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Abstract. It has been shown that an ensemble of classifiers increases the
accuracy compared to the member classifiers provided they are diverse.
One way to produce this diversity is to base the classifiers on different
case-bases. In this paper, we propose the mixture of experts for case-
based reasoning (MOE4CBR), where clustering techniques are applied to
cluster the case-base into k groups, and each cluster is used as a case-base
for our k CBR classifiers. To further improve the prediction accuracy,
each CBR classifier applies feature selection techniques to select a subset
of features. Therefore, depending on the cases of each case-base, we would
have different subsets of features for member classifiers.
Our proposed method is applicable to any CBR system; however, in
this paper, we demonstrate the improvement achieved by applying the
method to a computational framework of a CBR system called TA3 .
We evaluated the system on two publicly available data sets on mass-to-
charge intensities for two ovarian data sets with different number of clus-
ters. The highest classification accuracy is achieved with three and two
clusters for the ovarian data set 8-7-02 and data set 4-3-02, respectively.
The proposed ensemble method improves the classification accuracy of
TA3 from 90% to 99.2% on the ovarian data set 8-7-02, and from 79.2%
to 95.4% on the ovarian data set 4-3-02. We also evaluate how individual
components in MOE4CBR contribute to accuracy improvement, and we
show that feature selection is the most important component followed
by the ensemble of classifiers and clustering.

1 Introduction

Case-based reasoning (CBR) has been successfully applied to a wide range of ap-
plications such as classification, diagnosis, planning, configuration, and decision-
support [1]. CBR can produce good quality solutions in weak theory domains
such as molecular biology, where the number and the complexity of the rules
affecting the problem are very large, there is not enough knowledge for formal
knowledge representation, and our domain understanding evolves over time [2].
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Protein expression profiling using mass spectrometry is a recent method for
profiling cancer cases to measure thousands of elements in a few microliters of
serum [3], and also an example of high-dimensional molecular biology domain.
The data obtained are mass-to-charge ratios (m/z values) of varying intensi-
ties. Mass spectrometry data sets are represented by two-dimensional matrices,
where each row contains the mass-to-charge intensities (known as biomarkers)
for cancer and control (normal) samples. In addition, clinical information is used
to label and further describe individual samples.

Using principles of case medicine for diagnosis and prognosis, CBR natu-
rally fits this application domain. However, (ultra) high-dimensionality of mass
spectrometry data sets (tens of thousands of biomarkers with only few hundreds
of samples) poses a challenge that needs to be addressed. One solution is to
combine CBR classifiers with other machine learning techniques to improve the
prediction accuracy and overcome the “curse of dimensionality”. Ensembles im-
prove the accuracy of CBR classifiers [4, 5]; however, since k-nearest neighbor
(kNN) and CBR classifiers are categorized under stable classifiers, having diverse
classifiers is essential to improve the accuracy [6]. Stable classifiers are stable
with respect to small changes in the training data.

One way to have diversity for stable classifiers is to select different subsets of
features for each classifier [4, 5]. In this paper, in addition to selecting a different
subset of features for each member classifier, we cluster the case-base into smaller
groups. Data clustering means to group items (data points or attributes) into
classes such that items within a cluster are similar to one another and dissimilar
to items in other clusters. Thus, by grouping the whole case-base into smaller
clusters, different classifiers would have different case-bases.

The goal of feature selection is to identify “informative” features among thou-
sands of available features, i.e., relevant features that improve CBR performance
for a given reasoning task. For mass spectrometry data sets, mining a subset of
features that distinguishes between cancer and normal samples can play an im-
portant role in disease pathology and drug discovery. Early detection of cancer
can reduce mortality, and identified biomarkers may also be useful drug discov-
ery targets that may lead to new therapeutical approaches. Moreover, removing
“non-informative” features helps overcome the “curse of dimensionality”, and
improves the prediction accuracy of classifiers.

Our hypothesis can be summarized as follows. Combining an ensemble of
CBR classifiers with feature selection and clustering techniques not only helps
overcome the “curse of dimensionality”, but also leads to diverse classifiers, which
is essential for improving the accuracy of ensembles. Our approach has three
main components: (1) an ensemble of CBR systems, (2) clustering, and (3) fea-
ture selection. In principle, any CBR system, clustering, and feature selection al-
gorithm can be used. However, the choice has to satisfy our performance criteria,
which is to maximize prediction accuracy, and be applicable to high-dimensional
domains.

