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Preface

Your immune system is unique. It is in many ways as complex as your brain, but
it is not centred in one location, like the brain. It is not a single organ—it consists
of many different cell types, diverse methods of intercellular communication, and
many different organs. Its functionality is blurred throughout you—we can’t
extract the immune system, or point to where it begins and ends. The immune
system is not separable from the system it protects. It has integral links to every
organ of our bodies.

This has radical implications for the field of Artificial Immune Systems (AIS),
that we are only now beginning to comprehend. One of the first insights is that
modelling the immune system, or developing any kind of immune algorithm, is
difficult. The immune system is one aspect of biology that we find difficult to
apply simple reductionist explanations to. We can very successfully extract sub-
processes of the whole and create immune algorithms based on those processes.
But we are always aware that we are missing the whole story. This is leading
to more holistic views of immune algorithm development: theoretical analyses of
how the sub-components contribute to the whole, and identification of missing
elements. Artificial immune systems are now beginning to incorporate ideas of
innate as well as adaptive immunity, more complex intercellular communication
mechanisms, endocrine and neural interfaces, concepts of tissue and broader
ideas of organism and environment.

So perhaps the most exciting implication for the future of AIS is that these re-
searchers are on the forefront of unconventional computing—merging the bound-
aries between biology and traditional computation to achieve new emergent,
embodied and distributed processing capabilities.

This year, ICARIS received 68 submissions, and through a peer review pro-
cess, 37 were selected for publication, giving an acceptance rate of 53%. ICARIS
goes from strength to strength, with an increase in numbers of submissions from
2004, but having a lower acceptance rate. This year we continued the theme of
streams, hosting technical, conceptual and immunoinformatics papers. However,
this year we added a new stream called applications, which was dedicated to
the application of AIS techniques in more real world environments. ICARIS is
now considered the place to publish leading AIS research, and is becoming more
interdisciplinary each year, something we as organisers are very pleased with.

Building on the success of the tutorials introduced in 2004, we again held
four tutorials:

– Dr. Emma Hart presented an introductory tutorial on Artificial Immune
Systems.

– An exciting Immunoinformatics session was delivered by Dr. Darren Flower.
– Dr. Mark Neal inspired us by a tutorial on bio-inspired approaches to robotics.



VI Preface

– Last but not least, we are very grateful for Dr. Stuart Kauffman’s insightful
tutorial on the analysis of complex systems.

We were also delighted to have Prof. Stephanie Forrest from the University
of New Mexico deliver the plenary lecture. Thank you very much for an exciting
keynote!

ICARIS 2005 was hosted in Banff, in the province of Alberta, Canada. It is
not without pride that we think we have chosen one of the most spectacular sites
Canada has to offer. Banff, located in Banff National Park, is at the heart of the
Canadian Rocky Mountains. At the Banff Centre for Conferences ICARIS 2005
participants enjoyed breath-taking scenery, with wildlife in the backyard and
majestic mountains all around. What a venue to discuss inspiring and exciting
science!

It would not have been possible to organise this conference without the excel-
lent work of the programme committee, our publicity chairs Simon Garrett and
Namrata Khemka, our conference secretary Camille Sinanan and the tutorial
speakers. Finally, we would like to express our thanks to all authors who sub-
mitted and presented their research papers. Without your valued contributions
ICARIS would not be as alive as it is today.

We hope you enjoyed ICARIS and find the papers in these proceedings useful
and stimulating.

August 2005 Christian Jacob
Marcin Pilat
Jon Timmis

Peter J. Bentley
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Fugue: An Interactive Immersive Audiovisualisation and 
Artwork Using an Artificial Immune System 

Peter J. Bentley, Gordana Novakovic, and Anthony Ruto 

Department of Computer Science, University College London, London WC1E 6BT, UK 
P.Bentley@cs.ucl.ac.uk, gordana.novakovic@btopenworld.com, 

a.ruto@cs.ucl.ac.uk 

Abstract. Fugue is the result of a collaboration between artist, musician and 
computer scientists. The result is an on-going project which provides a new way 
of communicating complex scientific ideas to any audience. Immersive virtual 
reality and sound provide an interactive audiovisual interface to the dynamics of 
a complex system – for this work, an artificial immune system. Participants are 
able to see and interact with immune cells flowing through a lymphatic vessel 
and understand how the complex dynamics of the whole are produced by local 
interactions of viruses, B cells, antibodies, dendritic cells and clotting platelets. 

1   Introduction 

Science often involves abstract formalisms, typically mathematical, of the tangled com-
plexity of the phenomena under study. Communicating these ideas is not easy, whether 
between colleagues or to the general public. To aid in such endeavors there is a signifi-
cant need for scientists to employ more direct methods – audio and visual – of repre-
senting the systems with which they deal. In scientific education, it has become clear 
that traditional formal methods of study are increasingly alien to students who have 
grown up in a world dominated by digital media; at least initially, they require more 
familiar means of accessing science. Likewise, in communicating science to non-
scientists, the constraints of the printed page or the talking head mean that is often nec-
essary to simplify the subject matter to the point where too much is lost or excluded. 

Our intention in this work is to examine a new approach. We propose that the best 
way of enabling both scientists and non-scientists to understand a complex function-
ing system is not just to present it to him as a spectacle, but to engage him as a par-
ticipant, and to enable him to interact with the system in a multisensory way, directly 
appreciating cause and effect, variability, intrinsic dynamics, periodicity, and so on. 
To achieve this, direct input from an artist and a musician is used to guide the visual 
and audio experience. In other words: we propose to exploit artists’ knowledge of the 
relation between interactivity and perception, and harness it in the communication of 
scientific complexity. 

Artists and scientists are both concerned with understanding the world and our be-
ing in the world, but while the view of the scientist is rooted in consensus and en-
deavors towards objectivity, the artist emphasises the values of the personal and sub-
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jective investigation of philosophical questions. Such a dichotomy suggests potential 
conflict: does the participation of an artist in the communication of science run the 
risk of introducing some bias antithetical to the very idea of science? And if so, can 
this potential conflict be managed satisfactorily within the collaborative process? 
Taken together, these two questions raise a wide range of issues, and as yet there are 
no definitive answers. The Fugue Project aims to frame and focus the questions in the 
context of transdisciplinary collaboration in the area of representing the functional 
dynamics of one of the most complex systems known – the human immune system. 
This will be achieved by the creation of an immersive virtual reality immune system, 
which enables participants to interact with and understand various cellular behaviours 
inside a lymphatic vessel. The hope is that the information uncovered by this research 
will help to structure future more comprehensive investigations of these fascinating 
and important issues, for art and science. 

2   Background 

The human immune system is so complex that it is currently impossible to produce a 
tractable model of the whole. Nevertheless, computational models are increasingly been 
seen as important tools to aid our scientific understanding [17]. Separate from immuno-
biology, the field of artificial immune systems (AIS) has grown dramatically in the last 
five years. AIS algorithms are computer programs modeled on different aspects of the 
human immune system and used to tackle a wide variety of problems, from computer 
virus detection to data mining, to robot control [14]. Additionally, in recent years issues 
of public health (from simple allergies to the expansion of AIDS and recent global epi-
demics of extremely dangerous flu variations) have led to increased and widespread 
public interest in the immune system [13]. There is a clear need for the lay population to 
be much better informed about the operation of the one of the most complex and enig-
matic biological systems. The confluence of these three factors has both inspired and 
enabled this research, and forms a strong context for the project. 

Audiovisualisation is still a new methodology for presenting scientific findings. 
Only one virtual reality approach, Planetary Seismology (a Virtual Reality au-
dio/visual representation of seismic phenomena) produced by the German scientist 
Dombois in 2001 [4], is available for participants at present. Only a handful of im-
mune system visualisations currently exist. They have all been produced exclusively 
by scientists (Steven Kleinstein, IMMSIM, 1999 [6]; Christian Jacob, 2004 [5]), and 
the presentational styles are barely accessible to non-experts. (For example, IMMSIM 
uses a very abstract 2-dimensional lattice representation based on cellular automata.) 
To date, these visualisations have been presented only within a closed circle of scien-
tists and have not been released for the general public. 

Audiovisualisation offers significant advantages for understanding hugely complex 
systems: it offers a much wider bandwidth than vision alone, and engages both serial 
and parallel modes of perception. In addition, the intention is to explore the potential 
of contemporary Virtual Reality technologies for enabling users to actively engage 
with the production of phenomena, rather than merely observing them passively, 
within a custom designed virtual reality environment. The user will be able to control 
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certain parameters of the modeled immune system, and will also be able to choose the 
particular function, particle, or interaction to follow. There are good theoretical rea-
sons pointing in this direction, in particular Merleau-Ponty’s analysis of the role of 
the ear in visual perception [11]. As Dombois, the author of Planetary Seismology, 
wrote in 2001: ‘From philosophical research (…) we can learn that the eye is strong in 
recognising structure, surface and steadiness. (…..) Now at the same time philosophy 
finds the ear strong in the recognition of time, dynamics of a continuum and tensions 
between remembrance and expectation.’ [4] 

3   Artistic Concept and Method 

The development and usage of tools that support visualisation, or audification, usually 
involves collaborative efforts among scientists, artists, programmers and other expert 
staff. This is often defined as a Renaissance Team [2]. To achieve the aim of produc-
ing interactive, audiovisual representation of a highly complex biological function, 
that demands full engagement of both artists and scientists, our team is composed of a 
media artist, Gordana Novakovic (artistic concept); a computer scientist and expert in 
digital biology, Dr. Peter Bentley; Rainer Linz, a new music composer; Dr. Julie 
McLeod, and expert in immunology; and computer scientist Anthony Ruto. The aim 
of creating a scientific tool strongly influences the content and behaviour of the sys-
tem; however from the point of view of the two artists involved in the creative proc-
ess, Fugue is an integral interactive art project. Yet, from the scientific point of view, 
it is essential to ensure the scientific correctness of the underlying model. Will it be 
art, or will it be science? Our claim is that the first responses to the prototype made it 
clear that it may be seen as either, depending on the perspective of the user.  

The basic concept tests the form of the interaction between the sound and the vi-
sion in a way that is inspired by the complexity of one of the greatest musical forms: 
the art of fugue. The art of fugue is a highly disciplined form of composition of com-
plex structure and exact relationship of parts. The title – Fugue – serves as a metaphor 
for the transdisciplinary nature of the project, and for the method applied: of inter-
weaving the different perspectives of artists and scientists, different aesthetics, vari-
ous skills and expertise, and personal philosophies, and uniting them into evolving 
polyphonic synergy. The emergent, evolving nature of Artificial Immune System 
algorithm, repetition as a succession of variations of ‘events’, and the complex struc-
tural and functional interrelationship of the particular elements and processes that can 
be related to the counterpoint, was one of the inspirations for the fugue concept. The 
Artificial Immune System software creates the dynamics of the virtual immune sys-
tem drama, and also constructs and implements the architecture of the fugue by pro-
viding the functional structure for the communication channels between the visuals 
and the sound.  

On the other hand, this method is well grounded in the already successfully applied 
artistic method of interweaving, cross-connecting different specialists and special-
isms, in an effective cross-disciplinary framework for the emergence of synergy 
through collaboration; a method resembling the structure of the fugue. In parallel with 
providing the functional structure for the communication channels between the 
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visuals and the sound, the Artificial Immune System algorithm is a bridge between 
the scientific and artistic aspect of the project. To establish an appropriate balance 
between art and science, artists and scientists have been working closely together on 
both experimentation and evaluation throughout the whole research process, integrat-
ing their own assessments with the external feedback. (This method also distinguishes 
this concept from the mere application of entertainment industry oriented software 
packages for audiovisualisation.) 

Finally, the fugue structure helps to achieve one of the major aims, by not only rep-
resenting all the processes involved, but also at the same time painting a larger picture 
of the role of the immune system in the functioning of the human body and mind. 
This will illustrate the immune system’s intimate interconnectedness with the total 
sum of particulars that constitute each human being. This approach affirms holism as 
one of the fundamental principles of transdisciplinarity, as seen for example in the 
neurophenomenology of Varela, Maturana, and Thompson, and the biology of Mar-
gulis and Goodwin. 

Because we will work towards facilitating a better understanding of the function of 
the immune system, rather than simply creating 'beautiful imagery', much of our work 
will be concentrated on processes. The aesthetics of the Fugue are emergent, based 
upon the essential, fundamental and hidden beauty of the organic processes mani-
fested through the dynamics of the real-time generated, unpredictable Artificial Im-
mune System. 

4   The Fugue Architecture 

Fugue is designed to be an immersive system, capable of running on platforms rang-
ing from a desktop PC or Macintosh to a full virtual reality CAVE system using SGI 
IRIX workstations. As such, the hardware may vary from installation to installation, 
but the software components will remain largely the same. The current prototype is 
implemented in C++, using OpenGL graphics libraries and TCP/IP communication 
between processes. 

4.1  Hardware 

The immediate target for Fugue is to move from the current desktop-based demon-
strator to a full-sized system capable of withstanding the rigors of exhibitions. Figure 
1 provides an illustration of a possible exhibition installation. An overhead LCD pro-
jector and surround-sound speakers will provide the main output, to be experienced 
by several participants simultaneously. One or more free-standing rotatable LCD 
“windows” will also be placed in the arena (the exact number depending on the floor 
area available). These will provide individual views into the same virtual world and 
permit views from different players in the system (i.e., from a B-cell, or a virus). By 
rotating the window, the participant rotates their view within the virtual world, ena-
bling interactive control of their immersive experience. The LCD windows will be 
constructed for the Fugue project and will comprise 17 inch LCD monitors mounted 
in metal stands, rotatable through at least 300 degrees, with rotation measured by 
optical sensors and fed back to the server. 
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Fig. 1. Illustration of proposed exibition arena, comprising main projection, surround sound 
speakers and rotatable LCD “windows”. (The shape of the projection wall will depend on the 
space allocated at each venue.). 

 

Fig. 2. The Fugue hardware comprises graphics server (top left) driving projector and VGA 
screens, networked to the audio server (top right) driving amplifier and speakers 

Two servers are used to run the Fugue software: a graphics server, which calculates 
the artificial immune system and corresponding three-dimensional visualisation, and a 
sound server to calculate corresponding audio. The servers are networked together. 
Communication between the servers is through TCP/IP. Output from the graphics 
server feeds to an LCD projector (and the free-standing screens if installed). Output 
from the sound server feeds to a surround-sound amplifier, which is linked to a mini-
mum of four speakers. Input from sensors such as the window rotation sensors is fed 
to the graphics server, see figure 2. 

4.2   Software 

Fugue software comprises five main components, see figure 3. The graphics engine 
and the audio system demand the most computational power and so these each have 
their own dedicated servers (the graphics server and audio server). All other compo-
nents require minimal computational power and so are executed as parallel processes 
on the graphics server. 
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Fig. 3. The Fugue software comprises graphics engine, artificial immune system, interaction 
processing, a communication process and the audio system 

4.2.1   Artificial Immune System 

The artificial immune system (AIS) forms the heart of Fugue. The dynamic interplay 
between the agents in this system feed all outputs, while input from the user alters the 
dynamics in different ways. 

Implemented in C++, the AIS is currently a basic population-based infection model. 
Several agents are currently implemented: platelets, B-cells, macrophages, antibodies 
and viruses. All exist in a virtual lymphatic vessel, which is modeled as a large torus 
(with randomized cross-sectional diameter) to simplify the flow of the agents through 
the “body” (they simply go round and round inside the torus). Like Jacob’s work [5], 
the spatial modeling is a crucial part of the AIS – all immune activities occur when 
agents randomly collide and pass or receive information from each other. Movement is 
computed using force calculations to derive acceleration vectors for each agent, every 
time step, similar to a swarm algorithm [5]. The major forces are: 

• Collision avoidance: agents coming into contact with each other receive a force 
pushing them apart. 

• Wall avoidance: agents too close to the walls of the torus receive a force pushing 
them away from the wall. 

• Pulse: agents are pushed through the vessel in pulses. This is the largest force 
used in the system. The force (which has a sinusoidal magnitude with frequency 
equal to the current pulse value) is exerted on every agent in a direction deter-
mined by the nearest attractor point, where a series of attractor points are pre-
calculated around the inside circumference of the torus. This approach enables 
future versions to flow within a vessel of arbitrary shape and complexity. 

Movement of individual agents can be overridden by the movement of other 
agents. For example, antibodies stuck to the surface of a cell will have their move-
ment entirely determined by the moment of the cell they are stuck to. A dead cell 
being consumed by a macrophage has its movement entirely determined by that 
macrophage and remains in the centre of the macrophage. A virus that has infected a 
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cell will always be in the centre of that cell (with a random oscillation to highlight the 
infector). In addition, when platelet cells come close enough to an injury, they receive 
a force pushing them to the source of the injury, with the effect of the pulse and wall 
avoidance reduced. 

The result of these forces produces stochastic and complex three-dimensional dy-
namics of cell and molecule flow, with completely unpredictable interactions. Never-
theless, although the detail is always different, the general dynamics of the system are 
determined by preset cellular and molecular behaviours. The current prototype has the 
following basic behaviours (these are chosen more for demonstration purposes than 
biological accuracy at this stage; behaviours are designed to be easily extendible or 
changeable): 

• All cells have a cell type: currently either macrophage, B-cell, or platelet, and all 
live for a randomized lifespan. When their lifespan is reached, the cell type be-
comes deadcell and the resulting inactive cell continues to exist in the environ-
ment until either consumed by a macrophage or sufficient time has passed to al-
low it to decay to nothing. When a cell is lost from the environment, a new cell 
of random type is introduced back into the system to replace it. 

• A single site of injury is introduced into the environment at the start of the run. 
When a free-floating platelet comes close enough to the site it becomes a clot-
ting platelet and moves to plug the hole where it will stay until it dies. 

• Three virus molecules are released into the environment at the site of injury. A 
virus will decay to nothing after a short period of time unless it comes into  
contact with either a platelet or B-cell, in which case it infects the cell. If the  
infected cell is not consumed by a macrophage in time, it will cause its host cell 
to die after a period of time and release a number of new viruses into the envi-
ronment. 

• If a macrophage (dendritic cell) comes into contact with a dead cell or a cell 
marked with antibodies, it will consume that cell (the cell it consumes is re-
moved from the system after a short period of digestion). Should the cell it con-
sumes be infected with a virus, the macrophage then becomes an antigen-
presenting-cell. 

• If a B-cell comes into contact with an antigen-presenting-cell it releases antibod-
ies in response. Currently in this demonstrator it is assumed that the antibodies 
will always be designed to counter the current viral pathogen. 

• If an antibody comes into contact with an infected cell, it sticks to the surface of 
that infected cell. All antibodies decay to nothing after a fixed period of time. 

This basic infection model results in a rapid spread of infection through cells in the 
initial stages, followed by a response from B-cells and macrophages, which controls 
the infection. To provide continuous and open-ended“interesting” behaviour, the 
lifespans, and virus and B-cell production rates are tuned to ensure the infection is 
controlled but never eradicated from the environment. Maximum population sizes 
also provide a method of controlling the dynamics (and keep the real-time 3D render-
ing manageable); currently a 1Ghz PowerBook G4 processor is able to maintain 60 
cells, 60 antibodies and 40 viruses and render in real-time at a resolution of 1024 by 
768 without difficultly. 
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4.2.2   Graphics Engine 
The 3D graphical visualization of the artificial immune system is created by an 
OpenGL rendering environment using the Glut interface1. It also contains a VRML 
parser to read in virtual cell surfaces created from clay models (see below). These 
cells are loaded when the system is started and their different properties are rendered 
within the OpenGL environment using display lists for efficiency purposes. System 
dynamics are used to control the movement of both the cells and view of the immune 
system through the position and manipulation of the cell display lists. This allows for 
the best overall performance in terms of speed and aesthetics. The display can also 
support the stereoscopic display of the virtual elements through the Glut interface 
used. This would enable true 3D effects to be experienced by viewers using appropri-
ate hardware (and also enables the support of multiple monitors). 

The shape of each cell is not arbitrary in Fugue. Clay sculptures of cell objects 
made by Gordana Novakovic were scanned using a Hamamatsu Photonics body scan-
ner2 to produce 3D point clouds at up to a 1mm resolution. A surface reconstruction 
process was then used to form canonical representations of the scanned cell point 
clouds from which a surface was then constructed. This method is commonly used in 
the 3D scanning of bodies to establish regular sets of points for captured data [12,15] 
and provides a simple solution for constructing surfaces once the canonical represen-
tation has been established. The detail on the reconstructed scan surfaces was reduced 
in order to speed up the performance of the immune system display by lowering the 
level of detail. More examples of cells where constructed through the 3D sculpturing 
of sphere quadrics using an open source 3D editing tool called Blender3. The detail on 
the reshaped quadric surfaces was also reduced through the use of a mesh reduction 
algorithm provided as part of the Blender software. Both scanned and reshaped cells 
were stored in a VRML format so that they could be easily imported into the immune 
system display.  

From the point cloud data, a population of randomized cells is created (the differ-
ent cell images are randomly distorted to create unique shapes). These cell shapes are 
then translated to the appropriate locations and rendered, each iteration. All cells have 
a slow random rotation to produce a subtle tumbling effect as they move. Where pos-
sible, all movement, scaling and rotations are performed using OpenGL functions on 
the display lists (rather than recalculating point cloud data), which maximizes render-
ing speed by exploiting the graphics hardware of the computer. 

Viruses and antibodies are rendered as small, glowing OpenGL spheres. Viruses 
also emit light, designed to light up an infected cell from within (visible because of 
the partial translucency of cells). When platelets begin to clot, random “tendrils” are 
rendered from its centre to represent the emission of fibrin. 

The “lymphatic vessel” environment is rendered as a torus with walls of partially 
translucent spheres to represent cells. The radius of the spheres is an inverse function 
of the sinusoidal pulse used to move the floating cells. This provides the illusion that 
the internal diameter of the vessel expands and contracts in time with the pulse. 

                                                           
1 Glut Open GL:  http://www.opengl.org/resources/libraries/glut.html 
2 Hamamatsu Photonics : http://www.hamamatsu.co.uk 
3 Blender : http://www.blender.org 
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The graphics engine currently supports two viewing modes: a view from a fixed 
point, and a “free-floating” view. The former enables a participant to “cut to” an in-
teresting predefined view in the torus, and use basic keyboard controls to rotate and 
move the view from that point. (Such controls would be replaced by the rotation sen-
sor on the LCD windows or sensors for head mounted displays in a CAVE system.) 
The free-floating view creates a virtual agent, which is subject to the same forces as 
all the cells and molecules in the environment, then displays the virtual world from 
the point of view of that agent. To avoid a disconcerting somersaulting view, the 
viewing angle is kept at right angles to a vertical axis at the torus centre, ensuring the 
view is always towards the centre of the torus. There are also options to look back-
wards or simplify the view by showing wireframe only or the torus without the cells 
on its walls. 

Future work on Fugue will extend the viewing modes and interactivity of the sys-
tem, enabling more control over the perception and allowing participants to take the 
role of any cell or molecule and both see and interact with the virtual world from their 
chosen perspective. 

4.2.3   Communications 
On execution, the Graphics Engine spawns a communication process to send and 
receive signals to and from the Audio System without incurring visible computation 
overheads on its graphical output. The comms process uses TCP with a streaming 
UNIX domain socket to communicate with the Graphics Engine (the comms process 
acts as server and both processes run on the same processor). It uses TCP with an 
Internet socket to communicate with the Audio System (the audio system acts as 
server; the use of Internet sockets enables the two computers to communicate over 
any network, including the Internet). 

Data is squirted from the artificial immune system, to the comms process and on-
wards to the audio system on every pulse. A 25-byte packet of data representing the 
main population sizes, views and other global dynamics indicators updates the audio 
system with details of the main behaviours, enabling it to alter the audio in synchroni-
zation with the changes occurring in the artificial immune system. 

4.2.4   Audio System 
Composer and Sound Artist, Rainer Linz, will be creating the audio system for Fugue.  
Written in Java, the system will interpret the data sent from the communications proc-
ess and provide an audio accompaniment designed to complement the current system 
dynamics and view chosen by the participant. Because the system data is received in 
pulses, the audio will inevitably mirror the pulses in its own dynamics. This provides 
the rhythm for the piece, a rhythm that will speed up or slow down depending on the 
pulse of the “virtual organism”. It is not proposed that an explicit heartbeat or other 
biological noises be duplicated in Fugue. The audio is intended as a second method of 
communicating information to the participant. ‘Sound is emphatically not just for 
sound tracks’: as Brown and Hershberger  observed in 1994: ‘Sound does not merely 
enhance the beauty of a presentation; it can be used to give fundamental informa-
tion.’[1] 



10 P.J. Bentley, G. Novakovic, and A. Ruto 

 

 
 

 
 

 

Fig. 4. Screenshots from the Fugue prototype. Top: cells are pulsed through the vessel; Middle: 
platelets begin to clot at the site of the injury; Bottom: an infected cell attracts antibodies on its 
surface. 
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The sound, envisaged as a ‘mental soundsacpe’; a resonance of the function of 
immune system in the body, will provide a major channel for interaction. By overlay-
ing and modulating the sonic pulsation, cycles - such as circadian, or other inputs 
such as stress level, will be introduced. The dynamics of the sound system may be fed 
back to the artificial immune system (changing the pulse, increasing stress levels) 
causing another level of fascinating dynamics for the participant. 

This aspect of Fugue is still under development. 

5   Performances 

A prototype of Fugue has been implemented and DVD movie of the project been 
created (under the name of Algorithmica). Running on a desktop computer, the proto-
type did not have the audio system or communications described above. It was also 
producing output in shades of red instead of black and white, and did not have the 
“pulsing” feature of Fugue. The work was presented at several venues in early 2005: 

• the GAGE Festival, Hull Time Based Arts, Hull 
• the Creative Evolution Conference, Goldsmith's College 
• Smartlab Seminar, Central St Martins College of Art and Design 
• EVA Conferences (Electronic Imaging & the Visual Arts), UCL 
• Hypermedia Research Centre, University of Westminster. 

The response has been overwhelmingly positive from both the artistic community 
and the science community. The validity of the approach, both artistically and scien-
tifically has clearly been demonstrated, and work is now underway to improve both, 
through: (1) enhancements to existing visuals and audio (2) enhancements to hard-
ware, through large-scale projection and audio broadcasting (3) additions to the meth-
ods of interaction with the components of the immune system by participants (4) 
collaboration with immunobiologist Dr Julie McLeod to improve cell imagery 
through digital microscopy photographs and (5) improvements to cellular behaviours 
by using more scientifically plausible artificial immune systems. 

Figure 4 show some example screen shots from the current version of Fugue (as 
described in this paper). 

6   Conclusions 

Fugue is an on-going project which aims to explore a new way of communicating 
complex scientific ideas to any audience. Immersive virtual reality and sound provide 
an interactive audiovisual interface to an artificial immune system. Participants are 
able to see and interact with immune cells flowing through a lymphatic vessel and 
understand how the complex dynamics of the whole are produced. Fugue is a demon-
stration of the benefits to be gained from art/science collaborations. The response so 
far has been overwhelming positive from both the artistic community and the scien-
tific community. Further work and plans for several new exhibitions are underway. 
Through this work we aim to explore the dichotomy between artist and scientist: how 
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personal and subjective views compare and influence consensus and objectivity, and 
also how a complex, algorithmic, immersive environment affects perception, mood 
and emotion. 
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Abstract. This paper presents a comparative study of two important
Clonal Selection Algorithms (CSAs): CLONALG and opt-IA. To deeply
understand the performance of both algorithms, we deal with four differ-
ent classes of problems: toy problems (one-counting and trap functions),
pattern recognition, numerical optimization problems and NP-complete
problem (the 2D HP model for protein structure prediction problem).
Two possible versions of CLONALG have been implemented and tested.
The experimental results show a global better performance of opt-IA
with respect to CLONALG. Considering the results obtained, we can
claim that CSAs represent a new class of Evolutionary Algorithms for
effectively performing searching, learning and optimization tasks.

Keywords: Clonal Selection Algorithms, CLONALG, opt-IA, one-
counting, trap functions, pattern recognition, numerical optimization,
NP-complete problems, 2D HP Protein Structure Prediction.

1 Introduction

Clonal Selection Algorithms (CSAs) are a special class of Immune algorithms
(IA) which are inspired by the Clonal Selection Principle [1,2,3] of the human
immune system to produce effective methods for search and optimization. In this
research paper two well known CSAs are analyzed: CLONal selection ALGorithm
(CLONALG) [4] and optimization Immune Algorithm (opt-IA)[5], which both
use a simplified model of the Clonal Selection Principle . To analyze experimen-
tally the overall performance of those two algorithms, we will test them on a
robust set of problems belonging to four different classes: toy problems, pat-
tern recognition, numerical optimization problems and NP-complete problems.
Both algorithms are population based. Each individual of the population is a
candidate solution belonging to the fitness landscape of a given computational
problem. Using the cloning operator, an immune algorithm produces individuals
with higher affinities (higher fitness function values), by introducing blind per-
turbation (by means of a hypermutation operator) and selecting their improved
mature progenies.

C. Jacob et al. (Eds.): ICARIS 2005, LNCS 3627, pp. 13–28, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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1.1 CLONALG

CLONALG is characterized by two populations: a population of antigens, Ag,
and a population of antibodies, Ab (denoted with P (t)). The individual antibody
and antigen are represented by string attributes m = mL, . . . , m1, that is, a
point in a L−dimensional shape space S, m ∈ SL.The Ab population is the set
of current candidate solutions, and the Ag is the environment to be recognized.
After a random initialization of the first population P (0), the algorithm loops
for a predefined maximum number of generations (Ngen). In the first step, it
determines the fitness function values of all Abs with respect to the Ag (the given
objective function). Next, cloning operator selects n Abs that will be cloned
independently and proportionally to their antigenic affinities, generating the
clone population P clo. Hence, the higher the fitness, the higher the number of
clones generated for each of the n Abs. The hypermutation operator performs an
affinity maturation process inversely proportional to the fitness values generating
the matured clone population P hyp. After computing the antigenic affinity of
the population P hyp, CLONALG creates randomly d new antibodies that will
replace the d lowest fit Abs in the current population.

In this paper we use the CLONALG version for optimization tasks (except
for pattern recognition where we will use the other version proposed in [4]),
varying the same parameters (N, n, β, d) plus ρ (not studied in [4]) that controls
the shape of the mutation rate with respect to the following two equations:

α = e(−ρ∗f), α =
(

1
ρ

)
e(−f) (1)

where α represents the mutation rate , and f is the fitness function value nor-
malized in [0.1]. The number of mutations of a clone with fitness function value
f is equal to �L ∗ α� where L is the length of the clone receptor. The first po-
tential mutation has been proposed in [4], the original mutation law used by
CLONALG; while the second potential mutation has been introduced in [6].
We will show how setting the mutation rates and the parameter ρ is crucial
for the algorithm performance. In the optimization version of CLONALG the
affinity proportionate cloning is not useful; we use the same law defined in [4]:
Nc =

∑n
i=1 round (β ∗ N); where Nc represents the total number of clones cre-

ated at each generation, in this way, each antibody (or B cell) produces the same
number of clones. Moreover, we assign N = n, so all Abs from the population
will be selected for cloning in step 4 of the algorithm. For the pseudo-code of
CLONALG see [4].

The experimental study was conducted using two versions of CLONALG,
CLONALG1 and CLONALG2, with different selection scheme in step 8 of the
algorithm and using the two potential mutations above defined (equations 1):

CLONALG1: at generation (t), each Ab will be substituted by the best indi-
vidual of its set of β ∗ N mutated clones.

CLONALG2: the population at the next generation (t + 1) will be formed by
the n best Ab’s of the mutated clones at time step t.
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1.2 opt-IA

The opt-IA algorithm uses only two entities: antigens (Ag) and B cells (or Ab)
like CLONALG. At each time step t, we have a population P (t) of size d. The
initial population of candidate solutions, time t = 0, is generated randomly. The
function Evaluate(P) computes the fitness function value of each B cell x ∈ P.
The implemented IA uses three immune operators, cloning, hypermutation and
aging. The cloning operator, simply, clones each B cell dup times producing an
intermediate population P clo of size d × dup, where each cloned B cell has the
same age of its parent.

The hypermutation operator acts on the B cell receptor of P clo. The number
of mutations M is determined by mutation potential. We tested our IA using
inversely proportional hypermutation operators, hypermacromutation operator,
and combination of hypermutation operators and hypermacromutation. The two
hypermutation operators and the Hypermacromutation perturb the receptors
using different mutation potentials, depending upon a parameter c. In particular,
the two implemented operators try to mutate each B cell receptor M times
without using probability mutation pm, typically used in Genetic Algorithms.

In the Inversely Proportional Hypermutation the number of mutations is in-
versely proportional to the fitness value, that is it decrease as the fitness function
of the current B cell increases. So at each time step t, the operator will perform
at most Mi(f(x)) = ((1 − E∗

f(x) ) × (c × �)) + (c × �)) mutations, where E∗ is
the optimum of the problem and l is the string length. In this case, Mi(f(x))
has the shape of an hyperbola branch. In the Hypermacromutation the number
of mutations is independent from the fitness function f and the parameter c.
In this case, we choose at random two sites in the string, i and j such that
(i + 1) ≤ j ≤ � the operator mutates at most Mm(x) = j − i + 1 directions, in
the range [i, j].

The aging operator eliminates old B cells in the populations P (t), P (hyp)

and/or P (macro), to avoid premature convergence. The value τB is the maxi-
mum number of generations B cells are allowed to remain in the population.
When a B cell is τB + 1 old it is erased from the current population, no matter
what its fitness value is. We call this strategy, static pure aging. We can also
define a stochastic aging where the elimination process is based on a stochas-
tic law. The probability to remove a B cell is governed by exponential negative
law with parameter τB , using the function Pdie(τB) = (1 − e−ln(2)/τB) [2]. Dur-
ing the cloning expansion, a cloned B cell takes the age of its parent. After
the hypermutation phase, a cloned B cell which successfully mutates, will be
considered to have age equal to 0. Such a scheme intends to give an equal op-
portunity to each new B cell to effectively explore the landscape. The best B
cells which“survived” the aging operator, are selected from the populations P (t),
P (hyp) and/or P (macro), in such a way each B cell receptor is unique, i.e. each
B cell receptor is different from all other receptors. In this way, we obtain the
new population P (t+1), of d B cells, for the next generation t + 1. If only d′ < d
B cells survived, the (μ + λ)-Selection operator creates d − d′ new B cells (Birth
phase). The boolean function Termination Condition() returns true if a solu-
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opt-IA(�, d, dup, τB , c, h, hm)
1. t := 0
2. P (t) := Initial Pop()
3. Evaluate(P (0))
4. while (¬ Termination Condition())do
5. P (clo) := Cloning (P (t), dup)
6. if (H is TRUE) then
7. P (hyp) := Hypermutation(P (clo), c, �)
8. Evaluate(P (hyp))
9. if (M is TRUE) then
10. P (macro) := Hypermacro(P clo)
11. Evaluate (P (macro))
12. Aging(P (t), P (hyp), P (macro), τB)
13. P (t+1) := (μ + λ)-Selection(P (t), P (hyp), P (macro))
14. t := t + 1
15.end while

Fig. 1. Pseudo-code of opt-IA

tion is found, or a maximum number of fitness function evaluations (Tmax) is
reached. Figure 1 shows the pseudo-code of the proposed Immune Algorithm.
The boolean variables H, M control, respectively, the hypermutation and the
hypermacromutation operator.

2 Toy Problems

Toy problems play a central role in understanding the dynamics of algorithms
[7]. In fact, they can be used to show the main differences between different
algorithms. In this section we test and study the dynamic of CLONALG and
opt-IA for two classical toy problems: one-counting and trap functions.

2.1 One-Counting Problem

The one-counting problem (or one-max problem), is simply defined as the prob-
lem of maximizing the number of 1 in a bit-string x of length �: f(x) =

∑�
i=1 xi,

with xi ∈ {0, 1}. In this work we set � = 100. The one-max problem is a classical
test to assess if an evolutionary algorithm is able to reach an optimal solution
starting from a randomly initialized population.

Experimental results. All the experimental results reported in this sections were
averaged over 100 independent runs, and we fixed the max number of fitness func-
tion evaluations (Tmax) to 104. Figure 2 shows the Success Rate (SR) param-
eters surface for CLONALG1 and CLONALG2 varying β ∈ {0.1, 0.2, . . . , 1.0}
and ρ ∈ {10.0, 20.0, . . . , 100.0} for the second type of mutation rate previously
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Fig. 2. SR as a function of the values β and ρ using mutation rate α =
(
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)
e(−f) for

CLONALG1 (left plot) and CLONALG2 (center plot). SR as a function of the values
dup and τB for opt-IA (right plot).
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Fig. 3. AES as a function of the values β and ρ using mutation rate α = e(−ρ∗f) for
CLONALG1 (left plot) and CLONALG2 (right plot)

defined: α =
(

1
ρ

)
e(−f). From the plots it is clear that the parameter ρ plays

an important role in reaching the optimum solution. For ρ < 40.0, CLONALG
(both versions) is unable to find the optimum (SR = 0). Instead, using the
first type of mutation rate α = e(−ρ∗f), CLONALG1 and CLONALG2 solve
the one-counting problem for � = 100 for each setting of the parameters ρ and
β (the parameter surface are not shown), but the performance is different, as
shown by the Average number Evaluation to Solution (AES) in figure 3. For
CLONALG1 the only parameter that influences the behavior of the algorithms
is β: if β increases, AES increases also. For CLONALG2 instead both parameter
are crucial. Figure 2 shows also the SR parameter surface for opt-IA varying
dup ∈ {1, 2, . . . , 10} and τB ∈ {1, 5, . . . , 25, 100, 200}. The behavior of the al-
gorithm depends on both parameters dup and τB , but it is not able to reach
SR = 100. Figure 4 shows the population average fitness versus generation for
CLONALG and opt-IA on the first 100 generations. For CLONALG we show
both versions (CLONALG1 and CLONALG2) using the two possible mutation
rates defined in section 1.1. The convergence speed of CLONALG is inferior re-
spect to opt-IA but its SR is superior. In about 40 generations, opt-IA reaches
a fitness value of � 95 but from now on the aging process is more intensive
refraining the convergence speed. For opt-IA we show versions with the usage of
the static or stochastic aging coupled with an elitist or no-elitist strategy (i.e.,
the best candidate solution is always maintained from a generation to another).
The better results are obtained using static aging.
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2.2 Trap Functions

Trap functions [8] [9], simply, take as input the number of 1’s in a bit strings of
length � :

f(x) = f̂(u(x)) = f̂

(
�∑

k=1

xk

)
(2)

We can define two different types of trap functions: simple trap function and
complex trap function. Their definitions follow:

f̂(u)=
{

a
z

(z−u), if u≤z
b

�−z
(u−z), otherwise. , f̂(u)=

⎧⎪⎨⎪⎩
a
z1

(z1−u), if u≤z1
b

�−z1
(u−z1), if z1<u≤z2

b(z2−z1)
�−z1

(
1− 1

�−z2
(u−z2)

)
otherwise.

(3)

The parameters a, b and z, will take on the values used in [8]: z ≈ (1/4)�;
b = � − z − 1; 1.5b ≤ a ≤ 2b; a a multiple of z. The simple trap function
is characterize by a global optimum (for a bit string of all 0’s) and a local
optimum (for a bit string of all 1’s) that are the complement bit-wise of each
other. The complex trap function is more difficult to investigate, in fact there
are two directions to get trapped. We note that for z2 = � the complex trap
function becomes the simple trap function. In this case the values of parameter
z2 are determined by the following equation z2 = �−z1. Next section tables show
the experimental results. Trap functions are labeled either S(type) or C(type),
where S and C mean respectively Simple and Complex trap function. type varies
according to the used parameter values: type I (� = 10, z = 3, a = 12, b = 6), type
II (� = 20, z = 5, a = 20, b = 14), type III (� = 50, z = 10, a = 80, b = 39), type
IV (� = 75, z = 20, a = 80, b = 54), type V (� = 100, z = 25, a = 100, b = 74).
For the complex trap function z1 = z and z2 = � − z1.

Experimental results. All the experimental results reported in this sections have
been averaged over 100 independent runs. Table 1 shows the best results obtained
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Table 1. Best results obtained by CLONALG (both versions) with population size
N = 10, varying β ∈ {0.1, 0.2, ..., 1.0}, ρ ∈ {1.0, 2.0, ..., 10.0} and d ∈ {1, 2, 3, 4, 5}

CLONALG1 CLONALG2

Trap
(

1
ρ

)
e(−f) e(−ρ∗f)

(
1
ρ

)
e(−f) e(−ρ∗f) Tmax

SR AES (β, ρ) SR AES (β, ρ) SR AES (β, ρ) SR AES (β, ρ)
S(I) 100 1100.4 (.5,3) 100 479.7 (.8,2) 100 725.3 (.9,4) 100 539.2 (.7,2) 105

S(II) 100 27939.2 (.8,8) 100 174563.4 (.1,4) 30 173679.8 (.1,6) 31 172191.2 (.1,4) 2 × 105

S(III) 0 - 0 - 0 - 0 - 3 × 105

S(IV) 0 - 0 - 0 - 0 - 4 × 105

S(V) 0 - 0 - 0 - 0 - 5 × 105

C(I) 100 272.5 (.7,3) 100 251.3 (.9,4) 100 254.0 (.3,3) 100 218.4 (.5,4) 105

C(II) 100 17526.3 (1,8) 10 191852.7 (.2,1) 29 173992.6 (.1,6) 24 172434.2 (.1,4) 2 × 105

C(II) 0 - 0 - 0 - 0 - 3 × 105

C(IV) 0 - 0 - 0 - 0 - 4 × 105

C(V) 0 - 0 - 0 - 0 - 5 × 105

Table 2. Best results obtained by opt-IA with population size d = 10,
duplication parameter dup = 1, varying c ∈ {0.1, . . . , 1.0} and tauB ∈
{1, . . . , 15, 20, 25, 50, 100, 200, ∞}

Inv Macro Inv+Macro
Trap SR AES (τB, c) SR AES (dup, τB) SR AES (τB , c) Tmax

S(I) 100 504.76 (5, 0.3) 100 1495.9 (1, 1) 100 477.04 (15, 0.2) 105

S(II) 97 58092.7 (20, 0.2) 28 64760.25 (1, 1) 100 35312.29 (100, 0.2) 2 × 105

S(III) 0 - - 23 19346.09 (4, 13) 100 20045.81 (2 × 105, 0.1) 3 × 105

S(IV) 0 - - 28 69987 (10, 12) 100 42089 (25, 0.2) 4 × 105

S(V) 0 - - 27 139824.41 (7, 1) 100 80789.94 (50, 0.2) 5 × 105

C(I) 100 371.15 (10, 0.2) 100 737.78 (5, 3) 100 388.42 (10, 0.2) 105

C(II) 100 44079.57 (10, 0.2) 100 27392.18 (5, 3) 100 29271.68 (5, 0.2) 2 × 105

C(III) 0 - - 54 115908.61 (4, 7) 24 149006.5 (20, 0.1) 3 × 105

C(IV) 0 - - 7 179593.29 (2, 9) 2 154925 (15, 0.4) 4 × 105

C(V) 0 - - 2 353579 (1, 15) 0 - - 5 × 105

by CLONALG (both versions) in terms of Success Rate (SR) and Average num-
ber of Evaluations to Solutions (AES), the population size has been set to the
minimal value N = 10. The third column in table 1 reports the best parameter
values that allowed the hypermutation operators to reach the best results. The
last column of the tables reports the maximum number of evaluations allowed,
Tmax, for each kind of trap function.

The results show clearly that, in terms of problem solving ability, facing toy
problems is not an easy game. The cases III, IV and V for simple and complex
trap functions remain no solved. Moreover, the better result are obtained using
mutation rate (1/ρ) e(−f), respect to the ones-counting problem, where the better
performance is obtained using e(−ρ∗f).

Table 2 shows results obtained with opt-IA using a population size d = 10,
a minimal duplication parameter dup = 1, and varying the parameter c ∈
{0.1, . . . , 1.0} and τB ∈ {1, . . . , 15, 20, 25, 50, 100, 200, ∞}. If we compare the
results of opt-IA using only the inversely proportional hypermutation operator
with the results obtained by CLONALG for population size of 10 Ab’s we note
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how CLONALG outperforms opt-IA. Using the hypermacromutation operator,
opt-IA obtains SR > 0 for all cases of the simple and complex trap function.
Finally, the usage of coupled operators (Inv+Macro) is the key feature to ef-
fectively face the trap functions as shown in the third column of table 2. The
results obtained with this setting are comparable with the results in [8], where
the authors, in their theoretical and experimental research work, use only cases
C(I), C(II) and C(III) for the complex trap function.

3 Pattern Recognition

In this section we consider the simple pattern recognition task to learn ten
binary characters. Each character is represented as a bitstring of length L =
120 corresponding to a resolution of 12 × 10 bits for each picture. The original
characters are depicted on figure 6, those characters are the same used in [4].
The fitness measure is the standard Hamming distance for bit strings.

Experimental results. Figure 5 shows the opt-IA dynamic for each input pattern
to be learned. The algorithm is able to recognize all the characters in only 90
generations. This is not true for CLONALG, the overall convergence happens
after 250 generations. This is visible in figure 6, where the representations of the
antibodies after 200 generations of the algorithms contain a bit of noise.
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Fig. 5. opt-IA dynamics for each pattern using d = 10, dup = 2 and τB = 5 (left
plot). CLONALG population, clones and best Ab average fitness using mutation rate
α = (1/ρ) e(−f) on 100 independent runs using the same setting of the parameters in
[4]: N = 10, n = 5, m = 8, β = 10, d = 0 (right plot). For both plots, fitness values in
axis y are normalized in [0, 1] and axis x is in log scale.

Fig. 6. CLONALG results on pattern recognition. From left to right: patterns to be
learned; initial Abs set; Abs set after 200 generations.
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4 Numerical Optimization

Numerical optimization problems are fundamental for every field of engineering,
science, and business. The task is that of global optimization of a generic ob-
jective function. However, often, the objective function is difficult to optimize
because the function possesses numerous local optima which could trap the algo-
rithm. Moreover this difficulty increases with the increase of the problem dimen-
sion. In this paper we consider the following numerical minimization problem:

min(f(x)), L ≤ x ≤ U (4)

where x = (x1, x2, . . . , xn) is the variable vector in Rn, f(x) denotes the ob-
jective function to minimize and L = (l1, l2, . . . , ln), U = (u1, u2, . . . , un) rep-
resent, respectively, the lower and the upper bound of the variables, such that
xi ∈ [li, ui].

Test Functions. Twentythree functions from three categories are selected [10],
covering a broader range. Table 3 lists the 23 functions and their key properties
(for a complete description of all the functions and the parameters involved see
[10]). These function can be divided into three categories of different complexities:

– unimodal functions (f1 − f7), which are relatively easy to optimize, but the
difficulty increases as the problem dimension increases;

– multimodal functions (f8 −f13), with many local minima, they represent the
most difficult class of problems for many optimization algorithms;

– multimodal functions which contain only a few local optima (f14 − f23).

Some functions possess unique features: f6 is a discontinuous step function hav-
ing a single optimum; f7 is a noisy quartic function involving a uniformly dis-
tributed random variable within [0, 1]. Optimizing unimodal functions is not a
major issue, so in this case the convergence rate is of main interest. However,
for multimodal functions the quality of the final results is more important since
it reflects the algorithm’s ability in escaping from local optima.

We used binary string representation: each real value xi is coded using bit-
strings of length L = 22 corresponding to a precision of six decimal places.

Experimental results. In table 4 we report results obtained with CLONALG and
opt-IA with respect to one of the best evolutionary algorithms for numerical
optimization in literature: Fast Evolutionary Programming (FEP) [10]. FEP
is based on Conventional Evolutionary Programming (CEP) but uses a new
mutation operator based on Cauchy random numbers that helps the algorithm
to escape from local optima. In the experiments of this section, opt-IA uses
the same mutation potentials above defined for CLONALG (equation 1) for
the inversely proportional hypermutation operator. Parameters for CLONALG
and opt-IA are setted respectively as follow: N = n = 50, d = 0, β = 0.1 and
d = 20, dup = 2, τB = 20. If we compare the two versions of CLONALG, we can
see that for unimodal functions (f1−f7) CLONALG2 is in general more effective
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Table 3. The 23 benchmark functions used in our experimental study; n is the di-
mension of the function; fmin is the minimum value of the function; S ⊆ Rn are the
variable bounds (for a complete description of all the functions and the parameters
involved see [10])

Test function n S fmin

f1(x) =
∑n

i=1 x2
i 30 [−100, 100]n 0

f2(x) =
∑n

i=1 |xi| +
∏n

i=1 |xi| 30 [−10, 10]n 0

f3(x) =
∑n

i=1

(∑ i
j=1 xj

)2
30 [−100, 100]n 0

f4(x) = maxi{|xi|, 1 ≤ i ≤ n} 30 [−100, 100]n 0
f5(x) =

∑n−1
i=1 [100(xi+1 − x2

i )2 + (xi − 1)2] 30 [−30, 30]n 0
f6(x) =

∑n
i=1 (�xi + 0.5�)2 30 [−100, 100]n 0

f7(x) =
∑n

i=1 ix4
i + random[0, 1) 30 [−1.28, 1.28]n 0

f8(x) =
∑n

i=1 −xi sin(
√ |xi|) 30 [−500, 500]n −12569.5

f9(x) =
∑n

i=1 [x2
i − 10 cos(2πxi) + 10] 30 [−5.12, 5.12]n 0

f10(x) = −20 exp
(
−0.2

√
1
n

∑
n
i=1 x2

i

)
30 [−32, 32]n 0

− exp
( 1

n

∑n
i=1 cos 2πxi

)
+ 20 + e

f11(x) = 1
4000

∑n
i=1 x2

i −∏n
i=1 cos

(
xi√

i

)
+ 1 30 [−600, 600]n 0

f12(x) = π
n {10 sin2(πy1) 30 [−50, 50]n 0

+
∑n−1

i=1 (yi − 1)2[1 + 10 sin2(πyi+1)] + (yn − 1)2}
+
∑n

i=1 u(xi, 10, 100, 4),
yi = 1 + 1

4 (xi + 1)

u(xi, a, k, m) =

⎧⎨⎩ k(xi − a)m, if xi > a,
0, if −a ≤ xi ≤ a,
k(−xi − a)m, if xi < −a.

f13(x) = 0.1{sin2(3πx1) 30 [−50, 50]n 0
+
∑n−1

i=1 (xi − 1)2[1 + sin2(3πxi+1)]
+(xn − 1)[1 + sin2(2πxn)]} +

∑n
i=1 u(xi, 5, 100, 4)

f14(x) =
[

1
500 +

∑ 25
j=1

1
j+

∑2
i=1 (xi−aij)6

]−1

2 [−65.536, 65.536]n 1

f15(x) =
∑ 11

i=1

[
ai − xi(b

2
i +bix2)

b2
i
+bix3+x4

]2
4 [−5, 5]n 0.0003075

f16(x) = 4x2
1 − 2.1x4

1 + 1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5, 5]n −1.0316285

f17(x) =
(

x2 − 5.1
4π2 x2

1 + 5
π x1 − 6

)2
2 [−5, 10] × [0, 15] 0.398

+10
(
1 − 1

8π

)
cos x1 + 10

f18(x) = [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2
1 − 14x2 2 [−2, 2]n 3

+6x1x2 + 3x2
2)] × [30 + (2x1 − 3x2)2(18 − 32x1

+12x2
1 + 48x2 − 36x1x2 + 27x2

2)]
f19(x) = −∑ 4

i=1 ci exp
[
−∑ 4

j=1 aij(xj − pij)2
]

4 [0, 1]n −3.86

f20(x) = −∑ 4
i=1 ci exp

[
−∑ 6

j=1 aij(xj − pij)2
]

6 [0, 1]n −3.32

f21(x) = −∑ 5
i=1

[
(x − ai)(x − ai)T + ci

]−1
4 [0, 10]n −10.1422

f22(x) = −∑ 7
i=1

[
(x − ai)(x − ai)T + ci

]−1
4 [0, 10]n −10.3909

f23(x) = −∑ 10
i=1

[
(x − ai)(x − ai)T + ci

]−1
4 [0, 10]n −10.53

than CLONALG1. Otherwise, for multimodal functions (f8 − f23), CLONALG1
has a better performance. This is in agreement with the type of selection scheme
used by the two versions. Since CLONALG1 at each generation replaces each Ab
by the best individual of its set of β ∗ N mutated clones, it is able to maintain
more diversity in the population. On the other hand, CLONALG2 focuses the
search on the global optimum, with the consequence of a higher probability to
be trapped in a local optimum.

Considering the two versions of opt-IA, the four versions of CLONALG, and
the results obtained by FEP, opt-IA outperforms CLONALG and FEP on 11
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Table 4. Comparison between FEP[10], CLONALG1, CLONALG2 and opt-IA on the
23 test functions. Results have been averaged over 50 independent runs, “mean best”
indicates the mean best function values found in the last generation, “std dev” stands
for standard deviation and Tmax is the maximum number of fitness function evaluation
allowed. In boldface overall better results for each function, in italics the best results
among CLONALG and opt-IA.

Fun. FEP[10] CLONALG1 CLONALG2 opt-IA
Tmax e(−ρ∗f),

(
1
ρ

)
e(−f), e(−ρ∗f),

(
1
ρ

)
e(−f), e(−ρ∗f),

(
1
ρ

)
e(−f)

ρ = 10 ρ = 150 ρ = 10 ρ = 150 ρ = 10 ρ = 150
mean best mean best mean best mean best mean best mean best mean best
(std dev) (std dev) (std dev) (std dev) (std dev) (std dev) (std dev)

f1 5.7 × 10−4 9.6 × 10−4 3.7 × 10−3 3.2 × 10−6 5.5 × 10−4 6.4 × 10−8 3.4 × 10−8

150.000 (1.3 × 10−4) (1.6 × 10−3) (2.6 × 10−3) (1.5 × 10−6) (2.4 × 10−4) (2.6 × 10−8) (1.3 × 10−8 )

f2 8.1 × 10−3 7.7 × 10−5 2.9 × 10−3 1.2 × 10−4 2.7 × 10−3 7.4 × 10−5 7.2 × 10−5

200.000 (7.7 × 10−4) (2.5 × 10−5) (6.6 × 10−4) (2.1 × 10−5) (7.1 × 10−4) (4.5 × 10−6) (3.4 × 10−6 )
f3 1.6 × 10−2 2.2 × 104 1.5 × 104 2.4 × 104 5.9 × 103 3.6 × 103 2.6 × 102

500.000 (1.4 × 10−2) (1.3 × 10−4) (1.8 × 103) (5.7 × 103) (1.8 × 103) (1.1 × 103) (6.8 × 102 )

f4 0.30 9.44 4.91 5.9 × 10−4 8.7 × 10−3 1.0 × 10−2 4.9 × 10−3

500.000 (0.50) (1.98) (1.11) (3.5 × 10−4 ) (2.1 × 10−3) (5.3 × 10−3) (3.8 × 10−3)
f5 5.06 31.07 27.6 4.67 × 102 2.35 × 102 28.6 28.4
2 × 106 (5.87) (13.48) (1.034 ) (6.3 × 102) (4.4 × 1002) (0.12) (0.42)
f6 0.0 0.52 2.0 × 10−2 0.0 0.0 0.2 0.0
150.000 (0.0) (0.49) (1.4 × 10−1) (0.0) (0.0) (0.44) (0.0)

f7 7.6 × 10−3 1.3 × 10−1 7.8 × 10−2 4.6 × 10−3 5.3 × 10−3 3.4 × 10−3 3.9 × 10−3

300.000 (2.6 × 10−3) (3.5 × 10−2) (1.9 × 10−2) (1.6 × 10−3) (1.4 × 10−3) (1.6 × 10−3 ) (1.3 × 10−3)
f8 −12554.5 −11099.56 −11044.69 −12228.39 −12533.86 −12508.38 −12568.27
900.000 (52.6) (112.05) (186.73) (41.08) (43.08) (155.54) (0.23)
f9 4.6 × 10−2 42.93 37.56 21.75 22.41 19.98 5.68
500.000 (1.2 × 10−2) (3.05) (4.88) (5.03) (6.70) (7.66) (1.55)

f10 1.8 × 10−2 18.96 1.57 19.30 1.2 × 10−1 0.94 4.0 × 10−4

150.000 (2.1 × 10−3) (2.2 × 10−1) (3.9 × 10−1) (1.9 × 10−1) (4.1 × 10−1) (3.56 × 10−1) (1.8 × 10−4 )
f11 1.6 × 10−2 3.6 × 10−2 1.7 × 10−2 9.4 × 10−2 4.6 × 10−2 9.1 × 10−2 3.8 × 10−2

200.000 (2.2 × 10−2) (3.5 × 10−2) (1.9 × 10−2 ) (1.4 × 10−1) (7.0 × 10−2) (1.36 × 10−1) (5.5 × 10−2)
f12 9.2 × 10−6 0.632 0.336 0.738 0.573 0.433 0.364
150.000 (3.6 × 10−6) (2.2 × 10−1) (9.4 × 10−2 ) (5.3 × 10−1) (2.6 × 10−1) (1.41 × 10−1) (5.6 × 10−2)
f13 1.6 × 10−4 1.83 1.39 1.84 1.69 1.51 1.75
150.000 (7.3 × 10−5) (2.7 × 10−1) (1.8 × 10−1 ) (2.7 × 10−1) (2.4 × 10−1) (1.01 × 10−1) (7.7 × 10−2)
f14 1.22 1.0062 1.0021 1.45 2.42 1.042 1.21
10.000 (0.56) (4.0 × 10−2) (2.8 × 10−2 ) (0.95) (2.60) (0.11) (0.54)
f15 5.0 × 10−4 1.4 × 10−3 1.5 × 10−3 8.3 × 10−3 7.2 × 10−3 7.1 × 10−4 7.7 × 10−3

400.000 (3.2 × 10−4) (5.4 × 10−4) (7.8 × 10−4) (8.5 × 10−3) (8.1 × 10−3) (1.3 × 10−4 ) (1.4 × 10−2)
f16 −1.03 −1.0315 −1.0314 −1.0202 −1.0210 −1.0314 −1.027
10.000 (4.9 × 10−7) (1.8 × 10−4 ) (5.7 × 10−4) (1.8 × 10−2) (1.9 × 10−2) (8.7 × 10−4) (1.0 × 10−2)
f17 0.398 0.40061 0.399 0.462 0.422 0.398 0.58
10.000 (1.5 × 10−7) (8.8 × 10−3) (2.0 × 10−3) (2.0 × 10−1) (2.7 × 10−2) (2.0 × 10−4 ) (0.44)
f18 3.02 3.00 3.00 3.54 3.46 3.0 3.0
10.000 (0.11) (1.3 × 10−7) (1.3 × 10−5) (3.78) (3.28) (3.3 × 10−8) (0.0)
f19 −3.86 −3.71 −3.71 −3.67 −3.68 −3.72 −3.72
10.000 (1.4 × 10−5) (1.1 × 10−2) (1.5 × 10−2) (6.6 × 10−2) (6.9 × 10−2) (1.5 × 10−4) (1.4 × 10−6 )
f20 −3.27 −3.30 −3.23 −3.21 −3.18 −3.31 −3.31

20.000 (5.9 × 10−2) (1.0 × 10−2) (5.9 × 10−2) (8.6 × 10−2) (1.2 × 10−1) (7.5 × 10−3) (5.9 × 10−3 )
f21 −5.52 −7.59 −5.92 −5.21 −3.98 −8.29 −3.73
10.000 (1.59) (1.89) (1.77) (1.78) (2.73) (2.25) (0.26)
f22 −5.52 −8.41 −5.90 −7.31 −4.66 −9.59 −3.79
10.000 (2.12) (1.40) (2.09) (2.67) (2.55) (1.72) (0.25)
f23 −6.57 −8.48 −5.98 −7.12 −4.38 −9.96 −3.86
10.000 (3.14) (1.51) (1.98) (2.48) (2.66) (1.46) (0.19)

functions over 23, analogously to FEP, while CLONALG performs better only
in 3 functions (see boldface results in table 4).

By inspecting the entries on the table 4 in terms of results obtained by CSAs
only, we note that, opt-IA outperforms CLONALG on 15 functions over 23
benchmark functions (execept for function 6 where both algorithms obtain the
same statistical results), while CLONALG obtains the best results on 7 functions
only (results reported in italic in table 4).
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5 Protein Structure Prediction: HP Model

The Protein Structure Prediction problem (PSP) is simply defined as the prob-
lem of finding the 3D conformation of a protein starting from the amino-acids
composition. A simplified version of this problem was introduced by Dill in [11]
which is called the HP model. It models proteins as two-dimensional self-avoiding
walk chains of � monomers on the square lattice: two residues cannot occupy
the same node of the lattice. Residues are classified into two major classes: H
(hydrophobic) and the P (polar). In this model, each H–H topological contact,
that is, each lattice nearest-neighbor H–H contact interaction, has energy value
ε ≤ 0, while all other contact interaction types (H–P, P–P) have zero energy.
In general, in the HP model the residues interactions can be defined as follows:
eHH = − | ε | and eHP = ePH = ePP = δ. When ε = 1 and δ = 0 we have the
typical interaction energy matrix for the standard HP model [11]. The native
conformation is the one that maximizes the number of contacts H–H, i.e. the one
that minimizes the free energy function. Finding the global minimum of the free
energy function for the protein folding problem in the 2D HP model is NP-hard
[12]. The input for the algorithms is a protein sequence of s ∈ {H, P}� where
� represents the number of amino-acids. The candidate solution is a sequence
of relative directions [13] r ∈ {F, R, L}�−1, where each ri is a relative direction
with respect to the previous direction (ri−1), with i = 2, . . . , �−1 (i.e., there are
� − 2 relative directions) and r1 the non relative direction. We obtain an overall
sequence r of length � − 1.
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Fig. 7. CLONALG1: SR as a function of the values β and ρ for mutation rate α =
e(−ρ∗f) (left plot) and mutation rate α =

(
1
ρ

)
e(−f) (right plot) on seq2 instance

Experimental results. In this section we report the results obtained for both
versions of CLONALG and opt-IA on 12 instances from the Tortilla 2D HP
benchmarks1. Since opt-IA was well studied for the HP model [5,14,15], first of all
we made a parameter tuning process for CLONALG in order to choose between
CLONALG1 and CLONALG2 the version with the best performance for PSP,
and also in order to set the best values for parameters β and ρ. In particular,
parameter surfaces were determined in order to predict the best delimited region

1 http://www.cs.sandia.gov/tech report/compbio/tortilla-hpbenchmarks.html
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Table 5. opt-IA algorithm (d = 10, dup = 2). Results have been averaged on 30
independent runs, where b. f indicates the best values found, symbol μ stands for mean
and symbol σ stands for standard deviation.

Protein τB = 1 τB = 5
No. � E∗ SR AES b. f. μ σ SR AES b. f. μ σ
1 20 -9 100 23710 -9 -9 0 100 20352.4 -9 -9 0
2 24 -9 100 69816.7 -9 -9 0 100 39959.9 -9 -9 0
3 25 -8 100 269513.9 -8 -8 0 100 282855.7 -8 -8 0
4 36 -14 100 2032504 -14 -13.93 0.25 73.33 4569496.3 -14 -13.73 0.44
5 48 -23 56.67 6403985.3 -23 -22.47 0.67 6.67 4343279 -23 -21.47 0.62
6 50 -21 100 778906.4 -21 -21 0 100 1135818.9 -21 -21 0
7 60 -36 0 // -35 -33.73 0.68 0 // -35 -34.5 0.5
8 64 -42 0 // -39 -36.13 1.28 0 // -38 -35.1 1.25
9 20 -10 100 18085.8 -10 -10 0 100 18473.6 -10 -10 0
10 18 -9 100 69210 -9 -9 0 100 130342 -9 -9 0
11 18 -8 100 41724.2 -8 -8 0 100 50151.2 -8 -8 0
12 18 -4 100 87494.5 -4 -4 0 100 74426.5 -4 -4 0

that maximizes SR values and minimize AES value. The maximum number of
fitness function evaluation (Tmax) allowed for this first set of experiments is 105.
The results are averaged on 100 independent runs.

From figures 7 and 8 it is obvious that CLONALG2 has a better behavior
with respect to CLONALG1, the best SR found by CLONALG2 is 85 using
mutation rate α = e(−ρ∗f), while the best SR found by CLONALG1 is 18.
The worse performance of CLOANLG1 is consequence of the structure of the
selection scheme for the creation of the new population of antibody, as explained
in section 1.1. In fact, this version is more useful for multimodal optimization
problems where is necessary to find the greatest number of peaks of a specific
function (maximization), as shown in [4] and as demonstrated from results on
numerical optimization in section 4. Again, we want to put in evidence the
crucial importance of selecting the better mutation rate for each problem, and
the tuning of the parameter to which is correlated (ρ).

Tables 5 and 6 show the best results for CLONALG (both versions) and
opt-IA on the 12 PSP instances setting Tmax = 107. All the results have been
averaged over 30 independent runs. For CLONALG the values of β and ρ have
been chosen according to figures 7 and 8 when the best SR is found. The mu-
tation rate α = e(−ρ∗f) was used, according to its better performance as shown
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Table 6. CLONALG1 and CLOANLG2 using mutation rate α = e(−ρ∗f) (N = n =
10, d = 0). Results have been averaged on 30 independent runs, where b. f indicates
the best values found, symbol μ stands for mean and symbol σ stands for standard
deviation.

Protein CLOANLG1(β = 0.4, ρ = 1.0) CLOANLG2(β = 0.3, ρ = 5.0)
No. � E∗ SR AES b. f. μ σ SR AES b. f. μ σ
1 20 -9 100 322563.50 -9 -9 0 100 22379.60 -9 -9 0
2 24 -9 90 2225404.75 -9 -8.9 0.3 100 69283.34 -9 -9 0
3 25 -8 96.67 1686092.38 -8 -7.96 0.17 100 907112.56 -8 -8 0
4 36 -14 0 // -13 -12.23 0.46 23.33 5189238.50 -14 -13.2 0.47
5 48 -23 0 // -21 -18.93 0.92 3.33 8101204.50 -23 -20.76 1.02
6 50 -21 0 // -20 -17.43 0.95 46.67 6019418.50 -21 -20.2 0.87
7 60 -36 0 // -34 -30.43 1.33 0 // -35 -32.43 0.98
8 64 -42 0 // -35 -29.26 1.74 0 // -39 -33.43 2.21
9 20 -10 100 649403.00 -10 -10 0 100 27391.67 -10 -10 0
10 18 -9 96.67 2143456.50 -9 -8.96 0.18 90 1486671.25 -9 -8.9 0.3
11 18 -8 96.67 742352.56 -8 -7.96 0.18 100 52349.10 -8 -8 0
12 18 -4 100 740468.31 -4 -4 0 100 70247.73 -4 -4 0

previously. Best results for opt-IA are obtained using coupled operators, inversely
proportional hypermutation and Hypermacromutation. As for the traps, this is
again the key feature to effectively face the problem. Both algorithms use the
same minimal population dimension (N = d = 10). For the simple sequences
1,2,3,9,11 and 12 the algorithms have a similar behavior, but when we consider
more difficult instances, like sequences 4,5 and 6, the overall performance of opt-
IA is evident. Both algorithms are unable to solve the hard sequences 7 and 8,
but although they reach the same minimum values, opt-IA has lower mean and
standard deviation, showing a more robust behavior.

6 Conclusions

In this experimental work we made a comparative study of two famous Clonal
Selection Algorithms, CLONALG and opt-IA, on significant test bed: ones-
counting and trap functions (toy problems), pattern recognition, numerical opti-
mization (23 functions) and 2D HP Protein Structure Prediction problem (NP-
Complete problem). A robust test bed is important in order to analyze theoret-
ically and experimentally the overall robustness of evolutionary algorithms, as
reported in [16]. Two possible versions of CLONALG have been implemented
and tested, coupled with two possible mutation potential for the hypermuta-
tion operator. The experimental results show a deep influence of the mutation
potential for each problem and the setting of the respective parameter. Param-
eter tuning was made for both algorithms, and an overall better performance of
opt-IA was found on all problems tackled. In particular, simulation results on
numerical optimization problems show how CSAs (in particular opt-IA) are ef-
fective methods also for numerical optimization problems, obtaining comparable
results respect to one of the most effective method in literature, Fast Evolution-
ary Programming. Obviously, the presented clonal selection algorithms can be
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applied to any other combinatorial and numerical optimization problem using
suitable representations and variable operators [17,18,2].

In last years there have been many applications of CSAs to search, learning
and optimization problems [19,20,21]. In particular, this new class of evolution-
ary algorithms seem to be effective to face protein structure prediction problem
[14,15,22]. This article and all the above cited research works demonstrate that
the clonal selection algorithms are mature and effective computational tools
[21,23].

The evolutionary computation scientific community has a new class, immune
algorithms [4,17], that along with genetic algorithms [24,25], evolution strategies
[26], evolutionary programming [27] and the genetic programming [28] constitutes
the overall set of evolutionary algorithms.
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Abstract. The purpose of this paper is three-fold. Firstly, it aims to
demonstrate empirically that networks evolved using different shaped
recognition regions in a real-valued shape-space exhibit different dynam-
ics during their formation, and vary in both their capabilities to tolerate
antigens and in their memory capacity. Secondly, the paper serves as
a useful comparison to previous published work which investigated the
properties of a network evolving in a simple, small Hamming shape-space.
This work represents the first steps in a proper analysis of a real-valued
shape-space with differing recognition shapes. Finally, and perhaps most
importantly, the experiments presented illustrate the importance of pay-
ing careful attention to the choice of recognition region and algorithm
parameters when applying an AIS based on a network-model to practical
problems.

1 Introduction

Since Jerne first suggested the notion of an idiotypic network [6] in which anti-
body cells are able to interact with other antibody cells as well as with antigenic
material, there has been a great deal of interest in understanding and applying
such networks, ranging from experimental and theoretical studies in the immuno-
logical communities [11,2] to practical applications such as data-clustering [7] in
the AIS (Artificial Immune Systems) domain.

The computational implementation and study of Jerne’s ideas was to a large
extent made possible by the introduction of the notion of shape-space by Perel-
son and Oster [8], which provides a formal model that can quantitatively describe
the interactions between cells. The model assumes that the generalised shape of
any cell can be represented by a vector of L attributes, where the attributes
represent for example the width, height and charge of a combining site, and
can be real-valued, integers, binary, symbols, or a combination, depending on
the application. A degree of affinity can then be calculated for any cell pair
by defining a measure of distance between the two vectors, thus a shape-space
is simply a metric space with an associated distance function, where small dis-
tances correspond to high affinity and vice-versa. Shape-space can take any form;
typically, Hamming shape-spaces and real-valued shape-spaces are often chosen
in practical AIS applications.

C. Jacob et al. (Eds.): ICARIS 2005, LNCS 3627, pp. 29–42, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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According to the shape-space model, cells recognise other cells lying within
a ball of stimulation. In Perelson and Oster’s original work, the shape of the ball
of stimulation is exactly as the term suggests, namely a hyper-spherical region
centered on the cell itself. This idea is propagated through much future work; for
example, Smith [10] uses it explain the associative properties of immunological
memory. Bersini [2] adopts the model in building a simulation of an idiotypic
work that is used to lend weight to the argument of Varela and Coutinho [11] that
the immune system is self-assertive rather than a self-recognition system, and
elaborates on the engineering implications of this in [1,3]. In the AIS domain, the
network inspired algorithms of Timmis and Neal [7] apply the idea in an practical
context through the use of a parameter called the network affinity threshold
which effectively creates a hyper-spherical region around a point outside of which
recognition is not deemed to take place.

As engineers however, we are at liberty to abstract ideas from the biological
models we use as our inspiration and adapt them according to our needs. Hart
and Ross in [5] present some observational results from graphical simulations of
an idiotypic network based on earlier work by Bersini in [1] in which the shape
of the recognition region of any cell can be varied. Their work represents a shift
in perspective from earlier studies which have simulated idiotypic networks —
instead of focusing attention on understanding the biological immune system,
their purpose was to gain a clearer understanding of the behaviour of idiot-
pyic networks so that they could be better used in engineering AIS solutions
to practical applications. In this paper, we extend the qualitative work of [5]
by providing empirical evidence that the shape of the recognition region of a
cell in a real-valued shape-space can be usefully altered in order to manipulate
the properties of the resulting emergent networks. In particular, the ability of
a network to tolerate antigen and the memory capacity of the networks can be
affected by judicious choice of recognition region shape.

2 Related Work

Hart et al in [5] present a study of the effects of altering the shape of the recog-
nition region of cells in an idiotypic network simulation in a real-valued shape-
space, from an engineering perspective. However, their work mainly addresses
the emergence of such networks in the absence of any antigenic stimulation, and
whilst very interesting from a theoretical point of view, it has less relevance for
an AIS engineer, where a problem to be solved usually has data represented by
antigens, and the aim of evolving a network is (for example) to represent the data
in some manner. Furthermore, their work only presented some qualitative ob-
servations, without any proper empirical analysis, and therefore it is difficult to
predict more general behaviour from their study, particularly if the parameters
of the algorithm are varied from those used in the experiments described.

More relevant related work is that of Bersini [2], who presents empirical
results from experiments with an idiotypic network which evolves in a binary
shape-space. In this work, cells are represented by binary string of N bits, and
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affinity is calculated using Hamming distance between two strings. This work
presents many interesting conclusions, in relation to the behaviour of the net-
works in the presence of antigen, and in relation to their ability to tolerate
antigen and maintain an antigenic memory as a function of the matching prob-
ability between cells. However, as previously mentioned, the focus of the work is
in studying the network to address conflicting immunological questions, rather
than to understand how the models may be best adapted to help solve engineer-
ing problems. Also, the use of a binary shape-space renders the outcomes less
relevant for the majority of practical applications which lend themselves nat-
urally to a real-valued representation. Nevertheless, this work serves as a very
useful benchmark against which the work in this paper can be contrasted, and we
adopt much of the methodology stated in this paper so that a useful comparison
can be made.

3 Modelling of Recognition Regions

The models used in the experiments are described below and shown in figure 1.
Theses shapes are identical to those described in [5].

Circle. A simple, symmetrical recognition region is investigated, which consists
of a circular region centered on the complement of any given point (x,y) and
is shown in figure 1(a). This shape of region is also used by Bersini in [2].

Cross. The second shape is shown in figure 1(b). In this model, one co-ordinate
of a cell must match the complement of a cell to which it binds closely and
the other co-ordinate matches within the specified recognition radius. This
is an attempt to model multiple, distinct, binding sites on a single cell. The
length of the long side of the cross shape is determined by the experimentally
variable parameter R, and the short side is fixed at length 2N , where N is
the radius of the short arm.

Box. In figure 1(c,d), the complementary regions are engineered such that there
is not necessarily mutual recognition between a pair of cells; thus, if cell B
lies in the complementary region of cell A, then cell A does not necessarily
also lie in the complementary region of cell B. The complementary regions
in this case essentially consist of a square of side R positioned at a point in
the space dependent on the coordinates of the cell.

Note that for any given value of R, the corresponding area of the recognition
region for the three models just described will differ. For example, the area of the
circular shape of radius R will be π times greater than that of the corresponding
box shape of side R. Thus, when directly comparing experimental results at any
given value of R, one should be aware that there will be a different probability of
a randomly generated antigen being matched by a cell in each of the three models
described. Whilst this has implications if one is merely studying and comparing
the evolution of networks from a theoretical standpoint, from an engineering
perspective, the value of R chosen is often of greater importance than the size of
the recognition region. For example, consider figure 2 which shows an artificially
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Fig. 1. The shapes of recognition region used in the experimental work — in each case,
R represents the recognition radius of each shape
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Fig. 2. The figure illustrates the importance of choosing the correct radius and shape
for a recognition region. In a), the cross has radius R = 4. In b), the circle has identical
radius R = 4. In c), the circular region has identical area to the cross in a), which is
obtained when R = 2.9.

constructed problem in which a cell is required to match the antigens shown by
the solid circles only. The first diagram shows that the required cells are easily
matched by a cross-shaped region with R = 4. The second figure shows the effect
of using a circular region of identical radius — in this case, some extra antigens
of a different type are also matched. Finally, the third diagram shows a circular
region of identical area to the cross region in the first figure, and therefore will
identical probability of matching some randomly generated cell. In this case,
some of the black antigens are not matched. In general, practical problems have
a non-random distribution of data, and hence the recognition radii becomes of
great importance.

4 The Algorithm

The algorithm governing the network simulation is described below. All cells
(both antibodies and antigens) are represented as a 2-dimensional points (x, y)
on a grid on size (X, Y ).

Cell Dynamics. One new antibody P is created at each iteration, and placed
randomly on a grid of pre-specified size with an initial concentration of Pc.
Then, at each cycle, the total affinity Pa of each cell is calculated as follows. If
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the cell P is at (x, y), then the contents of a region S of radius R centered at
the complementary point Q = (X−x, Y −y) are deemed to be an adequately
close complement to the cell and influence the value of Pa as follows:

Pa =
∑

antigens A∈S

Ac(r − ||A − Q||) or (1)

Pa =
∑

antigens A∈S

Ac(r − ||A − Q||) +
∑

cells E∈S

Ec(r − ||E − Q||) (2)

depending on whether the user chooses to let cells ‘see’ just antigens or both
cells and antigens in the complementary region ( and where Ac is antigen
concentration and Ec is cell concentration). Thus, antigens (and maybe cells)
closest to the centre of the complementary region have potentially much more
effect on the affinity than those close to the edge of the region. In the above
equations, the term r represents the maximal distance of any point from the
complement Q that lies within the recognition region of radius R. Thus for
the circle shape, R = r, however, for the box shape, r = R

√
2, and for the

cross, r =
√

(R2 + N2).
If a cell P ’s total affinity Pa satisfies L ≤ Pa ≤ U then its concentration is
increased by 1, otherwise it is decreased by 1. A cell dies, and is removed,
if its concentration falls to 0. This, the model is not strictly idiotypic in
the sense that there is idiotypic suppression between molecules, rather, the
upper boundary U acts as a mechanism for preventing over-stimulation.

Antigen Dynamics. Antigens can be added at any iteration of the algorithm,
either as a “batch” in which a number of antigens are added simultaneously
at some iteration x, or individually. Each newly-created antigen has a ex-
perimentally pre-specified concentration. At each cycle, the total affinity Aa

of an antigen A at (x, y) is computed in a somewhat similar way by looking
at the cells in the complementary region S centered at the complementary
point B = (X − x, Y − y):

Aa =
∑

cells E∈S

Ec(r − ||E − B||)

If Aa ≤ L the concentration of A is unaffected, but if Ac > L then the
concentration decreases by an amount Ac/(100L). If the concentration falls
to 0 the antigen dies and is removed. Thus, antigens never increase in con-
centration, their concentration either stays the same, or decreases.

5 Experimental Parameters

All experiments in the following sections were performed using a modified ver-
sion of the idiotypic network simulator code downloadable from [9]. The code was
modified to be able to run offline without graphics for the purpose of experimen-
tation, and so that antigen data could stored in files and added to the simulation
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at any point during an experiment. All experiments were performed on a grid
of size 100x100. Antibodies were always added with a fixed concentration of 10,
and one antibody is randomly recruited at each iteration of the algorithm. The
lower limit of the threshold value, L was held constant at 100, and the upper
limit U at 10000. In all experiments, the network emergence is investigated over
the complete range of possible values of R, i.e for 1-100. Clearly, at large values
of R, so much of the space is covered by any single cell a network cannot serve
any practical function. However, the results are presented for completeness.

6 Investigation of Network Emergence

In the initial simulations, we investigate the dynamics of the emergence of three
idiotypic networks, using the shape-spaces described in section 3. In all exper-
iments, a network is evolved over 10000 iterations, entirely in the absence of
antigens, with parameters as given in section 5. Experiments with each network
are repeated 10 times, using recognition radii varying over the full width of the
2d grid, i.e from 1 (representing very specific matching) to 100 (representing
completely unspecific matching). Figure 3 shows the average number of cells
present in the system after 10000 iterations as a function of the recognition ra-
dius of each shape and the average number of other antibodies each antibody
present is stimulated by (i.e that lie within its recognition region).

For each of the three shape-spaces, there is some minimum probability of
matching, pmin, below which a network is unable to spring into existence. The
exact value of R, the recognition radius, at which this is reached varies between
the shape-spaces (see figure 3(b) which clearly illustrates this). The same effect
is observed by Bersini in [2] in his discussion of Hamming shape-spaces, which
he labels network percolation. For each shape-space, the precise value of pmin

is determined by the interplay between the values of the radius R, the initial
concentration of each cell, and the affinity thresholds L and U (see section 4).
Altering these values changes the value of pmin in each case, however the same
general pattern is observed.

Each of the shape-spaces exhibits different behaviour immediately following
the percolation however; in the case of the circle and box shape-spaces, self-
regulation of the network occurs, i.e overall, there is a decrease in cell numbers
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as the radius is increased — the higher the probability of a match between cells,
the fewer the number of cells that are required overall to sufficiently stimulate
any given cell. This effect is also noted by Bersini in [2]. For the circle and
cross shape-spaces, the self-regulation effect initially occurs immediately follow-
ing percolation, however, interestingly, there appears to be a second percolation
in each case (at approximately R = 25 for the circle and R = 50 for the cross)
— this is not observed in the similar experiments using Hamming shape-space
described in [2]. In the circle case, the system the begins to again self-regulate
as the radii increases beyond R = 50, although the second self-regulation point
is not reached in the case of the cross. Simulating the algorithm visually clearly
illustrates the reason (although these screen shots are not shown through lack of
space). For R = 25, a self-sustaining line of cells is observed, in which each cell
in the lines is supported by others also in the line, which requires very few cells
to separate the space into tolerant and reactive zones. At R ≥ 50 however, the
network formation is inhibited — some cells are sustained by interaction with
transient cells in the intolerant region, but by R = 100, most cells are inhib-
ited due to over-stimulation occurring very rapidly. This secondary percolation
effect does not occur in the simulations using binary shape-spaces reported in
[2], presumably due to the small number of cell possibilities in a small, binary
shape-space.

The box-shape space exhibits slightly different behaviour, although there is
clearly a percolation followed by a self-regulatory effect. Following this perco-
lation, the number of cells in the system remains almost constant despite the
increase in R. This is explained by three factors; firstly, the unsymmetrical na-
ture of the match function results in a network with quite different dynamics
(for further evidence of this, see [5]). Secondly, for any given R, the area of the
match region is smallest for the box shape, and hence there is a smaller probabil-
ity of interaction between one cell and another. Finally, as the box shape-space
is unsymmetrical with respect to the complementary point, at large R, a large
part of the recognition region of most cells will actually lie off the edge of the 2D
grid, resulting in an even smaller effective area of recognition. This effect also
occurs of course with the other two models but is to a large extent lessened by
the symmetrical nature of the region in the other cases.

7 Formation of Networks in the Presence of Exogenous
Antigens

Although the previous experiments provide us with some interesting theoretical
insight into the emergence of idiotypic networks in the absence of antigen, from
a practical view-point, networks are almost always evolved in the presence of
antigen in order to serve some useful purpose; for example, to cluster data, [7],
or to segment a data-space into tolerant and non-tolerant regions for the purpose
of recognising anomalous behaviour. Therefore in this section, we investigate the
emergence of networks in the presence of exogenous antigen. In particular, we
are interested in how the emergence of a network is affected by antigen present
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in the system, and in determining whether or not there is added value in main-
taining a network with idiotpyic interactions as opposed to a classical Burnetian
system with only antigen-antibody interactions. This is interesting from an engi-
neering and computational perspective due to the high computational overhead
in maintaining an idiotypic network.

In the following experiments, 50 antigens are introduced into the simulation
over 10000 iterations. One antigen is recruited every 200 iterations with an ini-
tial concentration c. Values of c investigated are 100 and 1000. The number of
antigens remaining in the system at the end of the 10000 iterations is recorded
over a series of experiments in which R varied from 1-100. All experiments are
repeated 10 times and the results averaged. Each simulation is performed twice
— once using a classical Burnetian system in which there are only antigen-
antibody interactions, and secondly using an idiotypic network where there are
antibody-antibody and antibody-antigen interactions.

7.1 Exogenous Antigens with High Concentration

Figures 4 and 5 show the number of tolerated antigens when antigens are added
with concentration c = 1000, and the repertoire size, as a function of increasing
recognition radius. We observe that without the network, for the circle and cross
regions, the system is only able to tolerate antigen when the recognition radius is
very low, and therefore, there is an extremely low probability of any cell matching
an antigen. The recruitment rate of antibodies simply does not outweigh the very
small likelihood of a newly recruited cell matching an antigen. By approximately
R = 10 however, both circle and cross shape-spaces are able to almost completely
remove all antigens from the system. At high R however, these two models are
once again unable to remove all antigens from the system — this effect is not
observed in Bersini’s Hamming experiments in [2]. Note however that Bersini’s
experiments are only performed with antigen concentration equal to 100. Clearly,
there is a fine balance between cells becoming stimulated by being able to match
antigens with very high probability, but then being removed from the system
due to over-stimulation before they are able to completely eliminate the antigens
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of 50 exogenous antigen added with concentration 1000
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Fig. 5. Number of cells vs recognition radius for systems evolved in the presence of 50
exogenous antigen added with concentration 1000

which are added with very high concentration, relative to the cells themselves
(1000 vs 10) — see figure 5. In the box case, the same overall pattern is observed,
except that the balance point between enough cells being able to match antigens
to remove them and over-stimulation occurring occurs at much lower R. The
precise value at which this balance occurs could theoretically be calculated in
a simple Burnetian model such as this — we hope to present these results in
forthcoming work. Qualitatively, the observed differences can be explained by
comparing the area of the recognition regions for equivalent radii in the two
systems. For example, a value of R = 1 for the circle space gives an area of π.
In the cross-space, the area of the region is 20, therefore, there is much higher
probability of being able to match antigen. For the box region, for the reasons
outlined in section 6, the system is able to tolerate antigens over a wide variation
in R, because a high-value of R effectively results in a very low match-probability.

The results obtained from the idiotypic network are more interesting results.
Firstly, for all 3 models, as observed in section 6, there is a minimum probability
of match before a network is able to spring into existence. However, this perco-
lation value is now lower than when then networks are evolved in the absence of
antigen — this effect is also observed in [2]. The presence of the network divides
the space into tolerant and intolerant regions, and thus antigens which happen
to occur in the tolerant regions are sustained throughout the experiments.

The network effectively inhibits some of the antibodies that could remove
antigen, so we see a higher tolerance of antigen for all values of R — this is most
apparent with the circular region. As in Bersini’s Hamming spaces experiments,
at high R, i.e. very unspecific matching, almost all cells are inhibited and the
size of the network is maintained at a very low value. In the case of idiotypic
matching, the precise value of R at which this effect is observed is affected by
both the area and nature of the matching region (recall the unsymmetric nature
of the box-region matching). Thus, the cross-region can maintain sufficient self-
sustaining cells to tolerate some antigens even at high R, and the box-region is
able to eliminate more antigens due to the network presence than the Burnetian
system. Hence, although figure 5 clearly shows the computational overhead in
maintaining a network compared to a Burnetian system over certain ranges of
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Fig. 6. Number of antigens vs recognition radius R for systems evolved in the presence
of 50 exogenous antigen added with concentration 100

R, a change in behaviour is observed in the system with regard to its ability to
tolerate antigens. Note also however, there appears to be no obvious advantage
to using a network over some specific range of R in each case.

7.2 Exogenous Antigens with Low Concentration

Figure 6 shows the results of identical experiments to those above but when
the concentration of added antigen is reduced to 100. Comparing the figures to
those just presented shows that the concentration of antigens clearly plays a large
part in the behaviour of the system. Firstly, without a network, the behaviour
obtained by the circular and cross regions is exactly comparable to Bersini’s
results obtained in Hamming space across all values of R. When compared to
those results obtained when Ac = 1000, comparable behaviour is observed until
approximately R = 75 (circle) and R = 65 (cross). However, when the concen-
tration of added antigen is low, even over-stimulated cells occurring when R is
large are able to remain in the system just long enough to be able to completely
remove all antigens. The box-region model fares somewhat better at removing
antigens when their concentration is low, a factor which compensates somewhat
for the low match probability.

Although the results obtained at Ac = 100 are qualitatively similar to those
obtained at Ac = 1000, the network is never able to completely inhibit all cells.
Hence even at high R, all three models are able to remove more antigens from
the system than the corresponding experiments with Ac = 1000 — this is par-
ticularly noticeable in the circular case, and contrast directly with the results
obtained by Bersini at this value of antigen concentration. These experiments
therefore illustrate the critical importance of the choice of the algorithm param-
eters R, antigen concentration and antigen concentration when applying this al-
gorithm to a practical problem. Their complex interplay determines the possible
outcome of any simulation, and hence they must be chosen with care, depending
on the desired effects.



Not All Balls Are Round 39

8 Investigating the Network Memory Capacity

Memory is often cited as one of the key distinguishing features of immune al-
gorithms, and therefore we investigate whether an idiotypic network in a real-
valued shape-space is able to show any capacity to remember previous encoun-
ters with antigen, and if so, whether the shape of the recognition region can
play an important role in determining the memory capacity — in the following
experiments, we consider that a memory effect has occurred if the network be-
haves differently when presented with antigens similar to those it has previously
encountered than to those which are completely random.

In each experiment, a network is first allowed to develop and stabilize in the
presence of 50 external antigens for 10000 iterations (set A, Sa). As in previous
experiments, one antigen is submitted to the network every 200 iterations, with
concentration 1000. Following this, a further set of 50 antigens, Sb, is submitted
to the network and the experiment continued for a further 2000 iterations, at
which the total number of antigens remaining in the system is measured. In the
first experiment Sb consists of antigens which are produced by applying a random
mutation to each antigen in Sa — the mutation adds a random number between
−2 and 2 to each coordinate of the original antigen. In the second experiment,
Sb consists of a new set of antigens generated at random, each coordinate lying
in the range (0,100). The antigens in Sb each have concentration 1000 and are
added simultaneously at iteration 10000. Figure 7 shows the total number of
antigens remaining in the system at iteration 12000 as a function of recognition
radius for each shape. Each point on the graph is an average of 100 simulations,
and the same Sb is used in each experiment.

The graph shows that for the circular recognition region over the range
R = 35 − 85, slightly more of the similar antigens are rejected from the sys-
tem than those that are generated totally at random. In the cross and box case,
no discernible difference is observed, and in fact in the box case, the random
antigens are removed more efficiently over the range R = 10 − 17. This result is
at odds with the results reported by Bersini in Hamming shape-space, where he
fined that at two values (out of a possible 20) of recognition radius,lying close to
the percolation value of the system, the idiotpyic network is more likely to reject
antigens similar to those observed during network development than those that
are random. (Around 10 extra antigens are rejected in this case). In Bersini’s
experiments, the antigens in the “similar” set were at Hamming distance 1 from
the originals. In the above experiments, the maximum distance of a mutated
antigen from the original is

√
8 - further experiments, currently in progress, will

examine results over a narrower range, and will also average the results over
a number of different sets of mutated antigens, to determine whether Bersini’s
results can be replicated with the real-valued shape-space.

A modified version of the above experiment is now reported in which sets of
antigens are added in batches to the evolving network, rather than individually
over a number of iterations. Furthermore, two sets of antigens are added to the
evolving network during the stabilisation period — one early in its development,
and the second much later. After the network has stabilised, it is then presented
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Fig. 7. The graph shows the total number of tolerated antigens after 12000 iterations
for various recognition radii R following addition of 3 sets of antigens
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with a further set of antigens in order to try and determine whether a memory
capacity can be observed at all, and if so, whether the network retains better
memory of those antigens it has encountered relatively recently compared to
those it encountered early in its development. The experiments are performed as
follows: at iteration 0, S1 consisting of 50 random antigens with concentration
1000 is added. At iteration 6000, S2, consisting of a further 50 random antigens
is added. At iteration 10000, a new set S3 of antigens is added — this set
can either be similar to S1, similar to S2, or random. The results (averaged
over 10 experiments for each point) are show in in figure 8 which show the
number of antigens tolerated from S3 after 12000 iterations. For the circle, no
significant differences in network behaviour are noticed between the 3 possible
sets S3, however, the results are noticeably different from those obtained when
the network is developed in the presence of gradually appearing antigens. For
R ≥ 50, none of the antigens in S3 are removed. In the box case however, for
R ≥ 20, we observe that the system best rejects those antigens which are similar
to those in S2 (added late in the development), shows slightly more tolerance
to those similar to S1, and best tolerates the randomly added antigens. This
result is in agreement with that observed by Bersini in Hamming shape-space,
and in accordance with the classical vision of immunology that a network can
show tolerance to very early antigenic encounters. This result also implies that
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the frequency of antigen encounters seems to be important in network memory
— stimulating the network with large number of antigens in a short period
of time appears to affect its emergence more clearly than when antigens are
encountered infrequently. However, further experiments need to be performed
with all recognition region shapes before conclusive evidence can be drawn.

9 Conclusions and Further Work

This paper has presented some early empirical evidence into the emergence of id-
iotypic networks in a real-valued shape-space, using a variety of different shaped
recognition regions. The results clearly show that the dynamics and size of the
emergent networks are heavily influenced by the recognition region shape, and
that the networks show varying ability to tolerate antigens over different ranges
of recognition radius. This is crucial information for the AIS engineer; on the
one hand it emphasises the need for careful parameter setting; on the other how-
ever, it provides some flexibility and control over network evolution which can
be used to our advantage, depending on the problem being tackled. In respect to
the network evolution in the presence of antigens, the overall picture is somewhat
similar to that painted by Bersini in his investigation of Hamming shape-spaces,
although there are clearly some differences. The major differences tend to occur
at high values of R, i.e when matching is very unspecific — as noted earlier, over
these ranges, the network is unlikely to produce any useful behaviours from a
practical perspective anyway.

The results from the investigation into memory capacity are less clear; more
experimentation needs to be performed before conclusive results regarding the
memory capacity of the models investigated can be drawn, although it does ap-
pear that the frequency which antigen is encountered may play a critical part in
the network development. Further analysis is also required to explain the differ-
ences between the circle and box models observed in figure 8. If immunological
memory is really to be exploited in artificial immune algorithms, particularly
when applied to problems in dynamic environments, then it is crucial to gain an
understanding of the mechanisms and limitations of any such memory features.

This work represent the tip of the iceberg concerning our understanding of the
behaviour of idiotypic networks from a practical perspective. We are currently
continuing the investigations described above over a wider parameter range, to
better understand the interplay between cell concentrations, recognition radius,
and recognition region shape, and to determine more clearly how the rate of ex-
posure to antigen can affect ultimate performance. In future work, an important
strand of investigation will be to investigate the behaviour of the system when
exposed to sets of exogenous antigens which are not uniformally distributed
throughout the data-space in order to better reflect real-world data. In rela-
tion to this, we also wish to explore the effects of cells utilising variably-sized
recognition regions (an effect which has been explored in anomaly detection by
[4]. Finally, there has been a considerable amount of interest in recent years in
the concept of scale-free network connectivity, which endows a network with a
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near-optimal method of communication between nodes, and improved robust-
ness. This has been tentatively explored by Bersini in [2] in relation to networks
in binary shape-space and hence we also wish to pursue this line of research
using in real-valued shape-space.
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Abstract.  Many bio-inspired algorithms (evolutionary algorithms, artificial immune 
systems, particle swarm optimisation, ant colony optimisation, …) are based on 
populations of agents.  Stepney et al  [2005] argue for the use of conceptual 
frameworks and meta-frameworks to capture the principles and commonalities 
underlying these, and other bio-inspired algorithms.  Here we outline a generic 
framework that captures a collection of population-based algorithms, allowing 
commonalities to be factored out, and properties previously thought particular to one 
class of algorithms to be applied uniformly across all the algorithms.  We then 
describe a prototype proof-of-concept implementation of this framework on a small 
grid of FPGA (field programmable gate array) chips, thus demonstrating a generic 
architecture for both parallelism (on a single chip) and distribution (across the grid of 
chips) of the algorithms. 

1   Introduction 

Many bio-inspired algorithms are based on populations of agents trained to solve 
some problem such as optimising functions or recognising categories.  For example, 
Evolutionary Algorithms (EA) are based on analogy to populations of organisms 
mutating, breeding and selecting to become “fitter” [Mitchell 1996].  The negative 
and clonal selection algorithms of Artificial Immune Systems (AIS) use populations 
of agents trained to recognise certain aspects of interest (see de Castro & Timmis 
[2002] for an overview): negative selection involves essentially random generation of 
candidate recognisers, whilst clonal selection uses reinforcement based on selection 
and mutation of the best recognisers.  Particle swarm optimisation (PSO) [Kennedy & 
Eberhart 2001] and social insect algorithms [Bonabeau 1999] use populations of 
agents whose co-operations (direct, or stigmergic) result in problem solving. 

Stepney et al  [2005] argue for the use of conceptual frameworks and meta-
frameworks to capture the principles and commonalities underlying various bio-inspired 
algorithms.  We take up this challenge, and, in section 2, outline a generic framework 
abstracted from the individual population-based models of the following classes: genetic 
algorithms (GA), AIS negative selection, AIS clonal selection, PSO, and ant colony 
optimisation (ACO).  The framework provides a basis for factoring out the 
commonalities, and applying various properties uniformly across all the classes of 
algorithms, even where they were previously thought particular to one class (section 3). 

In section 4 we describe our proof-of-concept prototype implementation of the 
generic framework on a platform of multiple field programmable gate array (FPGA) 
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chips. Thus the generic architecture naturally permits both parallelism (multiple 
individuals executing on a single chip) and distribution (multiple individuals 
executing across the array of chips) of the algorithms.  In section 5 we outline what 
needs to be done next to take these concepts into a fully rigorous framework 
architecture and implementation. 

2   The Generic Framework for Population Algorithms 

There are many specific algorithms and implementation variants of the different 
classes.  To take one case, AIS clonal selection, see, for example [Cutello et al 2004] 
[Garrett 2004] [Kim & Bentley 2002].  It is not our intention to capture every detail of 
all the variants in the literature.  Rather, we take a step back from the specifics, and 
abstract the basic underlying concepts, particularly the more bio-inspired ones, of 
each class of algorithm.  So when we refer to “GA” or “AIS clonal selection”, for 
example, we are not referring to any one specific algorithm or implementation, but 
rather of the general properties of this class.  We unify the similarities between these 
basics in order to develop a generic framework.  The intention is that such a 
framework provides a useful starting point for the subsequent development of more 
sophisticated variants of the algorithms. 

Basic Underlying Concepts 
The generic algorithm is concerned with a population of individuals, each of which 
captures a possible solution, or part of a solution.  Each individual contains a set of 
characteristics, which represent the solution.  The characteristics define the (phase or 
state) space that the population of individuals inhabit.  The goal of the algorithm is to 
find “good” regions of this space, based on some affinity (a measure that relates 
position in the space to goodness of solution, so defining a landscape).  The 
individuals and characteristics of the specific classes of algorithm are as follows:  

GA: The individuals are chromosomes; each characteristic is a gene. 

AIS negative selection: The individuals are antibodies; each characteristic is a shape 
receptor. 

AIS clonal selection: There are two populations.  In the main population the 
individuals are antibodies; each characteristic is a shape receptor.  There is also a 
population of memory cells drawn from this main population. 

Swarms: The individuals are boids; the characteristics are position, velocity and 
neighbourhood group (the other visible individuals). 

Ants: The individuals are the complete paths (not the ants, which are merely 
mechanisms to construct the complete paths from path steps); the characteristics are 
the sequence of path steps, where each step has an associated characteristic of length 
and pheromone level. 
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Algorithm Stages 
The different specific algorithms each exhibit six clearly distinct stages, comprising a 
generation.  These are generalised as: 

1.  Create : make novel members of the population 
2.  Evaluate : evaluate each individual for its affinity to the solution 
3.  Test : test if some termination condition has been met 
4.  Select : select certain individuals from the current generation, based on their 

affinity, to be used in the creation of the next generation 
5.  Spawn : create new individuals for the next generation 
6.  Mutate : change selected individuals 

We describe each of these stages, covering the generic properties, and how they are 
instantiated for each specific class of algorithm.  Using this framework results in 
descriptions that  sometimes differ from, but are equivalent to, the traditional 
descriptions of the algorithms.  For example, rather than saying that some individuals 
survive from generation to  generation, for uniformity we consistently consider each 
generation to be a completely fresh set of individuals, with some possibly being 
copies of previous generation individuals.  As another example, the pheromone 
changes in the Ant algorithm is mapped to the generic mutate step. 

Create 
Creation makes novel members of the populations.  In the first generation, the whole 
population is set up, and the members have their characteristics initialised.  On 
subsequent generations, creation “tops up” the population with fresh individuals, as 
necessary. 

GA: An individual chromosome is created usually with random characteristics, 
giving a broad coverage of the search space. 

AIS negative selection: An individual antibody is created usually with random shape 
receptors. 

AIS clonal selection: An individual antibody in the main population is created 
usually with random shape receptors; memory cells are not created, rather they are 
spawned from the main population. 

Swarms: An individual boid is created usually with random position and velocity 
characteristics, giving a broad coverage of the search space; the neighbourhood 
characteristic is usually set to implement a ring, grid or star connection topology. 

Ants: Each path step is initially set up usually with a fixed pheromone level, and with 
the relevant (fixed) path length; the population of paths is created by the ants from 
these steps each generation. 

Evaluate 
The affinity measures how well each individual solves (part of) the problem.  It is a 
user-defined function of (some of) an individual’s characteristics. This function 
should ideally (but does not always) have the structure of a metric over the space 
defined by the characteristics. 
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GA: The affinity is the fitness function, a function of the values of the genes. 

AIS: The affinity is a measure of how closely the shape receptors complement the 
target of recognition, inspired by the “lock and key” metaphor. 

Swarms: The affinity, or fitness function, is a function of the current position. 

Ants: The affinity is the (inverse of the) path length. 

Test 
The test for termination is either (a) a sufficiently good solution is found, or (b) 
enough generations have been run without finding a sufficiently good solution.  On 
termination, the solution is: 

GA, Swarms, Ants: The highest affinity (fittest) individual. 

AIS negative selection: The set of individuals with above-threshold affinities. 

AIS clonal selection: The population of memory cells. 

Select 
High affinity individuals are selected to contribute somehow to the next generation’s 
population.  There are several selection algorithms commonly used.  n best selects the 
n highest affinity individuals from the current population.  Threshold selects all the 
individuals with an affinity greater than some given threshold value.  Roulette wheel 
selection randomly chooses a given number of individuals, with probability of 
selection proportional to their affinity, or to their ranking.  Tournament randomly 
selects teams of individuals, and then selects a subset of individuals from each team. 

GA: Different variants use any of the above methods of selection, to find the parents 
that will produce the next generation. 

AIS negative selection: Threshold selection is used to find the next generation. 

AIS clonal selection: A combination of n best and threshold selection is used to find 
the next generation of the main population; all individuals of the memory cell 
population are selected to become the basis of its next generation. 

Swarms: All individuals are selected to become the basis of the next generation. 

Ants: No individuals are specifically selected to become the next generation: each 
generation is created afresh from the path steps (whose characteristics are changed by 
the mutate step). 

Spawn 
Production of new individuals for the next generation usually involves combining the 
characteristics of parent individuals from the selected population (ants are a special 
case).   

GA: The characteristics of pairs of selected parents are combined by using a 
crossover mask (predefined or randomly generated) to generate two new individuals.  
If the crossover mask is set to the identity, then the two new individuals are clones of 
the two parents.  
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AIS negative selection: The selected parents become the basis of the new generation 
(which is topped up to the population size by creating sufficient new individuals).  If 
the threshold is a constant value throughout the run, this has the effect that an 
individual, once selected, continues from generation to generation, and only the newly 
created individuals need be evaluated. 

AIS clonal selection: In the main population new individuals are spawned as clones 
of each parent, with the number of clones being produced proportional to the parent’s 
affinity; in the memory cell population, the selected parents become the basis of the 
new generation, and a new individual is spawned, as (a copy of) the best individual of 
the main population. 

Swarms: A new individual is spawned from the sole parent and the highest affinity 
individual in that parent’s neighbourhood group, with the intention of making the new 
individual “move towards” the best neighbour.  The new position is derived from the 
parent’s position and velocity, the velocity is modified to point towards the best 
neighbour, and the neighbourhood group is copied from the parent.   

Ants: No individuals are specifically spawned for the next generation: each 
generation is created afresh from the path steps (whose characteristics are changed by 
the mutate step). 

Mutate 
Mutation involves altering the characteristics of single individuals in the population. 
It would be possible to unify spawning and mutation into a single generate stage, but 
since most algorithms consider these to be separate processes, we have followed that 
view, rather than strive for total generality at this stage.  The mutation rate might be 
globally random, or based on the value of a characteristic or the affinity of each 
individual.  How a characteristic is mutated depends on its type: a boolean might be 
flipped, a numerical value might be increased or decreased by an additive or 
multiplicative factor, etc. 

GA, Swarms: Individuals are mutated, usually randomly, in order to reintroduce lost 
values of characteristics; evolutionary strategy algorithms encode mutation rates as 
characteristics. 

AIS negative selection: No mutation occurs. (That is, the next generation consists of 
copies of the selected above threshold individuals, topped up with newly created 
individuals.  An alternative, but equivalent, formulation in terms of this framework 
would be to consider that all the individuals are selected, and that only the below-
threshold individuals are mutated, into completely random individuals.  However, this 
is at odds with the traditional description of the algorithm, and also with the view that 
mutation makes relatively small alterations.) 

AIS clonal selection: The new clone individuals are mutated, by an amount inversely 
proportional to their affinity. 
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Ants: New pheromone is laid on each path step by an amount proportional to the 
affinity of the complete paths in which it occurs, and decreased by a constant decay 
factor. 

3   Generalising Across Algorithms and Implementations 

Once we have all the algorithms in a common framework, we can see ways of 
generalising each in a natural manner (that is bio-inspired, but by a different aspect of 
biology).  We discuss two such cases here – niching and elitism – and outline other 
possibilities. 

Niching 
Some population-based algorithms include “niching”: developing sub-populations 
separately, with occasional migration of individuals [Brits et al 2002] [Mahfoud 
1995] [Watkins & Timmis 2004].  Niching is motivated by the biological evolution of 
populations on separate islands.  It is useful for solving multi-objective problems, 
with sub-populations focussing on separate objectives, but we do not here consider 
that aspect.  Here we are interested in its use for efficiently distributing the algorithm 
across multiple processors, by minimising the amount of communication (of details of 
the high affinity individuals) needed between processors.  We use these ideas to add a 
migrate step to the generic framework. 

In niching, we have N islands of separately developing sub-populations, with each 
island following the simple algorithm, and each having a neighbourhood that is of a 
subset of the other islands (capturing locality of islands).  Every g generations, modify 
the current population by replacing n individuals (suitably selected to be of low 
affinity, or chosen randomly) with n migrants from the neighbourhood (suitably 
selected to be of high affinity, or chosen randomly).  This results in the following 
specifics: 

GA: Migration is simple population replacement; the solution is the fittest individual 
across all islands. 

AIS negative selection: Migration is simple population replacement; the solution is 
the union of all above-threshold individuals across all islands. 

AIS clonal selection: Migration can occur for both the main population and the 
memory cell population; the solution is the union of all memory cell populations 
across all islands. 

Swarms: Migration is simple population replacement, where the replaced individuals 
copy in the position and velocity characteristics of the migrants, but retain their 
original neighbourhood characteristic; the solution is the fittest individual across all 
islands. (Swarms admit another distribution strategy that can be efficiently 
implemented if the nearest individual neighbourhood relation is that of a simple ring 
topology.  A single swarm can be distributed across a ring of processors, with the only 
communication between processors being the very local neighbourhood properties.)   
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Ants: Migration is simple population replacement; the solution is the fittest individual 
(shortest path) across all islands.  The (affinity of the) migrated paths will affect only 
the pheromone update stage; the migrated paths need not be recreated in the next 
generation.  

Elitism 
Some GAs include ad hoc elitism: copying the best individual(s) into the next 
generation, in order to preserve the currently best solution (and hence make the best 
solution monotonic with generations).  This is not a particularly bio-inspired process.  
AIS algorithms with their (constant) threshold selection, on the other hand, are 
naturally elitist: if an antibody exceeds the threshold, (a copy of) it survives in future 
generations.  We use these ideas to modify the spawn step, and add generic elitism to 
the framework. 

When spawning the next generation, copy the n best of the previous population, as 
well as spawning any new individuals from the selected parents.  Also, these 
particular n individuals should be exempt from mutation in this stage.  This results in 
the following specific modifications: 

GA: n fewer individuals need to be spawned by crossover. 

AIS: No change, provided n individuals are above the threshold. 

Swarms: The solution is a property of the position characteristic only, and the 
position is modified by the velocity.  So the previous best solution is copied, with its 
velocity set to zero, so that it “hovers” over the current best solution. 

Ants: An “elite ant” recreates the current shortest path, ensuring that the solution 
remains in the population, and that its steps get their pheromone levels updated. 

Other Generalisations 
The generic framework allows further features of one specific algorithm to be 
generalised to the others.  

• Evolutionary Strategies encode the mutation rates as characteristics: a similar 
approach can be used in the other algorithms.  For example, the ant algorithm 
could allow the pheromone decay rate to be a characteristic. 

• Genetic Algorithms use crossover to combine characteristics of parents: a similar 
spawn operator can be used in the other algorithms.  For example, AIS clonal 
selection could spawn new antibodies by crossover. 

• Traditionally unchanging characteristics could be mutated, for example, swarm 
neighbourhood. 

• AIS use affinity-based mutation, to preferentially shake up poorer solutions: all 
mutation schemes could take this approach. 

• AIS clonal selection increases the number of good solutions by affinity based 
cloning (thereby increasing their probability of being selected, so allowing more 
exploration of the nearby space).  The other algorithms could be adapted to 
variable population size with cloning. 
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• The range of selection strategies can be employed across all the algorithms that 
have a non-trivial selection stage.  In particular, AIS clonal selection has two 
populations: selection strategies could be used on the memory cell population too. 

4   The Prototype Implementation 

There is much opportunity for parallelism in these algorithms: individuals can (to 
some degree) be evaluated, selected, and created in parallel.  This suggests efficiency 
gains by executing these algorithms on parallel hardware.   

FPGAs and Handel-C 
We chose as our prototype implementation platform a small grid of FPGAs, executing 
the framework implemented in Handel-C.   

An FPGA is programmable hardware: its array of logic gates can be configured 
and connected for each specific program.  This removes the need to fetch and decode 
instructions, fetch data, and store results; it is programmed to be a direct hardware 
representation of the code.  It can be configured to provide genuine parallel execution 
(see for example [Brown & Rose 1996]).  So each individual FPGA can host multiple 
individuals executing in parallel, and multiple FPGAs allow distributed 
implementations. 

The framework described above has been prototyped as a proof of concept.  It 
demonstrates that a suitably flexible generic framework can indeed be developed to 
support multiple classes of population-based algorithms, and that it can be distributed 
on a grid of FPGAs.  It has been tested on an array of four FPGA algorithm engines, 
each connected to a fifth monitoring FPGA, in turn connected to a PC.   

The prototype framework is implemented in Handel-C [Celoxica 2004], a 
(relatively) high level language designed specifically for writing applications for 
FPGAs.  Handel-C code is compiled down into the relevant FPGA net-list, which 
specifies how the FPGA is to be configured.   

Handel-C is based on the process calculus of CSP (Communicating Sequential 
Processes) [Hoare 1985].  Handel-C is essentially an executable subset of CSP 
[Stepney 2003], with some extensions to support FPGA hardware.  In particular, it 
has explicit support for parallel execution of processes: 

for (i=0; i < imax; i++) { 
  // the imax iterations execute in sequence 
  // and occupy space independent of imax 
} 
 
par (i=0; i < imax; i++) { 
  // the imax iterations execute in parallel 
  // and occupy space proportional to imax 
} 

Being based on CSP, Handel-C uses synchronous communication between its parallel 
processes.  There is currently no  Handel-C language support for programs distributed 
across multiple FPGAs, and such configurations do not support synchronous 
communication between chips as a primitive.  It would have been possible to design a 
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protocol to implement this, allowing the distributed program to be (very close to) a pure 
Handel-C program.  However, the communication between chips is deliberately restricted, 
to just the occasional migration data. So for this prototype, a simple handshaking protocol 
has been used, and the inter-chip communication hidden in a wrapper. 

The Implemented Framework 
The prototype implementation of the framework provides much of the functionality 
described above.  The genericity means that there are many parameters and options: 
the prototype includes support for specific options, and hooks for a range of user-
definable functions.  The framework is structured so that the basic algorithm needs no 
alteration: the user merely selects certain features (such as population sizes, 
characteristics, mutation rates, style of creation and selection, crossover masks, 
number of FPGAs, and number of islands per chip), and provides the code for certain 
functions (the evaluation function and stopping condition, and, as required, creation, 
selection, spawning, and mutation functions).   

The framework code and user-defined functions, both written in Handel-C, are 
compiled on the PC, then downloaded on to the FPGA array to run.  The Handel-C 
compiler optimises away dead code, so options that are not selected by the user (such as 
various choices of creation or selection functions) do not appear in the compiled code. 

When the algorithm terminates, the relevant results are communicated back to the PC.  
It is also possible to return intermediate results every generation, to allow investigation of 
the performance, or for debugging, but this introduces a communication bottleneck. 

Each individual is represented as a bit string, with each bit or combination of bits 
in the string representing a characteristic.  A user-specified flag selects whether these 
bits are initialised to 0s, to 1s, to random bit values, or to a user-defined alternative.  
Each FPGA chip holds a certain number of islands, each of which holds its 
individuals.  Migration information is passed between the islands, and hence between 
the chips, as required. 

Ideally, all individuals should be able to evaluate their own affinity in parallel, by a 
call to the user-defined evaluation function.  For completely parallel implementation 
on an FPGA, this would require one copy of the function per individual.  This can 
result in much of the FPGA’s resource being used by evaluation functions, limiting 
the number of individuals per chip.  The framework instead allows a trade-off 
between number of individuals and amount of parallelism.  During certain of the 
algorithm steps, the individuals in an island are considered to be grouped into f  
families, each with m members, giving at total of f × m individuals.  Families are 
processed in parallel, but the members of a family are processed in sequence.  Thus 
each family requires only one copy of each function, and space is proportional to f 
and execution time is proportional to m: 

par (family=0; family < f; family++) { 
  for (member=0; member < m; member++) { 
    // ... code for  individual[family*m + member] 
  } 
} 
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The prototype implementation provides a timer function, to help the user chose a 
suitable trade-off for each step, and for each application. 

The probabilistic nature of (parts of) the algorithm require the use of random 
numbers.  The implementation provides one 32-bit linear feedback shift register per 
family for this purpose. 

Tournament selection is used to divide the population into teams.  If no tournament 
is required, the entire population forms one large team.  Then the appropriate 
selection method is used on each team in parallel. 

Restrictions Due to the Platform Choice  
Some of the design decisions for the framework prototype are due to specific features 
and limitations of FPGAs and Handel-C, and different platform choices could result 
in different decisions.  For example, the use of families is to cope with the limited size 
of the FPGAs. 

Another example of this choice is the selection implementation.  Although each 
team performs selection in parallel, the selection within each team is sequential.  One 
might think that roulette wheel, or even a random, selection from a collection of 
individuals could be performed in parallel.  However, this would result in the need for 
many parallel accesses to random number generators, and the FPGA’s silicon would 
quickly become dedicated to these.  Certain parts of the selection can be performed in 
parallel, for example, to find the n best, where each individual can read the affinity of 
all its team-mates in parallel.  Even so, care needs to be taken, because the highly 
interconnected read accesses can result in quite complex (and therefore slow to 
compile) routing.  

Handel-C supports variable bit-width values, requiring explicit casting between 
values with different widths.  This can lead to arcane code, particularly when trying to 
write generic routines.  For example, consider the case where some particular size n 
(such as population size) is a power of 2.  Then the variable that stores the size is one 
bit larger than the variable used for indexing into an array of this size, running from 0 
to n−1, so comparing the index and the size requires some fancy casting. 

