for the membership problem of leftist gram-
mars is known. And, there are no nontrivial lower bounds for this problem. In
particular, a question if leftist grammars can recognize languages which are not
context-free was addressed in [9]. The lack of efficient algorithms motivates also
exploration of some restricted variants of these grammars. This research direc-
tion is prompted also by the fact that slight generalizations of leftist grammars
make the membership problem undecidable [9].

From language theoretic point of view, leftist grammars do not even satisfy
restrictions of context-sensitivity, as they can have length-reducing rules and
length-increasing rules simultaneously. On the other hand, the productions of
these grammars are severely restricted, so one could expect that their complexity
is restricted as well. Thus, the study of their expressiveness is motivated both by
their connections to the complexity of the accessibility problem and by itself. As
suggested in [9], a natural research topic is here the placement of these grammars
into the Chomsky hierarchy.

We study relationships between language classes defined by various types
of leftist grammars and classes of the Chomsky hierarchy. Our main technical
contribution states that general leftist grammars recognize some languages which
are not context free, what answers in negative the question from [9]. Moreover, we
propose a natural classification of leftist grammars according to the restrictions
on so called delete graphs and insert graphs. Though our classification does not
correspond to the way in which protection systems are usually restricted, we
think that this research direction may help to fix the complexity of the problem
for general leftist grammars. We relate restricted classes of leftist grammars to
the set of regular, deterministic context free and context free languages. Our
results are summarized in the following table, where FIN, REG, CFL, and DCFL,
denote the classes of finite, regular, context-free, and deterministic context-free
languages, respectively.
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Delete graph Insert graph Included in Not included in

acyclic arbitrary REG FIN
arbitrary empty DCFL REG
arbitrary acyclic CFL DCFL
arbitrary arbitrary recursive� CFL

� – proved in [9]

In Section 2 we provide some basic definitions and notations. In Section 3, we
exploit properties of so-called leftmost derivations. Next, in Section 4 we relate
restricted variants of leftist grammars to the classes of the Chomsky hierarchy.
Section 5 is devoted to the proof of the fact that the set of languages defined by
general leftist grammars is not included in CFL. Due to limited space, we omit
some proofs and technical details.

2 Definitions and Notations

Throughout the paper ε denotes the empty word, N, N+ denote the set of non-
negative and positive integers. For a word x, |x| denotes its length, the ith symbol
of x is denoted by x[i] (0 < i ≤ |x|), and x[i, j] denotes the factor x[i] . . .x[j]
for 0 < i ≤ j ≤ |x|. Let [i, j] = {l ∈ N | i ≤ l ≤ j}. Sometimes, we will identify
regular expressions with regular languages defined by them. We refer the reader
to [6,4] for basics from formal language theory.

A leftist grammarG = (Σ, P, x) consists of a finite alphabet Σ, a final symbol
x ∈ Σ, and a set of production rules P of the following two types,

ab→ b (Delete Rule) c → dc (Insert Rule)

where a, b, c, d ∈ Σ.
We say that u ⇒ v is a derivation step for u, v ∈ Σ∗, if u = u1yu2 and

v = u1zu2 such that y → z is a production rule in P . As usual, ⇒∗ denotes the
reflexive and transitive closure of ⇒. A sequence of derivation steps u1 ⇒ u2 ⇒
. . .⇒ up is called a derivation. A word ui for i ∈ [1, p] is called a sentential form
in this derivation. Finally, the language of G is defined to be

L(G) = {w ∈ Σ∗ |wx ⇒∗ x}.

Throughout the paper, we will implicitely deal with symbols of sentential
forms as objects which can insert/delete other symbols and can be inserted or
deleted. So, we make distinction between different occurences of a symbol a ∈ Σ
in a sentential form. However, in order to simplify notations, we will often identify
the occurence of the symbol a in a sentential form with its value a. It should
be clear from the context whether we say about a symbol as an element of the
alphabet or an element of a sentential form.

We say that the symbol b in the delete rule ab → b is active. Similarly, the
symbol c is active in the insert rule c → dc.

Let u ⇒ v, where u = u1yu2 and v = u1zu2 such that y → z is a production
rule in P . We would like to say that a symbol which is active in the production



296 T. Jurdziński and K. Loryś

rule y → z is also active in the derivation step u ⇒ v (that is, the rightmost
symbol of the prefix u1y). However, it is possible that, for fixed u, v, there are
many factorizations u = u1yu2 such that v = u1zu2 and y → z is a production.
It turns out that it is possible to avoid this ambiguity.

Lemma 1. For each leftist grammar G, there exists a leftist grammar G′ =
(Σ′, P ′, x′) such that L(G) = L(G′) and, for each possible derivation step u⇒G′

v, there exists only one factorization u = u1yu2 such that v = u1zu2 where
y → z is a production of G′. In particular, there are no rules of type a→ aa or
aa→ a in P ′ for a ∈ Σ.

The idea of the proof of the above lemma is to show that after removing all
rules of type aa → a, a → aa for a ∈ Σ from a grammar G, adding the extra
“artificial” final symbol x′ and some rules for it, we obtain a grammar G′ which
defines the language L(G) and satisfies conditions of the lemma. All our results
concern leftist grammars which satisfy these conditions.

Let us make the following observation.

Fact 1. The set of languages generated by leftist grammars is disjoint with
FIN>0, where FIN>0 denotes a set FIN \ {∅, {ε}}.

Proof. Let G be a leftist grammar such that L(G) 	∈ {∅, {ε}}. Let w 	= ε be a
word in L(G). Then, there exists a derivation which starts at wx, ends at x and
no insert rule is applied in which the leftmost symbol of w is active (indeed,
there is nothing to delete to the left of the leftmost symbol, so it is not needed
to insert any symbols to the left of it). Further, the symbol w[1] is deleted at
some derivation step. So, w[1]iw[2, |w|]x ⇒∗ x for each i > 0, what implies that
the language L(G) is infinite. ��

Now, we introduce notions of insert graphs and delete graphs and we obtain
a taxonomy of leftist grammars based on these notions. Let G = (Σ, P, x) be a
leftist grammar, where Σ = {a1, . . . , ap}. An Insert Graph of G has p vertices
v1, . . . , vp. There exists an edge (vi, vj) in this graph iff the grammar contains a
rule ai → ajai. Similarly, a Delete Graph of G has p vertices v1, . . . , vp. There
exists an edge (vi, vj) in this graph iff the grammar contains a rule ajai → ai.

We consider the cases that the insert/delete graph is empty, acyclic, or arbi-
trary. These cases will be denoted by empty, acyclic and arb, respectively. Leftist
grammars with delete graphs of type A and insert graphs of type B are denoted
by LG(A, B). The construction of the proof of Lemma 1 ensures that, for each
grammar G of type LG(A, B) where A, B ∈ {empty, acyclic, arb}, there exists a
leftist grammar G′ = (Σ′, P ′, x′) such that L(G) = L(G′), G′ is of type LG(A, B)
and G′ satisfies the conditions from Lemma 1.

3 Leftmost Derivations and Their Properties

Let u1 ⇒ u2 ⇒ . . . ⇒ up be a derivation. A symbol u1[i] is alive in u1 with
respect to the derivation u1 ⇒∗ up if there exists j ≤ i such that u1[j] is active
in any of the steps u1 ⇒ u2 ⇒ . . .⇒ up. A symbol which is not alive is gone.
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A derivation u1 ⇒ u2 ⇒ . . . ⇒ up is the leftmost derivation if the leftmost
alive symbol with respect to ui ⇒∗ up is active in ui ⇒ ui+1 for each i ∈ [1, p−1].

Let u⇒∗ v be a leftmost derivation. Assume that u[i] is gone with respect to
u⇒∗ v. Then, u[i] is firm in u with respect to this derivation if it is not deleted
until v. Otherwise, u[i] is useless in u.

Proposition 1. If there exists a derivation u⇒∗ v then there exists a leftmost
derivation which starts at u and ends at v.

Next, we investigate some useful properties of leftmost derivations.

Proposition 2. Let G′ be a leftist grammar. Then, each leftmost derivation
v ⇒∗ w satisfies the following condition: Each sentential form u in this deriva-
tion has a factorization u = u1u2u3 such that all symbols in u3 are alive, all
symbols in u2 are useless, and all symbols in u1 are firm with respect to u⇒∗ w.

Proof. The fact that alive symbols form the suffix of a sentential form follows
directly from the definition of alive symbols. For the sake of contradiction, as-
sume that a useless symbol a is located directly to the left of a firm symbol b.
However, as each firm symbol is not active nor deleted in a further derivation, it
is not possible to delete a symbol located directly to the left of it. Contradiction,
because a should be deleted (it is useless). ��

We introduce a notion which formally describes the way in which symbols in sen-
tential forms were inserted. Let U ≡ u1 ⇒ u2 ⇒ . . .⇒ up be a derivation. Let b, d
be symbols which appear in some sentential forms of this derivation. We say that
b is a descendant of d in U if (d, b) belongs to the reflexive and transitive closure of
the relation {(x, y) | vxw ⇒ vyxw is a derivation step in U for some v and w}.

Further, we define a history of each symbol which appears during the deriva-
tion U ≡ u1 ⇒ u2 ⇒ . . . ⇒ up. A history of a symbol a which appears in u1
is equal to a word h(a) = a. Further, let c be a symbol inserted in a derivation
step vbw ⇒ vcbw of U . Then, a history of (this copy of) c is equal to a word
h(c) = ch(b). So, the history of each symbol (except symbols which appear in
the “initial” sentential form) is fixed at a moment when it is inserted.

Proposition 3. Let

u ⇒∗ y1ay2y3 ⇒ y1bay2y3 ⇒∗ v

be a leftmost derivation, let a symbol b following y1 be a descendant of the right-
most symbol of y2. Then, a history of this symbol b is equal to bay2.

Proposition 4. Let uav ⇒∗ w be a leftmost derivation. Then, the suffix v re-
mains unchanged as long as the symbol a following u is alive with respect to
this derivation. If the symbol a following the prefix u is useless with respect to
the derivation uav ⇒∗ w, then the prefix ua remains unchanged, as long as the
symbol a following u is not deleted.

The statements of the above proposition follow immediately from the definitions
of alive symbols, useless symbols and leftmost derivations.
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4 Restricted Leftist Grammars

4.1 Grammars with Empty Insert Graphs

Theorem 1. The set of languages defined by grammars LG(arb, empty) is in-
cluded in DCFL.

Proof. Assume that uawx ⇒∗ x is the leftmost derivation for an input word
uaw and a at the position |u| + 1 is the leftmost alive symbol with respect to
this derivation. Thus, all symbols in the prefix u are gone, they are not active
in any derivation step. Then, there exists a leftmost derivation u′awx ⇒∗ x for
each u′ which is a subsequence of u. Indeed, as no symbol from u is active in
the derivation, we obtain a leftmost derivation u′aw ⇒∗ x by removing from the
derivation uawx ⇒∗ x all steps which delete symbols in u that do not appear
in u′.

The above observation implies the following fact. Let u ∈ L(G) for a grammar
G of type LG(arb, empty), let v = ux. Let i ∈ [2, n + 1] be minimal value such
that G contains a production v[i − 1]v[i] → v[i], where n = |u|. Then, a word
u′ = u[1, i − 2]u[i, n] belongs to L(G) as well. Using this property, we obtain
the following algorithm determining if w ∈ Σ∗ belongs to L(G). In each step,
the algorithm finds the leftmost position in the current sentential form, where
an application of the (delete) production rule is possible. Then, an appropriate
symbol is deleted from the sentential form. This process is repeated until we
obtain x what means that w ∈ L(G) or y 	= x such that no application of any
rule of G is possible in y, what implies that w 	∈ L(G).

One can implement the above algorithm on deterministic pushdown automa-
ton (DPDA), because the choice of the position of the active symbol in consec-
utive derivation steps is always deterministic, and, this position moves from left
to right. So, DPDA can move on the pushdown the part of the sentential form
which is to the left of the position of the symbol which is active in a “current”
derivation step. ��

Theorem 2. The set of languages defined by grammars LG(arb, empty) is not
included in REG.

Proof. We describe a grammarG = (Σ, P, x) of type LG(arb, empty) which gener-
ates a non-regular language. Let Σ = {a0, a1, b0, b1, x} and let P contain the fol-
lowing production rules: {aibi→bi | i=0, 1}∪{b1−ibi → bi | i=0, 1}∪{b1x → x}.
Now, let w = a1a0 and u = b0b1. We show that wnum ∈ L(G) ⇐⇒ m ≥ n. The
implication ⇐ is obvious. The second implication follows from two observations.
First, a symbol ai for i = 0, 1 can be deleted only by bi. Second, each copy of bi
for i = 0, 1 in the input word from w∗u∗ is able to delete at most one copy of ai.

So, the language w∗u∗ ∩ L(G) is equal to a non-regular language
{wnum |m ≥ n}. As the set of regular languages is closed under intersection,
the language L(G) is non-regular as well. ��
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4.2 Grammars with Acyclic Insert Graphs

Next, we analyze grammars with acyclic insert graphs.

Proposition 5. Let G = (Σ, P, x) be a leftist grammar with acyclic insert
graph. Let u ⇒∗ v be a leftmost derivation in G′. Then, each symbol in each
sentential form of this derivation has at most |Σ| descendants which are alive.

Proof. Let way ⇒ wbay be a derivation step which inserts a symbol b. Then,
by Proposition 3, y = y1y2 such that bay1 is equal to the history of this b and b
is the descendant of the rightmost symbol of y1. As the insert graph is acyclic,
this history is not longer than the depth of the insert graph, which is bounded
by |Σ|. And, because we consider the leftmost derivation, all symbols to the left
of this b are gone in wbay. Thus, all alive descendants of the rightmost symbol
of y1 are included in bay1 and |bay1| ≤ |Σ|. ��

Proposition 6. Let G = (Σ, P, x) be a leftist grammar with acyclic insert
graph. Then, for each leftmost derivation w ⇒∗ w′, there exists a leftmost deriva-
tion which starts at w, ends at w′ and there is no sentential form in this deriva-
tion which contains two useless symbols with equal histories, descendants of the
same symbol. In particular, each symbol has at most |Σ||Σ| useless descendants
in each sentential form of this derivation.

Proof. Let w ⇒∗ w′ be a leftmost derivation. Assume that a sentential form
uavay appears in this derivation and copies of a located directly to the left of
v and directly to the right of v are useless symbols that are descendants of the
same symbol and have equal histories. We show how to shorten this derivation
such that one of these a’s does not appear in any sentential form. Moreover, we
do not introduce any new derivation steps which would insert symbols. Let az
be a history of both these copies of a. According to Propositions 3 and 4, the
original derivation w ⇒∗ w′ contains a subderivation

w ⇒∗ u1azz
′ ⇒∗ uazz′ ⇒∗ uav1azz

′ ⇒∗ uavazz′ ⇒∗ uavay, where

– u1azz
′ is a sentential form obtained after a derivation step which inserts the

left copy of a, preceding v (see Proposition 3);
– uazz′ is a first sentential form in which the left copy of a is gone (i.e. useless)

– (see Propositions 4 and 3);
– uav1azz

′ is a sentential form obtained in a derivation step which inserts the
right copy of a, following v (see Propositions 3 and 4);

– uavazz′ is a first sentential form in which the right copy of a is gone and
useless (see Proposition 4);

As the whole av following u is useless in the sentential form uavazz′ (what follows
from Proposition 2 and the fact that the first and the last symbol in the factor
ava are useless), the derivation uavazz′ ⇒∗ w′ implies that there exists also a
derivation uazz′ ⇒∗ w′ obtained from the original derivation by deleting the
subderivation uazz′ ⇒∗ uavazz′, and all derivation steps which remove symbols
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from the factor av in the subderivation uavazz′ ⇒∗ w′. Thus, we obtained a new
(shorter) leftmost derivation w ⇒∗ w′ which avoids the sentential form uavazz′

with two useless symbols a that have equal histories and are descendants of the
same symbol. In this way, each derivation w ⇒∗ w′ may be stepwise transformed
into a derivation w ⇒∗ w′ which satisfies conditions of the proposition.

Finally, as the insert graph is acyclic, the number of different histories of
symbols is not larger than |Σ||Σ|. ��

Theorem 3.The set of languages recognized by grammars of type LG(arb, acyclic)
is included in CFL.

Proof. (Sketch) The idea is to construct a pushdown automaton (PDA) which
simulates (exactly) all leftmost derivations which end at x and the number of
descendants of each input symbol in each sentential form of these derivations is
not larger than s = |Σ| + |Σ||Σ|. If it is possible, the result follows on base of
Propositions 6 and 5. In order to simulate such computations (in step-by-step
manner), the automaton stores on the pushdown all useless symbols, and stores
in its finite control all descendants of the leftmost alive symbol which appeared
in the input word (this symbol is equal to the symbol scanned currently by the
input head). ��

Theorem 4. The set of languages recognized by grammars LG(arb, acyclic) is
not included in DCFL.

Proof. We will define a grammar G = (Σ, P, x) with an acyclic insert graph,
such that the language L(G) does not belong to DCFL. Let

Σ = {ai | i ∈ [0, 3]} ∪ {bi, ei, fi | i ∈ [0, 1]} ∪ {c, d, x}.

Production rules of G are following, where i = 0, 1, j = 0, 1, 2, 3:

bi → eibi b1c → c
bi → fibi e1c → c

b1−iei → ei b1d→ d
b1−ifi → fi f1d→ d
e1−iei → ei cx → x
f1−ifi → fi dx → x

ajej mod 2 → ej mod 2
ajfj div 2 → fj div 2

Let w = a3a2a1a0, u = b0b1. We show that

wnumc ∈ L(G) ⇐⇒ m ≥ 2n.

The implication ⇐ is simple. In fact, there exists a leftmost derivation in which
each bi inserts ei. This ei deletes b1−i, e1−i (if they occur directly to the left of
ei) and one element of {ai, ai+2} (if exists). Finally, c deletes the rightmost b1
and e1, and x deletes c.
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For the implication ⇒, observe that a derivation which starts from a word
in w∗u∗cx and ends at x cannot use symbols f0, f1, as these symbols can be
deleted only by d and there is no insert rule which inserts d. On the other hand,
descendants of each copy of bi (i = 0, 1) in the input word can delete at most
one element of {a0, a1, a3, a3}. It follows from the observation that ai can insert
ei (but not e1−i) which can delete ai or ai+2 (but not ai+1, a(i+3) mod 4). On the
other hand, each two consecutive copies of ai and ai+2 are separated by ai+1 or
a(i+3) mod 4. Using similar arguments, one can show that wnumd ∈ L(G) ⇐⇒
m ≥ n.

The above observations imply that L(G) ∩ (w∗u∗c ∪ w∗u∗d) is equal to the
language L′ = {wnumc |m ≥ 2n} ∪ {wnumd |m ≥ n}. As the language L′ is not
in DCFL, and DCFL is closed under intersection with regular languages, L(G) is
not in DCFL, either. ��

4.3 Grammars with Restricted Delete Graphs

In this section we sketch the proof of the fact that leftist grammars with acyclic
delete graphs define only regular languages.

Let G be a grammar of type LG(acyclic, arb). Let G′ be a “reversed” grammar
with respect to G. That is, for each production α → β in G, G′ contains a
production β → α. Certainly, L(G) is equal to the set {w |x ⇒∗

G′ wx}. The
delete graph of G is equal to the insert graph of G′ and the insert graph of G is
equal to the delete graph of G′. So, if the delete graph of G is acyclic then the
insert graph of G′ is acyclic as well.

Note that each symbol in each sentential form of the leftmost derivation
x ⇒∗ wx is a descendant of the rightmost (“initial”) symbol x. So, by Proposi-
tions 5 and 6, if there exists a derivation x ⇒∗ wx then there exists a leftmost
derivation x ⇒∗ wx, such that the number of alive symbols in each sentential
form is not larger than |Σ| and the number of useless symbols in each senten-
tial form of this derivation is not larger than |Σ||Σ|. On the other, the leftmost
derivation x ⇒∗ wx makes the symbols from the final word w firm from left to
right. That is, first w[1] becomes a status firm, then w[2], w[3] and so on (see
Proposition 2). Thus, one can design a nondeterministic one-way finite automa-
ton A which simulates derivations with at most |Σ|+|Σ||Σ| non-firm descendants
of the rightmost x. First, this automaton simulates a subderivation until the left-
most symbol w[1] is inserted, storing all alive and useless (i.e. non firm) symbols
in its finite control. Then, A moves right its input head and continues the sim-
ulation until w[2] is inserted. This process is continued until all symbols of w
are inserted and there are no useless nor alive symbols – then A accepts. If A is
not able to simulate such derivation, it rejects. Finally, we obtain the following
theorem.

Theorem 5.The set of languages recognized by grammars of type LG(acyclic, arb)
is included in REG.
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5 General Leftist Grammars

In this section we describe a leftist grammar that defines a language which is
not context-free. Let G = (Σ, P, x) be a grammar with the alphabet

Σ = {ai, Bi, Fi | i = 0, 1} ∪ {Xi,j , Di,j | i, j = 0, 1} ∪ {x},

and the following set of productions, where i, j, k ∈ {0, 1}:

(10) ai → Biai (60) a1−iBi → Bi

(20) ai → Xi,0ai (70) BiDi,j → Di,j

(30) Xi,j → Yi,jXi,j (80) Di,jDi,1−j → Di,1−j

(40) Yi,j → Di,jYi,j (83) X1−i,kDi,0 → Di,0
(50) Yi,j → Xi,1−jYi,j (86) Y1−i,kDi,1 → Di,1

(90) a0F0 → F0 (140) F1x → x
(100) X0,jF0 → F0 (150) Di,jx → x
(110) Y0,jF1 → F1
(120) F1−iFi → Fi

Let

A = {a0, a1} Xi = {Xi,0,Xi,1}
F = {F0, F1} Yi = {Yi,0,Yi,1}
Di = {Di,0, Di,1} Zi = {Xi,0,Yi,0,Xi,1,Yi,1}

where i ∈ [0, 1]. For sets of symbols U ,V , by UV we mean the set {uv |u ∈
U and v ∈ V}.
Proposition 7. Let n, m ∈ N. If n ≥ 22m−2, then a word w = (a1a0)m(F0F1)n

belongs to L(G).

Now, for an input word w = (a1a0)m(F0F1)n, we formulate conditions which
are necessary in order to exist a derivation wx ⇒∗ x.

Proposition 8. Let (a1a0)m(F0F1)nx ⇒∗ x be a derivation in G. Then,
n ≥ 22m−2.

Proof. First, we specify some necessary conditions satisfied by each derivation
(a1a0)m(F0F1)nx ⇒∗ x. All conditions specified in claims stated below concern
such derivations. Observe that no insert rule of G inserts a symbol x, so each
sentential form of each derivation which starts from (a1a0)m(F0F1)nx contains
only one x, at its rightmost position.

Claim 1. For each i ∈ [0, 1] and each copy of ai in the word (a1a0)m(F0F1)nx
except the leftmost a1, ai inserts a symbol Bi which deletes a1−i located di-
rectly to the left of it. Moreover, descendants of this ai insert Di,j for j ∈ [0, 1]
which deletes Bi inserted by it. And, the rightmost element of Di which is the
descendant of this ai is deleted by x.

Claim 2. For each i ∈ [0, 1] and each copy of ai in the word (a1a0)m(F0F1)nx
except the leftmost a1, all symbols which belong to Z1−i and are descendants of
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a1−i located directly to the left of this ai, should be deleted by the descendants
of this ai.

Claim 3. Let ai for i ∈ [0, 1] be a symbol which appears in the input word.
Then, a sequence of its descendants in each sentential form of the derivation
which ends at x belongs to the set ({Bi} ∪ Di)∗Z∗

i {Bi}∗.
By Proposition 1, there exists a leftmost derivation wx ⇒∗ x for each

w ∈ L(G). So, let us consider only leftmost derivations which start from w =
(a1a0)m(F0F1)nx. Remind that ai (for i ∈ [0, 1]) and its descendants are not
able to insert symbols which could delete elements of Zi. By Claim 1, the factor
Y0,0X0,0 should appear in the sequence of descendants of the leftmost a0. Indeed,
this a0 has to insert an element of D0 (see Claim 1) and the only way to insert
such an element is by inserting X0,0 which inserts Y0,0. Now, we show by induc-
tion that the sequence of descendants of the pth symbol from A (for p > 2), say
ai, contains (in some sentential form) a subsequence (Yi,1Xi,1Yi,0Xi,0)2

p−3
(not

necessarily a subword!) which is not deleted as long as this ai is not deleted. The
latter statement follows from the fact that ai and its descendants are not able to
insert symbols which delete the elements of Zi. Let p = 3, that is, we consider
the third symbol from A, the second a1. As the first (leftmost) a0 inserted the
subsequence Y0,0X0,0, the descendants of the second a1 should insert the symbols
which delete Y0,0X0,0 (see Claim 2). That is, the subsequence D1,0D1,1 should
appear among the descendants of the second a1 in some sentential form (as D1,0
is the only symbol which deletes elements of X0, D1,1 is the only symbol which
deletes elements of Y0 and D1,1 is the only possible descendant of a1, which
deletes D1,0). However, in order to insert this sequence to the left of all elements
of Z1 (which are descendants of this ai – see Claim 3), a subsequence

Y1,1X1,1Y1,0X1,0 = (Y1,1X1,1Y1,0X1,0)2
3−3

should be inserted.
Now, assume that the statement is true for p−1 < 2m. Thus, the pth element

of A, say ai, and its descendants should insert symbols which are able to delete
the sequence (Y1−i,1X1−i,1Y1−i,0X1−i,0)2

p−4
(see Claim 2). Note that elements

of X1−i can be deleted only by Di,0 or F0. However, F0 cannot be a descendant of
ai. Similarly, elements of Y1−i can be deleted only by Di,1 or F1, but F1 cannot
be a descendant of ai. As the descendants of the pth symbol from A (which is
equal to ai) have to delete

(Y1−i,1X1−i,1Y1−i,0X1−i,0)2
p−4 ∈ (Y1−iX1−i)2

p−3
,

by Claim 2, the derivation should contain a subsequence of sentential forms
v1, . . . , v2p−2 such that the leftmost descendant of the considered ai in vj is
equal to Di,(j−1) mod 2. Indeed, only the leftmost descendant of a symbol a is
able to delete a symbol which is not a descendant of this a. Moreover, by Claim 3,
only the leftmost descendants of ai which belongs to Zi is allowed to insert an
element of Di. And, no descendant of ai which belongs to Zi is deleted until this
ai is deleted (because it is not possible that a descendant of ai is able to delete
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an element of Zi). So, in order to obtain first Di,0 (as the leftmost descendant
of ai in v1), a subsequence Yi,0Xi,0 should be inserted. Further, assume that
Di,(j−1) mod 2 is the leftmost descendant of ai in vj . In order to obtain Di,j mod 2
as the leftmost descendant of ai, it is needed that at least Yi,(j−1) mod 2 which
inserted Di,(j−1) mod 2, inserts Xi,j mod 2 which in turn inserts Yi,j mod 2 and
it finally inserts Di,j mod 2. However, it means that the pth element of A (and
its descendants) inserts a subsequence (Yi,1Xi,1Yi,0Xi,0)2

p−3
which is not deleted

by its descendants.
So, finally, the rightmost element of A, that is a0 which is the (2m)th

element, inserts a subsequence (Y0,1X0,1Y0,0X0,0)2
2m−3

that will not be dele-
ted by its descendants. Similarly as in Theorem 2, at least one copy of F
from the sequence (F0F1)n is needed to delete one symbol from the sequence
(Y0,1X0,1Y0,0X0,0)2

2m−3
(as F0 deletes only X0,1,X0,0 and F1 deletes only

Y0,1,Y0,0. Thus, it is required that n ≥ 22m−2. ��

Theorem 6. The language L(G) is not context-free.

Proof. As CFL is closed under intersection with regular languages, if L(G) is
context-free, then the language L′ = L ∩ (a1a0)+(F0F1)+ is a context-free lan-
guage as well. However, by Propositions 7 and 8, L′ is equal to the non context-
free language {(a1a0)m(F0F1)n |n ≥ 22m−2}. ��
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Abstract. The shrinking two-pushdown automaton is known to char-
actize the class of growing context-sensitive languages, while its deter-
ministic variant accepts the Church-Rosser languages. Here we study
the expressive power of shrinking pushdown automata with more than
two pushdown stores, obtaining a close correspondence to linear time-
bounded multi-tape Turing machines.

1 Introduction

The pushdown automaton is a by now classical machine model used to analyze
languages. It is known that the (deterministic) pushdown automaton corresponds
exactly to the (deterministic) context-free languages [9]. Although of great im-
portance for practical applications as well as for theoretical considerations, the
context-free languages are not sufficiently powerful to express all those properties
of languages that one is interested in in applications. Therefore various meth-
ods have been proposed to extend the class of languages considered beyond the
context-free languages, but staying properly within the class of context-sensitive
languages.

Here we consider the multi-pushdown automaton, which is an automaton that
has a constant number k ≥ 2 of pushdown stores. On each of them it operates
in exactly the same way as a classical pushdown automaton operates on its
pushdown store. However, instead of a separate one-way input tape, the input
to a multi-pushdown automaton M is provided as the initial content of the first
pushdown store. Without any restrictions already the two-pushdown automaton
is a universal computing device. Therefore, we only consider multi-pushdown
automata that are shrinking, that is, for which there exists a weight function ω
that assigns a positive integer weight to each symbol of the pushdown alphabet
and to each internal state such that each transition step decreases the overall
weight of the actual configuration. It follows that these automata are linear
time-bounded.

In fact, it is easily seen that a realtime multi-pushdown automaton, that is,
a multi-pushdown automaton that consumes an input symbol in each step of
its computations, is shrinking. On the other hand, a linear time-bounded multi-
pushdown automaton can in general execute a linear number of steps within a

M. Lískiewicz and R. Reischuk (Eds.): FCT 2005, LNCS 3623, pp. 305–316, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



306 M. Holzer and F. Otto

computation without changing the weight of the configurations involved. Hence,
the shrinking model can be seen as an intermediate stage between the multi-
pushdown automaton that runs in realtime and the one that runs in linear time.

For the special case of two pushdown stores, this model has been introduced
by Buntrock and Otto in [6], where it is shown that the shrinking variant of
the two-pushdown automaton (2-PDA) characterizes the class GCSL of growing
context-sensitive languages considered by Dahlhaus and Warmuth [7]. Further,
based on the results of [6] it is shown in [11] that the deterministic variant of
the shrinking 2-PDA characterizes the class CRL of Church-Rosser languages of
McNaughton et. al. [10].

Here we investigate the expressive power of the shrinking multi-pushdown
automaton with more than two pushdown stores. Clearly, a multi-pushdown
automaton with three pushdown stores, that is, a 3-PDA, can simulate a flip-
pushdown automaton MFP [8] by using its first pushdown store as a read-only
input tape, and by using its other two pushdown stores for simulating the push-
down store of MFP , realizing a flip of the pushdown of MFP by shifting the
content of its second pushdown to its third pushdown or vice versa. Also a
3-PDA can simulate an input-reversal pushdown automaton MIP [4] by using
its first two pushdown stores for simulating the input tape of MIP , realizing an
input reversal of MIP by shifting the content of its first pushdown to its second
pushdown or vice versa, and by using its third pushdown to simulate the push-
down store of MIP . Thus, the shrinking multi-pushdown automaton can also be
seen as a common generalization of these automata.

We will see that the shrinking 3-PDA already characterizes the class of quasi-
realtime languages Q, which coincides with the complexity class NTIME(lin) [3].
In the deterministic case, on the other hand, we will see that by increasing the
number of pushdown stores, we obtain a strict infinite hierarchy of language
classes that approximates the complexity class DTIME(lin). Thus, we obtain a
close correspondence between shrinking multi-pushdown automata on the one
hand and linear time-bounded multi-tape Turing machines on the other hand,
both in the nondeterministic and in the deterministic case.

The paper is structured as follows. In Section 2 we give the formal definition
of the shrinking multi-pushdown automaton, and by presenting a detailed exam-
ple we show that the shrinking 3-PDA is already strictly more powerful than the
shrinking 2-PDA. In Section 3 we present the characterization of Q by the shrink-
ing 3-PDA, and in Section 4 we derive the announced results on the shrinking
deterministic multi-pushdown automaton. We conclude with Section 5, where
we address in short the generalization to shrinking alternating multi-pushdown
automata and some other variants of our model.

2 Definition

Throughout the paper ε will denote the empty word, and for a word w, we will
use wR to denote the mirror image of w. Finally, for any type of automaton A,
L(A) will denote the class of languages accepted by automata from that class.
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Definition 1. A k-pushdown automaton (k-PDA) is a nondeterministic au-
tomaton with k pushdown stores. Formally, it is defined by a 7-tuple M =
(Q, Σ,Γ,⊥, q0, F, δ), where

– Q is a finite set of internal states,
– Σ is a finite input alphabet,
– Γ is a finite tape alphabet containing Σ such that Γ ∩Q = ∅,
– ⊥ 	∈ Γ is a special symbol used to mark the bottom of the pushdown stores,
– q0 ∈ Q is the initial state,
– F ⊆ Q is the set of final states, and
– δ : Q×(Γ∪{⊥})k → Pfin(Q×(Γ ∗ ∪Γ ∗·⊥)k) is the transition relation, where

Pfin(Q×(Γ ∗ ∪ Γ ∗ ·⊥)k) denotes the set of finite subsets of Q×(Γ ∗ ∪ Γ ∗ ·⊥)k.

The automaton M is a deterministic k-pushdown automaton (k-dPDA), if δ
is a (partial) function from Q× (Γ ∪ {⊥})k into Q× (Γ ∗ ∪ Γ ∗ · ⊥)k.

A multi-pushdown automaton, MPDA for short, is a k-PDA for some k ≥ 2,
and a deterministic multi-pushdown automaton, dMPDA for short, is a k-dPDA
for some k ≥ 2.

A configuration of a k-PDA is described by a (k +1)-tuple (q, u1, u2, . . . , uk),
where q ∈ Q is the actual state, and ui ∈ (Γ ∗ · {⊥}) ∪ {ε} is the current con-
tent of the i-th pushdown store (1 ≤ i ≤ k). Here we assume that the first
letter of ui is at the top and the last letter of ui is at the bottom of the push-
down store. For an input string w ∈ Σ∗, the corresponding initial configuration
is (q0, w⊥,⊥, . . . ,⊥), that is, the input is given as the initial content of the
first pushdown store, while all other pushdown stores just contain the bottom
marker. The k-PDA M induces a computation relation 0∗M on the set of config-
urations, which is the reflexive transitive closure of the single-step computation
relation 0M . The k-PDA M accepts with empty pushdown stores, that is,

L(M) := {w ∈ Σ∗ | (q0, w⊥,⊥, . . . ,⊥) 0∗M (q, ε, ε, . . . , ε) for some q ∈ F }

is the language accepted by M .
For our investigation the notion of weight function will be crucial. A weight

function ω on an alphabet Γ is a mapping ω : Γ → N+. It is extended to a
morphism ω : Γ ∗ → N by defining ω(ε) := 0 and ω(wa) := ω(w) + ω(a) for all
w ∈ Γ ∗ and a ∈ Γ .

Definition 2. A k-PDA M is called shrinking if there exists a weight function
ω : Q ∪ Γ ∪ {⊥} → N+ such that, for all q ∈ Q and u1, . . . , uk ∈ Γ ∪ {⊥}, if
(p, v1, . . . , vk) ∈ δ(q, u1, . . . , uk), then ω(p) +

∑k
i=1 ω(vi) < ω(q) +

∑k
i=1 ω(ui)

holds. By k-sPDA we denote the corresponding class of shrinking automata.
Analogously, the shrinking variant of the k-dPDA is defined, which is denoted

by k-sdPDA. Without fixing the parameter k we obtain the corresponding classes
sMPDA and sdMPDA.

The 2-sPDA coincides with the sTPDA of Buntrock and Otto [6], both in
the deterministic and the nondeterministic case. It is known that the class of
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languages accepted by the sTPDA coincides with the class GCSL of growing
context-sensitive languages, and that the sdTPDA characterizes the class CRL of
Church-Rosser languages [11].

Example 1. We present a 3-sdPDA MGl = (Q, Σ,Γ,⊥, q0, F, δ) for the Gladkij
language LGl := {w#wR#w | w ∈ {a, b}∗ }. This language is quasi-realtime,
but it is not growing context-sensitive [2,5], that is, it is not accepted by any
2-sPDA.

We define MGl by taking Q := {q0, q1, q2, q3}, Σ := {a, b, #}, Γ := Σ ∪
{a′, b′}, F := {q3}, and δ is defined as follows:

(q0, c,⊥,⊥) → (q0, ε, c
′⊥,⊥) for all c ∈ {a, b};

(q0, c, d
′,⊥) → (q0, ε, c

′d′,⊥) for all c, d ∈ {a, b};
(q0, #, d′,⊥) → (q1, ε, d

′,⊥) for all d′ ∈ {a′, b′,⊥};
(q1, c, c

′,⊥) → (q1, ε, ε, c
′⊥) for all c ∈ {a, b};

(q1, c, c
′, d′) → (q1, ε, ε, c

′d′) for all c, d ∈ {a, b};
(q1, #,⊥, d′) → (q2, ε,⊥, d′) for all d′ ∈ {a′, b′,⊥};
(q2, c,⊥, c′) → (q2, ε,⊥, ε) for all c ∈ {a, b};
(q2,⊥,⊥,⊥) → (q3, ε, ε, ε).

Let w = c1c2 . . . cn ∈ {a, b}+. On input w#wR#w, MGl executes the follow-
ing computation:

(q0, w#wR#w⊥,⊥,⊥) 0M (q0, c2 . . . cn#wR#w⊥, c′1⊥,⊥)
0M (q0, c3 . . . cn#wR#w⊥, c′2c

′
1⊥,⊥)

0∗M (q0, #wR#w⊥, c′n . . . c
′
2c

′
1⊥,⊥)

0M (q1, w
R#w⊥, c′n . . . c

′
2c

′
1⊥,⊥)

0M (q1, cn−1 . . . c2c1#w⊥, c′n−1 . . . c
′
2c

′
1⊥, c′n⊥)

0∗M (q1, #w⊥,⊥, c′1c
′
2 . . . c

′
n⊥)

0M (q2, w⊥,⊥, c′1c
′
2 . . . c

′
n⊥)

0M (q2, c2 . . . cn⊥,⊥, c′2 . . . c
′
n⊥)

0∗M (q2,⊥,⊥,⊥)
0M (q3, ε, ε, ε).

If w = ε, then on input w#wR#w, MGl executes the computation

(q0, ##⊥,⊥,⊥) 0M (q1, #⊥,⊥,⊥) 0M (q2,⊥,⊥,⊥) 0M (q3, ε, ε, ε),

and if the given input is not of the form w#wR#w, then MGl is easily seen to
not accept. Thus, we have L(MGl) = LGl.

It remains to prove that MGl is shrinking. We define a weight function ω :
Q ∪ Γ ∪ {⊥}→ N+ as follows:

ω(c) := 2 for all c ∈ {a, b};
ω(c′) := 1 for all c′ ∈ {a′, b′};
ω(#) := 1;
ω(⊥) := 1;
ω(q) := 1 for all q ∈ Q.
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Then it is easily checked that each transition step of MGl is weight-reducing with
respect to this weight function.

For k ≥ 1, let NTIMEk(lin) denote the class of languages that are accepted by
nondeterministic k-tape Turing machines in linear time. Thus, L ∈ NTIMEk(lin)
if and only if there exist a k-tape nondeterministic Turing machine T and a
constant c ∈ N+ such that, for all words w, w ∈ L if and only if T accepts on
input w within c · |w| many steps. Further, let

NTIME(lin) :=
⋃
k≥1

NTIMEk(lin),

that is, NTIME(lin) is the class of languages accepted by nondeterministic Tur-
ing machines in linear time. With DTIMEk(lin) and DTIME(lin) we denote the
corresponding deterministic classes.

Obviously, each k-sPDA (k-sdPDA) can be simulated by a nondeterministic
(deterministic) k-tape Turing machine that runs in linear time. Hence, we have
the following inclusions.

Corollary 1.
(a) CRL = L(2-sdPDA) � L(3-sdPDA) ⊆ L(sdMPDA) ⊆ DTIME(lin).
(b) GCSL = L(2-sPDA) � L(3-sPDA) ⊆ L(sMPDA) ⊆ NTIME(lin).

3 On the Expressive Power of 3-sPDA

Here we derive a characterization of the class L(3-sPDA) in terms of language
and complexity classes that have been studied in the literature, which proves
that the 3-sPDA is quite expressive indeed.

By Q we denote the class of quasi-realtime languages. This is the class of
languages that are accepted by nondeterministic multitape Turing machines in
realtime, that is, Q = NTIME(n). As shown by Book and Greibach, Q admits
the following characterization.

Proposition 1. [3] The following statements are equivalent for each language L:

(a) L is quasi-realtime, that is, L ∈ Q;
(b) L is accepted by a nondeterministic multitape Turing machine in linear time,

that is, L ∈ NTIME(lin);
(c) L is accepted in realtime by a 3-PDA with an additional one-way read-only

input tape;
(d) L is the length-preserving homomorphic image of the intersection of three

context-free languages, that is, there exist three context-free languages L1,L2,
and L3 and a length-preserving morphism h such that L = h(L1 ∩L2 ∩L3).

Thus, we see that L(sMPDA) ⊆ Q holds. Actually, we will show in the fol-
lowing that already L(3-sPDA) coincides with the complexity class Q, which
improves upon part (c) of the above proposition is as far as our 3-sPDA has
no additional input tape. For doing so we will use the characterization of Q in
Proposition 1(d).
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Theorem 1. The class L(3-sPDA) is closed under intersection.

Proof. For i = 1, 2, let Mi = (Qi, Σ,Γi,⊥, q
(i)
0 , Fi, δi) be a 3-sPDA that accepts

the language Li ⊆ Σ∗. Here we assume that Γ1∩Γ2 = Σ, and that Q1∩Q2 = ∅.
Further, let ωi be a weight function that is compatible with Mi, i = 1, 2. We
construct a 3-sPDA M for the language L := L1 ∩ L2 as follows.

Let Σ̂ and Σ̃ be two new copies of the alphabet Σ, and let M ′
1 be the 3-sPDA

that is obtained from M1 by replacing the input alphabet Σ by Σ̂, and let M ′
2 be

the 3-sPDA that is obtained from M2 by replacing the input alphabet Σ by Σ̃.
The 3-PDA M has input alphabet Σ and tape alphabet Γ := Σ∪Γ ′

1∪Γ ′
2∪Σ′,

where Γ ′
i is the tape alphabet of M ′

i , i = 1, 2, and Σ′ is another new copy of
the input alphabet Σ. Further, its set of states is Q := Q1 ∪ Q2 ∪ {q0, q1},
where q0 and q1 are two new states. It proceeds as follows, starting with an
initial configuration of the form (q0, w⊥,⊥,⊥), where w ∈ Σ∗. First it shifts the
input word w to its second pushdown store, replacing w by the corresponding
word w′ ∈ Σ′∗, which yields a configuration of the form (q1,⊥, w′R⊥,⊥). Then
it shifts w′ back to the first pushdown store, replacing each symbol a′ by the
corresponding symbol â (a ∈ Σ), and at the same time it copies w′ to the
third pushdown store, replacing each symbol a′ by the corresponding symbol ã
(a ∈ Σ). In this way a configuration of the form (q(1)

0 , ŵ⊥,⊥, w̃⊥) is reached.
Next M simulates the 3-sPDA M ′

1 on input ŵ, while treating the first symbol
of w̃ on its third pushdown store as the bottom marker of that pushdown store.
If w ∈ L1, then M ′

1 eventually reaches a configuration of the form (q′,⊥,⊥, w̃⊥)
for some q′ ∈ Q1, in which it would now pop the topmost symbols from all three
pushdown stores, in this way accepting the input ŵ. Instead M moves to the
configuration (q(2)

0 ,⊥,⊥, w̃⊥) and starts simulating the 3-sPDA M ′
2 on input w̃,

interchanging the roles of its first and its third pushdown stores. Finally, M
accepts if M ′

2 accepts. It follows easily that L(M) = L1 ∩ L2.
Finally we obtain a compatible weight function ω for M as follows:

ω(a) := ω1(a) + ω2(a) + 2 for all a ∈ Σ;
ω(a′) := ω1(a) + ω2(a) + 1 for all a ∈ Σ;
ω(â) := ω1(a) for all a ∈ Σ;
ω(ã) := ω2(a) for all a ∈ Σ;
ω(A) := ω1(A) for all A ∈ Γ ′

1 	 Σ̂;
ω(B) := ω2(B) for all B ∈ Γ ′

2 	 Σ̃;
ω(q0) := ω1(q

(1)
0 ) + ω2(q

(2)
0 ) + 2;

ω(q1) := ω1(q
(1)
0 ) + ω2(q

(2)
0 ) + 1;

ω(q(1)) := ω1(q(1)) + ω2(q
(2)
0 ) for all q(1) ∈ Q1;

ω(q(2)) := ω2(q(2)) for all q(2) ∈ Q2.

It is easily seen that M is weight-reducing with respect to this weight function.
��

In the proof above the 3-sPDA M for L1 ∩L2 is deterministic, if the 3-sPDA
M1 and M2 for L1 and L2 are.



Shrinking Multi-pushdown Automata 311

Theorem 2. The class L(3-sPDA) is closed under ε-free morphisms.

Proof. Let M = (Q, Σ,Γ,⊥, q0, F, δ) be a 3-sPDA that accepts the language
L ⊆ Σ∗ and that is compatible with the weight function ω, and let ϕ : Σ∗ → Δ∗

be an ε-free morphism. We claim that the language ϕ(L) := {ϕ(w) | w ∈ L } is
accepted by a 3-sPDA M ′.

The 3-sPDA M ′ proceeds as follows, where Δ′ is a new alphabet that is in
one-to-one correspondence to Δ, and w ∈ Δ∗ :

(q′0, w⊥,⊥,⊥) 0∗M ′ (q′1,⊥, w′R⊥,⊥)
0∗M ′ (q0, x⊥,⊥,⊥) for some x ∈ ϕ−1(w),

where the pre-image x ∈ ϕ−1(w) is computed iteratively by popping a non-
empty factor u′R from the second pushdown store while pushing a letter a ∈ Σ
satisfying ϕ(a) = u onto the first pushdown store. Observe that ϕ(a) 	= ε for each
letter a ∈ Σ, which means that only non-empty factors u′ must be considered.
Then the 3-sPDA M is being simulated on input x. Thus, M ′ accepts on input w
if and only if ϕ−1(w) ∩ L 	= ∅, that is, L(M ′) = ϕ(L).

As ϕ is an ε-free morphism, it is easily seen that there exists a weight func-
tion ω′ that is compatible with M ′. Essentially ω′ agrees with ω on all symbols
A ∈ Γ , and for all c ∈ Δ, we simply take ω′(c) := 1 + max{ω(a) | a ∈ Σ }. ��

Based on the closure properties of L(3-sPDA) established above, we obtain
the following characterization.

Theorem 3. L(3-sPDA) = Q.

Proof. According to Proposition 1 a language L belongs to the class Q if and
only if it is the image of the intersection of three context-free languages with
respect to a length-preserving morphism. As CFL ⊂ GCSL ⊂ L(3-sPDA), and
as L(3-sPDA) is closed under intersection, the intersection of three context-free
languages is accepted by a 3-sPDA. Furthermore, a length-preserving morphism
is obviously ε-free, and hence, the closure of L(3-sPDA) under ε-free morphisms
implies that Q ⊆ L(3-sPDA).

On the other hand, each 3-sPDA can be simulated by a nondeterminis-
tic three-tape Turing machine that runs in linear time. Thus, L(3-sPDA) ⊆
NTIME3(lin) ⊆ NTIME(lin) = Q, implying that L(3-sPDA) = Q holds. ��

As a consequence we obtain that adding more pushdown stores to shrinking
multi-pushdown automata does not increase their expressive power. Thus, the
chain of inclusions of Corollary 1(b) actually looks as follows.

Corollary 2.
GCSL = L(2-sPDA) � L(3-sPDA) = L(sMPDA) = Q = NTIME(lin).

As a special case we may include the class 1-sPDA, where an automaton from
this class has a one-way read-only input tape in addition to its one pushdown
store. Based on Greibach’s normal form result, it is easily seen that each context-
free language is accepted by a 1-sPDA, which yields the three-level hierarchy

CFL = L(1-sPDA) � GCSL = L(2-sPDA) � Q = L(3-sPDA).
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4 An Infinite Hierarchy for Deterministic Shrinking
Multi-pushdown Automata

Obviously, we have the chain of inclusions

( ∗ ) L(1-sdPDA) ⊆ · · · ⊆ L(k-sdPDA) ⊆ L((k + 1)-sdPDA) ⊆ · · · ⊆ L(sdMPDA),

where each 1-sdPDA is equipped with an additional one-way read-only input
tape in addition to its one pushdown store.

Proposition 2. DCFL = L(1-sdPDA).

Proof. As each 1-sdPDA is a deterministic PDA, the inclusion from right to left
is obvious.

Conversely, it is known that each deterministic context-free language can be
accepted by a deterministic PDA for which the only ε-transitions pop symbols
from the pushdown store (see [9] Ex. 10.2). Such a deterministic PDA has running
time O(n), and it is easily seen to be shrinking. Thus, we see that DCFL =
L(1-sdPDA) holds. ��

Next we relate Turing machines with linear running time to shrinking multi-
pushdown automata.

Theorem 4. DTIME1(lin) ⊆ L(3-sdPDA).

Proof. Let T = (QT , Σ,ΓT , q
(T )
0 , FT , δT ) be a single-tape deterministic Turing

machine with state set QT , input alphabet Σ, tape alphabet ΓT containing Σ,
initial state q

(T )
0 ∈ QT , the set of final states FT ⊆ QT , and the transition relation

δT : QT ×ΓT → (Q×ΓT ×{−1, 0, +1}). Further, let c ∈ N+ be a constant such
that the running time of T is bounded from above by the function c · n.

We define a 3-sdPDA M = (Q, Σ,Γ,⊥, q0, F, δ) for simulating the Turing
machine T as follows:

– Q := {q0, q1, qa} ∪QT ,
– Γ := ΓT ∪Σ′ ∪ {#}, where Σ′ := { a′ | a ∈ Σ },
– F := {qa}, and
– δ is defined as follows, where d′ := d for all symbols d ∈ ΓT 	 Σ and � ∈ ΓT

denotes the blank symbol:

(1) (q0,⊥,⊥,⊥) → (qa, ε, ε, ε) if ε ∈ L(T );
(2) (q0, a,⊥,⊥) → (q0, ε, a

′⊥, #c+2⊥) for all a ∈ Σ;
(3) (q0, a, b

′, #) → (q0, ε, a
′b′, #c+2) for all a, b ∈ Σ;

(4) (q0,⊥, b′, #) → (q1, b
′⊥, ε, ε) for all b ∈ Σ;

(5) (q1, a
′, b′, #) → (q1, b

′a′, ε, ε) for all a, b ∈ Σ;
(6) (q1, a

′,⊥, #) → (q(T )
0 , a′,⊥, #) for all a ∈ Σ;

(7) (q(T ), a′, d, #) → (p(T ), b′, d, ε) if (p(T ), b, 0) ∈ δT (q(T ), a);
(8) (q(T ),⊥, d, #) → (p(T ), b′⊥, d, ε) if (p(T ), b, 0) ∈ δT (q(T ), �);
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(9) (q(T ), a′, d, #) → (p(T ), db′, ε, ε) if (p(T ), b,−1) ∈ δT (q(T ), a), d 	= ⊥;
(10) (q(T ), a′,⊥, #) → (p(T ), �b′,⊥, ε) if (p(T ), b,−1) ∈ δT (q(T ), a);
(11) (q(T ),⊥, d, #) → (p(T ), db′⊥, ε, ε) if (p(T ), b,−1) ∈ δT (q(T ), �), d 	= ⊥;
(12) (q(T ),⊥,⊥, #) → (p(T ), �b′⊥,⊥, ε) if (p(T ), b,−1) ∈ δT (q(T ), �);

(13) (q(T ), a′, d, #) → (p(T ), ε, b′d, ε, ε) if (p(T ), b, 1) ∈ δT (q(T ), a), a′ 	= ⊥;
(14) (q(T ),⊥, d, #) → (p(T ),⊥, b′d, ε) if (p(T ), b, 1) ∈ δT (q(T ), �);

(15) (q(T ), a′, b′, #) → (qa, a′, b′, ε) for q(T ) ∈ FT ;
(16) (qa, a′, b′, #) → (qa, a′, b′, ε) for all a′, b′ ∈ ΓT ∪Σ′;
(17) (qa, a′, b′,⊥) → (qa, a′, ε,⊥) for all b′ ∈ ΓT ∪Σ′;
(18) (qa, a′,⊥,⊥) → (qa, ε,⊥,⊥) for all a′ ∈ ΓT ∪Σ′;
(19) (qa,⊥,⊥,⊥) → (qa, ε, ε, ε).

Given an input w = a1a2 . . . an ∈ Σn for some n ≥ 1, M proceeds as follows.
First M pushes c · n + 1 copies of the special symbol # onto its third pushdown
store:

(q0, a1a2 . . . an⊥,⊥,⊥) 0M (q0, a2 . . . an⊥, a′1⊥, #(c+1)+1⊥)
0∗M (q0,⊥, a′n . . . a

′
1⊥, #(c+1)·n+1⊥)

0M (q1, a
′
n⊥, a′n−1 . . . a

′
1⊥, #(c+1)·n⊥)

0∗M (q1, a
′
1 . . . a

′
n⊥,⊥, #c·n+1⊥).

Next M simulates the computation of T step by step, using its first pushdown
store for storing the suffix of the tape content of T starting from the position of
T ’s head, and its second pushdown store for storing the prefix of the tape content
of T to the left of the position of T ’s head. In each simulation step an occurrence
of the symbol # is popped from the third pushdown store. Should M run out
of #-symbols before a final state of T is reached, then the computation halts
without accepting. However, if w ∈ L(T ), then according to our assumption,
there is an accepting computation of T of length at most c · n, that is, by
simulating this computation, M will eventually reach a configuration of the form
(q(T ), v⊥, u⊥, #m⊥), where q(T ) ∈ FT , u, v ∈ Γ ∗

T , and m ≥ 1. Then steps (15)
to (19) make M enter its final state qa and empty its pushdown stores. Thus,
we see that L(T ) ⊆ L(M) holds.

Conversely, if M accepts an input w ∈ Σn, then each accepting computation
of M consists of three phases. In the first phase c · n + 1 copies of the symbol #
are pushed onto the third pushdown store, in the second phase an accepting
computation of T on input w is simulated, and then the pushdown stores are
emptied. Hence, we actually have the equality L(M) = L(T ).

It remains to show that M is shrinking with respect to some weight function.
We define a weight function ω : Q ∪ Γ ∪ {⊥}→ N+ as follows:

ω(a) := 3 · c + 8 for all a ∈ Σ;
ω(b) := 1 for all b ∈ Γ 	 (Σ ∪ {#});
ω(q) := 1 for all q ∈ QT ∪ {qa,⊥};
ω(#) := 3;
ω(qi) := 2 for all i ∈ {0, 1}.
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In instruction (2) an occurrence of a letter a ∈ Σ is replaced by an occurrence
of the corresponding letter a′ ∈ Σ′ and (c + 2) occurrences of the symbol #. As
ω(a′) + (c + 2) · ω(#) = 1 + (c + 2) · 3 = 3 · c + 7 < ω(a), we see that this step is
actually shrinking with respect to ω.

In instruction (12) an occurrence of the symbol # is replaced by �b′ for some
b′ ∈ Γ 	 (Σ ∪ {#}). As ω(#) = 3 > 2 = ω(�) + ω(b′), also this instruction is
shrinking with respect to ω.

All the other instructions are easily seen to be weight-reducing with respect
to ω. Thus, M is indeed shrinking.

Thus, DTIME1(lin) ⊆ L(3-sdPDA). ��

In the simulation above two pushdown stores are used to simulate the tape of
the Turing machine, and the third pushdown store is used to make the simulation
weight-reducing. The same technique can be used to simulate a k-tape Turing
machine that is linear time-bounded. Of course, then we need 2k + 1 pushdown
stores. Further, let DTIME1,k(lin) denote the class of languages that are accepted
in linear time by deterministic on-line Turing machines with k work tapes. In
addition to its k work tapes, such a Turing machine has a separate input tape
that is one-way and read-only. For the simulation of such a machine, we need
2k + 2 pushdown stores, as we need one pushdown store to play the role of the
input tape.

Corollary 3. For all k ≥ 1, (a) DTIMEk(lin) ⊆ L((2k + 1)-sdPDA).
(b) DTIME1,k(lin) ⊆ L((2k + 2)-sdPDA).

Aanderaa has shown in [1] that

DTIME1,k(n) � DTIME1,k+1(n)

holds for all k ∈ N+ by presenting a language Lk that is accepted by an on-line
(k +1)-tape Turing machine in realtime, but that is not accepted by any on-line
k-tape Turing machine in realtime. Actually, Lk is not accepted by any on-line k-
tape Turing machine with time-bound t(n) satisfying t(n) < n·(logn)1/(1+k) [13].
Even more, the on-line (k + 1)-tape Turing machine for Lk just uses its (k + 1)
work tapes as pushdown stores. As realtime computations are obviously weight-
reducing, it follows that

Lk ∈ L((k + 2)-sdPDA) 	 DTIME1,k(lin).

Thus, for each k ≥ 2, we have L(k-sdPDA) ⊆ DTIMEk(lin) ⊆ DTIME1,k(lin),
while L((k + 2)-sdPDA) 	⊂ DTIME1,k(lin). It follows that

L(k-sdPDA) � L((k + 2)-sdPDA).

This proves the following separation result.

Theorem 5. The chain (∗) contains an infinite number of proper inclusions.
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Hence, the language classes L(k-sdPDA) (k ≥ 1) form an infinite strict hi-
erarchy within the class Q, with DCFL = L(1-sdPDA) being the first level and
CRL = L(2-sdPDA) being the second level. Observe that⋃

k≥1

L(k-sdPDA) = L(sdMPDA) = DTIME(lin) � NTIME(lin) = Q,

where the fact that DTIME(lin) is properly included in NTIME(lin) is proved
in [15].

It remains open at this point whether there exist any integers k ≥ 3 such that
the language classes L(k-sdPDA) and L((k + 1)-sdPDA) coincide, or whether we
have L(k-sdPDA) � L((k + 1)-sdPDA) for all k ≥ 3.

5 Concluding Remarks

In [12] the shrinking alternating two-pushdown automaton (2-sAPDA) is con-
sidered, which is the alternating variant of the 2-sPDA. Obviously, we can gen-
eralize alternation to shrinking multi-pushdown automata with more than two
pushdown stores. If we denote by ATIMEk(lin) the class of languages that are ac-
cepted by alternating k-tape Turing machines in linear time, and ATIME(lin) :=⋃

k≥1 ATIMEk(lin), then we have the equality ATIME(lin) = ATIME1(lin) ac-
cording to [14]. As Theorem 4 easily extends to the case of alternating machines,
this yields the following consequence.

Corollary 4. L(3-sAPDA) = ATIME(lin) .

Together with the results of [12] this gives the following sequence of inclusions:

GCSL = L(2-sPDA) � L(2-sAPDA) ⊆ L(3-sAPDA) = ATIME(lin) .

However, it remains open whether or not the 3-sAPDA is more expressive than
the 2-sAPDA.

At least two other variants of the shrinking multi-pushdown automata con-
sidered here come to mind. First, there is the multi-pushdown automaton with
an additional one-way read-only input tape. The 3-sPDA of Example 1 uses its
first pushdown store just as an input tape. Hence, already the shrinking two-
pushdown automaton with an additional input tape accepts the Gladkij lan-
guage. Is the corresponding language class properly contained in the complexity
class Q, or is this model as powerful as the 3-sPDA? Secondly, instead of con-
sidering pushdown stores one may consider stacks [9]. It is easily seen that a
shrinking one-stack machine with an additional one-way input tape can accept
the Gladkij language. Where does the resulting language class lie in relation to
the language classes considered in this paper? What about shrinking two-stack
automata with or without an additional one-way input tape? Obviously, the
shrinking three-stack automaton yields another characterization of the class Q.
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Michael Brinkmeier

Technical University of Ilmenau,
Institute for Theoretical and Technical Computer Science

mbrinkme@tu-ilmenau.de

Abstract. We present an algorithm which calculates a minimum cut
and its weight in an undirected graph with nonnegative real edge weights,
n vertices and m edges, in time O(

(
max (log n, min (m/n, δG/ε)) n2),

where ε is the minimal edge weight, and δG the minimal weighted degree.
For integer edge weights this time is further improved to O(δGn2) and
O(λGn2).

In both cases these bounds are improvements of the previously known
best bounds of deterministic algorithms. These were O(nm+log nn2) for
real edge weights and O(nM +n2) and O(M +λGn2) for integer weights,
where M is the sum of all edge weights.

1 Introduction

The problem of finding a minimum cut of a graph appears in many applications,
for example, in network reliability, clustering, information retrieval and chip
design. More detailed, a minimum cut of an undirected graph with edge weights,
is a set of edges with minimum sum of weights, such that its removal would cause
the graph to become unconnected. The total weight of edges in a minimum cut
of G is denoted by λG and caled (edge-)connectivity of G.

In the literature many algorithms can be found applying various methods.
One group of algorithms is based on the well-known result of Ford and Fulkerson
[FF56] regarding the duality of maximum s-t-flows and minimum s-t-cuts for
arbitrary vertices s and t. In [GH61] Gomory and Hu presented an algorithm
which calculated n − 1 maximum s-t-flows from a given source s to all other
vertices t. Hao and Orlin adapted the maximum flow algorithm of Goldberg and
Tarjan [GT88] and were able to construct a minimum cut of a directed graph
with nonnegative real numbers as edge weights in time O(nm log(n2/m)).

Nagamochi and Ibaraki [NI92a, NOI94, NII99] described an algorithm with-
out using maximum flows. Instead they constructed spanning forests and itera-
tively contracted edges with high weights. This lead to an asymptotic runtime of
O(nm + n2 log n) on undirected graphs with nonnegative real edge weights. On
undirected, unweighted multigraphs they obtained a runtime of O(n(n + m)).
Translated to integer weighted graphs without parallel edges, this corresponds
to a runtime of O(n(n + M)) where M is the sum of all edge weights. Using a
‘searching’ technique, they improved this to O(M + λGn2).

M. Lískiewicz and R. Reischuk (Eds.): FCT 2005, LNCS 3623, pp. 317–328, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Their approach was refined in [SW97] by Stoer and Wagner. They replaced
the construction of spanning forests with the construction of Maximum Adja-
cency Orders but the asymptotic runtime stayed unchanged.

Karger and Stein [KS96] used the contraction technique for a randomized
algorithm calculating the minimum cut of undirected graphs in O(n2 log3 n)
expected time. Later Karger [Kar96, Kar98] presented two related algorithms
using expected time O(m log3 n) and O(n2 log n).

The last two algorithms are related to an approach of Gabow [Gab95] based
on matroids. He presented an algorithm for the minimum cut of an directed,
unweighted graph requiring O(λm log(n2/m)) time and based on this an algo-
rithm for undirected unweighted graphs with O(m + λ2n log(n/λ)), where λ is
the weight of a minimum cut.

In this paper we propose two changes of the algorithm of Stoer and Wagner
[SW97], which calculates a maximum adjacency order on the vertices of an undi-
rected graph and then contracts the last two vertices in this order. Repeating
this n − 1 times, allows the construction of a minimum cut. Our first change
leads to a reduced average runtime by contracting more than one pair of vertices
if possible, reducing the asymptotic worst case runtime for real weighted edges
to O
(
max (log n, min (m/n, δG/ε))n2

)
, where ε is the minimal edge weight. In

fact the same idea was already used in later versions of the algorithms of Nag-
amochi and Ibaraki [NOI94], but for some reason did not find its way into the
MA-order based algorithms (even those described by Nagamochi and Ibaraki)
[SW97, NI02] and the analysis of the worst case runtime.

For integer weighted edges our algorithm allows an additional relaxation
of the applied maximum adjacency orders, which in turn allows the usage of
an alternative data structure for the construction of the order. These priority
queues with threshold reduce the asymptotic runtime for undirected graphs with
nonnegative integer weights to O(δGn2), instead of O(Mn + n2) as obtained by
Nagamochi and Ibaraki1. Applying the same ‘search’ as Nagamochi and Ibaraki,
we obtain a time of O(λGn2) instead of O(M + λGn2).

Independent of the types of edge weights, the algorithm presented in this
paper requires at most the same time as the algorithm of Stoer and Wagner
[SW97].

2 The Problem and Notations

In the following let G = (V,E) be an undirected Graph without multiple edges
and self-loops. Let n = |V | the number of vertices and m = |E| the number of
edges. The latter ones are weighted by positive real numbers or integers, given
by a map w : V × V → R+ with w(u, v) = w(v, u) and w(u, v) = 0 if and only if
(u, v) 	∈ E. The degree deg(v) of a vertex is the sum of weights of incident edges,
ie. deg(v) =

∑
u∈V w(u, v). The minimal degree over all vertices of G is denoted

by δG. The sum of all edge weights is M = 1
2

∑
v∈V deg(v).

1 Remember that M is the sum of all edge weights and m the number of edges.
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A cut of G is an (unordered) partition (C,V \ C) of the vertex set into two
parts. For shorter notation the cut will often be written as C. The weight w(C)
of the cut C is the total weight of “cutted” edges, ie.

w(C) =
∑

(u,v)∈E
u∈C,v 	∈C

w(u, v).

For two vertices u and v a u-v-cut is a cut C such that u ∈ C and v 	∈ C or vice
versa, ie. C separates u and v. A minimum u-v-cut is a u-v-cut, whose weight is
minimal amongst all u-v-cuts of G. The weight of a minimum u-v-cut is denoted
by λG(u, v). A minimum cut is a cut C with minimal weight among all cuts of
G. Its weight λG is called the edge-connectivity of G. Obviously we have

λG = min {λG(u, v) | u, v ∈ V } .

For a subset U ⊆ V of vertices G[U ] denotes the induced subgraph of G, ie.
the graph consisting of the vertices in U and all edges of G between them. If
U = {v!, . . . , vm} we also write G[v1, . . . , vm].

Like the ones of Nagamochi/Ibaraki and Stoer/Wagner our algorithm will
be a contraction algorithm. Basically this means that it identifies one or more
pairs of “critical” vertices and contracts (or merges) them, obtaining a graph
with less nodes. Let u and v be two vertices of G = (V,E). The graph G/u ∼ v
is obtained from G by identifying u and v, this means that u and v are replaced
by a new vertex [u] = [v] and that the weights of the edges (x, u) and (x, v) are
added, ie. w(x, [u]) = w(x, u) + w(x, v).

Contraction algorithms rely on the following well-known theorem, relating
the edge-connectivity of a graph with the one of a quotient graph.

Theorem 1 (Thm 2.1 of [SW97]). Let u and v be two vertices of an undi-
rected, weighted graph G = (V,E). Then the edge-connectivity of G is the mini-
mum of the weights of a minimum v-u-cut and the edge-connectivity of the graph
G/u ∼ v, obtained by the identification of u and v, ie.

λG = min
(
λG(u, v),λG/u∼v

)
.

Proof. We have to differentiate two cases. Either each minimum cut of G sep-
arates u and v, then λG = λG(u, v) and λG/u∼v > λG, or there exists at least
one minimum cut not separating u and v and hence induces a minimum cut of
G/u ∼ v, leading to λG = λG/u∼v ≤ λG(u, v).

3 Maximum Adjacency Orders

The key for the algorithms of Nagamochi/Ibaraki and Stoer/Wagner are max-
imum adjacency orders on the vertices of the graph. The vertices v1, . . . vn are
arranged in a maximum adjacency order, if for each vi, i > 1, the sum of weights
from vi to all preceeding vertices v1, . . . vi−1 is maximal among all vertices vk

with k ≥ i.
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Definition 1 (Maximum Adjacency Order). Let G = (V,E) be an undi-
rected, weighted graph. An order v1, v2, . . . , vn on the vertices of G is an maxi-
mum adjacency order or MA-order, if

w(v1, . . . , vi−1; vi) :=
i−1∑
j=1

w(vi, vj) ≥
i−1∑
j=1

w(vk, vj) =: w(v1, . . . , vi−1; vk)

for all k ≥ i. The values w(v1, . . . , vi−1; vi) are called adjacencies.

The foundation of the algorithms of Nagamochi/Ibaraki and Stoer/Wagner
is the observation that the degree of vn in an MA-order is equal to the weight
of a minimum vn-vn−1-cut in G.

Lemma 1 (Lemma 3.1 of [SW97]). For each MA-order v1, . . . , vn of the
undirected, weighted Graph G = (V,E), the cut ({v1, . . . , vn−1}, {vn}) is a min-
imum vn-vn−1-cut.

Our algorithm is additionally based on the following simple observation.

Lemma 2. Let v1, . . . , vn be an MA-order of G = (V,E). Then v1, . . . , vl is an
MA-order of G[v1, . . . , vl].

Proof. Since
i−1∑
j=1

w(vi, vj) ≥
i−1∑
j=1

w(vk, vj)

for all k ≥ i for all 2 ≤ i ≤ l, the same obviously holds for i ≤ k ≤ l.

Corollary 1. For each MA-order v1, . . . , vn of G = (V,E) we have

λG(vi, vi−1) ≥ λG[v1,...,vi](vi, vi−1) = w(v1, . . . , vi−1; vi).

Proof. The equality of w(v1, . . . , vi−1; vi) and λG[v1,...,vi](vi, vi−1) is a direct con-
sequence of Lemma 2 and 1. Since the weight of a minimal vi−vi−1-cut increases,
if vertices and edges are added to the graph, the inequality is immediately clear.

For τ > 0, an MA-order v1, . . . , vn of the vertices of G = (V,E), and
1 ≤ i ≤ n, let the graphs Gτ

i be defined by Gτ
1 := G and Gτ

i+1 := Gτ
i if

w(v1, . . . , vi; vi+1) < τ , and

Gτ
i+1 ∈ {Gτ

i ,Gτ
i /[vi] ∼ vi+1}

if w(v1, . . . , vi; vi+1) ≥ τ where [vi] is the class of vertices in G containing vi.
In other words, the graphs Gτ

i are obtained from G by iteratively contracting
pairs of vertices vi and vi+1, such that the adjacency of vi+1 is greater than or
equal to τ . The resulting vertices represent sets, denoted by [vi], of vertices in
the original graph G. The last graph Gτ

n of this sequence is denoted by Gτ .
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Theorem 2. For an MA-order v1, . . . , vn of G = (V,E) and τ > 0 the following
equation holds for 1 ≤ i ≤ n

min (λG, τ) = min
(
δG,λGτ

i
, τ
)
.

Proof. We prove the theorem by induction over i. For i = 1 the statement is
trivial, since δG ≥ λG = λGτ

1
. Now assume that min(λG, τ) = min

(
δG,λGτ

i−1
, τ
)

for i > 1. If Gτ
i = Gτ

i−1, then the statement obviously holds. Now assume Gτ
i =

Gτ
i−1/[vi−1] ∼ vi. Then Lemma 1 induces λGτ

i−1
= min

(
λGτ

i−1
([vi−1], vi),λGτ

i

)
and hence

min (λG, τ) = min
(
δG,λGτ

i−1
, τ
)

= min
(
δG,λGτ

i−1
([vi−1], vi),λGτ

i
, τ
)
.

Since [vi−1] represents a set of vertices in G, each [vi−1]-vi-cut in Gτ
i−1 induces

a vi−1-vi-cut in G and hence, by definition of Gτ
i and Corollary 1

λGτ
i−1([vi−1],vi) ≥ λG(vi−1, vi) ≥ w(v1, . . . , vi−1; vi) ≥ τ,

thus
min (λG, τ) = min

(
δG,λGτ

i
, τ
)
.

Even though it is not clear how much vertices Gτ contains, we can limit the
total weight of all edges in Gτ .

Lemma 3. For an MA-order v1, . . . , vn on G = (V,E) and τ > 0 the total
weight of all edges of Gτ is less than (n− 1)τ .

Proof. The lemma is proved by induction over the number n of vertices in G. It
is obviously true for n = 1.

Since v1, . . . , vn−1 is an MA-order of G[v1, . . . , vn−1], we know that the total
edge weight of the induced subgraph of Gτ is less than (n−2)τ . If the adjacency
of vn is less than τ , then Gτ obviously has total edge weight less than (n− 1)τ .

Now assume that the adjacency of vn is at least τ . Let vi be the first vertex
in the MA-order, such that w(v1, . . . , vi; vn) ≥ τ , implying w(v1, . . . , vj ; vn) ≥ τ
for all indices i ≤ j ≤ n− 1. Hence, the adjacencies of vi, . . . , vn−1 are at least τ
and the complete sequence is contracted. Therefore, at most the edges between
vn and v1, . . . , vi−1 ‘survive’ in Gτ and the total edge weight of Gτ is less than
(n− 1)τ .

4 Lax Adjacency Orders

In this section we are going to use the threshold τ for the contraction in each
round to relax the restrictions of the maximum adjacency order. The basic ob-
servation leading to this improvement is the fact, that the exact order inside
a sequence of vertices with adjacency ≥ τ does not matter. Hence, during the
construction of the adjacency order, we may choose any vertex, as long as its
adjacency is above the threshold (if possible). We only have to chose a vertex of
maximum adjacency if it is below τ .
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Definition 2 (Lax Adjacency Order). Let G = (V,E) be an undirected,
weighted graph and τ ≥ 0. An order v1, v2, . . . , vn on the vertices of G is an lax
adjacency order or LA-order for threshold τ , if

min (τ, w(v1, . . . , vi−1; vi)) ≥ min (τ, w(v1, . . . , vi−1; vk))

for all k ≥ i.

Now we have to prove that a LA-order of threshold τ is an allowed replace-
ment for an MA-order in the construction of Gτ .

Lemma 4 (LA- and MA-orders). Let u1, . . . , un be an LA-order of G =
(V,E) and i1 < · · · < ik the indices of all vertices with w(u1, . . . , uil−1; uil

) < τ
for 1 ≤ l ≤ k. Then there exists an MA-order v1, . . . , vn with

1. vil
= uil

for 1 ≤ l ≤ k and
2. if uj = vj̄ and il < j < il+1 for 1 ≤ l < k, then il < j̄ < il+1 and
3. if uj = vj̄ and ik < j, then ik < j̄ and.

In other words, for each LA-order there exists an MA-order, such that the
vertices with adjacencies below the threshold are at the same positions, which
we are going to call ‘fix points’. Furthermore, vertices with adjacencies equal
to or greater than τ may be permuted, as long as they stay between the same
”fix points”. The sequences between two subsequent fix points are called ‘high
adjacency sequences’ and their members ‘vertices of high adjacency’.

Proof (of Lemma 4). We are going to construct an MA-order v1, . . . , vn for each
fix point il, such that the two conditions of the lemma hold for all indeces up to
position il.

Obviously i1 = 1 and hence, each MA-order beginning with u1 satisfies the
conditions up to position i1.

Now assume that we have an MA-order v1, . . . , vn with vik
= uik

for 1 ≤ i ≤ l,
and the high adjacency vertices up to position il are only permuted in their
specific sequences.

If il = ik, ie. if the last fixed point is reached, we are done.
Otherwise, observe that w(u1, . . . , uil+1−1; uk) < τ for each il+1 ≤ k, since

τ > w(u1, . . . , uil+1−1; uil+1) ≥ w(u1, . . . , uil+1−1; uk).

If il+1 = il +1, then we obviously may extend v1, . . . , vil
by uil+1 and obtain

an MA-order, which respects the fixed points and high adjacency sequences up
to position il+1.

If il+1 > il + 1, then there obviously exists a vertex (eg. uil+1) with an
adjacency equal to or greater than τ . Since all vertices uk with k ≥ il+1 have
low adjacency, the next vertex in each MA-order extending v1, . . . , vil

, has to be
in the high adjacency sequence between il and il+1.

As long as vertices of the high adjacency sequence between il and il+1 are not
integrated into the MA-order, it does not matter which vertex is chosen. Simply
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choose the first unused vertex of the sequence. Since all vertices preceeding it
in the LA-order are already used in the MA-order, its adjacency is at least τ ,
requiring the next vertex to be one member of the sequence (their adjacency is
below τ as observed above).

Since the high adjacency sequences of an LA- and a corresponding MA-order
are contracted to a single vertex, the resulting graph Gτ is the same.

Theorem 3. For an LA-order v1, . . . , vn with threshold τ > 0 on G = (V,E)
the following equation holds for 1 ≤ i ≤ n

min (λG, τ) = min (δG,λGτ , τ) .

5 The Algorithm

Thm. 3 provides us with a simple algorithm for the determination of a minimum
cut. Let τ > 0 be given.

1. While G contains two or more vertices, repeat
(a) Determine a vertex [v] of G with minimal degree.
(b) If δG < τ , set cut = [v].
(c) τ = min(τ, δG).
(d) G = Gτ for some LA-order with threshold τ .

2. The cut is given by the vertices in [v] and has weight τ .

First of all, the algorithm terminates, since the adjacency of the last vertex
vn is its degree and hence equal to or greater than δG and τ . Therefore Gτ has
less vertices than G and the algorithm reduces the number of nodes in each
round.

Let λ(G, τ) denote the resulting value τ of the algorithm with inputs G and τ .
We claim λ(G, τ) = min(λG, τ).

If G has exactly two nodes, then the algorithm returns min(τ, δG) and one
vertex as cut. If G has more than two nodes then the algorithm returns the same
result as if it was started with Gτ and τ = min(δG, τ), ie.

λ(G, τ) = λ
(
Gmin(τ,δG), min(τ, δG)

)
.

By induction over the number of nodes and thm 3 this leads to

λ(G, τ) = min (λGmin(τ,δG) , τ, δG) = min(λG, τ).

For the calculation of Gτ we have to construct an LA-order and then iter-
atively contract subsequent vertices vi−1 and vi with w(v1, . . . , wi−1; vi) ≥ δG,
where δG is the minimum degree. One way to implement one of these rounds
would be to order these nodes and then contract some of them. But in fact or-
dering and contraction may be done at the same time. Assume that v1, . . . , vn

is an arbitrary order of the vertices. Then

w(v1, . . . , vi−1; vi) = w(v1, . . . , vj ∼ vj+1, . . . , vi−1; vi),
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ie. contraction of preceeding vertices does not affect the adjacency of a vertex.
Hence we may construct the LA-order and, as soon as the adjacency is greater
or equal to δG, we may contract the newly added and the last vertex.

