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Abstract. Non-learning problem solvers have been applied to many interesting
and complex domains. Experience-based learning techniques have been devel-
oped to augment the capabilities of certain non-learning problem solvers in or-
der to improve overall performance. An alternative approach to enhancing pre-
existing systems is automatic case elicitation, a learning technique in which a
case-based reasoning system with no prior domain knowledge acquires knowl-
edge automatically through real-time exploration and interaction with its envi-
ronment. In empirical testing in the domain of checkers, results suggest not only
that experience can substitute for the inclusion of pre-coded model-based knowl-
edge, but also that the ability to explore is crucial to the performance of automatic
case elicitation.

1 Introduction

Non-learning problem-solving algorithms are commonly used to solve problems in a
variety of complex and challenging domains including the application of alpha-beta
search to checkers [1] and the use of the null-move heuristic in chess [2]. Such non-
learning, non-adaptable algorithms are sufficient for domains that are either simple,
static, or deterministic, but are incapable of adapting to changing environments. For
domains that are sufficiently complex or dynamic, it has been argued that a system
capable of learning and adapting to its environment is needed [3]. DeJong and Schultz
[4] describe a technique for designing and implementing architectures for extending the
capabilities of non-learning systems by automatically extending the knowledge bases of
static problem solvers. Unfortunately, the process of enhancing a pre-existing problem
solver is complicated by the fact that interfacing with the underlying problem solver
can be difficult, and by the fact that overall problem-solving abilities can be hampered
by the abilities of the underlying problem solver.

An alternative approach to augmenting a non-learning problem solver is for a sys-
tem to acquire knowledge automatically without the need for predefined domain knowl-
edge. One existing technique for the automatic capture of knowledge without a reliance

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, pp. 397–407, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNAI



398 J.H. Powell, B.M. Hauff, and J.D. Hastings

upon prior domain knowledge is automatic case elicitation [5]. Automatic case elici-
tation is a case-based reasoning (CBR) technique that relies on the system’s ability to
explore its domain in real time through trial and error in order to acquire knowledge
from scratch. Due to its exploratory capabilities and case-based knowledge acquisition
techniques, automatic case elicitation is particularly well suited to learning in domains
with observable outcomes (e.g. robot navigation or game playing).

This paper extends initial research on automatic case elicitation detailed in Pow-
ell et al. [5]. In contrast to this previous research, the methodologies described in this
paper make use of a probabilistic approach to case selection to ascertain the value of
exploration in an unknown environment in the context of automatic case elicitation.
This paper compares automatic case elicitation against non-exploring experience based
learning techniques to further determine the merit of free exploration within an auto-
matic case elicitation system.

We detail automatic case elicitation in Section 2, and follow in Section 3 with a brief
overview of extending non-learning systems through experience-based learning. We
compare the two approaches in Section 4. Section 5 sets forth an empirical evaluation
that demonstrates that experience can substitute for predefined knowledge, and that
exploration is crucial to the performance of automatic case elicitation. We close with a
discussion of related work in Section 6.

2 Automatic Case Elicitation

Automatic case elicitation (ACE) is a learning technique whereby a CBR system auto-
matically acquires knowledge (in the form of cases) from scratch during real-time trial
and error interaction with its environment without reliance on pre-coded domain knowl-
edge (e.g. rules or cases). A probabilistic reinforcement learning approach is utilized to
evaluate the effectiveness of each case (acquired or stored) after an interaction is com-
plete, providing a means for an ACE system to learn and improve from experience. The
use of reinforcement learning [6] allows an automatic case elicitation system to be used
in environments which are capable of being explored as well as allow for the system
to learn from its experiences (e.g. autonomous robot navigation or game playing). For
implementation purposes, a case contains the following:

1. an observation or snapshot of the environment,
2. the action taken in response to the observation, and
3. a rating of the success of the applied action in meeting a goal.