5   Preliminary Results 

Sizes:  The number of (families of) individuals possible per chip varies depending on 
the settings.  For example, if no survival, generation, or niching is done, it is possible 
to have 30−40 individuals per chip, each with 8 bit-characteristics.  With all the 
capabilities turned on, this number drops to about 18 individuals run sequentially, or 
four if run in parallel, the reduction being due to the increased routing and copies of 
code.  The  limiting constraint is routing tables rather than logic gates: every 
individual is accessed by each of the six algorithm stage functions, and the 
implementation uses all the routing tables, but only about 10-15% of the logic gates.  
Similar size results apply when hosting two islands on a single chip: this halves the 
total population possible, because of code replication and routing constraints. 
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The FPGAs being used (300K gate Xilinx SpartanIIE chips) are relatively small: it 
was thought more important for this proof of concept work to get the maximum 
number of FPGAs for the budget, rather than the maximum size of each one.  Clearly, 
more individuals would be possible with larger FPGAs.  However, the architectural 
design needs to be done carefully to optimise use of the resources: design experience 
of these style of algorithms for FPGAs is still in its infancy. 

Parallelism:  How much speedup does parallelism give? 
The experiment compares running four individuals in parallel (the most 

supportable in this experiment) against running four in sequence, solving a simple 
optimisation problem.  Linear speedup would result in a 400% improvement, but the 
parallel form has a speed-up of only about 30% over the sequential form.  This low 
value indicates that there is still a great deal of sequential execution in this prototype 
implementation.  This sequential bottleneck occurs mainly in the select stage of the 
framework: the speedup in the evaluate stage (calculation of the affinity function) is 
essentially linear.  More complicated evaluation functions would therefore result in an 
increase in the parallel efficiency, but would also increase the demand on silicon 
resource if the complicated functions physically took up more space. 

Parallelism versus population size: More parallelism takes up more silicon, 
resulting in few individuals being supportable.  Parallelism lets the algorithm run 
faster, in that each generation takes less time to execute, but larger populations allow 
greater diversity and exploration of the search space per generation, so the algorithm 
could require fewer generations to find a solution.  What is better: more parallelism or 
a larger population?   

The experiment compares running four individuals in parallel (the most 
supportable in this experiment) against running 12 in sequence (the most supportable 
sequential individuals in this experiment).  The parallel form gives no speed-up 
overall compared to the sequential form.  However, looking at only the evaluate stage 
shows the sequential form taking about twice as long as the parallel form.  Given the 
linear speedup noted above, the sequential case takes 12 times as long per generation, 
and so is executing only about one sixth the number of generations before finding a 
solution.  Even so, the parallel form is taking less time overall (in the evaluate state), 
suggesting that parallelism outweighs population size in this case.   

However, these experiments need to be tried on larger populations, and a wider 
range of affinity function complexity (which affects the parallel to sequential 
population size ratio), before any more definitive statements can be made. 

Niching: What is the effect of using multiple chips?  How much speedup does 
distribution give? 

The experiment compares running four individuals in parallel on one chip versus 
four individuals in parallel on each of the five chips (20 individuals in total), 
migrating the two best individuals every 100 generations.  There is a speedup of about 
a factor of two (over the whole algorithm run, not just the evaluate stage).  These 
experiments need to be repeated for different migration rates to see if there is an 
optimum rate. 



54 J. Newborough and S. Stepney 

 

6   Discussion and Future Work 

The unified framework allows the generalisation of concepts from across a range of 
algorithms types, for example, elitism and niching.  Thus we have a chimerical 
computational framework that is inspired by biology, but not restricted to any one 
particular biological domain.  Implementation of the framework on parallel and 
distributed architectures is (relatively) straightforward, and provides performance 
benefits (although currently significantly less than linear improvement).  So this proof 
of concept has shown that the approach to generalising and parallelising population-
based algorithms is feasible and useful.  Thus it is worth pursuing the approach with 
more rigour and detail.  

The relatively small speedups indicate the need for removing the remaining sequential 
bottlenecks, and the constraints on parallel individuals caused by routing limitations 
indicate the need for a more sophisticated parallelisation architecture targeted at the 
opportunities and limitations of FPGAs.  Allowing six islands per chip to use the 
hardware for the six algorithm steps in a pipeline might provided further speedup.   

An alternative distributed architecture would be to dedicate certain chips to 
algorithm steps, and move the individuals around.  Different numbers of chips could 
be dedicated to each step, depending on the complexity of that step, to balance the 
processing load. 

The prototype framework needs to be extended with more built-in options, and 
made more usable, by providing a configuration language for selecting parameter 
values, etc.  It  also needs to be made more flexible to accommodate other 
arrangements of FPGA arrays.   

Future work also includes formalising the generic framework, to make it clearer 
which features of each algorithm are being represented and captured, and to 
generalise and include more details and capabilities from the range of variant 
algorithms in the literature.  A more rigorous framework will allow analysis at the 
generic and specific levels, comparison of instantiations, and further generalisations 
of various properties. 
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Abstract. An Artificial Immune System-based Dynamic Routing (AISDR) 
framework is engineered through the adoption of the characteristics that are 
analogous to human immune system for solving dynamic routing problems. The 
framework covers the profound features on recognition, selection, learning, 
memory, and adaptation capabilities. An AISDR algorithm is developed that 
incorporates the features of clonal selection, affinity maturation, and 
immunological memory features. Simulation study is carried out to evaluate the 
performance of the algorithm in the global shipment operation. 

1   Introduction 

The human immune system exhibits the capability of recognition, selection, learning, 
memory, and adaptation that can be adopted to solve dynamic routing problems.  This 
paper presents a framework with associated algorithms for route planning with 
characteristics of the immune system. It adopts relevant theories and methodologies 
found in the immune systems and develops corresponding algorithms for solving 
dynamic routing problems such as those commonly encountered in the global 
shipment and transshipment. 

Algorithms for solving routing problems, in particular, the Vehicle Routing 
Problem (VRP) including classical linear programming to more recent meta-heuristic 
and Artificial Intelligence (AI) algorithms were developed by various researchers. 
Brandao (1999; 2002; 2003) used meta-heuristic algorithms, whereas Braysy (2001), 
Jung and Haghani (1998), and Filipec (2000) adopts Genetic Algorithms (GA) to 
solving VRP. Jean-Yves (1996), Thangiah et al. (1994), and Lalinka & Fernando 
(2002) adopted a hybrid AI approach. 

Traditionally, dynamic routing algorithms are developed based on business logics. 
New business rules are often continuously added into the algorithm without the 
consideration of complementary effects.  Based on such an approach, the risk of the 
existence of system loopholes and software defects is often high (Landwehr et al., 
1993). Building algorithms analogous to the immune system inspires new insights and 
approaches to the problem with the development of novel algorithms. This paper 
presents a conceptual framework that applies the clonal selection theory, affinity 
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maturation, cross reactive response theory, and immune network theory of human 
immune system known as the AIS-based Dynamic Routing (AISDR) framework, 
which aims at solving dynamic routing problems in an automated manner.  

2   Biological Immune Systems 

The human immune system is a rapid and effective defense mechanism against 
infections. The response falls into two categories, namely, innate immune response 
and adaptive or acquired immune response. In the innate immune system, cells are 
immediately available to combat against foreign invasions, without requiring previous 
exposure to them. For the adaptive immune system, antibodies are produced only in 
response to specific infections. The response improves with each successive 
encounter with the same pathogen; in effect the adaptive immune system memorizes 
the infective agents and prevents it from causing disease.  

The immune system is made up of a number of components with lymphocytes 
mainly mediating the adaptive immune response. Lymphocytes are categorized into 
two main types: B lymphocytes and T lymphocytes. The former recognizes antigen by 
releasing antibodies that bind to antigens. The latter consists of two types of T-cells, 
namely the Helper T cells (TH) that control B lymphocyte development, produce 
antibodies, and interact with phagocytic cells to help destroy pathogens; and the 
Cytotoxic T-cells (TCR) that recognize cells infected by virus with a view to destroy 
them. 

In the human immune system, the B-lymphocyte, T-lymphocyte, antigen presenting 
cells (APC), Natural killer cells, and Plasma cells work in a corporative environment to 
fight against antigen invasion. There are specific mechanisms in the process of 
recognition, categorization, and defense. APC obtains information from an antigen and 
presents information (for example, cell wall, defense mechanism of bacteria in order to 
let white blood cells or other defensive cells to kill the antigen) of the antigen to the 
immune system memory. B cells then recognizes and categorizes the antigen, and the 
memory B cells will distinguish whether existing antibodies can kill the antigen. If the 
antigen is recognized by specific antibodies, B cells will be activated to be Plasma cells 
and produce antibodies to destroy the antigen. When a pathogen invades a body cell, 
which then becomes an infected cell. Major Histocompatibility Complex (MHC) will 
present peptide of the pathogen of these infected cells to cytotoxic T precursors. 
Cytotoxic T cells will then destroy the infected cell. 

3   Artificial Immune System 

An artificial immune system is a computational system based upon the metaphors of 
the natural immune system (Timmis, 2000). There a number of potential benefits of 
adopting the theories and mechanisms of natural immune systems to solving complex 
engineering problems. Recently, increasing interest has been found in formalizing and 
adapting the theories and underlying mechanisms of the immune system to solving 
engineering problems (Luh et al., 2004). 
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Immunological theories had been applied to produced solutions for complex 
problems, including pattern recognition (White and Garrett, 2003; Nicosia et. al., 
2001), fault detection (Taylor and Corne, 2003), scheduling (Coello et al., 2003), and 
optimization (Coello & Cortes, 2002; Nicosia & Cutello, 2002).  

In route planning, Keko et al. (2003) adopted the immunizing features of the 
immune system to a classical genetic algorithm using vaccine inserting method to 
solving the traveling salesman problem (TSP). Genetic Algorithm (GA) used by Keko 
was vaccinated to become less susceptible to changing parameters and improve the 
speed of generating the smallest total distance in a TSP problem. A heuristic operator, 
the Lin-Kerninghan operator, was implemented to improve the population with the 
applied action is considered as vaccination. In this research, the full potential 
application of the immunity theory to solving the routing problem had not been fully 
explored. de Castro and Von Zuben (2000) applied the clonal selection algorithm in 
immune system to solve a 30 cities instance of the TSP. An AIS-based routing 
algorithm developed in this research adopted the characteristics of the immune 
system, namely, its dynamic property, immunological memory, self-regulation, cross-
reactive response, adaptability, and diversity of the immune system.  

As solving complex dynamic routing problems requires the processes of selection, 
prioritization, regulation, memory, and self-recognition, in which AIS is able to offer 
corresponding mechanisms for undertaking these processes, this paper aims to 
introduce an integrated framework known as the artificial immune system-based 
dynamic routing (AISDR) framework for tackling this complex problem.  

4   Artificial Immune System-Based Dynamic Routing (AISDR) 
Framework 

The emergence of global logistics networks imposes the pressing need of a dynamic 
routing system for global shipment and transshipment of commodities that covers 
various industrial and country specific booking requirements in a global perspective. 
Due to its high complexity, such systems that are commonly built and operated on 
business and human logic will not be able to provide the necessary quality and 
performance; and often ends up in disaster situations when the underlying logic is 
being manipulated by a fully manual process. An AISDR framework is therefore 
developed to provide first-line assistance for dynamic-planning and evaluating of 
routes so as to alleviate the shortcomings of the traditional manual operation. The 
proposed AISDR capitalizes some of the features of AIS in shipment route 
computation.  

The proposed immune system-based routing framework has a number of properties 
that is adopted from the nature of biological immune system, having some advantages 
over other dynamic routing solutions. These include the clonal selection, 
immunological memory, immune regulation, cross-reactive response, and immune 
network capabilities. One of the major advantages of an AIS-based system is that its 
memory will not be continuously built up on a centralized system in an uncontrolled 
manner. A centralized approach often incurs a significant investment in the upgrading 
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of new servers and database for the ever expanding memory usages. The localized 
immune memory feature is much desirable for generating a set of optimal dynamic 
routes where prompt localized response and action generation that is similar to the 
immunological responses is essential for efficient and effective operation of such a 
routing system. In addition, the characteristics immune cells cooperation and 
distribution of work are also key features that are being incorporated to the proposed 
AISDR algorithm. 

4.1   The Organization of the AISDR Framework 

The proposed dynamic routing framework is highlighted by the following characteristics: 

- Dynamic. The system assists system users to select the best route in respond to 
changes in the operating environment by adopting the clonal selection theory 
using binding affinity as the key measurement. The ability to recognize and 
classify different route patterns and to generate selective response in a dynamic 
manner is similar to the behavior of the human immune system. 

- Distributed Memory. The system facilitates the efficient storage and retrieval of 
active and inactive routes and their respective costs and selection priorities in a 
distributive manner, which is parallel to the organization and operation of the 
immune memory. 

- Self-regulation. It assists users to regulate the number of routes and nodes that is 
analogous to the regulation of hyper-mutation mechanism of the immune system. 

- Cross-reactive Response. It assists users to handle bookings (the requests of new 
routes) that are structurally fit to the existing routes in the system. This is 
analogous to the cross–reactive response theory. 

- Adaptability. It assists users and the routing system to constantly renew the 
routing structure of the system through the continuous recruitment of newly 
formed elements and the destruction of non-simulated or self-reactive elements. 
This feature is adopted from the immune network theory or the immune 
recruitment mechanism of the immune system.  

- Diversity. The system contains a diverse set of elements of various types to fulfill 
various roles to identify the booking characters and to select the best route. 

The corresponding analogies of the AISDR to the immune system are shown in 
Table 1 and the organization of the framework is illustrated in Figure 1. 

Route Selection by Clonal Selection 
Burnet (1957) has modified Jerne’s natural selection theory (1955) for antibody 
formation as the theory of clonal selection. It focuses on the distinctive feature of 
immune system that can respond to millions of different foreign antigens in a highly 
specific way. Burnet’s theory shows that each human first randomly generates a vast 
diversity of lymphocytes, and then those cells that react with the foreign antigens 
which the human actually encounters are specifically selected for the action. This 
theory is based on the proposition that during development each lymphocyte becomes  
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Table 1. Behavioral states of AIS agent 

Immune System AISDR 

Humoral immune System 
Dynamic routing system that has nodes and routes/component 
routes 

Self 
- Existing nodes, routes, solutions 
- New routes 
- Test routes (for tolerance behaviour) 

Non-self 

Requirements, i.e. a booking with origin, destination, cargo 
information, and other important information that contributes 
to route selection. (Bookings required existing optimized 
standard routes;  bookings require new routes) 

Antigen / Receptors of Antigen 
Incoming bookings (Bookings required existing optimized 
standard routes or bookings require new routes. Latter booking 
type is considered as non-self) 

Antibody / Receptors of antibodies Routes 

Antigen Presenting Cell (APC) 
A major functional unit within the system that handles 
bookings and job assignments 

B lymphocytes (B cell) 
A functional unit within the system that  handles job order 
bookings, and derive routes 

T lymphocytes (Helper T cell) 
A functional unit within the system that handles job order 
bookings, and  derive routes 

Amino acid sequence on antibody 
that binds to antigen 

Route components and sequences that combine to form  
standard routes as possible solutions to incoming bookings 

Binding Affinity – a measurement of 
the strength of the bond between an 
antibody’s combining site and a 
single epitope 

Fitting Priority – measurement for evaluating the best fit route 

Clonal-Selection Theory 
First generate a vast diversity of feasible routes, those routes 
that fit the problem best will be used 

Immune memory – stored antibodies 
which has not been binded to an 
antigen before 

Stored existing routes that are not in service but may be 
changed to active when in use (inactive) 

Immune memory – stored antibodies 
which has bind to an antigen before 

Stored existing route that is in service (active) 

Primary Response 
Response to new bookings that has not been handled 
previously 

Secondary Response 
Repeat bookings with faster selection with a better fitting 
process 

Hypermutation 
Manuel editing of routes or other information/special request 
handling 

Cross-reactive response theory To allow standard routes fit to structurally related new routes  

Immune Network Theory – Immune 
Recruitment Mechanism and 
Metadynamics 

Continuously improved route structures and new booking 
selection criteria that are subject to new internal or external 
factors 

Innate Immune Response Inborn routes provided by the system 

Adaptive Immune Response Newly created standard routes provided by the system 
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committed to react with a particular antigen before ever being exposed to it. Each 
lymphocyte is committed to specifically fitting to the antigen with its cell-surface 
receptor proteins. This binding of antigens to the receptors activates the cell, causing 
immune cell to both proliferate and mature. A foreign antigen thus selectively 
stimulates those cells that express complementary antigen-specific receptors and are 
thus already committed to respond to it. 

Similarly, AISDR first generates a vast amount of routes that connects through 
nodes with various modes of transportation. They are in an inactive status but may be 
changed into active status when they are being used. To serve an incoming booking, a 
standard route should be used. This could be a set of connected routes or a route 
connecting with two nodes all with active status. A functional unit within the system 
will handle bookings and derive routes. It is done by recognizing the requirements, 
including origin, destination, cargo types, container types, cargo volume, etc. Then it 
selects a list of standard routes that serves the bookings. Based on the rating that is 
associated to the binding affinity, the functional unit further selects the best route with 
the highest priority and lowest cost that best fits to the requirement. The operation of 
the system, which is analogous to the immune system, functions on the ready-made 
rather than the made-to-measure principle. 

Specificity through Affinity Maturation 
The AISDR inherits the affinity maturation characteristics of the immune system. 
During the cell division process that is stimulated by antigen binding to a specific 
clone, the repertoire of antigen-activated B-cells is diversified basically by two 
mechanisms: hypermutation and receptor editing. High-affinity variants are selected 
and put into the pool of memory cells. This phenomenon in which antibodies present 
in a secondary response is generally having a higher affinity than those of the early 
primary response is referred to the maturation of the immune response. This 
maturation requires the antigen-binding sites of the antibody molecules in the matured 
response be structurally different from those present in the primary response through 
mutation events. Such events may lead to an increase in the affinity of these 
antibodies. Those with higher affinity variants are then selected to the pool of 
memory cells. The immune system will keep these best fit cells as well as those routes 
created in the infant stage with a sort of resting states that will act more efficiently on 
incoming antigens. 

Through the adoption of the affinity maturation and immunological memory 
characteristics, AISDR behaves dynamically to increase its ability to cater for the 
incoming bookings requirement and stored its package (routes and services) for future 
bookings with the same requirement. The division of B-cells to cater vast amount of 
antigens is analogous to a booking or a large number of bookings which may require a 
lot of planned transportation capacity to handle the cargos that navigate in the selected 
route. Short- or mid-term capacity planning facilitates the resource reservation for the 
bookings. The selected standard route could be edited to further fitting into the 
requirement to ship particular cargos from an origin to a destination. 
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Fig. 1. The architecture of the AISDR Framework for solving dynamic routing problems 

Regulation with the use of Hypermutation Mechanism 
The hypermutation mechanism in the immune system serves to regulate the amount of 
stored routes based on the receptor affinity. As the continuing deleterious changes by 
mutation may cause the loss of advantageous mutation, a short burst of somatic 
hypermutation, followed by a pause for antibodies selection and clonal expansion, 
also forms the basis of maturation process. The selection mechanism then regulates 
the hypermutation process based on the receptor affinity in order to allow storing the 
best fit antibodies. Low affinity cells will further undergo the mutation process to 
improve their affinities; otherwise they will die through apoptosis. Hypermutation 
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will also be deactivated when there are cells that contain high-affinity antibody 
receptors (Kepler and Perelson, 1993). 

A regulation mechanism is built in the AISDR to cope with the sudden request on 
the increase or deletion of nodes and routes. The requested actions affect the standard 
routes and call sequences. Some affected routes that are best fitted to a particular 
booking can undergo further binding affinity evaluation, route selection, and then 
stored in memory. Suboptimal fitted routes will be stored in resting state. The route 
selection provides a means to categorize good and suboptimal fitted routes for future 
reference. This provides a mechanism for regulating the storage of routes. 

Despite the hypermutation regulation mechanism, the immune response is subject 
to a variety of regulation and control mechanisms which serve to restore the immune 
system to a resting state when response to a given antigen is no longer required. 
Antibody, APC, lymphocytes, and the antigen itself contribute to the regulatory 
mechanism of the immune system. Antibody exerts feedback control on an immune 
response. IgM antibody together with an antigen specifically could stimulate an 
immune response to the antigen, where as IgG antibody could suppress the response. 
The effectiveness of APC in presenting the antigen is also a determining factor as it 
decides whether a responsive or tolerance action should take place. The nature of 
antigen also influences the type of immune response that occurs. Lymphocytes, with 
CD4+ T cells that prevent the induction of autoimmunity, TH cell subsets involving in 
the regulation of immunoglobulin production, and CD8+ T cells transferring 
resistance and tolerance play an important role on the immune system regulation 
mechanism. Cross-reactive response and the immune network theory also provide a 
regulatory effect on the immune system. Regulation in a dynamic routing system is 
also needed to control booking responses, the availability of active routes, resource, 
and capacity. 

Diversity and Efficiency of Second and Cross Reactive Responses 
Primary, secondary, and cross-reactive responses characteristics demonstrate a 
learning and memory capability acquired for antibody production and antigen 
defense. Primary response occurs when specific antibodies is defending against 
antigens with an increase in the concentration and affinity up to a level in their first 
exposure to an antigen. When infection is eliminated, the concentration will decline. 
Secondary response occurs when antibodies react on the same antigen after the 
primary response. It shows a faster and more efficient response against the antigen. 
When another antigen with structurally related to the antigen in the primary response 
is introduced, B-lymphocytes can adapt to the antigen and present a faster and more 
efficient secondary response to the structurally related antigen. This demonstrates an 
associative memory and the cross-reactive response. Smith (1997) developed a 
discrete object model of immune system on analyzing the cross-reactive response and 
immunological associative memory. 

To cope with a more rapid response, booking specificity fulfillment, and flexibility 
to handle new bookings with routes that are structurally related to the standard routes 
are required. In addition, a dynamic routing system requires the processing of 
secondary, cross-reactive response, and associative memory characteristics.  This 
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would allow a more rapid routing selection process and improved flexibility in fitting 
new booking requirements. 

Route Repository against Immunological Memory 
The routing repository that is similar to the immunological memory, not only keeps 
the best fit routes and routes that are in the resting state for handling efficient future 
bookings; it also allows capacity planning for the stored routes and its equipments. 
This planning mechanism is based on the first response, customer information and 
their background. Thus, faster selection, resource arrangement, and order completion 
process could be achieved with the incorporation of secondary response using the 
concept of immune memory and capacity planning features.  

Functional Unit Interaction and Routes Renewal  
Jerne (1974) proposed the immune network theory suggesting that the immune system 
is composed of a regulated network of molecules and cells that recognizes one 
another even in the absence of antigens. 

The theory also suggests that the immune system has the ability to continuously 
produce and recruit novel cells and molecules. The constant renewal of network 
structure via recruitment into activity of these newly formed elements and the death of 
non-simulated or self-reactive elements enable the system to survive and adapt to the 
changing environment. This immune network metadynamics, also regarded as 
immune recruitment mechanism, allows for the selection of new elements into the 
network according to the global state of the system. The selection showing the 
networking sensitivity that is measured by the affinity of this element has with the 
actual elements already present in the immune network. In a routing system, this 
could also be considered as an application of network sensitivity: functional unit 
interaction of the routing systems, and the self-renewal process of the AISDR.  

System Security and Tolerance 
For the immune system to function properly, it is required that molecules of its own 
cells (self) to be distinguished from foreign molecules (non-self). Otherwise, an 
immune response will be triggered against the self-antigens, causing autoimmune 
disease. Immunological tolerance mechanisms are essential as the immune system 
randomly generates a vast diversity of antigen-specific receptors and some of these 
will be self reactive; tolerance prevents reactivity against the body’s own tissues. 
Artificial tolerance can be induced artificially by various regimes that may eventually 
be exploited to prevent rejection of foreign transplants and to deal with autoimmune 
diseases. Functional testing and distributive complementary cooperative activities are 
essential in complex artificial immune systems. It is necessary for a system to be able 
to differentiate self and non-self in order to function efficiently.  

4.2   The AISDR Algorithm 

Key Cost Factors 
Vessel/Voyage and equipment are considered as fixed cost items whereas the 
followings key cost factors are regarded as variable cost factors: 
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1. Transit Time 
2. Distance 
3. Transportation Cost 

Transportation cost is the total transportation cost of door transportation cost, inter-
modal transportation cost, and public feeder transportation cost. 

4. Terminal Cost 

The terminal cost is the average unit cost for loading or unloading of cargo at a 
port, for example, the lift on/off, shifting and other handling charges. It is a variable 
cost and is associated with all water legs of a labeled route. The terminal cost mainly 
involves the transshipment commission. 

Transshipment commission is the cost of handling transshipments. This cost is 
presented either as a flat rate per TEU or a percentage of revenue. 

5. Equipment Cost 

Equipment cost includes depot cost, maintenance and repair cost, and equipment 
rental cost. Depot cost is the average unit cost of container storage for rental and 
leasing a box. 

6. Vessel Voyage Cost 

Vessel cost includes cost on vessels, public feeders, and public barge service. 

7. Cargo Assessment Cost.  

Cargo assessment is a local charge given to government or other entity other than 
the carrier. 

8. Agency Commission Cost.  

Agency commission is the third party commission. It is paid to an agent who 
handles business activities for the carrier. 

9. Cost on Cargo Nature 

The cost on cargo nature includes cost on pre-trip inspection, reefer monitoring, 
and hanger container 

10. Freight Tax 

Freight taxes and dues is the local tax demanded by a local government. The cost is 
associated to the place of receipt or the final destination. 

11. Empty Reposition Cost 

Empty repositioning cost represents the slot and other transportation cost related to 
empty reposition. The cost is associated to the empty pick up and empty return 
facilities. 

Empirical Mathematical Model 
Definitions: 
For a selected route, Rs 

Rsi - Component route i of Rs;   Vsi - Vessel voyage cost of Rsi 
TS - Total transit time of Tsi;   Cs - Total cargo assessment cost of 

Rs 



66 H.Y.K. Lau and E.Y.C. Wong 

 

TSi - Transit time of Rsi;    Csi - Cargo assessment cost of Rsi 
DS - Total distance of Rs;   As - Total agency commission cost  

of Rsi 
DSi - Distance of Rsi;   Asi - Agency commission cost of Rsi 
Psi - Cost of transportation of Rsi;   Ns - Total cargo nature cost, 

including reefer pre-trip 
inspection, reefer monitoring, 
hanger container 

Ps - Total cost of transportation of 
Rs; 

  Fs - Freight tax 

Ms - Total terminal cost of Rs;   ERs - Empty reposition cost 
Msi - Terminal cost of Rsi;   α - Weighting factor for the 

transit time 
Es -  Total equipment cost of Rs;   β - Weighting factor for the total 

cost 
Esi - Equipment cost of Rsi;   VC - Variable Costs 
Vs - Total vessel voyage cost of Rs;   FC - Fixed Costs 

Objective Function: 
To select the best route for delivering a consignment of cargo from an origin to a  

     destination: 

Select best route Rs such that: ( )( ) ( ) ( )( )( )[ ]min transit time min total costsf 1 1α β− × −  

where transit time: ( )[ ]{ }f C TSα   

and total cost function:   

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]{ }sssssSSss ERCFCNCACCCMCPCVCECf ±±±±±±±± )(β  

Hence, to find the best route, minimize 

( )[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]{ }sssssSSssS ERCFCNCACCCMCTCVCECTCf ±±±±±±±±⋅ )(βα  

Cost of total transit time: 

( ) ( ) ( ) N
C T T T ... T C T TSiS S1 S 2 SN S i 1

α α+ + +
=

   

Cost of transportation: 

( ) ( ) ( ) N
C P P P ... P C P PSiS S1 S 2 SN S i 1

α α+ + +
=

 

Cost of terminal handling: 

( ) ( ) ( ) N
C M M M ... M C M MSiS S1 S 2 SN S i 1

α α+ + +
=
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Constraints: 
The selection of a specific route is subjected to the following constraints: 

1. Functional relationship of total transit time to total cost (total cost is a 
function of equipment rental cost) 

2. Functional relationship of total transit time to total distance 
3. Total transit time also depends on the waiting/idle time between 

transshipment 
4. Vehicle capacity (vessel/feeder/barge) 
5. Time window 
6. Cost has a seasonal fluctuation  
7. Customs clearance 
8. Ports and inter-modal transportation performance 

4.3   Simulation Studies 

A number of tools are available for development and simulation on immune-based 
systems, including C-ImmSim (Castiglione, 2004), IMMSIM (Kleinstein, 2000), 
MATLAB, and LISYS (Steven & Stephanie, 2000). In this study, MATLAB is 
selected for its flexibility, dynamic functionality and efficient simulation time. A 
MATLAB model named AISDR is developed for studying the dynamic route 
selection problem. 

In particular, AISDR implements the mechanism of clonal selection for dynamic 
routing selection following the procedures defined in Figure 1, namely, (a) by storing 
a diversity of routes in the system; (b) receiving incoming bookings from an origin to 
a destination; (c) recognizing requirements; (d) selecting a list of possible standard 
routes; and (e) selecting the best fit route based on the requirements. 

For a typical shipment scenario, a set up with 71 nodes and 28 routes was adopted. 
Each route passes through a number of nodes that ranges from 4 to 28 nodes. In 
addition, AISDR adopts binding affinity to fit the incoming requirement for the start 
and end node by selecting the best route among the set of possible routes. In 
particular, the 71 nodes represent international ports that are located in the seven 
continents while the routes are the vessel routes that provide Trans-pacific, Asia-
Europe, Trans-Atlantic and Australia with New Zealand services. Based on the 
design, the model can be applied to problem involving generic cases of global cargo 
transshipments for a logistics business.  

The start nodes and end nodes are referred to the origin and the destination 
respectively. For example, there are eight calls in Route 9 and they are 
23>17>16>13>36>35>13>23. If an incoming request is initiated from 17 to 35, Route 
9 will be one of the possible choices of route to be selected as the best fit route based 
on a score that is computed with the function of shipment cost and transit time. 

Simulation Case 1 
The requirements received by the AISDR are: 
Origin: Node 13 (Pusan) 
Destination: Node 25 (Hong Kong) 
Route 2 is selected as the best route by the AISDR as shown in Table 1 and Figure 2. 
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Table 2. AISDR Simulation 1 Results 

Route Route Details AISDR Manual 
R2 13>23>25 -3.722 -3.7 
R6 13>50>21>23>17>25 -9.566 -9.6 
R10 13>23>27>25 -6.75 -6.8 
R11 13>16>23>27>25 -12.612 -12.7 
R16 13>42>35>18>25 -7.696 -7.7 
R27 13>16>23>17>24>25 -14.792 -14.8 

Table 3. AISDR Simulation 2 Results 

Route Route Details AISDR Manual 
R15 36>18>25 -4.684 -5.0 
R18 36>40>50>22>18>26>25 -13.366 -13.3 

 

Fig. 2. Output from Simulation Case 1   Fig. 3. Output from Simulation Case 2 

With AISDR, Simulation Case 1 shows an input of node 13 as the origin and node 
25 as the destination. The system recognized the requirement and six standard routes 
fit such requirement. Based on the value of the corresponding binding affinity 
computed in the AISDR, Route 2 is found to be best fitted to the specified 
requirement based on the total cost and transit time. 

Simulation Case 2 
The requirements received are: 
Origin: Node 36 (Long Beach) 
Destination: Node 25 (Hong Kong) 
Route 15 is selected as the best route. The results are shown in Table 2 and Figure 3. 

Similar to Simulation Case 1, instead of an intra-Asia trade from Pusan to Hong Kong, 
Simulation Case 2 is a trans-Pacific trade from Long Beach to Hong Kong. AISDR 
selected Route 15 which has a higher binding affinity to the input requirement. The 
results are correct and coherent to the manual manipulations. In the two case examples, it 
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is shown that AISDR successfully adopted the distinctive behaviour of immune system, 
especially clonal selection and distributive immunological memory. Figure 4 compares 
the computation time for route planning using the prototyped AISDR simulation system 
and manual operation with increasing number of nodes involved. From the observation, 
being a computer-aided approach, AISDR provides remarkable saving of processing time 
compared with using manual operation alone.  
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Fig. 4. Route planning time between AISDR and manual processes against number of nodes 

5   Conclusion 

An AISDR framework is developed through the adoption of the main features of 
human immune system for solving dynamic routing problems. These features include 
recognition, selection, learning, memory, and adaptation capabilities. With the 
proposed framework, associated algorithms are developed based on the clonal 
selection and immunological memory mechanisms. In this research, a prototyped of 
the MATLAB-based AISDR simulator was developed and simulation studies were 
performed on a number of typical shipment bookings. The results of two 
representative simulations show a high specificity and accuracy on route selection.  
From this study, the adoption of the immune system features has benefited the process 
of selecting best fit route in an accurate and highly efficient way. 

− Build on the current development of the route selection functionality given by 
the AISDR framework, future developments include:  

− To incorporate the notion of maximum route priority in the objective function 
where route priority is referred to the priority due to special reasons, for 
example, customer request, government regulations, etc.  

− To consider the case of transshipment with a variety of routes that is to be set up.  
− To determine contingency plans dynamically such as a substitute routes when a 

section of a route is unable to provide the necessary service or a port that cannot 
be berthed. 



70 H.Y.K. Lau and E.Y.C. Wong 

 

− To incorporate added functionality including system regulation with the use of 
hypermutation mechanism, routing memory adopting immunological memory, 
and inter-route recognition with the use of immunological tolerance. 

Based on the prototyped system, future research and development will also focus 
on producing a practical and stable version for shipment route planning and re-
planning for the global logistics industry. 
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Abstract. We propose to develop a theoretical basis and experimental simulator 
of the first Immune-Computer (IC) as a new kind of biomolecular computer. 
This IC will be able to control a fragment of the natural immune system in an 
autonomous and intelligent manner. Such control has proved unobtainable with 
other methods. 

1   Introduction 

Biological organisms show amazing computational capabilities at many levels from 
individual molecules of DNA and protein, to complete organisms and populations. 
The immune system is called "the second brain of vertebrates" and plays a major role 
in the ability of higher organisms to survive in rapidly varying and hostile 
environments. This system displays many characteristics required for autonomy and 
cognition: the ability to learn, the ability to reason (in a distributed manner) and the 
ability to deal with threats.  

1.1   State of the Art 

How do we construct truly autonomous systems that are capable of controlling human 
immune system? How do we construct biomolecular systems that can implement 
intelligent control mechanisms that are beyond the capabilities of current approaches? 
How do we create truly representative models of biomolecular processes that help us 
gain an insight into their operation? These are crucial questions that have faced the 
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research community for many years. Clearly, progress has been made to some degree 
towards tackling these issues, with more traditional software engineering techniques 
and computer system construction. However, with the progress in miniaturization and 
complexity come new and ill-understood demands on computational systems intended 
for control. This has resulted in many systems being inflexible, ad hoc, difficult to 
configure and impenetrably arcane to maintain. To try and address this, attempts have 
been made to utilize techniques such as differential equations, artificial neural 
networks, genetic algorithms, cellular automata and the myriad of novel 
computational systems that are present in the literature [27]. However, these 
approaches are proving to be insufficient at addressing these issues and providing 
realistic computational models of key biomolecular mechanisms: in particular when 
concerned with the immune system. For example, none of these approaches is able to 
explain the sense of natural dualism in the network-field which has been supposed for 
cytokines. These represent a key biomolecular mechanism of the immune (as well as 
neuro-immune) modulation. 

Modern biocomputing approaches have also shown themselves to be insufficient to 
solve these problems. This is due to the fact that the principles of information 
processing by proteins and immune networks have been out of its scope. Today, the 
notion of biocomputing refers to the use of biological elements such as DNA 
molecules, light-sensitive protein rhodopsin, biopolymers etc, for solving various 
computational problems, e.g. travelling salesman, simulation of artificial neural 
networks, control of mobile robots, etc. For example, tools of molecular biology are 
used to solve an instance of the directed Hamiltonian path problem by so called DNA-
computer [3]. In this work, a small graph is encoded by DNA molecules, and 
computational "operations" are performed with standard protocols and enzymes. 
Another relevant work has been devoted to the development of computer memory 
based on bacterial protein rhodopsin. Chemical-based reaction-diffusion media for 
image processing, control of autonomous robots, and graph optimization are also 
under development [1].  

Besides, a large number of works have been published in audio-video information 
fusion and representation (see e.g. [8], [17]). However, the efficiency of existing 
techniques is very far from the effectiveness of natural systems, which are able to 
represent, to manipulate and to fuse complex information. This feature is especially 
important, e.g., for public security metaphor of the immune system which provides 
the ability to survive in rapidly varying and hostile environment. 

Current approaches of both conventional and biomolecular computing are 
obviously insufficient for an autonomous and intelligent control of ex vivo immune 
system. We propose it is necessary to develop and exploit a strict mathematical basis 
and experimental simulator of the IC to overcome the existing gap. 

1.2   The Why 

Given the above state of the art, there is a clear need for the use of biomolecular 
immune-computer, i.e. the IC. This need also emerges from a closing of silicon and 
biomolecular components in modern biochips (DNA and protein chips for genomics, 
medical diagnostics, drug design, etc.), as well as from recent findings in molecular 
immunology (immune network theory, cytokine networks-fields, immune synapse, 
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psycho-neuro-immune modulation). We envisage that biochips in areas such as 
medicine and ecology will soon be miniature (up to nanochips) and soft (i.e. 
implemented and/or implanted in wetware or tissue). In addition, we also propose that 
the current principles of their autonomous control will not work.  

For example, it would be very problematic to control a biochip-based autonomous 
artificial immune cell with a conventional computer. Moreover, an immune network-
field of such cells would require a distributed and "intelligent" (adaptive, self-control, 
"self-conscious") mechanism permissive also to be implanted into the natural immune 
system. 

Therefore, we propose it is necessary to meet this challenge with the construction 
of an IC that exploits the strategy of  natural cytokine "computations" (modulations) 
of immune networks.  

1.3   The What 

We propose to develop a theoretical basis and experimental simulator of the IC as a 
new kind of biomolecular computer. This IC will be able to control a fragment of the 
natural immune system in an autonomous and intelligent manner. Such control has 
proved unobtainable with other methods. 

We believe there are a number of objectives that will allow us to obtain a computer 
controlled immune system. Specifically we need to: 

1. Create a mathematical basis of the IC which allows for the augmentation of 
biocomputing by utilizing a cytokine control of immune networks; 

2. Build a software simulator of the IC, which will be accessible (in terms of 
usability and flexibility) to a wide variety of users, thus increasing the potential 
take up of this technology;  

3. Build faithful and powerful simulator of an ex vivo fragment of the immune 
system and ultimately simulate the IC control of this fragment;  

4. Develop a concept of special cytokine biochip as an interface between 
computer hardware and ex vivo immune system; 

5. Work up a demonstrator application of the IC to cytokine-modulated apoptosis 
in immune-cancerology. 

Therefore, we view the IC as a computer controlled fragment of the natural 
immune system (i.e. ex vivo) where cytokines (messenger proteins) collaborate in 
performing computation with conventional computer. This IC will be specialized in 
the "soft" control of immune networks and its programmability will consist of 
manipulating cytokine combinations to modulate immune response. Loosely 
speaking, cytokines form a kind of alphabet of a language of intercommunications 
between immune cells. Thus, the IC will be able to understand this language and to 
talk to the immune system in health and disease. 

1.4   Approach 

Our approach is based on artificial immune systems [11], [12], as well as on recent 
development within an EU project IST-2000-26016 IMCOMP of a new kind of 
computing which implements the principles of information processing by proteins and 
immune networks. The feasibility of this approach has been proved recently through 
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the successful application of the developed computational paradigm immunocomputing 
for such computational intensive problems as: a) virtual clothing by 3 times faster than 
conventional approaches; b) learning by at least 40 times faster and recognition 
capabilities twice as effective than artificial neural networks and genetic algorithms on 
the tasks of environmental monitoring and laser physics; c) recognition of results in 
immunoassay-based diagnostic arrays 10 times faster than direct recognition by 
comparing them with a mask sample; d) powerful, robust and flexible on-line detection 
of dangerous ballistic situations in near-Earth space; e) predicting the danger of the 
plague infection outburst, which is beyond the capabilities of traditional statistics 
[29],[30].  

Also, the feasibility of our approach can indirectly be confirmed by the approach of 
a new integrated project FET6-IST PACE (Programmable Artificial Cell Evolution). 
However, the "nanoscale robot ecology" of PACE project based on general cell 
prototype is also insufficient to provide autonomous intelligent control of ex vivo 
immune system, "where mathematics, computer science, linguistics and biology 
meet" [6], [20], [21], [22]. 

Therefore, within our approach, we propose to develop a methodology that will 
identify pertinent characteristics of functional regulatory networks in the cytokine 
field for an autonomous intelligent control. These characteristics will be used as the 
basis for the creation of new mathematical and computational models, and the 
augmenting of existing models. This will allow a greater understanding of the 
operation of such control systems to be developed in a biomolecular context. The 
work will then be extended to develop a computer simulator of an ex vivo fragment of 
the immune system and a concept of cytokine biochip as an internal interface of the 
IC with ex vivo immune system. 

Concurrently with this development, we propose to develop a simulator of the IC. 
The simulator will capture the salient features of the IC and be constructed in such a 
way as to allow easy access, in terms of usability and flexibility, to the technology. 
Once this has been completed, an experimental phase will be undertaken with the 
simulator. Such experiments will use the simulator of ex vivo immune system to 
switch its immune response from Th1 to Th2 type, and vice versa. 

In addition, we propose to build a demonstration application of the IC to a real-life 
task related to cytokine-modulated apoptosis in immune-cancerology. However, in 
order to make this a more rigorous test scenario, the notion of dual-acting cytokine 
will be introduced in which its normal physiological functions may be related to 
specific aspects of the immune system and over-expression culminates in cancer-
specific apoptosis. This will check the ability of the IC to adapt and assess the 
benefits over and above more traditional methods: in essence assess the value added 
nature of the IC approach. 

2   Immune-Computer 

2.1   Main Components 

Main components of the IC are shown in Fig. 1. This IC is expected to perceive the 
current status of the immune cell system (ICS) fragment and to correct it, if necessary. 
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Fig. 1. Main components of the immune-computer 

The protein biochip serves as a sensor (input) of the IC. The biochip reader acts as 
a scanning detector system and measures the concentration of several proteins 
(cytokines) in the fragment.  

Processing these data, the immunochip recognizes general (cytokine) status of the 
fragment and computes the necessary control actions. This immunochip will 
implement in silicon the mathematical and computational models of 
immunocomputing approach as well as the soft/hardware simulator of ex vivo 
fragment of ICS that we propose to develop. 

The IC actuator, as a liquid delivery system, performs the output control over the 
ICS fragment by means of cytokines. 

2.2   Biochip 

A biochip is a biological equivalent for computer microchip, but instead of 
performing of millions of mathematical operations, it is intended for carrying out 
thousands of biological interactions per minute, thousands of times faster than 
existing technologies. Biochips appeared as a result of application of the ideas of 
miniaturization, integration and parallel processing of information from 
microelectronics, where they were born, to biological processes. The chip principle, 
together with miniaturization, has now become the dominating theme for a number of 
new genomics and proteomics technologies, some of them are already used for 
comprehensive analysis of clinical samples in an attempt to describe disease and 
disease risk at the molecular level. However, all of these technologies are far from 
routine in clinical use. 
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The main advantage of biological microchips over conventional analytical devices 
is the possibility of massive parallel analysis. Biological microchips are smaller than 
conventional testing systems and highly economical in the use of specimen and 
reagents. Major progress has been achieved in the manufacturing and application of 
DNA microchips, but DNA is not the only biological entity that can be arrayed or 
spotted onto the surface of biochips. Proteins, lipids or carbohydrates can serve as 
receptors in the biochip-type analysis and their applications in genomic and proteomic 
research are being developed. The possibility to configure arrays of proteins is a real 
fact now, but their construction is vastly more complicated than creating DNA chips, 
popular research tools for analyzing suits of genes involved in everything from cancer 
to normal cell development.  

In our previous work [28] we had developed a macro prototype of a protein biochip 
for immunoassay based diagnostics, where bioarray was a macro-prototype of the 
biochip microarray, while the software was a core of the biochip reader and 
controller. The method detected bound complexes of human immunoglobulin G (IgG) 
with recombinant protein G (pG). 

2.3   Ex Vivo Immune System 

The ICS fragment will include ex vivo complex of human T cells during their 
differentiation into the subsets of CD4+ T helper cells Th1 and Th2, thus producing 
regulatory cytokines. At the same time, the process may be influenced and partly 
directed by exogenous cytokines that originate from outside of the fragment.  

The ICS fragment is expected to involve the expression and regulation activity of 
such cytokines as interferon family IFN- , IFN- , IFN- , tumor necrosis factor TNF-

, interleukins IL-1, IL-2, IL-4, IL12, IL-5, IL-6, IL-10, IL-13, etc. The naive T cells 
are expected to undergo a series of precise proliferation and differentiation events that 
will result in the generation of immune T cells with appropriate functional 
capabilities.  

The differentiation of CD4+ T-helper cells into Th1 or Th2 subsets has profound 
effects on the outcome of autoimmune diseases, infectious diseases and graft 
rejection. Thus, understanding of the mechanism underlying Th cell differentiation 
and molecular events controlling T cell development is essential for therapeutic 
manipulation of the cytokine system phenotype in disease conditions and may allow 
the selective manipulation of Th subsets in vivo. 

As a result, the developing IC may also be used in medical diagnostics to detect 
cytokine status of the immune system and, possibly, to measure C-reactive protein, 
which functions are rather close to those of cytokines. Besides, the increased level of 
this protein serves as a marker of the increased risk of severe cardiovascular  
diseases [34]. 

3   Theoretical Challenges 

3.1   Cytokines 

Cytokines (messenger proteins) are a group of biologically active mediator molecules 
that provide the intercellular interactions within the immune system. They are the 
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central regulators of leukocyte growth and differentiation, being produced by a wide 
variety of cell types, targeting various cell subsets and exhibiting numerous biological 
activities.  

Up to now more than 100 different human cytokines are identified. An increasing 
volume of experimental data suggests that cytokines play one of the central roles in 
the immune regulation as well as in the neuro-immune-endocrine modulation [2]. 
Such concept of cytokines as a network modulating and switching several cascades of 
immune reactions [23] adjoins with the concept considering such molecules as a field 
or a milieu, which local properties mediate immune response [16].  

There is a relationship between cytokine levels in human body fluids and disease 
pathogenesis, including the inflammation and even depression [7]. Many types of 
cancers have taken advantage of the regulatory role of cytokines to down-regulate 
appropriate immune responses targeted at destroying cancer cells. They do this by 
secreting immunosuppressive cytokines that induce generalized and specific 
inhibition of immune responses [18]. Therefore, the use of immunostimulatory 
cytokines to boost protective anti-tumor immunity and to enhance the efficacy of 
tumor vaccines has become a promising strategy in cancer immunotherapy [15]. 
Conversely, several antagonists of cytokine action are now used in the treatment of 
inflammatory disorders [32]. 

Recent developments show that several cytokines induce apoptosis (programmed 
cell death) in cancer cells [33]. The induction of apoptosis is associated with a dose-
dependent inhibition of cancer cell division, and this activity has been demonstrated 
for a wide range of cancer types including bladder, breast, leukemia, melanoma, 
ovarian and prostate.  

Apoptosis is a natural mechanism by which cells "commit suicide" when they have 
outlived their purpose, become defective, or have aged. Apoptosis prevents cells from 
accumulating and forming tumors. Understanding of the control of apoptosis in 
normal and malignant cells will help to improve the diagnosis and treatment of 
malignancies. The goal of many treatments, including chemotherapies is to induce 
malignant cells to undergo apoptosis. Current data also suggests that a cytokine may 
function as a dual-acting cytokine in which its normal physiological functions may be 
related to specific aspects of the immune system and over-expression culminates in 
cancer-specific apoptosis [13]. 

3.2   From Natural Languages to Languages of Nature 

In recent years, several research lines and speculations have suggested that some 
common principles of information processing cover both natural languages and 
languages of Nature (see e.g. [29]). The matter concerns construction and behavior of 
words and bio-molecules. For example, a weak but suggestive analogy is the 
observation that natural proteins represent chains (words of an alphabet) of 20 amino-
acids. This number of amino-acids in Nature is approximately equal to the number of 
letters in the alphabets of the so called "classical" Indo-European languages: the 
Italian alphabet has 21 letters, the Greek alphabet has 24 letters, and the English 
alphabet has 26 letters. A somewhat sounder analogy between protein structures and 
languages is the observation that although the universe of distinct amino acid 
sequences is essentially unlimited the number of different folding patterns for the 
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domains is not. The existing databases of protein sequence and structure indicates that 
most of the natural domain sequences assume one of a few thousand folds [24]. It 
should be noted that this number is of the same order of magnitude of a natural 
language dictionary. 

Finally, an interesting and provoking proposal assumes that common principles 
govern both the evolution of genes and of languages [10]. 

Another example gives the theory of linguistic valence by L. Tesniere [31]. 
Tesniere claimed that a verb can be imagined as an original "atom with hooks", which 
can attract to itself a greater or smaller numbers of actants depending on the greater or 
smaller number of hooks which it has to hold these actants to itself. This theory has 
been acknowledged and developed, especially by the French and Russian linguistic 
schools. Nevertheless, this theory occupies a somewhat isolated position in 
linguistics, since it strongly differs from the widely spread generative grammars of N. 
Chomsky [9]. 

On the other hand, we can clearly distinguish strong and weak bindings as two 
kinds of connections both at the level of biomolecules and words.  

First - strong (or valence) bindings - construct DNA's chain of nucleic acids or 
protein's chain of amino-acids. In linguistics it corresponds to the morphology, or 
construction of word's chain from letters.  

Second - weak (or non-valence) bindings - form working complexes of 
biomolecules, like the double helix of DNA or Y-form of immunoglobulins. In 
linguistics it corresponds to the syntax, or forming sentences from words.  

However, the most widespread mathematical constructions (see e.g. [19], [25]) 
usually make no distinction between morphology and syntax. From the viewpoint of 
finite automata and formal grammars, the so called "correctly constructed word" or 
"correctly constructed sentence" are just the same. In our opinion, such state of the art 
contradicts both molecular biology and modern linguistics.  

Our project will make an attempt to overcome the above contradiction by 
introducing a new kind of formal system. We also consider our attempt as a first step 
towards a common formalism that describes realistic "working complexes" of words 
and biomolecules. The need for such an approach proceeds also from the new 
findings in brain research regarding the receptor mosaics of proteins and basic 
principles of molecular network organization [4], [5]. 

4   Mathematical Basis 

4.1   Cytokine Formal Immune Network 

Definition 1. Cell is a pair V = (c, P), where "cytokine" c is natural number Nc ∈ , 
whereas ),,( 321 pppP =  is a point of three-dimensional (3D) Euclidian space: 

3RP ∈ , and  P  lies within unit cube: 1|}||,||,max{| 321 ≤ppp . 

Let distance ("affinity") ),( jiij VVdd =  between cells iV  and jV be as follows: 

{ } )()(,)()(,)()( max 332211 jijijiij ppppppd −−−= .            (1) 
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Fix  some finite non-empty set of cells ("innate immunity") ),...,( 10 mVVW =  with 

non-zero distance between cells: 0≠ijd , ji,∀ : ji ≠ . 

Definition 2. Cytokine formal immune network (cFIN) is a set of cells: 0WW ⊆ .  

Definition 3. Cell iV  recognizes cell kV  if the following conditions are satisfied: 

ki cc = , hdik < , ijik dd < , WV j ∈∀ , ij ≠ , jk ≠ , where 0≥h  is given 

"threshold of affinity". 

Let us define the behavior ("maturation") of cFIN by the following two rules. 

Rule 1 (Apoptosis). If cell WVi ∈ recognizes cell WVk ∈ then remove iV from cFIN.  

Rule 2 (Auto-Immunization). If cell WVk ∈ is nearest to cell WWVi \0∈ among all 

cells of cFIN: ijik dd < , WV j ∈∀ , whereas ki cc ≠ , then add iV to cFIN.  

Let AW  be cFIN as a consequent of application of apoptosis to all cells of 0W . Let  

IW  be cFIN as a consequence of auto-immunization of all cells of  AW  by all cells of 

0W . Note that the resulting sets AW  and IW  depend on the ordering of cells in 0W . 

Further it will be assumed that the ordering is given. 
It is obvious that neither the result of apoptosis AW  nor the result of auto-

immunization IW  can overcome 0W  for any innate immunity: 0WWA ⊆ , 0WWI ⊆ , 

0W∀ . Consider more important and less evident properties of cFIN. 

Proposition 1. For any innate immunity 0W  there exists threshold of affinity 0h  such 

that apoptosis does not change 0W  for any h less than 0h : 0WWA = , 0hh <∀ . 

Let 0h  be minimal distance (1) for any pair of cells of cFIN with the same 

cytokines: 

}{min
,

0 ij
ji

dh = : ji cc = , ji ≠ . 

Then, according to Definition 3, none of the cells of cFIN can recognize other 
cells, because 0hdij >  for any pair of cells iV and jV . According to Rule 1, none of 

the cells can be removed from cFIN for any h less than 0h , because hdij > , 

0hh <∀ , 0, WVV ji ∈∀ . Thus, 0WWA = , 0hh <∀ . 

Proposition 2. For any innate immunity 0W  there exists such threshold of affinity 1h  

that consequence of apoptosis and auto-immunization )( 11 hWW I=  provides the 

minimal number of cells || 1W  for given 0W  and any h: |)(||| 1 hWW I≤ , h∀ , 

0WWI ⊆∀ . 
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Let 1h  be maximal distance (1) for any pair of cells of cFIN with the same 

cytokines: 

}{max
,

1 ij
ji

dh = : ji cc = , ji ≠ . 

Then, according to Definition 3, any cell iV  can recognize the nearest cell jV  if 

the last one has the same cytokine: ji cc = . Let −W  be the set of all such cells iV . 

Then, according to Rule 1, |||||)(| 01 −−= WWhWA , and such number of cells after 

apoptosis is minimal among any h: |)(||)(| 1 hWhW AA ≤ , h∀ . Let +W  be set of cells, 

which is added to )( 1hWA  as a consequence of auto-immunization: 

+∪= WhWW A )( 11 . It is also evident that +W  is a subset of −W : −+ ⊆ WW , and 

|| +W  represents a number of "mistakes" of apoptosis when cFIN "kills" some cells, 

which lead to further recognition errors. Such cells are then "restored" by auto-
immunization (Rule 2). Let  +−= WWW \*  be cells which yield apoptosis without 

further recognition errors. Then |||||| *WWW −= −+ . On the other hand: 

|||)(||| 11 ++= WhWW A . Substitutions of |)(| 1hWA  and  || +W  lead to the following 

result: |||||| *01 WWW −= . Thus, |)(||| 1 hWW I≤ , proves Proposition 2. 

4.2   Binding System  

As usual, for a finite set X we denote by X* the free monoid generated by X and ε 
denotes the empty string.  

Definition 4. A binding system (BS) is a system  

),,,,( 2110 rrssXM = , 

where  

- X  is a finite alphabet;  
- Xss ∉10 , are the initial and the final symbols; 

- 101 : sXXsr ∪→∪  is the linking map associating to 0s and each letter 

Xx ∈ a set of letters or 1s ; 

- ε∪→ XXr :2  is the binding map associating to each letter Xx ∈ a set of 

letters or empty string. 

Consider a primary structure as a chain *X∈ω , generated by BS according to 
the linking map xsr =)( 01 , yxr =)(1 ,…, 11 )( szr = as follows: 

100000 ... sszxysxysxss ω→→→→→ K . 

Consider yx  as a binding site of the letter x to the letter y, if },...,{)(2 zyxr = , or 

no binding sites, if ε=)(2 xr . 
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Consider a pair of the sites yx and xy as bound )( xy yx MM in the primary structure 

321 ωωω yx  if yxr =)(2 , xyr =)(2 , and either 1ω∉x , 2ω∉y , or all previous pairs 

of such sites are bound.  
Consider a secondary structure of BS as the primary structure with all sites bound.  
The behavior of BS is the language of the secondary structures:  

},,|*{)( ωω ∈∀∈= yxyxXML xy MM . 

Definition 5. A language *XL ⊆  is called binding language, if there exists a BS 

such that )(MLL = .  

We denote by )(XBL  the family of all languages over X generated by BSs. BL 

denotes the family of binding languages over each alphabet.  
A BS is called deterministic (DM) if 1))(( 1 ≤xrcard , 1)(( 2 ≤xrcard , for each 

Xx ∈ . 
)()( XBLXDBL ⊆  is the class of languages generated by BS.  

Example 1. Consider the alphabet },,{ cbaX = . We are going to display a BS 

generating *}0|{ >= ncbaL nnn . Let M be the BS with asr =)( 01 , },{)(1 baar = , 

},{)(1 cbbr = , },{)( 11 sccr = , },{)(2 cbar = , }{)(2 abr = , }{)(2 acr = . 

It is an easy task to see that the behavior of M is exactly the language L. 

Example 2. With a slight modification in the construction of the previous example we 
can prove that the language  

BLkcba knknkn ∈≥ }0|)()(){( .  

To this end we just extend the binding map as follows: },...,,,...,{)(2 ccbbar = , 

},...,{)(2 aabr = , },...,{)(2 aacr = , where each letter repeats n times. Thus, the letter 

a  has  2n  binding sites and the letters b, c have n binding sites. It is obvious that  

}0|)()(){()( ≥= kcbaML knknkn .  

4.3   Remarks 

As mentioned in Section 1.3, cytokines form a kind of alphabet of a language of 
intercommunications between immune cells. Thus, for the IC will be able to 
understand this language and to talk to the immune system in health and disease, it is 
necessary to develop both mathematical models of cFIN and BS as well as a united 
"mathematical linguistics" of the IC. 

5   Conclusion 

The aim of our approach is to create a basis for the first biomolecular IC. This is a 
new opportunity for science and technology within emerging multidisciplinary area of 



 Biomolecular Immune-Computer: Theoretical Basis and Experimental Simulator 83 

 

ex vivo human immune system (see e.g. [26]). The IC represents a novel and 
extremely innovative approach, which involves high (technical) risk and establishes a 
truly interdisciplinary collaboration between computer scientists, mathematicians, 
engineers and immunologists. As a new computer paradigm, the IC could have a very 
high potential payoff in the long term, in particular for testing new vaccine constructs 
and immunomodulators that provide superior protection against threat agents as well 
as for public and information security assurance.  

Potential benefits of this technology will be wide-ranging and diverse. An 
immediate benefit of our approach will be new possibilities of computer-aided testing 
and design of new vaccines and immunomodulators to minimize both testing on 
animals and preclinical and clinical trials. For this purpose, the primary and most 
laborious stages could be substituted by "virtual testing" within the IC controlled 
fragment of the immune system ex vivo. Such IC-aided analysis and predicting of 
final output of immunomodulators and vaccine testing at the outset of testing stage 
could lead to a significant reducing of the number of testing experiments, which are 
extremely time-consuming, laborious, and very expensive. It is also worth noting that 
further specification of how the proposed IC could be implemented for such virtual 
testing needs the involving of actual test protocols. Although we have started such 
technical work based on the prototype of our biochip (see e.g. [28]), its description in 
detail seems not so appropriate for a conceptual paper. 

Expected users of this technology are companies producing soft and hardware tools 
for biotech sector, as well as pharmacology and biotech companies, medical tool 
producing companies and biological research laboratories. New mathematical and 
computational paradigm of the IC and its software implementation could also be used 
by producers of soft- and hardware tools for conventional (silicon) computing, 
information security and government agencies (or private companies) involved in 
public security (or production and industrial security). 

Apart from medicine, the principles of such IC can also be applied successfully in 
such traditional fields of computation as computer networks security, public security 
design (conceive, optimization and management), environmental monitoring, space 
engineering, etc. In addition, to the best of our knowledge, there is no current 
computing method that could provide an intelligent adaptive control of public security 
related real-life applications.  
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Abstract. Artificial Immune Systems (AIS) have been shown to be useful, 
practical and realisable approaches to real-world problems. Most AIS 
implementations are based around a canonical algorithm such as clonotypic 
learning, which we may think of as individual, lifetime learning. Yet a species 
also learns. Gene libraries are often thought of as a biological mechanism for 
generating combinatorial diversity of antibodies. However, they also bias the 
antibody creation process, so that they can be viewed as a way of guiding the 
lifetime learning mechanisms. Over time, the gene libraries in a species will 
evolve to an appropriate bias for the expected environment (based on species 
memory). Thus gene libraries are a form of meta-learning which could be 
useful for AIS. Yet they are hardly ever used. In this paper we consider some of 
the possible benefits and implications of incorporating the evolution of gene 
libraries into AIS practice. We examine some of the issues that must be 
considered if the implementation is to be successful and beneficial.  

1   Introduction 

In any biologically inspired algorithm, one is obliged to make a number of 
concessions to simplicity. Indeed, one might argue that excessive biological realism is 
undesirable, since it will lead to building a system rather too specifically tailored to 
the biological environment. Nevertheless, the danger of oversimplification is that one 
may make a generic system, full of sweeping assumptions, that is not well suited for 
real world tasks [9]. In this paper we focus on two such broken assumptions. Firstly, 
random creation of antibodies. As any machine learning student knows, the naïve 
generate and test metaphor is the canonical algorithm, cheap yet unsystematic and 
often hopelessly inefficient. In the AIS world the approach may bring scalability 
problems [19]. The second broken assumption states that antigens are uniformly 
distributed in non-self space. We think this is unlikely to be representative of real 
world problems, and is certainly not true of the well-known UCI datasets [3]. 

In the biological system, of course, neither assumption holds. Firstly, antibodies 
are created from genes spliced from the so-called gene libraries; this ensures that 
antibody creation is far from random. Secondly, uniform coverage of non-self space is 
not only unnecessary, it is impractical; non-self space is too big! Thus, from a 
computational point of view, libraries introduce initialisation bias and provide a 
‘species memory’ to tackle the antigen mapping task.  
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What could this mean for AIS? Could gene libraries be used to intelligently seed 
our algorithm? In the paper we consider whether gene libraries might: 

1. improve non-self space coverage – through better placement of detectors 
(antibodies), over and above random creation; 

2. reduce the cost of detector generation by more effectively avoiding self; 
3. map the antigen population more accurately; and 
4. help deal with co-evolving antigens 

At a trivial level, the answer to all these questions is affirmative. Yet, of course, the 
computational cost of maintaining and evolving gene libraries may make the approach 
infeasible. In this paper, we outline a method for a principled evaluation of each 
feature. We include some preliminary results suggesting that option 2 is somewhat 
easier to achieve than option 1. Our work is intended to shed light on the sort of real 
world problems for which gene libraries should be considered.  

We start by reviewing the relevant biology. We then consider the criteria outlined 
above in more detail before presenting our preliminary results. The considerable body 
of related work is reviewed before we make our concluding remarks. 

2   Biological Metaphor 

In this section, we give sufficient biological background for the purposes of this 
paper. This is not intended to be an exhaustive review; the interested reader is directed 
to sources such as Kuby [11] or Travers [16]. 

In the human immune system (HIS), gene libraries are used to generate both T cell 
(T cell receptor; TCR) and B cell (antibody) diversity. Antibody molecules are 
composed of four immunoglobulin chains; two identical pairs of heavy and light 
chains. Each chain contains a variable region which determines its antigen specificity; 
the DNA encoding this region is constructed by sampling from so-called V, D and J 
gene libraries (see Table 1); usually one from each, although sometimes multiple D 
segments can be sampled [16]. This DNA mixing occurs during B cell maturation, 
during which further diversity is encouraged by junctional flexibility, P-additions and 
N-additions (insertion or deletion of base pairs between gene library segments). Of 
course, such variability inevitably means many such generated gene sections are 
unviable. There are two interesting mechanisms to counter this. Firstly, there are two 
‘flavours’ of light chain, κ and λ. If a viable κ gene segment cannot be built, then an 
attempt is made to build λ (thus typically κ is more prevalent than λ). Secondly, being 
diploid, B cells have 2 chromosomes for each immunoglobulin chain type. This 
allows two attempts to generate valid chain DNA (although a successful combination 
suppresses further attempts; this is allelic exclusion). Nevertheless, only about 10% of 
the pre-B cells in the bone marrow progress to maturity. Once a B cell is mature, 
however, it is immunologically committed1.  

The gene library mechanism appears at first to be wasteful: to make an 
immunoglobulin variable region of 223 amino acids we supply enough DNA to 

                                                           
1  In fact there is a further choice to be made, at transcription (DNA to mRNA) time, about 

which C region to choose. However this isotype switching mechanism does not affect the 
antigen specificity, so it is not considered here. 
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encode 11,975 amino acids. However this redundancy enables 2M combinations 
(which if stored linearly would require 2M × 223 = 446M). Combinatorial diversity is 
further enhanced by the join errors described above, and by somatic hypermutation, in 
which B cells activated by antigens are stimulated to divide with a mutation rate of 
about 0.001 per base pair per generation (this compares to a spontaneous mutation 
rate of about 10-8). To encode 223 amino acids needs 669 base pairs, so this mutation 
rate is expected to change one base pair almost every division. Estimates of total 
antibody diversity vary from 1010 [11] to 1014 [16], with somatic hypermutation 
pushing the number even higher to maybe 1016 [7]. The expressed diversity is, of 
course, likely to be somewhat lower because not all combinations are equally likely 
(in the mouse, some are actually disallowed). One assumes also that some variants are 
never expressed because they are autoreactive. Finally, it should be noted that only a 
subset (estimated 106-107) of these types are actually represented at any one time.  

TCR diversity is similar, although a larger number of J segments (61) leads to a 
much higher gene library diversity, 1018 [16]. TCRs also do not undergo somatic 
hypermutation (perhaps a protection against generating autoreactive T cells).  So for 
TCRs the diversity is more heavily germline encoded; conversely, some non-human 
species rely much more on somatic mechanisms. 

Table 1. Human antibody diversity generation These numbers are taken from a single 
individual and are not the same for all individuals. The first three rows show the size of each V, 
D and J gene, and the number of genes in each library. It is a simple matter to sum the gene 
lengths to arrive at the total number of amino acids in an immunoglobulin chain variable region 
(4th row, first 2 columns). Multiplying the library size and gene length shows the number of 
amino acids encoded in each gene library (e.g. 4971 = 51×94 + 27×3 + 6×16). Combining the 
gene library sizes (final row) shows the diversity generated from each library (e.g. 
8262=51×27×6). Finally, using both light chain alternatives in combination gives the expected 
total diversity (1982880 = (8262×200) + (8262×120)). Note that since 3 base pairs encode one 
amino acid, you should multiply by 3 to get the number of base pairs. Adapted from Kuby [11]. 

Library Gene length  
(amino acids encoded) 

Gene library size  
(number of gene segments) 

Total 

 Heavy Light Heavy Light κ Light λ  
V 94 97 51 40 31  
D 3 N/a 27 0 0  
J 16 13 6 5 4  

(amino acids) 113 110 4971 3945 3059 11,975 
(combinations)   8262 200 120 2,643,840 

However, even this extraordinary diversity may not be sufficient for all possible 
antigen encounters. In principle, since there are 20 amino acids, there are 20223 = 
10390 ways of expressing the variable regions of an antibody. This renders almost 
negligible the antibody diversity expressible by an individual, even if we multiply 
this by every human on the planet. Bakács et al [28] concur, and point out that 
antigenic variation is a hallmark of several RNA viruses, thus providing a fast 
moving target. Yet we seem able to mount an immune response to pretty much any 
foreign molecule, “even those…never having appeared before in evolutionary time” 
[7]. One simplification is that vast swathes of this antibody shape space will be 
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identical, or topologically infeasible, or simply non-functional. So it would seem 
reasonable that gene libraries bias the antibody creation process towards creating 
viable immunoglobulin chains. But we suspect that some antigen shapes are simply 
more likely than others, due to the energetics of protein folding. Perhaps gene 
libraries may help to focus the antibody creation process into the most promising 
areas of shape space, a possibility suggested by the fact that multiple antibody types 
bind a single antigen [7], and the finding that V region genes are clustered into 
related families and clans [16].   

Taking inspiration from this account, we can see that gene libraries, shaped by 
evolution, are used to guide the B cell creation process to create antibodies with a good 
chance of success, while preserving the ability to respond to novel threats. This has 
obvious parallels in AIS, in instances where random creation does not scale, or where 
memory enabled by lifetime learning mechanisms is not sufficiently persistent. 

3   What Are Gene Libraries for? 

3.1   Enhanced Coverage 

The most naïve way of looking at antibody creation is a way of covering a 
multidimensional area (antigen space). If one uses gene libraries to bias the creation 
process, then it is easy to see that evolution should encourage the emergence of 
diverse gene libraries, which perform some coarse grain mapping on antigen space. 
Indeed, Oprea and Forrest [21] found precisely this mechanism at work. Yet in the 
real world, such a mechanism is highly expensive. If all one wants to do is to cover a 
well understood antigen space (say, binary strings with Hamming distance matching), 
then an enforced distribution would be the simplest mechanism. There are well 
understood algorithms for dealing with other types of spaces, for example 
Wierzchon’s schema match [26] for r-contiguous matching. 

Of course, generally the task is to map antigen space while avoiding self. This is a 
more involved task, yet even here there are simple algorithms that might do a 
superior job to gene libraries, particularly when computational cost is taken into 
account. For example, de Haeseleer’s greedy algorithm [6] generates a number of 
non-self ‘templates’ and uses these to create an antibody which binds to the most 
unmatched antigens. Singh [23] extended this algorithm to deal with non-binary 
alphabets. A somewhat simpler approach is Ayara’s NSMutation [2] which generates 
detectors randomly, mutating those that match self. Gonzalez [12] uses idiotypic 
suppression to maximise antibody diversity. Finally, Wierzchon’s schema matching 
algorithm [26] can be used to effectively generate self-avoiding, non-self-matching 
antibodies [25]. 

This, then, provides a convenient place to start our investigation into gene library 
function. We propose a comparative study on these algorithms in order to find what 
characteristics of a real world problem (if any) would suggest the use of gene libraries 
might be advantageous. It should be noted that complete coverage will almost certainly 
be impossible in presence of self [6]. An advantage of using a binary string 
representation with r-contiguous bits is that one can work out the theoretical optimum 
[26] and compare the coverage obtained by any one individual against it. 
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3.2   Avoiding Self 

As mentioned in the last section, simple coverage is probably not a sophisticated 
enough aim for gene libraries. The avoidance of self is a different slant on the same 
problem. In the HIS, this is essential to protect against autoimmune reactions. Whilst 
it is true that there is a negative selection mechanism operating in the HIS, it would 
clearly be beneficial for the creation process to have a bias against creating self 
reactive antibodies.  In the context of AIS, this amounts to making the creation 
process cheaper. In other words, the number of attempts to create a valid (i.e. not self-
reactive) antibody should be considerably less using gene libraries than a naïve 
random approach, which is exponential in the size of self [8]. Of course the benefit 
may still not justify the computational expense of using gene libraries. Also, 
alternative algorithms (see the last section) may be a rather cheaper way of attaining 
the same benefit. Thus, the cost of avoiding self is a plausible evaluation function 
which we can use as an additional comparison point.  

3.3   Mapping Antigens 

Antigens correlate to things we want to detect, or classify. In a sense, they are ‘points 
of interest’ in the non-self space. If we accept that it is impossible (given the 
computational resources, i.e. number of antibodies available) to map all of non-self 
space, even in principle, then it clearly behoves the system to bias antibody creation 
towards these areas of interest.   

This, now, starts to move towards more realistic scenarios. Imagine, for example, a 
document classifier that identifies ‘interesting’ documents. Given a training set of 
interesting and uninteresting documents it will generate a set of detectors to identify, 
and generalise from, interesting documents. Such documents tend to form clusters in 
non-self space. A gene library would bias the creation process so that rather than 
fumbling blindly in non-self space, antibody creation would be guided towards the 
clusters of interest.  

A more subtle point is that gene libraries provide a long term memory. Say, for 
example, that a set of randomly created antibodies are subject to clonotypic learning, 
such that they cover the clusters in one particular training set but not all clusters ever 
seen. Gene libraries provide a way of remembering past encounters so that antibody 
creation is more likely to match novel clusters which are nevertheless similar to those 
seen some time ago. This motivation has guided several previous implementations of the 
gene library metaphor [14,20]. In a variant of this approach, gene libraries have been 
used as metaphor in an email filtering system [31]. Here words found in “interesting” 
emails were archived, then during the mutation stage of clonal selection, a word (gene) 
chosen to be mutated was replaced by one chosen from the archive, rather than subjected 
to random perturbation. 

Of course, evolving these gene libraries will take time, during which a great deal of 
random searching (or searching guided by a cheap heuristic) might have taken place. 
Whether the trade-off is worth it is a moot point, and will depend greatly on the 
problem characteristics. For example, there is a choice about whether to use self; if so, 
the task is transformed into a 3-class problem (self, non-self, don’t care).  Another 
consideration is the evaluation function, for example: number of antigens successfully 
detected after X generations; number of antibodies created before all antigens 
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detected; average cost before 1st antigen detected. Our work should provide some 
principled guidance for AIS practitioners. 

3.4   Winning the Evolutionary Arms Race 

A further consideration is that in the real world, antigens (i.e. whatever you want to 
map) are unlikely to stay still. Mapping dynamic antigens is a more complex problem, 
akin to non-stationary landscapes, for which problem generators [24] are available. 
The species-level memory afforded by gene libraries could prove to be a boon here, 
since they may evolve to track a moving target. This assumes that gene libraries can 
‘keep up’ with the rate of antigen change, of course; a point illustrated by Oprea and 
Forrest’s work [21]. 

A further complication is that antigens may be moving purposefully, to avoid 
detection by the immune system. For example, a sensible strategy for an antigen is to 
get close to self, ideally within a ‘cove’ or ‘hole’ [6]. Such possibilities can be 
explored using coevolutionary models, and this is a major focus of our ongoing 
research. Interestingly, Gathercole and Ross [10] use a predator-prey model for 
effective coverage, which links in nicely with our original scenario. 

What practical implications could such work have? In almost all real world 
problems the target is constantly moving (for example, the definition of: an 
‘interesting’ or ‘relevant’ document; an anomalous network event; a suspected 
fraudulent mortgage application, a spam email). Could gene libraries provide the basis 
for a more robust, adaptive and responsive system? 

4   Implementing Gene Libraries 

The preceding discussion describes the areas where we intend to focus our 
investigation. As a validation scenario, we repeated Forrest’s canonical experiments 
on self/non-self discrimination [8]. In this paper, the authors use a random generate 
and test algorithm to create a set of detectors covering non-self with some desired 
(low) probability of failure. They used a simple binary string universe with self, non-
self and an r-contiguous matching measure. For example, using a 32 bit string with 16 
self strings and r set to 8, 105 attempts were needed to create 46 detectors which 
between them covered about 90% of non-self space. 

It is worth commenting a little on this experimental setup. The r-contiguous 
matching function is often argued to be more biologically plausible than Hamming 
distance, although this view is strongly criticised by Timmis & Freitas [9]. In fact, 
Forrest et al., who pioneered the metric, call it “[an] arbitrary decision [made] in order 
to simplify the mathematical analysis”. As an example, they calculate the chance of 2 
random strings matching as roughly 0.05 using the parameters above.  

In an elegant paper, Wierzchon [26] extended this mathematical analysis to sets of 
detectors. In general, non-self space is likely to contain ‘holes’ that cannot be detected 
[6]; these are regions where matching detectors would also match self.  Wierzchon 
showed how to calculate the number of holes for any given self set, giving a upper 
bound to the amount of non-self coverage possible. In a similar vein Esponda, Forrest 
and Helman  have analysed the trade-offs between postivie and negative selection for 
the r-chunks matching function [29], arguing that this is a prefrable matching 
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function, and Stibor, Bayarou and Eckert have investigated the propoerties of this 
matching function as the underlying alphabet is extended beyond the binary case [30].   

The evaluation measure is also important. In fact, we would say it is key to 
understanding the system. The evaluation function in some sense defines the task. 
One measure is the ease of avoiding self, or equivalently the cost of generating a 
system. The detection rate, in contrast, measures the performance of the generated 
system. It can be calculated either for a fixed number of detectors (number of antigens 
matched divided by number of antibodies in system), or for a fixed number of 
attempts to generate a detector. 

Following Forrest then, we used a set of antigens (sampled from a fixed 
population). The antibodies are subject to negative selection, but in our case rather 
than employing random creation we create the antibodies from gene libraries. The 
overall algorithm is as follows, where TERMINATION_CRITERION occurs when 
NR non-self antibodies have been generated, or the full set of combinations has been 
tested, whichever is sooner. 

Create self 
Create non-self 
LOOP foreach generation 
   LOOP foreach individual (= gene library) 
      While (TERMINATION_CRITERION not met) 
      DO  
         Choose genes from gene libraries 
         Create antibody 
         IF match self THEN destroy 
      END WHILE 
      Evaluate fitness of individual  
   END LOOP 
   Do selection/recombination/mutation of individuals 
   Do replacement of individuals 
END LOOP 

4.1   Some Preliminary Results 

We conducted a series of experiments looking at the effort required (number of 
antibodies generated) to produce a set of NR (= 46) detectors, and the coverage they 
provide of the non-self region, as defined by its complementarity to a randomly 
created set of 128 “self” strings. The parameters are shown in table 2.  

Initially we considered random generation to verify that our system was equivalent 
to Forrest’s. For 1000 repetitions we generated strings at random until we had created 
a set of 1024 non-self strings (i.e., not matching the self region), noting the total 
number of strings created (NS_Attempts). We then generated antibodies at 
random, discarding those which matched self until we had NR detectors, again noting 
the effort required (number of antibodies created, NR0). Finally we measured the 
coverage provided by the set of detectors, calculated as the percentage of the non-self 
set which were matched by at least one of the detectors.  These results are shown in 
Table 3. The coverage values obtained are higher than those Forrest noted, but their 
measure was slightly different – they changed one eight-bit block of one string from 
self and saw whether any of the detectors matched the mutated string.  
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Table 2. Parameters and choices for our experiments 

Parameter Choice Comments 
Antigen representation Binary string 32 bits 
Antibody representation Binary string 32 bits 
Matching function r-contiguous  8 bits 
Antibody creation Try a maximum of LC times from 

gene library or until NR antibodies 
created 

LC =8000; NR =46 
No mutation at this stage. 

Fitness evaluation % antigens matched from f antigens 
sampled randomly from non-self 
space.  

f = 1024. Static; not changed 
between individuals or 
generations 

Self S randomly created strings.  s = 128. Static; not changed 
between individuals or 
generations 

Genotype 20V11, 20D10, 20J11 
LC = 20×20×20 = 8000 

20V11: V library has 20 genes 
each with 11 bits.  

GA parameters Mutation: 0.01 per bit 
Crossover: 0.1 one point  
Selection: Binary Tournament 
Replacement: generational, no elitism
Population size: 128 
Learning: 500 generations 

Tournament selection Avoids 
many problems with fitness-
proportionate selection 

Fitness of an individual See below  

Table 3. Results of Random Antibody Generation 

Measure Min Max Mean Std.Dev Skewness 
NS_Attempts 433,846 1,543,945 777,525.3 147027 0.718 
NR0 16,863 80,105 35135.37 8386.91 0.803 
Coverage 96.68 99.8 98.67 0.46 -0.61 

The values for NR0 are similar – they reported a mean of 34,915 with a standard 
deviation of 8513. 

Next, we considered the effects of evolving gene libraries. During the evolution, 
each population member was evaluated as follows. First, a random permutation of the 
LC possible antibodies was generated. The antibodies were then created and tested for 
matches against self in this order, until either the number of detectors created (ND) 
equalled NR, or all possibilities had been exhausted (NR0 = LC). In addition to ND 
and  NR0, the efficiency and coverage were calculated and the mean per generation 
noted, defined as: 
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We considered three different fitness functions to be maximised: efficiency, 
coverage, and a equal linear combination of the two. Preliminary experiments used a 
simpler version of efficiency, which discarded individuals which could not produce 
the full set of NR detectors. This proved to be highly ineffective since in the early 
generations many population members had ND < NR and so were assigned fitness 
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0.0, removing any fitness gradients and preventing evolution.  For each fitness 
function we conducted 25 runs, each using a different set of self and non-self, but the 
same set of seeds were used across the fitness functions to avoid the possibility of one 
seeing “easy” or “hard” sets of self/ non-self strings. 

 

 

Fig. 1. Evolution of metrics under different fitness functions: Coverage (top left), Efficiency 
(top right), Number of detectors made: ND (Bottom left), Effort: NR0 (bottom right). Markers 
are for mean over 25 runs, with error bars showing 95% confidence interval for mean. 

Figure 1 shows the evolution of the metrics considered under the three different 
fitness functions. From this figure we can make the following observations: 

• Evolution solely under the influence of avoiding self (efficiency) produces 
results which are highly variable and are, on average poor. Closer examination 
shows that this is because around half of the runs cannot produce solutions 
providing many, let alone the full complement of, detectors. 
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• Evolution under the influence solely of coverage of non-self, reaches around 
70% coverage, but produces less detectors (ND ~40) and uses considerable 
effort to produce them (NR0 ~6000). 

• Evolution under the combined influence of efficiency and coverage quickly 
learns to produce NR detectors at low cost (NR0 < 3000), while reaching 
similar levels of coverage (maximum recorded 77.2%, mean over last 400 
generations 68.03% with std. deviation 3.06). Clearly in this case the GA is 
managing to evolve gene libraries which efficiently avoid self and cover the 
non-self regions. 

In each case evolution has nearly stopped by the 100th generation. Taking the 
results for the combined fitness function, and sampling every tenth of the last four 
hundred generations gives us 25 runs × 40 samples = 1000 samples to compare with 
the random results. Statistical analysis using a variety of non-parametric tests 
confirms that the coverage is worse than the random case (68% vs 98%), but that the 
effort required to avoid self is considerably (tenfold) lower.  

4.2   Evaluation and Extensions 

It would appear that the use of evolved gene libraries can produce significant 
improvements in terms of the efficient generation of antibodies which do not match 
self, but that the resultant coverage of the non-self regions is clearly not uniform. One 
possibility is that the gene libraries are in fact modelling self, or more accurately its 
inverse (in the r-contiguous matching sense). Another is that during the initial phase 
of evolution fitness gains are made by improving efficiency, but that diversity is lost, 
so that coverage does not improve as much.  These will be tested in future work by 
incorporating explicit diversity preservation measures into the genetic algorithm. 

To investigate whether gene libraries could produce reasonable coverage, we 
simplified the gene libraries so that there was only one library (46V32). We were now 
able to obtain the 90% coverage reported by Forrest et al. In addition, if we allow the 
AIS a fixed number of attempts (NR0 =105) to generate as many detectors as it can, 
then the performance goes to about 95% with about 60 detectors. This, of course, 
amounts to using a GA to search for a set of optimal antibodies, which is rather less 
ambitious than a search for a set of optimal gene libraries. What is rather interesting is 
that similar results were obtained even without using any self. This adds weight to our 
supposition that the block for gene libraries is the capability of covering a large space 
with a small number of detectors, rather than the problem of avoiding self. 

It is worth emphasising that improved results could probably be obtained by using 
a more sophisticated GA, or one with a larger population. We could also combine the 
fitness measures together using a Pareto-based approach [1]. Our parameter choices 
were domain led - we chose to use one-point crossover because of its positional bias: 
it is more likely to keep together adjacent genes than, for example, uniform crossover. 
The gene library fragments are coded as contiguous segments. 

One problem of fitness evaluation is that there are a large number of potential 
antibodies to be evaluated before we get a good idea of the ‘worth’ of a gene library. 
Other authors have faced the same problem, and either limited evolutionary learning 
to a partial fitness measure [15] or resorted to less computationally expensive 
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algorithms, such as hill climbing [21]. Also, the ‘meaning’ of a gene in a library 
depends on which genes it is combined with (a form of epistasis).  

An important consideration here is the use of gene libraries for coding efficiency. 
As discussed above, the HIS encodes 2M combinations of 223 amino acids using 
12000 amino acid coding units2, a compression rate of 223×2M:12K = 37K:1. Our 
naïve gene libraries managed to encode 8000 combinations of 32 bits using 640 bits, a 
compression ratio of only 400:1. Clearly, there is trade-off between encoding 
efficiency (the most efficient being a random generator) and preservation of species 
memory (the extreme being 1 gene per antibody, as per our 46V32 encoding). 

We made several simplifications to the biology, some of which are straightforward 
to explain. For example, no lifetime learning mechanism is included here; we are 
simply testing for the initial coverage. Further work is likely to involve a mechanism 
for clonotypic learning; this would be a good way to introduce a Baldwin effect which 
may well be essential to leverage gene library diversity and hence achieve better 
coverage [21]. Another example is the encoding, which was binary, rather than, say, 
20 letters (for amino acids) or 4 letters (for DNA bases). The motivation here is to 
evaluate gene libraries in established, analytically tractable, scenarios.  

Other possibilities suggest interesting areas to explore. For example, we used a 
static definition of self, using random selection of 128 binary strings. Different sizes 
of self may influence the results, as might the distribution of self (should it be 
clustered?). Self might also be dynamic, though in a principled way. Perhaps inter-
individual variation could be captured using Gaussian perturbation, while species drift 
could be modelled by including self in an individual’s genotype. The antigens used 
here consisted of 1024 randomly created strings (screened against self): an enforced 
uniform selection might be a more principled way to check coverage. Another 
possibility is to use a static, perhaps clustered definition of antigen, which could be 
generated from its own set of gene libraries or antigen schema. Such possibilities of 
course take us into the more complex scenarios introduced earlier. 

5   Related Work 

We make no claim to be the first researchers to look at gene libraries. That claim, at 
least for AIS, perhaps belongs to Stephanie Forrest’s group at the University of New 
Mexico. Perelson et al [22] showed that gene libraries can enhance coverage. They 
constructed antibodies by taking segments from 4 gene libraries. Fitness was 
evaluated by calculating the coverage of a varying size antigen universe. 
Unsurprisingly, the fitness asymptotically approached random levels as the antigen 
universe size increased, but approached perfection as the number of antigens 
decreased. Their work differs from that presented here in that the matching function 
used was Hamming, and (more significantly) there was no ‘self’ to avoid.  
Interestingly, they experimented with both straight Hamming scores (fitness of an 
antibody is its closeness of match with an antigen) and thresholds (fitness of an 
individual is the number of antigens to which at least one antibody binds sufficiently). 

                                                           
2 Recall an amino acid coding unit is 3 base pairs of DNA. 
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They also show that a modest degree of somatic (clonotypic) learning may provide a 
Baldwinian acceleration.  

Extending this work, Hightower et al [15] investigated the evolution of effective 
coverage. They showed that the ‘best’ coverage was achieved by a high Hamming  
distance (spread out antibodies) – but not too high. A maximal separation actually 
allows gaps in coverage (analogous to gaps between disjoint spheres). Oprea & Forrest 
[21] showed that as the pathogen set size decreases, the structure of the gene library 
changes, moving from a ‘coarse mapping’ of antigen space towards a more focused 
targeting of pathogenic clusters. They also show that since gene library size increases 
coverage only logarithmically, it must be augmented with somatic learning.  

Forrest et al [7] do not use explicit gene libraries, but they do consider bias in the 
antibody creation process, which they evolve to map an antigen population. 
Interestingly, this process requires a minimal number of antibody types to bind to a 
particular antigen.  

Other groups have also studied gene libraries. Hart & Ross [13] used a genetic 
algorithm (GA) to evolve libraries for a scheduling immune system. Essentially, the 
gene libraries preserved useful fragments of antibody (building blocks) that could 
successfully be reused. The same authors [14] develop this notion by suggesting that 
the germline (gene library) could be ‘seeded’ with antibodies during learning. Coello 
Coello et al employ a similar approach [27]. We would suggest that such an approach 
is akin to having species level memory cells. Kim & Bentley [17] mention the notion 
of gene libraries as a way of encoding ‘some knowledge of antigens’. In their 
companion paper [18] they model gene libraries as a single population of successful 
genes which are combined to form detectors. Thus the gene library evolves in parallel 
with AIS itself. More recently, these authors [20] have used deleted memory detectors 
as ‘gene library’ – i.e. long term memory. Kim and Bentley point out that “the fact they 
managed to become memory detectors at all implies that they hold valid information 
about non-self antigens in previous clusters”. 

In much of this work [13,14,17,18,20] the gene library metaphor is used as an 
engineering artefact rather than in the more biologically faithful way that we 
investigate here. Conversely, the theoretical work [7,15,21,22] is distanced from 
existing AIS applications (e.g. by absence of self). The current work attempts to build 
a bridge between the established theoretical foundations and current AIS engineering 
practice. 

6   Conclusion and Future Directions 

In this paper, we have shown that gene libraries are an interesting, and perhaps useful, 
tool in the AIS practitioner’s repertoire. We have outlined some areas where gene 
libraries might help and shown how to evaluate gene libraries in each area. Our 
preliminary results suggest that gene libraries may not be well suited to simply 
enhancing coverage, and may be better employed for improving the average quality of 
created antibodies (here exemplified by the task of avoiding self). These results need 
to be extended and analysed, and we have proposed a plan for testing the gene library 
metaphor in progressively more complex scenarios.   
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Abstract. The response to the title would simply be that the state of the organ-
ism has changed between the first and the seventh glass and that, before the 
seventh, this state was much closer to some kind of “homeostatic limit”. Al-
though the external impact i.e. the glass of wine is identical in both cases, the 
reaction of the receptive organism might be different, depending on its current 
state: accept the first glass then reject the seventh. It is the couple “wine and 
current state of the organism” which is important here and not just the wine. In-
troducing this paper, I will attempt to clarify the famous self-nonself contro-
versy by referring attentively to the debate which took place in 1997 between 
more traditional immunologists (Langman) and less ones (Dembic, Coutinho), 
and by proposing a very simple and illustrative computer simulation allowing a 
beginning of “formalization” of the self-assertion perspective. I will conclude 
by discussing the practical impact that such a perspective should have on the 
conception of “intrusion detectors” for vulnerable systems such as computers, 
and why a growing number of immunologists, like Varela twenty years ago, 
plead for going beyond this too narrow vision of immune system as “intrusions 
detector” to rather privilege its “homeostatic character”.  

1   Introduction: The Self-nonself Debate 

The response to the title would simply be that the state of the organism has changed 
between the first and the seventh glass and that, before the seventh, this state was 
much closer to some kind of “homeostatic limit”.  Obviously, among other things, the 
swallowing of all precedent glasses i.e. the history of the drinking organism must be 
taken into account in order to assess the effect of this last glass. Although the external 
impact i.e. the glass of wine is identical in both cases, the reaction of the receptive 
organism might be different, depending on its current state: accept then reject. It is the 
couple “wine and current state of the organism” which is important here and not just 
the wine. The wine is neither self nor non-self, dangerous or inoffensive as such, but 
rather pleases or disturbs the drinker as a function of his stomach. An important ques-
tion logically follows: “would you prevent yourself from drinking a first glass of 
wine, aware that the seventh could be much more harmful”. What a pity and what an 
enormous “false positive” this would be. Such a rejection would be useless in the first 
place. But even worse, this rejected impact (rejected because it can be hurtful in some 
particular context), could in other circumstances play a positive curing effect (wine is 
famous for that). Not taking the state into account can lead to too conservative protec-
tion policy, up until missing some curing opportunities. 
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In 1997, a very interesting, long and vivid debate took place among immunolo-
gists, some more classical and others proposing alternative views such as the “danger” 
model (Matzinger [14]), the “integrity” one (Dembic [10]), together with models 
around the idiotypic networks (Varela, Coutinho, Stewart [21][24]) (this debate is 
available on the Web at http://www.cig.salk.edu/BICD_140_W99/debate/). Among 
other issues, one very warmly discussed was the classical self-nonself distinction and 
the importance given by immunologists to “detection and recognition” processes. To 
quote this debate moderator Kenneth Schaffner: “All postings thus far accept a major 
role for the immune system in detecting and eliminating pathogens, while not attack-
ing the body or the immune system. In recognizing some things as “to be eliminated” 
and others as not, is this tantamount to an implicit definition of the self-nonself dis-
tinction?”. Even stronger, the following claim of Rod Langman (an immunologist 
more on the classical side): “I see no escape from the conclusion that all biodestruc-
tive protective mechanisms will have to do something that can be described as a self-
nonself or dangerous-nondangerous or integrate-nonintegrate, etc. discrimination 
based on specific recognition and exercise of the biodestructive consequence of rec-
ognition”. According to him, all the debate boils down to a simple wordy issue, a 
semantic game, that provides no better way to construe the immune functions. Since 
many years, I have tried to encourage researchers in AIS, above all if interested in 
“intrusions detection”, to watch more attentively for these alternative views yet hav-
ing a marginal impact [4] [6]. It is time now to attempt a more pedagogical effort to 
help to better understand the differences between these positions and above all the 
impact these differences could have further on their practical developments. Exactly 
as it is for the immune system, the state of our research community might be today 
more mature to better receive and echo these once marginal voices.  

I believe with many others (Varela, Coutinho, Stewart, Tauber, Cohen, Dembic) 
that the self-nonself debate largely goes beyond a simple labeling issue and that the 
real focus is not so much on defining what is “self”, which clearly, as Langman 
rightly pointed, can be substituted by “non-dangerous” or any synonymous for a ho-
meostatic viable entity. The problem resides much more in the nature and the charac-
terization of the “yes/no” dichotomy. How does it arise? Is this dichotomy just de-
pendent on some proper features of the external impact, like accepted by the whole 
AIS community (who majoritarily engeneerizes his immune knowledge in a classifi-
cation system separating data distributed in a space bounded by axis corresponding to 
external features) or, like I rather defend, is it dependent also on the state of the im-
pacted system at the moment of the impact (making this classification much more 
problematic)? Is an impact dangerous per se or dangerous because the system at the 
moment of the impact is much more vulnerable than it usually is?  I believe the sec-
ond interpretation to be a more correct way to see things, both for living organisms 
but equally so for computers. To quote Tauber [22,23] (a very convincing advocate of 
the alternative views): “The meaning of a given antigen is governed by the complex 
interplay of the endogenous and exogenous factors in which it appears” and Cohen 
[8]: “Rejection of infectious agents depends more on the site and circumstances of the 
infected tissue than it does on the identity of the infectious agent” 

Polly Matzinger, today one of the best known critics of the self-nonself dichotomy 
of immunology, and exerting a recent influence on some AIS developments [1] [7], 
remains quite ambiguous on this specific issue. It is clear that the problem with self 
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and nonself lies in the determination, namely the nature and the location, of the fron-
tier. What she proposes is to maintain the duality, i.e. the immune system keeps two 
ways of being in response to external impact: defensive and tolerant, but no more 
depending on a physical evasive frontier to cross. She insists in getting rid of the self-
nonself discrimination as such but to substitute it with an alternative dichotomy: dan-
gerous/inoffensive. The fact that this move at first simply consists of a semantic sub-
stitution makes a lot of immunologist very skeptic against Matzinger’s position.  Ac-
cording to Janeway (another famous classical immunologist): “The problem with this 
model is its inherent tautology … The immune response is induced by a danger signal 
but the danger signal is defined as just about anything that can induce an immune 
response” [15] 

To clarify the issue, there is no better way than taking advantage of the metaphor 
exploited by Matzinger herself in an interview she gave to advocate her position (in 
http://www.info-implants.com/Walt/01.html): “Let me use an analogy to explain it. 
Imagine a community in which the police accept anyone they met during elementary 
school and kill any new migrant. That’s the self-nonself model. In the danger model, 
tourists and immigrants are accepted, until they start breaking windows. Only then do 
the police move to eliminate them. In fact, it doesn’t matter if the window breaker is a 
foreigner or a member of the community…. In the danger model, the police wander 
around, waiting for an alarm signaling that something is doing damage. If an immi-
grant enters without doing damage, the white cells simply continue to wander, and 
after a while, the harmless immigrant becomes part of the community”. Taking that 
metaphor literally, it is obvious that what she presents as an alternative view is not 
really so since the familiar/foreign dichotomy just gives place to the gentle/nasty one, 
the invader’s feature “country of origin” being simply replaced by the feature “basic 
personal psychology”. A real departure from the classical dichotomy would be for the 
migrant to make the choice between adopting a gentle or a nasty attitude depending 
also and perhaps essentially on the internal state of the community at the time he 
comes in. Such a state will obviously depend on the presence of the previous migrants 
and thus on the whole flux of them since the origin of this community. However, it 
will also depend on other internal aspects of this community: the lodging capacity, the 
social welfare, economical inequalities and the usual police attitude, comprised the 
one adopted when encountering the migrants. A migrant, usually nice in many cir-
cumstances, might turn out to be angry and destructive in very specific contexts.  

Presented as she presents it, this Matzinger’s vision of what is dangerous or not is 
not such an exciting one, because it still demands from the system the ability to dis-
criminate and to defend. The self-nonself frontier is simply re-designed but is main-
tained outside the system to protect. With such a view, the recognition ability of the 
immune system still plays the leading role in separating the dangerous impact from 
the non-dangerous one. A more interesting perspective, which would make Matzinger 
to integrate the circle of the radical immunologists, instigated by Varela, Coutinho 
and Cohen, sees the danger as a consequence of the interaction between the external 
impact and the current state of the immune system. In such a case, a stimulus is no 
more dangerous per se, but is dangerous in the current context of the immune system. 
An outside separation in two classes, making the immune system behaves in two 
ways, simply collapses. No discriminative recognition is at play any more. We remain 
with an immune system behaving in one only way but, depending on its current state 
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and the nature of the impact, proposing different responses to it. For instance, a same 
external impact could drive the system to react differently at different times. The 
internal perturbation caused by the external impact, i.e. the way the internal dynamics 
“digests” it, is what really counts in order to locate this impact on one side or the 
other of the immune system. The set of the antigenic attributes is one part of the prob-
lem, the state and the history of the system since its appearance is the other key part 
and definitely not something easy to discriminate upon. At the end of the debate, 
Langman still remains skeptic and claims “My challenge is to ask whether you would 
consider the possibility of a set of mechanistic details and boundary conditions that 
offer a way of establishing a set of criteria that amount to a workable self-nonself 
discrimination that does not require nonself markers such as “danger”, “disintegra-
tion”, “inflammation”, “toxicity””, whereas Dembic rightly answers that we all need 
to move from a discriminatory process taking place in some feature spaces whatever it 
is, to a new space, yet to define, that would simultaneously incorporate time and the 
regulatory dynamics of the system.  

In the following section, a more formal reading will be proposed to support and 
clarify this alternative vision. I’ll show that the main difference between the classical 
view and the new one (designated as “the self-assertion perspective” in previous 
works [24] [6]) asks to replace a “linear causality”, where the whole immune reaction 
just starts from and is only conditioned by the antigenic impact, with a “circular cau-
sality”, maintaining some autonomy in the immune behavior, now simply perturbed 
but no longer initiated from and only conditioned by the antigenic impacts. The third 
section will briefly recall why the well-known idiotypic network, popularized by 
Jerne some thirty years ago [12], was an essential but still very preliminary step on 
the way to this alternative vision. Since “intrusion detection” remains the main engi-
neering use and perhaps abuse of the immune metaphor, the fourth section will de-
scribe a little computer simulation in which a complex system is being impacted from 
outside. A defensive mechanism built around it and aiming at preserving it inside a 
viability domain will be gradually learned. The simulation will show the need for the 
adaptive defensive mechanism to take into account not only the nature of the impact 
but also the state of the system at the moment of the impact. Many false positives are 
avoided and a finer curing attitude becomes possible. The final section will emphasize 
again the same shift in perspective as the one advocated many years ago. The internal 
homeostasis of a system to be protected goes beyond the severity of its frontiers. One 
needs to re-concentrate the attention on the inside of the system to the detriment of the 
outside, and to understand better its internal regulatory mechanisms both while iso-
lated and in response to an impact.  

2   Linear Causality vs Circular Causality 

In figure 1, a very intuitive mathematical formulation will help to differentiate the two 
perspectives. We suppose on the left an antigenic intrusion Ik(t) occurring at time t  
and impacting a first stage of immune cells Xk(t+1). We suppose that the interaction 
occurs by means of some kind of structural binding between the antigen and these 
cells, inducing a stimulatory effect on the cells. In the right part of the figure, these 
latter cells Xk, in their turn, stimulate by structural binding a second stage of immune 
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Fig. 1. Linear vs Circular causality 

cells Yk(t+2). Finally these latter have the possibility to inhibit the antigen by de-
creasing its concentration. Without accounting for the thicker feedback arrows, this 
figure depicts a linear causation in which the antigen is the initiator of the whole se-
quence of interaction. Everything happens in reaction to the antigen intrusion and the 
precise effect will depend on the nature of the antigen, from that the classical self-
nonself distinction. Now by adding the feedback thicker arrows, a circular causality is 
induced, driving the system to manifest a dynamical behavior on its own, perturbed 
but now longer impelled and impressed by the antigens. 

 

Simplifying this scheme even further, we can see how the two figures above lead 
to two different mathematical dependencies. In the first linear case: X(t+1)=f+(I(t)), 
Y(t+2)=g+(X(t+1)) and I(t+3)=h-(Y(t+2)) which, by concatenating all dependencies, 
gives I(t+3)=f+ (g+ (h- (I(t)))), reducing so the becoming of the antigen to its sole in-
trinsic nature. In contract, in the second case: X(t+1)=f+(I(t),Y(t)), Y(t+2)=g+(X(t+1)) 
and I(t+3)=h-(Y(t+2)) which, by concatenating all dependencies, gives I(t+3)=  
 h-( g+( f+(I(t),Y(t)))) and making the future of the antigen still dependent on the state 
of the impacted system at the moment of the impact, here the variable Y. The value of 
this variable, depending on the previous impacts, the reaction to any antigen depends 
on the whole evolution of the system, comprised all previous impacts. So the nature 
of the antigen alone i.e. the structural category it fits in is far from enough to predict 
what will happen to it. Only a complete knowledge of the couple (antigen, system 
state) can allow predicting the antigen destiny.  
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3   Idiotypic Networks Show This Circular Causality 

In the middle of a Nobel lecture given the 8th December 1984 in France [13], Niels 
Jerne discoursed on a topic he considered to be a major breakthrough in immunology: 
“I shall now turn to some remarkable discoveries, made during the past years, show-
ing that the variable regions of antibody molecules are themselves antigenic and 
invoke the production of anti-antibodies….  Jacques Oudin and his colleagues in 
Paris [18, 19], showed that ordinary antibody molecules that arise in an immunized 
animals are antigenic and invoke the formation of specific anti-antibodies. In other 
words, the variable region of an antibody molecule constitutes not only its “combin-
ing site”, but also presents an antigenic profile (named its idiotype) against which 
anti-idiotypic can be induced in other animals.” Since Oudin’s experimental finding 
and Jerne’s enthusiastic emphasis on the existence of idiotypic network, that antibod-
ies can mutually stimulate themselves in a way very similar to the stimulation antigen 
exerts on antibody has been convincingly revealed by a large set of experiments 
[15,16,24]. The Burnetian clonal selection theory, which describes how an antibody is 
selected to proliferate in response to antigen recognition, extends now to antibodies 
themselves that turn out to be as much selector as selected. Jerne had many reasons to 
be so enthusiastic, since this discovery was the first rupture with the classical linear 
causality, still so vivid among its immunological colleagues.  

The circular causality is obvious by watching the simplest scheme below: 

 

An antigen stimulates a first antibody Ab1 which in its turn stimulates and is 
stimulated (creating the circularity) by a second antibody Ab2. In the self-assertion 
simulation presented in [6], the program instructions changing the concentration of 
any antibody are: 

if (low  < αΣi affinityOfAntibodiesi  + β Σi affinityOfAntigeni < high)  
 Cj(t) = Cj(t) +1 
 else 
 Cj(t) = Cj(t) – 1 

indicating that the concentration of any antibody Cj(t) changes, not only as a func-
tion of the antigens stimulating it, but also of the other antibodies present in the net-
work. We show in the simulation how indeed the evolution of an antigen concentra-
tion depends in part on its own characteristics but also on the evolution of the anti-
bodies concentration and the network interactions. Despite the lack of attention and 
interest for this network in today immunology, many other immunological ways 
exist to induce this circular causality. It is enough that any cell, lymphocyte or 
macrophage of any sort, stimulated by the antigen, mutually stimulates themselves, 
to have feedback loops and memory effects in the system, relaxing the importance of 
the external stimuli.  
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4   Defending Complex Systems 

The small computer simulation to be presented in the following aims at illustrating 
how the self-assertion perspective can lead to some practical advantages (as compared 
with the self-recognition one) in the construction of effective defenses for complex 
systems such as computer ones.  The complex system to be protected here is a fully 
connected Hopfield network composed of 8 units: 
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 with  wii = 1 and wij taken randomly in [-0.5,0.5] 

This structure should be construed as a generic metaphor for complex systems since it 
displays a strong circular causality, each variable influencing all the others. The 
weights being not symmetric and the diagonal unitary, the network does not stabilize 
into fixed points but into cyclic attractors instead. After a long transient, we define a 
viability interval Vi for each variable as the interval in between the boundaries of its 
range of variation [ximin,ximax]. The viability domain of the whole system becomes the 
union of all these intervals. A viable and “healthy” system has all its variables com-
prised in their viable intervals. It is no longer the case as soon as one of its units 
leaves its interval. The mission of the whole defensive process to be described con-
sists in maintaining viable this system.  

A deleterious impact here amounts to a perturbation Ij taken randomly in [-2,2] and 
exerted at time t on one variable xj(t) randomly chosen: 
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As figure 2 illustrates the whole defensive strategy is organized around three types of 
agent: monitoring, filtering and curing agents. 

FRONTIER

Monitor
Filter

Cure

 

Fig. 2. The defense of complex systems organized around three types of agent: monitoring, 
filtering and curing 
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The system is experimented in two phases. During the first phase, the defensive strat-
egy is gradually built in the presence of the monitoring agent whereas this strategy is 
evaluated in the second phase. 

The learning phase and the role of the monitoring agent: During this phase, at each 
time step, an impact is exerted on the system at time t and, if the system exits its vi-
ability domain at time t+1, the couple (Ij, xj(t)) is memorized in a data base as a bad 
impact. In the following, any impact will consist in this couple of data. The impacts 
are memorized with a certain granularity threshold g. Whenever a new impact arrives 
and makes the system unviable at t+1, this new impact will be memorized only if not 
similar to an existing impact. The similarity is defined by computing the Euclidean 
distance with the existing impacts and by checking if the result is inferior to the 
granularity threshold. Once the system unviable and the impact memorized, the sys-
tem is reset into its original position and a new impact is tested. The learning termi-
nates as soon as no more deleterious impacts can be memorized.  

The evaluation phase and the role of the filtering agent: During this successive phase, 
every three time steps, an impact is exerted on the system. However, the data base 
learned previously, composed of the bad impacts, will be the basis of a filtering 
mechanism. Only if the impact is authorized, it will be allowed to perturb the system. 
To be authorized, the impact needs to be dissimilar (taking into account the same 
granularity g) from all impacts included in the learned data base.  

In order to compare the self-recognition perspective with the self-assertion one, in 
a second set of experiments, an impact will now consist in the couple (Ij,X(t)). By 
X(t), it is intended all the variables and not only the impacted one. It is now the whole 
state of the system (the eight variables) that is being memorized for each impact. As 
referred in the previous sections, the alternative vision of the immune system takes 
the state at the moment of the impact to be as important as the nature of the impact 
itself. In both cases, following the learning phase, the system is fully safe; none of the 
authorized impacts can throw the system away from its viability zone. During the 
evaluation phase, the filtering is playing a perfect role, no false negative occurs. The 
results are shown in figure 3. In the graph, the number of authorized impacts is shown 
as a function of the number of impacts memorized in the data base, both for the self-
recognition and the self-assertion cases. This data base grows as a function of the 
granularity. The smaller the granularity, the bigger the number of impacts to be 
memorized is in order to cover the whole set of possibilities.  It resorts clearly that the 
more precise the learning is (i.e. the smaller the granularity) the more impacts are 
being authorized.  

However, the most interesting result lies in the comparison of the two curves. The 
self-assertion curve remains always above the self-recognition one, meaning that the 
first strategy avoids many false positive. The explanation is obvious. By ignoring the 
state, it is enough for one impact to make the system unviable, independently on its 
current state, to prevent any similar impact. Whereas by adding the state information, 
only for specific value of the state will a same Ij be prevented from entering the sys-
tem again. It is the simulation replica of the story of the glass of wine. Taking the 
state into account allows the defensive strategy to be much less conservative, some 
glasses are allowed others not.  



108 H. Bersini 

 

 

Fig. 3. The proportion of authorized impacts as a function of the number of memorized impacts 
during the learning phase. This figure compares the self-recognition approach (with no account 
for the state) and the self-assertion one (where the state is taken into account). 

Beyond the avoidance of many false positives, taking the state into account allows 
some impacts to play an extra curing role. This curing part, once again, takes place in 
two successive phases: the learning and the evaluation phases.  

The learning phase and the role of the monitoring agent: At each time step, the system 
is set in a random but non-viable state. Thus an impact is exerted on it. If that impact 
makes the system viable in the next time step, this impact is memorized as a curing 
impact and the couple (Ij,X(t)) is added in the data base. The learning terminates when 
no more curing impact can be added in the data base. 

 

Fig. 4. This graph shows the percentage of time that the application of a curing impact, re-
trieved from the learned date base, can compensate for the failure of the “inversion strategy”. 

The evaluation phase and the role of the curing agent: We have supposed a first very 
intuitive default curing strategy in the case the system exits out of its viability zone. It 
just consists in inverting the previous impact and impacting the same variable again 
but now in this “inverse” way. The intuition behind is that in systems not knowing 
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anything about the potential cure coming from the precedent learning phase, there 
must always exist a “safety procedure” that can take very urgent but not accurate 
recovery action. However, as the figure 4 shows, this rough recovery strategy works 
for only 70% of the cases. An additional cure can be tried that consists in searching in 
the data base an impact which, for such state condition of the system, was able during 
the learning phase to bring the system back to a viable situation. In the best case, 
19000 memorized impacts, the figure shows that an improvement of 13% is possible 
with respect to the sole “inversion strategy”.  

The cure can consist in fact in regulating some internal variables of the system, in-
cluded the ones not directly impacted. An impact exerted on one connected unit can 
re-equilibrate the system after the perturbation exerted on another specific unit. The 
graph also shows that the bigger the data base the more successful is the curing strat-
egy since more and more information is obtained on the curing potentialities.  

5   Conclusions and Still Open Perspectives 

At one point of the debate referred previously, Ephraim Fuchs, a close colleague of 
Matzinger, pertinently says: “It is easy to see how the self-nonself distinction was 
important during an era in which the major challenges to human health were viral and 
bacterial infections. Now, however, we have to deal with problems like autoimmune 
disease, cancer, and transplants … It is difficult to see how a self-nonself paradigm 
would be of much assistance in understanding these phenomena”.  And Rod Lang-
man, although the most attached at this distinction, surprisingly concludes by: “The 
organism is a complicated thing with lots of different activities going on inside. We 
assume that a normal organism is in a state of homeostasis, under the control of many 
regulators. These regulators have to know when the system is becoming disordered, 
and these regulators then attempt to restore the old order”  

For many years, Varela, Coutinho and Cohen have plead for a radically different 
understanding of autoimmunity that could give rational to other forms of successful 
treatment such as the injection of antibody serum (coming from healthy subject [16]) 
or the T-cell vaccination [9], where the vaccine is composed of a key member of the 
immune system itself. They expect immunologists to be less obsessed by characteriz-
ing what comes from outside the system and how it gets in but instead to have them 
more concentrated on what happens inside, autonomously. They encourage them to 
pay more attention on the very sophisticated self-regulation mechanisms which allow 
such a complicated system, characterized by so many different dynamical actors, to 
still maintain a viable organization. It appears that while an increasing number of 
biological disciplines are becoming more and more influenced by the “network or 
systemic thinking”, immunologists are still very reluctant in sympathizing with these 
views. Nevertheless, this thinking seems inescapable if one wants to tackle with dis-
eases more logically imputable to network deregulation than to the presence of an 
undesirable foreigner. Beyond the prevention of impacts, how these impacts influence 
the whole system might be more precious as knowledge to have and to gain that just 
their intrinsic characteristics.  

15 years ago, together with Francisco Varela, we tried in a succession of papers to 
propose new principles for distributed control of complex processes based on our 
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understanding of the immune functions [2-5]. Nothing has changed from that time 
expect the sad premature disappearance of the instigator. Among these principles, we 
proposed to control the process by a set of small operators distributed in time and 
space and organized into a network structure represented by an affinity matrix. The 
aim of the controller was to maintain the viability of the process to control. The con-
troller learned to maintain this viability despite perturbations affecting this process. 
The learning was based on mechanisms of reinforcement type, by modifying some 
parameters associated with the controller but also by adding some fresh new ones. 
The homeostatic maintain was the main mission of these controllers and the whole 
methodology was tested and illustrated in part for robotic and non-linear control toy 
applications. For process control application, such as the cart-pole, the aim of the 
control was to keep the pole balancing the longest period of time. In a robot control, 
the aim of the control was to find viable path preventing the robot to bump obstacles. 
In the control of chaotic systems, the aim was to control the chaotic trajectory about 
fixed points that are embedded in the attractor but are unstable.  

Very similar principles could have interesting roles to play in the conception of 
protective systems for computer while it is again the recognition ability of the im-
mune system which is set to work in order to distinguish bad invading programs from 
inoffensive ones. Interestingly enough, it seems that computer engineers are encoun-
tering exactly the same kind of conceptual difficulties immunologist encounter when 
trying to separate a priori the good files from the bad files. Roughly said, what is self 
and nonself for computer systems? It would not be surprising that the computer engi-
neers had to step back a pace and envisage this problem under the new lights pre-
sented in this paper. What is safe and non-safe for a computer has to be seen by the 
computer itself in its current state and in the context of its current operations. It might 
be possible to first identify a set of characteristic variables of the computer operations 
which should remain in between decent values, let’s say to define what could be the 
viable operational zone or data for a computer, and thus to teach the computer how to 
organize its own defense (i.e. which program to tolerate and which to reject) in order 
to maintain this viability.  

More recently, Somayaji and Forrest [11][20] proposed a very exciting work, to-
tally in line with the view we defended for all these years. They design defensive 
mechanisms in which the computer autonomously monitors its own activities, rou-
tinely making small corrections to remain in a viable state. They pertinently write that 
what they work on supposes a move to recognize that immune systems should be 
more properly thought of as homeostatic mechanisms than pure defense mechanisms. 
This time, I can’t agree more with them.  
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Abstract. Innate immunity now occupies a central role in immunology.
However, artificial immune system models have largely been inspired by
adaptive not innate immunity. This paper reviews the biological prin-
ciples and properties of innate immunity and, adopting a conceptual
framework, asks how these can be incorporated into artificial models.
The aim is to outline a meta-framework for models of innate immunity.

1 Introduction

Immunology has traditionally divided the immune system into innate and adap-
tive components with distinct functional roles. For many years, research was
focused on the adaptive component. However, the prevailing view in immunol-
ogy now shows the innate system to be of central importance [1]. The first part
of this paper focuses on the innate immune system and on ways in which it
interacts with and controls the adaptive immune system and discusses research
over the last decade which has uncovered the molecular basis for many of these
mechanisms, reviewed in [2]. It first contrasts the innate and adaptive immune
systems and briefly reviews essential biology. It then discusses specific mecha-
nisms of interaction between cells of the innate and adaptive immune systems,
and concludes by showing how these mechanisms are examples of more general
systemic properties.

While the integral role of the innate immune system has been established
in immunology, artificial immune system models, surveyed in [3,4], have largely
taken their inspiration from adaptive immunity. The second part of this paper
adopts the conceptual framework of Stepney et al. [5] and addresses how ideas
from innate immunity might be modelled in artificial immune systems. The con-
ceptual framework is first briefly summarised and then a general meta-framework
for models incorporating innate immunity is presented and refined through the
discussion of specific models properties.

2 Innate Immunity

This section begins with an overview of well-established conceptions of innate
immunity. Research which over the last decade has served to highlight the central
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role of the innate immune system is then discussed. Lastly, general properties
of the innate immune system which have been drawn out by this research are
presented. Review papers as well as the original articles are cited, and origi-
nal figures are reproduced to enhance the necessarily brief summaries of the
mechanisms.