The LA-order may be build using a maximum priority queue. Assume that
we have n′ vertices and m′ edges. Each vertex has to be inserted and extracted
at most once, leading to n′ inserts and extractions. The priorities are updated
at most once for each edge, leading to m′ operations, resulting in a runtime
O(n′Tinsert + n′TextractMax + m′TincreaseKey) for queue operations per round.

For the first round we have n′ = n and m′ = m. For the subsequent rounds,
the total edge weight is bounded by δGn (Lemma 3). If ε > 0 is the minimal
edge weight, this bounds the number of edges by δGn/ε. Furthermore, we have
at most m edges, implying a bound of min(m, δGn/ε. This leads to a worst case
runtime O(nTinsert + nTextractMax + min(m, δG

ε n)TincreaseKey) in all subsequent
rounds.

Together with the time of O(n2), required for the n−1 contractions of vertex
pairs, the sum over at most n− 1 rounds is

O

(
n2 + n2Tinsert + n2TextractMax +

(
m + min

(
m

n
,
δG
ε

)
n2
)

TincreaseKey

)
.

Using Fibonacci Heaps, our algorithm has an amortized runtime of

O

(
n2 + n2 + n2 log n + m +

δG
ε

n2
)

= O

(
m + n2

(
log n + min

(
m

n
,
δG
ε

)))
= O

(
max
(

log n, min
(

m

n
,
δG
ε

))
n2
)
.

Theorem 4. Let G = (V,E) be a undirected graph with n vertices and m edges.

1. If its edges are weighted by nonnegative real numbers, Algorithm 1 calcu-
lates a minimum cut in O(

(
max
(
log n, min

(
m
n , δG

ε

))
n2
)

time, where ε is
the minimal weight of an edge.

2. If its edges are weighted by nonnegative integers, algorithm 1 calculates a
minimum cut in O(

(
max
(
log n, min

(
m
n , δG
))

n2
)

time.

As the following examples show, our estimation of n − 1 required rounds is
strict (exp. 2), but in many cases the algorithm needs less rounds (examples 1
and 3), leading to a lower average runtime.

Example 1. If G = (V,E) has vertices v1, . . . , vn and edges (vi, vi+1) for 1 ≤ i <
n, ie. it is a straight line, then v1, . . . , vn is a LA-order and v1 is a vertex of
minimum degree 1. Hence the algorithm contracts all vertices of G in the first
and only round, requiring O(n + m + log n) time.

Example 2. If G is a circle with n vertices v1, . . . , vn, ie. it has edges (vi, vi+1
for 1 ≤ i < n and (vn, v1). Then v1, . . . , vn is a LA-order and each vertex has
minimum degree. Since the adjacencies of the vi, except for vn, are all 1, only
vn−1 and vn are contracted, leading to a circle with one vertex less. Hence the
algorithm requires (n − 1) rounds, as does the original algorithm of Stoer and
Wagner, leading to the same runtime.
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Algorithm 1: The Minimum Cut Algorithm
Input: An undirected graph G = (V, E) with weights w
Output: A set cut of vertices of G forming a minimal cut of weight τ .

cut ← ∅, τ ← ∞
while |V | >= 2 do

forall v ∈ V do
Q.insert(v, 0)
if deg(v) < τ then τ ← deg(v), cut ← [v]

end
while Q is not empty do

adj ← Q.maxKey()
v ← Q.extractMax()
forall u ∈ V with (v, u) ∈ E do

if u ∈ Q then Q.increaseKey(u, Q.key(u) + w(v, u))
end
if τ ≤ adj then

contract v into u
[u] ← [u] ∪ [v]

end
u ← v

end
end

Example 3. On random graphs with n vertices and m edges the number of
rounds required by the algorithm varies depending on n and m. For graphs
with n between 1000 and 5000 and m between 1000 and 200n. Figure 1 shows
the number of rounds over the ratio m/n. The experiments showed that the
minimal number of required rounds increases with the edge-vertex-ratio, ie. the
average degree in the random graph.

Obviously an LA-order for threshold τ is an LA-order for a lower threshold
τ ‘ < τ . Hence we may decrease the weight during a round, possibly increasing the
number of contractions. This observation may be used in two ways. First of all,
the degree of the newly contracted node may be compared to the recent weight.
If it is smaller, then the new node describes a cut of lower weight. Secondly, the
set of all scanned vertices is a cut of the graph. Its weight can be updated easily,
since for each cut C and each vertex v 	∈ C, the following holds:

w(C ∪ {v}) = w(C) + deg(v)− 2
∑
(v,u)
u∈C

w(v, u).

Translated to our situation the weight of the cut increases by the degree of
the added node minus twice its adjacency. If the resulting weight is lower than
the currently known bound for the minimum cut, we may continue using the
better value instead. Both observations may be used to improve Algorithm 1.
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Fig. 1. The number of rounds required for random graphs

5.1 Priority Queues with Threshold

Up to this point we did not use the advantages of the threshold τ of lax adjacency
orders. Since we do not have to differentiate between vertices with priorities
above τ , we may use an alternative data structure, leading to a decreased worst
case runtime O(δGn2).

We are going to describe a priority queue with threshold τ , which allows
the same operations as a priority queue, namely insert, increaseKey and
extractMax. The two first operations behave as usual, but the third is changed
slightly. extractMax returns an entry of maximal priority, as a regular priority
queue does, if the maximal priority is lower than the threshold τ . Otherwise, it
returns an entry with a not necessarily maximal priority ≥ τ .

A priority queue with threshold τ consists of τ + 1 Buckets B0, . . . , Bτ . For
0 ≤ j ≤ τ − 1 the bucket Bj contains all entries (v, j) with value v and priority
j. The last bucket, Bτ contains all entries (v, p) with p ≥ τ in arbitrary order.
In addition we maintain the maximal index of a nonempty bucket in jmax. The
operations are implemented in the following way:

– insert(v, p): Insert (v, p) into Bmin(τ,p) and update jmax if necessary. This
requires O(1) time.

– increaseKey((v, p), q): If min(τ, q) > p the remove (v, p) from Bp and insert
(v, q) into Bmin(τ,q) and update jmax if necessary. This takes O(1) time.

– extractMax: Simply remove the first entry from bucket Bjmax . If this was the
last element in the bucket, search for the next nonempty bucket in decreasing
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order starting at jmax−1. In the worst case all τ buckets have to be examined,
requiring time O(τ).

Applying the same estimations as for Theorem 4, we obtain the following
result.

Theorem 5. A minimum cut of an undirected graph G = (V,E) with edges
weighted by nonnegative integers, can be calculated in O(δGn2 + m) = O(δGn2)
time.

Proof. As seen above, we require time

O
(
n2 + n2Tinsert + n2TextractMax +

(
m + min

(m
n

, δGn2
))

TincreaseKey

)
.

Using priority queues with thresholds, leads to a time of

O
(
n2 + n2 + δGn2 +

(
m + min

(m
n

, δGn2
)))

= O(δGn2).

By using a technique of Nagamochi and Ibaraki [NI92b] we may reduce the
asymptotic runtime to O(λGn2).

Corollary 2. Let G = (V,E) an undirected, integer weighted graph.

1. Given τ > 0 we may check in O(τn2) time, wether λG < τ . If this is the
case a minimum cut can be computed in the same time.

2. A minimum cut of G can be calculated in O(λGn2) time.

Proof. Following Theorem 2, we have min(λG, τ) = min(δG,λGτ , τ). Hence we
may calculate min(λG, τ) by using our algorithm with a starting threshold of τ .
This requires O(τn2) time. If λG < τ , we obtain a minimum cut of G, and part
one is proved.

We can use the first part for the second part. For increasing i = 1, 2, . . . check
wether λG < 2i using the above algorithm. This is repeated until 2i−1 ≤ λG < 2i.
In this case we obtain a minimum cut. The total runtime is

O(2n2) + . . .+ O(2i−1n2) + O(2in2)

= O((2 + · · ·+ 2i)n2) = O(2i+1n2)

= O(λGn2).
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Abstract. Many papers deal with the approximability of multi-criteria
optimization problems but only a small number of non-approximability
results, which rely on NP -hardness, exist in the literature. In this paper,
we provide a new way of proving non-approximability results which relies
on the existence of a small size good approximating set (i.e. it holds even
in the unlikely event of P = NP ). This method may be used for several
problems but here we illustrate it for a multi-criteria version of the travel-
ing salesman problem with distances one and two (TSP (1, 2)). Following
the article of Angel et al. (FCT 2003) who presented an approximation
algorithm for the bi-criteria TSP (1, 2), we extend and improve the result
to any number k of criteria.

1 Introduction

Multi-criteria optimization refers to problems with two or more objective func-
tions which are normally in conflict. Vilfredo Pareto stated in 1896 a concept
(known today as ”Pareto optimality”) that constitutes the origin of research
in this area. According to this concept, the solution to a multi-criteria opti-
mization problem is normally not a single value, but instead a set of values
(the so-called Pareto curve). From a computational point of view, this Pareto
curve is problematic. Approximating it with a performance guarantee, i.e. com-
puting an ε−approximate Pareto curve, motivated a lot of papers (see [1,8,11]
among others). Up to our knowledge, non-approximability in the specific con-
text of multi-criteria optimization has been investigated only from the point of
view of NP -hardness [3,8]. In this paper, we aim to provide some negative re-
sults which are based on the non-existence of a small size approximating set:
In multi-criteria optimization, one tries to approximate a set of solutions (the
Pareto curve) with another set of solutions (the ε-approximate Pareto curve)
and the more the ε-approximate Pareto curve contains solutions, the more accu-
rate the approximation can be. Then, the best approximation ratio that could
be achieved can be related to the size of the approximate Pareto curve. As a
first attempt, we propose a way to get some negative results which works for
several multi-criteria problems and we put it into practice on a special case of
the multi-criteria traveling salesman problem.
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The traveling salesman problem is one of the most studied problem in the
operations research community, see for instance [6]. The case where distances are
either one or two (denoted by TSP (1, 2)) was investigated by Papadimitriou and
Yannakakis [9] who gave some positive and negative approximation results (see
also [4]). Interestingly, this problem finds an application in a frequency assign-
ment problem [5]. In this article, we deal with a generalization of the TSP (1, 2)
where the distance is a vector of length k instead of a scalar: the k-criteria
TSP (1, 2). Previously, Angel et al. [1] proposed a local search algorithm (called
bls) for the bi-criteria TSP (1, 2) which, with only two solutions generated in
O(n3), returns a 1/2-approximate Pareto curve.

A question arises concerning the ability to improve the approximation ratio
with an approximate Pareto curve containing two (or more) solutions. Con-
versely, given a fixed number of solutions, how accurate an approximate Pareto
curve can be? More generally, given a multi-criteria problem, how many solutions
are necessary to approximate the Pareto curve within a level of approximation?
A second question arises concerning the ability to generalize bls to any number
of criteria. Indeed, a large part of the literature on multi-criteria optimization is
devoted to bi-criteria problems and an algorithm which works for any number
of criteria would be interesting.

The paper is organized as follows: In Section 2, we recall some definitions on
exact and approximate Pareto curves. Section 3 is devoted to a method to derive
some negatives results in the specific context of multi-criteria optimization. We
use it for the k-criteria TSP (1, 2) but it works for several other problems. In
Section 4, we study the approximability of the k-criteria TSP (1, 2). Instead of
generalizing bls, we adapt the classical nearest neighbor heuristic which is more
manageable. This multi-criteria nearest neighbor heuristic works for any k and
produces a 1/2-approximate Pareto curve when k ∈ {1, 2} and a (k−1)/(k+1)-
approximate Pareto curve when k ≥ 3. This result extends for several reasons
the one of Angel et al.. First, the new algorithm works for any k ≥ 2, second the
time complexity is decreased when k = 2.

2 Generalities

The Traveling Salesman Problem (TSP ) is about to find in a complete graphG =
(V,E) a Hamiltonian cycle whose total distance is minimal. For the k-criteria
TSP , each edge e has a distance d(e) = (d1(e), . . . , dk(e)) which is a vector of
length k (instead of a scalar). The total distance of a tour T is also a vector D(T )
where Dj(T ) =

∑
e∈T dj(e) and j = 1, . . . , k. In fact, a tour is evaluated with k

objective functions. Given this, the goal of the optimization problem could be the
following: Generating a feasible solution which simultaneously minimizes each
coordinate. Unfortunately, such an ideal solution rarely exists since objective
functions are normally in conflict. However a set of solutions representing all
best possible trade-offs always exists (the so-called Pareto curve). Formally, a
Pareto curve is a set of feasible solutions, each of them optimal in the sense of
Pareto, which dominates all the other solutions. A tour T dominates another
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one T ′ (usually denoted by T ≤ T ′) iff Dj(T ) ≤Dj(T ′) for all j = 1, . . . , k and,
for at least one coordinate j′, one has Dj′(T ) < Dj′(T ′). A solution is optimal
in the sense of Pareto if no solution dominates it.

From a computational point of view, Pareto curves are problematic [8,11].
Two of the main reasons are:

– the size of a Pareto curve which is often exponential with respect to the size
of the corresponding problem;

– a multi-criteria optimization problem often generalizes a mono-criterion
problem which is itself hard.

As a consequence, one tries to get a relaxation of this Pareto curve, i.e. an ε-
approximate Pareto curve [8,11]. An ε-approximate Pareto curve Pε is a set of
solutions such that for every solution s of the instance, there is an s′ in Pε which
satisfies Dj(s′) ≤ (1 + ε)Dj(s) for all j = 1, . . . , k.

In [8], Papadimitriou and Yannakakis prove that every multi-criteria problem
has an ε-approximate Pareto curve that is polynomial in the size of the input,
and 1/ε, but exponential in the number k of criteria. The design of polynomial
time algorithms which generate approximate Pareto curves with performance
guarantee motivated a lot of recent papers. In this article we study the k-criteria
TSP (1, 2). In this problem, each edge e of the graph has a distance vector d(e)
of length k and dj(e) ∈ {1, 2} for all j between 1 and k.

3 Non-approximability Related to the Number of
Generated Solutions

We propose in this section a new way to get some negative results which works
for several multi-criteria problems and we put it into practice on the k-criteria
TSP (1, 2).

Usually, non-approximability results for mono-criterion problems bring
thresholds of performance guarantee under which no polynomial time algorithm
is likely to exist. Given a result of this kind for a mono-criterion problem Π ,
we directly get a negative result for a multi-criteria version of Π . Indeed, the
multi-criteria version of Π generalizes Π . For example, hardness of inherent dif-
ficulty of the mono-criterion TSP (1, 2) has been studied in [4,9] and the best
known lower bound is 1 + 1/5380− δ (for all δ > 0). Consequently, for all δ > 0,
no polynomial time algorithm can generate a (1/5380− δ)-approximate Pareto
curve unless P = NP . However, the structure of the problem, namely the fact
that several criteria are involved, is not taken into account.

In multi-criteria optimization, one tries to approximate a set of solutions (the
Pareto curve) with another set of solutions (the ε-approximate Pareto curve) and
the more the ε-approximate Pareto curve contains solutions, the more accurate
the approximation can be. As a consequence, the best approximation ratio that
could be achieved can be related to the size of the approximate Pareto curve.
Formally, ε is a function of |Pε|. If we consider instances for which the whole (or a
large part of the) Pareto curve P is known and if we suppose that we approximate
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it with a set P ′ ⊂ P such that |P ′| = x then the best approximation ratio ε such
that P ′ is an ε-approximate Pareto curve is related to x. Indeed, there must be
a solution in P ′ which approximates at least two (or more) solutions in P .

In the following, we explicitly give a family of instances (denoted by In,r)
of the k-criteria TSP (1, 2) for which we know a lot of different Pareto optimal
tours covering a large spectrum of the possible values.

We first consider an instance In with n ≥ 2k + 1 vertices where distances
belong to {(1, 2, . . . , 2), (2, 1, 2, . . . , 2), . . . , (2, . . . , 2, 1)}. We suppose that for any
i = 1, . . . , k, the subgraph of In induced by the edges whose distance is 1 only
on coordinate i is Hamiltonian (Ti denotes this tour). Using an old result [7],
we know that Kn is Hamiltonian cycles decomposable into k disjoint tours if
n ≥ 2k + 1 and then, In exists.

We duplicate r times the instance In to get In,r . We denote by vc
a the vertex

va of the c-th copy of In. Between two copies with 1 ≤ c1 < c2 ≤ r, we set
d([vc1

a , vc2
b ]) = d([va, vb]) if a 	= b and d([vc1

a , vc2
a ]) = (1, 2, . . . , 2).

Lemma 1. There are
(
r+k−1

r

)
Pareto optimal tours in In,r (denoted by

Tc1,...,ck−1 where ci for 1 ≤ i ≤ k − 1 are k − 1 indexes in {0, . . . , r}) satis-
fying:

(i) ∀i = 1, . . . , k − 1, ci ∈ {0, . . . , r} and
∑k−1

i=1 ci ≤ r.
(ii) ∀i = 1, . . . , k − 1, Di(Tc1,...,ck−1) = 2rn − cin and Dk(Tc1,...,ck−1) = rn +

n(
∑k−1

i=1 ci).

Proof. Let c1, . . . , ck−1 be integers satisfying (i), we build the tour Tc1,...,ck−1 by
applying the following process: On the c1 first copies, we take the tour T1, on
the c2 second copies, we take the tour T2 and so on. Finally, for the r−

∑k−1
i=1 ci

last copies, we take Tk. For any 1 ≤ l1 < l2 ≤ r, and any tours T and T ′, we
patch T on copy l1 with T ′ on copy l2 by replacing the edges [vl1

i , vl1
j ] ∈ T and

[vl2
j , vl2

m] ∈ T ′ by the edges [vl1
i , vl2

j ] and [vl2
m, vl1

j ]. Observe that the resulting tour
has a total distance D(T ′)+D(T ). So, by applying r times this process, we can
obtain a tour Tc1,...,ck−1 satisfying (ii). Moreover, the number of tours is equal
to the number of choices of k − 1 elements among r + (k − 1). ��

Theorem 1. For any k ≥ 2, any ε-approximate Pareto curve with at most x
solutions for the k-criteria TSP (1, 2) satisfies:

ε ≥ maxi=2,...,k{
1

(2i− 1)r(i, x)− 1
}

where r(i, x) = min{r| x ≤
(

r + i− 1
r

)
− 1}.

Proof. Let r(k, x) = r be the smallest integer such that x ≤
(
r+k−1

r

)
− 1 and

consider the instance In,r. Since x ≤
(
r+k−1

r

)
− 1, there exists two distinct tours

Tc1,...,ck−1 and Tc′1,...,c′
k−1

and a tour T in the approximate Pareto curve such
that:

D(T ) ≤ (1 + ε)D(Tc1,...,ck−1) and D(T ) ≤ (1 + ε)D(Tc′1,...,c′k−1
) (1)
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Let li = max{ci, c
′
i} for i = 1, . . . , k− 1 and lk = min{

∑k−1
i=1 ci,

∑k−1
i=1 c′i}. By

construction, we have lk ≤
∑k−1

i=1 li − 1. Moreover, the total distance of T can
be written Di(T ) = 2rn− qi for i = 1, . . . , k− 1 and Dk(T ) = rn +

∑k−1
i=1 qi for

some value of qi (qi is the number of edges of T where the distance has a 2 on
coordinate i and 1 on the others). Thus, using inequalities (1), we deduce that
for i = 1, . . . , k− 1, we have 2nr− qi ≤ (1 + ε)(2rn− lin) which is equivalent to

qi ≥ lin(1 + ε)− 2rnε. (2)

We also have rn +
∑k−1

i=1 qi ≤ (1 + ε)(rn + lkn) which is equivalent to

k−1∑
i=1

qi ≤ εrn + lkn(1 + ε). (3)

Adding inequalities (2) for i = 1, . . . , k − 1 and by using inequality (3) and
lk ≤
∑k−1

i=1 li − 1, we deduce:

ε ≥ 1
(2k − 1)r(k, x) − 1

. (4)

Finally, since an ε-approximation for the k-criteria TSP (1, 2) is also an ε-
approximation for the i-criteria TSP (1, 2) with i = 2, . . . , k − 1 (for the k − i
last coordinates, we get a factor 2), we can apply k − 1 times the inequality (4)
and the result follows. ��

The following Table illustrates the Theorem 1 for some values of k and x:

k\x 1 2 3 4 5 6 7 8 9

2 1.500 1.200 1.125 1.090 1.071 1.058 1.050 1.043 1.038

3 1.500 1.250 1.125 1.111 1.111 1.071 1.071 1.071 1.071

4 1.500 1.250 1.166 1.111 1.111 1.076 1.076 1.076 1.076

The method presented in this section can be applied to several other multi-
criteria problems. For instance, it works with problems where all feasible solu-
tions have the same size (|V | for a Hamiltonian cycle, |V | − 1 for a spanning
tree, etc).

4 Nearest Neighbor Heuristic for the k-Criteria
TSP (1, 2)

Angel et al. present in [1] a local search algorithm (called bls) for the bi-criteria
TSP (1, 2). This algorithm returns in time O(n3) a 1/2-approximate Pareto
curve. Since bls works only for the bi-criteria TSP (1, 2), an algorithm which
works for any number of criteria would be interesting.

A generalization of bls may exist but it is certainly done with difficulty.
Since bls uses the 2−opt neighborhood, two neighboring solutions differ on two
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edges. Defining an order on each couple of possible distance vector is necessary to
decide, among two neighboring solutions, which one is the best. When k grows,
such an order is hard to handle.

In this section, we present a different algorithm which is more manageable.
It works for any number of criteria and its time complexity is better than bls’s
one for the bi-criteria TSP (1, 2). We propose a nearest neighbor heuristic which
computes in O(n2k!) time a k−1

k+1 -approximate Pareto curve when k ≥ 3 and a
1/2-approximate Pareto curve when k ∈ {1, 2}. Let us observe here that the
dependence of the time complexity on k! is not surprising since the size of the
approximate ε-Pareto curve is not necessarily polynomial on the number of the
optimization criteria [8].

Traditionally, the nearest neighbor heuristic [10] consists in starting from a
randomly chosen node and greedily insert non-visited vertices, chosen as the
closest ones from the last inserted vertex. Adapting this heuristic to the k-
criteria TSP (1, 2) gives rise to two questions: How can we translate the notion
of closeness when multiple objectives are considered? How many solutions must
be generated to get an approximation of the Pareto curve? In the following, we
propose a way which simultaneously brings an answer to both questions. Given
the problem, the total distance of a Pareto optimal tour T ∗ is enclosed in a
k-dimensional cost space. The way to generate a tour T which approximates
T ∗, and also the notion of closeness, depend on where D(T ∗) is located in the
cost space. The idea is to partition the cost space into a fixed number of parts.
Then, with each part we associate an appropriate notion of closeness. Given
a part and its proper notion of closeness, we can generate with the nearest
neighbor rule a tour which approximates any Pareto optimal solution whose
total distance is in the part. For any instance of the k-criteria TSP (1, 2), we
propose to divide the cost space into k! parts as follows: Each part is identified
by a permutation of {1, . . . , k}. Given a permutation L of {1, . . . , k}, a tour T
is in the part identified by L if DL(1)(T ) ≤ . . . ≤ DL(k)(T ). For the notion of
closeness, we introduce a preference relation over all possible distance vectors
which looks like a lexicographic order. This preference relation which depends
on L (denoted by ≺L) is defined by using k + 1 sets S1, . . . , Sk+1:

Sq = {a ∈ {1, 2}k | ∀j ≤ k + 1− q aL(j) = 1}, for 1 ≤ q ≤ k

Sk+1 = {1, 2}k.

Definition 1. For any edge e, we say that e is Sq-preferred (for ≺L) if d(e) ∈
Sq\Sq−1 (where S0 = ∅). For two edges e and e′ such that e is Sq-preferred and
e′ is Sq′-preferred, we say that d(e) is preferred (resp., weakly preferred) to d(e′)
and we note d(e) ≺L d(e′) (resp., d(e) �L d(e′)) iff q < q′ (resp., q ≤ q′).

An example where k = 3 and L is the identity permutation is given in Figure 1.

The algorithm that we propose for the k-criteria TSP (1, 2) is given in
Table 1. Called kNN for k-criteria Nearest Neighbor, it is composed of k! steps.
A permutation L of {1, 2, . . . , k} is determined at each step. With a permutation
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111 112
121

122

211
212

221
222

S1 S2 S3 S4

Fig. 1. One has 111 ≺L 112 ≺L 121 �L 122 ≺L 211 �L 212 �L 221 �L 222

Table 1. For v ∈ V and p a tour, p(v) denotes the node which immediately follows v

in p

kNN: k-criteria Nearest Neighbor
P := ∅;
For each permutation L of {1, 2, . . . , k} do

Take arbitrarily v ∈ V ;
W := {v} ; u := v ;
While W �= V do

Take r ∈ V \W s.t. r is the closest vertex to u by �L ;
W := W ∪ {r} ;
p(u) := r ; u := r ;

End While ;
p(r) := v ;

P := P ∪ {p};
End do ;
Return P ;

L, we build a preference relation ≺L and finally, a solution is greedily generated
with the nearest neighbor rule.

Theorem 2. kNN returns a (k − 1)/(k + 1)-approximate Pareto curve for the
k-criteria TSP (1, 2) when k ≥ 3 and a 1/2-approximate Pareto curve when
k ∈ {1, 2}.

The proof of the theorem requires some notations and intermediate lemmata.
In the following, we consider two particular tours p and p∗. We assume that p
is the tour generated by kNN with the preference relation ≺L and that p∗ is a
Pareto optimal tour satisfying

DL(1)(p∗) ≤ DL(2)(p∗) ≤ . . . ≤ DL(k)(p∗). (5)

The set of all possible distance vectors {1, 2}k is denoted by Ω. For all j ≤ k,
we introduce Uj = {a ∈ Ω | aj = 1} and U j = {a ∈ Ω | aj = 2}. For a ∈ Ω,
we note Xa = {v ∈ V | d([v, p(v)]) = a} and X∗

a = {v ∈ V | d([v, p∗(v)]) = a}.
Finally, xa (resp. x∗

a ) denotes the cardinality of Xa (resp. X∗
a).

If n is the number of vertices then by construction we have
∑

a∈Ω xa =∑
a∈Ω x∗

a = n, Dj(p) = 2n−
∑

a∈Uj
xa and Dj(p∗) = 2n−

∑
a∈Uj

x∗
a.
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v

p(v) p∗(v)

p ◦ p∗(v)

Fig. 2. The tour p generated by kNN. The edge [v, p∗(v)] belongs to p∗

Lemma 2. The following holds for any q ≤ k:

2
∑

a∈
⋂k+1−q

j=1 UL(j)

xa ≥
∑

a∈
⋂k+1−q

j=1 UL(j)

x∗
a.

Proof. We define Fq = {v ∈ V | d([v, p(v)]) ∈ Sq} and F ∗
q = {v ∈ V |

d([v, p∗(v)]) ∈ Sq}. Then, we have to prove that 2|Fq| ≥ |F ∗
q |. The key result is to

see that p∗[F ∗
q \Fq] ⊆ Fq where p∗[W ] =

⋃
v∈W {p∗(v)}. Take a vertex v in F ∗

q \Fq

(see Figure 2). Then, d([v, p∗(v)]) ∈ Sq, d([v, p(v)]) ∈ Sq′ and q′ > q. During
the computation of p, suppose that v is the current node and that p∗(v) is not
already visited. We get a contradiction (the nearest neighbor rule is violated)
since p(v) immediately follows v in p and d([v, p∗(v)]) ≺L d([v, p(v)]). Now,
suppose p∗(v) was already visited. It directly precedes p ◦ p∗(v) in p and then
d([p∗(v), p◦p∗(v)]) �L d([v, p∗(v)]). As a consequence, d([p∗(v), p◦p∗(v)]) ∈ Sq′′

such that q′′ ≤ q and p∗(v) ∈ Fq since Sq′′ ⊆ Sq.
Since |p∗[F ∗

q \Fq]| = |F ∗
q \Fq|, |F ∗

q | = |F ∗
q \Fq|+ |F ∗

q ∩Fq| and |Fq | ≥ |F ∗
q ∩Fq |,

we deduce |F ∗
q | = |p∗[F ∗

q \Fq]|+ |F ∗
q ∩Fq| ≤ 2|Fq|. Finally, since

⋂k+1−q
j=1 UL(j) =

Sq, |Fq| =
∑

a∈Sq
xa and |F ∗

q | =
∑

a∈Sq
x∗

a, the result follows. ��

The following inequality is equivalent to (5):∑
a∈UL(1)

x∗
a ≥

∑
a∈UL(2)

x∗
a ≥ . . . ≥

∑
a∈UL(k)

x∗
a.

We easily deduce that for any couple j1, j2 such that j1 < j2 we have:∑
a∈UL(j2)\UL(j1)

x∗
a ≤

∑
a∈UL(j1)\UL(j2)

x∗
a. (6)

Let b1, b2, j and m be such that b1 ∈ {1, 2}, b2 ∈ {1, 2}, 1 ≤ j ≤ k and 1 ≤ m < j.
Let R(b1, j, m, b2) be the set of all a ∈ Ω such that aL(j) = b1 and there exists
exactly m distinct coordinates of a among {aL(1), aL(2), . . . , aL(j−1)} which are
equal to b2. Remark that R(b1, j, m, b2) = R(b1, j, j−1−m, b2) where b2 = 3−b2.

Lemma 3. For any j ≤ k, one has:

j−1∑
q=1

(
q

∑
a∈R(1,j,q,2)∪R(2,j,q,2)

x∗
a

)
≤ (j − 1)

j−1∑
q=0

( ∑
a∈R(2,j,q,1)

x∗
a

)
.
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Proof of Theorem 2
Proof. The proof is cut into 3 cases (j = 1, j = 2 and j ≥ 3). In the following,
we consider that L is any permutation of {1, . . . , k}, p∗ is a Pareto optimal tour
satisfying (5) and p is built with the nearest neighbor rule and the preference
relation ≺L. Then, we have to show that:

(i) if j = 1 or 2 then DL(j)(p) ≤ (1 + 1
2 )DL(j)(p∗),

(ii) if j ≥ 3 then DL(j)(p) ≤ (1 + j−1
j+1 )DL(j)(p∗).

Case j = 1. DL(1)(p) ≤ 3
2DL(1)(p∗) is equivalent to the following inequality:

2
∑

a∈UL(1)

xa −
∑

a∈UL(1)

x∗
a + 2

∑
a∈UL(1)

x∗
a ≥ 0. (7)

Indeed, DL(1)(p) ≤
3
2
DL(1)(p∗)⇔ 2

(
2n−

∑
a∈UL(1)

xa

)
≤ 3
(
2n−

∑
a∈UL(1)

x∗
a

)
⇔ −2

∑
a∈UL(1)

xa ≤ 2n− 3
∑

a∈UL(1)

x∗
a

Using n =
∑

a∈UL(1)
x∗

a +
∑

a∈UL(1)
x∗

a, the equivalence follows. Thus, using
Lemma 2 with q = k and

∑
a∈UL(1)

x∗
a ≥ 0 (which is true since for all a ∈ Ω,

x∗
a ≥ 0), inequality (7) follows.

Case j = 2. DL(2)(p) ≤ 3
2DL(2)(p∗) is equivalent to the following inequality:

−2
∑

a∈UL(2)\UL(1)

xa − 2
∑

a∈UL(2)∩UL(1)

xa ≤ 2
∑

a∈UL(2)

x∗
a−

∑
a∈UL(2)\UL(1)

x∗
a−

∑
a∈UL(2)∩UL(1)

x∗
a.

(8)

Indeed, DL(2)(p) ≤
3
2
DL(2)(p∗) ⇔ −2

∑
a∈UL(2)

xa ≤ 2
∑

a∈UL(2)

x∗
a −

∑
a∈UL(2)

x∗
a.

If we partition UL(2) into two subsets UL(2)\UL(1) and UL(2) ∩ UL(1) then the
equivalence follows. By Lemma 2 with q = k − 1 we get:

2
∑

a∈UL(1)∩UL(2)

xa ≥
∑

a∈UL(1)∩UL(2)

x∗
a.

Then, using inequality (8), we have to prove:

−2
∑

a∈UL(2)\UL(1)

xa ≤ 2
∑

a∈UL(2)

x∗
a −

∑
a∈UL(2)\UL(1)

x∗
a.



338 E. Angel et al.

By inequality (6), when j1 = 1 and j2 = 2, we get:

−
∑

a∈UL(1)\UL(2)

x∗
a ≤ −

∑
a∈UL(2)\UL(1)

x∗
a

Thus:

2
∑

a∈UL(2)

x∗
a −

∑
a∈UL(1)\UL(2)

x∗
a ≤ 2

∑
a∈UL(2)

x∗
a −

∑
a∈UL(2)\UL(1)

x∗
a.

Since UL(1)\UL(2) ⊆ UL(2), we have:

−2
∑

a∈UL(2)\UL(1)

xa ≤ 0 ≤ 2
∑

a∈UL(2)

x∗
a −

∑
a∈UL(1)\UL(2)

x∗
a.

Case j ≥ 3. DL(j)(p) ≤ 2j
j+1DL(j)(p∗) holds if we have the following inequality:

−(j + 1)
∑

a∈UL(j)

xa ≤ 2(j − 1)
∑

a∈UL(j)

x∗
a − 2

∑
a∈UL(j)

x∗
a. (9)

DL(j)(p) ≤
2j

j + 1
DL(j)(p∗)⇔ (j + 1)

(
2n−

∑
a∈UL(j)

xa

)
≤ 2j
(
2n−

∑
a∈UL(j)

x∗
a

)
⇔ −(j + 1)

∑
a∈UL(j)

xa ≤ 2(j − 1)n− 2j
∑

a∈UL(j)

x∗
a

⇔ −(j + 1)
∑

a∈UL(j)

xa≤2(j − 1)
∑

a∈UL(j)

x∗
a − 2

∑
a∈UL(j)

x∗
a,

using n =
∑

a∈UL(j)
x∗

a +
∑

a∈UL(j)
x∗

a.
Let us denote by A and B the following quantities:∑

a∈UL(j)

xa =
∑

a∈UL(j)\(
⋂

m≤j−1 UL(m))

xa +
∑

a∈
⋂

m≤j UL(m)

xa = A

∑
a∈UL(j)

x∗
a =

∑
a∈UL(j)\(

⋂
m≤j−1 UL(m))

x∗
a +

∑
a∈
⋂

m≤j UL(m)

x∗
a = B.

Then, inequality (9) becomes:

− (j + 1)A ≤ 2(j − 1)
∑

a∈UL(j)

x∗
a − 2B. (10)

To prove (10), we propose the following decomposition:

C = 2(j − 1)
∑

a∈UL(j)

x∗
a − 2

∑
a∈UL(j)\

⋂
m≤j−1 UL(m)

x∗
a − 4

∑
a∈
⋂

m≤j UL(m)

xa (11)
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−(j + 1)A ≤ C (12)

C ≤ 2(j − 1)
∑

a∈UL(j)

x∗
a − 2B (13)

Thus, (12) becomes:

−(j + 1)
∑

a∈UL(j)\
⋂

m≤j−1 UL(m)

xa − (j − 3)
∑

a∈
⋂

m≤j UL(m)

xa ≤

≤ 2(j − 1)
∑

a∈UL(j)

x∗
a − 2

∑
a∈UL(j)\

⋂
m≤j−1 UL(m)

x∗
a

Since the left part of this inequality is negative, we want to prove that the right
part is positive:

0 ≤ 2(j − 1)
∑

a∈UL(j)

x∗
a − 2

∑
a∈UL(j)\

⋂
m≤j−1 UL(m)

x∗
a (14)

∑
a∈UL(j)\

⋂
m≤j−1 UL(m)

x∗
a ≤ (j − 1)

∑
a∈UL(j)

x∗
a (15)

We also have:

∑
a∈UL(j)\

⋂
m≤j−1 UL(m)

x∗
a =

j−1∑
q=1

( ∑
a∈R(1,j,q,2)

x∗
a

)
and

(j − 1)
∑

a∈UL(j)

x∗
a = (j − 1)

j−1∑
q=0

( ∑
a∈R(2,j,q,1)

x∗
a

)
.

The first equality follows from UL(j)\
⋂

m≤j−1 UL(m) =
⋃j−1

q=1 R(1, j, q, 2) since
a ∈ UL(j)\

⋂
m≤j−1 UL(m) iff aL(j) = 1 and there exists exactly q indexes

{i1, . . . iq} such that 1 ≤ q ≤ j − 1 and aL(i1) = aL(i2) = . . . = aL(iq) = 2,
which is equivalent to a ∈ R(1, j, q, 2). The second equality follows from UL(j) =⋃j−1

q=0 R(2, j, q, 1) because a ∈ UL(j) means aL(j) = 2.
As a consequence, (15) becomes:

j−1∑
q=1

( ∑
a∈R(1,j,q,2)

x∗
a

)
≤ (j − 1)

j−1∑
q=0

( ∑
a∈R(2,j,q,1)

x∗
a

)
.

With Lemma 3, we have:

j−1∑
q=1

(
q

∑
a∈R(1,j,q,2)∪R(2,j,q,2)

x∗
a

)
≤ (j − 1)

j−1∑
q=0

( ∑
a∈R(2,j,q,1)

x∗
a

)
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and (15) follows from

j−1∑
q=1

(
q

∑
a∈R(1,j,q,2)∪R(2,j,q,2)

x∗
a

)
≥

j−1∑
q=1

( ∑
a∈R(1,j,q,2)

x∗
a

)
.

By Lemma 2 with q = k + 1− j we have:

2
∑

a∈
⋂

m≤j UL(m)

xa ≥
∑

a∈
⋂

m≤j UL(m)

x∗
a

which is exactly (13). ��

There is an instance which shows that the analysis is tight but, because of
the restricted number of pages, it is given in the full version of this paper [2].
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7. D.E. Lucas: Récréations mathématiques. Vol. II, Gauthier Villars, Paris 1892.
8. C.H. Papadimitriou and M. Yannakakis: On the approximability of trade-offs and

optimal access of web sources. in Proc. of FOCS’2000, 86–92, 2000.
9. C.H. Papadimitriou and M. Yannakakis: The traveling salesman problem with

distances one and two. Mathematics of Operations Research, 18(1), 1–11, 1993.
10. D.J. Rosenkrantz, R.E. Stearns and P.M. Lewis II: An analysis of several heuristics

for the traveling salesman problem. SIAM J. Comp., 6, 563–581, 1977.
11. A. Warburton: Approximation of Pareto optima in multiple-objective shortest path

problems. Operations Research, 35(1), 70–79, 1987.



Completeness and Compactness

of Quantitative Domains

Pawe�l Waszkiewicz

Jagiellonian University, ul. Nawojki 11,
30-072 Kraków, Poland

pqw@ii.uj.edu.pl
http://www.ii.uj.edu.pl/~pqw

Abstract. In this paper we study the interplay between metric and
order completeness of semantic domains equipped with generalised dis-
tances. We prove that for bounded complete posets directed-complete-
ness and partial metric completeness are interdefinable. Moreover, we
demonstrate that Lawson-compact, countably based domains are pre-
cisely the compact pmetric spaces that are continuously ordered.

1 Introduction

At the heart of Scott’s denotational semantics for a, say, typed functional pro-
gramming language, lies the idea that types are represented (denoted) by certain
partially ordered and topologised sets, called domains, and terms are denoted
by continuous functions between domains; in particular, the closed terms (pro-
grams) are then represented by elements of domains. The success of denotational
semantics stems from the fact that it is able to attach a precise mathematical
meaning to various involved syntactic constructs; questions about programs are
then changed into conjectures about order properties of domains. For exam-
ple, semantic equivalence of two syntactically different programs can be decided
by showing that their denotations are exactly the same elements of domains.
However, in classical domain theory some questions – the quantitative questions
about programs – cannot be asked, simply because domains are just partial
orders with no more refined ways of comparison between points.

The goal of quantitative domain theory (QDT) is to equip semantic domains
with a distance and create denotational semantics that would allow to reason
about quantitative properties of programs such as their complexity or speed of
convergence. Research in this area focused on attempts in unifying order and
metric structures and led to a number of concepts that generalise the notion of
metric space to an ordered setting. Examples include: distances with values in
spaces more general than the real line, so called V-continuity spaces [FK97], and
various refinements of these; quasimetrics, which by virtue of being asymmetric
encode topology and order at the same time [Smy88]; partial metrics [Mat94],
[Hec99]; measurements [Mar00a] and many more. The diversity of approaches
and proposals without virtually any attempt towards creating a quantitative

M. Lískiewicz and R. Reischuk (Eds.): FCT 2005, LNCS 3623, pp. 341–351, 2005.
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denotational semantics caused QDT to be an esoteric and mostly unpopular
research activity among computer scientists. Amusingly, any approach to QDT
offers rich theory and challenging foundational questions that make some general
topologists vitally interested.

On the way to understanding the menagerie of QDT, in [Was01], [Was03a],
[Was03] we have unified the theories of partial metrics and measurements on
domains. Since every partially metrized domain induces a measurement and a
metric in the canonical way, one can regard domains as either partial metric
spaces or metric spaces, or spaces equipped with a measurement. This point of
view on domains is taken as the starting point of our paper, where we hope
to take the second step and apply the unification results to study the interplay
between various aspects of completeness and compactness that arise on a quanti-
tative domain from both its order and metric structures. Our paper is a sequel to
[Was]. We present a summary of relevant results from [Was] in the next section.
In Section 3 main results of our present paper are stated: In short, we show that
once one defines a distance on a bounded complete domain in an appropriate
way, then the order properties and completeness (compactness) of the distance
are fundamentally tied together. This facts demonstrate that partial metrization
is a very natural way of equipping domains with the notion of distance.

Our paper is aimed at specialists in domain theory and/or at topologists
interested in weakly separated spaces. These may find our general results useful
and engaging, the others left bored to death. The tale to be read here is about
how to speak about distance in the ordered setting – a sheer aesthetic pleasure
of understanding this general problem rather than a quest for computer-oriented
applications is our only motivation at the moment.

2 Background

We now give a brief review of basic definitions and results from domain theory
and theories of partial metrics and measurements that are needed for our paper.
Despite being elementary, this part of the paper is fairly concise and technical,
and therefore can be hard to digest. It is thought as a quick reference; for a
more comprehensive treatment of these issues, we refer the reader to the quoted
literature.

2.1 Domain Theory

Our primary references in domain theory are [AJ94] together with [Gie03]. Let
P be a poset. A subset A ⊆ P of P is directed if it is nonempty and any pair
of elements of A has an upper bound in A. If a directed set A has a supremum,
it is denoted

⊔↑A. A poset P in which every directed set has a supremum is
called a dcpo. A dcpo P in which every nonempty subset has an infimum is
bounded complete. We say that x ∈ P approximates (is way-below) y ∈ P , and
write x1 y, if for all directed subsets A of P with

⊔↑A ∈ P , y '
⊔↑A implies

x ' a for some a ∈ A. Now, ↓↓x is the set of all approximants of x and ↑↑x is the
set of all elements that x approximates. We say that a subset B of a poset P
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is a (domain-theoretic) basis for P if for every element x of P , the set ↓↓x ∩ B
is directed with supremum x. A poset is called continuous if it has a basis. A
poset P is continuous if and only if ↓↓x is directed with supremum x, for all
x ∈ P . A poset is called a domain if it is a continuous dcpo. If a poset admits
a countable basis, we say that it is ω-continuous, or countably based. The poset
of nonnegative real numbers in the order ' opposite to the natural one ≤ is
denoted [0,∞)o and is a domain without a least element.

A subset U ⊆ P of a poset P is upper if x 2 y ∈ U implies x ∈ U . If for all
directed sets D,

⊔↑D ∈ U ⇒ ∃d ∈ D (d ∈ U), then U is called inaccessible by
directed suprema. Upper sets inaccessible by directed suprema form a topology
called the Scott topology; it is usually denoted σ(P ) here. A function f : P → Q
between posets is Scott-continuous if and only if it preserves the order and
existing suprema of directed subsets. The collection {↑↑x | x ∈ P} forms a basis
for the Scott topology on a continuous poset P . The topology satisfies only weak
separation axioms: It is always T0 on a poset but T1 only if the order is trivial.
For an introduction to T0 spaces, see [Hec90]. An excellent general reference on
Topology is [Eng89]. The weak topology on a poset P , ω(P ), is generated by a
subbasis {P \ ↑x | x ∈ P} and the Lawson topology λ(P ) is the join σ(P )∨ω(P )
in the lattice of all topologies on P .

2.2 Measurements

We will now give a brief summary of the main elements of Keye Martin’s theory of
measurements. Our main reference is [Mar00]. Let P be a poset. For a monotone
mapping μ : P → [0,∞)o and A ⊆ P we define

μ(x, ε) = {y ∈ P | y ' x ∧ μy < μx + ε}.

We say that μ(x, ε) is the set of elements of P which are ε-close to x. We say
that μ measures P (or: μ is a measurement on P ) if μ is Scott-continuous and

(∀U ∈ σ)(∀x ∈ U)(∃ε > 0) μ(x, ε) ⊆ U.

A measurement μ is weakly modular if for all a, b, r ∈ P and for all ε > 0, if
a, b ' r, then there exists s ∈ P with s ' a, b such that μr + μs ≤ μa+ μb+ ε.

Any measurement μ : P → [0,∞)o on a continuous poset P with a least ele-
ment induces a distance function pμ : P ×P → [0,∞) by pμ(x, y) = inf{μz | z 1
x, y}. The map pμ, when considered with codomain [0,∞)o, is Scott-continuous,
encodes the order on the poset P : x ' y if and only if pμ(x, y) = p(x, x), and
the Scott topology: the collection of pμ-balls {Bpμ(x, ε) | x ∈ P, ε > 0}, where
Bpμ(x, ε) = {y ∈ P | pμ(x, y) < μx + ε}, is a basis for the Scott topology on
P . If the measurement μ is weakly modular, then the induced distance pμ is a
partial metric [Was01].

2.3 Partial Metrics

A partial metric (pmetric) on a set X is a map p : X ×X → [0,∞) governed by
the following axioms due to Steve Matthews [Mat94]:
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– small self-distances: p(x, x) ≤ p(x, y),
– symmetry: p(x, y) = p(y, x),
– T0 separation: p(x, y) = p(x, x) = p(y, y)⇒ x = y,
– the sharp triangle inequality, Δ�: p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

that hold for all x, y, z ∈ X . The topology induced by p on X , denoted τp(X),
is given by: U ∈ τp(X) iff for all x ∈ U there exists ε > 0 such that {y ∈ X |
p(x, y) < p(x, x) + ε} ⊆ U . Note that if the last inclusion is changed to {y ∈ X |
p(x, y) < p(y, y) + ε} ⊆ U , then we are defining some other topology (different
than τp(X) in general) called the dual topology and denoted τo

p (X). Every pmetric
induces a metric dp : X ×X → [0,∞) by dp(x, y) = 2p(x, y)− p(x, x) − p(y, y).
Its topology is denoted by τdp(X). Finally, every pmetric induces a partial order
by x 'p y if and only if p(x, y) = p(x, x). If a poset (P,') admits a pmetric
p : P ×P → [0,∞) with '='p, then we say that p is compatible with the order
on P . If, in addition, τp(P )-open sets are inaccessible by directed suprema, then
we call p order-consistent.

2.4 Exactly Radially Convex Metrics on Posets

A metric d : P×P → [0,∞) on a poset P is exactly radially convex (erc) providing
that x ' y ' z if and only if d(x, y) + d(y, z) = d(x, z). Clearly, if P has a least
element ⊥, then x ' y if and only if d(x, y) = d(⊥, y) − d(⊥, x). For example,
let the product of ω copies of the unit interval, Iω, be equipped with a metric
d(x, y) =

∑
i∈ω 2−i|xi − yi|, where x = (x0, x1, ...), y = (y0, y1, ...). The metric d

is erc with respect to the coordinatewise order.
From now on, we assume that P is a poset with a least element ⊥. If d : P ×

P → [0,∞) is a bounded erc metric, then the map pd : P × P → [0,∞) given
by pd(x, y) = d(x, y) + μdx + μdy, where μd : P → [0,∞)o is defined as μdx =
sup{d(⊥, z) | z ∈ P} − d(⊥, x), is a pmetric (called the induced partial metric)
compatible with the order, with the self-distance 2μd [Was]. Moreover:

– If either τd(P ) = λ(P ), or σ(P ) ⊆ τd(P ), then μd has the measurement
property: for all x ∈ P , U ∈ σ(P ), if x ∈ U , then there exists ε > 0 with
μd(x, ε) ⊆ U .

– The inclusion τpd
(P ) ⊆ σ(P ) is equivalent to Scott-continuity of μd, which,

in turn, is equivalent to pd being order-consistent.

Conversely, for every pmetric p : P × P → [0, 1) which is compatible with
the order, the induced metric dp : P × P → [0,∞) is bounded, erc and satisfies
dp(⊥, x) = μp⊥ − μxp for every x ∈ P , where μp is the self-distance of p. (It is
always possible to assume that the codomain of p is bounded by 1 by results of
[KV94].)

3 Main Results

In the previous section we have observed that for partial orders existence of
bounded erc metrics is determined by existence of partial metrics compatible
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Table 1. Domains with their partial metrics

Domain Pmetric p

Closed, nonempty intervals p([a, b], [c, d]) = max{b, d} − min{a, c}
of R with reverse inclusion

The powerset of natural p(x, y) =
∑

n/∈x∩y 2−(n+1)

numbers with inclusion

Words over {0, 1}, prefix order length of common prefix

Plotkin’s T ω p((A,B), (C, D)) =

{(P, N) ⊆ ω × ω | P ∩ N = ∅} ∑n/∈(A∩C)∪(B∩D) 2−(n+1)

with coordinatewise inclusion

Any ω-continuous poset p(x, y) = 1 −∑{n|x,y∈Un} 2−(n+1)

{Un | n ∈ ω} - basis of open filters

with the order and vice versa. Therefore in our presentation of quantitative
domains we can choose to work with the distances that are most suitable for
current purposes, usually assuming the existence of both at the same time.

Let us discuss the relevance of assumptions that are made in the statements
of the main results below: We often assume that a pmetric p on a continuous
poset P is compatible with the order and generates topology weaker than the
Scott topology, that is τp(P ) ⊆ σ(P ). This guarantees that the partial metric is
order-consistent and its self-distance μ : P → [0,∞)o is Scott-continuous.

Additionally, we assume that the Scott topology of P is weaker than the
metric topology, σ(P ) ⊆ τdp(P ), so the map μ is a measurement. This situation
is very common, examples include all domains where the partial metric topology
is the Scott topology, see Table 1.

It is important to realise that the assumptions made above are by no means
restrictive: the statement τp(P ) ⊆ σ(P ) ⊆ τdp(P ) for p compatible with the
order, is a minimal requirement for a partial metric that would describe existing
order properties of the underlying poset.

Let us start with an easy observation of how a partial metric encodes count-
ability of the order:

Lemma 1. If P is a domain equipped with a partial metric compatible with the
order and such that τp(P ) ⊆ σ(P ) ⊆ τdp(P ), then the following are equivalent:

1. P is ω-continuous,
2. σ(P ) is second-countable,
3. τdp(P ) is second-countable.

Proof. The equivalence of 1 and 2 is observed in [AJ94]. For 2⇒3 note that
τdp(P ) is separable, hence second-countable. The remaining implication follows
immediately from the fact that σ(P ) is coarser that τdp(P ).

3.1 Completeness

In order to motivate suitable definition of completeness for partial metric spaces,
observe that these spaces are examples of syntopologies and as such are com-
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pletable in the sense of M.B. Smyth who gives an appropriate construction
in [Smy94]. This completion is nowadays known as S-completion or Smyth-
completion. In [Kün93] Künzi noted that in fact each partial metric induces
a Smyth-completable quasi-uniform space. Subsequently, Sünderhauf [Sün95]
showed that for S-completable spaces, Smyth-completion reduces to a so called
bicompletion. In order to avoid introducing unnecessary terminology, we just
note that in our setting this means precisely that the Smyth-completion of a
partial metric space is the usual completion of the induced metric and hence a
pmetric p : P × P → [0,∞) is complete if its induced metric dp is complete. It
follows from metric space theory that such a completion always exists, see for
example [Wil70], Theorem 24.4, page 176.

In this paper we are interested in the relationship between completeness of
the induced metric and the structure of the underlying domain. First of the main
results states that existence of a complete partial metric on a continuous poset
P implies directed-completeness of the order.

Theorem 1. Let p : P ×P → [0,∞) be a pmetric on a continuous poset P with
a least element ⊥ which is compatible with the order and such that τp(P ) ⊆
σ(P ) ⊆ τdp(P ). If p is complete, then P is a dcpo.

Proof. Every directed subset of P contains an increasing sequence with the same
upper bounds [Hec99]. Let {xn} be an ω-chain, increasing. Then the sequence
{μpxn} in [0,∞) is monotone, decreasing, bounded by 0. Hence it is convergent
and Cauchy. Therefore lim dp(xn, xn+1) = lim(μpxn−μpxn+1) = 0, which proves
that {xn} is Cauchy. But dp is complete, so there is z ∈ P with lim dp(xn, z) = 0.
We claim that z =

⊔↑xn.
Clearly, for all n ∈ ω, {xn} →τp(P ) xn, so every τp(P )-open set containing

element xn, contains the sequence {xn} cofinally. Now, we will show that if
{xn} →τp(P ) a ∈ P , then a ' z. For any ε > 0 there is N ∈ ω such that
for all n ≥ N we have p(a, xn) < p(a, a) + ε/2 and dp(xn, z) < ε/2. Hence for
n ≥ N , p(a, a) ≤ p(a, z) ≤ p(a, xn)+p(xn, z)−p(xn, xn) ≤ p(a, xn)+dp(xn, z) <
p(a, a)+ε. Thus p(a, a) = p(a, z), which gives a 'p z, that is, a ' z. We conclude
that xn ' z.

Suppose that c ∈ P is another upper bound for {xn}. Then p(z, z) ≤ p(z, c) ≤
p(z, xn)+p(xn, c)−p(xn, xn) = d(z, xn)+p(z, z) →n→∞ p(z, z). Hence p(z, c) =
p(z, z), which proves that z ' c and consequently

⊔↑xn = z.

For bounded complete domains we have a sort of converse as well: order-
completeness of the domain implies that the erc metric topology τdp(P ) is com-
pletely metrizable, which is our second main result. In order to prove it, we need
to recall a result from general topology: A Tychonoff space X is Čech-complete
if and only if there is a countable collection {Rn | n ∈ ω} of open covers of X ,
which has the following property: for any collection F of closed sets of X with
the finite intersection property and such that

∀k ∈ ω. ∃Fk ∈ F . ∃Uk ∈ Rk. Fk ⊆ Uk,

we have
⋂
F 	= ∅.
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Theorem 2. Let P be a bounded complete domain equipped with a partial metric
p : P × P → [0,∞) which is compatible with the order and such that τp(P ) ⊆
σ(P ) ⊆ τdp(P ). Then the induced metric topology is completely metrizable.

Proof. In order to show complete metrizability of τdp(P ), it is enough to prove
its Čech-completeness. Let {Gn | n ∈ ω} be a development for τdp(P ) (meaning
by definition that {Gn | n ∈ ω} is a sequence of τdp(P )-open covers of P such
that if x ∈ U ∈ τdp(P ), then there exists n0 ∈ ω with x ∈ St(x,Gn0 ) ⊆ U ,
where St(x,Gn0 ) =

⋃
{V ∈ Gn0 | x ∈ V }). Let {Ai | i ∈ I} be a basis for the

dual topology τo
p (P ) and observe that it consists of Scott-closed sets. Define a

countable collection of τdp(P )-open covers {Rn | n ∈ ω} of P by

Rn := {↑↑b ∩Ai | ∃U ∈ Gn. ↑b ∩Ai ⊆ U for some b ∈ P and i ∈ I}.

The family {Rn} is well-defined due to the fact that the sets of the form ↑↑b∩Ai

form a basis for τdp(P ). Indeed, let U ∈ τdp(P ) and x ∈ U . Let {Bj | j ∈ J} be
a basis for τp(P ). Since τdp(P ) = τp(P ) ∨ τo

p (P ), the collection {Ai ∩ Bj | i ∈
I, j ∈ J} is a basis for τdp(P ). This means that there are i ∈ I, j ∈ J such that
x ∈ Ai∩Bj ⊆ U . However Bj ∈ σ(P ), thus there exists b ∈ P with x ∈ ↑↑b ⊆ Bj .
One observes that ↑↑b ∈ τdp(P ) by assumption, and hence ↑↑b∩Ai ∈ τdp(P ). This
proves the claim.

Let F be a collection of τdp(P )-closed sets with the finite intersection property
such that

∀k ∈ ω. ∃Fk ∈ F . ∃R ∈ Rk. Fk ⊆ R. (1)

We must demonstrate that
⋂
F 	= ∅. Define for every n ∈ ω a set Cn =

⋂n
k=1 Fk

and choose xn ∈ Cn. By formula (1) and definition of {Rn}, we have

∀n ∈ ω. xn ∈ Cn ⊆ ↑bn ∩An ⊆ Un, (2)

where Un ∈ Gn. Next, define yn =
�∞

i=n xi. Since the sequence {Cn} is descend-
ing,

∀n. ∀k ≥ n. xk ∈ ↑bn ∩An

and so bn ' yk ' xk ∈ An. Since each An is downward-closed,

∀n. ∀k ≥ n. yk ∈ ↑bn ∩An. (3)

Now, since P is a dcpo, the lub of the chain {yn} exists. Put z =
⊔↑yn. By

formula (3) and the fact that each An is closed under directed suprema,

∀n. ∀k ≥ n. z ∈ ↑bn ∩An

and hence by formula (2) we have

∀n ∈ ω. z ∈ Un ∈ Gn. (4)

We claim that {xn} →τdp(P ) z. Let V be any τdp(P )-open set around z. Then
there exists m ∈ ω such that z ∈ St(z,Gm) ⊆ V . Consequently, by (2),(3)
and (4),

∀k ≥ m. xk ∈ Cm ⊆ Um ⊆ St(z,Gm) ⊆ V,

and this proves that {xn}→τdp (P ) z.
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Since each set Cn is τdp(P )-closed and the sequence {xn} is cofinally in each
of Cn, we infer that z ∈ Cn and so z ∈ Fn for all n ∈ ω. Since {St(z,Gn)}n∈ω is
a basis at z and τdp(P ) is Hausdorff,

{z} ⊆
⋂
n

Fn ⊆
⋂
n

St(z,Gn) = {z}.

Therefore,
⋂

n Fn = {z}.
Now, for any F ∈ F we have that {F ∩ Fn | n ∈ ω} is again a nonempty

sequence of τdp(P )-closed sets satisfying equation (1). Hence, the same argument
proves that its intersection is nonempty. We have

∅ 	=
⋂
n

(F ∩ Fn) = F ∩
⋂
n

Fn = F ∩ {z}

and then z ∈ F . We conclude that z ∈
⋂
F . That is,

⋂
F 	= ∅, as required.

Finally, we describe an important special case where completeness of a partial
metric (equivalently: completeness of the induced erc metric) can be detected by
inspecting properties of the self-distance of the pmetric.

Theorem 3. Let P be a bounded complete domain equipped with a partial metric
p : P × P → [0,∞) which is compatible with the order and such that τp(P ) ⊆
σ(P ) ⊆ τdp(P ) and such that the self-distance μp : P → [0,∞)o of p is weakly
modular. The following are equivalent:

1. The partial metric p is complete,
2. The self-distance μp preserves infima of filtered subsets of P .

Proof. Before embarking on the proof of the equivalence in the hypothesis, ob-
serve that since μp is weakly modular, p is of the form p(x, y) = inf{μpz | z '
x, y} for all x, y ∈ P [Was01]. Moreover, the fact that μp is a measurement im-
plies that the partial metric topology τp(P ) is the same as the Scott topology of
P .

For (2)⇒(1), let (xn) be a Cauchy sequence in P with respect to the induced
metric dp. Define yn =

�∞
i=n+1 xi. Since P is a dcpo, the chain {yn} has a

lub, say, z =
⊔↑yn. We will show that z is the metric limit of {xn}. Since the

sequence {xn} is Cauchy, for all ε > 0 there is n0 ∈ ω such that for all n ≥ n0 we
have dp(xn, xn+1) < ε. The special form of p yields μp(xn � xn+1) − μpxn < ε.
Therefore infnμp(xn, xn+1) = infnμpxn. It follows easily by induction that for a
fixed k ∈ ω we have

infnμp(
n+1+k�

i=n+1

xi) = μpxn. (5)

Now, we claim that
lim
n
p(z, xn) = μpz (6)

and the limit on the left-hand side exists. For, μpz ≤ p(z, xn+1) ≤ p(z, yn) +
p(yn, xn+1) − μpyn = p(yn, xn+1) = μpyn and since limn μpyn = μpz, we have
limn p(z, xn) = μpz.
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Next, we calculate

lim
n
μpyn = infnμp(

∞�

i=n+1

xi) = infnμp(
�

k∈ω

n+1+k�

i=n+1

xi)

= infnsupk μp(
n+1+k�

i=n+1

xi) = supkinfnμp(
n+1+k�

i=n+1

xi)

(5)
= supkinfnμpxn = infnμpxn.

Therefore, lim(μpyn−μpxn) exists and equals 0. Combining this observation with
(5) we get lim(p(z, xn) − μpz) + lim(p(z, xn) − μpyn) + lim(μpyn − μpxn) = 0,
which is equivalent to saying that limn dp(z, xn) = 0.

The proof of (1)⇒(2) follows from Lemma 3.4 in [ONeill95]. We sketch the
construction: let F be a filtered subset of P . By bounded completeness of P , F
has infimum x ∈ P . Since F 2 x, we have μp(F ) ≤ μpx and so α = limμp(F )
exists in [0,∞). Next, we find a descending chain {zn} in F with limμpzn = α.
Since {zn} is Cauchy, it has a metric limit c ∈ P . By showing that c = x (using
the sharp triangle inequality of p), we complete the proof.

3.2 Compactness

Similarly as in the definition of completeness, we define a partial metric space
(X, p) to be compact if the induced metric topology τdp(X) is compact. Existence
of a compact pmetric on a poset determines much of its structure.

Theorem 4. Let P be a continuous poset with a least element ⊥. Suppose that
P admits a compact pmetric p : P × P → [0,∞) which is compatible with the
order and such that τp(P ) ⊆ σ(P ) and λ(P ) ⊆ τdp(P ). Then:

1. P is a dcpo,
2. P is countably based,
3. P is Lawson-compact.

Proof. Since every compact pmetric is complete, Theorem 1 applies and hence
P is a dcpo. Moreover, τdp(P ) is second-countable, since it is a compact metric
space. Lemma 1 implies that P is countably based. Suppose now that C is a
closed subset of τdp(P ). Then it is compact and since by assumption λ(P ) ⊆
τdp(P ), the subset C is compact, hence closed in the Lawson topology λ(P ).
Therefore τdp(P ) = λ(P ) and thus P is Lawson-compact.

Let us discuss some special cases of the theorem above. If the pmetric topol-
ogy is the Scott topology on P , then the assumption λ(P ) ⊆ τdp(P ) holds already
and the conclusions of the theorem remain valid. (For example, if P is bounded
complete and the self-distance of the compact pmetric is weakly modular, then
τp(P ) = σ(P ) and the theorem above applies.) However, from results of [Was]
we can infer more:
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Corollary 1. Let P be a continuous poset with a least element. The following
are equivalent:

1. P is an ω-continuous, Lawson-compact dcpo,
2. P admits a compact pmetric p : P × P → [0,∞) compatible with the order

with τp(P ) ⊆ σ(P ) and λ(P ) ⊆ τdp(P ) and such that for all x ∈ P we have
p(x, x) = 0 if and only if x is maximal in P .

Proof. The unproved direction, that is, the construction of the pmetric is de-
scribed in detail in Theorem 6.5 of [Was].

References

[AJ94] Abramsky, S. and Jung, A. (1994) Domain Theory. In S.Abramsky, D.M.
Gabbay and T.S.E. Maibaum, editors, Handbook of Logic in Computer
Science 3, 1–168, Oxford University Press.

[Eng89] Engelking, R. (1989) General Topology. Sigma Series in Pure Mathematics.
Heldermann Verlag.

[FK97] Flagg, R.C. and Kopperman, R. (1997) Continuity spaces: reconciling do-
mains and metric spaces. Theoretical Computer Science 177 (1), 111–138.

[Gie03] Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M. and
Scott, D.S. (2003) Continuous lattices and domains. Volume 93 of Ency-
clopedia of mathematics and its applications, Cambridge University Press.

[Hec90] Heckmann, R. (1990) Power Domain Constructions (Potenzbereich-Kons-
truktionen). PhD Thesis, Universität des Saarlandes.

[Hec99] Heckmann, R. (1999) Approximation of metric spaces by partial metric
spaces. Applied Categorical Structures 7, 71–83.

[Kün93] Künzi, H.-P. (1993) Nonsymmetric topology. In Bolyai Society of
Mathematical Studies, 4, 303–338, Szekszárd, Hungary (Budapest 1995).
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A Self-dependency Constraint in the Simply

Typed Lambda Calculus
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Abstract. We consider a class of terms in the simply typed lambda cal-
culus in which initially, during reduction, and for the potential terms it
is never allowed that a variable x is applied to an argument containing
x. The terms form a wide class which includes linear terms. We show
that corresponding variant of the dual interpolation problem (i.e. the
problem in which all expressions can be restricted to terms of this kind)
is decidable. Thus the model for this kind of expressions can admit fully
abstract semantics and the higher-order matching problem is decidable.

Classification: Semantics, logic in computer science.

1 Introduction

The higher-order matching problem consists in solving certain equations in the
simply typed λ-calculus. The equations have the form M

.= N where the un-
knowns occur only in the term M . The higher-order matching problem can be
applied in automated theorem proving (see e.g. [Har96]) as a special case of
the higher-order unification. The higher-order matching problem has also con-
nections with semantics of the simply typed λ-calculus [Sta82]. It is strongly
connected with the problem of λ-definability. The problem of λ-definability is
to decide whether a given function from a function space over a finite base can
be defined by a λ-term. The problem of λ-definability is undecidable which cor-
responds to the fact that there is no way to effectively describe a fully-abstract
model for the simply typed λ-calculus [Loa01]. The higher-order matching prob-
lem defines a stronger notion of definability the decidability of which is still
unknown. Semantical investigations in simply typed lambda calculus have some
practical impact as they are strongly connected to the area of programme trans-
formations (see e.g. [dMS01]). In particular, a research like this can lead to pro-
cedures that find programme transformations for certain kinds of programmes
in a complete way.

The higher-order matching problem has a long history. The problem was
posed by G. Huet in his PhD thesis [Hue76]. In the last years. V. Padovani pre-
sented a new approach to higher-order matching. He proved that higher-order
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matching is decidable without restriction on the order but with a restriction on
the term N — it must be a single constant of a base type [Pad95a]. In addi-
tion, R. Loader presented [Loa03] the undecidability of unrestricted higher-order
matching, but for β-equality (the standard formulation requires βη-equality).
This was supplemented by results that take into account restrictions on domains
of solutions [dG00, DW02, SSS02, SS03].

This paper expands significantly the technique used in [Pad95a] and proposes
a new interesting class of terms. Informally, a term M is self-independent when
in each self-independent context and for each subterm N of the term if the
evaluation of the subterm N is executed somewhere in the reduction then all its
arguments may not contain a copy of N . For example the term

λx : (α→ α) → α→ α.x(λz1.fz1z1)a,

where f is a constant of the type ι→ ι→ ι and a is a constant of the type ι, is
self-independent since the only self-independent terms that can be substituted for
x are the identity, and the constant term and these can only result in forgetting
of the most of the term or in copying a to z1. This class contains linear terms
and, as the example shows, is wider.

The main result of the paper is the decidability for the higher-order match-
ing problem when the instances and solutions are restricted to self-independent
terms. Schmidt-Schauß proposed a refined technique to solve the higher-order
matching problem which is based on strictness analysis [SS99]. The proof in
this paper is based on the earlier Padovani’s approach which gives an explicit
syntactical characterisation of the introduced class. A presentation of this kind
is obscured when Schmidt-Schauß’s technique is used. What is more, such an
explicit presentation eases potential implementation since it shows the structure
of terms to be find.

In sections 2 and 3, the paper defines the basic notions. In the section 4, the
main technical development is sketched. The section 5 presents a sketch of the
decidability proof. The paper is concluded with a discussion in the section 6.

2 Preliminaries

Assume we are given a set B of base types. Let TB be the set of all simple
types over B defined as the smallest set containing B and closed on →. We shall
often omit the subscript B if B is clear from the context or unimportant. In
order to simplify the presentation, we limit ourselves here to the case where B
is a singleton {ι}. We conjecture that the case with many base types can be
developed without much problem using the same technique.

The set of simply typed terms is defined, as usual, based on the set of pre-
terms. The set λ∗→ of simply typed pre-terms contains an infinite, countable set
of variables V , a countable set of constants C (disjoint with V ), and a map
T : V ∪C → TB that indicates types of symbols. We assume that there exists an
infinite number of variables of a type α. This set is also closed on the application
and λ-abstraction operations. We will usually write s : τ to denote the fact that
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a pre-term s has a type τ . As usual, we deal with α-equivalence. The symbol [s]α
denotes the α-equivalence class of s. The set λ→ is defined as a quotient of λ∗→ by
α-equivalence. The elements of λ→ are denoted usually by M, M1, . . . , N, N1 . . .
etc. as well as the elements of λ∗→ are denoted by s, s1, . . . , t, t1, . . . etc. The notion
of a closed term is defined as usual, similarly the set FV(M) of free variables in
M . The symbol ConstM denotes the set of constants occurring in M . We assume
here that all the terms and pre-terms are properly typed according to the rules
of the Church-style simply typed lambda calculus.

We denote by T (τ, C) the set of all closed terms of type τ built-up of constants
from the set C. The notion of sorted set is of some usefulness here. The family
of sets T C = {T (τ, C)}τ∈TB is an example of a sorted set. We adopt standard ∈
notation to sorted sets.

The term ConstM denotes the set of constants that occur in M . This notation
is extended to sets (and other structures) of terms.

The order of a type τ , denoted by ord(τ) is defined inductively as
— ord(ι) = 0 for ι ∈ B; — ord(τ1 → τ2) = max(ord(τ1) + 1, ord(τ2)).

The notion of order extends to terms and pre-terms. We define ord(M) = ord(τ)
or ord(t) = ord(τ), where τ is the type of M or t respectively.

The relation of βη-reduction is written →∗
βη its reflexive closure =βη. The

β-reduction is written →∗
β . We write M [x := N ] to denote the substitution of

N for x with usual renaming of bound variables. We sometimes write substi-
tutions in the prefix mode as in S(N). The β-normal, η-long form for a sim-
ply typed term M is a β-normal term M ′ such that M =βη M ′ and which
cannot be η-expanded i.e. there is no simply typed M ′′ such that M ′′ →η

M ′.
We call an instance of the higher-order matching problem each pair of simply

typed λ-terms 〈M, N〉. We usually denote them as M
.= N . A solution of such an

instance is a substitution S such that S(M) =βη N . We often restrict ourselves
to the case when N has no free variables. This restriction is not essential.

Definition 1. (the higher-order matching problem)
The higher-order matching problem is a decision problem — given an instance
M

.= N of the higher-order matching problem whether there exists a solution of
M

.= N .

An interpolation equation is a pair of terms, usually written xN1 · · ·Nk
.= N ,

such that x is the only free variable in the left-hand side of the equation and
≥ 0.

Let 〈E,E′〉 be a pair of sets of interpolation equations such that there exists
a variable x which occurs free in the left-hand side of each equation in E∪E′. We
call 〈E,E′〉 an instance of the dual interpolation problem. We also call 〈E,E′〉 a
dual set.

A solution of such an instance is a term P such that for each equation
[xN1 · · ·Nk

.= N ] ∈ E we have PN1 · · ·Nk =βη N , and for each equation
[xN1 · · ·Nk

.= N ] ∈ E′ we have PN1 · · ·Nk 	=βη N .
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Definition 2. (the dual interpolation problem)
The dual interpolation problem is a decision problem — given an instance 〈E,E′〉
of the dual interpolation problem whether there exists a solution of 〈E,E′〉.

The dual interpolation problem and the higher-order matching problem are
connected in the following way:

Theorem 1. The problem of higher-order matching reduces to the dual inter-
polation problem.

Proof. See [Pad95b, Pad96] or [Sch01].

2.1 Self-independent Terms

We define self-independent terms by means of a marked reduction:

(λx.M)N →β# M [x := N ] (M)#N →β# MN.

where the substitution [x := N ] is defined so that (P )#[x := N ] = (P [x := N ])#.
A self-dependency is a term of the form (M)#N1 · · ·Nk where either M or

one of Ni contains the mark #. For each term M we define the set M#(M) as

M#(M) = {C[x#N1 · · ·Nk] |M = C[xN1 · · ·Nk]}

(C[·] denotes a term with a single hole usually called context, substitution for [·]
is not capture avoiding.)

All normal forms of a base type are self-independent. We say that a term
M is self-independent if for each sequence N1, . . . , Nn of self-independent terms
the outermost-leftmost reduction of each term M ′N1 · · ·Nn : ι where ι is a base
type and M ′ ∈ M#(M) does not include a term with a subterm being a self-
dependency.

By a routine inductive argument we can obtain that all the linear terms
are self-independent. Clearly, Church numerals greater than zero are not self-
independent, because their normal forms are self-dependencies. The class of
self-independent terms is wider, though. It contains for instance terms λxy.xyy
(where y is a variable of the base type) and λy.fyy (where f is a constant of the
type ι→ ι→ ι).

Note that when the term λxy.xyy is applied to the term λv1v2u.v1(v2u) then
we obtain λyu.y(yu) which is a self-dependency. Thus we cannot restrict the
self-dependency check to normal forms.

3 Tools and Definitions

This section contains definitions specific to the dual interpolation problem. The
first two subsections present some notational conventions. The subsection 3.3
presents a notion that allows to decompose sets of dual interpolation equations
and the subsection 3.4 presents a notion which identifies unnecessary parts of a
hypothetical solution.
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3.1 Addresses in Terms

Let t be a pre-term. A sequence of numbers γ points out to a subterm u when
γ = ε and u is the greatest subterm of t that does not start with λ or when
γ = i · γ′, and t = λx1 . . .xm.u0u1 · · ·un while γ′ points out to u in ui for
0 ≤ i ≤ n. A sequence that points to a subterm in a term t is called an address
in t. The prefix order on addresses is written as γ 3 γ′. The strict version is
denoted as γ ≺ γ′. The set of all addresses in a pre-term t is written Addr(t).

A graft of a pre-term u in t at an address γ is a term t′

– equal to u when γ = ε, or
– equal to λx1 . . .xm.u0u1 · · ·u′

i · · ·un when t = λx1 . . .xn.u0u1 · · ·un, u′
i is a

graft of u in ui at γ′ with γ = i · γ′.
The term t′ is denoted by t[γ ← u]. Let c be a constant t[c ← u] denotes the
result of grafting of the term u at every occurrence of the constant c.

Let C be a set of fresh constants. We say that a pre-term u is a C-pruning
of a pre-term t iff

– u = t, or
– u = u′[γ ← c] where c ∈ C, γ is an address in u′ and u′ is a C-pruning of t.

Let t′ and t′′ be C-prunings of a term t. The prefix order extends to terms
so that t′ 3 t′′ iff Addr(t′) ⊆ Addr(t′′). The above-mentioned notions extend to
λ-terms, sets of λ-terms and sets of pre-terms in a standard way. We sometimes
use natural numbers as constants in prunings.

3.2 Matrix Notation

Consider a set of equations {xM1
1 · · · M

1
n

.= W 1, · · · , xM
m
1 · · · M

m
n

.= Wm}. The
terms Mi

j form a matrix M. Mi denotes the i-th column in M while M
j the j-th row.

The terms W1, . . . ,Wm form a result column. We denote the set of equations
as [xM .= W ]. The notions NFL(M), ConstM extend to matrices, columns and
rows in a natural way. The concatenation of rows and columns is defined as
the concatenation of the respective sequences. Columns are denoted by V,W
etc. while rows by R, Q etc. The terms height and width denote the number of
elements in a column or in a row respectively and for a particular row R and
column V are written as |R| and |V |. If all the elements in a column V are the
same then the column is constant. A type of a column V is the (unique) type of
any of its elements. We say that a pair W,W ′ of columns is constant iff W is
constant as a column and W ′i 	= W 1 for all i.

3.3 Approximations

The notions of approximation allow us to semantically characterise minimal
building blocks of solutions for equations.

An approximation of a pair of columns W1,W2 in a dual set E = 〈[xM1
.=

W1], [xM2
.= W2]〉 of equations for the solution M is any pair of columns W̃1, W̃2

of the heights |W1|, |W2| such that
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– there exists an {a, b, 0, . . . , l}-pruning M ′ of M such that for each equation
[xMk

i,1 · · · M
k
i,r

.= W k
i ] ∈ E we have NFL(M ′M

k
i,1 · · ·Mi

k
i,r) = W̃ k

i ,

– for c ∈ {a, b} if c occurs in W̃ i
j then W̃ i

j = c,

– for each constant c ∈ N if some W̃ i
j = c then there exists γ 4 ε and k, l such

that γ(W̃ k
l ) = c (we say c is guarded).

For the sake of notational convenience we assume that for each approximation,
the set of numeric constants that occur in it forms an initial connected subset
of N, e.g. {0, 1, 2} or {0, 1}.

Let W̃1, W̃ ′
1 and W̃2, W̃ ′

2 be approximations of a pair of columns W,W ′. We
write W̃1, W̃ ′

1 3 W̃2, W̃ ′
2 when for each k we have W̃ k

1 3 W̃ k
2 and W̃ ′k

2 3 W̃ ′k
2 . It

is easily verified that � is a pre-order. Its strict version is denoted by �.
A pair of columns W,W ′ is trivial iff for each i, j we have W i = W ′j = c,

where c is either a or b.
Let 〈[xM .= W ], [xM′ .= W ′]〉 be a dual set and M its solution. We say that

W̃ , W̃ ′ is a minimal approximation of W,W ′ iff there is no non-trivial W̃1W̃ ′
1 �

W̃ , W̃ ′.
We say that a term M ′ is a minimal pruning for minimal approximation

W̃ , W̃ ′ iff W̃ , W̃ ′ is a minimal approximation of W,W ′ and there is no M ′′ ≺ M ′

such that NFL(M ′′M) = W̃ and NFL(M ′′M′) = W̃ ′.
Let W,W ′ be a pair of columns with a type τ1 → · · · → τn → ι. We

say that a pair of columns V,V ′ is a splitting pair of columns for W,W ′ iff
there exist terms M1, . . . , Mn such that the pair of columns NFL(VM1 · · ·Mn),
NFL(V ′M1 · · ·Mn) is an approximation of W,W ′.