We use an ensemble of CBR systems, called the mixture of experts (MOE)
to predict the classification label of an unseen data (query). A gating network
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calculates the weighted average of votes provided by each expert. We apply
spectral clustering [7] to cluster the data set (case-base) into k groups. Each
cluster is considered as a case-base for the k CBR experts, and the gating network
learns how to combine the responses provided by each expert. The performance
of each CBR expert is further improved by using feature selection techniques.
We use logistic regression [8] to select a subset of features in each cluster.

Although the proposed method is applicable to any CBR system, we demon-
strate the improvement achieved by applying it to a specific implementation of a
CBR system, called TA3 [9]. TA3 is a computational framework for CBR based
on a modified NN technique and employs a variable context, a similarity-based
retrieval algorithm, and a flexible representation language.

The rest of the paper is organized as follows. Section 2 reviews ensembles,
clustering, and feature selection techniques. In Section 3, we present MOE4CBR,
a method that uses the mixture of CBR experts to classify high-dimensional data
sets. Section 4 introduces the TA3 CBR system, which is used as a framework for
evaluating MOE4CBR. In Section 5, we demonstrate the experimental results
of the proposed method on two publicly-available ovarian data sets.

2 Related Work

Ensembles improve the stability and accuracy of classifiers if there is diversity
in the classifiers [6, 5]. If small changes in training data produces quite different
models and thus different predictions, the learner is called an unstable learner
[5]. Neural networks and decision trees are examples of unstable learners. For
such classifiers, diversity can be achieved if classifiers are trained on different
subsets of training data. However, since lazy learners such as kNN and CBR
classifiers are relatively stable in the face of changes in training data [6], other
sources of diversity must be employed. One way of achieving diversity is to
consider a different subset of features for each classifier. Ricci and Aha [4] create
various NN classifiers, each one considers a different subset of features and then
their predictions are combined using error-correcting output codes (ECOCs).
Cunningham and Zenobi [5] show that an ensemble of kNN classifiers based on
different feature subsets can classify more accurately than a single kNN classifier
based on the best feature subset available.

Clustering and feature selection techniques have been applied to many do-
mains including high-dimensional biological domains [10, 11, 12]. Clustering
groups samples (cases) into partitions such that samples within a cluster are
similar to one another and dissimilar to samples in other clusters. Clustering
techniques can be categorized into partitional and hierarchical methods [13].
Partitional-based clustering techniques attempt to break a data set into k clus-
ters such that each cluster optimizes a given criterion, e.g., minimizes the sum
of squared distance from the mean within each cluster. Hierarchical clustering
proceeds successively by either merging smaller clusters into larger ones (ag-
glomerative approach), or by splitting larger clusters (divisive approach).
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Clustering and feature selection techniques have been applied to CBR sys-
tems as well. Yang and Wu [14] propose a method that groups the case-base into
smaller case-bases, and then each case-base is maintained individually. They use
density-based clustering technique [15] in which a cluster is a region with a higher
density of points than its surrounding region.

Shiu and Yeung [16] cluster the case-base into smaller partitions and select
representative cases for each cluster in order to reduce the size of case-base. In
their clustering approach, the similarity matrix of cases is formed, and two cases
will be placed in the same cluster if their weighted Euclidean distance is smaller
than a predetermined threshold.

Smyth and McKenna [17] cluster the case-base by finding the related set of
each case. The related set of each case is the union of the set of cases that
can be solved by this case and the set of cases that this case can solve. Two
cases will be in the same cluster if the intersection of their related sets is not
empty. Common problem types are typically represented by large and densely
packed clusters, while smaller clusters, or even lone cases, generally represent
more unusual problem types. Those cases that do not make critical competence
contribution could be deleted. In their case-base editing approach, the size of
case-base is minimized, while the range of problems that can be solved remains
unchanged.