2.1 Contrasting Innate and Adaptive Immunity

Differences between the innate and adaptive immune systems can be seen on a
number of levels (Table 1). The adaptive immune system is organised around two
classes of cells: T cells and B cells, while the cells of the innate immune system are
much more numerous, including natural killer (NK ) cells, dendritic cells (DC s),
and macrophages. The receptors of innate system cells are entirely germline-
encoded, in other words their structure is determined by the genome of the
cell and has a fixed, genetically-determined specificity. Adaptive immune system
cells possess somatically generated variable-region receptors such as the TCR and
BCR (T and B cell receptors) with varying specificities, created by a complex
process of gene segment rearrangement within the cell. On a population level,
this leads to a non-clonal distribution of receptors on innate immune system cells,
meaning that all cells of the same type have receptors with identical specificities.
Receptors on adaptive immune system cells however, are distributed clonally in
that there are subpopulations of a specific cell type (clones) which all possess
receptors with identical specificities, but that generally, cells of the same type
have receptors with different specificties [1,6,7].

Table 1. Differences between innate and adaptive immunity

property innate immune system adaptive immune system
cells DC, NK, macrophage. T cell, B cell.
receptors germline-encoded. encoded in gene segments.

rearrangement not necessary. somatic rearrangement necessary.
non-clonal distribution. clonal distribution.

recognition conserved molecular patterns. details of molecular structure.
selected over evolutionary time. selected over lifetime of individual.

response cytokines, chemokines. clonal expansion, cytokines.
action time immediate effector activation. delayed effector activation.
evolution vertebrates and invertebrates. only vertebrates.

The molecules which a receptor is able to bind with and recognise are known
as ligands. While all receptors at the most basic level recognise molecules, ligands
are often discussed in terms of higher-level structures. The variable-region recep-
tors of adaptive immunity recognise features of pathogen structure, with BCRs
directly recognising peptide sequences on pathogens, such as components of bac-
terial cell membranes, and TCRs recognising peptide sequences which have first
been processed by DCs. These receptors are selected for over the lifetime of the
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organism by processes such as clonal expansion, deletion or anergy and are un-
der adaptive not evolutionary pressure. Conversely, innate immune system recep-
tors recognise a genetically-determined set of ligands under evolutionary pressure.
One key group of innate receptors is the pattern recognition receptor (PRR) su-
perfamily which recognises evolutionary-conserved pathogen-associate molecular
patterns (PAMPs). PRRs do not recognise a specific feature of a specific pathogen
as variable-regionreceptors do, but instead recognise common features or products
of an entire class of pathogens. The immune system utilises adaptation of variable-
region receptors to keep pace with evolutionary more rapid pathogens [1,6].

The environment of a cell in vivo is the tissue in which it is located. Tissue
is formed by specialised groups of differentiated cells, and itself forms major
components of organs. A substantial part of tissue volume is extracellular space
and filled by a structured network of macromolecules called the extracellular
matrix. Many of the molecules found in the extracellular matrix are actively
produced by cells and involved in intercellular signalling [8,9]. Cytokines are
secreted molecules which mediate and regulate cell behaviour, two important
subsets of which are tissue factors, inflammation-associated molecules expressed
by tissue cells in response to pathogen invasion, and chemokines, cytokines which
stimulate cell movement and activation. Cytokines bind to germline-encoded
cytokine receptors present on all cells and are widely produced and consumed
by both innate and adaptive immune system cells during an immune response.
Recognition by the innate immune system leads to the immediate initiation of
complex networks of cytokine signalling which orchestrate the ensuing immune
response. Adaptive responses additionally involve processes of cell selection such
as clonal expansion, deletion and anergy, which take several days [1,6].

2.2 Recent Developments

This section reviews key developments over the last decade in our understanding
of the innate immune system. Over this period, intense research has highlighted
the central role of the innate system in host defense through its interaction with
the adaptive immune system and with tissue, and uncovered the molecular basis
for these interactions. These developments have lead immunologists to reevaluate
the roles of both the innate and adaptive immune systems in the generation of
immunity, installing innate immunity as a vital component in the initiation and
modulation of the adaptive immune response [2].

NK cells of the innate immune system respond to the disruption of nor-
mal cell physiology in what has been termed the “missing self ” model of NK
cell activation [10]. Most normal tissue cells constitutively express MHC class I
molecules, which present intracellular host-derived peptides on the cell surface.
Presentation of virus-derived peptides leads to activation of CTL (cytotoxic T
lymphocyte) cells and apoptosis in the infected cell through ligation with the
TCR of the CTL [11]. However, viruses and other infectious agents have evolved
to interfer with MHC class I antigen presentation [12] and so evade a CTL re-
sponse. In the “missing self ” model (Figure 1), NK cells are activated either
by reduced signalling through receptors of the KIR family, inhibitory receptors
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Fig. 1. NK receptors and NK recognition, from [2]

specific for host MHC class I, leading to apoptosis of the cognate cell [13]. This
creates a no-win situation for the virus: if MHC class I expression is unaffected,
it will be open to detection and removal through a CTL-based adaptive immune
response, but if it affects MHC class I expression, it will be open to detection
and removal through an NK-based innate immune response.

Some of the most exciting recent advances have been made in uncovering the
role of TLRs in determining DC differentiation and so a mechanism by which
the innate immune system mediates the quality of an adaptive immune system
response [2,15] (Figure 2). Initial ligation by different PAMPs and tissue factors
of different TLRs on DCs “primes” DCs to differentiate along different pathways,
resulting in mature and immature DCs which produce different Th (T helper)
cell polarisation factors. Release of these polarisation factors upon interaction
with naive T cells causes the naive cell to differentiate into Th1, Th2 or Treg
cells, all distinct types of T cell [14]. DCs, through TLRs, couple the quality of
the adaptive immune effector response to the nature of the pathogen. Other PRR
receptor families have also been implicated in Th polarisation [16]. Interestingly,
recent research [17] suggests a renewed role for variable-region receptors not just
in the determination of the antigen specificity of an immune response, but also
in the regulation of this response. In place of the purely “instructive” DC to T
cell paradigm, the responding Th1 or Th2 cells reinforce signals to B cell or CTL
effectors in a “success-driven” consensual model of T cell polarisation.

As well as polarising Th cells, DCs play a key role in maintenance of pop-
ulations of T cells. Tolerance is the ability of the immune system to react in a
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Fig. 2. DC polarisation of Th cells, from [14]

non-biodestructive manner to stimuli and has long been associated with adap-
tive immunity. Tolerance is usually discussed in terms of apoptosis or anergy
of self-reactive T and B cells, and was initially proposed to occur centrally in
a relatively short perinatal period, as epitomised in the clonal selection theory
of Burnet [19,20]. While recent research shows the continuing importance of
central tolerance mechanism [21], it is now accepted that peripheral tolerance
mechansims which operate to censor cells throughout the lifetime of the host are
of equal importance. DCs of the innate immune system lie at the heart of the
generation of peripheral tolerance. Models propose that DCs continually uptake
apoptotic and other material from peripheral tissues under normal steady-state,
nonpathogenic conditions. Periodically, DCs migrate to draining lymph nodes
where they delete lymphocytes by presenting the processed material which, as
representative of tissue in the absence of pathogen, needs to be tolerated by the
host [22]. Signals received by DCs ‘license” [18] (Figure 3) them to promote
either T cell clonal expansion, or T cell clonal anergy or deletion. Research has
established the molecular basis for such models. The absence of TLR signalling
on DCs [22,23] or the presence of signalling through receptors involved in the
uptake of apoptotic material [24,25] leads to distinct semimature and mature DC
populations which interact with T cells to promote tolerance or immunogenicity
respectively.

Cosignalling receptors and their ligands provide another mechanism by which
DCs determine the qualitative and quantitative nature of adaptive immune re-
sponses. CD80 and CD86 are costimulatory molecules expressed on DCs and
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Fig. 3. DC Th tolerance, from [18]

bind with the CD28 and CTLA-4 cosignalling receptors on Th cells. Binding
to CD28 leads to upregulation of Th activity and an immunogenic response,
whereas CTLA-4 binding to downregulation of activity and tolerance. CD28
is constitutively expressed by Th cells, whereas the latter in proportion to the
strength of TCR stimulation. CD80 and CD86 do not bind equivalently to CD28
and CTLA-4, and through selective expression by DCs of these molecules, innate
immune system cells initiate and regulate Th cell activity. A key concept which
has emerged from this research is the importance of sequential and properly
timed interactions in the development of an immune response [2,26,27].

2.3 Summary

As the biology described in this section shows, the protection afforded to the
host by the immune system as a whole arises from mechanisms of the innate
and adaptive immune systems, which help form an integrated system of host
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protection. While there can be no doubt that specific recognition by the adaptive
immune system plays an important role in functions such as pathogen recognition
and removal, it is now clear that innate immune system mechanisms play an
equally important role. The mechanisms discussed above are specific examples
of more general properties of innate and adaptive immune system function and
interaction, which are summarised in Table 2.

Table 2. General properties of the innate immune system

property 1 pathogens are recognised in different ways by the innate and
adaptive immune systems.

property 2 innate immune system receptors are determined by evolu-
tionary pressure.

property 3 response to pathogens is performed by both the innate and
adaptive systems.

property 4 the innate immune system initiates and directs the response
of the adaptive immune system.

property 5 the innate immune system maintains populations of adaptive
immune system cells.

property 6 information from tissue is processed by the innate immune
system and passed on to the adaptive immune system.

Considering the innate as well as adaptive immune system highlights how im-
mune system cells interact with pathogens on multiple levels (Property 1). While
the variable-region receptors of adaptive immunity are often specific forone feature
of one particular pathogen, germline-encoded receptors such asPRRs of innate im-
munity are specific for features belonging to an entire class of pathogens. Innate im-
mune systemcells also respondnotonly topathogen structure, butalso topathogen
behaviour, eitherdirectly throughPAMPsandTLRs,or indirectly throughchanges
in tissue cell behaviour (NK cells). Innate receptor specificity is determined by evo-
lutionary pressures,whereas adaptive processes such as peripheral tolerance deter-
mine the range of specificities of adaptive receptors (Property 2).

Innate immune system cells, as well as recognising pathogen, respond to them
directly (Property 3), as with NK cell monitoring of MHC class I expression.
Such recognition and response mechanisms when taken together show how the
innate and adaptive immune systems work together to provide a broad coverage
of protection to the host. Recognition by the innate immune system does not
usually lead to a solely innate response, but instead also initiates and modulates
an adaptive response through DC polarisation of Th cells and modulation of cos-
timulatory signals (Property 4). Mechanisms such as DC tolerisation of Th cells,
as well as relying on antigen processed by DCs, also shows how innate immune
system cells maintain populations of cells (Property 5). The adaptive response is
driven by information not only directly sensed by adaptive immune system cells,
but equally by information gathered and processed by innate immune system
cells, as with DC collection, processing and presentation of antigen to T cells
(Property 6).
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3 Modelling Innate Immunity

As artificial immune systems develop in their sophistication and so are more
able to realise the functions of biological immune systems, they will need to
incorporate properties of innate immunity into their models. This section first
reviews the conceptual framework for artificial immune systems of Stepney et
al. [5]. Adopting this framework and drawing on the biology of the previous
section, it then proposes a number of general properties of models incorporating
innate immunity. Looking first at the mechanisms of the previous section as a
whole, and then individually, these general properties are discussed and refined.
The aim is to suggest a meta-framework which highlights the key properties of
models in general and how they might be realised in various individual models.

3.1 Conceptual Frameworks

In [5], Stepney et al. present a conceptual framework within which biologically-
inspired models and algorithms can be developed and analysed. Figure 4 sum-
marises their framework, in which probes provide the experimenter with an in-
complete and biased view of a complex biological system which then allows
the construction and validation first of simplifying abstract representions, and
consequently of analytical computational frameworks, which themselves provide
principles for the design and analysis of biologically-inspired algorithms.

probes,
observations,
experiments

bio-inspired
algorithms

biological system

analytical
framework/

principle

modelling

simplifying 
abstract

representation

Fig. 4. A conceptual framework for biologically-inspired algorithms [5]

Stepney et al. (ibid.) also apply similar ideas to develop a meta-framework,
Figure 5, which allows common underlying properties of classes of models to
be analysed by asking questions, called meta-probes, of each of the models un-
der consideration. They suggest a number of questions based around properties
which are thought to affect complex behaviour in general. These areas relate to
openness, diversity, interaction, structure and scale (ODISS). Using this meta-
framework, the authors analyse the commonalities of population and network
models.

While Stepney et al. use the meta-framework to analyse artificial models
for essential features and commonalities, this paper uses it to analyse biological
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Fig. 5. A conceptual framework for integrating biologically-inspired computational do-
mains [5]

models. The latter approach, apart from being pragmatic as very few artificial
models currently exist, also allows biology to have much more of an influence
on the meta-framework. Whichever approach is taken, meta-frameworks and the
development of computational and mathematical models present a route through
which artificial immune system research can help biologists answer research ques-
tions in their field.

3.2 A Meta-framework for Innate Models

This section takes the general properties of the innate immune system presented
in Section 2 and abstracts them by adopting the conceptual framework. The
abstracted properties form the basis of a meta-framework for innate models and
are presented in terms of each of the ODISS areas of the conceptual framework:

openness : the interaction between the immune system and the host is one of a
poised system in dynamic equilibrium coupled to an ever-changing environment.
The relatively constant populations of innate immune system cells contrasts
with the fluctuating populations of the adaptive system. The innate immune
system provides examples of mechanisms for controlling the dynamic allocation
of resources of populations of agents.

diversity: the different classes of cells of the innate and adaptive immune
systems leads to the idea of distinct groups of functionally similar agents. At
a different level, clonal distribution of receptors is an good example of different
ways in which diversity manifests itself in biological systems. The underlying pro-
cesses which drive diversity of innate receptors are evolutionary, while adaptive
receptor diversity is established through adaptation.

interaction: in the wider sense considering the innate immune system shows
how computation is largely communication, with immunity arising from the
cytokine networks of signalling interactions between intercommunicating tissue
cells and the innate and adaptive immune systems. Adaptive and innate immune
cells are also specialised to access different informational levels. Innate cells focus
on class features, while adaptive cells on individual features. Crosstalk between
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signalling networks is also a prevalent property in the immune system. Spatiality
and temporally are key features of interactions across all levels.

structure: considering the innate immune system necessitates a view of the
immune system composed of distinct subsystems. Functional similarities as well
as differences can be seen between the innate and adaptive subsystems. The in-
nate and adaptive are themselves composed of interacting populations of agents.
Cell differentiation pathways provide an even more fine-grained division of cells
into types.

scale: diverse populations of large numbers of cells is a hallmark of the im-
mune system. A challenge for artificial immune systems is the need to simulate
large populations of agents. Exploiting the emergent properties of distinct pop-
ulations of large numbers of simple agents rather than a smaller number of more
complex agents, along with distributed and parallel architectures for artificial
immune systems [28] may provide a way forward.

3.3 Refining the Framework

As seen in the previous section, the innate immune system provides exam-
ples of general properties for artificial systems. Systems of agents form a con-
venient meta-representation of artificial systems, and many artificial systems
are based on populations of interacting agents. This section adopts this meta-
representation and refines the general properties of the previous section by dis-
cussing how they might be instantiated in models.

Cells seen as autonomous agents forms the basis of the meta-representation
discussed here. The intercellular communication involved in all the mechanisms
of Section 2 suggests the need for similar means of intercommunication between
agents. Signals which allow groups of agents to control the functions and state of
other groups of agents are necessary. A finer-grain representation of intercellular
signals into distinct classes, as seen in the biological immune system, such as cos-
timulatory, primer or chemokine signals, would allow artificial systems to more
closely approximate the control mechanisms and systemic properties of biologi-
cal systems. A key role of the environment which these agents exist in, termed
artificial tissue here, is the provision of a milieu in which agents can interact via
signalling. As well as passing signals between agents, mechanisms such as anti-
gen processing and presentation to Th cells by DCs suggest the need for agents
with the ability to “consume”, process and pass on information to other agents.
Some groups of agents, akin to Th or CTL cells, would not have direct access to
information, but instead see it through the filter provided by these information
processing agents. Artificial tissue would provide the mechanisms for these kinds
of interaction with the environment and other agents.

The representation of pathogens at multiple levels suggests another “service”
which artificial tissue has to provide. A problem must be represented at multi-
ple levels. The artificial tissue allows agents of the artificial immune system to
access different levels of information about events. At the very least, informa-
tion concerning the structure of events and signals relating to the way elements
behave or interact with the tissue as a whole needs to be accessible. Classical
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static classification problems could perhaps be translated into such a multilevel
representation by clustering algorithms or statistical methods which give indi-
cations of how individual feature vectors relate to a whole set of other vectors.
However, the innate immune system clearly relies on sensing the behaviour as
well as structure of pathogens, and tissue models built entirely from information
derived from structural considerations, such as similarity or differences between
feature vectors, fail to capture this reliance. Dynamic, realtime problems such
as intrusion detection offer a much more amenable domain as they naturally
include notions of behaviour. For example, a computer virus not only has a par-
ticular structure, its program code, but also behaves in a certain way through
its interactions with other programs and operating systems, searching for other
machines, subverting the function of existing programs, installing backdoors on
systems, and so on.

Over its lifetime a cell differentiates along a particular pathway, with each
differentiation stage along this pathway representing a specific cell type. All
cells at the same stage of differentiation are of the same type and have the same
phenotypic configuration and functional characteristics. Which pathway a cell
follows is the result of the environmental pressures the cell experiences. Little of
the dynamics of the immune system can be captured if agents in artificial immune
system models do not possess similar developmental characteristics. This could
be modelled by endowing agents with a set of functions, subsets of which the
agent performs at any one time and which represent the current type of the
agent. Transitions from one type to another are a result of interactions of the
agent with its environment and could be pictured as a branching tree structure.

While cells act as individuals, differentiating along their own individual path-
ways, they also act as part of a group. At this population level, considering the
innate immune system highlights the need for groups of agents which respond to
different types of information. Certain agents might identify fixed patterns in this
information, embodying some type of notional TLR, while others would identify
variable patterns, akin to TCRs. The processes which drive the specificity of
receptors may be adaptive or evolutionary, with different pressures biasing the
type of information surveyed by agents.

Cells control other cells on an individual contact-dependant level. They also
control cells in a local neighbourhood through the production of cytokines. This
localised control leads to dynamical patterns at the population level. DC control
of Th proliferation through costimulatory molecules is a good example of how
local interactions control the population of Th cells and determine population-
level phenomena such as clonal distribution. Effects of the artificial tissue on
one group of agents should have resulting effects on populations of other agents.
The generation of peripheral tolerance by DCs suggests a mechanism by which
signals presented by the artificial tissue are received by one group of agents and
have a direct effect on other groups of agents. This control might not be as
clearcut as live or die, but more a direction of differentiation pathways, of which
polarisation of Th cells by TLRs on DCs is a good example.
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Lastly, mechanisms of trust or obligation are established. The NK “missing
self ” model is a good example of this. The provision of sufficient quantities
of MHC can be seen as a monitoring requirement, imposed by NK cells, of
the system. If tissue cells fail to provide MHC they are destroyed. In realtime
monitoring situations, models of such a suppression-based mechanism might be
used to establish if groups of data providing agents are functioning.

3.4 Summary

Using the biology of the previous section as a basis, this section has sketched out
a meta-framework for models of innate immunity, discussing general properties
of such models and also how they might be realised more concretely. While the
properties presented have tried to capture the core features of innate immunity,
due to space and intellectual constraints they are not exhaustive and need to be
combined with existing frameworks of adaptive models [5] if integrated models
are to be built.

4 Conclusion

This paper has presented a summary of current biological understanding of the
innate immune system, contrasting it with the adaptive immune system. Adopt-
ing a conceptual framework it then proposed and refined a meta-framework for
artificial systems incorporating ideas from innate immunity. While emphasising
the role of innate immunity, in reality, the innate and adaptive systems are in-
timately coupled and work together to protect the host. As already suggested,
combining the properties suggested here with those of traditional population
and network models would enable artificial systems to more closely reflect their
biological counterparts.

Other possibilities for future work include a review within the proposed
framework of artificial immune system models such as [29,30] which already
include innate immunity. This would help evaluate and compare these models,
discerning commonalities and providing direction for future research. Developing
more detailed mathematical and computational models would be an important
next step in a more detailed understanding of the properties of innate immunity.
These models could then be used to instantiate a range of systems in different
application domains. More realistic and principled models could also extend un-
derstanding on the dynamics of competing immunological models such as those
of instructive or consensual regulation of Th1/2 responses, or modulation of
costimulatory signals.

Couching ideas of innate immunity within an accepted conceptual framework
provides a step in developing more integrated artificial immune system models
which take into account the key role the innate immune system plays in host pro-
tection. As always, the beauty and subtlety of the immune system will continue
to provide a rich source of inspiration for designers of artificial systems.
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Abstract. In this conceptual paper, we consider the state of artificial
immune system (AIS) design today, and the nature of the immune the-
ories on which they are based. We highlight the disagreement amongst
many immunologists regarding the concept of self–non-self discrimina-
tions in the immune system, and go on describe on such model that
removes altogether the requirement for self–non-self discrimination. We
then identify the possible inspiration ideas for AIS that can be gained
from such new, and often radical, models of the immune system. Next,
we outline a possible approach to designing AIS that are inspired by new
immune theories, following a suitable methodology and selecting appro-
priate modelling tools. Lastly, we follow our approach and present an
example of how the AIS designer might take inspiration from a specific
property of a new immune theory. This example highlights our proposed
method for inspiring the design of the next generation of AIS.

1 Introduction

Through the collaborative effort of many interdisciplinary researchers, the field
of Artificial Immune Systems (AIS) is beginning to mature. The AIS researcher
now has at their disposal an extensive body of literature, including an AIS text-
book [1], and a wide ranging collection of successful application papers [2,3,4].
Invaluable to the maturation process of any research area, is the ability to reflect
and comment on the way work in that field is conducted. This kind of activity
is starting to be seen in AIS [1,5,6]. As a continuation of these ideas, we have
focused on how and where the AIS practitioner gains inspiration from the im-
munology on which AIS are based. By looking at the state of AIS today, and
the nature of the immunological theories on which these AIS are based, we high-
light the importance of actively seeking out new and often controversial immune
theories. From these theories it is possible to gather new ideas and processes for
AIS inspiration. As an example, we summarise the details of such a theory of the
immune system that has been presented by Cohen [7]. Using this example, we
then show the type of ideas that could be used for AIS inspiration, and highlight
a possible approach to exploiting this inspiration for AIS development by fol-
lowing a conceptual framework approach [6] and selecting appropriate modelling

C. Jacob et al. (Eds.): ICARIS 2005, LNCS 3627, pp. 126–138, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Inspiration for the Next Generation of Artificial Immune Systems 127

tools. Finally, following our outlined approach, we present a simple example in
which we select receptor degeneracy as a property present in Cohen’s immune
model that has not previously been used in AIS design. Within this example, we
highlight how inspiration can be taken from it to design an AIS, and what can
be gained from doing this.

2 Current AIS

The current state of AIS research can be gauged from the proceedings of the
previous three international conferences on AIS [2,3,4]. Year on year, we see an
increase in both the number of papers published, and the number of successful
applications to which AIS have been applied. The immunological inspiration on
which the majority of these AIS are built, comes from either the processes based
on Burnet’s clonal selection theory [8], or Jerne’s immune network theory [9].
Although these are competing and contradictory theories for the functioning
of the immune system, they have both been able to inspire examples of AIS
that satisfactorily perform their desired tasks. Thus, from an AIS perspective,
both the clonal selection and immune network theories are equally useful for the
purpose of providing the AIS designer with inspiration. It is important, however,
that the theory chosen from which to take inspiration is appropriate, based on
the behaviours required from the AIS. As Freitas and Timmis [5] have pointed
out, the AIS practitioner needs to consider the application area of the AIS when
designing it.

It is clear from many recent examples of AIS, that the way in which they
are designed has changed from the early days of AIS research. The original
AIS, such as those by Bersini [10], Forrest et al. [11], and Hightower et al. [12],
were developed using an interdisciplinary approach, with clear attention paid
to the biology from which inspiration was being taken. More recently, however,
the design focus of many AIS has become more engineering oriented, with less
emphasis placed on trying to understand and extract key biological properties.
Consequently, these AIS have been built directly from näıve biological models,
thus suffering from a case of ‘reasoning by metaphor’ [6]. It is noted, however,
that not all recent AIS are designed in this way. For example the works of
Hart and Ross [13], Wilson and Garrett [14] and Jacob et al. [15], have all used
modelling techniques to build AIS in order to understand underlying immune
properties.

3 Immunological Arguments

The success of an AIS practitioner owes much to the theories presented by the
immunologist. Many immune processes, however, are not well understood, and
there is little agreement amongst many immunologists regarding many of the key
immune principles, such as self–non-self discrimination. This is clearly evident
from a number of articles published in volume 12 of Seminars in Immunology
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[16,17,18,19,20,21,22] from 2000. In this journal volume, many leading immunol-
ogists discuss their views on the nature and importance of self–non-self discrim-
ination in the immune system. Tauber [22] points out that the concept of self
and the idea of discriminating between self and non-self in the immune system,
was first explicitly suggested by Burnet in his formulation of the clonal selec-
tion theory [8]. By the 1970s, this theory had been widely accepted amongst
immunologists, and it still forms the basis for many of the processes described in
textbooks on immunology today. Jerne’s immune network theory [9] presented
in the early 1970s, however, presented a challenge to the idea of an immune
self. The immune network theory is characterised by a self-organising model in
which there is no concept of self and non-self, only the elements of the network.
It is to perturbations of the self-organised network itself that a reaction occurs.
Tauber believes that the alternative models of the immune system presented in
the aforementioned journal volume, fall to various degrees between the ideas of
Burnet and Jerne, and are thus a continuation of the arguments between these
two points of view.

On closer examination of the articles presented in volume 12 of Seminars in
Immunology, one appreciates more the level to which many immunologists differ
in their views. This is summed up by Langman and Cohn, who state in their
editorial summary:

“There is an obvious and dangerous potential for the immune system to
kill its host; but it is equally obvious that the best minds in immunology
are far from agreement on how the immune system manages to avoid
this problem.”[23]

Of the immune models presented in the journal, Langman and Cohn’s own min-
imal model of self–non-self discrimination [20] is the one closest to the original
ideas of Burnet, whereas Cohen’s [18] is the closest to Jerne’s. Between these,
and to various degrees, fall the models of Bretscher [17], Medzhitov and Janeway
[21], Anderson and Matzinger [16] and Grossman and Paul [19]. This raises the
question that if the immunologists are themselves unclear as to the functioning
of many immune processes, where does this leave the AIS practitioner when
deciding which aspects of immunological theory to take inspiration from? As
mentioned above in section 2, both the clonal selection and immune network
theories have provided inspiration for successful AIS, so, we would like to suggest
that alternative theories of immune processes can be equally useful for inspir-
ing AIS. Indeed, we believe that the AIS practitioner should actively investigate
these theories as they are likely to highlight new and different models of immune
processes, and thus alternative ideas from which to take inspiration.

4 Cohen’s Immune Model

Having established our belief that alternative immune theories can be beneficial
to AIS, we describe ideas from Cohen’s model of the immune system that are
presented in [18,7,24]. We will then highlight the scope for inspiration for AIS
that could be taken from Cohen’s ideas.



Inspiration for the Next Generation of Artificial Immune Systems 129

4.1 The Immune System

Cohen’s model of the immune system is a holistic one, being presented as a com-
plex, reactive and adaptive system, whose role is body maintenance. This departs
from the classical view that defence against pathogen and self–non-self discrimi-
nation is the main purpose of the immune system. Removal of pathogen, however,
is beneficial to the health of the body, and thus defence against pathogen is con-
sidered to be just a special case of body maintenance. In order to carry out body
maintenance, the immune system must be able to detect the current state of the
body’s tissues and elicit an appropriate response. To explain how this is achieved
in Cohen’s model, we first need to examine the elements of the immune system.

The immune system comprises a set of immune agents consisting of spe-
cialised cells and molecules, which are distributed around the body. The immune
cells include the lymphocytes (e.g. T and B cells), monocytes (e.g. macrophages)
and granulocytes. The immune molecules consist of those molecules that stimu-
late, or are utilised by, immune cells for the purposes of the immune system, and
include the cytokines, antigen receptors and plasma proteins. The input to the
immune system constitutes the molecular shapes that are sensed by immune cell
receptors when binding to a ligand occurs. There exists two types of immune
cell receptor: the innate receptors that have evolved to recognising germ-line
molecules such as cytokines, and the somatically generated antigen receptors of
the T and B cells. The observed response of the immune system to receptor input
is a complex reaction between the immune agents that causes a change in the
states and activities of immune cells. This change then causes the immune agents
to produce a number of different effects on the body, including cell growth and
replication, cell death, cell movements, cell differentiation and the modification
of tissue support and supply systems. The range of processes that the immune
system can have on the body is termed inflammation, and this is seen to be the
output of the immune system. The task of the immune system, therefore, is to
produce the correct inflammatory response to the receptor input in order to keep
the body functioning.

4.2 Specificity, Co-respondence and Patterns

According to the clonal selection theory, immune specificity is a property of the
somatically generated immune receptors of the T and B cells, which both initi-
ates and regulates the immune response. Initiation is achieved via the binding
between an antigen and a receptor that is specific to it. The response will then
stop only when there is no antigen or receptor left for binding. Cohen, however,
points out that immune receptors are intrinsically degenerate, i.e. they can bind
more than one ligand. Immune specificity, therefore, cannot be purely depen-
dent on molecular binding as no one receptor can be specific to a single antigen.
Instead, affinity, the strength of binding between a receptor and its ligand, is
a matter of degree. In Cohen’s model, immune specificity requires diagnosing
varied conditions in the body and producing a specific inflammatory response.
This specificity emerges from the co-operation between immune agents, and does
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so despite receptor degeneracy and the fact that immune agents are pleiotropic
and functionally redundant. Pleiotropism refers to the fact that a single immune
agent is able to produce more than one effect, for example the same cytokine
is able to kill some cells whilst stimulate others. Functional redundancy con-
cerns the ability of one class of immune agents to perform the same function as
another, for example cell apoptosis can be induced by different immune cells.
There are two processes provided by Cohen to explain the generation of immune
specificity in his model: co-respondence, and patterns of elements.

Co-respondence is a process whereby the agents of the immune system re-
spond simultaneously to different aspects of its target, and to its own response.
This results in a specific picture of an antigen emerging from immune agent
co-operation, and is explained by the following process. As previously noted, im-
mune receptors provide the input to the immune system by recognising molecular
shapes. There are three different types of immune receptor that recognise differ-
ent aspects of antigen. These are the somatically generated receptors of the T
and B cells and the innate receptors of macrophages. The T cell receptors are re-
stricted to recognising processed fragments of antigen peptides bound to a MHC
molecule, whereas the B cell receptors (antibodies) recognise the conformation
of a segment of antigen. The innate receptors of macrophages don’t recognise
antigen, but germ-line molecules. These molecules form a set of ancillary sig-
nals that describe the context in which lymphocytes are recognising antigen.
These ancillary signals can be classified into three classes: the state of body
tissues (some receptors detect molecules only expressed on damaged cells), the
presence and effects of pathogen (some receptors are unique to infectious agents
such as bacterial cell wall) and the states of activation of nearby lymphocytes
(some receptors detect immune molecules produced by lymphocytes). In addi-
tion to interacting with their target object, the T cells, B cells and macrophages
use immune molecules to communicate their response to each other, and other
tissues of the body. This forms an immune dialogue comprised of an on-going
exchange of chemical signals between the immune cells. Subject to this exchange
of information, they update their own responses accordingly, be it to increase
or decrease the vigour of their response. The exchange of information between
immune cells is also affected by the existence of networks of immune agents, such
as cytokine and idiotypic networks, and by the processes of positive and negative
feedback in these networks. The process of co-respondence can be summed up
by figure 1.

Patterns of elements help generate immune specificity as the specificity of
a pattern can extend beyond that of the individual elements that make up the
pattern. Immune patterns are a complex arrangement of populations of immune
agents, which, through their individual activity, produce a specific pattern of
activity. For example, a pattern can emerge toward a particular antigen from
the overlapping reactions of a population of degenerate immune receptors. Even
though each immune receptor is non-specific to its target, the result of all the
receptor reactions together will be unique, and thus specific to that antigen.
Patterns can also be built with the help of immune agent pleiotropism and



Inspiration for the Next Generation of Artificial Immune Systems 131

Tissues Context

Infection

Damage

Health

Protein antigens

Amino acid sequence Conformation

Peptide-MHC

Macrophages T Cells B Cells

Co-response signals

Cytokines Processed peptides Interaction molecules Antibodies

Protection

Maintenance

�

�

� � �

� � �

� � �

Fig. 1. Co-respondence, as taken from [7], where rectangles represent objects, ellipses
within rectangles represent states of objects, arrows designate directions of relationships
and items separated by broken lines can be combined to generate joint products

functional redundancy. Here, the ability of different immune agents each being
capable of responding to a situation with a number of different immune effects,
allows more response options to be available than just having a single mapping
between immune agent and its effect. Thus, specificity emerges through a co-
operative pattern of degenerate, redundant and pleiotropic immune agents.

4.3 Maintenance

In order to achieve body maintenance, the immune system selects and regulates
an inflammatory response according to the current condition of the body, util-
ising the mechanisms of co-respondence and patterns of activity. Thus, immune
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recognition and response is not just a function of the adaptive arm of the immune
system, but a collaborative effort between both the adaptive and innate arms.
Also central to the idea of immune maintenance, is the ability to recognise the
state of the body’s own tissues. This is called autoimmunity, and refers to the
existence of antigen receptors that recognise the body’s own molecules. Accord-
ing to the clonal selection theory, this is undesirable as the receptor will initiate
an attack on the molecule it recognises, causing an autoimmune disease such as
rheumatoid arthritis. In Cohen’s model, healthy autoimmunity is a requirement
of the immune system, and an explanation is provided for how healthy autoim-
munity and autoimmune diseases co-exist in [7]. Cohen also goes on to present
the immune system as a cognitive system that, like the brain, forms an internal
history, self-organises (learning and memory) and makes deterministic decisions.
The details of this are too many to include in this paper, but the interested
reader is referred to [7] for more details.

4.4 Ideas for Inspiration

From Cohen’s immune model, we can identify a number of properties not present
in the clonal selection theory that could provide inspiration for AIS. Some of
these ideas are present in Jerne’s immune theory and have already been used
as inspiration for AIS, but we still discuss them here as they form key parts of
Cohen’s model, and the way in which they are integrated into it may highlight
alternative inspiration. There are two levels of scale of inspiration from Cohen’s
model, the high level ideas and paradigms that describe the functioning and
behaviour of the immune system, and the lower level processes that are proposed
to achieve the described functions. The high level ideas include:

– Maintenance: The role that Cohen sees the immune system as fulfilling,
rather than the discrimination of self from non-self.

– Co-operation: The immune response is a collaborative effort between the
innate and adaptive immune agents.

– Emergent Behaviours: The observed immune responses and properties, such
as immune specificity, emerge from the functioning of immune agents rather
than a one-to-one mapping between a receptor and antigen.

– Autoimmunity: Receptors that are able to recognise the state of the body’s
own tissue are beneficial rather than undesirable.

Examples of the low level processes include:

– Multiple Immune Agents: Co-respondence involves the interactions of differ-
ent agents such as macrophages, T and B cells.

– Signalling Networks : Immune agents communicate using an immune dialogue
of signalling molecules.

– Feedback : Positive and negative feedback help to co-ordinate the immune
response.

– Degeneracy: The degeneracy of antigen receptors provides a many-to-one
relationship between the receptors and specificity of recognition.
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– Pleiotropia and Redundancy: The pleiotropic and redundant nature of im-
mune agents are also important in providing specificity of response.

By highlighting these properties, it is then possible to identify application areas
to which they might be applied. For example, the notion of the immune system
as a concurrent and reactive maintenance system, lends itself well to application
domains that operate in dynamic environments, such as embedded systems and
robotics.

5 Exploiting the Inspiration

Once the AIS designer has investigated the immune theories and identified the
relevant immune properties, the AIS must then be built in way that utilises these
properties effectively. To do this, we suggest that the designer adopts a suitable
design methodology and a set of appropriate modelling techniques suited to the
nature of the immune processes chosen for inspiration.

5.1 A Conceptual Framework

One of the main problems involved in designing bio-inspired algorithms, is decid-
ing which aspects of the biology are necessary to generate the required behaviour,
and which aspects are surplus to requirements. To help tackle this and enable
the development of bio-inspired algorithms in a more principled way, Stepney
et al. [6] have suggested a conceptual framework for designing these algorithms.
This framework promotes the use of an interdisciplinary approach to developing
and analysing these algorithms. It encompasses a number of modelling stages,
the first of which utilises biological observations and experiments to provide a
partial view of the biological system from which inspiration is being taken. This
view is used to build abstract models of the biology, which are then open to
validation. Frameworks can then be built and validated from these models to
provide the principles for designing and analysing the required bio-inspired al-
gorithms. Using such a framework aims to stop the designer from making näıve
assumptions about the biological processes that are providing the inspiration,
and thus preventing the development of algorithms that are just a weak analogy
of the process on which they are based.

We suggest that when taking inspiration for AIS from immune theories not
previously exploited, the adoption of the conceptual framework approach is es-
pecially important. For instance, the theory may not be fully formed or well
understood, so it is possible that unexpected or unexplained behaviours will
arise from the properties being modelled. Following the conceptual framework
ideas should help capture such occurrences. Additionally, the immune models
built by the AIS practitioner to investigate the properties of immune theories
may be of help to immunologists. By following a principled design methodology,
these models should be able to provide experimental evidence for, or against, the
assertions made by immunologists in their theories. This should provide useful
insights and help to develop these theories further.
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5.2 Modelling Tools

Following the conceptual framework approach requires the building of models
of the biological processes. Building models of immune processes is an aid to
understanding how these processes work, and has been carried out by theoreti-
cal immunologists and AIS practitioners for many years. These immune models
naturally fall into two main classes: mathematical models and computational
models. The majority of the mathematical models consist of differential equa-
tions that model the population dynamics of interacting immune agents, Perelson
[25] provides an overview of many of these techniques. Successful computational
models that have been used for immune process modelling include cellular au-
tomata [26], Boolean networks [27] and UML statecharts [28].

To model a particular immune process effectively, the modeller needs to select
appropriate techniques. For example, if the immune process being modelled is
an emergent behaviour, then the designer needs to choose a modelling technique
that allows emergence to occur. By considering the description in section 4, we
are able to highlight suitable techniques that can be used to model the immune
processes within Cohen’s model. In [7], Cohen states that most experimental
immunological research has been concerned with a reductionist approach, tak-
ing apart the system to identify the basic building block in order to understand
the system as a whole. The immune system, however, has been presented as
an adaptive, reactive and concurrent system in which many immune functions
are emergent properties of the interactions amongst the immune agents. Thus,
to build models based on Cohen’s description requires modelling tools that take
the reductionist experimental data as its building blocks and allow behaviours to
emerge. Such modelling tools are used extensively by the Artificial Life (ALife)
community. ALife, as described by Langton [29], takes a synthetic, bottom-up
approach to biology, putting together the interacting elements of a system in
order to understand it. The interactions between these elements produce emer-
gent dynamic behaviours such as those in Cohen’s immune model. We suggest,
therefore, that the models used by the ALife community are suitable in the de-
sign process of AIS inspired by immune models such as Cohen’s. Examples of
these ALife modelling techniques include recursive developmental systems, such
as cellular automata and L-systems, evolutionary systems, such as genetic algo-
rithms, (multi-)agent based systems, such as swarms, and networks of automata,
such as Boolean networks.

In addition to the tools that have already been used to model the immune
system and the proposed ALife tools described above, techniques that have been
utilised in other biological modelling areas may be appropriate to immune mod-
elling, and should thus be investigated. For example the work by Johnson et
al. [30] utilises object-oriented methods to model intra-cellular processes, and
a similar approach could be used successfully in immune modelling. An effec-
tive example of a modelling technique taken from a different modelling area is
given by Chao et al. [31], where a stochastic age-structured model that is of-
ten used in ecology has been applied to modelling immune cell populations and
transitions.
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5.3 Example: Receptor Degeneracy

In section 4.2 we discussed Cohen’s rejection of the classically held clonal selec-
tion theory view of immune specificity, where specificity arises from the molecular
binding between a target antigen and a single receptor specific to that antigen.
Instead of this one-to-one mapping between receptor and antigen, immune recep-
tors were described as being degenerate, each interacting with a target antigen
to various degrees. This meant that the differentiation between target antigens
by a population of degenerate receptors, is a function of the interactions be-
tween each receptor in the population and an antigen. This was presented in
terms of patterns of response, where recognition occurs as a many-to-one rela-
tionship between receptors and antigen. The majority of AIS designed to date
that utilise the antigen-receptor matching paradigm, have taken the one-to-one
mapping route to recognition. Additionally, the dimensionality of the receptor
and antigen representations in the AIS algorithms is typically the same, which
is biologically implausible as immune receptors (antibodies and T cell receptors)
only recognise parts of a target antigen. Thus, we have chosen the idea of recep-
tor degeneracy as our case study of a possible new area for AIS inspiration. To
describe how this might be done, we need to address three questions: what are
the details of the observed immune mechanism, how can we exploit this mech-
anism for AIS design, and why might this be useful? These questions can be
analysed within the conceptual framework approach to AIS design described in
section 5.1.

The first stage in the conceptual framework approach will determine the
details of the observed biological mechanism from which inspiration is being
taken, by using biological observations to provide a partial view of the biology.
For the example of receptor degeneracy, this could fall into two parts. Firstly,
the analysis of Cohen’s ideas from the literature [18,7,24] is needed to help
understand the general details of what receptor degeneracy means. Secondly,
via the use of experimental research articles, ideas can be gleened from the
specific biological detail of how the receptor degeneracy process works as part of
the immune system. For example, we might focus on the cell-mediated biology
of T cells, where different processed fragments of target antigen are presented
via MHC to a randomly generated population of T cell receptors. This detail
will help inform the abstract biological models that need to be built in the next
step of the framework.

The second stage in the conceptual framework approach involves building
abstract models of the biology and will provide the detail on how to exploit
the receptor degeneracy mechanism for AIS design. At this point, as described
in section 5.2, we need to make an informed choice of which modelling tools
to use. We have seen that the previous stage of the framework approach will
provide the reductionist biological data with which to build our models, and so
the choice of a first modelling tool will rest on this data as well as our intended
goal. A suitable choice might be a cellular automaton, as this is able to provide
dynamic and emergent behaviours whilst still providing a spatial element to the
modelling, thus being close to the original biology. This should help maintain
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the required properties of the observed biology. The choice of subsequent models
of the biology will be informed by the previous ones, dependent on what these
models were able to show. The type of models used will naturally become more
abstract and general in order to get closer to the algorithm design stage. The
modelling stage of the conceptual framework approach will proceed until we can
produce a suitable framework for algorithm design.

The last stage in the conceptual framework approach before designing the
specific AIS, is to produce the concrete framework using insight gained during
the modelling phase, which should provide the suitable general principles for the
algorithm design. In the case of receptor degeneracy, we would hope to uncover
insight into the size of processed antigen fragment needed, the number of T cell
receptors needed to recognise antigen, suitable affinity metrics, and so on. It is
also at this stage that we can make an informed decision on what receptor de-
generacy might be a useful property for, leading to the choice and production of
specific AIS algorithms. It is anticipated, for example, that receptor degeneracy
may be a useful generalisation property for rationalising about unseen antigen,
and also a technique for reducing the dimensionality of a problem. It may be
that an analogy with neural network models will become apparent [32].

Throughout the whole process of following the conceptual framework method,
there are five general system properties to be considered. These, as stated by
Stepney et al. [6], are openness, diversity, interactions, structure and scale, and
are all linked to and influence each other. As a last point, we note that the
conceptual framework method does not always end with the production of the
designed AIS. The process of producing a framework from which to design an
AIS is cyclical, with the knowledge gained by following it fed-back into produc-
ing still better models, frameworks and algorithms. Additionally, the investiga-
tion of mechanisms like receptor degeneracy can be used as a building block to
producing AIS inspired by more complex processes such as Cohen’s process of
co-respondence.

6 Conclusion

In this paper, we have first considered how the majority of AIS are designed to-
day by examining them from a historical perspective. It was seen that these AIS
are almost exclusively inspired by immune processes based on either the theo-
ries of Burnet or Jerne. By investigating the state of current thinking amongst
immunologists today, it is clear, however, that certain immune concepts, such as
self–non-self discrimination, are far from agreed upon. This lead us to examine
the perceived benefits to AIS design of exploring an alternative immune the-
ory, such as Cohen’s. Cohen’s immune theory was able to highlight a number of
ideas for inspiration that are not present in either the clonal selection or immune
network theories. We have then highlighted a possible approach to designing an
AIS based on an alternative immune theory, advocating the use of a suitable de-
sign methodology, and the choice of appropriate modelling techniques. As a final
exercise, we presented an example of how we could following our outlined ap-
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proach to take inspiration from the idea of receptor degeneracy that is described
in Cohen model. Future work will involve performing practical steps similar to
those described in section 5.3 to follow the conceptual framework approach to
designing an AIS inspired by Cohen’s work.
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Abstract. An immune system without tissue is like evolution without genes. 
Something very important is missing. Here we present the novel concept of tis-
sue for artificial immune systems. Much like the genetic representation of ge-
netic algorithms, tissue provides an interface between problem and immune al-
gorithm. Two tissue-growing algorithms are presented with experimental results 
illustrating their abilities to dynamically cluster data and provide useful signals. 
The use of tissue to provide an innate immune response driving the adaptive re-
sponse of conventional immune algorithms is then discussed. 

1   Introduction 

Multicellular organisms are very attractive places for viruses, bacteria, fungi and 
parasites. They provide protection against the uncertainties of the world: stable tem-
peratures, food, machinery to help reproduction, and sometimes even help remove 
their waste products. But unfortunately, the cellular structure of multicellular organ-
isms (which for simplicity, we will call tissue in this paper) is not always designed to 
cope with such uninvited guests. When infected, tissue may degrade or deteriorate, 
leading to, at worst, the death of the entire organism. To overcome such problems, 
some of the cells of organisms fight back. They actively search out and destroy 
pathogens, in order to maintain the tissue of the organism. (In immunobiology, it is 
known that tissue also provides an innate immune response, with cells such as B and 
T cells providing the adaptive response .) 

So the immune system exists to protect tissue from harm. In one sense, an immune 
system without tissue is meaningless. Yet in the field of artificial immune systems 
there is no real concept of tissue. Data is typically mapped directly to antigens. In 
many cases there is not even the concept of immune cells, let alone tissue cells. Both 
conceptually and technically, this can cause difficulties – for if every new artificial 
immune system (AIS) is directly “wired” to a specific problem, then it becomes diffi-
cult to compare, analyse and even to apply the AIS to new problems. 

Here we propose an alternative treatment for artificial immune systems. Instead of 
joining the AIS to its application directly, it is proposed that an intermediary represen-
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tation is employed, much like the genetic representation of the genetic algorithm. This 
intermediary will be a dynamic encoding of the current problem providing the equiva-
lent of an innate immune response to support the adaptive response of an AIS. The 
encoding will be modified according to the problem like the genetic encoding of a GA 
[1]. But regardless of the underlying data, it will present a consistent interface to an 
artificial immune system. That interface will be tissue, fig 1. 

 

Fig. 1. Tissue should act as the interface between problem and AIS 

2   Background 

The concept of artificial tissue is used extensively in cell modelling and simulation, 
with additional applications in electronics and biotechnology. One well-known exam-
ple was the POEtic project, which used the concept of cellular tissue and immune cell 
modelling within hardware devices [11]. In this architecture each cell is treated as an 
individual processing device, with the tissue performing the role of providing an inter-
face between a biologically inspired processing mechanism and data provided by the 
environment. Similarily, in [3], fault tolerant electronic circuits were constructed and 
used a combination of embryonically grown cells coupled with immune-inspired 
negative selection. This model provides an immune inspired component and entity to 
protect, though the protected cells did not provide feedback signals to the AIS. The 
protected cells in this system were embryonically grown, sending out signals to sup-
port each other. The system partitioned the AIS and the cells into separate layers, 
providing communication between the two components. This architecture was im-
plemented and applied to various hardware devices.  Examples of developmental 
models that include aspects of tissue growth are becoming more popular; interested 
readers should consult  [7]. 

In biology, tissue has long been known to be a crucial component of the immune 
system, and this role was highlighted further by Matzinger. The Danger Model, pro-
posed by Polly Matzinger in 1994 [9], attempted to alter the perspective from which 
the immune system was viewed. This involved abandoning the belief that the immune 
system is conditioned at an early age to distinguish self from non-self proteins. In-
stead, this model proposes that the immune system contains cells sensitive to cellular 
damage. In her words: “The Danger model  … suggests that neither the innate nor 
adaptive immune systems are in ultimate control. This function belongs to the ancient 
innate responses of the normal bodily tissues themselves” [8]. 

The theory suggests that signals are innately released from cells under stress, due 
to damage, often derived from pathogens, physical disruption, radiation, extreme pHs 
or temperature. These signals may cause tolerance to proteins through regulatory cell 
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activation or lead to the activation of effector cells [10]. This discrimination is based 
on the information gathered from proteins collected within the body, in combination 
with various signals derived from host tissue cells. The combination of antigens-plus-
signals can give information regarding damage to a specific area of tissue. In order to 
understand what the signals are and under what conditions they arise, two important 
types of cell death have to be examined.  

1. Apoptosis. Tissue cells can die in a number of different ways, forming part of 
the life cycle of a cell. It is essential for cells to die under controlled conditions to 
provide regulation of tissue growth and to remove defective and virally infected cells. 
This type of pre-programmed cell death is known as apoptosis. On receipt of an apop-
totic signal the cell releases a number of degrading enzymes which have dramatic 
effects on the internal structure of the cell. The cell's DNA is fragmented into orderly 
portions, nuclear condensation is initiated and organelles are broken down. During 
this period of degradation, the integrity of the outer cell membrane remains intact, 
while expressing greater quantities of signalling molecules on the membrane surface. 
These molecules are detected by innate immune cells, such as macrophages, which 
are triggered to ingest the cell, ultimately resulting in removal of the apoptotic cell 
from the tissue[5].  

 2. Necrosis. In contrast, unexpected, chaotic cell death does not involve an intri-
cate removal system. Unlike apoptotic cells, the necrotic cell swells up, the internal 
material is chaotically fragmented and the membrane integrity is lost. Ultimately, the 
cell explodes, releasing its contents into the fluid surrounding the cell. Cellular prod-
ucts released as a result of necrotic cell death are known as danger signals - endoge-
nous activators of the innate immune system. This includes molecules derived due to 
cell degradation, inclusive of uric acid, adenosine-tri-phosphate, and heat shock pro-
teins[12], in addition to an array of pro-inflammatory cytokines.  

 Without tissue there would be no endogenous danger signals, no innate immune 
activation and nothing to protect. Additionally it is thought that the absence of tissue 
derived danger signals is as equally important as their presence, through the genera-
tion of proteins that do not belong to the host, yet cause no damage, e.g. bacterial gut 
flora. The detection of an apoptotic signal is translated into the activation of the adap-
tive immune system's regulatory cells [10].  

It is clear that tissue has been highlighted as an integral part of immune function. 
Danger signals released from cells dying under stressful conditions activate cells be-
longing to the innate immune systems. These cells ultimately control the effector cells, 
and giving direction to the immune response. Yet, the concept of tissue has not been 
widely used within AIS. The question remains: is it possible to construct artificial 
tissue to provide an interface between an application and an artificial immune system? 

3   Defining Tissue 

Focussing for now on the task of anomaly detection, it is proposed that tissue de-
signed for artificial immune algorithms should comprise a series of linked cells, each 
cell “grown” in response to specific data, in a data stream being input to the system. 
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Cells should grow and be supported by homogeneous data. Where data does not exist 
to support a cell, the cell dies. Where too much/too diverse data exists for a cell, the 
cell divides. Cells should exist in a dynamic network structure, with similar cells 
linked or placed near to each other. The use of a cellular representation is also in-
tended to enable distributed processing and the support of multiple datastreams simul-
taneously. 

In the ‘tissue paradigm’ all communication between a problem and AIS is medi-
ated via the tissue. Tissue thus provides some functionality of the innate immune 
system, with the AIS performing the common role of adaptive immune system. 

3.1   Uplinks 

Given a data stream of temporally homogeneous data items, the tissue will quickly 
grow to form a specific shape, structure and size, which will be maintained indefi-
nitely. The artificial immune system should consult all cells in the tissue, examining 
them and any corresponding danger signals. If the data changes, the tissue will change 
in response. Those aspects of the data that remain the same will continue to support 
the corresponding parts of tissue. Those aspects that differ will result in a restructur-
ing or even cell death. An artificial immune system should thus be able to ignore 
static tissue and quickly cause an immune response on and near to the cells where the 
changes (and corresponding signals) are occurring. In this way the tissue provides 
more than an interface to the underlying data – it provides a spatial and temporal 
structure, enabling the AIS to specialise and focus to different extents, spatially and 
temporally. 

It is recognised (and experiments confirm later) that the tissue will not perform 
perfectly as a clusterer and anomaly detector – if it did there would be no reason to 
have the AIS. Instead, the tissue provides useful data preprocessing, gathering similar 
data items together, and presenting gross, short-term anomalies to the AIS. (Specific, 
problem dependent knowledge can also be incorporated and exploited in the cells in 
order to present other innate signals to the AIS.) It is expected that critical anomalies 
will still occur within “normal” tissue. Thus the role of the AIS in the ‘tissue para-
digm’ is now to consult cells within the tissue and identify fragments of data (anti-
gens) presented by the cells that together may indicate a critical anomaly. Note that 
there is no real concept of a self/non-self division; here the concept is more one of 
stability/entropy. A stable tissue is considered ‘healthy’; unstable or entropic tissue is 
‘unhealthy’ and will attract attention from the AIS. 

3.2   Downlinks 

The natural immune system is designed to both detect harmful anomalies and remove 
the causal agents. However, an artificial immune system using the ‘tissue paradigm’ 
cannot simply remove ‘infected’ cells from the tissue – this would only prevent the 
tissue from presenting information about the anomaly to the AIS, it would not prevent 
the underlying anomaly in the application from reoccurring. Instead, the AIS should 
use the tissue as an interface to the application. If a critical anomaly is discovered, 
cells should be informed which antigens are responsible. The cells then pass this in-
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formation down to the underlying application, where the information should be used 
to remove the cause of the anomaly. For example, in a computer network intrusion 
detection application, if the AIS identifies a specific antigen in one cell, the cell will 
then communicate this information to the network management software. This soft-
ware might terminate a corresponding process and thus remove the ‘infection’ from 
the input data stream, or just inform the system administrator. If there is a one-to-one 
correspondence between cell and anomaly, then by identifying the anomalous antigen 
within the cell, and causing the subsequent prevention of the anomalous data in the 
input stream, the corresponding cell will no longer be supported by the data stream 
and will die. In other words, it is possible for the AIS to cause tissue cell death by 
interacting with the application via the tissue. 

create zygote (initial cell) with first data point (antigen) 
 
    get next antigen from data steam 
    find nearest cell (cell with mean antigen closest to current antigen) 
 
    if current antigen is sufficiently similar* to nearest cell mean 
      add antigen to nearest cell 
      if nearest cell has number of antigens == maxantigenspercell 
        split current cell into two linked cells s.t. antigens are shared 

equally** 
        update cell means, danger signals and linked neighbours 
    else 
      create new cell at current antigen; nearest cell is linked parent 
 
    for every cell 
       for every antigen in the cell 
          age antigen 
          if antigen age > maxantigenage 
            remove antigen 
       if antigens in cell == 0 
         cell dies (can no longer respond to input) 
         create new dangersignal, origin = final antigen, 
                   range = cell stddev, 
                   strength = max (or inversely proportional to cell age) 
         pass all danger signals of dying cell to linked neighbouring cells 
 
    for every dangersignal 
       reduce stength 
       if stength == 0 
         delete dangersignal 

 
 
*similarity measures depend on the matching function used and underlying appli-

cation; in the experiments reported here, data values are normalised and the 
Euclidian distance between cell mean and antigen compared against a similarity 
threshold of 0.2 (default). 

**the cell split function should use the same distance function to divide anti-
gens into two groups; in the experiments reported here, all antigens greater than 
the mean are placed in one cell, all antigens less than the mean are placed in the 
other. 

 
In addition to the similarity measures, there are 2 important constants: 
maxantigenage – determines number of antigens held by tissue cells at any point 

in time. 
maxantigenspercell – affects how many cells there will be in the tissue 

Fig. 2. The network tissue algorithm 
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4   Tissue Algorithms 

There are many ways in which tissue can be developed. Here we present two dif-
ferent approaches: a network tissue growing algorithm, and a swarm tissue grow-
ing algorithm. Both effectively act as dynamic clusterers, using danger signals as 
approximate alerts of anomalies in the input stream. Both are independent of the 
size of any data set – computational time depends on the size of the window on the 
data and the bitrate of the data stream (which will determine the size of the tissue 
being maintained). 

4.1   Network Tissue Algorithm 

The network-based algorithm explicitly maintains cells in a dynamic network, with 
parent cells pointing to daughter cells, and link restructuring on cell death to maintain 
network coherence (e.g., the death of a parent cell results in the oldest daughter cell 
taking the parent’s position in the network). In this algorithm, each cell may hold up 
to maxantigenspercell antigens before dividing into two. Figure 2 outlines the net-
work tissue algorithm. 

4.1.1   Biological Analogies 
Figure 3 summarises the model with respect to natural biology. In this model a single 
cell may represent a particular cell type of a living organism. While there is data to 
support a cell (i.e., while the impact of the environment and genes results in a particu-
lar type of tissue structure), the cell will survive indefinitely (the tissue will have a 
certain cell type and structure indefinitely). If the input stream changes permanently 
(or for a sufficiently long duration), even if the change is dramatic, the new data will 
cause corresponding new tissue to develop and be supported (i.e. a long-term change 
in the environment causes long-term useful changes in tissue structure). But if an 
anomalous datum creates a cell, and there is insufficient subsequent similar data to 
support that cell, then the cell will die. (In an organism, cells can be created in re-
sponse to the environment, affected by the existing tissue; but the environment might 
include some form of pathogen, which infects and destroys cells of that type). It is not 
necessary for apoptosis to be modelled explicitly – it is assumed that a single cell 
represents many cells of that type growing and dying to be replaced by new cells 
naturally. So should a cell die in the model, this can only be necrosis – and thus it 
causes the release of a danger signal, to be passed to the neighbouring cells in the 
tissue. 

In an attempt to match biological characteristics of danger signals, in the model, 
danger signals emitted as a result of necrosis are general indicators of an anomaly, but  
are spatially and temporally specific. The danger signals from a dead cell are held by 
its neighbouring cells (which, through automatic network restructuring or swarming 
after necrosis, “fill the gap” left by the dead cell). It is possible for cells to hold many 
danger signals at once. Danger signals decay over time; they are removed once their 
strength falls to zero.  
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Fig. 3. Left: Organic tissue grows according to its DNA, and interactions with its environment. 
To create a new cell, an existing cell divides into two. Necrosis results in “danger signals”. 
Immune cells consult antigens presented by tissue cells and respond by destroying infection. 
Right: AIS tissue grows according to its rules of growth and interactions with a problem. To 
create a new cell, an existing cell may split into two. Unnatural cell death results in danger 
signals. The AIS consults antigens presented by tissue cells and responds by signalling the 
underlying application via the cells, potentially resulting in the destruction of cells that are 
presenting anomalous antigens. 

4.1.2   Experiments 
A series of experiments were performed using the standard “breast cancer” UCI 
machine learning data set, comprising 240 ‘malignant’ items in class 1 and 460 
‘benign’ items in class 2. (Each data item, or antigen, comprised a vector of 9 real- 
valued numbers, which describe various cancer cell measurements.) For each sys-
tem setting, the same experiment was repeated 30 times. Implemented in ‘C’ and 
running on a Mac Powerbook G4, each run of 10,000 iterations (with one ran-
domly picked data item presented to the tissue each iteration) lasted less than 5 
seconds. Class 2 (benign) is treated as the “normal” class of data, with items from 
class 1 (malignant) being introduced into the datastream every 25 iterations (this 
value is investigated in the first 3 experiments). Table 1 lists the different parame-
ter settings used in the experiments. 

Table 1.  System setups for the nine experiments 

 

Experiment Max 
antigen age 

Max antigens/cell Similarity 
threshold 

Class 1 
item freq. 

1 40 10 0.2 25 
2 40 10 0.2 10 
3 40 10 0.2 5 
4 40 10 0.1 25 
5 40 10 0.3 25 
6 40 5 0.2 25 
7 40 15 0.2 25 
8 20 10 0.2 25 
9 60 10 0.2 25 
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Table 2. Results for experiments 1-9, showing mean number of danger signals per run, stan-
dard deviation, and percentage of danger signals that correspond to data items in class 1 and 
class 2. 

 Class 1 Class 2 
experiment mean stddev percent mean stddev Percent 
1 382.8 2.6 98.1% 1008.5 25.1 10.5% 
2 933.4 5.8 95.6% 946.7 20.2 10.5% 
3 1801.7 20.2 92.3% 842.6 22.0 10.5% 
4 390.1 1.4 99.9% 1378 27.2 14.4% 
5 373.5 3.5 95.7% 849.7 20.0 8.9% 
6 383.7 2.4 98.3% 2165.8 27.3 22.6% 
7 384.0 2.2 98.4% 796.7 24.8 8.3% 
8 389.6 1.6 99.6% 1046.1 19.5 10.9% 
9 378.7 3.0 97.2% 946.0 24.0 9.9% 

4.1.3  Analysis 
Table 2 shows the results for the nine experiments (t-tests were used to corroborate 
the following comments). As is to be expected from a deterministic algorithm (where 
the only stochastic element is the data item order in the data stream), the results for all 
experiments were very consistent across runs, as shown by the low standard deviation 
values. Experiments 1 to 3 indicate how the frequency of anomalous data items influ-
ences the accuracy of danger signals, i.e., more frequent items from class 1 reduces 
the tendency of the tissue to treat class 1 items as anomalous (true positive), while the 
percentage of items in class 2 treated as anomalous remains unchanged (false posi-
tive). Experiments 4 and 5 (also compare with experiment 1) show how changing the 
similarity threshold affects danger signal accuracy. A smaller threshold produces near 
perfect detection of anomalies from class 1, but also increases the tendency for items 
in class 2 to be detected as anomalies. The opposite effect occurs when the threshold 
is increased. Experiments 6 and 7 (also compare with experiment 1) show how the 
number of antigens per cell affects danger signals. No real change occurs to the accu-
racy of detection of anomalous items from class 1, but a smaller number of antigens 
produces far less tolerance for different items in class 2 (the cells are more special-
ised, increasing the chances for even slightly different antigens to be treated as 
anomalous). Increasing the number of antigens has the opposite effect – causing a 
significant reduction in the number of items in class 2 that are treated as anomalous. 
Finally, experiments 8 and 9 (also compare with experiment 1) show the effect of 
varying the maximum antigen age. In the experiments, this has only a minor effect on 
danger signal accuracy, although the results suggest that the age should be set in rela-
tion to the expected frequency of anomalies in the datastream, i.e., a long age for 
frequent anomalies increases the tolerance of the tissue for the anomalies, while a 
short age causes infrequent but normal data items to be treated as anomalies. 

4.2   Swarm Tissue Algorithm 

The swarm-based algorithm is a second, alternative approach to tissue development. It 
is designed to follow much the same “tissue growing” principles as outlined previ-
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ously, but now clusters in the tissue are formed by cell movement in a two-
dimensional space (of size 1000 by 1000 units) which is unrelated to the data values, 
with similar cells moving together and dissimilar cells moving apart. In this algo-
rithm, each cell holds just one data item; cells are created by new data and die con-
stantly – thus apoptosis is modelled in this algorithm. If cells have not grouped them-
selves into a cluster by the time they die, they produce a danger signal, i.e. necrosis is 
modelled by the death of “abnormal”cells that do not participate in normal tissue 
development. Figure 4 outlines the algorithm, which uses the following swarming 
rules to drive the motion of cells: 

 
    get next antigen from data steam 
    create cell using antigen and place in swarm-tissue 
 
    for every cell, (current cell = C1) 
       for every cell in neighbourhood* of C1 (neighbour cell = C2) 
        
         if C1 is sufficiently similar** to Cz/cell-cluster***  
           C1 joins/makes cluster with C2/cell-cluster 
           if C1 and C2 were in clusters 
             with mean antigen differences < current similarity 
             they form a new cluster together 
         else 
           C2/cell-cluster*** is added to cell avoidance list 
 
       if C1 is in a cluster, C1 best position is mean pos. of cells in C1 clus-

ter 
       else C1 best position is mean tissue position 
 
       update velocity of C1 using best pos, mean avoidance values (Rules 1 to 

3) 
       update C1 position based on velocity (Rule 4) 
 
       increase age of C1 
       if C1 age is greater than celllifespan 
         remove C1 from swarm-tissue 
         if C1 was not in a cluster 
         create dangersignal, origin = C1, 
                   range = cell stddev, 
                   strength = max 
       (pass all danger signals of dying cell to neighbouring cells) 
 
 
    for every dangersignal 
       reduce strength 
       if stength == 0 
         delete dangersignal 

 
 

* defined by radius around C1 where radius = 300 
** similarity measures depend on the matching function used and underlying ap-

plication; in the experiments reported here, data values are normalised and the 
Euclidian distance between the two cell values are compared against a similarity 
threshold of 0.2 (default). In addition, the similarity measure between C1 and C2 
where C2 is in a cluster is scaled by the inverse of the number of cells in the 
cluster, making larger clusters more attractive. 

*** if C2 is in a cluster, the mean value of cells in the cluster is used, oth-
erwise the value of C2 is used. 

Fig. 4. The swarm tissue algorithm 
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vi
attr

 = wvi+c1r1(xpbest,i – xi) 

vi = vi
attr

 - f2c2r2(xavoid,i – xi) 

if (|vi|>vmax) vi = (vmax/|vi|)vi 

xi = xi+vi 

Rule 1 

Rule 2 

Rule 3 

Rule 4 

where: 
xi is the current position of data item i 
xpbest,i is the current best position of data item i  
xavoid,i  represents the current avoidance position of data item i. 
vi is the velocity of data item i 
w is a random inertia weight between 0.5 and 1 [4] 
c1 and c2 are spring constants set to 1.494 [4] 
r1 and r2  are random numbers between 0 and 1 [2] 
 f2 is the repulsive factor (default value 2). Defines the effect of the repulsive force on ve-
locity; the higher the value the more that dissimilar items repel each other. 
vmax is the maximum velocity (default value of 300) 

Note: xpbest,i is either the central position of all items in the same cluster as i or the 
central position of all items in the swarming space (if i does not belong to a cluster) 

xavoid,i  represents the central position of all data items in i’s neighbourhood whose 
similarity value falls below the similarity threshold. 

4.2.1   Biological Analogies 
Figure 5 summarises the model with respect to natural biology. In this model cells 
are modelled more directly. New data generates new cells which all live for a fixed 
lifespan before dying. While they live they move with respect to each other, with 
similar cells clustering and dissimilar cells moving apart (i.e., the impact of the 
environment and genes results in a particular type of tissue structure, with similar 
cells adhering to each other and forming organs). As with the previous algorithm, 
if the input stream changes permanently (or for a sufficiently long duration), even 
 

 

Fig. 5. Left: Organic tissue grows according to its DNA, and interactions with its environment. 
Right: AIS tissue grows by moving cells relative to each other according to their rules of 
growth and interactions with a problem. A cell that has not formed part of the tissue before it 
dies is necrotic and produces a danger signal. The AIS consults antigens presented by tissue 
cells and responds by signalling the underlying application via the cells. 
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if the change is dramatic, the new data will cause corresponding new tissue to 
develop and be supported (i.e. a long-term change in the environment causes long-
term useful changes in tissue structure). But if an anomalous datum creates a cell, 
and there is insufficient subsequent similar data to produce similar cells, then the 
cell will be unable to form a cluster before it dies. (In an organism, cells can be 
created in response to the environment, affected by the existing tissue; but the 
environment might include some form of pathogen, which infects and alters cells 
of that type). In this algorithm, apoptosis is modelled explicitly – cells grow and 
die to be replaced by new cells naturally. So in this model, necrosis is modelled by 
a dying cell that has not formed part of a group of other cells – and thus it causes 
the release of a danger signal, to be passed to the neighbouring cells in the tissue. 

4.2.2   Experiments 
Again, a series of experiments were performed using the standard “breast cancer” 
UCI machine learning data set. As before, for each system setting, the same experi-
ment was repeated 30 times. This time implemented in Java J2SE and running on a 
2.4 Ghz Pentium 4 PC, each run of 10,000 iterations lasted between 30 and 145 sec-
onds. The same parameter settings as listed in table 1 were used for the experiments, 
although experiments 6 and 7 could not be performed as each cell only holds one 
antigen in this model. 

4.2.3   Analysis 
Table 3 shows the results for the nine experiments. Accuracy of danger signals for class 1 
is consistently high for all experiments, but the changes in parameter settings do appear 
to affect the percentage of items in class 2 treated as anomalous. Presenting items from 
class 1  more  frequently  (see  results for experiments 1,2,3) produces a subtle increase in 
class 2 anomalies; this may be caused by a disturbance effect of more  cells in class 1 di- 
srupting the path of class 2 cells as they try to cluster. A lower similarity threshold 
allows fewer cells to cluster and so produces a considerably worsened percentage for 
class 2 anomalies, while a higher threshold has the reverse effect (see results for ex-
periments 1,4,5). The same effect occurs when cell age is modified (see results for 
 

Table 3. Results for experiments 1-9, showing mean number of danger signals per run, 
standard deviation, and percentage of danger signals that correspond to data items in class 1 and 
class 2. 

 Class 1 Class 2 
experiment mean sstdev Percent mean stdev Percent 
1 398.0 0.18 99.99% 1973.6 39.2 20.6% 
2 996.0 0.18 100.0% 1903.1 38.4 21.2% 
3 1991.9 0.37 100.0% 1783.4 46.0 22.4% 
4 398 0 100.0% 4045.0 61.7 42.3% 
5 397.3 0.92 99.82% 1434.4 44.8 15.0% 
8 399 0.0 100.0% 6425.9 75.4 67.1% 
9 396.9 0.25 99.98% 1422.4 44.5 14.9% 
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experiments 1,8,9) – a lower age produces fewer chances for clusters to form in time; 
a higher age increases the chance and thus reduces the class 2 signals. Further ex-
periments showed that increasing the lifespan to 100 and using a threshold of 0.3 
produced accuracy in class 1 of 99.8% and in class 2 of 8.9%, although execution 
times increased to 145 seconds for 10,000 items. 

5   Discussion 

Like immunobiology, the field of artificial immune systems has been obsessed with 
the workings of the adaptive immune system and its capabilities of specificity, diver-
sity and memory, with little work spent on the innate immune system. This work 
attempts to lay the foundations of a more complete view of the immune system for 
AIS. We propose that the concept of tissue is important for several reasons: 

• Tissue provides a generic data representation which interfaces between problem 
and conventional AIS, simplifying future AIS development. 

• Tissue stores the current state of the application, providing a clearer concept of 
“organism” and enabling the AIS to learn to detect changes in the organism, cor-
rect harmful changes and prevent future damage by similar agencies. 

• For applications such as anomaly detection, tissue provides a dynamic window of 
the input data stream; the data is dynamically organized and spatially structured, 
encapsulating the important concepts of temporal and spatial variability. An AIS 
exploiting tissue would be able to specialize and focus on different areas of the 
problem, at different times, enabling a more precise response. 

• Tissue encapsulates ideas of homeostasis – if the problem becomes heterogenous 
or chaotic, the tissue will reorganize its structure in response. An AIS collaborat-
ing with the tissue would be able to correct harmful changes and work to main-
tain homeostasis. 

• Tissue is essential for the innate immune system, and tissue algorithms can be 
used to provide desirable “automatic” processing and signals from data. 

It is proposed that an AIS will employ tissue by traversing its spatial representation 
and allocating resources according to the spatial and temporal requirements. A network-
based AIS might form distinct and functionally diverse subnetworks to focus on tissue 
cells of different types. A population-based AIS would be able to allocate subpopulations 
of agents (e.g., antibodies, B-cells or T-cells) for specific regions of tissue. In all cases, 
all aspects of the problem should be presented to the AIS through tissue, and all AIS 
responses should be presented to the underlying application by the tissue. 

In this work we have focused on the task of anomaly detection, and both tissue-
growing algorithms were developed with this in mind. However, we propose that the 
concept of tissue should be employed for all AIS applications. This may inevitably 
involve different forms of tissue growth. For example, in a robot control application 
[6], sensor input might be used as an input data stream and the algorithms presented 
above could be used. Alternatively, the state of sensors and actuators might be repre-
sented by a fixed and predefined tissue structure (e.g. a cell for each sensor, and a cell 
for each motor). Such a structure would change if sensors or motors were lost through 
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damage – obviously requiring a significant response from the controlling AIS. But 
normal control would occur through the robot presenting its changing state via anti-
gens and signals from the cells, interpreted by the AIS, with responses made to the 
cells being mapped back to robot motor control. 

Like the genetic representations of genetic algorithms, the exact tissue representa-
tion necessary is likely to be application-specific, but the AIS used to consult with the 
tissue and respond to it should be generic. It is conceivable that evolutionary compu-
tation could be employed to evolve useful innate tissue responses  for a given applica-
tion and AIS. Indeed if each tissue cell contained an evolving GP function [1], cells 
would be able to present one or more evolved interpretations (i.e., signals) derived 
from the raw data, in addition to the raw data. 

6   Conclusions 

In this work we have presented the novel concept of tissue for artificial immune sys-
tems. Much like the genetic representation of genetic algorithms, tissue provides an 
interface between problem and immune algorithm. From the perspective of immuno-
biology, tissue provides an innate immune response, with the AIS providing an adap-
tive response. Two tissue-growing algorithms were presented with experimental re-
sults illustrating their abilities to dynamically cluster data and provide useful signals. 
Both algorithms are able to detect anomalous data items with accuracies up to 100% 
depending on the parameter settings. Future work will investigate the integration of 
these algorithms with artificial immune systems for intrusion detection. 
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Abstract. Dendritic cells are antigen presenting cells that provide a vital
link between the innate and adaptive immune system. Research into this
family of cells has revealed that they perform the role of co-ordinating T-
cell based immune responses, both reactive and for generating tolerance.
We have derived an algorithm based on the functionality of these cells, and
have used the signals and differentiation pathways to build a control mech-
anism for an artificial immune system. We present our algorithmic details
in addition to some preliminary results, where the algorithm was applied
for the purpose of anomaly detection. We hope that this algorithm will
eventually become the key component within a large, distributed immune
system, based on sound immunological concepts.

Keywords: artificial immune systems, dendritic cells, anomaly detec-
tion, Danger Theory.

1 Introduction

In 2003, Aickelin et al outlined a project describing the application of a novel
immunological theory, the Danger Theory to intrusion detection systems[1]. The
authors of this work suggested that the Danger Theory encompassed pathogenic
detection, where the basis for discrimination was not centred around ‘self’ or
‘non-self’, but to the presence or absence of danger signals. The paper described
how danger signals are released from the body’s own tissue cells as a result of
necrotic cell death, triggered by an invading pathogen. The immune system was
thought to be sensitive to changes in concentration of danger signals and hence an
appropriate response is generated. Aickelin et al propose that by differentiating
between the chaotic process of necrotic cell death and the safe signals derived
from regulated apoptotic cell death, pathogenic agents can be detected within
an artificial immune system context.

Currently, the majority of artificial immune systems (AIS) encompass two
different types of immune inspired algorithms, namely negative selection (T-cell
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based), and clonal selection with somatic hypermutation(B-cell based). Excep-
tions to this include [16], where defined patterns of misbehaviour was used to
create danger signals within mobile ad-hoc networks. Danger signals are used
in [2] to define the context for collaborative filtering. Implementations includ-
ing Danger Theory so far, have monitored danger signals directly and have not
taken into account any of the cells responsible for signal detection. It is thought
that danger signals are detected and processed through ‘professional’ antigen
presenting cells known as dendritic cells. Dendritic cells are viewed as one of
the major control mechanisms of the immune system, influencing and orches-
trating T-cell responses, in addition to acting as a vital interface between the
innate (initial detection) and adaptive (effector response) immune systems.

Dendritic cells (DCs) are responsible for some of the initial pathogenic recog-
nition process, sampling the environment and differentiating depending on the
concentration of signals, or perceived misbehaviour, in the host tissue cells.
Strong parallels can be drawn from this process to the goal of successful anom-
aly detection. Current anomaly detection systems frequently rely on profiling
‘normal’ user behaviour during a training period. Any subsequent observed be-
haviour that does not match the normal profile (often based on a simple distance
metric) is classed as anomalous. At this point an ‘alert’ is generated. However,
these systems can have problems with high levels of false positive errors, as be-
haviour of users on a system changes over a period of time. Anomaly detection
systems remain a high research priority as their inherent properties allow for
the detection of novel instances, which could not be detected using a signature
based approach. AIS featuring negative selection algorithms have been tried and
tested for the purpose of anomaly detection [6]. They produced promising results,
but were tarnished by issues surrounding false positives and scalability[8]. Some
moderately successful non-AIS systems have been implemented, often involving
adaptive sampling[4] and adaptive alert threshold modification.

The aim of this research is to understand the Danger Theory and its impli-
cations and to be able to derive an anomaly detection system. More specifically,
section 2 of this paper explores the process of cell death and the debate sur-
rounding immune activating signals. Section 3 focuses on dendritic cells with
respect to changing morphologies, functions, control of the immune system and
in terms of the infectious non-self and danger theories. Section 4 outlines an
abstraction from DC functioning and the derivation of a bio-inspired anomaly
detection unit. Section 5 shows a worked example of how a DC algorithm can
be used as a signal processor, complete with pseudo-code and preliminary re-
sults. Section 6 includes a brief analysis of the results and details of future work
followed by conclusions.

2 Death, Danger and Pathogenic Products

2.1 Cell Death and Tissues

Our organs are made up of a collection of specialised cells - generically named
tissues. Tissue cells communicate with each other through the use of secreted
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messenger chemicals known as cytokines. These cytokines can have different ef-
fects on the tissue cells in the vicinity and can be either pro or anti-inflammatory
in nature. The tissue coupled with the surrounding fluid containing cytokines
forms the environment for the DC. The cytokine profile of the tissue changes
according to differences in the type of cell death occurring in the tissue at the
time, and can be used to assess the state of the tissue.

Pre-programmed cell death, apoptosis is a vital part of the life cycle of a
cell. Without it, we would not be able to control the growth of our bodies, and
we would be subject to out of control tumours. On the initiation of apoptosis all
nuclear material is fragmented in an orderly manner, digestive enzymes are se-
creted internally and new molecules are expressed on the surface of the cell. The
cell is ingested by macrophages, with the membrane still intact. It is thought that
the resulting cytokines released from apoptotic cells have an anti-inflammatory
effect. However, apoptosis is not the only means by which cells can die. If a cell
is subject to stress (by means of irradiation, shock, hypoxia or pathogenic infec-
tion), it undergoes the process of necrosis. Due to its unplanned nature, there is
no careful repackaging of internal cell contents, or preservation of the membrane.
The cell swells up, loses membrane integrity and explodes, releasing its contents
into the interstitial fluid surrounding neighbouring tissue cells inclusive of uric
acid crystals and heat shock proteins. This type of cytokine environment is said
to be pro-inflammatory. This also includes host derived antigens and all other
polypeptides which can be phagocytosed by a DC.

The differences in the cytokine profile as a result of cell death are integral
for understanding the way in which pathogens and other harmful activities are
sensed by the immune system. There have been a number of theories over the
last century which have attempted to explain the phenomena of pathogenic
recognition. Two of the most hotly debated theories - the Infectious Non-self
Model and the Danger Theory are relevant to understanding DCs and imperative
to the abstraction of a useful algorithm.

2.2 Infectious Non-self - The World According to Janeway

Since 1959 the central tenet of immunology revolved around the specificity of
lymphocytes to antigen. According to this theory, proteins belonging to the body
(self) are not recognised by the immune system due to the deletion of self re-
active T-cells in the thymus. However, this theory did not fit with an amassing
volume of evidence. A new perspective emerged in 1989 with Janeway’s insight-
ful article [7], which provided an explanation as to why adjuvants added to
vaccines were necessary in order to stimulate an immune response. These ideas
formed the basis for the infectious non-self model. This model, also known as
the detection of microbial non-self, is an augmentation of the long established
self non-self principles, though the focus is on innate immune function[5]. This
theory proposes that the detection of pathogens is done through the recogni-
tion of conserved molecules known as PAMPs (pathogen associated molecular
patterns), essentially exogenous signals. PAMPs are produced by all micro-
organisms irrespective of their pathogenicity, and can be recognised by human
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immune system cells through the use of pattern recognition receptor e.g. toll-like
receptors[13]. The effects of PAMPs on DCs will be explored in more detail in
the coming section.

2.3 The Danger Theory - The World According to Matzinger

The Danger Theory, proposed by Polly Matzinger in 1994[10], also emphasises
the crucial role of the innate immune system for guiding the adaptive immune
responses. However, unlike detecting exogenous signals, the Danger Theory rests
on the detection of endogenous signals. Endogenous danger signals arise as
a result of damage or stress to the tissue cells themselves. The crucial point
of the Danger Theory is that the only pathogens detected are the ones that
induce necrosis and cause actual damage to the host tissue. The damage can
be caused by invading micro-organisms or through defects in the host tissue
or innate immune cells. Irrespective of the cause, the danger signals released
are always the same. These signals are thought to be derived from the internal
contents of the cell[11] inclusive of heat shock proteins, fragmented DNA and
uric acid. It is proposed that the exposure of antigen presenting cells to danger
signals modulates the cells’ behaviour, ultimately leading to the activation of
naive T-cells in the lymph nodes. Alternatively, the absence of danger signals
and the presence of cytokines released as a result of apoptosis can lead to antigen
presentation in a different context, deleting or anergising a matching T-cell[12].
The Danger Theory suggests that the tissue is in control of the immune response.

In [14] it is suggested that DCs have the capability to combine signals from
both endogenous and exogenous sources, and respond appropriately. Different
combinations of input signals can ultimately lead to the differentiation and ac-
tivation of T-cells. Both theories have implications for the function of DCs.

3 Introducing Dendritic Cells

Dendritic cells (DCs) are white blood cells, which have the capability to act
in two different roles - as macrophages in peripheral tissues and organs and as
a vehicle for antigen presentation within the secondary lymphoid organs. DCs
can be sub-categorised dependent on their location within the body. For the
purpose of this investigation and the subsequent algorithm, dermal or tissue
resident DCs have been examined. Essentially, the DCs’ function is to collect
antigen from pathogens and host cells in tissues, and to present multiple antigen
samples to naive T-cells in the lymph node. DCs exist in a number of different
states of maturity, dependent on the type of environmental signals present in
the surrounding fluid. They can exist in either immature, semi-mature or
mature forms. The various different phenotypes of DC are shown in Figure 1.

3.1 Immature DCs

Immature DCs (iDCs) are cells found in their initial maturation state. They
reside in the tissue where their primary function is to collect and remove debris
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Fig. 1. Three differentiation states of DCs as shown from the ESEM photographs
shown (see acknowledgements)

from the interstitial fluid. The ingested material is then processed by the cell. It
is either metabolised for use by the cell, returned to the environment, or is re-
packaged for presentation to another immune cell. At this point the matter can
be termed antigen, and could be a ’self’ molecule or something foreign. The re-
presentation of antigenic material is performed by complexing the antigen with
another molecule namely the MHC molecule family, necessary for binding to T-
cell receptors. In order to present antigen to T-cells, DC needs sufficient antigen
presented with MHC. However, the expression of inflammatory cytokines are
needed in order to activate T-cells. Therefore a T-cell encounter with an iDC
results in the deactivation of the the T-cell. Differentiation of iDCs occurs in
response to the receipt of various signals. This leads to full or partial maturation
depending on the combination of signals received.

3.2 Mature DCs

Due to the low levels of inflammatory cytokines expressed by iDCs, they are not
able to activate T-cells on contact. In order to present antigen and activate T-
cells, the increased expression (or up-regulation) of a number of proteins and
cytokines is necessary. DCs which have the ability to activate naive T-cells are
termed mature DCs (mDCs). For an iDC to differentiate and become a mDC, the
iDC has to be exposed to a certain number of signals. This includes activation
of toll-like receptors through exposure to both the exogenous and endogenous
signals (previously described). On exposure to various combinations of these sig-
nals, the DC up-regulates a number of molecules vital for stimulating a T-cell
response. Perhaps most importantly, it up-regulates a number of costimulatory
molecules, pro-inflammatory cytokines (namely IL-12), and migrates from the
tissue to the local draining lymph node. During this migration period, the iDC
changes morphologically too. Instead of being compact (optimal for antigen col-
lection), the DC develops whispy, finger-like projections - characterising it as
a mDC, as seen in Figure 1. The projections not only make it distinguishable
from iDCs, but also increase the surface area of the cell, allowing it to present a
greater quantity of antigen.
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3.3 Semi-mature DCs

During the antigen collection process, iDCs can experience other environmental
conditions. This can affect the end-stage differentiation of a DC. These different
conditions can give rise to semi-matureDCs (smDCs). The signals responsible for
producing smDCs are also generated by the tissue - endogenous signals. During
the process of apoptosis, a number of proteins are actively up-regulated and
secreted by the dying cell. The release of TNF-α (tumor necrosis factor) from
apoptosing cells is thought to be one candidate responsible for creating semi-
mature DCs [9]. As a result of exposure to apoptotic cytokines (TNF-α included),
an iDC also undergoes migration to the lymph node, and some maturation as
shown in Figure 1. Costimulatory molecules are up-regulated by a small yet
significant amount and, after migration to the lymph node, the cell can present
antigen to any matching T-cell. However, smDCs do not produce any great
amount of pro-inflammatory cytokines, necessary for promoting activation of T-
cells. Instead, smDCs can produce small quantities of IL-10 (anti-inflammatory
cytokine), which acts to suppress matching T-cells.

3.4 Summary

In brief, DCs can perform a number of functions, related to their state of matura-
tion. Modulation between these states is facilitated by the release of endogenous
and exogenous signals, produced by pathogens and the tissue itself. The state
of maturity of a DC influences the response by T-cells, either immunogenic or
tolerogenic, to specific presented antigen. Immature DCs reside in the tissue
where they collect antigenic material and are exposed to exogenous and endoge-
nous signals. Based on the combinations of signals, mature or semi-mature DCs
are generated. Mature DCs have an activating effect while semi-mature DCs
have a suppressive effect. The different cytokine output by the respective cells
differ sufficiently to provide the context for antigen presentation. In the follow-
ing section this information is utilised to derive a signal processor based on the
explored functionality of the DCs.

4 DC’s Meet AIS

There are a number of desirable characteristics exhibited by DCs that we want to
incorporate into an algorithm. In order to achieve this, the essential properties,
i.e. those that heavily influence immune functions, have to be abstracted from
the biological information presented. From this we produce an abstract model
of DC interactions and functions, with which we build our algorithm.

4.1 Abstraction

As shown, the orchestration of an adaptive immune response via DCs has many
subtleties. Only the essential features of this process are mapped in the first
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Fig. 2. The iDC, smDC and mDC behaviours and signals required for differentiation.
CKs denote cytokines.

instance as we are interested in building an anomaly detector, not an accurate
simulation. DCs are examined from a cellular perspective, encompassing behav-
iour and differentiation of the cells and ignore the interactions on a molecular
level and direct interactions with other immune system cells.

DCs have a number of different functional properties that we want to incor-
porate into an algorithm. Bearing this in mind, we can abstract a number of
useful core properties, listed below and represented graphically in Figure 2:

– iDCs have the ability to differentiate in two ways, resulting in mature or
semi-mature cells.

– Each iDC can sample multiple antigens within the cell, leading to generali-
sation of the antigen context.

– The collection of antigen by iDCs is not enough to cause maturity. Exposure
to certain signals causes the up-regulation of various molecules that initiate
antigen presentation.

– Both smDCs and mDCs show expression of costimulatory molecules, infer-
ring that both types have antigen presenting capabilities.

– The cytokines output by mature and semi-mature cells are different, pro-
viding contextual information. The concentration of the output cytokines is
dependent on the input signals and can be viewed as an interpretation of
the original signal strength.
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The effects of individual cytokines and antigen binding affinities have not yet
been incorporated into this model, as the initial implementation does not feature
T-cells. As stated in [14], we are treating DCs as processors of both exogenous
and endogenous signal processors. Input signals are categorised either as PAMPs
(P), Safe Signals (S), Danger Signals (D) or Inflammatory Cytokines (IC) and
represent a concentration of signal. They are transformed to output concentra-
tions of costimulatory molecules (csm), smDC cytokines (semi) and mDC (mat)
cytokines. The signal processing function described in Equation 1 is used with
the empirically derived weightings presented in Table 1. These weightings are
based on unpublished biological information (see acknowledgements) and rep-
resent the ratio of activated DCs in the presence and absence of the various
stimuli e.g. approximately double the number of DCs mature on contact with
PAMPs as opposed to Danger Signals. Additionally, Safe Signals may reduce the
action of PAMPS by the same order of magnitude. Inflammatory cytokines are
not sufficient to initiate maturation or presentation but can have an amplifying
effect on the other signals present. This function is used to combine each of the
input signals to derive values for each of the three output concentrations, where
Cx is the input concentration and Wx is the weight.

C[csm,semi,mat] =
(WP ∗ CP ) + (WS ∗ CS) + (WD ∗ CD) ∗ (1 + IC)

WP + WS + WD
∗ 2 (1)

Table 1. Suggested weighting values for the signal processing function based on DC
maturation ratios

W csm semi mat
PAMPs(P) 2 0 2

Danger Signals(D) 1 0 1
Safe Signals (S) 2 3 -3

In order to use this model, input signals have to be pre-classified (either
manually or from a signature based intrusion detection system, another anomaly
detector, or ‘artificial’ tissue) based on the following schema:

PAMPs - signals that are known to be pathogenic
Safe Signals - signals that are known to be normal
Danger Signals - signals that may indicate changes in behaviour
Inflammatory Cytokines - signals that amplify the effects of the other
signals

In nature, DCs sample multiple antigens within the same section of tissue. To
mirror this, we create a population of DCs to collectively form a pool from which
a number of DCs are selected for the sampling process, in a similar manner to
[17]. An aggregate sampling method should reduce the amount of false positives
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generated, providing an element of robustness. For such a system to work, a DC
can only collect a finite amount of antigen. Hence, an antigen collection threshold
must be incorporated so a DC stops collecting antigen and migrates from the
sampling pool to a virtual lymph node. In order to achieve this we will use a fuzzy
threshold, derived in proportion to the concentration of costimulatory molecules
expressed. In order to add a stochastic element, this threshold is within a range
of values, so the exact number of antigens sampled per DC varies in line with
the biological system.

On migration to the virtual lymph node, the antigens contained within an
individual DC are presented with the DC’s maturation status. If the concentra-
tion of mature cytokines is greater than the semi-mature cytokines, the antigen
is presented in a ‘mature’ context. It is possible to count how many times an
antigen had been presented in either context to determine if the antigen is clas-
sified as anomalous. In order to crystallise these concepts, a worked example and
details of a basic implementation are given in the next section.

5 Implementing a DC Based Algorithm

To illustrate the signal processing capabilities of a DC we have designed and
implemented a simple prototype system. The purpose of this implementation is
to demonstrate the signal processing capability of a population of DCs and their
ability to choose between the mature and semi-mature pathways. We expect to
see differentiation pathway switching when the data items change from one class
to another. In essence a DC algorithm should transform a representation of input
data items and signals into the form of antigen-plus-context. From this we can
then derive information based on the analysis of the output cytokines.

For such an algorithm to work, some data attributes have to be classed as
signals. We use the standard UCI Wisconsin Breast Cancer data-set[15], con-
taining 700 items, each with nine normalised attributes representing the various
characteristics of a potentially cancerous cell. Each data item also has a tenth
attribute, which is a classification label of class 1 or class 2. Although this is
a static dataset, it is suitable for use with our algorithm as data is used in an
event driven manner. In order to reduce the difficulty of interpreting the inital
experiments only a subset of the data was used. Data items with the largest
standard deviation form the danger signals, namely cell size, cell shape, bare
nuclei and normal nucleoli. For each of these attributes the mean was calcu-
lated over all data items in class 1. Subsequently, the absolute difference from
the mean was calculated for each data item, within each attribute, v. The av-
erage of the four attribute mean differences comprises the derived danger signal
concentration.

To generate concentrations for safe signals and PAMPs, the clump size at-
tribute was chosen as it had the next greatest standard deviation. The median
clump size value for all the data items was calculated and each item is compared
to the median. If the attribute value is greater than the median, safe signals
are derived, equalling the absolute difference between the median and the clump
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size, and the PAMP concentration is set to zero. If the value is less than the
median, then the reverse is true, i.e. safe signals are set to zero and PAMPs are
equal to the absolute distance. A worked example is presented in Tables 2 and
3, using one data item and the weightings from Table 1. An example of how to
transform the input signals into csms is presented in Equation 2, using a modi-
fied version of Equation 1. This example data item was taken from class 1 and,
as expected, produces a higher concentration of smDC than mDC cytokines.

Table 2. Sample data item with calculated threshold and signal values ( in bold)

Sample Data Attribute Data Value Mean/Threshold Derived Signal
Clump Size 10 4 6
Cell Size 8 6.59 1.41
Cell Shape 8 6.56 1.44
Bare Nuclei 4 7.62 3.62
Normal Nucleoli 7 5.88 1.12
Mean Danger Signal - - 1.8975

Ccsm =
(2 ∗ 0) + (2 ∗ 6) + (1 ∗ 1.8975)

2 + 2 + 1
(2)

Table 3. The output of the signal processing calculations

Output Signal Output Conc.
csm 2.7795
semi 6
mat -16.1025

Although we incorporate inflammatory cytokines into the model, they are not
used in this example, as no obvious mapping is available. Antigen is represented
in its simplest form, as the identification number of a data item within the data-
set. The antigen label facilitates the tracking of data items through the system.
Once the signals have been derived and associated with an antigen label, they
are processed by the population of DCs. All featured parameters are derived
from empirical immunological data. In our experiments, 100 DCs are created for
the pool and ten are selected at random to sample each antigen. The signals
relating to the antigen are processed by each selected DC and the total amount
of output cytokines expressed are measured. The fuzzy migration threshold is
set to ten. Once this has been exceeded, a particular DC is removed from the
pool and replaced by a new one. After all antigen has been sampled, the context
of each antigen is determined based on the number of times it was sampled as
either mature or semi-mature. The threshold for classification is derived from
the distribution of the data.
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Fig. 3. Pseudocode for our simple example of a DC algorithm

The algorithmic details are presented in the pseudo-code as shown in
Figure 3:

5.1 Experiments and Preliminary Results

Two experiments are performed using the standard Breast Cancer machine learn-
ing data-set. This data is divided into class 1 (240 items) and class 2 (460 items).
The order of the data items is varied for the two experiments. Experiment 1 uses
data on a class by class basis i.e. all of class 1 followed by all of class 2. Exper-
iment 2 uses 120 data items from class 1, all 460 items of class 2 followed by
the remaining 120 items from class 1. Each experiment is run 20 times on a
Mac iBook G4 1.2MHz, with code implemented in C++(using g++ 3.3). Each
run samples each data item 10 times, giving 7000 antigen presentations per run,
with 20 runs performed per experiment. The time taken to perform 100 runs is
under 60 seconds, giving approximately 10,000 data items sampled per second.
The threshold for classification is set to 0.65 to reflect the weighting - items
exceeding the threshold are classed as class 2, with lower valued antigen labelled
as class 1. These classifications are compared with the labels presented in the
original data-set so false positive rates can be measured, in addition to observa-
tions of the algorithm’s behaviour. Preliminary results are presented in Table 4,
and graphically in Figure 4.

6 Discussion and Future Work

It is important to note that we are not primarily trying to build a new classifica-
tion algorithm. However, the classification accuracy in these simple experiments
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Table 4. Table of results to compare two different data orders

Experiment Actual Class Predicted Class 1 Predicted Class 2

Experiment 1 Class 1 236 4
Class 2 0 460

Experiment 2 Class 1 234 6
Class 2 1 459

Fig. 4. This figure shows the classification of the 700 items. The bar underneath rep-
resents the ordering of the data. The results for the two different data distributions are
presented. The y-axis represents the degree of maturity, from 0 (semi-mature, class1)
to 1 (mature, class 2) . Data points above the threshold of 0.65 were classified as class
2 and vice-versa.

exceeds 99%. Rather, we are using this benchmark data-set to show how our den-
dritic cell model exhibits timely and accurate behavioural switches to changes
in context. This is illustrated by our experiments, in which the system rapidly
switches to ‘danger’ mode (Figure 4, Experiment 1) and back again (Figure 4,
Experiment 2). Closer examination shows that the misclassifications occur ex-
clusively at the transition boundaries. This is because each DC gathers multiple
antigens over a period of time. If an iDC differentiates to an mDC, then every
antigen contained in that DC is perceived as dangerous (class 2). Similarly, anti-
gens within an smDC are all perceived as safe (class 1). It is not surprising
that during a transition phase there is a small degree of confusion regarding
temporally and spatially clustered antigens. A corollary to this is that the DC
model is expected to make more mistakes if the context changes multiple times
in quick succession; preliminary experiments (results not shown) confirm this.
It is important to stress that the data set used was not the ideal application for
this algorithm, but it provides data which we can interpret easily to observe the
behaviour of the prototype itself.



Introducing Dendritic Cells as a Novel Immune-Inspired Algorithm 165

The implementation of a DC algorithm that we present utilises a relatively sim-
ple,well understooddata-set.Thiswas useful as it demonstrated the signal process-
ing and change detection potential of a DC based algorithm. However, as stated in
the introduction, the ultimate use for this system is as an anomaly detection sys-
tem with potential applications in computer security. This could be the detection
of e-mail worms from an ‘outbox’. The presence and type of attachment, rate of
sending and content of the mail message could comprise the various signals, with
a representation for the content of an attachment and the structure of the message
could be an ‘antigen’. Alternatively, the algorithm could be used to monitor net-
work behaviour. Various attributes e.g. bandwidth consumption, could be mapped
as danger signals, with safe signals and PAMPs derived from the output of various
signature matching components e.g. an antivirus scanner. Antigen could be repre-
sented by data flowing through the system in terms of specific patterns of process
execution, or perhaps the network packets themselves.

In addition to a more suitable data-set, a number of modifications can be
made to the algorithm itself. For instance, we did not include any inflammatory
cytokines in our worked example due to data constraints. It would be interesting
to explore their proposed amplifying effects on the other signals and on the be-
haviour across a population of DCs. The current weighting function is simplistic
and the weights are empirically derived. Perhaps replacing it with a more so-
phisticated signal processor based on multi-sensor data fusion techniques would
be worth exploring. It will be interesting to see if making the algorithm more
biologically plausible results in improved, finer grained detection. Potential im-
provements could include using a network of cytokines, specifically the cytokines
responsible for T-cell activation and proliferation (e.g. IL-12, IL-10, IL-2), and
dynamics taken from the accumulating body of immunological experimental re-
sults. DCs are only one component of the immune system - the incorporation
of other ‘cells’ such as tissue (for endogenous signals) or T-cells (for an effector
response) may give an improved performance.

7 Conclusions

In this paper we have presented a detailed description of dendritic cells and
the antigen presentation process, from which an algorithm was abstracted. We
have also presented a worked example and prototype implementation based on
this abstraction The preliminary results are encouraging as both data orders
produced low rates of false positive errors.

It is worth making two points about these results. Firstly, it is very encourag-
ing that our simple model illustrates a prediction from the Danger Theory [10]:
“...self-reactive killers should be found during the early phases of most responses
to foreign antigens, and they should disappear with time”. Secondly, it must
be remembered that DCs are only part of a system, and that auto-reactive T
cells will be tolerised if they subsequently encounter the same antigen in a safe
context. A DC model is expected to work in partnership with a T cell system
within the larger framework of a distributed immune inspired security system[3].
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Abstract. The role of T-cells within the immune system is to confirm
and assess anomalous situations and then either respond to or tolerate
the source of the effect. To illustrate how these mechanisms can be har-
nessed to solve real-world problems, we present the blueprint of a T-cell
inspired algorithm for computer security worm detection. We show how
the three central T-cell processes, namely T-cell maturation, differen-
tiation and proliferation, naturally map into this domain and further
illustrate how such an algorithm fits into a complete immune inspired
computer security system and framework.

1 Introduction

Self-propogating malicious code represents a significant threat in recent times
as the ability of these programs to spread and infect systems has increased dra-
matically. The recent SQL Slammer worm infected more than 90% of vulnerable
hosts on the Internet within 10 minutes [10], and at its peak the Code-Red worm
infected over 2,000 hosts every minute [11]. Under such a constantly hostile en-
vironment, the traditional manual patching approach to protecting systems is
clearly not effective.

An alternative solution to this problem is to have an automated detection
and response system which could identify malicious self propogation and stop
the spread of the worm as early as possible. Current automated detection and
response systems involve such actions as blocking unsecure ports, dropping po-
tentially threatening packets, and eliminating emails carrying malicious codes,
breaking communication between infected and non-infected hosts to slow down
worm propagation and minimise potential damage [12]. This appears to be a sim-
ple and obvious solution, however there are a number of significant hurdles to
overcome in order to employ such automated responders. The most noteworthy
obstacle is the high false positive error problem [16]. If an automated responder
disconnects communication between two hosts based on a false positive result,
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the effect of this inappropriate disconnection could be as bad, if not worse than,
the damage caused by the worm itself.

The objective of this paper is to propose a solution to this problem by tak-
ing inspiration from the Human Immune System (HIS). Previous research into
computer security in the context of Artificial Immune Systems (AIS) has been fo-
cused on detecting unknown intrusions [2] [8]; detecting anomalous events such
as abnormal network traffic patterns or abnormal sequences of system calls.
However the reliability of these systems to handle non trivial problems is still
in question as they have not yet passed tests to indicate that low false positives
are achievable in a real environment [2] [8].

Instead of developing these existing AIS, we propose a novel AIS model that
adopts numerous mechanisms inspired from the differentiation states of T cells.
These differentiation states can be grouped into particular status subsets which
can be used to classify the types of T cell. From these classifications, the various
roles of the diverse T cell types can be seen in terms of their contribution to
the unique aspects of overall immunity and tolerance within the HIS. In this
paper we carefully study the significant properties and physiological mechanisms
of each T cell subset, with regard to the way they influence the interaction
of immunity and tolerance. This study allows us to design a new AIS model,
CARDINAL(Cooperative Automated worm Response and Detection ImmuNe
ALgorithm) which has the potential to operate as a cooperative automated worm
detection and response system. The paper starts by addressing the research issues
associated with such a system. Section 3 introduces the different differentiation
states of T cells within the HIS. Section 4 presents a novel cooperative automated
worm detection and response system which adopts CARDINAL and finally the
paper concludes with details of future work planned.

2 Cooperative Automated Worm Detection and
Responses

In order to detect the presense of a novel worm virus various automated anomaly
detection and response based systems have been developed [12]. These systems
trigger automated responses when they observe such things as abnormal rates
of outbound connections, emails sent, or port scanning, etc. In order to improve
the false positive error rate made by local anomaly detectors, an alternative
cooperative strategy has also been suggested [3] [13] [14]. The motivation behind
this approach is that additional information on the infectious status of the worm,
and the responding states of other peer hosts, would help local responders make
better decisions by taking into account the collective evidence on an attack’s
severity and certainty, and an infection growth rate. Indeed, some work has
already reported that such a suggestion reduces false positive errors [16].

However, there are some significant issues to be tackled in order to make
a cooperative strategy truly effective. Firstly, information shared between peer
hosts should be lightweight, as the transfer of unnecessary and excessive informa-
tion can create the potential for self denial-of-service attacks [3] [13]. Secondly
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response mechanisms should be robust against inaccurate information passed
amoung hosts [3]. If the reaction to a false positive error is isolated to a sin-
gle host, the impact is minimal. However because of the cooperative nature of
the system, this inappropriate response could be disseminated to the rest of the
network, causing other hosts to react in a similar fashion and exascerbate the
problem. Thus, a cooperative system needs to localise the negative impact of
such errors, and this could be done by constantly redefining the range of infor-
mation to be shared in terms of an estimated certainty of detection results. In
order to address these issues, we identify the following to be studied:

– Optimise the number of peer hosts polled: the CARDINAL system
needs to determine which peer hosts are able to share information, and
how many peer hosts should be selected to share that information. These
decisions are directly aimed at preventing a possible break of self denial-of-
service attack. Determining the set of peer hosts is done by identifying all the
possible peer hosts that can be directly contacted and thus infected by a given
host. However, the number of all possible peer hosts may be unnecessarily
large as information shared by a smaller number of peer hosts might be
sufficient to mitigate and stop worm propagation. An optimal number of
peer hosts is desirable to mitigate the propogation of a worm to a sufficient
degree whilst minimising the number of resources that are required to achieve
that objective. The determination of the size of this optimal set of peer hosts
would be influenced by factors such as the severity of the worm’s threat, the
certainty of attack detection, and the growth rate of the infection. The more
severe an attack, the more certain we are of it being detected, or the faster
is its propagation, then the larger the peer set needs to be so information
can be shared by more peer hosts to counterattack the worm successfully.

– Types of system responses should be determined by attack sever-
ity and certainty: in order to reduce the negative effects of false detection
results, CARDINAL selects its response to the threat depending on the cer-
tainty of an attack being detected and the severity of that attack. CARDI-
NAL would respond to severe and certain attacks with strong actions, such
as blocking ports showing anomalous outbound connection patterns, elimi-
nating emails appearing to carry worms, or dropping hostile network packets
containing attack signatures. Alternatively, when presented with relatively
uncertain or less severe attacks, CARDINAL would take less severe action,
such as logging the potential situation for an administrator or limiting the
network connection rates.

– For performing adequate magnitudes of responses, both local and
peer information needs to be taken into account: the severity and
certainty of attacks should not be staticly measured. A worm detected at a
local host, at a given time, might appear to be relatively less severe, however
if CARDINAL later observes that the number of peer hosts infected by the
worm greatly increases within a short time frame, responses to this worm
should be upregulated in terms of detection certainty and attack severity.
The total number of infected peer hosts could be estimated based on the
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collective information passed between the peer set. Alternatively, when a
severe attack is detected by a particular host, which disseminates this infor-
mation to the remaining designated peer hosts, those hosts do not necessarily
have to take the same corrective action as the original host. If the infectious
symptoms are not shown at the peer hosts receiving this information, and
the total number of infected peer hosts does not increase quickly, the peer
host can change its response from a very strong reaction to a weaker one.
In turn this host would decrease the number of other peer hosts to which
it sends its detection and response information, curtailing the response to
the worm and returing the system to a stable state. Considering these fac-
tors together, we see CARDINAL will determine the apppropriate number
of hosts to be polled and the degree of response to a worm according to the
severity and certainty of attacks, which are dynamically measured based on
both local and peer information.

Table 1. Mapping between CARDINAL and HIS

CARDINAL HIS

Optimise the number of peer hosts polled Dynamically adjust the proliferation rate
for each effector T cell

Types of system responses should be de-
termined by attack severity and certainty

Differentiate appropriate types of effector
T cells depending on interaction with cy-
tokines and other molecules during the
maturation proccess

For performing adequate magnitudes of re-
ponses, both local and peer information
needs to be taken into account

T cell effector function is amplified and
suppressed via interaction among different
types of effector T cells

We believe that several mechanisms constituting T cell immunity and toler-
ance of the HIS could provide insight into intelligent approaches to implementing
the previous three properties. Table 1 shows these three specific properties of T
cells in the HIS, which were used to design CARDINAL. Section 4 discusses the
details of these properties together with the proposed model of CARDINAL. Be-
fore this discussion, section 3 briefly reviews the various differentiation states of
T cells and how they contribute to the HIS in balancing immunity and tolerance.

3 T-Cell Immunity and Tolerance of HIS

The immune response is an incredibly complex process that one can argue begins
with the dendritic cell (DC). DC’s are a class of antigen presenting cell that
migrate to tissue in order to ingest antigen or protein fragments. Whilst ingesting
the antigen, DC’s are also receptive to molecules in the environment that may be
associated with the circumstances of that antigen’s existence. These molecules
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are identified as a form of danger signal [9]. Once the antigen has been ingested
in the tissue, the DC’s travel back to the lymph nodes where they present the
antigen peptides to naive or memory T cells via their MHC molecules, this allows
a T cell to be able to identify that antigen. In addition, the DC will interpret
the molecules it experienced during the ingestion process, and release particular
cytokines1 to influence the differentiation of the T cell it is presenting antigen
to. In this way, the DC drives the T cell to react to the antigen in an appropriate
manner and as such the DC can be seen as the interpretative brain behind the
immune response. Given we now know what drives the T cell differentiation
process, we turn to look at the different T cell differentiation stages. Much of
this information has been taken from [5] [7] and reference to that work should
be made if further detail is required.

3.1 Naive T Cells

Naive T cells are T cells that have survived the negative and positive selec-
tion processes within the thymus, and have migrated to continuously circulate
between the blood and lymphoid organs as they await antigen presentation by
DC’s. The important fact is that naive T cells have not experienced antigen and
they do not as yet exhibit effector function.

3.2 Activated T Cells

Naive T cells reach an activated state when the T cell receptor (TCR) on the sur-
face of the naive T cell successfully binds to the antigen peptide-MHC molecules
on the surface of the DC, and co-stimulatory molecules are sufficiently upregu-
lated on the surface of the DC to reflect the potential danger signal. The degree
of signaling from the DC influences the degree of activation of the T cells. T cells
that receive high signal strengths adopt the potential for effector function and
gain the ability to migrate from their current location in the lymph node to the
periphery. These activated T cells gain the ability to proliferate and their clones
will begin to differentiate into either helper T cells or cytotoxic T cells. These
cells will finally reach effector status when they interact with a second antigen
source. T cells that receive excessive levels of signalling die through a process of
activation induced cell death (AICD) to prevent an excessive immune response
taking place.

3.3 Helper T Cells (Th)

Naive T cells express either CD4 or CD8 co-receptor molecules on their surface,
so called as they are clustered with the TCR and bind to the MHC molecules
presented on the DC. Naive T cells expressing CD4 differentiate into Th cells
1 Cytokines are chemical messengers within the HIS [5]. They are proteins produced

by virtually all cells in the HIS and they play an important role in regulating the
development of effector immune cells.
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after activation. When they achieve effector status, through further antigenic
stimulation, Th cells can develop into either Th1 or Th2 cells. The divergence
between Th1 and Th2 is driven by the cytokines released from the DC when the
T cell is first activated. Th1 and Th2 cells have different functionality as Th1
cells release cytokines that activate cytotoxic T cells whilst Th2 cells release
cytokines that activate B cells.

In addition, a cross regulation mechanism exists between Th1 and Th2 cells.
Cytokines released by Th1 cells directly impede the proliferation of Th2 cells,
whilst Th1 cytokines downregulate the production of the cytokine IL-12 in DC’s
which in turn downregulates the proliferation of Th2 cells. This feedback mech-
anism leads to an immune response dominated by the particular Th cell subtype
that is primarily stimulated, ensuring the more suitable immune response is
initiated to resolve the current threat.

3.4 Cytotoxic T Cells (CTL)

Naive cells that express the CD8 molecule on their surface are predestined to
become CTL cells after activation. If the DC’s themselves do not express suffi-
cient co-stimulatory molecules to cause activation, then DC’s can be induced to
upregulate those signals by Th1 cells who also bind to the DC. Activated CTL’s
will undergo proliferation and migrate to inflamed peripheral tissues. When they
receive stimulation from subsequent antigen, they will reach an effector status
and develop the ability to produce antiviral cytokines and cytotoxic molecules,
which when released will kill infected host cells that exhibit the antigen trace
identified by the CTL. A CTL can bind to, and therefore kill, more than one
infected cell at a time.

Current theories disagree as to whether, after reaching an effector state and
carrying out their helper or killer function, CTL and Th cells either die as they
have reached a terminally differentiated state or whether some proportion of the
CTL / Th effector cell population differentiate into longer lived memory cells to
facilitate a suitable secondary response.

3.5 Summary of T Cell States

From the above sections, we can see that given the presentation of antigen by
an APC and the existence of sufficient signals that indicate the presence of
danger, a naive cell will become activated, will proliferate and differentiate into
effector cells which can take on numerous alternative states. Depending on the
co-receptors expressed on the effector T cell surface, these cells will either differ-
entiate into Th or CTL cells. CTL cells lead the immune response by eliminating
antigenic threats. Th cells provide assistance to this protective process but also
provide regulation via a comprehensive feedback mechanism to ensure stabili-
sation. Naive cells that do not receive sufficient danger signals do not become
activated and so the system becomes tolerant to such antigen strains. All these
cells interact in a competitive environment that results in tolerance and immu-
nity within the system.
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4 Cooperative Automated Worm Response and
Detection ImmuNe ALgorithm(CARDINAL)

As described in the previous section, different differentiation statuses of T-cells
play varying roles in evoking overall immunity and tolerance in the HIS. This sec-
tion introduces the overall architecture and components of the AIS that adopts
CARDINAL, which employs various the T-cell immunity and tolerance mechan-
ims reviewed in the previous section.

4.1 Overall Architecture

The overall architecture of CARDINAL is presented in Fig. 1. It consists of pe-
riphery and lymph node processes [15]. Both processes reside on a monitoring
host and any host running these two processes becomes a part of an artificial
body which CARDINAL monitors. The periphery is comprised of DCs and var-
ious types of artificial T cells and they directly interact with input data such as
network packets, email outbox or TCP connection requests etc. The input data
also exists as a part of the periphery. DCs gather and analyse the input data
and carry their analysis results to the lymph node. At the lymph node, naive
T cells are created which subsequently differentiate into various types of effec-
tor T cells based on the input data analysis results continuously passed from
DCs. Within CARDINAL, effector T cells are automated responders that react
to worm related processes in the periphery. Effector T cells are assigned to a
response target, a response type, and the number of peer hosts polled. Before
the effector T cells migrate from the lymph node to the periphery, they inter-
act with other effector T cells passed from peer hosts. This interaction allows
locally generated effector T cells to determine whether they should perform as-
signed types of responses or not, and the numbers of peer hosts to be polled
if they decide a response is appropriate. The local effector T cells assigned to
particular responses, and the number of peer hosts to be polled are passed to
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the periphery processes at the local host and the peer hosts. These effector T
cells now respond to the response targets, which are also defined as a part of the
periphery process. In the next section, we provide more detailed descriptions of
artificial cell interactions occuring at the periphery and lymph node processes
within CARDINAL.

4.2 Periphery and Lymph Node Processes

DCs sense danger signals and capture antigens. The artificial tissue layer
provides the location for two primary activities, the monitoring of danger signals
(see 1© in Fig. 2) and the collection of antigen in the form of input data (see 2©
in Fig. 2). Here danger signals are seen in the context of the symptoms arising
from a worms infection. Well known worm infection symptoms include exces-
sive cpu load at the host level, bandwidth saturation at the network level, and
abnormal rates of email communication etc. Mechanisms of converting infection
symptoms into danger signals that can be acted upon can be seen in [6] and
are not discussed here. The DC’s within CARDINAL then assess these danger
signals and ascertain the severity of the attack and the certainty of its detection.
The second purpose of the tissue layer is to provide a mechanism for the DC’s
to gain access to the input data reflecting the antigens, so that the threat level
derived from the danger signal can be associated with its respective source and
remembered. The extraction of antigen from the tissues by DC’s is discussed
in [4] [6].

Naive T cell creation. Once collected in the periphery, DCs carry the danger
signal assessment results and captured antigens to the lymph node. At the lymph
node, naive T cells are created and these are subsequently differentiated based on
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the danger signal assessment results into their various states (see 3© in Fig. 2).
In nature, the receptors on naive T cells (TCR’s) allow the cell to identify a
particular type of antigen. For the sake of simplicity, our model assumes that
the system will target the worm which always has a consistent attack signature
and so can be detected by our naive T cells via these receptors. This assumption
will be changed in future work to allow for the detection of polymorphic worms,
which constantly change their form or functionality. In this way, the receptors
of the naive T cells are simply copies of the antigens presented by DCs.

Naive T cell maturation. Naive T cells continuously encounter DCs passed
from the periphery (see 3© in Fig. 2). During this process, DCs present danger
signal assessment results to the naive T cells in three forms, as a form of a
costimulatory signal and as two types of cytokines that reflect the potential
danger signal, and each is affected differently based on the scale of the attack.
The costimulatory signal is increased if a DC detects a severe attack, needing
a strong response, and the certainty of that attack is assessed to be high. The
cytokine IL-12 increases when a DC detects a severe attack requiring a strong
response but with a relatively lower certainty, whereas the value of the cytokine
IL-4 is incremented when a DC detects a less severe attack which only needs a
weak response2.