3.4 Accessibility

The notions of accessibility allow us to identify the portions of terms which are
not necessary and to remove them. Let E = [xM .= W ] be a set of interpolation
equations. We say that an address γ is accessible in a term M wrt. E iff

– γ is an address in M ,
– there is an equation [xMi

1 · · · M
i
n
.= W i] ∈ E such that

NF(M [γ ← c]Mi
1 · · · M

i
n) (1)

has an occurrence of c, where c is a fresh constant of a base type.

We say that an address is totally accessible iff for each equation in E the
condition (1) holds. We say that an address is totally head accessible iff for each
equation in E we have NF(M [γ ← c]Mi

1 · · · M
i
n) = c, where c is a fresh constant.

W.l.o.g. we may assume that c is a constant of the base type. Let 〈E,E′〉 be a
dual set and M its solution. We say that an occurrence γ is totally head accessible
wrt. the dual set iff it is totally head accessible wrt. E and E′.



358 A. Schubert

3.5 Observational Equivalence

We introduce a notion of the observational equivalence. This notion is closely
related to the dual interpolation problem. Solutions of an instance of the dual
interpolation problem form an equivalence class in this relation.

Let R = {Rτ}τ∈T be an indexed family of sets containing λ-terms, and
satisfying conditions (1) all terms in R are in β-normal, η-long form, and (2)
for each term M ∈ R, there exists an α-representant sM of M such that for
each subterm t of the pre-term sM we have [t]α ∈ R. Such a set is called an
observable.

The notion of an observable gives rise to a variation of the dual interpolation
problem and the higher-order matching problem.

An instance of the dual interpolation problem for an observable R is a pair
of sets E = 〈E,E′〉 of interpolation equations such that there exists a variable
x which occurs free in the left-hand side of each equation in E ∪ E′ and all
right-hand sides of E ∪E′ belong to R.

The dual interpolation problem for an observable R is to decide whether an
instance of the dual interpolation problem for the observable R has a solution.

Definition 3. (the higher-order matching problem for an observable)
An instance of the higher-order matching problem for an observable R is a pair
of simply typed λ-terms 〈M, N〉 where N ∈ R.

The higher-order matching problem for an observable R is to decide whether
a given instance of the higher-order matching problem for the observable R has
a solution.

The notion of an observable is also a base for a pre-order and an equivalence
relation which, in turn, allow us to define a semantic structure for the simply
typed λ-calculus.

Definition 4. (observational pre-order)
For each observable R we define an observational pre-order with respect to R
as the relation 'R on λ-terms such that

M 'R M ′ iff M and M ′ have both the type σ → τ , and for each sequence
of terms N1, . . . , Nn with appropriate types and n ≥ 1 we
have that if NFL(MN1 · · ·Nn) ∈ R then MN1 · · ·Nn =βη

M ′N1 · · ·Nn or
M and M ′ are both of a base type and if NFL(M) ∈ R then
M =βη M ′

Definition 5. (observational equivalence)
For each observable R we define an observational equivalence with respect to
this observable as the relation on closed terms ≈R such that

M ≈R M ′ iff M 'R M ′ and M ′ 'R M

More details concerning this equivalence are in [Sch01]. In particular, we have
the following theorem
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Theorem 2. For each solvable instance E of dual interpolation for an observable
R there exists an equivalence class of ≈R such that all its elements are solutions
of E.

For each class A of the relation ≈R there exists an instance E of the dual
interpolation problem for the observable R such that terms from A solve E.

There is an algorithm which for a type τ = τ1 → · · · τn → ι and complete sets
of representants of ≈R classes for types τ1, . . . , τn generates a set C of instances
such that for each ≈R class A in the type τ there is an instance EA such that
terms of A are the only solutions of EA.

Proof. Easy conclusion from [Sch01].

3.6 Transferring Terms

The proof in this paper is based on the following schema: We define transferring
terms. (The name comes from the fact that these terms govern the transfer of
the symbols from the original places to the solution.) We show that each solvable
dual interpolation instance has a solution of this form. The form can be further
simplified to pseudo transferring terms which is done in Section 5. The latter
form is so simple that we are able to enumerate them and thus we obtain a proof
that the dual interpolation problem is decidable.

This section contains the crucial definition of transferring terms. The defini-
tion is difficult, but we explain some of its elements in this section later on.

Definition 6. (transferring terms)
Let n, m ∈ N and let C be a set of constants. A closed term M : τ1 → · · · →
τp → ι is an (n, m, C)-transferring term iff

1. M = λy1 . . . yp.M
′ and M ′ is a term over C without any occurrence of yi

where i = 1, . . . , p, or
2. M = λy1 . . . yp.fM1 · · ·Mk, where

– f ∈ C has a type σ1 → · · ·→ σk → ι, and
– Mi = λz1 . . . zr.M

′
i where M ′

i does not begin with λ, and
– λy1 . . . yp.M

′
i are (ni, m, Ci)-transferring terms, and

– ni < n, and
– Ci = C ∪ {z1, . . . , zr}, or

3. M =λy1 . . . yp.yiM1 · · ·Mk[a←Nay, b←Nby, 0 ←N0yx0, . . . , l←Nlyxl],
where
– y = y1, . . . , yp;
– each Mi is a closed term over C ∪ {a, b, 0, . . . , l};
– each constant 0, . . . , l occurs only once in yiM1 · · ·Mk;
– Na and Nb are (na, ma, C)-transferring and (nb, mb, C)-transferring re-

spectively;
– Nj is (nj , mj , C)-transferring for each j;
– na, nb ≤ n;
– ma + mb ≤ m and ma, mb 	= m;
– nj < n and mj ≤ n.
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Sometimes when (n, m, C) are unimportant or clearly seen from the context, we
shorten the name to transferring.

Suppose that case (3) is abridged so that there are no constants from N. The re-
sulting term M may be presented as M = λy.Cyk

[ykM1 · · · (λzzjz
′.Mi) · · ·Mr].

Consider λzzjz
′.Mi. In this term, none of the occurrences of zj in Mi is in a

subterm beginning with yl from y.
When this constraint is applied, the number of occurrences of variables from

y in an (n, m, C)-transferring term M is bounded by m.
This simple picture is contaminated by the presence of constants from N. We

allow these constants to occur in subterms of M beginning with variables yl from
y. This adds some flexibility and, consequently, expressive power to our terms.
This flexibility is restricted, though. We have to pay for blocks that declare these
variables with coins kept in n.

4 Transferring Terms and Dual Interpolation

Here is a theorem that relates the dual interpolation problem to transferring
representatives. This is the central theorem of the paper.

Theorem 3. Let E be an instance of the dual interpolation problem. If M is a
solution of E then there exist n, m ∈ N together with a set of constants C and
an (n, m, C)-transferring term M ′ such that M ′ is a solution of E, too.

Moreover, n, m, C depend recursively on E.

In order to prove this theorem we need a lemma that enables cleanup of some-
times excessively complicated terms.

4.1 Skipping Unimportant Variables

The induction step in the proof of Theorem 3 consists in splitting a dual set
and finding transferring solutions for the results of the split. These solutions are
based on a term M that solves the whole set at the very beginning. This term
can be too complicated to be a compact solution of the split sets. During the
process of construction of transferring solutions for them, we have to compact
M in several different ways. This section is devoted to the major step of the
compactification.

Below, we use C-prunings for C = {a, b} ∪ N. Thus we shorten the name
C-pruning to pruning here. We impose a constraint on the shape of prunings
performed on solutions. Constants from N may occur only once.

First of all, we have to determine what we want to skip.

Definition 7. (an unimportant occurrence)
Let M = λy.yiM1 · · ·Mk be a term that solves a dual set E = 〈[xM .= W ], [xM .=
W ′]〉, and let M ′ be a pruning of M that gives a minimal approximation of
W,W ′. An occurrence γ · 0 of a variable z in M ′ is unimportant iff
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– γ is totally head accessible, and
– there is γ′ 	= 0 such that γ · γ′ is an occurrence of a variable bound on γ and
γ · γ′ is totally head accessible.

Note that unimportant occurrence has always the shape γ · 0. We say that an
unimportant occurrence γ · 0 is maximal if there is no unimportant occurrence
γ · γ′ · 0 where γ′ 4 ε.

Lemma 1. Let M = λy.zM1 · · ·Mk be a term that solves a set of dual equations
E = 〈[xM .= W ], [xM′ .= W ′]〉, where W,W ′ is a non-constant pair of columns. If
M ′ = λy.zM̂1 · · · M̂k is a minimal pruning of M for minimal approximation of
W,W ′ wrt. E, then

– either there exists j such that Mj , M′j is a splitting pair of columns for W,W ′,
– or there is an address γ in M that points to a constant f ∈ ConstM that is

totally head accessible.

Proof. We get rid of the unimportant occurrences. This is done by a partial
evaluation. The results of evaluation can be controlled since self-independent
terms are used.

Proof of Theorem 3:
The aforementioned lemma allows to prove the main theorem of the paper. This
is done by splitting dual interpolation instances. The way the split is done is
controlled by the shape of minimal approximation for the hypothetical solution.

5 Decidability

We have to provide yet another characterisation of solutions for the higher-order
matching problem in the case of self-independent terms. The inductive definition
of transferring terms requires in some places any terms instead of the transferring
ones. In the proofs here, we replace these terms by equivalent pseudo transferring
representatives which describe the behavioural equivalence in a more precise way
than transferring ones.

Definition 8. (pseudo transferring terms)
Let R be a finite observable, n, m ∈ N, and C be a set of constants. A term
M : τ1 → · · ·→ τp → ι is a pseudo (n, m, C)-transferring term for the observable
R iff

1. M = λy1 . . . yp.M
′ and M ′ is a term over constants from C without any

occurrence of yi,
2. M = λy1 . . . yp.fM1 · · ·Mk, where f ∈ C has a type σ1 → · · ·→ σk → ι and

λy1 . . . yp.Mi are pseudo (ni, m, Ci)-transferring terms for the observable R
with ni < n and Ci = C ∪ {z1, . . . , zr} where Mi = λz1 . . . zr.M

′
i and M ′

i

does not begin with λ.
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3. M = λy1 . . . yp.yiM1 · · ·Mk[a← Nay, b← Nby, z0 := N0y, . . . , zl := Nly],
where
– y = y1, . . . , yp;
– z0, . . . , zl have order less than the order of yi;
– λzi1 . . . zik

.Mi are pseudo (ni, mi, C ∪ {a, b})-transferring terms for the
observable R{a,b}, where ni is the maximal number of equations in a dual
set Echaracterising a single equivalence class as in Theorem 2, and mi

is the maximal total size of right-hand sides in such an E
– Na and Nb are pseudo (na, ma, C)-transferring and pseudo (nb, mb, C)-

transferring respectively for the observable R;
– T is a set of terms such that RT � R;
– for each j the term Nj is pseudo (nj , mj, C)-transferring for the observ-

able RT .
– na, nb ≤ n;
– ma + mb ≤ m and ma, mb 	= m;
– nj is the number of equations in a dual set characterising an equivalence

class of observational equivalence for RT and mj is the total size of
right-hand sides in the aforementioned dual set.

Sometimes when (n, m, C) are unimportant or clearly seen from the context, we
shorten the name to pseudo transferring.

We have the following theorem:

Theorem 4. If a dual interpolation set E for an observable R has an (n,m,C)-
transferring solution M then it has a pseudo (n,m,C)-transferring solution, too.

We are now ready to conclude with the following theorem.

Theorem 5. The dual interpolation problem for self-independent terms is de-
cidable so the higher-order matching problem for these terms is decidable.

Proof. The decision procedure consists in enumerating all pseudo transferring
terms for the type of the unknown in an instance of the dual interpolation
problem. This is done by recursion on the form of pseudo transferring terms.

6 Discussion and Further Research

The presented construction works for a single base type. The case with many
base types requires an appropriate change in the definition of the transferring
terms. I believe that the proof can be extended to cover this case, too, but the
notation will be more difficult to handle.

A successful solution of the higher-order matching problem requires a thor-
ough study of contexts in the simply typed lambda calculus. Similarly, a con-
scious application of programme transformation techniques and prover tactics
based on higher-order matching demands a fine-grained map of different decid-
able cases. It is desirable to have procedures of this kind for various classes of
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contexts since they give there a precisely described partial completeness. The
notion of self-independent terms relies on the outermost-leftmost reduction. A
further research should be conducted in order to provide a similar characterisa-
tion for other reduction strategies. In particular the call-by-value strategy leads
to a stronger notion of self-independent terms. The presented study shows that
the higher-order matching problem poses much difficulty already in the case with
a single base type.

It is interesting to see the connections between the self-independent terms and
the linear logic. A possible direction of studies is to investigate if the higher-order
matching problem is decidable in variants of the linear logic with ! operation.
This could also give more classes of terms for which the higher-order matching
problem is decidable.
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[Hue76] G. Huet. Résolution d’Équations dans les Langages d’Ordre 1, 2, . . . , ω. PhD
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Abstract. The paper presents a novel type system for checking the security of in-
formation flow in programs containing operations of symmetric encryption. The
type system is correct with respect to the complexity-theoretic security defini-
tions of the encryption primitive.

Topics: Semantics, cryptography.

1 Introduction and Related Work

Suppose that you have received a program that purports to help you to organize some
kind of your personal data. The program has functionality to make that data available
over a network, but only in encrypted form, so that only people designated by you may
have access to it. How can you be sure that the program really does what it claims to
do, and does not leak your data to someone not entitled to it?

Here we have an instance of the problem of secure information flow (SIF). The
security here is not absolute, though. If the program acts as promised then it indeed
leaks your personal data — someone that is able to break the encryption can recover
it. At stake here is computational security — if we assume that the encryption cannot
be broken with realistic resources, does that also mean that your data is safe against all
realistic adversaries?

When blindly trusting the source of the program is not an option, we have to verify
it somehow. One possibility for such a verification is typing the program with a type
system that ensures that correctly typed programs have SIF. Using static analysis for
certification of SIF was pioneered by Denning and Denning [8,9]. The correctness of
the analysis was not proven directly from the semantics of the program, though. Volpano
et al. [23] gave a definition of SIF without using any instrumentations. They also gave a
type system which could check whether programs satisfy this definition. In subsequent
papers [21,25] they have extended their approach to richer sets of programming con-
structions, and have also attempted to handle operations that provide non-information-
theoretical security — namely one-way functions [26,22]. The work in this paper can
be seen as a significant extension to their approach. The interest in security types is mo-
tivated by the relative ease of incorporating them into existing programming languages
[18]. A good overview of research on language-based information flow security is given
by Sabelfeld and Myers [19].
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Type systems for handling cryptographic operations were first investigated by
Abadi [1]; a more recent paper is [2]. In his approach, the type of each piece of data
expresses the intended uses of that data; the type of keys shows what kind of data it is
intended to encrypt so as to make it safe to communicate over public channels. Our ap-
proach is somewhat different — our types reflect the source of the data; communicating
data over public channels is safe if the sources are not sensitive. The main difference
between their and our approaches is however the computational setting — their type
systems are correct with respect to the Dolev-Yao model [10] while ours is correct with
respect to complexity-theoretic definitions of security [27].

Automatic or computer-assisted handling of cryptographic operations while remain-
ing true to the complexity-theoretic security definitions has also attracted research but
the emphasis or results of the approaches have been more or less different from the
current paper. Universal composability [7,20] is a very general approach that strives to
abstract away from the complexity-theoretic details of cryptographic primitives so that
Dolev-Yao-style, but computationally justified arguments become possible. Tools for
manipulating these abstractions have unfortunately failed to appear until now. Also, the
current best abstraction of symmetric encryption [6] has some restrictions. Lincoln et
al. [15,16] have given probabilistic semantics to spi-calculus [3], stated some protocols
and proved them correct with respect to this semantics and the complexity-theoretic se-
curity definitions, but there is no tool support. Abadi et al. [5,4] have given an automatic
means to decide when certain reasonable computational interpretations of two messages
in Dolev-Yao model are indistinguishable. We [11,13] have proposed program analyses
for checking SIF in presence of encryption in programs.

In this paper we present a type system that can also gracefully handle symmetric
encryptions as operations in the program, and, as the first of its kind, is correct with
respect to the complexity-theoretic security definitions of the cryptographic primitive,
instead of being based on the Dolev-Yao model. The paper has the following structure.
In Sec. 2 we state the preliminaries — we define our program language, its semantics,
and the security of both information flow and encryption systems. Sec. 3 presents the
type system and Sec. 4 states its correctness theorem and gives an overview of its proof.
Sec. 5 concludes.

2 The Settings

We consider programs in a simple imperative language (the WHILE-language) whose
expressions E and programs P are defined by the following grammar:

P ::= x := E | skip | P1; P2 | if b then P1 else P2 | while b do P1
E ::= o(x1, . . . , xk)

Here x, x1, . . . , xk, b are variables from the set Var and o is an operator from the set
of operators Op. The set Op has to contain two special operators — a nullary op-
erator Gen that denotes the generation of new encryption keys, and a binary operator
Enc denoting the symmetric encryption. Our type system does not handle decryption
specifically, therefore we do not mention it here.
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Semantics. As our type system is proved correct mostly by showing the bisimilarity
of certain programs, we use (small-step) structural operational semantics as the main
method to describe what a program does. The encryption system that gives the seman-
tics to the operators Gen and Enc must be probabilistic, otherwise it cannot satisfy the
requirements we are going to put on it. Hence the semantics of the programs must be
probabilistic as well. LetD(X) denote the set of all probability distributions over the set
X . For x ∈ X let η(x) ∈ D(X) be the probability distribution that puts all its weight
onto x. Let x ← D denote that the random variable x is picked according to the prob-
ability distribution D. Let {|E : C|} denote the distribution of E under the conditions
C. A state of the program is a mapping from Var to the set of values Val = {0, 1}∗. A
program configuration is a pair of a program (yet to be executed) and a state. A proba-
bilistic program configuration is a pair of a program and a probability distribution over
states. The semantics is a relation from program configurations to probabilistic program
configurations and probability distributions over states. We assume that each k-ary op-
erator o ∈ Op has been given a semantics [[o]] : Valk → D(Val). The semantics of
programs is given in Fig. 1, where Val = true ∪̇ false is a fixed partition. Note that−→
is a function.

〈x := o(x1, . . . , xk), S〉 −→ {|S[x �→ v] : v ← [[o]](S(x1), . . . , S(xk))|} (1)

〈skip, S〉 −→ η(S) (2)

〈P1, S〉 −→ D

〈P1; P2, S〉 −→ 〈P2, D〉 (3)

〈P1, S〉 −→ 〈P′
1, D〉

〈P1; P2, S〉 −→ 〈P′
1; P2, D〉 (4)

S(b) ∈ true

〈if b then P1 else P2, S〉 −→ 〈P1, η(S)〉 (5)

S(b) ∈ false

〈if b then P1 else P2, S〉 −→ 〈P2, η(S)〉 (6)

S(b) ∈ true

〈while b do P1, S〉 −→ 〈P1;while b do P1, η(S)〉 (7)

S(b) ∈ false

〈while b do P1, S〉 −→ η(S) (8)

Fig. 1. The operational semantics of programs

For defining security we also have to state what the outcome of the program is. A
program run is a sequence C0

p1→ C1
p2→ · · · pn→ Cn where C0, . . . , Cn−1 are program

configurations and Cn is a program state. If Ci−1 = 〈Pi−1, Si−1〉 −→ 〈Pi, Di〉 then
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Ci must be equal to 〈Pi, Si〉 for some state Si and pi = Di(Si) (if i = n then we
have just Dn instead of 〈Pi, Di〉). The probability of a run is the product of all pi that it
contains. Let State⊥ = State ∪̇ {⊥} where ⊥ denotes nontermination. If 〈P, S〉 is a
configuration and D ∈ D(State⊥) then we write 〈P, S〉 =⇒ D if for all S ∈ State,
D(S) equals the sum of the probabilities of all runs starting with 〈P, S〉 and ending
with S. The relation =⇒ defines the result of running a program on an initial state.

Encryption Systems. An encryption system is a triple of algorithms (G, E, D). They all
must have running times polynomial to the length of their arguments. The algorithm G

is the key-generation algorithm. It is invoked to create new encryption keys. The algo-
rithm G takes one argument — the security parameter n ∈ N (represented in unary,
because of the comment about the running times of algorithms) which determines the
security of the system — more concretely, it determines the length of the keys. Larger
security parameter means longer keys. The encryption algorithm takes as its arguments
the security parameter, a key returned by G(1n) (actually, we could assume that the
security parameter is contained in that key but this is the usual presentation), and a
plaintext — a bit-string. It returns the corresponding ciphertext. The arguments and the
return value of the decryption algorithm are similar, only the places of plaintext and
ciphertext are reversed. The key generation algorithm is obviously probabilistic, the
decryption algorithm is deterministic. The encryption algorithm may either be deter-
ministic or probabilistic but for satisfying the security requirements stated below it has
to be probabilistic. It is required that the decryption of an encryption of a bit-string is
equal to that bit-string.

The security requirement we put on the encryption system is the same as Abadi and
Rogaway [5] used. We want the encryption to conceal the identity of both plaintexts
and encryption keys and we want it also to hide the length of the plaintexts. Formally,
for all probabilistic polynomial-time (PPT) algorithms A (with access to two oracles)
the difference

P[AE(1n,k,·),E(1n,k′,·)(1n) = 1 | k, k′ ← G(1n)]−
P[AE(1n,k,0),E(1n,k,0)(1n) = 1 | k ← G(1n)] (9)

must be a negligible function in n where 0 is a fixed bit-string. Here E(1n, k, ·) is an
oracle that encrypts its inputs with key k, and E(1n, k,0) is an oracle that discards its
inputs and returns encryptions of 0 (under key k) instead. A function is negligible if it
is asymptotically smaller than the reciprocal of any polynomial.

We see that an encryption system does not just define a nullary and two binary
algorithms, but it defines an entire family (indexed by n ∈ N) of them. The semantics
of programs therefore also has to be indexed by the security parameter n. Instead of a
single relation−→ we have a family {−→n }n∈N. The semantics of a k-ary operation o is
a family of probabilistic functions [[o]]n : Valk → D(Val). We require that [[Gen]]n =
G(1n) and [[Enc]]n = E(1n, ·, ·) for some encryption system (G, E, D) satisfying (9).

Secure Information Flow. We have to fix what are the secret inputs and the public
outputs of a program. For simplicity, let there be two fixed subsets VarS,VarP ⊆ Var.
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The secret inputs are the initial values of the variables in VarS, and the public outputs
are the final values of the variables in VarP.

Our definition of security is termination-insensitive. Sensitivity to termination is
orthogonal to other issues and can be easily added as an afterthought [24]. Actually,
non-termination cannot be detected at all, but running for a too long time can. In our
setting, superpolynomial (in the security parameter) running time is definitely too long
because encryption is secure only against polynomial-time adversaries. We say that
a program P runs in expected polynomial time if there exists a polynomial q and a
negligible function α, such that the sum of the probabilities of all program runs (for the
semantics −→n ) of length at most q(n) is at least 1− α(n).

The inputs of the program have to come from somewhere; when the program is run
then its input state is picked from some probability distribution over program states.
The nature of that distribution can have a profound effect on the security of the pro-
gram. If the family of input distributions (indexed by the security parameter) D is not
polynomial-time samplable (i.e. there exists no PPT algorithm A whose outputs on
input 1n are distributed as Dn) then some effects not achievable in polynomial time
may happen during the program run and we no longer can be sure that the encryption
is secure. Another consideration is, that we are interested whether the program leaks
the secret inputs or not, so we want to exclude the cases where the secrets have al-
ready been leaked before running the program. We say that a family of distributions
D over program states isolates the secrets if the values of the variables in VarS are
computationally independent of the values of the rest of the variables. I.e. the families
of probability distributions

{|(Sn|VarS , Sn|Var\VarS) : Sn ← Dn|} (10)

and
{|(Sn|VarS , S

′
n|Var\VarS) : Sn, S′

n ← Dn|} (11)

have to be indistinguishable, i.e. no PPT algorithm that is given either a sample of (10)
or (11) can tell with probability non-negligibly higher than 1/2 which of these two
distributions the sample was taken from.

A program P that runs in expected polynomial time has computationally secure
information flow (CSIF) if the secret inputs and public outputs of the program are com-
putationally independent. I.e. for all polynomial-time samplable families of probability
distributions D that isolate the secrets, the families of probability distributions

{|(Sn|VarS , S′
n|VarP) : Sn ← Dn, 〈P, Sn〉 =⇒n D′

n, S′
n ← D′

n|} (12)

and
{|(Sn|VarS , S

′
n|VarP) : Sn, S′′

n ← Dn, 〈P, S′′
n〉 =⇒n D′

n, S′
n ← D′

n|} (13)

have to be indistinguishable.

3 Type System

A typing assigns types to variables. The type of a variable indicates what kind of infor-
mation is allowed to influence its value. The type also indicates whether the value of the
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variable is a valid encryption key. I.e. the type of a variable is a pair of an information
type and a usage type. Inference rules allow to deduce the type of the program from the
types of its variables. A typing is valid if the program has a type.

The “basic” secrets that the program operates on are its secret inputs and also the
encryption keys that the program operates on; we definitely have to keep track where
they are flowing. We have to distinguish between different keys; if we did not then each
key would potentially be able to decrypt any ciphertext. In our current approach we
distinguish the keys statically — let G be a (finite) set whose elements we use to label
the key generation statements x := Gen in the program. We can distinguish two keys if
they have been generated at statements with different labels. Let T0 = {h}∪G; it is the
set of types for basic secrets. Here h denotes the type of secret inputs.

Let T1 = {{t}N | t ∈ T0, N ⊆ G}. The type {t}N means that the information of
type t has been encrypted with keys of the type N . To recover the information, one
needs at least one key for each type that is contained in N . The set T1 is ordered —
{t}N ≤ {t′}N ′ iff t = t′ and N ⊇ N ′. We get less information out of something that
is protected by more keys.

Let T2 = P(T1) (the power set). The elements of T2 denote the merging of in-
formation from several types in T1. The information types are basically elements of
T2. The element ∅ ∈ T2 denotes public data. The set T2 is ordered: T ≤ T ′ if
∀{t}N ∈ T ∃{t′}N ′ ∈ T ′ : {t}N ≤ {t′}N ′ . The relation ≤ is a preorder (reflexive
and transitive), so we identify T and T ′ whenever T ≤ T ′ and T ′ ≤ T . In practice this
amounts to the deletion of all non-maximal elements from T ∈ T2.

Besides the equivalence ≤ ∩ ≥ on T2 there is another one that corresponds to the
usage of keys that are not protected by other keys. For example, if T = {{h}{1}, {1}∅}
then we the possible knowledge of a key generated at 1 ∈ G allows us to recover h —
T is equivalent to T ∪ {h} (denote T ≡ T ∪ {h}). To formally define the relation ≡
we introduce the sets T N for T ∈ T2 and N ⊆ G. The set T N corresponds to the
information that may be recovered if we have the information in T and possibility to
decrypt information with keys in N . They are defined as the least sets satisfying

1. T ⊆ T ∅

2. N ⊆ N ′ ⇒ T N ⊆ T N ′

3. {t}M ∈ T N ⇒ {t}M\{i} ∈ T N∪{i}

4. {t}M ∈ T N∪{i} ∧ {i}∅ ∈ T N ⇒ {t}M ∈ T N

5. {i}∅ ∈ T N∪{i} ⇒ {i}∅ ∈ T N .

(14)

Finally we define that T ≡ T ∅. The items 1.-4. specify just the abilities of a Dolev-Yao
attacker. The 5. item is used to break encryption cycles (see [5] for a more thorough dis-
cussion on them). This “Dolev-Yao attacker with the ability to break encryption cycles”
first appeared in [12].

There is a more direct way of computing T ∅ than iterating the rules in (14). First
we want to determine the set I of all key labels i ∈ G that occur as {i}∅ in T ∅. We let
I ⊆ G be the largest set satisfying(

∀{t}N ∈ T : t 	= i ∨N 	⊆ I
)
⇒ i 	∈ I (15)

for all i ∈ G. Such an I can be found by initializing I with G and then iterating (15).
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Proposition 1. Let T ∈ T2 and let I be defined as in (15). Then
T ∅ = {{t}N\I | {t}N ∈ T } (up to the relation ≤ ∩ ≥).

See the full version [14] for a proof. In the following, when we talk about the ele-
ments of T2 then we mean the equivalence classes with respect to (≤ ∩ ≥)� ≡.

The set of usage types is U = {Data} ∪ {KeyN |N ⊆ G}. If the usage type of
variable is Data then its value is not usable as an encryption key. The value of a variable
with the usage type KeyN is an encryption key generated at a key generation statement
labeled with an element of N .

We can now state the actual sets of types for expressions, variables and programs.
Define

TE := {〈T, J,U〉 |T, J ∈ T2,U ∈ U, T ≥ J}
TV := {〈T,U〉 var |T ∈ T2,U ∈ U}
TC := {T cmd |T ∈ T2} .

For a program type T cmd the type T is a lower bound on the information types of
variables that are assigned to in this program. A variable type shows both the kinds of
information that may be contained in that variable, and whether it may be used as an
encryption key. The components T and U in an expression type 〈T, J,U〉 have the same
meaning (for that expression). Additionally, J is an upper bound on the information that
may control whether this expression is evaluated. A typing γ is a mapping from Var
to TV . Compared to the type system of Volpano et al. [23] the new details (besides the
much richer set of information types) are the usage types for variables and expressions
and the extra component in the expression types recording the information through
implicit flow.

There is an order defined on TE :

T ≤ T ′ ∧ J ≤ J ′⇒〈T, J, Data〉 ≤ 〈T ′, J ′, Data〉
T ≤ T ′ ∧ J ≤ J ′ ∧N ⊆ N ′⇒〈T, J, KeyN 〉 ≤ 〈T ′, J ′, KeyN ′〉

J ≤ J ′ ∧ T ∪ {{i}∅ | i ∈ N} ≤ T ′⇒〈T, J, KeyN 〉 ≤ 〈T ′, J ′, Data〉 .

The set TC is ordered as well: T cmd ≤ T ′ cmd if T ≥ T ′. The set TV is unordered.
Let 6 be the greatest element of T2, i.e. 6 = {{t}∅ | t ∈ T0}. The rules for typing
expressions and programs are given in Fig. 2. Note that the rule (18) is a “general” rule
for typing expressions and it may also applied to encryptions and key generations.

Recall that we called a typing γ valid (for the program P) if γ 0 P : T cmd is
derivable for some T ∈ T2. The rules in Fig. 2 put certain constraints on γ. To further
explain these rules, let us state these constraints explicitly. Each assignment statement
x := o(x1, . . . , xk) in the program introduces a set of constraints. Let b1, . . . , bm be the
variables controlling whether this assignment is executed (i.e. these are the conditional
variables occurring in the if - and while-statements enclosing this assignment). Stating
the constraints is simpler if we also introduce an order on TV by defining

T ≤ T ′⇒〈T, Data〉 var ≤ 〈T ′, Data〉 var
T ≤ T ′ ∧N ⊆ N ′⇒〈T, KeyN 〉 var ≤ 〈T ′, KeyN ′〉 var

T ∪ {{i}∅ | i ∈ N} ≤ T ′⇒〈T, KeyN 〉 var ≤ 〈T ′, Data〉 var

and define γData(x) ≥ γ(x) to be the smallest type whose usage component equals
Data.
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γ � e : 〈T ′, J ′, U ′〉 〈T ′, J ′, U ′〉 ≤ 〈T, J, U〉
γ � e : 〈T, J, U〉 (16)

γ � P : T ′ cmd T ′ cmd ≤ T cmd
γ � P : T cmd (17)

γ � ei : 〈T, J, Data〉
γ � o(e1, . . . , ek) : 〈T, J, Data〉 (18)

γ � Geni : 〈∅, ∅, Key{i}〉 (19)

γ � y : 〈T, J, Data〉 γ � k : 〈T, J, KeyN 〉
γ � Enc(k, y) : 〈{ {t}M∪{i}| {t}M ∈ T, i ∈ N} ∪ J , J, Data〉 (20)

γ(x) = 〈T, U〉 var
γ � x : 〈T, ∅, U〉 (21)

γ � e : 〈T, J, Data〉 γ(x) = 〈T, Data〉 var
γ � x := e : J cmd (22)

γ � e : 〈T, J, KeyN 〉 γ(x) = 〈T, KeyN 〉 var
γ � x := e : J cmd (23)

γ � skip : � cmd (24)

γ � P1 : T cmd γ � P2 : T cmd
γ � P1;P2 : T cmd (25)

γ � e : 〈T, J, Data〉 γ � P1 : T cmd γ � P2 : T cmd
γ � if e then P1 else P2 : T cmd (26)

γ � e : 〈T, J, Data〉 γ � P : T cmd
γ � while e do P : T cmd (27)

Fig. 2. Typing rules

An assignment x := o(x1, . . . , xk) simply introduces the constraints γ(x) ≥ γ(xi)
and γ(x) ≥ γData(bj) for all i and j. Also, the usage component of γ(x) must be Data.
For the special kinds of assignments, there is a choice between the set of constraints we
just stated and a set of constraints that depends of the statement.

For x := Enc(k, y) the alternative set of constraints is the following. Let γ(x) =
〈Tx, Data〉 var , γ(k) = 〈Tk, KeyN 〉 var , γData(y) = 〈Ty, Data〉 var , and γData(bj) =
〈Bj , Data〉 var . The constraints Tx ≥ { {t}M∪{i}| {t}M ∈ Ty ∪ Tk, i ∈ N} and Tx ≥
Bj must then hold. Such different handling of information flowing from k and y vs. the
information flowing from bj-s was the reason of introducing the second information-
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type component to the expression types. Notice that typing rule (20) is the only rule that
handles two information-type components differently.

For x := Geni, the alternative set of constraints is the following. Let γ(x) =
〈Tx, KeyN 〉 var and γData(bj) = 〈Bj , Data〉 var . Then i ∈ N and Tx ≥ Bj .

For x := y, where x and y are both keys, we have the following alternative set of
constraints. Let γ(x) = 〈Tx, KeyNx

〉 var , γ(y) = 〈Ty, KeyNy
〉 var and γData(bj) =

〈Bj , Data〉 var . Then Tx ≥ Ty , Tx ≥ Bj and Nx ⊇ Ny.
These constraints can be used to automatically infer typings for programs. The next

proposition is proved in the full version of this paper [14].

Proposition 2. A typing γ of a program P is valid iff it satisfies the constraints given
above.

4 Correctness of the Type System

For stating the correctness theorem we have to define which variables actually constitute
the inputs of the program and which are merely used for storing the intermediate results
or outputs. We say that x ∈ Var is an input variable if there is a path through the
program where a read of x precedes the first write to x. If x is not an input variable
then its initial value has no effect on the computation. Let VarI ⊆ Var be the set of all
input variables. The set VarI can be found using the same methods as for determining
the potentially uninitialized variables in Java methods [17]. For a given γ let γI(x) = T
where 〈T,U〉 var = γData(x).

Theorem 1. Let P be a program running in expected polynomial time with the set of
variables Var. Let VarS and VarP be fixed. If P has a valid typing γ, such that γ(x) ≥
〈{{h}∅}, Data〉 var for all x ∈ VarS, γ(x) ≥ 〈∅, Data〉 var for all x ∈ VarI ∪VarP,
and
∨

x∈VarP
γI(x) 	≥ {{h}∅} then P has secure information flow.

We see that for applying this theorem the inputs and outputs of the program may
not be keys. If we had allowed the inputs to be keys then the theorem would have had to
demand that they really are valid keys. I.e. the values of corresponding variables must
have been distributed indistinguishably to keys and two variables that are keys would
have to be either equal or independent. In any case they would have to be independent
of non-keys. We believe that the restriction that the theorem has in its current wording
is not a major one. If one wants to consider keys as inputs as well, then one could just
prepend the program with commands to generate those keys. If the public output of the
program would have been a key then we can just assign it to a different (new) variable.

Theorem 1 follows by some simple manipulation of probability distributions [14]
from the following lemma basically stating that the public outputs of a program satis-
fying the premises of Thm. 1 can be computed without ever accessing the secret inputs.

Lemma 1 (Simulation Lemma). Let P, Var, VarS, VarP, VarI satisfy the premises
of Theorem 1. Then there exists a program P′ running in expected polynomial time
with the set of variables Var′ and the set of input variables VarI

′, such that VarS ∪
VarP ⊆ Var′, VarI

′ ⊆ VarI, P′ does not access the variables in VarS, and for every
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polynomial-time samplable family of probability distributions D over program states
the families {|(Sn|VarS , S

′
n|VarP) : Sn ← Dn, 〈P, Sn〉 =⇒n D′

n, S′
n ← D′

n|} and
{|(Sn|VarS, S′

n|VarP) :Sn ← Dn, 〈P′, Sn〉=⇒n D′
n, S′

n ← D′
n|} are indistinguishable.

Let us give a short description of the proof of the Simulation Lemma (full proof
can be found in [14]). The main tools for constructing the program P′ and showing that
its public outputs are indistinguishable from those of P are probabilistic bisimulations
and the definition of secure encryption (9). The definition states that sometimes the
encryption Enc(k, y) may be replaced with Enc(kn,0) where 0 is a constant and kn is
a fixed key (generated somewhere in the beginning of the program).

Let T ∈ T2 be an information type. We say that some i ∈ {h} ∪ G occurs in T as
data if {i}N ∈ T for some N . We say that i ∈ G occurs in T as a key if {t}N∪{i} ∈ T
for some t and N . We say that j encrypts i in T if {i}N∪{j} ∈ T for some N . A key
label i is free in T if occurs in T only as a key. If h does not occur in

∨
x∈VarP

γI(x)
then the program P′ mentioned in the Simulation Lemma can be constructed by just
deleting all statements that access variables of types where h occurs. These statements
are assignments to variables whose information type is at least {h}G and if - and while-
statements whose guards have types with the same property. We can show that P and
P′ are bisimilar with respect to a bisimulation that requires the equality of public
variables.

If h occurs in
∨

x∈VarP
γI(x) then we repeatedly use the indistinguishability (9)

to construct programs that use certain keys to encrypt only public data (actually, the
constant 0), not secrets. The behavior of these programs is indistinguishable from the
original program if we only look at public variables. The typing γ is also a valid typing
for these programs, but they also have more permissive typings. A valid typing γ′′ of
the last constructed program P′′ is such, that h does not occur in

∨
x∈VarP

γ′′I (x). From
the program P′′ one can construct P′ as before.

The replacement of encryptions may only be done if the encryption key is only used
in ways that is possible in (9) — it may only be used for encryption. To better account
for the flow of different keys, we first separate the keys with different labels. For this
we introduce to our programming language a new expression

CEnc(k(t)‖i1, k1, y1|i2, k2, y2| . . . |in, kn, yn), (28)

where i1, . . . , in ∈ G and the rest are variables. The semantics of the expression com-
pares the value k(t) with i1, . . . , in (it is guaranteed to match one; say ij) and returns
Enc(kj , yj). Such expressions occur in the intermediate steps of transformation but not
in the final program P′. The typing rule for (28) is

γ 0 yj : 〈Tj , J, Data〉 γ 0 k(t) : 〈T, J, Data〉 T ≤ Tj γ 0 kj : 〈Tj, J, Key{ij}〉
γ 0 CEnc(k(t)‖i′1, k1, y1| . . . |i′n, kn, yn) : 〈

⋃n
j=1{{t}N∪{ij} | {t}N ∈ Tj}, J, Data〉

In the set of variables Var we replace each k where γ(k) = 〈T, Key{i1,...,in}〉 var by

the variables k(t) and k(i1), . . . , k(in). The variable k(t) gets the type 〈T, Data〉 var ;
its value chooses which one of the variables k(ij) is to be used. The type of k(ij) will
be 〈T, Key{ij}〉 var . Let γ0 be the new typing. In the program we have to change key



A Type System for Computationally Secure Information Flow 375

generation statements (we assign the key to the right k(ij) and ij to k(t)), the assign-
ments of a key to a key (we copy k(t) and all variables k(ij)), the uses of a key as an
encryption key (we use the expression (28)) and the uses of a key in other ways (we use
nested if -statements to check for different values of k(t) and use the right k(ij) inside).
The resulting program P0 is bisimilar to P, it types according to γ0 and the values of all
variables of P can be recovered from the values of variables of P0.

We introduce a new variable kn to the set of variables of P0 and prepend P0 with
the statement kn := Genn; here n is a new key label. The key kn will be used by the
transformed programs instead of keys that have been processed. In short, kn will play
the role of k at the right hand side of (9).

We will now describe one iteration of replacing the encryptions with encryptions
under the key kn. Let Po be the current program and γo the current typing; initially
Po = P0 and γo = γ0. Consider again the type TP =

∨
x∈VarP

γoI(x). The type TP

satisfies certain invariants — they are satisfied for P0 and remain satisfied during the
iterations. First — the key label n either does not occur in TP (this is the case for P0) or
is free in it. Second — if n encrypts some i ∈ {h} ∪ G in TP then some other key label
encrypts i in TP as well. Therefore, if any key labels occur in TP as a key (if no key
labels occur as a key then h does not occur in TP ; then we are done, see above) then
some i 	= n is free in TP . This follows from the fact that each T ∈ T2 (in normal form)
contains a free key label, if any key labels occur in T as a key. If we delete from TP all
elements {t}N where n ∈ N then we get another element of T2 where some key labels
still occur as a key.

We delete from Po all statements that access variables of types where i occurs as
data; this deletion is identical to the deletion of h above. The deletion does not change
the values of public variables because their types are not larger than TP and i does not
occur in TP as data. In the resulting program keys generated at statements x := Geni are
only used for encryption. We then replace triples |i, k, y| in CEnc-expressions, where
γo(k) = 〈T, Key{i}〉 var , with |i, kn,0|. After that, if the triples of a CEnc-expression
all have kn and 0 as their second and third components, we replace the entire expression
with Enc(kn,0). In this way we get rid of encrypted secrets — the type of Enc(kn,0)
is 〈∅, ∅, Data〉. The resulting program Po′ is the input to the next iteration.

The typing γo changes as well. All variables in whose types i occurred as data will
be deleted. For the rest of the variables x we get γo′(x) from γo(x) = 〈Tx,Ux〉 var
in the following way. The usage type Ux remains the same. The information type will
contain all such {t}N ∈ Tx where i 	∈ N . If {t}N∪{i} ∈ Tx (here i 	∈ N ) then the
information type according to γo′ may or may not contain {t}N∪{n}. We choose the
least γo′ satisfying these conditions that is a valid typing of Po′ .

5 Conclusions and Future Work

We have presented a type system for computationally secure information flow that
should be simple enough to be integrated into existing programming languages and
used by software engineers.

The presented type system could definitely be developed further. It could be used for
programs containing procedures; the existing data flow analyses [13] cannot cope with
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them. Extending the programming language with procedures probably requires some
form of key label polymorphism.

It is also important to get rid of the constraint that two keys generated at the same
program point cannot be distinguished. Here some form of key relabeling during the
program run could be useful.
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Abstract. We consider graphs that can be embedded on a surface of
bounded genus such that each edge has a bounded number of crossings.
We prove that many optimization problems, including maximum inde-
pendent set, minimum vertex cover, minimum dominating set and many
others, admit polynomial time approximation schemes when restricted
to such graphs. This extends previous results by Baker [1] and Eppstein
[7] to a much broader class of graphs.

1 Introduction

Already more than two decades ago, Baker [1] showed that the maximum in-
dependent set and many other NP-hard optimization problems on graphs ad-
mit polynomial time approximation schemes (PTAS) when restricted to planar
graphs. The basic idea of Baker’s algorithm was to remove the vertices in ev-
ery kth level of a breadth first search tree (BFS) and to solve the problem on
the remaining components by a dynamic programming algorithm. Baker proved
that from k ways of choosing which set of levels to remove there is at least one
which only decreases the size of the maximum independent set by a factor of
at most (k − 1)/k. Moreover, remaining components after levels deletion are k-
outerplanar graphs, and dynamic programming can solve the problem on these
components efficiently.

Recently, Eppstein in [7] observed that the results by Baker [1] can be
extended to any minor-closed family of graphs satisfying so-called diameter-
treewidth property. This implies that the problem admits a PTAS if restricted
to bounded-genus graphs. This result has been generalized to other minor-closed
classes; in particular, Grohe gave PTAS’s for several problems, for any minor-
closed family that does not contain all graphs [6].

Nowadays, there is a growing body of work, mainly developed by Demaine
and Hajiaghayi, based on the concept of “bidimensionality” and presenting di-
rections for generalizations of the Baker-Eppstein ideas of using a diameter like
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parameter to bound treewidth and thus yielding polynomial time approximation
schemes for problems on even more general classes of graphs; see Demaine et al.
in [2,3,4].

In this paper we continue the line of investigations — in which way can
Baker’s technique be further extended? Revisiting Eppstein [7] result, we observe
that the restriction that the class of graphs must be minor-closed can be relaxed.
By moving from the input graph to an auxiliary graph obtained by replacing
each crossing by a vertex and back, we can obtain Baker-type PTAS’s for several
problems on graphs that are embeddable on a surface of bounded genus (e.g., the
plane, the torus) with a bounded number of crossings per edge. We emphasize
on the fact that all known results, also in Demaine et al. [2,3,4], work only under
assumption that the graph family is minor-closed. In contrast, in this paper, we
introduce the graph families on which Baker-Eppstein techniques work perfectly
but actually any graph is a minor of sufficiently large graph of the considering
families.

In the end of the paper we present several additional results which provide
an insight on the graphs with few crossings per edge.

2 Problem and Definitions

We illustrate the basic ideas of the PTAS on the maximum independent set
problem. Given a graph G = (V,E), we look for a maximum cardinality inde-
pendent set in G, i.e., a vertex subset V ′ ⊆ V such that no two vertices from
V ′ are adjacent by an edge from E. This problem is known to be NP-hard even
for planar graphs. The problem admits a PTAS if restricted to planar graphs [1]
and even to bounded-genus graphs [7]. Let n = |V |.

Definition 1 (Good embedding). We call an embedding of graph G on a
surface S of genus g a good embedding if it satisfies the following conditions:
(i) all vertices of the graph are given as distinct points in S; (ii) no two edge
crossings happen in the same point in S; (iii) for any edge no vertex of the graph,
except the endpoints of the edge, is situated on the edge.

Definition 2 (Crossing parameter). Let the crossing parameter ϕ of a graph
(on surface S) be the minimum over all good embeddings on S of the maximum
over all edges e of the number of edge crossings of e.

Through this paper we assume that a good embedding of G is given and both
the crossing parameter ϕ and the genus g of S are bounded by some constants.
Clearly, the graph is planar if g = 0 and ϕ = 0.

Definition 3 (Tree decomposition). A tree decomposition ({Xi | i ∈ I}, T =
(I, F )) of a graph G = (V,E) is a pair, with {Xi | i ∈ I} a collection of subsets
of V (called bags), such that

–
⋃

i∈I Xi = V .
– For all {v, w} ∈ E, there is an i ∈ I with v, w ∈ Xi.
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– For each v ∈ V , the set Tv = {i ∈ I | v ∈ Xi} forms a connected subtree
of T .

Definition 4 (Treewidth). The width of a tree decomposition {Xi | i ∈ I} is
maxi∈I |Xi| − 1. The treewidth of a graph G is the minimum width over all tree
decompositions of G.

3 The Polynomial Time Approximation Scheme

We now describe our polynomial time approximation scheme for the maximum
independent set problem on graphs with bounded crossing parameter on bounded
genus. We assume the embedding is given. Consider the following algorithm A
which is a revised version of the algorithms by Baker [1] and Eppstein [7].

Input: Graph G, parameter k (without loss of generality, let ϕ < k).

Algorithm A:

1. Construct the graph G′ = (V ′,E′) obtained from G by replacing each edge
crossing by a vertex. This can be done by the following recursive procedure.
Starting from graph G, find in the graph embedding a pair of crossing edges.
Let (v1, u1) and (v2, u2) be such edges. Redefine the graph introducing at the
crossing point a new vertex w and replacing edges (v1, u1) and (v2, u2) by
edges (v1, w), (v2, w), (u1, w), and (u2, w). Recurse on the new graph unless
there is no edge crossings.

2. Build a breadth first search tree T of G′, with an arbitrary root v0, and
consider the levels of the tree (i.e., vertex sets with equal distance to v0).

3. For all i, 0 ≤ i ≤ k, we perform the following procedure.
(a) Remove from G′ all levels of T congruent to i(mod k) together with their

ϕ successive levels. This decomposes G′ into a collection of subgraphs
H = {H1,H2, . . . ,Hr} where each subgraph Ht = (Vt,Et) is induced by
k − ϕ− 1 consecutive levels in T of G′.

(b) Consider a subgraphGt of G induced by vertices Vt∩V . Since the number
of crossings per edge is at most ϕ and we removed ϕ+1 consecutive levels
from G′, we have that after deletion of levels there is no edge e ∈ E such
that its two endpoints belong to two different subgraphs Gt′ and Gt′′ .
Therefore, for each i, 0 ≤ i ≤ k, we have a subgraph of G formed by a
collection of disconnected subgraphs G1,G2, . . . ,Gr. By Lemma 1 below,
the treewidth of Gt is bounded by O(k) for all t = 1, 2, . . . , r. Hence, the
maximum independent set for Gt can be found in time O(n2O(k)) by a
dynamic programming algorithm, using standard treewidth techniques;
see, e.g., Telle and Proskurowski [12].

(c) Let Si be a union of the maximum independent sets of all Gt, t =
1, 2, . . . , r.

4. Define Smax by a maximum cardinality set over all Si, 0 ≤ i ≤ k.

Output: Return Smax.

The following lemma is a key for algorithm A and for the main result of the
paper.
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Lemma 1. The treewidth of Gt is bounded by O(k) for all t = 1, . . . , r.

Proof. Consider a subgraph Ht induced by levels r + 1, r + 2, . . . , r + s in T of
G′ where s = k−ϕ− 1 = O(k). Consider a minor of G′ obtained by contraction
of the first r levels in T to a single vertex and deletion of all levels above r + s.
Clearly, this minor is a graph of genus g. Moreover, it has a diameter of at most
2(k − ϕ − 1) = O(k). By Eppstein [7] the treewidth of such a minor is O(gk).
Therefore, Ht as a subgraph of such a minor has the treewidth of at most O(gk)
as well.

Now, let us estimate how much the treewidth of Gt and Ht can differ. Con-
struct a graph H ′

t from Ht by replacing each vertex v in Ht that represents an
edge crossing, say e1 and e2, by two adjacent vertices v1 and v2 representing
e1 and e2 respectively. Let v1 be adjacent to all vertices corresponding to the
neighborhood of v representing e1, and let v2 be adjacent to all vertices corre-
sponding to the neighborhood of v representing e2. A tree decomposition of Ht of
treewidth d can be turned into a tree decomposition of H ′

t of treewidth at most
2d+1, by replacing each occurrence of an vertex that represents a crossing of two
edges in a bag by the corresponding two vertices; this gives a tree decomposition
of H ′

t whose maximum bag size is at most doubled. One can also observe that
we can select for each edge in Gt a path in H ′

t between its endpoints, such that
these paths do not have internal vertices in common. Thus, Gt is a minor of H ′

t

and hence the treewidth of Gt is at most twice the treewidth of Ht plus one,
and thus O(gk) = O(k) as required. ��

Now, we are ready to summarize the main results of the paper in the following
theorem and corollary.

Theorem 1. Algorithm A outputs an independent set of graph G of size at least
1 − O(1/k) times the optimum in time O(kn2O(k)), and thus, there is a PTAS
for maximum independent set for graphs given with an embedding on a surface
of bounded genus and with bounded crossing parameter.

Proof. Since for all i, 0 ≤ i ≤ k, set Si is a union of independent sets of discon-
nected subgraphs of G, Algorithm A returns an independent set of graph G.

As in Baker [1], there is at least one i, 0 ≤ i ≤ k, such that at most
(ϕ + 1)/k of the nodes in the optimal solution are at the levels congruent to
i, i + 1, . . . , i + ϕ (mod k), otherwise we would have a contradiction to maxi-
mality of the solution. This implies that |Smax| is approximating the optimum
within a factor (k − ϕ− 1)/k = 1−O(1/k).

Notice that the most time consuming operation in Algorithm A is the dy-
namic programming used in step 3. As we already noticed above, this dynamic
programming requires O(n2O(k)) time. Since we run step 3 for all choices of
i, 0 ≤ i ≤ k, the total running time of Algorithm A is O(kn2O(k)). ��

Corollary 1. For each of the following problems (and many others) there is a
PTAS for graphs embeddable on a surface of bounded genus with bounded crossing
parameter:
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– minimum vertex cover;
– minimum dominating set;
– minimum edge dominating set;
– minimum triangle matching;
– maximum H-matching;
– maximum tile salvage.

Proof. This can be proven in the same way as Theorem 1, using techniques
similar to those of Baker [1]. ��

4 More on the Crossing Parameter

Graphs with bounded crossing parameter were investigated by several authors
in the context of graph drawing; see, e.g., Pach and Toth [11]. However, before
this article nothing was known on the recognition complexity of the graphs with
small crossing parameter. To give the reader more insight on the graphs with few
crossings per edge, in this section we present some results on the computational
complexity of the crossing parameter and some other useful properties of the
class of graphs with bounded crossing parameter.

Theorem 2. Crossing parameter 1 recognition in the plane is NP-complete.

Proof. We prove the theorem by reduction of the well known strongly NP-
complete problem 3-PARTITION; see Garey and Johnson [5]: Given a set A
of 3m elements, a bound B ∈ ZZ+, and a size s(a) ∈ ZZ+ for each a ∈ A such
that B/4 < s(a) < B/2 and such that

∑
a∈A s(a) = mB, can A be partitioned

into m disjoint sets A1, A2, . . . , Am such that for 1 ≤ i ≤ m,
∑

a∈Ai
s(a) = B?

Before starting the reduction, we would like to mention several properties of
the complete graph on six vertices: (i) by Guy’s conjecture proven for complete
graphs on up to 10 vertices, see, e.g., [13], K6 has crossing number 3 (i.e., the
minimum possible number of edge crossings with which K6 can be drawn in
the plane is 3); (ii) K6 can be drawn in the plane with three crossings, at most
one crossing per edge, and two vertices in the exterior, see Figure 1; (iii) in any
drawing of K6 having at most one crossing per edge for any two vertices of the
graph there is a path between those two vertices such that all edges of the path
are crossed. For a proof of (iii) see Theorem 4 in Appendix. Taking into account
properties (i)-(iii), we can use graph K6 as an edge that cannot be crossed. In
the figures below thick edges are graphs K6.

Now, we reduce 3-PARTITION to the crossing parameter 1 recognition.
Given an instance of 3-PARTITION, we construct the graph for the crossing
parameter 1 recognition as follows. For each element a ∈ A we introduce a
gadget Pa called splitter which is a simple star having s(a) + 1 edges. We also
introduce two special gadgets called transmitter and collector. Both these gad-
gets have a ”double”-wheel form with 3m thick radials for the transmitter and
Bm thick radials for the collector; see Figure 2.
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Fig. 1. Thick edge is a graph K6

Fig. 2. m = 2 transmitter and B = 10, m = 2 collector

We finish construction by adding the following edges:

– We connect the transmitter center to a degree 1 vertex of each splitter Pa, a ∈
A.

– We connect remaining s(a) degree 1 vertices of each splitter Pa, a ∈ A, to
the collector center.

– Let a cycle [t1, t2, . . . , t3m] be an exterior circuit of the transmitter and a
cycle [c1, c2, . . . , cBm] be an exterior circuit of the collector. For all i ∈
{1, 2, . . . , m}, connect vertex t3i to vertex cBi by a thick edge; for illustration
see Figure 3.

Let us refer to the obtained graph as to G. Now, we claim that G is em-
beddable with at most one crossing per edge if and only if the instance of 3-
PARTITION has an affirmative answer.

Part “IF” of the claim is rather straightforward. We illustrate this with an
instance of 3-PARTITION having 6 elements of weights 2,3,3,3,4,5. This instance
has a required partition (3+3+4=10 and 2+3+5=10) and the corresponding
graph G can be drawn with at most one crossing per edge as on Figure 3. In
general, we draw graph G as follows. First we draw transmitter and collector
such that both are placed in the exterior face of each other. Then, we connect
by thick edges in the exterior each third vertex of the transmitter to each Bth
vertex of the collector, creating m distinct faces. We assign the splitters to the
faces according to the partition. Since the total size of each triple in the partition
is B and in each of the m faces the collector has B edges in the exterior circle,
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Fig. 3. Instance with A = {2, 3, 3, 3, 4, 5}

we can assign the edges of splitters to the sectors of the collector such that each
edge will be crossed only once.

Now we prove part “ONLY IF” of the statement. Consider a drawing of G
having at most one crossing per edge and let us construct the corresponding
partition for 3-PARTITION.

First, let us analyze the possible ways of drawing G. It is convenient to
consider the possible drawings on a globe. It is well known that a sphere drawing
has an equivalent planar representation with respect to the edge crossings; see [8,
Proposition 8.3.1]. Without loss of generality we can assume that the transmitter
center is a North Pole and the collector center is a South Pole of the globe. By
construction, the globe is partitioned by the thick non-crossable meridian paths
into m distinct faces F1, F2, . . .Fm. Moreover, since these meridian paths are
non-crossable, the ordering of the meridian paths on the globe and the ordering
of the faces on the globe correspond to the vertex ordering in the exterior circuits
of the transmitter and collector.

Now, let us find out how can we draw the thick paths of the transmitter
adjacent to the North Pole but not participating in the meridian paths. Consider
four consequent vertices of the exterior circuit of the transmitter, for instance,
t3m, t1, t2, t3. By construction and observation above, t3m and t3 are the vertices
on two consequent meridian paths. These two meridian paths form one of the
distinct faces, say F1. Vertices t1 and t2 in the drawing must be placed in F1
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otherwise at least one of the meridian paths will be crossed. Moreover, since
the transmitter is a “double”-wheel, the ordering of the thick paths adjacent to
the North Pole and ending in t1 and t2 must be consistent with the ordering of
the vertices in the exterior circuit of the transmitter. The same arguments work
for all other consequent four-tuples of the exterior circuit of transmitter. This
implies that there is a unique way of drawing the transmitter around the North
Pole. Similarly, there is a unique way of drawing the collector around the South
Pole. We also notice, that since we can not cross thick edges and other edges can
be crossed at most once, we do not have any intersections between transmitter
and collector.

Now, consider a drawing of the splitters. In any face Fi, i ∈ {1, 2, . . . , m},
we can place at most 3 splitters, otherwise one of the edges of the transmitter
will be crossed more than once. The center of a splitter must be placed in the
exterior of the transmitter and collector, otherwise one of the splitter edges will
be crossed more than once. Hence, for each face Fi, i ∈ {1, 2, . . . , m}, the number
of paths between the South Pole and the centers of three splitter assigned to Fi

is at most B. Since we have in total Bm such paths, each face contains exactly
three splitters with exactly B paths between the splitter centers and the South
Pole.

Consider a partition of set A correspondent to the assignment of splitters to
the faces. By observation above, each triple of numbers correspondent to three
splitters assigned to a face sums to B. Therefore, A has a required partition.
It remains to notice that 3-PARTITION is strongly NP-complete and we are
allowed to use unary encoding to describe the inputs of the problems. Hence,
the reduction was polynomial. ��

Corollary 2. When P	=NP, there does not exist a polynomial time 2-approxi-
mation algorithm for finding the crossing parameter of a graph on the plane. ��

Notice, however, that several natural classes of graphs have a bounded cross-
ing parameter on the plane. For instance, graphs of intersections of objects in
the plane with bounded objects density (disk graphs with bounded density are
special case of these); graphs with bounded degree and bounded tree width;
planar graphs.

Observation 3. The class of graphs with an embedding on the plane with cross-
ing parameter 1 is not closed under taking minors. In fact, every graph is a minor
of a graph with crossing parameter 1: take any good embedding, and then add a
new vertex of degree two between every two successive crossings.

From work on the crossing number of graphs (the minimum total number
of crossings in a planar embedding), we can also obtain bounds on the crossing
parameter (on the plane). E.g., the crossing number of a complete graph with n
vertices is Θ(n4) [9], hence its crossing parameter is Θ(n2).
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5 Conclusions and Open Problems

For several classes of graphs, it is now known that there are polynomial time
approximation schemes for a large collection of problems. Each of these build
upon the work by Baker [1]. In this paper, we gave a new class of graphs where
the same approach can be used. An interesting question is whether there is a
general notion under which the different results of the type can be unified.

A disadvantage of our algorithm is that an embedding with bounded cross-
ings per edge is requested as part of the input. As discussed earlier, for some
applications, we indeed get such an embedding. However, it would be interesting
if “robust” versions of the algorithms can be designed, i.e., algorithms that do
not need the embedding as part of the input. Note that such a robust PTAS
has been designed by Nieberg et al. for the dominating set problem on unit disk
graphs [10].

Recent work (see e.g., [2]) shows that there is a PTAS for the connected
dominating set problem and other related problems on planar graphs and gener-
alizations of it. It would be interesting to see if these results carry over to graphs
with bounded crossing parameter.
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Appendix

Theorem 4. In any planar embedding of K6 having at most one crossing per
edge, between any two vertices there exists a path such that all edges in that path
are crossed.

Proof. First we prove that each vertex is contained in at least two distinct crossed
edges. Assume this is not true and there is an embedding of K6 such that for
some vertex v1 edges e1 = (v1, v2), e2 = (v1, v3), e3 = (v1, v4), e4 = (v1, v5)
are not crossed by any edge. Without loss of generality, we assume that edges
e1, e2, e3, e4 are drawn clockwise in this particular order. Since graph is complete,
there is a simple cycle formed by edges e1, e3 and e5 = (v2, v4) with only one edge
e5 that can be crossed. Vertices v3 and v5 belong to the different faces formed
by that cycle. Therefore edge (v3, v5) crosses e5. On the other hand, there is a
vertex v6 that must be connected to both v3 and v5. Hence e5 is crossed at least
twice that leads to the contradiction.

Now, we prove that crossed edges form a connected graph. For a contradiction
we assume that there are 2 or more connectivity components. Since every vertex
is contained in two distinct crossed edges, each connectivity component has at
least 3 vertices. Therefore, we can have only two components with 3 vertices
each. Moreover, each component forms a triangle (cycle). Hence, the question is
whether we can cross two triangles with curved sides such that each side of each
triangle will be crossed exactly once? Take a side (v1, v2) of triangle 1. Vertices
v1 and v2 belong to different faces formed by triangle 2. The third vertex v3 of
triangle 1 will share the face either with v1 or with v2. Therefore, either edge
(v3, v1) or edge (v3, v2) will cross the boundary of triangle 2 even number of times
which contradicts to the requirement that each edge is crossed once. Therefore,
crossed edges in K6 form a connected graph as required. ��

The reader may even verify that, when K6 is drawn with at most one crossing
per edge, the crossing edges form a Hamiltonian circuit. This observation is out
of the scope of this article and we leave it without a proof.
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2 Université Paris 13, Institut Galilée LIPN, CNRS UMR 7030,

93430 Villetaneuse, France
sophie.toulouse@lipn.univ-paris13.fr

Abstract. We present several new standard and differential approxima-
tion results for P4-partition problem by using the algorithm proposed in
Hassin and Rubinstein (Information Processing Letters, 63: 63-67, 1997),
for both minimization and maximization versions of the problem. How-
ever, the main point of this paper is the robustness of this algorithm,
since it provides good solutions, whatever version of the problem we deal
with, whatever the approximation framework within which we estimate
its approximate solutions.
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1 Introduction

Consider an instance I of an NP-hard optimization problem Π and a polyno-
mial time algorithm A computing feasible solutions for Π . Denote by apxΠ(I)
the value of a solution computed by A on I, by optΠ(I), the value of an op-
timal solution and by worΠ(I) the value of a worst solution (that corresponds
to the optimal value when reversing the optimization goal). The quality of A is
expressed by the way of approximation ratios that somehow compare the ap-
proximate value to the optimal one. So far, two measures stand out from the
literature: the standard ratio [2] (the most widely used) and the differential ratio
[3,4,5,8]. The standard ratio is defined by ρΠ(I, A) = apxΠ(I)

optΠ (I) if Π is a maximiza-

tion problem, by ρΠ(I, A) = optΠ (I)
apxΠ(I) otherwise, whereas the differential ratio is

defined by δΠ(I, A) = worΠ (I)−apxΠ(I)
worΠ(I)−optΠ(I) . Instead of dividing the approximate value

by the optimum value, this latter measure divides the distance from a worst so-
lution to the approximate value by the instance diameter. Within the worst case
analysis framework and given a universal constant ε ≤ 1 (resp., ε ≥ 1), an al-
gorithm A is said to be an ε-standard approximation for a maximization (resp.
a minimization) problem Π if ρAΠ (I) ≥ ε ∀I (resp., ρAΠ (I) ≤ ε ∀I). Accord-
ing to differential ratio, A is said to be an ε-differential approximation for Π
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if δAΠ (I) ≥ ε, ∀I, for a universal constant ε ≤ 1. Alternatively, any solution
being a convex combination of the two values worΠ(I) and optΠ(I), an approxi-
mate value apxΠ(I) will be an ε-differential approximation if for any instance I,
apxΠ(I) ≥ ε× optΠ(I)+ (1− ε)×worΠ(I) (for the maximization case). Within
the worst case analysis framework according to both standard and differential
ratios, we focus on a special problem, the weighted P4-partition problem (P4P in
short). Furthermore, we study the performance of a single algorithm on various
versions of this problem. Precisely, we show that this algorithm is efficient for
P4P, proving approximation ratios for both standard and differential measures,
for both maximization and minimization versions of the problem.

In the weighted P4-partition problem, we are given a complete graph K4n

together with a distance function d : E → R+ on its edges. A P4 is an in-
duced path of length 3 (or, equivalently, an induced path on 4 vertices); for any
instance I = (K4n, d), the cost of a path P is given by the sum of its edges
weight, and the goal is to find a partition T ∗ = {P ∗

1 , . . . , P ∗
n} of n vertex-disjoint

chains of length 3 (that we call a P4-partition) such that d(T ∗) =
∑q

i=1 d(P
∗
i )

is optimum, i.e., of maximum distance if the goal is to maximize (MaxP4P), of
minimum distance otherwise (MinP4P). For the minimization version, we will
more often assume that the distance function satisfies the triangular inequal-
ity, i.e., d(x, y) ≤ d(x, z) + d(z, y), ∀x, y, z; MinMetricP4P will refer to this
restriction. Finally, we also deal with a special case of metric instances where
the distance function is worth either 1 or 2; the corresponding problems will be
denoted by MaxP4P1,2 and MinP4P1,2. All these problems are known to be
NP-hard, [7,14]; nevertheless, MaxP4P is standard-approximable within ratio
3/4, Hassin and Rubinstein, [9], whereas (to our knowledge), no approximation
rate has been established for MinP4P yet. Concerning MinPkP (the general ver-
sion), it cannot be approximated within 2p(n) for any polynomial p and for any
k; this is due to the fact that deciding whether a graph admits a Pk-partition
of its vertex set is NP-complete, [7,13,14]. The Pk-partition problem consists
in, given a simple graph G = (V,E), deciding if there exists a collection P of
vertex-disjoint k-length paths {P1, ..., P�} such that any vertex from V belongs
to exactly one path Pi from P . Finally, note that MinMetricPkP is very close
to the k-vehicle routing problem when restricting the route of each vehicle to at
most k intermediate stops, [1,6].

In the first section, we study the relationship between TSP and PkP under
differential ratio, showing how a differential approximation for TSP allows a
differential approximation for PkP (where PkP seeks to determine a partition
of a vertex set into k-length paths of optimum weight). In the second section,
that contains the main result of this paper, we propose a complete analysis, from
both a standard and a differential point of view, of an algorithm proposed by
Hassin and Rubinstein [9]. We prove that, with respect to the standard ratio, this
algorithm provides new approximation rates for MetricP4P, that is to say: the
approximate solution respectively achieves a 3/2-, a 7/6- and a 9/10-standard
approximation for MinMetricP4P, MinP4P1,2 and MaxP4P1,2. Under differ-
ential ratio, the approximate solution is a 1/2-approximation for general P4P,
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a 2/3-approximation for P4Pa,b.The gap between differential and standard ratios
for maximization version of a problem come from the fact that within differen-
tial framework, the approximate value has to be located into [wor(I), opt(I)],
instead of [0, opt(I)] within the standard one.That is the point of differential
measure: the reference it does to wor(I) makes it more precise and makes ro-
bust the approximation level (since minimizing and maximizing are equivalent
and more generally, differential ratio is stable under affine transformation of the
objective function). In addition to the new approximation bounds that we pro-
vide, the main result of this paper is the robustness of the algorithm we study,
since this latter provides good solutions, whatever version of the problem we
deal with, whatever the approximation framework within which we estimate its
approximate solutions.

2 From Traveling Salesman Problem to PkP

A common technic to obtain an approximate solution for MaxPkP from a Hamil-
tonian cycle is called the deleting and turning around method, see [9,10,6]. This
method consists, starting from a tour, in producing k solutions of MaxPkP by
turning around the cycle and deleting 1 edge upon k; then it picks the best
solution. Obviously, the quality of the output T ′ depends on the quality of the
initial tour. Hence, it is proved in [9,10], that any ε-standard approximation
of MaxTSP provides a k−1

k ε-standard approximation for MaxPkP. Under a
differential point of view, things are less optimistic, since already for k = 4
there exists an instance family (In)n≥1 verifying apx(In) = 1

2optMaxP4P(In) +
1
2worMaxP4P(In). For n ≥ 1, the instance is In = (K8n, d) where the vertex set
can be partitioned into two sets L = {�1, . . . , �4n} and R = {r1, . . . , r4n}; the
associated distance function d equals 0 on L2, 2 on R2, and 1 on L×R. We have
for any n ≥ 1:

Property 1. apx(In) = 6n, optMaxP4P(In) = 8n and worMaxP4P(In) = 4n.

Nevertheless, using this method one can obtain:

Lemma 1. From an ε-differential approximation of MaxTSP, one can poly-
nomially compute a ε

k -differential approximation of MaxPkP

Thus, from [8,11], we deduce a 2
3k -differential approximation for MaxPkP.

Finally, observe that even if we consider MinMetricP4P, we are not able to
obtain a result as good as standard approximation for Max4P. Consider the
instances I ′n = (K8n, d′) built from In where we modify the distance d by
d′(�i, �j) = d′(ri, rj) = 1 and d′(�i, rj) = n2 + 1 for all i, j. We thus have
optMinMetricTSP(I ′n) = 2n2 + 8n and optMinMetricP4P(I ′n) = 6n.

3 Approximating P4P by the Way of Optimal Matchings

Here starts the analysis, both on a standard and a differential point of view,
of an algorithm proposed by Hassin and Rubinstein [9]; the authors show that
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the approximate solution is a 3/4-standard approximation for MaxP4P. First,
dealing with the standard ratio, we prove that this algorithm provides a 3/2-
approximation for MinMetricP4P and respectively a 7/6 and a 9/10-
approximation for MinP4P1,2 and MaxP4P1,2 when restricting us to 1, 2-
valuated graphs. As corollary of a general result, we also obtain an alternate
proof of the result of [9].

We then prove that, with respect to the differential measure, the approximate
solution achieves a 1/2-approximation in general graphs, for both maximization
and minimization versions of the problem; this latter ratio is raised up to 2/3 in
bi-valuated graphs.

3.1 Description of the Algorithm

The algorithm proposed in [9] runs in two stages: first, it computes an optimum
weight perfect matching MT ′ on (K4n, d); then, it builds a second optimum
weight perfect matching RT ′ on edges MT ′ in order to complete the solution
(note that “optimum weight” signifies “maximum weight” if the goal of P4P
is to maximize, “minimum weight” if the goal is to minimize). Precisely, we
define the instance (K2n, d′) (to any edge ev ∈ MT ′ corresponds a vertex v in
K2n), where the distance function d′ is defined as follows: for any edge [v1, v2],
d′(v1, v2) is set to the weight of the heaviest edge linking ev1 and ev2 , that is, if v1
represents ev1 = [x1, y1] and v2 represents ev2 = [x2, y2], then d′(v1, v2) is set to
max {d(x1, x2), d(x1, y2), d(y1, x2), d(y1, y2)} (when dealing with the minimum
version of the problem, set the weight to the lightest). On (K2n, d′), we build an
optimum weight matching RT ′ that is transposed to (K4n, d) by selecting the
edge that realizes the same cost. Since the computation of an optimum weight
perfect matching is polynomial, the whole algorithm runs in polynomial time for
both versions.

3.2 General P4P Within the Standard Framework

For any solution T , we denote respectively by MT and RT the set of the final
edges and the set of middle edges of its chains. Moreover, for any edge e ∈ T ,
we denote by PT (e) the P4 from T that contains e, by CT (e) the cycle of length
4 containing PT (e) (CT (e) is somehow the closure of PT (e)). Finally, we define
RT = ∪e∈T (CT (e) \ PT (e)); note that RT ∪RT is a perfect matching.

Lemma 2. For any instance I = (K4n, d), if T is a feasible solution and T ∗

an optimal solution, then there exist 3 pairwise disjoint edge sets A, B and C
verifying:

(i) A ∪B = T ∗ and C ⊆ RT∗ .
(ii) A ∪C and B ∪ (RT∗ \ C) are both perfect matchings on I.

(iii) A ∪ C ∪MT is a 2-matching on I of which cycles are of length a multiple
of 4.

Proof. Let T ∗ = MT∗ ∪ RT∗ be an optimal solution; we apply the following
process:
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1 Set A = MT∗ , B = RT∗ , C = ∅ and G′ = (V, A ∪MT );
2 While there exists a connected component V ′ of G′ having an edge e =

[x, y] ∈ RT∗ with x ∈ V ′ and y /∈ V ′, do:
2.1 A ← (A \ PT∗(e)) ∪ {e}, B ← (B ∪ PT∗(e)) \ {e}, C ← C ∪ (CT∗(e) \

PT∗(e));
2.2 G′ ← (V, A ∪MT );

3 output A, B and C;

At the initialization stage, the connected components of the partial graph
induced by (A ∪ C ∪MT ) are either cycles alternating edges from (A ∪ C) and
MT , or isolated edges from MT∗ ∩ MT . During step 2, at each iteration, the
process merges together two cycles, or a cycle and an isolated edge, or two
isolated edges, into a single cycle; an illustration of the process is proposed in
Figure 1. Note that all along the process, the sets A, B and C remain pairwise
disjoints.

For (i): Immediate from definition of the process.
For (ii): Sets C and RT∗ \C are both matchings by construction; let us now

prove that A and B also are matchings. Two edges e 	= e′ from A (resp., B)
are adjacent one to each other if and only if they belong to the same chain PT∗ .
However, according to steps 1 and 2.1, for any chain PT∗ , either PT∗ ∩ RT∗ or
PT∗ ∩MT∗ may belong to A (resp., B), that contradicts the fact that e and e′

could be adjacent.
Moreover, before processing step 2, A ∪ C = MT∗ is a perfect matching;

now, at each iteration of step 2, we swap two couples of edges CT∗ ∩MT∗ and
CT∗ \MT∗ (the former edges are removed from A, the latter are added to A∪C);
thus, the resulting edge set A∪C remains a perfect matching. Finally, since the
equality B ∪ (RT∗ \C) = (T ∗ ∪RT∗) \ (A∪C) holds, the set B ∪ (RT∗ \C) also
is a perfect matching.

For (iii): At the end of process, (A ∪C) ∩MT = ∅ and thus, A ∪ C ∪MT is
a perfect 2-matching. Now consider a cycle Γ of (V, A ∪ C ∪MT ); by definition
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Fig. 1. The construction of sets A and C
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A1
A2

Fig. 2. The sets A1 ∪ MT ′ and A2 ∪ MT ′

of step 2, for any edge e = [x, y] ∈ Γ ∩ RT∗ , its begin and end points both
belong to V (Γ ), which means that Γ \MT is a subset of T ∗ and therefore, we
get |V (Γ )| = 4k.

Theorem 1. The solution T ′ provided by the algorithm achieves a 3
2 -standard

approximation for MinMetricP4P and this ratio is tight.

Proof. Let T ∗ be an optimal solution on I = (K4n, d), we consider 3 pairwise
disjoint sets A, B and C according to the application of Lemma 2 to T ′; according
to property (iii), we can split A∪C into two sets A1 and A2 in such a way that
Ai ∪MT ′ (i = 1, 2) is a P4-partition (see Figure 2 for an illustration). Thus, we
get from the optimality of RT ′ the inequality d(Ai) ≥ d(RT ′ ) and deduce:

2d(RT ′) ≤ d(A) + d(C) (1)

From property (ii) of Lemma 2 which states that B ∪ (RT∗ \C) is a perfect
matching, and because MT ′ is optimal, we get:

d(MT ′) ≤ d(B) + d(RT∗ \ C) (2)

Adding inequalities (1) and (2), and since I satisfies the triangular inequality,
we obtain:

d(MT ′) + 2d(RT ′) ≤ 2optMinMetricP4P(I) (3)

(Note that this latter inequality is only true when minimizing.) Considering
d(MT ′) ≤ optMinMetricP4P(I), the proof is complete. The tightness is given by
the instances In = (K8n, d) described in Property 1.

Based upon Lemma 2, one can also obtain an alternate proof of the result
given in [9].

Theorem 2. The solution T ′ provided by the algorithm achieves a 3
4 -standard

approximation for MaxP4P.

Proof. The inequality (3) becomes

d(MT ′) + 2d(RT ′) ≥ optMaxP4P(I) + d(RT∗) (4)

Considering this time that 2× d(MT ′) ≥ optMaxP4P(I) + d(RT∗), we deduce
apxMaxP4P(I) ≥ 3

4

(
optMaxP4P(I) + d(RT∗)

)
.
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3.3 General P4P Within the Differential Framework

Dealing with differential ratio, MaxP4P MinP4P and MinMetricP4P are
equivalent to approximate ; this is generally true for any couple of problems
that only differ by an affine transformation of their objective function.

Theorem 3. The solution T ′ provided by the algorithm achieves a 1
2 -differential

approximation for P4P and this ratio is tight.