Feature selection techniques are classified into filter and wrapper methods
[18]. The filter approach selects feature subsets that are independent of the
induction algorithm, while the wrapper approach evaluates the subset of features
using the inducer, itself. Aha and Bankert [19] discuss how using filter and
wrapper techniques improve the classification accuracy of case-based classifiers
on the cloud data set with 204 features and a few thousand data points. Their
results show that a wrapper feature selection method (called BEAM) applied to
an NN classifier improves its prediction accuracy by ∼20%.

3 The MOE4CBR Method

The goal of our method is to improve the prediction accuracy of CBR classifiers
using the mixture of experts. The performance of each expert in MOE4CBR is
improved using clustering and feature selection techniques. Using the results of
our earlier performance evaluation [20], we selected spectral clustering [7] for
clustering the case-base, and the logistic regression model [8] as a filter feature
selection for the TA3 classifier. Given a labeled training data set, predicting
labels of the unseen data (query), is performed in two steps: (1) each CBR
experts retrieves l similar cases from its respective (non-overlapping) case-base;
(2) the class label for the query is predicted by assigning weights to each expert.
We discuss the process in details in the next section.

3.1 Mixture of Experts

The mixture of experts approach is based on the idea that each expert classifies
data points (cases) separately, and individual responses are combined by the
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gating network to provide a final classification label [21]. A general idea of the
mixture of experts approach is depicted in Figure 1. In the first step, for an
unseen query case, each expert of CBR retrieves l similar cases from its case-
base (l can be chosen by the user). It should be noted that experts do not share
their case-bases, rather the case-base of each expert is obtained by clustering the
whole case-base into k non-overlapping clusters (k can be chosen by the user or
estimated by other analysis).

After retrieving l similar cases from the case-base, the expert applies the
weighting vote algorithm (see Section 4.3) to predict the class label of the query
case, i.e., performs weighted case adaptation. More precisely, let {C1, . . . , Ck}
denote the clusters (or the k case-bases of our k experts), x the unseen data, y a
class label, Sj the number of similar cases that belong to Cj , and Tj the number
of similar cases with class label y that belong to Cj , Pr(Y = y|Cj , x) is then
computed as Tj

Sj
.

We use CBR to assign weights to each expert – represented by gj , 1 ≤ j ≤ k.
Briefly, gj represents the probability that the unseen data x belongs to the case-
base of the jth expert. More precisely, in order to compute gj that can be shown
as Pr(Cj |x) as well, we perform the following steps. Let m represent the number
of similar cases retrieved from the whole initial case-base by the gating network
(m can be chosen by the user), Rj the number of similar cases to x belonging to
Cj (the case-base of the jth expert), gj then is calculated by dividing Rj by m.
Finally, in order to combine the responses of k experts, following formulas are
used [8]:

Pr(Y = y|x) =
k∑

j=1

gj × Pr(Y = y|Cj , x), (1)

with the constraint that:
k∑

j=1

gj =
k∑

j=1

Pr(Cj |x) = 1, (2)

As Figure 2 depicts, the MOE4CBR method has two main steps: First, the
case-base of each expert is formed by clustering the case-base into k groups. Sec-
ond, each case-base selects a subset of features “locally”. Each of the k obtained
sets is considered as a case-base for our k experts of CBR. We use Equations 1
and 2 to combine the responses of the k experts. Each expert applies the TA3
classifier to decide on the class label, and the gating network uses TA3 to assign
weights (represented by gj) to each classifier as explained above.

3.2 Clustering

Of the many clustering approaches that have been proposed, only some of the
algorithms are suitable for domains with (ultra) high number of features and
a low number of samples. The two widely used clustering approaches in (ul-
tra) high-dimensional DNA microarrays [22, 23] are k-means clustering [13] and
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Fig. 1. Mixture of Experts: Terminal nodes are experts, and the non-terminal node
is the gating network. The gating network returns the probability that the query x

belongs to class Y
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Fig. 2. Mixture of Experts for Case-Based Reasoning: Training set is grouped into k

clusters, and after selecting a subset of features for each group (shown with vertical
bars), each group will be used as a case-base for the k CBR experts. The gating network
combines the responses provided by each TA3 expert considering the weights of each
expert (weights are shown on the arrows connecting TA3 experts to the gating network)

self-organizing maps (SOMs) [24]. Our earlier evaluation suggests that spectral
clustering [7] outperforms k-means clustering and SOMs [20].