Figure 1 illustrates the procedure Ace, the primary reasoning module within a sys-
tem using automatic case elicitation. Ace operates on the sequence of observations (O1
through On) made during interaction with the environment and completes at the point
at which the effectiveness of the interaction can be determined (e.g. in chess, the ef-
fectiveness of an interaction will be determined at the completion of a game). For each
observation of the environment (Oi), the system selects and applies actions (A) sug-
gested by its case library until a change in the environment is observed. The process of
selecting and applying an action is as follows. First, the system finds and loads the set
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Procedure Ace( )
C := case base
AC := φ ; applied cases
While success of interaction unknown Do

Oi := ObserveEnvironment( )
M := MatchingCases(C, Oi)
Repeat

A := Decision(M )
ApplyAction(A)
Oj := ObserveEnvironment( )

Until Oi �= Oj

AC := AC ∪ Case(Oi, A)
End While
AC := Evaluate(AC)
Store(C, AC)

End Ace

Fig. 1. ACE Algorithm for Interacting within an Environment

Function Decision(var M : matching cases) : Action
If M = φ

A := NewAction( )
Else If Rating(M0) ≥ Random(0..1)

A := ExtractAction(M0)
Else

M = M - M0

A := Decision(M )
End If
Return A ; action to take

End Decision

Fig. 2. ACE Algorithm for Determining the Appropriate Action

of all cases whose observation closely1 matches the current observation. If the current
situation is novel or sufficiently distant from prior experience, the set of matching cases
returned will be empty. If the current scenario has previously been encountered, the
system makes use of an indexing scheme which counts the distinct elements in the case
to quickly retrieve all cases which most closely correspond.

Once an ACE system has determined the set of matching cases (possibly empty),
it calls the function Decision, illustrated in Figure 2. Decision selects and returns an
action to apply. Decision may need to be invoked multiple times in order for the agent
to formulate a legal action. In automatic case elicitation, the legality of an action is
not determined by the system itself, but by the environment in which the system is
interfacing (e.g. a chess engine). In other words, an ACE system attempts an action
and observes whether changes to the environment occur in response. If so, the system

1 The current implementation of ACE handles only exact matches, but will in the future support
“close” matches in a domain-independent fashion.
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has entered a new situation, and will react accordingly. Otherwise, it would attempt a
different action.2

The action returned by Decision depends on M , the set of matching cases given by
Ace. When M is empty (i.e., the system has encountered a novel situation), Decision
generates a new random action. When applying random actions to a new situation, Ace
repeatedly calls Decision until a valid random action (i.e., one which affects the envi-
ronment) is found. This technique for the generation of new actions through random
exploration is utilized because an ACE system does not rely on any pre-coded domain
knowledge. Without the dependence on pre-coded knowledge or exterior problem solv-
ing techniques, random exploration is necessary for the acquisition of the minimum
knowledge to operate in a given domain.

If cases are found in the case-base which correspond to the current state of a sys-
tem’s environment, the Decision module determines which of the returned cases to ap-
ply, if any. A case from the set M (arranged from M0 to Mn in descending order based
upon case ranking) is chosen on a pseudo-random basis to encourage exploration. The
probability P (M0) of the most successful case in the set, M0, being selected is equal to
the case’s rating, the derivation of which will be discussed later. The probability of the
system iterating deeper through the list of matching cases is 1−P (M0). The probability
of case Mi being selected is

P (Mi) = (1 − P (M0)) × (1 − P (M1)) × ... × (1 − P (Mi−1)). (1)

If the highest-rated case M0 is not selected for reuse, then it is removed from the set
M and Decision is called again. If the entire set of matching cases is searched and
no case has been chosen for reuse, a new random action is created using the process
described above. This approach differs from previous implementations of automatic
case elicitation which made use of a win/loss ratio, as compared to the current use of
probability to select cases for reuse. The motivation for implementing this new case
selection algorithm was to encourage exploration and the subsequent growth of the
system’s knowledge base.