Proof. We prove the result for the maximization version. First, observe that RT∗

is a n-cardinality matching; hence, considering any perfect matching M of I such
that M ∪RT∗ do form a P4-partition, we get:

d(M) + d(RT∗) ≥ worMaxP4P(I) (5)

Adding inequalities (4) and (5), we obtain:

2apxMaxP4P(I) ≥ d(MT ′) + 2d(RT ′) + d(M) ≥ worMaxP4P(I) + optMaxP4P(I)

To show the tightness of this ratio, we refer to Property 1.

3.4 Bi-valuated Metric P4P with Weights 1 & 2 Within the
Standard Framework

As done in [12] for MinTSP, we now focus on instances where any edge is
worth either 1 or 2; indeed, such an analysis enables a keener comprehension
of a given algorithm. Moreover, since the P4-partition problem is NP-complete,
the problems MaxP4P1,2 and MinP4P1,2 are NP-hard.

Theorem 4. The solution T ′ provided by the algorithm achieves a 9
10 -standard

approximation for MaxP4P1,2 and a 7
6 -standard approximation for MinP4P1,2.

These ratios are tight.

Proof. We only prove the maximization case. Let I = (K4n, d) be an instance of
MaxP4P1,2 with d(e) ∈ {1, 2}. We will denote by MT ′,2 (resp., RT ′,2) the set
of MT ′ edges of weight 2, by p (resp., q) its cardinality. Trivially, cardinalities
p and q verify: p ≤ 2n, d(MT ′) = 2n + p and q ≤ n, d(RT ′ ) = n + q. Similarly,
let us denote by MT∗,2 = {e ∈ MT∗ |d(e) = 2} with size p∗ and by RT∗,2 =
{e ∈ RT∗ |d(e) = 2} with size q∗. We have apxMaxP4P1,2

(I) = 3n + p + q and
optMaxP4P1,2

(I) = 3n+p∗+q∗. Wlog., we may assume that the following property
always holds for T ∗:

Property 2. For any 3-length chain P ∈ T ∗, |P ∩MT∗,2| ≥ |P ∩RT∗,2|.

Otherwise, T ∗ would contain a chain P = {[x, y], [y, z], [z, t]} verifying d(x, y) =
d(z, t) = 1 and d(y, z) = 2; thus, by swapping P and P ′ = {[y, z], [z, t], [t, x]}
into T ∗, one does generate another optimal solution.
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T ′I = (K8, d) T∗

Fig. 3. Instance I = (K8, d) establishing the tightness for MaxP4P1,2

Property 3. q ≥ q∗
2 .

Let G′ be the multi-graph induced by MT ′ ∪RT∗,2 (edges from MT ′ ∩RT∗,2
appear twice). This graph is constituted of chains, cycles and isolated edges: its
chains alternate edges from MT ′ and RT∗,2, with the particularity that their
extremal edges all belong to MT ′ ; its cycles also alternate edges from MT ′ and
RT∗,2 and the 2-length cycles correspond to the edge set RT∗,2 ∩MT ′ ; finally,
its isolated edges belong to MT ′ \ RT∗,2. For any cycle Γ on G′, there exists
an edge e(Γ ) = [x, y] with e(Γ ) ∈ MT∗,2, x ∈ V (Γ ), and y is an endpoint of a
chain; we denote by e′(Γ ) the edge from Γ ∩ RT∗,2 to which e(Γ ) is incident.
The existence of e(Γ ) follows from the Property 2; moreover, vertex y cannot
be incident to any edge from RT∗,2, since otherwise e(Γ ) ∈ MT∗ would link
two edges of T ∗, contradiction! Thus, setting A = RT∗,2, and replacing in A
for any cycle Γ on G′ the edge e′(Γ ) by the edge e(Γ ), we build an edge set
A satisfying |A| = |RT∗,2| = q∗ and (V, MT ′ ∪ A) is a simple graph made of
pairwise disjoint chains. Like we did while proving Theorem 1, we split A into
two sets A1 and A2 in such a way that the partial graph induced by MT ′ ∪ Ai

for i = 1, 2 is a set of at-most-3-length chains. We arbitrarily complete Ai by the
way of an edge set Bi in order to obtain a P4-partition Ai∪Bi∪MT ′ . Obviously,
|Ai|+|Bi| = n and d(B1)+d(B2) ≥ |B1|+|B2| = (n−|A1|)+(n−|A2|) = 2n−q∗.
Moreover, d(Ai ∪ Bi) ≤ d(RT ′) due to RT ′ optimality. Since d(A) = 2q∗, we
deduce 2n + q∗ ≤ d(B1) + d(B2) + d(A) ≤ 2d(RT ′) = 2n + 2q and Property 3 is
established. Thanks to this latter, we obtain:

apxMaxP4P1,2
(I) ≥ 3n + p+

q∗

2
(6)

On the other hand, since MT ′,2 is a matching containing a maximum number of
2-edges, we have in particular p ≥ p∗ and deduce:

optMaxP4P1,2
(I) ≤ 3n + p+ q∗ (7)

On the behalf of inequalities p ≥ q∗, n ≥ q∗, (6) and (7), we obtain the
expected result apxMaxP4P1,2

(I) ≥ 9
10optMaxP4P1,2

(I).
The tightness comes from the instance I = (K8, d) depicted in Figure 3,

where edges of distance 2 are drawn in continuous line and edges of distance 1 of
T ∗ and T ′ are drawn in dotted line; other edges are not drawn. One can easily
see optMaxP4P1,2

(I) = 10 and apxMaxP4P1,2
(I) = 9.
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3.5 Bi-valuated Metric P4P with Weights a&b Within the
Differential Framework

As we mentioned earlier, the differential measure is stable under affine transfor-
mation; now, any instance from MaxP4Pa,b may be mapped into an instance of
MaxP4P1,2 or MinP4Pa,b by the way of such a transformation. Thus, proving
MaxP4P1,2 is ε-differential approximable actually establishes that MinP4Pa,b

and MaxP4Pa,b are ε-differential approximable for any couple of real values
a < b.

Theorem 5. The solution T ′ provided by the algorithm achieves a 2
3 -differential

approximation for P4Pa,b and this ratio is tight.

References

1. Arkin, E. M., Hassin, R. and Levin, A.: Approximations for minimum and min-max
vehicle routing problems. J. of Algorithms, (article in press)

2. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Pro-
tasi, M.:Complexity and Approximation (Combinatorial Optimization Problems
and Their Approximability Properties). Springer, Berlin (1999)

3. Ausiello, G., D’Atri, A., Protasi, M.: Structure preserving reductions among convex
optimization problems. J. Comput. System Sci. 21 (1980) 136–153

4. Bellare, M., Rogaway, P.: The complexity of approximating a nonlinear program.
Mathematical Programming 69 (1995) 429–441

5. Demange, M., Paschos, V. Th.: On an approximation measure founded on the links
between optimization and polynomial approximation theory. Theoretical Computer
Science 158 (1996) 117–141

6. Frederickson, G. N., Hecht, M. S., Kim, C. E.: Approximation algorithms for some
routing problems. SIAM J. on Computing 7 (1978) 178–193

7. Garey, M. R., Johnson, D. S.: Computers and intractability. a guide to the theory
of NP-completeness. CA, Freeman (1979)

8. Hassin, R., Khuller, S.: z-approximations. Journal of Algorithms 41 (2001) 429–442
9. Hassin, R., Rubinstein, S.: An Approximation Algorithm for Maximum Packing of

3-Edge Paths. Information Processing Letters 63 (1997) 63–67
10. Hassin, R., Rubinstein, S.: An Approximation Algorithm for Maximum Triangle

Packing. ESA, LNCS 3221 (2004) 403–413
11. Monnot, J.: Differential approximation results for the traveling salesman and re-

lated problems. Information Processing Letters 82 (2002) 229–235
12. Papadimitriou, C., Yannakakis, M.: The traveling salesman problem with distances

one and two. Mathematics of Operations Research 18 (1993) 1–11
13. Sahni, S., Gonzalez, T.: P-complete approximation problems. Journal of the Asso-

ciation for Computing Machinery 23 (1976) 555–565
14. Steiner, G.: On the k-path partition of graphs. Theoretical Computer Science 290

(2003) 2147–2155



The Maximum Resource Bin Packing Problem�

Joan Boyar1, Leah Epstein2, Lene M. Favrholdt1, Jens S. Kohrt1, Kim S. Larsen1,
Morten Monrad Pedersen1, and Sanne Wøhlk3

1 Dept. of Math. and Computer Science, University of Southern Denmark
{joan, lenem, svalle, kslarsen, mortenm}@imada.sdu.dk

2 Dept. of Mathematics, University of Haifa, Israel
lea@math.haifa.ac.il

3 Dept. of Organization and Management, University of Southern Denmark
swo@sam.sdu.dk

Abstract. Usually, for bin packing problems, we try to minimize the number of
bins used or in the case of the dual bin packing problem, maximize the number
or total size of accepted items. This paper presents results for the opposite prob-
lems, where we would like to maximize the number of bins used or minimize the
number or total size of accepted items. We consider off-line and on-line variants
of the problems.

For the off-line variant, we require that there be an ordering of the bins, so that
no item in a later bin fits in an earlier bin. We find the approximation ratios of two
natural approximation algorithms, First-Fit-Increasing and First-Fit-Decreasing
for the maximum resource variant of classical bin packing.

For the on-line variant, we define maximum resource variants of classical and
dual bin packing. For dual bin packing, no on-line algorithm is competitive. For
classical bin packing, we find the competitive ratio of various natural algorithms.

We study the general versions of the problems as well as the parameterized
versions where there is an upper bound of 1

k
on the item sizes, for some integer k.

1 Introduction

Many optimization problems involve some resource, and the task for algorithm design-
ers is typically to get the job done using the minimum amount of resources. Below, we
give some examples.

Bin packing is the problem of packing items of sizes between zero and one in the
smallest possible number of bins of unit size. Here, the bins are the resources. The
traveling salesperson problem is the problem of finding a tour which visits each ver-
tex in a weighted graph while minimizing the total weight of visited edges. Here the
weight is the resource. Scheduling jobs on a fixed number of machines is the problem
of minimizing the completion time of the last job. Here time is the resource.

Each of these problems come in many variations and there are many more entirely
different optimization problems. Since these problems are computationally hard, the
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optimal solution can usually not be computed in reasonable time for large instances, so
polynomial time approximation algorithms are devised. For many of these problems,
there are interesting variants where the entire instance is not known when the computa-
tion must commence. The area of on-line algorithms deals with this problem scenario.
For detailed descriptions of many of these problems and their solutions in terms of
approximation or on-line algorithms, see [4,10,13], for instance.

For all of these problems, minimizing the resources used seems to be the obvious
goal. However, if the resource is not owned by the problem solver, but is owned by an-
other party who profits from selling the resource, there is no longer agreement about the
objective, since the owner of the resource wants to maximize the resources used, pre-
sumably under some constraints which could be outlined in a contract. Thus, many of
the classical problems are interesting also when considered from the reverse perspective
of trying to maximize the amount of resources that are used.

In [1], the Lazy Bureaucrat Scheduling Problem is considered. Here, tasks must be
scheduled and processed by an office worker. The authors consider various constraints
and objective functions. The flavor of the constraints is that the office worker cannot sit
idle if there is work that can be done, and the office worker’s objective is to schedule
tasks under these constraints so as to minimize the work carried out; either total work,
arranging to leave work as early as possible, or a similar goal. Though it is presented
as a toy problem, it is an important view on some optimization problems, and many
other problems are interesting in this perspective, provided that the constraints imposed
on the problem are natural. Also other problems have been investigated in this reverse
perspective, e.g., longest path [16], maximum traveling salesperson problem [12] and
lazy online interval coloring [9].

Maximum Resource Bin Packing (MRBP). In this paper, we consider bin packing from
the maximum resource perspective. We consider it as an approximation problem, but
we also investigate two on-line variants of the problem. To our knowledge, this is the
first time one of these reverse problems has been considered in an on-line setting. Note
that the complexity status of the off-line problems studied in this paper is open.

The abstract problem of packing items of a given size into bins has numerous con-
crete applications, and for many of these, when the resource must be purchased, the
reverse problem becomes interesting for one of the parties involved. We use the follow-
ing concrete problem for motivation.

Assume that we hire a company to move some items by truck from one site, the
origin, to another, the destination. Say that the price we must pay is proportional to the
number of trucks used. Some companies may try to maximize the number of trucks
used instead of trying to get the items packed in few trucks. To prevent the company
from cheating us, the following constraint has been placed on the packing procedure:

Constraint 1: When a truck leaves the origin, none of the unpacked items remaining at
the origin should fit into that truck.

In the off-line variant, Off-Line MRBP, we are given an unlimited number of unit
sized bins and a sequence of items with sizes in (0, 1], and the goal is to maximize the
number of bins used to pack all the items subject to Constraint 1. A set of items fits in a
bin if the sum of the sizes of the items is at most one. In the off-line variant, there must
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be an ordering of the bins such that no item in a later bin fits in an earlier bin. Explained
using the motivating example, Constraint 1 can be illustrated as follows: Trucks arrive
at the origin one at a time. A truck is loaded, and may leave for its destination when
none of the remaining items can fit into the truck. At this time, the next truck may
arrive.

On-Line MRBP is similar to the off-line version. However, the problem is on-line,
meaning that items are revealed one at a time, and each item must be processed before
the next item becomes available. Because of the on-line nature of the problem, instead
of Constraint 1, the following modified constraint is used:

Constraint 2: The company is not allowed to begin using a new truck if the current
item fits in a truck already being used.

Thus, the on-line algorithm is allowed to open a new bin every time the next item to
be processed does not fit in any of the previous bins. The objective is still to use as many
bins as possible. Thus, all partly loaded trucks are available all the time, and whenever
an item does not fit, a new truck may pull up to join the others.

We also consider another on-line problem, On-Line Dual MRBP. Here, the number
of available bins is fixed. For each item, an algorithm has to accept it and place it in
one of its bins, if it is possible to do so. Thus, here a fixed number of trucks have been
ordered. In this case, neither Constraint 1 nor Constraint 2 is used; the objective is not to
maximize the number of trucks used, since this number is fixed. There are two possible
objective functions: the number of accepted items or the total size of the accepted items.
In both cases, the objective is to minimize this value. Thus, the truck company wants to
pack as few items or as little total size as possible into the trucks, minimizing the fuel
needed for each truck, or maybe hoping to get a new order of trucks for the items which
do not fit into the fixed number of trucks which have been ordered.

For all three problems, we study the general version as well as the parameterized
version where there is an upper bound of 1

k on the item sizes, for some integer k.
A closely related problem is the Bin Covering Problem. In this problem, the al-

gorithm is given a sequence of items and has to place them in bins, while trying to
maximize the number of bins that contain items with a total size of at least one. This is
quite similar to Off-Line MRBP with bins twice as large and Constraint 1 replaced by
the following weaker constraint:

Constraint 3: No pair of trucks leaving the origin may have a total load of items that
could have been packed in one truck.

The problem is NP-complete but has an asymptotic fully polynomial time approxi-
mation scheme (AFPTAS) [14]. Further results on that problem can be found in [2,7,8].

Our Results. For Off-Line MRBP, we show that no algorithm has an approximation
ratio of more than 17

10 . For the parameterized version, the upper bound is 1 + 1
k for

k ≥ 2. The algorithm First-Fit-Decreasing is worst possible in the sense that it meets
this upper bound. First-Fit-Increasing is better; it has a competitive ratio of 6

5 and a
parameterized competitive ratio of 1 + k−1

k2+1 for k ≥ 2. See Section 2 for a definition
of the algorithms.
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For On-Line MRBP, we prove a general lower bound of 3
2 on the parameterized

competitive ratio for k ≤ 3 and 1 + 1
k−1 for k ≥ 3. We prove a general upper bound

of 2 for k ≤ 2 and 1 + 1
k−1 for k ≥ 2. Hence, for k ≥ 3, all algorithms have the same

parameterized competitive ratio. We prove that First-Fit, Best-Fit, and Last-Fit all meet
the general upper bound.

For On-Line Dual MRBP, we prove that if the objective function is the total num-
ber of items packed, no deterministic algorithm is competitive; this also holds for any
value of k for the parameterized problem. If the objective function is the total size of
the packed items, no algorithm for the general problem is competitive. For the parame-
terized version, we prove general lower and upper bounds of 1 + 1

e(k−1) and 1 + 1
k−1 ,

respectively.
The proof of Theorem 3, below, showing that for Off-Line MRBP, the approxi-

mation ratio of First-Fit-Increasing is 6
5 , uses a new variant of the standard weighting

argument. That result also gives a connection between Off-Line MRBP and the rela-
tive worst order ratio for on-line algorithms for the classical bin packing problem. The
relative worst order ratio [5] is a new measure for the quality of on-line algorithms.
Theorem 3 has been used to prove the upper bound on a result comparing First-Fit to
Harmonic(k) using the relative worst order ratio [6]. Perhaps other “reverse” problems
will have similar connections to the relative worst order ratio.

2 Notation and Algorithms

The input is a sequence of items, I = 〈s1, s2, . . . , sn〉. For convenience, we identify an
item with its size and require that item si has size 0 < si ≤ 1 (or 0 < si ≤ 1

k , for some
integer k, for the parameterized problem). Items have to be placed in bins of size one.

For any input sequence I , let ALG(I) be both the packing produced when running
ALG on this input sequence and the number of bins used for this packing. In particular,
let OPT be an algorithm which produces an optimal packing, and let OPT(I) be both
this packing and the number of bins used. For the off-line variant, let SMALL(I) be
a packing using the minimum number of bins that the items from I can be packed in
without putting items with sizes totaling more than one in any bin, and let SMALL be
an algorithm that creates this packing. Note that SMALL is an optimal algorithm from
the classical bin packing problem, but for MRBP, it is a worst possible algorithm.

An approximation algorithm ALG is a c-approximation algorithm, c ≥ 1, if there is
a constant b such that for all possible input sequences I , OPT(I) ≤ c ALG(I) + b. The
infimum of all such c is called the approximation ratio of the algorithm,RALG. For the
parameterized problem, we consider the parameterized approximation ratio, RALG(k),
which is the approximation ratio in the case where all items have size at most 1

k for
some integer k.

An important algorithm in this context is First-Fit (FF), which places an item in the
first bin in which it fits. In this paper, we investigate two well known off-line variants
of FF in detail: First-Fit-Increasing (FFI) handles items in non-decreasing order with
respect to their sizes, placing them using First-Fit. First-Fit-Decreasing (FFD) han-
dles items in non-increasing order with respect to their sizes, also placing them using
First-Fit.
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In the on-line variants of the problem, the algorithms receive the input, i.e., the
items, one at a time and have to decide where to pack the item before the next item (if
any) is revealed. Similarly to the approximation ratio for approximation algorithms, the
performance of deterministic on-line algorithms is measured in comparison with the
optimal off-line algorithm OPT [11,17,18]. An on-line algorithm ALG is c-competitive,
c ≥ 1, if there is a constant b such that for all possible input sequences I , OPT(I) ≤
c ALG(I)+b. The infimum of all such c is called the competitive ratio of the algorithm,
CALG. For the parameterized problem, we consider the parameterized competitive ratio,
CALG(k), which is the competitive ratio in the case where all items have size at most 1

k
for some integer k.

For the on-line variants, we consider the following natural algorithms, all of which,
except for Last-Fit, have been well studied in other contexts: First-Fit (FF) as defined
previously. Last-Fit (LF) is the opposite of FF, i.e., it places a new item in the last
opened bin in which it fits. Best-Fit (BF) places the item in a feasible bin which is as
full as possible, i.e., a feasible bin with least free space. Worst-Fit (WF) is the opposite
of BF, i.e., it places an item in a feasible bin with most free space.

Omitted proofs can be found in the full version of this paper.

3 Off-line Maximum Resource Bin Packing

For Off-Line MRBP, the goal is to maximize the number of bins used, subject to Con-
straint 1, so there must be an ordering of the bins such that no item placed in a later bin
fits in an earlier bin. We show that no algorithm for the problem has an approximation
ratio worse than 17

10 . Using the proof that for classical Bin Packing, First-Fit’s approxi-
mation ratio is 17

10 [15] we prove that FFD has this worst possible approximation ratio.
Finally we show that FFI has a better ratio of 6

5 .

Theorem 1 (General upper bound). Any algorithm ALG for Off-Line MRBP has
RALG(k) ≤ 17

10 , for k = 1, andRALG(k) ≤ 1 + 1
k , for k ≥ 2.

Proof. Consider any multiset of requests, I . The minimum number of bins, m, ALG
could use on I is no less than the number of bins used by SMALL.

Consider OPT’s packing of I , and create an ordered list I ′ containing the items in
I , starting with the items OPT packed in the first bin, followed by those in the second
bin, etc., until all items have been included.

By the restrictions on what an algorithm may do, First-Fit packs the items in I ′

exactly as OPT packed the items of I . By [15], the number of bins, n, used by First-Fit
is at most 17

10m + 2, if k = 1, and at most (1 + 1
k )m + 2, if k ≥ 2. Thus, OPT uses at

most 17
10m+2 bins, if k = 1, and at most (1+ 1

k )m+2 bins, if k ≥ 2, giving the stated
ratio. ��

This result is tight since First-Fit-Decreasing has this approximation ratio.

Theorem 2. For Off-Line MRBP,
RFFD(k) = 17

10 , for k = 1, andRFFD(k) = 1 + 1
k for k ≥ 2.

We now turn to the better algorithm, FFI.
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Theorem 3. For Off-Line MRBP,
RFFI(k) = 6

5 , if k = 1, andRFFI(k) = k2+k
k2+1 , if k ≥ 2.

Proof. Note that RFFI(1) = RFFI(2) = RFFI(3). We prove the lower bound first. For
k ≤ 2 we use the following input: n items of size 1

2 and n items of size 1
3 , where n is

a large integer divisible by 6. The optimal packing is to put one item of size 1
2 and one

item of size 1
3 in each bin. This makes OPT use n bins, each with a fraction of 1

6 empty
space. On the other hand, FFI packs n

3 bins, each containing three elements of size 1
3 ,

followed by n
2 bins, each with two items of size 1

2 . Hence, in total, FFI uses 5n
6 bins,

and the ratio follows.
For k ≥ 3 we use a slightly more complicated sequence. Let n be a large integer.

The input contains n(k2 − 1) items of size 1
k+1 and n(k + 1) items of size 1

k . FFI uses
n(k − 1) bins for the smaller items and n(k + 1)/k bins for the larger ones, which is
n(k2 + 1)/k in total. All the bins are completely full. An optimal packing would be to
combine one larger item with k− 1 smaller ones, using n(k + 1) bins. Each bin is thus
full by a fraction of 1

k + k−1
k+1 > k

k+1 , which makes the packing valid. The approximation

ratio for this sequence is thus exactly k2+k
k2+1 .

Note that in this case, FFI’s packing is actually the same as the packing made by
SMALL. This is not always the case, though.

Next, we prove the upper bound. We first prove the case k ≤ 3 which is slightly
different from the other cases and has to be treated separately. For this part of the proof,
we do not assume an upper bound on the item sizes.

We assign weights to items in the following way. For all items in the interval (0, 1
6 ]

(small items), the weight is defined to be equal to the size. An item which belongs to an
interval ( 1

i+1 , 1
i ] for some i = 1, 2, 3, 4, 5 (large items), is assigned the weight 1

i .
The intuition for this weighting comes from considering a bin in the packing made

by FFI that contains only items from a single interval ( 1
i+1 , 1

i ], i ∈ {1, 2, 3, 4, 5}. This
bin contains at most i items, and therefore each item in such a bin can be thought of as
contributing 1

i to the total size of items plus empty space in FFI’s packing.
Let W be the total weight of the items in a given input sequence. We prove that

FFI + 5 ≥W ≥ 5
6 (OPT − 5), which implies the upper bound.

Consider first the optimal solution OPT. We show that the total weight of items is at
least W ≥ 5

6 (OPT−5). To show that, we claim that all bins in OPT , except for at most
five bins, have items of weight at least 5

6 . First, consider the bins containing at least
one small item. Due to Constraint 1, there is at most one such bin whose total sum of
item sizes is less than 5

6 . Note that the weight of an item is at least its size. A bin which
contains items of total size of at least 5

6 has weight at least that amount. A bin which
contains an item larger than 1

2 has weight at least 1. Therefore, we only need to consider
bins containing only items in (1

6 , 1
2 ]. We define a pattern to be a multiset of numbers in

1
2 , 1

3 , 1
4 , 1

5 whose sum is at most 1. The type of a pattern is the inverse of the smallest
number in it. A pattern P of type j is a maximal pattern if adding another instance of 1

j

to P , would not result in a pattern, i.e. P ∪ { 1
j } is not a pattern. The pattern of a bin is

the multiset of the weights of its items.
For each j = 2, 3, 4, 5, the packing has at most one bin whose pattern is of type

j but is not maximal. We show that a bin of any maximal pattern has weight at least
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5
6

1. The only maximal pattern of type 2 is { 1
2 , 1

2}. The maximal patterns of type 3
are { 1

3 , 1
3 , 1

3} and { 1
2 , 1

3}. Consider a maximal pattern of type 4. We need to show that
the sum of elements in the pattern is at least 5

6 . Let a, b, c be the amounts of 1
2 , 1

3 ,
and 1

4 in the pattern. If the sum is less than 5
6 , we have 3

4 < a
2 + b

3 + c
4 < 5

6 . This
gives 9 < 6a + 4b + 3c < 10. Since a, b, c are integers, this is impossible. Similarly,
consider a maximal pattern of type 5. Let a, b, c, d be the amounts of 1

2 , 1
3 , 1

4 , and 1
5 in

the pattern. If the sum is less than 5
6 , we have 4

5 < a
2 + b

3 + c
4 + d

5 < 5
6 . This gives

48 < 30a+ 20b+ 15c + 12d < 50 or 30a+ 20b+ 15c + 12d = 49. Since a, b, c, d are
non-negative integers, this combination is impossible.

Consider now the packing of FFI. We show that the total weight of items is at most
W ≤ FFI + 5. Note that the algorithm actually acts as Next Fit Increasing and never
assigns an item to an old bin once a new bin is opened. A bin of FFI is called a transition
bin if it has both at least one small item and at least one other item, or it has only large
items, but it contains items of distinct weights. The last case means that the algorithm
is done packing all items of weight 1

j for some 5 ≥ j ≥ 2 and has started packing items

of weight 1
j−1 . Therefore, there are at most five transition bins. In any other bin, the

sum of the weights of the items is at most one; this is clear if there are only small items
whose weights are equal to their sizes. For other items, there are j items of weight 1

j
in a bin containing only such items. As for the transition bins, the total weight of items
whose size is at most one can be at most 2, soW ≤ FFI +5. Hence OPT ≤ 6

5FFI +11.
We now prove the upper bound for k ≥ 4. We slightly revise the definitions. Items

are small if they are in the interval (0, 1
k+3 ]. The weight of a small item is its size. An

item which belongs to an interval ( 1
i+1 , 1

i ] for some i = k, k + 1, k + 2, is assigned the
weight 1

i .
Consider the optimal solution OPT. We show that the total weight of items is at

least W ≥ (k2 + 1)(OPT − 4)/(k2 + k). To show that, we claim that all bins except
for at most four bins have items of weight at least (k2 +1)/(k2 +k). First, consider the
bins containing at least one small item. Due to Constraint 1, there is at most one such
bin whose total sum of items is less than 1 − 1

k+3 = k+2
k+3 ≥

k2+1
k2+k (which holds for all

k ≥ 3).
Note that the weight of an item is at least its size. A bin which contains items of total

size at least k2+1
k2+k has weight at least that amount. We need to consider bins containing

only items in ( 1
k+3 , 1

k ]. We define a pattern to be a multiset of numbers in 1
k+2 , 1

k+1 , 1
k

whose sum is at most 1. Again, we define the type of a pattern as the inverse of the
smallest item in it.

For each j = k, k + 1, k + 2, the packing has at most one bin whose pattern is of
type j but is not maximal. We show that a bin of any maximal pattern has weight at
least k2+1

k2+k . The only maximal pattern of type k is { 1
k , . . . , 1

k}.
Consider a maximal pattern of type k+1. We need to show that the sum of elements

in the pattern is at least k2+1
k2+k . Let a and b be the amounts of 1

k and 1
k+1 in the pattern.

If the sum is less than k2+1
k2+k , we have k

k+1 < a
k + b

k+1 < k2+1
k2+k . This gives k2 <

(k + 1)a + kb < k2 + 1. Since a and b are integers, this is impossible. Similarly,

1 The paper [3] showed a similar result on patterns for a different purpose.
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consider a maximal pattern of type k + 2. Let a, b, and c be the amounts of 1
k , 1

k+1 , and
1

k+2 in the pattern. If the sum is less than k2+1
k2+k , we have k+1

k+2 < a
k + b

k+1 + c
k+2 < k2+1

k2+k .
This gives k(k + 1)2 < (k + 2)(k + 1)a+ k(k + 2)b+ k(k + 1)c < (k2 + 1)(k + 2)
or a(k2 + 3k + 2) + b(k2 + 2k) + c(k2 + k) = k(k + 1)2 + 1. We need to exclude
the existence of an integer solution for a, b, and c. Assume that such a solution exists.
Note that a+ b+ c < k + 2, since otherwise the left hand side is at least k(k + 1)(k +
2) > k(k + 1)2 + 1. Also note that a + b + c > k − 1, since otherwise the left hand
side is at most (k + 1)(k + 2)(k − 1) < k(k + 1)2 + 1. If a + b + c = k + 1 we
get (a + b + c)(k2 + k) + 2a(k + 1) + kb = k(k + 1)2 + 1. Simplifying, we have
2a(k + 1) + kb = 1, which is clearly impossible. If a + b + c = k, we need that
2a(k + 1) + kb = k2 + k + 1. If a = 0, there is no solution since k2 + k + 1 is not
divisible by k. Otherwise, 2a− 1 must be divisible by k. Since 0 < a ≤ k and a is an
integer, the only value it can have is k+1

2 , but this gives b = −1 which is impossible.
Now consider the packing of FFI. The total weight of items is at most W ≤ FFI +

4 since there can be only four transition bins. This implies the upper bound on the
approximation ratio. ��

4 On-line Maximum Resource Bin Packing

For On-Line Maximum Resource Bin Packing, the goal is to maximize the number of
bins used subject to Constraint 2, so the algorithm is only allowed to open a new bin
if the current item does not fit in any open bin. We have matching lower and upper
bounds for most algorithms, and we conjecture that the algorithm Worst-Fit (WF) has
an optimal competitive ratio of 3

2 .

Theorem 4 (General upper bound). Any algorithm ALG for On-Line MRBP has
CALG(k) ≤ 2, for k = 1, and CALG(k) ≤ k

k−1 , for k ≥ 2.

Proof. For k = 1, this is proven using the fact that for any algorithm, all bins, except
possibly one, are at least half full. For k ≥ 2, we use the fact that all bins, except
possibly one, are full to at least k−1

k . ��

For k ≥ 3, Theorem 4 is tight for deterministic algorithms. The following theorem
follows from Lemmas 1 and 2 handling the cases k ≤ 2 and k ≥ 3 respectively.

Theorem 5 (General lower bound). Any deterministic algorithm ALG for On-Line
MRBP has CALG(k) ≥ 3

2 , for k ≤ 2, and CALG(k) ≥ k
k−1 , for k ≥ 3.

Lemma 1. There exists a family of sequences In with items no larger than 1
2 such

that OPT(In) → ∞ for n → ∞ and, for any deterministic on-line algorithm ALG,
OPT(In) ≥ 3

2ALG(In).

Proof. The sequence is given in phases. Each phase begins with 〈12 , ε, 1
2 , ε〉, where

ε < 1
12 . For this sequence, there are two possible packings. In the first one, there are

two bins with one item of each size. In the second one, each bin has one item of size 1
2 ,

and both small items are in the first bin.



The Maximum Resource Bin Packing Problem 405

If the on-line algorithm chooses the first packing, the sequence continues with
〈2ε, 1

2 − ε, 1
2 − 3ε〉, filling up the two on-line bins. An optimal off-line algorithm

chooses the second packing, places the 2ε-item in the second bin, and opens a new
bin for the last two items. Thus, OPT uses three bins, and has all bins filled to at least
1
2 + 2ε.

If the on-line algorithm chooses the second packing, the sequence continues with
〈12 , 1

2 − 4ε, ε, ε〉. In this case, an optimal off-line algorithm chooses the first packing,
and thus opens a new bin for the first two of the last four items. The last two items are
placed in the first two bins. Again, OPT uses three bins and has all bins filled to at least
1
2 + 2ε.

Since each on-line bin is filled completely and each off-line bin is filled to at least
1
2 + 2ε, this can be repeated arbitrarily many times, with the result that ALG uses two
bins per phase and OPT uses three bins per phase. ��

Lemma 2. For k ≥ 3, there exists a family of sequences In with items no larger than
1
k such that OPT(In) → ∞ for n → ∞ and, for any deterministic on-line algorithm
ALG, OPT(In) ≥ k

k−1ALG(In)− 1
k−1 .

First-Fit, Best-Fit, and Last-Fit are worst possible:

Theorem 6. For On-Line MRBP,
CFF(k) = CBF(k) = 2, for k = 1, and CFF(k) = CBF(k) = k

k−1 , for k ≥ 2.

Proof. The upper bound follows from Theorem 4, and the lower bound for k ≥ 3
follows from Theorem 5. Thus, we only need to prove the lower bound of 2 for k ≤ 2.
To this end, consider the sequence 〈12 , ε〉n, where n is a large odd integer and ε ≤ 1

2n .
FF as well as BF puts all the small items in the first bin, using 1 + n−1

2 bins in total.
OPT on the other hand distributes the small items one per bin, using n bins. This gives
a ratio arbitrarily close to 2 for n arbitrarily large. ��

Theorem 7. For On-Line MRBP, CLF(k) = 2, for k = 1, and CLF(k) = k
k−1 , for k ≥ 2.

Investigation of Worst-Fit seems to indicate that it works very well in comparison
with the other algorithms studied here. However, the gap between the lower bound of
3
2 and the upper bound of 2 remains. Based on our investigation, we conjecture the
following:

Conjecture 1. For On-Line MRBP, the competitive ratio of WF is 3
2 .

5 On-line Maximum Resource Dual Bin Packing

For this problem, there are exactly n bins. An item cannot be rejected if it fits in some
bin, but there are no constraints as to which bins the algorithm may use, except that no
bin may be filled to more than 1. We have two different cases corresponding to the two
different objective functions. For both objective functions, no deterministic algorithm
is competitive in the general case with no upper bound less than 1 on item sizes.
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Theorem 8. For On-Line Dual MRBP with accepted total size as cost function, no
deterministic algorithm is competitive in general.

Proof. We describe only the adversarial sequence. Let n ≥ 2 be the number of available
bins, and let ALG be any deterministic algorithm. The input sequence is constructed in
up to n rounds. In round i, for 1 ≤ i ≤ n−1, n items of size ε are given, for some small
ε > 0. If, after the ith round, ALG has one or more bins with fewer than i items, then
an item of size 1− ε(i−1) is given. If, after n−1 rounds, ALG has n−1 items in each
of its n bins, we give an item of size nε, and then n− 1 items of size 1− ε(n− 1). ��

We note that the situation for the parameterized problem for k > 1 is very different
from the situation for the general problem. For every k > 1, it is not hard to show that
any algorithm has competitive ratio of at most k/(k − 1). The reason for this is that if
OPT rejected any item at all, then its bins are full up to at least 1− 1/k.

The following lower bound tends to 1 + 1
e(k−1) as n tends to infinity and is at least

1 + 1
3(k−1) for any n ≥ 2.

Theorem 9. Consider On-Line Dual MRBP with accepted total size as cost function
For k ≥ 2, any deterministic algorithm ALG has

CALG(k) ≥ 1 + m
n(k−1) , where m = max

{
j
∣∣∣∑n

i=j
1
i > 1
}
∈
{⌊

n
e

⌋
,
⌈

n
e

⌉}
.

Proof. Let n be the number of bins and let ε > 0 be a very small constant. Let m be
the largest number 1 ≤ m < n such that

∑n
i=m

1
i > 1. Since 1/x is a monotonically

decreasing function for x > 0, we get a lower bound of
⌊

n
e

⌋
on m:

∑n
i=�n

e �
1
i >∫ n+1

�n
e �

1
xdx > 1. For the upper bound, m can be at most

⌈
n
e

⌉
, since

∑n
i=, n

e /+1
1
i <∫ n

,n
e /

1
xdx < 1. Hence, depending on the exact value of n, m is either

⌊
n
e

⌋
or
⌈

n
e

⌉
.

The initial input is n! items of size ε. We first prove that, for any packing of these
items, there exists an integer i, m ≤ i ≤ n, such that at least i bins receive strictly
less than n!

n+m−i items. Assume for the purpose of contradiction that this is not the

case. Then, at least one bin has at least n!
m small items, and for each i = n − 1, n −

2, . . . , m, there is at least one additional bin that receives at least n!
n+m−i items. Since

the total number of items is n!, we get that
∑n

i=m
n!

n+m−i ≤ n!, which is equivalent to∑n
i=m

1
i ≤ 1. By the definition of m, this cannot be the case.

Now, pick an i, m ≤ i ≤ n, such that at least i bins receive strictly less than n!
n+m−i

items in ALG’s packing. Give
〈

n!
n+m−i ε

〉i−m

,
〈 1

k

〉n(k−1)
,
〈

1
k −

n!−1
n+m−i ε

〉m

.

After packing the first i −m of these items, ALG still has at least m bins filled to
strictly less than n!

n+m−i ε. Let r be the number of ALG’s bins which are completely
empty. Since all bins are less than 1

k full, there is room for exactly n(k − 1) + r items
of size 1

k and at least max{m − r, 0} items of size 1
k −

n!−1
n+m−i ε. Thus, ALG is able

to pack the remaining items as well, giving a total size of n!ε + (i−m) n!
n+m−i ε +

n(k−1)+m
k − n!−1

n+m−i mε.

Before the arrival of the size 1
k items, OPT can pack the items from phase one in

one bin each and distribute the initial n! items in the remaining bins to fill all bins up
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to exactly n!
n+m−i ε. Each bin gets k − 1 items of size 1

k , and no further items can

be packed. The total size packed by OPT is n!ε + (i−m) n!
n+m−i ε + n(k−1)

k . As ε
decreases, the ratio converges to 1 + m

n(k−1) . ��

The lowest possible value of m
n is 1

3 which is obtained when n equals 3, 6 or 9.
For the case where the objective function is the number of accepted items, the situ-

ation is even worse.

Theorem 10. For On-Line Parameterized MRBP with the number of accepted items as
cost function, no deterministic algorithm is competitive, for any k.

Proof. We describe only the adversarial sequence. The input sequence begins with
2kn − 2 items of size 1

2k . ALG fills all but at most two bins completely, and the re-
maining two bins are either both filled to 1 − 1

2k , or one is filled completely and the
other to 1 − 1

k . In the first case, the sequence continues with 1 item of size 1
k and
⌊ 1

kε

⌋
items of size ε. In the second case, the sequence continues with one item of size 1

2k + ε,
two items of size 1

2k , and
⌊ 1

2kε

⌋
− 1 items of size ε. ��

6 Concluding Remarks

The most interesting open problem is to prove that the off-line maximum resource bin
packing problem is NP-hard (or to find a polynomial time algorithm for it).

For the off-line version of the problem, we have investigated First-Fit-Decreasing,
which is worst possible, and First-Fit-Increasing, which performs better and obtains an
approximation ratio of 6

5 . It would be interesting to establish a general lower bound
on the problem, and, if it is lower than 6

5 , to determine the optimal algorithm for the
problem. Does there exist a polynomial time approximation scheme for the off-line
version?

For the on-line version, we have considered the two standard bin packing problems
from the literature. For dual bin packing, no algorithm is competitive in general, inde-
pendent of whether the cost measure is the total size or the total number of accepted
items. With the total accepted size as cost function, the situation is completely different
for the parameterized version; for k ≥ 2, any algorithm has a parameterized competitive
ratio between 1 + 1

k−1 and about 1 + 1
e(k−1) .

For the classic variant of on-line bin packing, we have established general upper and
lower bounds and proved that First-Fit, Best-Fit, and Last-Fit perform worst possible.
The behavior of Worst-Fit seems very promising, but we leave it as an open problem to
determine its competitive ratio.
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Abstract. Both average-case complexity and the study of the approx-
imability of NP optimisation problems are well established and active
fields of research. Many results concerning the average behaviour of ap-
proximation algorithms for NP optimisation problems exist, both with
respect to their running time and their performance ratio, but a theoreti-
cal framework to examine their structural properties with respect to their
average-case approximability is not yet established. With this paper, we
hope to fill the gap and provide not only the necessary definitions, but
show that
1. The class of NP optimisation problems with p-computable input

distributions has complete problems with respect to an average-
approximability preserving reduction.

2. The average-time variants of worst-case approximation classes form
a strict hierarchy if NP is not easy on average. By linking average-
ratio approximation algorithms to p-time algorithms schemes, we
can prove similar hierarchy results for the average-ratio versions of
the approximation classes. This is done under the premise that not
all NP-problems with p-computable input distributions have p-time
algorithm schemes.

3. The question whether NP is easy on average is equivalent to the ques-
tion whether every NP optimisation problem with a p-computable
input distribution has an average p-time approximation scheme.

Classification: Computational and structural complexity.

1 Introduction

There are several ways of dealing with the intractability of many computational
problems. One way is to consider algorithms whose running time is polynomial
on most inputs, though it is super-polynomial on some instances that rarely
occur. Another way, applicable to optimisation problems, is to search for p-time
algorithms that do not compute an optimal solution, but one that comes close
to the optimum, e.g. up to a constant factor.

There are already a number of results on the probabilistic behaviour of ap-
proximation algorithms, see for example [14,22,20] for results on the performance
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ratio of greedy algorithms, and [8] for approximation algorithms that run in aver-
age p-time. In this paper we introduce a framework that allows us to examine the
structural properties of optimisation problems with respect to such results. To
do so we give formal definitions of average-case approximation classes. Reflecting
the two parameters of interest, namely the running time and the quality of the
solution found, there are three possibilities of relaxing worst-case requirements
to average-case requirements.

The notion of average p-time for decision problems is well established, see
[29] for a survey. Recent results like [7] attest to the relevance of this field of
research. We apply this notion to the running time of approximation algorithms
and examine average p-time versions of the worst-case approximation classes
PTAS, APX, poly-APX and exp-APX and also adapt it to the performance ratio
of approximation algorithms.

Introducing a reduction that preserves approximability for the majority of
the average-case approximation classes in Section 3, we show that DistNPO, the
class of NP optimisation problems with p-computable input distributions, has
complete problems with respect to it.

We examine the inclusion structure of the average-case approximation classes
in Section 4. We show that if NP is not easy on average, the average p-time
approximation classes form a strict hierarchy. The average-ratio versions of the
approximation classes also form a strict hierarchy, but under the premise that
there are DistNP-problems that do not have a p-time algorithm scheme. An
algorithm scheme is a deterministic algorithm that is allowed to make errors for
some inputs with probability that is bounded by an additional input parameter.

Differences between the worst-case and average-case setting become apparent
in Section 5. There we look at the average-case variant of the worst-case relation
“P = NP iff every NP optimisation problem is solvable in polynomial time”.
The average-case equivalent of this question is already addressed in [28]. It is
shown that computing an optimal solution for an NP opt-problem on average
is equivalent to solving membership for problems in Δp

2 on average, and that if
every NP problem with a PNP-samplable input distribution is easy on average,
then every NP opt-problem with a PNP-samplable input distribution is solvable
in average p-time as well. Instead of trying to compute an optimal solution in av-
erage p-time, we focus on computing an approximate solution in average p-time
and show that the question whether NP is easy on average is equivalent to the
question whether every NP opt-problem with p-computable input distributions
has an average p-time approximation scheme.

2 Preliminaries

We follow standard definitions of complexity theory, see e.g. [24,3,11]. We con-
sider only nonempty words over Σ = {0, 1}. By |x| we denote the length of a
word x, by Σn the set of all words of length n, by ≤ the standard ordering on
Σ+ – words are ordered lengthwise, words of equal lengths lexicographically –
and by χL the characteristic function of L ⊆ Σ+, that is χL(x) = 1 iff x ∈ L.
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Optimisation and Approximation Problems: (see [2] for further details)
An NP opt-problem F over Σ is given as a tuple (I, S, m, type) with:

1. I ⊆ Σ+ the set of input instances; I ∈ P.
2. S ⊆ I ×Σ+ a relation of inputs and their feasible solutions. S(x) denotes the
set of feasible solutions for any x ∈ I. We require S ∈ P and |y| ≤ q(|x|) for all
y ∈ S(x) and some polynomial q.
3. m : S → Q+ the objective function; m ∈ FP.
4. type the information whether F is a max- or min-problem.

NPO denotes the class of all NP opt-problems. Since we consider only NPO
problems in this paper, we omit to explicitly mention NPO membership for
optimisation problems. For all x ∈ I, the optimal value of the objective function
is opt(x) = max{m(x, y) | y ∈ S(x)} for max- and opt(x) = min{m(x, y) | y ∈
S(x)} for min-problems.

If not stated otherwise, an approximation algorithm is a deterministic p-
time algorithm. By A(x) we denote the solution computed by an approximation
algorithm A on input x. Clearly, A(x) ∈ S(x) has to hold for x ∈ I if S(x) 	= ∅.

For x ∈ I with S(x) 	= ∅, the performance ratio R of a solution y ∈ S(x) is
defined as R(x, y) = max{opt(x)/m(x, y), m(x, y)/ opt(x)}. So R(x, y) ≥ 1 for
all x ∈ I and y ∈ S(x). If R(x, y) = 1, then y is optimal. We write RA(x) =
R
(
x, A(x)

)
for the ratio of an approximation algorithm A. Let r : N → [1,∞)

be a function. A computes an r-approximate solution for F ∈ NPO if RA(x) ≤ r
for every x ∈ I. Then A is an r-approximate algorithm and F is r-approximable.

A problem F ∈ NPO is in APX if F is r-approximable for a constant r > 1.
It is in poly-APX if F is p(n)-approximable for a polynomial p, and it is in
exp-APX if F is 2p(n)-approximable for a polynomial p. F is in PTAS if an
approximation algorithm exists that on input (x, r), where x ∈ I and r > 1,
returns an r-approximate solution for x in time polynomial in |x|.

The notion of an approximation preserving reduction, on which our definition
of an average-case approximation preserving reduction is based, was first intro-
duced in [9], see also [2]. Let F1, F2 ∈ NPO. F1 AP-reduces to F2, ( F1 ≤AP F2 ),
if there exist functions f : Σ+ × (1,∞) → Σ+, g : Σ+ × Σ∗ × (1,∞) → Σ∗,
computable in time polynomial in |x| for r ∈ (1,∞) fixed, and a constant α ≥ 1
such that for every x ∈ IF1 and for every r > 1:

1. f(x, r) ∈ IF2 .
2. If SF1(x) 	= ∅, then SF2

(
f(x, r)

)
	= ∅.

3. g(x, y, r) ∈ SF1(x) for every y ∈ SF2

(
f(x, r)

)
.

4. RF2

(
f(x, r), y

)
≤ r ⇒ RF1

(
x, g(x, y, r)

)
≤ 1+α(r−1) for all y ∈ SF2

(
f(x, r)

)
.

The additional parameter r is only required to preserve membership in PTAS.
If the quality of the required solution is not needed for the reduction, the addi-
tional parameter is omitted. The AP-reduction is transitive, and PTAS, APX,
poly-APX and exp-APX are closed under it.
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Average-Case Complexity: A probability function on Σ+ is a function μ :
Σ+ → [0, 1] s.t.

∑
x μ(x) = 1. Its distribution is μ∗(x) = Σy≤xμ(y). A distribu-

tion ν dominates a distribution μ if a polynomial p exists s.t. ν(x) ≥ μ(x)/p(|x|)
for all x ∈ Σ+. ν dominates μ wrt. a function f : Σ+ → Σ+, if a constant
l ≥ 0 exists s.t. ν(y) ≥ |y|−l

∑
x.f(x)=y μ(x) for every y ∈ range(f). A function

f transforms μ into ν if ν(y) =
∑

x.f(x)=y μ(x) for all y ∈ range(f).
A function f : Σ+ → [0, 1] is p-computable if a DTM M exists s.t. |M(x, k)−

f(x)| ≤ 2−k for all x ∈ Σ+, k ≥ 1, and M is time-bounded by a polynomial in
|x| and k. If a distribution μ∗ is p-computable, then μ is p-computable as well.
The converse is not true unless P = NP, see [16], so a probability function μ is
called p-computable if both μ and μ∗ are, thus following standard notation used
in the literature.

Fact 1 (Gurevich [16]). For every p-computable prob. function μ on Σ+ a
p-computable prob. function ν exists s.t. the length of the binary representation
of ν(x) is bounded by 4 + 2|x|, and μ(x) ≤ 4ν(x) for all x ∈ Σ+.

For standard prob. functions we use μN(n) = c0/n
2 with c0 = 6/π2 for positive

integers. The standard prob. function μΣ+ on Σ+ is obtained by first selecting a
length according to μN, then a word uniformly from Σn, i.e. μΣ+(x) = μN(|x|) ·
2−|x|. For more details on such prob. functions see [16].

Since we deal with average-case properties of opt-problems, we cannot sep-
arate the problems from their input distributions. The pairs of opt-problem or
language and prob. function are called distributional opt-problems and distribu-
tional problems respectively. DistNP is the class of distr. problems (L,μ), where
L ∈ NP and μ is p-computable. Likewise, DistNPO is the class of all distr. opt-
problems (F,μ), where F ∈ NPO and μ is p-computable. DistMinNPO is the
class of all distr. min-problems in DistNPO, DistMaxNPO the class of all distr.
max-problems in DistNPO.

A robust definition of efficiency on average was given by Levin [21]. A distr.
problem (L,μ) is efficiently solvable on average if it is solvable in time t that is
polynomial on μ-average. A function t : Σ+ → Q is polynomial on μ-average, if
constants k, c > 0 exist s.t.

∑
x t1/k(x)|x|−1μ(x) ≤ c. We say that t is polynomial

on μ-average via constants k, c > 0 to indicate that these constants are used to
verify that t satisfies the definition above. Detailed discussions of the benefits of
this definition can be found in [16], [6], and [29].

Fact 2 (Gurevich [16]). 1. If functions f, g are polynomial on μ-average, then
max{f, g}, f×g, f+g, and f c for any constant c > 0 are polynomial on μ-average
as well.
2. If a function f is polynomial on ν-average and ν dominates a prob. distribution
μ, then f is polynomial on μ-average as well.

A distr. problem (L,μ) is in AvgP if L is decidable by a deterministic algorithm
whose running time is polynomial on μ-average. The result DistNP 	⊆ AvgP un-
less NE = E [6] links the question whether NP is easy on average to a proposition
about worst-case classes that is generally assumed not to hold.
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A distributional problem (L1,μ1) many-one reduces to (L2,μ2), ( (L1,μ1) ≤p
m

(L2,μ2) ), if a function f exists s.t. L1 ≤p
m L2 via f and μ2 dominates μ1 with

respect to f . AvgP is closed under this reduction, and DistNP contains complete
problems with respect to it [21].

Algorithm Schemes for distributional problems were first introduced in [17]
though they were already used in [25] under a different name.

A p-time algorithm scheme for a distributional problem (L,μ) is a determin-
istic algorithm A with input x ∈ Σ+, m ∈ N+ and the properties:

1. Prμ

[
A(x, m) 	= χL(x)

]
< 1/m for all m ∈ N+,

2. The running time tA is polynomial in |x| and m.

A distributional problem (L,μ) belongs to HP (heuristic p-time) if it has
a p-time algorithm scheme. In [23] it was shown that extending the notion of
p-time algorithm schemes to average p-time algorithm schemes does not increase
their computational power.

P-time algorithm schemes that return “?” instead of a wrong value for χL

characterise AvgP, which was shown in [17]. From this characterisation AvgP ⊆
HP follows immediately. The inclusion was shown to be strict in [23].

Schapire [25] introduced the class ApproxP, a restriction of HP to problems
with p-computable prob. functions. His proof that if DistNP ⊆ ApproxP, then
NE = E also shows that if DistNP ⊆ HP, then NE = E. He also shows that HP
is closed under many-one reduction.

Average-Case Approximation Classes: Extending the notions of average-
case complexity to distributional opt-problems yields the following definition of
average-case approximation classes. The parameter over which the average is
taken is denoted by the index.

Definition 1. Let (F,μ) be a distributional opt-problem, A an approximation
algorithm for F with ratio R and time that is polynomial on μ-average.
(F,μ) ∈ AvgPO if RA(x) = 1 for every x ∈ I.
(F,μ) ∈ Avgt -APX if a constant r > 1 exists s.t. RA(x) ≤ r for every x ∈ I.
(F,μ) ∈ Avgt -poly-APX if a polynomial p exists s.t. RA(x) ≤ p(|x|) for every
x ∈ I.
(F,μ) ∈ Avgt -exp-APX if a polynomial p exists s.t. RA(x) ≤ 2p(|x|) for every
x ∈ I.
(F,μ) ∈ Avgt -PTAS if an approx. algorithm A exists s.t. on input (x, r), x ∈ I,
r > 1, A returns an r-approximate solution for x in time tA, and for every r > 1
constants kr, cr > 0 exist s.t.

∑
x t

1/kr

A (x, r)|x|−1μ(x) ≤ cr.

A function f : Σ+ → Q+ is called constant on μ-average, if a constant r > 0
exists such that

∑
x∈Σ≥n f(x)μ(x) < r for all n > 0. We also say that f is

constant on μ-average via r. For a detailed discussion of this definition, see [26].
With this notion we can define average-ratio approximation classes.

Definition 2. Let (F,μ) be a distributional opt-problem, A an approximation
algorithm for F with performance ratio R and running time tA.
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(F,μ) ∈ Avgr -APX if R is constant on μ-average and tA is bounded by a poly-
nomial.
(F,μ) ∈ Avgr ,t -APX if R is constant on μ-average and tA is polynomial on
μ-average.
(F,μ) ∈ Avgr -poly-APX if R is polynomial on μ-average and tA is bounded by
a polynomial.
(F,μ) ∈ Avgr ,t -poly-APX if R and tA are polynomial on μ-average.

An average-ratio version of exp-APX is of little use, since the performance ratio
of any solution of an NP opt-problem is exponentially bounded.

3 Reductions and DistNPO-Completeness

In order to define DistNPO-completeness, we present an average-case approx-
imability preserving reduction, a distributional version of the AP-reduction.

Definition 3. Let (F1,μ1) and (F2,μ2) be distr. opt-problems. Then (F1,μ1)
AP-reduces to (F2,μ2),( (F1,μ1) ≤AP (F2,μ2) ), if functions f : Σ+× (1,∞) →
Σ+, g : Σ+ ×Σ∗ × (1,∞) → Σ∗ exist, computable in time polynomial in |x| for
every fixed r ∈ (1,∞), and a constant α ≥ 1 s.t.:

Reducibility: F1 AP-reduces to F2 via (f, g,α), and

Dominance: μ2 dominates μ1 wrt. f for every fixed value of r, i.e. for every
r > 1 a constant lr exists s.t. for every y ∈ range(f):

μ2(y) ≥ |y|−lr
∑

x∈IF1 .f(x,r)=y μ1(x).

An AP-reduction (f, g,α) is honest, if a constant cr > 0 exists for every r > 1
s.t. |f(x, r)| ≥ |x|cr for all x ∈ Σ+. The following lemma can be easily shown
by adapting standard techniques from average-case complexity and the theory
of approximability. The full proof can be found in [26].

Lemma 1. 1. Honest AP-reductions for distr. opt-problems are transitive.
2. Avgt-PTAS, Avgt-APX, Avgt-poly-APX, Avgt-exp-APX, Avgr-poly-APX

and Avgr,t-poly-APX are closed under AP-reduction.

Definition 4. Let C be a class of distr. opt-problems. A distr. opt-problem (F,μ)
is hard for C wrt. AP-reduction, if (F ′,μ′) ≤AP (F,μ) for all (F ′,μ′) ∈ C. It is
complete for C, if it is hard for C and (F,μ) ∈ C.

This section’s main contribution is that DistNPO has complete problems. This
is done by proving that distributional versions of the Universal Max-Problem
MaxU and the Universal Min-Problem MinU, see [19] and [10], are complete for
DistNPO. A standard prob. function on the inputs is used for both problems.

Definition 5 (Distr. Universal Max-Problem (MaxU,μMaxU)).

Input: (M, x, 1k); M an NTM with an output tape, x an input for M , k ∈ N+.
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Solution: Any sequence y ∈ {0, 1}∗ of nondeterministic choices of M that cor-
responds to a halting computation path of at most k steps.

Objective function: M(x, y), the value M computes on input x on path y.
Prob. function: μMaxU(M, x, 1k) = μΣ+(M) · μΣ+(x) · μN(k)

(MinU,μMinU) is the minimisation version of (MaxU,μMaxU) with μMinU =
μMaxU. Both MaxU and MinU are NPO-complete, see [10].

The DistNPO-completeness of (MaxU,μMaxU) and (MinU,μMinU) is shown
in two parts. First we show that (MaxU,μMaxU) is complete for DistMaxNPO
and (MinU,μMinU) is complete for DistMinNPO. Then (MaxU,μMaxU) is re-
duced to (MinU,μMinU) and vice versa, thus proving that (MaxU,μMaxU) is
hard for DistMinNPO and (MinU,μMinU) is hard for DistMaxNPO.

The main problem that arises in the first part is that any p-computable
prob. function has to be reduced to μMaxU and μMinU such that the dominance
requirement of the AP-reduction is satisfied. The same problem has to be solved
when proving completeness for DistNP. The key to solving this problem is an
efficiently computable encoding of words that reflects – with respect to a given
prob. function – the probability with which the encoded word is chosen. This
approach was first employed in [15]. Ben-David et al. subsumed the existence of
such an encoding function as well as its properties in a technical lemma, the Cod-
ing Lemma [6]. A modified version of this Lemma, the Distribution Controlling
Lemma, was used in [5].

Coding Lemma. Let μ be a p-computable prob. function such that the binary
representation of μ(x) has length polynomial in |x| for all x ∈ Σ+. Then a coding
function Cμ exists that satisfies the following conditions:

Compression: |Cμ(x)| ≤ 1 + min {|x|, log2 1/μ(x)} for all x ∈ Σ+.
Efficient Encoding: Cμ(x) is computable in time polynomial in |x|.
Unique Decoding: Cμ is one-to-one (i.e. Cμ(x) = Cμ(x′) implies x = x′).
Efficient Decoding: C−1

μ (w) = x is computable in time polynomial in |x| for
every w ∈ range(Cμ).

A function that has those properties is Cμ(x) = 0x if μ(x) ≤ 2−|x|, and
Cμ(x) = 1z otherwise, where z is the shortest binary string s.t. μ∗(x−) < 0.z1 ≤
μ∗(x). For the proof, see [6] and [4]. Fact 1 allows restricting the probability
functions in the Coding Lemma to probability functions with rational values.

The proofs are omitted due to space restrictions, but can be found in [26].

Theorem 1. (MaxU,μMaxU) is DistMaxNPO complete, and (MinU,μMinU) is
DistMinNPO complete.

Main Theorem 1. DistNPO has complete problems with respect to ≤AP.

4 Non-approximability in the Average Case

In this chapter we take a closer look at the inclusion structure of the average-case
approximation classes introduced in Definition 1 and 2.
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The inclusions AvgPO ⊆ Avgt-PTAS ⊆ Avgt-APX ⊆ Avgt-poly-APX ⊆
Avgt-exp-APX, and Avgr-APX ⊆ Avgr-poly-APX as well as Avgr,t-APX ⊆
Avgr,t-poly-APX follow immediately. Now we show that there are distr. opt-
problems that are not approximable within an exponential factor in average
p-time if DistNP 	⊆ AvgP, and that under that premise the inclusions for the
average-p-time approximation classes are strict. The inclusions Avgr-APX ⊆
Avgr-poly-APX and Avgr,t-APX ⊆ Avgr,t-poly-APX are strict if DistNP 	⊆ HP.
We can also construct distr. opt-problems that are not in Avgr-poly-APX and
Avgr,t-poly-APX under this premise.

4.1 Non-approximability Proofs for Distr. Optimisation Problems

To separate the average-case approximation classes, we use a technique similar
to the gap-technique from worst-case non-approximability proofs that was first
used by Garey and Johnson [13] to show that if P 	= NP, then Minimum Graph
Colouring is not approximable with ratio less than 2, see also [2]. This technique
requires reducing instances for an NP-complete problem L to instances for an
opt-problem F via a function f , such that the question whether x ∈ L or not
can be reduced to the question whether the optimal value of f(x) is greater or
smaller than a certain threshold that depends on x alone. The latter question
can then be decided with an appropriate approximation algorithm for F .

In the average-case setting we have to consider not only the opt-problems but
also their distributions. The differences of average p-time and average-ratio ap-
proximation algorithms and the respective premises require different adaptations
of the gap technique to capture the peculiarities.

Average-Polynomial Time: Since the basic concept of the gap-technique is
that of a reduction, we use the same ideas like for the definition of the AP-
reduction for distr. opt-problems, namely combining the notion of reducibility
with the notion of dominance of the distributions involved. See [26] for the proof.

Lemma 2. Let (L,μ) be complete for DistNP, L ⊆ Σ+ and (F, ν) a distr. min-
problem. Suppose p-time computable functions f : Σ+ → IF , c : Σ+ → N+ and
r : N+ → [1,∞) exist s.t.:
1. ν dominates μ with respect to f , and
2. for any x ∈ Σ+

x ∈ L⇒ optF (f(x)) = c(x)
x 	∈ L⇒ optF (f(x)) > r(|f(x)|)c(x).

Then no r-approximate algorithm that runs in time polynomial on ν-average can
exist for (F, ν) if DistNP 	⊆ AvgP.

A similar lemma holds for max-problems. It can be derived from Lemma 2 by
changing the requirement for the case x 	∈ L to optF (f(x)) < c(x)/r(|f(x)|).
Average Ratio: Linking non-approximability results for the average-ratio set-
ting to the premise DistNP 	⊆ AvgP does not seem to work as there is no general
way of telling whether a solution computed by an average-ratio approximation
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algorithm is good enough or not. But the property that a “good” solution is com-
puted with high probability relates nicely to the notion of algorithm schemes.

In contrast to the average-time setting, average-constant ratio and average-
polynomial ratio approximation classes differ in their robustness with respect
to dominance of the prob. functions involved. So we need different lemmas that
explain the general structure of non-approximability proofs for both classes.

The main difference to the gap technique for the average p-time case is that
here an additional parameter is needed for the function that transforms in-
stances for the DistNP-complete decision problem into instances for the distr.
opt-problem. To show non-approximability within a ratio that is constant on av-
erage, we need a more restrictive relationship between the prob. functions. This
restricted relation of the prob. functions as well as the influence of the additional
parameter is expressed by the next definition.

Definition 6. Let f : Σ+ × N+ → Σ+ be a function, μ, ν prob. functions on
Σ+. Then f transforms μ into ν for every m ∈ N+ if there is a constant l > 1
such that ν(y) = m−l

∑
x.f(x,m)=y μ(x) for all y ∈ range(f) and all m ∈ N+.

This definition is an adaptation of the notion that a function transforms μ into
ν to functions with an additional, non-random parameter. It ensures that if μ is
a prob. function, then ν is one as well, because

∑
y ν(y) =

∑
m m−l

∑
x μ(x) =∑

m m−l ≤ 1. We also say that f transforms μ into ν for every m ∈ N+ via l,
where l is the constant from the definition.

Lemma 3. Let (L,μ) be complete for DistNP, L ⊆ Σ+, and (F, ν) a distr. min-
problem. If p-time computable functions f : Σ+ × N+ → IF and c : Σ+ × N+ →
N+, and a constant r > 1 exist s.t.:
1. f transforms μ into ν for every constant m ∈ N+ via a constant l > 1, and
2. for every x ∈ Σ+ and m ∈ N+

x ∈ L⇒ optF (f(x, m)) = c(x, m),
x 	∈ L⇒ optF (f(x, m)) > rml+1c(x, m).

Then no p-time approximation algorithm with ratio that is constant on ν-average
via r and no approximation algorithm with ratio that is constant on ν-average via
r and running time that is polynomial on ν-average can exist if DistNP 	⊆ HP.

Proof. Suppose an approx. algorithm A for (F, ν) with ratio R that is constant
on ν-average via a constant r exists. Then E

[
RA(x)

]
=
∑

x RA(x)ν(x) < r.

Let A′ be an algorithm scheme that, on input (x, m), accepts if A
(
f(x, m)

)
≤

rml+1c(x, m). If A′ accepts, then x ∈ L, so A′ works correctly on those inputs.
If A′ rejects, either x 	∈ L or the result of A was too far away from the optimum.
So we can link the error probability of A′ to the probability that A computes a
“bad” solution. Applying the Markov Inequality then yields

Prμ

[
A′(x, m) 	= χL(x)

]
≤ ml Prν

[
RA(y) > rml+1] ≤ E

[
RA(y)

]
(rm)−1 < m−1.

The running time tA′ of A′ is tA′(x, m) = tc(x, m) + tf (x, m) + tA
(
f(x, m)

)
,

where tA is the running time of A, and tf and tc are the times needed to compute
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f(x, m) and c(x, m), which are bounded by polynomials in |x| and m. If tA is
bounded by a polynomial, then tA′ is polynomial in |x| and m. So A′ is a p-time
algorithm scheme for (L,μ), which contradicts the premise DistNP 	⊆ HP.

Else, if tA is polynomial on ν-average, it is easy to show that tA′ is polyno-
mial on μ-average in |x| and m by using standard techniques from average-case
complexity. With the result from [23] this yields a p-time algorithm scheme, a
contradiction to the premise. ��

Changing the requirements for x 	∈ L to optF

(
f(x)
)

< c(x, m)/(rml+1) yields
the respective lemma for max-problems. To apply this lemma, we essentially need
a reduction technique that allows us to create a constant gap for any constant.

To adapt the Lemma to the polynomial case, we can relax the dominance
requirement to the existence of constants l > 1, sm ≥ 0 such that ν(y) ≥
|y|−smm−l

∑
x.f(x,m)=y μ(x) for all y ∈ range(f), m ∈ N+. Set optF (f(x, m)) >

(rm|f(x, m)|sm+2)kc(x, m) for the bound on the optimum for the case x 	∈ L.
Here the variable error bound m affects the polynomial gap in two ways, so we
need a reduction that preserves the gap for every polynomial. For max-problems
optF

(
f(x)
)

< c(x, m)/
(
rm|f(x, m)|sm+1

)k has to hold for the case x 	∈ L so
that the lemma can be applied. The proof is similar to that of Lemma 3.

4.2 Application of the Non-approximability Proofs

One of the difficulties when applying the gap-technique for distr. opt-problems
is to find suitable DistNP-complete problems. Due to the difficulties described
in Section 3, the list of problems with natural input distributions known to be
complete for DistNP is rather short, see [30] for a compilation, and none of them
relate to opt-problems in a natural way.

It is not difficult to verify that for every NP-complete problem L a prob.
function ν exists s.t. (L, ν) is hard for DistNP: reduce a known DistNP-complete
problem (A,μ) to L via a reduction function f (such a function exists since L and
A are NP-complete), and define ν such that f transforms μ into ν. Since many-
one reduction functions are not necessarily one-to-one and monotone wrt. the
standard order on Σ+, we cannot guarantee that f transforms the p-computable
prob. function μ into a p-computable one. Using a padded version of an NP-
complete problem allows us to overcome this difficulty. This technique was first
used by Köbler and Schuler in [18].

Definition 7. Let pad(L) = {1|x|0xy10i |x ∈ {0, 1}∗, y ∈ L, i ∈ N} for L ⊆ Σ+.

Lemma 4. For every NP-complete problem L a p-computable prob. function ν
exists s.t. (pad(L), ν) is complete for DistNP.

See [26] for the proof. With this tool we can state our second main theorem.

Main Theorem 2.

1. AvgP � Avgt-PTAS � Avgt-APX � Avgt-poly-APX � Avgt-exp-APX if
DistNP 	⊆ AvgP.
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2. Avgr-APX � Avgr-poly-APX, Avgt-exp-APX 	⊆ Avgr-poly-APX,
Avgr,t-APX � Avgr,t-poly-APX and Avgt-exp-APX 	⊆ Avgr,t-poly-APX if
DistNP 	⊆ HP.

Proof. (Sketch) We take the same decision and opt-problems used to separate
worst-case approximation classes (see [2]). These are (with x ∈ {r, t, (r, t)}):
– Knapsack and MaxKnapsack to separate AvgPO and Avgt-PTAS,
– Partition and MinBinPacking to separate Avgt-PTAS and Avgt-APX,
– Any NP-complete problem L and MaxIndSet to separate Avgx-APX and
Avgx-poly-APX,
– HamiltonCircuit and MinTravellingSalesman to separate Avgx-poly-APX and
Avgt-exp-APX.

We construct DistNP complete versions of those problems by applying Lemma 4.
The DistNP complete problems reduce to the respective opt-problems in a gap
preserving way, inducing a prob. function on the instances of the opt-problem.
The opt-problems with those prob. functions form separating problems for the
respective classes. They are approximable within the bounds of the larger class
in the worst case, hence approximable withing the same bounds in the average
case wrt. any prob. function.

For the details of the gap-preserving reductions see [26]. ��

By applying the padding technique to those separating opt-problems, we can
ensure that they lie in DistNPO, which shows:

Corollary 1.
– Let C ∈ {AvgPO, Avgt-PTAS, Avgt-APX, Avgt-poly-APX, Avgt-exp-APX}.

If DistNPO ⊆ C, then DistNP ⊆ AvgP.
– Let C ∈ {Avgr-APX, Avgr-poly-APX} ∪ {Avgr,t-APX, Avgr,t-poly-APX}. If

DistNPO ⊆ C, then DistNP ⊆ HP.

By using a construction similar to the reduction in the proof of Theorem 1
(see [26]), we can reduce a DistNP-problem (L,μ) to (MaxU,μMaxU) such that
x ∈ L iff the instance of MaxU has at least one solution. This implies

Theorem 2. If DistNPO ⊆ Avgt-exp-APX, then DistNP ⊆ AvgP.

5 Average-Case Approximability

In contrast to the results of the previous section, we examine the average-case
equivalent of the worst-case relation P = NP iff PO = NPO here. If DistNP ⊆
AvgP, combining a result from [28] with a recent result from [7] shows that then
every DistNPO-problem is in Avgt-PTAS. The full proof is given in [26].

Theorem 3. If DistNP ⊆ AvgP then DistNPO ⊆ Avgt-PTAS.

Combining this theorem with Corollary 1 proves our third main result.

Main Theorem 3. DistNP ⊆ AvgP ⇔ DistNPO ⊆ Avgt-PTAS
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Abstract. The consequences of the worst-case assumption NP = P are
very well understood. On the other hand, we only know a few conse-
quences of the average-case assumption “NP is easy on average.” In this
paper we establish several new results on the worst-case complexity of
Arthur-Merlin games (the class AM) under the average-case complexity
assumption “NP is easy on average.”

We first consider a stronger notion of “NP is easy an average” namely
NP is easy on average with respect to distributions that are computable
by a polynomial size circuit family. Under this assumption we show:

- AM ⊆ NSUBEXP.

Under the assumption that NP is easy on average with respect to poly-
nomial-time computable distributions, we show:

- AME = E where AME is the exponential version of AM. This im-
proves an earlier known result that if NP is easy on average then NE
= E.

- For every c > 0, AM ⊆ [io-pseudoNTIME(nc)]−NP. Roughly this
means that for any language L in AM there is a language L′ in NP
so that it is computationally infeasible to distinguish L from L′.

We use results from several sub-areas of complexity theory, including
derandomization, for establishing our results.

1 Introduction

Can an average-case complexity collapse lead to the collapse of worst-case com-
plexity classes? We explore this question in the framework introduced by Levin
[Lev86].

In Levin’s framework, a distributional problem is a decision problem A with
a probability distribution on the instances of A. Such a distributional problem
� Research supported in part by NSF grant CCF-0430807.
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is in Average-P if there is a deterministic algorithm that solves A in polyno-
mial time on the average. DistNP is the set of pair (A,μ) where A ∈ NP
and μ is a polynomial-time computable distribution. The question analogous to
NP ?= P here is whether DistNP ⊆ Average-P (in words NP is easy on average).
Levin [Lev86] showed that there are distributional problems that are complete
for DistNP in the sense that NP is easy on average if and only if the complete
problem is solvable in Average-P. We refer the reader to [Gur91, Wan97] for
pointers to many nice results in this area.

Understanding relations between average-case complexity and worst-case
complexity is one of the most fundamental problems in complexity theory. In
general we would like to answer the following question: “If a class C is easy on
average, then what happens in the worst-case world?” This question has been
studied extensively for the class E under various notions of average-case complex-
ity. For example, it is now known that if E can be approximated by small circuits,
then E indeed has small circuits [BFNW91, IW97]. Some problems such as the
Permanent are shown to have a remarkable property—their worst-case complex-
ity is essentially the same as their average-case complexity [Lip91, GS92, FL92].
Such proofs are based on the random-self reducibility of the Permanent. Sim-
ilarly, random-self reducibility of PSPACE-complete problems can be used to
show that if PSPACE is easy on average, then PSPACE = P [KS04].

Consequences of the assumption “NP is easy on average” have also been
studied a lot. Ben-David, Chor, Goldreich, and Luby [BDCGL92] showed that
if NP is easy on average, then E = NE. Impagliazzo [Imp95] showed that if NP
is easy on average, then BPP = ZPP.

Köbler and Schuler [KS04] explored this connection further and showed that
the assumption derandomizes MA to NP. Later Arvind and Köbler [AK02]
showed in fact the assumption implies AM ∩ co-AM = NP ∩ co-NP. Buhrman,
Fortnow, and Pavan [BFP03] showed that if NP is easy on average, then pseu-
dorandom generators exist and BPP = P. They used this fact to show that a
witness of any NE machine can be computed in E time. But it is still open
whether the assumption that NP is easy on average implies derandomization of
AM to NP. In this paper we explore this possibility.

We first consider a stronger notion of NP being easy on average. We show
that if NP is easy on average with respect to distributions that are computable
by polynomial-size circuits, then AM can be derandomized to nondeterministic
subexponential time.

Under the assumption NP is easy with respect to polynomial-time com-
putable distributions, we show that AME = E where AME is the exponential
version of AM. This improves the earlier mentioned collapse result DistNP ⊆
Average-P ⇒ NE = E [BDCGL92]. In the polynomial-time range we show that
DistNP ⊆ Average-P implies AM is almost NP: for any language L ∈ AM there
is a language L′ in NP so that L and L′ are computationally indistinguishable
infinitely often.

We use results from several subareas of complexity theory including deran-
domization to prove our results.
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2 Preliminaries

We assume familiarity with definitions of standard complexity classes. Please
refer to [BDG88, Pap94] for definitions of standard complexity classes.

An Arthur-Merlin game is a combinatorial game, played by Arthur–a prob-
abilistic polynomial-time machine (with public coins), and Merlin–a computa-
tionally unbounded Turing machine.

Given a string x, Merlin tries to convince Arthur that x belongs to some
language L. The game consists of a finite number of moves. The moves alternate
between Arthur and Merlin. In each move Arthur (or Merlin) prints a finite
string on a read-write communication tape. Arthur’s moves can depend on his
random bits. In the end Arthur either accepts or rejects x.

Babai and Moran [Bab85, BM88] define a language L to be in AM as follows.
For every string x of length n, the game consists of a random move by Arthur
and a reply by Merlin. If x ∈ L, then the probability that there exists a move
by Merlin that leads to acceptance by Arthur is at least 3

4 ; on the other hand,
if x /∈ L, then the probability that there exists a move by Merlin that leads to
acceptance by Arthur is at most 1

4 .
AMTIME(l(n)) denotes the class of languages accepted by a 2-round Arthur-

Merlin interactive protocol with maximum message length l(n) by both Arthur
and Merlin. Let NLIN = NTIME(O(n)).

We need the exponential version of these complexity classes: E =
DTIME(2O(n)), EXP = DTIME(2nO(1)

), NEXP = DTIME(2nO(1)
), AME =

AM(2O(n)). For the nondeterministic case we will also need the sub-exponential
version NSUBEXP = ∩ε>0NTIME(2nε

).
Let Σ = {0, 1} and An = Σn ∩A. For any complexity class C, the class ioC is

the class of languages {A | ∃B ∈ C such that for infinitely many n, An = Bn}.

Lemma 1. For every k > 0, E 	⊆ ioDTIME(2kn).

2.1 Average-Case Complexity

We review some basic definitions from average-case complexity. We recommend
Wang’s survey [Wan97] for an excellent introduction to the area.

A distributional problem is a pair (A,μ) so that A ⊆ Σ∗ and μ is a probability
distribution on Σ∗. DistNP is the class of distributional problems (A,μ) so that
A ∈ NP and μ∗ is polynomial time computable where μ∗ denotes the distribution
function of μ. Recall that μ∗(x) =

∑
y≤x μ(y).

We need parameterized versions of the definitions of various notions in
average-case complexity. In particular we will need the parameterized subclass
of DistNP we call DistNLIN

Definition 1.

- DistNLIN = {(A,μ) | A ∈ NLIN and μ∗ is linear-time computable}, where
μ∗ denotes the distribution function of μ.
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- Let μ be a distribution on Σ∗. Then a function f : Σ∗ → N is said to be nk

on μ-average [Lev86] if ∑
x∈Σ∗

f1/k(x)μ(x)
|x| <∞.

- A distributional problem (A,μ) is in AvgTIME(nk) if there exists a deter-
ministic Turing machine M that accepts A so that the running time of M is
nk on μ-average. (A,μ) is in Average-P if there exists a k so that (A,μ) is
in AvgTIME(nk).

By “ NP is easy on average” we mean DistNP ⊆ Average-P. Thus if DistNP ⊆
Average-P, then for every language L in NP, and every polynomial-time com-
putable distribution μ, (L,μ) ∈ Average-P.

Remark 1. Instead of working with distributions on Σ∗, we can also consider
an ensemble of distributions μ = (μ1,μ2, · · · ), where μi is a distribution on
Σi. An ensemble is polynomial-time computable, if there is a polynomial-time
computable machine that on inputs i and x outputs μ∗

i (x). Impagliazzo [Imp95]
defined a notion of average polynomial-time with respect to an ensemble of
distributions. Though we state our results using distributions over Σ∗, all our
results carry over to the case of ensemble of distributions.