Naive T cells have three numerical values associated with them, these repre-
sent the “accumulated” certainties and severities of attacks recognised for each
cell type: CTL activation values, Th1 activation values, and Th2 activation val-
ues. Whenever naive T cells interact with DCs, they evaluate whether the antigen
presented by DCs are identical to their TCRs. If they are identical, naive T cells
adjust these three activation values by taking account into the values of the
costimulatory signals and the cytokines IL-12 and IL-4 produced by the DC’s
(see 3© in Fig. 2). The costimulatory signal will influence the CTL activation
value whilst IL-12 and IL-4 will influence the Th1 and Th2 activation values
respectively. After a suitable period of time, these naive T cells are considered
as ready to respond and differentiate.

Effector T Cell differentiation. There are three different types of local effec-
tor T cells : local CTL, local Th1, and local Th2 cells (see 4© in Fig. 2). The CTL
activation , Th1 activation and Th2 activation values associated with the naive
T cells will determine the types of local effector T cells that naive T cells will
differentiate into. When one of these activation values exceeds a given threshold,
via stimulation from the costimulatory molecules or cytokines from DCs, naive
T cells will differentiate into the respective type of cell for which the threshold
was exceeded. The newly differentiated local effector T cell will have an identical
TCR pattern to the orginal naive T cell. In addition, they are cloned, and the
number of clones reflects the numbers of polled peer hosts. This clonal rate is de-
termined by the CTL, the Th1, and the Th2 activation values respectively. The
2 For a less severe attack, CARDINAL does not take into account the certainty of this

kind of attack since a negative effect of a response triggered by a false positive error
would be minor.
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larger the CTL activation value, the larger is the number of clones allocated to
that CTL. Similarly, the larger the Th1 or Th2 cell activation values, the larger
is the numbers of clones assigned to the Th1 cell or Th2 cell.

Interaction between local effector cells and peer effector cells. Each
type of local effector T cell only interacts with the same corresponding type
of peer effector T cell transferred from the peer hosts (see 5© in Fig. 2). This
interaction takes place over four distinct stages. During the initial stage, at each
host, CARDINAL selects local effector T cells whose numbers of clones are large
enough to indicate that the antigens recognised by those effectors are severe in
terms of their attack, and that the evidence of this attack is certain. During
the second stage, CARDINAL reviews the local effector T cells that were not
selected during the first stage and compares them to the peer effector T cells.
Local effector T cells are then chosen if they match the required number of
peer effector T cells, which detect the same antigens recognisied by local effector
T cells. During the third stage, CARDINAL recalculates the number of clones
assigned to the local effector T cells that were selected during stages one and
two. The numbers of clones produced is determined by comparing the historical
growth rate of the worm infection against the historical effector cell clone growth
rate3. If the worm infection growth rate exceeds, or is equal to, the clone growth
rate, CARDINAL increases the numbers of clones currently assigned to local
effector T cells, otherwise CARDINAL decreases the numbers of clones of local
effector T cells.

During the fourth and final stage, CARDINAL reviews the peer effector T
cells received by the local host and identifies those cells that do not have a local
effector T cell that are capable of detecting the same antigen. The numbers of
clones assigned to these peer effector T cells is then decreased because those
antigen have not been detected at this local host, and so are not considered a
threat. Therefore, CARDINAL starts to suppress the response to that antigen.
After this suppression, CARDINAL examines the the number of clones assigned
to the peer effector T cells sent to the local host. If the number of clones exceeds
zero, then this reflects a potential threat that the local host has yet to experience.
In order to prepare the local host for this potential threat the local host will
create a local naive T cell that is an exact copy of a peer effector T cell. This naive
cell will have lower activation thresholds for its CTL, Th1 and Th2 activation
values to ensure a rapid response is initiated to any subsequent antigen exposure.
In this way, we create a form of memory within the CARDINAL system.

Interaction between updated local CTLs and updated local Th1 cells.
Up to this point, effector T cells have only interacted with other effector T cells
of the same type. However, CARDINAL also incorporates interactions amongst

3 The worm infection growth rate is estimated from the total number of responses
which the peer hosts made during the previous two time steps. The clone growth
rate is also measured as the change in the number of clones over the previous two
time steps.
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different types of effector cells. Before local effector T cells migrate to the pe-
riphery, another interaction between local CTLs and local Th1 cells occurs at
the lymph node. During this interaction, the local Th1 cells can further increase
the number of clones assigned to local CTL’s if the two cells recognise the same
antigen (see 6© in Fig. 2). As the certainty of an attack detected by a local Th1
cell is lower compared to that detected by a CTL, some fraction of the number of
clones which a local Th1 cell has could be added to the number of clones of the
local CTL. This variation in attack certainty between CTL’s and Th1’s depends
on the type and timing of the danger signals’ occurrence (infection symptoms).
The interaction between a local Th1 and a local CTL would result in the fusion
of various information related to an antigen, which is collected from diverse in-
put sources over different time steps. This additional support from a Th1 cell
reinforces the response of a CTL by increasing the number of CTL clones spe-
cific to that antigen. This is because they provide additional evidence as to the
existence of an antigen threat.

Effector T Cell migration and response. After the cell interaction phase
is complete, local and peer effector T cells with positive clone values begin a
migration process either to respond to a threat in the periphery at a local level
(see 7© 8© in Fig. 2) or communicate the existence of such a threat to other
peer hosts (see 7© in Fig. 2). Local CTLs and local Th2 cells migrate to the
periphery of the local host and commence their assigned response roles to counter
the antigen attack. Th1 cells influence the number of CTL clones whilst in the
lymph node, so their impact on the periphery is indirect. If the numbers of
clones assigned to local effectors are positive, and there are no matching peer
effector cells detecting identical antigens, CARDINAL creates new peer effectors
which are copies of the local effectors. These new peer effector T cells, along with
the existing peer effector T cells, migrate to other peer hosts if the number of
clones associated with these cells is positive. This ensures that the knowledge
of the antigen attack is communicated to the selected peer hosts. As described
previously, the number of peer hosts selected for migration is determined by the
severity and certainty of an attack. The actual hosts chosen for this migration
subset are selected randomly from “all the possible peer hosts”.

4.3 T Cell Immunity and Tolerance Within CARDINAL

As illustrated in previous sections, CARDINAL adopts various immune inspired
components in order to implement an effective cooperative strategy for worm
detection and response. Table 2 summarises these components and their roles
within CARDINAL. In section 2, we highlighted three properties desirable for
an effective worm detection and response system. We believe that CARDINAL
would provide these properties through implementing T cell immunity and tol-
erance as follows:

– Types of system responses should be determined by attack sever-
ity and certainty: CARDINAL determines appropriate types of responses
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Table 2. CARDINAL components and their roles

CARDINAL CARDINAL
Components Roles Components Roles

Periphery Input data access and re-
ponding targets

Lymph Node T cell creation, differen-
tiation and interaction

Tissue Local anomaly detectors DC Costimula-
tory Signals

Frequencies of severe and
certain attacks

DC Cytokine
IL12

Frequencies of severe and
less certain attacks

DC Cytokine IL4 Frequencies of less severe
attacks

Danger Signals Infection symptoms Antigens Attack Signatures
TCRs Attack signatures CTLs Strong Automated Re-

sponders
Th1 Cells CTL controller Th2 Cells Weak Automated Re-

sponders
Activation Values
of a Naive T cell

Accumulated severities
and certainties of attacks

Number of clones
of an Effector T
cell

Number of polling peer
hosts

based on the attack severity and certainty assessed by DCs. DCs exposed
to various types of danger signals produce different levels of costimulatory
signals and cytokines, which in turn stimulate naive T cells recognising the
antigen presented by DCs. The different degrees of accumulated costimu-
latory signals and cytokines reflect the severity and certainty of an attack
measured collectively over multiple time steps and data sources. This kind of
collective measurement would provide more accurate grounds to determine
appropriate types of responses.

– For performing adequate magnitudes of reponses, both local and
peer information needs to be taken into account: a local effector
T cell assigned to a specific type of response can be further stimulated or
suppressed by the interaction with peer effector T cells. This stimulation
and suppression is realised through updating the number of clones assigned
to each effector T cell, which performs a specific type of response.

– Optimise the number of peer hosts polled: CARDINAL optimises the
number of clones(=the number of peer hosts polled) assigned to each ef-
fector T cell by dynamically estimating the severity of the worm’s threat,
the certainty of attack detection, and the growth rate of the infection. This
estimation is implemented via several stages of different types of cell interac-
tions. These interactions include tissue and DC, DC and naive T cell, local
effector T cell and peer effector T cell, and local CTL and local Th1 cell
interactions. As a result of these interactions, if CARDINAL considers the
identified attacks to be more severe, certain, and to propagate faster, CAR-
DINAL triggers a larger number of hosts to evoke an automated reponse.
In addition, CARDINAL immediately suppresses the number of peer hosts
polled when it observes that the severity and certainty of an attack becomes
less, and the propagation speed of an observed attack becomes slower.
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The current mechanisms within CARDINAL, inspired by T cell immunity
and tolerance, would provide these three desirable properties, which will help
an automated worm detection and response system to reduce a false positive
error.

5 Conclusion

In this paper, we have shown how the link between the the innate immune
system(DCs) and the adaptive immune systems(T-cells), can be computationally
modelled to form the basis of a novel worm detection algorithm. In particular, we
identified three key properties of T- cell and mapped these into the CARDINAL
system: *T-cell proliferation - to optimise the number of peer hosts polled. *T-cell
differentiation - to assess attack severity and certainty and *T-cell modulation
and interaction - to balance local and peer information.

Further extensions of the presented T-cell algorithm are possible. In partic-
ular, performance could be enhanced by including the notion of antigen gener-
alisation leading to T-cell memory. Additionally, immunologists have recently
discovered a potentially third T-cell line in the shape of regulatory T-cells. It is
currently thought that these cells form an important part in inducing tolerance
by regulating other T-cell behaviour. However, more details have yet to emerge
before this class of cell can be efficiently incorporated into our computational
model.

It is also worth noting here that the proposed T-cell algorithm does not
operate in isolation, but in unison as a part of the novel danger theory inspired
system [1]. Thus, it is essential for the algorithm to work with artificial tissue [4]
and dendritic cell algorithms [6]. Once integrated, these systems should mirror
the robustness and effectiveness of their human counterparts.

Current work is focusing on implementing a simulated model of AIS adopting
CARDINAL. To reflect worm propagation in the real world, the simulated model
needs to accommodate a number of settings and parameters such as the type of
worm (random-scan worm or topology-based worm), a network topology, a rate
of worm infection depending on selected worm types and the network topology
etc. In order to provide such a realistic environment in the CARDINAL simu-
lated model, the epidemic models defining the state transitions and conditions
of infections are being currently studied [3] [13] [14].
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Abstract. Administered antibodies can suppress humoral immune response. 
Though there are two hypotheses explaining the suppression, such as the 
epitope-masking and Fc-receptor mediated suppression, the epitope-masking 
hypothesis has garnered more supports. To better understand how the immune 
suppression works and to gain a quantitative and qualitative insight, we 
developed the first mathematical immune suppression model based on the 
epitope-masking hypothesis. However, because the hypothesis does not 
account for the actual B suppression mechanism, the fact that antigen-
depletion induces the arrest of proliferating B cells was incorporated to the 
model. The model can reproduce immune suppression phenomena and 
complement the epitope-masking hypothesis by suggesting that the key 
mechanism for the suppression is the arrest of proliferating B cells and it was 
shown to be feasible. It is expected that our model gives a new insight to 
researchers in designing experiments for discovering the underlying 
mechanism of immune suppression. 

1   Introduction 

Humoral immune response can be suppressed by administered antibodies [1] and this 
phenomenon has been used to treat Rhesus prophylaxis [2, 3]. Briefly, a Rh- mother 
who lacks Rh+ erythrocytes can develop antibodies against the Rh+ erythrocytes 
acquired from her Rh+ baby at her childbirth. From the following pregnancy, the 
developed antibodies are delivered through placenta and damage Rh+ erythrocytes of 
her fetus. To treat Rhesus prophylaxis extrinsic anti-Rh+ antibodies are administered 
to the Rh- mother at her childbirth and which prevents the development of anti-Rh+ 
immune response and enables her to give a next birth without any complication. 
Though the immune suppression by administered antibodies has been used for 
medical treatments [2], the underlying mechanism is not fully understood yet. 

In order to explain the suppression, two prominent hypotheses have been 
developed The first model, called epitope-masking, claims that passively administered 
antibodies bind to epitopes on antigens and prevent B cell receptors (BCR) from 
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for BioInformation and BioElectronics and the IBM-SUR program for providing research 
and computing facilities. 

** Corresponding author. 



 Mathematical Modeling of Immune Suppression 183 

 

recognizing the epitopes [1, 4, 5, 6, 7]. Therefore, B cells cannot be stimulated by 
antigens any more. The other model, Fc-receptor-mediated suppression, claims that 
administered antibodies form antigen-antibody complexes that induce co-crosslinking 
of BCR and Fc RIIB receptors, recognizing the Fc part of the antibody, on the B cell 
membrane [8, 9, 10]. The co-crosslinked Fc RIIB inhibits B cell activation signaling 
via immunoreceptor tyrosine-based inhibitory motif residing in intracellular domain 
of Fc RIIB [8]. 

Though each model has a strong point over the other, the epitope masking 
hypothesis has garnered more supports. For example, the FcR-mediated suppression 
model can explain the fact that antibodies against one epitope could suppress not only 
the epitope-specific immune response but also the immune responses against the other 
epitopes on the same antigen [10]. However, it has been also reported that F(ab’)2 
fragments, lacking the Fc part recognized by the Fc-receptors, and intact antibodies 
showed similar suppression [1, 6]. In addition, Mikael C. I. explained the non-epitope 
specific suppression and supported the epitope masking by suggesting that microgram 
antibody completely covers antigens by binding to the epitopes and blocks other 
epitopes from being recognized by the corresponding BCR [11]. A decisive 
experimental result is that immune responses were effectively suppressed even in Fc  
receptor-deficient mice and there was no significant difference of suppression 
between normal mice and the knockout mice [12].  

Until now many mathematical models on immunity have been developed, for 
example, for the prediction of immune response against Mycobacterium tuberculosis 
[13], vesicular stomatitis virus (VSV) [14], Hamophilus influenzae [15], Epstein-Barr 
Virus [16], Lymphocytic Choriomeningitis Virus [17], HIV [18, 19, 20] and so on. In 
spite of many attempts to develop immune models, to our knowledge, models on 
immune suppression have not been reported yet. Moreover, because previously 
developed humoral immune models focused on the way of B cell proliferation, not the 
way of B cell suppression, they could not be applied to predict immune suppression 
phenomenon. 

In order to describe suppression by administered antibodies and to gain new 
insights on the suppression mechanism, we present the first immune suppression 
model. Specifically, the development of such a model would allow us to address how 
the suppression mechanism works and to predict the suppression quantitatively. 
Because the epitope-masking hypothesis is plausible [1, 6, 11, 12], the model is 
developed based on the hypothesis. However, the hypothesis though simply claims 
that due to the masking of epitopes by administered antibodies B cells are suppressed 
[21], it does not explain how B cells are actually suppressed. Thus, in order to explain 
the suppression mechanism and rapid reduction of B cell population, we complement 
the hypothesis by incorporating the ‘B cell survival signal’ to our model, that 
proliferating B cells require signals from antigen-BCR complexes for their survival 
[22, 23, 24]. In other words, our model not only supports the epitope masking 
hypothesis but also complements it by suggesting that the actual mechanism of 
immune suppression is the arrest of proliferating B cells resulted from the depletion of 
antigens. To test the model, it is simulated and model results are compared with 
experimental data in literatures. 
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2   Mathematical Model 

We developed a mathematical immune suppression model based on the epitope 
masking hypothesis [21], but the difference from the original epitope-masking 
hypothesis is that in order to describe the suppression mechanism, which is not  
 

 

Fig. 1. Our immune suppression model is based on the epitope masking hypothesis which 
claims that the suppression of humoral immune response is resulted from the blockage of 
epitopes on antigens from B cell receptors by administered antibodies. Furthermore, our model 
incorporated the fact that B cells require antigens in order to keep dividing through their B cell 
receptors. Otherwise, they arrest in their cell cycles. 

Table 1. Variables and function used in the model 

Variables/Function Description 

Bn  Naïve B cell 

0B  Stimulated B cell by antigens before starting division 

iB  Dividing B cell. i denotes a division stage 

Bp  Antibody producing plasma cell 

Ab  Anti-SRBC antibody 

Ag  SRBC 

IC  
Antigen-antibody complex 

( )D x  

The decreasing rate of the number of proliferating B cells in the 
absence of available antigens. 
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explained in the hypothesis, the ‘B cell survival signal’ was incorporated in our model 
[22, 23, 24]. The model overview is shown in figure 1. Injected antigens are 
recognized by corresponding BCR-expressing B cells. The antigen-recognizing B 
cells delay one day before starting their divisions [25]. If sufficient antigens are 
available, the B cells proliferate and then differentiate into plasma cells to secret 
antibodies. Otherwise, they arrest in their cell cycles [23]. 

Table 2. Parameters used in the model 

Para-
meter 

Value Unit Description Ref 

s  10 B-cell/day 
Rate of naïve B cell production 
from bone marrow 

Estimated 

1k  1.78×10-7 1/(Ag day) B cell stimulation rate Fitted 

2k  1 1/day 
Delay of stimulated B cells for 
division 

[24] 

3k  3 1/day B cell division rate [24] 

4k  1.4×10-10 IC/(Ab Ag day) 
Rate of antigen-antibody complex 
formation 

Estimated 

5k  108 Ab/(B-cell day) 
Antibody production rate from 
plasma cells 

[26, 27] 

     

1d  0.1 1/day Death rate of naïve B cell [28] 

2d  0.4 1/day Death rate of plasma cell [28] 

3d  0.18 1/day IgG decay rate [29] 

4d  0.05 1/day Ag decay rate [30] 

5d  2.4 1/day 
Decay rate of antigen-antibody 
complex 

Estimated 

6d  1.6 1/day 
Death rate of proliferating B cell 
in the absence of antigen 

Estimated 

     

a  10  
Minimum number of antigens 
required to sustain survival signal 
in proliferating B cells 

Estimated 

b  2  B cells produced per division  

e  10  
Minimum number of antigens 
required to sustain survival signal 
in proliferating B cells 

[31] 
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We used parameters from sheep red blood cell (SRBC) experiments in mice, a 
widely studied subject in the context of the immune suppression. The mathematical 
equations are listed below and the variables and parameters are described in Table I 
and II. 

1 1

[ ]
[ ][ ] [ ]

d Bn
s k Ag Bn d Bn

dt
= − −  (1) 

( )0
1 2 0 0

[ ]
[ ][ ] [ ] [ ]

d B
k Ag Bn k B D B

dt
= − −  (2) 
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2 0 3 1 1
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k B k B D B

dt
= − −  (3) 
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k B d Bp

dt
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4 35
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dt
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4
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k Ag Abd Ag

dt e
d Ag= − −  (7) 

4
5

[ ][ ][ ]
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k Ag Abd IC
d IC

dt e
= −  (8) 

3   Results  

3.1   Immune Response Against SRBC 

The stimulation rate of the naïve B cell was estimated to fit the experimental data 
where 4x106 SRBC were administered [11, 12, 32]. The number of B cell at day 3, 4 
and 5 were from [11, 12]. The estimated B cell stimulation rate was 1.78×10-7 Ag-

1day-1. The immunological profiles against SRBC are shown in Figure 2. It has been 
known that the stimulated B cells start to increase in their numbers from about one 
day after immunization to subsequent 3~6 days [33] as shown in figure 2A. In figure 
2B, the number of antibody begins to increase 3 days after the immunization. It is 
because that stimulated B cells take 3~4 days to become antibody-secreting plasma 
cells [25]. The number of the antigens decreases by the produced antibodies (Fig. 2C). 
Specifically, according to our model results, around day 6 the number of the antigen-
antibody complexes reaches its peak (Fig. 2D) because the antigens are most rapidly 
removed over the period (Fig. 2C). 
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Fig. 2. For the simulation, 4×106 SRBC were injected and the humoral immune responses are 
shown. The B cell response to SRBC is shown in (A). The experimental data (closed circles) 
are from experimental data [11, 12]. The number of the B cell is the sum of the proliferating B 
cells and the plasma cells. The profiles of the secreted antibodies (B), antigens (C), and the 
formed antigen-antibody complexes (D) are also shown. 

3.2   Immune Suppression 

In order to simulate immune suppression, 4×106 SRBC were administered alone (Fig. 
3A) and then 10μg anti-SRBC antibody approximately containing 4×1013 molecules 
[11] was administered at 0, 1, 2 and 5 days after the antigen injection (Fig. 3B~F). As 
shown in figure 3B~3F, the B cell peaks appeared 1~2 days after the antibody 
injection [12, 33], because the administered antibodies eliminated most antigens 
within a day (Fig. 3G), which resulted in the arrest of the dividing B cells. Even 
though antibodies were administered 5 days after the immunization, they also 
suppressed the immune response (Fig. 3F) as demonstrated previously in [12].  

The earlier the antibodies were administered, the more the immune responses were 
suppressed (Fig. 3) [12]. The suppression results are in agreement with the 
experimental results [12]. For example, the administration of antibodies 3 days after 
the immunization could suppress immune response by 43% at day 5 while 
simultaneous administration could result in 1% suppression percentage at day 5 [4, 
11, 12, 33, 34]. The suppression percentages were calculated by [34]: 

No. of B cell in case of antibody injection
suppression percentage = 100

No. of B cell in control
×  
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Fig. 3. The immune suppression model was simulated by administrating antibodies at various 
days, 0, 1, 2, 3 and 5 days after the immunization. The number of B cells and SRBC are shown. 
As a control, 4×106 SRBC were injected alone (A). B cell responses, when antibodies were 
administered at day 0 (B), 1 (C), 2 (D), 3 (E) and 5 (F), are shown. Arrows in (B)~(F) indicate 
the time of antibody administration. The closed circles in (B), (C) and (D) were calculated from 
the experimental results (12, 13). The SRBC profiles when antibodies were administered at 
various points are also shown in (G). 

It has been known that not only the timing of antibody administration but also the 
amount of administered antibody affects the suppression. We simulated it by 
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administering various amounts of antibody at day zero; 0.1, 2, and 10μg antibody 
approximately contained 4×1011, 8×1012, and 4×1013 molecules, respectively. In 
figure 4, the fewer antibodies were administered, the fewer antigens were cleared and 
the response was less suppressed. While 0.1μg of antibody did not make any 
significant suppression, more than 2μg of antibody suppressed the response 
significantly (Fig. 4A). It is because that 0.1μg antibody cannot eliminate the 
antigens, but more than 2μg antibody is enough to clear the antigens within a couple 
of days (Fig. 4B). This model results are also in accord with previous experimental 
results [11]. 
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Fig. 4. 4×106 SRBC with 0.1, 2 and 10μg antibody is administered together at day 0. The B cell 
profiles and SRBC profiles are shown in (A) and (B), respectively. As more antibodies were 
administered, they eliminated the antigens more rapidly and thus immune response was more 
suppressed. Administering antibodies less than 0.1μg did not make a significant suppression 
while more than 2μg antibody made a significant suppression. 

4   Discussion 

We have presented the first immune suppression model in order to understand the 
suppression phenomena. Though the model was based on the epitope-masking 
hypothesis, because the hypothesis does not explain the actual suppression 
mechanism but claims that the suppression would be initiated by the elimination of 
antigens, to account for the suppression mechanism and dramatic decrease of B cell 
population, the hypothesis was complemented by incorporating the concept of B cell 
survival signal [22, 23, 24]. 

According to reported experimental results, the number of B cell decreases 1~2 
days after antibody administration [33, 35]. Without the arrest, the B cell population 
starts to decrease 3~4 days after antibody injection because the programmed divisions 
of stimulated B cells are not interrupted. This reflects that without suppressing 
proliferating B cells the population cannot be rapidly reduced. Thus, the arrest of B  
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cell is the key process for immune suppression. In our simulation results, when 
antibodies were administered, it took one day before the number of B cells started to 
decrease because the antibodies took one day to remove the available antigens. Then, 
due to the depletion of the antigens, dividing B cells started to arrest and the number 
of the B cell population decreased consequently. Antibodies administered up to as 
many as 5 days after the antigen injection can suppress the B cell response [12]. 
Moreover, calculated suppression percentages were also in good agreement with 
previous experimental results.  

We also simulated the effect caused by various amounts of administered antibodies 
and found that less than 0.1μg antibody against 4×106 SRBC cannot make any 
suppression while more than 2μg antibody makes significant suppression. It is 
possible to apply our model to clinical treatments such as the Rhesus prophylaxis [2, 
4]. Using the model, an optimum antibody concentration inducing maximal 
suppression can be predicted for the treatment. 

Conclusively, the model successfully reproduced the suppression phenomena and 
which supports the hypothesis and we suggest that the key process for the dramatic 
decrease of B cell population is due to their arrests in the absence of available 
antigens. We expect that our model results give researchers a new insight as to how 
the immune suppression works and it would help them to design experiments for 
discovering the underlying mechanism of immune suppression. 
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Abstract. Immunological simulations offer the possibility of perform-
ing high-throughput experiments in silico that can predict, or at least
suggest, in vivo phenomena. In this paper, we first validate an experi-
mental immunological simulator, developed by the authors, by simulat-
ing several theories of immunological memory with known results. We
then use the same system to evaluate the predicted effects of a theory
of immunological memory. The resulting model has not been explored
before in artificial immune systems research, and we compare the simu-
lated in silico output with in vivo measurements. We conclude that the
theory appears valid, but that there are a common set of reasons why
simulations are a useful support tool, not conclusive in themselves.

1 Introduction

The field of Artificial Immune Systems (AIS) has successfully established itself
as a discipline that investigates the computational properties of immune system
abstractions. As a result, AIS researchers are in the unique position of being able
to offer to immunologists simultaneous expertise in computational methods, and
in the ability to apply these methods to immunological problems.

One such useful computational application is the immune system simulation.
Immune system simulators will be required if there is to be a significant increase
in the generation of new immunological ideas, because computational simulation
is considerably faster than lab experiments. So far, however, this has not been
practical because the granularity of the simulations has been far too large, and
a single system can either generate high-level, global immune simulations, or
detailed but partial simulations.

In this paper we outline a system, still under development, that can provide
fast, detailed immune simulations, and which is beginning to suggest in vivo
effects with enough accuracy to be useful as an immunology support tool. We
choose immunological memory as our application area. This paper:

1. Provides a survey of immunological memory, particularly with regard to a
new immunological memory theory that may be of interest in AIS.
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2. Provides a survey of existing immune simulation systems. Due to space con-
straints we have restricted this to global simulators, rather than more spe-
cialised simulations such as (6).

3. Describes how we validated our immune system simulator on existing data.
4. Describes how we tested the validity of a new theory of immunological mem-

ory (3), by using our immune simulator to generate in silico results from a
model of it, and evaluating the reliability of that theory by comparing our
in silico results with the in vivo results.

Our simulator is fast, even when simulating tens of millions of immune cells,
and it has the ability to simulate cytokine concentrations, which proved vital
in simulating the work of (3). The simulator’s speed and flexibility allows it
to be applied to tasks that were previously impossible. Furthermore, our new
simulator is designed from the ground up as a reusable, flexible tool for complex
adaptive systems research, not just a one-off immune simulation.

2 Background

2.1 Immune Memory

Immune (or serological) memory is one of the hallmarks of the immune system
but, as Zinkernagel et al say, in their seminal paper on viral immunological
memory, “Browsing through textbooks and authoritative texts quickly reveals that
the definition of immunological memory is not straightforward.” (35), and many
of the questions they raise are still relevant almost ten years later.

Once the immune system has mounted a primary response to an antigen, a
memory of that antigen is retained for several years or even decades (23; 21).
One way to measure the strength of a memory to an antigen is by counting the
population of specific memory cells. This figure tends to fall rapidly immediately
after an infection, reaching a stable level which is maintained over many years or
decades, even in the absence of re-exposure to the antigen. The challenge facing
immunologists is to discover how these cells are maintained.

Long-Lived Memory Cell Theory: The majority of our cells have a lifespan
much shorter than that of the body as a whole, and so cells are continually
dying, and being renewed. It has been speculated that some lymphocytes (both
B- and T-cells) that have a close match to an antigenic source differentiate into
‘memory cells’, and that these memory cells are then highly responsive to the
original antigenic trigger. This theory assumes that there is no cell-division, and
the cells live a very long time, preserving immunity for many years (19).

Emergent Memory Theory: A similar theory proposed says that there are
no special memory cells, rather the effector cells naturally evolve towards highly
specific cells, and are preserved from apoptotic death via some sort of ‘preservase’
such as telomerase (30). Although it is unlikely that emergent memory is stable
in itself (31), the process would explain how the quality of the memory evolves.
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It is now widely accepted that these hyper-sensitive memory cells do exist,
and exhaustive research has been conducted in order to describe their attributes
and behaviours, e.g. (19). However recent experimental evidence has contra-
dicted the theory that memory cells they are extremely long-lived. A series of
experiments (29; 28) on mice showed that memory T-cells can continue to divide
long after any primary response. Since a stable population is maintained, this
means that memory cells must also be dying at a similar rate, and are therefore
not as long-lived as originally believed.
Residual Antigen Theory: It is possible that the immune system does not
completely remove all antigenic material from the host, either because small
concentrations of antigenic cells may remain long-enough to reproduce, or be-
cause the immune system itself has retained some of the antigenic material in
follicular dendritic cells (FDCs) – these FDCs then slowly release the antigenic
material into the host, to stimulate a low-level immune response. In either case,
this would keep the immune system active enough to sustain memory cell popu-
lations. This idea has been supported by research suggesting that B-cell memory
is particularly sensitive to residual antigen (27).

In recent years however, compelling evidence has been presented suggesting
that the cycling of memory T-cells continues to occur without any of the specific
antigen being present (15), which would mean that these cells must be responding
to some other stimulus. This view is widely accepted by immunologists (2), but
it should be noted that some debate remains (17; 34)
Immune Network Theory: Network theory is based around the idea that the
immune system retains memory by internal, not external stimulation. It sug-
gests that immune cells, particularly lymphocytes, present regions of themselves
that are antigenic to other immune cells. This causes chains of stimulation and
suppression, which while begun by an external antigenic source, are continued
and maintained even in their absence, and thus are a form of memory (9; 8).
Nevertheless, general opinion in immunology says that the amount of interaction
between antibodies is not sufficient to explain immunological memory.
Heterologous Memory Theories: It has been observed that during an im-
mune response, populations of memory T- cells unrelated to the antigen may also
expand (3; 28), suggesting that perhaps serological memory could be maintained
by a degree of polyclonal stimulation during all immune responses.

According to (2), two possible mechanisms have been suggested to explain
these results - Bystander Stimulation and Cross-Reactive Stimulation. The By-
stander Stimulation theory suggests that the antigen-specific T-cell produces
a cytokine that somehow stimulates all nearby memory T-cells to divide. The
Cross-Reactive Stimulation theory is based on speculation that memory cells
could be more sensitive to stimulation than näıve cells, and might therefore be
stimulated by different antigens, perhaps even a self-antigen. It has been shown
experimentally that memory T-cells specific to a particular antigen can be di-
rectly stimulated by a different, unrelated antigen (24).

Both of these theories are examples of heterologous memory. In other words,
they suggest that once memory T-cells have been created, they can be stimulated
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during immune responses to unrelated antigen. The difference is that in one case
the cells are directly stimulated by antigen, and in the other they are stimulated
by cytokines released by other, antigen-specific cells.

Memory Maintenance in General: It seems likely that one, some, or all of
the above theories have some basis in fact, but there are further general issues of
memory maintenance. There are a number of problems with current theories of
B-cell memory maintenance. These stem from an apparent paradox that can be
seen in measurements of antibody concentrations in serum in the months follow-
ing an infection. It has been known for decades (23; 21) that antibody produced
in response to an antigen can persist at significant levels in serum for years after
the initial infection has occurred. Antibodies cannot survive in the body for any
length of time, so we can conclude that plasma cells are sustaining these concen-
trations. The problem is that plasma cells in mice have been shown to live for
just a few months (25), and that they are only produced by differentiating mem-
ory cells. This evidence contradicts theories of long-lived memory B-cells, and
draws us to the conclusion that memory B-cells – like their T-cell equivalents –
are being continually cycled long after any infection has been removed.

2.2 A Brief Survey of Immune Modelling

Mathematical Models: Mathematical immunological models are often devel-
oped for a highly focussed area of interest (e.g. (22; 26)). Generally, they use
ordinary differential equations (ODEs) or partial differential equations (PDEs)
to encapsulate their chose immune dynamics.

Perelson’s HIV equations (22), and Smith’s influenza dynamics (26), are il-
lustrations of models of small parts of the immune system dynamics that have
had significant benefits to human health, but which do not set out to model
the immune system as a whole. Slightly larger scale models have been used to
explain gross-scale features of the immune system (33), but they are rare.

Immunological memory has been modelled in this way; the classic example
is Farmer, Packard and Perelson’s work (8), but there are more recent attempts
to model immunological memory too (1). Although these models say a lot about
certain details, they are not intended to be global models of immunological
memory. For example, the important work of Antia, Ganusov and Ahmed on
understanding CD8+ T-cell memory (2) is based on a few, relatively simple
equations. This is not to say that it is easy to generate such equations (it is
not); rather, we are saying that the applicability of these equations is limited.
Indeed, the difficulty in building and managing these equations is precisely the
reason that a computational simulation approach is sometimes more appropriate.

Computational Models: Computational models are not as well established as
mathematical models, but are usually either population-based (entities that are
tracked as they freely interact with each other), or cellular automata (entities
that are tracked in a discrete grid-like structure) (32). There are surprisingly
few immunological simulators, and those that do exist have often not been peer-
reviewed by the academic community.
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ImmSim: The work of Seiden, Kleinstein and Celada on on ImmSim was the
first real attempt to model the immune system as a whole. (14; 13), and it is still
the only simulator to have been fairly widely peer reviewed. It is similar in style
to the work of Farmer et al (8), but is a true simulation, not a set of ODEs.

Simmune: There are at least two “Simmune” immunology simulators: Meier-
Schellersheim’s version (20), which was developed in the late-1990s, and a Derek
Smith and Alan Perelson’s version. Of the two, Meier-Schellersheim is the more
advanced, implemented as a full cellular automata with the ability to define
almost any rules that the user desired, whereas Smith and Perelson’s was a
relatively simple, unpublished Lisp simulation.

Synthetic Immune System (SIS): Although SIS appears to be significantly
faster and more powerful, it does much less. Simmune can simulate large num-
bers of complex interactions, whereas SIS is designed only to investigate self-
nonself relationships. SIS is a cellular automata. SIS can only be found on the
web, at: http://www.cig.salk.edu/papers/SIS manual wp M.pdf

ImmunoSim: Ubaydli and Rashbass’s Immunosim set out to provide re-
searchers with an “Immunological sandbox” - it was a customizable modelling
environment that simulated cell types, receptors, ligands, cascades, effects, and
cell cycle, with experiments run in silico. A key requirement was that it should
have a purely visual interface, with no programming necessary. It received the
Fulton Roberts Immunology prize (twice) from Cambridge University but does
not appear to available as a publication, or on the web.

Other systems: These simulations (5; 11) are smaller scale than that proposed
here, but have still had benefits to medicine and immunology, and/or highlight
problems that need to be overcome. Others have emphasised the importance of
the binding mechanism, the type of cell-cell and cell-antigen interaction chosen,
and the multitude of other possibilities that should be considered (10).

We have been using immunological memory as an area to help develop an
generic immune simulator (31) – i.e. one that can simulate far more than just
immunological memory.

3 Methods and Materials

3.1 About the Simulation System

The simulations that form the basis of this paper were modelled using our soft-
ware, ‘Sentinel’. Sentinel is a complex system simulation platform for immunol-
ogy and AIS research that currently exists as a prototype. Its design is based
largely around the principals of cellular automata, with the environment divided
into a discrete grid of locations. Entities within the simulation are free to move
around in this environment, but are only able to respond to events that oc-
cur within closely neighbouring cells. ‘Engines’, such as those used in computer
games for managing graphics, physics, etc., manage the physical and chemical
interactions that occur within this environment.
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Fig. 1. (left) The structure of the Sentinel system. (right) Sentinel models the diffusion
of chemicals to implement realistic chemotaxis and, crucially, to model the effects of
cytokines (see text). The main figure shows the different concentrations of chemicals
over a detailed view of the simulator’s simulation environment. The inset shows the
location of the detailed view in the whole space being modelled.

The physics engine allows accurate simulation of the physical properties of
agents, restricting their movements according to attributes such as mass or en-
ergy output. Whereas many simulations or differential equation models are ex-
clusively based on cells that exhibit some form of Brownian motion, agents (cells)
in Sentinel move according to the chemical stimuli they receive, their motor ca-
pabilities, and external forces acting upon them. This ensures that movement is
as realistic as possible, and is a novel feature of Sentinel.

A chemistry engine is responsible for managing chemical and biochemical
reactions, and also the distribution of extra-cellular molecules throughout the
environment. For example, if a cell releases a particular kind of cytokine at its lo-
cation, the chemistry engine will cause that cytokine to gradually disperse across
the environment (see Fig. 1) by diffusion, spreading a proportion of the molecules
in one cell equally across its neighbours. This feature is essential for the accurate
simulation of cell movement by chemotaxis – the process by which immune cells
move towards higher concentrations of chemotactic factors, i.e. chemicals that
attract them. Clearly, this also enables a cell to influence a larger expanse of its
environment than would typically be allowed in a cellular automata, spreading
their influence beyond merely their immediate neighbours. The implementation
of chemotaxis is another novel feature of Sentinel.

Given a set of entities and chemicals (B-cells, memory cells, cytokines, etc.),
the influence of the physics and chemistry engines is defined by a number of
rules (see Fig. 1). These rules define when an entity can interact with another
cell, and the nature of that interaction; how one cell releases chemicals, or other
entities, into its near environment, and any global features, such as currents that
affect all entities and chemicals.
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Sentinel is in fact two applications - a simulator and an integrated develop-
ment environment that simplifies the process of building complex models. Having
defined the simulation model in the IDE, by coding the entities, chemicals and
rules, the simulator is run and information is output according to user-defined
data-feeds. These data can then be viewed in the form of various graphs and
samples, or streamed to log files for analysis, all within the Sentinel system. It
seems likely that this simulator architecture will be useful in other areas too,
such as Biochemistry and abstract work in Genetic and Evolutionary Comput-
ing. Further details of the structure of Sentinel can be found in (9).

Sentinel can simulate several million cells, and their interactions, on a typical
high-end desktop. Although this figure varies depending upon the complexity
of the model, it appears to be one of the most powerful simulators currently
available, especially in view of the complex interactions that it is able to simu-
late without resorting to lazy evaluation techniques or mathematical short-cuts.
We believe Sentinel’s ability to simulate realistically the movement of cells and
chemical agents within the environment is very important, removing some of
the assumptions about motion and distribution that are often made in simpler
models, and providing a platform for more ambitious experiments.

3.2 Experiments and Tests

Before using Sentinel to evaluate Bernasconi et al’s theory, we validated its
performance. Both the validation and the evaluation models ran with of the
order of 108 antibodies.
Simulator Validation Tests: Three theories of immune memory, outlined ear-
lier, will be simulated in order to validate our Sentinel system: (i) Long-Lived
Memory B-cells; (ii) Emergent Memory, and (iii) Residual Antigen. These the-
ories have been simulated before, by us (31). If the results are qualitatively
the same then we will have demonstrated that Sentinel can reproduce previous
results. Each simulation was run 7 times, in order to ensure that the results
were consistently reproduced and not merely one-offs. A more comprehensive
validation is presented in (9); this is the only validation provided here.
Theory Evaluation Experiment: This experiment is designed to explore the
veracity of Polyclonal Activation Memory, via simulation – something which
has not been done before. We could not use our simpler simulator (31) because
the experiment required implementation of cytokine gradients (of IL-15), and
needed to be performed on a much larger scale to obtain meaningful results.
Sentinel was the only simulation platform available that provided both realistic
cell dynamics and a comprehensive data output.

The construction of Bernasconi et al’s model is based on the theory described
in (3). They suggested their theories as a result of in vivo experiments, and claim
that the experimental results provide compelling evidence for bystander stimu-
lation of memory B-cell populations. The comprehensive set of results published
in (3) will be tested against the data from our simulation, so our aim is to sim-
ulate the implications of Bernasconi et al’s theory, and assess whether it could
indeed be responsible for the in vivo results that they observe.
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It is likely that the results produced by Sentinel can only be legitimately used
for their qualitative properties. Since the validation process described above is
fairly limited, and the process of parameterising any simulation is complex, we
can only safely look for qualitative similarities in the results.

3.3 Assumptions

In constructing these models, a number of assumptions were made. These have
been kept consistent through all the simulations conducted.

Longer-lived memory cells: Memory B-cells live longer than their näıve
equivalents. In nature a näıve B-cell tends to live for about 24 hours un-
less it receives stimulus, at which point it is rescued, and may go on to live
for a few months (3) This is reflected in our models.

Antigen: Antigen does not reproduce or mutate during the simulation.
Clonal selection: In response to antigen, B-cells undergo clonal selection and

hypermutation, as described by Burnet’s 1959 theory. (4).
Simplified binding: In order to provide the best possible performance, a very

simple binding mechanism was used. A strain of antigen is given a number
between 0 and 20000, which remains constant across the population. Every
new B-cell is assigned a random number within that range, and the binding
success is measured as the distance between the two numbers.

Simplified Immune Repertoire: The simulation consists of only three enti-
ties: B-cells, antibodies and antigen, and one cytokine. B-cell T-cell interac-
tion is not simulated in these tests, but are planned (see Further Work). We
needed to keep the model as similar to our previous system as possible (no
plasma cells) to make the validation process as meaningful as possible.

4 Results

4.1 Simulator Validation Results

As in (31), the results in Fig. 2 show that Sentinel produces a secondary response
to a repeat infection of the same antigen, for all these memory theories. Further-
more, Sentinel’s results also agree with (31) (Fig. 3) in that only the Residual
Antigen model could maintain a stable population of memory cells, and pro-
duced a much less drastic drop in antibodies – down to about 106 antibodies
before second infection, compared to near zero for the other memory models.

In both simulators, the models of the Memory Cell and ‘Preserveron’ theories
sustained good short-term memory, and in both we observed the memories stored
in this manner failing when the cells carried them died. Unless we accept that
the primary immune response produces memory cells that live for years, such
models will always result in an immune memory that fades over time.

The model of the Residual Antigen theory sustained a stable level of mem-
ory cells in both simulators, and was able to produce a substantial secondary
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Fig. 2. Validation graphs produced by Sentinel for the number of cells over arbitrary
time for: (i) the Memory Cell model; (ii) the ‘Preserveron’ model, and (iii) the Residual
Antigen model. Antigen A is injected at t=3000, and t=13,000.
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Fig. 3. A reproduction of the secondary response graph from (31). This graph was used
to summarise the nature of the secondary response of all theories in (31), although that
paper also described differences in the amount of memory loss between various theories.

response regardless of the length of time between the first infection and subse-
quent re-infection. It appears to be a viable model of immune memory; however,
the requirements to sustain such a system seem unlikely to be met in nature
because the immune system would have to produce such material over a highly
extended period. Indeed this point was debated several years ago (18).

There are some differences in details, such as the more pronounced secondary
peak in the secondary response, but the two simulators are close enough to
proceed with the qualitative comparison of the in vivo and in silico results.

4.2 Theory Evaluation Results

Since we stated in the ‘Experiments and Tests’ subsection that we have not
validated the finer-grained elements of Sentinel’s results, we have compared the
results, in a qualitative way. Fig. 4 shows two plots from Sentinel (top and
middle) – each for different model parameters – and a presentation of the graph
from (3) (bottom).

Note that the Anti-A plot, caused by re-injected Antigen A, in (top) and
(middle) has a shallower peak than the plot of Anti-TT in the bottom plot.
The parameter values for the (top) graph are bad, but in (middle) are better,
and this need to find good parameters is discussed in the Further Work section
below. Still, allowing for this, the relative increases seem to indicate that here is
some degree of match between the simulated and in vivo results. Both parameter
choices result in some features of the Bernasconi et al plot.

Although not perfectly confirmed, Bernasconi et al’s theory has been shown
to be qualitatively reasonable, relative to the in vivo measurements. But what
causes the quantitative differences? The disparities may be due to: (i) incorrect
modelling of the Bernasconi et al theory; (ii) lack of detail in the model; (iii)
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Fig. 4. (top and middle) Plots of the memory cell-levels per volume for two antigens, A
and B, which are too dissimilar to directly cause a response in each other’s memory cells.
The immune system has already been exposed to both Antigen A and B; Antigen A is
re-introduced at t=0. (top) and (middle) are for two different model parameterisations
(see text). Both cases show an unexpected increase in the memory cells that are specific
to the non-injected antigen. Since plasma cells levels are roughly linear, relative to
memory cell levels, the in silico results are qualitatively consistent with the in vivo
results in (3) (bottom).
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incorrect parameterisation of that model, and/or (iv) a fundamentally faulty
theory underlying the model. The next step is to isolate the cause of disparity.
The first and last of these points can be addressed by opening a dialogue with
Bernasconi’s group, but points (ii) and (iii) will require significant further work.

In conclusion, the simulated theory of polyclonal activation produced inter-
esting results, similar to those obtained by residual antigen theory, but without
requiring a long-lived supply of antigen. The signalling provided by IL-15 seems
to be essential for this phenomenon. It appears consistent with Nature’s efficient
ways that the body would use the constant attack by antigen to strengthen it-
self, and we have demonstrated a polyclonal memory effect that is qualitatively
similar to the experimental observations of (3).

5 Further Work

The logical extension of our somewhat basic model of polyclonal memory is to
create a more detailed B-cell model, and to use that as the basis for a combined
model attempting to simulate both B- and T-cell memory. Once this has been
implemented, we can begin to explore questions surrounding the relationship
between B- and T-lymphocyte memory, and look at new rules for plasma cell
and memory cell creation, death and homeostasis.

The level of detail of a simulation should be as simple as possible (invoking
Occam’s razor), but a simulation that is too simple will not be effective. This is
a standard dilemma of machine learning, and we intend to address this issue by
means of automatic feedback. In other words, we will generate a population of
simulations, and evolve them to find the simplest, most effective candidate.

The choice of parameters for any model is known to be a hard problem (16),
but creation of the model is much harder (12). We are examining several methods
of assisted parameterisation of the models, so that a ‘best-fit’ can be found by
Sentinel. This will allow the research to focus on the scientifically interesting
model-building task, rather than the more mechanical parameterisation task,
and will help to remove of the of four possibilities for the differences in between
the in silico and in vivo results in the previous section.

One of our long-term goals is to produce an integrated model of immunolog-
ical memory that explains the experimental evidence used to support many of,
if not all, the theories explored here. Such a model could used to explore more
detailed issues in immunological memory, such as the unusual effects of the SAP
gene (which controls long-term memory, but has no effect on short-term mem-
ory) (7). Furthermore, a general theory of immunological memory would have
implications for machine learning.

As Sentinel continues to develop, and becomes ever more sophisticated, we
will be able to develop larger, more complex models than at present. It will be
interesting to see if the increase in complexity is important, or whether there is a
level of complexity that is sufficient for the majority of immunological research.
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Abstract. A quaternion model of artificial immune response (AIR) is proposed 
in this paper. The model abstracts four elements to simulate the process of 
immune response, namely, antigen, antibody, rules of interaction among 
antibodies, and the drive algorithm describing how the rules are applied to 
antibodies. Inspired by the biologic immune system, we design the set of rules 
as three subsets, namely, the set of clonal selection rules, the set of 
immunological memory rules, and the set of immunoregulation rules. An 
example of the drive algorithm is given and a sufficient condition of its 
convergence is deduced. 

1   Introduction 

In 1980s, Farmer et al[1] put forward a dynamic model of immune system based on 
immune network theory, and discussed the relationship between immune system and 
artificial intelligence methods. Until 1996, the international workshop on immune 
system was hold, putting forward the concept of Artificial Immune Systems (AIS) for 
the first time. In 1997, the IEEE International Conference on Systems, Man, and 
Cybernetics organized the ‘Special Session on Artificial Immune Systems and Their 
Applications’ for the first time. Subsequently, the artificial immune systems came into 
‘Silver Age’. D. Dasgupta et al[2] considered that AIS has been a research hotspot of 
theories and applications in artificial intelligence. After analyzing the similarities and 
differences between AIS and artificial neural network, D. Dasgupta [3] indicates that 
natural immune system is the important origin of artificial intelligence methods. 
Gasper et al[4] considers that diversity is the basic character of self-adaptive dynamics, 
while AIS is a better optimization method than GA in preserving the population 
diversity. Applications of AIS include machine learning, fault diagnosis, computer 
security, scheduling, virus detection, and optimization. As L.N. de Castro et al said, 
the field of AIS is showing great promise of being a powerful computing paradigm[5]. 

The immune response is the way the body recognizes and defends itself against 
microorganisms, viruses, and substances recognized as foreign and potentially 
harmful to the body. When bodies are exposed to antigens, immune system actually 
learns from the experience. The next time bodies are exposed to the same antigens, 
immune system often recognizes the culprit and sets out to destroy it, namely, 
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secondary immune response. Embodying the mechanism of secondary immune 
response in artificial immune systems may be one of the superiority of AIS to 
evolutionary computation and neural networks. But first of all, we have to design a 
mathematical model to describe immune response from an information-processing 
perspective. 

In this paper, we introduce a systematic description for a quaternion model of 
artificial immune response. After introducing the immunology background, the new 
artificial immune systems model, the quaternion model of artificial immune response 
is defined. Some general descriptions of heuristic rules are introduced. Then we take a 
simple drive algorithm for example to analyze its characters and a sufficient condition 
of its convergence is deduced. 

2   Immunology Background 

The ability of the immune system to respond to an antigen exists before it ever 
encounters that antigen[7]. The immune system relies on the prior formation of an 
incredibly diverse population of B cells and T cells. The specificity of both the B-cell 
receptors (BCRs) and T-cell receptors (TCRs); that is, the epitope to which a given 
receptor can bind, is created by a remarkable genetic mechanism. Each receptor is 
created even though the epitope it recognizes may never have been present in the 
body. If an antigen with that epitope should enter the body, those few lymphocytes 
able to bind to it will do so. If they also receive a second co-stimulatory signal, they 
may begin repeated rounds of mitosis. In this way, clones of antigen-specific 
lymphocytes (B and T) develop providing the basis of the immune response. This 
phenomenon is called clonal selection. Clonal selection leads to the eventual 
production of a pool of plasma cells and a pool of ‘memory’ cells.  

 

Fig. 1. Primary and Secondary Immune Responses 

After recovering from an infection, the concentration of antibodies against the 
infectious agent gradually declines over the ensuing weeks, months, or even years. A 
time may come when antibodies against that agent can no longer be detected. 
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Nevertheless, the individual often is still protected against a second case of the 
disease; that is, the person is still immune. In fact, a second exposure to the agent 
usually calls forth a more rapid and larger response to the antigen. This is called the 
secondary response. The secondary response reflects a larger number of antigen-
specific cells, called memory cells, than existed before the primary response. During 
the initial expansion of clones, some of the progeny cells neither went on dividing nor 
developed into plasma cells. Instead, they reverted to small lymphocytes bearing the 
same BCR on their surface that their ancestors had. This lays the foundation for a 
more rapid and massive response the next time the antigen enters the body. 

3   The Quaternion Model of Artificial Immune Response 

The immune system incorporates mechanisms that enable antibodies (lymphocytes) to 
learn the structures of specific foreign proteins, essentially, the immune system 
evolves and reproduces antibodies that have high affinities for specific antigens. It is 
difficulty or unnecessary to apply the definitions of immunology and copy the process 
of biology mechanically. In this paper, we put forward a novel mathematic model of 
artificial immune systems, the quaternion model of artificial immune response (AIR). 

Immune response can be modeled as a quaternion ( , )G I, R, A , where G is exterior 

stimulus or antigen, I is the set of antibodies available, R is the rules of interaction 
among antibodies, A is an algorithm describing how the rules are applied to 
antibodies. 

3.1   Antigen G 

In immunology, an antigen is any substance that causes immune system to produce 
antibodies against it. In artificial immune response, antigens usually refer to problems 
and its constraints. Taking optimization problem (P) for example 

1 2minimize ( ) ( , ,... )

( ) subject to ( ) 0 1,2, ,

( ) 0 1, 2, ,

n

i

j

f f x x x

P g i p

h j p p q
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= = + +
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x

x

L

L

 

(1) 

where 1 2( , ,... )nx x x=x , antigen is the function of objective function ( )f x , namely, 

( ) ( ( ))G g f=x x , similar to the effect of antigen in immunology, it is the initial factor 

of artificial immune response. 

3.2   Antibody Space I 

Let 1 2 3{ , , , , }n=I b b b bL , which is called antibody space, is the set of antibodies 

available during artificial immune response, n can be random integer. The 
representation of antibody b varies with antigen G, can be binary string, real number 
sequence, symbolic sequence, and characteristic sequence. Antibodies are the 
foundation of artificial immune response, whose representation is crucial for 
designing R.  
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Taking antibody 1 2 lb b b=b L  for example, depending on biological term, bi  is 

regarded as genetic gene, called allele, whose value is correlative to the coding 
method. In practice, binary coding and decimal coding are used frequently. i.e., an 
antibody is represented as 8 bits binary digits, ‘0-1-1-1-0-1-0-0’. The antibody 
population 1 2 3{ , , , , }m=B b b b bL , is an m-dimensional group of antibody b, and it is a 

subset in the antibody space I, positive integer m is called the size of antibody 
population. 

3.3   The Set of Rules R 

The set 1 2 3{ , , , , }lr r r r=R L , which describes all the possible actions among 

antibodies in antibody space I. A rule, ir ∈ R , can be designed inspired by the 

interactions between antigens and antibodies, or between antibodies and antibodies in 
biologic immune system. For antibody population 1 2 3{ , , , , }n=B b b b bL , a rule ir ∈ R  

can be expressed as 

1 2 1 2( )b b b b b bi n mr ′ ′ ′+ + + = + + +L L  (2) 

Where n, m are positive integers, the size of m depends on rule ir , and the 

representation ‘+’ is not the arithmetical operator, but only separates the antibodies on 
either side in Equation (2). 

Equation (2) shows that n antibodies on the left evolve into m antibodies on the 
right by the effect of rule ir . For simulating biologic immune response in detail, it is 

necessary to design enough rules inspired by biologic immune system. 

3.4   Drive Algorithm A 

A is the algorithm simulating the process of antibody evolution and dominating 
interactions among antibodies during artificial immune response, including the format 
of the set R acting on antibody space I, the judgment of halt conditions in artificial 
immune response, and so on. In artificial immune response, the judgment of halt 
conditions is usually set as maximal generations or solving precision or both of them. 
Although A can be any iterative algorithms, its designing also should depend on 
special problems.  

4   Rule Design Inspired by Immune Response 

Among the four elements of AIR model ( , )G I, R, A , antibody space I and drive 

algorithm A depend on the antigen G, and the designing and selection of rules in the 
set R depend on the antigen G and the representation of antibodies. In this paper, we 
design the set R composed of three subsets, namely, the set of clonal selection rules 
RCS, the set of immunological memory rules RM, and the set of immunoregulation rules 
RA. Then CS M A=R R R RU U , described as follows. 
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4.1   The Set of Clonal Selection Rules RCS 

The clonal selection theory is used in immunology to describe the basic features of an 
immune response. Its main idea lies in that the antibodies can selectively react to the 
antigens, which are the native production and spread on the cell surface in the form of 
peptides. The reaction leads to cell clonal proliferation and the colony has the same 
antibodies. Some clonal cells divide into the eventual production of a pool of plasma 
cells, and others become immune memory cells to boost the secondary immune 
response. 

4.1.1   Clonal Proliferation 
In immunology, Clone means asexual propagation so that a group of identical cells 
can be descended from a single common ancestor, such as a bacterial colony whose 
members arise from a single original cell as the result of mitosis. In artificial immune 
systems, the clonal proliferation R_proliferation  on antibody population 

1 2 3{ , , , , }n=B b b b bL  is defined as: 

1 2

1 2

1 2 1 2 1 2
1 1 1 2 2 2

( )

{ } { } { }n

n

qq q
n n n

+ + +

= + + + + + + + + + + + +

b b b

b b b b b b b b b

R_proliferation L

L L L L
 

(3) 

where , 1,2, ; 1,2,j
i i ii n j q= = =b b L L ,  [1, ]i cq n∈  is an self-adaptive parameter, or 

set as an constant, cn  is a given value related to the upper limit of clone scale, 1iq =  

represents that there is no clonal proliferation on antibody ib . It is obvious that clonal 

proliferation above is similar to that of immunology, which is a simple process of 

asexual propagation. All the antibodies in sub-population 1 2( , , , )iq
i i i i=B b b bL  result 

from the clonal proliferation on the same antibody ib , and have the same property as 

antibody ib .   

4.1.2   Genic Mutation 
Genic mutation R_mutation  is a simulation of immune system recognizing 

external pattern in the form of antibody gene mutation and compilation. Genic 
mutation R_mutation  on antibody population 1 2 3{ , , , , }n=B b b b bL  is defined as: 

1 2 1 2( )n n
′ ′ ′+ + + = + + +b b b b b bR_mutation L L  (4) 

The essential content of genic mutation is changing genic values in some genic 
positions of antibodoes. As far as the binary representation is concerned, mutation 
means make some genic positions inverse with a certain probability (i.e. 1 0 or 
0 1). For decimal representation, uniform mutation, Gaussian mutation, Cauchy 
mutation and some stochastic mutations can be used. 

4.1.3   Genic Inversion 
Inversion is the main mode of recomposition of light chain immunoglobulin antibody 
gene. Genic inverstion R_inversion  is the operation that distorting a section of 
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genes in antibodies with a certain probability. Genic mutation R_inversion  on 

antibody population 1 2 3{ , , , , }n=B b b b bL  is defined as: 

1 2 1 2( )n n
′ ′ ′+ + + = + + +b b b b b bR_inversion L L  (5) 

Selecting antibodies with probability pi from antibody population, and choosing 
two points p and q, where p<q, then the R_inversion  operation on antibody 

{ }1 2, , , , , , ,i i i ip iq ilb b b b b=b L L L  is as follows.  

{ }1 2 1 1( ) , , , , , , , , ,i i i i iq iq ip ip ilb b b b b b b− +′ = =b bR_inversion L L L  (6) 

For example, after the R_inversion  operation on antibody 0 0 11i 1 1 0 0=b  

between the 3rd and 6th section, the antibody becomes 0 0 11i 0 0 1 1′ =b . 

R_inversion  can change the antibody acutely, if the length of antibody encoding 

is very large, it may be extraordinary useful.                     

4.1.4   Clonal Selection 
Clonal selection R_selection  is an operation contrary to clonal proliferation, 

which selects an excellent individual from the sub-population generated by clonal 

proliferation. For antibody population 1 21 2 1 2 1 2
1 1 1 2 2 2( , , , , , , , , , , , , )nqq q

n n nB b b b b b b b b bL L L L , 

clonal selection R_selection  is defined as: 

1 21 2 1 2 1 2
1 1 1 2 2 2

1 2

({ } { } { })nqq q
n n n

n

+ + + + + + + + + + + +
′ ′ ′= + + +

b b b b b b b b b

b b b

R_selection L L L L

L
 

(7) 

Where 1 2( )iq
i i i i

′+ + + =b b b bR_selection L , namely, the sub-population 

{ }1 2, , , iq
i i ib b bL  generated by the clonal proliferation on antibody ib  improves local 

affinity through clonal selection after the compilation of antibodies. Concretely, 
ni L,2,1=∀ , {1, 2, , }ij q∃ ∈ L , making the antibody j

ib  with the highest affinity in 

sub-population 1 2( , , , )iq
i i ib b bL  has the largest selection stress, namely, the probability 

of j
i i′ =b b  is largest. 

4.2   The Set of Immunological Memory Rules RM 

Clonal selection not only produces plasma cells but also leads to a pool of memory 
cells. These memory cells are B lymphocytes with receptors of the same specificity as 
those on the original activated B cell. During the initial expansion of clones, some of 
the progeny cells neither went on dividing nor developed into plasma cells. Instead, 
they reverted to small lymphocytes bearing the same BCR on their surface that their 
ancestors had. This lays the foundation for a more rapid and massive response the 
next time the antigen enters the body. In this paper, we simulate the immunological 
memory by setting up a memory antibody population. The set of immunological 
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memory rules include the nonself learning operation nonselfR_m_L  and the self 

learning operation selfR_m_L .  

4.2.1   Nonself Learning of Memory Antibody Population 
If the memory antibody population is 1 2 3{ , , , , }M M M M M

n=B b b b bL , antibody 0b  is an 

excellent antibody outside MB , then the nonself learning operation nonselfR_m_L  is 

defined as 

0 1 2 3 0

1 2 3

( { })

{ }

M M M M M
n

M M M M M
m

+ = + + + + +

′ ′ ′ ′ ′= + + + + =

B b b b b b b

b b b b B

nonselfR_m_L L

L
 

(8) 

where nonselfR_m_L  designed as follows: calculating the antibody-antibody affinities 

( Ab-Ab affinity, can be thought as a function of the distance between two antibodies) 
between 0b  and all the antibodies in MB . Ab-Ab affinities embody the relative 

distribution of antibodies in antibody space I, the larger the value, the bigger 
difference of genes the two antibodies have, contrariwise, it is still right. If the Ab-Ab 
affinity between M M

s ∈b B  and 0b  is the minimum one, and its value is 0sδ , then 

there are two cases to be considered: if 0 0sδ δ≤ , where 0δ  is the minimum distance 

between every two individuals of MB , then compared the antibody-antigen affinities ( 
Ab-Ag affinity, can be thought as a measurement of the value of objective functions) 

0( )G b  and ( )M
sG b , and let 

0 0( ) ( )M
M s
s M

s

if G G

else

>
=

b b b
b

b
 

(9) 

Then the number of antibodies in memory antibody population is mN n= ; 

otherwise, namely, 0 0sδ δ> , let 1 0
M
n+ =b b , the number of antibodies in memory 

antibody population is 1mN n= + , if 1n +  is larger than the upper limit of the 

memory antibody population size maxN , then delete the worst antibody in memory 

antibody population. 

4.2.2   Self Learning of Memory Antibody Population 
Memory antibody population not only learning external information pattern by 

nonselfR_m_L , but also learning new pattern in the form of antibody gene mutation 

and compilation for affinity maturation, which we named self learning operation 

selfR_m_L .  The self learning of memory antibody population selfR_m_L  on 

1 2 3{ , , , , }M M M M M
n=B b b b bL  is defined as 

1 2 3 1 2 3( )M M M M M M M M
n m

′ ′ ′ ′+ + + + = + + + +b b b b b b b bselfR_m_L L L  (10) 
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Each antibody in memory antibody population has its own clonal space size mS  

around itself. Applied the set of clonal selection rules RCS to each memory antibody in 
its own clonal space, the way depends on the drive algorithm A. 

4.3   The Set of Immunoregulation Rules RA 

The immune system consists of a network of cells that have developed to recognize 
and eradicate a wide variety of pathogens. Pathogen-derived products (inartificial or 
artificial) can trigger immune cells to produce cytokines, soluble molecules that 
promote the immune response. However, the immune system is a double-edged sword 
since cytokines can also result in damage to the host tissue (for example, in 
inflammatory diseases). Cytokine production is therefore subject to intricate 
regulation, in order to control the immune response and prevent such damage.   

4.3.1   Vaccination 
In immunological, vaccination is also called active immunization because the immune 
system is stimulated to develop its own immunity against the pathogen. The principle 
of vaccination is inserting strong promoter plasmid carriers in antigen encoding 
genes, and then inserting this recombined plasmid in cells, the antigen encoding 
synthesizes plasma cells to cause protective immune response.  

In this paper, given an antibody, vaccination means modifying the genes on some 
bits in accordance with vaccines so as to gain higher affinity with greater probability. 
A vaccine is abstracted from the prior knowledge of the pending problem. A vaccine 
can be regarded as estimation on some genes of the optimal individual, and the 
accuracy of this estimation depends on the further test. Thus it can be seen that the 
correctness of selecting a vaccine plays an important role in the operational 
efficiency. All the vaccines form the initial storage of vaccines 0_vaccine storage . 

The vaccines in 0_vaccine storage  may be as three kinds: an entire antibody, a 

section of genes, and a bit gene. It is necessary to note that there is usually not only 
one vaccine in a certain problem, therefore, during the course of vaccination, the 
injection can be carried out by either selecting any vaccine randomly or getting them 
together according to a certain logic relationship. A vaccine can also be obtained 
during the evolution process of antibody population, such as be abstracted from the 
memory antibody population.  

If the antibody population is 1 2 3{ , , , , }n=B b b b bL , then the vaccination of 

_vaccine storage  on populations B means modifying the genes on some bits of all 

the antibodies in B with a certain probability. It can be described as follows 

( _ ) _vaccine storage vaccine storage′+ = +B BR_vaccine  (11) 

We can find out the influence of correct selection of a vaccine on the functions of 
the vaccination with a straightforward example. Given that the encoding of a pending 
problem is binary with n bits, it can form a space with 2n pending solutions. If we 
could define the gene of a certain bit by analyzing the problem, then the population 
with this gene will centralize in the half space in which the optimal individual is 
forecast, and therefore the searching efficiency will be improved greatly. On the 
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contrary, if our estimation is wrong, then the vaccination will hold back the searching 
actions, and even exert a negative influence.  

4.3.2   Immunological Death 
Immunological death R_death  is a simple simulation of immunological tolerance. 

In immunology, the negative adjustment during the antibody creating of B cells may 
be clonal deletion or clonal anergy. This paper intitules those as clonal death without 
any difference. Immunological death R_death  on the antibody population 

1 2 3{ , , , , }n=B b b b bL  is defined as: 

1 2 1 1 2 2( )n n nα α α+ + + = + + +b b b b b bR_death L L  (12) 

where i iα b  represents that the number of ib  is iα  after clonal death, in which iα  is a 

integer with iα 0≥ , 0iα =  means antibody ib  presents immune tolerance, or clonal 

deletion, the reason of which may be the low Ab-Ag affinity of ib , or may be the 

decline of the diversity of antibody population result from the common genotype 
between antibody ib  and other antibodies. 1iα >  means the antibodies with high 

affinity (i.e. target cells) have a local proliferation with the positive feedback 
immunoregulation of target cells. In artificial immune response model, for holding the 
durative of algorithms, there is 1 2 n nα α α+ + + =L  in common. 

Different from biologic evaluation system varying with different sex, immune 
system is an asexual system. From the description above, it can be concluded that the 
rules in the set CS M A=R R R RU U  are asexual process, which can be comprehended 

as a simple depiction on the characteristic of immune system by artificial immune 
response. 

5   An Example of the Drive Algorithm A 

The following algorithm is an example of the drive algorithm in AIR. 

While (the antibody population ( )kB  doesn’t satisfy the 
conditions of affinity maturity) do 

      { 

Implement immunological death R_death  on ( )kB , 

get new antibody population (1) ( )kB ; 

Implement Clonal proliferation R_proliferation  

on (1) ( )kB , get new antibody population (2) ( )kB ; 

Implement Genic mutation R_mutation  on (2) ( )kB , 

get new antibody population (3) ( )kB ; 
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Implement Clonal selection R_selection  on 
(3) ( )kB , get new antibody population (4) ( )kB ; 

Set (4)( 1) ( )k k+ =B B , k=k+1; 

} End 

In this drive algorithm, every generation can be comprehend as a four-step 
transferred process of antibody population ( )kB . For any antibody space and the 

rules { , , , }=R R_death R_proliferation R_mutation R_selection , there 

is: 

[ ] ( )1

1 1

( 1) ( ) ( ( ) ( )
i iqn

i ij
i j

k k g Max g k k
α

ϑ ϑ
×

−

= =

+ = = + ΔB B b bU U  
(13) 

where ( )g •  denotes the method of calculating Ab-Ag affinity, the means of iα  and 

iq  are the same as those described in section 4, ( )ij kΔb  is the mutation scale. 

Specially, 
0

1

( ( ) ( ))i ij
j

g k k
=

+ Δb bU  means empty operation while 0iα = . In this 

algorithm, three parameters need to be adjusted: iα , iq  and ( )ij kΔb . 

Let deviation *
0( ) ( ) ( ( ))e k g g k= −b b , where b0 is the antibody coding of optimal 

solution,  * ( )kb  is the best antibody in generation k, get discrete Lyapunov function 

* 22
0( ( ) ( ( )))( )

( )
2 2

g g ke k
V k

−
= =

b b
 

(14) 

Then 

2 21
( ) ( 1) ( ) ( ( 1) ( ))

2
1

( ( 1) ( ))( ( ) ( ( 1) ( )))
2

1
( )( ( ) ( ))

2

V k V k V k e k e k

e k e k e k e k e k

e k e k e k

Δ = + − = + −

= + − + + −

= Δ + Δ

 

(15) 

where )()1()( kekeke −+=Δ , use one order Taloyer Series to approximate: 

* * * *
*

( )
( 1) ( ) ( 1) ( ) ( 1) ( )

T
e k

e k e k k k o k k
∂+ − = × + − + + −
∂

b b b b
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(16) 

as well as  

*
* * * * * *

*

( ( ))
( ( 1)) ( ( )) ( 1) ( ) ( 1) ( )

T
g k

g k g k k k o k k
∂+ = + × + − + + −

∂
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b b b b b b
b

 
(17) 
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so 
* *

( ) ( ( ))e k g k∂ ∂= −
∂ ∂

b

b b
, and then 

*
* * * * * *

*

( ( ))
( ( 1)) ( ( )) ( ) ( 1) ( ) ( 1) ( )

T
g k

g k g k e k k k o k k
∂+ − = −Δ = × + − + + −

∂
b

b b b b b b
b

 
(18) 

let * * *( 1) ( ) ( )k k k+ − = Δb b b , then 

* *
* *

( ) ( )
( ) ( ) ( ) ( )

T T
e k e k

V k k e k k
∂ ∂Δ ≈ × Δ + × Δ
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b b
b b

 
(19) 

Let 
*

*
*

( ( ))
( )

g k
k η ϕ η ∂Δ = ∇ =

∂
b

b
b

, η  is the length of search step, then 

2 2* *
2

* *

( ( )) ( ( ))
( ) ( )

g k g k
V k e kη η∂ ∂Δ ≈ − −

∂ ∂
b b

b b
 

(20) 

For assuring the convergence of algorithm, need to satisfy: 

2*
2

*

( ( ))
( ) 0

g k
e kη η ∂− >

∂
b

b
 

(21) 

namely, 

2*

*

( )
0

( ( ))

e k

g k
η< <

∂
∂
b
b

 
(22) 

So we can have the theory as follow: 
The drive algorithm A employed the rules  

{ , , , }=R R_death R_proliferation R_mutation R_selection  

is convergent and the dynamic process decided by the algorithm is gradually reaching 
the stability when the best antibody evolves along the direction of grads of objective 
function and the step length satisfies Equation (22). 

The complex biologic inspirations of bionic algorithms determine that the 
algorithms should pay more attention to the operations on gene and simulating the 
biologic process as vividly as possible. As a result, in practice, the conditions of 
convergence above are difficult to satisfy strictly in bionic algorithms. 

6   Concluding Remarks 

The goal of this paper was to introduce a systematic description for a quaternion 
model of artificial immune response. After introducing the immunology background 
such as antibody clonal selection and immunological memory, a new artificial 
immune systems model, the quaternion model of artificial immune response was 
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defined. The four elements were antigen, antibody, the set of rules, and the drive 
algorithm, where antibody space and the drive algorithm depend on the antigen, and 
the rule designing depend on antigen and the representation of antibodies. Without 
aiming at any specific problems, some general descriptions of heuristic rules were 
introduced, namely, the set of clonal selection rules, the set of immunological 
memory rules, and the set of immunoregulation rules. Then we took a simple drive 
algorithm for example to analyze its characters and a sufficient condition of its 
convergence was deduced.  

Applications of AIR are broad, such as learning, optimization, and information 
processing. The application in learning ranges from pattern recognition to machine 
learning. The application of AIR in optimization can replace or make up other 
algorithms to find solutions of difficult problems. The application in information 
processing includes real immunological computing and a design paradigm for new 
hardware or software architectures and so on. All of these are interesting and 
meaningful. 
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Abstract. Considerable research effort has provided mathematical and compu-
tational models of the human immune response under viral infection. However, 
the quality of simulated results are highly dependent on the choice of modeling 
strategy. We examine two modeling approaches of HIV pathogenesis: Mathe-
matical and Multi-Agent (or MA) Models. The latter has relatively wider Model 
Scope due to the agent-rule specification method.  Mathematical Models em-
ploy Parameter and Population/Subpopulation Level entity granularities with 
equation-based interaction, while MA Models specify entities at Individual 
Level, implemented with agents to describe interactions via IF-THEN rules.  
Compared to the former, MA Models naturally handles entity heterogeneity and 
spatial non-uniformity, and suffers less from the issue of directly designed dy-
namics.  Both approaches are however, not directly accessible to immunologists 
due to the need for programming knowledge; hence, closer collaboration be-
tween computer scientists and immunologists is necessary.  

Keywords: Multi-Agent Simulation, Mathematical Models, Immune System, 
HIV, Systems and Models. 

1 Introduction 

The amalgamation between computing and biology can be classified into three cate-
gories [10]: biologically motivated computing, computationally motivated biology 
and computing with biological mechanisms.  There has been considerable research in 
the first category, where biological functions inspire solutions for generic real-world 
problems (see [10] for a survey of immunology motivated computational methods and 
various applications).  The modeling of immune system dynamics described in this 
paper falls into the second category, where the primary role of computing is to pro-
vide tools that benefit the interpretation of biological data and to advance our under-
standing beyond mere intuition-driven rationalizations.  Research between the two 
categories can be synergistic as modeling itself provides a summarization that forms a 
framework for deriving new computational methods. 

The human immune system is highly complex, dynamic and adaptive; it has at-
tracted considerable research effort to develop mathematical and computational mod-
els in order to verify its inner workings.  Some popular modeling subjects include 
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emergence of immune memory [19,23], idiotypic networks [23,29], completeness 
issue of immune repertoire [9,34], helper T cell differentiation [4-6], and system dy-
namics under HIV-1 infection [11,14,27,30,39].  We observe that the models for these 
diverse phenomena differ greatly in terms of modeling strategies.  Employing a par-
ticular strategy implies a certain way of thinking which may impose its own precon-
ceptions and inherited shortcomings [24]. 

In this paper we compare two popular modeling approaches: ODE Models and 
Multi-Agent (or MA) Models.  Given the diversity in modeling areas, attempting a 
complete coverage of all modeling areas could make our study superficial.  We there-
fore focus on the computational models for immune dynamics under HIV-1 infection.  
This is a heavily researched area, where many models have been developed to explain 
why the immune system ultimately collapses despite the apparently controlled viral 
replication during the asymptomatic phase [7].  Studying these models can provide 
better insights in immunological modeling techniques and the target domain features 
that are considered important.  We propose three model characteristics as our basis for 
comparison:  Model Scope, Entity Granularity, and Interaction Descriptions.  The 
examination of differences in terms of these model characteristics will enable in-depth 
discussions on each modeling strategy with an aim towards more effective verifica-
tion of HIV-1 pathogenesis through model-based simulations.     

This paper is organized as follows.  Section  2 briefly introduces the human immune 
system and HIV-1 pathogenesis.  Section  3 compares the model characteristics of 
ODE and MA Models, and discusses the potential model shortcomings due to these 
inherited characteristics.  Section  4 discusses the practical considerations for immu-
nological models based on the issues we observe.  Section  5 concludes the paper.  

2 Immune System and HIV-1 Pathogenesis  

The immune defense mechanism involves many kinds of cells and molecules [2,21].  
A brief overview of the major players and functions following a viral infection is as 
follows. One possible scenario involves Macrophages (MPH) and dendritic cells in-
gesting the pathogen and presenting the antigen fragments on the cell surface in the 
form of a MHC-peptide complex.  The MPH then secretes interleukin-1 (IL-1) that 
activates helper T cells (TH).  TH cells have receptors on their surface, which bind to 
the antigen presented on the antigen-presenting-cell (APC) by shape matching.  Acti-
vated TH cells upon antigen recognition secrete a variety of stimulatory molecules, 
such as IL-2, to trigger proliferation of cytotoxic T cells (TK) and/or B cells (B).  TK 
cells can mount an immediate attack on infecting and infected cells that present un-
usual surface antigens, a process known as cellular immune response.  On another 
front, B cells produce antibodies which bind to matched free antigens, neutralizing the 
antigen’s virulence and serve as a marker for MPHs (which then perform phagocyto-
sis).  This latter form of immune defense is known as a humoral response.     

Acquired Immune Deficiency Syndrome (or AIDS) is characterized by a combina-
tion of opportunistic infections and a markedly reduced circulating TH cell count 
[36].  Due to their central role in stimulating and regulating an immune response, the 



222 Z. Guo and J.C. Tay 

 

abnormal loss of TH cells is considered a convincing explanation of the immune sys-
tem failure at the AIDS stage [25].  Hence, a widely accepted hypothesis is that the 
Human Immunodeficiency Virus (or HIV) directly infects cells bearing CD4+ mole-
cules (especially the TH cells).  The progression of HIV infection towards AIDS 
typically follows three phases [26,32], as shown in Figure 1.  The patient exhibits 
acute symptoms during the early phase of infection.  With the onset of HIV-specific 
antibodies and TK cells, the amount of virus sharply declines by a factor of 100 or 
more.  Viral load then remains at a relatively low but constant level, while TH cell 
count slowly decreases for a period up to 12 years.  TH cell count falls below 200/μl 
and is characterized as onset of AIDS [30].   

 

Fig. 1. Typical 3-Stage Disease Progression of HIV-Infected Patient [26] 

Besides the direct infection of TH cells, other hypothesized explanations have been 
proposed.  These include: rapid viral mutations [26], syncytium formation [16,37], 
filling of CD4  receptor sites [41], HIV-induced cell apoptosis [13], impaired produc-
tion of new TH cells [25] and the existence of viral reservoirs [12].  In addition to 
clinical verifications, these mechanisms have been modeled mathematically for quan-
titative analysis.  We now examine the characteristics of these models.  

3 A Comparison of Immunological Models  

We define the following concepts for the specification of immunological models. 
 

Entity: An object of interest in the system. Entities are nouns that describe the sys-
tem.  
Interaction: An event taking place among one or more entities. Interactions are 
verbs that describe the system.  
 
In the context of modeling HIV pathogenesis, examples of entities include T cells, 

HIV variants and MPHs.  Examples of interactions include proliferation, infection, 
activation and killing.  We now compare ODE and MA models from three model 
characteristics whose definitions are based on the concept of Entity and Interaction.   
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3.1 Model Scope 

Models are abstractions of reality, often simplified to allow a computationally tracta-
ble means of predicting and simulating the phenomena by identifying the key vari-
ables.  This raises the issue of choosing the Model Scope: 

Model Scope: The entities and interactions that are present in the model. 

For HIV pathogenesis, a wide range of entities and interactions are possible but 
only a subset is typically modeled.  The extent of the Model Scope is usually depend-
ent on goals that the model developers want to achieve, as illustrated below.    

We start with several models with minimum Model Scope.  In the work by Phillips 
[35], Wei et al. [43], and Perelson et al. [33], the only entities present are TH cells and 
HIV virions.  The main interactions include HIV infection of TH cells, virion produc-
tion by infected TH cells, and metabolic activities for TH cells (cell production, 
death) and HIV (virion decay).  The Phillips [35] model attempts to demonstrate that 
the sharp decline in viral load after the initial peak that is observed during the acute 
phase is due to insufficient amount of TH cells available for infection rather than an 
adaptive immune response.  This is referred to as the Target-Cell-Limited theory [8].  
This model removes factors that are relevant to immune response, such as TK cells, B 
cells and antibodies, so as to achieve the goal of proving the Target-Cell-Limited 
Theory.  Wei et al. [43] and Perelson et al. [33] were mainly concerned with measur-
ing the loss rates of TH cells and HIV virions from patient data. They assume that the 
population size of healthy TH cells remains constant and the drug is 100% effective.  
Their Model Scope is kept minimal for the ease of parameter measurement, while the 
Phillips model restricts the Model Scope to exclude an immune response.  In both 
cases, the Model Scope though restricted, serves the modeling objectives well.  

The HIV infection of TH cells appears to be fundamental to most HIV pathogenesis 
models [8,18,32,33,35,39,43].  The extension to a larger Model Scope is specific for 
certain modeling objectives.  Stafford et al [39] quantitatively verified the Target-
Cell-Limited theory using patient data; parameter values that were determined 
through regression analysis consistently predicted a viral load that was higher than the 
actual measurement after about 100 days of infection.  The authors attributed this 
difference between prediction and reality to the existence of an immune response, 
leading to an extension of their Model Scope to include 1) TK cells which increased 
the death rate of infected TH cells and 2) soluble factors secreted by TK cells that 
inhibited the production of virion particles from infected TH cells.  In this case, the 
Model Scope was extended to account for the difference between prediction and  
reality.  

Model Scope extension can also be seen in a series of therapy models which explic-
itly considers drug effects.  As described above, the therapy models used by Wei et al. 
[43] and Perelson et al. [33] possessed minimum Model Scope and imposed several 
assumptions for the ease of parameter measurement.  Perelson [30] performed a more 
formal study on drug effects by relaxing the assumptions of constant population of 
healthy TH cells and of perfect drug effects.  The extension of Model Scope to in-
clude drug effects (in the form of efficacy coefficient) allows theoretical studies of 
imperfect drugs.  In another model of Perelson et al. [31], the Model Scope was fur-
ther extended to cover long-lived victim cells of HIV infection, which are known as 
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virus reservoirs.  This was motivated by the observation that after drug treatment, the 
viral load declines exponentially but the decline rate slows down over time [20].  
Perelson et al. [31] postulated the existence of viral reservoir. By including long-lived 
cells and their interactions with HIV, the new model produced a viral decay pattern 
similar to the clinical observation after the drug treatment.  The ODE models we have 
seen have scopes that are as minimum as required (this may be subjective due to what 
model developers understand as ‘required’ for their purposes), and are extended only 
when necessary.  This gives rise to an ordering of models where there is incremental 
extensions of previous ones.  As seen above, Stafford et al [39] verified and extended 
Phillips [35], Perelson [30] generalizes Wei et al. [43] and those by Perelson et al. 
[33], and Wein at al. [44] are extensions of Perelson et al. [31]. 

However, we observe that MA Models possess much wider Model Scopes in gen-
eral.  The MA Models by Guo et al.[15] were constructed for verifying four well-
known HIV pathogenesis hypotheses.  Their models include HIV virions, TH cell, TK 
cells, B cells, antibodies and Syncytia.  Grilo et al. [14] {#240}implemented an 
Agent-Rule-Based simulation model based on a Cellular Automata (or CA) structure.  
Their model includes HIV virions, TH cells, TK cells, Macrophages, B cells, antibod-
ies and a series of molecules such as IL-1, IL-2, IL-5 and -IFN.  A similar coverage 
of cells and chemical molecules by Sieburg et al. [38] is based on a strict CA struc-
ture.  In ODE models, TK cells, B cells and antibodies are usually omitted and chemi-
cal molecules are not explicitly identified. 

3.2 Entity Granularity 

The task of modeling TH cell population dynamics under viral infection considers 
questions like: should their receptors be modeled?  What are their activation states?  
should we distinguish every TH cell, or treat them as a homogenous population?  This 
raises the issue of entity granularity, which we define as follows: 

Entity Granularity: The level of detail at which entities are specified.  We refer to 
an ordered and discrete categorization rather than a continuous measurement. 

From our survey of immunological models, we define three levels of entity granu-
larity: 

1. Parameter Level: Entities here do not appear as population variables; only 
their functions and effects are present in the form of parameters of other dy-
namical descriptions. 

2. Population Level or Subpopulation Level: Entities here are treated as a group.  
They are typically described by population variables. 

3. Individual Level: Entities here are distinct and stateful. 

Many ODE models [8,18,27,28,30-33,35,39,43] specify the main entities of inter-
est, particularly TH cell and HIV virions at the Population Level.  The Target Cell 
Limited Model by Phillips [35] contains one population of HIV and three subpopula-
tions of TH cell types; namely, healthy, productively infected (which produce HIV 
virions upon death), and latently infected (which do not produce HIV virions) cells.  
The verification model by Stafford et al. [39] reduced TH cells into two subpopula-
tions: healthy and infected cells as Phillips [35] noted that latently infected TH cell 
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populations do not impact population dynamics significantly.  The therapy models, 
such as the one proposed by Perelson et al. [30,31] divides HIV into two subpopula-
tions: infectious and noninfectious as the drug Protease Inhibitor was designed to 
produce noninfectious virions from infected cells. 

We observe that the number of subpopulations increases with the number of hetero-
geneous entities modeled within a single population.  Essunger and Perelson [11] 
investigated the virulence of HIV towards memory TH cells by modeling naïve, acti-
vated, and memory TH cells; each of which had a corresponding infected subpopula-
tion, and the infected memory TH cells were further divided into transiently (reverti-
ble to a healthy state) and permanently infected, resulting in a total of 7 TH cell sub-
populations and one HIV population.  In another example, Wein at al. [44] extended 
the post-treatment model by Perelson et al. [31] (which tries to explain the slowing 
down of viral decay after drug treatment by introducing long-lived victim cells) with 
two types of virions: those that are easily eradicated by drugs (type 1) and those that 
are not (type 2), resulting in 4 subpopulations of HIV (infectious type 1 and 2, nonin-
fectious type 1 and 2), 2 subpopulations for both infected TH cells and long-lived 
infected cells (type 1 and 2).  Together with healthy TH cells and long-lived cells, a 
total of 10 subpopulations were required.  The increased number of subpopulations 
gives rise to more complex equations and interactions among subpopulations.      

  For entities modeled at the Parameter Level, their existence is reflected as parame-
ters of other dynamical descriptions.  A parameter can either be a constant or be de-
pendent on other factors in the model.  For example, in many models [30,35,39,44], 
there is a constant input rate of births to the healthy TH subpopulation, which denotes 
the function of a thymus, and its constant value indicates that the thymus is assumed 
to be functioning well over time.  In the model by Essunger and Perelson [11], this 
birth inflow is a decreasing function of HIV population size, implying that the new 
TH cell production is impaired by the increase in viral load.  Drug modeling [30] is 
another example; it’s use is described by a parameter called efficacy, which specifies 
the proportion of infections that are blocked (efficacy of Reverse Transcriptase Inhibi-
tor) or the proportion of virions produced from infected cells that are noninfectious 
(efficacy of Protease Inhibitor).   

Entities modeled at the Individual Level are typically found in MA Models.  Re-
ferred to as agents, each is autonomous and stateful.  Each agent interacts with others 
according to its own set of rules.  Instead of having to partition a population into 
many subpopulations, the implementation of different states is more intuitive here; an 
agent, based on its type, can transition among a set of possible states over time.  For 
example, in the model by Sieburg et al. [38], there are 8 states for a TH cell (naïve, 
secretory, proliferating, memory and their correspondent infected states), 4 states for a 
TK cell (similar to TH cell), 5 states for a B cell (naïve, antigen-presenting, activated, 
antibody-producing, and memory), 3 states for a macrophage (non-binding, antigen-
presenting, and stimulated).  On top of this, 3 types of interleukins (IL-1, IL-2, IL-5) 
and -Interferon are also modeled.  This is more complicated and detailed than the 
models at (Sub)Population Level as described above.  The model developers have to 
properly identify the states, state transitions and the associated conditions, but with 
domain knowledge, this is straightforward as the cognitive mapping is direct from one 
rule to another, unlike mapping from a rule to a mathematical relationship. 
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Immune Specificity is another type of entity granularity that quantifies the specific 
matching between immune cell receptors and antigen shapes.  Nowak et al. [27] mod-
eled the TH cells at Subpopulation Level based on an integer-valued specificity.  In 
their model, the TH cell subpopulation of strain s only recognizes the HIV of strain s, 
while HIV does not face such shape-matching restrictions when infecting TH cells.  
New HIV strains (with different integer values) are created over time, simulating 
rapid mutation.  There is a special subpopulation of TH cells that can recognize all 
HIV strains with the assumption that they can only recognize the conserved parts of 
the HIV antigen [27].  The results from Nowak et al [27] show a successful reproduc-
tion of the 3-stage dynamics of HIV pathogenesis when the total number of strains 
was set to 8.  That is, there are 8 HIV subpopulations, 8 TH cell subpopulations and 
one special TH cell subpopulation that can recognize any HIV virions.  

The work by Hershberg et al. [17] was similar to Nowak et al. [27] except that they 
modeled different strains (essentially different shapes) with letter strings.  With this 
model, they introduced the concept of shape space.  Each letter string is a point in this 
space, differing from its neighbours in one letter through mutation.  This model also 
attained the 3-stage disease progression dynamics. 

It is surprising that there are relatively few models that actually consider immune 
specificity; those that do, target models for rapid viral mutation theory where immune 
specificity is a crucial factor.  Similar to choosing the Model Scope, the choice of 
Entity Granularity is also greatly influenced by the model developers’ perception of 
what is “required” for their purpose.  This subjectivity may hinder the discoveries of 
important causes of the diseases progression dynamics.   

3.3 Interaction Description 

The entities in the system are interdependent due to interactions.  For example, a viral 
infection can trigger a chain of activations of immune cells; the different cytokines 
secreted by TH cells can activate or suppress other cells.  What interactions are in-
cluded and excluded from the model concerns its scope as described in Section  3.1.  
Here we concentrate on the issue of the method of interaction description.  

Interaction Description: Form of representation used for describing entity interac-
tions. 

There exist two different methods of interaction descriptions. An Equation-based 
approach uses a set of coupled ordinary or partial differential equations to describe 
entity interactions by expressing relationships among observables quantitatively.  
Observables are measurable variables of interest - for instance, population size, con-
centrations, growth rate, and infection efficiency.  They are usually an averaged 
measurement over the population. ODE models [8,18,27,28,30-33,35,39,43] typically 
adopt a Population/Subpopulation Level of entity granularity and the Equation-based 
interaction description. An Agent-rule-based approach describes interactions by speci-
fying interacting rules at the cellular and molecular level.  The rules are usually de-
scribed with IF-THEN clauses. MA models [14,15,19] the Individual Level of entity 
granularity with a corresponding Agent-rule-based interaction description. 
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Table 1. Comparison of Equation- and Agent-rule-based Interaction Descriptions 

 Equation-based Agent-rule-based 

Defined by 
Linear combination of products of 
population sizes weighted by  
interaction rates 

Agent rules:  
If some conditions are met, then 
act 

Concerned with System Level Observables Individual Behaviors 
Level of view Macroscopic Microscopic 

Representation 
Implicit representation:  
embedded in equations 

Explicit representation:  
actually happen in simulation 

Table 1 compares the Equation- and Agent-rule-based interaction description ap-
proaches.  An Equation-based approach is only concerned with system level observ-
ables such as population sizes and interaction rates; hence it takes a macroscopic view 
of the real system to be modeled.  Conversely, the Agent-rule-based approach ex-
plores the cellular and molecular levels by predicting behaviors of each cell and 
molecule through agent rule specifications; hence it models the real system from a 
microscopic view.  With respect to what actually happens in the real immune system, 
we believe that the agent-rule-based interaction description is more explicit as each 
distinguishable cellular or molecular interaction is modeled and designed to occur 
individually and possibly distinctively in the simulation, while the Equation-based 
approach is implicit since cellular and molecular interactions are not distinctively 
computed but rather, homogeneously combined and embedded within a mathematical 
model of population change. We exemplify the point made above about Equation-
based approaches through a simple ODE Model by Perelson [30], given in Eq. 1 to 
Eq. 3.  This model involves three entity population sizes: healthy TH cells ( T ), in-
fected TH cells ( I ) and HIV virions ( V ). 

Table 2. Equations and Schematic Diagram of the Model by Perelson [30] 

kVTdT
t

T −−= λ
d

d
 Eq. 1 

IkVT
t

I δ−=
d

d
 Eq. 2 

cVpI
t

V −=
d

d
 Eq. 3  

In the Equation-based approach, the amount of cellular interaction (right-hand side 
of equations) is quantified by the sizes of involved populations and weighted by a rate 
parameter.  For example, the amount of infection is equal to the product of virion 
population size ( V ) and healthy TH cell population size ( T ) multiplied by the infec-
tion rate k .  The relationship between interactions and populations is illustrated in 
Table 2.  Rectangular boxes represent entity populations.  Solid arrows represent the 
flows, which are factors causing the change in population sizes.  The flows depicted 
by perforated arrows are quantitatively dependent on the factors or population sizes 
that originate it.  Such a graphical form of ODE Models is also employed by simula-
tion tools such as STELLA® [40] and VenSim® [42].   
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Table 3. TH Cell Agent Rules with Schematic Diagrams by Guo et al. [15] 

 
IF the receptor matches antigen THEN  
 reproduce 
 send out Activation Signal 
 
IF reception of Infection Signal (from HIV) 
THEN  
 change state to Infected 
 send out Successful Infection Signal 
 
IF reception of Death Signal (from TK)THEN  
 Die 

 

We next exemplify the Agent-rule-based Interaction Description using the model by 
Guo et al. [15].  Each type of agent has a set of agent rules which governs their inter-
action with other agents.  Table 3 gives three agent rules that governs antigen match-
ing, infection and death due to cytotoxic effect for TH cells.  From the corresponding 
graph, incoming arrows denote conditions of the rule.  If the condition is met, then the 
rule is fired and the decision part of the rule is carried out (shown as outgoing ar-
rows).  Feedback causes agent state changes as a result of rule firing.  Agent rules can 
be specified from a description of a single cell’s (or a molecule’s) biological function 
and MA Model developers do not need to explicitly enforce any Population Level 
relationships, such as the flows among populations common seen in ODE Models.  
While rule specification is done at a microscopic level, macroscopic level properties 
such as changes in population sizes and the amount of interactions are emergent prop-
erties as a result of a large collection of local interactions. 

The reason why MA Models [14,15,19,38,38] tend to have wider scopes than 
ODE Models can be explained by the cognitive process of agent rule specification.  
The specification of agent rules only requires a description of the biological func-
tion of a single cell (or a molecule); constructing mathematical equations requires a 
further translation of these rules (and the abstraction of many of these) into Popula-
tion Level relationships such as birth-death flows.  The direct mapping from bio-
logical functions to agent rules naturally results in models with greater details and 
wider scope.     

Table 4 summarizes the model comparisons we have discussed so far.  ODE Mod-
els usually have restricted Model Scope where a minimum number of entity types and 
interactions are included based on the model developers’ understanding.  MA Models 
have wider Model Scope, which appears to be a direct implication of the intuitively 
straightforward agent-rule specification method.  ODE Models specify entities at 
Parameter, Population and Subpopulation Level, while MA Models specify entities at 
Individual Level through the implementation of agents.  Many models do not imple-
ment immune specificity.  Among those that do, different strain-labeling methods 
include integer-valued [27,28] (which are essentially disjoint symbols) and letter 
strings [17] (which implies a shape space).  ODE Models rely on a set of ordinary 
differential equations to describe interactions among entities, while MA Models spec-
ify interactions by defining a set of rules for each type of agent. 
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Table 4. Comparison of ODE and MA Model Characteristics 

 ODE Models MA Models 
Model Scope Limited types of entities Many types of entities  
Entity Granularity: 
w.r.t Entity 

Parameter / (Sub)population 
level 

Individual level 

Entity Granularity: 
w.r.t Specificity 

Modeled or not modeled  Modeled or not modeled 

Interaction Description Equation-based Agent-rule-based 

4 Practical Considerations for Immunological Modeling  

In this section we discuss issues beyond the apparent differences in model characteris-
tics.  In particular, we investigate the limitation of ODE Models in terms of entity 
heterogeneity and spatial non-uniformity, the amount of effort necessary for develop-
ing the computational models, and the issue of emergent and designed dynamics.     

4.1 Entity Heterogeneity and Spatial Non-uniformity 

The entities we have seen in immunological models have many states.  For example, a 
TH cell can be in a quiescent, activated, productively infected, latently infected, or 
memory state.  For ODE Models this would mean dividing the cell population into 
more subpopulations, each of which is dedicated to one cell state, modeled by a single 
differential equation.  Solving a system of coupled differential equations for as many 
cell types as there are in the human immune system easily surpasses the capabilities 
of any modeling tool.  As a result, ODE Models generally assume homogeneity of 
entity types so as to limit the number of computable states while compromising on the 
‘realism’ of their predictions. MA Models, on the other hand, can afford many entity 
types and entity states without significantly affecting computational tractability. 

To model agent interactions realistically, MA Models specify rules that are depend-
ent on spatial proximity; that is, agents should only interact when they are close to 
each other.  Cellular Automata is a possible choice [14,15,38] for implementing such 
an environment, where agents and interactions are located on a spatial dimension.  
This dependence on spatial proximity is typically absent with ODE Models as only 
Population Level factors are considered, spatial (questions of positional effects) and 
topological (questions of positional responses) dependencies on individual interac-
tions are ignored.  The resulting equations imply that entity interactions are uniformly 
occurring at the same frequency at all places.  We believe that this assumption is 
unjustifiable.  As demonstrated in [24], models that explicitly take spatial non-
uniformity into consideration can lead to drastically different simulation results.  To 
consider the spatial non-uniformity using equation-based description, PDE models are 
used; they specify the dynamics with respect to x, y and z-axes in space in addition to 
the time dimension.  This results in an increased number of coupled equations, mak-
ing the model computationally more expensive. 
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4.2 Implementation Effort 

Software simulation tools such as STELLA® [40] and VenSim® [42] provide a 
graphical user interface which allows the dragging-and-dropping of ODE model com-
ponents and automatic generation of the equations.  However, such tools face practi-
cal difficulties when the number of populations increase; a result of increased entity 
granularities with respect to either entity or immune specificity.  With more subpopu-
lations identified, the number of equations increases accordingly, and the number of 
interconnections to be drawn on the diagram increases quickly.  When immune speci-
ficity is modeled, duplicate diagrams have to be drawn, each diagram for one strain. 

For MA models, once domain knowledge is acquired, specifying agent rules is in-
tuitively straightforward.  However, an executable Multi-Agent Model is not as easy 
to construct as compared to ODE Models due to the extra effort needed to create the 
basic framework (such as virtual environment, agent communication channels, agent 
life span modeling) in addition to the agent rules.  Although programming toolkits  
(such as RePast [1] and BREVE [22]) exist for generic MA Model construction, the 
need for programming knowledge may make them less accessible. 

4.3 Emergent vs. Designed Dynamics 

We clarify the differences between emergent dynamics (from model and simulation) 
and designed dynamics (by model developer) in this section.  In the Stafford et al. 
[39] model, TK cells are not explicitly modeled; only its cytotoxic effect  (i.e., to kill 
infected cells) is present as a parameter which represents an increase in death rate of 
infected TH cells.  This parameter is a function of viral load and time, which peaks at 
about 200 days after infection, as shown in Figure 3.  Its dynamics are directly de-
signed through a mathematical formula also shown in Figure 3.  The peak position 
can be directly controlled by the model developer by specifying the relevant parame-
ters ( 1t , 2t ).  In the model by De Boer and Perelson [8], TK cells are modeled as a 

population.  The interactions between TK cell population and infected TH cell sub-
populations follows the famous Lotka-Volterra equations [3].  In their model, TK 
cells are the predators whose population reproduction rate is proportional to the in-
fected TH cell population size, and infected TH cells are preys whose death rate is 
proportional to the TK cell population size.  The interactions are directly specified, 
but the patterns in population dynamics and rate dynamics are emergent.  Model de-
velopers can only indirectly influence the pattern by changing the parameters in inter-
actions (equations). 

The difficulty with designed dynamics is that the result may only be valid for that 
particular design, and may not hold when the designed factors are altered.  Model 
developers are hence responsible for justifying each parameter in the formula, in par-
ticular, their correspondence to the biological phenomena.  Often however, there is no 
uniquely correct way for such formulation (as is often qualified by researchers them-
selves) nor are justifications always provided.  A directly designed expression of 
macroscopic observables may approximate observed dynamics well but its results are 
only as good as the assumptions and mathematical relationships chosen for the model.  
They lack the provision to allow serendipitous discoveries through the collective 
causality of microscopic interactions. 
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ODE Models rely on equation-based interaction description, which in turn relies on 
certain rate parameters that quantify the outcome of the interactions.  These rate pa-
rameters often arise with only intuitive justifications.  MA Models however, suffer 
less from this issue of designed dynamics because the macroscopic dynamics are not 
formulated but emerge from the microscopic interactions among agents. 
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Fig. 2 TH Cell Loss Rate Dynamics with Cytotoxic Effect (Adopted from [39]) 

5 Conclusions 

We have presented HIV pathogenesis models based on the model characteristics of 
Scope, Entity Granularity and Interaction Description.  ODE Models have relatively 
restricted Model Scope, selected based on the model developers’ understanding of the 
relevance of each entity type and interaction.  A restricted Model Scope risks omitting 
potentially important factors.  MA Models have relatively wider Model Scope, which 
we believe to be a direct implication of the intuitively straightforward agent-rule 
specification method. ODE Models employ Parameter Level and Popula-
tion/Subpopulation Level entity granularity with equation-based interaction, while 
MA Models specify entities at Individual Level, implemented as agents, and interac-
tions are described via agent-rules.  ODE Models are relatively easy to construct but 
its complexity grows with increased number of subpopulations as a result of striving 
for a higher entity granularity level.  ODE Models are not suitable for modeling spa-
tial non-uniformity unless PDEs are used.  MA Models can naturally handle entity 
heterogeneity and spatial non-uniformity, and suffer less from the issue of directly 
designed dynamics.  Even though specifying agent rules is intuitively straightforward, 
a complete Multi-Agent Model requires effort to build the basic framework that im-
plements a virtual environment and agent communication channels, which are non-
trivial.  Close collaboration between computer scientists and immunologists is neces-
sary for developing useful modeling tools. 
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Abstract. In this paper, we present a study of the use of an artificial immune
system (CLONALG) for solving constrained global optimization problems. As
part of this study, we evaluate the performance of the algorithm both with bi-
nary encoding and with real-numbers encoding. Additionally, we also evaluate
the impact of the mutation operator in the performance of the approach by com-
paring Cauchy and Gaussian mutations. Finally, we propose a new mutation oper-
ator which significantly improves the performance of CLONALG in constrained
optimization.

1 Introduction

Many bio-inspired algorithms (particularly evolutionary algorithms) have been very
successful in the solution of a wide variety of optimization problems [3]. However, all
of these approaches (including evolutionary algorithms and artificial immune systems),
when used for numerical optimization, can be seen as unconstrained search techniques.
This means that they require a suitable mechanism to incorporate constraints, such that
they can deal with the general nonlinear optimization problem.

Within evolutionary algorithms (EAs), external penalty functions have been the
most popular mechanism adopted to incorporate constraints into the fitness function
[17]. The idea of an external penalty function is to “punish” (or penalize) a solution for
being infeasible by increasing its fitness value (when solving a minimization problem).
Despite their popularity, penalty functions have several problems, from which the main
one relates to the difficulties to define accurate penalty factors. A large penalty value
discourages the exploration of the infeasible region since the very beginning of the
search process (this may cause difficulties when dealing, for example, with a disjoint
feasible region). On the other hand, if the penalty value is too low, a lot of the search
time will be spent exploring the infeasible region because the penalty will be negligible
with respect to the objective function.

Recently, several researchers have proposed constraint-handling techniques for EAs
which avoid the use of a penalty function or do not require any fine-tuning of the penalty
factors [11,16,7,9]. Such approaches have been found to outperform traditional penalty
functions and can handle all types of constraints (linear, nonlinear, equality, inequality).
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The main motivation of the work presented in this paper was to explore the capabil-
ities of an artificial immune system in the context of constrained global optimization.
For that sake, we decided to adopt the algorithm based on the clonal selection principle
(called CLONALG) which is described in [4,6]. CLONALG was proposed as a learn-
ing algorithm particularly well-suited for solving pattern recognition and multimodal
optimization problems. However, as far as we know, it hasn’t been properly validated
in the context of constrained global optimization.

CLONALG is a population-based algorithm and its only variation operator is muta-
tion. Evidently, the main search power of CLONALG relies on this mutation operator
and therefore, such operator became the main focus of our study.

There is well-documented evidence (in the specialized literature) of the superiority
of evolution strategies (over genetic algorithms) in constrained optimization [16]. Also,
we were aware of the proposal by Yao and Liu [18] of adopting Cauchy-distributed ran-
dom numbers for an evolution strategy, instead of the traditional Gaussian distribution.
Yao and Liu [18] found that this probability distribution allowed the mutation opera-
tor of an evolution strategy to behave as a sort of crossover operator, thus improving
the performance of the algorithm in (unconstrained) numerical optimization problems
(including multimodal functions). Apparently, this behavior was due to the fact that
Cauchy-distributed random numbers allow relatively coarse-grained steps, which con-
trast with the fine-grained steps of the traditional Gaussian-distributed random numbers.

Thus, being aware of this work, we decided to incorporate Cauchy-distributed ran-
dom numbers into CLONALG. We hypothesized that this would considerably improve
the performance of CLONALG in constrained optimization (with respect to the use of
Gaussian mutations). However, the results (as we will see later on) were rather disap-
pointing and led us to propose our own mutation operator which turned out to be better
than any of the two other operators initially adopted. Finally, we also evaluated CLON-
ALG with binary encoding, in order to assess the impact of the representation in the
performance of the approach (in the context of constrained optimization).

The remainder of the paper is organized as follows. In Section 2, we define the
problem we want to solve. Section 3 describes some previous related work. In Section 4,
we describe the modifications done to CLONALG so that it can handle constraints. In
Section 5, we present our experiments adopting a binary representation (both with and
without Gray coding). In Section 6, we report our experiments adopting real-numbers
representation (adopting different mutation operators). In Section 7, some changes to
CLONALG’s mutation operator are proposed, our results are presented and they are
discussed. Finally, in Section 8, our conclusions and some possible paths for future
research are provided.

2 Statement of the Problem

The problem that we want to solve is the general nonlinear programming problem which
is defined as follows:

Find x which optimizes f(x) (1)
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subject to:
gi(x) ≤ 0, i = 1, . . . , n (2)

hj(x) = 0, j = 1, . . . , p (3)

where x is the vector of solutions (or decision variables) x = [x1, x2, . . . , xr]T , n is
the number of inequality constraints and p is the number of equality constraints (in both
cases, constraints could be linear or nonlinear).

3 Previous Related Work

We were able to find very few papers in which the main focus was the solution of con-
strained global optimization problems using an artificial immune systems. Such work
is briefly described next.

Hajela and Yoo [19,8] proposed a hybrid between a Genetic Algorithm (GA) and
an artificial immune system, aiming to solve constrained optimization problems. In this
approach, the authors adopted two populations. The first is composed by the antigens
(which are the best solutions), and the other by the antibodies (which are the worst
solutions). The idea is to have a GA embedded into another GA. The outer GA performs
the optimization of the original (constrained) problem. The second GA is run for a few
generations, and uses as its fitness function a Hamming distance (binary encoding was
adopted for the GA) so that the antibodies are evolved to become “very similar” (at the
genotypic level) to the antigens, without becoming identical. The interesting effect of
this evolution was that the infeasible individuals would normally become feasible. This
approach was tested with some structural optimization problems.

Kelsey and Timmis [10] proposed an immune inspired algorithm based on the clonal
selection theory to solve multimodal optimisation problems. Its highlight is the muta-
tion operator called ”Somatic Contiguous Hypermutation” where mutation is applied
on a subset of contiguous bits. The length and beginning of this subset is determined
randomly.

Coello Coello and Cruz-Cortés [2] proposed an extension of Hajela and Yoo’s al-
gorithm. In this proposal, no penalty function is required (as in the original approach),
and some extra mechanisms are defined to allow the approach to work in cases in which
there are no feasible solutions in the initial generation. Additionally, the authors pro-
posed a parallel version of the algorithm and validated it using some standard test func-
tions reported in the specialized literature.

Balicki’s proposal [1] is very similar to the two previous approaches. Its main dif-
ference is the way in which the antibodies’ fitness is computed. In this case, Balicki
introduces a ranking procedure. This approach was validated using a constrained three-
objective optimization problem.

Luh and Chueh [13,12] proposed an algorithm (called CMOIA, or Constrained
Multi Objective Immune Algorithm) for solving constrained multi-objective optimiza-
tion problems. In this case, the antibody’s population is composed by the potential solu-
tions to the problem, whereas antigens are the objective functions. CMOIA transforms
the constrained problem into an unconstrained one by associating an interleukine (IL)



Handling Constraints in Global Optimization Using an Artificial Immune System 237

value with all the constraints violated. IL is a function of both the number of constraints
violated and the total magnitude of this constraint violation (note that this IL function
is actually a penalty function). Then, feasible individuals are rewarded and infeasible
individuals are penalized. Other features of the approach were based on the clonal se-
lection theory and other immunological mechanisms. CMOIA was evaluated through
six test functions and two structural optimization problems.

4 Clonal Selection Algorithm for Constrained Optimization

Nunes and Von Zuben [4,6] proposed the CLONALG algorithm, which is inspired in
the clonal selection theory of the immune system. CLONALG was used by its authors
to solve pattern recognition and multimodal optimization problems.

Next, we will describe the main elements that comprise the general framework of
any biological-inspired system as described in [5] and considering the context of con-
strained optimization:

– Representation of the components: Antigens are represented by the objective
function f(x) that we want to optimize (minimize or maximize) and antibodies
are represented by the variables of the problem (x) which are potential solutions.

– Mechanisms to evaluate the interaction among individuals and their environ-
ment: antibody’s affinity corresponds to the evaluation of the objective function
given by the antigen.

– Adaptation Procedures: The clonal selection theory of the immune system.

Now, we will briefly describe the CLONALG algorithm [6]:

1. Generate j antibodies randomly.
2. Repeat a predetermined number of times:

(a) Determine the affinity of each antibody (Ab). This affinity corresponds to the
evaluation of the objective function.

(b) Select the n highest affinity antibodies.
(c) The n selected antibodies will be cloned proportionally to their affinities, gen-

erating a repertory C of clones: the higher the affinity is, the higher becomes
the number of clones generated for each of the n selected antibodies.

(d) The clones from C are subject to a hyper-mutation process inversely propor-
tional to their antigenic affinity: the higher the affinity, the smaller the mutation
rate.

(e) Determine the affinity of the mutated clones C.
(f) From this set C of clones and antibodies (Ab), select the j highest affinity

clones to compose the new antibodies’ population.
(g) Replace the d lowest affinity antibodies by new individuals generated at ran-

dom.

3. End repeat
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The number of clones generated from the n selected antibodies is given by:

Nc =
n∑

i=0

round

(
β ∗ j

i

)
(4)

where Nc is the total number of clones, and β is a multiplier factor (generally equal
to 1).

In order to apply CLONALG to constrained optimization problems, we introduced
the following changes:

– In step 2.(a), it is necessary that each antibody evaluates the objective function, and
the constraints of the problem in order to know if it is a feasible solution or not.

– In step 2.(b), the antibodies’ affinity is defined not only by the objective function
value, but also based on feasibility or infeasibility, considering that feasible indi-
viduals must have a higher affinity value. Within this group, the best individuals
are those whose objective function value is best (i.e., the larger value if we are
maximizing). Within the group of infeasible individuals, those having the lowest
constraint violation quantity will obtain the highest affinity values (since they are
closest to the feasible region).

– In step 2.(f), when the individuals that will make it for the next generation are de-
termined, it is necessary to ensure that at least q infeasible individuals will survive
(q is a user-defined parameter). This is because we want to promote a reasonable
diversity right in the boundary between the feasible and the infeasible region (this is
done because it is known that the most difficult constrained optimization problems
for EAs are those in which the global optimum is located precisely in the boundary
between the feasible and the infeasible regions).

– In step 2.(g), the criterion that determines the individuals who will be replaced
is driven by feasibility criteria as well. That means that if infeasible individuals
become a majority, more of them will be replaced and vice versa.

In order to assess the performance of CLONALG in constrained optimization, we
conducted a set of experiments using different representations and mutation operators.
For these experiments, we adopted the benchmark originally proposed in [15] and ex-
tended in [16]. The test functions chosen contain characteristics that are representative
of what can be considered “difficult” global optimization problems for an evolution-
ary algorithm (or any other bio-inspired algorithm used for global optimization). The
mathematical description of these test functions can be found in [16].

To get an estimate of how difficult is to generate feasible points through a purely
random process, we computed the ρ metric for the 13 test functions of the benchmark
(as suggested by Michalewicz and Schoenauer [15]) using the expression:
ρ = |F |/|S|, where |S| is the number of random solutions generated (S = 1, 000, 000
in our case), and |F | is the number of feasible solutions found (out of the total |S|
solutions randomly generated). The values of ρ for each of the functions chosen are
shown in Table 1.

CLONALG was compared with respect to two approaches that are representative of
the state-of-the-art in constrained optimization: Stochastic Ranking [16] and the Adap-
tive Segregational Constraint Handling Evolution Strategy (ASCHEA) [9].
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Table 1. Values of ρ for the 13 test problems. n=number of decision variables, LI=number of
linear inequalities, NI=number of nonlinear inequalities, LE=number of linear equalities and
NE=number of nonlinear equalities

Problem n Type of function ρ LI NI LE NE

g01 13 quadratic 0.0003% 9 0 0 0
g02 20 nonlinear 99.9973% 1 1 0 0
g03 10 nonlinear 0.0026% 0 0 0 1
g04 5 quadratic 27.0079% 0 6 0 0
g05 4 nonlinear 0.0000% 2 0 0 3
g06 2 nonlinear 0.0057% 0 2 0 0
g07 10 quadratic 0.0000% 3 5 0 0
g08 2 nonlinear 0.8581% 0 2 0 0
g09 7 nonlinear 0.5199% 0 4 0 0
g10 8 linear 0.0020% 3 3 0 0
g11 2 quadratic 0.0973% 0 0 0 1
g12 3 quadratic 4.7697% 0 93 0 0
g13 5 nonlinear 0.0000% 0 0 1 2

The versions that were evaluated are the following:

– Binary representation
• Standard
• Gray coding

– Real-numbers representation
• Self-adaptive mutation using Gaussian distribution
• Self-adaptive mutation using Cauchy distribution
• Uniform mutation without self-adaptation

5 Binary Representation

The CLONALG algorithm with the extensions for handling constrained optimization
problems, was first implemented using a binary representation. Since other researchers
have reported advantages of using Gray codes when dealing with numerical optimiza-
tion problems (and adopting genetic algorithms) [14], we decided to try both versions:
normal binary encoding and binary encoding with Gray codes.

For these experiments, we adopted the following parameters:

– Number of antibodies j = 50.
– Minimum number of infeasible solutions that must survive q=2.
– Type of mutation: uniform (same as in the simple genetic algorithm).
– Mutation rate: Clones are sorted by their affinity values in a descendent manner.

The mutation operator was implemented using a small value at the beginning and
then we increased it until a certain predetermined value was reached. The initial
mutation rate was= (1/len), where len is the length of the binary string. The final
mutation rate was set to 0.3.
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– Percentage d of replaced antibodies: 0.20.
– Total number of objective function evaluations: 238,750.

The parameters used to compute the number of clones (Eq. (4)) were the following:
β = 1 and n = j.

Tables 2 and 3 summarize the statistical results obtained by our binary versions
of CLONALG (with and without Gray coding, respectively) over 30 independent runs.

Table 2. Results obtained by CLONALG using standard binary representation. INF means that
the algorithm converged to an infeasible solution. In the functions marked with *, the approach
converged to a feasible solution only in 75% of the runs.