Spectral clustering is based on the approach where data points are mapped
to a new space, prior to being clustered. More precisely, first, a matrix X holding
the Euclidean distance between any two data points (i.e., a transformation of the
affinity matrix) is formed. Second, matrix Y is formed from X by stacking the
k eigenvectors associated with the k largest eigenvalues of matrix X in columns.
Each row of Y is treated as a point in Rk and is clustered into k clusters using
k-means algorithm , where k represents the number of clusters and is set by the
user. In the next step, data point si is assigned to cluster j if and only if row
i of the matrix X was assigned to cluster j, where 1 ≤ i ≤ N , 1 ≤ j ≤ k, and
N is the number of data points. This clustering technique has been successfully
used in many applications, including computer vision and VLSI [7].
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3.3 Feature Selection

The goal of feature selection is to improve the quality of data by removing re-
dundant and irrelevant features, i.e., those features whose values do not have
meaningful relationships to their labels, and whose removal improves the pre-
diction accuracy of the classifier.

Fisher’s criterion and standard t-test are two statistical methods that have
been successfully applied to feature selection problem in (ultra) high-dimensional
data sets [25]. In order to select a suitable feature selection approach, we eval-
uated the performance of Fisher’s criterion, t-test, and the logistic regression
model [8] when used in a CBR classifier [20]. We applied the three feature selec-
tion techniques to the TA3 classifier, and measured the improvement in accuracy
and classification error. Accuracy measures the number of correctly classified
cases, and classification error counts the number of misclassified cases. Based
on our evaluation, logistic regression as a feature selection method outperforms
Fisher and standard t-test techniques [26].

Assuming that classifier x is the logistic of a linear function of the feature
vector, for two classes, the logistic regression model has the following form:

Pr(y = 0|x, w) =
1

1 + e−wT x
, (3)

where w is a p + 1 column vector of weights, and p is the number of features
[8]. Logistic regression has been successfully applied to classifying (ultra) high-
dimensional microarrays [27]. However, we use the logistic regression classifier as
a filter feature selection method. In order to select a subset of features (genes),
the logistic regression classifier is trained using the above Equation on the train-
ing set, and features corresponding to the highest ranking magnitude of weights
are selected. The data sets are normalized such that all features (regressor vari-
ables) have the same mean and variance.

4 An Introduction to the TA3 Case-Based Reasoning
System

Although our method can be applied to any CBR system, we used the TA3
CBR system as a framework to evaluate our method. The TA3 system has been
applied successfully to biology domains such as in vitro fertilization (IVF) [28]
and protein crystal growth [29]. This section briefly describes the system.

4.1 Case Representation in TA3

A case C corresponds to a real world situation, represented as a finite set of
attribute/value pairs [28]. Using the information about the usefulness of indi-
vidual attributes and information about their properties, attributes are grouped
into two or more Telos-style categories [30]. In classification tasks, each case has



28 N. Arshadi and I. Jurisica

at least two components: problem description and class. The problem descrip-
tion characterizes the problem and the class gives a solution to a given problem.
Additional categories can be used to group attributes into separate equivalence
partitions, and treating each partition separately during case retrieval.

4.2 Case Retrieval in TA3

The retrieval component is based on a modified NN matching [31]. Its modifi-
cation includes: (1) grouping attributes into categories of different priorities so
that different preferences and constraints can be used for individual categories
during query relaxation; (2) using an explicit context (i.e., set of attribute and
attribute value constraints) during similarity assessment; (3) using an efficient
query relaxation algorithm based on incremental context transformations [9].

Similarity in TA3 is determined as a closeness of values for attributes de-
fined in the context. Context can be seen as a view or an interpretation of a
case, where only a subset of attributes are considered relevant. By selecting only
certain features for matching and imposing constraints on feature values, a con-
text allows for controlling what can and what cannot be considered as a partial
match: all (and only) cases that satisfy the specified constraints for the context
are considered similar and are relevant with respect to the context.