Levin [Lev86] introduced the notion of reductions between distributional
problems and defined DistNP-completeness. There are distributional problems
that are DistNP-complete in the sense that NP is easy on average if and only
if the complete problem is in Average-P. Proving distributional completeness is
much more challenging than proving usual NP-completeness since the reductions
must satisfy certain additional domination properties.

Definition 2. ([Lev86]) Let μ and ν be two distributions on Σ∗.

- We say that ν dominates μ within nk if for all x, μ(x) ≤ |x|kν(x).
- Let f : Σ∗ → Σ∗. Then we say that ν dominates μ within nk via f if there

is a distribution μ1 such that μ1 dominates μ within nk, and for all y in the
range of f ν(y) =

∑
y=f(x) μ1(x).

- (A,μ) reduces to (B, ν) if there is a polynomial time computable many-one
reduction f from A to B so that for some k, ν dominates μ within nk via f

Gurevich [Gur91] showed that the distributional halting problem (K,μK) is
complete for DistNP, where K = {〈i, x, 0n〉 | Ni accepts x in n steps }, and
μk(〈i, x, 0n〉) = 1

2|i||i|2
1

2|x||x|2
1

n2 . Here Ni denotes the ith nondeterministic Turing
machine in some fixed enumeration. We denote distributional halting problem
by DH in this paper.

The following statement is easy to prove.

Observation 1. If (L,U) ∈ AvgTIME(nk), then there is a deterministic Turing
machine M that decides L and for all but finitely many n, there exist at most
2n/n2 strings of length n, on which M takes more than n4k time. Here U is the
standard uniform distribution on Σ∗.
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Definition 3. Two languages L and L′ are ae-NTIME(nc)-distinguishable,
if there is a nc-time bounded nondeterministic machine N such that for all
but finitely many n, M(0n) outputs a string from LΔL′ along every accepting
path. We say L and L′ are io-NTIME(nc)-indistinguishable, if they are not ae-
NTIME(nc)-distinguishable.

Definition 4. We say AM ⊆ [io-pseudoNTIME(nc)]−NP, if for every language L
in AM there exists a language L′ in NP such that L and L′ are io-NTIME(nc)-
indistinguishable.

3 Arthur-Merlin Games

We show several results on the worst-case complexity of Arthur-Merlin games
under the assumption that NP is easy on average. First we consider a slightly
stronger notion of NP is easy on average and prove that under this assumption
AM ⊆ NSUBEXP.

Let DistNPP/poly denote the class of distributional problems (A,μ) so that
A ∈ NP and the distribution function μ∗ is computable by a polynomial-size cir-
cuit family. We show that if DistNPP/poly ⊆ Average-P, then AM ⊆ NSUBEXP.
We first show that the hypothesis implies E 	⊆ io(NP/poly). The result then
follows from the following result of Shaltiel and Umans [SU01].

Theorem 1 ([SU01]). If E 	⊆ io(NP/poly), then AM ⊆ NSUBEXP.

The chain of arguments that we use is as follows. If E ⊆ NP/poly and NP
is easy on average then E ⊆ Average-P/poly with respect to certain distribu-
tion (which is nonuniformly computable). Since there are random-self-reducible
complete problems for E, we will actually get E ⊆ P/poly. From [BFNW91]
we have that E ⊆ P/poly ⇒ E = MA. Since NP is easy on average we have
MA = NP [KS04] and NE = E [BDCGL92]. So we will finally get NE = NP
which is a contradiction to the nondeterministic time hierarchy theorem. We
now present a more formal argument.

We will need a non-uniform version of Average-P.

Definition 5. A distributional problem (L,μ) is in Average-P/poly, if there is
a Turing machine M and a polynomial-bounded function a : N → Σ∗, such that
x ∈ L⇔ M accepts 〈x, a(|x|)〉, and there exists a constant k > 0, such that

∑
x

T
1/k
M (〈x, a(|x|)〉)

|x| μ(x) < ∞.

where TM (y) denotes the running time of M on input y.

Note that the above definition requires the running time of M to be efficient
on average only on correct advice.

We need the following lemma regarding random-self-reducibility of E com-
plete problems.
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Lemma 2 ([BFNW91]). There exists a random-self-reducible complete lan-
guage L ∈ E so that if there is a polynomial-size circuit C such that

∀n, Pr
x

[C(x) = L(x)] ≥ 1− 1/n2,

then L ∈ P/poly.

We now prove the result we need to derandomize AM (actually we need an
i.o. version of the following theorem. But we state and prove a cleaner non-i.o.
version).

Theorem 2. If DistNPP/poly ⊆ Average-P then E 	⊆ NP/poly.

Proof. (sketch) Assume E ⊆ NP/poly. Let L be a complete language for E that
is random-self-reducible (provided by Lemma 2). Since L ∈ NP/poly, there is a
language L′ in NP and a polynomial-bounded advice function a : N → Σ∗, such
that

∀x, x ∈ L⇔ 〈x, a(|x|)〉 ∈ L′

Consider the following distribution μ

μ(〈x, y〉) =
{
U(x) if y = a(|x|)

0 otherwise

Here U is the uniform distribution on Σ∗, i.e., U(x) = 1
n2

1
2n , where n =

|x|. It is clear that μ is P/poly-computable. Since DistNPP/poly ⊆ Average-P,
(L′,μ) ∈ Average-P. Consider the following reduction from (L,U) to (L′,μ):
f(x) = 〈x, a(|x|)〉. It is clear that f is P/poly-computable and satisfies the
dominance condition. Thus (L,U) ∈ Average-P/poly.

Thus there is a Turing machine M and an advice function a : N → Σ∗, such
that x ∈ L⇔ M accepts 〈x, a(|x|)〉, and there exists a constant l, such that

∑
x

T
1/l
M (〈x, a(|x|)〉)

|x| μ(x) < ∞.

By Observation 1, there is a constant k, such that for every n, on at least
(1 − 1/n2) fraction of strings of the form 〈x, a(|x|)〉, M halts within nk steps,
and M accepts 〈x, a(|x|)〉 if and only if x ∈ L.

We now claim that this implies L ∈ P/poly. Define a new machine M ′ as
follows: M ′ on input 〈x, y〉 runs M on 〈x, y〉 for nk steps. If M does not halt
within nk steps, then M ′ rejects its input. If M halts within nk steps, then M ′

accepts 〈x, y〉 if and only if M accepts 〈x, y〉.
By converting M ′ into a circuit and hardwiring a(|x|) in it, we obtain a

polynomial-size circuit C such that

∀n, Pr[C(x) = L(x)] ≥ 1− 1/n2.

Since L is random-self-reducible, by Lemma 2, L ∈ P/poly. Since L is complete
for E, E ⊆ P/poly. By [BFNW91], if E ⊆ P/poly, then E ⊆ MA. If DistNP ⊆



428 A. Pavan and N.V. Vinodchandran

Average-P, then MA = NP [KS04] and also NE = E [BDCGL92]. Thus we have
NE = NP. A contradiction follows from the nondeterministic time hierarchy
theorem [Ž83].

Theorem 3. If DistNPP/poly ⊆ Average-P, then AM ⊆ NSUBEXP.

Proof. (Sketch) Essentially the same proof will show that if DistNPP/poly ⊆
Average-P then E 	⊆ io(NP/poly). To see this, if E 	⊆ io(NP/poly) then we will
get that E can be approximated by a polynomial size circuit on infinitely many
input lengths. As argued in [BFNW91] we then get that E ⊆ io(P/poly) ⊆ ioMA.
If DistNP ⊆ Average-P, then MA = NP [KS04], Thus we get E ⊆ ioNP.
Since a straightforward application of nondeterministic time hierarchy theorem
is not sufficient to separate NE from ioNP we need to argue slightly differently.
By [BDCGL92], if DistNP ⊆ Average-P, then E = NE. By a result of Impagli-
azzo, Kabanets, and Wigderson, if E = NE, then there is a fixed constant k such
that NTIME(2n) ⊆ DTIME(2kn). Thus we obtain E ⊆ ioNP ⊆ ioNTIME(2n) ⊆
ioDTIME(2kn). This contradicts Lemma 1.

Ben-David, Chor, Goldreich, and Luby [BDCGL92] showed that if DistNP ⊆
Average-P, then E = NE. Buhrman, Fortnow, and Pavan showed that in fact a
stronger conclusion follows, that is if DistNP ⊆ Average-P, then for every NE-
predicate R(x, y), there is an E machine M such that M(x) outputs a y such that
R(x, y) holds. Buhrman [Buh93] showed that if E = NE, and FSAT ∈ PFNP

tt ,
then witnesses of NE predicates can be computed in E-time. Here FSAT denotes
the problem of computing satisfying assignments of propositional formulas, and
PFNP

tt is the class of functions that can be computed by polynomial-time ma-
chines that can make nonadaptive queries to an NP-oracle. This raises the fol-
lowing question: “If DistNP ⊆ Average-P, is FSAT ∈ PFNP

tt ?”. We have a partial
answer.

Theorem 4. If DistNPP/poly ⊆ Average-P, then FSAT ∈ SUBEXPNP
tt .

Proof. By Theorem 3, the hypothesis implies that E 	⊆ io(NP/poly). Very re-
cently, Shaltiel and Umans [SU04] showed that E ⊆ NP/poly if and only if
E ⊆ PNP

tt /poly. Thus the hypothesis implies the existence of a language in E
that does not have PNP

tt -circuits. Klivans and van Melkebeek [KvM02] showed
that there exist pseudo-random generators with polynomial stretch that are se-
cure against PNP

tt -circuits. These pseudo-random generators can be used to de-
randomize BPPNP

tt to SUBEXPNP
tt . Since FSAT ∈ BPPNP

tt [VV85], we have the
conclusion.

Now we show that, under the assumption DistNP ⊆ Average-P, AME = E,
and AM ⊆ [io-pseudoNP]−NP. We also give an alternate proof of the result
that under the assumption AM ∩ co-AM = NP ∩ co-NP due to Arvind and
Köbler [AK02].

We use uniform derandomization results for AM and AM ∩ co-AM due to
Gutfreud, Shaltiel, and Ta-Shma [GSTS03], and the fact that pseudorandom
generators exist if NP is easy on average [BFP03] to prove our results.
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Theorem 5 ([GSTS03]). If E 	⊆ AMTIME(2βn) for some constant β then for
every c > 0, AM ⊆ [io-pseudoNTIME(nc)]−NP.

Theorem 6 ([BFP03]). If DistNP ⊆ Average-P then there is an algorithm
that on input 1n outputs a pseudorandom set for circuits of size n. The algorithm
runs in time nc for a fixed c.

Recall that a set S is a pseudorandom set for circuits of size s(n), if for every
circuit C of size s(n) if Prx∈Σn [C(x) = 1] is close to Prx∈S [C(x) = 1].

Our approach is as follows. Under the assumption DistNP ⊆ Average-P, we
show that AMTIME(2n) is a subset of DTIME(2kn) for a fixed k. The same
argument will also show that ioAMTIME(2n) ⊆ ioDTIME(2kn). Since for any
fixed k, E 	⊆ ioDTIME(2kn) we get that E 	⊆ ioAMTIME(2n) and therefore
AM ⊆ PseudoNTIME(nc)−NP from Theorem 5.

For showing that AMTIME(2n) ⊆ DTIME(2kn) for a fixed k, we first observe
a general result that if DistNP ⊆ Average-P then DistNLIN is in AvgTIME(nk)
for a fixed k. We use this result to first show that every tally language in
AMTIME(n) is in BPTIME(nk) for a fixed k. Finally we use the pseudoran-
dom generator from Theorem 6 to get BPTIME(nk) ⊆ DTIME(nl). A standard
padding gives the collapse in the exponential level.

We know that if NP = P then for any k there is an l so that NTIME(nk) ⊆
DTIME(nl). One way to see this is to observe that any problem in NTIME(T (n))
is T 2(n) time reducible to SAT and the result follows since under the assump-
tion SAT is in DTIME(nk′

) for a fixed k′. Such a theorem exists in the average-
case setting also. We use the completeness of the Distributional Halting prob-
lem [Gur91] to prove an analogous result in the average-case setting. An acces-
sible proof can be found in [Wan97].

Lemma 3 ([Lev86, Gur91]). Let (A,μ) and (B, ν) be two distributional prob-
lems and let f be a reduction from A to B so that:

- f is computable in time nl

- ν dominates μ within nr via f

Then if B ∈ AvgTIME(nk) then A ∈ AvgTIME(n2klr).

Lemma 4 ([Lev86, Gur91]). Every distributional problem (A,μ) ∈ DistNLIN
is reducible to the DistNP complete problem DH = (K,μK) via a reduction fA

so that:

- fA is computable in time n3

- μK dominates μ within n3 via fA

Using the above two lemmas we get the following theorem.

Theorem 7. If DistNP ⊆ Average-P then there exists a k so that DistNLIN ⊆
AvgTIME(nk).

Now we prove our main Lemma.
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Lemma 5. If DistNP ⊆ Average-P then there exists a k so that AMTIME(2n)
⊆ DTIME(2kn).

Proof. (sketch) We show that under the assumption any tally set in AMTIME(n)
is in DTIME(nl) for a fixed l. The Lemma follows from the fact that for any
language L ∈ AMTIME(2n), the tally version is in AMTIME(n).

Let L be a tally language in AMTIME(n). Then there is a language B ∈
NLIN so that

0n ∈ L⇒ Pry∈Σn [〈0n, y〉 ∈ B] = 1
0n 	∈ L⇒ Pry∈Σn [〈0n, y〉 ∈ B] < 1/4

Consider the linear-time computable distribution μ which on a string 〈0n, y〉 has
a probability of 1

n22|y| . The distributional problem (B,μ) is in DistNLIN and
hence is in AvgTIME(nk) for a fixed k. Let M be the deterministic machine
that witnesses this fact. Now consider a n4k time deterministic machine M ′ that
simulates M for n4k steps. An easy counting argument shows that for every n,
M ′ correctly decides B on at least 1−1/n2 fraction of strings of the form 〈0n, y〉.
From this it easily follows that L ∈ BPTIME(n4k).

By Theorem 6, if DistNP ⊆ Average-P, there is an nc time-bounded al-
gorithm that outputs a pseudorandom set for circuits of size n. Using this we
can derandomize BPTIME(n4k) to DTIME(n8k2c). Thus L is in DTIME(nl) for
l = 8k2c.

Our theorems follow from the above Lemma.

Theorem 8. If DistNP ⊆ Average-P, then AME = E.

Theorem 9. If DistNP ⊆ Average-P then, AM ⊆ [io-pseudoNP]−NP for every
c > 0.

Proof. Proof follows from Lemma 5 and Theorem 5.

Our approach gives a different proof of the following result due to Arvind
and Köbler [AK02].

Theorem 10 ([AK02]). If DistNP ⊆ Average-P, then AM ∩ co-AM = NP ∩
co-NP.

Proof. The same argument as in Lemma 5 shows that if DistNP ⊆ Average-P,
then ioAMTIME(2n) ⊆ ioDTIME(2kn) for a fixed k. By Lemma 1, E
	⊆ ioDTIME(2kn) for any fixed k. Therefore E 	⊆ ioAMTIME(2n). Gutfreud,
Shaltiel, and Ta-shma [GSTS03] showed that this implies AM ∩ co-AM = NP ∩
co-NP.
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[Ž83] S. Žák. A Turing machine time hierarchy. Theor. Computer Science,
26:327–333, 1983.

[Wan97] J. Wang. Average-case computational complexity theory. In L. Hemas-
paandra and A. Selman, editors, Complexity Theory Retrospective II,
pages 295–328. Springer-Verlag, 1997.



Reconstructing Many Partitions Using Spectral

Techniques�

Joachim Giesen and Dieter Mitsche

Institute for Theoretical Computer Science,
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Abstract. A partitioning of a set of n items is a grouping of these items
into k disjoint, equally sized classes. Any partition can be modeled as a
graph. The items become the vertices of the graph and two vertices are
connected by an edge if and only if the associated items belong to the
same class. In a planted partition model a graph that models a partition
is given, which is obscured by random noise, i.e., edges within a class
can get removed and edges between classes can get inserted. The task
is to reconstruct the planted partition from this graph. In the model
that we study the number k of classes controls the difficulty of the task.
We design a spectral partitioning algorithm that asymptotically almost
surely reconstructs up to k = c

√
n partitions, where c is a small constant,

in time Ck poly(n), where C is another constant.

1 Introduction

The partition reconstruction problem, which we study in this paper, is related
to the k-partition problem. In the latter problem the task is to partition the ver-
tices of a given graph into k equally sized classes such that the number of edges
between the classes is minimized. This problem is already NP-hard for k = 2,
i.e.1, in the graph bisection case [6]. Thus researchers, see for example [4,2] and
the references therein, started to analyze the problem in specialized but from
an application point of view (e.g., parallel scheduling or mesh partitioning) still
meaningful, graph families - especially families of random graphs. The random
graph families typically assume a given partition of the vertices of the graph
(planted partition), which is obscured by random noise. The families are param-
eterized by a set of parameters, e.g., the number of vertices n and classes k. The
goal now becomes to assess the ability of a partitioning algorithm to reconstruct
the planted classes. The most prominent such measure is the probability that
the algorithm can reconstruct the planted partition.

The best studied random graph family for the partition reconstruction prob-
lem is the following: an edge in the graph appears with probability p if its two
incident vertices belong to the same planted class and with probability q < p
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otherwise, independently from all other edges. In general the probabilities p and
q can depend on the number n of vertices in the graph and on the number k of
classes of the planted partition.

Related Work. The partitioning problem in the planted partition model that
we have described above gets more difficult if the difference p − q gets small
and/or k gets large. If we assume that p and q are fixed the only parameter
left to control the difficulty of the problem is k. The algorithm of Shamir and
Tsur [11] which builds on ideas of Condon and Karp [4] can with high proba-
bility reconstruct correctly up to k = O(

√
n/ logn) planted classes. The same

guarantees can be given for an algorithm due to McSherry [9]. Both algorithms
are polynomial in time and even allow the classes to differ in size (only a lower
bound on the size of the classes is needed), i.e., they deal with the more general
planted clustering problem.

The algorithm of McSherry falls in the category of spectral clustering al-
gorithms. The use of spectral methods for clustering has become increasingly
popular in recent years. The vast majority of the literature points out the ex-
perimental success of spectral methods, see for example the review by Meila et
al. [10]. On the theoretical side much less is known about the reasons why spec-
tral algorithms perform well. In 1987 Boppana [3] presented a spectral algorithm
for recovering the optimal bisection of a graph. Much later Alon et al. [1] showed
how the entries in the second eigenvector of the adjacency matrix of a graph can
be used to find a hidden clique of size Ω(

√
n) in a random graph. Spielman and

Teng [12] showed how bounded degree planar graphs and d-dimensional meshes
can be partitioned using the signs of the entries in the second eigenvector of the
adjacency matrix of the graph or mesh, respectively.

In [7] we designed an efficient (polynomial in n) spectral algorithm. We can-
not prove that this algorithm with high probability reconstructs the planted
partition, but we can prove that for this algorithm the relative number of mis-
classifications (with a suited definition of misclassification) for k = o(

√
n) goes

to zero with high probability when n goes to infinity.

Our Result. We design a spectral algorithm that runs in time Ck/2 poly(n),
for some constant C. We prove that this algorithm asymptotically almost surely
reconstructs a planted partition for k ≤ c

√
n, where c is another sufficiently

small constant.

2 Planted Partitions

In this section we introduce the planted partition reconstruction problem. We
first define the A(ϕ, p, q) distribution, see also McSherry [9].

A(ϕ, p, q) Distribution. Given a surjective function ϕ : {1, . . . , n} → {1, . . . , k}
and probabilities p, q ∈ (0, 1) with p > q. The A(ϕ, p, q) distribution is a distri-
bution on the set of n×n symmetric, 0-1 matrices with zero trace. Let Â = (âij)
be a matrix drawn from this distribution. It is âij = 0 if i = j and for i 	= j,
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P (âij = 1) = p if ϕ(i) = ϕ(j)
P (âij = 0) = 1− p if ϕ(i) = ϕ(j)
P (âij = 1) = q if ϕ(i) 	= ϕ(j)
P (âij = 0) = 1− q if ϕ(i) 	= ϕ(j),

independently. The matrix of expectations A = (aij) corresponding to the
A(ϕ, p, q) distribution is given as

aij = 0 if i = j
aij = p if ϕ(i) = ϕ(j) and i 	= j
aij = q if ϕ(i) 	= ϕ(j)

Lemma 1 (Füredi and Komlós [5], Krivelevich and Vu [8]). Let Â be a
matrix drawn from the A(ϕ, p, q) distribution and A be the matrix of expectations
corresponding to this distribution. Let c′ = min{p(1 − p), q(1 − q)} and assume
that c′2 7 (logn)6/n. Then

|A− Â| ≤
√
n

with probability at least 1−2e−c′2n/8. Here | · | denotes the L2 matrix norm, i.e.,
|B| = max|x|=1 |Bx|. ��

Planted Partition Reconstruction Problem. Given a matrix Â drawn from
from the A(ϕ, p, q) distribution. Assume that all classes Cl =ϕ−1(l), l∈{1, . . . , k}
have the same size n/k. Then the function ϕ is called a partition function.
The planted partition reconstruction problem asks to reconstruct ϕ up to a
permutation of {1, . . . , k} only from Â (up to permutations of of {1, . . . , k}).

3 Spectral Properties

Any real symmetric n × n matrix has n real eigenvalues and Rn has a corre-
sponding eigenbasis. Here we are concerned with two types of real symmetric
matrices. First, any matrix Â drawn from an A(ϕ, p, q) distribution. Second, the
matrix A of expectations corresponding to the distribution A(ϕ, p, q).

We want to denote the eigenvalues of Â by λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂n and the
vectors of a corresponding orthonormal eigenbasis of Rn by v1, . . . , vn, i.e., it
is Âvi = λ̂ivi, vT

i vj = 0 if i 	= j and vT
i vi = 1, and the v1, . . . , vn span the

whole Rn.
For the sake of analysis we want to assume here without loss of generality that

the matrix A of expectations has a block diagonal structure, i.e., the elements in
the i-th class have indices from n

k (i−1)+1 to n
k i in {1, . . . , n}. It is easy to verify

that the eigenvalues λ1 ≥ . . . ≥ λn of A are (n
k −1)p+(n− n

k )q, n
k (p−q)−p and

−p with corresponding multiplicities 1, k− 1 and n− k, respectively. A possible
orthonormal basis of the eigenspace corresponding to the k largest eigenvalues
of A is ui, i = 1, . . . , k, whose j-th coordinates are given as follows,
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uij =

{√
k
n , j ∈ {n

k (i− 1) + 1, . . . , n
k i}

0, else.

Spectral Separation. The spectral separation δk(A) of the eigenspace of the
matrix A of expectations corresponding to its k largest eigenvalues from its
complement is defined as the absolute difference between the k-th and the (k+1)-
th eigenvalue, i.e., it is δk(A) = n

k (p− q).

Projection Matrix. The matrix P̂ that projects any vector in Rn to the
eigenspace corresponding to the k largest eigenvalues of a matrix Â drawn from
the distribution A(ϕ, p, q), i.e., the projection onto the space spanned by the
vectors v1, . . . , vk, is given as

P̂ =
k∑

i=1

viv
T
i .

The matrix P that projects any vector in Rn to the eigenspace corresponding to
the k largest eigenvalues of the matrix A of expectations can be characterized
even more explicitly. Its entries are given as

pij =
{

k
n , ϕ(i) = ϕ(j)
0, ϕ(i) 	= ϕ(j)

Lemma 2. All the k largest eigenvalues of Â are larger than
√
n and all the

n − k smallest eigenvalues of Â are smaller than
√
n with probability at least

1− 2e−c′2n/8 provided that n is sufficiently large and k < p−q
4
√
n.

Proof. Will appear in the full version of the paper. ��

Theorem 1 (Stewart [13]). Let P̂ and P be the projection matrices as defined
above. It holds

|P − P̂ | ≤ 2|A− Â|
δk(A)− 2|A− Â|

if δk(A) > 4|A− Â| where | · | is the L2 matrix norm.

4 A Spectral Algorithm

Now we have all prerequisites at hand that we need to describe our spectral al-
gorithm to solve the planted partition reconstruction problem. We assume that
the input to the algorithm is a 4n × 4n matrix Â drawn from the A(ϕ, p, q),
where ϕ is a surjective function from {1, . . . , 4n} → {1, . . . , k}.

GridReconstruct(Â)
1 k′ := number of eigenvalues λ̂i of Â that are larger than 2

√
n.

2 α := c0/
√
k.
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3 Randomly partition {1, . . . , 4n} into four subsets I11, I12, I21 and I22
of equal size.

4 for i, j = 1, 2 do
5 Âij := restriction of Â to index set Iij .
6 end for

In the first six lines of the algorithm we do some pre-processing. We compute
the eigenvalues of Â and use them in line 1 to estimate the number of planted
partitions. According to Lemma 2 our estimate k′ is with high probability the
correct number k of planted partitions. Thus we will in the following always use
k instead of k′. In line 2 we use the value of k to set the value α, which is an
essential parameter of the algorithm; c0 is a small constant > 0.

In line 3 we randomly partition the set {1, . . . , 4n} into four equally sized
subsets. One way to compute such a random partition is to compute a random
permutation π of {1, . . . , 4n} and assign

I11 = {π(1), . . . ,π(n)}, I12 = {π(n+ 1), . . . ,π(2n)},
I21 = {π(2n+ 1), . . . ,π(3n)}, I22 = {π(3n+ 1), . . . ,π(4n)}.

For the sake of the analysis we will use a slightly different method: we first put
every vertex into one of the four parts with equal probability 1

4 (independently
from all other vertices) and later redistribute randomly chosen elements to make
the partition sizes equal. In Lemma 4 below we formalize this.

The only reason to partition {1, . . . , 4n} into four sets is for the sake of
analysis where we need independence at some point. The main idea behind our
algorithm needs only a partitioning into two sets.

In lines 4 to 6 we compute the restrictions of the matrix Â to the index sets
Iij . Note that the Âij are n× n matrices.

The following lines 7 to 30 make up the main part of the algorithm.

7 for i, j = 1, 2 do
8 l := 1
9 {v1, . . . , vk} := orthonormal eigenbasis of the eigenspace (⊂ Rn) of

Âij that corresponds to the k largest eigenvalues.
10 for all (λ1, . . . ,λk) ∈ (αZ)k with

∑k
s=1 λ2

s ≤ 1 do
11 Ĉij

l := ∅
12 v :=

∑k
s=1 λsvs /

∣∣∣∑k
s=1 λsvs

∣∣∣
13 I := subset of the index set Iij that corresponds to the

n/k largest coordinates of v (break ties arbitrarily).
14 for all t ∈ Ii(j mod2+1) do
15 if

∑
s∈I âst ≥ t(n, k, λ̂1, λ̂2) do

16 Ĉij
l := Ĉij

l ∪ {t}
17 end if
18 end for
19 if |Ĉij

l | ≤ 3
4

(
1 + 3(kn−3/4)1/3

)
n
k do
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20 l := l− 1
21 else
22 for 1 ≤ l′ < l do
23 if Ĉij

l ∩ Ĉ
ij
l′ 	= ∅ do

24 Ĉij
l′ := Ĉij

l′ ∪ Ĉ
ij
l ; l := l− 1; break

25 end if
26 end for
27 end if
28 end for
29 l := l + 1
30 end for

The idea in the main part of the algorithm is to sample the unit sphere of
the eigenspace of a matrix Âij on a grid with grid spacing α. Every vector in
this sample is used to form a class Ĉij

l of indices in Ii(j mod2+1). That is, for the
algorithm we pair the index sets I11 with I12 and I21 with I22. Thus the sampled
eigenvectors of the matrix Aij , which corresponds to the index set Iij , are used
to reconstruct the classes in the partner index set Ii(j mod2+1). The unit sphere is
sampled in line 12 and elements are taken into class Ĉij

l in lines 15 to 17 using a
threshold test. Note that the threshold value t(n, k, λ̂1, λ̂2) is a function of values
that all can be computed from Â.

This way we would form too many classes and elements that belong to one
class would be scattered over several classes in the reconstruction. To prevent
this we reject a class Ĉij

l in lines 19 to 21 if it does contain too few elements.
We know that the correct reconstruction has to contain roughly n/k elements.
In lines 22 to 26 we check if the set Ĉij

l is a (partial) reconstruction that already
has been partially reconstructed. If this is the case then there should exist Ĉij

l′

with l′ < l such that Ĉij
l ∩ Ĉ

ij
l′ 	= ∅. We combine the partial reconstructions in

line 24 and store the result in the set Ĉij
l′ . With the break statement in line 24

we leave the for-loop enclosed by lines 22 and 26.
In lines 31 to 49 we post-process the reconstructions that we got in the main

part of the algorithm.

31 for all l ∈ {1, . . . , k} do
32 Ĉl := Ĉ11

l

33 for all l1 ∈ {1, . . . , k} do
34 if

∑
i∈Ĉ11

l

∑
j∈Ĉ21

l1
âij > s(n, k, λ̂1, λ̂2) do

35 Ĉl := Ĉl ∪ Ĉ21
l1

36 for all l2 ∈ {1, . . . , k} do
37 if

∑
i∈C21

l1

∑
j∈Ĉ12

l2
âij > s(n, k, λ̂1, λ̂2) do

38 Ĉl := Ĉl ∪ Ĉ12
l2

39 for all l3 ∈ {1, . . . , k} do
40 if

∑
i∈C12

l2

∑
j∈Ĉ22

l3
âij > s(n, k, λ̂1, λ̂2) do



Reconstructing Many Partitions Using Spectral Techniques 439

41 Ĉl := Ĉl ∪ Ĉ22
l3

42 end if
43 end for
44 end if
45 end for
46 end if
47 end for
48 end for
49 return all Ĉl

After the main part of the algorithm the reconstruction of a class Cl is
distributed into four sets corresponding to the four index sets Iij . The purpose
of the post-processing is to unite these four parts. This is again done using
thresholding with threshold value s(n, k, λ̂1, λ̂2), which again can be computed
from Â. In line 49 we finally return the computed reconstructions.

5 Running Time Analysis

The running time of the algorithm GridReconstruct is essentially bounded
by the number of points (λ1, . . . ,λk) ∈ (αZ)k with

∑k
s=1 λ2

s ≤ 1.

Lemma 3. The number of points (λ1, . . . ,λk) ∈ (αZ)k with
∑k

s=1 λ2
s ≤ 1 is

asymptotically bounded by 1√
πk

(
π2e
c2
0

)k/2
.

Proof. We want to bound the number of points (λ1, . . . ,λk) ∈ (αZ)k that are
contained in the k-dimensional ball centered at the origin with radius 1. This
number is asymptotically the number of such points in the cube [−1, 1]k times
the volume of the k-dimensional unit ball divided by the volume of the cube,
which is 2k. The volume of the k-dimensional unit ball is πk/2

k/2 Γ (k/2) and the
number of points (λ1, . . . ,λk) ∈ (αZ)k that are contained in [−1, 1]k is (2/α)k.
Plugging in α = c0/

√
k and using Stirling’s formula (Γ (x) ∼

√
2πe−xxx−1/2)

asymptotically gives for the number of points in the unit sphere

πk/2

k/2 Γ (k/2) 2k

2kkk/2

ck0
=

(kπ)k/2

k/2 Γ (k/2) ck0
∼ 1√

2π

(2πek)k/2√
k/2 (kc20)k/2

=
1√
πk

(
2πe

c20

)k/2

. ��

Remark 1. The time needed for the pre-processing in the algorithm is polynomi-
ally bounded in n. The same holds for the post-processing. The time we have to
spend on the main part is polynomial in n for every point in the intersection of
(αZ)k with the k-dimensional unit sphere. That is, the running time of the whole

algorithm is asymptotically bounded by 1√
πk

(
2πe
c2
0

)k/2
poly(n) = Ck/2 poly(n),

for some constant C > 0.
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6 Correctness Proof

Lemma 4. Let l ∈ {1, . . . , k}. The size of Cij
l = Cl ∩ Iij is contained in the

interval [(
1− 3(kn−3/4)1/3

) n
k
,
(
1 + 3(kn−3/4)1/3

) n
k

]
with probability at least 1− e−c′′n1/4

for some c′′ > 0.

Proof. Will appear in the full version of the paper. ��

In the following Aij and Âij always refer to the restrictions of the matrices
A and Â, respectively, to the index set Iij . Also Cij

l is the restriction of Cl to
Iij .

Lemma 5. The spectral separation δk(Aij) is at least(
1− 3(kn−3/4)1/3

) n
k

(p− q)

with probability at least 1− ke−c′′n1/4
.

Proof. Will appear in the full version of the paper. ��

Lemma 6. For every unit vector v ∈ Rn with Pijv = v the angle θ between v

and P̂ijv is bounded by

θ < arccos
(√

1− ε
)
, and ε =

2
√
n(

1− 3(kn−3/4)1/3
)

n
k (p− q)− 2

√
n
.

with probability at least (1− 2e−c′2n/8)
(
1− ke−c′′n1/4

)
.

Proof. With probability at least (1− 2e−c′2n/8)
(
1− ke−c′′n1/4

)
we have |(Pij −

P̂ij)v|2 < ε by Stewart’s theorem, the theorem of Füredi and Komlós and
Lemma 5. It follows ε > 1 + |P̂ijv|2 − 2vT P̂ijv = 1 + |P̂ijv|2 − 2|P̂ijv| cos θ,

which in turn gives cos θ >
1+|P̂ijv|2−ε

2|P̂ijv| . As a function of |P̂ijv| the cosine of θ is

minimized at |P̂ijv| =
√

1− ε. Thus we have cos θ >
√

1− ε, which gives that
the stated bound on θ holds with the stated probability. ��

Lemma 7. For every vector w in the image of the projector P̂ij there is a vector
v computed in line 12 of the algorithm GridReconstruct such that the angle
θ between w and v is bounded by θ < arccos

(
1− α

√
k/2
)
.

Proof. Will appear in the full version of the paper. ��
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Lemma 8. For any l ∈ {1, . . . , k} there is a vector v computed in line 12
of the algorithm GridReconstruct such that with probability at least (1 −
2e−c′2n/8)

(
1− ke−c′′n1/4

)
at least(

1− 4(1− cosβ)
(
1 + 3(kn−3/4)1/3

)) n
k

with β = arccos
(
1− α

√
k/2
)

+ arccos
(√

1− ε
)

and ε as in lemma 6, of the
indices corresponding to the n/k largest entries in v are mapped to l by ϕ.

Proof. Let cl ∈ Rn be the normalized characteristic vector of the class Cij
l . By

construction it holds Pijcl = cl. Thus the angle between cl and P̂ijcl is bounded

by arccos(
√

1− ε) with probability at least (1 − 2e−c′2n/8)
(
1− ke−c′′n1/4

)
by

Lemma 6. For the vector P̂ijcl there exists by Lemma 7 a vector as constructed
in line 12 of the algorithm such that the angle between P̂ijcl and v is bounded

by arccos
(
1− α

√
k/2
)
. Using the triangle inequality for angles we thus get

cTl v ≥ cos
(
arccos

(
1− α

√
k/2
)

+ arccos
(√

1− ε
))

= cosβ.

Since cl and v are both unit vectors we can get an upper bound on the length of
|cl−v| from the lower bound on the dot product cTl v. First we decompose v into
the projection of v onto cl and the orthogonal complement v⊥ of this projection.
Since v is a unit vector we have 1 = (cTl v)

2 + |v⊥|2. Thus |v⊥|2 is upperbounded
by 1− (cosβ)2. Also, |(cTl v)cl − cl|2 is upper bounded by (1− cosβ)2 since cl is
a unit vector. Combining the two inequalities we get

|v − cl|2 = |v⊥|2 + |(cTl v)cl − cl|2 ≤ 1− (cosβ)2 + (1 − cosβ)2 = 2(1− cosβ).

Let x = |Cij
l | be the size of Cij

l and let y be the number of indices whose
corresponding entries in the v are among the x largest, but that are not mapped
to l by ϕ. The number y is maximized under the upper bound on |v− cl|2 if the
entries that are ”large” in cl but are ”small” in v have a value just smaller than
1
2

√
1/x in v and if the entries whose value is 0 in cl, but ”large” in v, have a value

just larger than 1
2

√
1/x in v and if all other entries coincide. For such a vector

v it follows |v − cl|2 = y
2x , which implies y ≤ 4x(1 − cosβ). Since by Lemma 4

it holds x ≤
(
1 + 3(kn−3/4)1/3

)
n
k with probability at least 1− e−c′′n1/4

we have
y ≤ 4(1 − cosβ)

(
1 + 3(kn−3/4)1/3

)
n
k with probability at least 1 − ke−c′′n1/4

(taking a union bound). This is also an upper bound on the number of indices
whose corresponding entries in the vector v are among the n/k largest, but that
are not mapped to l by ϕ. ��

Remark 2. If k ≤ c
√
n and α = c0/

√
n with sufficiently small constants c and

c0 = c0(c) then for large enough n(
1− 4(1− cosβ)

(
1 + 3(kn−3/4)1/3

))
≥ 3

4
.
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That is, asymptotically almost surely at least 3/4 of the indices corresponding
to the n/k largest entries in v are mapped to l by ϕ.

Lemma 9. Let vij be a unit vector constructed in round (i, j) in line 12 of the
algorithm GridReconstruct. Let I be subset of the index set Iij that corre-
sponds to the n/k largest entries in v.

If at least νn/k of the indices in I are mapped to the same element l ∈
{1, . . . , k} by ϕ then for t ∈ Ci(j mod2+1)

l it holds∑
s∈I

âst ≥ (νp + (1− ν)q)
n

k
(1− δ)

with probability at least e−
δ2
2 (νp+(1−ν)q) n

k . And if at most μn/k of the indices in
I are mapped to the same element l ∈ {1, . . . , k} by ϕ then for t ∈ Ci(j mod2+1)

l

it holds ∑
s∈I

âst ≤ (μp + (1− μ)q)
n

k
(1 + δ)

with probability at least e−
qδ2
4

n
k .

Proof. Will appear in the full version of the paper. ��

Remark 3. If we choose ν = 3/4 and μ = 2/3 and let δ < (ν−μ)(p+q)
(ν+μ)(p−q)+2q then

(νp + (1− ν)q)
n

k
(1− δ) > (μp + (1− μ)q)

n

k
(1 + δ)

asymptotically almost surely. That is, if we choose the threshold in line 15 of
the algorithm GridReconstruct in the interior of the interval[

μp + (1− μ)q)
n

k
(1 + δ), (νp + (1− ν)q)

n

k
(1− δ)

]
then with high probability the test in line 15 is only passed for vectors v (as con-
structed in line 12 of the algorithm) that have at least 2

3
n
k indices corresponding

to the n/k largest entries in v that are mapped to the same element by ϕ. As-
sume this element is l ∈ {1, . . . , k}. The elements that pass the test (and are
subsequently put into a class) are all mapped to l by ϕ. The only problem is that
it is possible that for some vector v only some of the elements that are mapped
to l by ϕ and that take the test also pass it. But from Remark 2 we know that for
every l ∈ {1, . . . , k} there is a vector v such that with high probability (taking
a union bound) all elements that are mapped to l by ϕ and that take the test
also pass it. That is the reason for the post-processing in lines 19 to 28 of the
algorithm. It remains to show how a good threshold value can be found. Only
obstacle to that is that we do not know the values of p and q when running the
algorithm.
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Lemma 10. With probability at least 1− 2e−c′2n/8,

q ≤ k

k − 1
λ̂1

n
+

k

k − 1
1√
n

=: q+ and q ≥ k

k − 1
λ̂1

n
− k

k − 1

(
1√
n

+
1
k

)
:= q−.

and with the same probability

p ≤
kλ̂2 + k

k−1 λ̂1

n− k +
k
√
n

(n− k)(k − 1)
+

k
√
n

n− k := p+ and

p ≥
kλ̂2 + k

k−1 λ̂1

n− k − k
√
n

(n− k)(k − 1)
− n

(n− k)(k − 1)
− k

√
n

n− k := p−.

Proof. Will appear in the full version of the paper. ��

Remark 4. With high probability we can approximate q arbitrarily well by
k

k−1
λ̂1
n for growing n if k ∈ ω(1). That is not the case for p. If k = c

√
n then

we can approximate p asymptotically by
kλ̂2+ k

k−1 λ̂1

n−k only up to a constant that
depends on c. But for sufficiently small c if we choose

δ <

( 3
4p− + 1

4q
−)− ( 23p+ + 1

3q
+
)( 3

4p− + 1
4q

−
)

+
( 2

3p+ + 1
3q

+
) ,

which is positive for sufficiently large n, the algorithm GridReconstruct
asymptotically almost surely reconstructs for k ≤ c

√
n (and k ∈ ω(1)) all the

classes Cij
l for all l ∈ {1, . . . , l} (up to a permutation of {1, . . . , k}) if we choose

the threshold t(n, k, λ̂1, λ̂2) =
( 2

3p+ + 1
3q

+
)

n
k (1 + δ) in line 15 of the algorithm.

Lemma 11. Let δ > 0 be a constant. It holds asymptotically almost surely

∑
i∈Ĉ11

l

∑
j∈Ĉ21

l′

âij ≥
(
1− 3(kn−3/4)1/3

)2 n2

k2 (1− δ)p

if ϕ(l) = ϕ(l′), and it holds asymptotically almost surely

∑
i∈Ĉ11

l

∑̂
j∈Ĉ21

l′
≤
(
1 + 3(kn−3/4)1/3

)2 n2

k2 (1 + δ)q

if ϕ(l) 	= ϕ(l′).

Proof. Will appear in the full version of the paper. ��

Remark 5. Analogous results hold for the index sets Ĉ11
l and Ĉ22

l′ with l, l′ ∈
{1, . . . , k} and for the index sets Ĉ12

l and Ĉ21
l′ with l, l′ ∈ {1, . . . , k}.
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Remark 6. If δ < (p− q)/(p + q) and n sufficiently large then(
1− 3(kn−3/4)1/3

)2 n2

k2 (1 − δ)p >
(
1 + 3(kn−3/4)1/3

)2 n2

k2 (1 + δ)q.

Again in order to use this result to derive a computable threshold value we
have to approximate the unknown probabilities p and q by p± and q±, which
are functions of the known (or almost surely known) quantities n, k, λ̂1 and
λ̂2 (see Lemma 10). If we choose δ < (p− − q+)/(p+ + q+) and the threshold
s(n, k, λ̂1, λ̂2) =

(
1 + 3(kn−3/4)1/3

)2 n2

k2 (1 + δ)q+ then the algorithm
GridReconstruct asymptotically almost surely finds the correct reconstruc-
tion of the planted partition (up to a permutation of {1, . . . , k}).

References

1. N. Alon, M. Krivelevich, and B. Sudakov. Finding a large hidden clique in a
random graph. Random Structures and Algorithms, 13:457–466, 1998.

2. B. Bollobas and A.D. Scott. Max cut for random graphs with a planted partition.
Combinatorics, Probability and Computing, 13:451–474, 2004.

3. R. B. Boppana. Eigenvalues and graph bisection: An average-case analysis. Pro-
ceedings of 28th IEEE Symposium on Foundations on Computer Science, pages
280–285, 1987.

4. A. Condon and R. Karp. Algorithms for graph partitioning on the planted partition
model. Random Structures and Algorithms 8, 2:116–140, 1999.
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Constant Time Generation of Linear Extensions
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Abstract. Given a poset P , several algorithms have been proposed for
generating all linear extensions of P . The fastest known algorithm gen-
erates each linear extension in constant time “on average”. In this paper
we give a simple algorithm which generates each linear extension in con-
stant time “in worst case”. The known algorithm generates each linear
extension exactly twice and output one of them, while our algorithm
generates each linear extension exactly once.

1 Introduction

A linear extension of a given poset P is one of the most important notion asso-
ciated with P . An example of a poset is shown in Fig. 1, and its linear extension
is shown in Fig. 2. Many scheduling problems with precedence constraints are
modeled by a linear extension of a poset, or equivalently a topological sort[C01]
of an acyclic digraph [PR94]. Even though many such scheduling problems are
NP-complete, one can solve the problem by first generating all linear extensions
of a given poset and then picking the best one [PR94]. Linear extensions are
also of interest to combinatorists, because of their relation to counting problems
[St97].

Let P = (S,R) be a poset with a set S and a binary relation R on S. We
write n = |S| and m = |R|. It is known one can find a linear extension of a given
poset P in O(m+ n) time [C01, p.550].

Many algorithms to generate a particular class of objects, without repetition,
are already known [LN01, LR99, M98, N02, R78]. Many excellent textbooks
have been published on the subject [G93, KS98, W89]. Given a poset P , three
algorithms to generate all linear extensions of P are explained in [KV83]. The
best algorithm among them generates the first linear extension in O(m+n) time,
then generates each linear extension in O(n) time.

Generally, generating algorithms produce huge outputs, and the outputs
dominate the running time of the generating algorithms. So if we can com-
press the outputs, then it considerably improves the efficiency of the algorithms.
Therefore many generating algorithms output objects in an order such that each
object differs from the preceding one by a very small amount, and output each
object as the “difference” from the preceding one. Such orderings of objects are
known as Gray codes [J80, R93, R00, S97].

M. Lískiewicz and R. Reischuk (Eds.): FCT 2005, LNCS 3623, pp. 445–453, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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1 2 4

3 5 6

Fig. 1. An example of a poset P

Let G be a graph, where each vertex corresponds to each object and each edge
connects two similar objects. Then the Gray code corresponds to a Hamiltonian
path of G. For the set LE(P) of all linear extensions of a given poset P we can
also define such a graph G. However, the graph G may not have a Hamiltonian
path. Therefore the algorithm in [PR94] first constructs a new set S

′
so that if

x ∈ LE(P) then +x,−x ∈ S
′
, then prove that the graph G

′
corresponding to

S
′
always has a Hamiltonian path. Based on this idea, the algorithm in [PR94]

generates the first linear extension in O(m+n) time, then generates each linear
extension in onlyO(1) time on average along a Hamiltonian path of G

′
. Note that

the algorithm generates each linear extension exactly twice but output exactly
one of them.

The paper [PR94] proposed the following question. Is there any algorithm to
generate each linear extension in O(1) time “in the worst case”? In this paper
we answer the question affirmatively.

In this paper we give an algorithm to generate all linear extensions of P .
Our algorithm is simple and generates each linear extension in constant time in
worst case (not on average). Our algorithm also outputs each linear extension as
the difference from the preceding one. Thus our algorithm also generates a Gray
code for linear extensions of a given poset.

The main idea of the algorithm is as follows. We first define a rooted tree (See
Fig. 3.) such that each vertex corresponds to a linear extension of P , and each
edge corresponds to a relation between two linear extensions. Then by traversing
the tree we generate all linear extensions of P . With a similar technique we
have already solved some generation problems for graphs[LN01, N02, NU03] and
combinatorics[KN05]. In this paper we apply the technique for linear extensions.

1 2 3 4 5 6

Fig. 2. A linear extension of a poset P
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Fig. 3. The family tree TP of L(P)

The rest of the paper is organized as follows. Section 2 gives some definitions.
Section 3 introduces the family tree. Section 4 presents our first algorithm. The
algorithm generates each linear extension of a given poset P in O(1) time on
average. In Section 5 we improve the algorithm so that it generates each linear
extension in O(1) time in worst case. Finally Section 6 is a conclusion.

2 Preliminaries

A poset P is a set S with a binary relation R which is reflexive, antisymmetric
and transitive. Note that R is a partial ordering on S. We denote n = |S|. We
say x precedes y if xRy. We regard a poset P as a directed graph D such that
(1) each vertex corresponds to an element in S, and (2) direct edge (x, y) exists
iff xRy. (See an example in Fig. 1.)

Given a poset P = (S,R), a linear extension of P is a permutation (x1, x2, · · · ,
xn) of S, such that if xiRxj then i ≤ j. Intuitively, if we draw the directed graph
corresponding to P so that x1, x2, · · · , xn appear along a horizontal line from left
to right in this order, then all directed edges go from left to right. (See an example
in Fig. 2.)

3 The Family Tree

Let LE(P) be the set of linear extensions of a given poset P . In this section we
define a tree structure among linear extensions in LE(P).

Given a poset P = (S,R), choose a linear extension Lr ∈ LE(P). Without
loss of generality we can assume that S = {1, 2, . · · · , n} and L = (1, 2, . · · · , n).
(Otherwise, we rename the elements in S.) We call Lr = (1, 2, . · · · , n) the root
linear extension of P .

Then we define the parent P (L) for each linear extension L in LE(P) (except
for Lr) as follows. Let L = (x1, x2, · · · , xn) be a linear extension of P , and assume
that L 	= Lr. Let k be the minimum integer such that xk 	= k. Since L 	= Lr

such k always exists. We define the level of L by k. For example the level of
(1, 2, 4, 3, 5, 6) is 3. For convenience we regard the level of Lr to be n+ 1.



448 A. Ono and S.-i. Nakano

By removing k from L then inserting the k into the immediately before xk

of L, we have a different permutation L
′
. Note that k has moved to the left, and

so L
′ 	= L. Now we have the following lemma.

Lemma 1. L
′
is also a linear extensions of P in LE(P).

Proof. Assume otherwise. Then there must exists xi such that (1) xiRk and
(2) i > k. However this contradicts the fact that Lr = (1, 2, . · · · , n) is a linear
extension of P . ��

We say that L
′

is the parent linear extension of L, and write P (L) = L
′
. If

P (L) is the parent linear extension of L then we say L is a child linear extension
of P (L

′
). Note that L has the unique parent linear extension P (L), while P (L)

may have many child linear extensions.
We also have the following lemma.

Lemma 2. Let � and �p be the levels of a linear extension L and its parent
linear extension P (L). Then � < �p.

Proof. Immediately from the definition of the parent.

The two lemmas above means the following. Given a linear extension L in
LE(P) where L 	= Lr, by repeatedly finding the parent linear extension of the
derived linear extension, we have the unique sequence L, P (L), P (P (L)), · · · of
linear extensions in LE(P), which eventually ends with the root linear extension
Lr. Since the level is always increased, L, P (L), P (P (L)), · · · never lead into a
cycle.

By merging these sequences we have the family tree of LE(P), denoted by TP ,
such that the vertices of TP correspond to the linear extensions in LE(P), and
each edge corresponds to each relation between some L and P (L). This proves
that every linear extension appears in the tree as a vertex. For instance, TP for
a poset in Fig. 1 is shown in Fig. 3. In Fig. 3, the k for each linear extension
is underlined. By removing the k, then inserting it into the k-th position the
parent linear extension is obtained.

4 Algorithm

In this section we give our generation algorithm. Given a poset P , our algorithm
traverses the family tree TP and generates all linear extensions of P .

If we can generate all child linear extensions of a given linear extension in
LE(P), then in a recursive manner we can construct TP , and generate all linear
extensions LE(P) of P . How can we generate all child linear extensions of a
given linear extension?

Given a linear extension L = (p1, p2, p3, · · · , pn) in LE(P), let �p be the level
of L. Let C = (c1, c2, c3, · · · , cn) be a child linear extension of L, and let �c
be the level of C. By Lemma 2, the level of C is smaller than the level of L.
Thus �c < �p holds. Therefore, for each i = 1, 2, · · · , �p − 1, if we generate all
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child linear extension of L “having level i”, then by merging those child linear
extensions we can generate all child linear extensions of L.

Now, given i, 1 ≤ i ≤ �p−1, we are going to generate all child linear extensions
of L = (p1, p2, · · · , pn) having level i. We can generate such child linear extensions
by deleting pi = i from L then insert it somewhere in (pi+1, pi+2, · · · , pn) so that
the resulting permutation is again a linear extension.

For example, see Fig. 3 for a poset P in Fig. 1. The last child L=(1, 2, 3, 5, 6, 4)
of the root linear extension has level 4. Thus each child linear extension has
level either 1, 2 or 3. For level 1, no child linear extensions of L having level
1 exists, since 1R2 means we cannot move 1 to the right. For level 2, child
linear extensions of L having level 2 are L = (1, 3, 2, 5, 6, 4), L = (1, 3, 5, 2, 6, 4)
and L = (1, 3, 5, 6, 2, 4). Note that L = (1, 3, 5, 6, 4, 2) is not a linear extension
because of 2R4. For level 3, no child linear extensions of L having level 3 exists,
since 3R5 means we cannot move 3 to the right.

We have the following algorithm.

Procedure find-all-children(L = (p1p2 · · · pn),�p)
{ L is the current linear extension of P .}
begin

01 Output L { Output the difference from the preceding one.}
02 for i = 1 to �p - 1
03 begin { generate children with level i }
04 j = i
05 while (pj , pj+1) 	∈ R do
06 begin
07 swap pj and pj+1
08 find-all-children(L = (p1p2 · · · pn), i )
09 j = j + 1
10 end
11 insert pj into immediately after pi−1
12 { Now pi = i again holds, and L is restored as it was.}
13 end

end

Algorithm find-all-linear-extensions(P = (S,R))
begin

Find a linear extension Lr

find-all-children(Lr, n+1 )
end

For example, see Fig. 3. The last child L = (1, 2, 3, 5, 6, 4) of the root linear
extension has level 4. Assume we are going to generate child linear extensions
having level 2. Since p2 = 2, p3 = 3 and (2, 3) 	∈ R, so we generate L =
(1, 3, 2, 5, 6, 4) by swapping p2 and p3. Then, since p3 = 2, p4 = 5 and (2, 5) 	∈ R,
so we generate L = (1, 3, 5, 2, 6, 4). Then, since p4 = 2, p5 = 6 and (2, 6) 	∈ R, so
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we generate L = (1, 3, 5, 6, 2, 4). Then, since p5 = 2, p6 = 4 and (2, 4) ∈ R, so
we do not generate L = (1, 3, 5, 6, 4, 2).

Note that if (pi, pi+1) ∈ R, then L has no child linear extensions having level
i. Therefore if (1) (pa, pa+1), (pa+1, pa+2), · · · , (pb, pb+1) ∈ R, and (2) the level of
L is �p > b, then L has no child linear extension with level a, a + 1, · · · , b. Then
even if we execute Line 02 of the algorithm find-all-children several times, no
linear extension is generated. Thus we cannot generate k child linear extensions
in O(k) time.

However, we can preprocess the root linear extension and provide a simple
list to solve this problem, as follows. First let LIST = Lr = (1, 2, · · · , n). For
each i = 1, 2, · · · , n − 1, if (pi, pi+1) ∈ R, then we remove pi from LIST . Then
the resulting LIST tell us all levels at which at least one child linear extension
exists. Using LIST we can skip the levels at which no child linear extension
exists.

For instance, see TP in Fig. 3 for a poset in Fig. 1. For the root linear extension
Lr = (1, 2, 3, 4, 5, 6), LIST = (2, 3, 4, 6). The last child L = (1, 2, 3, 5, 6, 4) of Lr

has level 4.
Insted of generating all child linear extension at level i for i = 1, 2, · · · , �p− 1

by the for loop in Line 02, we generate all child linear extensions at level i only
for each integer i in LIST up to �p− 1. Thus now we can generate k child linear
extensions in O(k) time.

Theorem 1. The algorithm uses O(n) space and runs in O(|LE(P)|) time.

Proof. Since we traverse the family tree TP and output each linear extension at
each corresponding vertex of TP , we can generate all linear extensions in LE(P)
without repetition.

Since we trace each edge of the family tree in constant time, the algorithm
runs in O(|LE(P)|) time.

The argument L of the recursive call in Line 08 is passed by reference. Note
that we restore L as it was when return occurs.

The algorithm outputs each linear extension as only the difference from the
preceding one. For each recursive call we need a constant amount of space, and
the depth of the recursive call is bounded by n. Thus the algorithm uses O(n)
space.

Note that if P is given as an adjacency matrix then we can check Line 05 in
constant time. Although if P is given as adjacency lists we can still construct
the adjacency matrix in O(n+m) preprocessing time with the technique in [A74,
p.71], and check Line 05 in constant time. ��

5 Modification

The algorithm in Section 4 generates all linear extensions in LE(P) in
O(|LE(P)|) time. Thus the algorithm generates each linear extension in O(1)
time “on average”. However, after generating a linear extension corresponding
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to the last vertex in a large subtree of TP , we have to merely return from the
deep recursive call without outputting any linear extension. This may take much
time. Therefore, we cannot generate each linear extension in O(1) time in worst
case.

However, a simple modification [NU03] improves the algorithm to generate
each linear extension in O(1) time. The algorithm is as follows.

Procedure find-all-children2(L, depth)
{ L is the current sequence and depth is the depth of the recursive call.}
begin

01 if depth is even
02 then Output L { before outputting its child.}
03 Generate child linear extensions L1,L2, · · · ,Lx by the method in Section

4, and
04 recursively call find-all-children2 for each child linear extension.
05 if depth is odd
06 then Output L { after outputting its child.}

end

One can observe that the algorithm generates all linear extensions so that
each sequence can be obtained from the preceding one by tracing at most three
edges of TP . Note that if L corresponds to a vertex v in TP with odd depth,
then we may need to trace three edges to generate the next linear extension.
Otherwise, we need to trace at most two edges to generate the next linear ex-
tension. Note that each linear extension is similar to the preceding one, since
it can be obtained with at most three (delete then insert) operations. Thus, we
can regard the derived sequence of the linear extensions as a combinatorial Gray
code [J80, S97, R93, W89] for linear extensions.

6 Conclusion

In this paper we gave a simple algorithm to generate all linear extensions of
a given poset. The algorithm is simple and generates each linear extension in
constant time in worst case. This solve an open question in [PR94].

We have another choice for the definition of the family tree for LE(P) as
follows. Given a linear extension L = (c1, c2, · · · , cn) 	= Lr in P , let k be the
level of L. Then let i be the index such that ci = k. By definition i > k holds.
Now by swapping ci with its left neighbour we obtain another linear extension
P (L), and we say P (L) is the parent of L. Based on this parent-child relation
we can define another family tree for LE(P). For instance see Fig. 4. Based on
this family tree, in a similar manner, we can design another simple algorithm to
generate all linear extensions of a given poset. Note that each linear extension
is also similar to the preceding one. The next linear extension can be obtained
with at most three “adjacent transposition” operations.
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Fig. 4. Another family tree of L(P)
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Abstract. No algorithm can of course solve the Halting Problem, that is, decide
within finite time always correctly whether a given program halts on a certain
given input. It might however be able to give correct answers for ‘most’ instances
and thus solve it at least approximately. Whether and how well such approxima-
tions are feasible highly depends on the underlying encodings and in particular
the Gödelization (programming system) which in practice usually arises from
some programming language.

We consider BrainF*ck (BF), a simple yet Turing-complete real-world pro-
gramming language over an eight letter alphabet, and prove that the natural enu-
meration of its syntactically correct sources codes induces a both efficient and
dense Gödelization in the sense of [Jakoby&Schindelhauer’99]. It follows that
any algorithm M approximating the Halting Problem for BF errs on at least a
constant fraction εM > 0 of all instances of size n for infinitely many n.

Next we improve this result by showing that, in every dense Gödelization,
this constant lower bound ε to be independent of M; while, the other hand, the
Halting Problem does admit approximation up to arbitrary fraction δ > 0 by an
appropriate algorithm Mδ handling instances of size n for infinitely many n. The
last two results complement work by [Lynch’74].

1 Introduction

In 1931, the logician KURT GÖDEL constructed a mathematical predicate which could
neither be proven nor falsified. In 1936, ALAN TURING introduced and showed the
Halting Problem H to be undecidable by a Turing machine. This was considered a
strengthening of Gödel’s result regarding that, at this time and preceding AIKEN’s
Mark I and ZUSE’s Z3, the Turing machine was meant as an idealization of an aver-
age mathematician.

Nowadays the Halting Problem is usually seen from a quite different perspective.
Indeed with increasing reliance on high speed digital computers and huge software
systems running on them, source code verification or at least the detection of stalling
behaviour becomes even more important. In fact, by RICE’s Theorem, this is equiva-
lent to many other real-world problems arising from goals like automatized software
engineering, optimizing compilers, formal proof systems and so on. Thus, the Halting
problem is a very practical one which has to be dealt with some way or another.

M. Liśkiewicz and R. Reischuk (Eds.): FCT 2005, LNCS 3623, pp. 454–466, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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One direction of research considered and investigated the capabilities of extended
Turing machines equipped with some kind of external device solving the Halting prob-
lem. While the physical realizability of such kinds of super-Turing computers is ques-
tionable and in fact denied by the Church-Turing Hypothesis, the current field of Hy-
percomputation puts in turn this hypothesis into question. On the theoretical side, these
considerations led to the notion of relativized computability and the Arithmetical Hier-
archy which have become standard topics in Recursion Theory [Soar87].

1.1 Approximate Problem Solving

Another approach weakens the usual notion of algorithmic solution from strict to ap-
proximate or from worst-case to average case. The first arises from the fact that many
optimization problems are N P -complete only if requiring the solution to exactly attain
the, say, minimum whereas they become computationally much easier when asking for
a solution only within a certain factor of the optimum.

Regarding decision problems, a notion of approximate solution has been established
in Property Testing [Gold97]. Here for input x ∈ Σn, the answer “x ∈ L” is considered
acceptable even for x 	∈ L provided that y ∈ L holds for some y ∈ Σn with (edit or Ham-
ming) distance d(x,y)≤ εn. Observe that this notion of approximation strictly speaking
refers to the arguments x to the problem rather than the problem L itself. Also, any
program source x is within constant distance from the terminating one y obtained by
changing the first command(s) in x by a halt instruction.

Average case analysis is an approach based on the observation that the hard in-
stances which make a certain problem difficult might occur only rarely in practice
whereas most ‘typical’ instances might turn out as easy. So, although for example N P -
complete, an algorithm would be able to correctly and efficiently solve this problem in,
say, 99.9% of all cases while possibly failing on some few and unimportant others. In
this example, ε = 1/1000 is called the error rate of the problem under consideration
with respect to a certain probability distribution or encoding of its instances.

Such approaches have previously been mainly applied in order to deal with impor-
tant problems where the practitioner cannot be silenced by simply remarking that they
are N P -complete, that is, within complexity theory. However the same makes sense,
too, for important undecidable problems such as Halting: even when possibly erring
on, say, every 10th instance, detecting the other 90% of stalling programs would have
prevented many buggy versions of a certain operation system from being released pre-
maturely.

1.2 The Error Complexity

So instead of deciding some (e.g., hard or even non-recursive) problem L, one is sat-
isfied with solving some problem S which approximates L in the sense that the sym-
metric1 set difference A := L 9 S := (L \ S)∪ (S \ L) is ‘small’. For L ⊆ Σ∗ (with
an at least two-letter alphabet Σ) this is formalized, analogously to the error com-
plexity from average analysis, [JaSc99, DEFINITION 1] as the asymptotic behavior of
μ{x̄ ∈ (L 9 S)|x̄ ∈ Σn} for a fixed probability measure μ : Σ∗ → [0,1]; if this quantity

1 The error to the Halting problem can in fact be made one-sided, see Corollary 22 below.
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tends to 0 as n → ∞ it basically means that, for (μ-) average instances, S ultimately
equals L. In the case of μ denoting the counting measure, this amounts [Papa95, §14.2,
p.336],[RoUl63] to the following

Definition 1. For A⊆ Σ∗, let density(A,=n) := #(A∩Σn)/#Σn and
density(A,<n) := #(A∩Σ<n)/#(Σ<n) where Σ<n =

⋃n−1
j=0 Σ j .

For A⊆ N, let Density(A,N) := #(A∩{0, . . . ,N−1})/N.

The latter formalization has been considered independently in [RoUl63, Lync74]2 for
approximating decision problems L⊆ N. The notions are related as follows:

Lemma 2. For x ∈ N, let x̄ denote the x-th string in Σ∗ ordered with respect to length
(ties broken arbitrarily). For A⊆ N, Ã := {x̄ : x ∈ A}, and 0≤ ε≤ 1 it holds:
a) density(Ã,=n)≤ ε ∀n ⇒ density(Ã,<n)≤ ε ∀n.
b) Density(A,N)≤ ε ∀N ⇒ density(Ã,<n)≤ ε ∀n.
c) density(Ã,<n)≤ ε ∀n ⇒ Density(A,N)≤ ε′ ∀N where ε′ := ε · (2− ε).

Taking complements yields similar claims for reversed inequalities “≥ ε”.

Since 0< ε′ < 1 whenever 0< ε< 1 in b+c), both densities are essentially equivalent up
to constants in that one tends to 0/1 iff so does the other. This allows us to deliberately
switch in the sequel between A ⊆ Σ∗ encoded over one alphabet Σ (say, the decimals
{0,1, . . . ,9}) and its re-coding over some other (e.g., binary or hexadecimal) finite Σ′.

Proof (Lemma 2). a) is obvious; for b) observe density(Ã,<n) = Density
(
A,#(Σ<n)

)
.

This also establishes c) in case N = #(Σ<n) = #Σn−1
#Σ−1 with #(A∩{0, . . . ,N− 1}) ≤ ε ·

#(Σ<n), whereas the worst-case occurs for N = #(Σ<n)+ ε ·#Σn with #(A∩{0, . . . ,N−
1}) = ε ·#(Σ<n)+ ε ·#Σn. Then and thus,

Density(A,N) ≤
ε · #Σn+1−1

#Σ−1
#Σn−1
#Σ−1 + ε ·#Σn

= ε ·
(

1 +(1− ε) · #Σ−1

#Σ− 1
#Σn

)
≤ ε ·
(
1 +(1− ε)

)
��

For a good approximation S of L, one wants the density of A = L9 S to eventually drop
below some prescribed ε; that is satisfy, e.g., ∃n0 ∀n≥ n0 : density(A,n)≤ ε.

Definition 3. An inequality “ f (n) ≤ g(n)” depending on n ∈ N holds almost ev-
erywhere, denoted by “f (n) ≤ae g(n)”, iff ∃n0∀n≥ n0 : f (n)≤ g(n).
It holds infinitely often (“f (n)≤io g(n)”) iff ∀n0∃n≥ n0 : f (n)≤ g(n).

So if “density(A,n)≤ae ε” fails, one may try for the weaker “density(A,n)≤io ε”.

1.3 The Halting Problem

The halting problem is defined with respect to an (often implicitly chosen) program-
ming system. Here we follow the notation of [Roge67, Soar87, Smit94].

Definition 4. A Gödelization ϕ is a sequence of all partial recursive functions s.t.

– there exists a partial universal program u with ϕu(〈i,x〉) = ϕi(x) (UTM)

2 We are considerably grateful to an anonymous referee for pointing out the work of N. LYNCH.
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– and a total program s with ϕs(〈i,x〉)(y) = ϕi(〈x,y〉) (SMN)
– for a bijective computable function 〈·, ·〉 : Σ∗ ×Σ∗ → Σ∗ or 〈·, ·〉 : N×N→N.

called pairing function. The Halting problem for ϕ is Hϕ={〈i,x〉 : x∈dom(ϕi)}.

The Halting problem is sometimes alternatively defined as the task H̃ϕ of deciding
whether a given program i terminates on the empty input, that is, whether λ ∈ dom(ϕi);
or the question whether i ∈ dom(ϕi). Based on RICE’s Theorem, all three versions can
be reduced to one another and are thus equivalent from the point of view of strict com-
putability but in generally not concerning approximations; see Example 24.

Similarly, strict undecidability of Hϕ holds independently of the underlying pro-
gramming system whereas a change in ϕ may sensitively affect its error complexity. In
fact one can artificially ‘blow up and pad’ any Gödelization to obtain one where already
a constant answer yields exponentially small error to the Halting problem [Lync74,
PROPOSITION 1]. While the Padding Lemma of Recursion Theory asserts any pro-
gramming system to repeat each computable function an infinite number of times, these
repetitions should occur in a ‘balanced’ way for the Gödelization to be reasonable.

Definition 5. Gödelization ϕ is dense iff ∀i ∃c> 0 : density
(
{ j : ϕi = ϕ j},n

)
≥ae c.

Another influence to the complexity of the Halting problem arises from the pairing func-
tion under consideration. Again, in order to avoid trivial approximations, we restrict
to pairing functions which are pair-fair in the sense of [JaSc99, DEFINITION 5] and
recall that for instance the standard pairing 〈x,y〉= x+ (x+y)(x+y+1)

2 satisfies this condi-
tion. It has been proven that, under these natural restrictions, every heuristic claiming
to solve the Halting problem makes at least a constant fraction of errors:

Theorem 6 ([JaSc99, THEOREM 4]). Let R EC denote the class of recursive
languages and ϕ a dense Gödelization. Then ∀S∈R EC ∃ε> 0 : density(Hϕ 9 S,n)
≥ae ε.

1.4 Own and Related Contributions

Observe that the lower approximation bound ε in Theorem 6 may in general depend on
S; it seems thus still conceivable that Hϕ admits an approximation scheme in the sense
that better and better algorithms achieve smaller and smaller error densities. In fact the
question whether or not there exists a universal constant lower bound was open for half
a decade [JaSc99, bottom of p. 402].

The present paper gives both a positive and a negative answer to this question:

Theorem 7. For any dense Gödelization ϕ it holds
a) ∃ε> 0 ∀S ∈ R EC : density(Hϕ 9 S,n) ≥io ε.
b) ∀ε> 0 ∃S ∈ R EC : density(Hϕ 9 S,n) ≤io ε.

This complements [Lync74, PROPOSITION 6]5 where ae- rather than io-approximation
is considered. In addition, our work differs from [Lync74] in treating the Halting prob-
lem Hϕ with inputs as opposed to H̃ϕ; see the discussion following Definition 4. Thirdly,
we consider dense programming systems whereas [Lync74, p.147] requires them to be
optimal in the sense of [Schn75] — a strictly6 stronger condition:
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Lemma 8. Any optimal Gödelization ϕ is dense according to Definition 5.

Proof. Start with some dense Gödelization ϕ′. In ϕ, fix an arbitrary index i ∈ N. Thus
ϕi = ϕ′i′ for some i′ ∈N. ϕ′ being dense, the set J′ := { j′ : ϕ′i′ = ϕ′j′ } has Density(J′,N)
≥ae c for some c> 0. By definition of optimality there exists C ∈N and to each j′ some
j ≤C · j′ such that ϕ j = ϕ′j′ . Hence, Density({ j : ϕi = ϕ j},N)≥ae c/C. ��

The above differences (Hϕ rather than H̃ϕ, dense rather than optimal Gödel numberings)
to [Lync74] are due to our interest in the Halting problem as arising in practice, that is,
for real programming languages; see Sections 1.5 and 2. We focus on mere computabil-
ity of according approximations; in particular our work is not related to the restricted
Halting problem — Given (i, t), does Turing machine #i terminate after ≤ t steps? —
considered in [Mach78, SECTION 6.1] for complexity purposes.

1.5 Omega Numbers

Approximations to the Halting problem have been treated by encoding H into a single
real r ∈R and then considering computational approximations to this r. A first encoding
goes back to [Spec49] in terms of the number x[H] = ∑n∈H 2−n whose binary digits are
obviously not decidable but semi-decidable, i.e., any 1 can be verified within finite time.

CHAITIN’s Omega-Number [Chai87, LiVi97] gives another way of encoding the
entire Halting problem into a single real ΩU = ∑x̄∈dom(U) 2−|x̄| where U denotes
a universal Turing machine which is required to be self-delimiting. This implies by
KRAFT’s inequality that ΩU ≤ 1 can be interpreted as the probability for U to termi-
nate upon input of a random program. ΩU is considered ‘denser’ and more difficult
to approximate than x[H] because its binary digits are not even semi-decidable; see,
e.g., [LiVi97, CHKW01]. At first, it has therefore received noticable attention when
[CDS01] did succeed in determining the first 64 bits of ΩU .

However this approximation had been significantly simplified by the observation
that, for the specific U considered in [CDS01], an overwhelming fraction of all in-
stances do not contain a halt instruction at all and thus stall trivially. In other words,
those program sources arising in practice form only a very sparse subset within the
programming system treated there. In order to avoid such trivialities and instead ob-
tain meaningful results about the possibility or impossibility of approximations to the
Halting problem, we now present:

2 A Particularly Compact, Practical Dense Programming System

Concerning the applicability of Theorem 6, its prerequisite is satisfied by every Turing-
complete programming language over alphabet Σ with some kind of end-of-string (eof)
indicator. More generally it holds:

Example 9. Let ϕ = (ϕx̄)x̄∈Σ∗ denote a Gödelization which is self-delimiting in the sense
that, whenever ϕx̄ does not identically diverge, it holds ϕx̄ = ϕx̄◦ȳ for all ȳ. Then, ϕ
is dense. This includes, for arbitary Gödelization ψ = (ψn)n∈N

, the ‘tally’3 re-coding

3 See [Book74]. Also, this dense Gödelization is obviously non-optimal in the sense of
[Schn75].
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ϕ1n0 := ψn, ϕ1n0x̄ := ψn for x̄ ∈ {0,1}∗, ϕx̄ :≡⊥ for x̄ ∈ {1}∗ .

While a special symbol 〈eof〉 may always be added to Σ, we consider this cheating.
Also from the practical side, compilers for programming languages nowadays rely on
the end-of-file being indicated by the operating system (e.g., via feof) as opposed to the
out-dated detection of characters like nul, ˆD, or ˆZ. In the present section we analyze
and establish a practical, non-self delimiting programming language to be dense.

2.1 The BF Programming Language

BF (‘BrainF*ck’) was designed in 1993 by URBAN MÜLLER and has since then spread
the Internet for its shrewd simplicity [Wiki05]. It is a Turing-complete programming
language over the eight letter alphabet ΣBF = { < , > , + , - , , , . , [ , ] }. The
first six characters represent commands, the remaining two brackets are used to con-
struct simple loops.

A BF-program stores data on a tape similar to that of a Turing-Machine. Each cell
of the tape may contain an integer between 0 and 255, that is, one byte. The current
cell may be incremented using + and decremented with - ; (incrementing 255 will
result in 0, decrementing 0 will result in 255). Other cells can be accessed by moving
the read/write-head either to the left < or to the right > . Initially, all cells are set to
0. The two commands , and . are for input and output: , will fetch a byte from
the input stream and store it into the current cell; . appends the byte in the current
cell to the output stream.

Loops are formed by putting commands inbetween the two bracket symbols [

and ] . Each time the loop is about to be executed, the current cell is checked whether
it contains a value other than 0. If so, the loop is executed again. The commands in
the loop are skipped, if the current cell was 0. Note, that after each round of the loop,
another cell could have been made current by the commands within the loop.

Definition 10. Let BFn ⊆ Σn
BF denote the set of strings p̄ of length n representing a

syntactically correct BF source code and BF =
⋃

n BFn.

Observe that the syntax of this programming language is quite simple, the only require-
ment being that opening and closing brackets are nested correctly.

Remark 11. BF is sometimes refered to with a fixed tape of 30.000 cells size. How-
ever the level of standardization is not very advanced yet. In order to obtain a Turing-
complete system, we shall assume an unbounded tape.

2.2 Naive Encoding of BF

This straight-forward idea takes BF source codes as Gödel indices:

Definition 12. For p̄ ∈ Σ∗BF, let ψ p̄ denote the function obtained by interpreting p̄ as
source code for some BF program; ψ p̄ :≡⊥ in case p̄ lacks syntactical correctness.

However, closer analysis reveals that this programming system is not dense:
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Theorem 13. Let BFn := |BFn| denote the number of correct BF-sources of length n.

a) BFn+1 = 6 ·BFn + ∑n−1
i=0 BFi ·BFn−1−i.

b) BFn = ∑n/2
k=0 Ck ·

( n
2k

)
·6n−2k, where Ck = 1

k+1 ·
(2k

k

)
denotes CATALAN’s number.

c) (n + 3) ·BFn+1 = (12n + 18) ·BFn −32n ·BFn−1.

d) BFn+1 ≤ 8 ·BFn.

e) BFn ≤ O(8n/
√

n).

Thus among all 8n strings p̄ ∈ Σn
BF, the fraction of syntactically correct sources tends to

zero, permitting for Hψ a trivial O( 1√
n )-approximation.

Proof. a) A syntactically correct BF program of length n + 1 either consists of one
(out of 6 possible) non-loop character followed by an, again syntactically correct,
program of length n; or, in case it begins with the loop character [ , it consists of
a loop (whose body is a syntactically correct program of length i for some i < n)
followed by some other syntactically correct source of length n−1− i.

b) Consider the collection BFn,k ⊆ BFn of BF programs p̄ ∈ Σn
BF of length n with

0≤ k≤ n/2 occurrences of [ or, equivalently, of ] . Then,Ck equals the number
of correct ways of nesting 2k brackets [Bail96]. Any p̄ ∈ BFn,k can be obtained in
a unique way by choosing 2k out of n positions in p̄ for placing these brackets and
by filling each of the remaining n−2k positions independently with one out of the
6 non-bracket characters in ΣBF.

c) follows from a) and b) by induction.
d) Claim c) immediately yields BFn+1 ≤ c0 ·BFn by induction, where c0 := 12. Re-

peated application of c) establishes a sequence of improved bounds BFn+1 ≤ ck ·
BFn ∀n with (ck) decreasing down to 8.

e) Combining c+d), obtain BFn+1 ≤ 8 ·
n + 9

4

n + 3
· BFn ≤ 8n ·

n

∏
i=1

i+ 9
4

i+ 3
,

n
∏

i=−2

i+ 9
4

i+3 =
n+3
∏
j=1

j− 3
4

j ≤
n+3
∏
j=1

j− 1
2

j ,
( n

∏
j=1

2 j−1
2 j

)2 ≤ ( n
∏
j=1

2 j−1
2 j

)
·
( n

∏
j=1

2 j
2 j+1

)
= 1

2n+1

��

2.3 Compact Encoding of BF

Regarding Theorem 13, a dense programming system based on BF better avoids enu-
merating syntactically incorrect sources. This leads to the following

Definition 14. Define ϕN to denote the function computed by the N-th syntactically
correct BF program p̄N. More formally, let BF be ordered primarily with respect to
length n and secondarily according to the enumeration given by recursive application
of Theorem 13a), that is, by first listing the 6 ·BFn programs starting with no loop and
then listing, recursively and for each i = 0 . . .n−1, the loop bodies and loop tails as BF
sources of length i and n−1− i, respectively.

Although this programming system is not self-delimiting, it holds:

Theorem 15. The Gödelization ϕ from Definition 14 is dense.