Test Function Optimal Best Mean Worst Std. Dev
g01* -15.0 -14.8686 -14.660287 -12.789464 0.501459
g02 0.803619 0.775589 0.749575 0.683894 0.025699
g03* 1.0 0.99891 0.97078 0.92849 0.024912
g04 -30665.539 -30650.00697 -30460.85416 -30366.98548 96.1407
g05 5126.498 INF INF INF INF
g06 -6961.814 -6921.48749 -6248.9307 -6182.9937 181.4024
g07 24.306 24.80870 30.8661 35.4455 2.4353
g08 0.095825 0.095825 0.093398 0.09313 0.00080
g09 680.630 684.12886 704.87263 753.22103 17.58436
g10 7049.25 INF INF INF INF
g11 0.75 0.750295 0.865079 1.567670 0.22056
g12 1.0 0.999996 0.907750 0.725285 0.077762
g13 0.053950 INF INF INF INF

Table 3. Results obtained by CLONALG using binary representation with Gray coding. INF
means that the algorithm converged to an infeasible solution. In the functions marked with *, the
approach converged to a feasible solution only in 50% of the runs. The use of ** indicates cases
in which the algorithm converged to a feasible solution only in 15% of the runs.

Test Function Optimal Best Mean Worst Std. Dev.
g01 -15.0 -15.0 -15.0 -15.0 0.0
g02 0.803619 0.760753 0.700945 0.562943 0.049646
g03 1.0 1.0 0.999688 0.997992 0.000579
g04 -30665.539 -30665.504 -30662.678 -30658.778 1.946

g05* 5126.498 INF INF INF INF
g06 -6961.814 -6961.813 -6961.813 6961.810 0.000552
g07 24.306 24.945 27.017 30.007 1.709
g08 0.095825 0.095825 0.095825 0.095825 0.0
g09 680.630 680.727 681.649 682.853 0.599

g10* 7049.25 7451.54 8344.18 10509.34 962.58
g11 0.75 0.75 0.76 0.79 0.011
g12 1.0 1.0 1.0 1.0 0.0

g13** 0.053950 0.059553 0.059215 0.062709 0.003000
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Table 4. Results obtained by ASCHEA [9] performing 1,500,000 objective function evaluations.
N.A.=Not available.

Test Function Optimal Best Mean Worst
g01 -15.0 -15.0 -14.84 N.A.
g02 0.803619 0.785 0.59 N.A.
g03 1.0 1.0 0.99989 N.A.
g04 -30665.5 -30665.5 -30665.5 N.A.
g05 5126.4981 5126.5 5141.65 N.A.
g06 -6961.814 -6961.81 -6961.81 N.A.
g07 24.306 24.3323 24.6636 N.A.
g08 0.095825 0.095825 0.095825 N.A.
g09 680.63 680.630 680.641 N.A.
g10 7049.33 7061.13 7497.434 N.A.
g11 0.75 0.75 0.75 N.A.
g12 -1.0 N.A. N.A. N.A.
g13 0.05395 N.A. N.A. N.A.

Table 5. Results obtained by the Stochastic Ranking algorithm [16] performing 350,000 objective
function evaluations

Test Function Optimal Best Mean Worst Std. Dev.
g01 -15.0 -15.0 -15.0 -15.0 0.0E+00
g02 0.803619 0.803515 0.7858 0.726288 2.0E-02
g03 1.0 1.0 1.0 1.0 1.9E-04
g04 -30665.539 -30665.539 -30665.539 -30665.539 2.0E-05
g05 5126.498 5126.497 5128.881 5142.472 3.5E+00
g06 -6961.814 -6961.814 -6875.940 -6350.262 1.6E+02
g07 24.306 24.307 24.374 24.642 6.6E-02
g08 0.095825 0.095825 0.095825 0.095825 2.6E-17
g09 680.63 680.630 680.656 680.763 3.4E-02
g10 7049.33 7054.316 7559.192 8835.655 5.3E+02
g11 0.75 0.75 0.75 0.75 8.0E-05
g12 -1.0 -1.0 -1.0 -1.0 0.0E+00
g13 0.05395 0.053957 0.067543 0.216915 3.1E-02

Clearly, the version that uses Gray coding outperforms its traditional binary counterpart.
When standard binary representation is used, the algorithm is not capable of finding
feasible solutions in functions g5, g10 and g13. For all the other functions, a reasonable
approximation to the optimal value is attained.

When Gray coding is adopted, in 10 of the 13 functions, the algorithm is capable of
reaching the optimal value. However, in functions g5, g10, and g13, the algorithm has
problems even for reaching the feasible region, as indicated before.

To have an idea of how competitive are the results produced by our two binary
versions of CLONALG, we present in Table 4 the results produced by ASCHEA [9].
These results were obtained with 1,500,000 objective function evaluations (let’s keep
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in mind that CLONALG performed only 238,750 evaluations). It can be clearly seen
that CLONALG (in its two versions) is outperformed by ASCHEA in most cases. Note
however that ASCHEA does not report results for g12 and g13.

Table 5 the results produced by Stochastic Ranking [16]. These results were ob-
tained with 350,000 objective function evaluations. As can be seen in Table 5, Stochas-
tic Ranking obtained better results for six functions, and CLONALG outperformed
Stochastic Ranking only in one test function.

6 Real-Numbers Representation

In this Section we present our experiments using a version of CLONALG with real-
numbers representation. In [6], the authors proposed to use self-adapting mutation pa-
rameters in CLONALG as in Evolution Strategies (ES). In such case, the mutation rate
is proportional to the antibodies’ affinities using the following equation:

α = exp(−ρf) (5)

where α is the step size, ρ controls its decay, and f(x) is the antigenic affinity. The
sizes of f(x) and α are normalized over the interval [0,1].

Based on what we discussed in Section 1, we decided to experiment with both,
Gaussian-distributed and Cauchy-distributed random numbers for our mutation opera-
tor. The parameter values adopted for our experiments were the following:

– Number of antibodies j: 20
– Percentage d of replaced antibodies: 0.20
– Objective function evaluations: 350,000

The parameters to compute the number of clones using Eq.(4) were the following:
β = 1 and n = j.

The parameter to compute α (Eq.(5)) was: ρ = 20

6.1 Gaussian-Distributed Mutations

In the first set of experiments, the mutation applied to a variable xk (step 2.d) was
computed using: xnew

k = xk + G(0, α), where G(0, α) is a random number between 0
and α with Gaussian distribution.

In order to assess the algorithm’s performance after this small modification, we
utilized the benchmark described in [16], as before. The results obtained from 30 in-
dependent runs using Gaussian-distributed numbers are shown in Table 6. In this case,
CLONALG was able to converge to a feasible solution in 11 of the 13 test functions.
The quality of the results obtained with Gaussian mutations is similar to that of the al-
gorithm with traditional binary representation. However, the results are outperformed
by CLONALG with Gray coding.
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Table 6. Results obtained by CLONALG with real-numbers representation, using Gaussian mu-
tations. INF mean that the algorithm converged to an infeasible solution.

Test Function Optimal Best Mean Worst Std. Dev.
g01 -15.0 -14.9665 -14.835 -14.559 0.0887
g02 0.803619 -0.7920 -0.710 -0.5 0.0583
g03 1.0 -0.99674 -0.551 -0.0852 0.2943
g04 -30665.5 -30665.2360 -30663.09370 -30661.36 1.0620
g05 5126.4981 INF INF INF INF
g06 -6961.814 -6961.1488 -6949.6321 -6928.9176 8.7312
g07 24.306 31.32150 36.041 40.3094 2.1601
g08 0.095825 -0.095825 -0.095825 -0.095825 0.0000
g09 680.63 682.94 686.4131 689.61 1.7149
g10 7049.33 7099.6346 8953.5650 12146.8123 1698.2081
g11 0.75 1.0 1.0 1.0 0.0000
g12 -1.0 -1.0 -1.0 -1.0 0.0000
g13 0.05395 INF INF INF INF

6.2 Cauchy-Distributed Mutations

In our second set of experiments, we tested Cauchy-distributed mutations, aiming to
improve the performance of our real-numbers version of CLONALG. In this case, we
adopted: xnew

k = xk + C(0, α), where C(0, α) is a random number between 0 and α
with Cauchy distribution.

Table 7 shows the results obtained from 30 independent runs using Cauchy-distribu-
ted random numbers for our mutation operator. It was quite surprising for us to see that
Cauchy-distributed mutations produced the worst overall results for our real-numbers
version of CLONALG. These results seem to indicate that the behavior produced by

Table 7. Results obtained by CLONALG with real-numbers representation, using Cauchy muta-
tions. INF means that the algorithm converged to an infeasible solution.

Test Function Optimal Best Mean Worst Std. Dev.
g01 -15.0 -14.4501 -13.7009 -12.7895 0.3616
g02 0.803619 -0.35507 -0.3055 -0.256481 0.0264
g03 1.0 0.0 0.0 0.0 0.0
g04 -30665.5 -30664.5824 -30662.4466 -30659.6513 1.3475
g05 5126.4981 INF INF INF INF
g06 -6961.814 -6957.24841 -6917.8961 -6854.0776 26.6042
g07 24.306 40.56171 46.04928 52.1685 3.333
g08 0.095825 -0.095825 -0.09579 -0.0957 0.0
g09 680.63 685.05423 690.51003 696.7897 2.8512
g10 7049.33 7110.1621 8138.4531 11043.2050 986.6993
g11 0.75 1.0 1.0 1.0 0.0
g12 -1.0 -1.0 -1.0 -1.0 0.0
g13 0.05395 INF INF INF INF
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Cauchy-distributed mutations (emulating a crossover operator) is not the most appro-
priate when dealing with constrained optimization problems.

7 CLONALG with Controlled and Uniform Mutations

Given the disappointing results that we obtained when using CLONALG in constrained
optimization problems, we decided to introduce a modification in its mutation operator
aiming to improve the algorithm’s performance. Considering that the binary represen-
tation version with Gray coding had produced the best results so far, we decided to
analyze only the possible changes to the mutation operator for real-numbers represen-
tation. Our first modification was to remove the self-adaptation mechanism suggested
in [6]. The motivation for this decision was the fact that this self-adaptation mechanism
was apparently designed for unconstrained problems and it wasn’t obvious to us how
to extend it for constrained problems. Thus, it would be easier to analyze the impact of
any changes to the mutation operator if this self-adaptation mechanism was removed.

The second change was the introduction of a control mechanism that allowed to
increase the algorithm’s capability of exploring neighboring regions. This corresponds
to step 2.(d) of the algorithm shown in Section 4. All the other steps remained without
changes. In this modified mutation operator, the step size is a function of the mutated
variable search space size, the antibody’s affinity value and the population size.

So, our proposal was to apply mutation in the following way:

1. For each decision variable xk, compute Rk = UB − LB, where UB and LB
are the upper and lower bounds of that variable, respectively, and Rk is the search
space size of the k-th variable.

2. Compute Δk = Rk/j where j is the number of antibodies in the population.
3. The clones population is sorted by affinity values in descending order.
4. The mutation operator is applied to each size-g clone group coming from the same

parent.
(a) For each variable k, compute δk = Δk/g.
(b) Apply mutation to each variable xk by using xnew

k = xk + U(0, δk), where U
is a random number in the range from 0 to δk with a uniform distribution.

As the search progresses, the value Δk is gradually decreased. The purpose of that is
that at the beginning of the search process large mutations are applied to the individuals.
Then, as the search progresses (and the algorithm starts converging to a solution), the
mutations will become smaller and smaller.

The sorting process mentioned in step 3 is accomplished by placing at the top of
the list the antibodies that are feasible and have the best objective function values. After
that, we place the infeasible solutions that have the lowest amount of constraint violation
and so on. Note how the step sizes of this mutation operator depend on the range of each
decision variable, on the size of the antibodies’ population and on their affinity.

As mentioned earlier, higher affinity antibodies are allowed to generate more clones
g (see step 2.(c) from the algorithm in Section 4). Based on this fact, in step 4.(a) we
obtain smaller step sizes when g is large. We argue that this mutation operator increases
the exploratory capabilities of the algorithm.
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Table 8. Results obtained by CLONALG with real-numbers representation and controlled uni-
form mutation. The asterisk (*) indicates a case in which only 90% of the runs converged to a
feasible solution.

Test Function Optimal Best Mean Worst Std. Dev.
g01 -15.0 -14.9874 -14.7264 -12.9171 0.6070
g02 0.803619 -0.8017 -0.7434 -0.6268 0.0414
g03 1.0 -1.000 -1.000 -1.000 0.0000
g04 -30665.539 -30665.5387 -30665.5386 -30665.5386 0.0000

g05* 5126.498 5126.9990 5436.1278 6111.1714 300.8854
g06 -6961.814 -6961.8105 -6961.8065 -6961.7981 0.0027
g07 24.306 24.5059 25.4167 26.4223 0.4637
g08 0.095825 -0.095825 -0.095825 -0.095825 0.0000
g09 680.63 680.6309 680.6521 680.6965 0.0176
g10 7049.33 7127.9502 8453.7902 12155.1358 1231.3762
g11 0.75 0.75 0.75 0.75 0.0000
g12 -1.0 -1.0 -1.0 -1.0 0.0000
g13 0.05395 0.05466 0.45782 1.49449 0.37900

Our third set of experiments was performed on the same set of test functions as
before. However, in this case, our CLONALG implementation performed 350,000 ob-
jective function evaluations. The summary of results (from 30 independent runs) is pre-
sented in Table 8. It is clear that the new mutation mechanism produced a remarkable
improvement in the results. In this case, the algorithm was able to reach the optimal (or
best known) solution in 8 of the 13 test functions adopted. These results are competitive
with respect to both ASCHEA and Stochastic Ranking.1

Our results seem to suggest that the use of local search (i.e., small step sizes in the
mutation operator) has a more significant impact on performance when dealing with
constrained search spaces. This contrasts with the case of unconstrained multimodal
optimization, in which large step sizes are preferred, to avoid converging to a local op-
timum [18]. However, other issues such as the most proper balance between feasible
and infeasible solutions (i.e., to avoid having only feasible solutions at any time during
the search process) remain to be explored (we have adopted a user-defined parameter
in our approach, but evidently other alternatives need to be explored). This issue in
particular, has been found to have a very significant impact on performance when us-
ing evolutionary algorithms for solving constrained optimization problems [9,16] and
therefore its importance.

8 Conclusions and Future Work

We have presented a study of the use of the CLONALG approach for solving con-
strained optimization problems. As part of our study, we have experimented with both

1 It is worth remembering that ASCHEA performs a much higher number of objective function
evaluations than our approach.
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binary and real-numbers representation. In the case of binary representation, we also
studied the impact of Gray coding, which we found to be positive in terms of the per-
formance of CLONALG.

Regarding real-numbers encoding, we analyzed the use of both Gaussian and
Cauchy random numbers. Surprisingly, the use of Cauchy-distributed mutations (which
have been found useful in unconstrained numerical optimization) resulted in the worst
overall performance of CLONALG.

The poor results obtained in our experiments led us to propose an alternative mu-
tation operator for real-numbers representation. In our proposed mutation operator, the
step size depends not only of the antibodies’ affinity, but also of the allowable range of
each decision variable and of the size of the antibodies’ population. This mutation op-
erator was implemented using random numbers with a uniform distribution. As seen in
our results, the use of this operator significantly improved the performance of CLON-
ALG with real-numbers representation.

Although there is evidently more room for improvement (we still cannot outper-
form Stochastic Ranking), the main aim of this paper was to point out the need to do
more research on the potential use of CLONALG (and other artificial immune systems)
for constrained optimization. As we have seen in this paper, the mechanisms that have
been proposed for unconstrained optimization (even if dealing with multimodal func-
tions) are not necessarily the most appropriate for dealing with constrained optimization
problems. However, we have also seen that the search capabilities of algorithms such as
CLONALG can be regulated through a more carefully designed mutation operator as to
provide a competitive performance in constrained optimization. However, other issues
such as robustness, balance between feasible and infeasible solutions and how sensitive
the algorithm is to the parameters given remain as part of our future work.

Acknowledgements

We thank the comments of the anonymous reviewers which greatly helped us to im-
prove the contents of this paper. The first and third authors gratefully acknowledge
support from NSF-CONACyT through project 42435-Y. The second author acknowl-
edges support from CONACyT through a scholarship to pursue graduate studies at
CINVESTAV-IPN.

References

1. Jerzy Balicki. Multi-criterion evolutionary algorithm with model of the immune system to
handle constraints for task assignments. In L. Rutkowski, J. Siekmann, R. Tadeusiewicz, and
L.A. Zadeh, editors, Artificial Intelligence and Soft Computing – ICAISC 2004 7th Interna-
tional Conference, Proceedings, volume 3070, pages 394–399. Springer, Lecture Notes in
Computer Science, 2004.

2. Carlos A. Coello Coello and Nareli Cruz-Cortés. Hybridizing a genetic algorithm with an
artificial immune system for global optimization. Engineering Optimization, 36(5):607–634,
October 2004.

3. David Corne, Marco Dorigo, and Fred Glover, editors. New Ideas in Optimization. McGraw-
Hill, London, UK, 1999.



Handling Constraints in Global Optimization Using an Artificial Immune System 247

4. Leandro Nunes de Castro and Jon Timmis. An artificial immune network for multimodal
function optimization. In Proceedings of the special sessions on artificial immune systems in
the 2002 Congress on Evolutionary Computation, 2002 IEEE World Congress on Computa-
tional Intelligence, volume I, pages 669–674, Honolulu, Hawaii, May 2002.

5. Leandro Nunes de Castro and Jonathan Timmis. An Introduction to Artificial Immune Sys-
tems: A New Computational Intelligence Paradigm. Springer-Verlag, 2002.

6. Leandro Nunes de Castro and F. J. Von Zuben. Learning and Optimization Using the Clonal
Selection Principle. IEEE Transactions on Evolutionary Computation, 6(3):239–251, 2002.

7. Raziyeh Farmani and Jonathan A. Wright. Self-Adaptive Fitness Formulation for Con-
strained Optimization. IEEE Transactions on Evolutionary Computation, 7(5):445–455, Oc-
tober 2003.

8. Prabhat Hajela and Jun Sun Yoo. Immune network modelling in design optimization. In
D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages 167–183. Mc
Graw-Hill, 1999.

9. S. B. Hamida and M. Schoenauer. ASCHEA: New results using adaptive segregationsl
constraint handling. In Proceedings of the Congress on Evolutionary Computation 2002
(CEC’02), volume 1, pages 884–889, Piscataway, New Jersey, 2002. IEEE Service Center.

10. J. Kelsey and J. Timmis. Immune Inspired Somatic Contiguous Hypermutation for Function
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Abstract. The aim of this work is to propose and validate a new multi-
objective optimization algorithm based on the emulation of the immune
system behavior. The rationale of this work is that the artificial im-
mune system has, in its elementary structure, the main features required
by other multiobjective evolutionary algorithms described in literature.
The proposed approach is compared with the NSGA2 algorithm, that
is representative of the state-of-the-art in multiobjective optimization.
Algorithms are tested versus three standard problems (unconstrained
and constrained), and comparisons are carried out using three different
metrics. Results show that the proposed approach have performances
similar or better than those produced by NSGA2, and it can become a
valid alternative to standard algorithms.

1 Introduction

Many real world applications involve the simultaneous optimization of various
and often conflicting objectives. Traditional approaches for solving the Multi-
objective Optimization Problem (MOP) aggregate all objectives into one func-
tion, then a single objective problem is solved by using standard optimization
techniques. Several optimization runs with different parameter settings are per-
formed, in order to achieve a set of solutions.

In the middle of the ’80s Schaffer published the first attempt to solve the
MOP by using evolutionary algorithms [1,2]. The use of population-based tech-
niques is preferable with respect to aggregating approaches, because multiple
solutions can be found in one single run. From this work, several Multi Objective
Evolutionary Algorithms (MOEAs) have been proposed in the last two decades.
Coello Coello maintains an updated Evolutionary Multiobjective Optimization
repository (http://delta.cs.cinestav.mx/~ccoello/EMOO/) in which the ref-
erences of almost all the proposed algorithms can be found.

Despite the considerable efforts to extend Evolutionary Algorithms for solv-
ing MOPs, very few direct approaches to the MOP using the emulation of the
Immune System behavior have been proposed. Most of the work concerns the
use of Artificial Immune System (AIS) as a tool for maintaining diversity in the

C. Jacob et al. (Eds.): ICARIS 2005, LNCS 3627, pp. 248–261, 2005.
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population of a Genetic Algorithm (see for example [3]) or for handling con-
straints in Evolutionary Algorithms [4]. In literature, one of the first reported
approaches which uses AIS for solving MOPs is proposed in [5], but also in this
case AIS is coupled with GA. Recently Coello Coello and Cruz Cortes develop
a MOEA directly based on the emulation of the immune system [6]. The result-
ing algorithm, called Multiobjective Immune System Algorithm (MISA), can be
considered the really first attempt to solve the general MOP directly with AIS.
The performances of MISA have been improved in a further work of the same
authors [6].

In this paper we propose a new approach for solving MOPs, based on the
multimodal AIS optimization algorithm proposed by De Castro and Timmis [7].
The aim is to show that AIS intrinsically include some common features required
by classical MOEAs, and that the extension to multiobjective optimization can
be done by introducing only few modifications into the standard algorithm.
The resulting algorithm is then tested on standard problems and results are
compared with the ones obtained by NSGA2 algorithm [8], universally considered
as representative of the state-of-the-art in multiobjective optimization.

2 Multi Objective Optimization Problem

Generally the MOP requires to optimize the vector function

f (x) = [f1 (x) , f2 (x) , . . . , fm (x)]T (1)

subject to inequality and equality constraints

gi (x) ≥ 0 i = 1, 2, . . . , k
hi (x) = 0 i = 1, 2, . . . , p

(2)

where x = [x1, x2, · · · , xn]T ∈ Ω is the vector of decision variables and Ω is the
feasible region. Because of the presence of several objective functions, the aim of
a MOEA is to find compromise solutions rather than a single optimal point as
in scalar optimization problems. In this case the trade-off solutions are usually
called Pareto optimal solutions.

Considering, without loss of generality, a minimization problem for each ob-
jective, it is said that a decision vector xP dominates another vector xQ (denoted
by xP ≺ xQ) if

1. xP is no worse than xQ in all objectives, AND
2. xP is strictly better than xQ in at least one objective.

Mathematically:

∀i = 1, . . . , m fi (xP ) ≤ fi (xQ) ∧ ∃i = 1, . . . , m fi (xP ) < fi (xQ) (3)

If there is no solution xQ that dominates xP , then xP is a Pareto optimal
solution. The set P

P � {x ∈ Ω : ¬∃x∗ ∈ Ω, f (x∗) ≺ f (x)} (4)
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of all feasible Pareto optimal decision vectors is referred to as Pareto optimal
set, while the corresponding image PF

PF �
{
f (x) = [f1 (x) , . . . fm (x)]T : x ∈ P

}
(5)

of objective vectors is called Pareto optimal front. Pareto optimal solutions are
also called noninferior or nondominated solutions.

In this work we distinguish between the actual Pareto front, termed PFtrue,
and the final set of nondominated solutions returned by a MOEA, termed
PFknown as defined in [9].

3 Algorithm

3.1 Artificial Immune System: Brief Overview

The main characteristic of the Immune System (IS) is that it must fight against
external intruders (nonself) but must be tolerant with body cells (self). The
main characters of IS are

– antigen (Ag): any substance capable of triggering an immune response;
– antibody (Ab): molecule (lymphocytes) that can match and counteract Ag.

Once a lymphocyte shows a high affinity toward an Ag, it is activated that
is it undergoes an affinity maturation, a process that is aimed at improving
the binding with Ag. New cells are clones of the older ones, diversity of new
cells is ensured by a somatic hypermutation where genes of new cells are pieced
together from widely scattered bits of DNA. This process is called clonal selection
principle. The higher the affinity of the new cells with Ag, the higher their
possibility to generate new clones. Despite its efficiency to increase affinity with
Ag, somatic hypermutation has the risk of generating autoimmune cells. IS must
inhibit new cells which are not self-tolerant (suppression of similar cells). Ag
recognition does not start every time from scratch; after being stimulated some
of the lymphocytes become memory cells of the system.

The behavior of the Immune System can be artificially emulated for opti-
mization or, more generally, for machine learning [10]. An algorithm based on
emulation of the IS behavior is referred to as Artificial Immune System (AIS).
A deep investigation of the AIS can be found in [11,12].

In the optimization field, AIS has shown to have a great ability for searching
multiple optimal solutions [7]. In this case Ags are represented by the optimal
points of a function, while Abs are the test configurations. Basically, the opti-
mization algorithm is structured into two nested levels (Fig. 1). The inner one
takes into account the Ab-Ag affinity relations, stimulating most promising cells,
while the outer level manages the network of cells of the system, eliminating the
similar ones. Cardinality of the population can be fixed or dynamic, but new
cells are generated throughout the process in order to explore as much as possi-
ble the space of configurations. Deep details of the multimodal single objective
optimization algorithm are provided in [7].
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Fig. 1. AIS optimization algorithm flowchart

3.2 Multi Objective Algorithm

Following the structure of the AIS optimization algorithm, we propose a new
multiobjective optimization algorithm. The algorithm, called Vector Artificial
Immune System (VAIS) has the same structure as the one for the single objective
shown in Fig. 1.

1. Initially a random uniformly distributed population is created and the fitness
is assigned to each solutions, as it will be described in the next section. The
memory is initialized to be empty.

2. Each cell is reproduced in Nclones copies of the original one and each clone
is locally mutated by a random perturbation. The amplitude of mutation
decreases when the fitness of the original parent cell increases, according to
Eqs. (6)

xnew = xold + α xrandom
α = β exp(−f∗) (6)

where xrandom is a vector of Gaussian random numbers of mean 0 and
standard deviation 1, f∗ is the normalized value of fitness from the val-
ues [fmin, fmax] into the range [0, 1]. The value of the parameter β is chosen
to set the maximum amplitude of mutation. xnew, xold and xrandom are real
valued vectors defined in a normalized parameter space.

3. For each clone the values of the objective functions and Pareto dominance
relations are evaluated. Because the fitness depends on the actual population,
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its value is assigned to the clones and recalculated for the parent cells. The
nondominated individuals are copied into the memory.

4. The best (with respect to the fitness value) mutated clone for each cell
replaces the original parent (clonal selection).

5. Steps 2-4 (which represent the inner loop) are repeated for Nin times.
6. The affinity operator is applied to the memory: the Euclidean distance be-

tween memory cells is measured; despite of the traditional AIS algorithm, the
distance is evaluated in the objective space, in order to obtain an uniformly
distributed Pareto front.

7. All but the highest fitness cells whose distances are less than a threshold are
suppressed. The threshold value must be related to the number of solutions
desired on the PFknown (Nmemory); if the objectives are normalized into
the range [0, 1], the value of

√
m

Nmemory
(m: number of objectives) represents

the distance among solutions uniformly distributed on a straight continuous
Pareto front. We choose this value as threshold for suppression.

8. The memory is copied into the original population. New randomly generated
cells fill the remaining population, in order to maintain the diversity of solu-
tions. A minimum percentage of newcomers is guaranteed at each iteration
to obtain a good exploration of the solution space.

9. The process is repeated Nout times from step 2.

The rationale of this work is that AIS has, in its elementary structure, the
main characteristics required by MOEAs described in literature. One of the
main characteristic of classical MOEAs is that they present selection pressure
(genetic drift) phenomenon [13] and some tricks must be adopted for enhancing
diversity in solutions and space exploration. Instead, AIS makes parallel searches
of optimal solutions, leaving the management of the network of cells to the
suppression operator in the upper level of the algorithm. This operator gives
another advantage: when defining the fitness assignment, several MOEAs require
information about crowding (density) of solutions [14], while AIS does not need
them because similar solutions are suppressed. There are at least two other
characteristics intrinsically defined in AIS which are usually needed by other
multiobjective algorithms. AIS do not need an additional memory for storing
nondominated solutions (like, for example, the MultiObjective Particle Swarm
Optimization, MOPSO, algorithm [15]), because this feature is already defined.
Finally the clonal selection is always elitist, so AIS does not present backward
effects during the iteration [16].

Fitness Assignment. In literature there are several Pareto-based fitness as-
signment strategies for MOPs. All non-aggregating techniques require the eval-
uation of the Pareto dominance among the individuals of the population [17].
This approach has the advantage that it is insensitive to the nonconvexity of
the Pareto Optimal Set [18]. In their famous algorithm NSGA2 [19,8], Deb et al.
apply a pure Pareto ranking for assigning the fitness value to the population. At
each iteration all the nondominated solutions are assigned rank 1 and they are
temporary removed from the assignment. Then rank 2 is assigned to the new set
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of nondminated solutions and so on. In SPEA [17] algorithm and in its evolu-
tion SPEA2 [14], instead of calculating the standard Pareto ranking, Zitzler et
al. assign to the population a fitness value which incorporates both dominance
and density information. In particular all nondominated solutions have a fitness,
called strength, proportional to the number of individuals dominated by each of
them: let Ni denote the number of individuals dominated by the nondominated
i-th cell and Ndom the total number of dominated solutions, then the strength
of i is

si =
Ni

1 + Ndom
(7)

The fitness of a dominated solution j is calculated from the strength of the
solutions i which dominate it

fj =
∑
i:i≺j

si (8)

The NSGA2 fitness assignment approach does not distinguish among non-
dominated solutions and the hierarchical classification of solution can become
computationally intensive if the population is large. On the other side, the
SPEA2 approach includes density information that are not required by the VAIS
algorithm described in the previous section, because AIS has in itself opera-
tors which preserve diversity (such as affinity and suppression) and prevent the
crowding of solutions. For these reasons we have adopted a simpler fitness assign-
ment, which overcome these problems called Simple Strength Approach, SiSA.
For each nondominated individual the fitness is equal to the strength, as defined
in SPEA2, while for a dominated cell, the fitness is the number of individuals
which dominate it. The resulting fitness guarantees a partial ranking, because
all nondominated solutions have fitness values lower than 1, while the dominated
ones always greater than 1.

Constraint Handling. Constraints can be classified into two different types:

– constraints on objectives;
– constraints on variables.

This classification comes from the consideration that in real world problems the
evaluation of objectives is the most time consuming operation in the optimization
process (think, for example, to objective functions evaluated by Finite Element
Analisys software) so constraints on objectives must be carefully treated in order
to avoid wasting time and resources. Constraints on decision variables can be
treated more easily because they can be managed before evaluating the objective
functions.

In literature constraints are usually handled by using penalty functions tech-
niques. Reference [20] gives a good survey of these strategies. Another approach,
based on the definition of constrained dominance is developed by Deb et al. [8].
This technique does not require the definition of penalty functions, but simply
modify the definition of dominance given in Eq. (3) including infeasible solutions.

In this work we propose a technique for handling inequality constraints on
variables preserving the feasibility of solution [21]. For what concerns equality
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Fig. 2. Constraint handling: from a parent cell P, three clones are generated and mu-
tated. Clones A0 and B0 are in the feasible region. Given that clone C0 falls in the
infeasible region, the amplitude of mutation is progressively reduced with a bisection
rule, until a feasible clone, C2, is obtained.

constraints on variables, these can be often rearranged decreasing the dimension
of the search space. Sometimes equality constraints can be transformed into
inequality one [22]. The VAIS algorithm can generate infeasible solutions in
two cases. The first one is when a new random individual is generated. In this
case any infeasible solution is simply discarded. An infeasible solution can also
occur after applying the mutation operator to a cell close to the constraint. In
this case the feasibility of the solution is maintained by progressively reducing
the mutation amplitude with the bisection rule. This process stops when the
mutated clone becomes feasible (Fig. 2). This technique can be applied without
any hypothesis on the type of constraints (linearity, convexity, . . . ).

4 Experiments

The proposed algorithm, called Vector Artificial Immune System (VAIS) is com-
pared versus NSGA2. This algorithm has achieved the largest attention in the
multiobjective optimization literature and has been used as reference algorithm
in various studies. For all tests NSGA2 has been run using a population size of
100; other parameters are set according to the values suggested by the devel-
opers in [8]. The results of VAIS are obtained using the following parameters:
population size = 100, number of clones for each cell = 4, number of inner iter-
ation = 5, percentage of random cells at each outer iteration = 20%, β = 0.05.
These values have been determined after an intensive preliminary test phase of
the algorithm on different test functions. The number of generations for both
algorithms is set depending on the maximum number of function evaluations
allowed in the test.

Three different measures have been used for numerical comparisons of the
trade-off fronts produced by the algorithms, each of them takes into account a
particular desired characteristic of the PFknown.
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1. Spacing (S): first introduced by Schott [23], this metric measures how well
the solutions throughout the PFknown are distributed. This metric is math-
ematically defined as

S �

√√√√ 1
Nknown − 1

Nknown∑
i=1

(
d̄ − di

)2 (9)

where, for each i in the set of Nknown solutions of the PFknown,

di � minj

m∑
k=1

∣∣∣f i
k(x) − f j

k(x)
∣∣∣ (10)

and d̄ is the mean value of all di. A value of 0 for this metric states that the
solutions on the PFknown are equally spaced and the representation of the
front is as smooth and uniform as possible.

2. Reverse Generational Distance (RGD): one of the main issue for mea-
suring the performance of a MOEA is the ability to produce solutions on the
PFknown as near as possible to the PFtrue. In order to evaluate this charac-
teristic, Van Veldhuizen and Lamont [24] have introduced a particular metric
called Generational Distance (GD). It is defined as

GD � 1
Nknown

√√√√Nknown∑
i=1

d2
i (11)

where Nknown is the number of nondominated vectors in the PFknown and
di is the Euclidean distance measured in the objective space between each
of them and the nearest member of the PFtrue. Obviously GD = 0 means
PFknown ≡ PFtrue. As noted by Bosman and Thierens [25] a PFknown con-
sisting on only a single solution can have a low value for this indicator. In
order to include the goal of diversity, they propose to compute for each j
solution in the PFtrue the distance d̃j to the closest solution in the PFknown
set

RGD � 1
Ntrue

√√√√Ntrue∑
j=1

d̃2
j (12)

where Ntrue is the cardinality of the PFtrue set. We refer to this metric as
Reverse Generational Distance.

3. Error Ratio (ER): presented by Van Veldhuizen in [26] this metric mea-
sures the number of nondominated vectors of the PFknown that are not mem-
ber of the PFtrue

ER �
∑Nknown

i=1 ei

Nknown
(13)

where ei = 1 if solution i is not on the PFtrue, ei = 0 otherwise.
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In their analysis, Knowles and Corne [27] have noted that the use of these
metrics can not draw final conclusions on outperformances among MOEAs. How-
ever these indicators are commonly used in standard evolutionary multiobjective
optimization literature [22].

The MOEA community has developed several test functions, that have be-
come a standard reference for testing new algorithms. We choose three represen-
tative problems which point out some difficulties for the optimization algorithms.
The following results are evaluated after having performed 20 independent runs
of both algorithms.

4.1 Test Function 1

The first test is performed using the problem proposed by Tanaka [28]:
Minimize

f1(x) = x1
f2(x) = x2

(14)

subject to

g1(x) = x2
1 + x2

2 − 1 − 0.1 cos
(

16 arctan
x1

x2

)
≥ 0

g2(x) =
(

x1 − 1
2

)2

+
(

x2 − 1
2

)2

≤ 1
2

(15)

and x1, x2 ∈ [0, π]. The final number of fitness function evaluations in this case
has been set to 12000. The function presents a discontinuous and concave Pareto
front which entirely lies on the first constraint. It has been proved that some
MOEAs can have difficulties in finding Pareto optimal solutions with discontin-
uous and concave segments [29]. Fig. 3 shows the PFtrue (continuous line) and
the PFknown (circles) found by VAIS and NSGA2. The solutions shown corre-
spond to the median result with respect to the RGD metric. It can be seen that
the the average performances of VAIS are better than NSGA2 with respect to the
spacing and the reverse generational distance (Table 1); the opposite happens
with respect to the error ratio. It must be noticed that in this case differences
are very small and not statistically significant.

Table 1. Results of the metrics for the Tanaka test function

S RGD ER
VAIS NSGA2 VAIS NSGA2 VAIS NSGA2

Best 0.00144 0.00479 1.82779E-4 4.56689E-4 0.00552 0.00000
Worst 0.00260 0.00857 3.82790E-4 7.29166E-4 0.03191 0.05000

Average 0.00201 0.00640 2.56854E-4 5.65629E-4 0.02009 0.01700
Median 0.00204 0.00642 2.54257E-4 5.30819E-4 0.02139 5.30819E-4

Std. Dev. 2.77208E-4 8.40962E-4 8.28494E-5 4.25030E-5 0.00640 8.28494E-5
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Fig. 3. Pareto Front produced by VAIS (left) and NSGA2 (right) for the Tanaka test
function

4.2 Test Function 2

The second function has been proposed by Viennet [30]:
Minimize

f1(x) =
1
2
(
x2

1 + x2
2
)

+ sin
(
x2

1 + x2
2
)

f2(x) =
(3x1 − 2x2 + 4)2

8
+

(x1 − x2 + 1)2

27
+ 15

f3(x) =
1

(x2
1 + x2

2 + 1)
− 1.1 exp

(−x2 − y2) (16)

with x1, x2 ∈ [−3, 3]. The final number of fitness function evaluations in this case
has been set to 6000. This function presents several challenging characteristics,
such as a high dimensional objective space, discontinuous Pareto optimal set and
several local minima in objective functions. Because of the PFtrue has not an
analytical expression, in this case it is obtained by enumeration of all possible
solutions. By looking at the Pareto fronts produced in this case (Fig. 4), it can be
seen that VAIS has a better representation of the PFtrue. This fact is confirmed
by the analisys of the numerical results presented in Table 2 which shows a better
behavior of VAIS for all metrics.

Table 2. Results of the metrics for the Viennet test function

S RGD ER
VAIS NSGA2 VAIS NSGA2 VAIS NSGA2

Best 0.01150 0.03009 5.06375E-4 0.00172 0.00000 0.00000
Worst 0.03868 0.04599 0.00388 0.01022 0.01765 0.04000

Average 0.01526 0.04028 8.67047E-4 0.00308 0.00345 0.01650
Median 0.01284 0.04098 5.84390E-4 0.00190 0.00217 0.01000

Std. Dev. 0.00640 0.00408 7.76958E-4 0.00287 0.00406 0.01226
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Fig. 4. Pareto Front produced by VAIS (left) and NSGA2 (right) for the Viennet test
function

4.3 Test Function 3

The last test is performed on a function proposed by Zitzler [31] and character-
ized by a high dimensional decision space and local Pareto fronts in the objective
space. The problem is defined as:
Minimize

f1(x) = 1 − exp(−4x1) sin6(6πx1)

f2(x) = w(x)
(

1 − f1(x)
w(x)

)2 (17)

where

w(x) = 1 + 9

(∑5
i=2 xi

4

)0.25

(18)

with xi ∈ [0, 1] and i = 1, . . . , 5. The true Pareto front is obtained when
w(x) = 0, that is with x1 ∈ [0, 1] and x2 = · · · = x5 = 0. Another challenging
characteristic of this function is that the Pareto optimal front is not uniformly
represented because the function f1 is non linear (for more details in problem
difficulties for MOP see [32]). For this test function both algorithms stop after
40000 fitness function evaluations. The comparison between the algorithms with
respect to the spacing measure shows that NSGA2 has a more uniform spread of
solutions than VAIS. But VAIS has better performance with respect to the other
two metrics (Table 3). This result can be explained looking at Fig. 5: NSGA2
has difficulties in finding the global Pareto front, getting stuck at a local one.

5 Conclusion and Further Work

In this paper it has been shown that AIS has in its elementary structure the
main characteristics of MOEA described in literature. Following this idea, a
new MOEA based on the clonal selection principle, has been developed. First
comparisons with another state-of-the-art algorithm show that performances
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Fig. 5. Pareto Front produced by VAIS (left) and NSGA2 (right) for the Zitzler test
function

Table 3. Results of the metrics for the Zitzler test function

S RGD ER
VAIS NSGA2 VAIS NSGA2 VAIS NSGA2

Best 0.03140 0.00570 8.58313E-5 1.48321E-4 0.06818 0.10000
Worst 0.55028 0.00712 0.00935 0.00613 0.41463 1.00000

Average 0.21017 0.00651 0.00186 0.00473 0.14747 0.95500
Median 0.16552 0.00669 8.11857E-4 0.00493 0.12162 1.00000

Std. Dev. 0.16224 4.24203E-4 0.00227 0.00137 0.07991 0.20125

of VAIS are similar or better than those produced by NSGA2. These results
encourage the authors to continue the research and tests on the algorithm.

Some improvements will be done in order to produce a competitive, general
purpose algorithm for MOPs, that can become a valid alternative to standard
MOEAs:

– some other strategies for constraint handling will be tested, especially for
managing constraints on objectives;

– the possibility of including problems with integer and mixed-integer decision
variables will be added;

– other tests will be performed with other multiobjective optimization algo-
rithms which represent the state-of-the-art in evolutionary multiobjective
optimization; in this study other performance measures will be implemented;

– finally the algorithm will be tested on some high dimensional real world
problems, especially in the field of electromagnetism.
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Abstract. The (randomized) real-valued negative selection algorithm is
an anomaly detection approach, inspired by the negative selection im-
mune system principle. The algorithm was proposed to overcome scaling
problems inherent in the hamming shape-space negative selection algo-
rithm. In this paper, we investigate termination behavior of the real-
valued negative selection algorithm with variable-sized detectors on an
artificial data set. We then undertake an analysis and comparison of the
classification performance on the high-dimensional KDD data set of the
real-valued negative selection, a real-valued positive selection and sta-
tistical anomaly detection techniques. Results reveal that in terms of
detection rate, real-valued negative selection with variable-sized detec-
tors is not competitive to statistical anomaly detection techniques on the
KDD data set. In addition, we suggest that the termination guarantee
of the real-valued negative selection with variable-sized detectors is very
sensitive to several parameters.

1 Introduction

The field of Artificial Immune Systems (AIS) has seen the development of many
algorithms. One of the major algorithms developed within AIS is the negative
selection algorithm, first proposed by Forrest et al. [1] and then subsequently
developed over the years [2,3,4,5]. This paper investigates the real-valued nega-
tive selection algorithm with variable-sized detectors [6] and its applicability to
network intrusion traffic. The negative selection algorithm is oft cited for its po-
tential use in intrusion detection problems due to its ability to generate a set of
detectors from a single class of data (usually the normal network traffic), that is
capable of identifying possible intrusions. However, there remains little work in
the literature regarding the application of the negative selection algorithm with
variable-sized detectors to network intrusion detection. This paper undertakes
a comparative study between the negative selection with variable-sized detec-
tors, another simple AIS algorithm, positive selection, and two well established

C. Jacob et al. (Eds.): ICARIS 2005, LNCS 3627, pp. 262–275, 2005.
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statistical techniques. Our investigations reveal, that whilst appealing, negative
selection with variable-sized detectors does not appear to perform as well as
the more established techniques. The paper is organized as follows: Section 2
provides a simple overview of anomaly detection. Then, the immune negative
selection principle and basic negative selection algorithm are briefly explained
in section 3. Section 3.1 provides a review of the real-valued negative selection
algorithm with variable-sized detectors. This is followed by a simple real-valued
positive selection algorithm in section 3.2. Through the use of an artificial data
set, in section 4 we explore the termination behavior of the real-valued negative
selection algorithm. For comparative purposes, two novelty detection techniques
are described in section 5. This is then followed by an analysis of the classi-
fication performance of the negative selection and is compared to the positive
selection and to statistical novelty detection techniques in section 6.

2 Anomaly Detection

Anomaly detection, also referred to as novelty detection [7], outlier detection [7]
or one-class learning [8,9], is a classification technique, which is used for classify-
ing data where typically only a single class of data is available, or a second class
of data is under-represented e.g. machine fault detection or medical diagnosis.
In a probabilistic sense, novelty detection is equivalent to deciding whether an
unknown test sample is produced by the underlying probability distribution that
corresponds to the training set of normal examples. Such approaches are based on
the assumption that anomalous data are not generated by the source of normal
data. More formally, the task is to find a functional mapping f : R

N → {C0, C1},
using training data samples generated i.i.d.1 according to an unknown probabil-
ity distribution P (x, y)

(x1, y1), . . . , (xn, yn) ∈ R
N × Y, Y = {C0, C1}

such that f will correctly classify unseen examples (x, y). In the worst case, the
training set contains only normal samples (x, y ∈ C0) and the challenge is to
detect abnormal samples (x, y ∈ C1) with the function f which was trained2

with only normal samples.

3 Negative Selection Principle

The negative selection principle is a process that takes place in the thymus gland,
which helps to filter self reactive lymphocytes away from entering the lymphatic
system. This principle inspired Forrest et al. [1] to propose a negative selection
algorithm to detect data manipulation caused by computer viruses. The basic
idea was to generate a number of detectors in the complementary space and then

1 Independently drawn and identically distributed.
2 The parameters are determined, based on the seen training samples.
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to apply these detectors to classify new (unseen) data as self (no data manipula-
tion) or non-self (data manipulation). The negative selection algorithm proposed
by Forrest et al. is summarized in the following steps.

Given a shape-space U , self set S and non-self set N , where

U = S ∪ N and S ∩ N = ∅.

1. Define self as a set S of elements of length l in shape-space U .
2. Generate a set D of detectors, such that each fails to match any element in

S.
3. Monitor S for changes by continually matching the detectors in D against

S.

3.1 Real-Valued Negative Selection

The idea to generate detectors in the complementary space for continuous data,
was proposed informally by Ebner et al. [10] and formally by Gonzalez et al. [4,5].
The real-valued negative selection algorithm, operates on a unitary hypercube
[0, 1]n. A detector d = (cd, rns) has a center c ∈ [0, 1]n and a non-self recognition
radius rns ∈ R. Furthermore, every self element s = (cs, rs) has a center and a self
radius rs. The self-radius was introduced to allow other elements to be considered
as self elements which lie close to the self-center. If an element lies within a
detector (hypersphere), which in effect would be close to the self-center given
a certain radius, then it is classified as non-self, otherwise as self. An element3

e lies within a detector d = (cd, rns), if the Euclidean distance dist(c, e) =(∑n
i=1(ci − ei)2

)1/2
< rns. Ji and Dasgupta [6] proposed a real-valued negative

selection algorithm with variable-sized detectors (termed V-Detector) — the
algorithm is presented in the appendix and illustrated in figures 1(b), 1(c), 1(d).
The algorithm randomly determines a center of a detector which must not lie
within the hypersphere of a self-element. The radius is dynamically resized until
the boundary of the region comes in contact with a self-element. The algorithm
terminates if a predefined number of detectors are generated, or a pre-determined
proportion of non-self space is covered. For all our experiments contained in this
paper, we employed the algorithm proposed by Ji and Dasgupta [6].

3.2 Real-Valued Positive Selection

The real-valued positive selection algorithm was informally described by Ebner
et al. [10] and formally by Stibor et al. [11]. The main difference to the negative
selection is that no non-self detectors exists. Instead, each self element contains
a self-detector which classifies unseen elements. An element which lies within the
self-detector is classified as self, otherwise as non-self. This means that no detec-
tor generation phase is necessary, but the classification decision for each unseen
element is computationally expensive, in contrast to the real-valued negative
selection.
3 n dimensional point.
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4 Investigating the Real-Valued Negative Selection
Algorithm with Variable-Sized Detectors

As explained above, the V-Detector algorithm randomly generates detectors with
a variable-sized radius. In order to assess how well the algorithm generates a set
of non-self detectors and terminates, we made use of a simple toy problem. We
created a simple two-dimensional artificial data set with 9 self elements (see
Fig. 1(a)). We ran the algorithm using the same parameters as [6] :

Maximum Self Coverage MSC = 99.99 %
Maximum Number of Detectors Tmax = 1000

The results are visualized in figure 1. Figure 1(b) shows the generated detectors
for the artificial data set for self-radius rs = 0.05 and estimated coverage c0 =
99 %. It can be noted that the algorithm generates variable-sized detectors which
cover the non-self space with a limited number of overlapping detectors. Two
independent algorithm runs for rs = 0.05 and c0 = 80 % were also performed (see
Fig. 1(c), 1(d)). It can be seen, that this random detector generation and coverage
estimation method varies a great deal with equal parameter settings. To obtain
a steady space coverage for each independent algorithm run, the parameter c0
must be close to 100 %. Consequently, this increases the runtime complexity
required to generate detectors. This is now analyzed in the following section.

4.1 Algorithm Termination

First, it can be seen (algorithm 1), that the termination condition in line 22 is
not useful, because T never has a value higher than 1. Once increased to 1 (see
line 21), T is set to 0 (see line 5) in the same outer repeat loop and therefore,
the termination condition is line 22 is never satisfied.

Another algorithm termination is reached (see line 11), when the condition
t ≥ 1/(1 − c0) is satisfied. Let x ∈ Δ denote, that x is covered by at least
one detector. The variable t is only increased, when x ∈ Δ (see line 9). When
a random sample x /∈ Δ is chosen — falls within a self-element circle or an
uncovered gap — then t is set 0 (see line 4). Therefore, the termination criteria
is guaranteed, when a sample sequence x1,x2, . . . ,xj ∈ Δ of length j is found,
where j = t/δ. The term δ denotes the average number of detectors covering a
sample x. The justification behind δ is that a sample x can be covered by more
than one detector, because the detectors can overlap and therefore the variable t
can be increased multiple times. The probability of finding a sequence of length
j, can be calculated with the geometric distribution and the approach xj+1 /∈ Δ.

The probability to find in j +1 random sampling trials j successes before the
first failure is :

P (xj+1 /∈ Δ) = p(1 − p)j (1)

Term 1 only depends on p and j. The higher the number of self elements or
the larger the self-radius, the lesser the probability of finding a sample sequence
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self−radius r

(a) An artificial data set con-
taining 9 self-elements with self-
radius rs pictured as the grey
circles with a black center cs. It
contains no V-detectors.

(b) 41 generated V-detectors for rs =
0.05, c0 = 99%.

(c) First independent algorithm run
which generated 26 V-detectors for
rs = 0.05, c0 = 80%.

(d) Second independent algorithm run
which generated 11 V-detectors for
rs = 0.05, c0 = 80 %.

Fig. 1. The real-valued negative selection algorithm with variable-sized detectors ap-
plied on an artificial data set for different estimated coverages

which guarantees the algorithm termination. Furthermore, the probability is
strongly biased by parameter c0. A higher confidence of the estimated coverage c0
decreases the probability of finding a termination sample sequence and therefore
increases the runtime complexity. In the work [6], the runtime complexity of
the V-Detector algorithm is estimated by O(|D| · |S|) without a probabilistic
approach. As the detectors are generated randomly, we suggest a probabilistic
runtime complexity estimation.
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A final point to note is that the simple random generation and coverage
estimation method employed, induces the steady space coverage problem. This
is explored with a high-dimensional dataset and discussed in section 6.1.

5 Statistical Novelty Detection

Through the application of statistical methods, novelty can be quantified as a
deviation from a probability distribution p(x) which is generated from normal
data. The quantity can be expressed by a threshold, where (unseen) data samples
for which p(x) falls below this threshold, are considered as abnormal samples. By
applying such a threshold, all new data samples can be classified into two classes
C0 or C1, where the training data are assumed to be drawn entirely from C0. To
minimize the probability of misclassification, a new data sample x is assigned to
the class with the larger posterior probability [12]. This classification decision is
based on the Bayes theorem and can be written as :

Decide C0 if p(x|C0) >
p(x|C1)P (C1)

P (C0)
; otherwise decide C1

where P (Ck) is the prior probability of a sample belonging to each of the classes
Ck and p(x|Ck) is the class-conditional density. The class-conditional density
p(x|C1) of the novel data represents the threshold and is unknown a-priori.
Therefore, it can be modeled as a uniformly distributed density (see Fig. 2),
which is constant over some large region of the input space [13]. The point of
intersections divide the input space into two decision regions R0 and R1. An
input sample falling in region R0 is assigned to class C0, otherwise it falls in
region R1 and is assigned to class C1.

5.1 Parzen-Window Estimators

Parzen-Window is a nonparametric method for estimating density functions [14].
Given a set A = {x1,x2, . . . ,xn} of n i.i.d. samples drawn according to an un-
known density function p(x). The Parzen-Window method estimates p(x) based
on the n samples in A by

p̂(x) =
1

nh

n∑
i=1

K

(
x − xi

h

)
where K is a kernel function which must satisfies the condition∫ +∞

−∞
K(x)dx = 1

and h the window width (also called smoothing parameter). For our experiments
we choose the multivariate Gaussian kernel function

p̂(x) =
1

n(2π)d/2σd

n∑
i=1

exp
{

−||x − xi||2
2σ2

}
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R0 R1R1

p(x|C0)P (C0)

p(x|C1)P (C1)

x

Fig. 2. Bayesian decision for determining whether an input sample belongs to class
C0 (falling in region R0) or C1 (falling in region R1) modeled with class-conditional
density functions

where xi are training samples which characterize the normal behavior and d is
the dimensionality of the data space. The Gaussian kernel function is completely
specified by the variance parameter σ which control the degree of smoothness of
the estimated density function. In our experiments (see section 6), we used the
proposed variance parameter σ = 0.01 [15].

Through the combination of the Parzen-Window method and the Bayes clas-
sification method, it is possible to obtain a statistical classification technique.
First, a density function p̂(x) is estimated based on the“normal”training samples
and second, a uniformly distributed density function4 pu(x) is a-priori modeled.
An unseen sample which falls in region R0 is classified as normal, otherwise it
is said to falls in the region R1 and is classified as an anomalous sample.

5.2 One-Class Support Vector Machine

In many applications it is sufficient to estimate the support of the probability
distribution, as opposed to the full density. A one-class Support Vector Machine
(termed one-class SVM) avoids estimating the full density. Instead, it estimates
quantiles of the multivariate distribution, i.e. its support. The one-class SVM
maps the input data into a higher-dimensional feature space F via a nonlinear
mapping Φ and treats the origin as the only member of the second class. In
addition, a fraction ν of “outliers” are allowed, which lie between the origin and
the hyperplane (the hyperplane has maximum distance to the origin, see Fig. 3).
In other words, the one-class SVM algorithm returns a function f that takes the
value +1 in a region where the density “lives” and −1 elsewhere and therefore,

4 The threshold.
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origin

F

νl outliers

Φ

Fig. 3. Map the training data into a high-dimensional feature space F via Φ. Construct
a separating hyperplane with maximum distance to the origin, with the constrains that
νl outliers lie between the origin and the hyperplane.

for a new point x, the value f(x) is determined by evaluating which side of the
hyperplane it falls on, in feature space.

More precisely, the optimal hyperplane is constructed, by solving the opti-
mization problem

min
α

1
2

l∑
i,j=1

αiαjk(xi,xj)

subject to 0 ≤ αi ≤ 1/(νl), i = 1, . . . , l
l∑

i=1

αi = 1

where α1...l are Lagrange multipliers, k the kernel function and x1...l the training
samples.

By solving this optimization problem, one obtains the decision function

f(x) = sgn

(
l∑

i=1

αik(x,xi) + ρ

)

which will be positive for most examples xi in the training set. The value of ρ
can be recovered by exploiting the fact, that for any Lagrange multipliers αi,
the corresponding pattern xi satisfies

ρ = (w · Φ(xi)) =
∑

j

αjk(xj ,xi)

where w is the normal vector of a hyperplane.
For our experiments, we used the one-class SVM implementation LIBSVM 2.6

[16]. LIBSVM is a program, which provides several SVM algorithms for classi-
fication and regression, including the one-class SVM implementation proposed



270 T. Stibor, J. Timmis, and C. Eckert

by Schölkopf et al. [8]. The default kernel (radial basis function) and the default
values of the parameters for the one-class SVM are used.

6 Classification Results and Comparative Study

We wished to explore the effectiveness of all of these approaches on network in-
trusion detection problems. For our experiments we made use of the dataset from
taken from KDD Cup 1999 [17]. This data set contains a wide variety of network
intrusions and normal network traffic. The data set consists of connection-based
network traffic data, where each record corresponds to one network connection.
A network connection is a sequence of Internet packets sent during a period of
time between two IP addresses. A complete record is described as a network
connection vector which contains 38 continuous and 3 symbolic fields and an
end-label (attack type or normal behavior).

Example 1. 0,icmp,ecr_i,SF,1032,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,511,511,0.00,0.00,0.00,0.00,1.00,0.00,0.00,
255,243,0.95,0.01,0.95,0.00,0.00,0.00,0.00,0.00,smurf

Example 2. 0,tcp,http,SF,239,968,0,0,0,0,0,1,0,0,0,0,0,0,0,0,
0,0,3,3,0.00,0.00,0.00,0.00,1.00,0.00,0.00,3,239,
1.00,0.00,0.33,0.03,0.00,0.00,0.00,0.00,normal

Example 1 shows a connection vector which characterizes a Denial of Service
(short DoS) attack. A DoS attack is an attack on a computer system, or net-
work, that causes a loss of service to users by consuming the bandwidth of the
victim network or overloading the computational resources of the victim system.
As a concrete example 1 characterizes a smurf DoS attack which uses spoofed
broadcast icmp messages to flood a target system. In contrast, example 2 shows
a connection vector which characterizes a “normal” access to a HTTP server.
The complete KDD dataset contains 3925650 abnormal (80, 14%) and 972780
normal (19, 86%) connection vectors and have a total size of ca. 700 mb. The
abnormal samples are partitioned in four categories :

– DOS (≈ 98, 92 %) : denial-of-service, e.g. syn flood.
– R2L (≈ 0, 0286 %) : unauthorized access from a remote machine, e.g. guessing

password.
– U2R (≈ 0, 0013 %) : unauthorized access to local superuser (root) privileges,

e.g., various “buffer overflow” attacks.
– probing (≈ 1, 05 %) : surveillance and other probing, e.g., port scanning.

Due to the high runtime complexity of the Parzen-Window method and the real-
valued positive selection, our experiments were performed on a reduced dataset.
More precisely, we randomly created 20 subsets S1, . . . , S20 from the complete
KDD dataset. Each subset Si contains randomly determined 1 % of normal and
1 % of anomalous data from the whole KDD dataset. There are 39256 anomalous
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and 9727 normal connection vectors in each subset. Furthermore, each discrimi-
native symbolic string is mapped on to a natural number, i.e. icmp → 0, tcp → 1,
udp → 2, and so on. The dataset is then normalized in the unitary hypercube
[0, 1]41 using the min-max normalization.

Each classification method is trained from subset Si with normal samples
only. The test run is performed on the whole subset Si (normal and anomalous
samples). After performing all 20 classification runs for each subset S1, . . . , S20,
the mean detection rate, mean false alarm rate and the standard deviations were
recorded and are presented in table 1. The detection rate and false alarm rate is
calculated as follows :

detection rate = anomalous sample correctly classified
total anomalous samples =

TP
TP+FN

false alarm rate = normal sample incorrectly classified
total normal samples =

FP
FP+TN

The abbreviations TP,FP,TN,FN are used in the ROC5 [18] analysis to evaluate
the performance of classification algorithms. Given a classifier and a sample,
there are four different outcomes. If the sample is anomalous and it is classified
as anomalous, it is counted as a true positive (TP); if it is classified as normal,
it is counted as a false negative (FN). If the sample is normal and it is classified
as normal, it is counted as a true negative (TN); if it is classified as anomalous,
it is counted as a false positive (FP).

As the real-valued negative selection is the only method which has a ran-
dom behavior6 each run of the algorithm was repeated 20 times for each sub-
set Si.

The parameters for the real-valued negative selection were chosen as outlined
in [6] (MSC = 99.99 %, Tmax = 1000, c0 = 99 %). Initial experiments with real-
valued negative selection were performed with self-radius rs = 0.1 and rs =
0.05. For this radius, the algorithm produces very poor classification results.
Therefore, several “empirical radius searching” runs were performed to find an
effective self-radius. The radius lengths shown in table 1 resulted in the best
classification performance. These radius lengths are also used for the positive
selection algorithm.

6.1 Discussion

In table 1 one can see that real-valued positive selection (Self-Detector) method
yields the highest detection rate and the lowest false alarm rate. A benefit of
this method is that no training phase is required, and a nearly zero standard
deviation of the detection rate for each threshold rs is achieved. However, this
method is computationally very expensive, due to the fact that the Euclidean
distance is calculated from a sample to each self-element. The Parzen-Window
method yields likewise a hight detection rate and a low false alarm rate. This
5 Received Operating Characteristic.
6 Generates detectors randomly.
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Table 1. Classification Results for KDD dataset

Algorithm Detection False Alarm # Detectors or
Rate Rate # Support Vectors

Mean SD Mean SD Mean SD
V-detectorrs=0.000005 2.66 8.35 0.00 0.00 1.37 0.52
V-detectorrs=0.00001 2.40 7.12 0.00 0.00 1.36 0.51
V-detectorrs=0.00005 1.75 6.05 0.00 0.00 1.39 0.56
V-detectorrs=0.0001 1.58 5.73 0.00 0.00 1.33 0.50
V-detectorrs=0.05 1.21 4.59 0.00 0.00 1.48 0.59
V-detectorrs=0.1 0.65 3.46 0.00 0.00 1.59 0.67

Self-Detectorrs=0.000005 100 0.00 0.00 0.00 9727 0
Self-Detectorrs=0.00001 100 0.00 0.00 0.00 9727 0
Self-Detectorrs=0.00005 100 0.00 0.00 0.00 9727 0
Self-Detectorrs=0.0001 100 0.00 0.00 0.00 9727 0
Self-Detectorrs=0.05 100 0.00 0.00 0.00 9727 0
Self-Detectorrs=0.1 99.99 0.02 0.00 0.00 9727 0

ocSVMν=0.005 99.78 0.03 0.05 0.02 55.70 1.56
ocSVMν=0.01 99.82 0.02 0.99 0.02 103.40 1.50
ocSVMν=0.05 99.87 0.02 4.95 0.03 491.15 1.27

Parzen-Windowu=0.005 99.93 0.02 0.00 0.00 — —
Parzen-Windowu=0.01 99.93 0.02 0.00 0.00 — —
Parzen-Windowu=0.05 99.93 0.02 0.00 0.00 — —

method also requires no training phase and has a very low standard deviation
of the detection rate. However, this method is computationally expensive7, be-
cause each training sample has to calculate the class conditionally probability
for a test sample. The one-class SVM achieves similar high detection rates and
low false alarm rates. Through the application of the default radial basis kernel,
the test data is nearly optimally separable in high-dimensional feature space.
This is shown by the fraction of outliers compared to the false alarm rate. For
ν = 5% outliers, the false alarm rate is nearly 5%. For ν = 0.5% outliers, the
false alarm rate is 0.5%. The main advantage of the one-class SVM, in compar-
ison with the Parzen-Window method, is the low computational complexity to
classify new elements. The one-class SVM considers only a subset of the training
samples — the support vectors — to classify new elements. Results reveal, that
the real-valued negative selection with variable-sized detectors is not competitive
to the statistical techniques and to the Self-Detector method presented in this
paper. It has a very low detection rate and a very high standard deviation —
the standard deviation is far higher than the mean. Though the V-Detector
parameter c0 is 99 %, the estimated coverage method (see line 11) seems prob-
lematic in high-dimensional spaces. In the experiments performed, the algorithm
terminates due to the estimated coverage with approximately 1.4 generated
detectors.

7 Exponential operation and several arithmetic operations.
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7 Conclusion

In this paper we have briefly introduced the anomaly detection problem and
have described two statistical anomaly detection approaches — the Parzen-
Window and one-class SVM technique. It has been observed that immune sys-
tem performs an anomaly detection, in part, through a process negative selec-
tion. This process eliminates self reactive lymphocytes and also ensures that
all possible (including unseen) antigens are recognizable. This negative selec-
tion process motivated computer scientists to develop immune inspired algo-
rithms which work in a similar way. On such algorithm, the real-valued neg-
ative selection algorithm, which employs variable-sized detectors, is such an
anomaly detection approach. We have investigated the termination behavior
of the real-valued negative selection algorithm with variable-sized detectors on
an artificial data set. The investigations reveal that the algorithm termina-
tion behavior is sensitive to several parameters. A high confidence of the es-
timated detector coverage is necessary for obtaining a steady space coverage,
but consequently increases the time complexity for the generation of detectors
significantly. We then explored the performance of the algorithm on a high-
dimensional data set for anomaly detection, and compared it to the real-valued
positive selection and to two statistical anomaly detection techniques. The clas-
sification results revealed that the real-valued positive selection outperformed
the other classification methods for this data set experiment. However, real-
valued positive selection is limited due to the high complexity involved. The
Parzen-Window method, likewise achieved a high classification performance,
but has same complexity problems as the real-valued positive selection. The
one-class SVM achieved a good classification performance and has an accept-
able runtime complexity. The real-valued negative selection with variable-sized
detectors has poor classification performance on the high-dimensional KDD
data set.

It is difficult to conclude that the real-valued negative selection is in general
not appropriate on high-dimensional data sets. However this work revealed sev-
eral problems of the V-Detector algorithm which where not mentioned before.
Nevertheless it may appear that the negative selection principle would seem to
be a technique that is not appropriate for real-world anomaly detection prob-
lems [11,19].
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Appendix

Algorithm 1: Generate V-Detector Set
input : S = Set of self elements, Tmax = max. number of V-Detectors,

rs = self radius, c0 = estimated coverage, MSC = max. self
coverage
output: D = Set of generated V-Detectors
begin1

D ←− ∅2

repeat3

t ←− 04

T ←− 05

r ←− ∞6

x ←− random point from [0, 1]n7

foreach d ∈ D do8

// Euclid. distance between detector center cd and x
// is lesser than Non-Self radius rns of detector d
if dist(cd,x) ≤ rns then9

// point x is covered by a detector
t ←− t + 110

if t ≥ 1/(1 − c0) then11

return D12

goto 5:13

// find the closest distance to a self element margin
foreach s ∈ S do14

l ←− dist(cs,x)15

if l − rs ≤ r then16

r ←− l − rs17

if r > rs then18

// Add a new detector d to set D
D ←− D ∪ {d = (x, r)}19

else20

T ←− T + 121

if T > 1/(1 − MSC) then22

exit23

until |D| = Tmax24

end25
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Abstract. Despite attempts to legislate them out of existence, spam
messages (junk email) continue to fill electronic mailboxes around the
world. With spam senders adapting to each technical solution put on the
market, adaptive solutions are being incorporated into new products.
This paper undertakes an extended examination of the spam-detecting
artificial immune system proposed in [1,2], focusing on comparison of
scoring schemes, the effect of population size, and the libraries used to
create the detectors.

1 Introduction

The first junk email was sent in 1978 [3]. Junk email messages were merely a
curiousity in the early 1990’s, but they soon became a nuisance, and then a
serious problem to many people. Junk emails may account for 75-85% of email
[4,5]. Despite attempts at legislation such as the CAN-SPAM act in the US
[6], the problem does not seem to have lessened significantly, and may even be
getting worse [7].

Artificial immune systems have been used for a diverse set of things, includ-
ing spam detection [1,2] and email classification [8]. This paper focuses upon
extending the work of [1,2]. The initial papers on a spam-detecting immune sys-
tem showed positive results, but did not look at how the system performed over
a longer period of time, or the effects of different alternatives such as variant
libraries or varying population sizes. This paper compares results from different
setups. In addition, this paper gives an algorithmic treatment of the spam im-
mune system used, making it more clear what other parameters might be altered
and which parts of the algorithm could be changed.

This system differs from AISEC [8] in several important ways, although they
are both immunologically-inspired email classification tools. Firstly, it is specif-
ically geared towards spam detection rather than a more general model of text
classification. As such, it does not take into account known heuristics for email
classification, and thus has a broader application field. The representation for
AISEC is based upon vectors of words found in the subject and sender header
fields of email, whereas the representation for this system can match upon any
part of a given message. In part because of this representation, AISEC has the
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ability to do clonal mutations, something which is not seen in this system. The
two systems, while performing similar functions, reach their classifications by
very different means.

Section 2 gives a short overview of spam detection: what makes it an in-
teresting problem, and how adaptive solutions can help. Section 3 describes the
spam immune system as it was tested. The results of these tests are given in Sec-
tion 4. Conclusions are discussed in Section 5, and some ideas for future work
are outlined in Section 6.

2 Spam

While defining spam for the lawyers can be tricky, defining spam for the purpose
of filtering is easy: Spam is what the recipient considers to be junk mail and
does not wish to receive.

Spam is basically a two-class problem where the two classes are spam and
non-spam (legitimate mail). Spam changes over time as new products become
available or popular, but it also changes because the problem is co-evolutionary:
spammers adapt to filters, and filters adapt to spam.

Although it does change, spam is not completely volatile: it tends to have
many stable features and occasionally undergoes periods of rapid change [9].
This means that a semi-static solution will work for long periods, then break
seemingly all at once, letting through a flood of messages. Obviously, this is not
desirable. The hope with adaptive spam solutions is that they will be able to
adapt to both slow and rapid changes.

Adaptive systems such as this one are also inherently diverse from one in-
stance to the next. Although for the individual, diversity may not have immediate
benefits (a given spam message might still go through an individual’s filter), di-
versity in spam filters has a impact on the industry as a whole. If it is impossible
for a spam sender to craft a message which will go through enough filters, then
it will cost more to send messages than the spam senders can make in profit.
This sort of economic disincentive may prove to be the only significant deterrent
to spam, given the lack of success so far with legislation [7].

2.1 Spam Technologies

There are two broad classes of solutions to spam: those which are technological in
nature, such as the many anti-spam products available, and those which are more
social solutions, such as the legislations surrounding unsolicited email. Two of
the technological solutions have lent ideas to the spam immune system, so these
are described briefly here:

– SpamAssassin. SpamAssassin [10] is an excellent open source spam filter
which uses a number of interesting heuristic techniques, including Bayesian
style filtering, lookup in blacklists, and many others. Of particular interest
to this paper are the text-based heuristics it uses, which are Perl regular
expressions.
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– Bayesian-inspired spam filters. The idea of using Bayes rule to sort spam
was introduced in 1998 [11,12], but the idea became much more popular after
a paper in 2002 [13] which boasted extremely high accuracies. Bayes rule is a
result from probability theory that helps predict the classification of a given
item based on features it has. (”Give me the probability that this message
is spam, given that it contains the tokens ’Rolex’ and ’replica’”.)

3 The Spam Immune System

The human immune system distinguishes between self and non-self, so the spam
immune system distinguishes between a self of legitimate email (non-spam) and
a non-self of spam.

3.1 Detectors: Lymphocytes and Antibodies

The central part of the spam immune system is its detectors, which are regular
expressions made by randomly recombining information from a set of libraries,
as described in Section 3.2. These regular expressions match patterns in the
entire message.

The digital lymphocyte consists of an antibody and two associated weights
detailing what has been matched by that particular lymphocyte. Both of these
weights are initialized to zero.

– spam matched: the cumulative weighted number of spams matched
– msg matched: the cumulative weighted number of messages matched

3.2 Libraries

The gene library contains partial patterns used to build the full patterns used
in lymphocytes. (Algorithm 2 describes how this is done.) In order to create
antibodies which match spam, a few different libraries were tested:

Dictionary of English Words. For the personal email of an English speaker,
most messages are written in English. This is the case for the corpus used for
testing and training. As such, the first library attempted was a list of American
English words, taken from version 5-4 of the Debian package wamerican. This
dictionary contains 96274 words.

Bayesian-Style Tokens. The Bayesian tokenizer divides a mail up into sepa-
rate components, usually individual words. The SpamBayes [14] tokenizer was
used to parse a training set of emails into Bayes tokens. Their implementation
is based upon the work of Paul Graham [13], but includes many additions not
found in his work [14]. This library contains 105248 tokens.
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Heuristics. The library which gained the best results is a library of heuristics.
Using full libraries of words wasted valuable knowledge that was available about
spam and non-spam messages. For example, although both messages contain
common words like “the” the presence or absence of such common words tells us
little about the likelihood of the message being spam. By concentrating on words
and phrases which are more likely to indicate a classification for the message, the
system produces more “useful” detectors and can achieve results with a much
smaller set of detectors.

Figure 1 gives some example heuristics. The syntax used is that of Perl reg-
ular expressions. The first of these looks for a pattern where the words “reply”,
“remove” and “subject” appear fairly close together (eg: “send a reply with re-
move in the subject”). The second is a simple string which represents the colour
red in hexadecimal (this string might appear in HTML-formatted mail). The
third contains the code for setting the background colour of an HTML docu-
ment. Finally, the last matches strings such as “college diplomas” or “university
diplomas” because these are periodically offered through spam messages.

reply.{1,15}remove.{1,15}subject
ff0000
\<BODY.*bgcolor="#?[^f]
\b(?:college|university)\s+diplomas

Fig. 1. Some heuristics from the Heuristic gene fragment library

The heuristic library is much smaller than its counterparts, with only 201
fragments. The heuristics used are drawn from SpamAssassin [10], information
about the training results of Bayes classifiers [13] [15], as well as directly from
examination of spam.

3.3 Assigning Scores to Messages: Is It Spam?

Given a set of weighted antibodies which have matched a given message, how do
we make a determination as to whether that message is spam? First we combine
all the individual antibody scores to assign a score to the message, and then we
must set a threshold so that scores on one side of this threshold are spam, and
those on the other are not.

In the first paper, scoring was done with a simple sum of the messages
matched by each lymphocyte [1], as shown in Equation 1. Later work used a
“weighted average” where this score was divided by the number of messages
matched by all lymphocytes [2], as shown in Equation 2. Given the information
stored by each lymphocyte, it is also possible to use a Bayes Score, as shown
in Equation 3. In each of these, the sum or product is taken over all matching
lymphocytes, so only the spam matched and msg matched values from those
lymphocytes are used in the score. The results of testing these equations can be
found in Section 4.2.
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Straight sum =
∑

matching lymphocytes

spam matched (1)

Weighted average =

∑
matching lymphocytes spam matched∑
matching lymphocytes msg matched

(2)

Bayes score =∏
matching lymphocytes

spam matched
msg matched∏

matching lymphocytes
spam matched
msg matched +

∏
matching lymphocytes 1− spam matched

msg matched

(3)

Ideally all spam would be on one side of the threshold and all non-spam
on the other. Doing the threshold selection after initial training allows the user
some control over the accuracy of the system. Some users may be willing to lose
a few legitimate messages if it means they don’t have to deal with all the spam,
while others will prefer to sort through more spam rather than risk losing any
legitimate mail. Although it has been suggested that a false positive should be
weighted more heavily as an error than a false negative [13], there does not seem
to be a consensus on an appropriate value for this weight. As a result, these
tests have been done using a sum of the false positive and false negative scores
to give a total error. The threshold was determined based on the score that
gave a minimum total error over an average of all runs. For most tests, 20 runs
were conducted. The results from this threshold determination are described in
Section 4.2.

3.4 Lifecycle

The lifecycle of a digital lymphocyte starts when the lymphocyte is created and
initialized (as described in Section 3.1). Once it has been created and initialized,
it can be used to match messages. It is usually trained first on a set of pre-
classified messages, then allowed to work with real, unclassified messages. The
lymphocytes are culled periodically (on an interval set by the user, perhaps once
a month or every two weeks), and new lymphocytes are generated. Algorithm 1
describes the overall functioning of the spam immune system.

The sub-algorithms describe the phases of the lifecycle in more detail: Al-
gorithm 2 explains the generation of new lymphocytes, Algorithm 3 describes
their initial training phase, Algorithm 4 explains the application of lymphocytes
to messages, and Algorithm 5 details the process of culling and ageing of old
lymphocytes.

4 Results

The system was tested against [16] because it is publicly available, contains
sorted spam and non-spam which is relatively unaltered (messages are altered
to preserve privacy and remove information added when they were donated). It
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Algorithm 1. Spam Immune System
Require: update interval ⇐ a time interval after which the system will age. {chosen

by user} {e.g. 10 days from now}

repertoire ⇐ φ {Initialize repertoire (list) of lymphocytes to be empty}
update time ⇐ currenttime + update interval {time of next lymphocyte update}

Generate lymphocytes (See Algorithm 2)
Do initial training (See Algorithm 3)
while Immune System is running do

if message is received then
Apply lymphocytes (See Algorithm 4)

end if
if current time > update time then

Cull lymphocytes (See Algorithm 5)
Generate lymphocytes to replace those lost by culling (See Algorithm 2)
update time ⇐ currenttime + update interval {t}ime of next lymphocyte up-
date

end if
end while

Algorithm 2. Generation of lymphocytes
Require: library ⇐ a gene fragment library (cannot be empty)
Require: repertoire ⇐ the list of existing lymphocytes (may be empty)
Require: p appending ⇐ the probability of appending to antibody {chosen by user}

while repertoire is smaller than the required size do
lymphocyte ⇐ a new empty memory structure with space for an antibody, and
the numbers msg matched and spam matched
antibody ⇐ randomly chosen gene fragment from library {This starts the new
antibody being created. This will be a regular expression made up of genes and
wildcards.}

lymphocyte.msg matched ⇐ 0
lymphocyte.spam matched ⇐ 0
repeat

x ⇐ randomly chosen number between 0 and 1 {uniform distribution}
while x < p appending do

newgene ⇐ new randomly chosen gene fragment from library
antibody ⇐ concatenate antibody, an expression that matches 0 or more
characters, and newgene
x ⇐ new randomly chosen number between 0 and 1 {uniform distribution}

end while
until an antibody is created that does not not match any in the repertoire

lymphocyte.antibody ⇐ antibody
Add lymphocyte to repertoire of lymphocytes

end while
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Algorithm 3. Training of lymphocytes
Require: repertoire ⇐ the list of lymphocytes (cannot be an empty list)
Require: message ⇐ a message which has been marked as spam or non-spam

if the message is user-determined spam then
spam increment ⇐ 1

else if the message is user-determined non-spam then
spam increment ⇐ 0

else
spam increment ⇐ a number between 0 and 1 indicating how likely the message
is to be spam {Chosen by user}

end if

for each lymphocyte in the repertoire do
if lymphocyte.antibody matches the message then

lymphocyte.msg matched ⇐ lymphocyte.msg matched + 1
lymphocyte.spam matched ⇐ lymphocyte.spam matched + spam increment

end if
end for

is no longer very recent (the bulk of the messages are from 2002), but it should
be sufficiently recent for testing purposes.

The corpus was divided up by the information found in the Date: email
header, as it was the only date information available. Messages whose date field
were clearly inaccurate (such as messages where the year was listed as 2028)
were discarded, and since all of the non-spam was sent during 2002, only the
spam for that year was used. The messages were grouped by month.

4.1 Baseline Test

The baseline result used for comparison is a repertoire of 500 lymphocytes from
the heuristic library, trained dynamically, retrained with a weight of 2 (meaning
each retraining is equal to two trainings, once to reverse the original training
and once as a new training), and culled if the msg matched value falls below
1 and aged by 1 if the value is higher. Unless otherwise specified, these are the
parameters used for each test.

This baseline was not chosen to be the best of the tests: as shown in Sec-
tion 4.3, better classifications can be achieved by using larger populations. The
benefit to using a non-optimal baseline is that there is more room to improve,
so it is more evident if a given technique actually improves the results.

The average accuracy for the baseline test is 91.9% with 2.4% false positives.
The standard deviation of this accuracy is 3.0%.

4.2 Scoring

As described in Section 3.3, three different weighting schemes have been used
with the spam immune system. Each of the three systems produces a very
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different pattern of scores when applied to the messages. Figures 2, 3 and 4 show
these scores for one instance of the baseline test. Only the first month (August)
is graphed to avoid showing any effects related to culling and retraining.

Figure 2 shows the pattern of the straight sum scoring system. There is little
clear division between the spam and the non-spam messages and there is a much
wider range of scores. There is a large spike of spam and smaller spike of non-
spam at the bottom end of the range – these represent messages for which few or

Algorithm 4. Application of antibodies with dynamically updated weights
Require: repertoire ⇐ the list of antibodies (cannot be an empty list)
Require: message ⇐ a message to be marked
Require: threshold ⇐ a cutoff point valued between 0 and 1 inclusive; anything with

a score great than or equal to this is spam {chosen by user}

Require: increment ⇐ increment used to update lymphocytes
Or...

Require: confidence ⇐ a value between 0 and 1 inclusive, depending upon the user’s
confidence in the system. {chosen by user}

total spam matched ⇐ 0 {initialize # of spams matched to 0}
total msg matched ⇐ 0 {initialize # of messages matched to 0}
matching lymphocytes ⇐ φ {Initialize empty list of matching lymphocytes}

for each lymphocyte in the repertoire do
if lymphocyte.antibody matches message then

total spam matched ⇐ total spam matched + lymphocyte.spam matched
total msg matched ⇐ total msg matched + lymphocyte.msg matched
lymphocyte.msg matched ⇐ lymphocyte.msg matched + 1 {increment the #
of messages matched by this antibody}
add lymphocyte to matching lymphocytes

end if
end for

score ⇐ total spam matched
total msg matched

{Determine the score using a weighted sum}
if score < threshold then

Message is spam
for each lymphocyte in matching lymphocytes do

if confidence is set then
increment ⇐ confidence ∗ score

else
{incrementhasbeensuppliedbytheuser}

end if
lymphocyte.spam matched ⇐ lymphocyte.spam matched + increment

end for
else

Message is not spam
end if
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Fig. 2. Straight Sum Score Distribution

no lymphocytes matched. The average best threshold is at score 3808, with an
average error rate of 20.11%. However, this error rate is almost identical to the
rate of spam in the portion of the corpus being tested, so effectively the straight
sum is not distinguishing any messages.

Figure 3 shows the bowl-shaped pattern of the Bayesian scoring system.
There is mostly spam at the top of the score range, and mostly non-spam at the
bottom of the range, with a spike in the middle of the distribution. (A weight
of 0.5 is assigned to any message about which nothing is known.) The average
best threshold is at 0.62 and the average best error rate is 7.08%.

Algorithm 5. Culling of antibodies: ageing and death
Require: repertoire ⇐ the list of antibodies (cannot be an empty list)
Require: matched threshold ⇐ any lymphocyte with a msg matched value below

this threshold will be killed {chosen by user}
Require: decrement ⇐ amount by which to decrement ageing antibodies {chosen by

user}

for each lymphocyte in the repertoire (list of all lymphocytes) do
lymphocyte.spam matched ⇐

lymphocyte.spam matched
lymphocyte.msg matched

∗ (lymphocyte.msg matched − decrement)
{the ratio between the two weights stays the same as it was before the ageing}
lymphocyte.msg matched ⇐ lymphocyte.msg matched − decrement
if lymphocyte.msg matched < threshold then

remove antibody from data store
end if

end for
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Fig. 3. Bayes Score Distribution

Table 1. Average threshold values for the three scoring systems

Scoring System Threshold Percent Error Standard Deviation of Threshold
Straight Sum 3808 20.11 772.62

Bayes 0.62 7.08 0.12
Weighted Average 0.55 4.96 0.01

Figure 4 shows the pattern of the Weighted Average scoring system. The
scores of the spam messages and the non-spam messages are somewhat distinct,
falling in two bell-curves that partially overlap at the edges. As with the Straight
Sum, there is a spike of messages at 0 because this is the score assigned to
messages about which nothing is known. The average best threshold was 0.55,
with an average best error rate of 4.96%.

Table 1 shows the thresholds as determined experimentally. Not only did the
weighted average scores give a lower error rate on average, but the standard
deviation of the best threshold was smaller, which makes it easier to assume
that future tests at this threshold will yield similarly good results. As such, the
weighted average is the scoring system used in the other tests.

4.3 Comparing Population Size

Using the heuristic library, lymphocytes were generated in batches of 1000, 900,
800, 700, 600, 500, 400, 300, 200, and 100. Each one was tested against all the
messages of the testing set, using the parameters for the baseline test other than
the number of lymphocytes in the repertoire. Figure 5 shows the percent error in
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Fig. 4. Weighted Average Score Distribution

Fig. 5. Percent error versus population size

classification as a function of population size. All the values shown are averages
for that population size.

“Useful” lymphocytes are those that have matched some messages and thus
have scores larger than zero. These are shown in Figure 6. The graph was created
by looking at the population of lymphocytes with any weight after the culling
step of the lifecycle. Near the top of this graph, the lines for various popula-
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Fig. 6. The number of useful lymphocytes in each population

tion sizes converge, implying that we may have reached an optimal number of
lymphocytes from this library for this corpus.

4.4 Libraries

The libraries were tested as with the baseline test, only with different libraries
used. The results, in Table 2, show that the accuracy of the heuristic library is
much higher. The numbers in brackets are the standard deviations of error for
each of the libraries tested. Because the standard deviation of the error using
the heuristic library is low, we can reasonably assume that the error will be
consistent over a range of runs.

Table 2. Error for the three libraries

False Positives False Negatives Total Error
Bayes 18.00 (11.13) 11.20 (2.69) 29.19 (8.94)
English 18.08 (9.84) 11.36 (3.16) 29.44 (8.18)
Heuristic 2.44 (2.10) 5.63 (1.13) 8.07 (3.02)

5 Conclusions

The spam immune system successfully adapts the artificial immune system
model for use in spam detection. At 700 heuristic lymphocytes, the system aver-
ages 93.6% accuracy with 1.1% false positives. Thus, the spam immune system
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achieves accuracy comparable to that of commercial anti-spam solutions accord-
ing to third-party reviewers of said products [17] [18]. Accuracy numbers cited
by vendors are often higher than these numbers, but these third party reviews
are probably closer to the accuracy that would be seen by typical users.

This system is even more compelling in that it uses only a single approach
to achieve this accuracy. As shown in [17], many of the products they tested
use multiple approaches, such as blacklisting combined with URL analysis. Pre-
sumably, if these approaches were added into a complete system including the
spam immune system, it would be possible to achieve even higher accuracy. This
demonstrates that not only is it possible to apply the artificial immune system
model to spam detection, but it is also a viable alternate anti-spam solution.

The scoring system which produced the best results was the weighted average,
originally proposed in [2]. While Bayes system achieved similar results, the larger
variance between runs made it less attractive for a system which users would
want to be relatively stable.

Three libraries were tested, but it was the heuristic library, originally pro-
posed in [1] which emerged as the most accurate for classification. The Bayesian
token and English word libraries performed significantly less well. Although the
higher variance between runs implies that they could occasionally do as well as
the heuristic library, most users will not be content with a system that “might”
work – they want something which will work consistently for them on a given run.

6 Future Work

In order for research to continue, work should be done to produce a suitable
corpus of messages that is more up-to-date and has a better distribution than
the SpamAssassin corpus. In the past, mailing lists have been used as ways to
gather spam and non-spam [12]. We have explored making modifications to the
popular open source list management software Mailman [19], so that collection
could be done with little additional work on the part of the list administrators,
but this has not yet been explored on a live mailing list.

Ideally, the new corpus would be gathered over a period longer than the
one-year span of the SpamAssassin corpus. If possible, it would be nice to have
a higher ratio of spam, reflecting the greater ratio of spam found in the world
currently. It would be nice to have a spam corpus which exhibits periods of
volatility as described in [9], as well as messages known to be relatively stable.

Once a better corpus is prepared, other gene libraries should be explored:

Adaptive gene libraries. Currently, the system uses a library that is prepared
in advance and does not change. However, as the system sees more spam, it could
be gathering information that could be used to create new gene fragments. This
could be done, for example, by looking at the Bayesian tokens found in messages.

Weighted gene libraries. When antibodies are generated, the entire library
of gene fragments has an equal chance of being used, but it would be possible to
weight the fragments so that those more likely to produce useful lymphocytes
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could be used more frequently. The “usefulness” of fragments could be based
upon the weights assigned to lymphocytes that use them.

Other ideas include allowing mutations of lymphocytes, managing param-
eter settings adaptively (for example, using a genetic algorithm), varying the
confidence values for training during application.
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Abstract. Many algorithms perform data clustering by compressing the original 
data into a more compact and interpretable representation, which can be more 
easily inspected for the presence of clusters. This, however, can be a risky al-
ternative, because the simplified representation may contain distortions mainly 
related to the density information present in the data, which can considerably 
act on the clustering results. In order to treat this deficiency, this paper proposes 
an Adaptive Radius Immune Algorithm (ARIA), which is capable of maximally 
preserving the density information after compression by implementing an anti-
body adaptive suppression radius that varies inversely with the local density in 
the space. ARIA is tested with both artificial and real world problems obtaining 
a better performance than the aiNet algorithm and showing that preserving the 
density information leads to refined clustering results. 

1   Introduction 

Many artificial immune clustering algorithms are based on data compression and 
information reduction procedures [2,6,9]. Inspired by immune principles and theories, 
the majority of these algorithms work by positioning a reduced number of prototypes 
(antibodies) on the most representative portions of the data set, producing an internal 
image that represents the antigens in a parsimonious manner. A partitioning or visu-
alization technique can then be applied to the resulting arrangement, and the antibod-
ies are thus separated into clusters. 

The information reduction phase plays a key role in the clustering procedure. By 
positioning prototypes in the most important regions of the input space, it reduces the 
complexity of the problem: the redundancy within the data set tends to be eliminated 
and potential distortions due to noise are strongly alleviated; the data internal image 
assumes a more compact and interpretable form that is crucial for a reliable cluster 
analysis.  

This practice, however, might be misleading in some situations. In problems where 
(i) clusters are placed considerably close to each other; (ii) densities vary from cluster 
to cluster; or (iii) their borders are fuzzy and overlap, the inherent distortion produced 
by the data compression can misrepresent key features of the data that are critically 
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necessary for the proper identification of clusters (see [10] for real world examples). 
This problem arises because the antibody positioning usually does not take into ac-
count the density information within the data: there is no explicit compromise in 
maintaining the relative density distribution. As a result, relative distances between 
prototypes in the internal image do not correspond to relative distances between 
original data points. This circumstance can drastically affect the performance of the 
partitioning technique to be adopted. 

This difficulty arises in information compression algorithms in general, and it is 
not a particular feature of immune algorithms. The Self-Organizing Maps (SOM) [7], 
a neural network clustering technique that also performs prototype positioning, suffers 
from the same problem. In [10] it was shown that the U-matrix, a commonly adopted 
distance-based criterion for separating the SOM prototypes into clusters, was not 
capable of solving a large class of problems because the relative distances among the 
trained neurons did not represented adequately the original data. In this same work, it 
was also demonstrated that by using the density information present in the data in 
combination with the U-matrix the SOM obtains a better performance for all cases.  

In this paper we propose a new immune algorithm, named Adaptive Radius Im-
mune Algorithm (ARIA), which uses mechanisms of clonal expansion and network 
suppression together with the density information present in the data in order to pro-
duce more accurate data representations. The algorithm is computationally fast and it 
is also very simple, in conception and implementation. ARIA makes use of an adap-
tive suppression radius that is inversely proportional to the local density for each 
antibody’s neighborhood. In this way, for high density portions of data, antibodies are 
allowed to get closer to each other because of their small radii. For sparse regions, the 
radii tend to be large, so antibody distribution tends to be sparse too. 

We apply the proposed algorithm to both synthetic and real world data and com-
pare the results with those of the well-known aiNet algorithm [2]. aiNet was chosen 
for two main reasons: (i) it is one of the best known artificial immune clustering tech-
niques of the AIS literature; and (ii) its efficiency in a large class of complex prob-
lems has already been attested [1,2]. Through these comparative analysis we intend to 
shown that the density information, if preserved after compression, leads to more 
accurate representations and, consequently, to better clustering results. 

2   ARIA (Adaptive Radius Immune Algorithm) 

ARIA is an iterative procedure that can be summarized into three main phases: 

1. Afinity maturation: the antigens (data points) are presented to the antibodies, 
which suffer hypermutation in order to better fit the antigens (antigen-antibody 
interactions). 

2. Clonal expansion: those antibodies that are more stimulated are selected to be 
cloned, and the network grows. 

3. Network suppression: the interaction between the antibodies is quantified and if 
one antibody recognizes another, one of them is removed from the pool of cells 
(antibody-antibody interactions). 

The pseudocode of ARIA is shown below in Algorithm 1. Table 1 presents the de-
scription of the parameters and symbols used in the pseudocode.  
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1 Initialize variables 
2 For iteration 1 to gen do: 

2.1 For each antigen Ag do: 
2.1.1 Select the best matching antibody Ab; 
2.1.2 Mutate Ab with rate mi; 

 end; 
2.2 Kill those antibodies that are not stimulated; 
2.3 Clone those antibodies that recognize antigens located 

at a distance larger than its radius R; 
2.4 Calculate the local density for each Ab; 
2.5 Calculate the suppression threshold (radius) of each Ab 

making R
Ab
 = r ×(den

max
/den)(1/dim); 

2.6 Suppress antibodies giving survival priority for those 
with smaller R; 

2.7 Make E = mean(R); 
2.8 If current generation is greater than gen/2: 

2.8.1 Reduce mi (mi = mi*decay); 
end; 

end; 

Algorithm 1. Pseudocode of ARIA 

Table 1. Description of the symbols used in the pseudocode. Those symbols marked with an 
asterisk are user-tuned input parameters to the algorithm. 

Symbol Description 
R Radius of each antibody (suppression threshold). 
r* Radius multiplier. Determines the size of the smaller radius. 
mi Mutation rate. 

decay* Multiplier constant used to decrease the mutation rate. 
E Radius that defines the neighborhood for the density estimation. 

gen* Number of iterations. 
dim Dimension of the input data. 

In Step 1 of the algorithm, the initial parameters are set and an initial population of 
antibodies is randomly generated. Only few antibodies need to be created because the 
network grows dynamically in order to appropriately represent the input data. Also, 
the initial radius R of the antibodies is set at random and so is the neighborhood radius 
E – coherent values for R and E will be automatically produced during the iterative 
procedure of adaptation. The mutation rate mi is initially set to 1. 

The antigen-antibody interaction and affinity maturation phase takes place at Step 
2.1. Antigens are randomly presented one at a time to the antibodies. For each presen-
tation, the antibody with better affinity to the antigen (smaller Euclidean distance) is 
selected and mutated in the antigen’s direction with a rate mi. Those antibodies inca-
pable of recognizing antigens are eliminated from the population in Step 2.2. 

The subsequent phase consists of clonal expansion (Step 2.3). Those antibodies that 
recognize antigens located at a distance larger than its suppression radius are cloned. A 
single antibody can recognize several antigens satisfying this condition, but only one 
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clone per antibody is allowed to be generated. This constraint plays an important role: 
the network growth becomes smoother than it would be if the same antibody generated 
lots of clones in a single generation, thus making the self-organization process more 
stable. Besides, it prevents an overhead of antibodies, mainly in the initial generations, 
what makes the algorithm much faster. After a number of generations, however, as the 
prototypes are already well positioned, the number of clones tend to decrease or even 
to stop increasing, because few or no antigens will be uncovered by the antibodies. The 
mutation and cloning procedures are described in detail in Section 2.1. 

In Step 2.4, the local density of each antibody’s neighborhood is estimated. Its value 
is the number of data points within a hypersphere centered in the antibody and with 
radius E. The calculated densities are used to determine the radii R of the antibodies, 
using the formula presented in Step 2.5. Note that the radius of an antibody placed in a 
region with the highest density will have its value set exactly to r. The others will have 
a larger radius, as the density decreases. Note also that the radius is not really inversely 
proportional to the relative density. The density values are raised as a function of the 
inverse of the data dimension. This means that we want the hypervolume of the hyper-
sphere to be inversely proportional to the density, and not directly the radius. In the 
two dimensional case, for example, if the area of the circle must be inversely propor-
tional to the density, and the area is proportional to the square of the radius, so the 
radius must be inversely proportional to the square root of the density. 

After the radii of all antibodies are defined, the network suppression phase takes 
place (Step 2.6). The suppression occurs as follows. If the distance between two anti-
bodies is smaller than the radius of one of them (this means that they match), the one 
with larger radius is suppressed, i.e., it is removed from the pool of antibody cells. 
Note that survival priority is given to the antibodies presenting smaller radii (those in 
denser regions). The reason for this decision is simple: prototypes located at sparse 
regions are greedy. Their suppression radii tend to be larger than their neighborhood 
radius. This promotes an unstable behavior that is not desired. 

In Step 2.7, the neighborhood radius E is updated to the mean of all suppression 
radii. Note that as the population of antibodies tend to vary in size and in radius, the 
neighborhood does not assume a fixed value, and it is particularly oscillatory in the 
initial generations. However, it quickly converges to a quasi constant value after a few 
generations. 

In the next step, the mutation rate is also updated. It is kept the same for gen/2 gen-
erations and then starts to be geometrically decreased by a multiplier constant decay, 
as indicated in Step 2.8. The aim is to introduce a cooling process that forces the net-
work convergence. 

After convergence, the network topology has to be defined. To do that, a good al-
ternative is to use the minimum spanning tree (MST), as was done in [1,6]. The MST 
is interesting because it imposes a parsimonious structure to the network. Cutting one 
of its edges always leads to subgraphs, and this strategy can be used to generate clus-
ters. The criterion used for cutting the MST is discussed in Section 2.2. 

2.1   Mutation and Cloning 

The mutation mechanism is simple. Given an antibody vector Ab and an antigen 
vector Ag, the formula of the mutated antibody Ab’ is: 
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Ab’ = Ab + mi×rand×(Ag−Ab),  (1) 

where mi is the mutation rate (initially set to 1) and rand is a random number uni-
formly generated between 0 and 1. Note that if mi and rand were set equal to 1, the 
new antibody would be exactly the same as Ag. 

The cloning procedure uses the same equation. Each clone is nothing more than a 
mutated copy of its parental antibody. As many antigens can stimulate the cloning of 
a single antibody, we chose the first of the presented stimulating antigens to be the 
cloning target. An important observation here is that the cloning must occur for the 
parental antibody before it has been mutated. A copy of it is taken before Step 2.1 and 
this copy is then used in the cloning. The reason for this peculiarity is that if the anti-
body is mutated in the direction of the stimulating antigen, the distance between them 
may become very small. As a consequence, if the cloning is applied after this muta-
tion, the resulting clone would be almost the same of its parent, and no diversity 
would be generated. 

2.2   Partition Criterion 

The separation of the data into clusters is performed indirectly by cutting the edges of 
the MST applied to the resultant network of antibodies. Each resulting subgraph cor-
responds to a cluster. To perform this task, a number of different criteria can be ap-
plied. The most direct and simplest approach is to remove the longest edges of the 
tree. However, it has been shown in [1] that this methodology completely neglects 
any information regarding density distribution, and fails to achieve good performance 
even in very simple problems. 

A much more effective option is to adopt the elaborate criterion proposed by Zahn 
(1971) [11], which evaluates each edge based on the local density information (de-
tailed information about this criterion can be found in [1]). An edge is cut if it is con-
siderably longer than its immediate neighbors, rather than if it is long in relation to the 
whole tree. Using this information it is possible to detect clusters with arbitrary shape 
and size, what represents a great advantage over most common techniques. Zahn’s 
criterion have been adopted in [1] with aiNet and in [6] with RABNET, both with 
successful results. 

 

Fig. 1. Illustrative example of the criterion used for cutting the edges of the MST. When edge  
CD  is being evaluated, the shortest of its immediate neighbors AC , BC , DE  and DF  is taken 
(in this case, DF ). For parameter n = 2, if CD  is at least two times longer than DF , CD  must 
be removed from the tree. This is the case in this example, and the criterion yields two clusters: 
(A, B, C) and (D, E, F). 

A 

B 

F 

E 

C 
D 
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We have chosen to use here a simplified version of Zahn’s criterion. An edge will 
be removed from the tree if it is at least n times longer than the shorter of its immedi-
ate neighbor edges. Fig. 1 illustrates how the criterion works. 

This is clearly an intuitive measure, and follows the way human beings identify 
clusters in two or three dimensions [5]. The density information is represented by the 
length of the edges of the tree: high density clusters will have short edges connecting 
its points and low density clusters, large edges. As can be noted, the main idea re-
mains the same as the original Zahn’s proposal, but now we need only one parameter, 
n, rather than three, as described in [1]. An interesting value for n is about 2. It is 
worth reducing this value if no cluster can be found for a given data set even if no 
compression is performed. 

3   Assessing Density Preservation 

When information reduction is performed, the compact representation produced will 
always distort the original information contained in the data set. If the clusters’ 
boundaries are not too evident, this misrepresentation can eliminate the possibility of 
a proper partitioning. In this section we illustrate this problem, and show that if the 
density information present in the data is maximally preserved, this difficulty is alle-
viated and the clustering performance can be enhanced. 

3.1   When Relative Distances Are Distorted 

The aim of this analysis is to investigate the effect of data compression on clustering 
when the only relevant piece of information for a correct cluster separation is the 
density distribution. The data set to be examined is shown in Fig. 2 – there are two 
clusters with 150 points each, but one of them is twice as dense as the other. The 
clusters were generated with a uniform distribution. Note in the figure that the diffi-
culty of the problem is that the region between the two clusters is too narrow. 

 

Fig. 2. Two classes with 150 points each and with different densities 
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As discussed in Section 2.2, the partition criterion should be capable of capturing 
the necessary information for a correct clustering. Nevertheless, it is not recom-
mended to apply the criterion directly on the raw data. The reason is that at close look 
the uniform distribution is not perfect, i.e., the distance between data points is not 
constant and the noisy local variations can make the MST to be cut in several points – 
that is why the information reduction is needed. 

We now compare the performance of ARIA and the aiNet algorithm to solve the 
problem. ARIA was run with parameters gen = 40, decay = 0.8 and r = 0.05. The 
compression rate obtained was 93.33%. Fig. 3a shows the final positioning of the 
prototypes after network convergence. Observe that the number of prototypes is ap-
proximately the same for each class. This is exactly what was expected, as the number 
of points for each class is also the same. 

 

 

 

(a)  (b) 

Fig. 3. ARIA results. (a) Prototype positioning after network convergence. (b) MST built on the 
prototypes. Circles correspond to the suppression radius of the antibodies. 

Two points deserve comments here. Firstly, the reader should note that the degree 
of representation of each antibody tends to be uniform, that is, each antibody recog-
nizes approximately the same number of antigens, albeit the individual recognition 
area (or hypervolume for an n-dimensional case) is different. Secondly, the relative 
distances are conserved after compression. This can be observed in the MST shown in 
Fig. 3b. The edge of the tree making the bridge between the two classes has more than 
two times the length of its left side neighbor. As a consequence, this edge is removed 
by the partition criterion and the clusters are correctly identified. 

In order to make a fair comparison with aiNet, the parameters of the algorithm 
were setup in a manner that the compression rate was approximately the same. This 
was achieved by setting the suppression threshold (σs) – the aiNet parameter respon-
sible for the resolution level – to 0.1. The final positioning of the antibodies is dis-
played in Fig. 4a. The overall compression rate obtained was 93%.  

The difference between the two approaches becomes evident when analyzing Figs. 
3 and 4. In the aiNet prototypes positioning, the relative density is neglected. Note in 
Fig. 4a that the distance between antibodies is practically the same, no matter which 
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cluster they are representing. Also, the number of prototypes per cluster does not 
reflect the relative number of data points. As a consequence, all the edges of the MST 
have approximately the same length (see Fig. 4b) and it becomes impossible for the 
partition criterion to detect the existence of two classes under these circumstances. 

 

 

 

(a)  (b) 

Fig. 4. aiNet results. (a) prototype positioning after network convergence. (b) MST built on the 
prototypes. Circles correspond to the suppression threshold of the antibodies. 

3.2   Clusters with Fuzzy Boundaries 

The next case study evaluates the influence of noise between the boundaries of two 
clusters, that is, when the frontier of the classes is not well defined. We propose a data 
set of two clusters generated by a normal distribution with a fixed variance – each 
class possesses exactly 200 points. The clusters are considerably far from each other; 
however, their boundaries are not well defined and overlap slightly. (Fig. 5.) 

ARIA was run on this problem with parameters gen = 40, decay = 0.8 and r = 
0.05. Fig. 6a demonstrates the state of the network after convergence and Fig. 6b 
shows the MST obtained. The compression rate achieved was 96%. Notice that, 
again, the edge connecting the classes is more than two times longer than each of its 
immediate neighbors, satisfying the condition for the partition criterion to detect 
both clusters. 

For aiNet, the value used for σs was 0.11. Figs. 7a and 7b show the antibodies final 
position and the MST obtained, respectively. The compression rate was 96.25%. 

Note in Fig. 7 that the aiNet prototypes hide the existence of an (almost) empty 
space between the clusters. This becomes clearer when analyzing the MST: all edges 
of the tree have similar length, even the one that is connecting the clusters. The prob-
lem is that aiNet antibodies cover a lot of unnecessary ‘noise’ points in the boundary 
of the clusters. As there are data points in the ‘fuzzy’ region separating the two 
classes, the antibodies are attracted to that region, no matter how sparse this region is 
in relation to other locations. 
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Fig. 5. Two classes with 200 points each, generated by a same normal distribution 

  

(a)  (b) 

Fig. 6. ARIA results. (a) Prototype final position after network convergence. (b) MST built on 
the prototypes. Circles correspond to the suppression radius of the antibodies. 

But what happens with ARIA? Why does it seem that the antibodies are not at-
tracted to the sparse region, although there are antigens at that location? Actually, the 
antibodies do feel attracted to that region, indeed. Nevertheless, their radii tend to be 
large enough to enclose other antibodies with smaller radius, and these, in turn, will 
be pruned from the network. As smaller antibodies have survival priority over the 
larger ones, those prototypes located in the sparse regions are suppressed. To illustrate 
this situation, Fig. 8a shows the state of the network captured just before the suppres-
sion phase. Fig. 8b demonstrates what happens to the network after suppression. (The 
pictures were taken still at the beginning of the training process.) 

As can be seen, ARIA misrepresents the sparse regions and concentrates its re-
sources in representing the denser portions of the space. By doing that, the noise pre-
sent in the data, if not in huge concentrations, is the first thing to be eliminated in the 
compact representation. The density preservation trait of the algorithm provides a 
higher noise tolerance than it would be expected for conventional algorithms. 
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(a)  (b) 

Fig. 7. aiNet results. (a) Prototype positioning after network convergence. (b) MST built on the 
prototypes. Circles correspond to the suppression threshold of the antibodies. 

 

 

 

(a)  (b) 

Fig. 8. Removal of greedy antibodies by the suppression phase. (a) Greedy antibodies with 
larger radius enclose a smaller amount of antibodies. (b) After suppression, the antibodies with 
larger radius are removed, because of the survival priority given to the ones with smaller radius. 

4   Realistic Scenarios 

In this section, we assess the performance of ARIA when applied to more complex 
problems and again we compare the results with aiNet. Two problems are analyzed 
here. The first one consists of a synthetic data set with five classes presenting fuzzy 
boundaries. The second one is a bioinformatics problem, consisting of two clusters of 
the yeast gene expression data. 

4.1   Ellipses Problem 

The ellipses data set consists of five classes with 300 points each. The disposition of 
the data points is shown in Fig. 9. Each class was generated with a different Gaussian 
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distribution with varied principal components. The classes are located relatively close 
to each other, and their boundaries are not clearly defined and also overlap. All these 
properties make this problem an interesting challenge for data compression-based 
clustering algorithms. This data set is similar to that presented in [3], originally pro-
posed for supervised data analysis. 

 

Fig. 9. Ellipses data set. Five classes with 300 points each generated with different normal 
distributions. 

To solve this problem, ARIA parameters were set to gen = 40, decay = 0.8 and r = 
0.025. The algorithm was executed 20 times, obtaining an average compression rate of 
97.8%. For this level of resolution, aiNet was incapable of finding clusters. However, 
for a compression rate of 92.3% (and σs set to 0.03) the algorithm achieved a reasonable 
performance. Table 2 depicts the results obtained for both algorithms after 20 runs. 

Table 2. Performance of ARIA and aiNet for the ellipses problem. The values show the 
average percentage of the number of cluters found after 20 runs for both algorithms. 

no of clusters  ARIA aiNet 
2 0 % 5 % 
3 0 % 35 % 
4 40 % 50 % 
5 60 % 10 % 

Table 2 indicates that ARIA was more efficient in identifying the clusters, achiev-
ing 60% of correct partitioning, against 10% of aiNet, while using 70% less antibod-
ies on average. Fig. 10 compares an instance of the final prototype positioning of 
ARIA and aiNet after network convergence. 

Notice in the figure that the boundaries of the clusters are misrepresented in the 
ARIA representation, while their core is maintained. This enhances the capability of the 
partition criterion in identifying clusters. Note also that the same does not happen to 
aiNet. As the boundaries of the clusters are also covered by antibodies, the classes come 
about to merge in some points and the MST cannot identify part of the cluster divisions. 
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(a)  (b) 

Fig. 10. (a) Example of the final representation of ARIA. (b) Example of the final representa-
tion of aiNet. 

4.2   Yeast Expression Data 

Gene expression data clustering is a classic bioinformatics problem [4]. Expression 
data are used to be extremely noisy and to present high dimensionalities, imposing a 
very difficult scenario for clustering algorithms. In this analysis we evaluate the per-
formance of the algorithms when applied to the gene expression data of the budding 
yeast Saccharomyces cerevisiae. The data set consisting of 38 genes and 79 attributes 
has two clusters: B (11 functionally related genes involved in spindle pole body as-
sembly and function) and C (with 27 proteasome genes). These clusters were previ-
ously labeled in [4]. They are part of a 2467 yeast genes and are considered a bench-
mark in the bioinformatics community. 

In a first experiment, both algorithms were incapable of solving the problem. They 
found no clusters even for the least parsimonious representations, meaning that the 
partition criterion was not sensitive enough with n = 2. When reducing n to 1.5, how-
ever, the problem became somewhat easy for both techniques. They were capable of 
correctly separating the clusters for a variety of parameter combinations. 

This scenario is drastically changed if some non-functionally related genes are in-
troduced in the data set. Five yeast genes (of the 2467) presenting intermediary be-
havior relative to both clusters were used for this purpose (this is easy, given the gene 
ordering proposed in [4]). These genes can make the boundary between clusters B and 
C become fuzzy, thus increasing the difficulty of the problem. 

Table 3. Performance of ARIA and aiNet for the yeast problem. The values show the average 
percentage of the number of clusters found after 20 runs for both algorithms. 

no of clusters  ARIA aiNet 
1 35 % 100 % 
2 65 % 0 % 
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Running ARIA with parameters gen = 40, decay = 0.8 and r = 0.5, the problem can 
still be solved, with an average compression of 88.4%. For aiNet several parameter 
combinations were tested, but the algorithm has revealed to be incapable of finding 
the clusters. Table 3 summarizes the results obtained. 

These results confirm the conclusion reached in Section 2.2. By assigning a large 
radius for antibodies belonging to sparse regions and consequently removing them 
from the network, ARIA is capable of reducing the undesired noise from the data, 
thus increasing the existent gap between the represented clusters. 

5   Discussion and Future Work 

This paper assesses the importance of the preservation of the density information  
for a clustering task when generating a compact representation of data. Conventional 
data compression algorithms tend to misrepresent the density information present  
in the original data, distorting the relative densities of the points intra- and  
inter-clusters. It is shown here that this deformation can drastically degrade the clus-
tering results in several situations, and this is illustrated with the use of the aiNet 
algorithm. 

In order to cope with this problem, we proposed the ARIA, which implements an 
adaptive antibody radius that is capable of capturing the relative density information, 
thus making it possible to preserve relative distances after compression. It is demon-
strated that this adaptation capability provides the algorithm with a high noise toler-
ance and a superior performance considering artificial and real data sets. 

ARIA has only one important user-tuned parameter, r, which determines the level 
of resolution of the internal image produced by the algorithm. Different problems 
might require distinct resolutions, and it is the user’s responsibility to determine an 
appropriate value for this parameter. Although this might look as a deficiency of the 
algorithm, all other data compression techniques have an equivalent parameter, and 
the adequate value to be used in each problem also remains an open question. 

As ARIA relies on the density information to construct its simplified representa-
tion, it is possible to make use of the data density distribution to automatically set an 
initial value to r. Although, this kind of information is hardly available, it is possible 
to estimate the density distribution of a data set using elaborate statistical techniques 
(like adaptive kernel methods [8]), which could serve as a suitable guess. Future 
work will thus concentrate in investigating statistical probability density estimation 
techniques and their applicability to the proposed intention. Success in this task im-
plies turning ARIA into a completely automatic and user-independent technique. 
This would represent a remarkable advance regarding clustering techniques in gen-
eral. 
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Abstract. This paper proposes a new immune clonal algorithm, called a quan-
tum-inspired immune clonal algorithm (QICA), which is based on the concept 
and principles of quantum computing, such as a quantum bit and superposition 
of states. Like other evolutionary algorithms, QICA is also characterized by the 
representation of the individual, the evaluation function, and the population dy-
namics. QICA uses a quantum bit, defined as the smallest unit of information, 
for the probabilistic representation and a quantum bit individual as a string of 
quantum bits. In QICA, by quantum mutation operator, we can make full use of 
the information of the current best individual to perform the next search for 
speeding up the convergence. Information among the subpopulation is ex-
changed by adopting the quantum crossover operator for improvement of diver-
sity of the population and avoiding prematurity. We execute the proposed algo-
rithm to solve the benchmark problems with 30,100 and 2000 dimensions and 
very large numbers of local minima. The result shows that the proposed algo-
rithm can close-to-optimal solution by the less computational cost. 

1   Introduction 

In the last few years we could perceive a great increase in interest in studying biologi-
cally inspired systems. Among these, we can emphasize artificial neural networks, 
evolutionary computation, DNA computation, and now artificial immune systems 
(AIS). The immune system is a complex of cells, molecules and organs which has 
proven to be capable of performing several tasks, like pattern recognition, learning, 
memory acquisition, generation of diversity, noise tolerance, generalization, distrib-
uted detection and optimization. Based on immunological principles, new computa-
tional techniques are being developed, aiming not only at a better understanding of 
the system, but also at solving engineering problems [1]-[5]. 

The clonal selection principle is the significant algorithm used by the immune sys-
tem to describe the basic features of an immune response to an antigenic stimulus [4]. 
It establishes the idea that only those cells that recognize the antigens proliferate, thus 
being selected against those which do not. Immune clonal algorithm (ICA) [5] is 
principally a stochastic search and optimization method based on the clonal selection 
principle in AIS. Compared to traditional optimization methods, such as calculus-
based and enumerative strategies, ICA are robust, global, and may be applied gener-
ally without recourse to domain-specific heuristics. In particular, ICA has the better 
ability of the local search. But with the scale of the problem increased, ICA did not 
solve effectively the complicated problem. 
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We present a new algorithm, called a quantum-inspired immune clonal algorithm 
(QICA), which is based on merging quantum theory with immune clonal algorithm in 
AIS. There are three innovation points as follows based on previous ICA. Initially, 
individuals (antibodies) in a population are represented by quantum bits (qubits). The 
qubit individual has the advantage that it can represent a linear superposition of states 
(classical solutions) in search space probabilistically.  As a result, the operation on a 
qubit chromosome is equivalent to that on several classical chromosomes simultane-
ously (namely the characteristic of quantum parallel). Secondly, for the novel repre-
sentation, we put forward the quantum mutation operator which is used at the inner 
subpopulation to accelerate the convergence of ICA. Finally, information among the 
subpopulation is exchanged by adopting the quantum crossover operator for im-
provement of diversity of the population and avoiding prematurity. In this paper, the 
representation and immune genetic operation (namely quantum mutation and quantum 
crossover operators) are investigated to represent the antibodies effectively to explore 
the search space with the small number of antibodies (even with only one antibody for 
real-time application) and to exploit the global solution in the search space within a 
short span of time, respectively. To demonstrate its performance, experiments are 
carried out on Numerical Optimization and the convergence of the QICA is proved. 
The results show that QICA performs well—even with a small population—without 
premature convergence as compared to the other improved genetic algorithm. 

The paper is organized as follows. Section 2 describes the theory of QICA. Section 
3 contains the proof of convergence of QICA. Section 4 presents an application ex-
ample with QICA and the improved genetic algorithm- OGA/Q [6] and BGA [7] for 
the numerical optimization problem, and summarizes the experimental results. Con-
cluding remarks follow in Section 5. 

2   Theory of QICA 

Physics is the foundation of modern science and it gives a deeper understanding of 
nature. While digging into the evolution mechanism, people are also inspired by the 
idea of “simulating the matter”. The two ideas learn from each other and produce 
many successful theories, such as the simulated annealing algorithm (SAA) who com-
bines physics theory with an algorithm [8]. 

Quantum mechanics is one of the greatest achievements in the 20th century. Quan-
tum information science is a result of merging physical science with information 
science. In the Quantum information theory, we must broaden our definition of in-
formation as merely a string of 0s and 1s and examine the consequence of the quan-
tum nature of media for information, such as its uncertainty and entanglement of 
states [9]. It involves the study of Physics, Calculation, Communication, Mathematics 
etc; it also provides reliable physical base and new theory for the future development 
of information science. 