4.3 Case Adaptation in TA3

The adaptation process in CBR manipulates the solution of the retrieved case
to better fit the query. We adopt distance-weighted nearest neighbor [32] to
determine the classification label of the query based on the labels of similar
retrieved cases. Let x1, ..., xk denote the k cases retrieved from the case-base
that are similar to the query xq . In order to predict the label of xq shown with
f̂(xq), following equations are used [32]:

f̂(xq) ← argmax
v∈V

k∑

i=1

ωiδ(v, f(xi)),

where
ωi ≡ 1

d(xq, xi)2
,

and V is the finite set of class labels {v1, ..., vs}, f(xi) the class label of case xi,
and δ(a, b) = 1 if a = b and δ(a, b) = 0 otherwise.

5 Experimental Results

Here we demonstrate the results of applying the MOE4CBR method to the TA3
classifier. In [33], we showed MOE4CBR improves the prediction accuracy of
high-dimensional microarrays. In this study, we show the improvement in the
classification accuracy of two publicly mass spectrometry data sets by applying
MOE4CBR. Also, we experiment MOE4CBR with different number of experts
and evaluate its components separately.
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5.1 Data Sets

The experiments have been performed on the following mass spectrometry data
sets. The two mass spectrometry data sets [34, 35] discussed in this paper, are
both provided online at the National Institutes of Health and Food and Drug
administration Clinical Proteomics Program Databank. 1

1. Ovarian data set 8-7-02 : Ovarian data set 8-7-02 comprises 162 mass spec-
tra from ovarian cancer patients and 91 individuals without cancer (control
group) with 15,154 mass-to-charge ratios (m/z values) measured in each
serum.

2. Ovarian data set 4-3-02 : Ovarian data set 4-3-02 contains spectra from 100
patients with ovarian cancer and 116 individuals without cancer (control
group). The serum mass spectrum for each subject consists of 15,154 mass-
to-charge ratios.

These two ovarian data sets have been previously analyzed [34, 35, 26, 20].
Sorace et al. [34] evaluate their extracted rules for selecting biomarkers on data
set 8-7-02 when it is randomly split into training and test data. Although they
achieve 100% sensitivity and 100% specificity, our results are not comparable, as
they evaluated their method on randomly selected training and test sets, while
we used 10-fold cross-validation. Also, their rules are extracted in an “ad hoc”
way, and might not be applicable to other similar data sets.

Ovarian data set 4-3-02 has also been analyzed by Zhu et al. [35]. They
achieve 100% specificity and 100% sensitivity. Our results are not comparable,
since we used 10-fold cross-validation, while they split the data set randomly
into training and test set. Furthermore, it had been recently reported that their
results cannot be replicated and the overall best performance achieved using the
proposed 18 markers is 98.42% [36].

Similarly, these two ovarian data sets have been analyzed using a TA3 classi-
fier combined with logistic regression [26]. This approach resulted in 98% accu-
racy and 2% error for the ovarian data set 8-7-02, and 95.4% accuracy and 4.6%
error for the ovarian data set 4-3-02, evaluated using 10-fold cross-validation.

Each of the studies have selected a different set of “informative” biomarkers,
and further biological validation, which is beyond the scope of this paper, will
be able to determine which list of biomarkers is clinically more “informative”
for diagnosis or drug discovery of ovarian cancer samples.

5.2 Evaluating MOE4CBR with Different Number of Experts

Table 1 depicts the results of applying MOE4CBR to our two ovarian data sets
with different number of experts. When there is a tie, the TA3 classifier cannot
decide on the label; resulting cases are categorized as “undecided” in the Table.
We used 10-fold cross-validation for validation, and the Table shows the average
over the 10 folds. In each iteration, MOE4CBR was trained using 9 folds, and

1 http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp

http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp
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Table 1. Accuracy of MOE4CBR with different number of experts(shown with n) on
ovarian data sets. In all experiments, 15 biomarkers were selected by logistic regression,
and the whole case-base was clustered into smaller groups using spectral clustering

Ovarian Data Set 8-7-02
n = 1 n = 2 n = 3 n = 4

Accuracy 98%±2.8% 98.4%±2% 99.2%±1.6% 96.4%±2.9%
Error 2% 1.2% 0.8% 2.8%
Undecided 0% 0.4% 0% 0.8%

Ovarian Data Set 4-3-02
n = 1 n = 2 n = 3 n = 4

Accuracy 95.4%±4.3% 95.4%±4.8% 94.9%±5% 90.3%±4.9%
Error 4.6% 4.1% 5.1% 7.8%
Undecided 0% 0.5% 0% 1.9%

was tested on the remaining fold, i.e., the test set was quite unseen until the test
time, and clustering and feature selection techniques were applied only to the
training set.