We emphasize that this is by no means a consequence of syntactical correctness alone!
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Proof. Fix a partial recursive function computed by some BF source p̄∈BF m of length
m = |p̄|. For n ≥ m+ 2, we construct BFn−m−2 equivalent programs p̄′ ∈ BFn. To this
end preced p̄ with a loop, i.e., let p̄′ := [ ◦ q̄ ◦ ] ◦ p̄ for an arbitrary syntactically
correct source q̄ of length n−m− 2. Since, upon start of execution, the current cell is
initialized to 0, this loop gets skipped anyway and p̄′ thus behaves like p̄, indeed. The
thus obtained sources p̄′ constitute, in relation to BFn and by Theorem 13d), a fraction

BFn−m−2

BFn
≥ BFn−m−2

8m+2 ·BFn−m−2
= 8−m−2 =: c > 0

among all programs of length n≥ n0 := m+ 2. Now proceed as in Lemma 2c). ��

Conversion between BF sources and Gödel indices is a central part of efficient (rather
than merely computable) SMN- and UTM-properties according to Definition 4. A naive
approach enumerates all strings p̄ ∈ Σn

BF and counts the syntactically correct ones in
order to obtain p̄N . This, however, gives rise to exponential time in logN. The following
result improves to running time polynomial in the input size, that is, |p̄| or logN:

Theorem 16. Given a program p̄ = p̄N ∈ BFn of length n, one can calculate its index
N ∈ N according to Definition 14 within time O(n3 · logn · loglogn). Conversely, from
N, the according p̄N is computable using O(n3 · logn · loglogn) steps where n = logN.
Both algorithms use memory of size O(n2). See also http://www.upb.de/cs/bf

To conclude, the Gödelization introduced in this section is practical, efficient, and
dense. It even seems plausible to satisfy the stronger condition of optimality; recall
Lemma 8. To this end one might establish a sparse SMN-property for BF as required in

Lemma 17. Let ϕ = (ϕ p̄)p̄∈Σ∗ denote a Gödelization and SMN-function s : Σ∗ ×Σ∗ →
Σ∗ according to Definition 4 satisfying |s(p̄, x̄)| ≤ c(p̄) + |x̄| for all p̄, x̄ ∈ Σ∗ with
arbitrary c : Σ∗ → N. Then, ϕ is optimal in the sense of [Schn75].

Proof. Fix some other Gödelization Φ. Consider its UTM-function ΦU and let u′ denote
the index of ΦU in ϕ; i.e., ∀x̄ ∈ Σ∗ : ΦP̄(x̄) = ΦU (〈P̄, x̄〉) = ϕu′(〈P̄, x̄〉) = ϕ p̄(x̄)
where p̄ := s(u′, P̄) has by prerequisite length |p̄| ≤ c(u′)+ |P̄|= c0 + |P̄|. ��

3 The Error Complexity of Dense Programming Systems

In the last section we showed that a natural encoding of BF is dense. From Theorem 6
it follows that every algorithm A trying to solve the Halting problem of such a dense
programming system errs on at least a constant fraction εA > 0. This constant fraction
εA > 0 may depend on the algorithm A and can be arbitrarily small. In this section we
will show that there is a universal constant ε0 > 0 lower bounds the error made by any
heuristic trying to approximate the Halting problem for a dense Gödelization.

3.1 Halting Ratio

A straight-forward implication of Theorem 6 is that neither nearly all programs halt nor
do nearly all of them stall. This is formalized as follows:
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Definition 18. Call hϕ : N ;→Density
(
{〈i,x〉 : x ∈ dom(ϕi)},N

)
the halting ratio.

Like ΩU (see Section 1.5), hϕ describes a probability for a random instance to halt.

Corollary 19. For every dense Gödelization ϕ, ∃c> 0 : c ≤ae hϕ ≤ae 1− c.

Proof. Consider two indices i, j with dom(ϕi) = Σ∗ and dom(ϕ j) = /0. Because of the
dense programming system and the pair-fair pairing, these indices alone induce a con-
stant fraction of halting and non-halting indices. ��

It seems desirable, again similarly to Section 1.5, to investigate the real number rϕ :=
limn→∞ hϕ(n). However in many cases hϕ fails to converge:

Example 20. Take any programming system ψ = (ψi)i∈N
and define ϕ = (ϕI)I∈N

by

ϕ = (ψ1, ψ2,ψ2,ψ2,ψ2, . . . . . . , ψi,ψi,ψi, . . . ,ψi,ψi,︸ ︷︷ ︸
ii times

. . . . . . . . .) .

Obviously ϕI behaves identically for all I within a block arising from the same ψi. Since
the size ii of such a block dominates by far those of all previous blocks together, namely

Ni = 1+4+ . . .+(i−1)i−1 ≤ (i−1)0+(i−1)1+ . . .+(i−1)i−1 = (i−1)i−1
i−2 ≤ 1

i−2 · ii,
a) termination of ψi determines whether hϕ(Ni) is (arbitarily close to) 1 or 0.

In particular, hϕ is an oscillating function and fails to converge for N → ∞.
b) As infinitely many instances of Hψ are undecidable, so is almost every entire block

of Hϕ. In particular, ∀ε> 0 ∀S ∈ R EC : Density(Hϕ 9 S,N) ≥io 1− ε.
c) On the other hand, S := /0 ∈ R EC satisfies ∀ε> 0 : Density(Hϕ 9 S,N) ≤io ε.

Indeed, each of the infinitely many i corresponding to stalling instances of Hψ yields
an entire block of them in Hϕ, dominating Density(Hϕ,Ni + ii)≤ 1

i−2 as above. ��

With the last two properties, this specific Gödelization concretizes the REMARK on top
of p.147 in [Lync74]. Compare them to io-approximations of arbitrary dense program-
ming systems according to Theorem 7.

3.2 Relation Between Two Approximations

Consider the question of approximating the function hϕ : N→Q. This is related to the
approximation of the Halting problem in the sense of Section 1.2 as follows:

Lemma 21. Fix Gödelization ϕ with Halting problem H = Hϕ and halting ratio h = hϕ.

a) Given N ∈ N, ε ∈ Q, and b ∈ Q with |b−h(N)| ≤ ε, one can compute a list H ′
N ⊆

H ∩{0,1, . . . ,N−1} of halting instances satisfying Density(H 9 H ′
N ,N)≤ ε.

b) Let S ⊆ N be arbitrary. Given N ∈ N and ε ∈Q such that Density(H 9 S,N)≤ ε,
an S-oracle machine can compute b ∈Q with |b−h(N)| ≤ ε.

In particular for this ϕ and any ε>0, the Halting problem Hϕ can ae be ε-approximated
iff the halting ratio hϕ can ae be ε-approximated; analogously for approximating io.

Proof. a) Recursively enumerate elements x ∈ H ∩{0,1, . . . ,N− 1} until having ob-
tained a collection H ′

N ⊆ H of cardinality #H ′
N ≥ (b− ε) ·N.
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b) By repeatedly quering the oracle S for all finitely many x ∈ {0,1, . . . ,N− 1}, cal-
culate the number b := #(S∩{0,1, . . . ,N−1})/N. ��

Corollary 22. Fix computable f : N → Q and recursively enumerable L ⊆ N admit-
ting (ae/io) an f (N)-approximation with two-sided error. Then L can (ae/io) be f (N)-
approximated with one-sided error.

Proof. W.l.o.g. L = Hϕ = H for some ϕ. Let S⊆N denote a recursive two-sided f (N)-
approximation of H. Upon input of x, compute ε := f (N), N ≥ |x|; then obtain an
approximation b ∈ Q for h(N) by virtue of Lemma 21b), observing that oracle queries
to S can be decided by presumption. Then apply Lemma 21a) to get a some H ′

N ⊆
H ∩{0, . . . ,N−1} with Density(H 9 H ′

N ,N)≤ ε, i.e., one-sided ε-approximation. ��

3.3 Approximating the Halting Ratio

We now reveal that the Halting ratio of a dense programming system infinitely often
admits a well approximation and infinitely often it does not.

Lemma 23. Fix a dense programming system ϕ.
a) For all ε> 0, there exists a TM M such that |M(n)−hϕ(n)| ≤io ε .
b) There exists ε> 0 such that all TMs M have |M(n)−hϕ(n)| ≥io ε .

Proof. a) For fixed ε > 0 consider k := ,1/ε/ and the k + 1 constant (trivially com-
putable) functions 0, 1

k ,
2
k ,

3
k , . . . ,1. For every input length n, at least one of these val-

ues differs from hϕ(n) ∈ [0,1] by at most ε. A second application of pidgeon-hole’s
principle yields that some of these constant functions is close to hϕ for infinitely
many n.

b) For a fixed rational ε> 0 (whose actual value we determine later) we assume ϕi(n)
for some i ∈ N is a candidate for computing hϕ(n).
Now an algorithm A computes on input z ∈ Σn the following. First it computes
b = ϕn(n) as an approximation to hϕ(n) on input z = 〈i,x〉 ∈ Σn. Let f1(z) = i
and f2(z) = x be the decoding functions of z = 〈i,x〉. Let i∗ be an index of A.
According to the Recursion Theorem, A may know its own index and ε ∈Q. Then
the algorithm simulates all inputs to Hϕ of length n in parallel step by step until
(b−ε)|Σ|n strings y∈ Σn have been found with f2(y) ∈ dom(ϕ f1(y)) and f1(y) 	= i∗.
Let s denote this number of halting inputs 〈i,x〉 ∈ Σn with i 	= i∗ found by A. If
s≥ (b− ε)|Σ|n then the algorithm halts, else the algorithm does not halt.
There is a chance that the algorithm does not halt before this last condition, which
means that n 	∈ dom(ϕn) or less than (b− ε)|Σ|n strings of length n corresponding
to halting instances exist. In both cases ϕn was proven not to compute hϕ within the
error margin ε.
Recall that i∗ is an index for algorithm A and that the repetition rate of i∗ is con-
stant. The diagonalization argument is that all inputs 〈i∗,x〉 will result in a(i∗,n) :=
|{〈i∗,x〉 ∈ Σn}| additional halting inputs of length n compared to (b− ε)|Σ|n where
ϕn predicted at most (b + ε)|Σ|n halting instances. For large enough n, this number
a(i∗,n) is lower bounded by Ω(|Σ|n), i.e. ∃c > 0 : ∀aen : a(i∗,n) > c|Σ|n, because
of the pair-fair property of 〈·, ·〉.
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Now if s ≥ (b− ε)|Σ|n then there are at least (b− ε + c)|Σ|n halting instances for
almost all input lengths n where ϕn(n) is a candidate for hϕ(n). Note that there
are infinite many equivalent machines n1,n2, . . . , with ϕni = ϕn. For ε < c/2 this
implies that ϕn errs infinitely often on these inputs of length ni with an error margin
of at least ε (which can be determined independent from n).
Therefore for all machines M = ϕn there are infinitely many input lengths n such
that M(n) does not approximate hϕ(n) by an additional error term of ε. ��

3.4 The Halting Problem is ae-hard and io-easy

Combining Lemma 21 and Lemma 23 establishes the already announced

Theorem 7. For any dense Gödelization ϕ it holds
a) ∃ε> 0 ∀S ∈ R EC : density(Hϕ 9 S,n) ≥io ε.
b) ∀ε> 0 ∃S ∈ R EC : density(Hϕ 9 S,n) ≤io ε.

This solves the open problem stated in [JaSc99] for the case of dense programming
system. In particular, it shows that the dense encoding of BF from Section 2.3 provides
a natural hard problem which cannot be approximated better than up to a constant factor.

Furthermore, Theorem 7 nicely complements [Lync74, PROPOSITION 6]. Observe
that Claim b) there only seems to be stronger than our Theorem 7a) because of the
more restrictive presumption that the Gödelization ϕ under consideration be optimal in
the sense of [Schn75] rather just dense.

In addition, [Lync74] refers to the Halting problem as termination of ϕi on the spe-
cial input i (that is, in our notation, to H̃ϕ; see Definition 4) whereas we treat the more
general and practically relevant Hϕ, i.e., termination of ϕi on given input x. Although
both problems are equivalent with respect to exact computability, their behaviour con-
cerning approximations differs significantly. This can be observed already in the proof
of Lemma 23b) which heavily relies on the described algorithm A’s behaviour to depend
on (the length of) its input. More explicitly, we have the following

Example 24. Consider the dense tally Gödelization ϕ in Example 9. There, any ψn

gives rise to an asymptotic 2−n−1-fraction of equivalent instances ϕx̄. Thus, storing the
solutions to Hψ for the first N inputs ψ1, . . . ,ψN allows for ae answering correctly a
fraction εN = ∑N

n=1 n ·2−n−1 of instances to H̃ϕ with εN → 1 as N → ∞.

4 Conclusion

Since the Halting problem is of practical importance yet cannot be solved in the strict
sense, we considered the possibility of approximating it. Similarly to the average-case
theory of complexity, this depends crucially on the encoding of the problem, that is
here, the programming system under consideration.

Many practical programming languages lacking density in fact do admit such an
approximation with asymptotically vanishing relative error for the simple reason that
the fraction of syntactically incorrect instances tends to 1. This was exemplified by a
combinatorial analysis of the Turing-complete formal language BF. Here and in similar
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cases, the question for approximation the Halting problem is equivalent to a mere syntax
check and thus becomes trivial and vain.

On the other hand, considering only syntactically correct sources was established to
yield an efficient and dense programming system in the case of BF. For any such system,
we proved a universal constant lower bound on relative approximations to the Halting
problem even in the weak io-sense. Our third contribution establishes that, conversely,
any constant relative error ε> 0 is io feasible by an appropriate machine M.

Question 25. Is there some optimal (but necessarily non-dense) programming system
ϕ whose Halting problem Hϕ satisfies the following even stronger inapproximability
property similar to [Lync74, PROPOSITION 2]

∀S ∈ R EC ∀ε> 0 : density(Hϕ 9 S,n) ≥io 1− ε or even ≥ae 1− ε ?

Observe that [Lync74, PROPOSITION 6] reveals the answer to be negative concerning
the Halting problem H̃ϕ without input which, regarding Example 24, tends to be strictly
easier to approximate than Hϕ anyway.

Another open problem, it remains whether BF leads in Section 2.3 to an even opti-
mal (rather than just dense) Gödelization; cf. Lemma 8. Furthermore it is conceivable —
although by no means obvious — that the programming system Jot by C. BARKER is
dense as well; see http://ling.ucsd.edu/˜barker/Iota/#Goedel.

References

[Bail96] D.F. BAILEY: “Counting Arrangements of 1’s and -1’s”, pp.128–131 in Mathemat-
ics Magazine vol.69 (1996).

[Book74] R.V. BOOK: “Telly languages and complexity classes”, pp.186–193 in Information
and Control vol.26:2 (1974).

[CDS01] C.S. CALUDE, M.J. DINNEEN, C.-K. SHU: “Computing a Glimpse of Random-
ness”, pp.361–370 in Experimental Mathematics vol.11:3 (2001).

[CHKW01] C.S. CALUDE, P. HERTLING, B. KHOUSSAINOV, Y. WANG: “Recursively enumer-
able reals and Chaitin Ω numbers”, pp.125–149 in Theoretical Computer Science
vol.255 (2001).

[Chai87] G.J. CHAITIN: Algorithmic Information Theory, Cambridge University Press
(1987).

[Gold97] O. GOLDREICH: “Combinatorial property testing (a survey)”, pp.45–59 in Proc.
DIMACS Workshop in Randomized Methods in Algorithm Design (1997).

[JaSc99] A. JAKOBY, C. SCHINDELHAUER: “The Non-Recursive Power of Erroneous Com-
putation”, pp.394–406 in Foundations of Software Technology and Theoretical Com-
puter Science (FSTTCS 1999), Springer LNCS vol.1738.
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Abstract. In the BSS model of real number computations we prove a
concrete and explicit semi-decidable language to be undecidable yet not
reducible from (and thus strictly easier than) the real Halting Language.
This solution to Post’s Problem over the reals significantly differs from its
classical, discrete variant where advanced diagonalization techniques are
only known to yield the existence of such intermediate Turing degrees.

Then we strengthen the above result and show as well the existence of
an uncountable number of incomparable semi-decidable Turing degrees
below the real Halting problem in the BSS model. Again, our proof will
give concrete such problems representing these different degrees.

1 Introduction

Is every super-Turing computer capable of solving the discrete Halting Prob-
lem H? More formally, does each undecidable, recursively enumerable language
P ⊆ N, when serving as oracle to some appropriate Turing Machine M , enable
this MP to decide H? That question of E.L. Post from 1944 was answered
to the negative in 1956/57 independently by Muchnik and Friedberg [8]1.
Devising the finite injury priority sophistication of diagonalization, they proved
the existence of r.e. Turing degrees strictly between those of ∅ and ∅′ = H ;
cf. [21, Chapters V to VII].

While the diagonal language is also based on a mere existence proof, its
reduction to H reveals this as well as many other explicit and practical problems
in automatized software verification undecidable. In contrast, problems like P
are until nowadays only known to exist but have resisted any explicit — not to
mention intuitive — description.

It turns out that for real number problems the situation is quite different.
More precisely, for the R-machine model due to Blum, Shub, and Smale [2,3],
we explicitly present a semi-decidable language (specifically, the set Q of ra-
tionals) and prove it to neither be reducible from the real Halting Problem HR

1 The existence of intermediate Turing degrees that need not to be r.e. follows from a
result by Kleene and Post from 1954, see [21, Chapter VI].
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nor from the set A of algebraic reals. The proof exploits that real computability
theory, apart from logic as in the discrete case, has also algebraic and topological
aspects.

Section 1.2 recalls the basics of real number computation in the BSS model
as well as the recursion-theoretic notions of reducibility and degrees; Section 2
contains the first main result of our work; we show Q A, i.e. the real algebraic
numbers cannot be decided using a BSS oracle machine which has access to
the (undecidable!) set of rationals as oracle set. Section 2.1 proves the ‘3’-part,
Section 2.2 the ‘ ’-part. In Section 3 the results are generalized in order to
get an uncountable number of incomparable semi-decidable problems below the
real Halting problem. We conclude in Section 4 with some general remarks on
hypercomputation.

1.1 Related Work

Our contribution adds to other results, indicating that many (separation-) prob-
lems which seem to require non-constructive (e.g., diagonalization) techniques in
the discrete case, admit an explicit solution over the reals. For instance, a prob-
lem neither in VP nor VNP-complete (provided that VP 	= VNP, of course)
was presented explicitly in [4, Section 5.5].

Cucker’s work [7] is about the Arithmetic Hierarchy over R, that is, degrees
beyond the real Halting Problem HR.

Hamkins and Lewis considered Post’s Problem over the reals for Infinite
Time Turing Machines, that is, with respect to arguments x ∈ R given by their
binary expansion and for hypercomputers performing an ordinal number of steps
like 1, 2, 3, . . . , n, . . . ,ω,ω + 1, . . . , 2ω,. . . They showed in [9] that in this model,
• for sets of reals the answer is “no” just like in the classical discrete case.
• for single real numbers x on the other hand, considered as sets Lx ⊆ N of
those indices where the binary expansion of x has a 1, there is no undecidable
degree below that of the Halting Problem (of Infinite Time Machines). Post’s
Problem therefore is to be answered to the positive in this latter setting!

The existence of different complexity degrees below NP in the BSS model
both for real and for complex numbers was studied in a series of papers [1,6,16]
and related to classical results (cf. [13,20]) for the Turing model.

1.2 The BSS Model of Real Number Computation

This section summarizes very briefly the main ideas of real number computability
theory. For a more detailed presentation see [3].

Essentially a (real) BSS-machine can be considered as a Random Access
Machine over R which is able to perform the basic arithmetic operations at unit
cost and which registers can hold arbitrary real numbers.

Definition 1. ([2])

a) Let Y ⊆ R∞ :=
⊕

k∈N Rk, i.e. the set of finite sequences of real numbers.
A BSS-machine M over R with admissible input set Y is given by a finite set
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I of instructions labeled by 1, . . . , N. A configuration of M is a quadruple
(n, i, j, x) ∈ I × N × N × R∞ . Here, n denotes the currently executed in-
struction, i and j are used as addresses (copy-registers) and x is the actual
content of the registers of M . The initial configuration of M ′s computation
on input y ∈ Y is (1, 1, 1, y) . If n = N and the actual configuration is
(N, i, j, x), the computation stops with output x .
The instructions M is allowed to perform are of the following types :
computation: n : xs ← xk ◦n xl, where ◦n ∈ {+,−,×,÷} or

n : xs ← α for some constant α ∈ R .
The register xs will get the value xk ◦n xl or α, respectively. All other
register-entries remain unchanged. The next instruction will be n + 1;
moreover, the copy-register i is either incremented by one, replaced by 0,
or remains unchanged. The same holds for copy-register j.

branch: n: if x0 ≥ 0 goto β(n) else goto n+ 1. According to the answer
of the test the next instruction is determined (where β(n) ∈ I). All other
registers are not changed.

copy: n : xi ← xj, i.e. the content of the “read”-register is copied into the
“write”-register. The next instruction is n+1; all other registers remain
unchanged.

b) A set A ⊆ R∞ is a decision problem or a language.We call a function f : A→
R∞ (BSS-) computable iff it is realized by a BSS machine over admissible
input set A. Similarly, a set A ⊆ R∞ is decidable in R∞ iff its characteristic
function is computable. It is semi-decidable (synonymously: r.e.) iff there is
a BSS algorithm which takes inputs from R∞ and halts precisely on the
elements belonging to A.

c) A BSS oracle machine using an oracle set B ⊆ R∞ is a BSS machine with an
additional type of node called oracle node. Entering such a node the machine
can ask the oracle whether a previously computed element x ∈ R∞ belongs
to B. The oracle gives the correct answer at unit cost.

Several further concepts and notions now emerge as in the discrete setting.

Definition 2. The real Halting Problem HR is the following decision problem.
Given the code cM ∈ R∞ of a BSS machine M together with an x ∈ R∞, does
M terminate its computation on input x?

Both the existence of such a coding for BSS machines and the undecidability
of HR in the BSS model were shown in [2].

Next, oracle reductions are defined as usual.

Definition 3. a) A real number decision problem A is reducible to another
decision problem B if there is a BSS oracle machine that decides membership
in A by using B as oracle set. We denote this reducibility by A 3 B and
write A B when A is reducible to B, but B is not reducible to A.

b) If A is reducible to B and vice versa, we write A ≡ B. This defines equiva-
lence classes {B : A ≡ B} among real number decision problems called (real)
Turing degrees or BSS degrees.
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c) If none of two problems is reducible to the other, they are said to be incom-
parable.

The main question treated in this paper is: Are there incomparable Turing
degrees strictly between the degree ∅ of decidable problems in R∞ and the degree
∅′ of the real Halting problem HR?

2 Explicit Solution to Post’s Problem over the Reals

Consider the sets Q of all rational numbers and A of all algebraic reals, that is,
of real zeros of polynomials with rational coefficients, only. Q is obviously semi-
decidable (upon input of x ∈ R, simply check for all pairs of integers r, s ∈ Z
whether x = r/s) but well-known not to be decidable [10,17]. In fact the same
holds for A: Given x ∈ R, try for all polynomials p ∈ Q[X ] whether p(x) = 0.

Our first main result states that, even given oracle access to Q, A remains
undecidable: A 
 Q. Since oracle access to the Halting Problem HR of BSS
machines allows to decide A by querying whether the above search for p ∈ Q[X ]
terminates, Q thus constitutes an explicit example of a real BSS degree strictly
between the decidable one and that of the Halting Problem.

We also show Q 3 A.

Theorem 4. In the BSS model of real number computation it holds Q A. In
particular, transcendence is not semi-decidable even when using Q as an oracle.

This result is, in spite of the notational resemblance to Q � A, by no means
obvious.

2.1 Deciding Q in R by Means of an A–Oracle

In this section, we prove

Lemma 5. Q 3 A.

Proof. Consider some input x ∈ R. By querying the A-oracle, identify and rule
out the case that x is not in A (and hence not in Q either). So it remains to
distinguish x ∈ Q from x ∈ A \ Q. To this end, calculate d := deg(x) according
to Lemma 6 below and test whether d = 1 (x ∈ Q) or d ≥ 2 (x 	∈ Q). ��

Recall that the degree of an algebraic a ∈ R is defined to be

deg(a) = dimQ Q(a) = [Q(a) : Q],

that is, the dimension of the rational extension field generated by a. It is well
known, for example in [14, Proposition V.§1.2], that finite field extensions
M ⊂ K ⊂ L satisfy

[L : M ] = [L : K] · [K : M ] . (1)

A non-algebraic number is transcendental, the set of which we denote by T.
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Lemma 6. The function deg : A → N, a ;→ deg(a) is BSS computable.

We point out that the restriction of deg to algebraic numbers is essential here;
in other words: While for reasons of mathematical convenience one can define
deg(x) := ∞ for transcendental x, a BSS machine cannot compute it.

Proof. Exploit that an alternative yet equivalent definition for deg(a) is given
by the degree of a minimal polynomial of a, that is, of an irreducible non-zero
p ∈ Z[X ] with p(a) = 0 [14, Proposition V.§1.4].

Therefore we enumerate all non-zero p ∈ Z[X ] and, for each one, plug in a to
test whether p(a) = 0. If so, check p for irreducibility — a property in classical
NP by virtue of [5] and thus BSS decidable. If this test succeeds as well, return
deg(p) and terminate; otherwise continue with the next p ∈ Z[X ]. ��

Remark 7. An alternative way for deciding irreducibility in Z[X ] — although
not within nondeterministic polynomial time — proceeds as follows:

Given p ∈ Z[X ] of degree n− 1, choose some n arbitrary distinct arguments
x1, . . . , xn ∈ Z and multi-evaluate yi := p(xi). Observe that, if q ∈ Z[X ] is a
non-trivial divisor of p, then zi := q(xi) divides yi for each i = 1, . . . , n. This
suggests to go through all (finitely many) choices for (z1, . . . , zn) ∈ Zn with
zi|yi, to calculate the interpolation polynomial q ∈ Q[X ] to data (xi, zi) and
check whether its coefficients are integral.

2.2 Undecidability of A in R with Support of a Q–Oracle

In this section, we prove A 
 Q.
The undecidability of A without further oracle assistance follows similarly to

that of Q from a continuity argument, observing that each, A and Q as well as
their complements, are dense in R. In fact, algebraic numbers remain dense even
when restricting to arbitrary high degree:

Lemma 8. Let x ∈ R, ε > 0, and N ∈ N.
Then, there exists an algebraic real a of deg(a) = N with |x− a| < ε.

Proof. Take some arbitrary algebraic real b of degree N , such as b := 21/N . Since
Q is dense in R < y := x − b, there exists some rational r ∈ Q with |r − y| < ε.
Then a := r + b has the desired property. ��

Of course, total discontinuity does not prevent a problem to be BSS de-
cidable under the support of a Q–oracle any more as, for example, Q now is
decidable. More precisely a putative algorithm might try distinguishing alge-
braic from transcendental reals by mapping a given x through some rational
function f ∈ R(X), then querying the oracle whether the value f(x) is rational
or not, and proceeding adaptively depending on the answer.

The following observation basically says that in any sensible such approach,
for transcendental x, f(x) will be irrational rather than rational.

Lemma 9. Let f : dom(f) ⊆ R → R be analytic and non-constant, T ⊆ dom(f)
uncountable. Then, f maps some x ∈ T to a transcendental, that is, f(x) 	∈ A.
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Proof. Consider an arbitrary y ∈ A; by uniqueness of analytic functions [19,
Theorem 10.18], f can map at most countably many different x ∈ dom(f) to
that single value y. Hence, if f(x) ∈ A for all x ∈ T , f−1(A) =

⋃
y∈A f

−1({y})
is a countable union of countable sets and thus countable, too — contradicting
the prerequisite that T ⊆ f−1(A) is uncountable. ��

So it remains the case of an algorithm trying to map algebraic x to rationals
f(x) and transcendental x to irrational f(x). The final ingredient formalizes the
intuition that this approach cannot distinguish transcendentals from algebraic
numbers of sufficiently high degree:

Proposition 10. Let f ∈ R(X), f = p/q with polynomials p, q of deg(p) < n,
deg(p) < m. Let a1, . . . , an+m ∈ dom(f) be distinct real algebraic numbers with
f(a1), . . . , f(an+m) ∈ Q.

a) There are co-prime polynomials p̃, q̃ of deg(p̃) < n, deg(q̃) < m with co-
efficients in the algebraic field extension Q(a1, . . . , an+m) such that, for all
x ∈ dom(f) = {x : q(x) 	= 0} ⊆ R, it holds f(x) = f̃(x) := p̃(x)/q̃(x).

b) Let d := maxi deg(ai). Then f(x) 	∈ Q for all transcendental x ∈ dom(f) as
well as for all x ∈ A of deg(x) > D := dn+m ·max{n− 1,m− 1}.

Notice that p and q themselves in general do not satisfy claim a); e.g. p = π · p̃
and q = π · q̃.
Proof. a) Without loss of generality take p and q to be co-prime. Let yi := f(ai).
The idea is to solve the rational interpolation problem for (ai, yi). Already know-
ing that is has a solution (namely p, q) avoids many of the difficulties discussed
in [15].

More precisely, observe that the coefficients p0, . . . , pn−1, q0, . . . , qm−1 ∈ R of
p and q satisfy the homogeneous (n+m)×(n+m)-size system of linear equations

⎛⎜⎜⎜⎝
1 a1 a2

1 . . . a
n−1
1 −y1 −y1a1 . . . −y1am−1

1
1 a2 a2

2 . . . a
n−1
2 −y2 −y2a2 . . . −y2am−1

2
1 a3 a2

3 . . . a
n−1
3 −y3 −y3a3 . . . −y3am−1

3
...

...
...

. . .
...

...
...

. . .
...

⎞⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

p0
...
pn−1
q0
...
qm−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0 .

In particular, this system has (p0, . . . , qm−1) ∈ Rn+m as non-zero solution.
The coefficients of the matrix live in Q(a1, . . . , an+m). Therefore, Gaußian

Elimination yields a (possibly different) non-zero solution (p̄0, . . . , q̄m−1), also
with entries in Q(a1, . . . , an+m). Now apply the Euclidean Algorithm to the
thus obtained polynomials p̄, q̄ and calculate their greatest common divisor h̄
which, again, has coefficients in Q(a1, . . . , an+m).

Thus, p̃ := p̄/h̄ and q̃ := q̄/h̄ are co-prime polynomials over Q(a1, . . . , an+m)
of deg(p̃) < n and deg(q̃) < m such that p̃ · q coincides with p · q̃ on arguments
a1, . . . , an+m. This implies the latter polynomials of degree less than n + m to
be identical: p̃ · q = p · q̃.
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It follows that q divides both sides; and co-primality of (p, q) in the factorial
ring R[X ] requires that q divides q̃. Similarly, q̃ divides q, yielding q̃ = λq for
some λ ∈ R. Analogously, p̃ = λp for the same λ.

b) Consider x ∈ R with y := f(x) ∈ Q and suppose x is algebraic of deg(x) >
dn+m ·max{n− 1,m− 1} or transcendental. Being, by virtue of a), a zero of the
polynomial p̃ − y · q̃ with coefficients from Q(a1, . . . , an), x lies in an algebraic
extension of the latter field, hence ruling out the case that it is transcendental.
More precisely, the degree of x over Q(a1, . . . , an) is bounded by deg(p̃− y · q̃);
and deg(x), its degree over Q, is at most deg(p̃− y · q̃) · deg(a1) · · · deg(an+m) ≤
max{n− 1,m− 1} · dn+m by Equation (1) — contradiction. ��

We are finally in the position for the

Proof (of Theorem 4). Suppose some BSS algorithm semi-decides T in R with
oracle Q according to Definition 1; in other words, it proceeds by repeatedly
evaluating a given x ∈ R at functions f ∈ R(X) and continuing adaptively
according to whether f(x) is positive/zero/negative and rational/irrational, such
as to terminate iff x ∈ T.

Consider this process unrolled into an (infinite yet countable) Decision Tree,
each internal node u of which is labeled with an according fu ∈ R(X) and has
five successors according to the cases

�

�

�

�
0>fu(x) ∈ Q

�

�

�

�
0>fu(x) 	∈ Q

�

�

�

�
0 = fu(x)

�

�

�

�
0<fu(x) ∈ Q

�

�

�

�
0<fu(x) 	∈ Q

with leafs corresponding to terminating computations, that is, to x ∈ T. Observe
that the sets Tv of x ∈ T terminating in leaf v give rise to a partition of T. In
fact, the at most countably many leafs — as opposed to T having cardinality of
the continuum — require that Tv is uncountable for at least one v.

Consider the path leading from the root to that leaf. W.l.o.g. it contains
no branches of type “0 = fu(x)” nor of type “fu(x) ∈ Q” that are answered
“yes”; for if it does, then the uncountable set Tv of transcendentals x passing
through this branch implies that fu is constant (Lemma 9) and node u thus
is dispensable. By possibly changing from +fu to −fu, we may finally suppose
that every branch on the path to leaf v is of type 0 < fu(x).

Summarizing, Tv 	= ∅ is the set of exactly those x ∈ R satisfying 0 < fu(x) 	∈
Q for the (finitely many) internal nodes u on the path from the root to v; in
particular, Tv ⊆ dom(fu). Now take some t ∈ Tv ⊆ R. Due to continuity of
rational functions, there exists ε > 0 such that fu(x) > 0 on all nodes u on
that path for any x ∈ R satisfying |x− t| < ε. In particular, fu(a) > 0 holds for
infinitely many algebraic numbers a of unbounded degree according to Lemma 8.
Since by presumption, none of them completes the (terminating) computational
path to leaf v, they must branch off somewhere, that is, satisfy fu(a) ∈ Q for
some of the finitely many nodes u. However by Proposition 10b), each single
fu can sort out only algebraics of degree up to some finite D = D(u) — a
contradiction. ��



474 K. Meer and M. Ziegler

3 More Undecidable and Incomparable Real Degrees

A further achievement of the works of Friedberg and Muchnik was the proof
of existence of incomparable r.e. degrees below the Halting problem. In this
section, we extend the used techniques to establish in the real case explicit such
problems.

More precisely, we shall construct natural incomparable subsets of A. They
are given as certain algebraic, infinite extensions of Q obtained by adjunction of
all n-th roots of a fixed prime.

Here, we shall explicitly construct two incomparable problems, only. However,
it will then be obvious from the presentation that an uncountable number of
incomparable real Turing degrees exist.

3.1 Some Auxiliary Results from Algebra

Let P := {2, 3, 5, 7, . . .} denote the set of prime numbers. We define the following
infinite algebraic extensions of Q:

Q√
2 := Q({2 1

p |p ∈ P}) and Q√
3 := Q({3 1

p |p ∈ P}),

where the corresponding roots are taken as the smallest positive real that is such
a root. Thus, Q√

2 results from Q by field adjunction of all p-th roots of 2, p ∈ P.
It is easy to see that [Q√

2 : Q] = ∞ and [Q√
3 : Q] = ∞. In order to apply the

techniques from Section 2 we need the following two results.

Theorem 11. Let n ∈ P and let k be a field. If a ∈ k is not the n-th power of
an element in k, then the field extension k( n

√
a) has degree n over k.

Proof. See [14], Chapter 6, Theorem 9.1.

We would like to guarantee that the elements 2
1
p , p ∈ P do not only have

degree p over Q, but as well over Q√
3 (and vice versa for elements 3

1
p and Q√

2).
In view of the previous theorem it thus suffices to show that 2

1
p 	∈ Q√

3. Though
we strongly assume this to be known we could not find a suitable reference;
therefore we add a proof.

Lemma 12. For all p ∈ P it holds 2
1
p 	∈ Q√

3. Similarly, 3
1
p 	∈ Q√

2 for all

p ∈ P. Thus [Q√
3(2

1
p ) : Q√

3] = p and [Q√
2(3

1
p ) : Q√

2] = p for all p ∈ P.

Proof. Suppose to the opposite that 2
1
p ∈ Q√

3. Then 2
1
p is already element

of a finite extension of Q with elements 3
1
2 , 3

1
3 , . . . , 3

1
q for some q ∈ P. Define

N :=
∏
i∈P
i≤q

i; it follows that 2
1
p ∈ Q(3

1
N ). We can now proceed almost as in the

classical proof of irrationality of
√

2. Suppose 2
1
p has a representation as f(3

1
N )

g(3
1
N )

for some polynomials f, g ∈ Z[x] such that the integer coefficients of f and g



An Explicit Solution to Post’s Problem over the Reals 475

have 1 as their joint greatest common divisor and such that the occurring powers
of 3

1
N are non-integral. The usual arguments together with p > 1 result in the

contradiction that 2 divides all those coefficients. The final claim now follows
from Theorem 11. ��

Since any rational can be incorporated into any minimal polynomial of an
element in Q√

2 over Q√
3 it follows

Corollary 13. Let n ∈ N and let x ∈ Q√
3; for each ε > 0 there are infinitely

many y ∈ Q√
2 of degree at least n over Q√

3 such that |x− y| < ε.

3.2 Existence of Incomparable Degrees

The results from the previous subsection allow to generalize our results to obtain

Theorem 14. The sets Q√
2 and Q√

3 are incomparable.

To prove the theorem we need the following generalization of Proposition 10.

Proposition 15. Let f ∈ R(X), f = p
q with polynomials p, q of degree less

than n and m, respectively. Let a1, . . . , an+m ∈ Q√
2 ∩ dom(f) be distinct with

f(ai) ∈ Q√
3.

a) There are co-prime polynomials p̃, q̃ of deg(p̃) < n, deg(q̃) < m with coeffi-
cients in the algebraic field extension Q√

3(a1, . . . , an+m) such that, for all
x ∈ dom(f) = {x : q(x) 	= 0} ⊆ R, it holds f(x) = f̃(x) := p̃(x)/q̃(x).

b) Let d be the maximal degree of an ai over the field Q√
3. Then f(x) 	∈ Q√

3
for all transcendental x ∈ dom(f) as well as for all x ∈ Q√

2 of degree
> D := dn+m ·max{n− 1,m− 1} over Q√

3.

Proof. Follows the same way as Proposition 10. ��

Proof (of Theorem 14). We only fill in the missing arguments for showing Q√
2 	3

Q√
3. Incomparability then follows obviously from that proof.
Assume M to be a machine semi-deciding R\Q√

2 by means of an Q√
3-oracle.

Follow the proof of Theorem 4 to obtain in just the same way a leaf v together
with the related path set Tv ⊆ R \ Q√

2. Since Tv is uncountable it contains
a transcendental x and in each neighborhood of x by virtue of Lemma 12 and
Corollary 13 elements of Q√

2 of arbitrarily high degree over the field Q√
3. Thus,

applying Proposition 15 there exist elements in Q√
2 that are branched along v,

contradicting the assumed semi-decidability of R \Q√
2. ��

As an easy consequence of the above proof we obtain the related result for
other extensions of Q such as Q√

p for p ∈ P. Clearly, there exist uncountably
many sequences of reals that we could attach to Q in order to get even more
incomparable problems (which, however, may be less explicit than Q√

p). Thus,
we have proven

Theorem 16. There are uncountably many real recursively enumerable Turing
degrees below the real Halting problem. ��



476 K. Meer and M. Ziegler

3.3 Some Open Problems

The previous arguments lead to some other problems concerning the relation
between some natural subsets of R that we consider to be interesting.

For d ∈ N let Ad := {x ∈ A : deg(x) ≤ d} ⊂ R denote the set of algebraic
numbers that have degree at most d over Q.

Problem 1. Is it true that each step in the following chain is strict?

Q 3 A2 3 A3 3 . . . 3 A 3 HR ?

We have defined Ad to consist of numbers of degree less or equal to d but point
out that considering, rather than A2 =: A≤2, the set A=2 := {x ∈ A : deg(x) = 2}
of numbers of degree exactly 2, in fact makes no difference:

Lemma 17. It holds A=2 ≡ A≤2.

Proof. Based on oracle access to A≤2, decide A=2 in R as follows: Upon input of
x ∈ R, query A≤2 to find out whether deg(x) ≤ 2. If not, reject; otherwise x ∈ A
and we may apply Lemma 6 to compute deg(x).

Conversely, given A=2 as an oracle, decide whether x ∈ A≤2 by querying
both x and y := x+

√
2. If at least one of them belongs to A=2, then x is surely

algebraic and thus applicable to Lemma 6. If x, y ∈ R \ A=2, we may reject
immediately because deg(x) < 2 would imply x ∈ Q and thus y = x+

√
2 ∈ A=2.

��

But what about this question for general degrees d ∈ N?

Problem 2. Is it true that for all d ≥ 2 it holds A=d ≡ A≤d ?

Another interesting question kindly pointed out to us by an anonymous referee
would yield, in addition to Q, a vast number of further problems strictly below
HR.

Problem 3. Does HR 3 A ⊆ R∞ imply that A is uncountable?

Currently we do not see such a proof. And even if, the stronger result A 	3 Q
still would remain.

4 Conclusion

We have shown that oracle access to the set of rational numbers Q gives a
BSS machine additional power but still prevents it from solving the real Halting
Problem HR (of BSS machines). In addition we proved that there is an uncount-
able number of incomparable recursively enumerable degrees in the real number
setting.

Our proofs do not rely on the ordering available over the real numbers. Thus
with small corrections (for example a slightly changed definition of the charac-
teristic path in a potential decision tree) it also yields corresponding results over
the complex numbers.
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We close with some (necessarily speculative) remarks concerning the raising
field of super-Turing computation, that is, concerning hypercomputers of var-
ious sorts. While their realizability is questionable and in fact denied by the
Church-Turing Hypothesis, recent works put in turn this hypothesis into ques-
tion [22,11,12]. Since a super-Turing computer capable of solving some problem
P can also solve any L 3 P , hypercomputers for higher (Turing-) degrees are
necessarily more difficult to realize than for lower ones. Therefore, rather than
trying to solve the Halting Problem, it seems more promising to go for some
strictly easier yet undecidable one for a start. Friedberg and Muchnik’s solu-
tion P to Post’s Problem would be a candidate for this approach, were it not for
its inherent non-constructivity. In contrast and over the reals, we have explicitly
revealed Q as an undecidable problem strictly easier than the Halting problem.

One might object that, since ‘Natura non facit saltus ’ according to Leibniz,
the discontinuity inherent in deciding Q in R (i.e., of distinguishing fractions from
general reals) makes an according hypercomputing device physically impossible.
However we point out that for example the Fractional Quantum Hall Effect
(Nobel Prize Physics 1998) shows that nature does exhibit exactly this kind of
discontinuous behavior.
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Abstract. We prove completeness results for twenty-three problems in
semilinear geometry. These results involve semilinear sets given by addi-
tive circuits as input data. If arbitrary real constants are allowed in the
circuit, the completeness results are for the Blum-Shub-Smale additive
model of computation. If, in contrast, the circuit is constant-free, then
the completeness results are for the Turing model of computation. One
such result, the PNP[log]-completeness of deciding Zariski irreducibility,
exhibits for the first time a problem with a geometric nature complete
in this class.

1 Introduction and Main Results

A subset S ⊆ Rn is semilinear if it is a Boolean combination of closed half-spaces
{x ∈ Rn | a1x1 + . . .+ anxn ≤ b}. That is, S is derived from closed half-spaces
by taking a finite number of unions, intersections, and complements.

The geometry of semilinear sets and its algorithmics has been a subject of
interest for a long time not the least because of its close relationship with linear
programming and its applications. This relationship is at the heart of many
algorithmic results on both semilinear geometry and linear programming. It is
also a good starting point to motivate the results in this paper.

Consider the feasibility problem for linear programming. That is, the problem
of deciding whether a system of linear equalities and inequalities has a solution. A
celebrated result by Khachijan [8] states that if the coefficients of these equalities

� A full version of this paper can be obtained at http://www-math.upb.de/agpb
�� Partially supported by DFG grant BU 1371 and Paderborn Institute for Scientific

Computation (PaSCo).
� � � Partially supported by City University SRG grant 7001558.
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and inequalities are integers then this problem can be solved in polynomial time
in the Turing machine model; that is, it belongs to the class P. If the coefficients
are not integers but arbitrary real numbers, the Turing machine model is no
longer appropriate. Instead, we analyze this version of the problem using the
machine model over the real numbers introduced by Blum, Shub and Smale
(the BSS model in the following). While it is not difficult to show that the
linear programming feasibility problem over R is in NPR∩coNPR (this is merely
Farkas’ Lemma), or even that it can be solved in average polynomial time, its
membership to PR (i.e., its solvability in deterministic polynomial time in the
BSS model) remains an open problem. This membership problem has even been
proposed by Smale as one of the mathematical problems for the 21st century [17].

A situation intermediate between the two above is the one in which the
inequalities a1x1 + . . .+anxn ≤ b have integer coefficients ai and real right hand
side b. In this case, the appropriate model of computation is the additive model.
This is a restriction of the BSS model over R where multiplications and divisions
are excluded from the capabilities of the machine. Only additions, subtractions
and comparisons may be performed. The rephrasing of a well known result by
Tardos [18] shows that the feasibility problem for a system of linear inequalities
of the above mixed type is solvable in Padd.1

Equalities and inequalities of the mixed type we just described are not as
rare as they may appear at a first glance. They naturally occur in the defining
equations of semilinear sets given in succinct representation. Here, a semilinear
set is given by an additive decision circuit (a more precise development follows
in Section 2): a point x ∈ Rn is in the set if and only if the circuit returns 1 with
input x. Since additive circuits are natural input data for additive machines one
may wonder about the complexity of the feasibility problem CSatadd for semi-
linear sets in succinct representation. This problem consists of deciding whether
the semilinear set S given by an additive circuit is nonempty. As it turns out,
this problem is NPadd-complete [2]. This is in contrast with the result by Tardos
mentioned above and is explained by the fact that an additive circuit of size
O(n) can describe a semilinear set defined with O(2n) linear inequalities.

The completeness result for CSatadd is not an isolated fact. It was recently
shown [3] that several other problems for semilinear sets in succinct represen-
tation are complete in some complexity class. Notably, to decide whether the
dimension of such a set is at least a given number is also NPadd-complete, to
compute its Euler characteristic is FP#Padd

add -complete, and to compute any of its
Betti numbers is FPARadd-complete.

One of the goals of this paper is to further expand the catalogue of com-
plete problems in semilinear geometry. We will show completeness for twenty
three problems in this domain. These results, together with the previous results
mentioned above, draw an accurate landscape of the difficulty of different prob-

1 The reader may have noticed that we use the subscript “add” for complexity classes
in the additive model, the subscript “R” for those in the unrestricted BSS model,
and no subscript at all for those in the Turing model. In addition, to emphasize the
latter, we use sanserif fonts.
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lems in semilinear geometry providing, at the same time, examples of natural
complete problems for many of the complexity classes defined in the additive
model.

A final remark is relevant. If an additive circuit has no constant gates (other
than those with associated constant 0 or 1) it is said to be constant-free. Such a
circuit can be described by means of a binary string and thus be taken as input
by ordinary Turing machines. In this way, all problems considered in this paper
have a discrete version fitting the classical complexity setting.

By checking our proofs one can see that all our completeness results hold
for these discrete versions with respect to the corresponding discrete complexity
classes.

We next briefly describe our main results. The precise definition of some
concepts (e.g., Zariski topology) will be given later on this paper. The following
list should give, however, an idea of the results we obtain. We consider the
following problems related to topological properties of semilinear sets:

EAdhadd (Euclidean Adherence) Given a decision circuit C with n input gates and a
point x ∈ Rn, decide whether x belongs to the Euclidean closure of the semilinear
set SC ⊆ Rn described by C .

EClosedadd(Euclidean Closed) Given a decision circuit C , decide whether SC is
closed under the Euclidean topology.

EDenseadd(Euclidean Denseness) Given a decision circuit C with n input gates,
decide whether SC is dense in Rn.

Unboundedadd (Unboundedness) Given a decision circuit C with n input gates,
decide whether SC is unbounded in Rn.

Compactadd (Compactness) Given a decision circuit C , decide whether SC is com-
pact.

Isolatedadd (Isolatedness) Given a decision circuit C with n input gates and a point
x ∈ Rn, decide whether x is isolated in SC .

ExistIsoadd (Existence of Isolated Points) Given a decision circuit C with n input
gates, decide whether there exists x ∈ Rn isolated in SC .

#Isoadd (Counting Isolated Points) Given a decision circuit C , count the number
of isolated points in SC .

LocDimadd (Local Dimension) Given a decision circuit C , a point x ∈ SC and an
integer d ∈ N, decide whether dimx SC ≥ d.

LocContadd (Local Continuity) Given an additive circuit C with n input gates and
a point x ∈ Rn, decide whether the function FC computed by C is continuous at x
(for the Euclidean topology).

Contadd (Continuity) Given an additive circuit C , decide whether FC is continuous
(for the Euclidean topology).

Surjadd (Surjectivity) Given an additive circuit C , decide whether FC is surjective.

#Discadd (Counting Discontinuities) Given an additive circuit C , count the number
of points in Rn where FC is not continuous for the Euclidean topology.

Reachadd (Reachability) Given a decision circuit C with n input gates, and two
points s and t in Rn, decide whether s and t belong to the same connected com-
ponent of SC .

Connectedadd (Connectedness) Given a decision circuit C , decide whether SC is
connected.
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Torsionadd (Torsion ) Given a decision circuit C , decide whether the homology of
SC is torsion free.

ZAdhadd (Zariski Adherence) Given a decision circuit C with n input gates and a
point x ∈ Rn, decide whether x belongs to the Zariski closure of SC .

ZClosedadd(Zariski Closed) Given a decision circuit C , decide whether SC is closed
under the Zariski topology.

ZDenseadd(Zariski Denseness) Given a decision circuit C with n input gates, decide
whether SC is Zariski dense in Rn.

Irradd(Zariski Irreducibility) Given a decision circuit C , decide whether the Zariski
closure of SC is affine.

#Irradd (Counting Irreducible Components) Given a decision circuit C , count the
number of irreducible components of SC .

#Irr(d)
add (Counting Irreducible Components of Fixed Dimension) Given a decision

circuit C , count the number of irreducible components of SC of dimension d.
#Irr[c]

add (Counting Irreducible Components of Fixed Codimension) Given a decision
circuit C , count the number of irreducible components of SC of codimension c.

#Irr{N}
add (Counting Irreducible Components in Fixed Ambient Space) Given a deci-

sion circuit C with a fixed number N of input gates, count the number of irreducible
components of SC .

Our main results can be summarized in the following table. Here (T) means
that the hardness is for Turing reductions. In what follows, unless specified
otherwise, completeness will always mean completeness with respect to many-
one reductions.

Problems Complete in Discrete version
complete in

EAdhadd, ZAdhadd NPadd NP

EClosedadd, ZClosedadd coNPadd coNP

EDenseadd coNPadd coNP
ZDenseadd NPadd NP

Unboundedadd NPadd NP

Compactadd coNPadd coNP
Isolatedadd coNPadd coNP

LocDimadd NPadd NP
LocContadd , Contadd coNPadd coNP

Irradd P
NPadd[log]
add PNP[log]

ExistIsoadd Σ2
add Σ2P

Surjadd Π2
add Π2P

#Isoadd, #Discadd FP
#Padd
add (T) FP#P (T)

#Irradd, #Irr(d)
add, #Irr[c]

add, #Irr{N}
add FP

#Padd
add (T) FP#P (T)

Reachadd, Connectedadd PARadd (T) PSPACE

We remark that the Zariski topology and irreducible components are natu-
ral concepts studied in algebraic geometry [16]. In particular, we show that the
problem to test irreducibility of a semilinear set given by a constant-free deci-
sion circuit is complete for the class PNP[log]. The latter class was first studied by
Papadimitriou and Zachos [14] and consists of the decision problems that can
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be solved in polynomial time by O(log n) queries to some NP language. Equiv-
alently, PNP[log] can also be characterized as the set of languages in PNP whose
queries are non adaptive, cf. [13, Th. 17.7]. This means that the input to any
query does not depend on the oracle answer to previous queries, but only on the
input of the machine. Several natural complete problems for PNP[log] are known,
see for instance [10,7].

For the problem Torsionadd we prove PARadd-hardness (with respect to
Turing reductions) and membership in EXPadd (PSPACE-hardness and mem-
bership in EXP for its discrete version). This advances towards determining the
complexity of Torsionadd, a question left open in [3, §7]. Also, the PARadd-
completeness of Connectedadd closes a question left open therein.

2 Preliminaries

We next review the notions which will be central in this paper, fixing notations
at the same time. A basic reference (since this paper is an extension of it) is [3].

(1) The Euclidean norm in Rn induces a topology, called Euclidean, in Rn.
We will denote the closure of a subset S ⊆ Rn with respect to the Euclidean
topology by S. Following [16], we define another, coarser, topology in Rn, hereby
restricting us to semilinear sets.

Definition 1. We call a semilinear set S ⊆ Rn Zariski closed if it is a finite
union of affine subspaces of Rn. The Zariski closure of a semilinear set V ⊆ Rn,
denoted by V

Z
, is the smallest Zariski-closed semilinear subset of Rn contain-

ing V .

The use of the words “closed” or “closure” is appropriate: the semilinear
Zariski-closed sets satisfy the axioms of the closed sets of a topology on Rn.

We will use the sign functions sg : R → {−1, 0, 1}, pos : R → {0, 1} defined by
sg(x) = pos(x) = 1 if x > 0, sg(0) = 0, pos(0) = 1, and sg(x) = −1, pos(x) = 0
if x < 0. We extend these functions to Rn componentwise. A quadrant of Rn is
an open subset of Rn of the form {x ∈ Rn | sg(x) = σ} for some σ ∈ {−1, 1}n.

(2) We next recall a few facts concerning additive circuits. Such circuits are
defined in many places [2,3,9]. An additive circuit is a directed acyclic graph
whose nodes are of one of the following types: input, output, constant, addition,
substraction, and selection. The first four types of node have an obvious seman-
tics; selection nodes have four inputs v, a, b, c and return a if v > 0, b if v = 0
and c otherwise.

An additive circuit C with n input nodes and m output nodes computes a
function FC : Rn → Rm. A decision circuit C is an additive circuit with exactly
one output node that is preceded by a selection node with a, b, c ∈ {0, 1}. Such
a circuit computes a function FC : Rn → {0, 1} and decides the semilinear set
SC := {x ∈ Rn | FC (x1, . . . , xn) = 1}. We say that SC is given in succinct
representation.
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Definition 2. Let C be a decision circuit with r selection gates and n input
gates. A path γ of C is an element in {−1, 0, 1}r. We say that x ∈ Rn follows
a path γ of C if, on input x and for all j, the result of the test performed at the
j-th selection gate is γj (i.e., γj = −1 if the tested value v satisfies v < 0, γj = 0
if v = 0, and γj = 1 if v > 0). The leaf set of a path γ is defined as

Dγ = {x ∈ Rn | input x follows the path γ of C }.

A path γ is accepting if and only if we have FC (x) = 1 for one (and hence for
all) x ∈ Dγ. We denote by AC the set of accepting paths of the circuit C .

(3) We finally recall some notions of computation and complexity. In this
paper we use additive machines (i.e., BSS machines over R which do not multiply
or divide) as described in [2, Ch. 18] or in [9]. For these machines, versions of
the usual complexity classes are defined yielding the classes Padd, NPadd, #Padd,
PARadd, EXPadd, and FPadd (note that the additive version of polynomial space
requires instead polynomial parallel time). An overview of these classes and their
properties can be found in [2, Ch. 18] and [3].

We already defined the problem CSatadd and observed that it is NPadd-
complete. The following two problems are also NPadd-complete:

CBSadd (Circuit Boolean Satisfiability) Given a decision circuit C with n input gates,
decide whether there exists x ∈ {0, 1}n such that C (x) = 1.

Dimadd (Dimension) Given a decision circuit C with n input gates and k ∈ N, decide
whether the dimension of SC is greater than or equal to k.

For Dimadd this follows easily from [3, Theorem 5.1] (there k is assumed to
be fixed, but the proof carries over easily). Note that CBSadd deals with a digital
form of nondeterminism since it requires the circuit to be satisfied by a point in
{0, 1}n.

The NPadd-completeness of CBSadd allows us to use a problem with a discrete
flavor to prove completeness results in the additive setting. More generally, a
series of results starting in [6], continued in [3], and relying on Meyer auf der
Heide [11], allow us to use standard discrete problems as basis for reductions
yielding Turing-hardness results in the additive setting.

We finish these preliminaries with a lemma gathering several facts which will
be used later on in many proofs.

Lemma 1. Given a decision circuit C , two paths γ, γ′ of C , and a point x ∈ Rn,
the following tasks can be performed by an additive machine in time polynomial
in the size of C :

(i) Decide whether Dγ is nonempty.

(ii) Decide whether x ∈ Dγ, or decide whether x ∈ Dγ
Z
.

(iii) Compute dimDγ.

(iv) Decide whether Dγ
Z ⊆ Dγ′

Z
.
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3 Some Proofs

In this section we give some proofs to convey an idea of our techniques.

3.1 Basic Topology

Proposition 1. The problem ZDenseadd is NPadd-complete.

Proof. Note that SC
Z

=
⋃

γ∈AC
Dγ

Z
. Therefore, S

Z

C = Rn if and only if

there exists γ ∈ AC such that Dγ is Zariski dense in Rn. Since Dγ
Z

is the affine
hull of Dγ (if Dγ 	= ∅), we see that Dγ is Zariski dense in Rn if and only if
dimDγ = n. Hence, S is Zariski dense in Rn if and only if dimS = n. The
membership to NPadd now follows from the fact that Dimadd is in NPadd.

For proving the hardness, we reduce CBSadd to ZDenseadd. Assume C is a
decision circuit with n input gates. Consider a circuit C ′ computing the function

GC : Rn → {0, 1}, x �→ FC (pos(x)). (1)

The mapping C �→ (C ′, 0) reduces CBSadd to ZDenseadd. Indeed, if SC ∩
{0, 1}n = ∅ then SC ′ = ∅ as well and hence 0 	∈ SC ′ . On the other hand, if
SC ∩ {0, 1}n 	= ∅ then SC ′ contains at least one quadrant and hence 0 ∈ SC ′ .

��
The following result is proved with similar arguments.

Proposition 2. The problem ExistIsoadd is Σ2
add-complete.

3.2 Zariski Irreducibility

Irreducibility is a natural concept in algebraic geometry [16]. For semilinear sets
this notion can be defined as follows.

Definition 3. A semilinear set S ⊆ Rn is Zariski-irreducible if its Zariski clo-
sure is an affine space. The Zariski closure of a semilinear set S ⊆ Rn is a non-
redundant finite union of affine subspaces A1, . . . , As of Rn. We call A1, . . . , As

the irreducible components of S
Z

and call the sets S ∩ Ai the irreducible com-
ponents of S.

We extend the definition of PNP[log] to the additive setting in the obvious
way thus obtaining the class PNPadd[log]

add . Again, it is not difficult to show that
this class can also be characterized as the set of decision problems solvable in
additive polynomial time with non adaptive queries to NPadd.

The main result of this section is the following.

Theorem 1. The problem Irradd is PNPadd[log]
add -complete.

We first prove the upper bound.
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Lemma 2. The problem Irradd is in PNPadd[log]
add .

Proof. Consider the following algorithm:

input C with n input gates
for k = −1, . . . , n (independently) do

(i) check whether dimSC ≥ k

(ii) check whether ∀γ, γ′ ∈ AC (dimDγ′ = k ⇒ Dγ
Z ⊆ Dγ′

Z
)

let d = max{k : (i) holds }
if (ii) holds for k = d then ACCEPT else REJECT

This algorithm decides whether SC is Zariski irreducible. Indeed, the dimen-
sion d of SC is computed, and the query (ii) for k = d checks whether for all
leaf sets Dγ′ of dimension d we have SC

Z
= Dγ′

Z
. This holds if and only if SC

is Zariski irreducible.
Since Dimadd is known to be in NPadd [3], (i) is a query to a problem in

NPadd. By Lemma 1, (ii) is a query to a problem in coNPadd. Since the queries
are nonadaptive and the algorithm runs in polynomial time, the set Irradd is in
PNPadd[log]

add . ��

Lemma 3. (i) Let S1 ⊆ Rn and S2 ⊆ Rm be two non-empty semilinear sets.
Then, S1 × S2 ⊆ Rn+m is irreducible if and only if both S1 and S2 are
irreducible.

(ii) A nonempty union of reducible semilinear sets is reducible. ��

We turn now to the proof of the lower bound in Theorem 1.

Lemma 4. The problem Irradd is PNPadd[log]
add -hard under many-one reductions.

Proof. Assume L is a problem in PNPadd[log]
add . Then we may assume that L is

decided by a polynomial time additive machine asking non adaptively a poly-
nomial number of queries to the NPadd-complete problem ZDenseadd. Hence,
there exists a polynomial p and, for all n ∈ N, a polynomial size circuit C n with
n + p(n) input gates and a family of polynomial size circuits C n

1 , . . . , C n
p(n) with

n input gates, such that, for x ∈ Rn, x is in L if and only if FC n(x, s) = 1, where
s = (s1, . . . , sp(n)) denotes the sequence of oracle answers for the input x, that
is si = 1 if the output of C n

i on input x is in ZDenseadd and si = 0 otherwise.
Thus the circuits C n

i compute the inputs to the oracle queries and C n performs
the final computation deciding the membership of x to L, given the sequence s
of oracle answers.

The output En
i of C n

i on input x is an input to ZDenseadd. Thus En
i is a

(description of a) decision circuit defining a semilinear set, which we denote by
Si ⊆ Rr(n). (Without loss of generality, we may assume that all these sets lie in
a Euclidean space of the same dimension r(n) > 1 and that all the circuits En

i

use the same number of selection gates q(n) > 1.) We denote by Ai the set
of accepting paths of En

i . Moreover, for γ ∈ Ai, we denote by Dγi ⊆ Si the
corresponding leaf set, and write ∂Dγi for its Euclidean boundary.
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The reduction (1) from the proof of Proposition 1 that reduces CBSadd to
ZDenseadd produces either a Zariski dense or an empty set. Moreover, the leaf
sets produced by this reduction are, up to boundary points, quadrants of Rr(n).
Taking this into account, we may therefore assume without loss of generality that
Si is either empty or Zariski dense in Rr(n), for all x ∈ Rn and all i. Moreover,
we may assume that (recall r(n) > 1)

Si 	= ∅ =⇒
⋃

γ∈Ai
∂Dγi is reducible. (2)

Our goal is to reduce L to Irradd. Thus we have to compute from x ∈ Rn, in
polynomial time, a decision circuit defining a semilinear set Ω such that x ∈ L iff
Ω is irreducible. We will consider x ∈ Rn as fixed and suppress it notationally. To
simplify notation, we will write p := p(n), q := q(n), r := r(n) for fixed x ∈ Rn.

The set Ω will be a set of tuples (u, y, a) in the Euclidean space Π := Rq ×
(Rr)p×Rp. To convey an idea of the intended meaning, we call u ∈ Rq selection
gate vector, y = (y1, . . . , yp) ∈ (Rr)p oracle vector, and a ∈ Rp oracle answer vec-
tor. A selection gate vector u induces a discrete vector γ := sg(u) ∈ {−1, 0, 1}q,
which describes a possible path of one of the circuits En

i . An oracle answer vector
a induces a bit vector α := pos(a) ∈ {0, 1}p, which describes a possible sequence
of oracle answers. The set Ω will be a finite union of product sets of the form
U × Y1 × · · · × Yp ×A ⊆ Π , where U ⊆ Rq, Yi ⊆ Rr, and A ⊆ Rp are semilinear
sets. Note that, by Lemma 3, a nonempty product set is irreducible iff all U,Yi, A
are irreducible and nonempty.

Let z be a fixed point in Rr (for instance the origin). Recall that s ∈ {0, 1}p

denotes the sequence of oracle answers for the fixed input x. We define the subsets
Ti := Si ∪ {z} ⊆ Rr, for which we make the following important observation:

si = 1 ⇐⇒ Si
Z

= Rr ⇐⇒ Ti
Z

= Rr,

si = 0 ⇐⇒ Si = ∅ ⇐⇒ Ti
Z

= {z}.
(3)

We define the set Ω ⊆ Π as the one accepted by the following algorithm:

input (u, y,a) ∈ Rq × (Rr)p × Rp

compute γ := sg(u) ∈ {−1, 0, 1}q , α := pos(a) ∈ {0, 1}p

(I) case (∀i yi ∈ Ti) ∧ (∃i ai = 0) ACCEPT
(II) case (FCn(x, α) = 1) ∧ (∀i yi ∈ Ti) ∧ ∃j

(
αj = 0 ∧ γ ∈ Aj ∧ yj ∈ ∂Dγj

)
ACCEPT

(III) case (FCn(x, α) = 1) ∧ ∀i
(
(αi = 0 =⇒ yi = z) ∧ (αi = 1 =⇒ yi ∈ Si)

)
ACCEPT
else REJECT.

It is easy to see that an additive circuit formalizing the above algorithm can
be computed from the given x ∈ Rn in polynomial time by an additive machine.
(Use that a description of the circuits C n, C n

i can be computed from n by an
additive machine in polynomial time.)

To prove the lemma, it is sufficient to show the following assertion:

x ∈ L ⇐⇒ Ω is irreducible. (4)
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In order to show this we are going to analyze the set Ω. We define

ΩI = {(u, y, a) ∈ Π | (u, y, a) satisfies Case (I)}

and similarly ΩII and ΩIII. Note that ΩII is not the set of (u, y, a) accepted by
the step (II) of the algorithm. We have Ω = ΩI ∪ ΩII ∪ ΩIII, but this union is
not necessarily disjoint. It is obvious that ΩI is reducible.

We introduce some more notation needed for analyzing the above algorithm.
Consider the following subset

Y := {α ∈ {0, 1}p | FC n(x,α) = 1}

of possible oracle answer sequences leading to acceptance. Note that s ∈ Y iff
x ∈ L. Moreover, define for α ∈ Y the following set of indices

J(α) := {j | αj = 0 ∧ sj = 1}

and for j ∈ J(α) let Ωj
II(α) denote the set of (u, y, a) ∈ Π that satisfy the

condition of Case (II) with the α and j specified. Similarly, we define ΩIII(α).
We have

Ω = ΩI ∪
⋃

α∈Y,j∈J(α)

(
Ωj

II(α) ∪ΩIII(α)
)
. (5)

The following claim settles one direction of (4).

Claim A. If x ∈ L, then Ω is irreducible.

In order to prove this claim, note that ΩIII(s) = Rq×F1×· · ·×Fp×pos−1(s),
where we have put Fi := Si if si = 1 and Fi := {z} otherwise. This implies that

ΩIII(s)
Z

= Rq × T1
Z × · · · × Tp

Z × Rp =: Θ,

since pos−1(s)
Z

= Rp. The product set Θ is irreducible by Lemma 3(i) and (3).
It is clear that ΩI∪ΩII ⊆ Θ. Moreover, we claim that ΩIII(α) ⊆ Θ for all α ∈ Y.
Indeed, assume (u, y, a) ∈ ΩIII(α). If we had si = 0 and αi = 1 for some i, then
we would have yi ∈ Si, which contradicts the fact that Si = ∅ due to si = 0.
This shows that (u, y, a) ∈ Θ.

Altogether, using (5), we have shown that Ω ⊆ Θ. Hence Ω
Z

= Θ, which
finishes the proof of Claim A.

Claim B. For α ∈ Y \ {s}, j ∈ J(α), the set Ωj
II(α) ∪ΩIII(α) is reducible.

Claim B implies the other direction of the assertion (4). Indeed, assume
x 	∈ L. Then s 	∈ Y and according to (5), Ω is a union of reducible sets and thus
reducible.

It remains to prove Claim B. Let πj : Π → Rr, (u, y, a) → yj be the projection
onto the jth factor. In order to show that a subset Ω′ ⊆ Π is reducible, it is
sufficient to prove that πj(Ω′) is reducible, since irreducibility is preserved by
linear maps. Hence it is enough to show that πj

(
Ωj

II(α) ∪ ΩIII(α)
)

is reducible.
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Taking into account (2) and the fact that j ∈ J(α) implies Sj 	= ∅, it suffices to
prove that ⋃

γ∈Aj

∂Dγj ⊆ πj

(
Ωj

II(α) ∪ΩIII(α)
)
⊆ {z} ∪

⋃
γ∈Aj

∂Dγj.

The second inclusion is clear since j ∈ J(α) and thus αj = 0.
For the first inclusion, assume yj ∈ ∂Dγj for some γ ∈ Aj . Choose a ∈ Rp and

u ∈ Rq such that pos(a) = α and sg(u) = γ. Then (u, z, . . . , z, yj, z, . . . , z, a) ∈
Ωj

II(α), where the yj is at the jth position. Hence yj ∈ πj

(
Ωj

II(α) ∪ ΩIII(α)
)
.

This finishes the proof of Claim B and completes the proof of the lemma. ��

3.3 Problems of Connectivity

The proof of the following result is inspired by a similar result for graphs in [4].

Theorem 2. The problem Connectedadd is PARadd-complete under Turing
reductions. The same holds when restricted to problems in R3.

In [3] it was shown that, for all k ∈ N, the problem to compute the kth Betti
number of the semilinear set given by an additive circuit is FPARadd-complete
and the question was raised whether this holds also for the problem of computing
the torsion subgroup of the homology group Hk(X ; Z). We give a partial answer
to this question by showing that this problem is in fact FPARadd-hard. Hereby
we focus on the problem Torsionadd of deciding whether the torsion subgroups
Tk(SC ) of a semilinear set SC given by a circuit vanish for all k, that is, whether
all the homology groups Hk(SC ; Z) are free abelian groups. The question of the
corresponding upper bound remains open, but at least we show that the problem
is in EXPadd.

Theorem 3. The problem Torsionadd is PARadd-hard under Turing reduc-
tions and belongs to EXPadd.

For the lower bound proof, we start with the reduction in the proof of Theo-
rem 2, which reduces any language L in PSPACE to Connectedadd by mapping
a bit string x to a decision circuit describing a semilinear set S′

n ⊆ R3 such
that S′

n is connected iff x ∈ L. Then we extend this construction by modifying
the space S′

n × [0, 1] roughly by building in a Moebius strip and identifying the
boundary lines of the resulting space.

4 Open Problems

Let the semilinear set SC be given by a constant-free decision circuit C . We
remark that the problem to test simple connectivity of SC is undecidable. This
follows by reducing to it the group triviality problem, which is known to be
undecidable [1,15].

We propose as open problems to determine the complexity of the following
topological properties: Is SC is a topological manifold? Is SC contractible?
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Abstract. In this paper, we investigate the problem of finding acyclic
subhypergraphs in a hypergraph. First we show that the problem of de-
termining whether or not a hypergraph has a spanning connected acyclic
subhypergraph is NP-complete. Also we show that, for a given K > 0,
the problem of determining whether or not a hypergraph has an acyclic
subhypergraph containing at least K hyperedges is NP-complete. Next,
we introduce a maximal acyclic subhypergraph, which is an acyclic sub-
hypergraph that is cyclic if we add any hyperedge of the original hyper-
graph to it. Then, we design the linear-time algorithm mas to find it,
which is based on the acyclicity test algorithm designed by Tarjan and
Yannakakis (1984).

1 Introduction

Hypergraphs [2,3] have developed as one of the mathematical tools for character-
izing the queries in Database Theory [1,7,14,15,16] in 1980’s. Today, it is known
that the hypergraphs are related to the several problems for Artificial Intelli-
gence, for example, constraint satisfaction, clause subsumption, theory revision,
abductive explanation, machine learning, data mining, and so on [5,6,9,11,12].

The acyclicity, which is not only defined on hypergraphs but also extended to
several related problems, is the property that makes some intractable problems
tractable [4,5,6,9,10]. For example, while the evaluation problem for conjunctive
queries on databases is NP-complete in general, it is LOGCFL-complete if a
conjunctive query is acyclic [9]. Furthermore, while the clause subsumption is
NP-complete in general, it is also LOGCFL-complete if a clause is acyclic [9],
and, while the minimum condensation is not polynomial-time approximable un-
less NP=ZPP, it is solvable in polynomial time if a clause is acyclic [4]. Here, the
problem of determining whether or not a hypergraph (and the related concept)
is acyclic is solvable in linear time [15,16] and in symmetric log space [9].
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One direction to use the advantage for the acyclicity is to formulate the ex-
tended concept of the acyclicity. Hypergraphs with bounded tree-width, bounded
query-width and bounded hypertree-width are examples of such a formulation
[4,10]. In all cases, the acyclicity is corresponding to having the tree-width 1,
the query-width 1 or the hypertree-width 1, and the related several problems on
them are tractable with respect to the bounded width.

In this paper, we pay our attention to another direction to use the advantage
for the acyclicity, that is, finding acyclic subhypergraphs in a connected and pos-
sibly cyclic hypergraph. If we can find them efficiently, then it is possible to give
some approximate solution efficiently of the problem for the original hypergraph,
by solving the problem for acyclic subhypergraphs. Unfortunately, in this paper,
we show the following intractability of finding acyclic subhypergraphs.

For a hypergraph H = (V, E) and a subhypergraph H ′ = (V ′, E ′) of H , we
say that H ′ is spanning w.r.t. H if V ′ = V . Furthermore, we say that a hy-
pergraph H is connected if, for each u, v ∈ V , there exists a path from u to v
in H , that is, a sequence v0E1v1 · · ·Envn such that u = v0, v = vn, Ei ∈ E ,
Ei−1 	= Ei and vi−1, vi ∈ Ei for each i (1 ≤ i ≤ n). The spanning connected
acyclic subhypergraph of a connected hypergraph is an extension of a spanning
tree of a connected graph. While a connected graph always has a spanning tree
and we can find it in polynomial time, we show that the problem of determining
whether or not a connected hypergraph has a spanning connected acyclic sub-
hypergraph is NP-complete. Furthermore, we show that, for a given K > 0, the
problem of determining whether or not a hypergraph has an acyclic subhyper-
graph containing at least K hyperedges is NP-complete.

Next, in order to avoid such intractability, we introduce a maximal acyclic
subhypergraph. Here, for a hypergraphH = (V, E) and an acyclic subhypergraph
H ′ = (V ′, E ′) of H , H ′ is maximal if there exists no hyperedge E ∈ E − E ′ such
that H ∪ {E} is acyclic.

Tarjan and Yannakakis [15] have designed the acyclicity test algorithm acy
of determining whether or not a hypergraph is acyclic in linear time. Then, we
can find a maximal acyclic subhypergraph by a generate-and-test method with
acy. However, the time complexity of this method is beyond linear time, because
this method calls acy whenever we add a hyperedge to a current subhypergraph.

Hence, in this paper, by modifying the algorithm acy, we design the algorithm
mas to find a maximal acyclic subhypergraph in linear time.

2 Preliminaries

A hypergraph H = (V, E) consists of a set V of vertices and a set E ⊆ 2V

of hyperedges. For E ⊆ 2V , ||E|| denotes the total size of E , that is, ||E|| =∑
E∈E |E|. For a vertex v ∈ V , the degree of v, denoted by deg(v), is the number

of hyperedges containing v, that is, |{E ∈ E | v ∈ E}|. For a hyperedge E ∈ E ,
v(E) denotes the set of vertices contained by E. For a hypergraph H = (V, E)
and a hyperedge E, we sometimes denote H ∪ {E} = (V ∪ v(E), E ∪ {E}) and
H − {E} = (V, E − {E}). Furthermore, we sometimes denote H by E alone.
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Fig. 1. Hypergraphs H1, H2 and H3 in Example 1

For a hypergraph H = (V, E) and u, v ∈ V , a path from u to v in H is a
sequence v0E1v1 · · ·Envn such that u = v0, v = vn, Ei ∈ E , Ei−1 	= Ei and
vi−1, vi ∈ Ei for each i (1 ≤ i ≤ n). A hypergraph H is connected if there exists
a path from u to v for each u, v ∈ V .

Next, we introduce the acyclicity for hypergraphs.

Definition 1. For a hypergraph H = (V, E), the GYO-reduct GYO(H) [4,9,15]
of H is the hypergraph obtained from H by repeatedly applying the following
rules, called GYO-reduction, as long as possible:

1. Remove hyperedges that are empty or contained in other hyperedges.
2. Remove vertices that appear in ≤ 1 hyperedges.

Definition 2. We say that a hypergraph H is acyclic if GYO(H) is an empty
hypergraph, i.e., GYO(H) = (∅, ∅), and cyclic otherwise.

Definition 2 follows from one of the equivalent conditions that a hypergraph is
acyclic [1]. Other equivalent conditions are presented in [1].

Example 1. In Figure 1, H1 is cyclic but H2 and H3 are acyclic. In contrast to
graphs, note that cycles contained completely in some hyperedge are removed by
GYO-reduction (H2) and a hypergraph with double hyperedges is acyclic (H3).

Let H = (V, E) and H1 = (V1, E1) be hypergraphs. We say that H1 is a
subhypergraph of H if V1 ⊆ V and E1 ⊆ E . Also we say that H1 is and an
acyclic subhypergraph of H if H1 is a subhypergraph of H and H1 is acyclic.
Furthermore, we say that a subhypergraph H1 of H is spanning if V1 = V .

Finally, we introduce the following NP-complete problem.

Monotone 1-in-3 3SAT [8]
Instance: A set X of variables and a collection C of monotone 3-

clauses over X .
Question: Is there a truth assignment to X that makes exactly one

literal of each clause in C true?

For an instance of Monotone 1-in-3 3SAT, in this paper, we refer {x1, . . . , xn}
to X , {c1, . . . , cm} to C and xj1 ∨ xj2 ∨ xj3 to cj for each j (1 ≤ j ≤ m).
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3 Intractability of Finding Acyclic Subhypergraphs

In this section, first we investigate the problem of finding a spanning connected
acyclic subhypergraph. Note that, while a connected graph always has a spanning
tree and we can find it in polynomial time, a connected hypergraph does not
always have a spanning connected acyclic subhypergraph as follows.

Example 2. Consider the cyclic hypergraphH1 in Example 1. Then,H1 has three
connected acyclic subhypergraphs {X1,X2}, {X1,X3} and {X2,X3}, but none
of them is spanning, so H1 has no spanning connected acyclic subhypergraph.

Hence, we investigate the problem Spanning Connected Acyclic Sub-
hypergraph.

Spanning Connected Acyclic Subhypergraph
Instance: A connected hypergraph H = (V, E).
Question: Does H have a spanning connected acyclic subhypergraph?

Theorem 1. Spanning Connected Acyclic Subhypergraph is NP-
complete.

Proof. It is obvious that Spanning Connected Acyclic Subhypergraph is
in NP, so we reduce Monotone 1-in-3 3SAT to it.

First construct a set of vertices V as follows:

V = {w} ∪ {uj, vj , vj1, vj2, vj3 | 1 ≤ j ≤ m}.

Next, for a 3-clause cj and a variable xi, construct hyperedges as follows.

E(cj) = {vj1, vj2, vj3},
E(xi) = {w} ∪ {uj, vjk | xi = xjk ∈ cj (k = 1, 2, 3)}.