Quantum computing is a research area that includes concepts like quantum me-
chanical computer (QC) and quantum algorithms. Although QC was shown to be more 
powerful than digital computers for solving various specialized problems, the QC 
hasn’t walked out of laboratory for the difficulty of its physical realization up to now. 
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The researches on the combing of quantum mechanism with other classical methods 
focuses on two respects, one is designing more quantum algorithm in the classical 
computers [10]; the other is introducing the quantum idea into classical algorithms and 
modifying the conventional representation to get a better performance [11]. QICA is 
based on the latter consideration. Firstly we discuss the quantum chromosome. 

2.1   Quantum Bit 

The smallest unit of information stored in a two-state QC is called a quantum bit or 
qubit [9]. A qubit may be in the ‘1’state, signed as the state vector 1 , in the ‘0’ state, 

signed as the state vector 0 , or in any superposition of the above two. This state of a 

qubit can be represent as: = 0 1+ϕ α β , where α  and β  are complex numbers 

that specify the probability amplitudes of the corresponding states, satisfying 
2 2

1α β+ = . 
2α  gives the probability that the qubit will be found in the ‘0’ state 

and 
2β gives the probability that the qubit will be found in the ‘1’ state.. In other 

words, ϕ  is a unit vector in two-dimensional complex vector space for which a 

particular basis has been fixed. One of the simplest physical examples of a qubit is the 
spin 1 2 of an electron. The spin-up and spin-down states of an electron can be taken 
as the states 0 , 1  of a qubit. The state of a qubit can be changed by the operation 

with a quantum gate. A quantum gate is a reversible gate and can be represented as a 
unitary operator U  acting on the qubit basis states satisfyingU U UU+ += , where U +  
is the hermitian adjoint ofU . There are several quantum gates, such as the NOT gate, 
controlled NOT gate, rotation gate, Hadamard gate, etc. [9]. If there is a system of n-
qubits, the system can represent 2n  state at the same time, and therefore quantum 
computers were shown to be more powerful parallel than classical computers on vari-
ous specialized problems. However, in the acting of observing a quantum state, it 
collapses to a single state. But if there is no quantum algorithm that solves practical 
problems, quantum computer hardware may be useless [12]. It could be considered as 
a computer without operating system [13]. In this paper, QICA can imitate parallel 
computation in a digital computer. 

2.2   The Coding of Quantum Chromosome 

In AIS, we encode the solution as different representations the same as that in evolu-
tionary computation. The classical representation can be broadly classified as binary, 
numeric, and symbolic. QICA use a novel representation, for the probabilistic repre-
sentation that is based on the concept of qubits, and a qubit antibody as a string of 
qubits. One qubit is defined with a pair of complex numbers ( α , β ), 

where
2 2

1+ =α β .
2α gives the probability that the qubit will be found in the ‘0’ 

state and 
2β gives the probability that the qubit will be found in the ‘1’ state. A qubit 

may be in the ‘1’ state, in the ‘0’ state, or in a linear superposition of the two. An m-
qubit antibody as a string of qubits is defined as: 
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1 2

1 2

...

...
m

m

α α α
β β β , (1) 

where 
2 2

1( 1, 2,..., )i i i mα β+ = = . This presentation has the advantage of represent-

ing any superposition of states. For example, if there is a three-qubit system with 
three pairs of complex numbers such as: 

1 1
1

22
1 3

0
22

, (2) 

the states of the system can be represent as: 

1 3 1 3
000 001 100 101

2 2 2 2 2 2 2 2
+ + + . (3) 

The above result means that the probabilities to represent the 

states 000 , 001 , 100 and 101 are 
1 3 1

, ,
8 8 8

and
3

8
, respectively. By consequence, 

the three-qubit system of (2) contains the information of eight states. 
Owing to its probability representation, QICA has a better characteristic of diver-

sity than classical version, since it can represent linear superposition of states prob-
abilistically.  In the above example, one qubit chromosome is enough to represent 
four states, but in the classical representation, at least four chromosomes (called on 
also classical chromosome) (000), (001), (100), and (101) are need. 

2.3   Immune Clonal Algorithm 

Clonal Selection Theory is put forward by Burnet in 1958 [14]. Its main ideas lie in 
that the antigen can selectively react to the antibodies, which are native production 
and spread on the cell surface in the form of peptides. When exposed to antigen, the 
antigen stimulates an immune cell with appropriate receptors to proliferate (divide) 
and mature into terminal plasma cells. The process of cell division generates a clone, 
i.e., a set of cells that are the progenies of the single cell, in addition to proliferating 
into plasma cells; the immune cells can differentiate into long-lived memory cells. 
Memory cells circulate through the blood, lymph and tissues, and when exposed to a 
second antigenic stimulus commence to differentiate into large immune cells (lym-
phocyte) capable of producing high affinity antibody pre-selected for the specific 
antigen that had stimulated the primary response. Based on the clonal selection the-
ory, Immune Clonal algorithm (ICA) is proposed [5]. The used ICA in this paper is an 
antibody random map induced by the avidity including: clone operation, immune 
genetic operation and clonal selection operation. The state transfer of antibody popu-
lation is denoted as follows: 

: ( ) '( ) ''( ) ( 1).clone operation immune genetic operation selection operationC A k A k A k A k⎯⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯⎯⎯→ +  
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Here ( )A k  is antibody population based on classical chromosome at k-th genera-
tion. Antibody, antigen, avidity between antibody and antigen are similar to the defi-
nitions of the possible solution, the objective function (and restrictive condition), the 
fitness between solution and the objective function in the artificial immune system 
(AIS), respectively. According to the avidity function, a point ( )ia k  which represents 
antibody i in antibody population ( )A k , in the solution space will be divided into ic  
same points '( ) '( )ia k A k∈ , by using clone operation. A new antibody population 

( 1)A k +  is attained after performing the immune genetic operation which can include 
mutation and crossover operator and the clonal selection operation. In this paper, the 
avidity function is defined as the objective function (*)f . It can be found out that ICA 
obtains good local searching ability at a cost of adding the scale of the population 
(namely clone operation). As a result, we adopt quantum bit representation which has 
powerful parallel in order to speed up the convergence of ICA. We present the pro-
posed algorithm in the following. 

2.4   The Quantum-Inspired Immune Clonal Algorithm 

In Fig 1, we describe its critical steps in detail. We adopt quantum chromosome as the 
representation of antibody, where ( )Q t , ( )P t , f(*) and B(t) mean the antibody popula-

tion based on quantum chromosome at the t-th generation , the antibody population 
based on classical chromosome, the objective function, and the best solutions at the t-
th generation, respectively. 

Algorithm1: The quantum-inspired immune clonal algorithm 
Step1. Initial the quantum population

1 2( ) { , , }, 0nQ t q q q t= =  . 

Step2. Produce ( )P t by observing Q(t). 

Step3. Evaluate the avidity of ( )P t and store the best solutions among ( )P t into B(t). 

Step4. Judge the termination condition, if it is satisfied, then output the best solu-
tion, and else continue. 
Step5. Generate the next generation population Q(t+1) from Q(t) by the clonal 
operator Θ , the immune genetic operator and the clonal selection operator. 
Step6. go to step2. 

Fig. 1. The quantum-inspired immune clonal algorithm 

The major elements of QICA are presented as follows. 

The quantum population   
At the t-th generation it has a quantum population 

1 2( ) { , , },t t t
nQ t q q q= where n is 

the size of population, and m is the length of the chromosome t
jq which is defined as: 

1 2

1 2

... , 1, 2,...,

...

t t t
t m

t t tj
m

q j nα α α
β β β= = . In step1 all t

iα and t
iβ  of t

jq ( 

1,2,..., ; 0i m t= = ) are randomly generated between 0 and 1. 
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Observing operator:  
In Step2, we observe Q(t) and produce binary stings 1 2( ) { , ,..., }t t t

nP t x x x= , where each 

t
jx  (j=1,...,n) is a binary string of length m which derives from 

2t
iα or 

2t
iβ  

(i=1,..,m). The process is: generate a random number p [0,1]∈ . If it is larger 

than
2t

iα , the corresponding bit in P(t) takes ‘1’, else takes ‘0’. 

Clonal operator: 
The clonal operator Θ  is defined as: 

1 2( ( )) [ ( ) ( ) ( )]T
nQ t q q qΘ = Θ Θ Θ , (4) 

where ( ) , 1,2i i iq I q i nΘ = × = , and iI is iC  dimension row vectors. Generally, iC is 

given by: 

1

( )
* 1,2

( )

i
i c n

j
j

f q
C Int N i n

f q
=

= =
. 

(5) 

Nc is a given value relating to the clone scale, which can be adjusted self-adaptively 
by the avidity. Int(x) rounds the elements of x to the least integer bigger than or equal 
to x. After clone, the population becomes: 

1,'( ) { ( ), ' ' }nQ t Q t q q= , (6) 

where: 

1 2 1' ( ) { ( ), ( ), , ( )}, ( ) ( )
ii i i iC ij iq t q t q t q t q t q t−= = 1,2, , 1ij C= − . (7) 

Immune gene operator: 
We adopt quantum mutation and quantum crossover operation as the immune genetic 
operator. Quantum mutation is used firstly at the inner subpopulation, and information 
among the subpopulation is exchanged by adopting the quantum crossover operator. 

Quantum mutation 
In the following, we give a simple mutation method to evolve the chromosome. It 
deduces a probability distribution in terms of the current best antibody. It is also much 
simpler, whose process is: define a guide quantum chromosome from the current best 
antibody which is stored in B(t) and spread the mutated quantum bit antibody sub-
population with this guide chromosome being the center. It can be written as: 

( ) ( ) (1 ) (1 ( ))guide currentbest currentbestQ t P t a P t= × + − × −α , (8) 

''( ) ( ) (0,1), ( 1,2,..., )i guideq t Q t b normrnd i n= + × = , (9) 
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Where ( )currentbestP t , guideQ  and (0,1)normrnd are the current best antibody 

based on classical chromosome, the guide quantum chromosome at the t-th generation 
and the normal distribution with  mean 0 and standard deviation 1, respectively. 

''( )iq t  is the mutated quantum bit subpopulation; a is the guide factor of guideQ ; b is 

the spread variance. For easy to comprehend, an example is given. Obviously, we 

only need to let ''q  = (0 0 1 1 0) to get P= (1 1 0 0 1) with probability 1, i.e., ''q P . 

If P is the optimum, the probability of getting the optimum becomes larger with a 

becoming smaller. When a=0, guide PQ = , one will get P with probability 1 after ob-

serving guideQ . Often we let [0.1,0.5]a ∈ , [0.05,0.15]b∈ .  

Quantum crossover 
The common crossover operator is limit to between two individuals. By using quan-
tum theory (namely interference characteristic), the quantum crossover– All Interfer-
ence Crossover [15] is used in this paper. All the antibodies of population are in-
volved in the crossover operation, so the algorithm has better diversity of the popula-
tion. Let the population size is 5, and the chromosome length is 8 described as the 
following Table 1 in detail: 

Interference Crossover occurs as follows: take the 1st element of chromosome 1, 
take the 2nd element of chromosome 2, take 3rd element of chromosome 3, take the 4th 
element of chromosome 4, etc.  

Table 1.  

No. Chromosome (before) 

1 A(1) E(2) D(3) C(4) B(5) A(6) E(7) D(8) 

2 B(1) A(2) E(3) D(4) C(5) B(6) A(7) E(8) 

3 C(1) B(2) A(3) E(4) D(5) C(6) B(7) A(8) 

4 D(1) C(2) B(3) A(4) E(5) D(6) C(7) B(8) 

5 E(1) D(2) C(3) B(4) A(5) E(6) D(7) C(8) 

Table 2.  

No. Generated Chromosome (after) 

1 A(1) A(2) A(3) A(4) A(5) A(6) A(7) A(8) 

2 B(1) B(2) B(3) B(4) B(5) B(6) B(7) B(8) 

3 C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(8) 

4 D(1) D(2) D(3) D(4) D(5) D(6) D(7) D(8) 

5 E(1) E(2) E(3) E(4) E(5) E(6) E(7) E(8) 
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As a summary, the quantum mutation can guide the quantum chromosome in the 
subpopulation to evolve to a better antibody with a larger probability. By using the 
evolutionary theory, the crossover operator is adopted [16] and the quantum crossover 
can bring more diverse antibodies among subpopulation and avoids prematurity.  

After quantum crossover operation, the new population is shown as the following 
Table 2: 

Clonal Selection Operator: 
The operation as follows, if we will search minimal value of object function:  

For ni ,2,1=∀ , if there is crossed antibody b 

( ) min{ ( " ) | 2,3, 1}ij if b f p j C= = − , namely: 
1( " ) ( ), 1, 2,i if p f b i C −> = . 

Then b replaces the antibody individual "ip  in the aboriginal population. And 

quantum chromosome representation of the antibody b is noted as the next quantum 
chromosome in Q(t+1). The antibody population is updated, and the information 
exchanging among the antibody population is realized. 

The termination condition: 
It is defined as: 

* bestf f− < ε , (10) 

where *f  is the optimum value of object function in theory, bestf  is best value of 

object function among the current generation and ε  is the acceptable error. The ter-
mination condition in this paper is synthesis of formula (10) and the maximum num-
ber of generation. 

3   Convergence of the Algorithm 

Definition 3.1. Let 
1 2( ) ( ( ), ( ), , ( ))nX t x t x t x t=  in nS  be the population at time t 

and for ( )X t , defined: 

{ ( ) max{ ( ( )), }}iM X f X f X t i n= = ≤ , (11) 

{ ( ) max{ ( ), }}nM X f X f X X S∗ = = ∈ . (12) 

M  is called the satisfied set of population 
tX and M ∗  is defined as the global satis-

fied set of state Sn. 

Definition 3.2. Supposes arbitrary initial distribution, the following equation satisfies: 

lim { } 1
t

P M M ∗

→∞
⊆ = . (13) 

Then we call the algorithm is convergent. 
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Theorem 3.1. The population series of QICA { , 0}tQ t ≥  is finite homogeneous 

Markov chain. 

Proof: Like the evolutionary algorithms, the state transfer of QICA are processed on 
the finite space, therefore, population is finite, since 

( 1) ( ( )) ( ( ))s gQ t T Q t T T Q t+ = = Θ . (14) 

,s gT T and Θ  indicate the clonal selection operator, the immune genetic operator and 

the clone operator respectively. Note that ,s gT T and Θ  have no relation with t, so 

( 1)Q t +  only relates with ( )Q t  [16]. Namely, { , 0}tQ t ≥  is finite homogeneous 
Markov chain. 

Theorem 3.2. The M  of Markov chain of QICA is monotone increasing, namely, 

10, ( ) ( )t tt f Q f Q+∀ ≥ ≥ . 

Proof: Apparently, the individual of QICA does not degenerate for our adopting hold-
ing best strategy in the algorithm. 

Theorem 3.3. The quantum-inspired immune clonal algorithm is convergent. 

Proof: For Theorem 3.1 and Theorem 3.2, the QICA is convergent with the  
probability 1. 

4   Experiments 

We execute the QICA to solve the following test functions:  

2
1

1

( )
m

i
i

f x x
=

=  

2
1 1

( )
mm

i i
i i

f x x x
= =

= + ∏  

2

3
1 1

( )
m i

j
i j

f x x
= =

=  

4
4

1

( ) [0,1)
m

i
i

f x ix random
=

= +  

4 2
5

1

1
( ) ( 16 5 )

m

i i i
i

f x x x x
m =

= − +  

2
6

1

( ) ( cos(2 ))
m

i i
i

f x mA x A x
=

= + − π , where A is a given constant, in this paper 

A=10. 
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( )7
1

( ) s in
m

i i
i

f x x x
=

= −  

2

8
1 1

( ) c o s ( ) 1
4 0 0 0

mm
i i

i i

x x
f x

i= =
= − +∏  

2
9

1

1 1
( ) 2 0 ex p 0 .2 e x p co s ( 2 ) 2 0 ex p (1)

m m

i i
i i

f x x x
m m =

= − − − + +π  

Table 3 lists the basic characteristics of these test functions. 

Table 3. The basic characteristics of these test functions  

The 
functions 

Feasible solution 
space  

The global optimum 
Number of the 
local optimum 

f1 [ ]100,100
m−  0 NA 

f2 [ ]10,10
m−  0 NA 

f3 [ ]100,100
m−  0 NA 

f4 [ ]1.28,1.28
m−  0 NA 

f5 [ ]5,5
m−  -78.33236 2m 

f6 [ ]5.12,5.12
m−  0 NA 

f7 [ ]500,500
m−  -12569.5 NA 

f8 [ ]600,600
m−  0 NA 

f9 [ ]30,30
m−  0 NA 

In our study, we execute QICA to solve these test functions with the dimensions 
given in Table 4. The above test functions were examined by the OGA/Q in [6] and 
the OGA/Q outperforms the other algorithms. As a result, the existing results reported 
in [6] can be used for a direct comparison in Table 4. 

The experiment results of QICA to optimize the function above are shown in Table 
4, where F, m, E, and M( δ ) are corresponding to the function above, the dimensions 
of the function, the mean number of function evaluations, the mean best solution (the 
standard deviation of best function value). ICA did not search the optimum of the 
above functions and we did not take it in this paper. For QICA, pc=0.3, pm=0.88. And 
because a quantum chromosome can represent several the classical chromosomes at 
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the same time, the size of initial individual population is 5 and the clonal sizes Nc=10 
in this article, where ε =10-3 and the maximum generation is 103.  

We performed 50 independent runs for QICA on each test function and recorded: 
1) the mean number of function evaluations, 2) the mean best solution (i.e., the mean 
of the function values found in the 50 runs), and 3) the standard deviation of best 
function value. We see that the mean function values are equal or close to the optimal 
ones, and the standard deviations of the function values are relatively small; hence it 
has a very stable quality of solution. And owing to the termination condition adopted 
in QICA, the precision of some outcome is poorer than that of OGA/Q, but the mean 
number of function evaluations of QICA is very small; hence it has a lower computa-
tional cost. The results show that QICA performs well even with a small population 
and QICA found the better solutions within the less the computational number com-
pared to OGA/Q. 

Table 4. The comparing results of QICA and OGA/Q for the function f1-f9 

E M(δ ) 
F m 

QICA OGA/Q QICA OGA/Q 

f1 30 1,238 112,559 8.646×10-4 
(7.403×10-5) 

0 
(0) 

f2 30 1,304 112,612 1.926×10-10 
(2.815×10-10) 

0 
(0) 

f3 30 1,236 112,576 3.581×10-10 
(3.597×10-10) 

0 
(0) 

f4 30 1,244 112,652 5.6467×10-4 
(1.7403×10-4) 

6.301×10-3 
(4.069×10-4) 

f5 100 1,752 245,930 
-78.33145 

(2.339×10-4) 
-78.3000296 
(6.288×10-3) 

f6 30 1,395 224,710 5.481×10-10 

(2.191×10-10) 
0 

(0) 

f7 30 2,083 302,166 
-12569.4866 

(4.035×10-5) 
-12569.4537 
(6.447×10-4) 

f8 30 1,424 134,000 3.723×10-14 

(3.716×10-14) 
0 

(0) 

f9 30 1,293 112,421 1.521×10-14 

(2.323×10-14) 
4.440×10-16 

(3.989×10-16) 

The experiment results of QICA to optimize the function above whose dimensions 
are increased are shown in Table 5 and Table 6, where m, n and E mean the dimen-
sions of the function, initial the population size of individual and the mean number of 
function evaluations, respectively. The BGA was executed to solve the test functions 
f6–f9, and the results were reported in [7]. We will use these existing results for a di-
rect comparison in Table 5 and Table 6. ‘ ’ denote that the BGA did not carry 
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through the experiment in literature 7. The number of runs was 10; the clonal sizes 
Nc=20; ε  is 10-5 and the other parameters for QICA are the same as the above.  

Table 5. The comparing results of QICA and BGA for the function f6 and f7 

f6 f7 

E E 
m n 

QICA BGA 
m n 

QICA BGA 

100 20 4123 25040 100 20 12472 92000 

200 20 6181 52948 200 20 15991 248000 

400 20 13217 112634 400 20 24890 699803 

1000 20 22410 337570 1000 20 41450  

2000 20 31269  2000 20 65563  

Table 6. The comparing results of QICA and BGA for the function f8 and f9 

f8 f9 

E E m n 

QICA BGA 

m n 

QICA BGA 

100 20 6713 361722 100 20 5100 53860 

200 20 7930 748300 200 20 8578 107800 

400 20 15719 1630000 400 20 12971 220820 

1000 20 26012  1000 20 29940 548306 

2000 20 41199  2000 20 41748  

We can find that the mean number of function evaluations of BGA is rapidly in-
creased with the dimensions expanded from the above two tables and the relation 
between those of QICA is approximate to linear from Fig.2. The results for QICA are 
very much more precise than1 BGA but the computational cost of QICA is obviously 
less than that of BGA. And QICA can find the high quality solutions when the dimen-
sions of these functions are 1000 or 2000. Hence the ability of QICA to optimize the 
high-dimension function outperforms BGA obviously. 

                                                           
1 The acceptable error to the function 6-9 in BGA is 0.1, 10-4, 10-3 and 10-3 respectively. 
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Fig. 2. The relation curve between the mean number of function evaluations and the dimensions 
of f6 - f9 for QICA 

5   Conclusions 

This paper proposed a novel QICA, inspired by the concept of quantum computing. 
Our objective was to apply the quantum theory to enhance the immune clonal algo-
rithm, so that it could be more robust and statistically sound. In particular, a quantum 
bit antibody was defined as a string of quantum bits for the probabilistic representa-
tion. Due to the novel representation, we put forward the quantum mutation operator 
which is used at the inner subpopulation to accelerate the convergence of ICA. Infor-
mation among the subpopulation is exchanged by adopting the quantum crossover 
operator for improvement of diversity of the population and avoiding prematurity. As 
a result, the proposed QICA has automatic balance ability between exploration and 
exploitation. We executed QICA to solve benchmark problems. The dimensions of 
these problems are 30, 100 or 2000 and some of them have numerous local minima. 
The results show that QICA can find optimal or close-to-optimal solutions. The appli-
cation of QICA to application example such as the combinatorial optimization prob-
lems deserves our further research. 
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Abstract. An exact Markov chain model of the B-cell algorithm (BCA) is 
constructed via a novel possible transit method. The model is used to formulate 
a proof that the BCA is convergent absolute under a very broad set of 
conditions. Results from a simple numerical example are presented, we use this 
to demonstrate how the model can be applied to increase understanding of the 
performance of the BCA in optimizing function landscapes as well as giving 
insight into the optimal parameter settings for the BCA. 

1   Introduction 

Whilst there have been successes in the development of AIS (Artificial Immune 
Systems) [13] to date, there has been limited work on more theoretical aspects. For 
example, in terms of convergence proofs only one paper [7] presents a complete proof 
of convergence for a specific multi-objective clonal selection algorithm using Markov 
chains. As pointed out by Hone and Kelsey [4] a useful avenue to explore would be 
into the dynamics of immune algorithms based on nonlinear dynamical systems 
inspired by biological models [5], and stochastic differential equations [15]. Given the 
use of clonal selection based algorithms within AIS, the community could benefit a 
great deal from further theoretical investigations, such as the exploration of the 
mutation operator, which could provide information for optimizing mutation rates for 
specific functions. 

There are many clonal selection based algorithms in the literature, most of which 
have focused on developing optimisation approaches, such as the work by De Castro 
and Von Zuben on CLONALG [12], the work by Nicosia et al. [14] and the work by 
Kelsey et al [1,2]. From a computational perspective, the clonal selection idea leads to 
algorithms that evolve (through a cloning, mutation and selection phase) candidate 
solutions to a given problem. 

Taking the challenge from [4] we have developed an exact1 stochastic model of the 
B-cell algorithm (BCA) [1,2], based on a single member population using elitism. In 
                                                           
1  Exact: meaning the parts of the algorithm that were modeled were modeled exactly with no 

simplifying assumptions or approximations. 
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the case where the BCA has a clonal pool size of one, it can also be considered 
complete2. In line with [7] we adopted the use of a Markov chain. We have chosen to 
develop the theoretical basis for the BCA due to the simple nature of the algorithm. 
The simplicity comes from that fact that within the BCA, although a population of B-
cells (candidate solutions) are evolved, they do not interact with each other i.e. each 
member of the population is unaware of the existence of any other member. 
Therefore, multiple member populations can be treated as independent; hence the 
results of the single member model can be re-applied using basic probability theory to 
populations of multiple members. This allows us to simplify the mathematical model 
of the BCA. It should be noted, that we have developed the underlying theory of the 
BCA independent of implementing the algorithm. This methodology removes the 
chance of accidentally back fitting the predictions of the theory to the algorithm.  

In some algorithms, simple GAs (Genetic Algorithms) for example, having large 
population or clonal pool sizes causes coupling which produces a positive effect on 
the search mechanism. However, based on thought experiments, we expect that 
coupling in the clonal pool can only have zero or negative effects on the BCA (in 
terms of performance vs. number of function evaluations). Thus we propose that the 
BCA, and consequently the model, should be restricted to a clonal pool of one, to 
remove the negative coupling effects. 

Currently, the only way to model elitist immune algorithms has been through the 
maintenance of a separate elitist set of current best solutions as in [7]. However, we 
present a model that does not require the maintenance of such a separate set. We show 
that the BCA can be represented by a Markov chain via a novel construction of a 
“possible transit matrix”. In order for us to present our proofs, it is necessary to define 
two new terms to articulate some issues more clearly. Therefore, we define the 
following: 

Search space global optima (SSGO): A point in the search space is considered to be a 
global optimum if there is no other point with higher affinity (points with equal 
affinity are equally valid global optima). All functions have at least one SSGO as long 
as the search space is not the empty set. 

Convergent Absolute: An algorithm can be said to be convergent absolute if and only 
if it can be shown to converge on the search space global optima with probability 1 
from all points in the search space, for all functions, in any number of dimensions. 

We would also like to point out that it is important to make a distinction between 
the true objective function space and the search space grid that is used to represent the 
objective function. The BCA, and consequently the theory, is only aware of the search 
space. We cannot therefore say anything about the position of an optimum in the 
function space without additional knowledge. For example, consider a function with a 
global optimum at some large value of x, but the search space being used is limited 
moderate values. The algorithm will converge on the SSGO with probability 1, which 
is the true optimum from the perspective of the BCA. The problem of defining an 
appropriate search space, grid size and refinement, although important, is a separate 

                                                           
2 Complete: meaning all parts of the algorithm were taken into account and represented in the 

modelling process. 
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problem to that of determining the convergence properties of the algorithm. This 
paper is concerned only with the properties of convergence of the BCA on SSGO. 

The major contributions of this paper are: introduction of a novel method for the 
construction of transition matrices for elitist algorithms; proof that the BCA is 
convergent absolute and an example of the numerical application of the novel method. 

The remaining sections of the paper are structured as follows:  section 2 provides a 
brief overview of the BCA algorithm, and relevant background material on Markov 
chains.  This is then followed in section 3 with the presentation of a mathematical 
model of the BCA.  Here we present a model of the mutation function employed 
within the BCA, and demonstrate how it is possible to construct a transition matrix of 
the algorithm and present the theory to demonstrate that the BCA is convergent 
absolute. This is then followed by a demonstration of the numerical application of the 
model.  We then conclude with comments regarding the application of our theory and 
future work. 

2   Background Material 

As mentioned above, the B-cell algorithm (BCA) is based purely on clonal selection 
and mutation mechanisms, without any interaction between the different members of 
the cell populations. For algorithms such as the BCA, if the state of the cell 
population at time t is specified, then the subsequent state at time t+1 is a random 
variable. Moreover, the changing behavior of the population with the time t (which 
varies in discrete steps 1t t→ + ) is naturally described in terms of a Markov chain 
(see [5, 6] for the relevant background material). 

2.1   The B-Cell Algorithm 

In this section, we present a brief overview of the B-cell algorithm (BCA) before we 
progress to the mathematical model and proofs in the following sections. The reader 
is directed to [1] for a full description of the algorithm. However, the BCA is outlined 
in pseudo-code here:   

Step 1: Create an initial random population P of individuals. 

Step 2: For each v ∈ P, evaluate g(v) and create a clone population C. 

Step 3: Select a random member of v’ ∈ C and apply the contiguous region 
hypermutation operator. 

Step 4: Evaluate g(v’); if g(v’) > g(v) then replace v by clone v’. 
(The BCA in [1] is minimizing, but could just as easily be maximizing. We refer to it 
as minimizing/maximizing where appropriate for a given example and optimizing in 
general.) 

Step 5: Repeat steps 2-4 until stopping criterion is met. 

An important feature of the BCA is its use of a unique mutation operator, known 
as contiguous somatic hypermutation (also known as the contiguous region  
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hypermutation operator CRHO).  Evidence of an analogous biological mechanism 
in the immunological literature is sparse [3], however, the authors do argue that 
mutation occurs in clusters of regions within cells: this is broadly analogous to 
contiguous regions. The representation employed in the actual implementation of 
the BCA in [1] takes an N-dimensional vector of 64-bit strings, which represents 
bit-encoded double precision numbers. These vectors are considered to be the B-
cells within the system. Each B-cell within the population is evaluated by the 
objective function, g(x). More formally, the B-cells are defined as a vector v ∈ P of 
bit strings of length L = 64 where P is the population of vectors (B-cells). However, 
it should be noted, that from a theoretical point of view, and the work concerned in 
this paper, L does not have to be restricted to 64 bits and can be generalized to any 
integer. 

Empirical work presented in [1,2,4] indicates that an efficient population size for 
many functions is low, in contrast with genetic algorithms; a typical size would be #P 
∈ [3 .. 5]. For the purposes of our work, in order to simply the complexity of the 
mathematical model of the BCA, we consider a population size of 1.  This is because 
population members do not interact, thus allowing us to calculate independent 
probabilities for each B-cell. 

After evaluation by the objective function, a B-cell v is cloned to produce a clonal 
pool, C. It should be noted that there exists a clonal pool C for each B-cell within the 
population and also that all the adaptation (mutation) takes place within C. The size of 
C is typically the same size as the population P (but this does not have to be the case). 
In order to maintain diversity within the search, one clone is selected at random and 
each element in the vector is randomized. Each B-cell v' ∈ C is then subjected to a 
novel contiguous somatic hypermutation mechanism (described below). The BCA 
typically uses a distance function as its stopping criterion: when it is within a certain 
prescribed distance from the optimum, the authors consider the algorithm to have 
converged. However, this is more of a stopping criterion than a statement that the 
algorithm has converged on the SSGO. 

The unusual feature of the BCA is the form of the mutation operator. This operates 
by subjecting bits contained within a contiguous region of v’ to mutation with 
probability r such that 0 1r≤ ≤ . As shown in figure 1, the CRHO selects a random 
site (or hotspot) within v’, along with a hotspot length of L (which is determined 
randomly and may be up to the full length of the vector); the vector is then subjected 
to mutation from the hotspot onwards for the length of the contiguous region. It is 
important to note that the mutation does not wrap around the vector. 

 

Fig. 1. Hypermutation operator within the BCA 

Hotspot

Length L
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2.2   Markov Chains 

An important property of the B-cell algorithm from a modeling perspective is that it 
has a non-interacting population. A model for a population of one is completely 
general, as they can be scaled to a population of any size by using rules for 
independent probabilities. This greatly simplifies the modeling process.  

For a maximization problem, we can represent the state of our system by a random 

variable tX , which changes with the time t, and then the objective will be to 

maximize a given objective function ( )g x . The state tX  corresponds to the value of 

the bit string corresponding to a cell. The aim of the algorithm is to find the state 
value x  that maximizes the function ( )g x , by making many iterations in time. At 

each time t, a clone is taken from the cell, hypermutation is applied to the clone, and 

if it happens that ( ) ( )t tg C g X>  then the next state value is 1t tX C+ = , otherwise 

the original cell is kept and 1t tX X+ = ; see [1] for more details. At each stage there 

is a probability for transition to a new state (bit string) value for 1tX + , and the BCA 

is purely elitist in the sense that only mutations that result in improvement are kept (so 
that the value of ( )g x  is non-decreasing with t). To describe the evolution of a cell 

in the BCA in terms of a Markov chain, we label the possible states by an index j 

running from 0 to 1N − , where 2LN =  is the number of possible states (i.e. the 
number of possible strings of length L). Then we choose the value of the bit string at 

time t to be given by the probability distribution ,1 ,2 ,( , ,..., )t t t t Nv v v=v , with the jth 

component of the row vector tv  being just  

, : ( )t j tv P X j= = , (1) 

that is the probability of being in state j at time t. Furthermore, the probability of 
transition between state j and another state k is independent of the time t, and so can 

be represented by the N N×  transition matrix : ( )jkP=P  with entries 

1( | )jk t tP P X k X j+= = =  (2) 

To work out the probability distribution at time t+1, the standard rules of conditional 
probability imply that   

1,
1

N

t k tj jk
j

v v P+
=

= , (3) 

Therefore, rewriting the equation (3) in matrix notation we have  

1t t+ =v v P  (4) 
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which describes the time evolution of the row vector tv . The row vector tv  is the 

probability distribution of the state tX  at time t. Note that P  is a stochastic matrix: 

all of its entries lie between 0 and 1, and the row sums satisfy  

1

1
N

jk
k

P
=

=  (5) 

i.e. from state j, the cell must make a transition somewhere (including null transitions) 
with probability 1.     

Because the transition matrix P  is time-independent, equation (4) means that the 

probability distribution vector tv  at time t can be written immediately in terms of the 

initial distribution, as  

0
t

t =v v P . (6) 

It is evident from the form of (6) that if we wish to understand the long-term behavior 
of the algorithm, we need to understand what happens to the powers of the transition 

matrix tP  as t → ∞ . In fact, for the BCA it is further possible to prove that where 
there is a unique optimum state, it is reached with probability one in the limit 
t → ∞ ; in the terminology of Markov chains [6], a unique optimum is an absorbing 
state.  Similarly, if there are several optima (i.e. different values of x  for which 

( )g x  takes the same optimal value) then it turns out that the overall probability of 

lying in at least one of these optima also tends to one as t → ∞ .   
For our detailed analysis of the Markov chain model of the BCA in section 3 we 

will rely on some standard properties and results concerning Markov chains. It is 
helpful to introduce the notation 

( ) ( | )jk t n tP n P X k X j+= = =  (7) 

for the entries of the matrix nP  (the nth powers of the transition matrix). A state j can 
be said to be persistent if  the sum 

0

( )jj
n

P n
∞

=

= ∞ . (8) 

Otherwise if the sum converges, so that 

0

( )jj
n

P n
∞

=

< ∞ , (9) 

then the state j is transient. By the Decomposition Theorem (see [6] p.123) any 
Markov chain can be decomposed into the set of transient states together with some 
irreducible closed sets of persistent states. In Section 3 we show that for the BCA, all 
of the non-optimal states are transient, while all the optima are persistent. Further-
more, the optima turn out to be absorbing states of the chain, in the sense that once an 
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optimum is reached it is never left (due to the elitist nature of the BCA). Since the 
BCA corresponds to a Markov chain with a finite number of states, we can calculate 
the transition matrix P  explicitly for a given objective function. 

3   Mathematical Model of the BCA 

We shall outline some key features of the BCA and how they effect the modeling 
process and then give the full stochastic model and demonstrate that the model takes 
the form of an absorbing Markov chain irrespective of the function to be optimized. 

3.1   The Contiguous Region Hypermutation Operator 

As an initial modeling step the stochastic nature of the contiguous region 
hypermutation operator was examined. In the case where the clonal pool C has only 
one member, it is possible to obtain formulae to calculate the probabilities of all 
possible mutation masks. These were deduced by counting all possible ways each 
mutation mask could occur, for an exhaustive set of mutation masks. 

1
1 1

2
1 1

1
(1 ) (1 )

a L a
m n k k L n k k

T
n m b n

f r r n r r
L

−
+ − − + − −

= = =

= − + − . (10) 

The above formula includes the following notation: 

Tf  the probability of transition from zero to some number T 

L the length of binary string 

a the bit position of the first “on” bit starting from the most significant bit 

b the bit position of the last “on” bit starting from the most significant bit 

k the total number of bits that must be flipped to mutate from 0 to T 

r the probability of a bit being mutated given it is in the contiguous region 

{ , , , , }L a b k T +∈  ; 0 2 1LT≤ ≤ − ; a b L≤ ≤  ; { , }Tf r ∈  ; 0 1r≤ ≤  

Equation (10) can generate the probabilities of all non-zero mutation masks. To be 
exhaustive the zero mutation mask is also needed 

1
1 1

0 2
1 1

1
(1 ) (1 )

L L L
m n L n

n m n n

f r n r
L

−
+ − + −

= = =

= − + − . (11) 

With this formulation only the probability of the mutation mask occurring is 
generated, so the formula is general (for a clonal pool of one). The results can be 
applied to binary, Gray code or any other binary system. The probability of a 
mutation mask is given as a polynomial in r. After formulation of equations (10) and 
(11) the CRHO was implemented to compare theory (figure 2) with experiment 
(figure 3). 
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Fig. 2. Theoretically determined probabilities 
of generating mutation masks from the 
CRHO: String Length L=8, Probability of 
mutation r = 0.5. 

Fig. 3. Probabilities determined experimentally 
by averaging one million results from the 
implemented CRHO: String Length L=8, 
Probability of mutation r = 0.5. 

3.2   The Transition Matrix 

Due to the elitist nature of the BCA, existing methods of obtaining the transition 
matrix cannot be successfully applied. Hence a new approach to obtaining the 
transition matrix has been pioneered. We will determine two matrices, the sample 
matrix and possible transit matrix and combine them to form the transition matrix. 

The Sample Matrix 

Since the probabilities of all the mutation masks are now known it is possible to 
construct the sample matrix. The sample matrix contains the probabilities that the 
algorithm will “sample” a given point within search space. Sampling a point is 
equivalent to generating a new potential solution via the CRHO and it being selected 
to be evaluated by the objective function. The sample matrix is entirely dependent on 
the search space and representation, but is independent of the function space. 

To construct the sample matrix from equations (10) and (11) the binary 
representation being used must be employed as an interpreter between real search 
space values of states and the mutation mask required to transit between the states. 
This is done by converting the initial and final states into binary strings and using the 
exclusive or operator to determine the mutation mask. From the mutation mask, 
equation (10) or (11) can be utilized to give the algebraic sampling probability, 
dependant on the mutation rate r (or a numeric answer if r is known). 

There are 2L possible functions that can be defined by equations (10) and (11). As no 
two end states (of any initial state) are the same and each row has 2L elements, it is clear 
that mutation masks only occur exactly once per row on all rows. Once one line of the 
sample matrix has been calculated it is possible to unpack the rest of the matrix using 
just the exclusive or operator and copying the relevant entry from the completed row. 

The Possible Transit Matrix 

The possible transit matrix is dependant on the search space and the function space 
but is independent of the representation. For a given initial state affinity, consider the 
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affinity all the possible end states. If the affinity of the end state is greater than the 
affinity of the initial state then the matrix element representing that transition is 
assigned the value 1. If the affinity is equal or less than that of the initial state then the 
matrix element is assigned the value 0.  

By means of an element-to-element multiplication of the possible transit matrix 
and sample matrix it is possible to produce a transition matrix that is correct except 
for the values of diagonal elements. During the element-to-element multiplication, 
some of the values in the sample matrix will have been multiplied by 0, in order that 
the rows will no longer sum to 1. In the BCA, a rejected move results in a null move; 
therefore the probabilities that were multiplied by 0 must be added to the diagonal 
element of the appropriate row. Thus the transition matrix is produced. 

3.3   Proof of Convergence 

In order to prove that the BCA is convergent absolute, we shall show that the BCA 
model will always take the form of an absorbing Markov chain with a non-zero one 
step transition probability from all points in the space to a global optima. In the 
terminology of Markov chains, all non-optimal states of the BCA are transient. 
Moreover, all the optima are absorbing states. 

Proposition 1: All non-optimal states are transient provided 0 1r< <  

Proof: Under the condition 0 1r< < , the sample matrix contains only non-zero 

elements. By inspection of equation (10) it is clear that 0Tf >  if (1 ) 0r− >  and 

0r > . Thus, we impose the condition 1 0r> > , this condition also makes 0 0f >  

as can be seen in equation (11). (The formulae (10), (11) would need to be modified 
in the case when the clonal pool C has more than one member but the condition for 

0Tf >  is the same.) Hence it is possible to reach the absorbing state in one step 

from any initial state. This is irrespective of the function due to the fact that by 
definition of the possible transit matrix, transition from a non-optimal state to an 
optimum is allowed with probability 1. Hence, for a non-optimal state j the 

probability of remaining in that state for one time step is 1jjp P= < . Once a state 

has been left for a state of higher affinity, it can never return to a previously occupied 
state, due to the possible transit matrix forbidding transitions to states of lower 

affinity, hence ( ) n
jjP n p= ; it follows that 

0 0

1
( )

(1 )
n

jj
n n

P n p
p

∞ ∞

= =

= = < ∞
−

 , (12) 

and hence state j is transient. 
The general theory of Markov chains is particularly effective in the case of 

irreducible chains. The chain corresponding to the BCA is reducible, however: by the 
Decomposition Theorem [6] it can be partitioned into the set of transient non-optimal 
states together with the (disjoint) closed sets of absorbing states corresponding to the 
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optima. Adopting the terminology of [7], we can say that the non-optimal states of the 
BCA are inessential, in the sense that for all such non-optimal states j there exists 
another state k such that j can make a transition to k but not vice-versa: it is sufficient 
to choose any state k with a larger value of the objective function. Then if there are M 
optima we can partition the transition matrix P  as follows  

0
=

1
P

R Q
 (13) 

where 1  denotes the M M×  identity matrix, Q corresponds to the transitions 

between the inessential states and R  corresponds to transitions from inessential to 
optimal states. It follows from standard properties of stochastic matrices (see e.g. [8]) 

that the powers 0t →Q  as t → ∞ . Using this partitioning, we arrive at the 
following: 

Proposition 2: All optima are absorbing states 

Proof: By definition, the possible transit matrix prohibits transition from a global 
optimum to any other state, even another global optima. Therefore once the algorithm 
enters a global optimum it satisfies the condition for persistence (equation 8). Clearly 

for an optimum state j we have 1jjp P= =  (i.e. once an optimum is reached then 

one remains there with probability one), so the corresponding sum (12) diverges and 
the optima are all persistent states; since they do not communicate with any other 
state, they are also absorbing.   

Theorem: The BCA is convergent absolute provided 0 1r< < , where r  is the 
probability of mutation for bits contained within the contiguous region. 

Proof: We have the state vector calculated from powers of the transition matrix 
according to 

0
t

t =v v P . (14) 

Now  

0t
t

t

=
1

P
R Q

 (15) 

for some matrix tR  constructed from sums of powers of Q  acting on R . Also, it 

follows from standard properties of stochastic matrices (see e.g. [8]) that the powers 

0t →Q  as t → ∞ . So in the limit t → ∞ , the powers of P  take the form  

0

0
∞

∞

=
1

P
R

 (16) 
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Acting with this matrix on the initial state vector 0v  we see that the probability of 

being in any of the non-optimal transient states tends to zero as t → ∞ , and hence 
the probability of ending up in an optimum tends to one, as required.   

4   Demonstration of Numerical Application of the Model 

Other complete and exact Markov chain models, for example in the GA literature [9] 
provide good analytical follow up work [10] but numerical application of the model 
[11] is constrained by the complexity of the model to unrealistically small variables, 
e.g. string length 2. The BCA produces a model simple enough to do numerical work 
with realistic values of the models variables, string length ~ 16.  

Potentially, the BCA model can be utilized to gain insight into all facets of the 
BCA, the most obvious of these is the effect of the mutation rate on the convergence 
rate of the algorithm. We have probed this application of the model on a simple one-
dimensional quadratic function space. In this example, all values are accurate within 
the limits of double precision. Figure 4, presents a coarse sweep of the range of 
mutation rates, and produced two features of particular interest. 
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Fig. 4. Examination of the effect of mutation rate, r, on the B cell algorithm convergence rates 
for a one-dimensional quadratic. String length L = 8. 

First, a mutation rate of 1 is shown to be the optimal mutation rate for the problem, 
this is interesting because 1r =  lies outside the conditions for the BCA to be 
convergent absolute. Hence 1r =  can produce persistent non-optimal states in the 
BCA as some of the one step transition probabilities to the SSGO are zero. However, 
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the function space in this example is simple enough for all states to have a non-zero 
multi-step probability of reaching the SSGO allowing the BCA to converge on the 
SSGO with probability 1. 

Second, the line for 0.1r =  looks flat considering that the BCA has been shown 

to be convergent absolute given 0 1r< < . This raised the question when dose the 
probability of being in the optimum become 1? Further investigation showed that at 

202  iterations the probability of being in the optimum had risen to ~ 0.85, at 402  
iterations the probability had risen to 1 (to within the limits of double precision). This 
result was obtained by squaring the transition matrix at each step; hence only 40 
matrix multiplications were required. This example demonstrates the power of the 
model to look at the extreme long-term behavior of the model numerically as well as 
analytically. 

5   Conclusions 

Within the area of Artificial Immune Systems (AIS) there has been limited theoretical 
work. In this paper we model an immune inspired algorithm, the B-cell algorithm 
(BCA) as a Markov Chain. Our model is exact and can be considered complete in the 
case where the clonal pool size is one.  

We have introduced a possible transit matrix that provides a novel method for the 
modelling of elitist algorithms.  In addition, we have shown that the BCA is 
convergent absolute provided 0 < r < 1 where r is the probability of mutation for bits 
contained in the contiguous region. The conditions for this proof are also met by 
elitist random search, and hence it is also convergent absolute.   

In terms of future work, we intend to attempt to derive the optimal mutation rate 
algebraically from the model, for any given function.  From a wider perspective, we 
intend to apply our technique to a variety of immune inspired algorithms such as 
CLONALG. 
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Abstract. Helper T(Th) cells regulate immune response by producing
various kinds of cytokines in response to antigen stimulation. The regu-
latory functions of Th cells are promoted by their differentiation into two
distinct subsets, Th1 and Th2 cells. Th1 cells are involved in inducing cel-
lular immune response by activating cytotoxic T cells. Th2 cells trigger B
cells to produce antibodies, protective proteins used by the immune sys-
tem to identify and neutralize foreign substances. Because cellular and
humoral immune responses have quite different roles in protecting the
host from foreign substances, Th cell differentiation is a crucial event in
the immune response. The destiny of a naive Th cell is mainly controlled
by cytokines such as IL-4, IL-12, and IFN-γ. To understand the mech-
anism of Th cell differentiation, many mathematical models have been
proposed. One of the most difficult problems in mathematical modeling
is to find appropriate kinetic parameters needed to complete a model.
However, it is relatively easy to get qualitative or linguistic knowledge
of a model dynamics. To incorporate such knowledge into a model, we
propose a novel approach, fuzzy continuous Petri nets extending tradi-
tional continuous Petri net by adding new types of places and transitions
called fuzzy places and fuzzy transitions. This extension makes it pos-
sible to perform fuzzy inference with fuzzy places and fuzzy transitions
acting as kinetic parameters and fuzzy inference systems between input
and output places, respectively.

1 Introduction

Two types of helper T(Th) cells, called Th1 and Th2, have been defined based
on the profile of cytokines they produce and are differentiated from common Th
cell precursors(Th0). These two subsets of Th cells have quite different roles in
the immune response. Th1 cells induce cellular immune response by activating
cytotoxic T cells, which defend a host against infectious intracellular microor-
ganisms such as viruses and some types of bacteria by killing infected cells. Th2
� This work was supported by National Research Laboratory Grant (2005-01450) from

the Ministry of Science and Technology. We would like to thank CHUNG Moon
Soul Center for BioInformation and BioElectronics and the IBM-SUR program for
providing research and computing facilities.

C. Jacob et al. (Eds.): ICARIS 2005, LNCS 3627, pp. 331–338, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



332 I. Park et al.

cells lead to humoral immune response by activating B cells to produce antibod-
ies, protective proteins used by the immune system to identify and neutralize
foreign substances. The humoral immune response helps a host remove extra-
cellular pathogens. Thus, Th1/Th2 cell differentiation from a naive Th cell is
an important event in the immune response. Although there are many differ-
ent factors affecting Th cell differentiation, it is mainly controlled by cytokines
such as IL-4, IL-12, and IFN-γ [1]. To understand the mechanism of Th cell
differentiation with cytokine network, many mathematical models have been
developed[2,3,4]. One of the most difficult problems in mathematical modeling
is to find appropriate kinetic parameters needed to complete a model. However,
it is relatively easy to get linguistic, incomplete or qualitative knowledge of a
model dynamics. For example, we can easily find sentences like ‘FN-γ and IL-12
promote Th1 differentiation’ and ‘L-4 helps Th2 differentiation’ using literature
search. Linguistic knowledge can be very useful in modeling the immune sys-
tem, but previous approaches do not use it. Here we present a novel approach
based on Petri nets and fuzzy inference systems for incorporating qualitative
knowledge when constructing a immune system model.

2 Method

2.1 Petri Nets

A Petri net is a graphical and mathematical modeling tool successfully used in
a number of fields for concurrent, asynchronous, and parallel system modeling.
Recently, Petri nets have been widely applied to represent biological pathways
or processes. Following is the definition of basic Petri nets[5,6].

Definition 1. A Petri net is a 5-tuple R =< P, T, F, W, M0 > where P =
{p1, p2, · · · , pn} is a finite set of places, T = {t1, t2, · · · , tn} is a finite set of
transitions. The set of places and transitions are disjoint, P ∩ T = ∅. F ⊆
(P × T ) ∪ (T × P ) is a set of arcs. W : F → {1, 2, 3, · · ·} is a weight function.
And M0 : P → {0, 1, 2, 3, · · ·} is the initial marking.

The behavior of a Petri net is described in terms of changes of tokens in
places according to the firing of transitions. If every input place of a transition
has more tokens than the weight of the arc between the transition and the place,
the transition is enabled. Of enabled transitions, only one transition can fire.
After a transition is fired, as many tokens as the weights of the arc are removed
from the input place and as many tokens are added to output places.

Because of its discrete nature, basic Petri net is not suitable for immune
system modeling so that we used a continuous Petri net, an extension of basic
Petri net, instead. The differences between the basic Petri net and the continuous
Petri net are following: In the continuous Petri net, places can have real value
marking and transitions fire continuously with some velocity. The velocity of a
transition firing is affected by the marking of places. Shown below is the definition
of continuous Petri nets[7].
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Definition 2. A continuous Petri net is a 6-tuple R =< P, T, V, F, W, M0 >
where P, T, F, W, M0 are identical to those of the basic Petri net. V : T →
V (p1, p2, p3, · · ·) ∈ R+ is the firing speed function.
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Fig. 1. Continuous Petri net. In the graphical representation of the Petri net (A), a
circle represents a place and a rectangle represents a transition. Two graph (B) show
the changes of tokens of places with respect to time.

In our immune system model, places represent immune cells or external en-
tities (e.g. antigen or virus) and transitions represent interactions (e.g. B cell
activation by antigen).

2.2 Fuzzy Inference System

Fuzzy inference systems are reasoning systems based on fuzzy set theory, fuzzy
if-then rules and fuzzy reasoning. The strength of fuzzy inference systems lies
in their capability of handling uncertain linguistic concepts. They are composed
of several parts; fuzzification interface, fuzzy rule base, fuzzy inference and de-
fuzzification interface[8].

Fuzzy if-then rules are generally expressed in the form ‘If x is A, then y is
B’ where A and B are linguistic values defined by fuzzy sets on the universe of
discourse x ∈ X and y ∈ Y , respectively. For example,

If pressure is high, then volume is small.

where pressure and volume are fuzzy variables, high and small are linguistic
values. By applying inference operation upon fuzzy rules, fuzzy inference systems
can deduce consequences. Followings are the steps of fuzzy inference.

1. Compare the input variables with the membership functions on the premise
part to obtain the membership values of each linguistic label. (This step is
often called fuzzification.)

2. Combine the membership values on the premise part to get the firing strength
of each rule.
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3. Generate the qualified consequence of each rule depending on the firing
strength.

4. Aggregate the qualified consequents to produce a crisp output. (This step is
called defuzzification.)

There are many inference methods; Mamdani, Larsen, Tsukamoto and TSK.

2.3 Fuzzy Continuous Petri Nets

In mathematical modeling and simulation, we usually need appropriate kinetic
parameters of a system. However, it is difficult to find parameter values of a
system. Therefore, various methods are used to estimate unknown parameters.
On the other hand, it is relatively easy to get linguistic or qualitative knowledge.
To make use of linguistic and qualitative knowledge in the estimation of kinetic
parameters, we employed fuzzy inference systems.

m1

P1

m2

P2
T1

k1*m1

k1

K1

FT1

m4

P3

Fig. 2. A fuzzy continuous Petri net. In the figure, a black transition represents a fuzzy
transition and a single circle represents a fuzzy place. Fuzzy transition FT1 inferences
k1 value from fuzzy if-then rules given the value of input place P3. And k1 is used in
the firing speed function of a continuous transition, T1.

To include a functionality of fuzzy inference, we add new types of transi-
tions and places so-called, fuzzy transitions and fuzzy places. The role of fuzzy
transitions is to inference parameter from fuzzy if-then rules between input and
output places. And only fuzzy places can be a output place of a fuzzy transition.
Fuzzy places act as kinetic parameters of reactions represented by continuous
transition. Fig. 2 shows a simple example of a fuzzy continuous Petri net.

3 Model

Dendritic cells are stimulated by recognizing antigens. Stimulated dendritic cells
act as APC, antigen presenting cell, by presenting processed antigen fragments
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Fig. 3. The schematic diagram of a cytokine network

using MHC-II molecules and produce signals required for the proliferation and
differentiation of naive Th cells. A naive Th cell differentiates into Th1 or Th2
cell upon interaction with MHC-peptide complex presented on the membrane of
APC. The dynamics of interaction between naive Th cell and APC is affected
by many factors such as the density of MHC-peptide complex and the strength
of interaction[9]. APC produces cytokines such as IL-10 and IL-12 which affect
naive Th cells differentiation.

Fig. 3 shows a schematic diagram of cytokine network of Th cell differentia-
tion. IFN-γ and IL-12 induce Th1 differentiation. On the other hand, IL-4 and
IL-10 promote Th2 differentiation. Activated Th1 produces such cytokines as
IFN-γ, IL-2 and TNF-β which induce cellular immune response whereas acti-
vated Th2 produces such cytokines as IL-4, IL6 and IL-10, which induce humoral
immune response. Besides, IL-4 and IFN-γ inhibit Th1 and Th2 differentiation,
respectively.

In our fuzzy continuous Petri nets approach, we integrated signals affecting
behaviors of immune cells by fuzzy inference, which simplifies rate equations. All
the variables appearing in the reaction equations in continuous transitions are
directly related to the reaction.

Fig. 4 shows important reactions in the Th cell differentiation with cytokines.
Listed below are examples of rules in fuzzy transitions depicted in Fig. 4.

Example 1. Th1 differentiation: FT2 in Fig. 4(b)

– The concentration of IL-12 is higher than 0.5ng/ml and that of IL-4 is lower
than 10ng/ml , the differentiation rate is about 4day−1.

– The concentration of IL-4 is higher than 10ng/ml, the differentiation rate is
about 2day−1.

– The concentration of IL-4 is higher than 100ng/ml, the differentiation rate
is nearly 0.
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Fig. 4. Important reactions of Th cell differentiation

Example 2. Th2 differentiation: FT3 in Fig. 4(b)

– The concentration of IL-4 is higher than 100ng/ml, the differentiation rate
is about 6day−1.

– The concentration of IL-4 is lower than 10ng/ml, the differentiation rate is
about 1.2day−1.
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Fig. 5. Important reactions of Th cell differentiation

– The concentration of IL-4 is lower than 10ng/ml of IL-4 and that of IFN-γ
is higher than than 10ng/ml of , the differentiation rate is nearly 0.

Even though we just have partial knowledge about a system being modelled,
we can easily include the knowledge in the model. On top of that, newly discov-
ered knowledge can be easily incorporated into the fuzzy rule based system[8].

4 Discussion

In conclusion, we propose a new approach to the immune system modeling, a
fuzzy continuous Petri net. The advantage of the modeling method is that we can
make use of qualitative or linguistic knowledge that are relatively easier to obtain
than kinetic parameters. We show that fuzzy inference systems successfully used
in expert systems in various domains can be also used in the immune system
modeling. To make it more useful, we need to develop more robust methods for
constructing fuzzy rules from immunological knowledge. Moreover, we have to
develop analysis techniques such as reachability and boundedness for traditional
Petri nets.
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The challenge of recent research is how to integrate molecular transcriptional
network and cellular communication via cytokines in the immune response[10].
Hierarchical Petri nets approach could be a good candidate formalism for inte-
gration of knowledge from different levels.
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Abstract.  This paper describes a multi-agent strategy for blacklisting malicious 
nodes in a peer-to-peer network that is inspired by the innate immune system, 
including the recruitment of leukocytes to the site of an infection in the human 
body.   Agents are based on macrophages, T-cells, and tumor necrosis factor, 
and exist on network nodes that have properties drawn from vascular endothe-
lial tissue.  Here I show that this strategy succeeds in blacklisting malicious 
nodes from the network using non-specific recruitment.  This strategy is sensi-
tive to parameters that affect the recruitment of leukocyte agents to malicious 
nodes.  The strategy can eliminate even a large, uniform distribution of mali-
cious nodes in the network. 

1   Introduction 

A Peer-to-Peer (P2P) network is “a class of systems and applications that employ dis-
tributed resources to perform a critical function in a decentralized manner” [9]. P2P 
systems are typically composed of clients, or peers, in ad-hoc networks or on the 
Internet, and these clients communicate through one or more protocols to perform a 
task in a decentralized way.  A peer-to-peer (P2P) network’s function depends on the 
reliable and accurate routing and processing of its protocols’ messages.  However, it 
is entirely possible that a computer or a set of computers within the network can se-
verely disrupt the operation of the network by sending incorrect messages, or by alter-
ing or dropping correct messages.  These ‘malicious’ clients are, in effect, an infection 
of the P2P network.   However, it is possible to simply ‘amputate’ these nodes from 
the rest of the network, usually without severely degrading its performance. [8] 

Malicious nodes are dangerous because they can masquerade as benign nodes 
while quietly disrupting the network.  The problem of separating the benign nodes 
from the malicious is non-trivial, and solutions can be expensive in terms of protocol 
overhead.  One technique, described in [8], relies on the comparison of timestamped 
messages in logs maintained by network nodes to prohibit the sending of illegal mes-
sages.  The system also assumes a (possibly offline) Certificate Authority (CA) to en-
force node identities that cannot be forged. 

This task of separating the benign from the malicious is not unlike the charge of 
the human immune system.  It must discriminate between the body’s own cells (self) 
and harmful foreign bodies (non-self).  However, even if we knew instantly and easily 
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which nodes were malicious and which were benign, we would still need a strategy 
for somehow removing the malicious nodes or marginalizing their negative impact.  
Moreover, since we must assume that malicious nodes can behave arbitrarily, we 
would prefer their removal.  Without knowing the exact nature of their dysfunction, it 
would be difficult to marginalize it.   

Fortunately, removing the nodes is fairly straightforward: all benign neighbors of 
malicious nodes need to be instructed not to listen to those malicious nodes anymore. 
Viewing the P2P network as a graph, this amounts to deleting edges that connect good 
nodes to bad.  Jelasity, et al., describe one such strategy for gossip-based protocols.  
This approach, called blacklisting, is aptly named: each benign node maintains its 
own list of other nodes, and refuses to communicate with nodes on its blacklist [8].  
Once all benign nodes connected to a malicious node have blacklisted that node, it 
can no longer communicate with the network. 

This task of deleting specific edges is fairly similar to a task assigned to the natural 
immune system: ‘destroy the foreign body, which looks like XYZ.’ Eliminating an in-
fection typically involves the targeting and destruction of a large number of bacteria, 
viruses, or other foreign particles within the body.  That work is specific because some 
of the effector mechanisms responsible for destroying antigen, such as phagocytosis 
and opsonization, require the biochemical identification of small features of the antigen 
[1].  These antigen features will not appear on any self body, and all antigen will have 
them.  They are, in effect, targeting markers for the adaptive immune system.  

When a network is infected with a large number of malicious nodes, there is obvi-
ously a lot of work to do, and that work is specific, but the immune-inspired response 
will not be targeting a single node.  It will target a set of nodes, for each of which 
there is a fairly small amount of work to do.  For example, say that a network of 
10,000 nodes has an infection of 500 nodes.  Each of those nodes is connected to an 
average of 10 other (benign) nodes.  Thus, about 5,000 edges must be deleted.  That is 
a lot of work, but we are also looking for edges connected to 500 different nodes, 
each with its own identity, and thus its own specificity.  It is shown below that fea-
tures of the innate immune system are useful in tackling this problem. 

The blacklisting problem begs an agent-based approach inspired by mechanisms 
found in the human immune system.  Such an approach is natural to Artificial Im-
mune System (AIS), and some agent-based, immune-inspired systems have been de-
veloped [15, 9].  Sathyanath and Sahin described AISIMAM, a general agent model 
inspired by the human immune system, and drew useful analogies between basic 
agent behavior and the cells of the immune system.  AISIMAM focuses primarily on 
the sensory information processing and communication between agents and their role 
in self/non-self discrimination [15].  Many of these systems use agents modeled after 
B-Cells, antibodies, and the other components of the adaptive immune system [13, 12, 
7].  They generate a diverse set of receptors by a variety of methods, and often feature 
clonal expansion of agents specific to the task they are meant to solve.  The compo-
nents of the innate immune system are often ignored because they do not feature the 
specificity and memory capabilities of the adaptive immune system. 

Recently, a biologically inspired, agent-based approach to P2P protocol design and 
analysis has been taken.  Anthill, described in [2], is a P2P design and analysis frame-
work inspired by ant colonies.  The usefulness of ant algorithms has been well  
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established, and some principles of their operation are known [6].  In particular, stig-
mergy, which is the communication between agents via modifications to their external 
environment, has been shown to be effective in a variety of applications.  In the case of 
ant agents, pheromones deposited on nodes or edges a network graph inform the ant’s 
movement through the network, effectively communicating shortest paths, etc [4]. 

This paper describes a multi-agent blacklisting strategy inspired by the leukocyte 
recruitment mechanism used by the natural immune system.  The strategy uses agents 
to blacklist malicious nodes in a P2P network.  These agents are modeled after the 
cells involved in the inflammation that follows an infection.  It uses macrophage-like 
detector agents to locate malicious nodes, and T-Cell-like agents to blacklist the 
nodes.  The agents use a form of stigmergy to migrate to the site of a detection.  The 
strategy presented here uses a very similar mechanism for stigmergy to the one found 
in AntNet [4].  This immune inspired strategy is highly effective in blacklisting mali-
cious nodes. The innate immune system is often ignored in favor of the adaptive, but 
it has many useful features that can be applied to real-world applications.   

2   The Innate Immune System 

The innate immune system is the body’s first line of defense [1].  It consists of a col-
lection of a number of different mechanisms that prevent the entry of antigen into the 
body’s tissues, and the non-specific destruction of antigen that manages entry. The 
cells of the innate immune system have the ability to recognize broad categories of 
antigenic features.  For example, the presence of lipopolysaccharides (LPS) indicates 
an infection by gram-negative bacteria, as LPS is present in their cell wall.  Macro-
phages are responsible for the identification of LPS and other microbial features.  
When a macrophage detects the presence of LPS, it secretes a cytokine called Tumor 
Necrosis Factor (TNF), which then initiates the process of local inflammation, the re-
cruitment of other leukocytes to the site of infection, and the activation of those leu-
kocytes to combat the antigen.   

Inflammation is the key inspiration to the blacklisting strategy presented in this pa-
per.  When vascular endothelial cells encounter TNF, they are activated, which means 
they express higher levels of proteins, called selectins, embedded in their cell walls.  
Leukocytes ‘roll’ along the endothelium, forming and dissolving low affinity bonds 
between the endothelial selectins and their reciprocal ligands, which are embedded in 
the cell walls of the leukocytes.  While ‘rolling’, they become activated themselves, 
and can now form higher affinity bonds between their integrins, which are features of 
the leukocyte cell wall, and ligands on the endothelial cells.  Thus, the leukocytes are 
recruited and can now pass into the surrounding tissue.   

TNF induces inflammation, which is responsible for getting other leukocytes into 
the tissue around the infection.  TNF is secreted by a macrophage that was activated 
as the result of a limited-specificity detection event.  Thus, the macrophage, which 
does not know much about the specific nature of the antigen, initiates a chain of 
events that recruits other cells, some of which might know exactly what the antigen is, 
and specifically how to kill it. 
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3   The Leukocyte-Endothelial Blacklisting Strategy (LEBS) 

This section presents an immune-inspired strategy for removing malicious nodes from 
a P2P network. The leukocyte-endothelial blacklisting strategy (LEBS) uses agents 
modeled after macrophages, TNF, and T-Cells.  The network nodes are its endothe-
lium, and they express a ‘selectin’ that informs the migration of macrophages and T-
Cells.  When a macrophage ‘detects’ a malicious node, it emits TNF, which raises the 
expression of selectin in any node it moves across.  Other macrophages and T-Cells 
prefer to move onto nodes that have higher selectin expression levels, and thus into 
the area of ‘inflammation’. 

LEBS uses a multi-agent system (MAS) that employs a kind of stigmergy.   The in-
teraction between leukocytes and endothelial cells, which is stimulated by TNF and 
results in recruitment to infection sites.  A macrophage, upon detecting an edge from 
a benign node to a malicious one, secretes TNF.  This TNF diffuses into the surround-
ing nodes, inducing a local gradient of selectin expression in the nodes around the site 
of detection.  Other agents move onto these nodes and interact with the selectin ex-
pression gradient differently according to their type.  LEBS does not approach the 
problem of actually detecting which nodes are bad, as that problem is distinct from 
blacklisting, and at least one solution has been demonstrated [8].  Instead, the strategy 
aims to distribute blacklisting information to benign nodes to at least partially remove 
the malicious nodes from the P2P network. 

Let N be the graph representation of a P2P network with some arbitrary topology.  
N is assumed to be connected and undirected.  The vertices of N are the clients in the 
network, and the edges of N are the communication lines between clients.   Each node 
thus has a neighborhood, which is the set of nodes connected to it [3].   Each node is 
also assumed to be marked either malicious or benign.  Each node has a unique label 
or ‘identity’. Nodes also each have a real-valued selectin expression level that ranges 
from 0 to 1, and is initially 0 for all nodes.  This selectin expression level decays at a 
fixed rate, to a minimum of 0.0, across all nodes in the network.  All nodes have a 
blacklist, which is initially empty.  A benign node will not send or receive any com-
munications from any node on its blacklist. 

3.1   Overall Agent Execution 

The strategy uses three types of agents, modeled after macrophages, T-Cells, and 
TNF.  Macrophage agents are responsible for detecting malicious nodes, while T-Cell 
agents blacklist the malicious nodes detected by macrophages. TNF agents induce the 
recruitment of the other two agent types to the area around a malicious node after it 
has been detected.  All agents ‘live’ on nodes of the network, and may move from one 
node to one of that node’s neighbors via the edge connecting them.  Agents may not 
exist on or move onto malicious nodes.  Agents can also determine which of a node’s 
neighbors are benign and which are malicious.  All agents follow the same basic pro-
gram, which is outlined below.  The agent program controls both movement and exe-
cution.  Each agent moves to a new node or stays on the same node it is currently oc-
cupying.  That agent then executes, performing a function determined by its type. 
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run() 

currNode = nextNode(neighborsOf(currNode)); 

execute(); 

Where currNode is the node that the agent being run is currently occupying.  
The function neighborsOf() takes a node as its argument, and returns a set of 
nodes, which is the union of the neighborhood of the argument and currNode.  This 
effectively allows agents to stay on the same node, so they are not forced to move 
through the network.  

Each agent has a selectin adhesion function φ that assigns a node a weight based on 
that node’s selectin expression level.  The function nextNode() uses the function φ 
to assign weights to the nodes in the set returned by neighborsOf().  
nextNode() then selects the next node in a weight-proportionate manner, similar to 
how individuals are selected fitness-proportionately in a basic genetic algorithm [11].  
More specifically, nextNode() determines the node occupied by the agent using 
φ−weight-proportionate roulette wheel selection.  The motivation for using φ-weight-
proportionate selection is to allow each agent type to respond differently to the se-
lectin expression gradient.  As we describe below, each agent type has its own φ- 
function and its own execute() function. 

3.2   Macrophage Agents 

A macrophage agent is responsible for moving from node to node, surveying the 
neighbors of its host node for maliciousness.  If it detects a malicious node, it be-
comes activated, which means it presents the identity of this node for other agents to 
see and secretes t TNF agents, which will initially occupy the same node.   T-Cells 
sharing the same node will see the presented node identity, become activated them-
selves, and seek out the edges connecting malicious nodes to benign.  Upon activa-
tion, a macrophage starts a counter, called its activation counter.  This counter has a 
positive (integral) initial value and is decremented on each subsequent call to exe-
cute().    The initial value of this counter is a parameter of the system called the ac-
tivation duration.  When the counter drops below zero, the macrophage returns to its 
unactivated state.  The macrophage agent’s execute() function is outlined below: 

 execute() 
if(!activated) 

foreach node in neighborsOf(currNode) 
 if(node.malicious == true) 
    secreteTNF(t); //creates t TNF agents  

 target = node;  //present this node 
    counter = activationDuration; 
    activated = true 

if(counter < 0)  //activation counter 
activated = false; 

counter = counter – 1; 

The macrophage agent’s selectin adhesion function φ is a simple polynomial func-
tion of the currNode’s selectin expression level: 
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φM (s) = s − s3 . (1) 

In this equation, s is the selectin expression level of the argument node.  This function 
was chosen somewhat arbitrarily.  Since this function has a maximum over the inter-
val [0,1] at 3 , macrophages should have the highest probability of moving on to 
nodes which express a selectin level of around 3 .  This encourages macrophages to 
avoid the very center of the selectin expression gradient.  Instead of migrating straight 
to the site of detection, a macrophage should ‘surround’ the malicious node by mov-
ing around the center of the gradient area, resulting in new detection events from 
other neighbors of that malicious node, provoking further inflammation.    

3.3   T-Cell Agents 

T-Cell agents function in much the same way as macrophages, but their purpose is 
different.  If a T-Cell shares a node with an activated macrophage, that T-Cell be-
comes activated.  It then seeks out nodes with connections to the malicious node that 
the macrophage was presenting when the T-Cell encountered it.   This malicious node 
is now called the T-Cell’s target.  A T-Cell’s selectin adhesion function behaves dif-
ferently depending on whether it is activated or not.  An unactivated T-Cell seeks out 
the node with the highest selectin expression level, while an activated T-Cell tries to 
seek out nodes with a moderate level of selectin expression.  The T-Cell agent’s se-
lectin adhesion function is listed below: 

φT (s) =
activated, s − s3

unactivated, s2

   
   
   

. (2) 

When an activated T-Cell occupies a node, it checks that node’s neighborhood for 
the malicious node that it is currently targeting.  If the neighborhood contains the tar-
get node, the T-Cell adds the malicious node to the benign (current) node’s blacklist.  
The T-Cell then returns to its unactivated state.  Below is the execute() function 
for T-Cells: 

execute() 

if(activated) 

if(counter > 0) 

if(neighborsOf(currNode).contains(target)) 

currNode.blackList(target); 

activated = false; 

else  

activated = false; 

counter = counter – 1; 

else 

if(currNode has activated macrophage macro) 

target = macro.target; 

counter = activationDuration; 
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3.4   TNF Agents 

TNF agents are secreted by a macrophage agent when it detects a malicious node.  
They are otherwise absent from the network.  Moreover, they have a finite lifetime, 
determined by a decrementing counter similar to the counters that track the activation 
duration in T-Cells and macrophages.  When the macrophage ‘secretes’ the TNF 
agents, it initializes this lifetime counter to a positive integer less than 100.  The TNF 
agent’s selectin adhesion function is the constant function φTNF = c, which means that 
the probability of a particular node being selected from a set of k nodes is 1/k, since 
the ratio of that node’s weight is c divided by the total weight of all the nodes, which 
is ck.  This means they effectively ignore the selectin expression gradient.  However, 
the TNF agents’ purpose is to induce the gradient.  They achieve this by adding the 
remaining value of their lifetime counter (divided by 100 for scaling to the range 
[0,1]) to the selectin expression level for their current nodes.  Here is their compara-
tively simple execute(): 

execute() 

if(counter > 0) 

currNode.selectinExpr = currNode.selectinExpr + 

(counter/100.0); 

if(currNode.selectinExpr > 1.0) 

currNode.selectinExpr = 1.0; 

counter = counter – 1; 

else  

die() //delete this TNF agent from the network 

3.5   Agent Interactions 

LEBS aims to allocate agents to perform blacklisting through a combination of stig-
mergy and direct agent interaction.  The selectin expression level is the medium for 
the stigmergy.  Direct agent interaction occurs when T-Cell agents detect an activated 
macrophage on the same node and become activated themselves.  On activation, T-
Cell agents begin to target the malicious node presented by the activated macrophage.  
They remain activated until they find a node connected to their target node or until 
their activation counter runs out.  Figure 1 illustrates an example of the LEBS agents 
detecting and subsequently blacklisting a malicious node.  The figure shows the de-
tection of a malicious node and the subsequent recruitment of agents to the site of the 
detection.  Each TNF agent has a lifetime counter which is decremented at the end of 
the TNF agent’s turn.  TNF agents add the remaining value (divided by 100, for scal-
ing to the range [0,1]) of their lifetime counter to the selectin expression level of their 
current node each turn.  At the start of each turn, the selectin expression level of each 
node is reduced by 0.01.  Thus, the selectin expression level is elevated around sites 
of node decection, and then decays over time, resulting in a transient local gradient 
that forms the basis of T-Cell and Macrophage agent recruitment. 
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Fig. 1.  Recruitment of agents to site of malicious node detection.  Each frame is taken at the end 
of a cycle, beginning at top left at the time of detection t*.  The selectin expression level is 
shown at the top right of each node.  From top left, (t*) a macrophage detects a malicious node, 
and secretes five TNF agents which raise the selectin level at their node, (t* + 1) a nearby T-Cell 
is recruited to the site of detection, (t* + 2) the newly activated T-Cell blacklists a malicious edge 
(dotted edge), (t* + 3) other agents are recruited to the area around the malicious node. 

4   Experimental Methods 

This section summarizes the methods used to evaluate the effectiveness of LEBS.  
Only a brief examination of the strategy is described.  Specifically, the performance 
impact of variations in agent population, TNF lifetime, and the number of TNF agents 
secreted per detection are explored.  A common network is used for all tests. 

LEBS was tested using the PeerSim framework [14], a P2P simulator designed for 
scalability.  A cycle-driven protocol was used to provide hosting services for agents in 
the simulator.  Each node has an instance of this protocol, which allows it to host 
agents as they move through the network.  

The same network was used in all tests, though the placement of malicious nodes 
was random in each test.  Although it is not a realistic model of a real P2P network, a 
toroidal grid topology1 was used for these initial simulations for simplicity. The net-
work was composed of 10,000 nodes.  For all experiments, 500 of these nodes were 
labeled as malicious before the run of the simulation, and they were uniformly dis-
tributed throughout the network.  The network size and number of malicious node 

                                                           
1  All nodes are arranged in a square grid, each node having exactly 4 neighbors.  The nodes on 

an edge are connecting to the corresponding nodes on the opposite edge of the grid. 



 A Peer-to-Peer Blacklisting Strategy 347 

 

were chosen to match the work of Jelasity, et al. in [8].  All nodes had degree 4.  The 
simulations each ran for 1,000 cycles.  A cycle in this experiment is defined as one 
call to run() for each agent in the network.  Recall that run() allows each agent to 
move to a new node and then execute once.   

All benign nodes were capable of hosting an unlimited number of agents of any 
type.   T-Cell agents and macrophage agents were uniformly distributed throughout 
the network at the beginning of each simulation.  At no time was any agent placed on, 
or allowed to move on to, a malicious node.  At the end of each cycle, the fraction of 
malicious edges that had been marked blacklisted was recorded.  That is, for each ma-
licious node, the number of its 4 neighbors that had that malicious node in their black-
list was recorded, and the resulting sum divided by the total number of edges to mali-
cious nodes in the network.   

A common control set of values for T-Cell and macrophage populations, number 
of malicious nodes, maximum activation durations, TNF lifetime, and TNF per detec-
tion was determined.  This control was used as a performance benchmark for all other 
tests of LEBS.  The control macrophage and T-Cell populations were both 500.   As 
mentioned above, 500 malicious nodes of the 10,000 total were marked malicious.  
The TNF agent lifetime after secretion by a macrophage was 10 cycles.  The T-Cell 
maximum activation duration was 10 cycles, and the macrophage activation duration 
was 50 cycles.  On each macrophage activation, 5 TNF agents were secreted and 
placed at the node hosting the newly activated macrophage.  The selectin expression 
level decay rate for each node was 0.01 per cycle, and the level was decayed at the 
start of each cycle.  

Each of these parameters was varied over a reasonable range.  Since this is a brief, 
primarily qualitative evaluation of LEBS, only a handful of values were tested.  For 
each value, 30 tests were run.  The data presented are cycle averages of the fraction of 
blacklisted edges over all 30 trials.  

5   Results 

The data from the evaluation of LEBS are presented here.  For each experiment,  
the  cycle  averages  of  the fraction of blacklisted edges are plotted against the time in  
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Fig. 2. Selected population values for (a) macrophage and (b) T-Cell agents.  Each curve shows 
a distinct value for the number of agents in the network.  Selected values range from 100 to 
2000 macrophage or T-Cell agents. 
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cycles. The fraction of the malicious edges that have been blacklisted is reported as a 
number between 0 and 1.0, with 1.0 being 100% of all malicious edges blacklisted.  
Each plot shows several values of the variable for the experiment.  In all experiments, 
the common control is used as a reference for determining relative performance.  

When more macrophage or T-Cell agents were present on the network, LEBS per-
formed better.  The performance data for selected population values are shown in 
Figure 2 above.  Six different values for initial populations for macrophages (Fig. 2a) 
and T-Cells (Fig. 2b) were examined.  More macrophages or more T-Cells clearly re-
sults in faster blacklisting.  Figure 3, below, shows how LEBS responds to changes in 
the parameters that affect how well it can recruit other agents to the site of malicious 
node detection.  LEBS is very sensitive to changes in both the number of TNF agents 
secreted per detection (Fig. 3a), and the TNF lifetime (Fig. 3b). 
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Fig. 3. Selected values for (a) the number of TNF agents secreted per detection and (b) the life-
time of TNF agents in cycles. 

All experiments featured a nondecreasing sequence of values for the fraction of 
blacklisted edges.  This is unsurprising, since the network was static and no additional 
malicious nodes were introduced to the network after the start of each run.  Because 
the data is nondecreasing, the time (in cycles) to reach a particular blacklisting mile-
stone, such as a 50% blacklisting of malicious edges, is a useful performance metric.  
The values for the time to blacklist 50% of malicious edges (BL50) and the terminal 
blacklisting fraction (time = 1000 cycles) are presented in tables 1-4 below.  A BL50 
value of ‘X’ means that for the value tested, LEBS failed to blacklist 50% of the mali-
cious edges by the end of the simulation.  All values were checked for statistical sig-
nificance with a Student’s t-test.  The t-test results against the common control are 
listed in the tables.  A result of greater than 2.0 confirmed with a 95% probability that 
the difference between the tested value and the control was statistically significant.  
T-test results marked with an asterix (*) indicate that the value tested cannot be confi-
dently said to be significantly different from the control. 

The above data represents only a short look at the performance of LEBS.  For the 
values used in the common control, LEBS is very successful at blacklisting the mali-
cious nodes.  86.4% of all edges to malicious nodes were blacklisted within 1000 cy-
cles.  Moreover, 50% of the malicious edges were blacklisted within 422 cycles in the 
common  control.  Unsurprisingly,  LEBS is more successful at blacklisting malicious  
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Table 1.  Macrophage population values 

Macrophage  
Population 

BL50(cycle) BL50 t-test 
Terminal  
Blacklisting (%) 

TBL t-test 

100 X X 40.5 23.992 
300 573 201.35 74.2 5.8064 
500 (Control) 422 0 86.4 0 
700 339 116.09 91.6 2.8778 
1000 264 233.23 94.1 4.4029 
2000 160 411.29 95.1 411.29 

Table 2. T-Cell population values 

T-Cell 
Population 

BL50(cycle) BL50 t-test 
Terminal  
Blacklisting (%) 

TBL t-test 

100 X X 45.0 19.777 
300 534 101.37 77.1 4.4765 
500 (Control) 422 0 86.4 0 
700 373 50.878 89.5 1.7636* 
1000 335 93.792 91.8 3.1196 
2000 286 143.38 93.5 4.0357 

Table 3. Values for TNF secreted by macrophage per detection of malicious node 

TNF  
Detection 

BL50(cycle) BL50 t-test 
Terminal  
Blacklisting (%) 

TBL t-test 

0 910 515.71 53.2 16.424 
1 287 201.75 93.3 3.9842 
3 371 71.824 90.4 2.2350 
5 (Control) 422 0 86.4 0 
10 443 29.32 82.4 29.324 

Table 4. TNF lifetime in cycles 

TNF Lifetime 
(cycles) 

BL50(cycle) BL50 t-test 
Terminal  
Blacklisting (%) 

TBL t-test 

2 265 236.67 92.8 3.3460 
4 281 212.05 94.0 4.0740 
10 (Control) 422 0 86.4 0 
30 X 885.85 48.0 17.553 
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nodes with more T-Cell (Table 2) and Macrophage (Table 1) agents at its disposal, 
given a constant number of malicious nodes.  LEBS is also very sensitive to the pa-
rameters that directly influence the generation of the selectin expression gradient 
around the site of malicious node detection.  The number of TNF agents secreted per 
detection and their lifetime in cycles has a dramatic influence over the ability of 
LEBS to blacklist malicious nodes.  

Table 3 illustrates LEBS’ sensitivity to the number of TNF agents secreted per de-
tection.  When only 1 or 3 TNF agents were secreted, performance was somewhat 
better than the global control value of 5.  A 100% increase in TNF per detection of the 
control value resulted in a marginally higher BL50.  This suggests that the number of 
TNF agents secreted per detection has a diminishing marginal impact on performance. 

It is worth noting that the performance of LEBS without any selectin expression 
gradient at all was measured.  Table 3 shows the BL50 cycle and terminal blacklisting 
fraction for a TNF per detection value of zero.  This means that no TNF agents ever 
entered the network, and so never induced a selectin expression gradient.  As a result, 
all movement of macrophages and T-Cells through the network was totally random.  
That is, given any set of nodes to move to in the next cycle, a T-Cell or macrophage 
will choose from them with equal probability.  Thus, it was relatively unlikely that T-
Cells would move onto a node with an activated macrophage.  As one might expect, 
the performance of LEBS in this case was poor: a BL50 cycle of 910.   

LEBS also appears to be sensitive to the lifetime in cycles of a TNF agent.  Table 4 
shows that a short lifetime resulted in better performance for the small number of val-
ues tested.  The topology of the network was chosen to promote the effectiveness of 
the selectin expression gradients in getting agents to the site of detection of a mali-
cious node.  The selectin adhesion functions were chosen to promote a good covering 
of the gradient by activated agents.  One can imagine that if this gradient is too large, 
or isn’t “steep” enough, the agents will be directed away from the target malicious 
node.  In other words, if the gradient covers too much of the local area around the ma-
licious node, the T-Cells will never find the neighbors of that node, and so it will not 
be blacklisted. 

LEBS performed admirably in may cases.  For example, when only one TNF agent 
per detection was secreted, 93.3% of all edges to malicious nodes were blacklisted us-
ing the same population levels as the global control.  In addition, LEBS achieved 
BL50 at cycle 287 with one TNF per detection.   

6   Discussion 

This paper described LEBS, a strategy for blacklisting malicious nodes from a P2P 
network inspired by the leukocyte recruitment mechanism of the human immune sys-
tem.  A type of stigmergy was used to direct agents to the neighbors of malicious 
nodes.  This communication was modeled on the interaction between leukocytes and 
endothelial cells via selectins and their reciprocal ligands.  In LEBS, macrophage 
agents secrete TNF agents, which induce a selectin-like gradient on node of the net-
work.  T-Cell and macrophage agents then prefer to move on these nodes.  LEBS was 
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effective in blacklisting a high percentage of malicious nodes in the network.  It was 
shown to be sensitive to several parameters, including the population sizes of T-Cell 
and macrophage agents.  LEBS was also shown to be sensitive to the parameters that 
influence the selectin expression gradient.  This is somewhat unsurprising, because 
the selectin expression gradient is part of the ‘inflammation’ that is the basis for 
LEBS’ operation.   

The data presented here is not enough to make strong statements about the corre-
lation between the performance of LEBS and parameters such as agent populations, 
TNF lifetime, and TNF secretion rate.  Moreover, the performance data here relied 
on a network topology that promoted, or at least did not significantly hinder, the ef-
fectiveness of a selectin expression gradient in recruiting agents to the site of detec-
tion.  Unfortunately, as noted earlier, P2P networks are very often not a toroidal 
grid.  For LEBS to be deemed useful in blacklisting malicious nodes from real P2P 
networks, it must be tested on more realistic P2P network topologies.  The network 
used in the study was also static.  In a real P2P network, clients join and leave con-
stantly, resulting in a dynamic network.  LEBS must be tested on a dynamic net-
work as well.   

In this study, the values tested for the population sizes, the TNF lifetime, and the 
TNF per detection were chosen somewhat arbitrarily.  A more thorough investigation 
of LEBS’ response to variations in these parameters is needed.  More importantly, the 
selectin adhesion functions were not varied at all in this study.  Given how sensitive 
LEBS seems with respect to changes in parameters responsible for inducing the se-
lectin expression gradient, the selectin adhesion functions are likely to have an 
equally dramatic impact on performance. 

The malicious node distribution over the network in this study was uniform.  It is 
possible that LEBS would perform much better if the malicious nodes were concen-
trated in one local region of the network.  One can imagine that a macrophage, having 
detected a malicious node, might recruit other macrophages to the nodes around the 
site of detection.  Once there, they might detect other malicious nodes, causes more 
inflammation, etc. until most of the agents in the network were concentrated on at-
tacking this group of malicious nodes.  However, a full blacklisting of a cluster of ma-
licious nodes might also result in isolating some non-malicious nodes.  Moreover, if 
the blacklisting of a cluster of nodes partitioned the network, some agents would also 
be isolated.  Care must be taken to ensure that LEBS remains effective in the presence 
of a non-uniform distribution of malicious nodes in the P2P network.  This should be 
a focus of future work on LEBS. 
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Abstract. In most of the existing artificial immune systems, instabilities mainly 
stem from the empirical pre-definition of a scenario-specific model. In this 
paper we introduce a self-regulating algorithm into an integrated platform of 
artificial immune systems based on Model Library. The algorithm can 
dynamically configure multi-AIS-models according to the "pressure" produced 
during the course of training and testing, so that the system can automatically 
adapt to detect various objects. In addition, a novel hybrid evaluation method is 
proposed to improve the self-adaptability of the system. Experimental results 
demonstrate that the self-regulating algorithm can achieve better performance 
as compared with traditional artificial immune systems in terms of false positive 
and false negative rates.  

1   Introduction 

A family of techniques originated from the community of immunology, known as 
artificial immune systems (AIS), has been emerging as a new branch of Artificial 
Intelligence (AI) and gained increasing popularity in the past decade. By investigating 
the mechanism of human immune system (HIS), researchers in the computational 
fields have successfully introduced AIS to solve a wide range of anomaly detection 
problems, such as cancer diagnose, virus detection, mortgage deceit and fault 
diagnose [1][2]. 

The immunological principles employed by AIS models, such as the immune 
network theory, the mechanisms of negative selection, the clonal selection principles 
and the danger theory, are by far treated separately although there are underlying 
correlations amongst them. Most state-of-the-art anomaly detection systems are 
designed for detecting a particular kind of objects using pre-tuned AIS models, 
resulting in numerous variations of the general AIS models. In other words, the choice 
of an AIS model, including its expression, matching, training, evaluation, and various 
controlling parameters, is in general pre-determined by experts based on their 
experience on hypothesized problem space. The model is then iteratively adjusted 
until satisfactory outcome has been achieved in training and testing. If there is no or 
few improvements during this process, one need resort to other models.  
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Hence, there are two issues to be addressed in conventional approaches: model 
predefinition and model evaluation. For the first one, due to limited experience of 
each individual expert, it is nontrivial to define a robust model for detecting all 
possible objects. Taking network security for an instance, a model predefined to cope 
with worm viruses could be prone to flood packet attack. For the second problem, we 
argue that single model evaluation alone is inadequate for evaluating anomaly cases 
varying in such a dynamic way, as features used in one kind of detectors could be 
quite limited. Following the previous example, in order to detect an attack involving 
both worm viruses and flood packets, it is necessary to use two kinds of detectors 
with the expressions of regular language as well as finite-state automata.  

In this paper, we propose an Integrated Platform of Artificial Immune Systems 
(IPAisys) based on the detector population mode to tackle the aforementioned 
problems. In this platform, a group of model prototypes are integrated in a unified 
framework, wherein the model structure can be automatically regularized by using the 
output of training and testing as so-called "pressure". A self-regulating algorithm is 
developed with the use of Model Library to achieve optimal multi-AIS-models 
through dynamic configuration. Therefore, as compared with the traditional single 
model evaluation process shown in Figure 1, our platform is more flexible and 
intelligent in that it is capable of choosing an optimal combination of different models 
to cooperatively evaluate each unknown case.  

 

Fig. 1. Evaluation from single model to multi-AIS-models 

The remainder of this paper is organized as follows. In Section 2, some related 
work is reviewed with a brief introduction of AIS model and IPAisys. After that, the 
self-regulating algorithm based IPAisys is discussed in detail in Section 3. We 
analyze three control experiments in Section 4, followed by concluding remarks and 
future work in Section 5. 

2   Related Work 

2.1   Detector Population Based AIS Model  

S. Forrest et al. proposed in [3][4] an AIS model based on binary string expression, r-
contiguous matching and negative selection algorithm (NSA). They defined "Self" as 
the normal behavior patterns of a network monitoring system. Some random patterns 
are produced as immature detectors and tested by "Self". An immature detector will 
be abandoned in case that it is matched with one pattern of "Self".  
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J. Kim [5] pointed out that NSA could cause severe scaling problem in face of 
tremendous network traffic data. Apart from that, r-contiguous matching, as a 
continuous matching method, is inappropriate for network traffic data with discrete 
features. She thereby proposed an AIS model based on a semantic expression of 
detectors, i.e. multi-dimensional features, and the IF-THEN matching rule, and 
replaced NSA by the clonal selection algorithm (CSA), alleviating the scaling 
problem to certain extent.  

To further enlarge the problem space of anomaly detection, F. González [6] 
developed the rules-based NSA, in which several real-value based expressions were 
detailed, including hyper-rectangle, fuzzy rules and hyper-sphere and corresponding 
detector generation algorithms.  

It can be seen from the approaches above that detector population based AIS 
models are mainly assembled by expression method, matching function, detector 
training algorithm, evaluation system and neutralization way.  A typical AIS model 
works as follows. Immature detectors are randomly generated with the 0-1 strings 
expression and then transferred to a training host, where they evolve into mature ones 
based on a training algorithm. At the same time, the matching function will calculate 
the fitness values. These matured detectors will then be combined to evaluate an 
unknown object, which will be annihilated by predefined neutralization way if a 
danger is assumed. According to this process, the structure of detector population 
based AIS models can be summarized in Figure 2 to reflect the common 
characteristics among diverse AIS models as described in [7][8][9][10]. 

 
 
 
 
 
 
 
 

 

Fig. 2. Structure of AIS model based on detector population mode 

As discussed in our previous work [11], the five units in Figure 2, i.e. expression 
unit (Ex), matching unit (Ma), training unit (Tr), evaluation unit (Ev) and 
neutralization unit (Ne), can define an AIS model based on detector population mode. 
In this paper, as only one genetic algorithm is predefined (see Section 3 and 4), Tr 
unit can be fixed. In the consideration that most AIS experts are mainly concerned 
with detection rather than elimination of anomaly, we also ignore Ne unit for 
simplicity. As such, we shall mainly focus on the effects of Ex, Ma and Ev units in 
this paper and represent an AIS model by a triple of units as: 

( )EvMaExAisModel ,,≡  

Expression Unit

Matching Unit 

Neutralization Unit 

Evaluation Unit

Training Unit 

AIS Model 
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2.2   Integrated Platform of AIS (IPAisys) 

In general, IPAisys consists of two main modules: data pre-processing module and 
model evolution module, each with its own components. All components are 
integrated into a unified framework as illustrated in Figure 3. 

 

Fig. 3. Architecture of the integrated platform of AIS 

In the data pre-processing module, antigen data are collected by the data collector 
and transferred to the data processor, wherein the original data are coded for 
compression and concatenation. Following the data processor is the data formatter, 
which translates coded data into XML format to provide a data-independent interface 
to the model evolution module so that the AIS model can be uniformly configured 
regardless of the format of original data. After that, the XML format data are 
delivered to the cultivator component of the model evolution module.  

In the model evolution module, the model configuration component is responsible 
for providing an optimal configuration of multi-AIS-models to the cultivator 
component. With formatted data and the optimal configuration scheme, the cultivator 
component trains multi-AIS-models based detector set for hybrid evaluation 
component using genetic algorithm, and meanwhile return fitness values as "pressure" 
to the model configuration component. After receiving the matured detector set from 
the cultivator component, the hybrid evaluation component further improves it by 
testing and sends re-initialization request to the model configuration component if the 
testing results are unsatisfactory. 

Controlling the development of multi-AIS-models, the model configuration 
component and cultivator component are the core constituent elements of IPAisys and 
have been explained in detail in our previous work [11]. In this paper, a self-
regulating algorithm together with a hybrid evaluation method is proposed to further 
enhance the self-adaptability of IPAisys.  
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3   Self-regulating and Hybrid Evaluation 

The self-regulating algorithm aims to dynamically configure multi-AIS-models based 
on Model Library and its lifecycle. According to multi-AIS-models chosen, the hybrid 
evaluation method detects an anomaly based on the cooperative decision of different 
detector subsets.  

3.1   Model Library and Its Lifecycle 

Model Library is built on both unit information and parameter information. The unit 
library, consisting of Ex, Ma, Ev, Tr and Ne, should be established first, followed by 
the predefinition of corresponding parameters. As we have excluded Tr and Ne units 
from the unit library, the configurability of an AIS model rests on units Ex, Ma and 
Ev. Taking Ex unit for example, Binary String (BS), Digital Sequence (DS), and 
Hyper-rectangle (HR) are optional expression items, as shown in Figure 4.  

 

Fig. 4. Structure of Model 

Model Library is then constructed as follows. One optional item is randomly 
chosen from each unit list in the unit library to create an abstract model Mai. Several 
abstract models compose an abstract model set Ma={Ma1, Ma2 … Man}, which is then 
empirically initialized with parameters as M={M1, M2 … Mn}. For M1, the length of 
the digital sequence expression is six (L=6), and each number in the digital sequence 
can take from 0 to 255 (A=[0…255]), and the r value of r-contiguous matching 
function is three (r=3). T=1 indicates autarchy evaluation way, i.e. an anomaly is 
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detected if any detector suggests so, and T=HALF implies marking evaluation way, 
that is, an anomaly is detected if more than half detectors suggest so. Note that the 
configuration of an AIS model should also be constrained by the Ex-Ma relationship 
to prevent invalid AIS models from being assembled. Table 1 lists several typical 
relationships between Ex and Ma. For instance, "BS+RC" can be expressed as a 
dependence relationship between BS (Ex Unit) and RC (Ma Unit) while "HR−RC" as a 
restriction relationship between HR (Ex Unit) and RC (Ma Unit). 

Table 1. Ex-Ma relationships of dependency and restriction 

Unit name Unit name Type of relationship Relationship list 

Ex Ma Dependence (+) BS+RC; DS+RC; BS+RK; DS+RK; HR+SR 

Ex Ma Restriction (−) BS−SR; DS−SR; HR−RC; HR−RK; 

As unpredictable parameters make it infeasible to manifest all possible models in 
Model Library, the lifecycle of Model Library need to be designed in demand of 
limited resources. In Model Library, the total number of models is fixed, and the life 
value of each model Mi, Lifei, will increase or decrease according to the feedback of 
the self-regulating algorithm (see Section 3.2). When Lifei drops below a threshold, 
Mi will be replaced by a new model. 

3.2   Self-regulating Algorithm 

IPAisys can automatically choose models from Model Library and combine them into 
multi-AIS-models using some regulating methods.  

In [11], we attempted to regulate multi-AIS-models by iteratively transforming a 
detector set D={D1, D2 … Dk} according to a transition matrix, Pmatrix, defined as 
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The transition probability Pij (i = 1…k, j = 1…k) is the chance for detectors Di to 
change into detectors Dj. Therefore, the number of detectors Dj should be proportional 
to 
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 after one round of regulation. We set Pii=1.0 (i=1…k) and Pij=0 (i  j) for 

initialization to equally weight each model without other prior knowledge.  
The change of Pmatrix is decided by the fitness values of D={D1, D2 … Dk} obtained 

during training. After N generations of evolution, the average fitness of Di (i=1…k), 
denoted by FDi, is calculated as "pressure" and Pmatrix changes according to the 
following rules:  
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where Pchange is a predefined offset constant to Pij.  
Figure 5 shows a regulation example of multi-AIS-models, M = {M1, M2, M3}, 

where each Mi (i=1, 2, 3) contains 100 detectors at the very beginning. With the 
transformation of Pmatrix, the number of detectors of M1, M2 and M3 changes to 120, 
100, 80 after the first round and to 140, 100, 60 after the second round.  
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Fig. 5. Pmatrix changes from initialization to other states 

The Pmatrix method is based on intuition that the more useful a detector the larger 
proportion it should grow into. However, experimental results show that this method 
usually leads to the impoverishment of diversity. When multi-AIS-models M={M1, 
M2 … Mn} is iteratively regulated according to the transition matrix, the number of 
detectors of Mi (i=1…n, i k) will gradually reduce to zero and the detectors in the 
detector set D are dominated by those from Mk.  

To keep the diversity of detectors for the purpose of cooperative evaluation, we 
propose a self-regulating algorithm in this paper to dynamically configure multi-AIS-
models without changing the density of each model. The main procedures are 
diagrammatized in Figure 6 and described below.  

(1) A primitive multi-AIS-models is initialized by choosing a model set M={M1, M2 

… Mn} from Model Library according to Ex-Ma relationship;  
(2) In the cultivator component, genetic algorithm is performed for each Mi (i=1...n);  
(3) Detector set D={D1, D2 … Dn} is produced after one generation of genetic 

algorithm (Di={d1, d2…dwi}, i=1…k, is the detector subset from model Mi, and wi 
is the detector number of Di);  

(4) The average fitness value of all detectors in Di, FDi, is compared with a threshold 
μ; if FDi < μ, the parameters of Ma unit in Mi is regulated for the next generation 
and the value of Lifei decreases, and vice versa; Given Di={d1, d2 … dwi}, 
function d_match_self() computes the degree of mismatch between dj (j=1…wi) 
and self training set, and function match_nonself() computes the degree of match 
between dj (j=1…wi) and nonself training set. FDi is then obtained by: 
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(5) The total regulation times of Ma unit parameters in Mi, Retryi, is compared with a 
threshold ; if Retryi > , the Ma unit of Mi is replaced by another one in the next 
generation and the value of Lifei decreases, and vice versa; 

(6) Genetic algorithm is run for N generations to obtain a mature detector set 
Dm={Dm1, Dm2 … Dmn}; 

(7) In the hybrid evaluation component, the False Positive rate (FP) and False 
Negative rate (FN) of Dm are compared against thresholds  and ; if FP <  or 
FN < , re-initialization request is sent to the model configuration component and 
a new model set will be chosen; N is reset to zero; 

(8) Excellent detector set De={De1, De2 … Den} is output with an evaluation 
function for real applications.  

We now apply the proposed regulating algorithm to the data described in Figure 4. 
In Step 4, based on the comparison between FDi and the threshold μ, Mi is regulated 
according to Model Library, where M2 and M4 are similar models except for r in Ma 
unit. M2 can thus be substituted by M4 as one regulation operation in this step. In Step 
5, M2 and M3 are similar models expect for Ma unit, i.e. M2 has r-contiguous 
matching while M3 has r-chunk matching. M2 can be replaced by M3 as one regulation 
operation in this step. In Step 7, according to comparison between values (FP and 
FN) and thresholds (  and ), current multi-AIS-models, M, is replaced by another 
model set, M', which is re-initialized from Model Library.  

It can be seen from Figure 6 that the self-regulation of multi-AIS-models consists 
of three types of regulation operations: parameter-regulation, unit-regulation and 
model-set-regulation.  

3.3   Hybrid Evaluation Method 

The hybrid evaluation component is responsible for testing D = {D1, D2…Dk} in 
terms of FP and FN to decide whether multi-AIS-models need to be re-initialized. 
The testing function, ftesting (x), also referred to as evaluation function, can be defined 
in two forms below, representing two evaluation rules: 
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where gDi (x) (i=1…k) is an evaluation function of detector subset Di, depending on 
Ev unit selected in the model configuration component. gDi (x) = 1 (positive response) 
means that Di detects x as anomaly, and vice versa. In Function (1), x is detected as 
anomaly as long as any detector subset Di (i∈[1…k]) gives positive response; and 
detected as normality only if all Di (i=1…k) are negative. On the other hand, x is 
detected as anomaly in Function (2) if ftesing (x) >  (0    k), and vice versa, i.e. the 
decision is made by cooperative marking of each Di. In our case,  is set to k/2 based 
on the major voting rule.  We can see that Function (1) accords with an Autarchy 
evaluation way and Function (2) stands for a Marking evaluation way. 
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Fig. 6. Self-regulating algorithm flow chat 

A problem arises that the first testing function lacks cooperation among different 
models while the second one ignores the relative importance of each Di (i=1…k). We 
thus propose a Hybrid evaluation function to emphasize detectors with good fitness 
values.  
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where FDi is an average fitness value of detector subset Di and gDi (x) (i=1…k) is the 
evaluation function of detector subset Di. 

In Function (3), Self-training-set, Ts, and Nonself-training-set, Tn are used as 
argument x to train two adaptive thresholds,  and , so that ftesing (xs) <  and  
ftesting (xn) > . (. (xs is any element of Ts and xn is element unit of Tn).  

 

Model Library 

Model set

Run GA for 
one generation 

Detector set

FDi < μ

Retryi>

Mature detector set

Hybrid evaluation 

FP >  or 
FN >  

Excellent detector set

Yes 

Yes 

No

No

Run GA for
N times? 

No 

Yes

Initialization

Yes 

No 



362 Z. Wu and Y. Liang 

 

For an testing or unknown object xu: 

 If ftesing (xu) < , , xu is a normal activity;  
 If ftesting (xu) > , , xu is assumed as an anomaly activity; 
 If  < ftesing (xu) < , , xu is regarded as ambiguous (manual arbitration required).  

After testing, excellent detector set De (see Section 3.2), is produced. Functions (1) 
(2) and (3), as evaluation functions, can be assembled to De for real applications. 

4   Experiment Analysis 

Two data sets R1 and R2 are used in our experiments. R1 is a version of the 1999 
DARPA intrusion detection evaluation data set maintained by MIT Lincoln Lab [12]. 
The statistics of the original data, including the number of bytes per second, the 
number of packets per second and the number of ICMP packets per second, are 
obtained by the data pre-processing module in IPAisys. As there are two weeks of 
data at hand, we use the data of the first week (attack free) for training and the second 
week (attacks included) for testing. R2 is 20-minute network traffic data obtained by 
capturing TCP packet headers passed both within intra-LAN and between intra-LAN 
and external networks [13], where internal data are considered as normal behavior 
while external data as anomaly. The source IP addresses and ports together with 
destination IP addresses and ports are parsed by the data pre-processing module. For 
R2, the first 15-minute data are used for training and the rest for testing.  

Four isolated AIS models, M1, M2, M3 and M4, are initialized in Model Library and 
described in Figure 4, three of which are chosen each time to build multi-AIS-models. 
The population size of multi-AIS-models is set to 300, with 100 for each AIS model. 
The number of generations in genetic algorithm is set to 100, i.e. N=100. The 
reproduction, crossover and mutation rate are 0.7, 0.25 and 0.05, respectively. μ is set 
to 50, and  to 5.  and   and   are both equal to 0.3. x1 and x2 are assigned with value 1 and 
0.1, respectively. Table 2, 3 and 4 compare the means and standard deviations of 
detection performances of several different models over 10 trials in terms of FP and 
FN. Lifei is not included in current experiments. 

Table 2. A control experiment of FP and FN comparison between single model and multi-AIS-
models ("Hybrid" in the parenthesis means Hybrid testing function is used while evaluating; 
when single model is used, k is set to 1 in Hybrid testing function; self-regulating algorithm is 
used while configuring multi-AIS-models)  

 M1  (Hybrid) M2 (Hybrid) M3 (Hybrid) 
Multi-AIS-models 

Self-regulation 
(Hybrid) 

FP(%) R1 5.78 (2.31) 2.57 (1.45) 2.35 (1.53) 1.12 (0.93) 
FN(%) R1 33.67 (6.11) 42.53 (6.02) 47.12 (8.56) 12.65 (4.12) 
FP(%) R2 3.69 (1.71) 2.44 (1.22) 2.21 (1.06) 0.77 (0.32) 
FN(%) R2 24.39 (5.76) 28.12 (8.25) 33.65 (7.82) 3.51 (1.79) 

From Table 2, FP and FN of multi-AIS-models are obviously lower than those of 
any single model when using the same Hybrid testing function, demonstrating the 
effectiveness of the proposed approach.  
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Table 3. A control experiment of FP and FN comparison between Pmatrix method and self-
regulating method while using multi-AIS-models (using Autarchy testing function, Marking 
testing function and Hybrid testing function, respectively) 

 
Pmatrix   

(Autarchy) 
Pmatrix   

(Marking) 
Pmatrix   

(Hybrid) 
Self-regulation

(Autarchy) 
Self-regulation

(Marking) 
Self-regulation 

(Hybrid) 

FP(%) R1 1.35 (0.74) 1.73 (0.89) 1.31 (0.87) 1.19 (0.68) 1.55 (1.35) 1.12 (0.93) 
FN(%) R1 13.21 (4.42) 7.33 (2.64) 13.15 (3.65) 6.21 (1.28) 7.16 (2.27) 12.65 (4.12) 
FP(%) R2 1.69 (0.74) 1.36 (1.12) 0.93 (0.41) 1.23 (1.31) 1.15 (1.28) 0.77 (0.32) 
FN(%) R2 23.81 (5.78) 17.94 (6.65) 15.63 (4.22) 15.35 (6.11) 11.82 (4.79) 3.51 (1.79) 

From Table 3, our self-regulating method is superior to the Pmatrix method with 
lower FP and FN, under either evaluation function. An interesting finding is that 
Autarchy testing function is more efficient for R1 while for R2 Marking testing 
function is more suitable. In addition, Hybrid evaluation function achieves higher 
detection rates than both Autarchy and Marking methods. 

Table 4. A control experiment of best FP and FN comparison between different multi-AIS-
models (using Hybrid testing function; four multi-AIS-models are fixed) 

 
M1 M2 M4 
(Hybrid) 

M1 M3 M4  
(Hybrid) 

M2 M3 M4 

(Hybrid) 

M1 M2 M3 

(Hybrid) 

Best FP(%) R1 1.16 (0.71) 1.12 (0.93) 1. 09 (0.97) 1.01 (0.64) 
Best FN(%) R1 12.72 (3.27) 12.43 (2.74) 12.27 (2.39) 12.21 (1.82) 
Best FP(%) R2 1.13 (0.85) 0.65 (0.52) 0.57 (0.41) 0.39 (0.55) 
Best FN(%) R2 3.92 (1.21) 3.16 (1.22) 2.69 (1.83) 1.51 (1.34) 

In Table 4, we compare three different multi-AIS-models. It can be seen that multi-
AIS-models {M1 M3 M4} has similar FP and FN values with {M2 M3 M4}, while their 
best FP and FN are both lower than those of {M1 M2 M4} and both higher than other 
of {M1 M2 M3}.  However, the difference is not so evident when using R1 as training 
and testing set. Comparing {M1 M3 M4} and {M1 M2 M3}, different values of 
parameter r in M2 and M4 bring out a result that {M1 M2 M3} is more efficient than 
{M1 M3 M4}, especially for R2. 

The following conclusions can be safely reached from the experimental results:  

(1) The "pressure", such as FDi, Retryi, FP and FN, produced by self-regulating 
algorithm effectively invokes the dynamic configuration to achieve better self-
adaptability and detection performance;  

(2) Self-regulating method improves the detection performance with lower FP and 
FN as compared with Pmatrix method;  

(3) R-chunk matching function performs better for R2; value of parameter r can be 
regulated to gain better performance for R2; and the proposed Hybrid evaluation 
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function achieves higher detection rates than both Autarchy and Marking 
methods;  

(4) Although multi-AIS-models outperform each single model, it is computationally 
more expensive, especially when FP >  or  or FN >   in testing. According to our 
statistics, multi-AIS-models are re-initialized for 5 to 6 times out of 10 in the 
experiments. 

5   Conclusion 

In this paper, we propose a novel self-regulating algorithm to improve the adaptability 
of AIS by optimally integrating and configuring various detector population based 
AIS models in a unified framework. In addition, Model Library is introduced to this 
algorithm to provide optional items to set up multi-AIS-models. In particular, self-
regulating algorithm based IPAisys is superior to the traditional application-specific 
model in the following aspects: 

(1) It preserves the diversity of various detectors, offering a possibility of 
cooperative evaluation;  

(2) It is able to find the optimal multi-AIS-models by self-learning;  
(3) It provides a platform for convenient comparison among different combinations 

of models, so that the one most suitable for certain problem can be selected;  
(4) Artificial interference is partially replaced by automatic selecting process 

through Model Library. 

In the future work, the self-regulating algorithm could be further improved. 
Currently, units of models are automatically regulated by the "pressure", but 
parameters of units have been pre-defined by experts. It is desirable to automate the 
regulation of parameters based on some regular changing rules. For model library, the 
influence of lifecycle on detection results will be further studied in our next paper. In 
addition, offline data are now used for both training and testing, resulting in a system 
unable to detect new anomaly. To design training and testing schemes based on real-
time data will benefit from the perspective of practical use. 
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Abstract. We have proposed a metaphor “DAnger Susceptible daTa codON” 
(DASTON) in data subject to processing by Danger Theory (DT) based Artifi-
cial Immune System (DAIS). The DASTONs are data chunks or data point sets 
that actively take part to produce “danger”; here we abstract “danger” as re-
quired outcome. To have closer look to the metaphor, this paper furthers bio-
logical abstractions for DASTON. Susceptibility of DASTON is important pa-
rameter for generating dangerous outcome. In biology, susceptibility of a host 
to pathogenic activities (potentially dangerous activities) is related to polymor-
phism. Interestingly, results of experiments conducted for system call DAS-
TONs are in close accordance to biological theory of polymorphism and sus-
ceptibility. This shows that computational data (system calls in this case) 
exhibit biological properties when processed with DT point of view.  

1   Introduction 

We proposed a novel metaphor [ 1], DAnger Susceptible daTa codON (DASTON), af-
ter having inspired from Uwe Aicklein’s proposals [ 2][ 3] and others work [ 3][ 4][ 5] 
referring Danger Theory [ 6][ 7][ 8][ 9][ 10] to resolve issues pertaining to self-nonself 
(SNS) view point in Artificial Immune Systems (AIS). The idea of presence of DAS-
TONs, in data processed by Danger Theory based AIS (DAIS), confers a new look 
towards data. The DASTONs are data chunks or various combinations of data points 
(data point sets) that actively participate in process for delivering required outcome. 
This metaphor derives its strength from important biological phenomena and sub-
stances, for example, susceptibility, host-pathogen interactions, danger signaling, 
codons, etc. [ 11][ 12][ 13][ 14][ 15][ 16][ 17][ 18][ 19]. 

Proposing biologically inspired metaphors for computational research involves 
ability to precisely map abstractions in two fields [ 20]. We have tried [ 1] to come up 
with analogies that help us extend our understandings and contribute more for AIS re-
search. This paper extends the understanding of DASTON with concrete abstractions 
and clear experimental results. 

Susceptibility might be considered a vital biological property for inferring potential 
danger [ 6][ 7][ 8][ 9][ 10] to host body and genetic polymorphism (see section 3 for de-
tails) might provide direct measure for susceptibility. Our DASTON is also highly 
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concerned about susceptibility.  The basic research question we address in this effort 
is; is there any link between polymorphism and susceptibility of DASTON while 
studying in biological context? The answer to this question might enable us to have 
deeper look into metaphor and device more computational abstractions closer to bio-
logical associates. 

Though, the study might be carried out for variety of data and applications, current 
scope is limited to system call sequences, normal and intrusion trace, available from 
the University of New Mexico (UNM) [ 21]. This data might have potential to elabo-
rate the metaphor. Interestingly, experimental results show good compliance with the-
ory in biology, opening new avenues for our research.       

Following section 2 describes biological procedure of danger signal production by 
infection susceptible cell, when attacked by pathogen. Section 3 elaborates link be-
tween susceptibility and polymorphism in biology. Section 4 gives brief overview of 
DASTON, reader may refer [ 1] for details. Section 5 establishes link between poly-
morphism and susceptibility of DASTON in given biological context. This section 
portrays mythology and results of the study. Finally, section 6 concludes the effort 
elaborating its significance in AIS research.  

2   Host Susceptibility to Pathogens: A Potential Danger 

According to Polly Matzinger [ 6][ 7][ 8][ 9][ 10], the substances made or modified by 
cells under distress or suffering from abnormal death serve as danger signals for im-
mune system. Here we introduce the term “potential danger” and link it to the infec-
tious disease susceptibility of host. A pathogen may contribute in producing poison-
ous products (danger signal), leading to infectious disease, during an interplay with 
susceptible host.   The pathogen may not interplay with unsusceptible host, hence not 
producing  danger  signal.  This  infers  that host susceptibility might be considered as  

 

Fig. 1. The susceptible host genes are interacting with pathogen genes to produce poisonous 
products that cause danger signal for immune system. While, unsusceptible host genes might 
not interplay with pathogen. The susceptibility of host is “potential danger”. 

Genetic interplay Pathogen gene 

Poisonous product 
(Danger signal) 

Unsusceptible host cell Susceptible host cell 
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potential danger producing factor (see figure 1). The details of infectious disease sus-
ceptibility may be better understood by reviewing related biological references 
[ 11][ 12][ 13][ 14][ 15][ 16][ 17][ 18][ 19].  

The susceptibility of a host is conferred by the susceptible genetic regions. These 
are the high interest regions to our research. We want to closely see these regions to 
understand their behavior (principle) and then mapping that behavior to our case 
study in computation. Following paragraphs might help us understand the biological 
behavior of susceptible genetic regions that we will be successfully mapping to DAS-
TONs in system calls data. 

3   Polymorphism and Susceptibility 

The word polymorphism is combination of “poly” means many and “morph” form or 
shape. In biology it is “the occurrence together in the same population of more than 
one allele (alternative form of a genetic locus) or genetic marker at the same locus 
with the least frequent allele or marker occurring more frequently than can be ac-
counted for by mutation alone. Different eye colors or hair shapes result from genetic 
polymorphism, see figure 2. 

 
Fig. 2. A gene may have different forms (alleles) to result various phenotypes. Same gene is 
having alleles to result different eye colors, is an example of polymorphism. 

The polymorphism may arise from single genetic unit (nucleotide) to multiple 
units. Currently, we are not concerned about the detailed mechanisms of biological 
polymorphism. We are only interested in learning that polymorphism gives rise to 
susceptibility. The importance of single nucleotide polymorphism (SNP) project in 
revealing susceptibility is worth mentioning (http://snp.cshl.org/). The polymor-
phism of tumor necrosis factor (TNF) gene is related to susceptibility of hepatitis 
B virus infection [ 22].  The major histocompatibility complex (MHC) includes the 
highly polymorphic human leukocyte antigen (HLA) genes that confer susceptibility 
to various infections including malaria, tuberculosis, HIV infections, and hepatitis B 
[ 23][ 25]. Polymorphism of a gene related to interleukin imparts susceptibility to hepa-
titis C [ 24] and other infections [ 26]. This suggests that polymorphism might be 
linked to potential danger susceptibility.  
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4   What Is DASTON? 