When there is only one expert – TA3 classifier – the case-base does not split
into groups, and the size of the case-base is reduced by selecting 15 biomarkers
out of 15,154 biomarkers. For the ovarian data set 8-7-02, the minimum classifica-
tion error is achieved when the number of experts equals 3, while for the ovarian
4-3-02, the minimum classification error is realized with 2 experts (Table 1).

5.3 Evaluating Components of MOE4CBR

We used 10-fold cross-validation to evaluate our proposed method in terms of
accuracy, classification error, and “undecided” rate, and the results are averaged
over 10 folds. We evaluated the components of MOE4CBR as follows:

– This is our base line, where a single instance of TA3 classifies the query case
without being integrated with any FS or clustering technique, and only a
single classifier predicts the label.

– In order to evaluate the FS component, we use logistic regression to select
15 biomarkers out of 15,154 biomarkers, and then we apply TA3 as a CBR
classifier.

– In order to evaluate the clustering component, we split the case-base ran-
domly into two groups, and use MOE4CBR to classify the query case. In this
case, the number of experts equals 2, logistic regression selects 15 biomarkers,
and the results are averaged over 5 iterations.

– Finally, we apply MOE4CBR when logistic regression as a filter FS method
selects 15 biomarkers, and spectral clustering groups the case-base into two
clusters (i.e., there are only two experts).

As the Table 2 shows, the FS component contributes the most in improv-
ing the accuracy of the classifier, while spectral clustering has the least con-
tribution. As is typically found in most studies, kNN and CBR classifiers are
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Table 2. Accuracy of MOE4CBR with different components

Ovarian Data Set 8-7-02
Method Accuracy Error Undecided
Single TA3 90% 9.2% 0.8%
TA3 with LR 98% 2% 0%
MOE4CBR with LR and RC 97.4% 2.6% 0%
MOE4CBR with LR and SC 98.4% 1.2% 0.4%

Ovarian Data Set 4-3-02
Method Accuracy Error Undecided
Single TA3 79.2% 18.5% 2.3%
TA3 with LR 95.4% 4.6% 0%
MOE4CBR with LR and RC 94.6% 5.2% 0.2%
MOE4CBR with LR and SC 95.4% 4.1% 0.5%

Note. LR: Logistic Regression; RC: Random Clustering; SC: Spectral Clustering

very “sensitive” to the selected features and the “curse of dimensionality” prob-
lem. Therefore, removing “non-informative” features helps improve the accuracy.
On the other hand, although spectral clustering outperforms k-means and self-
organizing maps in terms of precision, recall, and Dunn’s index [20], it still does
not perform much better than random clustering. This can be due to the ultra
high-dimensionality of data sets. Applying FS techniques before clustering may
help improve the performance of clustering techniques.

6 Conclusions

Molecular biology is a natural application domain for CBR systems, since CBR
systems can perform remarkably well on complex and poorly formalized domains.
Although high dimensionality poses a challege and reduces system performance,
the classification accuracy improves by using an ensemble of classifiers. Also,
removing “non-informative” features from the case-base of each member classifier
helps overcome the “curse of dimensionality”.

In this paper, we proposed the mixture of experts for case-based reasoning
(MOE4CBR) method, where an ensemble of CBR systems is integrated with
clustering and feature selection to improve the prediction accuracy of the TA3
classifier. Spectral clustering groups samples, and each group is used as a case-
base for each of the k experts of CBR. To improve the accuracy of each expert,
logistic regression is applied to select a subset of features that can better predict
class labels. We also showed that our proposed method improves the prediction
accuracy of the TA3 case-based reasoning system on two public ovarian data
sets.

Although we have used a specific implementation of a CBR system, our
results are applicable in general. Generality of our solution is also not degraded
by the application domains, since many other life sciences problem domains
are characterized by (ultra) high-dimensionality and a low number of samples.
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Further investigation may take additional advantage of Telos-style categories in
TA3 for classification tasks. The system may also benefit from new clustering
approaches, and other feature selection approaches such as wrapper and hybrid
approaches.
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