Then, let E be {E(cj) | 1 ≤ j ≤ m} ∪ {E(xi) | 1 ≤ i ≤ n} and H a hypergraph
(V, E). Note that H is cyclic, |V | = 5m + 1 and |E| = m + n.

For example, consider the following instance of Monotone 1-in-3 3SAT.

X = {x1, x2, x3, x4, x5},

C =
{

c1 c2 c3 c4
x1 ∨ x2 ∨ x3, x1 ∨ x3 ∨ x4, x1 ∨ x4 ∨ x5, x3 ∨ x4 ∨ x5

}
.

Then, H is constructed as Figure 2.
For C and H , the following statements hold.

1. uj ∈ E(xi) if and only if xi occurs in cj (1 ≤ i ≤ n, 1 ≤ j ≤ m).
2. For vertices vjk, vjl ∈ E(cj) (k, l = 1, 2, 3, k 	= l), if vjk ∈ E(xi) and vjl ∈
E(xi′ ), then a hypergraph {E(cj),E(xi),E(xi′ )} is cyclic.

3. A spanning connected subhypergraph of H always contains all of the E(cj)
(1 ≤ j ≤ m) as hyperedges, because of the existence of vj .
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Fig. 2. A hypergraph H in the proof of Theorem 1

Suppose that C is satisfiable by a = (a1, . . . , an) that makes exactly one
literal of each clause in C true. Then, let E ′ be {E(c1), . . . ,E(cm)} ∪ {E(xi) |
ai = 1} andH ′ a spanning hypergraph (V, E ′). Note that E ′ contains a hyperedge
E(cj) containing vertices vj , vj1, vj2 and vj3 for each j (1 ≤ j ≤ m). Also E ′
contains a hyperedge E(xi) containing a vertex w. Since E ′ contains E(xi) such
that ai = 1 and by the statement 1, E(xi) contains some uj (1 ≤ j ≤ m). By
the supposition, the above assignment a makes exactly one literal of cj true, so
all of the E(xi) such that ai = 1 (1 ≤ i ≤ n) contains all of the uj (1 ≤ j ≤ m).

Furthermore, for each E(cj) (1 ≤ j ≤ m), there exists exactly one E(xij )
(1 ≤ ij ≤ n) such that aij = 1, and E(cj) and E(xij ) commonly share exactly
one vertex. By the statement 2, H ′ is acyclic.

Since vj , vjk ∈ E(cj) (k = 1, 2, 3), there exists a path from vj to vjk. Since
the existence of E(xij ) containing w and uj, there exists a path from vj or vjk

to w or uj. Since these statements hold for each j (1 ≤ j ≤ m), H ′ is connected.
Conversely, suppose that H has a spanning connected acyclic subhypergraph

H ′ = (V, E ′). By the statement 3, E(cj) ∈ E ′ for each j (1 ≤ j ≤ m).
Since H ′ is spanning and connected, and by the statement 1, for each j

(1 ≤ j ≤ m), there exists an ij (1 ≤ ij ≤ n) such that uj ∈ E(xij ). By the
statement 2 and since H ′ is acyclic, just E(xij ) is a hyperedge that shares a
vertex in E(cj). Hence, E ′ contains E(xij ) for each j (1 ≤ j ≤ m).

Let a be (a1, . . . , an) such that ai = 1 if E(xi) ∈ E ′; ai = 0 otherwise. Since
E(xij ) ∈ E ′ and E(cj) ∈ E ′ share just a vertex vjk (k = 1, 2 or 3) for each j, a
is the assignment that makes exactly one literal of each clause in C true. ��

Theorem 1 holds even if no hyperedge is contained by another hyperedge. Fur-
thermore, we can show Theorem 1 even if the degree of every vertex is at most
2, by replacing a hyperedge Ei with (Ei−{v})∪{vi} and by adding a hyperedge
{v1, . . . , vn, v} for every v such that deg(v) = n(> 2) and v ∈ Ei (1 ≤ i ≤ n) in
the proof of Theorem 1.

Next, we investigate the problem Maximum Acyclic Subhypergraph.

Maximum Acyclic Subhypergraph
Instance: A connected hypergraph H = (V, E) and an integer K > 0.
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Question: Does H have an acyclic subhypergraph H ′ = (V ′, E ′) such
that |E ′| ≥ K?

Theorem 2. Maximum Acyclic Subhypergraph is NP-complete.

Proof. It is obvious that Maximum Acyclic Subhypergraph is in NP, so we
reduce Monotone 1-in-3 3SAT [8] to it.

First construct a set of vertices V as follows:

V = {uj, vj1, vj2, vj3, wj1, wj2, wj3 | 1 ≤ j ≤ m} ∪ {ai0, ai1, bi | 1 ≤ i ≤ n}.

Next, for a 3-clause cj and a variable xi, construct hyperedges as follows.

E = {ai0, ai1 | 1 ≤ i ≤ n}, E(cj) = {vj1, vj2, vj3}, E(xi) = {ai0, ai1},
E1(cj) = {vj1, vj2}, E2(cj) = {vj2, vj3}, E3(cj) = {vj1, vj3},
F1(cj) = {wj1, wj2}, F2(cj) = {wj2, wj3}, F3(cj) = {wj1, wj3},
E0(xi) = {ai0, bi, wjk | xi = xjk ∈ cj (k = 1, 2, 3)},
E1(xi) = {ai1, bi, uj , vjk | xi = xjk ∈ cj (k = 1, 2, 3)}.

Then, let E be the following set of hyperedges:

E = {E(cj),E1(cj),E2(cj),E3(cj), F1(cj), F2(cj), F3(cj) | 1 ≤ j ≤ m}
∪{E(xi),E0(xi),E1(xi) | 1 ≤ i ≤ n} ∪ {E}.

Let H be a hypergraph (V, E). Note that H is cyclic, |V | = 7m + 3n and |E| =
7m + 3n + 1. Also let K be 5m + 2n + 1.

For example, consider the following instance of Monotone 1-in-3 3SAT.

X = {x1, x2, x3, x4, x5},

C =
{

c1 c2 c3 c4
x1 ∨ x2 ∨ x3, x1 ∨ x3 ∨ x4, x1 ∨ x4 ∨ x5, x3 ∨ x4 ∨ x5

}
.

Then, H is constructed as Figure 3.
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Fig. 3. A hypergraph H in the proof of Theorem 2
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E0(xj1), E0(xj2), E0(xj3) E0(xj1), E0(xj2), E1(xj3)

E0(xj1), E1(xj2), E1(xj3) E1(xj1), E1(xj2), E1(xj3)

Fig. 4. The relationship between hyperedges E, E(xjk), E0(xjk), E1(xjk), E(cj),

Ek(cj) and Fk(cj) (1 ≤ k ≤ 3)

For C and H , let cj be a clause xj1 ∨ xj2 ∨ xj3 ∈ C for each j (1 ≤ j ≤ m).
Then, consider the relationship between hyperedgesE, E(xjk), E0(xjk), E1(xjk),
E(cj), Ek(cj) and Fk(cj) (1 ≤ k ≤ 3). Suppose that an acyclic subhypergraph
H ′ of H always contains E, E(xjk) and a hyperedge either E0(xjk) or E1(xjk)
for each k (1 ≤ k ≤ 3). Also see Figure 4.

1. If H ′ contains hyperedges E0(xj1), E0(xj2) and E0(xj3), thenH ′ can contain
4 hyperedges E(cj), E1(cj), E2(cj) and E3(cj). Note that H ′ can contain no
Fk(cj) (1 ≤ k ≤ 3), because {E0(xj1),E0(xj2),E0(xj3), Fk(cj)} is cyclic.

2. If H ′ contains hyperedges E0(xj1), E0(xj2) and E1(xj3), thenH ′ can contain
5 hyperedges E(cj), E1(cj), E2(cj), E3(cj) and F2(cj) (or F3(cj)) as follows.
Since E0(xj1) contains wj1 and E0(xj2) contains wj2, we can add a hyperedge
either F2(cj) = {wj2, wj3} or F3(cj) = {wj1, wj3} toH ′ preserving acyclicity.

3. If H ′ contains hyperedges E0(xj1), E1(xj2) and E1(xj3), thenH ′ can contain
3 hyperedges F1(cj), F2(cj) and E1(cj) (or E3(cj)). For the case selecting
E1(cj), note that H ′ can contain none of E2(cj), E3(cj) and E(cj), be-
cause {E1(xj2),E1(xj3),E1(cj),E2(cj)}, {E1(xj2),E1(xj3),E1(cj),E3(cj)}
and {E1(xj2),E1(xj3),E(cj)} are cyclic.

4. If H ′ contains hyperedges E1(xj1), E1(xj2) and E1(xj3), then H ′ can con-
tain 2 hyperedges Fk(cj) and Fk′ (cj) for 1 ≤ k < k′ ≤ 3. Here, H ′ can
contain neither E(cj) nor Ek(cj) for each k (1 ≤ k ≤ 3), because both
{E1(xj1),E1(xj2),E1(xj3),E(cj)} and {E1(xj1),E1(xj2),E1(xj3),Ek(cj)}
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are cyclic. Also H ′ cannot contain Fk′′ (cj) such that k′′ 	= k and k′′ 	= k′,
because {F1(cj), F2(cj), F3(cj)} is cyclic.

Note that the above statements depend on the number of 1 in aj1, aj2 and aj3
for Eaj1 (xj1), Eaj2 (xj2) and Eaj3 (xj3).

Suppose that C is satisfiable by the truth assignment a = (a1, . . . , an) that
makes exactly one literal of each clause in C true. Then, for each j (1 ≤ j ≤ m),
one of aj1, aj2 and aj3 is 1 and others are 0. Consider the hyperedges Eaj1 (xj1),
Eaj2 (xj2) and Eaj3(xj3). By the above statements and since one of aj1, aj2 and
aj3 is 1 and the others are 0, there exists exactly one kj (kj = 1, 2, 3) such that
the following subhypergraph is acyclic.{

E,E(xj1),E(xj2),E(xj3),Eaj1(xj1),Eaj2 (xj2),Eaj3 (xj3),
E(cj),E1(cj),E2(cj),E3(cj), Fkj (cj)

}
.

Let E ′ be the following set of hyperedges and H ′ a hypergraph (V, E ′).
{E} ∪ {E(cj),E1(cj),E2(cj),E3(cj), Fkj (cj) | 1 ≤ j ≤ m}

∪ {Eai(xi),E(xi) | 1 ≤ i ≤ n}.

Then, it holds that |E ′| = K and H ′ is acyclic.
Conversely, suppose that H has an acyclic subhypergraph H ′ = (V, E ′) such

that |E ′| ≥ K. In order to preserve acyclicity, we must select K hyperedges as:

1. at least 2n + 1 hyperedges in {E} ∪ {E0(xi),E1(xi),E(xi) | 1 ≤ i ≤ n}, and
2. at least 5m hyperedges in

⋃m
j=1 ({E(cj) ∪ {Ek(cj), Fk(cj) | k = 1, 2, 3}).

For the selection 1, both {E} ∪ {E0(xi),E1(xi) | 1 ≤ i ≤ n} and {E(xl)} ∪
{E0(xi),E1(xi) | 1 ≤ i ≤ n} (1 ≤ l ≤ n) are cyclic, while {E}∪{E(xi),Eai(xi) |
1 ≤ i ≤ n} is acyclic, where ai is either 0 or 1 (1 ≤ i ≤ n). By the existence of
H ′, we must select E, E(xi) and Eai(xi) for each i (1 ≤ i ≤ n, ai = 0, 1), of
which number is 2n + 1.

For the selection 2, consider cj = xj1 ∨ xj2 ∨ xj3 for each j (1 ≤ j ≤ m).
Then, we must select E(cj), E1(cj), E2(cj), E3(cj) and Fkj (cj) for some kj

(1 ≤ kj ≤ 3). Furthermore, we must select Eaj1(xj1), Eaj2 (xj2) and Eaj3 (xj3)
such that exactly one of aj1, aj2 and aj3 is 1 and the others are 0. By the
existence of H ′, such aj1, aj2 and aj3 always exist for each j (1 ≤ j ≤ m).

Let a be a truth assignment (a1, . . . , an) such that Eai(xi) ∈ E ′. By the
supposition of aj1, aj2 and aj3 for each j (1 ≤ j ≤ m), the assignment a makes
exactly one literal of each clause in C true. ��

Theorem 2 holds even if the degree of every vertex is at most 4. On the other
hand, it remains open whether or not Maximum Acyclic Subhypergraph is
NP-complete if no hyperedge is contained by another hyperedge.

4 Finding Maximal Acyclic Subhypergraphs

In order to avoid the intractability as shown in the previous section, in this
section, we introduce a weaker concept of a maximal acyclic subhypergraph.
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Definition 3. Let H = (V, E) be a hypergraph and H ′ = (V ′, E ′) an acyclic
subhypergraph of H . We say that H ′ is maximal if there exists no hyperedge
E ∈ E − E ′ such that H ′ ∪ {E} is acyclic.

In order to find a maximal acyclic subhypergraph, first we introduce the
algorithm acy on hypergraphs designed by Tarjan and Yannakakis [15]. The al-
gorithm acy(H) for a hypergraphH = (V, E) consists of the restricted maximum
cardinality search (rmcs , for short) step and the testing step.

In the rmcs step, acy(H) labels β- and γ-values for hyperedges and β-value
for vertices, while searching for neighbors. Here, s denotes the number of vertices
already searched. Initially set β(E) = γ(E) = β(v) = s(E) = 0 for each E ∈ E
and v ∈ V . For the i-th iteration (i ≥ 1) of the rmcs step, suppose that s(E)
is maximum. Then, acy(H) selects E and sets the values β(E), γ(E), s(E) and
β(v) for each v ∈ E such that β(v) = 0 as follows.

β(E) =
{

i if there exists a vertex v ∈ E such that β(v) = 0,
0 otherwise,

γ(E) = max{β(v) | v ∈ E}, s(E) = −1, β(v) = i.

Furthermore, for such a v and F ∈ E such that v ∈ F , acy(H) sets s(F ) to
s(F ) + 1, and if s(F ) = |F |, then acy(H) sets s(F ) to −1. This iteration is
repeated until there exists a hyperedge E ∈ E such that s(E) ≥ 0. Here, s(E)
means the following formula.

s(E) =
{
|{v ∈ E | β(v) > 0}| ∃v ∈ E such that β(v) = 0,
−1 ∀v ∈ E,β(v) > 0.

In the testing step, acy(H) checks whether or not, for each E ∈ E and F ∈ E
such that γ(E) = β(F ), it holds that {v ∈ E | β(v) < γ(E)} ⊆ F , that is, for
each v ∈ E, if β(v) < γ(E) then v ∈ F . If there exist E and F not satisfying
this, then acy(H) returns ‘cyclic’ and halts. Otherwise, acy(H) returns ‘acyclic.’

The correctness of the testing step is due to the following theorem.

Theorem 3 (Tarjan & Yannakakis [15]). For every hypergraph H = (V, E),
H is acyclic if and only if for each 1 ≤ i ≤ |E| and each E ∈ E such that
γ(E) = i, it holds that {v ∈ E | β(v) < i} ⊆ F , where F ∈ E and β(F ) = i.

Furthermore, the time complexity of the algorithm acy is represented as follows.

Theorem 4 (Tarjan & Yannakakis [15]). For a hypergraph H = (V, E), the
algorithm acy(H) determines whether or not H is acyclic in O(|V |+ ||E||) time.

Example 3. Consider two hypergraphs H1 and H2 in Figure 1 in Example 1,
whereH1 is cyclic but H2 is acyclic. Then, Figure 5 describes the results applying
H1 andH2 to the algorithm acy. Note that acy(H1) describes the result selecting
X1, X2 and X3 in this order, and acy(H2) describes the result selecting first X1.

Furthermore, by using the above labeling, we can construct an elimination
tree [4,9,15] for an acyclic hypergraph. Let H = (V, E) be an acyclic hyper-
graph. Then, the elimination tree T is constructed as (E , {(E, F ) | γ(E) =
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acy(H1) acy(H2)

Fig. 5. The results applying H1 and H2 in Example 1 to acy . Here, the label of hyper-

edges denotes (β-value,γ-value) and the label of vertices denotes the β-value

β(F )}). For example, the elimination tree of the hypergraph in Figure 5 (right)
is ({X1,X2,X3,X4}, {(X1,X4), (X2,X4), (X3,X4)}).

By using a simple generate-and-test method with the algorithm acy, we can
find a maximal acyclic subhypergraph in O(|E|(|V | + ||E||)) time, because it
calls acy running in O(|V | + ||E||) time whenever we add a hyperedge to a
subhypergraph. In order to find a maximal acyclic subhypergraph efficiently, we
design the algorithm mas described as Figure 6, by modifying the algorithm acy .
The algorithm mas is an extension of Prim’s algorithm [13] to find the minimum
spanning tree by searching for the neighbors in Graph Theory.

Here, for a hypergraph (V, E) and E ∈ E , the weight w(E) of E is defined as∑
v∈E deg(v), and the average weight aw (E) of E is defined as w(E)

|E| .

procedure mas(H) /* H = (V, E) : connected hypergraph */
1 foreach E ∈ E do (β(E), γ(E), s(E)) ← (0, 0, 0);
2 foreach v ∈ V do β(v) ← 0;
3 H ′ ← ∅; i ← 0;
4 while ∃E ∈ E such that s(E) ≥ 0 do begin
5 select E ∈ {E ∈ E | s(E) is maximum} such that aw(E) is maximum;
6 i ← i + 1; s(E) ← −1; β(E) ← i; γ(E) ← max{β(v) | v ∈ E};
7 foreach v ∈ E such that β(v) = 0 do begin
8 β(v) ← i;
9 foreach F ∈ E such that (s(F ) ≥ 0 ∧ v ∈ F ) do

10 s(F ) ← s(F ) + 1;
11 if s(F ) = |F | then
12 s(F ) ← −1; γ(F ) ← max{β(v) | v ∈ F}; H ′ ← H ′ ∪ {F};
13 end /* foreach */
14 select F ∈ H ′ such that γ(E) = β(F ); /* F is unique if there exists */
15 if {v ∈ E | β(v) < γ(E)} ⊆ F then /* H ′ ∪ {E} is acyclic */
16 H ′ ← H ′ ∪ {E};
17 else /* H ′ ∪ {E} is cyclic */
18 foreach v ∈ E such that β(v) = i do β(v) ← 0;
19 i ← i − 1; β(E) ← −1; γ(E) ← −1;
20 end /* while */
21 return H ′;

Fig. 6. The algorithm mas(H) finding a maximal acyclic subhypergraph of H
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The algorithm mas uses the β- and γ-values of hyperedges, the β-value of
vertices and the number s of vertices already searched, as similar as the algorithm
acy. By updating s, mas always selects hyperedges in the neighbors.

On the other hand, the difference between mas and acy is the statements in
the line 12 and the lines from 18 to 19.

By the line 12, the hyperedge F containing in E is added to H ′. Note that
the setting to γ(F ) in the line 12 is not essential for finding the maximal acyclic
subhypergraph; It is just useful when constructing the elimination tree.

By the lines from 18 to 19, if H ′ ∪ {E} is cyclic, then the labeling of v ∈ E
such that β(v) = i by the current i-th iteration is initialized to 0 and β(E) is
labeled by −1, which means that E is ignored to the line 15 in the j-th iteration
(j > i). Furthermore, for each E ∈ H , β(E) is uniquely determined except the
case that β(E) = −1, which is based on the line 14.

The correctness of the statement in the line 15 is due to Theorem 3. Also we
can replace the statement in the line 15 with the following simple form.

If v ∈ F for each v ∈ E such that β(v) < γ(E) and each F ∈ H ′ such
that γ(E) = β(F ), then H ′ is updated to H ′ ∪ {E}.

Theorem 5. For every hypergraph H = (V, E), the algorithm mas(H) always
finds a maximal acyclic subhypergraph of H in O(|V |+ ||E||) time.

Proof. Let H ′ be the result applying a hypergraph H to the algorithm mas . By
Theorem 3, H ′ is acyclic. By the line 12, for each E ∈ H ′, H ′ also contains each
F ∈ E such that F ⊆ E. Hence, H ′ is maximal.

The running time to initialize is O(|V |+ |E|). Let Ei (1 ≤ i ≤ |E|) be E in the
i-th iteration of while loop. For the i-th iteration of while loop, the running time
is O(|Ei|), so the total running time for while loop is O(

∑m
i=1 |Ei|) = O(||E||).

Hence, the total running time of the algorithm mas is O(|V |+ ||E||). ��

Example 4. Consider the hypergraphs H1 and H2, and their results applying to
mas (described by the solid lines) in Figure 7.

For H1, mas first selects X1, for example, because aw(X1) = aw (X2) =
aw(X3) = 8

3 and aw(X4) = 15
6 . Secondly, mas selects X4 and labels β(v) = 2

for each v ∈ X4 −X1. Then, for the second foreach loop, mas sets γ(X2) and
γ(X3) to 2. Hence, mas returns H1 itself.
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Fig. 7. Hypergraphs H1 and H2 in Example 4 and the results applying them to mas
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For H2, mas first selects X2, for example, because aw(X2) = aw (X3) =
aw(X5) = aw (X6) = 5

2 , aw (X4) = 7
3 and aw (X1) = 2. Secondly, mas selects

X3, because s(X3) = s(X1) = 1, s(Xi) = 0 (i = 4, 5, 6) and aw(X3) > aw(X1).
Thirdly, mas selects X1 and labels (β(X1), γ(X1)) = (3, 2). However, there exists
a vertex v ∈ X1 such that β(v) = 1 < γ(E) = 2 = β(X2) and v 	∈ X2. Hence,
mas does not add X1 to H ′ and labels (β(X1), γ(X1)) = (−1,−1) and β(v) = 0
for each v ∈ X1 − (X2 ∪X3). Hence, mas returns H2 − {X1}.

5 Conclusion

In this paper, we have investigated the problem of finding acyclic subhyper-
graphs in a hypergraph. We have first shown that both the problem Spanning
Connected Acyclic Subhypergraph and Maximum Acyclic Subhyper-
graph are NP-complete. Next, we design the algorithm mas to find a maximal
acyclic subhypergraph in linear time, based on the acyclicity test algorithm acy
designed by Tarjan and Yannakakis [15].

For finding acyclic subhypergraphs, we can formulate the maximization prob-
lems for not only hyperedges discussed in this paper but also vertices. Then, it is
a future work to investigate the complexity and approximability of these prob-
lems. Furthermore, it is a future work to apply acyclic subhypergraphs to several
combinatorial problems for conjunctive queries and clauses.
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Abstract. The minimum traveling salesman problem with distances one and two
is the following problem: Given a complete undirected graph G = (V, E) with
a cost function w : E → {1, 2}, find a Hamiltonian tour of minimum cost. In
this paper, we provide an approximation algorithm for this problem achieving a
performance guarantee of 315

271 . This algorithm can be further improved obtaining
a performance guarantee of 65

56 . This is better than the one achieved by Papadim-
itriou and Yannakakis [8], with a ratio 7

6 , more than a decade ago. We enhance
their algorithm by an involved procedure and find an improved lower bound for
the cost of an optimal Hamiltonian tour.

1 Introduction

The traveling salesman problem (TSP) is one of the important problems in combinato-
rial optimization. It is well known that, unless P = NP, there can be no efficient (poly-
nomial) approximation algorithm for TSP that achieves some bounded approximation
ratio [9]. However, for the symmetric traveling salesman problem with cost function sat-
isfying triangle inequality (Δ-STSP), it is known that a ratio of 3

2 can be achieved [3].
Improving on this ratio has been a major open problem for almost three decades.

In this paper, we study an interesting further special case ofΔ-STSP, namely, when
the costs on the edges are one or two. More formally, we are given an undirected
complete graph G = (V,E) with cost function, w : E → {1, 2}. Min(1,2)-STSP is
the problem of finding a minimum cost tour which visits every vertex in V exactly
once (Hamiltonian tour). The problem is known to be NP–Hard. Papadimitriou and
Yannakakis [8] show that the problem is MAXSNP-complete. Papadimitriou and Yan-
nakakis [8], in the same paper, provide an approximation algorithm that achieves a per-
formance guarantee of 7

6 . This has remained as the best performance for Min(1,2)-STSP
for more than a decade.

Several other special cases of TSP are studied in the literature. Prominent amongst
them is the asymmetric traveling salesman problem with triangle inequality (Δ-ATSP),
which asks for a directed Hamiltonian tour in a complete digraph with costs on edges,
satisfying triangle inequality. Δ-STSP is a special case of Δ-ATSP. For Δ-ATSP, the
best known approximation algorithm achieves a guarantee of the order of log(n), n
being the number of vertices in the given instance [4,1,6]. For Min(1,2)-ATSP, there is
a 5

4 -factor approximation [2].

M. Liśkiewicz and R. Reischuk (Eds.): FCT 2005, LNCS 3623, pp. 504–515, 2005.
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In this paper, we provide an improved approximation algorithm for Min(1,2)-STSP
with a guarantee of 315

271 . It is the first improvement over the 7
6 -factor approximation

due to Papadimitriou and Yannakakis [8] after a decade. A still better approximation
algorithm with a performance guarantee of 65

56 is possible, but for lack of space we
omit the details. The main contributions of our paper are: an improvement procedure
achieving a better performance guarantee and a better lower bound for the cost of an
optimal Hamiltonian tour.

Though the improvement is little (in terms of approximation factor), the lower
bound that we obtain by our method is significantly better than the usual cycle cover
one and hence there is a suggestion of better performing approximations based on our
lower bound subsequently.

Our algorithm relies on the fact that a minimum cost 4-cycle cover in a graph with
costs on the edges as either one or two, can be computed in O(n3) time [5], as does the
7
6 -algorithm of Papadimitriou & Yannakakis [8]. On the other hand, if we use a mini-
mum cost 3-cycle cover, which can be computed in O(n2.5) time by reduction to maxi-
mum bipartite matching, we get a 31

26 factor, which is still better than the 11
9 factor algo-

rithm due to [8] obtained when they make use of a minimum cost 3-cycle cover as well.

2 Preliminaries

Let G = (V,E) be a complete undirected graph, with a cost function w : E → {1, 2}.
In this section, we discuss the 7

6 -factor approximation algorithm of Papadimitriou and
Yannakakis [8] for Min(1,2)-STSP on the graph G. We use their basic framework and
devise an improved approximation algorithm in the subsequent sections.

Minimum cost 4–cycle cover. A cycle cover of a graph G is a collection of vertex-
disjoint cycles such that every vertex of G is present in a cycle. A 4-cycle cover is a
cycle cover in which the length of every cycle is at least four. A minimum cost 4-cycle
cover is a 4-cycle cover whose cost is the least amongst all 4-cycle covers. In [5], an
algorithm for computing a so-called maximum cardinality simple 2-matching without
3-cycles is given. This algorithm can be used to compute an optimum 4-cycle cover in
graphs with edge costs one and two [7]. Using this algorithm, we compute a minimum
cost 4-cycle cover C.

We normalize it as follows: firstly we may assume that there is only one cycle z
with cost two edges, since we may merge two such cycles without any additional costs.
Secondly, we may assume that for each cost two edge (u, v) of z there is no cost one
edge (v, x) or (u, x) of G for x 	∈ z, since otherwise we may merge the cycle in which
x is present with z at no extra costs. After the normalization, we call the cycle cover
again C and let the cycles of C\{z} be {c1, . . . , cr}. ζ1 is the number of cost one edges
in z, ζ2 the number of cost two edges.

Bipartite graph. We form a bipartite graph B as follows: we have the node set C\{z}
on the one side and V on the other side. There is an edge (c, v) in B if and only if v
does not belong to the cycle c and there is a vertex u ∈ c such that w(u, v) = 1.

Lemma 1 ([8]). B has a matching of cardinality at least r−k′, where k′ is the number
of cost two edges in an optimal TSP tour that visit a cycle from C\{z}.
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Decomposition of functions. We compute a maximum matching M in B. From M , we
compute a function F : C\{z}→ C. We represent F = (C, A) as a directed graph with
(c, c′) ∈ A whenever (c, u) ∈ M and u is a vertex of c′. From the construction of B,
we know that F (c) 	= c for all c ∈ C\{z}.

A c-node of F is a cycle in the cycle cover C. We will use c-nodes to mean cycles
and vertices to mean the vertices of the graph G.

Lemma 2 ([8]). The function F has a spanning subgraph S consisting solely of node-
disjoint trees of height one, paths of length two, and isolated c-nodes, such that every
c-node in the domain of F is not an isolated c-node of S. Such a spanning subgraph S
can be found in polynomial time.

Papadimitriou and Yannakakis build a cycle out of each component of S that spans
the same vertices. Each of these cycles has at least one cost two edge. By breaking
these edges, these cycles can then be patched together to a Hamiltonian tour without
any further extra costs. Then they show that the cost of this tour is at most 7

6 that of an
optimal tour.

Some of the components of S allow a locally better approximation performance.
In the remainder of the work, we develop an enhancement procedure that ensure that
a significant number of components of S have a locally better approximation; thus
yielding an overall improvement.

Definitions and notation. We fix some notation and provide some definitions before
describing our approximation algorithm. A c-root of the spanning subgraph S is a c-
node that is the root of a tree in S. A c-leaf is a leaf of such a tree.

Definition 1. For an edge (c, d) in S where c, d are c-nodes, we can associate a cost
one edge (u, v) inG such that u ∈ c and v ∈ d. This edge will be denoted as ed(c, d) =
(u, v). Moreover, d is the parent of c and we set par(c) = v.

Definition 2. A node v ∈ V is called matched, if it belongs to ed(e) for some edge
e ∈ S. Otherwise, it is called unmatched.

Consider a matched vertex v belonging to a cycle c. Let v = v0, v1, . . . , vj−1 de-
note the vertices of c (in that order). Let i > 0 be the smallest index such that vi is
unmatched. Similarly, let l > 0 be the smallest index such that vj−l is unmatched. We
define M(v) = i + l − 1 i.e., if we divide the vertices of c into contiguous blocks of
matched vertices, then M(v) denotes the length of the block v belongs to. If all vertices
of c are matched, then M(v) = j. For unmatched vertices, we set M(v) = 0.

We introduce the notion of good c-nodes and good c-leaves. In order to speak of left
and right, we give each cycle c1, . . . , cr of C an arbitrarily chosen orientation.

Definition 3. 1. Let c be a c-node that has at least one unmatched vertex. A matched
vertex v of c is called good, if either M(v) is even or M(v) is odd and the vertex to
the right of v is matched. Otherwise v is called bad. If all vertices of c are matched
and the number of vertices of c is even, then all vertices of c are good. If the number
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is odd, we arbitrarily choose one of the vertices of c. This vertex is bad, all other
vertices of c are good.

2. A c-leaf c is called good, if the vertex par(c) is good. Otherwise c is called bad.

For the patching procedure to work properly, the spanning subgraph S and interme-
diate spanning subgraphs obtained from S should have a special form.

Definition 4. A directed graph S as above is valid, if it consists solely of trees with at
least two c-nodes and isolated c-nodes such that

1. for all c-nodes c and d of a tree that are both not the c-root, par(c) 	= par(d),
2. for each c-node c that is neither a c-leaf nor the c-root, par(c) is good, and
3. the parent of each bad c-leaf is the c-root of a tree.

Furthermore, for all edges e of S, ed(e) has cost one in G.

The initial S is valid, if it does not contain any path of length two. As all trees in
S have height one, conditions 2 and 3 in the above definition are trivially fulfilled. So,
the initial S is valid in this case. In a path of length two, the c-node in the middle might
have a vertex that has degree four. If it does not, we can treat it as a tree of height one
by making the c-node in the middle the c-root. If it has a degree four vertex, we also
treat it as a tree of height one: we pretend that one of the two c-leaves is connected to
a vertex (we will call this node virtually matched) of the c-node in the middle that is at
distance two of the vertex it was originally connected to. We will show in Section 5.3
that this does not affect the algorithm.

3 Our Approximation Algorithm

We make progress by successively improving the spanning subgraph S. The idea be-
hind an improvement step can be described as follows: Assume for simplicity that an
optimum TSP tour has cost n, i.e., consists solely of cost one edges. Consider a bad
c-leaf of S. Since an optimum TSP tour has only cost one edges, there is another cost
one edge leaving c (in G). If we connect c via this new edge and remove the old edge
from S, then it may happen that c now is a good c-leaf. As mentioned in the patching
procedure of the algorithm of [8], the extra cost of patching a good c-leaf is lesser than
that of a bad c-leaf.

In a first step, we identify the cases for which one can obtain such an improvement
(see Definition 5). Then we describe the improvement procedure. Finally, we obtain the
approximation algorithm followed by the analysis.

Definition 5. An unmatched vertex v in some c-node c is called improving, if one of
the following conditions is fulfilled:

1. c is an interior c-node and if x is the left neighbour of v in c, then M(x) is odd.
2. c is a c-leaf of a tree with at least three c-nodes and par(c) is not good.
3. c is a c-leaf or c-root of a tree with two c-nodes and v is one of the two neighbours

of the matched vertex of c.
4. c is an isolated c-node.
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Procedure 1. Improvement Procedure
Input: A valid spanning subgraph S of G.
Output: A valid spanning subgraph of G that allows no further improvements and a collection

of edges E′ ⊂ E.
1: while at least one of the following improvement steps is possible do
2: Search for a bad c-leaf c of a tree with at least four c-nodes or an isolated c-node and a

cost one edge (u, v) in G such that u ∈ c, v �∈ c, and v is improving. Restructure S as
described in Lemma 3.

3: Search for a bad c-leaf c of a tree with exactly three c-nodes and a cost one edge (u, v) in
G such that u ∈ c, v �∈ c, and v is improving. If v is in the other c-leaf of the tree, then v
should be a neighbour of the matched vertex. S is restructured as described in Lemma 3.

4: end while
5: while the following improvement step is possible do
6: Search for a c-node c which is the c-root of a tree with at least three c-nodes and a cost one

edge (u, v) in G such that u ∈ c is an unmatched vertex with its left neighbour matched,
v �∈ c, and v ∈ d is improving with d as the c-root of a tree (may be the same tree as c
is in) with at least three c-nodes. Add the edge (u, v) to E′. The two bad leaves that are
connected to the left neighbours of u and v become good.

7: end while
8: return the spanning subgraph S′ obtained and the edge set E′.

With this definition, we give an improvement procedure, Procedure 1. This will be
used as a subroutine by our main approximation algorithm. Lemma 3 shows that the
improvement procedure correctly returns a valid spanning subgraph.

Lemma 3. If S is the initial valid spanning subgraph ofG, then we can find a spanning
subgraph S′ of G such that S′ is a valid subgraph which does not allow any more
improvements.

Proof. We show that at the end of every type of improvement step, the spanning sub-
graph obtained remains valid. For this, we need to be able to identify the current collec-
tion of rooted trees and isolated nodes after each improvement step and verify whether
the properties of a valid subgraph are indeed maintained. We distinguish several cases.
In all the cases, we assume the following: c is a c-node with u ∈ c, v ∈ d, the cost of
(u, v) is one in G and v is improving.

In the first case, c is a bad c-leaf of a tree with at least four c-nodes. If d is an
interior c-node (can be the c-root) with at least one of the neighbours of v matched,
then after the addition of edge (u, v) and removal of the matched edge incident in S at
c, d becomes the new parent of c and c will be a good c-leaf. If d is a bad c-leaf of a tree
with at least three c-nodes, then remove the matched edge incident in S at d, remove the
matched edge incident at c, and add (u, v). Now, c, d form a new tree with two c-nodes.
Arbitrarily choose one of them as the root and the other as its child. On the other hand,
if d is a c-leaf (or a c-root respectively) of a tree with exactly two c-nodes with v being
one of the two neighbours of the matched vertex of d, then by removing the matched
edge incident at c and adding (u, v), d becomes the new c-root of a tree with exactly
three c-nodes with c as a good c-leaf—the other good c-leaf being the old c-root (or the
c-leaf respectively). Finally, if d is an isolated c-node, then again we remove the edge
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Algorithm 2. The Approximation Algorithm
Input: An undirected complete graph G = (V, E) with edge costs as one or two.
Output: A Hamiltonian tour H in G.
1: Compute a minimum cost 4-cycle cover C. Normalize it as described in Section 2.
2: Construct a bipartite graph B as mentioned before and find a maximum matching M in B.
3: Compute a partial function F from M and find a spanning subgraph S of F consisting of

trees of height one, isolated c-nodes and paths of length two. (Lemma 2)
4: Apply Procedure 1 on S to obtain a valid spanning subgraph S′ which does not allow any

further improvements and an edge set E′ ⊂ E.
5: Use the patching procedure described in Lemma 4 to patch the isolated c-nodes, the trees

with two c-nodes, the bad c-leaves, and finally the good c-leaves that did not become good
via an edge in E′.

6: Use the patching procedure described in Lemma 4 to patch the good c-leaves that became
good when inserting an edge into E′.

7: The patching procedure yields a collection of vertex disjoint paths and cycles, each contain-
ing a cost two edge. Break a cost two edge in each cycle and patch the paths arbitrarily to get
a single Hamiltonian cycle H without incurring additional costs.

incident at c and add (u, v) thereby c and d form a tree with exactly two c-nodes. Thus,
in all these subcases, we have maintained the properties of a valid subgraph (please
refer to Definition 4).

Next consider the case when c is a bad c-leaf of a tree with exactly three c-nodes.
Additionally, u ∈ c is adjacent to the matched vertex of c. All the subcases are the same
as above, but the only issue is the case when both c and d are the bad c-leaves of the
same tree. We simply remove the edge incident at d in S, and add (u, v). d becomes the
new c-root of this tree and c and the old c-root are now two good c-leaves.

The final case is the improvement step in the second while-loop. Since in this case
we do not modify the structure of S, the validity of the spanning subgraph trivially
holds. Since only bad leaves become good it cannot be the case that one of the previous
improvement steps is now applicable. ��

Algorithm 2 starts with computing a 4-cycle cover C and a spanning subgraph S
as described in Section 2. Then it invokes Procedure 1 to get a better subgraph S′ and
an additional subset of edges E′. It first patches the isolated c-nodes, the trees with two
c-nodes, the bad c-leaves, and finally the good c-leaves that did not become good via
an edge in E′. Finally, it patches the good leaves that became good by adding an edge
to E′. The patching is described in Lemma 4. This lemma also analyses the cost of the
tour in terms of the following parameters:

1. t denotes the number of trees with two c-nodes.
2. p denotes the number of trees of exactly three c-nodes with two bad c-leaves.
3. b denotes the number of bad c-leaves in trees with at least four nodes.
4. g denotes the number of good c-leaves.
5. s denotes the number of isolated c-nodes.
6. f denotes the number of unmatched vertices of c-roots of all trees whose left neigh-

bour is unmatched. These vertices will be referred to as free vertices.
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Fig. 1. Merging a tree with two c-nodes. The dashed edge may have cost two.

Fig. 2. With the left dashed edge, two good c-leaves are merged. With the right dashed edge, a
bad c-leaf is merged.

Fig. 3. Two good c-leaves joined with an edge from E′ connecting two c-roots

Fig. 4. Left-hand side: Two good c-leaves joined with an edge from E′ that is inside a c-root. (The
c-roots are the cycles in the middle.) We get one big cycle. Right-hand side: Here the patching
produces two cycles. However, both of them have to contain cost two edges.

7. u denotes the number of unmatched vertices in the c-roots of trees whose left neigh-
bour is matched.

8. m denotes the number of matched vertices in the c-roots of trees whose right neigh-
bour is unmatched.
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Lemma 4 (Total Cost). w(H) ≤ n + ζ2 + t + s + 2p+ b+ 1
2g.

Proof. The total cost of the Hamiltonian tour H output by the algorithm is equal to
the cost of the minimum cost 4-cycle cover and then the additional cost involved in
patching the cycles.

If the component is a tree with two c-nodes, we patch the two cycles together as
depicted in Figure 1. The newly formed cycle contains at most one additional cost two
edge, thus we incur extra costs of one per tree yielding total costs of t.

If the component is a single c-node, we just break one edge of the cycle arbitrarily.
This sums up to s.

A good c-leaf is connected, possibly via some interior c-nodes to a c-root. By con-
struction of the improvement procedure, only two vertices of any such interior c-nodes
have degree > 2, i.e., these interior nodes from a chain connecting the c-leaf to the
c-root. Let u be the vertex of the c-root that this chain is attached to. If the c-leaf did not
become good when adding an edge to E′, the neighbour of u is also connected to such
a chain ending in another good c-leaf. We patch these two good c-leaves with one cost
two edge as depicted in Figure 2 (left dashed edge). This give a contribution of one per
two good c-leaves

A bad c-leaf is patched as shown in Figure 2 (right dashed edge). By construction,
bad c-leaves are always connected to the c-root. We get extra costs of one per bad c-leaf.

It remains to patch the good c-leaves that became good when an edge was put into
E′. If such an edge connects to distinct c-roots, then we just patch it as depicted in
Figure 3. But such an edge can also connect two vertices of the same c-root. The con-
figuration shown in Figure 4 (left-hand side) can be easily patched. Patching the con-
figuration on the right-hand side breaks the current cycle into two cycles. (Initially, the
configuration on the right-hand side cannot exist, since improving vertices are always
right to the bad vertices. When cycles get joined this may not be true any longer.) But
both of the two cycles contain weight two edges, therefore no further costs are obtained
when patching them later on to get the Hamiltonian tour. To see that this is the case,
note that if we enter some cycle via some edge from E′ we have to leave it via some
bad leaf, since locally, the order of the vertices is preserved.

Once these patchings are done, the cycles obtained can be patched without further
costs, since each cycle contains a cost two edge. The total extra cost in patching is
s + t + 2p+ b + 1

2g. The cost of C is n + ζ2. ��

4 Number of Isolated c-Nodes

We try to find a better bound for the number of isolated c-nodes of the spanning sub-
graph S′ in terms of σ, the number of times an optimal tour TOPT visits z. Here, TOPT

is an optimal tour which visits z the least number of times amongst all optimal tours.

Lemma 5. Fix a cyclic orientationO of TOPT . In this orientation, there is at most one
edge of cost two entering cycle z, and at most one edge of cost two leaving cycle z.

Proof. Suppose not. Then, in O, either the cycle z is entered at least twice with edges
of cost two or left at least twice with edges of cost two. Consider the former case (the
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latter case follows by symmetry). Let (u, v) and (u′, v′) be two edges of O of cost two
each, with u, u′ /∈ z and v, v′ ∈ z. Delete these two edges and add the edges (u, u′) and
(v, v′). Let the new tour be denoted T ′. Now T ′ is an optimal tour such that the number
of times it visits z is lesser than that of TOPT . This contradicts the choice of TOPT . ��

Lemma 6. σ ≤ ζ1 ≤ f + m + u + g − ζ2.

Proof. The first inequality follows from Lemma 5 and the fact that z is normalized and
that TOPT is chosen as above. To see the second inequality, observe that if z is a c-
root in the spanning subgraph S′, then the vertices adjacent to cost one edges of z are
either free vertices or matched by a bad c-leaf or unmatched vertices whose neighbour
is matched or matched by a good c-leaf. Also, the total number of vertices in the cycle
z is ζ1 + ζ2. If z appears as an isolated c-node, then all the vertices adjacent to cost one
edges are free. ��

Lemma 7. s ≤ k′ ≤ k − ζ2 + σ.

Proof. The first inequality follows from Lemma 1. Observe that TOPT can have at most
ζ1 edges of cost one that have both endpoints in z, since otherwise, we get a cycle cover
of lesser cost. The total number of edges in TOPT with both endpoints in z is ζ1+ζ2−σ
and thus the second inequality follows. ��

Lemma 8. s− f − 2b− g ≤ k − 2ζ2.

Proof. It follows from Lemmas 6 and 7, by noting the fact that m + u = 2b. ��

5 Performance Guarantee
5.1 Auxiliary Results

Lemma 9. Let the parameters s, b, p, t, g, f of the spanning subgraph S′ of Lemma 3
be as defined above. Then, the number of cost two edges in an optimal Hamiltonian tour
k is at least s + b+ 2p− 4t− 5g − f .

Proof. Let TOPT be an optimal Hamiltonian tour. Give an arbitrary cyclic orientation
of the tour. We associate a distinct outgoing edge from each vertex u of S′ depending
on the c-node c that u belongs to.

If c is either a bad c-leaf or an isolated c-leaf, there is at least one edge going out of
c in TOPT . This becomes the associated edge of c. For every unmatched vertex u ∈ c
with c being the c-root of a tree where a neighbour of u is matched, there is one such
outgoing edge.

Consider a tree with exactly three c-nodes, with two bad c-leaves. Note that if TOPT

leaves such a tree at least twice, then we can associate two edges with the tree. If not,
i.e., if TOPT leaves the tree exactly once, then we claim that there must be an inter-
nal cost two edge used by TOPT (by an internal edge, we mean an edge whose both
endpoints lie on the tree). This is clearly true since if every internal edge traversed by
TOPT is of cost one, this would mean that an additional improvement step could have
been performed on the tree, a contradiction. Thus in both cases, we can associate two
edges with these trees.
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(a) (b) (c) (d)

Fig. 5. [Proof of Lemma 9]. All incoming edges are possible cost one edges of an optimal tour.
In (a), an edge comes into a matched vertex of a c-root. In (b), four edges enter a tree of exactly
two c-nodes. Five edges enter a tree with a good c-leaf in (c), while in (d), an edge enters a free
vertex.

Now, let us upper bound the number of associated edges of cost one. Since S′ is not
further improvable this means that cost one edges cannot come in at all vertices of a c-
node, i.e., depending on the type of the c-node there are only a few possible vertices out
of which cost one edges come in. For example, an associated edge may enter an already
matched vertex or for a tree with exactly two c-nodes there are four possible vertices
at which cost one edges can come in. For a good c-leaf c of a tree with at least three
c-nodes at most five associated edges of cost one can come in and finally there may be
an edge of cost one coming in at a free vertex. Please refer to Fig. 5 for an illustration
of this argument. Hence, in total the number of cost two edges k in TOPT is at least
s + b+ u + 2p−m− 4t− 5g − f . By noting that u ≥ m, the Lemma follows. ��

Lemma 10 (Charging). 8t + 4s + 12p+ 19
4 g + 6b ≤ n− ζ2 − f .

Proof. We estimate the number of vertices in G as follows:
Each tree with two nodes has at least eight vertices and each isolated node has at

least four vertices, yielding total contributions of 8t and 4s respectively.
For every good leaf c, we associate at least five vertices, namely the vertices of c

and the matched vertex of c. This way, we get at least 5g vertices. But the exception is
when all the vertices (odd in number) of the root of the tree in which c is present, are
matched. In such a case, we arbitrarily treat one of the good leaves as a bad c-leaf and
hence we can associate only 5j− 1 vertices with j good leaves, where j ≥ 4. Thus, the
contribution of the good leaves is at least (5− 1

j )g ≥ 19
4 g vertices.

With every bad leaf c, we associate at least six vertices, namely the vertices of c,
which are at least four in number, the matched vertex of the root incident to c and the
vertex to the right of this vertex. The exceptional case of all the vertices of the root are
matched has been handled before. Thus, the contribution of the bad leaves is at least 6b.

For a tree with exactly three c-nodes, with two bad c-leaves we can associate twelve
vertices (four per each c-node). Note that this includes paths of length two—for one
bad c-leaf we charge four vertices of the c-leaf, a matched vertex of the c-root and the
right neighbour of the matched vertex, while for the other bad c-leaf, we charge four
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vertices of the c-leaf, the virtual matched vertex of the c-root and the right neighbour of
this virtual matched vertex. So, in all, the total contribution is 12p.

No vertex has been counted twice. Also, at least one vertex of every cost two edge
of z should not be counted, since C is a normalized cycle cover. There are at least ζ2
such vertices in z. The free vertices are not charged. ��

5.2 Main Result

Theorem 1. There exists a polynomial time approximation algorithm for
Min(1,2)-STSP with a performance guarantee of 315

271 . Its running time is O(n3).

Proof. Fix constants α = 44
271 , β = 14

271 and δ = 7
542 . We shall show that Algorithm

2 has an approximation guarantee of (1 + α). Consider the following inequalities from
Lemma 10, Lemma 9, and Lemma 8:

8t + 4s + 12p+ 19
4 g + 6b ≤ n− ζ2 − f (1)

s + b+ 2p− 4t− 5g ≤ k + f (2)

s− 2b− g ≤ k − 2ζ2 + f (3)

We upper bound the cost of patching, t + s + 2p + 1
2g + b, (from Lemma 4), by the

L.H.S of the inequality α∗(1) + β∗(2) + δ∗(3). To verify that this is indeed an upper
bound, compare term by term on both sides of the required inequality, for example,

t : 8α− 4β ≥ 1; p : 12α+ 2β ≥ 2; f : α− β − δ ≥ 0

b : 6α+ β − 2δ ≥ 1 and g : 19
4 α− 5β − δ ≥ 1

2

For the term s, we include all coefficients of k and ζ2 also, since s, ζ2 ≤ k. Thus, we
require that (1−(4α+β+δ))s+(β+δ)k+(1−(α+2δ))ζ2 ≤ (1+α)k. Equivalently,
4α+β+2δ ≥ 1− 2α+β It is easy to check that the given values of α, β and δ satisfy
the above inequality and are optimal.

The running time of the algorithm is dominated by the time needed to compute a
minimum weight 4-cycle cover. ��

5.3 Paths of Length Two

The algorithm is correct as long as there are no paths of length two in the initial S such
that the c-node in the middle contains a matched vertex of degree four. Let u be such a
node. Let x and y be its neighbours. Let v be the other neighbour of, say, x. So far, we
treated this path also as a tree of height two with two bad c-leaves and pretended that
one of them was attached to v and the other to u. All the considerations so far remain
valid: whenever we would remove the edge (v, x) during patching, we remove the edge
(x, u) instead and connect all cost two edges incident with u to v instead. There is only
one exception: when two such paths are joined via two edges from E′. Let u′, x′, v′,
and y′ the corresponding nodes of the second path. Assume that (x, x′) and (y, y′) are
in E′. If we now patch as in Figures 3 and 4, we will get two cycles, but one of them
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consists solely of cost one edges. We have to break on additional edge of this cycle.
This means that we introduce a total of three cost two edges (instead of two) to patch
four good c-leaves, yielding an average cost of 3

4 instead of 1
2 . However, since we have

an even number of good leaves per root, we can count them with a coefficient of 5
in (1). In (2), we only have to take a factor of 3 into consideration, since the c-leaves
were bad before. In (3) we get a factor of 0, since in this bound, only good leaves of
z were counted. Finally, there are an additional four free nodes in the cycle consisting
of cost one edges; each free node reduces the cost of patching by α − β − δ = 53

542 .
But 5α − 3β + 53

542 = 409
542 ≥

3
4 . The details are spelled out in the forthcoming journal

version of this work.

5.4 Further Improvements

The improvements of the following type are not considered in the improvement pro-
cedure: Let c be a good c-leaf of a tree with at least three c-nodes and a cost one edge
(u, v) inG such that u ∈ c is a neighbour of the matched vertex of c, v 	∈ c, and v ∈ d is
improving. Here d is a c-root with the left neighbour of v matched. When one considers
these improvements also then the factor of 5g in Lemma 9 is reduced to 3g. Hence,
using the same arguments as in the proof of Theorem 1 we get a better approximation
guarantee of 65

56 . Please refer to the journal version of the paper for details.
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Abstract. Graph decompositions such as decomposition by clique sepa-
rators and modular decomposition are of crucial importance for designing
efficient graph algorithms. Clique separators in graphs were used by Tar-
jan as a divide-and-conquer approach for solving various problems such
as the Maximum Weight Stable Set (MWS) Problem, Coloring and Min-
imum Fill-in. The basic tool is a decomposition tree of the graph whose
leaves have no clique separator (so-called atoms), and the problem can be
solved efficiently on the graph if it is efficiently solvable on its atoms. We
give new examples where the clique separator decomposition works well
for the MWS problem which also improves and extends various recently
published results. In particular, we describe the atom structure for some
new classes of graphs whose atoms are P5-free (the P5 is the induced
path with 5 vertices) and obtain new polynomial time results for MWS.

1 Introduction

In an undirected graphG = (V,E), a stable (or independent) vertex set is a subset
of mutually nonadjacent vertices. The Maximum Weight Stable (or Independent)
Set (MWS) Problem asks for a stable set of maximum weight sum for a vertex
weight function w on V . The MS problem is the MWS problem where all vertices
have the same weight. Let αw(G) (α(G)) denote the maximum weight (maximum
cardinality) of a stable vertex set in G.

The M(W)S problem is one of the fundamental algorithmic graph problems
which frequently occurs as a subproblem in models in computer science and
operations research. It is closely related to the Vertex Cover Problem and to the
Maximum Clique Problem in graphs (for an extensive survey on the last one,
see [10], which, at the same time, can be seen as a survey on the MWS and the
Vertex Cover Problem; however, since 1999, there are many new results on this
topic).

The MWS Problem is known to be NP-complete in general and remains
NP-complete even on very restricted instances such as K1,4-free graphs [48],
(K1,4,diamond)-free graphs [26], very sparse planar graphs of maximum degree
three and graphs not containing cycles below a certain length [53], in particular
on triangle-free graphs [55].

M. Lískiewicz and R. Reischuk (Eds.): FCT 2005, LNCS 3623, pp. 516–527, 2005.
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On the other hand, it is known to be solvable in polynomial time on many
graph classes by various techniques such as polyhedral optimization, augmenting,
struction and other transformations, modular decomposition, bounded clique-
width and bounded treewidth, reduction of α-redundant vertices, to mention
some basic techniques; for a small selection of papers dealing with particu-
lar graph classes and such techniques for M(W)S, see[2-4,8,9,11-19,21-24,27-
29,32-40,44,45,48,50-52,58]. Many of these papers deal with subclasses of P5-free
graphs, motivated by the fact that the complexity of the M(W)S problem for
P5-free graphs (and even for (P5,C5)-free graphs) is still unknown (for all other
5-vertex graphs H , MS is solvable in polynomial time on (P5,H)-free graphs).
For 2K2-free graphs, however, the following is known:

Farber in [30] has shown that a 2K2-free graph G = (V,E) contains at most
n2 inclusion-maximal independent sets, n = |V |. Thus, the MWS problem on
these graphs can be solved in time O(n4) since Paull and Unger [54] gave a
procedure that generates all maximal independent sets in a graph in O(n2) time
per generated set (see also [61,43]). This result has been generalized to l ≥ 2: lK2-
free graphs have at most n2l−2 inclusion-maximal independent sets [1,5,31,56],
and thus, MWS is solvable on lK2-free graphs in time O(n2l).

Obviously, the MWS problem on a graph G with vertex weight function w
can be reduced to the same problem on antineighborhoods of vertices in the
following way:

αw(G) = max{w(v) + αw(G[N(v)]) | v ∈ V }
Now, let Π denote a graph property. A graph is nearly Π if for each of its

vertices, the subgraph induced by the set of its nonneighbors has property Π .
(Note that this notion appears in the literature in many variants, e.g., as nearly
bipartite graphs [6].)

Thus, whenever MWS is solvable in time T on a class with property Π then
it is solvable on nearly Π graphs in time n · T . For example, Corneil, Perl and
Stewart [27] gave a linear time algorithm for MWS on cographs along the cotree
of such a graph. Thus, MWS is solvable in time O(nm) on nearly cographs.
This simple fact, for example, immediately implies Theorem 1 of [32] (which is
formulated in [32] for the Maximum Clique Problem and shown there in a more
complicated way). For other examples where this approach is helpful, see [14].

A famous divide-and-conquer approach by using clique separators (also called
clique cutsets) is described by Tarjan in [60] (see also [62]). For various problems
on graphs such as Minimum fill-in, Coloring, Maximum Clique, and the MWS
problem, it works well in a bottom-up way along a clique separator tree (which is
not uniquely determined but can be constructed in polynomial time for a given
graph). The leaves of such a tree, namely the subgraphs not containing clique
separators are called atoms in [60]. Whenever MWS is solvable in time T on the
atoms of a graph G, it is solvable in time n2 · T on G. However, few examples
are known where this approach could be applied for obtaining a polynomial time
MWS algorithm on a graph class.

Modular decomposition of graphs is another powerful tool. The decomposi-
tion tree is uniquely determined and can be found in linear time [46]. The prime
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Fig. 1. The P2 + P3, its complement co-(P2 + P3) (called Q), and two Q extensions,

called F1 and F2

nodes in the tree are the subgraphs having no homogeneous sets (definitions are
given later). Again, various problems can be solved efficiently bottom-up along
the modular decomposition tree, among them Maximum Clique, and the MWS
problem, provided they can be solved efficiently on the prime nodes. In [14], it
was shown that a combination of both decompositions is helpful for the MWS
problem: If MWS is solvable in time T on prime atoms (i.e., prime subgraphs
without clique cutset) of the graph G then it is solvable in time n2 · T on G.

One of the examples where the clique separator approach works well is given
by Alekseev in [3] showing that atoms of (P5,co-(P2 + P3))-free graphs (the
(P2 + P3) is the graph with five vertices, say a, b, c, d, e and edges ab, cd, de) are
3K2-free which implies that the MWS problem is solvable in time O(n8) on this
graph class (see Figure 1 for the co-(P2 + P3)).

Our main results in this paper are the following ones:

(i) Atoms of (P5,Q)-free graphs are either nearly (P5, P5, C5)-free or specific
(i.e., a simple type of graphs defined later for which the MWS problem can
be solved in the obvious way). This leads to an O(n4m) time algorithm for
MWS on graphs whose atoms are (P5,Q)-free which improves and extends
Alekseev’s result on these graphs [3] (and also the corresponding result of
[35] on (P5, C5, Q)-free graphs).

(ii) Prime atoms of (P5,F1)-free graphs are 3K2-free (see Figure 1 for the F1).
By [14], this implies polynomial time for MWS on (P5,F1)-free graphs which
extends corresponding polynomial time results on (P5,Q)-free graphs, on
(P5,co-chair)-free graphs [24], and on (P5,P )-free graphs [14,22,44] (note,
however, that the time bound for (P5,F1)-free graphs is much worse than
on the last two subclasses mentioned here).

(iii) Atoms of (P5,F2)-free graphs are 4K2-free (see again Figure 1 for the F2).
This also extends the result on (P5,Q)-free graphs.

(iv) Finally, we show that for every fixed k, MS can be solved in polynomial
time for (P5,Hk)-free graphs (see Figure 3 for the Hk which extends F1
and F2).

The first three results give new examples for the power of clique separators.
For space limitations, all proofs are omitted but can be found in the full

version of this paper.

.
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2 Basic Notions

Throughout this paper, let G = (V,E) be a finite undirected graph without
self-loops and multiple edges and let |V | = n, |E| = m. Let V (G) = V denote
the vertex set of graph G. For a vertex v ∈ V , let N(v) = {u | uv ∈ E} denote
the (open) neighborhood of v in G, let N [v] = {v} ∪ {u | uv ∈ E} denote the
(closed) neighborhood of v in G, and for a subset U ⊆ V and a vertex v /∈ U , let
NU (v) = {u | u ∈ U, uv ∈ E} denote the neighborhood of v with respect to U .
The antineighborhood N(v) is the set V \N [v] of vertices different from v which
are nonadjacent to v. We also write x ∼ y for xy ∈ E and x 	∼ y for xy 	∈ E.

For U ⊆ V , let G[U ] denote the subgraph of G induced by U . Throughout
this paper, all subgraphs are understood to be induced subgraphs. Let F denote
a set of graphs. A graph G is F-free if none of its induced subgraphs is in F .

A vertex set U ⊆ V is stable (or independent) in G if the vertices in U
are pairwise nonadjacent. For a given graph with vertex weights, the Maximum
Weight Stable Set (MWS) Problem asks for a stable set of maximum vertex
weight.

Let co-G = G = (V,E) denote the complement graph of G. A vertex set
U ⊆ V is a clique in G if U is a stable set in G. Let K� denote the clique with �
vertices, and let �K1 denote the stable set with � vertices. K3 is called triangle.
G[U ] is co-connected if G[U ] is connected.

Disjoint vertex sets X,Y form a join, denoted by X 1©Y (co-join, denoted
by X 0©Y ) if for all pairs x ∈ X , y ∈ Y , xy ∈ E (xy /∈ E) holds. We will also
say that X has a join to Y , that there is a join between X and Y , or that X
and Y are connected by join (and similarly for co-join). Subsequently, we will
consider join and co-join also as operations, i.e., the co-join operation for disjoint
vertex sets X and Y is the disjoint union of the subgraphs induced by X and Y
(without edges between them), and the join operation for X and Y consists of
the co-join operation for X and Y followed by adding all edges xy ∈ E, x ∈ X ,
y ∈ Y .

A vertex z ∈ V distinguishes vertices x, y ∈ V if zx ∈ E and zy /∈ E or
zx 	∈ E and zy ∈ E. We also say that a vertex z distinguishes a vertex set
U ⊆ V , z /∈ U , if z has a neighbor and a non-neighbor in U .

Observation 1. Let v ∈ G[V \ U ] distinguish U .

(i) If G[U ] is connected, then there exist two adjacent vertices x, y ∈ U such
that v ∼ x and v 	∼ y.

(ii) If G[U ] is co-connected, then there exist two nonadjacent vertices x, y ∈ U
such that v ∼ x and v 	∼ y.

A vertex set M ⊆ V is a module if no vertex from V \M distinguishes two
vertices from M , i.e., every vertex v ∈ V \M has either a join or a co-join to M .
A module is trivial if it is ∅, V (G) or a one-elementary vertex set. A nontrivial
module is also called a homogeneous set.
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A graph G is prime if it contains only trivial modules.
The notion of module plays a crucial role in the modular (or substitution)

decomposition of graphs (and other discrete structures) which is of basic impor-
tance for the design of efficient algorithms - see e.g. [49] for modular decompo-
sition of discrete structures and its algorithmic use and [46] for a linear-time
algorithm constructing the modular decomposition tree of a given graph.

A clique separator or clique cutset in a connected graph G is a clique C such
thatG[V \C] is disconnected. An atom ofG is a subgraph ofG without clique cut-
set. See [60] for some algorithmic aspects of the clique separator decomposition.

For k ≥ 1, let Pk denote a chordless path with k vertices and k − 1 edges.
The P5 is also called house. For k ≥ 3, let Ck denote a chordless cycle with k
vertices and k edges. A hole is a Ck with k ≥ 5, and an antihole is Ck with
k ≥ 5. An odd hole (odd antihole, respectively) is a hole (antihole, respectively)
with odd number of vertices.

The 2K2 is the co-C4. More generally, the �K2 consists of 2� vertices, say,
x1, . . . , x�, y1, . . . , y� and edges x1y1, . . . , x�y�.

For an induced subgraph H of G, a vertex not in H is a k-vertex of H , if it
has exactly k neighbors in H .

A graph is chordal if it contains no induced cycle Ck, k ≥ 4. A graph is weakly
chordal if it contains no hole and no antihole. See [20] for a detailed discussion of
the importance and the many properties of chordal and weakly chordal graphs.
Note that chordal graphs are those graphs whose atoms are cliques.

For a linear order (v1, . . . , vn) of the vertex set V , a well-known coloring
heuristic assigns integers to the vertices from left to right such that each vertex
vi gets the smallest positive integer assigned to no neighbor vj , j < i, of vi.
Chvátal defined the important notion of a perfect order of a graph G = (V,E)
as a linear order (v1, . . . , vn) of V such that for each k ≤ n, the number of
colors used by the preceding coloring heuristic equals the chromatic number of
G[{v1, . . . , vk}].

A graph is perfectly orderable if it has a perfect order. See [20] for various
characterizations and properties of these graphs. In particular, recognizing per-
fectly orderable graphs is NP-complete [47]). A graph G is perfectly ordered if
a perfect order of G is given. Algorithmic consequences for perfectly orderable
graphs rely heavily on this assumption.

3 Atoms of (P5, Q)-Free Graphs Are Nearly
(P5, P5, C5)-Free or Specific

In this section, we improve the following result:

Theorem 1 (Alekseev [3]). Atoms of (P5, Q)-free graphs are 3K2-free.

Since 3K2-free graphs have at most n4 maximal stable sets, the MWS prob-
lem is solvable in time O(n8) on (P5,Q)-free graphs by the clique cutset approach
of Tarjan and a corresponding enumeration algorithm for all maximal stable sets
in a 3K2-free graph. Theorem 1, however, does not give much structural insight.

A. Brandstädt, V.B Le, and S. Mahfud.



New Applications of Clique Separator Decomposition 521

	� �����	�

Fig. 2. A two-vertex extension xC6 of the C6 and its complement graph, the co-xC6

Our main result of this section, namely Theorem 2, shows the close connection
of (P5, Q)-free graphs to known classes of perfect graphs and in particular leads
to a faster MWS algorithm. Preparing this, we have to define a simple type of
graphs which results from a certain extension of the C6 by two vertices (which
we call xC6 or co-xC6) and the complement of this graph (see Figure 2).

A graph is specific if it consists of a co-xC6 H , a stable set consisting of
2-vertices of H having the same neighbors as one of the degree 2 vertices in H ,
and a clique U of universal (i.e., adjacent to all other) vertices. Note that the
MWS problem for specific graphs can be solved in the obvious way.

Theorem 2. Atoms of (P5, Q)-free graphs are either nearly (P5, P5, C5)-free or
specific graphs.

The proof of Theorem 2 is based on the subsequent Lemmas 1, 2 and 3.

Lemma 1. Atoms of (P5, Q)-free graphs are nearly P5-free.

Lemma 2. Atoms of (P5, Q)-free graphs containing an induced subgraph xC6
are specific graphs.

Lemma 3. Atoms of (P5, Q)-free graphs are either nearly C5-free or specific
graphs.

In [25], it has been observed that (P5, P5, C5)-free graphs are perfectly order-
able, and a perfect order of such a graph can be constructed in linear time by
a degree order of the vertices. Thus, also for G, a perfect order can be obtained
in linear time. In [42], Hoàng gave an O(nm) time algorithm for the Maximum
Weight Clique problem on a perfectly ordered graph (i.e., with given perfect
order). This means that the MWS problem on (P5, P5, C5)-free graphs can be
solved in time O(nm) and consequently, it can be solved on nearly (P5, P5, C5)-
free graphs in time O(n2m).

Now, by Theorem 2, MWS is solvable in time O(n2m) time on atoms of
(P5,Q)-free graphs. Then the clique separator approach of Tarjan implies:

Corollary 1. The MWS problem can be solved in time O(n4m) on graphs whose
atoms are (P5, Q)-free.

Note that this class is not restricted to (P5, Q)-free graphs; it is only required
that the atoms are (P5, Q)-free. Thus, it contains, for example, all chordal graphs.
The same remark holds for the other sections.
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(P5, P5, C5)-free graphs are also those graphs which are Meyniel and co-
Meyniel (see [20]); Meyniel graphs can be recognized in time O(m2) [57]. Thus,
nearly (P5, P5, C5)-free graphs can be recognized in time O(n5) (which is even
better than O(n4m)).

Since (P5, P5, C5)-free graphs are weakly chordal, another consequence of
Theorem 2 is:

Corollary 2. Atoms of (P5, Q)-free graphs are either nearly weakly chordal or
specific.

Note that weakly chordal graphs can be recognized in time O(m2) [7,41].
Thus, recognizing whether G is nearly weakly chordal can be done in time
O(nm2). The time bound for MWS on weakly chordal graphs, however, is O(n4)
[59], and thus, worse than the one for (P5, P5, C5)-free graphs.

4 Minimal Cutsets in P5-Free Graphs with �K2

In this section we will collect some useful facts about P5-free graphs that contain
an induced �K2. These facts will be used to prove our main results in Section 5
and represent a more detailed investigation of the background of Alekseev’s
Theorem 1.

Let � ≥ 2 be an integer, and let G be a P5-free graph containing an induced
H = �K2 with E(H) = {e1, e2, . . . , e�}. Let S ⊆ V (G) \ V (H) be an inclusion-
minimal vertex set such that, for i 	= j, ei and ej belong to distinct connected
components of G[V \ S]. S is also called a minimal cutset for H . For 1 ≤ i ≤ �,
let Hi be the connected component of G[V \ S] containing the edge ei.

Observation 2.

(i) ∀v ∈ S: N(v) ∩ Hi = ∅ for all i ∈ {1, 2, . . . , �}, or N(v) ∩ Hi 	= ∅ and
N(v) ∩Hj 	= ∅ for at least two distinct indices i, j.

(ii) ∀v ∈ S: v distinguishes at most one Hi, i ∈ {1, 2, . . . , �}.

By Observation 2, S can be partitioned into pairwise disjoint subsets as
follows. For L ⊆ {1, 2, . . . , �}, |L| ≥ 2, let

SL := {v ∈ S | (∀i ∈ L, N(v) ∩Hi 	= ∅) ∧ (∀j 	∈ L, N(v) ∩Hj = ∅)},

and
S0 := S \

( ⋃
|L|≥2

SL

)
as well as

R0 := V \ (S ∪H1 ∪H2 ∪ · · · ∪H�).

Note that (R0 ∪ S0) 0©(H1 ∪H2 ∪ · · · ∪H�).
In what follows, L, M, N stand for subsets of {1, 2, . . . , �} with at least two el-

ements. Two such subsets are called incomparable if each of them is not properly
contained in the other. Incomparable sets L, M are overlapping if L ∩M 	= ∅.
Note that disjoint sets are mutually incomparable.

A. Brandstädt, V.B Le, and S. Mahfud.
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Observation 3. Let L and M be incomparable. Then, for all adjacent vertices
x ∈ SL, y ∈ SM , x 1©(

⋃
i∈L\M Hi) and y 1©(

⋃
j∈M\L Hj).

Observation 4. Let L and M be overlapping. Then

(i) SL 1©SM , and
(ii) if SL 	= ∅ and SM 	= ∅ then SL 1©(

⋃
j∈L\M Hj) and SM 1©(

⋃
i∈M\L Hi).

Observation 5. Let M be a proper subset of L. Then for all nonadjacent ver-
tices x ∈ SM , y ∈ SL,

(i) y 1©(
⋃

i∈L\M Hi), and
(ii) for all j ∈ M , N(x) ∩Hj ⊆ N(y) ∩Hj.

Observation 6. Let L ∩ N = ∅. If some vertex in SL is nonadjacent to some
vertex in SN , then for all subsets M overlapping with L and with N , SM = ∅.

For each subset L ⊆ {1, 2, . . . , �} with at least two elements we partition SL

into pairwise disjoint subsets as follows. Let

XL := {v ∈ SL | ∀i ∈ L, v 1©Hi},
and for each i ∈ L,

Y i
L := {v ∈ SL | v distinguishes Hi}.

By Observation 2 (ii),

∀i ∈ L,Y i
L 1©
( ⋃

j∈L\{i}
Hj

)
and SL = XL ∪

⋃
i∈L

Y i
L.

Observation 7. If |L| ≥ 3 then for all distinct i, j ∈ L, Y i
L 1©Y j

L .

Observation 8. If |L| ≥ 3 and G is F1-free or F2-free then XL 1©(SL \XL).

5 (P5, F1)-Free and (P5, F2)-Free Graphs

Theorem 3. Prime (P5, F1)-free graphs without clique cutset are 3K2-free.

By Theorem 3, prime (P5, F1)-free atoms are 3K2-free, hence MWS can be
solved in time O(n5m) on prime (P5, F1)-free atoms with n vertices and m edges.
Combining with the time bound for MWS via clique separators, we obtain:

Corollary 3. The MWS problem can be solved in time O(n7m) for graphs whose
atoms are (P5, F1)-free.

Theorem 4. (P5, F2)-free graphs without clique cutset are 4K2-free.

By Theorem 4, (P5, F2)-free atoms are 4K2-free, hence MWS can be solved in
time O(n7m) on (P5, F2)-free atoms. Combining again with the clique separator
time bound for MWS, we obtain:

Corollary 4. Maximum Weight Stable Set can be solved in time O(n9m) for
graphs whose atoms are (P5, F2)-free graphs.
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6 Conclusion

In this paper, we give new applications of the clique separator approach, combine
it in one case with modular decomposition and extend some known polynomial
time results for the Maximum Weight Stable Set problem. In particular, we have
shown:

(i) Atoms of (P5,Q)-free graphs are either nearly (P5, P5, C5)-free or specific
which leads to an O(n4m) time algorithm for MWS on graphs whose atoms
are (P5,Q)-free improving a result by Alekseev [3].

(ii) Prime atoms of (P5, F1)-free graphs are 3K2-free.
(iii) Atoms of (P5, F2)-free graphs are 4K2-free.

As a consequence, the Maximum Weight Stable Set problem is polynomially
solvable for graphs whose atoms are (P5, F1)-free ((P5, F2)-free, respectively),
which tremendously generalizes various polynomially solvable cases known be-
fore.

One way in trying to show that the Maximum Weight Stable Set problem
can be solved in polynomial time on a large class of P5-free graphs containing
both classes of (P5, F1)-free graphs and of (P5, F2)-free graphs, is to consider the
class of (P5,Hk)-free graphs, for each fixed integer k ≥ 2; see Figure 3.

Unfortunately, the technique used in this paper cannot be directly applied for
(P5,Hk)-free graphs. Namely, for each fixed � ≥ 3, there exist prime (P5,H2)-
free graphs that contain an induced �K2 but no clique cutset. However, the
unweighted case is easy:

Theorem 5. For each fixed positive integer k, the Maximum Stable Set problem
can be solved in polynomial time for (P5,Hk)-free graphs.

Open Problem. Let H−
k denote the subgraph of Hk without the degree 1

vertex. Is the Maximum Weight Stable Set problem solvable in polynomial time
for (P5,H

−
k )-free graphs (k ≥ 3 fixed)? If yes, the proof of Theorem 5 shows that

it is also polynomially solvable for (P5,Hk)-free graphs, for each fixed positive
integer k.

��

���
� � �

Fig. 3. The graph Hk
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More generally, the following question is of interest: Suppose that MS is
polynomially solvable for a certain graph class. Is MWS solvable in polynomial
time on the same graph class, too?
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42. C.T. Hoàng, Efficient algorithms for minimum weighted colouring of some classes
of perfect graphs, Discrete Applied Math. 55 (1994) 133-143

43. D.S. Johnson, M. Yannakakis, C.H. Papadimitriou, On generating all maximal
independent sets, Information Processing Letters 27 (1988) 119-123



New Applications of Clique Separator Decomposition 527

44. V.V. Lozin, Stability in P5- and banner-free graphs, European J. Oper. Res. 125
(2000) 292-297

45. V.V. Lozin, R. Mosca, Independent sets in extensions of 2K2-free graphs, Discrete
Applied Math. 146 (2005) 74-80

46. R.M. McConnell, J. Spinrad, Modular decomposition and transitive orientation,
Discrete Math. 201 (1999) 189-241

47. M. Middendorf, F. Pfeiffer, On the complexity of recognizing perfectly orderable
graphs, Discrete Math. 80 (1990) 327-333

48. G.M. Minty, On Maximal Independent Sets of Vertices in Claw-Free Graphs, J.
Combin. Theory (B) 28 (1980) 284-304
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(1984) Berge, C. and V. Chvátal (eds), Topics on perfect graphs, North-Holland,
Amsterdam, 1984, 281-297



On the Expressiveness of Asynchronous Cellular

Automata

Benedikt Bollig

Lehrstuhl für Informatik II, RWTH Aachen, Germany
bollig@informatik.rwth-aachen.de

Abstract. We show that a slightly extended version of asynchronous
cellular automata, relative to any class of pomsets and dags without au-
toconcurrency, has the same expressive power as the existential fragment
of monadic second-order logic. In doing so, we provide a framework that
unifies many approaches to modeling distributed systems such as the
models of asynchronous trace automata and communicating finite-state
machines. As a byproduct, we exhibit classes of pomsets and dags for
which the radius of graph acceptors can be reduced to 1.

1 Introduction

Distributed systems usually operate concurrently so that some actions do not de-
pend on the occurrence of another. One possible single behavior of a distributed
system can therefore be described naturally and in a compact manner by a par-
tially ordered set, whose elements might depend on one another or be executed
in either order, whatever the underlying partial-order relation specifies. A par-
tially ordered set, in turn, can be represented by its covering relation or Hasse
diagram, which allows to access pairs of events that may follow each other im-
mediately. Accordingly, automata over partial orders, among them asynchronous
cellular automata (ACAs), usually process input events along their cover rela-
tion in a transition-based manner. ACAs have been introduced originally by
Zielonka in the framework of Mazurkiewicz traces [17]. They have been general-
ized by Droste et al. to run on pomsets without autoconcurrency and could be
shown to be expressively equivalent to (existential) monadic second-order logic
relative to both CROW-pomsets, which are subject to an axiom that considers
concurrent read and exclusive owner write, and the more general k-pomsets [6].

However, there might be characteristics of the execution of a distributed
system that cannot be captured by the cover relation of a partial order. Con-
sider a directed acyclic graph whose edges reflect the send and receive of mes-
sages between sequential processes. Without any additional information (such
as communication is both FIFO and reliable), a message exchange cannot be re-
constructed from the underlying partial-order relation, which emerges from the
reflexive transitive closure of the edge relation. We come across those structures
within the framework of communicating systems. A communicating finite-state
machine (CFM), for example, is equipped with FIFO channels for exchanging
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messages. Apart from the ordering of events executed by one and the same se-
quential automaton, this implies an additional ordering of events that represent
the send and receipt of one message. From the partial-order point of view, how-
ever, the relation of such communicating events is rather implicit and depends
on semantic considerations. Modeling a behavior as a graph rather than a partial
order allows for drawing additional edges to make communicating events visible
so that automata can access them directly without going over the communica-
tion medium. Based on this observation, Kuske introduced the notion of directed
acyclic graphs without autoconcurrency, generalizing the partial-order view. He
accordingly extended ACAs and showed emptiness relative to the whole class of
directed acyclic graphs without autoconcurrency to be decidable [11].

Nevertheless, ACAs are too weak to admit a general logical characterization
in terms of a monadic second-order logic beyond classes such as CROW-pomsets
and Mazurkiewicz traces, no matter if those structures are represented just by
their partial order or by a directed acyclic graph. This is because ACAs process
their actions depending solely on what happened in the past. But it is natural to
provide systems with the possibility to make communication requests. Executing
an action is then accompanied by a condition that eventually demands the oc-
currence of a suitable communication partner. For example, unless we deal with
reliable channels anyway, sending a message might come along with the need for
being received. Having in mind lossy channel systems with faulty communica-
tion [7,1], ACAs are not even able to specify the set of communication patterns
where any message is received, which, however, should be easily formalizable in
an appropriate logical calculus. In fact, we will show that, once ACAs are pro-
vided with the means of producing communication requests, they are exactly as
expressive as the existential fragment of monadic second-order logic over graphs.