Based on the biological concept, briefly described in section 2, we have proposed the 
presence of DASTONs (DAnger Susceptible daTa codON) in data [ 1]. These are the 
data chunks or combination of data points, DATONs (DATa codONs), present in data 
heap that actively participate in data processing to retrieve specific information from 
that data when subjected to triggering data or process (figure. 3). It is like presence of 
genetic segments in host that are susceptible to pathogenic interactions resulting in the 
production  of toxic substances signaling danger (see fig-ure 1). The type and size of 
DATONs may depend upon the nature of application, data type, and depth of details 
required from the data. Real examples might be that; a) only potential fields in a data-
base might interact with query fields to result required information, and b) only poten-
tial system calls in a process might interact with exploit scripts to compromise the at-
tacked system. One may exploit his own creative analogy to implement this 
biologically inspired idea. The success of analogy depends on the degree of creativity 
and clarity in understanding the biological concept upon which it is based [ 20]. 

 

Fig. 3. DASTON present in data heap interact with incident data (named as pathogenic data) to 
produce required information or process (analogous to danger in danger theory) 

5   Polymorphism and Susceptibility of System Call DASTONs 

As discussed in section 3, biological polymorphism is “the occurrence together in the 
same population of more than one allele or genetic marker at the same locus”. It is 
also learned that biological polymorphism might provide the susceptibility measure of 
host body for infectious diseases [ 22][ 23][ 24][ 25][ 26]. We have applied the concept 
for establishing link between polymorphism and susceptibility of DASTON. 

To enhance the worth of DASTON, we have conducted interesting experiments. 
Though, the metaphor might be mapped to various computational applications and 
data types but we stick to our constrained application - intrusion detection – and the 
dataset - system call sequences. These have potential to clearly illustrate the metaphor 
in given biological context (see Table 1). 
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Table 1. The abstractions corresponding to system call DASTONs 

Abstractions 

Biology Computation 

Danger Intrusion 

Pathogen Exploit script 

Nucleotide  A system call 

Hosts’ genetic sequence Sequence of system calls for a process/task 

Triplet of nucleotides (Codon) Set of system calls (DATON) 

Susceptible Codon/segment Danger Susceptible DATON ( DASTON) 

5.1   Methodology 

We have conducted comparative analysis of normal and intrusion trace benchmark 
data, system call sequences, available from the University of New Maxico [ 21]. The 
system call pairs (DATONs), as shown in flow diagram of figure 5, are of three types; 
a) present in both normal and intrusion trace data, b) present in normal data only, and 
c) present in intrusion trace data only. The DATONs present only in intrusion trace 
system call sequences might be designated as the most susceptible system call pairs 
that are DASTONs. 

 

Fig. 4. Format of DASTONs associated system call pair used to get polymorphic measure of 
DASTONs 

The “polymorphic measure” of a DASTON (system call pair present in intrusion 
trace sequence only) is defined as the number of distinct pairs each essentially con-
taining one of two members from DASTON associated system calls (the system calls 
constituting DASTONs) , see figure 4.  

In these experiments we have used the data of “synthetic sendmail” exploits (we 
have performed experiments with other exploits also but for simplicity presenting 
these results only). The normal sequences have been tested against sequences obtained 
from three intrusion traces (sunsendmailcp intrusion, decode intrusion, and forward-
ing loops). Results of experiments are in agreement with our hypothesis of “polymor-
phic susceptibility”, as shown in plots of figures 6 and 7. 

5.2   Results 

The plots of figures 6 and 7 present results with Decode Intrusion and Forwarding 
Loops respectively. In first experiment with Decode Intrusion there are 32 system 
calls associated with DASTONs, and only 3 of these have lesser polymorphic meas-
ure  (number  of  distinct  system  calls combining with a DASTON associated system  

DASTON associated system call Other system calls in sequence 
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Fig. 5. Flow of the process for identifying system call DASTONs from normal and intrusion 
trace sequences 

 

Fig. 6. Experimental results for polymorphic measure with normal and decode intrusion trace 
sequences 

call to form distinct pairs) in intrusion trace data (filled diamond markers) than their 
companions in normal data (unfilled diamond marks).  In second experiment with 
Forwarding Loops the number of DASTONs associated system calls is 35 out which 
only one has lesser polymorphism. This clearly demonstrates that polymorphism 
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would be a useful parameter to estimate Danger Susceptibility of DASTONs, like 
their biological buddies. It also suggests that frequency based analysis alone, of sys-
tem calls sequences, should not be sufficient for describing their anomalous behavior, 
though it has shown success [ 27].  

 

Fig. 7. Experimental results for polymorphic measure with normal and forwarding loops intru-
sion trace sequences 

6   Conclusions 

In biology, susceptibility of host cell to infectious pathogen (a case of danger produc-
ing activity) might be determined through genetic polymorphism. The same hypothe-
sis we have applied to our proposed metaphor, DASTON, which shows compliance 
with the biological theory. It is a beautiful illustration of biological properties pos-
sessed by a bio-inspired computational metaphor. The data used for this illustration is 
system calls data that has significance in intrusion detection applications. The 
DASTON associated system calls have higher polymorphic values (means they com-
bine with greater number of distinct system calls to produce distinct system call pairs) 
in intrusion trace sequences than those in normal sequences. Only negligible numbers 
of deviations appear in results. This suggests that DASTON has potential to be ex-
plored more for furthering biological abstractions in Danger Theory based AIS 
(DAIS) research. The idea confers a novel look towards data that DAIS processes. 
The established link between polymorphism and danger susceptibility recommends 
that frequency based analysis alone should not be sufficient for detecting anomalous 
behavior of system call sequences. Considering polymorphic behavior of system calls 
we might be able to device good anomaly detectors. Though we have successfully ap-
plied the concept to computations but immuno-informaticians and immunologists 
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might help to verify and further explore the immunological basis of the idea. It needs 
their straightforward confirmation that danger susceptibility of host for infectious 
pathogens is related to polymorphism of genetic segments. Their confirmation might 
improve the status of DASTON and bring it closer to immuno-genetics. This will 
open new avenues for DAIS researchers and will help devising novel computational 
metaphors closer to immunology theory. Remember, all this works with the creativity 
of the best designed machine, the human.  
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Abstract. The General Suppression Control Framework (GSCF) is a framework 
inspired by the suppression hypothesis of the immune discrimination theory. The 
framework consists of five distinct components, the Affinity Evaluator, Cell 
Differentiator, Cell Reactor, Suppression Modulator, and the Local 
Environment. These reactive components, each responsible for a specific 
function, can generate long-term and short-term influences to other components 
by the use of humoral and cellular signals. 

This paper focuses in the design of a control system that aims to balance and 
navigate a self-balancing robot though obstacles based on the five components in 
GSCF. The control system demonstrates how simple combination of suppression 
mechanism can filter and fuses two unstable measurements together to obtain 
reliable measurement to maintain the balance of a dynamically unstable system. 
The control system is implemented in a two-wheeled self-balancing robot for its 
inherited instability can best demonstrate the systems responsiveness to dynamic 
changes. 

Keywords: Artificial Immune Systems, Distributed Control, Self-balancing 
Robots, Service Robots. 

1   Introduction 

Artificial Immune Systems (AIS) [10] has been studied widely in the fields of Artificial 
Intelligence and Computer Science due to its deep inspiration to the engineering 
sciences. The essences of human immune system properties are imitated to perform 
complicated tasks, for example, learning strategies, adaptive control, memory 
managements and self-organization. These special properties of the immune system 
have adapted in solving various engineering problems. Lau & Wong [15] developed a 
control framework to operate a group of autonomous agents with the ability to evolve 
and learn in a dynamic environment. Segel & Cohen [18] examined how biological 
ideas can help to solve engineering problems, and inversely how the artificial system 
can inspire new conjectures to unrecognized methods by which the immune system is 
organized. de Castro & Timmis [5] presented the application of AIS in computer 
network security, machine learning, and pattern recognition. Tarakanov et al. [23] 
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introduced Immunocomputing as a new computing approach based on the fundamental 
concept of formal protein (FP). 

This research is a continuation of [13] and employs the same General Suppression 
Control Framework (GSCF) [12] to design a control system for a self-balancing 
autonomous robot to perform search operations over difficult terrain [7]. The 
development of GSCF was initially motivated by the need for a distributed control 
system that can scale, evolve, and reconfigure in response to the dynamic environment. 
Features such as cell proliferation allow the system memory and communication range 
to scale in response to external stimulant, and cell evolution enables the system to adapt 
and to generate new knowledge. The ability to proliferate and evolve dynamically, 
distinct the system from other biologically inspired systems which can only learn with a 
fixed network, or can only generate solution with a fixed number of agents. 

Preceding works at Intelligent Systems Laboratory employed GSCF to design a 
highly scalable distributed system for controlling a homogeneous modular robot to 
reach a common goal under multi-constraints. The modular robot was configured in the 
form of a hyper redundant manipulator similar to those used in space [11]. The modular 
robot illustrated the scalable homogeneous systems, designed based on GSCF, can 
effectively general constructive behaviors to direct the modular robot to reach a 
common goal. The system also developed a minimal communication strategy to 
communicate goal status to all modules using only signal proliferation. The work 
described in this paper, in contrast to the previous, will employ GSCF to design a 
heterogeneous control system for an autonomous self-balancing robot with multiple 
sensors and actuators. The self-balancing robot has input signals from gyroscope, 
accelerometer, shaft encoders, sonar transducers, and thermal array sensor. The 
objective is to test the control framework’s ability to continuously fuse suppressive and 
stimulative signals from different sources to produce useful control parameters. The 
system treats these sensors as groups of heterogeneous cells that exist in the Local 
Environment. Suppressor cells with specific sensitivity towards different sensors are 
responsible for monitoring and reporting sensors data. These data are then filtered or 
combined to suppress or to stimulate motors to drive forward and backward to navigate 
the robot. The contributions of this work are in two folds; one, to better understand how 
heterogeneous control systems may be designed using GSCF, and two, to further 
demonstrate AIS theories can be employed to solve practical engineering problems. 

This paper proceeds as follows. Section 2 provides an overview of the immune 
system and the major concepts associated to GSCF. Section 3 gives a general overview 
of current development of self-balancing robots and their advantages over conventional 
three-wheeled and four-wheeled robots. Basic mechatronic design of the robot will also 
be presented. Section 4 introduces the suppression hypothesis in the discrimination 
theory and explains the five components in GSCF. The design of a GSCF based 
heterogeneous control system is also presented. Section 5 concludes the work in this 
research and discusses future works to be taken. 

2   The Immune Systems 

Bio-inspired systems [21] has been helping to solve engineering problems in many 
disciplines, to name but a few, genetic algorithms [3] creates diversified answers for 
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complex problem, artificial neural networks enable systems to learn effectively [9], and 
swarm behavior [17] inspired highly scaleable multi-agent systems [24]. Human 
Immune System [22] in its own stand is an extremely effective system that can identify 
abnormal activities, solve the problem using existing knowledge, and generate new 
solutions for unseen events; in short it is a network of players who cooperate to get 
things done [19]. Strictly speaking Human Immune Systems [2] consists of two major 
parts, the Innate Immune System and the Acquired Immune System. This section 
provides a brief overview of the basic components associated with the analogy 
exploited in GSCF. 

Innate Immune System [16] consists of elements that are always present and 
available at very short notice to foil challenges from “foreign” invaders. These 
elements include skin, mucous membranes, and the cough reflex, which act as barriers 
to environmental invaders. Internal components such as fever, interferons, 
macrophages, and substances released by leukocytes also contribute to terminating the 
effect of invaders directly or to enhance the effectiveness of host reactions to them. 

Acquired Immune System is a supplement to the innate system and presents only 
in vertebrates. The major recognition and reaction functions of the immune response 
are performed by T-lymphocytes (T-cells) and B-lymphocytes (B-cells) which exhibit 
specificity towards antigen. B-cells synthesize and secrete into the bloodstream 
antibodies with specificity against the antigen, the process is termed Humoral 
Immunity. The T-cells do not make antibodies but seek out the invader to kill, they also 
help B-cells to make antibodies and activate macrophages to eat foreign matters. 
Acquired immunity facilitated by T-cells is called Cellular Immunity. 

 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1. Cell Suppression Mechanism of the immune system 

Despite the many details in immunology theory, there are four unique functions that 
contribute to the operation of the entire system. These functions are: 

Clonal Selection - This theory holds that each B-cell makes antibodies that fit only one 
specific type of antigen, called its “cognate” antigen. When the specific B-cell binds to 
its cognate, the B-cell proliferates to clone many copies of itself which recognize that 
same antigen. The newly cloned cells will become plasma B-cells and continue to 
produce and export huge quantities of antibodies and will continue to clone more 
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B-cells. This simple action is recognized as one of the major concepts in immunology 
for its simplicity and high effectiveness. 

Immunological Memory - After B and T cells have been activated and proliferated to 
build up clones and destroy the foreign invaders, most of them will die off but some of 
them will live to pass on their knowledge of the antigen. These leftover B and T cells 
become immunological memory of the system and therefore are called Memory Cells. 
These cells are much easier to activate than “inexperience” cells and can spring into 
action quickly to protect the body. 

Antibody Diversity - This is a modular design process which mix and matches 
segments of B-cell genes to create Modular diversity and Junctional diversity. The 
result of this mix and match strategy is a small number of gene segments can create 
incredible antibody diversity. 

Discrimination - The most unique function of the immune system, perhaps the most 
important one too is to discriminate Non-Self Cells from Self Cells. Self Cells are the 
good cells that exist and work inside our body. Non-Self Cells are external elements 
that does harm to the system (antigen). The distinction and the recognition of foreign 
antigen is done by B-Cells and T-Cells, which allows the system to identify harmful 
bodies to response (to kill) and leave the good bodies (self-cells) untouched. 

3   Self-balancing Robots 

The inherent instability of inverted pendulum systems has always been an excellent test 
bed for control theory experimentations. In recent years, control theories derived from 
such systems has been implement to a class of mobile robots by research institutes, 
commercial companies, and independent hobbyists to develop robots for different 
applications. This type of two-wheel robots based on the design of an inverted 
pendulum are usually called self-balancing robots. The Swiss Federal Institute of 
Technology has developed a mobile inverted pendulum called JOE [8] to test a control 
system made up of two decoupled state space controllers. The Robotic Mobile Platform 
(RMP) based on Segway Company’s human transporter is being used for a variety of 
robotic research including outdoor path planning [14] for its high mobility on uneven 
terrain. Independent researcher Blackwell [4] uses off-the-shelves components to build 
a balancing scooter similar to the commercial vehicle Segway. Anderson [1] uses a 
commercial IMU (Inertia Measurement Unit) to construct a miniature self-balancing 
robot that can go up and down steep slopes with high stability. Most self-balancing 
robots uses gyroscope and accelerometer to determine the robots’ level of tilt in respect 
to ground, BaliBot [20] on the other hand uses a pair of infra-red range finders to obtain 
information that helps the robot to stay balance. 

Conventional mobile robots with three and four wheels offer reliability and stability in 
most daily operations due to their well developed mechatronics and control system. Yet, 
two-wheeled self-balancing robots carries practical advantages in many ways, for 
example, self-balancing robots has genuine zero round-about radius, small foot-print, 
high tolerant to impulsive force, and greater stability over slopes. Conventional robots 
with four wheels of equal size maximize platform stability by locating the Center of 
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Gravity (CG) between front and rear wheels as shown in Figure 2a. This design works 
well on level ground, but when going up hill (Figure 2b) the robot’s line of CG begins to 
shift towards the rear wheels; as the gradient increases the front wheels start to lose 
traction and the robot will tip backward when the line of CG is beyond the rear support. 
The same situation occurs when going down hill (Figure 2c). Three-wheeled robots 
(Figure 2d) often have two larger differential driving wheels at the back (or front) and one 
smaller wheel in front for support. This type of robots can usually go up a steeper slope 
(assuming the larger driving wheels are at the back) than down because when going down 
hill the rear driving wheels will lose traction even before the robot tips (Figure 2f). 

Two-wheeled self-balancing robots (Figure 2g) are inherently unstable; therefore 
they must have a balancing mechanism to keep their CG vertically above their wheels 
to prevent the robot from falling. To keep the robot standing straight, the balancing 
mechanism drives the wheels forward when the CG is accelerating forward, and 
backward when it is accelerating backward. Therefore by making the robot lean 
forward (offsetting CG forward); the balancing mechanism will automatically drives 
the wheels forward with an appropriate torque (speed) to cancel out the acceleration. 
This mechanism enables self-balancing robots to drive up and down slopes (Figure 
2h-g) with a straight body, hence preventing the robot from tipping over. 

 

Fig. 2. Conventional robots with three and four wheels easily lose traction and tip over when 
going up and down slopes (a-f). Self-balancing robots maintain good traction by shifting its CG 
above its wheels at all time. 
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Fig. 3. The self-balancing robot equipped with optical encoder, sonar transducers, thermal array 
sensors, gyroscope, and accelerometer 

Though the primary focus of this paper is on control system design, understanding 
the mechatronic design of the robot may help to appreciate the simplicity of the control 
system in contrast to the complexity of the mechanical system under control. Figure 3 
shows the general appearance of the self-balancing robot. To balance a two-wheeled 
robot, four terms must be known in order to model the motion and position of the robot; 
they are platform position, platform velocity (horizontal), angular rate, and tilt-angle. In 
our design, the platform velocity and position are estimated using a pair of optical 
encoders (HEDS-5500) from Hewlett Packard. The encoders have a resolution of 512 
counts per revolution, platform displacement (position) can be estimated by knowing 
the number of counts and wheel diameter; integrating number of counts in respect to 
time gives the platform velocity. A gyro (ADXRS150EB) from Analog Device and an 
accelerometer (Memsic 2125) from Memsic are used to estimate the angular rate and 
the tile angle. Angular rate can be obtained directly from the gyro, where tilt angle can 
be obtained by integrating the angular rate in respect to time. However, readings from 
gyro tend to drift over time; hence an accelerometer is needed to correct the drift and to 
give a reference of the absolute vertical angle. Though accelerometer can produce 
accurate angle readings in respect to gravitational acceleration, it is also very sensitive 
to acceleration caused by other forces, such as driving force from the motor, therefore  
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an intelligent filtering mechanism that can combine the two outputs to produce a 
reliable tilt angle is a fundamental requirement for self-balancing robots. The following 
section will describe how a control system can be built to balance a robot on two wheels 
and how simple suppression mechanism can generate reliable control parameter from 
unstable sources. Due to the complexity and ample details of the mechanical system, 
the following sections will focus on high level system design and ignore the lower level 
control details to maintain a keen focus on the topic. 

4   Control System 

The control system designed for the self-balancing robot is based on the General 
Suppression Control Framework (GSCF) (see Figure 4) developed in our previous 
research [13]. The design of GSCF was based around the analogy of the 
immuno-suppression hypothesis [6] in the discrimination theory. When a T-cell 
receptor binds to a peptide with high affinity presented by an APC (Antigen Presenting 
Cells), the T-cell recognized the antigen become mature and it has to decide whether to 
attack the antigen aggressively or to tolerate it in peace. An important decision factor is 
the local environment within which the T-cell resides. The present of inflammatory 
cytokine molecules such as interferon-gamma (INF- ) in the environment tend to elicit 
aggressive behaviors of T-cells, whereas the anti-inflammatory cytokines like IL-4 and 
IL-10 tend to suppress such behavior by blocking the signaling of aggression. In brief, a 
T-cell matured after recognizing an antigen does not start killing unless the 
environment also contains encouraging factors for doing so. 

 

Fig. 4. The General Suppression Framework. Dashed lines represent humoral signal transmissions, 
where solid lines represent cellular signals. The suppression modulator can host any number of 
suppressor cells. 
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The control framework consists of five major components. The most notable 
difference between the natural mechanism shown in Figure 1 and the framework shown 
in Figure 4 is that the T-cell’s functions are divided into three separate components, the 
Affinity Evaluator, Cell Differentiator and the Cell Reactor. Delegating the three 
unique functions into separate components enables the system to be organized in a 
modular manner and when programming for an application, the result and effect of 
each component can be analyzed easier. 

The first step in designing a GSCF based control system is to identify the system 
objective and assign basic suppressor cell functions. In this experiment a self-balancing 
robot equipped with a heat array sensor is used and the system objective is to track 
abnormal present of heat in the laboratory. The robot is also equipped with two sonar 
transducers to prevent it from bumping into obstacles, one gyro and one accelerometer 
to keep the robot balance on two wheels, and one pair of encoder to monitor the wheel 
position and speed. 

4.1   GSCF Components 

The functions of the five components and the assignment of suppressor cell duties are 
explained below. 

(1) Affinity Evaluator – evaluates information in the Local Environment against the 
system objective and output an affinity index to (4) Suppression Modulator and to (2) 
Cell Differentiator when the heat array sensor senses an abnormal heat. The affinity 
index is highest when the heat object is close to the robot. 

(2) Cell Differentiator – evaluates affinity index from the (1) Affinity Evaluator to 
confirm if there is an abnormal heating body nearby and to decide whether the robot 
should trace the heat source based on suppression indexes from the (4) Suppression 
Modulator. The decided behavior is sent to (3) Cell Reactor using cellular signaling. 
The component can also send humoral signals directly to influence the (5) Local 
Environment. 

(3) Cell Reactor – reacts to the cellular signal from the (2) Cell Differentiator and 
execute corresponding behaviors which take effect in the (5) Local Environment. This 
component is responsible for converting logical and computational results into 
mechanical actions. 

(4) Suppression Modulator – is a collection of Suppressor Cells. The function 
specific Suppressor Cells continuously react to external stimulants to adjust their 
sensitivity, and perform proliferation. The overall function of Suppression Modulator 
is comparable to the cytokine signaling mechanism which uses INF- , IL-4, IL-10, etc. 
to perform intercellular communication and to cause the environment to inflame, so to 
elicit or suppress aggressive behaviors in the T-cells. There can be 0, 1, 2, 3, …, n 
number of Suppressor Cells and their response to stimulation may influence other 
Suppressor Cells inside the Modulator and may evolve over time. 

(5) Local Environment – is where interactions between different components take 
place. The importance of this component within the framework is to act as an interface 
that links to the Global Environment which contains other Local Environments with 
different sets of Suppression Modulators. In addition, it provides a theoretical space to 
integrate the physical objects and the abstract system in an analyzable form. 
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4.2   Suppressor Cells 

The fundamental idea of GSCF is to let Affinity Evaluator to decide whether there is a 
problem to solve (an objective to meet), and then consult the Cell Differentiator to 
decide whether the system has the resources to solve the problem under imposed 
constraints. These constraints may be predefined system constraints or maybe newly 
developed due to changes in the environment. GSCF define these constraints and 
system variables as suppressor cells (SC), these cells may evolve to adapt to new 
changes and may proliferate to increase their sensitivity to specific stimulants. This 
section discusses how suppressor cells are designed and how individual suppressive 
action can be combined to produce useful result. 

 
 
 
 

 

Fig. 5. The three suppressor cells responsible for determining the robots tilt angle. SC1 and SC2 
monitor gyro and accelerometer data and adjust their sensitivity in response to changes in the 
environment. SC3 fuses the data for Cell Differentiator to evaluate. 

To balance a robot on its two wheels the system must know which way the robot is 
tilting and how fast is the tilt angle changing, this require readings from the gyro and 
the accelerometer. Since gyro can produce better integrated angular reading at higher 
frequency and accelerometer can produce accurate angular reading when the robot is 
stable (slow motion), these two measurements can be fused to obtain a more accurate 
reading by assigning suppressor cells to monitor their status. The cell corresponding to 
a sensor is said to have high sensitivity to the sensor and its sensitivity may varies in 
response to changes in the environment. 

SC1 is assigned to have high sensitivity to gyro outputs; the relative angle from the 
vertical axis is calculated by angular rate times t (sample rate in millisecond). The 
calculated angle is subject to gyro drift and is therefore only reliable in short term. The 
reliability is directly proportional to the system’s stability; sensitivity is initially set to 
70%, SC1 automatically adjust the sensitivity before outputting to SC3. 

The accelerometer assigned to SC2 measures the deviated angle between the robot 
and the vertical axis. This instrument is more reliable in long term because it measures 
absolute angle in respect to earth’s gravitational force and its reading does not drift over 
time. The reliability of this instrument is inversely proportional to the system’s 
stability; sensitivity is automatically adjusted by SC2 in response to environment 
changes, which is initially set to 30%. 

While SC1 and SC2 continuously adjust their sensitivities in response to the 
system’s stability (angular rate of change), SC3 is sensitive to the output of SC1 and 
SC2. SC3 combines the estimated angle from SC1 and the absolute angle from SC2  
to produce a de-drifted angle reading that is biased to gyro  reading  when  the  system is  

Suppressor Cell 1 Suppressor Cell 2 

Suppressor Cell 3 

SC1 + SC2 

Gyro Output 
Estimated Angle 

Accelerometer Output 
Absolute Angle 

Sensitivity = 70% Sensitivity = 30% 

De-drifted Angle 
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Fig. 6. (A) on the graph shows the robot oscillates back and forth near to its vertical position, then 
an external impulse force applied to it (B) caused it to fall flat on its face (C) 

 

Fig. 7. The physical robot corresponding to this graph was tilted 30 degree towards its front and 
oscillates back and forth near this angle in the positive region (0-90 degree) only. However, the 
gyro and the accelerometer were both reporting realistic angles in the positive region as well as 
the negative region. 

unstable and to accelerometer when the system is relatively stable. Figures 6 and 7 
show the result of this simple suppression mechanism. 

The y-axis of the graph in Figure 6 ranges from -100 to 250 degree, but the actual 
deviation is only possible from -90 degree (fall flat in front) to +90 degree (fall flat on 
the back) with 0 degree being absolutely straight. The readings beyond ±90 are either 
due to gyro drift or due to dynamic acceleration that influenced the accelerometer 
reading. This graph shows the accelerometer reading obtained when the robot oscillates 
back and forth at low speed is more reliable than the gyro estimated reading, therefore 
the solid line (de-drifted angle) tends to agree more with the accelerometer. However 
after the robot being pushed and fall at high speed (C), the accelerometer is no longer 
reliable, hence the sensitivity of SC2 drops and SC1 increases, causes the output from 
SC3 (solid line) to agree more with the gyro estimated angle at that instance. 
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The graph in Figure 7 further demonstrates how this simple suppression mechanism 
filters unstable readings from two sources to produce one reliable reading. This time the 
robot is tilted 30 degree towards its front and oscillates back and forth near this angle. 
Notice even the robot was only oscillating in the positive region (0-90 degree), the gyro 
estimated angle and the accelerometer angle still fluctuate severely into the negative 
region. By continuously adjusting the sensitivity of SC1 and SC2, a reliable reading 
that resembles the actual physical motion of the robot was produced. 

There are three other cells inside the Suppression Modulator, SC4 and SC5 are 
sensitive to the sonar transducers’ readings, their suppression index increases when 
obstacles are near. SC6 is sensitive to readings from the thermal array sensor; 
suppression index is highest when a heating object is found. The functions of these six 
SCs are summarized in Table 1. 

Table 1. Summary of suppressor cells in the Suppression Modulator 

 Sensitive Element Suppressor Cell Duties Output to Cell 
Differentiator 

SC1 Gyroscope Sensitive highest when system is unstable Output to SC3 
SC2 Accelerometer Sensitivity highest when system is stable Output to SC3 
SC3 Summation Cell 

(SC1 and SC2) 
Combines signals from SC1 and SC2 to provide a 
reliable suppression signal to Cell Differentiator. 
Suppression index highest when robot is not 
balanced. 

De-drifted Angle 

SC4 Left Sonar Suppression index highest when obstacle is close Suppression 
Signal 1-10 

SC5 Right Sonar Suppression index highest when obstacle is close Suppression 
Signal 1-10 

SC6 Thermal Array 
Sensor (TAS) 

Suppression index highest when heat is found Suppression 
Signal 1-10 

4.3   Cell Differentiator 

The functioning of Cell Differentiator is similar to the cell differentiation mechanism, 
in which cells develop aggressive or tolerant behavior in response to the type of 
cytokines present in the immune system. Like Suppression Modulator, Cell 
Differentiator is the heart of GSCF; it is responsible for integrating complex 
information from different sources into simple instructions and converts intricate 
problems into quantitative outputs. The decision flow of the Cell Differentiator can be 
summarized using a simple flow chart as shown in Figure 8. 

The suppression indexes from the suppressor cells has priority over all others, it is 
being evaluated first to see if the robot is balance (SC1, SC2, and SC3) and if any 
obstacles present in front of the robot (SC4 and SC5). If the suppression index is high, 
the robot will perform no work except to keep the robot balance, and if the suppression 
index is low the system will check the affinity index to see whether a heating body is 
found. If a heating body is found, the system will perform aggressive behavior, alarm 
the command centre and remain still to monitor the heat source. If there is no heating 
body found within sensory range, the robot will continue to patrol around. Note that the 
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Cell Differentiator is only responsible to produce high level behavioral instructions 
such as “sound the alarm”, “keep balance”, “search for heat”, etc. Low level commands 
for mechanical controllers are translated by the Cell Reactor. Since mechanical control 
schemes varies greatly between different operation platforms, GSCF delegates this 
work to Cell Reactor, so the high level design of other components can remain platform 
independent. 

 

Fig. 8. Decision scheme in Cell Differentiator 

5   Conclusion and Future Work 

Artificial Immune System is a large and complex system that covers some biological 
mechanisms that are already being employed to solve engineering problems, and many 
more that are not yet exploited. This research demonstrated how simple suppression 
mechanism can help the robot to stay balance while searching through an obstructed 
environment. The exploitation of integration and proliferation of distributed signals 
(cell affinity, cell aggressiveness, and cell maturity) to suppress counter-productive 
behavior in a dynamic environment distinct AIS from other biologically inspired 
systems. 

This paper is not intended to discuss hardware implementation details in the Cell 
Reactor but to show how GSCF based control system is designed at a higher level. The 
design of this heterogeneous control system for self-balancing robot is an attempt to 
further investigate flexibility of GSCF to different application requirements. Our 
previous research used GSCF to design a control system for a homogeneous MSR 
(Modular Self-Reconfigurable) robot to reach a light source under the constraints of 
torque limit and joint angle. The new system designed for the autonomous 
self-balancing robot employs the same system structure and added many features that 
were not explored in the previous one. 

Firstly, the new system is a heterogeneous system with six independent suppressor 
cells that has adjustable sensitivity level towards different sensors, where previous 
homogeneous system has only one suppressor cell. 

Secondly, the previous homogeneous system has six modules and one sensor, 
whereas the new heterogeneous system has one module but six sensors. This poses 
radical challenges to the design of Suppression Modulator and Cell Differentiator. 
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Thirdly, the simple suppression mechanism between SC1, SC2 and SC3 shows that 
SCs inside of the suppression modulator may communicate with neighboring cells as 
well as to the external environment. The proliferation of suppression signals provided a 
simple way to adjust cell sensitivity, hence increased system adaptability. This 
mechanism was not exploited in the homogeneous system. 

In general, both the homogeneous and heterogeneous control systems built on the 
idea of GSCF served well in their respective application. Though the current 
applications are relatively simple, their under laying principles are applicable to many 
other engineering problems. Our future work will continue to apply GSCF to solve 
engineering problems at different level, in particular to problems that require high level 
learning. To do so, it is necessary to develop more sophisticate suppressor cells to study 
the dynamics of a diverse group of suppressor cells, and to explore more on the 
evolution aspect of the framework. The storage, retrieval and selection of distributed 
immune memories generated during the learning process would probably bring new 
ideas to distributed data manipulation for behavior based systems. 
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Abstract. Computer generated sounds for music applications have many facets, 
of which timbre design is of groundbreaking significance. Timbre is a 
remarkable and rather complex phenomenon that has puzzled researchers for a 
long time. Actually, the nature of musical signals is not fully understood yet. In 
this paper, we present a sound synthesis method using an artificial immune 
network for data clustering, denoted aiNet. Sounds produced by the method are 
referred to as immunological sounds. Basically, antibody-sounds are generated 
to recognize a fixed and predefined set of antigen-sounds, thus producing 
timbral variants with the desired characteristics. The aiNet algorithm provides 
maintenance of diversity and an adaptive number of resultant antibody-sounds 
(memory cells), so that the intended aesthetical result is properly achieved by 
avoiding the formal definition of the timbral attributes. The initial set of 
antibody-sounds may be randomly generated vectors, sinusoidal waves with 
random frequency, or a set of loaded waveforms. To evaluate the obtained 
results we propose an affinity measure based on the average spectral distance 
from the memory cells to the antigen-sounds. With the validation of the affinity 
criterion, the experimental procedure is outlined, and the results are depicted 
and analyzed. 

1   Introduction 

Computer music is an ever-growing field partly because it allows the composer such 
great flexibility in sound manipulation when searching for the desired result. Once the 
search space and the goals are defined, a technique for achieving the final product is 
required. Many different approaches have been proposed to meet the requirements of 
the process, i.e. creating interesting music, with results that vary from the unexpected 
to the undesired, depending upon a vast number of factors and on the methodology 
itself. Traditional sound synthesis techniques present limitations especially due to the 
fact that they do not take into consideration the subjective and/or the dynamic nature 
of music, by using processes that are either too simple or not specifically designed to 
handle musical sounds  [14]. 

In this work, we are focusing primarily on the production of complex sounds for 
musical applications taking timbre design as paradigm. Complex sounds pertain to a 
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distinctive class of sounds that present certain characteristics. Such sounds usually 
have dynamic spectra, i.e. each partial has a unique temporal evolution. They are 
slightly inharmonic and the partials possess a certain stochastic, low-amplitude, high-
frequency deviation in time. The partials have onset asynchrony, i.e. higher partials 
attack later than the lower ones. Our ears are highly selective and often reject sounds 
that are too mathematically perfect  [4]. 

Music composition has been studied for a long time using many kinds of 
computational techniques, including statistic and stochastic methods  [22] [34], chaos 
theory  [19], and other non-linear methods  [21]. Many researchers have recently 
suggested the creation of Artificial Intelligence (AI) based systems for music 
composition  [1] [4] [16] [32]. Applications of AI in music composition involve 
artificial neural networks  [6], cellular automata  [3] [23], and evolutionary computation 
(EC)  [13] [16] [20] [24] [32]. Refer to the work of Santos et al.  [29] for a detailed 
review of the application of EC in music systems. 

As a preliminary step toward the current proposal, Caetano et al.  [4] suggested the 
use of EC to pursue stationary/fixed target sounds that are considered the user’s 
desired timbral outcome. The reported results can be interpreted as a sort of spectral 
blend between the initial and target sounds. An objective and a subjective criterion 
were adopted to evaluate the results. The approach of creating new timbres by the 
algorithmic evolution of a population of candidate solutions, having targets as 
references, presents a vast range of possibilities. It should be noted that, despite the 
fact that the process of algorithmic evolution searches for an optimum guided by the 
fitness function, this optimum cannot be properly specified from the musical point of 
view. So, the denoted targets should not be considered ideal solutions, but solely 
indicative modes. 

Here, we present a timbre design method that allows the composer to express a 
certain degree of subjectivity by simply adjusting the input parameters according to 
prerequisites. The user is enabled to find candidate solutions that meet certain musical 
requirements by using a set of waveforms as examples of the desired timbre. Instead 
of describing the sounds using numerical parameters or any other linguistic tool, we 
used a set of sounds to characterize timbre. Smalley  [31] declared that the information 
contained in the frequency spectrum cannot be separated from the time domain, 
because “spectrum is perceived through time and time is perceived as spectral 
motion”. Thus, by specifying the target waveforms (antigen-sounds), the user is also 
specifying the spectral contents and the timbral characteristics of the tones. Grey  [14] 
discusses the advantages of time domain representation. We aim at sound design by 
means of the specification of the spectral contents. In practical terms, the induced 
immune response will provide results (antibody-sounds) highly correlated with the 
target waveforms, albeit preserving local diversity. 

The main objective of this paper is to verify the music potential of an immune 
inspired clustering technique in the specific task of timbre design by simulating the 
process under different conditions, and posteriorly showing that the results are 
consistent with the expected outcome. Artificial immune systems (AIS) for data 
clustering are generally based on the immune network theory of Jerne  [18], thus 
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producing a self-organizing process with diversity maintenance and a dynamic control 
of the network size  [10]. 

Concerning the application of immune-inspired approaches in the aesthetical 
domain, we may emphasize two initiatives. AISArt  [17] is an interactive image 
generation tool. The user conducts the system according to the aesthetic appreciation 
of areas of the images, which is also an original approach in the context of interactive 
evolutionary systems  [1]. Chao and Forrest  [5] also describe an interactive search 
algorithm inspired by the immune system, devoted to synthesizing biomorphs  [9]. 
They report that this algorithm is capable of consensus solutions, given that distinct 
selection criteria may be associated with modules that compose the biomorph. To the 
best of our knowledge, there has been no previous application of AIS in timbre 
design. 

The next section describes theories of timbre and how they are related to the 
development of sound synthesis techniques. Then, the fundamentals of AIS are briefly 
reviewed and the proposed approach is presented. The experiments performed are 
described and the outcomes, followed by analysis, are presented. Finally, concluding 
remarks and perspectives for further research are considered. 

2   Timbre Design 

2.1   Musical Timbre 

Timbre is defined by the ASA (American Standard Association) as “that attribute of 
the auditory sense in terms of which the listener can judge that two sounds similarly 
presented which have the same intensity and pitch are dissimilar”  [28]. Therefore, 
musical timbre is the characteristic tone quality of a particular class of sounds. As a 
diverse phenomenon, timbre is more difficult to characterize than either loudness or 
pitch. No one-dimensional scale – such as the loud/soft of intensity or the high/low of 
pitch – has been postulated for timbre, because there exists no simple pair of 
opposites between which a scale can be made. 

Because timbre has so many facets, computer techniques for multidimensional 
scaling have constituted the first major progress in quantitative description of timbre 
 [14], since the pioneering work of Hermann von Helmholtz  [33] in the nineteenth 
century. From then on, researchers have determined a more accurate model of natural 
(complex) sounds. Digital recording has enabled the contemporary researcher to show 
that the waveform (and hence the spectrum) can change drastically during the course 
of a tone. Risset  [27] observed that complex sounds have dynamic spectra and the 
evolution in time of the sound’s spectrum plays an important part in the perception of 
timbre. Timbre variations are perceived, for example, as clusters of sounds played by 
a particular musical instrument, or said by a particular person, even though these 
sounds might be very distinct among themselves, depending upon its pitch, intensity 
or duration. In fact, the concept of timbre has always been related to sounds of 
musical instruments or voice, and it is in this scope that the majority of research on 
timbre has been developed  [14] [15] [27]. These works identified innumerable factors 
that form what is called timbre perception. 
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2.2   Theories of Timbre 

2.2.1   Classical Theory of Timbre 
Herman von Helmholtz  [33] laid the foundations for modern studies of timbre. He 
characterized tones as consisting of a sum of sinusoidal waves enclosed in an 
amplitude envelope made up of three parts: the attack, the steady-state, and the decay 
as shown in Figure 1. 

Fig. 1. A simplified Helmholtz model: the three principal segments of a tone 

Helmholtz concluded that sounds which evoke a sensation of pitch have periodic 
waveforms (refer to Figure 2 (b) for an example) and further described the shape of 
these waveforms as fixed and unchanging with time. He also established that the 
nature of the waveform has great effect on the perceived timbre of a sound. To 
determine which characteristics of a waveform correlate best with timbre, he made 
use of the work of Fourier and concluded that the spectral description of a sound has 
the most straightforward correlation with its timbre. As a consequence, almost every 
synthesis technique proposed is concerned with the production of a signal with a 
specific spectral content, rather than a particular waveform. 

The spectral envelope of a sound is one of the most important determinants of 
timbre  [12], because it outlines the profile of energy distribution in a frequency 
spectrum. 

2.2.2   Modern Studies of Timbre 
Since then, researchers have determined a more accurate model of natural sound. 
Digital recording has enabled researchers to show that the waveform, and hence the 
spectrum, can change drastically during the course of a tone. Such changes can be 
visualized by a plot of the evolution of the partials in time, herein denoted dynamic 
spectrum and depicted in Figure 2 (c). 

The Fourier transform enables researchers to obtain the spectrum of a sound from 
its waveform. Risset  [27] obtained the spectral evolution of the partials of trumpet 
tones, being able to determine the time behavior of each component in the sound. He 
found that each partial of the tone has a different amplitude envelope. 

This clearly contrasts with the basic Helmholtz model in which the envelopes of all 
the partials have the same shape. Grey  [15] wondered whether such fine-grained, 
intricate evolution of the partials could be approximated and still retain the tone’s 
characteristic timbre. He found out that of the three forms of simplification attempted 
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with the tones, the most successful was a line-segment approximation to time-varying 
amplitude and frequency functions for the partials. 

Although this method does decrease dramatically the amount of data required to 
reconstruct the tones, it still takes a large number of oscillations to satisfactorily 
accomplish the desired result. In computer music, synthesis algorithms that directly 
recreate the partials of a tone generally use data stored as line segments. It is 
important to be aware that this methodology is usually effective only within a small 
range of frequencies. For instance, a tone based on the data but raised an octave from 
the original will most often not evoke the same sensation of timbre. 

Fig. 2. Example of a waveform and dynamic spectrum of a natural (complex) sound (tenor 
trumpet). Part (a) shows the waveform and (b) a detail of the periodicity, characteristic of the 
harmonic spectra of musical instruments. Part (c) emphasizes the evolution of the partials in 
time (dynamic spectrum). 

When presented with a group of spectral components, a listener may or may not 
fuse them into the percept of a single sound. One of the determining factors is the 
onset asynchrony of the spectrum that refers to the difference in entrance times among 
the components  [15] (see Figure 2(c)). The fluctuations in frequency of the various 
partials are usually necessary for the partials to fuse into the percept of a single  
tone  [7]. 

3   The Artificial Immune Musical System 

The immune system is a complex of cells, molecules and organs with the primary role 
of limiting damage to the host organism by pathogens, which elicit an immune 
response and thus are called antigens. One type of response is the secretion of 
antibody molecules by B cells. Antibodies are receptor molecules bound on the 
surface of a B cell with the primary role of recognizing and binding, through a 
complementary match, with an antigen. Antigens can be recognized by several 
different antibodies. The antibody can alter its shape to achieve a better match 
(complementarity) with a given antigen. The strength and specificity of the antigen-
antibody interaction is measured by the affinity (complementarity level) of their 
match  [11]. 
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3.1   Artificial Immune Network (aiNet) 

AISs are adaptive procedures inspired by the biological immune system for solving 
several different problems  [10]. Dasgupta  [8] defines them as “a composition of 
intelligent methodologies, inspired by the natural immune system for the resolution of 
real world problems”. 

The aiNet is an artificial immune network whose main role is to perform data 
clustering by following some ideas from the immune network theory  [18], the clonal 
selection  [2], and affinity maturation principles  [25]. The resulting self-organizing 
system is an antibody network that recognizes antigens (input data set) with certain 
(and adjustable) generality. 

The clonal selection principle proposes a description of the way the immune 
system copes with the pathogens to mount an adaptive immune response. The affinity 
maturation principle is used to explain how the immune system becomes increasingly 
better at its task of recognizing and eliminating these pathogens (antigenic 
substances). The immune network theory hypothesizes the activities of the immune 
cells, the emergence of memory and the discrimination between reactive and tolerant 
regions in the shape-space  [26]  [30]. 

Fig. 3. Depiction of the feature extraction capability of aiNet. Part (a) shows the original data, 
part (b) shows the resultant memory cells representing the original data, and part (c) illustates 
the common timbral features of three classes of sounds. 

The aiNet clusters will serve as internal images (mirrors) responsible for mapping 
existing clusters in the data set (Figure 3 (a)) into network clusters (Figure 3 (b)). The 
resultant memory cells represent common features present in the data set that were 
extracted by aiNet. Let us picture a set of sounds as antigens and its internal (mirror) 
image as variants. Inspired by Risset’s sound variants idea  [27], it is possible to 
imagine, for example, variants as a type of immune-inspired transformation applied to 
the sound population. Smalley’s time and spectrum integration  [31] also induces a 
timbre adaptation in time or, using a more suitable terminology for the context, a 
dynamic process in which an immunological timbre is generated. In this sense, the 
waveforms can be regarded as the repertoire to which the system is exposed, and the  
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associated timbre may be linked to the specific response it elicits. It is of critical 
importance to notice that when an antibody-sound is representing more than one 
antigen-sound, it is placed in such a spot in soundspace that allows it to present 
features that are common to all the sounds it is representing. Figure 3 (c) depicts the 
intersection of characteristics shared by three different sounds. 

3.1.1   Representation 
The input parameters of the present implementation are shown in Table 1. Each 
individual is codified as a vector composed of L samples of a given waveform at a 
sampling frequency of FS samples per second. The individuals are, thus, represented 
in time domain, as vectors in . The affinity is given by the multidimensional 
Euclidean distance between antigen-sounds and antibody-sounds and is shown in 
equation (1). This is the time-domain evaluation of distance. 

Table 1. Input parameters that can be controlled by the user 

L Number of samples per individual 
FS Sampling rate 
G Number of antigens 
ts Suppression threshold 

number Initial number of antibodies 
n Number of best-matching cells selected 

gen Number of generations 
CM Clone number multiplier 
qi Percentile amount of clones to be re-selected 
sc Minimum distance between antibodies and antigens 
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3.1.2   Methodology of Analysis 
A measure of spectral distance was developed to verify whether approaching the 
target sounds in time domain also corresponds to approximating the desired timbral 
attributes in virtue of this spectral distance measure. It measures the distance from the 
antigen-sound’s dynamic spectrum to the dynamic spectrum of each antibody-sound it 
represents, as shown in equation (2), which utilizes the same notation of Figure 4. 
Figure 4 depicts a schematic representation of a dynamic spectrum matrix. The 
parameters are explained in Table 2. 
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Fig. 4. Depiction of a dynamic spectrum matrix representation. X-axis represents time domain 
by the index j. Y-axis represents frequency domain by the index i. Each white row is a 
frequency (partial) temporal evolution (e.g. f1). The gray columns are instantaneous spectra in 
determined moments (e.g. t1). The intersection of row and column gives the amplitude of a 
given partial (frequency) at a given moment, represented by a(i,j) (black square). 

Table 2. Parameters of Equations (2) and (3) 

k kth antigen 
h hth antibody 
g Generation 
F Dimension of frequency vector 
T Dimension of time vector 
D Number of antibodies representing antigens 

Then, the minimum distance for each antigen and the respective antibody-sound set 

representing it are extracted from kh
gα , obtaining a subset 1~ k

gα , where kk ≤1  because 
one antibody-sound may be representing more than one antigen-sound (data 
compression). In the latter case, the distances are averaged for each antigen-sound. 
Finally, this vector of values is averaged for each generation, as shown in  
equation (3). 

α=Α
D

k

k
gg

1

1~  (3) 

This way, an average spectral distance from the potential solutions to the target 
spectrum is obtained at each generation. Two different experiments were performed 
to validate the method. They will be explained in what follows. 
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Experiment 1: 
The spectral distance can be used to test whether the suppression threshold (ts) would 
produce the expected result. The suppression threshold (ts) controls the specificity 
level of the antibodies, the clustering accuracy and network plasticity. Refer to de 
Castro & Von Zuben  [11] for sensitivity analysis of the parameters. One can conclude 
that decreasing ts, the antibody-sounds are expected to become more specific, 
decreasing the average distance from the antigen-sounds they represent while 
increasing in number. As a consequence, the resultant waveforms approach the target 
sounds as close as the user wishes. 

Experiment 2: 
In this experiment we wish to verify the potential of the method to generate high 
quality variants, regardless of the type of initialisation of the antibody network, i.e. 
regardless of the initial spectral content. We used three types of initialisation: white 
noise (a vector randomly generated), pure tones (sinusoidal waves with random 
frequencies from 180 Hz to 16 kHz) and complex sounds (loaded waveforms of 
another musical instrument). The spectra used in the experiments can be seen in 
Figure 5. They represent the dynamic spectra of the original antibody-sounds, that is, 
the spectral content which will be moulded into the target spectra by means of 
temporal immunological manipulation. 

The dynamic spectra of four antigen-sounds are shown in Figure 6. They represent 
the target spectra, the ultimate goal of the method. We expect to obtain 
immunological internal images, which would represent timbral variants. 

Fig. 5. Dynamic spectrum of the original antibody-sounds used in experiment 2. Part (a) shows 
white noise; Part (b) a pure tone and parts (c1) and (c2) show examples of the dynamic 
spectrum of a harmonica representing a natural (complex) sound. 

Fig. 6. Example of dynamic spectra of the tones used as antigens 
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4   Results 

The parameters used in all experiments were as follows in Table 3. Refer to Table 1 
for the definition of all input parameters. These values of L and FS represent a wave-
format sound segment of approximately 0.1s. In experiment 1, the value of ts varies as 
shown in Table 4. 

Table 3. Parameters utilized in both experiments (1) and (2) 

L FS G number n gen CM qi sc 
4096 44100 10 5 1 50 7 70% 0.1 

4.1   Experiment 1 

In this experiment we wished to confirm the data compression capability of the 
method. This characteristic allows the user to choose how close to the target sounds 
one wishes the results to be. The smaller the number of memory cells (resultant 
antibody-sounds), the farther they are from the antigen-sounds they represent for they 
represent more than one antigen-sound. The results shown in Table 4 confirm this 
assertion both in time and in spectrum domain. Due to the relatedness of the spectral 
contents and the associated timbre, it can be inferred that the  same  holds true  for the 
corresponding timbral space. That is, this representation contains characteristics that 
are common to all the sounds it is representing (Figure 3). 

Table 4. Result of Experiment 1 

  Distance 
ts D Temporal Spectral 

0.5 4 3.16 41.89 
0.3 6 1.44 35.46 
0.1 9 0.49 21.66 

0.05 10 0.27 20.05 

Fig. 7. Depiction of the different results obtained by adjusting the parameters and randomly 
perturbing the antigen-sounds 
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Figure 7 (a) shows an antigen-sound’s dynamic spectrum and its memory cell 
representation when ts is 0.05 (b) and 0.5 (c). Part (d) shows the result of randomly 
perturbing the antigen-sounds, i.e. adding a gaussian-noise (white-noise) vector (with 
variance 0.1) to it. Clearly the result is very different between Figures 7 (c) and (d). 
Psychoacoustically, the resultant sound in Figure 7 (c) is a timbral merger of the 
corresponding antigen-sounds. In Figure 7 (d) it is a noisy version of Figure 7 (a). It is 
interesting to notice that the spectral result was achieved through waveform 
(temporal) manipulation.  

4.2   Experiment 2 

This experiment was set to prove the independence of the method from the type of 
initialization of the original antibody-sounds. All the parameters remained the same in 
experiment 2, except for ts that was set to 0.05. The results of the second experiment 
are depicted in Figure 8, which shows only four resultant antibody-sounds to illustrate 
the results. It is important to stress that 10 memory cells (resultant antibody-sounds) 
were obtained in all instances of this experiment. Compare the results with the 
antigen-sounds shown in Figure 6. In terms of spectral contents and dynamics, these 
antibody-sounds bear a striking resemblance to the antibody-sounds’ dynamic spectra, 
representing a variant 

4.2.1   Generational Distance Analysis 
This second result intends to show the rapid dynamics of the convergence process, 
independently from the initialisation, both in time and spectrum domain. It can also be 

Fig. 8. Memory cells resulting from the initialization of the algorithm with white noise (top), 
pure tones (middle) and complex sounds (bottom) 
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Fig. 9. Detail of the generational distance evolution. Top shows the temporal distance measure 
and bottom shows the spectral metric evolution. Column (a) shows the distances for the white-
noise case; column (b) for the pure-tone case; and column (c) for the complex-sound case. Only 
the transient part of the curve is shown, i.e. the first generations. 

inferred that the same holds true for the timbral domain. Figure 9 shows the 
adaptation of both the temporal and spectral affinity between antibody-sounds and the 
antigen-sounds they represent. Only the first generations are shown for the sake of 
clarity and to emphasize the rapid convergence in both cases. Notice that in all 
instances convergence was achieved before the tenth generation. It means that, no 
matter the starting point in soundspace, the result can always be expected to be 
approximately the same (for the same input parameters). This is an extremely 
important characteristic of the method. 

5   Analysis 

Both experiments base the method as a robust, yet flexible, timbre design technique. 
In experiment 1 we showed that the user can achieve a result that is as close as one 
wishes to the preset antigen population, depending on only one input parameter, the 
suppression threshold (ts). 

It should be noted that, in experiment 2, both distances decreased exponentially 
with the generations and stabilized fairly quickly. The measure of spectral distance 
developed confirms the temporal behaviour observed. Here we should stress the 
important fact that this is hardly the first proposal for a measure of timbral distance. 
Many other techniques are available, including multidimensional scaling  [15] and 
subjective analyses  [4], among others. 
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In experiment 2 the results show that the method does not depend on the 
initialisation of the original antibody-sounds. Also, the dynamic spectra obtained 
represent timbral variants of the antigen-sounds. 

The experiments show that aiNet is capable of producing sounds that have the 
desired spectral content with flexibility and robustness. The method makes possible to 
avoid the burden of trying to describe the desired result in terms of timbral attributes 
or to exhaustively search the entire soundspace for the desired result interactively, 
such as is the case for Interactive Genetic Algorithms  [1]. 

6   Conclusions 

A novel method of timbre design was presented, which utilizes aiNet, an immune-
inspired clustering technique, in the task of obtaining sounds. These sounds possess a 
set of desired timbral characteristics that are inherent to musical sounds and that 
cannot be precisely described due to the intrinsic multidimensional nature of timbre 
and the subjective characteristics involved. There is no consensus on how many or 
what these dimensions are, let alone their subjective relation to the spectral contents 
of the tone. A spectral measure of distance was developed to confirm the results. It is 
a mathematical measure that can be linked to the subjective, aesthetic percept of 
timbre. 

We showed that the method is robust in original spectral content to be transformed, 
as well as it is adjustable according to the input parameters. We also demonstrated 
that random variation alone is not enough to produce the same results, generating only 
noisy results. The characteristics of maintenance of diversity and the adjustable size 
of population provided by aiNet are essential in the results. 

Many extensions can be envisaged and tested. It can be used to compose 
soundscapes, as a timbre design tool or in live electroacoustic music where an 
immunological timbre is generated, which evolves in real time along with other music 
materials. Future trends might include using the technique in AI-based musical 
systems and adapting the method for dynamic environments, i.e. using time-varying 
antigen-sounds. 
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Abstract. This paper presents an immune-inspired adaptable error de-
tection (AED) framework for Automated Teller Machines (ATMs). This
framework two levels, one level is local to a single ATM, while the other is
a network-wide adaptable error detection. It employs ideas from vaccina-
tion, and adaptability analogies of the immune system. For discriminat-
ing between normal and erroneous states, an immune inspired one-class
supervised algorithm was employed, which supports continual learning
and adaptation. The effectiveness of the local AED was confirmed by its
ability of detecting potential failures on an average 3 hours before the
actual occurrence. This is an encouraging result in terms of availability,
since measures can be devised for reducing the downtime of ATMs.

1 Introduction

Automated Teller Machines (ATMs) are embedded systems for financial-related
services. Work presented in this paper is concerned with how to improve the
availability of these systems through adaptable error detection. The proposed
technique aims to reduce system downtime by detecting states that are precur-
sors of system failure. This is achieved by employing immune inspired continuous
learning for updating the set of error detectors in a system. The technique re-
lies on the existence of sequences of states that represent the operational status
of an ATM, from which the adaptable error detection is able to identify those
sequences that might contain fatal states.

This paper details the investigations undertaken to develop an immune-
inspired adaptable error detection (AED) technique for ATMs. Underlying the
immune-inspired adaptable error detection is a framework that is based on the
architecture of a network of ATMs, which consists of individual ATMs that are
networked to a central management system. The network supports a two-way
communication mechanism between the central management system and con-
nected ATMs. Likewise, the proposed framework for adaptable error detection
consists of two levels of error detection. One level of the framework is local to a
single ATM, while the other is a network-wide adaptable error detection. The lat-
ter is for exchanging information on new and common error behaviours amongst
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individual ATMs. In this architecture, each ATM hosts a local AED, while the
network-wide AED is implemented within the central management system. By
exploiting the communication mechanism between the central management sys-
tem and individual ATMs, exchange of information amongst the local AED is
made possible through the network-wide AED.

The implementation undertaken in this work was limited to the local adapt-
able error detection (AED). An ATM is made up of several modules, but a single
module - the cash dispenser - was employed for the implementation. The basis
for the local adaptable error detection technique was an artificial immune sys-
tem originally developed for email classification [10], and it was evaluated by
using relevant criteria that include: (1) classification performance of the algo-
rithm in discriminating fatal from non-fatal sequences, and (2) the measurement
of availability. From the outcome of the evaluation, it was demonstrated that
the proposed AED technique could detect an incipient system failure. Based on
these results, it is concluded that the framework, and subsequent prototype, is
an effective first step towards adaptable error detection.

The rest of the paper is structured as follows. The next section error detection
is motivated in the context of dependable systems. Section 3 reports on related
work in the area of artificial immune systems (AIS) applied to fault tolerance.
In section 4, we describe the proposed framework for adaptable error detection
in context of a single ATM, and a network of ATMs. Section 5 presents an AIS
algorithm for adaptable error detection, and the results of some experiments
performed are discussed in the following section. The final section of the paper
presents some concluding remarks concerning the application of AIS techniques
to error detection in systems that are continuously subjected to change.

2 Artificial Immune Systems for Fault Tolerance

Fault tolerance aims to avoid service failures despite the presence of faults, and
is carried out via error detection and recovery. Error detection is responsible for
identifying the presence of an error in a system. Recovery transforms a system
state that contains one or more errors and (possibly) faults into a state without
detected errors and without faults that can be activated again. Error detection
is the trigger for fault tolerance, therefore a fault tolerant system is reliant on
an effective error detection capability.

Error detection techniques usually exploit known error profiles for detecting
error states and behaviours. Such techniques are the monitoring of system’s
behaviour with respect to a given set of rules that include (1) adherence to
given control-flow paths, (2) execution time limits, (3) data integrity checks, (4)
comparison among redundant components and (5) algorithm-based plausibility
checks of data [9]. However, these approaches restrict the detection of errors to
those that are known at design-time.

The analogy between fault tolerance and the immune system was first ex-
pressed by [1]. In that paper, four attributes of the immune system that support
the idea are: (1) the immune system functions continuously and autonomously,
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independent of cognition; (2) its elements (lymph nodes, other lymphoid organs,
and lymphocytes) are distributed throughout the body to serve all of its organs;
(3) it has its own communication links - the network of lymphatic vessels and (4)
its elements (organs and vessels) are themselves redundant and in some cases di-
verse. Properties such as diversity, redundancy, self-organisation, anomaly detec-
tion, learning, and memory are all important from a fault tolerance perspective.

Research into hardware fault tolerance can be described under fault diagnosis
and error detection. Work on fault diagnosis has focused on applying immune
network concepts for defining relationships between data from sensors such as
[8]. More pertinent to this research is the investigations of AIS to error detec-
tion, which can be found in [2,3,4]. By taking ideas from, [1] and [12], Bradley
and Tyrell have examined the application of AIS to error detection in hardware
[5]. The name immunotronics was coined for immune-based hardware fault tol-
erance. They proposed a mapping from the immune system to hardware fault
tolerance which later led to the development of models for a hardware immune
system using the attributes specified by [1].

3 Framework for Adaptable Error Detection

The framework for adaptable error detection (AED) being proposed, employs
ideas from vaccination, and adaptability analogies of the immune system. Vac-
cination or immunisation is a process of priming the immune system against
the occurrence of a disease by introducing attenuated antigens of the disease
[7]. This process allows the immune system to generate antibodies for the in-
troduced antigens, with the effect that subsequent invasions by similar antigens
induce secondary immune responses. Therefore, this process endows the immune
system with knowledge about antigens which it had not previously encountered
and enables it to adapt to novel antigens during the primary immune response.
This confers on the immune system the ability to detect novel patterns and react
accordingly thereby supplementing existing knowledge about antigens.

In the proposed framework, the immunisation metaphor corresponds to the
traditional error detection approach of deploying a set of error detectors, which
are representative of known error signatures. However, the problem of traditional
techniques is the inability to detect unexpected erroneous behaviors. What is
required is a system that can continually learn about these unknown behaviors
and adapt a set of detectors capable of identifying them in the future. This
requirement motivated us to adopt ideas from the continuous learning nature of
the immune system.

The framework consists of two phases, namely design-time immunisation
and run-time adaptation that are comparable with the immune metaphors of
immunisation, and continual learning, respectively. The design-time immunisa-
tion caters for the distribution of generic error detectors amongst systems from
an off-line process of detector generation. To be more precise, assume there is
a family of embedded systems with similar functions and behaviours whereby
each system is characterised by its own unique features. The idea is to extract
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Detector generation

Immunisation

Propagation

Incorporation

Error detection

Learning

Local tolerisation

Local validation Network tolerisation

Network validation
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[Novel error behaviours from target system]

[Immature detector]

[Competent detector]
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[Competent−network detector]

[Historical patterns from target systems]

Fig. 1. Activity diagram of the framework for adaptable error detection

generic error detectors corresponding to error signatures common to these sys-
tems. Therefore, these generic error detectors serve as the minimum set of de-
tectors across all the systems compared to populations of detectors that are
unique to individual systems. In contrast, the run-time adaptation phase confers
on each system a more specialised set of detectors and is responsible for aug-
menting the detectors that are more generic (through the use of an evolutionary
process). The specialised error detectors are generated from error sequences ob-
served during run-time operations of the system. Furthermore, the framework
divides the learning mechanisms into two levels of (1) learning within a system
and (2) learning amongst systems. The two levels are represented as local AED
and network-wide AED systems as illustrated in figure 1.

4 Prototype for Local Adaptable Error Detection in
ATMs

In this section we outline a prototype system that has been realised as part of
the research. We initially outline the architecture of the solution over an ATM
network, then discuss issues relating to the data and immune inspired techniques
employed.

4.1 Artificial Immune Systems for Adaptable Error Detection

Assuming a network of ATMs, as depicted by figure 2, we can place the frame-
work outlined in the previous section within context. Our framework for AED
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exploits the network infrastructure to support local and network-wide learning,
which is integrated with the ATM architecture as shown by figure 2. In this figure,
we see ATMs labelled SST 1, SST 2, SST 3, and SST 4 connected to a Central
Manager, which is able to receive and send information to connected ATMs.

SST 2 SST 3 SST 4M−Data
M−Status

Devices

Evaluation

Incorporation

Validation

Tolerisation

Learning

Error detection

Local AED

SST 1

DevLog

Network−wide AED

Immunisation

Validation

Tolerisation

Evaluation

Central Manager

Fig. 2. System Architecture for adaptable error detection in ATMs

A local AED system is implemented within an ATM, while the network-
wide AED is hosted by the Central Manager to support the central information
exchange amongst local AEDs. Figure 2 shows a detailed view of the major
activities associated with a single local AED for SST 1, and the network-wide
AED. Altogether, the connection of each ATM to a central system that contains
the network-wide AED enables learning amongst ATMs.

Data. The data source we were provided with were ATM log files. These files
record histories of error events. Each log file records error events related to dif-
ferent modules in an ATM, for example, an error in the magnetic card reader
(MCRW) module. Furthermore, each error state of a module in an ATM is pre-
sented under the M-Status field, while the Start Time field presents the time
when the error state was recorded. Throughout our work, we investigated alter-
natives on how to use the data, ranging from time stamps, M-Status, M-Data
and combinations thereof. After careful investigation, we concluded that whilst
combining a number of data (such as M-Status and time) may be beneficial, we
adopted the line of taking the simplest approach first. To that end, we made
use of M-Status values only. These are discrete values that represent the state
of operation of an ATM, and through preliminary investigations we found that
this was sufficient to identify potential failure in the machine. For the purposes
of out work, this value is represented by 10.
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Data Representation. For the purposes of our investigations, fixed length
sequences were employed due to the absence of information on markers that
tag the beginning of sequences of states. Hence, fatal sequences are fixed length
sequences that are terminated by fatal states, while non-fatal sequences do not
terminate with fatal states. Figure 3 shows examples of fatal and non-fatal se-
quences.

4     5      8     11    12     5

window size (n) = 6

Fatal sequence13    11     8     35     5      4      10

13 Non−fatal sequence

Fatal state

Non−fatal state

Fig. 3. Illustration of fatal and non-fatal sequences

For our implementation of the prototype, a fatal state is assumed as a M-
Status value of 10, therefore the fatal sequence illustrated by figure 3 terminates
with a state value of 10. Non-fatal sequences do not terminate with a 10, but
any other value in the allowable range of machine state values.

Affinity Measure. In order for a detector within local AED to identify if a
sequence of data is a precursor to failure, some form of affinity measure between
the two is required. Given that a sequence is being used, any affinity metric
should take into account the number of states (a history) to make the prediction.
To this end, the most obvious choice is to adopt some form of window on the
incoming sequence which allows it to be matched against a detector. If sufficient
states within the sequence are matched against a fatal sequence detector then a
classification can be made whether the sequence is a precursor to a fatal state.

An Artificial Immune System for E-mail Classification (AISEC) Algo-
rithm. In order to develop our solution, we have taken as a basis, the artificial
immune system for e-mail classification (AISEC) [10]. AISEC was developed
for a two-class problem, to discriminate between interesting and uninteresting
e-mails. However, it has properties such as continual learning and adaptation
which are required for our application to ATMs. Other techniques were inves-
tigated, such as rule induction, and we concluded that this algorithm had the
simplicity and properties that are required.

4.2 AISEC for Adaptable Error Detection

We now present the AISEC algorithm as adapted for use within the local AED.
The algorithm cannot be applied directly to adaptable error detection, since
the algorithm was designed for e-mail classification. In line with the view of [6],
the algorithm had to be redesigned according to the new application area. In
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particular, we needed to pay attention to the choice of suitable data and their
transformation for implementing the local AED, affinity measure, evolutionary
mechanism and parameters.

Representation. B-cells in the AISEC algorithm for adaptable error detec-
tion (AED) are simply detectors of sequences, which identify sequences that
terminate at fatal states. B-cells are generated from ATM log files during the
off-line detector generation phase. Prior to the detector generation process, the
ATM log files are initially pre-processed. Data obtained from the output of the
pre-processing are divided into the training, testing and validation partitions.
The training partition provides training data for the detector generation pro-
cess. Parameters of the AISEC algorithm are then optimised with the validation
partition, while the AISEC is tested with the testing data partition. By training,
validating and testing the AISEC algorithm with separate data sets, an accu-
rate or unbiased measure of the classification performance could be reported
from experiments [11].

The error detectors generated are used to immunise the local AED for the
classification of potential failure sequences:

– Off-line generation: Error detectors are fixed length sequences, hence an
appropriate window size must be selected to initiate the detector generation
process. For the training data, M-Status sequences terminated by fatal states
are generated from the states of the cash dispenser;

– Online generation: During the testing phase of the AISEC algorithm, fixed-
length sequences of run-time ATM states are generated using the same for-
mat as the off-line detector generation process. The same window size applied
during the generation of B-cells is adopted. Similarly, the window size pro-
vides the marker for the beginning and ending of non-fatal sequences, while
it signifies the beginning of fatal sequences at run-time. Sequences are gen-
erated using a non-overlapping sliding window of selected window size. The
reason for adopting non-overlapping sliding window originates from empiri-
cal studies. It was observed that the AISEC algorithm could not discriminate
between fatal and non-fatal sequences when sequences are generated through
an overlapping mode. This is because a fatal sequence and a preceding non-
fatal sequence have last (n-1) states in common, where n is the length of
each sequence.

Affinity Measures. The affinity measure employed for the AISEC algorithm
adapts the r-contiguous bits matching rule for the problem, which defines the
affinity between two data items, when they have a number of contiguous bits
in common. Consequently, affinity between a sequence of run-time ATM states
(antigen), and an error detector (B-cell) is computed by identifying the number
of contiguous states that are common to them. An illustration is shown in figure
4, whereby the value of r is the minimum number of contiguous states required
to define affinity.
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r = 4
Sequence of ATM states (antigen)

Error detector (B−cell)

8   18    8   5    4    18

8   18    8   5   35   35    10

Fig. 4. R-contiguous bits matching rule

In our prototype, affinity is calculated from the r-contiguous states common
to an antigen and a B-cell. The affinity measure also takes into account the
proximity of the common contiguous states present in the B-cells in relation
to the fatal state. For example, in figure 4, the B-cell has two states 35, 35
between contiguous states 8 18 8 5 and fatal state of 10. The antigen has two
states 4, 18 after the contiguous states 8 18 8 5. These states that lie in between
the contiguous states and the fatal state provide another factor for the affinity.
Affinity is calculated as a value between 0 and 1, and it is computed using
equation 1 based on the following notations:

affinity - variable to store affinity between antigen and B-cell ;
r-contiguousbits - contiguous bits common to antigen and B-cell ;
windowSize - window size for generating sequences;
abs(x) - absolute value of x ;
antigenInterval - number of states between r-contiguous bits and fatal
state in antigen;
b-cellInterval - number of states between r-contiguous bits and fatal state
in B-cell ;

affinity =
r-contiguousbits

windowSize + abs(antigenInterval − b-cellInterval)
(1)

Algorithm. Within the prototype, the basic AISEC algorithm was implemented
in addition to generalisation and specialisation of B-cells as mutation mecha-
nisms. Generalisation substitutes a valid state in a B-cell with a don’t care (*),
while specialisation substitutes a state with another valid state in the gene li-
brary. The gene library constrains the algorithm to mutating with only valid
states.

In addition to this, new B-cells can be introduced into the detector set
through the incorporation of undetected fatal sequences. Unlike cloning and
mutation, which are characterised by a guided random process, the incorpora-
tion of fatal sequences allows the learning of specific failure sequences. That is,
if there is a recurrence of these sequences, they will be detected.

Experimental Setup. Two data sets were applied during the empirical exper-
iments for the case study and to identify them, they are tagged ATM-data-set-A
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and ATM-data-set-B, respectively. In order to provide sufficient data test the
local AED, we collated several log files from geographically located ATMs into
ATM-data-set-A. Whilst the framework is based on the notion that only local
information will be used to immunise the ATM, we have made the reasonable as-
sumption that geographically located ATMs provide us with a common enough
data set to allow for experimentation. Other experiments undertaken during our
research indicate that this is not the case for non-geographically located ATMs.
Our second data set ATM-data-set-B was used to test for availability, and is
made up of records from a single ATM, and therefore is a subset of ATM-data-
set-A. For testing availability we had to restrict tests to a single ATM, in order
to have a clear indication on how much availability can be improved. Each data
set was divided into three separate parts. 2

3
rd of each data set was for training,

while the remaining 1
3

rd of each data set was divided into halves for valida-
tion and testing. In total, there were 4588 records for ATM-data-set-A, and 543
records for ATM-data-set-B. All experiments were repeated for 30 independent
runs, and the average taken. AISEC has a number of parameters, for more detail
on these see [10]. We undertook an extensive analysis of the parameter space,
and the parameters used in our experiments were determined empirically and
are detailed in the table caption.

5 Results

Experiments were carried out using four variants of the AISEC algorithm to
understand the role of the off-line and online processes, as well as the different
evolutionary mechanisms by recording classification performance.

The variants of the local AED include:

– Static AED : This is the AISEC algorithm, without off-line evolutionary pro-
cess during training of naive B-cells, without online feedback on classifica-
tion, and without online evolutionary process;

– Static AED with evolution: This is the AISEC algorithm, which includes the
off-line evolution of naive B-cells, but without online feedback on classifica-
tion, and without online evolutionary process;

– Online AED with evolution: This is the full ASIEC algorithm, which includes
online feedback on classification, online evolutionary process through cloning
and mutation, and off-line evolutionary process during training of naive B-
cells;

– Online AED with incorporation of fatal sequences : This is the full AISEC
algorithm but instead of the evolutionary process by cloning and mutation,
new B-cells are recruited into the naive pool by incorporating undetected
fatal sequences.

5.1 Classification Performance

Results from the experiments based on these variants of the local AED, are
presented in table 1. Column (a) represents results from executing the static
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Table 1. Comparison of classification performance of the AISEC algorithm using test-
ing data from ATM-data-set-A. Parameters include: window size = 6, classification
threshold = 0.98, affinity threshold = 0.95, memory seed = 65, clone constant = 7,
mutation constant = 1.0, stimulation count (naive) = 25, stimulation count (memory)
= 15, train data = 68 detectors, test data = 38 (24 fatal sequences and 14 non-fatal
sequences).

Static AED Static AED Online AED Online AED
with evolution with evolution with incorporation

of fatal sequences
(a) (b) (c) (d)

Classification 94.74% 92.19% 92.81% 93.68%
accuracy (0.00) (2.89) (2.49) (1.48)
True 91.67% 87.64% 88.61% 90.00%
positive (0.00) (4.58) (3.94) (2.35)
True 100.00% 100.00% 100.00% 100.00%
negative (0.00) (0.00) (0.00) (0.00)
False 0.00% 0.00% 0.00% 0.00%
positive (0.00) (0.00) (0.00) (0.00)
False 8.33% 12.36% 11.39% 10.00%
negative (0.00) (4.58) (3.94) (2.35)
Naive 3.00 0.83 55.13 2.97
detectors (0.00) (0.65) (8.52) (0.85)
Memory 65.00 65.00 65.00 65.20
detectors (0.00) (0.00) (0.00) (0.41)

AED, column (b) shows results from static AED with evolution, column (c)
is for online AED with evolution, and column (d) provides the outcomes from
online AED with incorporation of fatal sequences.

As can be seen from table 1, in terms of classification accuracy (i.e., how
well it predicts a fatal sequence) the local AED is consistently high. What is
very encouraging is the low rate of false positives (i.e. how many times the AED
system said there was a potential failure, when there was not). This figure should
be as low as possible, as a high false positive rate would generate a high false
alarm rate. However, what should be noted is that there is very little difference
between the performance of all four variants. This is attributed to the relatively
small amount of data that was available. Data employed in these experiments
come from real ATMs in operation, and retrieval of this data (at present) is
difficult. This restriction has not enabled the immune mechanism within the
AED with evolution sufficient experience and time to improve.

In summary, the following deductions can be made from the results on this
data set, clearly further analysis is required with other data sets to see if these
observations hold, however this was not possible due to the difficulty in collecting
data from ATMs:

– Continuous incorporation of undetected fatal sequences into the local AED
achieves comparable classification performance with the evolutionary mech-
anism of cloning and mutation;
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– Population of naive B-cells increases exponentially with respect to time,
using cloning and mutation. In contrast there is a linear increase of naive
B-cells with the incorporation of fatal sequences. Given this observation, it
is deduced that the incorporation of fatal sequences employs minimal B-cells
to achieve classification accuracy comparable to using cloning and mutation;

– Population of memory B-cells is stable over time, although it is expected to
show minor variations over an extended period;

– The classification accuracy of the local AED starts off from a high value
of 100% based on sufficient training data, but it degrades over time due
to the presence of ineffective B-cells resulting from incorrect learning. After
a period of reinforcing effective B-cells and removing ineffective ones, the
classification accuracy stabilises to indicate that the local AED has reached
an equilibrium;

– The local AED was able to detect fatal sequences successfully. For example,
the local AED stabilised around a classification accuracy of roughly 90.00%
using ATM-data-set-A;

– The local AED produces specialised detectors that are useful for further
analysis of precursors to system failure.

5.2 Availability

The other criterion for evaluating the local AED is the impact on availability
of ATMs. This criterion exploits the time interval between detection of fatal
sequences and the occurrence of fatal states. An increase in the detection time
interval might translate to an increase in mean time to failure (MTTF). Also,
based on the inference that the time interval serves as the time for the early de-
tection and successful avoidance of a failure event, the early detection of a fatal
sequence might increase availability through allowing for preventative mainte-
nance, or reducing the mean time to repair (MTTR).

Experiments on availability were carried out using data associated with a sin-
gle ATM ATM-data-set-B, and the average results over 30 runs are presented in
table 2. The mean detection time intervals were calculated from the timestamps
associated with each state in the ATM data.

As can be seen from the results in table 2, whilst the predictive accuracy
is relatively low, the local AED was able to detect problems up to 3 hours in
advance. As it can be observed, there is a trade off between the accuracy and
the availability. The accuracy is lower in this set of experiments (compared to
those presented in table 1), due to not only the small amount of data that was
used (only 543 records were available), but the fact that because of the data,
different parameters of the algorithm had to be employed, in particular the
classification threshold. This allowed for more general matching to take place (i.e.
less discrimination) to overcome the deficiency in the data, but at the sacrifice
of accuracy. Other experiments were undertaken with a variety of parameters,
and alternative data sets. For a different data set we are able to detect up to
one day in advance, but with an increase in the classification threshold.
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Table 2. Comparison of classification performance of the local AED using testing data
from ATM-data-set-B. Parameters include: window size = 6, classification threshold =
0.5, affinity threshold = 0.95, memory seed = 5, clone constant = 7, mutation constant
= 1.0, stimulation count (naive) = 25, stimulation count (memory) = 15, , train data
= 7 detectors, test data = 9 (5 fatal sequences and 4 non-fatal sequences).

Static AED Static AED Online AED Online AED
no evolution with evolution with evolution with fatal

sequences
(a) (b) (c) (d)

Classification 55.56% 55.19% 52.96% 58.15%
accuracy (0.00) (11.48) (12.61) (7.54)
Mean detection 0:3:15:15 0:2:36:12 0:2:16:40 0:2:29:41
time interval (0:0:0:0) (0:1:19:26) (0:1:31:0) (0:1:23:59)

5.3 Discussion of Results

From these results, we can conclude that the local AED, as implemented in our
protoype, detects fatal sequences prior to the occurrences of failures. This, of
course, depends on adequate training data and appropriate parameters. Con-
sequently, these experiments have proven the feasibility of adaptable error de-
tection based on the framework. These results translate to the enhancement
of availability in ATMs by anticipating potential failures. The assumption is
that the a priori knowledge of impending failures initiates mechanisms for cir-
cumventing their occurrences. As a result, the mean time to failure (MTTF) of
target system is increased. It can be also assumed that the mean time to repair
(MTTR) could be reduced since the fault in the system is now known. We also
note that one has to be careful drawing general conclusions from these results,
as we have only presented results from two data sets. Ideally, more testing would
be done with other data sets as and when it becomes available.

6 Conclusions

We have proposed a framework for potentially improving the availability of
ATMs in which a key component is a local adaptable error detection (AED)
that was implemented by adapting the artificial immune system for email classi-
fication (AISEC) algorithm. The effectiveness of the local AED was established
using data that correspond to the error incidences in the cash-handler module
of an ATM. Results from the empirical studies has confirmed the efficacy of
the local AED at forecasting system failures. A summary of the findings are
presented below:

– Detection of failure occurrences: The classification performance was derived
from the classification accuracy of the AISEC algorithm (employed in the
local AED), which is simply the number of failure occurrences detected out
of the total number of failure occurrences reported in the system. From the
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outcome, classification accuracies of approximately 90% was recorded for one
of the data sets;

– Enhancement of availability: The local AED was assessed with regards to
its ability to detect potential failures in the system before their occurrences.
Through the early detection of failures, it is assumed that necessary repair
actions could be undertaken to prevent system downtime. In other words,
the mean time to failure of the system can be increased, and mean time to
repair can be reduced. Based on this criterion, the time intervals between
the detection and occurrences of failures were monitored. From the estimated
mean of these time intervals based on a particular data set, it was demon-
strated that the local AED detected failure occurrences on an average of 3
hours before failures. Given another data set, it was observed that the fail-
ures were detected with an average of one day prior to the incident. These
mean time intervals are absolute values, but their significance for carrying
out repairs to circumvent failures are dependent on domain expert’s opinion.
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Abstract. This work is aimed at presenting a fault detection algorithm 
composed of multiple interconnected modules, and operating according to the 
paradigm supported by the danger theory in immunology. This algorithm 
attempts to achieve significant features that a fault detection system is supposed 
to have when monitoring a telephone profile system. These features would 
basically be adaptability due to the strong variation that operational conditions 
may exhibit over time, and the decrease in the number of false positives, which 
can be generated when any abnormal behavior is erroneously classified as being 
a fault. Simulated scenarios have been conceived to validate the proposal, and 
the obtained results are then analyzed. 

1   Introduction 

According to the danger theory in immunology, the guiding principle is the presence 
or absence of second signals determining responsiveness or tolerance  [9]. The fault 
detection model to be proposed here will follow this driving force to synthesize a fault 
detection system capable of providing an adaptive coverage for a highly changeable 
environment as well as memorizing reactions in the face of the required adaptations. 

Alternative approaches based on process history  [13], and even algorithms based 
on artificial immune systems that adopt the self−non-self view, have problems with 
the rates of false positives (FP), to be drastically reduced here with the presence of 
second signals. When the self−non-self view is applied to static scenarios for fault 
detection, high levels of performance may be achieved  [7], but it is not the case here. 

These features become greatly relevant in telephone networks, due to the existence 
of events that may express distinct behavior along time and that should be 
satisfactorily attended such as, for instance, the peaks and valleys of call attempts, 
which can be unpredicted in the normal functioning of the network. Another issue to 
be pondered is the erroneous classification of a given anomaly as a fault. What a 
detection system can basically perceive is the deviation of situations that are said to 
be normal. The further step of classifying such deviation from normality as a fault 
generally requires a steady human intervention. 
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We intend to perform this classification automatically and adaptively  [11]. 
Additionally, a voting process is implemented to provide robustness to the fault 
detection activity, with multiple immune-inspired systems operating in parallel. 

The paper is organized as follows. Section 2 describes the essentials of telephone 
systems and fault detection requirements. Sections 3 outlines the most relevant 
concepts associated with the danger theory paradigm, and related work is briefly 
reviewed in Section 4. The proposed fault detection system is fully described in 
Section 5, and Section 6 presents and analyzes the obtained results. Finally, further 
steps of the research and concluding remarks are pointed out. 

2   Telephone Systems and Fault Detection Requirements 

In a broad sense, it is currently possible to consider telephone systems as based on 
circuit networks, packet networks or hybrid networks  [6] [8]. Packet networks utilize 
protocols such as RTP (Real-Time Transport Protocol) and RTCP (Real-Time 
Transport Control Protocol), which make voice communication possible and try to 
support the quality of telephone service in real time. The need for some protocol to 
establish the communication among users is also to be observed, such as the SIP 
(Session Initiation Protocol), for example. In relation to circuit networks, although 
there is no need for a voice transmission protocol – as it is usual for package networks 
–, the use of a protocol that gives way to complete the telephone call is necessary. 
These traditional networks (circuit telephone networks) have a coupled signaling 
network. This signaling network is a package network which utilizes specific 
protocols such as the SS7 protocol (Signaling System Number 7), which is used either 
for the completion of calls or for offering services that are not oriented to connection. 

The protocols used to complete a telephone call make use of ordinary information, 
such as the originating address, the destination address, the time of the call attempt, 
information on specific features (associated with functionality and type of service), 
etc., which are quite relevant to control such information among users. In order for the 
telephone service quality to be maintained, it is possible to have a management 
system that analyzes these parameters by indicating the occurrence of faults generated 
by undesired network situations or conducts. An example of undesired conduct is the 
occurrence of an excessive number of unsuccessful calls within a given time period. 
This kind of fault can be verified by the simple counting of unsuccessful calls. 

An aspect to be considered in relation to telephone communication is that the 
traffic intensity as well as the characteristics (parameters) of the call attempts vary at 
distinct rates over time. Examples of changes that can occur within the parameters of 
call attempts concerning a network over time include the appearance of calls whose 
duration is approximately zero, or whose status is of a generic non-completed call. 
Within a given time period, this occurrence should be considered a normal event. 
Meanwhile, within another time period, this occurrence may take place due to a fault 
in the destination or be caused by any other type of fault. Under these circumstances, 
a simple event counting is not able to indicate precisely the difference between a 
normal condition and a real fault occurred in the network. The algorithm to be 
proposed in what follows relies on an elaborate immune-inspired learning device to 
make this discernment. This process aims at following up the evolution of the conduct 
of call attempts regardless of the speed of this evolution, and it also attempts to avoid 
human intervention for the acquisition of these fault diagnoses. 
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The obtained results, i.e. the indication of faults occurred in the telephone system, 
aim to supplement the information which has been obtained by the generated alarms, 
which use the simple counting of events. This information complementation acts for: 
(i) the indication of the continuity of faults which have already been alarmed; (ii) the 
indication of faults or the propensity to faults which have not been alarmed yet; (iii) 
the association of call attempts with a specific alarm (so that one is able to know the 
calls that have really originated an alarm); and (iv) the association of call attempts 
(related to an alarm) with a given region of parameters to facilitate the search for the 
cause of the generated fault. 

3   The Human Immune System and the Danger Theory 

The immune system can be described as a complex of cells, molecules and organs 
capable of protecting the entire body against harmful actions. This system is 
composed of several layers: skin and mucus, physiological conditions, innate immune 
system, and adaptive immune system. The adaptive system has manifold 
characteristics that inspire the formulation of algorithms which lead to the solution of 
ordinary problems. Among these characteristics, it is possible to mention the capacity 
to react against structures which have never come forth before, capacity to express 
adaptive behavior, and also the capacity to memorize antigenic structures. 

The simplified performance of the adaptive immune system can be observed from 
the moment when T cells (T helper lymphocytes) are triggered by Antigen Presenting 
Cells (APCs). Through their receptors, the T lymphocytes (helpers) recognize a new 
peptide-MHC (Major Histocompatibility Complex) combination in the surface of an 
Antigen Presenting Cell (APC). Next, these T lymphocytes (helpers) secrete chemical 
substances that activate other types of lymphocytes (B lymphocytes). Through their 
receptors, the B lymphocytes are able to recognize antigens, which have been 
previously presented by the APC, in a free manner in the body. When activated, the B 
lymphocytes secrete antibodies that adhere to the identified antigens, for signaling 
and neutralizing purposes. Another type of lymphocyte is the T killer, which is 
capable of fighting abnormal cells, virus-infected cells, and certain types of antigens. 

The interpretation on how the initial reaction of the immune system takes place 
(from the APC) admits distinct views. According to a more classic approach, the 
immune system is triggered by external stimuli (non-self). At this point, the immune 
system needs to recognize which molecules belong to it (self) and which molecules do 
not (non-self). Nevertheless, this view presents some points that cannot be answered, 
including: why doesn’t the immune system defend us against the air we breathe or 
against the food we eat? By means of an alternative approach, which throws a more 
comprehensive explanation for this last issues, Matzinger  [9] presents the Danger 
Theory, according to which another dichotomy is stressed: “dangerous / inoffensive” 
 [4]. The Danger model is based on the principle that the immune system is controlled 
by internal signals (danger signals), and not external ones. Such signals are emitted by 
cells as they suffer any injury. 

According to the Danger Theory, whenever a cell displays a danger signal, a 
danger zone is created around it. The APCs in this area are activated and send off co-
stimulation signals that can be received by the T cells. In their environment, the APCs 
capture the antigens randomly (for professional APCs, i.e., dendritic cells) or non-
randomly (for B cells) and present them to the T cells. The B cells may act as APCs 
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by co-stimulating experienced T cells (memory cells – which have already passed 
through some previous activation). 

According to the theory at issue, lymphocyte behavior can be analyzed based on 
the combination of two signals. The former (signal 1) would be the one obtained by 
the immune cell as it recognizes an antigen. The latter (signal 2) would be the 
previously mentioned co-stimulation signal, which acts as a confirmation for signal 1. 

In a condensed form, the danger theory paradigm can be expressed in the form of 
the laws of lymphotics  [9]: 

• A lymphocyte requires two signals to be activated. An inactive lymphocyte dies 
whenever it receives a signal 1 without a signal 2 and it is activated whenever it 
receives both signals. A signal 2 received without a signal 1 is ignored. 

• T cells can only receive a signal 2 from APCs, and B cells from active T cells or 
memory cells. There is one exception to this rule. During the initial phase of the 
negative selection, the lymphocytes are not able to receive signal 2, no matter 
which source it comes from. 

• Active T or B cells ignore signal 2. They execute their functions as they receive a 
signal 1, regardless of the presence of a signal 2. After a certain period of time, 
these cells either die or return to the inactive status (memory cells). 

This approach is intended to justify issues that remained unanswered, for instance, 
the absence of attack, on part of the immune system, against certain structures which 
are external to the body (e.g.: food, silicon prostheses, bone fragments, among 
others). Some mechanisms are added with this purpose. Thus, by searching the 
analogy with the mechanisms that have been inherited and proposed by the Danger 
Theory, the AIS can achieve new solutions and improve solutions that were 
previously encountered by other immune approaches. 

4   Related Work 

Several pieces of work related to fault detection by using AIS have been developed in 
the last few years. The most common approach, however, is based on the self−non-
self view, which presents some shortcomings when the system under supervision 
must provide an adaptive coverage for a highly changeable environment. 

Nonetheless, recent work utilizing the DT has been developed. In their work, 
Aickelin et al.  [1] proposed the use of DT for intrusion detection. They model a 
system in which the correlation among the multiple signals provides a groundwork 
method for the immune response. This work attempts to identify alerts of the 
apoptotic type (corresponding to legitimate system actions and to the requirements of 
an attack) and alerts of the necrotic type (corresponding to the real damage generated 
by successful attacks). Actions taken by the intrusion detection system are based on 
the equilibrium between these two alert types. 

Sarafijanovic and Boudec  [10] presented an elaborate framework to detect 
misbehavior in mobile ad-hoc network with a DT perspective. In a simplified manner, 
this proposal is based upon the utilization of a virtual thymus in which the antigens 
that possess authorization to take part in it (antigens that are not related to danger 
signals) generate detectors for the system through a constant negative selection 
process. These detectors, when co-stimulated by danger signals, identify the 
misbehavior in the network. 
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The main distinction of these previous approaches to the present proposal is 
stressed in what follows. As far as the death and the deactivation of detectors 
(lymphocytes) are concerned, the present proposal tries to explicitly emphasize the 
laws of lymphotics. Another relevant aspect is the existence of a voting process, so 
that multiple fault detection systems should be implemented and have to operate in 
parallel. This is akin with a strong tendency in machine learning  [12]. This approach 
provides an analysis which is less prone to false diagnoses and offers an enhanced 
adaptability of the detector population in relation to the constant change of the 
system. It also uses a maturation procedure concerning the detector population, which 
is based on the affinity of each detector with the population of antigens (Global 
Affinity). This is accomplished by considering the need to maintain the diversity in 
the detector population and the variable speed that the detector population is supposed 
to have in its evolution as it attempts to follow the variation speed in the profile of the 
antigen population. In addition, an analysis is performed regarding the concentration 
of active detectors in the observation space. Its objective is to detect the causes of the 
faults by checking the regions with high concentration levels. 

5   The Fault Detection Algorithm 

The algorithm that is proposed here is aimed at detecting faults in telephone systems. 
At first, four variables assuming major significance for a system with such profile 
were chosen: Origin, destination, duration, and feature. In this essay, these variables 
mean, respectively, the origin of a call, the destination of a call, the duration of a call, 
and a given feature or specific quality of this call. 

Each call of the telephone system is represented in the fault detection system by an 
antigen, which must be compared with the detector population of this system. Both 
antigens and detectors are modeled as heterogeneous strings, i.e., composed of linear 
attributes (origin, destination and duration) and nominal attribute (feature). The 
attributes origin and destination were considered as being linear ones, although they 
could have been deemed as nominal attributes. 

Then it was defined a function that indicates the affinity among detectors and 
antigens. This function indicates whether an antigen is inside or outside a region that 
surrounds the detector, which is defined as the affinity region. The function is based 
on affinity intervals as the comparison of linear attributes takes place, and the equality 
of such attributes, when nominal attribute are been compared. 

It should be noticed that a fault detection algorithm that is based on anomaly 
verification in a telephone system may find such anomalies without actually detecting 
the faults. If every anomaly is considered to be a fault, there will be an increase in the 
number of false positives (FP). This happens as the detection of an anomaly may 
merely stand for the detection of a call outside the patterns which are said to be more 
common for that telephone system at that moment, and this call is perhaps not a fault. 
At this point there is a relevant aspect to consider in regard to the application of the 
Danger Theory. If it is possible to define an adequate danger signal (signal 2), the 
number of FPs can be decreased, for the danger signal will confirm whether the 
occurrence of an anomaly actually refers to a fault. In case an anomaly occurs without 
the danger signal, it will not be considered as being a fault. 

The following is a definition of the signals used here according to the basis 
provided by the danger theory: 
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• Signal 1: perception of the presence of the antigen (by means of detectors). 
• Signal 2: co-stimulation. In this case, the non-completed call rate will be used 

(NC > ThNC, where NC = non-completed call attempt rate, and ThNC is the threshold 
for the non-completed call attempt rate). 

Therefore, once the presence of an antigen is noticed by means of a detector, a 
signal 1 will be triggered. This happens when an antigen is inside the recognition 
region of the detector, as mentioned before. 

The signal 2, as well as in the biological case, must alarm a danger situation.  In 
telephony, several situations can be alarmed, for instance, congestion situations, not-
completed calls, hardware failure, etc.  In the present case, the non-completed call rate 
was chosen because it is a measurement that can be obtained directly from the call 
data, and also because it is directly related to the stimulated situation of the ongoing 
simulation. 

5.1   Detector Activation and Fault Detection 

Whenever a signal 2 is triggered, the antigens in a danger zone must be identified. 
This zone refers to a region covered by signal 2, where signal 2 takes effect. 
Therefore, a region expressing a causal relationship with signal 2 must be defined. 
The region to be adopted will be a temporal region, i.e., once the indication of a signal 
2 is at hand, the region to be analyzed will be the last time interval td, thus verifying 
the detectors that caused the triggering of a signal 1 inside this time interval. 
Probably, the antigens that matched these detectors contributed to the triggering of 
signal 2. 

Inside this space (danger zone), the detectors that received signal 1 as well as 
signal 2 are activated and they indicate faults in the respective call attempts (antigens) 
with which they matched. 

During the system adaptation in order to work with a new detector profile (due to 
the changes in the call profiles), the co-stimulation signal turn out to be essential to 
avoid confirming as faulty the abnormal calls that will compose the new call profiles 
of the system (which will become the normal call behavior). Moreover, the co-
stimulation signal also prevents the generation of FP in response to diffuse occurrence 
of abnormal calls that do not cause system faults. 

An active detector does not need signal 2 to indicate a fault. It is sufficient to 
match it with an antigen. 

5.2   Death of Detectors 

According to the dictation of the danger theory, a detector must be eliminated if it 
receives a signal 1 without the occurrence of a signal 2. From the algorithm 
standpoint, this elimination is quite significant, since these detectors are potential 
False Positive generators. 

As changes in the profile of call attempts occur, especially in changes at high rates, 
although the detector renewal routine searches for adapting itself to such changes, 
there may be the matching between detectors and antigens that are not effectively 
related to danger signals. So, if at a near time there is the triggering of a signal 2 
linked to some other event, so that the danger zone is broad enough to comprise the 
first mentioned detector (the one that has already received signal 1 without signal 2, 
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though it does not have any link to any danger signal), a co-stimulation for this 
detector will be generated. Then, an FP will occur. A well adjusted danger zone is 
necessary to avoid such occurrences. 

5.3   Detector Deactivation 

After a period of time Tdeact has elapsed, an active detector becomes inactive. This 
point of the danger theory is observed according to the system’s adaptive character. 
An antigen, which indicates a profile of a call attempt related to a fault in a given 
period of the analysis, can be an ordinary call attempt after a certain period of time 
has elapsed. These detectors, which have passed through the active status, become 
memory detectors, making it possible to provide an effective secondary response. 

5.4   Voting 

As a means to increase the reliability of the algorithm diagnosis, a voting routine is 
utilized. Parallel processes are used to analyze, in an independent manner, the same 
call attempts. A call attempt is effectively considered as a fault if a given percentage 
of the processes that take part in the analysis regards that call as being a fault within a 
voting process. Although a process of constant adaptation is used, the processes used 
in the analysis are not deterministic.  Therefore, the use of some processes to make 
the same analysis in parallel increases the robustness of the algorithm. 

5.5   Detector Population Renewal 

The algorithm tries to explore the adaptability feature through the constant formation 
of a population of mature detectors inspired by the clonal selection algorithm  [3]  [5]. 

As a means to obtain a good performance, the algorithm manages the generation of 
detectors by assuring that this population is sufficient to cover the observation space. 
In this context, the number of detectors is now adaptive, according to the complexity 
of the environment to be covered. 

Essentially, the purpose is to generate detectors with enhanced adaptation over 
time. Therefore, the affinity of each detector with the set of the latest antigens is 
measured (Global Affinity). After that, this measure is normalized, acting as a 
mutation parameter, and the detectors are cloned. Following the negative selection 
principle, the higher the affinity of the detector with the antigens (notice that the great 
majority of the antigens correspond to normal behavior), the higher the mutation rate 
suffered by their clones, because you need detectors capable of identifying abnormal 
behavior. Next, the affinity of the detectors with the antigen population is observed. 
Only the detectors that do not match with either the antigen in population or with 
other detectors are maintained (Figure 1(a)). The issue of not matching other detectors 
is intended to increase the efficiency of the detector population. 

Hence, it is possible to observe important remarks concerning the constant renewal 
of the detector population, such as: the search for maturation and for the diversity in 
its population, based on the total number of detectors, and the adaptation of the size of 
this population to the observation space. 

This renewal procedure is considerably significant as it offers a global maturation 
of the detector population by following the speed of changes that the profile of call 
attempts of the system under observation suffers over time. 
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Fig. 1. Fault detection algorithm based on the danger theory paradigm: (a) generation of new 
detectors over time; (b) alarm generation (signal 2); (c) algorithm overview showing the 
detector activation procedure and fault detection in each call attempt 

5.6   Algorithm Synthesis 

In a simplified manner, for each voting process, the algorithm can be viewed 
according to the following steps: 

1. Random initial generation of detectors; 
2. If signal 1 is received without signal 2, the detector (or detectors) is eliminated 

(negative selection); 
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3. If necessary, new detectors are generated to cover the defense space (utilizing 
cloning and hypermutation similar to what have been done with CLONALG  [5]); 

4. If signals 1 and 2 are received, the detector (or detectors) is activated; 
5. After a period of time Tdeact, an active detector becomes inactive; 
6. An active detector detects danger with the presence of signal 1 (without requiring 

signal 2); 
7. A signal 2 received without a signal 1 is ignored. 

The algorithm is depicted in further details in the flows of Figure 1. The following 
variables should be considered to understanding the whole steps in the flowcharts of 
Figure 1: 

D : distance between two elements (detectors and antigens) 
Aff : affinity threshold (affinity area around the detector). 
Caff : affinity counter (checks the number of times that signal 1 is triggered) 
Act : threshold for detector activation 
Elim : threshold for detector elimination 
Nan : maximum quantity of antigens at the antigen population. 
T1-2 : period of time after the occurrence of signal 1 so that, through the 

occurrence of signal 2, the detector is activated. 
tt : triggering time of signal 2 or fault detection 
Tdeact : time threshold for the deactivation of the active detector 
t : call attempt time 
NC : non-completed call attempt rate 
ThNC : threshold for non-completed call attempt rate  

It is worth noticing that after the initial generation of detectors (Figure 1(c)) this 
population is constantly renewed as indicated in Figure 1(a).  The flow in Figure 1(c) 
aims at showing what  occurs when an antigen appears in the system (generation of a 
call attempt), as well as what occurs when the activity time of a detector expires. 
Figure 1(b) shows how the signal 2 is generated. Some arrows were removed from the 
figure to make it clearer. 

6   Algorithm Implementation: Results 

The objective of algorithm implementation was to validate the proposition and to 
analyze the emergence of their main features. The most relevant aspects to be 
monitored are FP rates and the issues involving detector adaptability over time. The 
following intervals were defined for the call attributes: 

• Origin: 0 – 11 (indices of the telephone network nodes) 
• Destination: 0 – 11 (indices of the telephone network nodes) 
• Duration: 0 – 359 (in seconds) 
• Feature: 0 – 3 (admits four distinct types of calls) 

Relevant parameters of the algorithm have been defined as follows: 
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• threshold for detector activation (Act): 3 call attempts 
• threshold for detector elimination (Elim): 3 call attempts 
• maximum quantity of antigens at the antigen population (Nant): 50 antigens 
• period of time after the occurrence of signal 1 so that, through the occurrence of 

signal 2, the detector is activated (T1-2): 20 call attempts (the average time of 20 
call attempts)  

• time threshold for the deactivation of the active detector (Tdeact): 60 call attempts 
(the average time of 60 call attempts) 

• threshold for non-completed call attempt rate (ThNC): 3 call attempts  
• threshold for voting: 25% (the amount of votes must exceed this threshold for a 

call attempt be considered a fault) 

In total, 500 calls were generated. The variables origin, destination and feature 
related to these calls followed a uniform random distribution, whereas the variable 
duration followed, within the interval of calls from 1 to 70, an asymmetric 
distribution skewed to the right with an average of 70 seconds and, within the interval 
of calls from 71 to 500, a symmetric distribution centered in 180 seconds (the middle 
point of the interval 0-359). The motivation for a skewed distribution regarding the 
variable duration was to verify the adaptation of detectors at the end of the process. In 
real systems the distribution adopted here may indeed not occur. However, the most 
significant for analysis is the behavior change.  This phenomenon can really occur 
and therefore this is what the simulation aims to verify. 

In the entirety of the generated calls, a fault event was inserted after call number 
400. Every call generated in the origins from 1 to 6, using feature 2, would not be 
completed (would have duration equal to 0). Except for this, in the generation of calls 
from 1 to 500, other non-completed calls may occur, though this should be understood 
as a normal system behavior (e.g., a non-completed call due to absence of response 
from the destination user). The calls are randomly generated and some of them can 
show this profile. They occur in a dispersed way, with duration equal to zero and 
possibly with origin, destination and feature different from those chosen for 
generating the faults. Therefore, diagnosis systems running in parallel (see section 
5.4) diagnosed the tested calls by means of voting. 

For the purpose of demonstrating the adaptation of detectors along the process, the 
profiles of Figure 2 illustrate the emergence of an expected behavior: they refer to the 
distribution of antigens and detectors according to the parameter duration, in the 
performed experiment. By observing the variable duration, it was possible to notice 
the detectors settlement in the space that is complementary to the generated calls. 

In Figure 3, it is possible to observe the best case that was found among 50 
executions. This figure presents the non-completed calls among the 500 generated call 
attempts, the alarms generated due to an overflow of non-completed calls (signal 2), 
the activation of detectors and fault detection (signal 1 + signal 2), and the fault 
detection after detector activation (signal 1 received with active detector). Table 1 
shows the test results. As additional information, call attempt number 291 (Figure 3), 
though an anomaly (it is not a fault), could not be detected as a fault in none of the 50 
executions due to the lack of signal 2. This is another desired behavior. 



428 J.C.L. Pinto and F.J. Von Zuben 

 

0 50 100 150 200 250 300 350
0

50

100

150

200

Duration of the call (s)Q
ua

nt
ity

 o
f a

nt
ig

en
s

0 50 100 150 200 250 300 350
0

20

40

60

80

100

Duration of the call (s)

Q
ua

nt
ity

 o
f d

et
ec

to
rs

 

Fig. 2. Distribution of antigens and detectors according to the parameter duration. Population 
of cells in the interval from 71 to 500 calls and detector population at the end of the 500 calls. 

 

call number 

 

call number  

Fig. 3. Sequence of calls from 0 to 500 and from 400 to 500: (a) non-completed call attempts; 
(b) alarms (signal 2); (c) detector activation and fault signal generation (signal 1 + signal 2); (d) 
fault signal generation (signal 1 with active detector) 

As an additional result, the behavior of the activated detectors was observed for 
fault detection purposes. Thus, a plot is presented in Figure 4 (a), indicating the 
coverage level generated by those detectors. Each process that takes part of the voting 
to look for faults activates a set of detectors. Each of these detectors has an acting 
region where it is possible to recognize the antigens (recognition region). The graph 
presented is formed by the sum of areas covered by these detectors. The observation 
area is in the origin-destination plan, assuming that the call duration equals zero and 
the feature equals 2 (fault situation). In this graph, the stars correspond to the faults. 
The elevation of the surface corresponds to the coverage level, i.e., the more elevated 
the surface, the higher the incidence of active detectors in the region of the origin-
destination plan. The behavior of the algorithm corresponds to the expectations, i.e., 
the region that the active detectors attempt to cover is the one which holds the largest 
fault concentration. The regions which should not be covered (as they do not have 
faults) have a low coverage rate due to being able of generating False Negatives. 
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Table 1. Results obtained from the test with the proposed algorithm. The results consider the 
possible detection faults (faults after the first alarm – signal 2). 

Average percentage of detected faults considering the 50 fault 
detection systems operating in parallel and that will take part in 
the voting phase (notice that the performance depicted in Figure 3 
corresponds to the fault detection system with the best 
performance) 

91.0 % 

Percentage of faults undetectable by the alarm (signal 2), but 
detected in average by the 50 fault detection systems operating in 
parallel 

100 % 

Percentage of False Positives 0% 
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Fig. 4. (a) Average behavior of fault detection algorithm in the test with a fault region; (b) 
average behavior of the fault detection algorithm in the test with two fault regions. The stars 
correspond to the faults. The more elevated the surface, the higher the incidence of active 
detectors in the region. 

In order to verify the possibility of having a separation between the groups of call 
attempts whose failures have been originated by different reasons, another test was 
performed, where two separate fault regions were generated in the space of 
parameters of the call attempts. A graph, similar to the previously mentioned, was 
drafted. It shows the differences in regions by the formation of two peaks (Figure 4 
(b)). The regions that presented the highest incidence of call attempts, the sufficient 
amount to trigger the signal 1 of a detector, and which were settled within a danger 
zone, were covered by the peaks and can be identified in Figure 4 (b). 

It is important to notice that there are regions in the figure which, although having 
a concentration of call attempts with duration equal to zero, were not covered by the 
algorithm. This occurred owing to the fact that these call attempts are dispersed, 
temporally separated from each other. Thus, these call attempts, with similar 
characteristics, did not occur at a time sufficiently close to each other so that, when 
summed up, they trigger a signal 1. Hence, they are viewed by the algorithm as a 
normal behavior. This is an important point as it shows the ability of the algorithm to 
make the distinction between call attempts with similar characteristics but distinct 
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diagnoses. Therefore, Figures 4 (a) and (b) show clearly that it is possible to search 
for the cause of the faults as well as to indicate the reliability of fault diagnoses by 
observing the coverage level that is indicated by the graph and associated with a given 
call attempt. 

7   Future Research 

The following steps can be quoted as a follow-up of this study: the identification of 
processes that could automatically set the most relevant thresholds of the algorithm. A 
fuzzy approach, based on the degeneracy concept  [2], could be used for affinity 
description as well. By using this approach, the diversity or the number of detectors 
could be reduced and even so the coverage of the antigenic space could remain at the 
same level. The detector activation could be seen as the result of an analysis involving 
the combination of the obtained signal 1 intensity, i.e. the affinity level with each 
antigenic structure, and a related signal 2 level. In relation to the generated surfaces, 
which identify the coverage level by the active detectors (Figures 4 (a) and (b)), the 
generated failure diagnosis can have a reliability level associated with each 
encountered fault. 

In the proposed experiments, the dimension of the telephone network, the number 
of calls, and the number of variable capable of characterizing the whole scenario are 
reduced, not corresponding to what effectively characterizes a real application. As the 
main purpose here has been to validate the proposal and to verify its ability to express 
adaptability and proper operation in terms of avoiding false positives, then the 
experiments suffice to fulfill the objectives. More realistic experiments will be part of 
the further steps of the research, as well as efforts toward sensitivity analysis of 
parameters such as danger zone length and threshold of votes used for detection. 

8   Concluding Remarks 

This paper proposed and implemented a fault detection algorithm based on concepts 
that support the danger theory paradigm. The most prominent aspects of the algorithm 
are the adaptability and the low index of false positives (FP). The distribution of one 
of these characteristics observed by the algorithm underwent some changes at a 
certain moment of the execution. As the detector population is constantly updated by 
the use of a clonal selection procedure, high levels of matching and diversity 
maintenance are made possible, at reasonable computational cost  [5]. 

By using the danger theory paradigm, where a co-stimulation is necessary to 
confirm the danger implied by the presence of a detected antigen, anomalies external 
to the reach of signal 2 were not, as expected, considered as faults. A meaningful 
result was the percentage of algorithm coverage in the detection of faults concerning 
the regions that were not covered by the alarm (signal 2). This coverage is quite 
significant, as it indicates the possibility of the continuity of a fault or the tendency to 
recover it. As this fault is presented in a dispersed form, it does not allow the 
observed system to alarm. Thus, the use of the algorithm in this context provides an 
important complement for fault detection. The number of FPs was meaningless. The 
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percentage of detected faults was also highly significant, although it was not possible 
to detect all faults, in average. 

The algorithm can be used for diagnosis generation, identifying regions (clusters) 
of high concentration of active detectors, which makes it possible to specify the 
characteristics that result in faults, i.e. configuration of the set of parameters that 
originates a fault. 
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Abtract. Biological immune system is a control system that has strong 
robusticity and self-adaptability in complex disturbance and indeterminacy 
environments. The B cell and the antibody in biological immune dynamic 
process are described in the basic Varela immune network model(BVINM), But 
the antigen doesn’t exist in this model. An improved Varela immune network 
model(IVINM) has been presented by appending the antigen in the BVINM in 
this article. Based on the improved Varela immune network model, An immune 
controller model is designed and its structure is proposed in the paper. Finally 
the paper puts forward a simulation example, and analyses the characteristic of 
the immune controller. 

Keywords: Artificial immune, Varela immune network model(VINM), 
Immune controller, Simulation. 

1   Introduction 

The Biological immune system is a control system that has strong robusticity and self-
adaptability in complex disturbance and indeterminacy environments[1]. It is the 
research object which the computer and the intelligent domain always pay attention 
to. Computation immunology already has formed which was a special branch[2]. 
Research scope of the computation immunology is from biological immune process 
simulation to immune mechanism, immune algorithm, immune model and practical 
application. International artificial immune system academic conference was 
convened every year, since the first international artificial immune system academic 
conference was held in the Kent University of England in 2002. Obviously, the 
scientists hoped to introduce the biological immune rule and the mechanism to the 
actual project domain effectively, in order to provide kinds of brand new effective 
technologies and the methods for the science and the project domain. 

Design of the controller aims to enhance the quality of the control system and 
obtain requested control goal. It is the key for guaranteeing the quality and the 
characteristic of the control system once the model of the object is determinate. 
Therefore the design and the analysis of controller is a focal point which the whole 
control domain pays attention to. There are two method for design traditional 
controller: One is the classical control theory design method, including linear method 
such as the method of the root-locus, the method of frequency domain, PID 
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adjustment and non-linear method such as phase plane, description function; Another 
is the modern control theory design method, including the state feedback controller, 
the auto-adapted adjustment controller, change the structure controller, based on 
H and so on. The design and realization of controller mentioned above already had a 
series of relative more complete and strict theory methods, but still some defaults left, 
For example, the object is often limited strictly to be linear, or having been known at 
least. When the object is disturbed by the factors which cannot be surveyed or cannot 
be estimated, the control capability will fall off greatly. 

There are two sorts of artificial immune models[2,3], one is the immune model 
based on the immune system theory (mainly clones choice theory nowadays), and 
another is the immune network model based on the immune network theory. As far as 
the immune network model was concerned. two immune network models are covered, 
one is continual and another is discrete. If we introduce the artificial immune model to 
the controller model for the continuous process control system, it is advisable means 
to adopt the simplified continuous immune network model. This is because: Firstly, 
all the continuous immune network models at present are the ordinary differential 
equation of time, which conforms to the real continuous control system. Secondly the 
discrete immune network model is not the common discrete model based on time in 
the control system, but it means that the immune cells or molecules are separated 
ones. The discrete immune network model describes the quantity changing of the 
immune factors or molecules. The basic Varela immune network model (BVINM) 
belongs to the continuous immune network model. Based on the Varela immune 
network model, this article proposed an improved Varela immune network model. 
Through simplifying the IVNM, a new immune controller that has the learning and 
memorizing characteristic was structured. Finally, the simulation application result of 
the immune controller was shown in this paper 

2   Basic Varela Immune Network Model[4,5] 

The model that proposed by Varela and his confreres is called the second generation 
network model. The model contains three important concepts: structure, dynamics 
and metadynamics. The structure indicate the relation pattern of the each part immune 
network. Usually the structure is expressed by the matrix. Dynamics indicate the 
dynamic change of the density and affinity of immune factor. The metadynamics 
indicate that the network composition may change. This change denotes that new 
elements will appear in the network and old ones disappear at any moment. 

The fundamental assumption of the BVINM is: 

1) The BVINM only considered the B cell and the antibody produced by it. The 
identical kind of the cell and the antibody are called the clone or the unique 
feature. The antibody only can be produced by the mature B cell. 

2) The effects of the different kinds of the clone are expressed by the matrix M. The 
optional value of the matrix is 0 or 1. 

3) The new B cells are produced and the old ones disappeared unceasingly. The 
probability of the mature and the reproduction of the B cell depends on the clone 
in the immune network. 
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The BVINM includes the two equations as follows: 

i 1 i i 2 i 3 i i

i 4 i 5 i i 6

T k T k T k M( )B

B k B k P( )B k

σ σ
σ

= − − +
= − + +

                                 (1) 

In the formula, iT  expresses the quantity of the ith kind of the antibody. iB  

expresses the quantity of the ith kind of the B cell. The parameter 1k  indicates the 

mortality of the antibody which is caused by the antibodies interaction. 2k expresses 

the natural mortality of the antibody. 3k  indicates the reproduction rate  of the 

antibody which is caused by the mature B cell. 
4k expresses the mortality of the B 

cell. 
5k expresses the reproduction rate of the B cell which is caused by the B cell 

itself. 
6k expresses the new reproduction rate of the B cell which is caused by the 

marrow. 
iM( )σ is the mature function of the 

iB cell. 
iP( )σ is the reproduction 

function of which the 
iB cells reproduce the 

iT  antibodys. The mature function and 

the reproduction function have the "bell" function which is shown in Figure 1. 

 
 
 
 
 
 
 
 

Fig.1. )(M iσ is the mature function of the iB cell. )(P iσ is the reproduction function of 

which the iB cells reproduce the iT  antibodys. The mature function M( )σ and the 

reproduction function P( )σ   have the "bell" function. 

iσ expresses the network sensitivity of the ith kind of clone: 

n

i i, j j
j 1

m Tσ
=

=                                                      (2) 

i, jm denotes the Boolean value of the affinity between ith and jth clone in the formula. 

The Boolean value is 1 when the affinity exists, and the value is 0 when the affinity 
disappears. n is the type of 

iB cell and 
iT antibody, i=1,2,... ... n. 

The “bell" function implies the basic fact of the biological immune process: 
Insufficient or the superfluous sensitivity can suppress the B cells’ reproduction and 
capability of which B cells produce T antibody[2].  

The formula (1) and (2) denote the dynamic process of the interaction between the 
B cell and the antibody in the biological immune process to some extent. If the 
formula (1) and (2) are be used for designing the immune controller in the control 
system, they have some insufficiencies: 

P( ) 
M( )
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1) BVINM haven’t reflected the infection that antigen act on immune network, 
which is adverse for the VINM transform to the controller model, for the system 
error is often considered as the antigen when design the immune control system. 
One of the final control effects is to eliminate or reduce the error of control 
system as far as possible. 

2) Formula (1) describes that the 
iB cell can only promote the 

iT  antibody. In the 

fact, B cell can excrete many kinds of immune antibodies. The reproduction of 
the 

iB cell mainly depends on the B cell itself and the marrow. Moreover the 

reproduction of the 
iB cell radically is elicited by the antigen which have intruded 

organism. (To be concise, the other factors are not considered). 

3   Improved Varela Immune Network Model 

After the antigen invaded organism, the organism had two different kinds of 
responses. One is the self-duplication of antigen. Another is the elimination of the 
antigen caused by the phagocyte and the killing cell. That can be described with the 
under dynamic equation[6]: 

i i iAg q'Ag H(T )Ag= −                                               (3) 

Among them, q'  denote the reproduction rate of the antigen when the immune 

process doesn’t exist, 
iH(T )  is the function of which antigen is eliminated by 

antibody. 
iH(T ) can be shown as follows[6]: 

i e iH(T ) h K T= +                                                     (4) 

h denote the rate of the non-special killing. 
eK  denote the approximate rate of 

antigen’s being specially eliminated. Take (4) into (3): 

i i e i iAg qAg K T Ag= −                                              (5) 

in the formula (5), q expresses the rate of the antigen reproduction. 
eK  expresses the 

rate of antigen’s being eliminated. We suppose that the elimination rate of the antigen 
mainly depends on the probability of the antibody meeting and uniting with the 
antigen, while the probability is determined by the quantity of the antibody and the 
antigen. The product of the antibody quantity and the antigen quantity is use for 
expressing the probability of the antibody and the antigen meeting each other [7,8], 
that is 

i iT Ag . Considering (1) and (5), we can obtain the IVINM as follows: 

i i e i i

i 1 i i 2 i 3 i i

i 4 i 5 i i 6 Ag i

Ag qAg K TAg

T k T k T k M( )B

B k B k P( )B k K Ag

σ σ
σ

= −

= − − +
= − + + +

                           (6) 



436 D. Fu, Z. Deling, and Y. Chen 

 

Ag , q and 
eK  in the formula (6) is the same as in the formula (5). 

And
iM( )σ ,

iP( )σ ,
iσ  in the formula (6) is  the same as in the formula (1) and (2). 

AgK  denotes the B cell reproduction rate which is caused by the antigen. 

4   Design and Analysis of Immune Controller 

We need a SISO controller for SISO system., and then the formula (6) can be shown 
as follows: 

e

1 2 3

4 5 6 Ag

Ag qAg K TAg

T k T k T k M( )B

B k B k P( )B k K Ag

σ σ
σ

= −

= − − +
= − + + +

                               (7) 

When we use the IVINM (7) for constructing new immune controller, we must 
clarify which are similar or heuristic between this IVINM and the control system, we 
also must clarify which are different that needs to be improved. The similarity is 
shown as follows: the first is that the IVINM (7) describe the immune process 
between the B cell and the antibody after the antigen invaded organism. That is 
similar to the relation of the error variable and the control variable in control system, 
when the error e(t) replace the antigen Ag and the control u(t) replace the B cell. The 
second is the IVINM (7) describes the dynamic process between the B cell and the 
antibody. The B cell is the important cell in recognizing and memorizing antigen as 
well as in secreting antibody. It is already proved that the plasma-cell created by the B 
cell was one of the important reasons why the immune system has the memory 
characteristic in the medicine. 

Dissimilarity is shown as follows:  

(1) The changing rate of the antigen intruded organism is composed of the antigen 
self-duplication and the rate of antigen being killed by the antibody in the IVINM 
(7). The error of the control system cannot be divided into two parts like that, for 
the error of the control system is unable to self-duplicate. Moreover the control 
error relates widely to the object model, the external disturbance, the control 
input as well as the controller model and so on. Therefore only the rate of antigen 
being killed is considered in this paper.  

(2) The quantity of the antigen, the antibody and the B cell each is certainly bigger 
than zero in biological immune system. But the error and control quantity may be 
positive or negative in the control system. So it is necessary that the IVINM (7) 
should be improved and simplified for making the formula of the immune 
controller. 

We abandon the antigen self-duplication item in formula (7) basing on the 
condition (1). Considering the condition (2), the function of the mature M( )σ  as 

follows is taken:  

1 2p p
mM( ) K (e e ) sign( )σ σσ σ= − •                                   (8) 
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mK  is a constant and 
mK 0>  in the formula (8). 

2p and
1p  are the constants and 

2 1p p 0< < . sign( )σ  is the mark function. The formula (8) is appropriate for the 

error that may be positive or negative in the control system. The formula (8) has the 
curve which is shown in figure 2, it’s upper part of the curve is similar to the "bell" 
shape in figure 1. The reproduction function P( )σ  also adopts formula (8).  

 
 
 
 
 
 
 
 
 
 

Fig. 2. The M( )σ  and P( )σ  curve of  actual control system. They were both expressed by 
formula (8). 

We combine the first item with the second one in the formula (7). e(t) replace Ag , 

u(t) replace B. We can obtain the control model based on the IVINM as follows: 

+++−=
+−=

−=

e(t)Kk)t(u)(Pk)t(uk)t(u

)t(u)(MkT(t)k(t)T
T(t)e(t)K)t(e

Ag654

3T

e

σ
σ                      (9) 

T 1 2k k kσ= + . It is too complex that the formula (9) is used for the controller. 

Therefore the formula (9) will be further simplified: 1) because 
Tk  is too small, we 

suppose 
Tk 0= ; 2) we neglect the self-duplication item in the equation (9); 3) we 

suppose the independent variable of M( )σ  is u(t) ,that is M(u) . We suppose the 

independent variable of P( )σ  is u(t) , that is P(u) . 4) Get one order derivative of the 

third formula in formulary (9), and omit the complex non-linear item, and take the 
first formula into the third formula, and then we obtain the formula (10) as follows: 

                          3

4 5

T(t) k M(e(t))u(t)

u(t) (k k P(e(t)))u(t) kT(t)e(t)

=
=− − −

                                        (10) 

Ag ek K K= , the formula (10) is an immune controller model based on the IVINM 

in this paper. This immune controller model is called an improved Varela immune 
network controller (IVINC).The structure of the IVINC is shown in figure 3.  

The IVINC shown in figure 3 is a non-linear controller. It has the characteristics as 
follows: 
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Fig. 3. A biological immune controller based on improved varela immune network , e(t) is an 
error of the control system, and it is an equivalence of the Ag antibody in the biological 
immune system.u(t) is the output of the  immune controller, it is an equivalence of the B cell 
concentration in the biological immune system. The waves of  function and  function 
are shown in fig.2. 

1) If 
4k and 

5k P(u)  are chosen reasonably, the inner feedback in the IVINC brings 

the positive feedback when u(t) belongs to the appropriate spectrum. When the 

inner feedback is the positive feedback, u(t)  will increase fast, and the larger 

u(t)  will cause the negative feedback. That accord with the biological immune 
feedback mechanism (the Ding immortal article). 

2) When the choosing of parameter is reasonable, it can be ensured that if the error 
e(t)<>0 then T (t)<>0 at the same time, so the larger T (t) is good for the 
controller to response more sensitively to the small error e(t). When the control 
system repeatedly respond to the series of same input signal, the second reaction 
speed of the system will be accelerated due to increasing the antibody density. 
That accords with the memory mechanism of the biological immune response. 

3) When u(t)  is too large, 
3k M(u)u(t)  approximate to zero due to M(u) . That is 

quite effective to control the excessively increasing of T(t). If 
Tk takes a very small 

value in the formula (9), that is advantageous to the system stability, but that also 
will sacrifice the memory characteristic of the immune response to some extent. 

5   Simulation Result 

The structure of the control system which includes the IVINC is shown in fig. 4.  
 
 
 
 
 
 
 

Fig. 4. Artificial immunie control system structure. f(e,u) is an immune controller shown in 

fig.3, while G(s) is an object controlled by the immune controller.  
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The anti-lag ability, memory characteristic and parameter choice of the IVINC are 
studied with simulation in this paper. 

5.1   Long-Lag and Big-Inertia Object Control 

The object with long-lag and big-inertia is hard to be controlled in practice. We 
suppose the object model is: 

                                     
150s

e
)s(G

s-

0 +
=

ε
                                                         (11) 

The inertia constant is 50 in this model. If >3, it is very difficult that the object 
realizes the stable control with the PID. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 5. long-lag and big-inertia object control curve. y(t)  is an output of the system when the 

square-wave signal r(t) 1= . We take =30, P0=0.1, k=0.1, 
3k =5, 

4k =1.5 
5k =0,

mK 5= , 

1 2p 0.1 p 0.10001= − = − .  

From the simulation curve in figure 5, it is learned that the second response is 
obviously quicker than the first response, and the third response is little quicker than 
the second, subsequently the responses is nearly constant. This characteristic is 
extremely similar to the mechanism of the immune response. Moreover, from the 
simulation result, it is learned that the IVINC ensure the control system to track the 
constant input with the error approximating to zero. 

5.2   Long-Log and Big-Oscillation Object Control 

The object with long-lag and big-oscillation is hard to be controlled in practice. We 
suppose the object model is: 

                            
1s25s

e
)s(G

2

s-

0 ++
=

ε
                                                         (12) 

The inertia time-constant is 5, =0.1, If >2.5, it is very difficultly that the object 
realizes the stable control with the PID. Though the formula (12) greatly differs from 
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the formula (11), the satisfying control effect can be obtained if only the parameters 
of the IVINC change little. 

The square-wave signal whose value equals 1 is chosen as the control signal in the 
paper. We take =30, P0=0.1, k=0.2, 

3k =5,
3k =5, 

4k =1.5,
5k =0,

mK 5= , 

1 2p 0.1 p 0.10001= − = − . The simulation result is shown in figure 6. 

The same conclusion can be gotten when comparing the figure 6 to the figure 5:  
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. long-log and big-oscillation object control curve. y(t)  is an output of the system when 

the step function r(t) 1= . The square-wave signal whose value equals 1 is chosen as the 

control signal in the paper. We take =30, P0=0.1, k=0.2, 
3k =5,

3k =5, 
4k =1.5, 

5k =0, 

mK 5= , 
1 2p 0.1 p 0.10001= − = − . The simulation result is shown in figure 6. 

the second response is obviously quicker than the first response, and the third 
response is little quicker than the second, subsequently the responses is nearly 
constant, the IVINC ensure the control system to track the constant input with the 
error approximating to zero. Otherwise, it is learned from the selection of parameter 
that the IVINC has the well auto-adapted ability. 

5.3   The Parameter Characteristic of The IVINC  

When the parameters of the object change, the parameters of the IVINC should be 
adjusted to achieve the control goal. The rule of the parameters being selected is very 
important for the control system design and analysis. We have discovered the 
following several rules through the simulation research: 

1) When the object pure-lag is increased(e.g. =4, 10, 20... 60) , the good control 
effect still could be obtained without the parameters of the IVINC changing , 
while the characteristic of the dynamic response dropped slightly. 

2) The value of the B cell mortality rate 
4k  greatly affects system. The system 

stability is improved by increasing 
4k  suitably, but it is possible to cause 

overmuch immune and to make the system to be unable to track the control signal, 
vice versa. 
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3) The proportional factor k has the same effect on the immune control system as on 
the linear system.  

4) The stability of the artificial immune system is also influenced by the parameter of 
nonlinear function M( )σ  and P( )σ . 

mK is often not very large as well as 

1 2p  and p . When p1 is close to p2 and p1 is less than p2, the performances of the 

immune control system are preferable usually. 
5) The non-zero initial value P0 is influential to the system stability, the response rate 

and so on, generally that is complex. 

6   Conclusions 

(1) The paper proposes the IVINM based on the BVINM. An artificial immune 
controller is obtained based on the IVINM, which is called the IVINC. 

(2) The paper gives the structure of the IVINC and approximately described the 
characteristics of the IVINC. 

(3) For two classical control objects that is usually hard to be controlled, the 
simulation research which adopts the IVINC obtained the good control result. 

(4) Several control variables of the IVINC are researched with the simulation method.  

Although the IVINC has beening studied in this paper, still some problems left to 
be resolved. For example, why the IVINC have such egregious ability in overcoming 
the pure-lag? Can we further decrease the controller’s parameter number which is too 
much for practice? How to prove the stability of the control system which includes 
the IVINC in theory? But no matter how, the IVINC which is proposed in this paper 
already displayed the well immune characteristic to some extent. Perhaps it is worth 
to be further researched. 
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Abstract. We apply the Clonal Selection principle of the human immune sys-
tem to solve the Flexible Job-Shop Problem with recirculation. Various practi-
cal design issues are addressed in the implemented algorithm, ClonaFLEX; 
first, an efficient antibody representation which creates only feasible solutions 
and a bootstrapping antibody initialization method to reduce the search time re-
quired.  Second, the assignment of suitable mutation rates for antibodies based 
on their affinity. To this end, a simple yet effective visual method of determin-
ing the optimal mutation value is proposed. And third, to prevent premature 
convergence, a novel way of using elite pools to incubate antibodies is pre-
sented. Performance results of ClonaFLEX are obtained against benchmark 
FJSP instances by Kacem and Brandimarte.  On average, ClonaFLEX outper-
forms a cultural evolutionary algorithm (EA) in 7 out of 12 problem sets, 
equivalent results for 4 and poorer in 1. 

Keywords: Immune Algorithm, Clonal Selection, Flexible Job-Shop Schedul-
ing Problem, Optimization. 

1   Introduction 

The Flexible Job-Shop Scheduling problem (FJSP) is a NP-hard problem [ 7] that has 
attracted much research [ 8][ 9][ 10][ 11][ 12] due to its practical application in modeling 
the constraints frequently found in modern manufacturing and production facilities. 
The FJSP specifies a series of jobs to be processed by a list of machines. The con-
stituent operations of the jobs are to be processed on predetermined machines with 
different processing times. An operation can be executed on a machine chosen from a 
set of available alternatives. The task is twofold; to allocate operations to machines 
and to order the allocated operations on each machine so as to give the shortest 
makespan, or the minimum time to complete all jobs. Due to the combinatorial num-
ber of possible schedules, general methods to find the global minimum will not return 
results in a reasonable amount of time. 

In recent years, the development of evolutionary algorithms based on immunologi-
cal metaphors has introduced a new paradigm for solving such combinatorial prob-
lems. In particular, immune algorithms, such as CLONALG, designed based on the 
Clonal Selection principle of adaptive immunity have shown considerable success in 
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solving a variety of multi-modal and combinatorial problems [ 4][ 6].  However, a suc-
cessful application of this principle requires careful design to avoid problem-specific 
representational inefficiencies, premature convergence due to undirected mutation and 
insufficient diversity.  In this sense, clonal selection-based algorithms are like genetic 
algorithms (GAs) which require proper designs of chromosomal representations and 
recombination operators [ 11][ 12] to allow an effective parallel and sampled search, 
intelligently locating basins in the solution space where optimal results can be 
reached. The objective of this paper is therefore to share our experiences for an effec-
tive application of the Clonal Selection principle, through the design of an algorithm 
called ClonaFLEX that effectively approximates the global optimal solution for the 
FJSP. 

This paper is organized as follows: Section 2 begins with a description of the ver-
tebrate immune system and explains how Clonal Selection can in principle, be used to 
solve combinatorial search problems. Section 3 gives the FJSP problem formulation. 
Section 4 describes the design parameters for the ClonaFLEX algorithm; namely, an-
tibody representation, initialization, affinity computation and mutation.  Section 5 de-
scribes practical considerations for maintaining antibody diversity and the derivation 
of mutation rates. Section 6 presents the performance results of benchmark tests while 
Section 7 summarizes and gives concluding assessments. 

2   The Vertebrate Immune System 

The vertebrate immune system comprises the innate and adaptive defense mecha-
nisms which provide the host body with a means of protection against infectious 
agents. Its basic elements consist of lymphocytes belonging to two main types: B-
cells and T-cells. Both B-cells and T-cells perform the task of combating and elimi-
nating pathogens (foreign invading cells) in different but complementary ways. As 
our approach in this paper is inspired mainly from the function of B-cells, the mecha-
nism of T-cells will not be discussed. Interested readers can refer to material in [ 1]. 

B-cells carry on their surface, receptor molecules or antibodies (AB) which are ca-
pable of recognizing harmful antigens and binding with them. After the antigen has 
been bound by the antibodies, it will subsequently be recognized and ingested by 
phagocytes. B-cells are mono-specific in nature, each producing a single type of anti-
body which can recognize and bind to only a certain antigenic protein. This results in 
the need for a large repertoire of antibodies in order to afford the effective recognition 
of a diverse range of antigens, known and unknown. The Clonal Selection principle is 
an adaptive immune mechanism to overcome this problem. 

2.1   The Principle of Clonal Selection 

This theory (also known as the Clonal Expansion principle) [ 2] explains the response 
of lymphocytes (in this case, the B-cells) in the face of an antigenic stimuli.  It is illus-
trated in Figure 1. 
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When the antibodies on a B-cell recognize an antigen with a certain affinity (de-
gree of match), the B-cell will be stimulated to proliferate (divide) and eventually ma-
ture into terminal (non-dividing) antibody secreting cells, called plasma cells [ 5]. Pro-
liferation of the B-cells is a mitotic process whereby the cells divide themselves, 
creating a set of clones identical to the parent cell. The proliferation rate is directly 
proportional to the affinity level, meaning that B-cells with higher affinity levels will 
be more readily selected for cloning and cloned in larger numbers compared to others.  
More specifically, during asexual reproduction, the B-cell clones experience somatic 
hyper-mutation; a random structural change. More often than not, a large proportion 
of the cloned population becomes dysfunctional or develops into harmful anti-self 
cells after the mutation. These anti-self cells are programmed for cell death by the 
immune system through a process called apoptosis. However, occasionally an effec-
tive change enables the offspring cell to bind better with the antigen, hence affinity is 
improved. In the event that a mutated cloned cell with higher affinity is found, it in 
turn will be activated to undergo proliferation. 

 

Fig. 1. Illustration of the Clonal Selection principle (taken from [ 3]) 

The mutation on the cloned cells occurs at a rate which is inversely proportional to 
the antigen-affinity. Clones of higher affinity cells are subjected to less mutation 
compared to those from cells which exhibit lower affinity. This process of constant 
selection and mutation of only the B-cells with antibodies which can better recognize 
specific antigens is known as affinity maturation. Though the repertoire of antibodies 
in the immune system is limited; through affinity maturation, it is capable of evolving 
antibodies to successfully recognize and bind with known and unknown antigens, 
leading to their eventual elimination.  

The immune system also possesses memory properties as a portion of the B-cells 
will differentiate into memory cells, which do not produce antibodies but instead re-
members the antigenic pattern in anticipation of future re-infections. These memory 
cells circulate within the host body.  In response to a second antigenic stimulus, they 
differentiate into plasma cells to produce antibodies which have high affinity. 
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3   Problem Definition 

The FJSP can be defined as follows: 

• There are n jobs, indexed by i, and these jobs are independent of each other. 
• Each job, Ji has li operations, and a set of precedence constraints Pi. 
• Each job, Ji is a set of operations Oi,j for j = 1, ..., li. 
• There are m machines, indexed by k. 
• For each operation Oi,j, there is a set of machines capable of performing it. The 

set is denoted by Mi,j, Mi,j ⊆ {1, ..., m}. A matrix is used to denote Mi,j. 
• The processing time of an operation Oi,j on machine k is predefined and denoted 

by ti,j,k. A matrix is used to denote ti,j,k. 
• Each operation cannot be interrupted during its performance. 
• Each machine can perform at most one operation at any time. 
• The objective is to find a schedule with the shortest makespan, where the 

makespan of a schedule is the time required for all jobs to be processed in the job 
shop according to the schedule. 

4   Applying Clonal Selection to Find Flexible Job-Shop Schedules 

In this paper, an immune algorithm called ClonaFLEX, designed using the Clonal Se-
lection principle, is proposed to solve the FJSP.  Similar to CLONALG [ 4], it contains 
the features of the Clonal Selection Algorithm, but with several customizations to 
handle the FJSP objective. In ClonaFLEX, possible job schedules to solve the FJSP 
are modeled as antibodies. An affinity value is assigned to each antibody depending 
on its fitness. The shorter the makespan of a schedule, the fitter an antibody is. The 
algorithm identifies good antibodies, by means of their affinity values, and conducts 
an intelligent search in the search space around them to find better solutions. This 
process is repeatedly carried out and the information gained from each generation is 
used as feedback to conserve and propagate good features.  As more than one good 
antibody can be identified each time, ClonaFLEX allows for a parallel search, sub-
stantially decreasing the time needed to solve the problem.  In spite of this apparent 
simplicity, the application of clonal selection to effectively find good schedules has 
not been trivial.  This is due to the practical effect of premature convergence due to 
insufficient antibody diversity.  In this section, we present the main practical design 
considerations for the successful application of the Clonal Selection principle; in par-
ticular, to solve the FJSP. 

4.1   Antibody Representation 

The first consideration is the choice of representation for an antibody.  We take inspi-
ration from research in applying GAs to solve the FJSP [ 9][ 11]. In GAs, the solutions 
are represented as chromosomes. In [ 11], Ho and Tay proposed a chromosome repre-
sentation (and associated recombination operators) for generating only feasible FJSP 
schedules.  Detailed results in Wibowo and Tay [ 12] showed that less computational 
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time is required as a result of avoiding a repair mechanism.  With regards to the FJSP, 
the chromosomes of GAs are the same as antibodies of ClonaFLEX. Therefore, the 
representation of GA chromosomes can be readily adapted to that of ClonaFLEX’s 
antibodies. In this work, Ho and Tay’s encoding scheme is used. 

Table 1. Example of a 2x3 FJSP (taken from [ 11]) 

 M1 M2 M3 
O11 4 5 XXX 
O12 9 2 2 J1 
O13 XXX 6 3 
O21 6 5 XXX 

J2 O22 3 3 5 

Basically, the representation comprise of two parts: 

• Operation Order String: This part of the chromosome follows Ramiro et al. [ 13]. 
The string encodes the order of the operations to be processed by specifying the 
job number which the operation belongs to. The order of operations for each job 
remains unchanged to avoid creating infeasible solutions during mutation. Con-
sider the 2x3 FJSP in Table 1 where Job 1 (J1) has 3 operations (O11, O12, O13) 
and Job 2 (J2) has 2 operations (O21, O22). One possible schedule could be (O21 
O11 O22 O12 O13).  We obtain the resulting string by replacing each operation by 
the corresponding job index; giving the result (2 1 2 1 1).  This encoding prevents 
the creation of infeasible schedules. 

• Machine Order String: This part represents the assignments of machines to opera-
tions. Here, an array of binary numbers is used to indicate specifically which ma-
chine each of the operations has been allocated to. Fig. 2 shows one possible en-
coding under this scheme. A value of 1 indicates that a machine is selected. 

O11 O12 O13 O21 O22 
M1 M2 M1 M2 M3 M2 M3 M1 M2 M1 M2 M3 
0 1 0 0 1 1 0 0 1 0 1 0 

Fig. 2. Scheme for representing the machine assignment of the operations 

4.2   Antibody Initialization 

Before the antibody can be used, its operation order and machine order strings (as dis-
cussed in the previous section) need to be initialized. Instead of using a randomized 
mutation approach, a bootstrapping method is employed.  This is described as fol-
lows. 
 In the creation of an antibody, a random schedule of the job operations is generated 
and encoded as the operation order string. The bootstrapping mechanism is applied to 
the machine order. For each operation, instead of randomly choosing a machine to be  
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assigned, the machine offering the shortest processing time is chosen. The purpose of 
the proposed bootstrapping initialization method is to ensure that the machine order of 
the antibody is optimized by selecting the best machine for each operation. In this 
way, less mutation needs to be performed on the machine order before the best com-
bination is found. As the processing time of each operation is initially a minimum, 
this helps to reduce the initial makespan value of the antibodies. By fixing the initiali-
zation of the machine order, it may seem that the diversity of a given group of gener-
ated antibodies will be compromised. However, it should be noted that the machine 
order string is only half of the antibody representation. The random generation of the 
other half, which is the operation order, provides a diversifying effect that offsets the 
localization effect of the machine order initialization. 

4.3   Makespan Computation 

Each antibody represents a possible job schedule that may satisfy a given FJSP. Its 
makespan value can be computed by interpreting both the operation and machine or-
der.  We use the Makespan Computation Algorithm [11] shown in Figure 3.  

1. for (i := 1 to m) do 
2. j := operation_order(i) 
3. k := operation_index(j) 
4. l := get_machine_index(j,k) 
5. p := get_processing_time(j,k,l) 
6. L := set of operations processed on machine l 
7. middleList := false 
8. for (i := 1 to size_of(L)-1) do 
9. if (p <= time between L(i) & L(i+1)) then 
10. insert operation k between L(i) & L(i+1) 
11. middleList := true 
12. break 
13. endif 
14. endfor 
15. if (!middleList) then 
16. insert operation k at the end of L 
17. endif 
18. endfor 
19. max := maximum finishing time of a  machine in a set of machine M 
20. return max 

Fig. 3. The Makespan Computation Algorithm [ 11] 

In the algorithm, m is the length of operation order, operation_order(i) re-
turns the index of the job at position i in operation order, operation_index(j) re-
turns the index of the operation of job j, get_machine_index(j,k) returns the in-
dex of the machine performing Oj,k, get_procdessing_time(j,k,l) returns 
processing time of Oj,k on machine l and M is the set of machines in the scheduling 
problem. 

The algorithm works by detecting a left-most time gap between two operations 
processed on the same machine. If this gap is big enough to accommodate a new op-
eration, the new operation will be inserted into the slot. Thus, the algorithm attempts 
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to find the shortest possible makespan value for a schedule by packing all the opera-
tions processes as closely as possible. 

4.4   Mutation of Antibodies 

The main purpose of the mutation process is to produce variants of the existing anti-
bodies which can offer better makespan values. Since an antibody is represented by 
two parts; the operation order and machine order, two separate mutation operators are 
devised to act on each of these parts of the antibody. These operators will be named as 
the operation order mutation operator and the machine order mutation operator re-
spectively. 

In operation order mutation, only the operation order of an antibody is mutated. 
Two random operations will be selected and swapped in position with each other (see 
Figure 4). The number of operation swaps depends on the mutation rate – the higher 
the mutation rate, the more operations to be swapped. 

2 1 2 1 1 

Operation order before mutation (swapping) 
1 1 2 1 2 

Operation order after mutation (swapping) 

Fig. 4. Example of a mutation on the operation order string 

In machine order mutation, random operations are chosen to have their assigned 
machine bits changed. This means that they will now be processed by a machine dif-
ferent from the originally assigned one (see Figure 5). With a higher mutation rate, 
more operations experience a change in their assigned machine. 

O11 O12 O13 
M1 M2 M1 M2 M3 M2 M3 
0 1 0 0 1 1 0 

Machine order before mutation 
O11 O12 O13 

M1 M2 M1 M2 M3 M2 M3 
0 1 1 0 0 0 1 

Machine order after mutation 

Fig. 5. Example of a mutation on the machine order string 

In adhering to the Clonal Selection principle, the rate of the mutations is set to be 
inversely proportional to the antibody’s fitness. If an antibody is weak, a larger 
amount of mutation is likely to cause an improvement in fitness. However, if the anti-
body is already fit, a similar mutation is more likely to cause deterioration in fitness 
which is an adverse effect. In this case, a small mutation is favored. 
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4.5   Design of the ClonaFLEX Algorithm 

 

Fig. 6. Flow diagram of the ClonaFLEX algorithm 

Figure 6 shows the design of the proposed algorithm. The individual steps are de-
scribed as follows: 

1. Create an initial pool of m antibodies (candidate solutions). 
2. Compute the makespan value of each antibody using the Makespan Computa-

tion Algorithm (see Figure 3). 
3. Select n best (fittest) individuals from the m original antibodies, where n < m, 

based on their makespan values. These antibodies will be referred to as the el-
ites. 

4. Place each of the n selected elites in n separate and distinct pools. They will be 
referred to as the elite pools.  (Note: there is no special arrangement for the 
subsequent placement of elites in the elite pools. After the initial selection of 
the first batch of elites, each will simply be given a pool to populate. The sub-
sequent elites chose from each pool after cloning and mutation will then re-
place only its predecessor in their respective pools. There is no crossover of an-
tibodies between pools). 

5. Clone the elites in each elite pool with a rate proportional to its fitness. The fit-
ter the antibody (the lower the makespan), the more clones it will have. 

6. Subject the clones in each pool through a hyper-mutation process. Half of the 
clones will undergo operation order mutation while the other half will undergo 
machine order mutation. The mutation rate for both cases is inversely propor-
tional to the fitness of the parent antibody. 
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7. Determine the fittest individual in each elite pool from amongst its mutated 
clones to become the elite for the next generation. All other clones are dis-
carded. 

8. Replace each elite in the worst l elite pools with a new antibody (cell renewal) 
once every k generations to introduce diversity and prevent the search from be-
ing trapped in local optima. 

9. Determine if the number of generations to evolve is reached. If it has, terminate 
and return the best antibody; if it has not, return to Step 4. 

5   Analysis 

The ClonaFLEX algorithm was designed based on the Clonal Selection principle, in-
volving certain elements of evolutionary computation. In ClonaFLEX, there is no 
crossover process. Instead, the algorithm relies solely on a dynamic mutation rate as 
the only means to drive the evolution of its population of antibodies (solutions). 

After the identification of a good antibody, ClonaFLEX massively clones it and 
mutates the newly generated clones. Due to the large number of mutated clones, there 
is effectively a wide coverage of the solution space around the original antibody. This 
is much akin to doing a greedy search, but is intelligently guided by the relative 
strength of the conserved features denoted by the fitness of each antibody. Depending 
on these fitness values, different mutation rates allow for a variation of search radius. 

The cloning and mutation approach provides an effective method for the global 
search of good solution basins. However, there are also other factors that contribute to 
the efficacy of the ClonaFLEX algorithm. 

5.1   Maintaining Population Diversity 

In the ClonaFLEX implementation, the n chosen elites are placed in distinct pools. 
This feature is to ensure a more effective parallel search. 

Due to the Clonal Selection principle, intense competition can arise among anti-
bodies and the weaker ones will never have the chance to be expressed. During selec-
tion, the fitter antibodies will always be considered over the weaker ones. After a cer-
tain number of generations of evolution, these fit antibodies start to dominate the pool 
with their fitness, resulting in the selection of the same few individuals to move into 
the next generation each time. This problem is made worse by the cloning process 
where fit antibodies are cloned more in number, resulting in even greater competition. 
The population space then rapidly converges and loses diversity. The system soon 
finds itself with antibodies all cloned from the same parent cell. If the population 
space converges too early during a search, the result found might only be a local op-
timum instead of the global one. 

By placing the elites in independent pools, it enables each individual to develop at 
their own pace without having to face disturbance or competition from the others. As 
there is no communication or crossing over between the pools, the antibodies in each 
pool become distinctively different from the rest in the other pools, thus preventing 
premature population convergence. 
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Fig. 7. Effect of Elite Pools. The left graph shows the population space when one antibody pool 
is used. The right graph shows that when five separate antibody pools are used. 

Figure 7 shows the antibodies being mapped out using Sammon’s Mapping [ 15]. 
Sammon’s Mapping is a non-metric multidimensional scaling technique [ 14] that at-
tempts to map the elements of a multivariate data set onto a lower dimensional plane 
while retaining the original spatial distances that existed among them. Here, the mul-
tivariate antibodies are mapped onto a two dimensional plane with the principal direc-
tion of change represented by the two axes. The left graph shows the mapping when 
only one pool is used to house all the antibodies. The elites and their clones are all 
clustered together indicating population space convergence. The right graph shows 
the mapping using five different pools. It can be seen that five distinct and separate 
clusters, each headed by an elite, has been formed as they are more able to maintain a 
relative distance from one another. 

The search now becomes more effective since each pool covers candidates in a dif-
ferent area of the solution space. If a pool was to get stuck in a local optimum, the 
other pools remain unaffected and can continue their search unaffected. 

5.2   Determining the Optimal Mutation Rate by Visual Experimentation 

One important factor in the design of ClonaFLEX is the mutation rate for the cloned 
antibodies.  According to the Clonal Selection principle, it is to be inversely propor-
tional to its antigen-affinity. In our application, the antigen affinity (or fitness) is 
measured by an integral quantity which is the makespan of a given FJSP schedule. 
The mutation rate is then in principle determined by the inverse of the antigen affin-
ity; that is, the higher the affinity, the lower the mutation rate, vice versa.  However, 
one cannot decide the ‘goodness’ of an affinity value without a measure of relative 
distance to the optimal for a given problem instance.  In other words, it cannot be de-
cided if an affinity value is considered high (or low) without knowing how far it is 
from the optimal (which differs for each instance)? One possibility is instead to 
equate the mutation rate to be proportional to the relative change in affinity from one 
generation to another.  However, since the fitness landscape need not be monotonic 
and unimodal, such an approach will inevitably cause premature convergence to local  
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optimums. The approach we use to solve this problem is to experimentally partition 
the makespan domain for a problem instance into separate zones and then assign mu-
tation rates to each zone. Therefore in ClonaFLEX, the mutation rate is assigned as 
follows: 

1. Divide the possible makespan range into zones (e.g. makespan values of 1 – 20 
will be zone 1 and makespan values of 21 – 40 will be zone 2). 

2. Assign mutation rates to each of the makespan zones such that the lower zones 
(indicating lower makespan) have lower mutation rates. 

3. Determine the makespan zone which an antibody belongs to by using its 
makespan value. 

4. Mutate the antibody using that zone’s assigned mutation rate. 

There is an optimum value for the mutation rate of each of the zones. If these pa-
rameters are not properly set, the mutation process will not yield fruitful results. Op-
timization of the mutation rates is a difficult process; which we determine by using a 
visualization approach. We illustrate this approach with an example. The graphs in 
Figure 8 are plots of an antibody’s makespan against time for different runs. The first 
plot shows the initial algorithm run against an 8 x 8 FJSP instance from Kacem [ 9], 
where the best makespan found is seen to decrease steadily as the number of rounds 
increases. However, a slight adjustment of the mutation rate for the topmost zone can 
induce the makespan to reduce at a much faster rate, as shown by the steeper gradient 
in the second plot (marked with a green circle). This process is repeated for the indi-
vidual zones until a near-optimal mutation rate is obtained which can be inferred from 
the steepness of makespan decent. Due to this rapid drop in makespan value, the algo-
rithm wastes less time in each zone, having more time to search for better antibodies 
in the lower zones, as shown in the third plot. 

 

Fig. 8. Mutation rate analysis graphs. From left to right: the first plot gives the result of the ini-
tial run, the second shows the result after the mutation rate of the topmost makespan zone has 
been adjusted and the third gives the results after all the zones have been optimized. 

As the direct application of the Clonal Selection principle leads to premature popula-
tion convergence, this visualization approach identifies specific makespan zones to 
evaluate the effectiveness of the assigned mutation rate. Each zone can then be tar-
geted individually for improvement by changing the mutation rate till it gives the best 
drop rate. 
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6   Empirical Results 

The ClonaFLEX algorithm was applied to 12 sets of benchmark FJSP instances. 
These included problem sets from both T-FJSP and P-FJSP to illustrate the ability of 
the algorithm to handle both cases without any change to the implementation. The al-
gorithm was set to run for 200 generations each time with an initial antibody popula-
tion of 100 of which only 10 elites would be chosen. Each problem set was repeated 
30 times and the results were collected. Table 2 shows the tabulated result of Clon-
aFLEX versus the first four sets of problems taken from Kacem et al [ 10] as well as 
those from GENACE [ 11]; a cultural EA. The next eight sets of problems were taken 
from Brandimarte et al [ 8] and the results are tabulated in Table 3. 

Table 2. Results of problem sets from Kacem et al [ 10] 

ClonaFLEX 
Problem Set Kacem et al. GENACE 

Best Result Average Result 
T-FJSP 4 x 5 16 11 11 11.0 
T-FJSP 10 x 7 15 12 11 11.0 
T-FJSP 10 x 10 7 7 7 7.5 
T-FJSP 15 x 10 23 12 12 13.33 

Table 3. Results of problem sets from Brandimarte et al [ 8] 

ClonaFLEX 
Problem Set 

Brandimarte et 
al. 

GENACE 
Best Result Average Result 

P-FJSP 10 x 6 (1) 42 41 39 39.54 
P-FJSP 10 x 6 (2) 32 29 27 28.3 
P-FJSP 10 x 15 86 68 70 73.0 
P-FJSP 15 x 4 186 176 173 174.67 
P-FJSP 15 x 8 81 67 65 66.67 
P-FJSP 20 x 5 157 148 145 148.13 
P-FJSP 20 x 10 (1) 523 523 523 523.0 
P-FJSP 20 x 10 (2) 369 328 311 325.07 

The above results clearly indicate that the ClonaFLEX algorithm is able to obtain 
better upper bounds than the GENACE algorithm for 7 out of the 12 problems sets (in 
bold), equivalent results for 4 other instances while poorer in 1 (in italic). T-tests con-
ducted at a 10% significance level also confirmed the hypothesis that the ClonaFLEX 
algorithm is able to perform on average, better than the GENACE algorithm for 6 of 
the 12 test cases, with another 5 cases showing that they are of equal performance. 
There is only 1 case whereby the performance of ClonaFLEX is inferior to GENACE. 

7   Conclusion 

In this paper, the Clonal Selection principle of the immune system was examined and 
a new algorithm based on it - ClonaFLEX, was designed to solve the NP-hard FJSP.  
Several practical considerations were presented. First, to encode the FJSP schedule in 
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ClonaFLEX, an antibody representation [ 11] that produced feasible schedules (hence 
without the need for a repair mechanism) was adopted. The mutation process in Clon-
aFLEX involved the use of two specific operators, the operation order mutation op-
erator and the machine order mutation operator, which operate on each of the two 
parts of the antibody string.  Second, due to the differing relationship between antigen 
affinity and mutation rates for every problem instance, we experimentally pre-
allocated makespan zones and used a visual method to decide the optimal mutation 
rates for assignment to each zone. A bootstrapping antibody initialization technique 
was also presented to aid in optimizing the antibodies when they are first created dur-
ing the start of the algorithm. Third, the straightforward implementation of clonal se-
lection resulted in premature convergence of the population space. To overcome this 
problem, elite pools are used to incubate antibodies of various strains where they can 
evolve in an uncontested environment. Without communication between the pools, 
these antibodies are able to retain their strain distinctiveness and stay structurally dif-
ferent from one another, thus allowing a more effective parallel search. 

The ClonaFLEX algorithm was tested against 12 benchmark FJSP instances taken 
from Kacem et al [ 10] and Brandimarte et al [ 8].  The results gathered were compared 
to those obtained by GENACE, a cultural EA [ 11].  From the experimental results, 
ClonaFLEX obtained better makespans for 7 problem sets, equivalent results for 4 
other instances while a poorer result for 1. 

The main aim of this paper lies in presenting the practical design considerations for 
solving the FJSP through an application of Clonal Selection theory. Though a manual 
approach of mutation rate determination was required due to the practical limitation 
of a straightforward use of the principle, the results nonetheless prove the efficacy of 
these immune algorithms in solving such NP-hard problems. 

References 

1. Weissman I., Cooper M.., “How the Immune System Develops”, Scientific American, pp. 
64-71, 1993. 

2. Burnet F., The Clonal Selection Theory of Acquired Immunity. Cambridge, U.K.: Cam-
bridge Press, 1959. 

3. de Castro L., Von Zuben F., “Artificial Immune System: Part 1 - Basic Theory and Appli-
cations”, Technical Report, State University of Campinas, Campinas, 1999. 

4. de Castro L., Von Zuben F., “ Learning and Optimization Using the Clonal Selection Prin-
ciple”, IEEE Transactions on Evolutionary Computation, Special Issue on Artificial Im-
mune Systems, vol. 6(3), pp. 239-251, 2001. 

5. de Castro L, Timmis J., Artificial Immune System: A New Computational Intelligence Ap-
proach. London, U.K.,: Springer-Verlag, 2002. 

6. Doyen A., Engin O., Ozkan C., “A New Artificial Immune System Approach to Solve 
Permutation Flow Shop Scheduling Problems”, Turkish Symposium on Artificial Immune 
Systems and Neural Networks TAINN’03, 2003. 

7. Garey M., Johnson D., Sethi R., “The Complexity of Flow Shop and Job-shop Schedules”, 
Mathematics of Operations Research, vol. 1(2), pp. 117-129, 1976. 

8. Brandimarte P., “Routing and Scheduling in a Flexible Job-Shop by Tabu Search”, Annals 
of Operations Research, vol. 2, pp. 158-183, 1993. 



 Applying the Clonal Selection Principle to Find Flexible Job-Shop Schedules 455 

 

9. Kacem I., Hammadi S. and Borne P., “Approach by Localization and Multiobjective Evo-
lutionary Optimization for Flexible Job-shop Scheduling Problems”, IEEE Transactions 
on Systems, Man and Cybernetics, vol. 32(1), pp. 1-13, 2002. 

10. Kacem I., Hammadi S. and Borne P., “Pareto-optimality Approach for Flexible Job-Shop 
Scheduling Problems: Hybridization of Evolutionary Algorithms and Fuzzy Logic”, 
Mathematics and Computer in Simulation, vol. 60, pp. 245-276, 2002. 

11. Tay J. C. and Ho N. B., “GENACE: An Efficient Cultural Algorithm for Solving the 
Flexible Job-Shop Problem”, Proceedings of the IEEE Congress of Evolutionary Compu-
tation, pp. 1759-1766, 2004.  

12. Tay J. C. and Wibowo D., “An Effective Chromosome Representation for Evolving Flexi-
ble Job Shop Schedules”, Proceedings of AAAI Genetic and Evolutionary Computation, 
vol. 2, pp. 210-221, 2004. 

13. Ramino V., Camino R., Vela J.P., Alberto G., “A knowledge-based evolutionary strategy 
for scheduling problems with bottleneck”, European Journal of Operations Research, vol. 
145(1), pp.57-71, 2003. 

14. Kadluczka M., Nelson P., Tirpak T., “N-to-2-Space Mapping for Visualization of Search 
Algorithm Performance”, 16th IEEE International Conference on Tools with Artificial In-
telligence, pp.508-513, 2004. 

15. Sammon J. W. Jr, “A Nonlinear Mapping for Data Structure Analysis”, IEEE Transactions 
on Computers, vol. C-18(5), pp. 401-409, 1969. 



 

C. Jacob et al. (Eds.): ICARIS 2005, LNCS 3627, pp. 456 – 468, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

The Medical Applications of  
Attribute Weighted Artificial Immune System  

(AWAIS): 
Diagnosis of Heart and Diabetes Diseases   

Seral ahan1, Kemal Polat1, Halife Kodaz2 , and Salih Güne 1       

1 Selcuk University, Eng.-Arch. Fac. Electrical & Electronics Eng. 
 42031-Konya/Turkey 

{seral, sgunes, kpolat}@selcuk.edu.tr 
2 Selcuk University, Eng.-Arch. Fac. Computer Eng.  

42031-Konya/Turkey 
hkodaz@selcuk.edu.tr 

Abstract. In our previous work, we had been proposed a new artificial immune 
system named as Attribute Weighted Artificial Immune System (AWAIS) to 
eliminate the negative effects of taking into account of all attributes in calculat-
ing Euclidean distance in shape-space representation which is used in many 
network-based Artificial Immune Systems (AISs). This system depends on the 
weighting attributes with respect to their importance degrees in class discrimi-
nation. These weights are then used in calculation of Euclidean distances. The 
performance analyses were conducted in the previous study by using machine 
learning benchmark datasets. In this study, the performance of AWAIS was in-
vestigated for real world problems. The used datasets were medical datasets 
consisting of Statlog Heart Disease and Pima Indian Diabetes datasets taken 
from University of California at Irvine (UCI) Machine Learning Repository. 
Classification accuracies for these datasets were obtained through using 10-fold 
cross validation method. AWAIS reached 82.59% classification accuracy for 
Statlog Heart Disease while it obtained a classification accuracy of 75.87% for 
Pima Indians Diabetes. These results are comparable with other classifiers and 
give promising performance to AWAIS for that kind of problems.           

1   Introduction 

A new artificial intelligence area named as Artificial Immune Systems (AISs) is going 
forward gradually. There are many AIS algorithms in which recognition and learning 
mechanisms of immune system were modeled. As a representation method of immune 
system cells, shape-space approach is used in many of the AIS classification algo-
rithms. Shape-space model, which was proposed by Perelson and Oster in 1979 [1], is 
used as a representation mechanism modeling the interactions between two cells in 
the immune system. 

In the systems that use a distance criterion as a similarity metric, some shape-space 
related problems may exist in case of irrelevant attributes [2], [3]. One attribute value 
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in shape space can cause two data in the same class to be distant from each other and 
therefore to be recognized and classified by different system units. If that attribute is 
irrelevant for class discrimination process, the algorithm may result in erroneous 
classes.   

In our previous study [4], it was aimed to reach higher classification accuracy by 
assigning weights to important attributes in classification. This was done with some 
modifications to affinity measures of AISs and then a system named AWAIS (Attrib-
ute Weighted Artificial Immune System) has come into existence. In that paper, we 
had conducted the performance analyses of AWAIS for chainlink and two-spirals 
datasets which are commonly used machine learning benchmarks and for wine dataset 
representing a real-world problem. For all of those problems, the performance of 
AWAIS was very satisfactory and promising. In this paper we carried applications of 
AWAIS for real-world situations further and used AWAIS as a classifier in medical 
domain to diagnose diseases. The problems dealt in this study are Heart Disease and 
Diabetes Diagnosing problems via classification. Used datasets were taken from UCI 
Machine Learning Repository carrying the names Statlog Heart Disease and Pima 
Indians Diabetes respectively [5]. A form of k-fold cross validation which is a very 
commonly used method was used to evaluate classification accuracies more reliably 
in the experimental studies. The obtained classification accuracies were 82.59% and 
75.87% for Heart Disease and Diabetes respectively.   

This paper is organized as follows. In the second section of this paper, the back-
ground information is given including natural and artificial immune systems, shape-
space representation and curse of dimensionality problem. The third section is re-
served for introduction of AWAIS. The used datasets and k-cross validation are all 
given in fourth section of the paper under the title of method. Results and discussions 
about these results were given in section five which is then followed by the conclu-
sion in section six.  

2   Background 

2.1   Natural and Artificial Immune Systems and Shape-Space Representation 

The natural immune system is a distributed novel-pattern detection system with sev-
eral functional components positioned in strategic locations throughout the body [6]. 
Immune system regulates the defense mechanism of body by means of innate and 
adaptive immune responses. Between these, adaptive immune response is much more 
important for us because it contains metaphors like recognition, memory acquisition, 
diversity, self-regulation…etc. The main architects of adaptive immune response are 
Lymphocytes, which divide into two classes as T and B Lymphocytes (cells), each 
having its own function. Especially B cells have a great importance because of their 
secreted antibodies (Abs) that takes very critical roles in adaptive immune response. 
For detailed information about immune system refer to [7]. 

AISs emerged in the 1990s as a new computational research area. AISs link several 
emerging computational fields inspired by biological behavior such as Artificial Neu-
ral Networks and Artificial Life [8].  
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Among the studies conducted in the field of AIS, B cell modeling is the most               
encountered representation type. Different representation methods have been pro-
posed in that modeling. Among these, shape-space representation is the most com-
monly used one [1].  

The shape-space model (S) aims at quantitatively describing the interactions among 
antigens (Ags), the foreign elements that enter the body like microbe,…etc., and anti-
bodies (Ag-Ab). The set of features that characterize a molecule is called its   general-
ized shape. The Ag-Ab representation (binary or real-valued) determines a distance 
measure to be used to calculate the degree of interaction between these   molecules. 
Mathematically, the generalized shape of a molecule (m), either an      antibody or an 
antigen, can be represented by a set of coordinates m = <m1, m2,...mL>, which can be 

regarded as a point in an L-dimensional real-valued shape-space ( LSm ∈ )[6]. In this 
work, we used real strings to represent the molecules. Antigens and antibodies were 
considered of same length L. The length and cell representation depends upon the 
problem.  

2.2   Problems with Euclidean Distance as an Affinity Measure 

The shape-space representation gives a good model of interactions in immune system 
but because the affinities between Abs to Ags are calculated based on a distance crite-
rion, some problems exist like other distance-based approaches. The distances be-
tween instances are calculated based on all attributes of the instances and so distance 
can be dominated by irrelevant attributes [2]. To illustrate this, let us think the two 
points of a same class shown in Fig. 1. Again we will assume second attribute is not 
so important for class determination. The first and the third attributes of these two 
points are the same but the difference in second attribute value results the two data 
point to be apart from each other. If we take second attribute into account in a same 
degree with other two attributes, a possible wrong decision about the class of points 
can be done. This is also a problem because each attribute value is squared while 
determining Euclidean distance as stated in [9].      

 

Fig. 1. Two points in same class illustrating curse of dimensionality problem 
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     This difficulty, which arises when many irrelevant attributes present can be solved 
by using attribute weights. Using weighted attributes is a common way to get rid of 
the problem like this as done in ML algorithms like in [10], [11] and etc.   

3   AWAIS (Attribute Weighted Artificial Immune System) 

As mentioned before, most of network-based AIS algorithms use shape-space repre-
sentation and the problem stated above related with irrelevant attributes inevitably 
appeared in turn affects the system performance. The AWAIS algorithm proposed for 
minimizing the effect of this problem is a supervised Artificial Immune System based 
on attribute-weighted distance criterion. The supervision in the algorithm shows itself 
while determining the weights of attributes and during the process of developing 
memory cells in the training by taking the class of the input data into account. 
AWAIS is a two-stage classification system in which attribute weights of each class 
are formed in one level and a training procedure with these weights takes place at the 
other.  

3.1   Attribute Weighting 

In most real valued shape-space representations, the distance between two points is 
calculated by the Euclidean distance criteria (Eq. (1)):  

( ) .agabD
L

1i

2
ii

=
−=    (1) 

Where ab and ag are the two points in the shape-space represented by a vector respec-
tively and L is the length of these vectors. According to this formula, all of the attrib-
utes have same effect in determining distance. However, there are such data sets that 
some attributes of them have no effect on the class of data while some other attributes 
are more important in determining class. So, if it is assigned higher weights to the 
attributes that are more important in determining one class and if these weights are 
used in calculation of distance, it can be prevented to make a misclassification of the 
two distant data according to the Euclidean norm in the same class [2]. Starting from 
this point, the used attribute weighting depends on the following base: if one attribute 
doesn’t changing very much among the data of one class, this attribute is one of the 
characteristic attributes of related class and it must have a higher weight than  
others [12].  
    The applied attribute weighting procedure in the AWAIS is as follows: 
 

(1) Normalization of each attribute in data set between 
0-1.  

(2) Determine the antigens of each class  Ag_classj 
(j:1,….n, n: number of class) 

(3) For each class do: 
For Ag_class(LxNc) to be a matrix that involves the 
antigens of that class;  
(L: attribute num., Nc: ag num. of that class); 
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(3.1) For ith attribute do:(i:1,…..L) 
 Evaluate standard deviation of ith attribute 

with Eq. (2): 

( ) .)Ag(meanAg
Nc

1
dev_std

Nc

1k

2
ii,ki

=

−=  
(2) 

Here Agk.i is the i
th attribute of kth Ag in jth 

class; mean(Agi) is the mean of i
th attribute 

of all Ags in jth class. 
Calculate the weights as follows: 

wj,i=1/std_devi , (i=1,…L; j=1,…n) (3) 

       (3.2) normalize the weights of jth class. 
 

    The calculated wnxL matrix is a normalized weight matrix involving the weights of 
each attribute for each class and this matrix is used in distance calculations of the 
training algorithm of AWAIS. 

Here, in the attribute weighting procedure, a means of normalization of attributes 
for each class by standard deviation is performed. By doing so, each class has its own 
set of attribute weights.  

3.2   AWAIS Training Algorithm 

The training procedure of the algorithm conducts the following steps: 
 

(1) For each Agi do :( i: 1,…N) 
     (1.1) Determine the class of Agi. Call memory Abs of  
           that class and calculate the 
           distances between Agi and these memory Abs with  
           Eq. (4): 

( ) .AgAbwD
L

1k

2
k,ik,jk,j

=

−=  (4) 

     Here Abi,k and Agi,k are the k
th attribute of Abj  

     and Agi respectively; wj,k is the  weight of k
th  

     attribute that belongs to the class of Abj. 
     (1.2) If the minimum distance among the calculated 
           distances above is less than a threshold value    
           named as suppression value (supp) then return  
           to step 1. 
     (1.3) Form a memory Ab for Agi: 
              At each iteration do: 

(1.3.1) Make a random Ab population with 
Ab=[Ab_mem ; Ab_rand] and    calculate the 
distances of these Abs to Agi. 
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(1.3.2) Select m nearest Abs to Agi; clon 
and mutate these Abs   (Ab_mutate). 
(1.3.3) Keep the m nearest Abs in the 
Ab_mutate population to Agi as Ab_mem tem-
porary memory population. 
(1.3.4) Define the nearest Ab to Agi as 
Ab_cand, candidate memory Ab for Agi and 
stop iterative process if the distance of 
Ab_cand to Agi is less that a threshold 
value named as stopping criterion (sc). 
(1.3.5) Concatenate Ab_cand as a new memory 
Ab to memory matrix of the class of Agi. 

      (1.4) Stop training. 

The mutation mechanism in the algorithm which is used in many AIS algorithms and 
named as hypermutation is performed proportional to distance between two cells     
(Eq. (5)): 

Abj,k =Abj.k±Dj,I*(Abj.k) (5) 

Here Abj.k  is the new value and Abj.k is the old value of kth attribute of jth Ab. Dj,i stands 
for the distance between Agi and Abj. 
    The used affinity measure is no more a pure Euclidean Distance and the attribute 
weights are used in distance criteria. The classes of memory Abs in the AWAIS after 
training are known with the aid of a labeling vector that contains the information 
about which memory Abs belong to which class.  

After memory Antibodies is formed by this training procedure, test samples are 
presented to these Antibodies and the classes of these samples are determined by 
using k-nearest neighbor method.     

4   Method 

4.1   Statlog Heart Disease and Pima Indians Diabets Datasets 

The Statlog Heart disease dataset was taken from UCI Machine Learning Respiratory 
[5]. 270 samples belong to patients with heart problem while the remaining 150 sam-
ples are of healthy persons. The samples taken from patients and healthy persons 
include 13 attributes which are: 1. age, 2. sex, 3. chest pain type (4 values), 4. resting 
blood pressure, 5. serum cholestoral in mg/dl, 6. fasting blood sugar > 120 mg/dl, 7. 
resting electrocardiographic results (values 0,1,2), 8. maximum heart rate achieved, 9. 
exercise induced angina, 10. oldpeak = ST depression induced by exercise relative to 
rest, 11. the slope of the peak exercise ST segment, 12. number of major vessels (0-3) 
colored by flourosopy, 13.  thal: 3 = normal; 6 = fixed defect; 7 = reversable defect 
This dataset has 13 attributes and 2 classes. The class information is included in the 
dataset as 1 and 2 regarding absence and presence of disease respectively.  
    The other used data set for Diabetes problem was also taken from the same data-
base and it is named as Pima Indians Diabetes [5]. This dataset contains 768 samples 
taken from healthy and unhealthy persons. 500 of these samples belong to persons 
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with no diabetes problem while the remaining 286 sample are of persons with diabe-
tes. The class information contained in this data set is given by 0 for healthy persons 
and by 1 for diabetic patients. The number of attributes in samples is 8. These attrib-
utes are: 1. Number of times pregnant, 2. Plasma glucose concentration a 2 hours in 
an oral glucose tolerance test, 3. Diastolic blood pressure (mm Hg), 4. Triceps skin 
fold thickness (mm), 5. 2-Hours serum insulin (mu U/ml), 6. Body mass index 
(weight in kg/(height in m)^2), 7. Diabetes pedigree function, 8. Age (years).   

4.2   K-Fold Cross Validation 

In this study, the classification accuracies for the datasets were measured according to 
the Eq. (6): 

=
=

∈= =

otherwise

T i

T

0,

t.c)classify(t if1,
 assess(t)

T  t ,
)assess(t

 )accuracy(T 1i i
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where T is the set of data items to be classified (the test set), t T, t.c is the class of the 
item t, and classify(t) returns the classification of t by AIRS.  
    For test results to be more valuable, k-fold cross validation is used among the re-
searchers. It minimizes the bias associated with the random sampling of the training 
[13]. In this method, whole data is randomly divided to k mutually exclusive and 
approximately equal size subsets. The classification algorithm trained and tested k 
times. In each case, one of the folds is taken as test data and the remaining folds are 
added to form training data. Thus k different test results exist for each training-test 
configuration. The average of these results gives the test accuracy of the algorithm 
[13]. We used this method as 10-fold cross validation in our applications. 

5   Results and Discussion 

5.1   Results for Statlog Heart Disease 

Whereas AWAIS has a number of parameters that affect the classification perform-
ance of the algorithm, the key parameter to adjust in AWAIS algorithm is supp pa-
rameter since it determines the number of memory Abs so the classification accuracy. 
The other parameters in the system were found to have little effect on classification 
accuracy, they would rather affect the classification time of the algorithm. The num-
ber of best memory cells selected in each iteration, which is given by m, was selected 
as 25. An Ab population that consists of 100 members was used. This population 
consists of 25 best Abs from previous iteration and 75 randomly generated Abs. The 
percentage of memory Abs was chosen experimentally and from these experimenta-
tions it was found that if there were less number of memory Abs, the algorithm had 
tended to be more like a random search algorithm while if the percentage of memory 
Abs were chosen to be high, the population had dominated with memory Abs and the 
algorithm had converged to the best individual. But this had no serious effect on clas-
sification accuracy, it only affected the classification time of the algorithm.    
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    The value of supp parameter is selected in the [0,1] range. If this value is selected 
too high, the number of Abs will be too low and in contrary if this value is too low, 
there will be more memory Abs. The number of memory Abs highly affects the clas-
sification performance. Besides of supp parameter the k value for k-nn also affects the 
classification accuracy. Because the number of memory Abs is different for each supp 
value, the k value was changed for each supp value to obtain highest classification 
accuracy.  
    The classification accuracy with respect to the supp parameter is plotted in Fig. 2 
(a) with respect to the supp parameter. The number of memory Abs and variation of 
k-value for which the highest accuracy was obtained with respect to the supp value 
are shown in Fig. 2 (b). 
    The dashed line in Fig. 2 (b) shows the memory Ab number for each supp value 
and the straight line represents the k-values at which highest classification accuracies 
were obtained for each supp value. As stated above, the number of Abs grows with 
decreasing supp while this growing results in higher classification accuracy to a de-
gree. The maximum classification accuracy was obtained for 0.08 value of supp pa-
rameter as 82.59%. For this value of supp parameter, the number of memory Abs was 
about 160. Also, as can be seen from the Fig. 2 (b), k value increases with decreasing 
supp value as proportional to the number of memory Abs.    

         
(a) 

 
(b) 

Fig. 2. (a) obtained classification accuracies with respect to the supp parameter, (b) k value and 
Ab number versus supp parameter (for Statlog Heart Disease) 
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Table 1. Classification accuracies obtained by AWAIS and other classifiers for the Statlog 
Heart Disease dataset   

Author Method Accuracy (%) 
WEKA, RA Naive-Bayes 83.60 
Our Study (2005) AWAIS 82.59 
Newton Cheung (2001) Naive Bayes 81.48 
Newton Cheung (2001) BNND 81.11 
Newton Cheung (2001) C4.5 81.11 
Newton Cheung (2001) BNNF 80.96 
Robert Detrano Logistic regression 77.00 
WEKA, RA K* 76.70 
WEKA, RA IB1c 74.00 
WEKA, RA 1R 71.40 
WEKA, RA T2 68.10 
ToolDiag, RA MLP+BP 65.60 
WEKA, RA FOIL 64.00 
ToolDiag, RA RBF 60.00 
WEKA, RA InductH 58.50 

    The classification accuracy obtained by AWAIS is shown in Table.1 with accura-
cies obtained for the same problem with other classifiers in Literature [14]. 10-fold 
cross validation was used in all of the classifiers in the table. The table shows that, 
AWAIS is the second best performed classifier after the study of WEKA group with 
respect to the classification accuracy. This promising result gives the way for AWAIS 
to be used in real-world problems as other classifiers.  Whereas AWAIS couldn’t 
reach the highest accuracy for the problem, the obtained accuracy is good for an AIS 
algorithm that uses a distance criterion as an affinity measure. When we look at the 
table, the highest accuracy was obtained by Naïve-Bayes classifier and Bayes classifi-
ers are known to be optimal classifiers for some kind of problems. It is promising to 
see that an AIS algorithm performs comparable with a good classifier and if appropri-
ate algorithm formulation for the problem at hand is constructed, even an over-
performed AIS algorithm can be found. 

5.2   Results for Pima Indians Diabetes 

As for the Statlog Dataset, supp parameter was adjusted to obtain highest classifica-
tion accuracy. Fig. 3 (a) shows the classification accuracy with respect to the supp 
parameter. The number of memory Abs and k value for corresponding supp parameter 
values are presented in Fig. 3 (b).  
    The maximum classification accuracy was obtained for 0.06 value of supp parame-
ter as 75.87%. For this value of supp parameter, the number of memory Abs was 
about 230.  
    The dashed line in Fig. 3 (b) shows the memory Ab number for each supp value 
and the straight line represents the k-values at which highest classification accuracies 
were obtained for each supp value. Again, k value increases with decreasing supp 
value as proportional to the number of memory Abs. 
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    The classification accuracy obtained by AWAIS for Pima Indians Diabetes dataset 
is shown in Table.2 with accuracies obtained for the same problem with other classi-
fiers in Literature [14]. Indeed, Pima Indians Diabetes is a popular medical classifica-
tion dataset among Machine Learning researchers. So many studies have been con-
ducted related with this classification problem. Whereas high classification accuracies 
were reached, the accuracies couldn’t go above 80% with cross validation scheme. 
This is also a reason why researchers are dealing with this problem. Because of the 
vast amount of classifiers were used for  this dataset, only some of them are reported 
in the Table 2 and this is enough to have an opinion how is the performance of 
AWAIS is. 

 
(a) 

 
(b) 

Fig. 3. (a) obtained classification accuracies with respect to the supp parameter, (b) k value and 
Ab number versus supp parameter (for Pima Indians Diabetes dataset)  

    According to the table, AWAIS is comparable with other classifiers. Whereas the 
classification accuracy obtained by AWAIS is also less than those of some classifiers, 
it was satisfactory to see AWAIS as an average classifier for this dataset if we re-
member that this dataset is hard to classify. Also, as can be seen from the table, an 
other AIS, AIRS, was applied by Watkins for this problem and a classification accu-
racy of 74.10% was obtained [16]. It is good to see that AWAIS has been over-
performed to another AIS algorithm for this problem.  Also, as it can be seen from the  
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Table 2. Classification accuracies obtained by AWAIS and some other classifiers for the Pima 
Indians Diabetes datasets    

Method Accuracy (%) Reference 
Logdisc  77.70 Statlog 
IncNet 77.60 Norbert Jankowski 
DIPOL92 77.60 Statlog 
Linear Discr. Anal.  77.50 Statlog 
SMART  76.80 Statlog 
GTODT (5xCV) 76.80 Bernet and Blue 
kNN,k=23,Manh,raw,W (3xCV) 76.7±4.0 WD-GM,feat. Weigh. 
kNN,k=1:25,Manh,raw 76.6±3.4 WD-GM 
ASI 76.60 Ster & Dobnikar 
Fisher discr. Analysis 76.50 Ster & Dobnikar 
MLP+BP 76.40 Ster & Dobnikar 
AWAIS (10xCV) 75.87 Our study 
MLP+BP 75.8±6.2 Zarndt 
LVQ  75.80 Ster & Dobnikar 
LFC 75.80 Ster & Dobnikar 
RBF  75.70 Statlog 
NNEE (2004) [15] 75.57 Y.Jiang &Z.-H.Zhou   
NB 75.5-73.8 Ster & Dobnikar 
kNN, k=22, Manh 75.50 Karol Grudzinski 
MML 75.5±6.3 Zarndt 
SNB 75.40 Ster & Dobnikar 
BP 75.20 Statlog 
SSV DT 75.0±3.6 WD-GM 
kNN, k=18,Euclid,raw 74.8±4.8 WD-GM 
ILAS   74.80 Jaurne et. al 
CART DT 74.7±5.4 Zarndt 
CART DT 74.50 Statlog 
DB-CART 74.40 Shang & Breiman 
ASR 74.30 Ster & Dobnikar 
AIRS (13xCV) [16] 74.10 Watkins  
SSV DT 73.7±4.7 WD-GM 
C 4.5 DT 73.00 Statlog 
CART 72.80 Ster & Dobnikar 
C 4.5 DT 72.7±6.6 Zarndt 
Kohonen 72.70 Statlog 
Bayes 72.2±6.9 Zarndt 
C 4.5 (5xCV) 72.00 Bernet and Blue 

table, another algorithm with distance criterion, k-nn algorithm, was used for this 
problem with manhattan distance.  The obtained results for this algorithm are better 
than AWAIS for k=23 with 3xCV and for k=1:25. The classification accuracy is bet-
ter but in this case the classification time of AWAIS is probably less than k-nn be-
cause the used system units in k-nn algorithm are the raw training data whereas for 
AWAIS the memory Abs are used for classification which are far less than training 
data. Besides of this, for k-nn, the used distance criterion is Manhattan instead of 
Euclidean. If we conduct the comparison of AWAIS with k-nn algorithm in the same 
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context, we must take the classification result of k-nn with Euclidean distance which 
was found to be 74.8% according to the table. Than it is straightforward to say that 
the use of Manhattan distance can improve the performance of algorithm which is 
also stated in [9].          

6   Conclusions 

Shape-space representation, especially used in many network-based AIS algorithms is 
a means of representing immune system units as system units and this representation 
scheme also defines the interactions of the system units with the environment by 
means of distance criteria. A problem caused by irrelevant attributes based on dis-
tance criteria appeared in the distance-based classification systems affects the classifi-
cation performance in negative manner especially for nonlinear data sets. A system 
named as AWAIS had been proposed for minimizing these negative effects by 
weighting attributes and using these weighted attributes in calculation of distances. In 
this paper the real-world performance of this system was analyzed through two medi-
cal classification problems. These are heart and diabetes diseases classification prob-
lems and the used datasets for these problems were taken from UCI machine learning 
repository carrying names Stotlog Heart Disease and Pima Indians Diabetes respec-
tively. These datasets were taken especially for their hardness in classification. In 
performance evaluation of our system for regarding problems, 10 fold cross validation 
scheme was used.  
    AWAIS has performed very well for used datasets by reaching 82.59% and 
75.87% classification accuracy for Statlog Heart Disease and Pima Indians Diabe-
tes respectively. These results are not the highest ones among other classifiers 
applied to corresponding datasets so far but the place of AWAIS among them is 
satisfactorily high. Besides, as stated above, the used datasets are among the medi-
cal classification datasets that are hard to classify. Furthermore, another AIS, 
AIRS, had been applied for Pima Diabetes dataset and the classification accuracy 
of AWAIS is higher than it’s.  

Without a doubt, the weighting procedure that was adapted in AWAIS is not the 
only way for weighting. This weighting procedure assumes that the attribute values 
in one class doesn’t change so much. However, there can be lots of practical prob-
lems that don’t obey this assumption and for these problems AWAIS may not do so 
much. Also, weighting each attribute independently seems to be ineffective for data-
sets that have highly correlated attributes. There are lots of methods to determine the 
relevancy of attributes in literature and they can be used for determining attributes 
weights. The use of these methods may add to the performance of AWAIS more than 
our method. But the key point in AWAIS is to eliminate the negative effects of tak-
ing into account all attributes in calculation of distances due to the possible disad-
vantages of this scheme. It has not strictly stated that the AWAIS can be used with 
only its weighting procedure. Also, instead of Euclidean distance, Manhattan dis-
tance can be used as affinity measure and this opens the way for further studies in 
this context.     
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Abstract. In this work we propose an immune-based approach for de-
signing of fuzzy systems. From numerical data and with membership
function previously defined, the immune algorithm evolves a population
of fuzzy classification rules based on the clonal selection, hypermutation
and immune network principles. Once AIS are able to find multiple good
solutions of the problem, accurate and diverse fuzzy systems are built
in a single run. Hence, we construct an ensemble of these classifier in
order to achieve better results. An ensemble of classifiers consists of a
set of individual classifiers whose outputs are combined when classify-
ing novel patterns. The good performance of an ensemble is strongly
dependent of individual accuracy and diversity of its components. We
evaluate the proposed methodology through computational experiments
on some datasets. The results demonstrate that the performance of the
obtained fuzzy systems in isolation is very good. However when we com-
bine these systems, a significant improvement is obtained in the correct
classification rate, outperforming the single best classifier.

1 Introduction

Fuzzy Systems are fundamental methodologies to represent and process linguistic
information, with mechanisms to deal with uncertainty and imprecision. With
such remarkable attributes, fuzzy systems have been widely and successfully
applied to control, classification and modeling problems [1] [2].

One of the most important tasks in the development of fuzzy systems is
the design of its knowledge base. An expressive effort has been devised lately
to develop or adapt methodologies that are capable of automatically extracting
the knowledge base from numerical data. Particularly in the framework of soft
computing, significant methodologies have been proposed with the objective of
building fuzzy systems by means of genetic algorithms (GAs).

Genetic Algorithms have demonstrated to be a powerful tool to perform
tasks such as [3]: generation of fuzzy rule base, optimization of fuzzy rule bases,
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c© Springer-Verlag Berlin Heidelberg 2005



470 P.D. Castro et al.

generation of membership functions, and tuning of membership functions. All
theses tasks can be considered as optimization or search processes. Fuzzy system
generated or adapted by genetic algorithms are called Genetic Fuzzy Systems
[4]. The combination of Fuzzy Systems with Genetic Algorithms have great ac-
ceptance in the scientific community, once these algorithms are robust and can
search efficiently large solution spaces [5]. However, a basic GA together with
a significant portion of its variants are not effective in dealing with multimodal
optimization [6]. And a simultaneous search for multiple high-quality solutions
are strongly desired in certain applications of fuzzy systems. Interpretability is-
sues may require qualitatively distinct proposals with a quantitatively similar
behavior [7].

A relatively novel computational paradigm, namely Artificial Immune Sys-
tem (AIS), was originated from attempts to model and apply immunological
principles to problem solving in a wide range of areas such as optimization, data
analysis, computer security and robotics [8] [9]. One advantage of AIS over other
search strategies is that it is able to maintain population diversity and to find
many good solutions simultaneously, if they exist.

In this work, we investigate the use of an artificial immune system, namely
Copt-aiNet [10], to generate at the same time a pool of diverse and high-
performance fuzzy classification systems designed to produce complementary
aspects of the solution. In addition, we also implement an ensemble of the gen-
erated fuzzy classification systems, in order to obtain a more accurate fuzzy
classifier. According to Hansen and Salamon [11], reliable classifier systems can
be built by combining multiple classifiers into a single one.

A key point for the good performance of an ensemble of classification systems
is that the classifiers should present good results when applied in isolation and
they should be diverse between themselves [12].

In order to evaluate the proposed approach, it will be applied to one artificial
and two real classification datasets. The computational simulations indicate that
our AIS is able to generate accurate and diverse fuzzy classification systems.
Besides, the proposals of ensembles of these fuzzy classifiers may further improve
the performance when compared with a single model.

This paper is organized as follows. Section 2 shows the fuzzy classification rule
format and the fuzzy reasoning method employed. Section 3 describes the Copt-
aiNet algorithm. Section 4 presents the application of Copt-aiNet for fuzzy rule
base generation. An overview on ensemble and how to implement an ensemble of
fuzzy system for classification problems is presented in section 5. Experimental
results are presented and discussed in section 6. Finally, section 7 draws some
concluding remarks.

2 Fuzzy Classification Rule Format and Fuzzy Reasoning
Method

This section describes the fuzzy rule format and fuzzy reasoning method em-
ployed in this work.
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We use fuzzy rules for pattern classification problems of the following type:

Rk: IF X1 is A1 and . . . and Xn is An, THEN Classj

where Rk is the rule identifier , X1, . . . , Xn are attributes of the input pattern,
Ai is the linguistic term defined by a fuzzy set used to represent the attribute
Xi, and Classj represents the class.

In a Fuzzy Classification System, the reasoning method is based on fuzzy
logic. It derives conclusions from a set of fuzzy rules and a pattern. This work
uses the Winner Fuzzy Rule Reasoning Method [13] to classify a new pattern
as described below.

Let ep = {ap1 , ap2 , ..., apn} be the pattern to be classified, ap1 , ..., apn the
values of the corresponding attributes X1, . . . , Xn and R = {R1, R2, ..., RS} the
fuzzy rule set. The Winner Rule Fuzzy Reasoning Method is performed by the
following steps:

Step 1: Calculate the compatibility degree, Compat(Rk,ep), between the
pattern ep and each rule Rk, k=1...S, applying a T-norm [1] [2] to the member-
ship degree of the pattern attribute values, api , in the corresponding fuzzy sets
that appear in the antecedent part of the rule, Ai, i=1...n.

Compat(Rk, ep) = T (μA1(ap1), ..., μAn(apn)) (1)

Step 2: Find the rule with higher compatibility degree with the given pat-
tern,

Max{Compat(Rk, ep) } , k=1...S (2)

Step 3: The pattern ep will be classified in the class Classj , such that Classj

is the class of the rule Rk that possess the highest compatibility degree with the
pattern.

If two or more rules present the same compatibility degree with the pattern
but different consequent, then the first rule that appears will be fired. Although
this fuzzy reasoning method seems too simple, it presents a satisfactory level of
accuracy and its simplicity give us the advantage of understanding how it derives
the conclusions.

3 The Copt-aiNet Algorithm

This section presents the origins of Copt-aiNet (Artificial Immune Network for
Combinatorial Optimization) algorithm and the immune inspirations utilized to
develop it.

The Copt-aiNet has been derived from other immune-inspired algorithms.
Firstly, an immune algorithm named aiNet (Artificial Immune Network) was
proposed by de Castro and Von Zuben in [14] to perform data analysis and
clustering tasks. In a subsequent work, de Castro and Timmis developed a ver-
sion of aiNet for multimodal optimization problems, called opt-aiNet (Artificial
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Immune Network for Optimization) [15]. The Copt-aiNet was further proposed
by Gomes et al. in [10] as an extension of opt-aiNet for combinatorial optimiza-
tion tasks. The authors demonstrated empirically the suitability of the cited
algorithms for optimization problems and presented results where they outper-
form other approaches.

The Copt-aiNet is based mainly on two immune principles, namely clonal
selection [16] and immune network [17]. The clonal selection theory states that
when an antigen invades the organism, some antibodies that recognize this anti-
gen start proliferating. The higher the affinity between an antibody and an anti-
gen, the more offsprings, called clones, will be generated. During proliferation,
the clones suffer mutation with rates proportional to their affinity with antigens:
the higher the affinity, the smaller the mutation rate, and vice-versa. The other
important theory is the so-called immune network theory, which proposes that
antibodies are not only capable of recognizing antigens, but they are also capable
of recognizing each other. When an antibody is recognized by another one, it is
suppressed. These two theories are fundamental to the maintenance of diversity
in the population and to the search for multiple good solutions.

The Copt-aiNet algorithm may be explained by the following steps:

Step 1 - Generation of the initial population: the initial population is con-
structed randomly. Each antibody represents a feasible solution to the problem.
Initially the population contains 20 individuals and it is allowed to grow and
shrink dynamically.

Step 2 - Population evaluation: the fitness value of each antibody is calcu-
lated using the objective function.

Step 3 - Clonal Selection: each antibody gives origin to a number of clones,
denoted by C. This number is proportional to the antibody fitness value.

Step 4 - Hypermutation: the clones generated in the previous step suffer a
mutation process. The mutation rate of each clone is inversely proportional to
its fitness: clone with higher fitness will be submitted to lower mutation rates
and vice-versa.

Step 5 - Suppression: the antibodies interact with each other in a network
form by determining their similarity. If two or more antibodies are similar within
a similarity threshold, the antibody with lower fitness value is eliminated from
the population. This process avoids redundancy and therefore tends to preserves
population diversity.

Step 6 - If none of the k best solutions is improved along a predefined number
of iterations, all the antibodies in the population suffer a maturation process.
During the maturation process, the antibodies suffer a series of guided mutations
in order to better match the antigens. This process is implemented by a local
search heuristic. In Copt-aiNet, a Tabu search heuristic [20] is employed as a
local search procedure.

Step 7 - If the stopping condition was not met, return to Step 2.
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4 The Copt-aiNet Algorithm for Fuzzy Systems
Designing

This section describes the application of the Copt-aiNet algorithm to fuzzy rule
bases generation, once the automatic building of fuzzy rules is usually interpreted
as search and combinatorial optimization processes [22].

The first attempts to develop fuzzy systems using an AIS was proposed by
Alves et al. in [21] and promising results were obtained. However, their algorithm
is based only on the clonal selection and hypermutation principles while the
Copt-aiNet also utilizes the immune network theory, a powerful mechanism to
maintain diversity and to obtain multiple optimum solutions.

Starting from a dataset representing samples or examples of the problem and
with membership functions previously defined, the proposed method applies the
Copt-aiNet to find suitable fuzzy rule bases that correctly classify these exam-
ples. Next, we detail the fuzzy membership function generation, the rule bases
coding scheme, the fitness function, and the hypermutation and suppression op-
erators adopted in the present work.

– Definition of Membership Functions
In this work the linguistic terms associated with each input attribute are repre-
sented by triangular membership functions uniformly distributed in the universe
of discourse. In Figure 1 there is an example of this kind of fuzzy partition, where
the variable is represented by 3 linguistic terms (fuzzy sets).

Fig. 1. Example of fuzzy partition

We adopted triangular membership functions for the sake of simplicity though
other shapes could have been defined.

– Coding of Fuzzy Rule Base
Each antibody encodes a entire fuzzy rule base while the antigen represents the
training patterns. The rules are coded by integer numbers that represent the
index of fuzzy sets that appear in the antecedent and consequent part of the
rule. The number 0 is associated to the “don’t care” condition.

For instance, suppose a classification problem where the patterns are de-
scribed by four attributes - X1, X2, X3 and X4 - and one class - Cj . The at-
tributes are associated with the domains D1 = {A11 , A12 , A13}, D2 = {A21 , A22 ,
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A23}, D3 = {A31 , A32 , A33} and D4 = {A41 , A42 , A43}, respectively and the
classes are C = {Class1, Class2, Class3}.

Figure 2 presents an antibody coded with k rules and each one is represented
by 4 genes, where the first three genes indicate the index of the fuzzy sets of the
attributes X1, X2, X3 and X4 and the fourth gene represents the class.

Fig. 2. Example of antibody

The fuzzy rule base coded in the antibody of the Figure 2 is as follow:

R1: IF X1 is A12 and X2 is A23 and X3 is “don’t care”, THEN Class1

R2: IF X1 is A13 and X2 is A21 and X3 is A31 , THEN Class2
...

Rk: IF X1 is “don’t care” and X2 is A22 and X3 is A31 , THEN Class3

The use of “don’t care” condition provides better generalization capacity of
correctly classifying new patterns. Besides, the introduction of “don’t care” has
also an important effect on rule comprehensibility, once these rules have fewer
attributes on the antecedent part. Short rules can be more easily understood by
human beings than long rules with many attributes [18].

– Initial Population
The initial population is randomly generated. It is formed by random numbers
that can assume values from 0 to qi, where qi is the number of fuzzy sets to
represent the attribute ai.

– Fitness Function
The fitness function is defined based on performance of the fuzzy rule base,
calculated by the number of training patterns correctly classified, using the fuzzy
reasoning method presented in section 2. The fitness function is expressed by:

Fit (Abi) = NPC(Abi) (3)

where NPC(Abi) is the Number of Patterns Correctly Classified by the fuzzy
rule base coded in the antibody Abi.

– Cloning
All antibodies of current population suffer a cloning process. The number of
clones per antibody is proportional to its fitness value (affinity with antigen).
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Higher fitness corresponds to a higher number of clones. The function used to
implement this procedure is presented in equation (4).

C(Abi) =

{
Min C if Fit(Abi) ≤(Max Fit * 0.3)
Max C if Fit(Abi) ≥(Max Fit * 0.7)

Fit(Abi)/β otherwise
(4)

where Min C and Max C are the minimum and maximum number of clones,
respectively. Fit(Abi) is the fitness value of antibody Abi, Max Fit is the high-
est fitness value found in the current iteration and β is a parameter that can
vary during the process. The values 0.3 and 0.7 were obtained empirically by
preliminary experiments.

– Hypermutation
The clone mutation rate is inversely proportional to its affinity with antigen.
The mutation rate is given by:

Mut Rate(Abi) = Max Mut Rate ∗ (Fit(Abi) − Max Fit)
(Min Fit − Max Fit)

(5)

where,
Mut Rate(Abi) is the mutation rate for clone i;
Max Mut Rate is the highest value that mutation rate can assume;
Fit(Abi) is the fitness of clone i ;
Max Fit is the highest fitness value found in the current iteration;
Min Fit is the lowest fitness value found in the current iteration.

– Suppression
In this phase, similar antibodies are eliminated in order to avoid redundancy
and thus maintain diversity. This stage is very important to generate different
candidates to compose the ensemble in the future.

The degree of similarity between the antibodies is measured based on their
individual outputs. If two or more classifiers classify correctly the same patters
and also misclassify the same patterns, the degree of similarity is maximum.
Antibodies with a degree of similarity above a certain threshold are eliminated
from population, being kept only the one with higher fitness.

– Stopping Condition
In computer simulations of this work, we used the maximum number of genera-
tions as stopping condition.

5 Ensemble of Fuzzy Classification Systems

Ensemble [11] [19] is a learning paradigm where alternative proposals, called
components of the ensemble, combine their individual outputs to derive a so-
lution to a given problem. The reasons for combining multiple components are
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compelling, because different components may implicitly represent different use-
ful aspects of the intented solution. Figure 3 depicts a general ensemble frame-
work. Suppose it is operating as an ensemble of classifiers. Each component of
the ensemble is a classifier (e.g., neural network, decision tree, rule-based classi-
fier) independently proposed and they can operate in isolation. For each input x,
the output yi, i=1...M, generated by the M components is combined to produce
the ensemble output, y.

Fig. 3. Scheme of an ensemble

The good performance of an ensemble relies on the quality and diversity
of its components. The quality of an available component is related to its per-
formance when applied in isolation and the components are considered diverse
when they diverge on the individual output, proposing distinct classes for the
same input values. Of course, two high-performance classifiers must provide the
same outcome to the great majority of the input patterns. So the divergence
will be expressed solely as a function of the patterns incorrectly classified. To
be useful as components of an ensemble the two classifiers should disagree when
they take wrong decisions [23].

In this work we investigate the ensemble of fuzzy classification systems, in
order to obtain a more accurate and robust classifier. Ensemble of fuzzy system
have been explored for regression and classification problems and very good
results are reported in the literature [24] [25].

The construction of an ensemble involves 3 stages: generation of components,
selection of components and combination of components. Firstly, the dataset
must be divided into 4 subsets: training, validation, selection and test.

The generation of components is performed by means of the Copt-aiNet
algorithm, once this immune algorithm is able to produce diverse and high-
quality solutions, as presented in the previous sections. In this stage the training
dataset is adopted.
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As soon as the components are created, we have to select the most useful to
compose the ensemble. A reason for not adding all generated classifiers in the
ensemble is that some ensemble candidates may degrade the performance of the
whole ensemble [26]. The selection process adopted here consists of sorting the
candidates to compose the ensemble according to the performance of each one
when considered in isolation and taking the validation dataset. The candidate
with the best performance is considered as the first component of the ensemble.
The next candidate (the one with the second best performance) is then added
to the ensemble. If the performance of the ensemble w.r.t. the selection dataset
is improved, then the ensemble has now two components. Otherwise, the newly-
inserted candidate is extracted from the ensemble. The same procedure should
be performed considering the remaining candidates, one after the other.

After selecting the components of the ensemble, the next step is to define
how to combine the individual outputs into just one. We use the majority voting
method so that a pattern is classified in the class Cj if Cj is the individual
output of the majority of components. The ensemble performance is measured
w.r.t. the test dataset.

6 Experimental Results

In order to evaluate the performance of the proposed immune-inspired algorithm
for generation of fuzzy rule bases, the algorithm was applied to one artificial
dataset, available on http://www.lbic.fee.unicamp.br/homepage/downloads/ar
tificial.txt, and to two well-known classification problems from UCI Repository
of Machine Learning Databases [27].

Table 1 summarizes the knowledge domain characteristics giving the total
number of instances, the number of attributes, and the number of classes per
dataset. The Bupa and Iris datasets are well-known and frequently used in ma-
chine learning tasks. The Artificial dataset was created to perform preliminary
experiments. Figure 4 gives a graphical representation of this dataset.

Table 1. Datasets Characteristics

Dataset # Instances # Attributes # Classes

Artificial 3000 2 3

Bupa 345 6 2

Iris 150 4 3

Each dataset was partitioned according to section 5 as follows: 60% for train-
ing, 10% for validation, 10% for selection and 20% for test. This partitioning
was performed randomly in each run of the algorithm. For each dataset, we
applied the algorithm 10 times so that you have 10 distinct partitions at each
execution.
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Fig. 4. Artificial Dataset

Firstly, we demonstrate the ability of Copt-aiNet for designing fuzzy clas-
sification systems with high performance. For all experiments, the maximum
number of generations was 1000.

Table 2 presents an average of the results over 10 executions for test data
using the best classifier obtained. The 4th column of Table 2 is the average
number of rules per rule base. Note that the rule bases are composed of a few
number of fuzzy rules.

Table 2. Results using a single fuzzy classifier

Dataset Classif.(%) Std. Dev. # Rules

Artificial 97.1 1.87 5

Bupa 68.6 1.24 10

Iris 93.5 0.96 6

From Table 2 we can see that the immune algorithm is able to generate
fuzzy systems with a satisfactory level of accuracy. For Bupa and Iris datasets,
the results obtained are better or very close to results from other fuzzy clas-
sification systems reported in the literature. A fuzzy system generated by an
AIS in [21] achieved 57.4% of accuracy in Bupa dataset. A genetic fuzzy
system was applied to Iris dataset classifying correctly 96.4% of test patterns
in [28].

As expected, the Copt-aiNet found not only one but many good fuzzy classifi-
cation systems in a single run. The individual performance of each fuzzy classifier
for Iris dataset in the best run is shown in Table 3.

The fuzzy rule base of the best classifier of Table 3 is presented below. The
terms sl, sw, pl and pw represent the attributes sepal length, sepal width, petal
length and petal width, respectively. Each one is represented by 3 fuzzy sets of
triangular shape: low, medium, and high.
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Table 3. Results using a single fuzzy classifier

Fuzzy Classifier Classif.(%) Std. Dev. # Rules

1 93.0 0.96 6

2 92.4 0.94 6

3 92.4 0.96 8

4 91.1 0.94 5

5 90.7 0.92 4

6 93.5 0.96 6

R1: IF sl is low AND sw is high AND pl is high AND pw is low THEN
Iris-Setosa

R2: IF sl is high AND sw is medium AND pl is medium AND pw is low
THEN Iris-Setosa

R3: IF sl is “don’t care” AND sw is low AND pl is “don’t care” AND pw is
medium THEN Iris-Versicolor

R4: IF sl is low AND sw is “don’t care” AND pl is high AND pw is high
THEN Iris-Virginica

R5: IF sl is high AND sw is low AND pl is medium AND pw is low THEN
Iris-Setosa

R6: IF sl is high AND sw is “don’t care” AND pl is medium AND pw is high
THEN Iris-Setosa

With multiple high-performance fuzzy classifiers we can combine the indi-
vidual output of these classifiers as explained in section 5, aiming to achieve an
improvement in performance. The performance of the obtained ensembles can
be seen in Table 4. The average number of ensemble components is presented in
the fourth column.

From Table 4, we can see that the ensemble of fuzzy classifier systems im-
proved the classification accuracy, outperforming the single best classifier. Albeit

Table 4. Results using ensemble

Dataset Classif.(%) Std. Dev. # Components

Artificial 98.8 0.90 3

Bupa 74.4 0.78 11

Iris 97.2 1.02 7
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Fig. 5. Individual errors for the Iris test dataset

there are some extra computational requirements underlying ensemble construc-
tion, they are justified in the sense of the good performance achieved.

To provide a better visualization of the decisions taken, individual errors
made by each classifier on each example of the Iris test dataset are presented
in Figure 5. White squares represent patterns correctly classified while black
squares mark errors. The patterns are disposed along the horizontal axis and
the classifiers vertically.

Figure 5 reinforces that the combination of classifiers leads to more robust
results, since the decision is always taken by the majority of them. Although there
are scattered errors, the final performance of the combined classifiers tends to
filter out a portion of them. This picture also shows that the obtained classifiers
have similar difficulties to classify correctly the patterns 13, 23, and 27.

7 Concluding Remarks

This work proposed an immune-based learning method for obtaining fuzzy clas-
sification systems. From numerical data and with membership functions defined
previously, the algorithm evolves a population of fuzzy rule bases using the clonal
selection, hypermutation and immune network principles. The multimodal char-
acteristic of the presented algorithm allows many high-performance and diverse
solutions to be achieved. Therefore a combination of individual outputs of the
generated fuzzy systems is performed, giving rise to ensembles with improved
classification rates.

Experiments on three datasets have demonstrated that the immune algorithm
presented here is able to generate accurate fuzzy systems and that ensembles of
fuzzy classifiers have outperformed the single best classifier.

The experimental results can be further improved in several aspects. For ex-
ample, other formats for the membership functions may be considered, together
with a different fuzzy reasoning method and other mechanisms for ensemble con-
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struction. We also intend to apply the proposed methodology to datasets with
higher dimensionality, in order to verify the scalability of the algorithm.
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Abstract. After a decade of research into the area of Artificial Immune
Systems, it is worthwhile to take a step back and reflect on the contribu-
tions that the paradigm has brought to the application areas to which it
has been applied. Undeniably, there have been a lot of successful stories —
however, if the field is to advance in the future and really carve out its own
distinctive niche, then it is necessary to be able to illustrate that there are
clear benefits to be obtained by applying this paradigm rather than oth-
ers. This paper attempts to take stock of the application areas that have
been tackled in the past, and ask the difficult question “was it worth it
?”. We then attempt to suggest a set of problem features that we believe
will allow the true potential of the immunological system to be exploited
in computational systems, and define a unique niche for AIS.

1 Introduction

The AIS community has been vibrant and active for a number of years now, pro-
ducing a prolific amount of research ranging from modelling the natural immune
system, solving artificial or bench-mark problems, to tackling real-world applica-
tions, using an equally diverse set of immune-inspired algorithms. Whilst it is nat-
ural, and indeed healthy, for a somewhat scattergun approach to be taken in the
early days of developing any new paradigm, in the sense that high-level, often naive
metaphors are selected and applied to problem areas that have often been tackled
with other paradigms, there comes a point at which research effort needs to have
a more coherent focus in order to more clearly define the field, and allow it to go
forward and be fully exploited. We argue that this point has now been reached in
the AIS world — with a solid foundation of published work to build on, the time
has come to try and define the role that AIS can play and the type of applications
that will really allow its potential to be realised.

Without a doubt there have been a lot of successful applications of AIS, and
these should not be ignored.However, at this point, there are still no exemplars that
really stand out as instances of successfully applying an AIS to a hard, real-world
problems, or of AIS being used in industry. This is in contrast for example to the
field of Evolutionary Algorithms, where at the most recent flagship conference in
the field, GECCO 2004 [5], there were 38 papers describing the applications of EAs
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to real-world problems, and the EVONET repository [3] is able to list 39 examples
of Evolution at Work, i.e practical applications of EAs. On the one hand, this is
somewhat of an unfair comparison, given the relative time-periods that the two
fields have been active, however it illustrates the importance of focussing research
effort in the next few years in order to provide hard evidence of a distinctive niche
for AIS.

For any new paradigm to prove itself is always a difficult task — there is a
lot of good competition from existing tried and tested algorithms. There has per-
haps been a natural tendency for AIS to be compared to other biologically inspired
paradigms such as Evolutionary Algorithms, Neural-networks, and to other more
traditional classification or clustering algorithms. Scientifically, it is essential that
such comparisons to be made; however, we argue that it is not sufficient for AIS
simply to outperform other algorithms on any given set of problem instances to
be declared useful. For a start, test instances (particularly benchmarks) are not
necessarily difficult, and any number of other problem instances can be generated
on which performance will be unknown. Secondly, in the light of the no-free lunch
theorem [47], we cannot expect any one algorithm to outperform all others given
all possible problem instances. We argue that for a paradigm to be truly success-
ful, it should contain features that are not present in other paradigms and thus
make it distinctive. In this position paper, we hope to extract some general fea-
tures of problems that we believe will allow AIS to really bring some benefit, and
thus distinguish it from other techniques. We suggest that the way forward for AIS
is in part a focussed attempt to carefully select application areas based on mapping
problem features to mechanisms exhibited by the IS, taking the problem-oriented
perspective outlined by example in [38,22,10], and discussed further in section 4.2.
However, we emphasise that application development needs to be under-pinned
with a continuing line of research into the theoretical basis of AIS and with the
overriding need for extraction of novel and accurate metaphors from immunology.

2 Survey of Existing Application Areas

In order to place the following discussions in context, we first present a general
review of application areas to which AIS has currently been applied. The follow-
ing brief summary is based in part on a bibliography produced by De Castro [14],
used in a tutorial at ICARIS 2004 [15] on Engineering Application of AIS. The in-
formation contained in this tutorial has been expanded to include references from
ICARIS 2004 [4] and is available from [1]. A useful summary of application areas
can also be found in [16] though as this was produced in 2000 it is slightly outdated.
Whilst we stress that it does not represent all publications in the AIS domain, we
believe it is reflective of the general picture. Note that this section does not de-
scribe in detail the application areas that AIS has been applied to. The reader is
referred to the above publications for further information — the section is intended
to provide an overview of the field as a whole and provide a basis for the following
discussion.
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Figure 1 therefore shows a summary of 97 papers which have been classified
into 12 headings. Note that the categories are chosen simply to reflect the natural
grouping of papers and in some cases are rather broad, and in others very narrow.
For example, computer security and virus detection could be classified as examples
of anomaly detection, and the majority of the bio-informatics papers are essentially
performing classification or clustering. However, where more than one paper has
been written on a particular application area, these papers have been grouped to-
gether. Also, in several cases there are multiple papers published over a period of
time by the same authors on the same application; in this case, only one paper per
author is included in the list, as the intention is to reflect the diversity of appli-
cations and give some indication of the effort being directed towards a particular
application area.

In brief, papers falling under the heading Anomaly Detection include a diverse
range of topic areas, ranging for example from detection of temperature fluctua-
tions in refrigeration units [41] to aircraft fault detection [13]. As previously men-
tioned, computer security and virus detection applications could also be classified
under this heading; these sub-headings speak for themselves as to the type of ap-
plication covered. Some specific features of anomaly detection applications are dis-
cussed in more detail in section 3.1.

Avery large number of papers fall under the general heading ofLearning. Learn-
ing can generally be understood to be the process of acquiring knowledge from
experience and being able to re-apply that knowledge to previously unseen prob-
lem instances — this generic title applies to a variety of sub-topics such as pattern
recognition, concept-learning, and supervised and unsupervised versions of clus-
tering data and classifying data. Papers relating to clustering and classification
have been separated out from the general learning topic as a sub-topic where they
relate specifically to clustering or classifying a particular data-set and have been
compared to conventional classification techniques, and have been benchmarked
used the standard accepted quality tests in data-mining such as classification ac-
curacy. Almost all clustering applications which have gone beyond the conceptual
stage focus on benchmark sets of data such as those available from the UCI reposi-
tory which are static in nature, although there are few attempts to apply immune-
based algorithms to dynamic data, e.g [26,33].

As previouslymentioned, papers relating to bio-informatics have also been sep-
arated a distinct topic, as these form a natural group; however, it is important to
realise that this topic essentially is just another set of applications of clustering
algorithms — again the data being clustered is static in nature.

Combinatoric Optimisation covers a number of real-world application areas
such as travelling salesmanproblems, scheduling (including inventoryand job-shop
scheduling), and routing problems. Typically, the publications report results on
benchmark problem instances rather than real-world problem instances.

Robotic applications tend to be based on controlling simulated robots around
small, artificial environments, generally addressing the problem of behaviour arbi-
tration and autonomous navigation, although work by [28] attempts to lay a foun-
dation for using an AIS to provide the basis of an architecture for a robot to acquire
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Fig. 1. Summary of Application Areas of AIS

new, more complex skills throughout its lifetime. Adaptive control systems form a
related category of papers, for example pertaining to controlling a robotic arm [32].
The small topics of Image Processing and Web-Mining are self-evident.

2.1 Summary of Application Areas

Having presented the above categorisations of application areas, it seems that
application areas that have been addressed by AIS techniques can be broadly
summarised as (1) Learning (2) Anomaly Detection and (3) Optimisation. Thus,
learning includes clustering, classification and pattern recognition, robotic and
control applications; Anomaly Detection includes fault detection and computer
and network security applications, and Optimisation includes real-world problems
which essentially boil down to combinatoric and also numeric function optimisa-
tion. To some extent, the fact that applications of AIS have fallen into the above
categories is somewhat an accident of history. Early immune-based algorithms,
proposed in the main by computer scientists with little if any immunological back-
ground, seized on what appeared to be be the obvious functions of the immune
system as a defensive system, able to perform pattern recognition and learn over
time. Hence, although very early work in the area was performed from an interdis-
ciplinary slant, e.g. [9], there has been a tendency to reason by metaphor [38], and
apply simplistic models such as clonal selection, immune-networks and negative-
selection in isolation to problems which appear at first glance to be amenable to
such techniques. Furthermore, again perhaps by accident, many of the AIS practi-
tioners arrive in the field by way of working in other biologically inspired fields such
as Evolutionary Computing, and thus there is a tendency to apply AIS algorithms
to the same problems as have been tackled in other domains (e.g. optimisation),
which often results in un-natural problem representations, and rather contrived
mechanisms for mapping a problem to an AIS algorithm.
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3 “Was ItWorth It “ - ALook at the Added Value of theAIS

It is nowpertinent to re-evaluate the application of immune algorithms to the above
application areas, and question whether there is really any added value in applying
AIS to the three areas listed above. Again we re-iterate that there is no doubt that
AIS has been successful in these areas; however, we question as to whether they
AIS brings any benefits that could not have been gained from applying a differ-
ent sort of algorithm. Recall the seminal list of features of an AIS, originally due
to Dasgupta in [12] and so often quoted in AIS publications. This defines the fea-
tures of an immune system that are relevant from a computational perspective as:
recognition, feature extraction, diversity, learning, memory, distributed detection,
self-regulation, thresholds, co-stimulation, dynamic protection and probabilistic
detection. Although later in we question as to whether the features on this list re-
ally distinguish an AIS from many other paradigms, it is useful to bear in mind
during the following analysis of the three application areas.

3.1 Anomaly Detection

Anomaly detection has been an area of application that has found favor with the
AIS practitioner. Such techniques are required to decide whether an unknown test
sample is produced by the underlying probability distribution that corresponds to
the training set of normal examples. Typically, only a single class is available on
which to train the system. The goal of these immune inspired system was to take
examples from one class (usually what was considered to be normal operational
data) and generate a set of detectors that was capable of identifying when the nor-
mal or known system had changed, thus indicating a possible intrusion.

The early pioneering work of Forrest et al [21] led to a great deal of research and
proposal of immune inspired anomaly detection systems [20]. Results reported in
these works, did hint at the possibility that the immune approach was useful to
some degree as both known and novel intrusions could be detected. This was ex-
tended by work of [31], who combined the clonal selection algorithm with a nega-
tive selection algorithm to help reduce the false positive rates. The interest of this
immune approach was in part, due to the fact that it appeared possible to train a
system with only a single class of examples and the intuitive link between the role
of the natural immune system as the ”great protector” and the development of in-
trusion detection systems. Notable work in [8] proposed the r-chunk matching rule
which was to replace the computational expensive r-contiguous bits matching rule
that had dogged the approaches to date. The r-chunk rule made it computation-
ally more efficient to generate a set of detectors of the non-self space (in hamming
shape space) and later computationally more efficient methods were developed in
real-valued shape space [25,29], again based on only a single class of examples. This
potentially made the use of the immune approach more attractive, as the main is-
sue that had been raised to date was one of scalability with respect to the size of
the normal data.

Recent work in [19], proposed a formal framework for the negative selection
approach, and when one examines this work, it is possible to see hints that the
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r-chunk may well suffer certain scaling problems. Indeed, this has now been con-
firmed by [39,40] who present an in-depth theoretical analysis of the negative se-
lection algorithm over real and hamming shape spaces. The investigations reveal
that defined over the hamming shape-space, the approach is not well suited for
real-world anomaly detection problems. Problems arise with the generated detec-
tor set which under-fits exponentially for small values of r (where r is the size of the
chunk. They suggest that in order avoid this under-fitting behavior, the matching
threshold value r must lie near l (the length of the string). However, they point out
that this has a consequence. This is that the detector generation process is once
again infeasible, since all proposed detector generating algorithms have a runtime
complexity which is exponential in r. In addition to their theoretical arguments,
they undertook a simple study of comparison between the negative selection ap-
proaches on a one-class support vector machine (SVM) [34]. When comparing the
work of [29], (the real-valued negative selection algorithm with variable-sized de-
tectors) results revealed, that the classificationperformance of themethodnot only
crucially depended on the size of the variable region, but results from the one-class
SVM provides as good, if not better results. In addition, they noted that in order
to tune the parameters of the system by [29] it was necessary to have the second
class, as the probability distribution of this class impacted a great deal on the over-
all performance of the system.

So, from a ”value added” perspective, at present it is not clear from the litera-
ture that the immune approach offers anything. It is necessary to use two classes
of data to train and tune the system, a high false positive rate seems to blight sys-
tems and the computational complexity of generating detectors seems prohibitive
in large dimensional data sets. In order to overcome some of these shortfalls, work
proposed in [6] and later expanded on in [7] proposes the adoption of the danger
theory approach. The authors claim that it should be possible to move away from
the need to define what is normal for a system, and dynamically identify normal
through the adoption of danger signals and context dependent responses, however
these ideas have yet to be proven in practice. Therefore, despite that the fact that
at first glance, anomaly detection does appear to map to many of the features in
the list given at the start of this section; i.e the problems are often distributed in
nature, require feature extraction, recognition, memory and continuous learning,
immunology has not yet provided all the answers.

3.2 Optimisation

A number of publications relate to to function optimisation problems, often declar-
ing some success when compared against other state-of-the-art algorithms. The
majority of these publications are based on the application of the clonal selection
principle, resulting in a number of algorithms such as Clonalg algorithm [17], opt-
AINET [18] and the B-Cell algorithm [42]. Thus, for example, [11] applies Clonalg
with a variety of modified hyper-mutation operators to solving static ‘trap func-
tions” — complex but toy problems often used in evolutionary algorithm trap in-
vestigations, and [42] compare versions of opt-AINET and the B-Cell algorithm to
a variety of optimisation functions of various dimensions found in the literature.
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All of these algorithms essentially evolve solutions to problems via repeated
application of a cloning, mutation and selection cycle to a population of candidate
solutions (B Cells). A single antigen represents some function to be optimised, and
good solutions are allowed to remain in the population, mimicking the memory
cell mechanisms believed to exists in the natural immune system. The authors of
optAINET state that it is characterised by the following features; it performs ex-
ploitation and exploration of the search space, it can determine the locations of
multiple optima, it maintains many optimal solutions, and has defined stopping
criteria. The main differences between this and Clonalg or the B-Cell algorithm
lie in whether or not they maintain a static or adaptive population size, whether
or not they include elitist mechanisms and in type of mutation operators they use.
Anyone familiar with the EA literaturewill recognise all of these features as equally
applicable to an EA, and even the differences between the immune algorithms are
recognisable as differences between the various flavours of EA. We further con-
jecture that the only two features of Dasgupta’s list that recommended immune-
algorithms as a mechanism for performing function optimisation are that the algo-
rithms require a diversity mechanism and a memory mechanism — however, these
features are common components of many other algorithms. Therefore, we con-
jecture that there is no added value in applying an immune algorithm to static
function optimisation problems. Admittedly, the B-Cell algorithm described has
been found to use significantly fewer evaluations than a hybrid GA on some prob-
lems [42], however, we hypothesise that static function optimisation will not prove
to be the Holy Grail of immune algorithms. Similar arguments apply to the use
of AIS in Combinatorial Optimisation Problems. Thus, although AIS algorithms
have provided superior results on benchmark job-shop scheduling problems when
compared to other state-of-the art optimisation algorithms such as GRASP, these
are again static problems, in which there is no obvious benefit to be gained from
applying an AIS.

Perhaps a more obvious optimisation area is that of dynamic function optimi-
sation. In these problems, the goal is to find and track a continuouslymoving target
— this at least fits better with the view of the immune system as a dynamic, and
continuously adapting system. Gaspar and Collard [23] used a network-based AIS
to perform dynamic function optimisation. Walker et al [45] have applied a version
of Clonalg to a number of dynamic optimisation problems which they compare to
an evolutionary strategy and find that generally an evolutionary strategy can op-
timise more quickly than the clonal selection algorithm. Recently, Kelsey et al [30]
have adapted the B-Cell algorithm to perform dynamic optimisation, and found
that the fast adaptable nature of the algorithm enabled the tracking of multiple
moving optima. Although there is little other work in this area, we also hypothe-
sise that continuing research effort will reveal little of value; the immune system is
not a natural model for extracting metaphors to perform optimisation.

There is perhaps a caveat to the above statements. We are aware of work by
Clark et al who have produced a theoretical analysis of the B-Cell algorithm dis-
cussed above. We believe this paper is in review for ICARIS 2005. This work pro-
vides a complete and exact model of the B-cell algorithm with a proof of conver-
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gence. In addition, from their model, it would appear that it is possible to locate
the optimum mutation rate for a given function. In addition, work by [44] provides
a complete proof for their multi-objective immune inspired algorithm. Thus, as
there have been no convincing theoretical analyses that enable performance pre-
diction in the EA world, there is perhaps value in applying a properly understood
algorithm to a problem, regardless of the nature of the problem.

3.3 Clustering and Classification

Immune-based algorithms which perform clustering make up a large number of
the application areas shown in figure 1. These range from supervised algorithms
such as AIRS [46] and Carter, to aiNET [18] and algorithms based on idiotypic
network models such as those of Neal and Timmis [33]. However, as already stated,
the application areas to which these models are to clustering or classifying static
data sets, where comparable or improved performance is achieved on many data-
sets, when compared to traditional algorithms. Classification/clustering require
feature extraction, recognition and learning — key features of the AIS — however,
we conjecture that these are also key features of any machine-learning algorithms,
and that there are no unique features of the problem domain that indicate an AIS
based algorithm can offer anything over and above the more traditional machine
learning algorithms. One potential distinguishing feature of the IS which has been
exploited in classification is its distributed nature, which is used to advantage by
Watkins [46] in a parallel version of AIRS.

A more promising application area for AIS may lie in the area of dynamic clus-
tering or classification. Advances in technology now make it incredibly straightfor-
ward for huge amounts of data to be collected and stored cheaply and easily, and
hence many companies and researchers now routinely collect data on a daily or
even hourly basis. By tracking patterns and trends in the data, companies may be
able to gain a competitive advantage. There are some existing learning algorithms
which can cluster dynamic data — however, in an era of ever increasing computa-
tional processing power coupled with continually decreasing costs, it is pertinent
to question why dynamic algorithms need even to be considered for time-varying
problems. It is trivial for example to re-apply established “static” algorithms at
each time-instant in a dynamic problem to the data in-hand; however, this type of
approach totally disregards any information captured in either the current infor-
mation or in previous time-series, thereforemay miss vital clues. Therefore,we pro-
pose that AIS algorithms by definition, incorporate some form of memory, and can
therefore outperform other state-of-the-art learning systems which are purely re-
active. Most learning systems have very limited memory and hence no mechanism
to balance the need to keep a record of currently under-used knowledge acquired
in the past against the need to store newly-acquired knowledge that is valuable in
the current climate.

Note that there is some existing, although limited, work in this area. Neals al-
gorithm [33] is meta-stable in that it can in theory be continuously applied to a
data-set. The work of Hart [26] models a self-organising system which is able to dy-
namically cluster moving data, whilst maintaining some memory of the past, but
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has only been tested with artificial data-sets. Work by Secker et al [35] developed
a dynamic supervised learning algorithm for the filter of emails, and work by Kim
and Bentley [31] a dynamic classification algorithm for use in intrusion detection.

4 A New Approach to AIS

The above discussion has shed a rather gloomy light on future ofAIS in solving real-
world applications. Perhaps this is a suitable point to take a step backwards and
first re-evaluate our approach to designing AIS algorithms, as well as attempting
to define what kind of applications they may be suitable for. With this in mind, we
take brief look at both sides of the coin and take first an algorithm-oriented and
then a problem-oriented view of the situation.

4.1 A Conceptual Framework for Algorithm Development

Work by Stepney el. al [38] proposes a conceptual framework that allows for the
development of more biologically grounded AIS, through the adoption of an inter-
disciplinary approach. Metaphors employed have typically been simple, but some-
what effective. However, as proposed in [38], through greater interaction between
computer scientists, engineers, biologists and mathematicians, better insights into
the workings of the immune system, and the applicability (or otherwise) of the AIS
paradigm will be gained. These interactions should be rooted in a sound methodol-
ogy in order to fully exploit the synergy.The basic outline of the approachproposed
by Stepney et al. is to first probe the biological system in question.When one probes
such a system, one has to bear in mind what it is you want to extract or observe.
For example, you may be interested in initiation of danger signals, so one would
undertake experimentation to observe that. This process is then followed by the
development of suitable mathematical models. Properties of the system can then
be modelled at a mathematical level, which allows for possible insights into the bi-
ological model that are not possible with ”wet lab” experiments. From this, it is
thenpossible to construct a computationmodel, based on themathematicalmodel.
The creation of the computational model allows for the execution of the model, to
observe and gain insight into the workings of the model. This model can then more
easily be abstracted into an algorithm, or set of algorithms for deployment in an
application area. Clearly, this is an iterative process, that allows for a great deal
of interaction between all stages. Arising from this may be various computational
frameworks that are suitable for instantiation into applications.

Stepney et al then go onto propose that once such frameworks are developed,
it is possible to ask suitably posed meta-questions about the framework, that may
give attention to interesting properties. The questions are concernedwith openness
(e.g. how much continual growth or development is requiredwithin the system), di-
versity (e.g howmany agents are required), interaction (e.g. level of communication
between agents), structure (e.g are the different levels required between agents)
and scale (e.g how many agents are required). These are known as the ODISS ques-
tions. The potential benefit of adopting this approach is clear not only do all dis-
ciplines benefit from such work, but the immune algorithms developed at the end
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of the process will, all being well, be more grounded in the immunology than the
simple observe, implement approach so dominant in the AIS literature today.

4.2 A Problem Oriented Perspective

Freitas and Timmis [22] outline the need to consider carefully the application do-
main when developing AIS. They review the role AIS have played in the develop-
ment of a number of machine learning tasks, including that of classification. How-
ever, Freitas and Timmis point out that there is a lack of appreciation for possible
inductive bias within algorithms and positional bias within the choice of represen-
tation and affinity measures. Indeed, this observation is reinforced by the work of
Hart and Ross [27] with the development of their simple immune network simula-
tor with various affinity metrics. They make the argument that seemingly generic
AIS algorithms, are maybe not so generic after all, and each has to be tailored to
specific application areas. This may be facilitated by the development of more the-
oretical aspects of AIS, which will help us to understand how, when and where to
apply various AIS techniques.

It should be noted that there have been some previous attempts at providing
design principles for immune systems, such as work by Segal et al. [36], Bersini
and Varela [10] and Somayaji et al [37] (which was specifically focussed on design
of computer immune systems). However, work by Segal, whilst extremely interest-
ing, focussed primarily on network signalling, and did not provide a comprehensive
set of general design principles, or provide any test application areas for those prin-
ciples. Work by Bersini, focussed on the immune network and self assertion ideas of
the immune system to create his design principles and whilst being more concrete,
are still quite high level. We assert that these potentially useful principles need to
be tested in various application areas, and refined to allow for the creation of not
only a generic set of AIS design principles that are useful to the community, but
also specific ones for specific application areas. With this, may come a better un-
derstanding of how to apply AIS, and not fall into the traps highlighted by Freitas
and Timmis.

5 Suggestions as to the Way Forward

We have outlined what we believe to be the problems with the current applica-
tions to which AIS has been applied, from the perspective that although reason-
ably successful on a narrow range of problems, they do not add sufficient value
over and above that which is offered by other paradigms to make them anything
other than another tool in the engineers application tool-box. Although from some
points of view, any tool is a worthwhile addition, we believe there is still a wealth
of unexploited potential in the AIS domain. Adopting the methodology and prob-
lem oriented perspectives outlined above rather than the scatter gun approaches
taken to date will surely help us tap into this potential. However, there are some
crucial missing ingredients in our current perspectives in AIS that limit our cur-
rent progress. Here we suggest three of the areas that we feel will play some part in
defining the future of AIS — note that there will of course be several others.



Application Areas of AIS: The Past, The Present and The Future 493

The Innate Immune System. The natural immune system is known to comprise of
two sub-systems, working in tandem with each other; the innate immune system,
and the adaptive immune system. Almost without exception, the AIS community
has chosen to model the adaptive immune system. This may partially reflect the
historical interest in the adaptive immune system in the immunological commu-
nity, which over a period of years, dismissed the innate system as the minor part-
ner in the functioning of the immune system. Recently however there has been a
resurgence of interest in the innate immune system in immunological circles — wit-
ness for example the work described in [24], and the influence it may have on the
adaptive system. Directing some attention therefore towards understanding and
modelling the innate system maybe prove fruitful in producing better immune-
models. For example, we may choose to focus on a certain aspect such as signalling
mechanisms within the innate immune system and apply the conceptual frame-
work model to abstract useful mechanisms based on this.

Strikingly, one of the key problems identified in section 3 with optimisation
and clustering applications is that immune algorithms are applied to static sys-
tems without any justification. Yet, the inspiration behind the algorithms applied
to such systems is the adaptive immune system, where we model clonal selection
and learning on relatively fast time-scales. Perhaps such applications areas should
be re-evaluated in the light of what we can learn from modelling the innate immune
system. Many creatures, e.g. the nematode worm have only an innate immune sys-
tem and yet function perfectly well — perhaps in many cases we have been too am-
bitious by trying to model the complete immune system and could achieve equally
impressive results by abstracting mechanisms from a more simplistic yet still in-
credible system.

The immune system does not operate in isolation. Living organisms show a re-
markable ability to maintain homeostasis, that is, achieve a steady-state of internal
body function in a varying environment. This is precisely what we wish to achieve
in many practical anomaly detection systems, for example in maintaining a secure
computing environment. In nature, this is made possible via the —em interaction
of both a number of systems, for including the immune system, neural system and
endocrine system, and via multiple components within each of these systems. Any
one of these systems cannot and does not operate in isolation — this suggests that
perhaps the true potential of modelling immune systems might only be achieved
via combining them with other sub-systems. This is clearly an exciting new area of
research to which attention should be paid. There has been some exploratory work
in this area — [43] — yet much remains unknown. Furthermore, the fact that the
immune system does not act in isolation gives us yet another important pointer;
the immune system must be embodied. This fact has been acknowledged in robotic
research for a long time, where it is well known that “there can be no intelligence
without embodiment”, however it is largely ignored in AIS research.

Life-long learning. Although many application papers allude to this aspect of the
immune system in their introductory text, few systems have really attempted to
capture this feature of the IS, and those that have exhibit only a weak version of
this. For instance, some optimisation and clustering algorithms have been applied
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in dynamic environments. However, there has been no published work on problems
which naturally require a system to improve its own performance over the course of
a life-time, as a result of its own experience. As this feature of the IS clearly distin-
guishes it from most other biologically inspired paradigms such as EAs or neural-
nets which produce a fixed solution (or solutions) to a problem and then terminate,
choice of application areas should focus on those problems which naturally require
continuous learning.

6 Conclusions: Features of AIS Applications

We summarise by proposing a list of features that draw together some of the pre-
ceding discussion and that we believe point to the way forward for AIS. Some of
these features are currently absent in any of the AIS literature. Others, such as life-
long learning, have been modelled in a limited sense. We emphasise that it is by the
combination of these principles that a distinctive niche is carved for AIS.

1. They will exhibit homeostasis
2. They will benefit from interactions between innate and adaptive immune

models
3. They will consists of multiple, interacting, communicating components
4. Components can be easily and naturally distributed
5. They will be required to perform life-long learning

An exciting example which represents a step forward in this direction is work
currently in progress at the University of Kent, which proposes a technique that
aims to prevent system down-timebydetecting states that are precursorsof system
failure in Automated Teller Machines (ATM). This is achieved through the devel-
opment of an immune inspired continuous learning approach for updating the set
of error detectors in a system. Unlike the typical anomaly detection techniques dis-
cussed in section 3.1, this technique relies on the existence of sequences of states
that represent the operational status of an ATM when errors are occurring (so not
when the ATM is operating within normal bounds). The adaptable error detection
process is able to identify those sequences that might contain fatal states and iden-
tify potential sequences that might lead to system failure. The system is embodied,
distributed, has multiple components and its purpose is to maintain homeostasis
in a distributed ATM network, therefore must exhibit life-long learning, and there-
fore exactly encapsulates the principles just outlined.
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