Similarly to ACAs, a vertex-marking graph automaton, as introduced in [13],
collects states it has already read and thereupon assigns a new state to a common
successor vertex. Following the idea of communication requests, an acceptance
condition in terms of final states is implicitly given by the requirement that any
event has to conform to the type of its state. Vertex-marking graph automata
appear as a special case of Thomas’ graph acceptors [14,16], which accept a
given graph if it can be tiled consistently with a finite supply of patterns. As,
relative to a graph class of bounded degree, any first-order definable property
is locally threshold testable [9], graph acceptors capture precisely the projections
of locally threshold testable languages. In turn, this yields a characterization of
graph acceptors in terms of the existential fragment of monadic second-order
logic. Hereby, the restriction to patterns of radius 1 means loss of expressivity
in general. However, in characterizing ACAs (with types) logically, we exhibit
many classes of graphs that are relevant for describing the behavior of distributed
systems and where the use of patterns of radius 1 is sufficient. The latter property
is shared by the domains of words, traces, trees, and grids [15]. The technique
we apply generalizes the one used in [2] to characterize the class of CFMs.

Altogether, we combine the models of asynchronous cellular and vertex-
marking graph automata towards the new notion of asynchronous cellular au-
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tomata with types, which encompasses well-known automata concepts and allows
a uniform embedding of many existing models of concurrency. Our main contri-
bution is their characterization in terms of existential monadic-second order logic
relative to an arbitrary class of directed acyclic graphs without autoconcurrency,
covering the expressivity results of subsumed automata models.

The next section recalls the basic concepts of graphs, (existential) monadic
second-order logic, and graph acceptors. Section 3 introduces asynchronous au-
tomata with types and studies its expressiveness. Finally, Section 4 provides the
link between our work and established automata models.

2 Preliminaries

For this section, we fix an alphabet Σ. A finite directed acyclic graph (finite dag)
is a pair (V, 	) where V is its nonempty finite set of vertices and 	 ⊆ V × V
is the edge relation such that 	 is irreflexive and 	∗ is a partial-order relation.
A Σ-labeled finite dag (Σ-dag, for short) is a triple (V, 	,λ) where (V, 	) is a
finite dag and λ is a mapping V → Σ, which we call the vertex-labeling function.
The set of Σ-dags is denoted by DAG(Σ). We sometimes write ≤ for 	∗ and
abbreviate 	+ by <. Moreover, for x, y ∈ V , let us write x � y if both x < y
and, for any z ∈ V , x < z ≤ y implies z = y. Then, (V, �) and � are called
the Hasse diagram of (V, 	) and, respectively, the covering relation of ≤. The
degree of some K ⊆ DAG(Σ) is said to be bounded if there is some B ∈ IN such
that, for any (V, 	,λ) ∈ K and any x ∈ V , |{y ∈ V | x (	 ∪ 	−1) y}| ≤ B. As
usual, we will identify isomorphic structures in the following.

Monadic Second-Order Logic. Formulas from monadic second-order (MSO) logic
(over Σ) involve first-order variables x, y, . . . for vertices and second-order vari-
ables X,Y,X1,X2, . . . for sets of vertices. They are built up from the atomic
formulas λ(x) = a (for a ∈ Σ), x ∈ X , x 	 y, and x = y and further-
more allow the connectives ¬, ∨, ∧, →, ↔ as well as the quantifiers ∃, ∀,
which can be applied to either kind of variable. Formulas without free vari-
ables, which do not occur within the scope of a quantifier, are called sentences.
Given D = (V, 	,λ) ∈ DAG(Σ) and an MSO sentence ϕ, the validity of the
satisfaction relation D |= ϕ is defined canonically with the understanding that
first-order variables range over vertices from V and second-order variables over
subsets of V . For a set K ⊆ DAG(Σ) and an MSO sentence ϕ, the language of ϕ
relative to K, denoted by LK(ϕ), is the set of Σ-dags D ∈ K with D |= ϕ. The
class of subsets of DAG(Σ) that can be defined by some MSO sentence ϕ relative
to K is denoted byMSOK(Σ). An important fragment of MSO logic is captured
by existential MSO (EMSO) formulas, which are of the form ∃X1 . . .∃Xnϕ where
ϕ does not contain any set quantifier. In many cases, the restriction to EMSO
formulas suffices to characterize recognizability in terms of automata, e.g., in the
domains of words, trees, and Mazurkiewicz traces. Sometimes, however, we even
have to restrict to EMSO formulas not to exceed recognizability, because full
MSO logic is too expressive in general. The latter applies, for example, to grids
and graphs [12] and MSCs [2]. The class EMSOK(Σ) is defined canonically.
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Graph Acceptors. Let R be a natural. Given a Σ-dag D = (V, 	,λ) and vertices
x, y ∈ V , the distance dD(x, y) from x to y in D is ∞ if (x, y) 	∈ (	 ∪ 	−1)∗

and, otherwise, the minimal natural number k such that there is a sequence
x0, . . . , xk ∈ V with x0 = x, xk = y, and xi (	 ∪ 	−1) xi+1 for each i ∈
{0, . . . , k − 1}. Sometimes, if it is clear from the context, we omit the subscript
D just writing d(x, y). An R-sphere over Σ is a Σ-dag s = (V, 	,λ, γ) together
with a designated sphere center γ ∈ V such that, for any x ∈ V , d(x, γ) ≤ R.
For a Σ-dag D = (V, 	,λ) and x ∈ V , let the R-sphere of D around x, denoted
by R-Sph(D, x), be given by (V ′, 	′,λ′, x) where V ′ = {x′ ∈ V | dD(x′, x) ≤ R},
	′ = 	 ∩ (V ′ × V ′), and λ′ is the restriction of λ to V ′. Figure 1 (b) shows a
1-sphere over {a, b, c, d} (with the rectangle as sphere center). It precisely deals
with the 1-sphere of the graph aside (Figure 1 (a)) around the d-labeled vertex.

A graph acceptor [14,16] works on a graph as follows: it first assigns to each
node one of its control states and then checks if the local neighborhood of each
node (incorporating the states) corresponds to a pattern from a finite supply of
spheres. More precisely, a graph acceptor over Σ is a structure B = (Q, R, S,Occ)
where Q is its nonempty finite set of control states, R ∈ IN is the radius, S is a
finite set of R-spheres over Σ×Q, and Occ is a boolean combination of conditions
of the form “sphere s ∈ S occurs at least n ∈ IN times”. A run of B on a Σ-dag
D = (V, 	,λ) is a mapping ρ : V → Q such that, for any x ∈ V , the R-sphere
of (V, 	, (λ, ρ)) around x is isomorphic to some s ∈ S. We call ρ accepting if
the tiling of D with spheres from S satisfies Occ. (In the tiling induced by ρ,
sphere s ∈ S occurs |{x ∈ V | s = R-Sph((V, 	, (λ, ρ)), x)}| times.) The language
of B relative to a class K ⊆ DAG(Σ), denoted by LK(B), is the set of Σ-dags
D ∈ K on which there is an accepting run of B. Moreover, we set GAK(Σ) to be
{L ⊆ DAG(Σ) | L = LK(B) for some graph acceptor B over Σ}.

Theorem 1 ([14,16]). For any K ⊆ DAG(Σ) of bounded degree, GAK(Σ) =
EMSOK(Σ).

An interesting class of graph languages is characterized by graph acceptors
that restrict to 1-spheres [15]. So let us denote by 1-GAK(Σ) the class {L ⊆
DAG(Σ) | L = LK(B) for some graph acceptor B = (Q, R, S,Occ) over Σ with
R = 1}. In general, such restricted graph acceptors are strictly weaker. However,
we will identify classes of graph languages that allow to restrict to 1-spheres.

3 Σ̃-dags and Asynchronous Cellular Automata

For the rest of this paper, we fix a nonempty finite set Ag of at least two agents
and a distributed alphabet Σ̃, which is a tuple (Σi)i∈Ag of (not necessarily dis-
joint) alphabets such that (for rather technical reasons) Σi 	⊆ Σj for any i 	= j.
Let in the following Σ stand for

⋃
i∈Ag Σi, the set of actions. Elements from Σi

are understood to be actions that are performed by agent i. So let, for a ∈ Σ,
loc(a) := {i ∈ Ag | a ∈ Σi} denote the set of agents that are involved in a. Hav-
ing this in mind, we say that actions a and b are independent and write a IΣ̃ b if
there is no common agent that controls both of them, i.e., if loc(a) ∩ loc(b) = ∅.
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Fig. 1. An ({a}, {b, c}, {c, d})-dag and a 1-sphere

Otherwise, we say a and b are dependent, writing a DΣ̃ b. We now introduce the
model representing the behavior of a system of communicating agents. In doing
so, we combine the standard models of [6] and [11]:

Definition 1. A Σ̃-dag is a Σ-dag (V, 	,λ) such that

– for any i ∈ Ag, λ−1(Σi) is linearly ordered by ≤ and
– for any (x, y), (x′, y′) ∈ 	 with λ(x) DΣ̃ λ(x′) and λ(y) DΣ̃ λ(y′), we have

x ≤ x′ iff y ≤ y′.

Thus, for any x ∈ V and a ∈ Σ, there is at most one vertex y ∈ V such
that both x 	 y (y 	 x) and λ(y) = a. Intuitively, the second condition makes
sure that communication between two processes cannot cross. When we consider
communicating systems with message exchange, this corresponds to a FIFO
architecture where messages (x, y) and (x′, y′) of equal type are received in terms
of y and y′ in the order they have been sent in terms of x and x′, respectively.

An ({a}, {b, c}, {c, d})-dag is depicted in Figure 1 (a). We denote by DAG(Σ̃)
the set of Σ̃-dags. Note that any K ⊆ DAG(Σ̃) has bounded degree. A useful
subclass of DAG(Σ̃), denoted by DAGH(Σ̃), is the set of graphs (V, 	,λ) ∈
DAG(Σ̃) such that 	 = �, i.e., (V, 	) is the Hasse diagram of some partially
ordered set. Let (V, 	,λ) be a Σ̃-dag and let x ∈ V . For i ∈ Ag, we say that x
is Σi-maximal if λ(x) ∈ Σi and there is no y ∈ λ−1(Σi) such that x < y. Note
that there is at most one Σi-maximal vertex. We denote by R(x) := {a ∈ Σ |
there is some y ∈ V such that y 	 x and λ(y) = a} the read domain of x and,
given a ∈ R(x), let a-pred(x) be the unique vertex y such that both y 	 x and
λ(y) = a. Accordingly, let W(x) := {a ∈ Σ | there is some y ∈ V such that x 	 y
and λ(y) = a} be the write domain of x and, for a ∈W(x), a-succ(x) denote the
unique vertex y such that both x 	 y and λ(y) = a.

Example 1 (Mazurkiewicz Traces). A (Mazurkiewicz) trace [5] over Σ̃ is a Σ̃-dag
(V, 	,λ) ∈ DAGH(Σ̃) such that, for any x, y ∈ V , x 	 y implies λ(x) DΣ̃ λ(y).
Note that, as we consider a subclass of DAGH(Σ̃), 	 and � coincide. The set of
traces over Σ̃ is denoted by TR(Σ̃). The dag from Figure 1 (a) is clearly not a
trace over ({a}, {b, c}, {c, d}): neither is it a Hasse diagram, nor are neighboring
vertices consistently labeled with dependent actions.
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Example 2 (Message Sequence Charts). Messages might be exchanged between
the agents of a distributed system by performing send and receive actions. So
set, for an agent i ∈ Ag, Γi to be {i!j | j ∈ Ag \ {i}} ∪ {i?j | j ∈ Ag \ {i}}, the
set of (communication) actions of agent i. The action i!j is to be read as “i sends
a message to j”, while j?i is the complementary action of receiving a message
sent from i to j. Moreover, let Γ stand for the union of the Γi and set Γ̃ to be
the distributed alphabet (Γi)i∈Ag . A message sequence chart (MSC) over Ag is a
Γ̃ -dag (V, 	,λ) such that (i) for any i ∈ Ag, 	 ∩ (λ−1(Γi)×λ−1(Γi)) is the cover
relation of some linear order, (ii) for any (x, y) ∈ 	 satisfying λ(x) IΓ̃ λ(y), λ(x)
is a send action and λ(y) is its complementary receive, and (iii) for any x ∈ V ,
there is y ∈ V satisfying both λ(x) IΓ̃ λ(y) and x (	 ∪ 	−1) y. We denote by
MSC(Ag) the set of MSCs over Ag. Note that, by the definition of a Γ̃ -dag,
an MSC behaves in a FIFO manner, neglecting overtaking of messages of equal
type. If we do not require a send vertex to be equipped with a corresponding
receive, we obtain the class of (potentially) lossy MSCs over Ag, which is a
superset of MSC(Ag) and shall be denoted by LMSC(Ag). If, in Figures 2 (a)
and (b), we replace b with 1!2 and a with 2?1, we obtain an MSC over {1, 2}
and, respectively, a lossy MSC over {1, 2}, which is not an MSC. Note that
MSC(Ag) might be defined relative to LMSC(Ag) by the (first-order) sentence
∀x
∧

i∈Ag, j∈Ag\{i}(λ(x) = i!j → ∃y(x 	 y ∧ λ(y) = j?i)).

Definition 2. An asynchronous cellular automaton with types (ACAT) over Σ̃
is a structure (Q,Δ, T, F ) where

– Q is the nonempty finite set of states,
– Δ ⊆ (Q = {−})Σ ×Σ ×Q is the set of transitions,
– T : (Σ ×Q) → 2Σ is the type function such that b ∈ T (a, q) implies a IΣ̃ b,
– F ⊆ (Q = {ı})Ag is the set of final states.

So let A = (Q,Δ, T, F ) be an ACAT over Σ̃. Note that q ∈ (Q = {−})Σ can
be considered to be a subset of Σ×Q with the understanding that, for any a ∈ Σ
and q ∈ Q, (a, q) ∈ q iff q[a] = q. In the following, we often write a transition
(q, a, q) ∈ Δ as q → (a, q) with q being a subset of Σ×Q. Let D = (V, 	,λ) be a
Σ̃-dag and r be a mapping V → Q. We define a mapping r− : V → (Q = {−})Σ

setting r−(x)[a] to be − if a 	∈ R(x) and to be r(a-pred(x)) if a ∈ R(x). A
run of A on D is a mapping r : V → Q such that, for any x ∈ V , we have
(r−(x),λ(x), r(x)) ∈ Δ. It remains to constitute when r is accepting. For any
i ∈ Ag with λ−1(Σi) 	= ∅, let fi be given by r(x) where x is the Σi-maximal
vertex in V . For any other i ∈ Ag, set fi to be ı. The run r is accepting if
both (fi)i∈Ag ∈ F and, for any x ∈ V , we have T (λ(x), r(x)) ⊆ W(x). The
intuition behind the latter condition is that we require W(x) to contain at least
the communication requests imposed by the type function of the automaton.1

Given K ⊆ DAG(Σ̃), we denote by LK(A) the language of A relative to K, i.e.,

1 Note that we could even require T (λ(x), r(x)) = W(x) ∩ {a ∈ Σ | a IΣ̃ λ(x)}
without affecting the expressiveness of ACATs.
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Fig. 2. The ({a}, {b})-dags D5 and D5[2, 4]

the set of Σ̃-dags D ∈ K such that there is an accepting run of A on D. An
ACAT A = (Q,Δ, T, F ) over Σ̃ is called an asynchronous cellular automaton
(ACA) over Σ̃ if T (a, q) = ∅ for any a ∈ Σ and q ∈ Q. For K ⊆ DAG(Σ̃), let
ACATK(Σ̃) = {L ⊆ DAG(Σ̃) | L = LK(A) for some ACAT A over Σ̃}. The
class ACAK(Σ̃) is defined accordingly.

Example 3. Let L be the set of ({a}, {b})-dags Dn = (Vn, 	n,λn), n ≥ 1, where
Vn = {x1, . . . , xn, y1, . . . , yn}, 	n is the union of {(xi, xi+1) | i ∈ {1, . . . , n−1}},
{(yi, yi+1) | i ∈ {1, . . . , n − 1}}, and {(yi, xi) | i ∈ {1, . . . , n}}, and the xi

are labeled by λn with a, while the yi are labeled with b. D5 is depicted in
Figure 2 (a). An ACAT A with LDAG(({a},{b}))(A) = L is (Q,Δ, T, F ) where
Q = {q1, q2} and Δ contains the transitions ∅ → (b, q2), {(b, q2)} → (b, q2),
{(b, q2)} → (a, q1), and {(a, q1), (b, q2)} → (a, q1). Moreover, we set T (a, q1) =
T (b, q1) = T (a, q2) = ∅, T (b, q2) = {a}, and F = {(q1, q2)}. An accepting run of
A on Dn assigns q1 to any a-labeled vertex and q2 to any b-labeled one.

Lemma 1 ([6]). ACA
DAG(Σ̃)(Σ̃) ⊂ ACAT

DAG(Σ̃)(Σ̃)

Proof. The language L from Example 3 cannot be recognized by some ACA
over ({a}, {b}) relative to DAG(({a}, {b})). For suppose there is an ACA A over
({a}, {b}) with LDAG(({a},{b}))(A) = L. For n ≥ 1, suppose furthermore r to be a
run of A on Dn. If n has been chosen large enough, there are 1 ≤ i < j < n such
that r(xi) = r(xj). From Dn, we obtain the ({a}, {b})-dag Dn[i, j] by removing
from Vn the vertices xi+1, . . . , xj and from 	n any edge touching some of these
nodes and by adding instead an edge from xi to xj+1. Though Dn[i, j] 	∈ L, A
admits an accepting run on Dn[i, j]. The reason is that, in the example, A has
no means to impose on a b-labeled vertex an a-labeled successor. �

Though ACATs are generally strictly more expressive than ACAs, many
distributed systems allow for dropping types: we call a class K ⊆ DAG(Σ̃)
communication closed if, for any (V1, 	1,λ1), (V2, 	2,λ2) ∈ K, any a ∈ Σ, and
any x1 ∈ V1 and x2 ∈ V2 with λ(x1) = λ(x2) = a, we have W(x1) ∩ IΣ̃ (a) =
W(x2) ∩ IΣ̃ (a) (where IΣ̃ (a) shall contain any b ∈ Σ with a IΣ̃ b).

Lemma 2. Let K ⊆ DAG(Σ̃). If K is communication closed, then we have
ACAK(Σ̃) = ACATK(Σ̃).
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Proof. Let A = (Q,Δ, T, F ) be an ACAT over Σ̃ and suppose K ⊆ DAG(Σ̃)
to be communication closed. Then, for any a, b ∈ Σ with a IΣ̃ b such that K
requires an a-labeled vertex to be directly followed by some b-labeled vertex, we
can, without changing the recognized language relative to K, remove b from any
communication request T (a, q). Now suppose K prevents a from being followed
by b. Then, for every q ∈ Q with b ∈ T (a, q), we remove any transition q → (a, q)
and set T (a, q) = ∅. It is easily seen that we obtain an ACA, which, moreover,
is equivalent to A relative to K. �

The class TR(Σ̃) of Mazurkiewicz traces is trivially communication closed, as
none pair of neighboring nodes can be labeled with independent actions. The
class MSC(Ag) is communication closed, too: any sending vertex has exactly
one successor vertex, labeled with the corresponding receive action, that is not
controlled by the same agent. However, the class LMSC(Ag) of lossy MSCs can
no longer do without types, as an easy adaption of the proof of Lemma 1 shows.

Theorem 2. For any K ⊆ DAG(Σ̃), ACATK(Σ̃) = EMSOK(Σ). Moreover,
both conversions, from automata to formulas and vice versa, are effective.

The theorem follows from Lemma 3 and Lemma 4, which will be shown below.

Theorem 3. For any K ⊆ DAG(Σ̃), we have GAK(Σ) = 1-GAK(Σ).

Proof. Let K ⊆ DAG(Σ̃) and let B be a graph acceptor over Σ. According
to Theorems 1 and 2, there is an ACAT A = (Q,Δ, T, F ) over Σ̃ such that
LK(A) = LK(B). Without loss of generality, we shall assume that, for any q ∈ F
and i ∈ Ag with q[i] ∈ Q, q[i] can be assigned at most to the Σi-maximal vertex
of a Σ̃-dag. A graph acceptor B′ of radius 1 with LK(B′) = LK(A) is given
by (Q, 1, S,Occ) where, for any transition {(a1, p1), . . . , (an, pn)} → (b, q) ∈ Δ
and any {(c1, q1), . . . , (cm, qm)} ⊆ Σ × Q with ci 	= cj (i 	= j) and T (b, q) ⊆
{c1, . . . , cm}, S contains s if removing from s the edges that do not touch its
center yields {(a1, p1), . . . , (an, pn)} → (b, q) → {(c1, q1), . . . , (cm, qm)} (with
the expected meaning). Now let, given q ∈ Q, Sq contain those spheres whose
sphere center is labeled with (a, q) for some a, and let, accordingly, Sa with a ∈ Σ
contain those spheres whose sphere center is labeled with (a, q) for some q. Then,
Occ =

∨
q∈F

(∧
i∈Ag, q[i]∈Q

∨
s∈Sq[i]

“s ≥ 1” ∧
∧

i∈Ag, q[i]=ı, a∈Σi, s∈Sa
¬“s ≥ 1”

)
guarantees that a run of B is accepting only if the corresponding run of A is. �

Lemma 3. For any K ⊆ DAG(Σ̃), ACATK(Σ̃) ⊆ EMSOK(Σ).

Proof. The construction of an EMSO sentence from a given ACAT follows similar
instances of that problem. See, for example, [6]. Basically, an interpretation of
second-order variables (actually, an interpretation that stands for a partition
(Xq)q∈Q of the set of vertices at hand) means an assignment of states to vertices,
which is then checked within the first-order fragment of the formula for being
an accepting run. Hereby, the type function can be handled by the formula
∀x
∧

a∈Σ, q∈Q((λ(x) = a ∧ x ∈ Xq) →
∧

b∈T (a,q) ∃y(x 	 y ∧ λ(y) = b)). �
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Lemma 4. For any K ⊆ DAG(Σ̃), EMSOK(Σ) ⊆ ACATK(Σ̃).

Proof. In the following, we generalize the technique that has been applied to
CFMs in [2]. So suppose ϕ to be an EMSO sentence. According to Theorem 1,
there is a graph acceptor B = (Q, R, S,Occ) over Σ such that LK(B) = LK(ϕ).
We now transform B into an ACAT A over Σ̃ such that LK(A) = LK(B).

Let us first give an intuition of howA, which operates rather locally, simulates
the global control of B: basically, any state of A makes a guess about the local
environment of radius R that it is about to read and then verifies its guess
by passing it through a run and checking if other components have made their
guess accordingly. A guess is actually an extended R-sphere σ = (V, 	,λ, γ,α, i)
where core(σ) := (V, 	,λ, γ) ∈ S is the pattern that A expects to see, α ∈ V
is the active vertex, which corresponds to the vertex that A is about to read,
and i ∈ {1, . . . , const} is the current instance of the pattern where const :=
(2|Σ|+ 1) · (max{|V | | (V, 	,λ, γ) ∈ S})2. The ACAT A, reading some vertex x
and entering a state associated with a guess σ, presumes that x is to its local
environment as α is to core(σ). In other words, A considers x to be the analogon
of α and the environment of x to look like core(σ). To establish isomorphism
between core(σ) and the environment around x, A transfers σ to the immediate
successor vertices x′ of x except that, in σ, the active vertex α is replaced with
some α′ such that α 	 α′. This is because x shall correspond to x′ only if α
corresponds to α′. As, in almost all cases, a tiling by B induces an overlapping
of participating spheres, a state of A actually holds a set of extended R-spheres,
which subsequently have to be forwarded and verified simultaneously. The state
entered when reading x carries exactly one extended R-sphere whose sphere
center and active vertex coincide with the understanding that the corresponding
run of B assigns to x the control state associated with precisely that sphere
center. There may even be an overlapping of isomorphic R-spheres so that a
state possibly contains several instances of one and the same sphere, which then
refer to distinct vertices as corresponding sphere centers. Those instances will
be distinguished by means of the natural i. However, there can be at most const
such overlappings, an order of magnitude that depends on B only. A second
component of a state keeps track of the number of spheres used so far.

Now set S+ to be the set of extended R-spheres that emerge from S. In
the scope of extended spheres σ,σ′ ∈ S+, we let in the following V, 	,λ, γ,α, i
and V ′, 	′,λ′, γ′,α′, i′ refer to the components of σ and σ′, respectively. Given
σ ∈ S+, and y ∈ V , σ[y] shall denote the extended R-sphere (V, 	,λ, γ, y, i) ∈
S+, in which the active vertex α of σ is replaced with a new active vertex y.
Finally, max(Occ) shall denote the least threshold n such that Occ does not
distinguish occurrence numbers ≥ n. Let us now turn to the construction of the
ACAT A = (Q′,Δ, T, F ), which is given as follows: a state of A is a pair (S, ν)
where ν is a mapping S → {0, . . . , max(Occ)} and S is a subset of S+ such that
(i) there is exactly one extended sphere σ ∈ S with γ = α (we set core(S) to be
core(σ)), (ii) there is (a, q) ∈ Σ ×Q such that, for any σ ∈ S, λ(α) = (a, q) (so
that we can assign a well-defined unique label �(S) := a to S), and (iii) for any
σ,σ′ ∈ S, if core(σ) = core(σ′) and i = i′, then α = α′.
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Let (S, b, S ′) ∈ Δ if the following hold:

L 	(S ′) = b.

C S ′(s) is the minimum of max(Occ) and{
max({0} ∪ {S [a](s) | a ∈ Σ, S[a] �= −}) if s �= core(S ′)

max({1} ∪ {S [a](s) + 1 | a ∈ Σ, S[a] �= −}) if s = core(S ′)

For any a ∈ Σ with S[a] �= −, any σ ∈ S[a], and any y ∈ V :

W1 If σ[y] ∈ S ′, then α 	 y.

W2 If b �∈ W(α), then d(α, γ) = R.

W3 If b ∈ W(α), then σ[b-succ(α)] ∈ S ′.

For any a ∈ Σ and any σ ∈ S ′:

R1 If S[a] �= − and a �∈ R(α), then d(α, γ) = R.

R2 If a ∈ R(α), then σ[a-pred(α)] ∈ S[a] �= −.

Fig. 3. Simulating a graph acceptor

The definition of Δ is given by Figure 3. For ease of notation, we hereby
use S[a] and S′ to denote any component of a state, i.e., S[a] and S′ each
refer to both a set of extended spheres and a mapping S → {0, . . . , max(Occ)}.
Conditions L and C go without saying. In particular, C implements a simple
threshold counting procedure. Now assume an extended sphere σ with active
vertex α is attached to some x. Assume furthermore that σ[y] is attached to
some direct successor x′ of x. As α and y have to simulate x and x′ (and vice
versa), they have to be joint by an edge as well. This is what condition W1 is
supposed to guarantee. Suppose now that α lacks a b-successor, while x does
not. That situation is allowed only if the distance from α to γ is R, as then the
scope of σ ends anyway so that, beyond x, it is no longer responsible for what
will happen (W2). Otherwise, if b is contained in the write domain of α, then σ
has to coincide with the input structure further on so that σ[b-succ(α)] is sent
to the b-labeled successor of x (W3). The duals of W2 and W3, regarding the
read domain of a vertex, are guaranteed by conditions R1 and R2, respectively.
Note that condition W1 lacks its dual case, as this is implicitly present.

Let us now turn to the type function and the set of final states of A: for any
a ∈ Σ and (S, ν) ∈ Q′, we set T (a, (S, ν)) to be {b ∈ Σ | b IΣ̃ a and there is
σ ∈ S : b ∈W(α)}, i.e., if the active vertex of some extended sphere from S has
some b-labeled successor, then so will the vertex to which S is attached. Finally,
q ∈ (Q′ ={ı})Ag shall be contained in F if both, for any i ∈ Ag and any σ ∈ q[i],
W(α) ∩ Σi = ∅ and the union of mappings that occur in q (for each sphere, take
the mapping with the maximum occurrence number) satisfies the requirements
imposed by Occ. In fact, it holds LK(A) = LK(B).

Converting a formula ϕ into an ACAT is effective, because converting ϕ into
a graph acceptor is: a radius R and a threshold n can be computed so that LK(ϕ)
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is the finite union of ∼r,n-equivalence classes, which do not distinguish graphs
in which any sphere of radius R appears more than n times or equally often [9].
In turn, the equivalence classes of ∼r,n can be captured by a graph acceptor. �

4 Related Work and Applications

ACA(T)s cover many other models for concurrency, among them CFMs, lossy
channel systems, and asynchronous (trace) automata. Let us discuss the former
two in more detail, while the relation to the latter is studied thoroughly in [6].

Unlike the general model of an ACAT, a CFM [3] is tailored to recognizing
MSCs. It comprises a collection of finite-state machines, one for each agent i ∈
Ag, which communicate with one another via unbounded FIFO channels. The
machine of agent i can execute send actions i!j and receive actions i?j, i 	= j,
with the understanding that some message is queued into the channel from agent
i to agent j and, respectively, taken out of the (distinct) channel from j to i. To
increase the expressiveness, synchronization data might be sent together with
the actual message, which are abstracted away in the recognized MSC.

The first logical characterization of CFMs imposed a bound on the channel
capacity for any possible computation. In that case, CFMs turned out to be
exactly as expressive as MSO logic [10]. Weakening this restriction and consid-
ering a fragment of MSCs that requires at least one computation to match a
given channel capacity, Genest et al. showed that CFMs still capture precisely
MSO logic [8]. Applying the technique that has been generalized in the present
paper, CFMs could be shown to be expressively equivalent to EMSO logic over
graphs if channels are assumed to be unbounded [2], which is subsumed by
Theorem 2.

Not only are CFMs expressively equivalent to ACA(T)s relative to MSC(Ag),
any CFM is precisely an ACA. For example, a transition (q, i!j, m′, q′) (with syn-
chronization message m′) of a CFM component can be written as the collection
of ACA transitions {(iθk, (m, q))}→ (i!j, (m′, q′)) where m is a synchronization
message, k 	= i, and θ ∈ {!, ?}. In particular, a state of the CFM is paired off with
a message to obtain a state of the ACA under construction. On the other hand,
reading a receive vertex, the only valid ACA transition that may contribute to
a run on some MSC is of the form {(iθk, q1), (j!i, q2)} → (i?j, q) where the ex-
change of a message is hidden behind the states. Altogether, we can justifiably
state that CFMs are precisely ACA(T)s relative to MSC(Ag).

If, in a CFM, messages may get lost, we deal with a lossy channel system
[1]. Paradoxically, some questions of interest become decidable in this faulty case
while, wrt. reliable CFMs, corresponding problems are undecidable [4]. This fact
appears less paradox if we consider a lossy channel system to be an ACA relative
to LMSC(Ag) rather than relative to MSC(Ag). As LMSC(Ag) is not communi-
cation closed, EMSO logic is not covered by ACAs relative to LMSC(Ag), unless
we consider typed lossy channel systems. Reachability for lossy channel systems
is decidable [1] and so is emptiness for ACAs relative to LMSC(Ag).
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Theorem 4.

(1) Emptiness for ACAs relative to LMSC(Ag) is decidable.
(2) Emptiness for ACAs relative to DAG(Σ̃) is decidable.
(3) Emptiness for ACATs relative to DAG(Σ̃) is undecidable.
(4) Emptiness for ACAs relative to MSC(Ag) is undecidable.
(5) Emptiness for ACATs relative to LMSC(Ag) is undecidable.

Proof. Statement (1) follows from [1] and (2) follows from [11] and the fact that
DAG(Σ̃) is the language of an ACA relative to DAG(({a})a∈Σ). Part (4) is due
to [3] and statements (3) and (5) are reductions from (4). �
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A New Linearizing Restriction in the Pattern
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Abstract. In the pattern matching problem, there can be a quadratic
number of matching substrings in the size of a given text. The lineariz-
ing restriction finds, at most, a linear number of matching substrings.
We first explore two well-known linearizing restriction rules, the longest-
match rule and the shortest-match substring search rule, and show that
both rules give the same result when a pattern is an infix-free set even
though they have different semantics. Then, we introduce a new lineariz-
ing restriction, the leftmost non-overlapping match rule that is suitable
for find-and-replace operations in text searching, and propose an efficient
algorithm when the pattern is a regular language according to the new
match rule.

Keywords: Automata and formal languages, design and analysis of al-
gorithms, string pattern matching.

1 Introduction

Regular expressions are popular in many applications such as editors, program-
ming languages and software systems in general. People often use regular ex-
pressions for searching in text editors or for UNIX command; for example, vi,
emacs and grep. There are two types of questions in the pattern matching that
one can ask. The first is the recognition problem: Does a string in a given text
match a particular pattern? The second is the searching problem: Identify all
matching substrings of a given text with respect to a particular pattern. Since
a pattern is a language, regular expressions are often used to represent patterns
for the pattern matching problem. If a given pattern is a single string, then we
have the string matching problem [3,8]. If a given pattern is a finite language,
then we have the multiple keyword matching problem [2]. If a pattern is given as
a regular expression, then the first problem is the regular language membership
problem and the second problem is the regular-expression matching problem.

Given a text T and a pattern L, we define a substring s of T to be a match-
ing substring with respect to L if s ∈ L. Many researchers have investigated
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the various regular-expression matching problems. Thompson [11] presented the
first regular expression matching algorithm for his UNIX editor, ed. Aho [1] sug-
gested an algorithm to determine whether or not T has a matching substring
with respect to a given regular expression pattern E in O(mn) time using O(m)
space, where m is the size of E and n is the size of T . Crochemore and Han-
cart [5] extended this result to find all end positions of matching substrings of
T with the same runtime and space complexity of Aho [1]. The algorithm is a
modified version of the algorithm of Aho [1] and both algorithms are based on
the Thompson automata [11].

It is, in applications such as grep, sufficient to obtain the end positions
of matching substrings to output lines that contain the matched substrings.
However, we often need to find both the start positions and the end positions of
matching substrings to replace or delete the matched strings. Myers et al. [10]
solved the problem of identifying start positions and end positions of matching
substrings of T with respect to E in O(mn log n) time using O(m log n) space.
Recently, Han et al. [6] proposed another algorithm that runs in O(mn2) time
using O(m) space based on the algorithm of Crochemore and Hancart [5].

Given a regular expression pattern E and a text T , there can be at most
n2 matching substrings in T with respect to E in the worst-case. For exam-
ple, E = (a + b)∗ and T = abbaabaaba · · · baba over the alphabet {a, b}. These
matching substrings often overlap and nest with each other. To avoid this situ-
ation, researchers restrict the search to find and report only a linear subset of
the matching substrings. There are two well-known linearizing restrictions: The
longest match rule, which is a generalization of the leftmost longest match rule
of IEEE POSIX [7] and the shortest-match substring search rule of Clarke and
Cormack [4]. These two rules have different semantics and, therefore, identify
different matching substrings in general for same E and T .

In Section 2, we define some basic notions. We revisit two linearizing restric-
tions in the literature and examine the relationship between them in Section 3.
We observe that the two rules allow overlapping strings, which is not suitable
for some applications, and we propose a new linearizing restriction, the leftmost
non-overlapping match rule in Section 4. The new rule does not allow overlapping
strings and guarantees a linear number of matching substrings. We demonstrate
that the new rule is suitable for find-and-replace operations in text searching.
Then, we apply the rule to the regular-expression matching problem and de-
velop an algorithm for the problem in Section 5. The algorithm is based on the
Thompson automata [11] and it is easy to implement as similar algorithms [1,5].

2 Preliminaries

Let Σ denote a finite alphabet of characters and Σ∗ denote the set of all strings
over Σ. A language over Σ is any subset of Σ∗. The character ∅ denotes the
empty language and the character λ denotes the null string. Given two strings x
and y over Σ, x is a prefix of y if there exists z ∈ Σ∗ such that xz = y and
x is a suffix of y if there exists z ∈ Σ∗ such that zx = y. Furthermore, x is
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said to be a substring or an infix of y if there are two strings u and v such that
uxv = y. Given a string x = x1 · · ·xn, |x| is the number of characters in x and
x(i, j) = xixi+1 · · ·xj is the substring of x from position i to position j, where
i ≤ j. Given a set X of strings over Σ, X is infix-free if no string in X is an infix
of any other string in X . Given a string x, let xR be the reversal of x, in which
case XR = {xR | x ∈ X}. We define a (regular) language L to be infix-free if
L is an infix-free set. A regular expression E is infix-free if L(E) is infix-free.
We can define prefix-free and suffix-free regular expressions and languages in a
similar way.

A finite-state automaton A is specified by a tuple (Q, Σ, δ, s, F ), where Q is
a finite set of states, Σ is an input alphabet, δ ⊆ Q×Σ ×Q is a (finite) set of
transitions, s ∈ Q is the start state and F ⊆ Q is a set of final states. Let |Q| be
the number of states in Q and |δ| be the number of transitions in δ. Then, the
size of A is |A| = |Q|+ |δ|.

A string x over Σ is accepted by A if there is a labeled path from s to
a final state in F that spells out x. Thus, the language L(A) of a finite-state
automaton A is the set of all strings spelled out by paths from s to a final state
in F . We assume that A has only useful states; that is, each state appears on
some path from the start state to some final state.

A pattern is essentially a language. Given a pattern L and a text T , we define
a string x to be a matching substring of T with respect to L if x is a substring
of T and x ∈ L. The pattern matching problem is to identify all matching
substrings of T with respect to a given pattern L. If L is represented by a
regular expression E, then we obtain the regular-expression matching problem.
If E is prefix-free, then we obtain the prefix-free regular-expression matching
problem. The size |E| of a regular expression E is the total number of character
appearances in E.

3 Linearizing Restrictions

In the pattern matching problem for a text T , matching substrings of T often
overlap with or nest with other matching substrings. Moreover, in the worst-case,
there are a quadratic number of matching substrings of T . To avoid these situa-
tions, researchers have designed methods to find a linear subset of the matching
substrings while preserving specified properties for each matching string. We
call such methods linearizing restrictions. There are two well-known linearizing
restrictions in the matching problem.

3.1 Longest-Match Rule

The leftmost longest match rule is defined in the IEEE POSIX Standard [7] as
follows:

“The search is performed as if all possible suffixes of the string were
tested for a prefix matching the pattern; the longest suffix containing a
matching prefix is chosen, and the longest possible matching prefix of the
chosen suffix is identified as the matching sequence.”
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The rule reports the matching substring whose start position is leftmost and
if there are several matching substrings with such a start position, then the
longest string is identified. Since it is simple and easy to implement, the rule has
been adopted in many tools such as regex, perl and tcl/tk. Note that the rule
reports at most one matching string.

The longest-match rule is a generalization of the rule of IEEE POSIX [7]
that performs a general search instead of identifying a single match string. The
longest-match rule is defined as follows: Given a text T and a pattern L, we
search for the longest matching prefix with respect to L from position i in T ,
for 1 ≤ i ≤ n, where n is the size of T . Since there can be at most one longest
matching prefix from each position, there are at most n matching substrings;
thus, the longest-match rule guarantees a linear number of matching strings in
the size of T .

Assume that we use the longest-match rule for the regular-expression match-
ing problem. Given a regular expressionE and a string w, we can find the longest
prefix of w that belongs to L(E) in O(mn) time using O(m) space based on the
algorithm of Aho [1], where m is the size of E and n is the size of w. Now we
search for the longest prefix from each position in T with respect to L(E) and it
takes O(m|s1|)+O(m|s2|)+ · · ·+O(m|sn|) time, where s1, s2, . . . , sn are suffixes
of T . Since |s1| + |s2| + · · · + |sn| = O(n2), where n is the size of T , the total
complexity of the regular-expression matching problem using the longest-match
rule is O(mn2) time and O(m) space. Note that we can improve this running
time by using the algorithm of Myers [9] with additional space.

3.2 Shortest-Match Substring Search Rule

Clarke and Cormack [4] proposed a different linearizing restriction, the shortest-
match substring search:

“Locate the set of shortest nonnested (but possible overlapping) strings
that each match the pattern.”

We can rephrase the rule as follows: Given a text T and a pattern L, identify
all matching substrings of T with respect to L such that each matching sub-
string is not an infix of any other matching substrings; thus, the resulting set
of matching substrings by this rule is an infix-free set. They demonstrated that
the shortest-match substring search rule is appropriate for searching structured
text such as SGML and XML.

Clarke and Cormack [4] showed that there are at most linear number of
matching substrings in the size of T . Furthermore, they considered the case when
a pattern is a regular language described by a finite-state automaton A. Let k
be the maximum number of out-transitions from a state in A, m be the number
of states in A and n be the size of a given text T . They proposed an O(kmn)
worst-case running time algorithm using O(m) space. If we use the Thompson
automata [11], which are often used in the regular-expression matching problem,
then the running time is O(mn) since k is at most 2 in the Thompson automata.
Although the rule is simple and straightforward, the idea of this linearizing
restriction is shown to be very useful in various cases.
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3.3 Comparison of Two Linearizing Restrictions

Both the longest-match rule and the shortest-match substring search rule ensure
that the number of matching substrings is linear in the size of T . However, the
two rules have different semantics and, therefore, give different results for the
same text and the same pattern. For example, if T = abc and the pattern L =
{a, abc}, then the longest-match rule outputs abc whereas the shortest-match
substring search rule outputs a. Notice that both rules determine what to report
for given an arbitrary text T and an arbitrary pattern L; namely, there are no
restrictions on the pattern and on the text. On the other hand, Han et al. [6]
showed that, if L is prefix-free, then there can be at most n matching substrings
of T because of the prefix-freeness of L. From this work, we obtain:

Corollary 1. If L is prefix-free or suffix-free, then there are at most n matching
substrings of T with respect to L, where n is the size of a given text T .

Corollary 1 demonstrates that we can apply the linearizing restriction for
patterns to obtain a linear number of matching substrings. Then, one ques-
tion is that whether we can compromise the semantic difference between the
longest-match rule and the shortest-match substring search rule by applying the
linearizing restriction on patterns.

Theorem 1. Given a pattern L and a text T , if L is infix-free, then the longest-
match rule and the shortest-match substring search rule give the same result.
However, the converse does not hold.

Proof. Assume that a set S = {s1, . . . , sk} is the set of matching substrings of T
with respect to L, where k is the number of the matching substrings. Let n be the
size of T . Since L is infix-free, there are at most n matching substrings; namely,
k ≤ n [6]. By the definition of matching substrings, si ∈ S, for 1 ≤ i ≤ k, must
belong to L; it implies that S is a subset of L and, therefore, S is also infix-free.
Thus, S is the output of the shortest-match substring search rule. Note that all
strings in S start from different positions in T . (If any two strings si and sj , for
1 ≤ i 	= j ≤ k, start from the same position, then the shorter string must be a
prefix of the longer string — a contradiction.) Since each string in S starts from
different position, all strings in S are identified as matching substrings by the
longest-match rule. Therefore, S is the output of both rules.

We demonstrate that the converse does not hold with the following counter
example; T = ab and L = {ab, c, cc}. Both rules output ab but L is not infix-
free. ��

Theorem 1 shows that we can eliminate the semantic difference between two
rules by choosing an infix-free pattern. Moreover, if we know that a given pattern
is an infix-free language, then an algorithm for one rule can be used for the
other rule. For example, if a given pattern is an infix-free regular language, then
we can use the algorithm of Clarke and Cormack [4] for the regular-expression
matching problem with the longest-match rule. In additions, we can use an infix-
free regular-expression matching algorithm [6] for both linearizing restriction
rules; the algorithm takes O(mn) time using O(m) space in the worst-case.
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4 Leftmost Non-overlapping Match Rule

In the pattern matching, two matching substrings of a given text T may overlap
with each other. Assume that we want to find matching substrings of T and delete
them from T . Then, only one of two overlapping matching substrings should be
identified. For example, if T = BEFOREIGN and the pattern L = {BEFORE,
FOREIGN}, then both BEFORE and FOREIGN are matching substrings with
respect to L. However, if we delete BEFORE from T , then FOREIGN does not
exist anymore. Similar situations can happen if we do modification or replace-
ment for matching substrings. Therefore, if two matching substrings overlap,
then only the string that starts ahead of the other string is identified. Sometimes
one matching substring is nested in the other matching substring. Even in this
case, we choose the string that has an earlier start position. For example, if T =
AUTOPIAN and L = {TO, UTOPIA}, then UTOPIA is identified even though
TO is in L and shorter than UTOPIA since UTOPIA starts ahead of TO in T .
These two examples show that the previous two rules, the longest-match rule
and the shortest-match substring search rule, are not suitable for such find-and-
replace operations in text searching since both rules allow matching substrings
to overlap. We suggest a new linearizing restriction that is suitable for find-and-
replace operations by identifying only non-overlapping matching substrings.

Definition 1. We define the leftmost non-overlapping match rule as follows:

Given a text T , we identify the leftmost matching substring. Then, we
move to the next position of the matching substring in T and repeat the
identification of the leftmost matching substring in the remaining text
until we cannot find it anymore. For example, if two matching strings
overlap, then we choose the string whose start position is ahead of the
other string’s start position and discard the other string; see (a) in Fig. 1.
If there are more than two matching substrings that start from the same
position, then we choose the shortest string among them; see (b) in Fig. 1.

B E F O R E I G N E D I T O R

(a) (b)

Fig. 1. The figure illustrates the leftmost non-overlapping match rule. (a) When the

pattern is {BEFORE, FOREIGN}; the rule chooses BEFORE. (b) When the pattern

is {EDIT, EDITOR}; the rule chooses EDIT.

Let G(L, T ) denote the set of matching substrings of the given text T with
respect to a given pattern L by the leftmost non-overlapping match rule. Let
|G(L, T )| be the number of strings in G(L, T ). For example, G(L = {aa, ab, ba, bb},
T = abcbabb) = {(1, 2), (4, 5), (6, 7)} and |G(L, T )| = 3. Note that although the
substring T (5, 6) = ab is in L, it is not in G(L, T ) since it overlaps with another
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matching substring T (4, 5). From the definition of the leftmost non-overlapping
match rule, we obtain the following results.

Proposition 1. The leftmost non-overlapping match rule ensures that the num-
ber of matching substrings of T is at most n, where n is the size of T . Namely,
|G(L, T )| ≤ n

Proof. Assume that the number of matching substrings of T is greater than
n. Then, by the pigeonhole principle, there must be two distinct substrings s1
and s2 that start from the same position in T — a contradiction. Therefore,
|G(L, T )| ≤ n. ��

Proposition 2. If two distinct matching pairs (u1, v1) and (u2, v2) ∈ G(L, T ),
then either v1 < u2 or v2 < u1.

Proof. By the match rule of Definition 1, two strings must be non-overlapping.
Then, there are only two possible cases as shown in Fig. 2. ��

T

T

u1 v1 u2 v2

u2 v2 u1 v1

Fig. 2. Two possible cases of two non-overlapping substrings of T

Proposition 1 shows that we always have a linear number of matching sub-
strings in the size of a given text by the leftmost non-overlapping match rule.
Note that we do not require L to be a particular type of language such as a regu-
lar language or a context-free language. Similar to the longest-match rule or the
shortest-match substring search rule, the leftmost non-overlapping match rule can
be treated as a general principle for any text search application. Since regular ex-
pressions are often used for the matching problem, we study the regular-expression
matching problem with the leftmost non-overlapping match rule in Section 5.

5 Regular-Expression Matching Problem

We consider the regular-expression matching problem using the leftmost non-
overlapping match rule. Before we present an algorithm for this problem, we
explain an example. Assume that we are given a regular expressionE = a(a+b)∗c
for the text in Fig. 3. Then, G(L(E), T ) = {(1, 5), (8, 11), (12, 14)}.

Note that T (1, 5), T (8, 11) and T (12, 14) are not the only matching sub-
strings of T with respect to L(E). T (3, 5) = abc and T (13, 14) = ac are also
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T a b a b c b c a b b c a a c b b

Fig. 3. The output of G(L(E),T ), where E = a(a + b)∗c

in L(E). Nevertheless, since both T (3, 5) and T (13, 14) overlap other matching
substrings of T and they are not the leftmost matching substrings, the leftmost
non-overlapping match rule does not identify them. For example, both T (1, 5)
and T (3, 5) are in L(E) but T (1, 5) is selected since T (1, 5) is the leftmost match-
ing substring.

ExpressionMatching (A, T )

Q = null({s})
if f ∈ Q then output λ
for j = 1 to n

Q = null(goto(Q, wj))
if f ∈ Q then output j

Fig. 4. A regular-expression matching procedure for finding all the end positions of

matching substrings of T with respect to A, where A = (Q, Σ, δ, s, f) is a Thompson

automaton and T = w1 · · · wn is a text

We show that the regular-expression matching problem with the leftmost
non-overlapping match rule can be solved using a double scan of T based on the
algorithm of Crochemore and Hancart [5].

Theorem 2 (Crochemore and Hancart [5]). Given a regular expression E
and a text T , we can find all the end positions of matching substrings of T with
respect to L(E) in O(mn) worst-case time with O(m) space using Expression-
Matching, where m is the size of E and n is the size of T .

The algorithm ExpressionMatching (EM) in Fig. 4 is a modified version of
Aho’s algorithm [1] that determines whether or not a given text has a substring
accepted by a given finite-state automaton. EM has two sub-functions: The func-
tion null(Q) computes all states in A that can be reached from a state in the
set Q of states by null transitions and the goto(Q, wj) function gives all states
that can be reached from a state in Q by a transition with wj , the current
input character. For details of the algorithm, the sub-functions and the time
complexity, refer to Aho [1] or Crochemore and Hancart [5].

Given a regular expression E and a text T = w1 · · ·wn, we first compute all
start positions of matching substrings of T with respect to E. We prepend Σ∗ to
ER; thus, allowing matching to begin at any position in T R. We construct the
Thompson automaton [11] A for Σ∗ER and run ExpressionMatching (A, T R).
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T a b a b c b c a b b c a a c b b

Fig. 5. The output of a single scan of T R with respect to Σ∗ER using EM, where

E = a(a + b)∗c

For example, if we run EM on the text in Fig. 3, then we obtain the following
positions as indicated by “↓” in Fig. 5.

Since it takes O(m) time to compute the Thompson automaton for E [11]
and O(mn) time to run EM, where m is |E| and n is |T |, we can compute all
start positions of matching substrings in O(mn) time using O(m) space. Let
P = {q1, . . . , qk} be the set of the start positions of matching substrings after
the single scan of T R, where k is the number of matching start positions and
qi < qj for i < j. Then, we read a character from qi position of T to find a
corresponding shortest matching string with respect to E. Once we find one
matching substring T (qi, j), where qi < j, we move to the next start position in
P that is greater than j to avoid the overlapping. A full algorithm is given in
Fig. 6.

ReverseEM (A, T, P )

Q = { }, i = 1
for j = qi to n

Q = null(goto(Q, wj))
if f ∈ Q

output (qi, j)
while (qi < j)

i = i + 1
j = qi

fi
rof

Fig. 6. A reverse-scan matching procedure for a given Thompson automaton A =

(Q,Σ, δ, s, f) for E, a text T = w1 · · · wn and a set P = {q1, . . . , qk} of the start

positions of matching substrings of T with respect to E

For example, if we run ReverseEM for the result in Fig. 5, where P =
{1, 3, 8, 12, 13}, then the algorithm first outputs (1, 5). The algorithm skips 3
in P since it makes an overlapping with the current output (1, 5) and goes to 8
in P to avoid an overlapping. Fig. 7 illustrates this step.

ReverseEM is based on EM in Fig. 4 and the while loop in ReverseEM
speeds up for finding the next matching substring by skipping inappropriate start
positions and ensures that the algorithm prohibits the overlapping matching
substrings. Note that the while loop is executed at most k times in total even
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T a b a b c b c a b b c a a c b b

P

Fig. 7. An example of ReverseEM to find corresponding end positions for a given

set P according to the leftmost non-overlapping match rule, where E = a(a+b)∗c. The

algorithm skips position 3 and moves to position 8 after reporting (1, 5) as a matching

substring of T .

though it is inside the for loop. Therefore, the worst-case time complexity of
ReverseEM is still O(mn) using O(m) space.

Theorem 3. Given a pattern regular expression E and a text T , we can com-
pute the set of matching substrings that conforms the leftmost non-overlapping
match rule in O(mn) worst-case time using O(m) space, where m is the size of
E and n is the size of T .

Theorem 4. A pair (u, v) is recognized by ReverseEM if and only if (u, v) ∈
G(L(E), T ), where E is a given pattern regular expression and T is a given text.

Proof. Assume that we have computed the set P = {q1, . . . , qk} of the start
positions of matching substrings using EM in Fig. 4, where k is the number of
start positions of matching substrings.

=⇒ If (u, v) is recognized by ReverseEM, then T (u, v) ∈ L(E) and u ∈
P since output in ReverseEM gives (qi, j) and qi ∈ P . It is clear that there
are no matching substring T (u, v′), where v′ < v, from the algorithm; namely,
T (u, v) is the shortest matching substring among all matching substrings that
start from the same position u in T . Now assume that T (u, v) overlaps with
another matching substring T (u′, v′) and T (u, v) is not the leftmost matching
substrings; hence, u′ < u < v′. Then, when ReverseEM recognizes (u′, v′), the
value of j becomes v′. After the output (u′, v′), ReverseEM executes the while
loop to choose the next start position from P that is greater than the current
position j. Since u < j = v′, u cannot be chosen as a start position because of the
while loop. It implies that the algorithm skips the start position u and therefore
(u, v) cannot be recognized by the algorithm — a contradiction; there cannot
be a such matching substring T (u′, v′) in T . Therefore, if (u, v) is recognized by
ReverseEM, then (u, v) ∈ G(L(E), T ).
⇐= Since (u, v) ∈ G(L(E), T ), T (u, v) is the shortest matching substring

from position u in T with respect to L and u must be in P . If u is q1 in P , then
it is clear that ReverseEM recognizes (u, v). Assume u = qi, where 1 < i ≤ k.
Now the only possible case that ReverseEM fails to recognize (u, v) is when u
is skipped by the while in the algorithm; namely, u < j for some j. It implies
that there is an output (q′, j), where q′ < u < j and q′ ∈ P . It contradicts that
T (u, v) is the leftmost non-overlapping matching substring of T . Therefore, this
situation is not possible and (u, v) must be recognized by ReverseEM. ��
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6 Conclusions

We have investigated linearizing restrictions for the pattern matching problem.
We have reexamined the longest-match rule that is a generalization of the rule
of IEEE POSIX [7] and the shortest-match substring search rule [4] and have
shown that the two rules give the same result when the given pattern is an infix-
free language. Note that both rules have different semantics and give different
outputs in general. Then, we have introduced a new linearizing restriction, the
leftmost non-overlapping match rule, which should be useful for implementing
find-and-replace operations in text searching.

Furthermore, we have proposed an O(mn) worst-case running time algorithm
for the regular-expression matching problem using the new linearizing rule based
on the algorithm of Crochemore and Hancart [5].
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Abstract. Sequence comparison is a fundamental task in pattern
matching. Its applications include file comparison, spelling correction,
information retrieval, and computing (dis)similarities between biologi-
cal sequences. A common scheme for sequence comparison is the longest
common subsequence (LCS) metric. This paper considers the fully in-
cremental LCS computation problem as follows: For any strings A, B
and characters a, b, compute LCS(aA, B), LCS(A, bB), LCS(Aa, B),
and LCS(A, Bb), provided that L = LCS(A,B) is already computed.
We present an efficient algorithm that computes the four LCS values
above, in O(L) or O(n) time depending on where a new character is
added, where n is the length of A. Our algorithm is superior in both
time and space complexities to the previous known methods.

1 Introduction

Pattern matching is one of the most extensively studied sub-areas of theoret-
ical computer science [1,2], and one example of the fundamental problems on
pattern matching is sequence comparison [3]. There are a wide range of appli-
cations for sequence comparison, including file comparison [4], spelling correc-
tion [5], information retrieval [6], and computing (dis)similarities between biolog-
ical sequences [7,8]. Comparing two strings A = a1a2 · · · an and B = b1b2 · · · bm
can be done by computing an alignment between these strings. Standard align-
ment algorithms compute a dynamic programming matrix DP for the opti-
mal alignments between the consecutive prefixes of A and B. Namely, each en-
try DP [i, j] stores the score of the alignment between A[1..j] = a1 · · ·aj and
B[1..i] = b1 · · · bi.

A common scheme of sequence comparison is the longest common subsequence
(LCS ) metric [9]. A subsequence of string A is any string obtained by removing
0 or more characters from A, and the LCS of two strings A and B (denoted by
LCS(A, B)) is the longest subsequence that commonly appears in both A and
B. In the LCS measure, matched pairs of characters are assigned score 1 and

M. Lískiewicz and R. Reischuk (Eds.): FCT 2005, LNCS 3623, pp. 563–574, 2005.
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Table 1. Comparison of complexities for fully incremental LCS computation provided

that LCS(A, B) is already computed, where n = |A| and m = |B|. Note that L =

LCS(A, B) ≤ min(n, m) always holds. The last row shows the total space requirement

of each algorithm.

Naive DP Modified algorithm of [12] Our algorithm

time for LCS(aA,B) O(mn) O(m + n) O(L)

time for LCS(Aa,B) O(m) O(m) O(L)

time for LCS(A, bB) O(mn) O(m + n) O(n)

time for LCS(A, Bb) O(n) O(n) O(n)

total space complexity O(mn) O(mn) O(nL + m)

unaligned characters are assigned score 0, and the objective is to compute an
optimal alignment that gives the maximum score corresponding to LCS(A, B).

LCS(A, B) can be obtained by computing the DP matrix in O(mn) time.
The DP approach is suitable for on-line incremental computation of the LCS,
in such a situation where upcoming characters are appended to the tails of A
and/or B. In fact, LCS(Aa, B) and LCS(A, Bb) can be easily computed in O(m)
and O(n) time respectively, provided that LCS(A, B) is already computed. This
enables us an efficient processing of e.g. streaming data.

In recent years, the research of computing string alignments to the reversed
direction (from right to left) has been a popular topic of pattern matching.
Examples of motivations are to process log files backdating to the past, and
to compute the alignments between not only the prefixes but also the suffixes
of a biological sequence and another biological sequence [10]. However, a naive
use of the DP approach is not efficient enough: Since prepending a character
a to the head of A can change all the entries of the DP table, we have to re-
compute the whole DP table from scratch, and this obviously takes O(mn) time.
Significant improvement was given by Landau et al. [11] for the edit distance
metric. For the edit distance metric, their algorithm performs in O(m+n) time.
Kim and Park [12] presented a simpler algorithm solving the same problem in the
same complexity. Landau et al. [10] introduced the consecutive suffix alignment
problem and showed two algorithms to solve this problem; the first one runs in
O(nL+m) time and space, and the second one in O(nL) time and space, where
L = LCS(A, B), assuming that the alphabet is fixed. Note that L ≤ min(n, m)
always holds.

This paper treats fully incremental LCS computation where characters are
added to any position of the heads and tails of A and B. In so doing, we pay
our attention to the O(nL + m) algorithm by Landau et al. in [10]. In this
paper, we produce an algorithm for fast, flexible, and efficient computation of
LCS. The result of this work is summarized in Table 1. It is actually possible to
apply the algorithm of Kim and Park [12] to fully incremental LCS computation,
which was originally designed for the edit distance metric. However, as seen in
Table 1, our algorithm is superior to their algorithm in both time and space
complexities.
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2 Preliminaries

Let Σ be a finite alphabet. Throughout this paper we assume that Σ is fixed.
An element of Σ∗ is called a string. For string A = a1a2 · · · an, let |A| denote
its length, namely |A| = n. Let A[i] = ai and A[i..j] = ai · · · aj , where 1 ≤ i ≤
j ≤ n. Then A[1..j] is called a prefix, A[i..j] a substring, and A[i..n] a suffix of
A. Sequence A[i1]A[i2] · · ·A[i�] is called a subsequence of A of length �, where
1 ≤ i1 < i2 . . . < i� ≤ n. Note that any substring of A is a subsequence of A. Let
B = b1b2 · · · bm. A subsequence occurring in both A and B is called a common
subsequence of A and B, and the longest such subsequence is called the longest
common subsequence (LCS ) of A and B, which is denoted by LCS(A, B).

A standard technique for computing LCS(A, B) is the dynamic programming
method, where we compute the DP matrix of size (m + 1) × (n + 1) for which
DP [i, j] = LCS(A[1..j], B[1..i]) for 1 ≤ j ≤ n and 1 ≤ i ≤ m. The recurrence of
the DP matrix is the following:

DP [i, j] =

⎧⎪⎨⎪⎩
0 if i = 0 or j = 0,

max(DP [i− 1, j],DP [i, j − 1]) if i, j > 0 and A[j] 	= B[i],
DP [i− 1, j − 1] + 1 if i, j > 0 and A[j] = B[i].

Therefore, to compute LCS(A, B) = DP [m, n], we need O(mn) time and space.
Pair (i, j) is said to be a match point between A and B, if A[j] = B[i]. Pair

(i, j) is said to be a partition point of DP if DP [i, j] = DP [i−1, j]+1. P denotes
the set of the partition points of DP . Let (i, j) ∈ P and DP [i, j] = v. Then we
write as P [v, j] = i, namely, P [v, j] is the first row index i at column j of DP
which bears v. See Fig. 1 for examples of match points and partition points.

3 The Landau Myers Ziv-Ukelson Algorithm

Assume that, given two strings A, B, we have already computed L = LCS(A, B).
In this section we recall the algorithm of [10] which, for any character a, computes
LCS(aA, B) in amortized O(L) time. This algorithm computes only the partition
points rather than the whole DP matrix, thus saving both time and space.

Let DPAh and PAh denote the DP matrix and the partition point set ob-
tained from DP and P by adding a new character a to the head of A, respectively.
Let n = |A| and m = |B|.

Lemma 1 (Landau et al. [10]). PAh is computed by inserting at most one
new partition point at each column of P .

See Fig. 1 for a concrete example of the above lemma.
In Lemma 2 we will show how to compute in O(1) time the new partition

point for each column. In so doing, we construct the next match table (NM
table) as follows: NM [i , a] returns min{i′ | i′ > i and B[i′] = a}, if such i′

exists. Otherwise, it returns null. For fixed alphabet Σ the size of NM table is
O(m). An example of NM table is shown in Fig. 2.
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Fig. 1. DP (left) and DP Ah (right) with A = adbdcd, B = bcbd and a = b. Cells

marked with a circle and rectangle are match and partition points, respectively. Grey

rectangles show the new partition points inserted into DP Ah.
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Fig. 2. NM table for string B = bcbd with alphabet Σ = {a, b, c, d}

Lemma 2 (Landau et al. [10]). Let Ij−1 = PAh[v, j−1] denote the row index
of the new partition point in column j−1 of PAh. Then, the new partition point
Ij at column j of DPAh is computed as follows:

Ij =

{
Ij−1 if PAh[v, j−1] ≤ P [v, j],
min{NM (PAh [v , j−1 ],A[j ]),PAh [v+1 , j−1 ]} if PAh[v, j−1] > P [v, j].

Note that a special case occurs in Lemma 2 when v is the highest value in
column j − 1 of DPAh, and therefore partition point PAh[v + 1, j − 1] does not
exist. In this case, PAh[v + 1, j− 1] is set to the dummy index m + 1, so that we
can proceed according to the above lemma.

The stop condition of the update procedure is as follows.

Lemma 3 (Landau et al. [10]). If column j of DPAh is identical to colum j
of DP , then all columns j′ > j of DPAh are also identical to columns j′ of DP .

The partition point set P is implemented by a double linked list in order
that insertion of new partition points can be done in O(1) time. The row indices
correspond to the LCS values and the column indices correspond to the positions
of string A, and each cell stores the corresponding row index of B. Fig. 3 shows
an example of the update of P to PAh. It is obvious that the size of the partition
point set is bounded by O(nL). Since insertion of each new partition point can
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Fig. 3. Update of P with strings A = dbdcd and B = bcbd to PAh with new character

a = b. Grey circles are the new partition points inserted to PAh.

be done in O(1) time, this set can be constructed in O(nL) time. Since |A| = n,
each incrementation of a new character to the head of A takes the following time.

Theorem 1 (Landau et al. [10]). Provided that L = LCS(A, B) is already
computed, for any character a, LCS(aA, B) is computable in amortized O(L)
time.

4 A Fully Incremental LCS Computation Algorithm

In this section we produce an efficient algorithm to solve the fully incremental
LCS computation problem, where the problem is to compute the LCS of given
two strings under the condition that characters are added to any of the heads
and tails of the two strings at any time. Namely, we are to compute LCS(aA, B),
LCS(Aa, B), LCS(A, bB), or LCS(A, Bb). The first one, LCS(aA, B), is com-
putable in amortized O(L) time due to Theorem 1 by Landau et al. [10], as
recalled in Section 3. In what follows, we will show how to compute the three
others.

4.1 Computing LCS(A, bB)

Assume we have already computed LCS(A, B). Let DP and P be the DP table
and the partition point set for LCS(A, B), respectively. Let DP Bh and PBh de-
note the DP matrix and the partition point set for LCS(A, bB) with character b,
respectively. Let n = |A| and m = |B|.

Where partition points are updated. This subsection is devoted to clarify-
ing where partition points are possibly changed in the DP table when comput-
ing LCS(A, bB) from LCS(A, B). Fig. 4 shows an example of updating DP to
DPBh.

Let � = min{j | A[j] = b}. Namely, � is the smallest column index of DPBh

in which a match point exists in the first row. Then we have the following
proposition.

Proposition 1. All the entries of DPBh are identical to those of DP at the
columns smaller than �, except for the first row of DPBh. The scores in the first
row of DPBh are 0 at columns smaller than �, while the scores are 1 at the other
columns.
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Fig. 4. Update of DP to DP Bh with A = aaaabacbabca, B = cbabac, and b = b.

Rectangles show the partition points. In DP Bh on right, dashed rectangles are new

partition points inserted, and circles indicate partition points deleted in updating DP

to DP Bh.

See Fig. 4 for concrete examples. This proposition means that we do not need
to care about these entries of the DP table. In the following, we only consider
the other entries than these.

Lemma 4. For any column j ≥ �, there exists row index Ej such that

DPBh[i, j] =

{
DP [i, j] + 1 if i < Ej ,

DP [i, j] if i ≥ Ej .

Proof. Similar to the proof of Lemma 1 in [10]. ��

The following lemma is derived from Lemma 4.

Lemma 5. Column j of PBh consists of the partition points in P except for
one possibly eliminated partition point from P , plus the first row index of DPBh

if it has score 1 at column j. Let Ej be the smallest row index such that δEj =
DPBh[Ej , j]−DP [Ej, j] = 0. Then (Ej , j) is the only partition point eliminated
at column j in updating P to PBh.

Proof. It is obvious that the first row index of DPBh becomes a partition point
at each column of PBh, if it has score 1.

In what follows, we will show that (1) (Ej , j) is a partition point of DP ; (2)
(Ej , j) is not a partition point of DPBh.

(1) For contrary, assume (Ej , j) is not a partition point of DP . Then DP [Ej −
1, j] = DP [Ej , j]. Since Ej is the smallest row index such that δEj = 0, by
Lemma 4 we get δEj−1 = 1 which yields DPBh[Ej − 1, j] = DPBh[Ej , j]+ 1
but this contradicts the monotonicity of LCS. Hence (Ej , j) is a partition
point of DP .

(2) For contrary, assume (Ej , j) is a partition point of DPBh. Then DPBh[Ej−
1, j] = DPBh[Ej , j]−1. Since Ej is the smallest row index such that δEj = 0,
by Lemma 4 we get δEj−1 = 1 which yields DP [Ej, j] = DP [Ej−1, j] which
contradicts (1) above. Hence (Ej , j) is not a partition point of DPBh.
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For any row i < Ej of column j, we have DPBh[i, j] = DP [i, j] + 1 by
Lemma 4. Since the first row at column j of DPBh is a new partition point of
PBh with score 1, the partition point in any rows smaller than Ej are inherited
from P to PBh. Similar arguments hold for the rows greater than Ej . ��

See Fig. 4 for concrete examples of Lemma 5. Each entry marked by a circle is
the partition point eliminated at the column.

According to Lemma 5, at each column j of PBh at most one new partition
point is inserted in the first row, and at most one partition point Ej is eliminated
at a larger row. In updating P to PBh, P is processed from left column to right
column. Now we show where Ej can exist at each column j.

Proposition 2. For any column j − 1 of DP table, let P [v, j − 1] = x. At the
next column j, we have DP [x, j] = v.

Proof. Since DP [x, j−1] is the partition point of score v, we know that DP [x−
1, j − 1] = v − 1. There are two possible cases:

– when (x, j) is a match point.
By the recursion of LCS computation, DP [x, j] = DP [x− 1, j − 1] + 1 = v.

– when (x, j) is not a match point.
Since DP [x − 1, j − 1] = v − 1, DP [x − 1, j] can assume v − 1 or v. Thus,
DP [x, j] = max{DP [x− 1, j],DP [x, j − 1]} = v. ��

Lemma 6. Let (Ej−1, j − 1) and (Ej , j) be the partition points eliminated at
columns j−1 and j in updating P to PBh, respectively. Let DPBh[Ej−1, j−1] =
v. Then we have

Ej−1 ≤ Ej ≤ PBh[v + 1, j − 1].

(see Fig. 5.)

Proof. Since DPBh[Ej−1, j−1] = v, P [v, j−1] = Ej−1. In what follows, we will
consider three kinds of rows and show that Ej can exist in none of them. Recall
that PBh[v, j − 1] < P [v, j − 1] = Ej−1.

– rows smaller than or equal to PBh[v, j − 1].
Consider any partition point (x, j − 1) such that x ≤ PBh[v, j − 1] and let
DP [x, j − 1] = v′. By Proposition 2, DP [x, j] = v′. On the other hand, by
Lemma 4, P [v′, j−1] = PBh[v′+1, j−1] = x. Since DP [PBh[v′+1, j−1], j] =
v′+1 by Proposition 2, we have DPBh[x, j] = DP [x, j]+1 which means that,
for any partition point (x, j − 1), we have (x, j − 1) ∈ PBh, while increasing
its score just by 1. Thus no partition point is eliminated in the range smaller
than PBh[v, j − 1] at column j.

– rows greater than PBh[v, j − 1] and smaller than Ej−1.
The scores of these rows in DP are all v − 1, since DP [Ej−1, j − 1] = v and
(Ej−1, j − 1) is a partition point. We have two cases.
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Fig. 5. The range where a partition point Ej at column j can exist, in updating P to

PBh. Gray entries indicate partition points.

• when there are one or more match points in these rows at column j.
Consider the highest such match point (of the smallest row index) and
let its row index be i. Then there is a partition point (i, j) such that
P [v, j] = i. For any row indices PBh[v, j−1] < i′ < i, we have DP [i′, j−
1] = DP [i′, j] = v − 1 and DPBh[i′, j − 1] = DPBh[i′, j] = v. For any
row indices i ≤ i′′ < Ej−1, we have DP [i′′, j − 1] + 1 = DP [i′′, j] = v
and DPBh[i′′, j − 1] + 1 = DPBh[i′′, j] = v + 1. Thus PBh[v + 1, j] =
P [v, j] = i.

• when there are no match points in these rows at column j.
In this case, there are no partition points in these rows of either DP or
DPBh.

– rows greater than Ej .
Similar to the first case.

Therefore we can conclude that Ej−1 ≤ Ej ≤ PBh[v + 1, j − 1]. ��

Eliminating partition points. In the last subsection we described where the
partition points, which can possibly be eliminated, exist. In this section, we show
how to quickly eliminate such partition points.

Lemma 7. Let (Ej−1, j − 1) and (Ej , j) be the partition points eliminated at
columns j−1 and j in updating P to PBh, respectively. Let DPBh[Ej−1, j−1] =
v. Then we have

Ej =

{
Ej−1 if there is no match point (x, j) s.t. PBh[v, j−1] < x ≤ Ej−1,

P [v+1, j] otherwise.

Proof. We begin with the first case (see Fig. 6). Since (Ej−1, j−1) is the partition
point in DP with score v, by the monotonicity of LCS we have DP [PBh[v, j −
1], j] = v−1. Thus for any row index PBh[v, j−1] ≤ i < Ej−1, DP [i, j−1] = v−1.
By Lemma 4 DPBh[i, j− 1] = v for any such i. Recall PBh[v, j] ≤ PBh[v, j− 1].
Since there is no match point (x, j) such that PBh[v, j − 1] < x ≤ Ej−1, we get
the three following properties:
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Fig. 7. Ej = P [v + 1, j] if there is a match point between PBh[v, j − 1] and Ej−1

– for any row index P [v, j] ≤ i′ < Ej , DP [i′, j] = v − 1,
– P [v, j] = Ej−1, and
– for any row index PBh[v, j] ≤ i′′ ≤ Ej , DP [i′′, j] = v,

which imply Ej = Ej−1.
Now we focus on the second case (see Fig. 7). Consider minimum row index

x in range PBh[v, j − 1] < x ≤ Ej−1, such that (x, j) is a match point. Then we
know that P [v, j] = x. By Lemmas 4 and 6, we have DPBh[x, j] = v + 1. Hence
Ej = P [v + 1, j] as it is no longer a partition point at column j of DPBh. ��

Note that a spacial case occurs in Lemma 7 when v is the highest value at
column j of DP , and therefore partition point (P [v + 1, j], j) does not exist. In
this case, P [v, j] = PBh[v + 1, j] as usual, but no partition point is eliminated
at column j. The update of P to PBh is stopped at this point, since Lemma 3
also stands for PBh.

The initial condition to determine the first column in which a partition point
is eliminated, and in which row the partition point to be eliminated exists, is
given in the following lemma.
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Lemma 8. Let � = min{j | A[j] = b}. Then we have

E� =

{
null if there is no partition point at column j in DP ,
P [1, �] otherwise.

Proof. Trivial. ��

In case Ej = null in Lemma 8, there occurs no partition point elimination at
the greater columns than �, either.

Due to the above arguments, it is possible to update each column of P in
constant time using the double-linked list implementation in Section 3. Since we
have to update n columns in the worst case (For instance, consider A = ban and
B = bm. Every time we add b = b to the head of B, n new partition points will
be added, and n old partition points will be eliminated), we conclude that:

Theorem 2. Provided that L = LCS(A, B) is already computed, for any char-
acter b, LCS(A, bB) is computable in O(n) time.

4.2 Computing LCS(Aa, B)

Let DP At and PAt denote the DP matrix and the partition point set which we
obtain in computing LCS(Aa, B) with character a, respectively.

The following proposition is obvious.

Proposition 3. For each partition point (P [v, j − 1], j − 1),

P [v, j] =

{
NM (P [v − 1 , j ],A[j ]) if NM (P [v − 1 , j ],A[j ]) < P [v , j − 1 ],
P [v, j − 1] otherwise.

It is clear that the scores of all the existing columns of DP are inherited to DP At

and thus we only need to compute the partition points in the last (new) column
of PAt, which is computable based on Proposition 3. Therefore we obtain the
following result.

Theorem 3. Provided that L = LCS(A, B) is already computed, for any char-
acter a, LCS(Aa, B) is computable in O(L) time.

4.3 Computing LCS(A, Bb)

Let DPBt and PBt denote the DP matrix and the partition point set which we
obtain in computing LCS(A, Bb) with character b, respectively.

It is clear that in updating DP to DPBt the scores of all rows are preserved
and thus we only need to examine whether or not the last (new) row becomes
a new partition point at each column. Let P [j] denote the set of the partition
points at column j of DP . That is, P [j] is a subset of P . Then we have the
following proposition and theorem.
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Proposition 4. Let partition point max(P [j − 1]) have score v.

– If max(P [j]) has score v + 1, then the last row at column j is not in PBt.
– If max(P [j]) has score v, then there are two sub-cases.

• If the last row at column j of DPBt is a match point, then the last row
at column j is in PBt with score v + 1.

• If the last row at column j of DPBt is not a match point, then there are
two further sub-cases.
∗ If max(PBt[j − 1]) has score v, then the last row at column j is not

in PBt.
∗ If max(PBt[j − 1]) has score v + 1, then the last row at column j is

in PBt with score v + 1.

Theorem 4. Provided that L = LCS(A, B) is already computed, for any char-
acter b, LCS(A, Bb) is computable in O(n) time.

Proof. By Proposition 4 we can compute each partition point in the last row of
DPBt in O(1) time. Since there are n column indices at the last row of DPBt,
it takes O(n) time in total. ��

4.4 Updating NM Table

The algorithms introduced in the last subsections use NM table. Recall that we
construct NM table for alphabet Σ against string B. Thus, when a new character
is added to the head or tail of B, NM table has to be updated accordingly. Let
NMBt and NMBh denote the next match tables obtained by updating NM for
LCS(A, bB) and LCS(A, Bb), respectively.

– computing NMBh .
Let i be the position index of new character b added to the head of B. Then
we have

NMBh [k , c] =

⎧⎪⎨⎪⎩
i if k = i− 1 and c = b,

NM [k + 1 , c] if k = i− 1 and c 	= b,

NM [k , c] otherwise.

This means that we only have to update the top row i− 1 of NMBh . Since
we have assumed that Σ is fixed, it takes O(1) time.

– computing NMBt .
Let i′ be the position index of new character b appended to the tail of B.
Also, let � be the last occurrence of b in B. Then we have

NMBt [k , c] =

⎧⎪⎨⎪⎩
null if k = i′,

i′ if � ≤ k < i′ and c = b,

NM [k , c] otherwise.

Initializing row i′ takes constant time as Σ is fixed. For row � ≤ k < i′ at
column b, in the worst case it takes linear time in the length of B. However,
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notice that once any entry is valued with a non-null position, its value will
never change. Since the size of NM is linear in the length of B (once more
recall Σ is fixed), the amortized time complexity for updating NM is O(1).

In conclusion of this whole section, the following theorem stands.

Theorem 5. Given strings A, B of length n, m respectively, and provided that
L = LCS(A, B) is already computed, we can compute, for any character a, b,
LCS(aA, B) in O(L) time, LCS(A, bB) in O(n) time, LCS(Aa, B) in O(L)
time, and LCS(A, Bb) in O(n) time. The total space complexity is O(nL + m).
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Brandstädt, Andreas 185, 516
Brinkmeier, Michael 317
Bürgisser, Peter 479

Chlebus, Bogdan S. 270
Cristau, Julien 68
Cucker, Felipe 479

de Naurois, Paulin Jacobé 479
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Iwama, Kazuo 281
Iwamoto, Chuzo 137

Janin, David 540
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