Once an ACE system has created an action, it applies the action and observes the
resulting consequences. If changes in the environment are observed, the ACE system
remembers the action (along with the observation of the environment). For new situa-
tion/action pairs, a new case is created. Reused cases are simply remembered so that
their success rating can be updated.

Upon the completion of the interaction, Evaluate is called to update the ratings of
each applied case. Each case is rated according to its success in attaining a goal at the
completion of the interaction using the formula

rn =

⎧
⎪⎨

⎪⎩

1
2s0 if n = 0,

1
2sn + 1

2rn−1 = (1
2 )1sn + (1

2 )2sn−1 + ... + (1
2 )n+1s0 if n> 0

(2)

2 Disregarding actions which do not immediately result in an observable change in the environ-
ment is less than desirable for domains in which a combination of actions are needed to affect
a single change in the environment. For such domains, a case structure that encapsulates a
sequence of actions is likely required.
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In (2), ri represents the rating (between 0.0 and 1.0 inclusive) and si represents
the outcome (1 for success, 0 for failure) of the ith application of a case within the
environment. The purpose of this formula is to provide a decaying memory represen-
tation of each case, where the consequences of applying a case early in the system’s
life (when cases are applied with little thought) are quickly forgotten. In contrast to
work on forgetting complete cases [7,8], only the older applications of a case, not the
cases themselves, are forgotten by mathematically diminishing their affect on the case
rating. The rating of each case initially tends to fluctuate near 0.5 early in the system’s
life, while success or failure is equally probable and the system is simply attempting
to learn valid domain behavior. As the system gains experience, the case’s ranking can
tend towards either 1 (highly successful) or 0 (completely ineffectual). Upon comple-
tion of Evaluate, the ratings for each of the applied cases, AC, have been updated and
any new cases are committed to the case library using the procedure Store.

3 Extending Non-learning Systems Through Experience-Based
Learning

DeJong and Schultz [4] describe the use of experience-based learning in improving the
capabilities of non-learning systems by automatically extending the knowledge bases
of static problem solvers. In their approach, actions in the knowledge base are initially
suggested by the underlying problem solver. Over time, their system applies only those
experiences proven to produce the best results. They illustrate that proper application of
experience-based learning algorithms in combination with an underlying static problem
solver can lead to the development of a system capable of quickly recalling and applying
actions from the knowledge base.

To demonstrate their approach, they made use of the system GINA, an experience-
based learning Othello game-playing agent. GINA relied upon a static minimax looka-
head agent as the foundation of the system’s experience base. When GINA encountered
a scenario which did not exist in its knowledge base, it was able to consult its underlying
problem solver for advice and commit the given advice to memory. At the conclusion
of each game, a minimax algorithm was used to apportion credit to every move used
during the game that could be found in the agent’s experience base. In their paper, the
authors suggested that their approach could be applied to other domains with success
similar to theirs.

4 Comparison of Methodologies

The primary purpose of this paper is to compare and contrast automatic case elicitation
against the technique by DeJong and Schultz [4] in order to demonstrate the power
of exploration. For the purposes of testing, the performance of the two approaches
is compared in the domain of checkers. A DeJong agent was created which can play
checkers. Automatic case elicitation is demonstrated in the system CHEBR (CHeckers
case-Based Reasoner), a system in which CBR agents utilize automatic case elicitation
to learn and test their expertise in the game of checkers.
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Several key differences exist between the DeJong approach and automatic case elic-
itation in the knowledge acquisition process. A DeJong system relies upon an underly-
ing problem-solver and thus begins its life with pre-existing domain knowledge. When
a situation is encountered that is novel or sufficiently distant from prior experience,
such a system can query its problem-solver for pre-programmed guidance. When a sce-
nario is encountered that is similar to previous experience, a system can refer back to
its knowledge base for advice. At the end of each game played, a minimax algorithm is
used to distribute credit to each individual move, based on how the move affected the
rest of the game.

A CHEBR agent begins its life with no prior domain knowledge. Domain knowl-
edge is acquired through a process of trial and error interaction with the checkers envi-
ronment, rather than relying upon pre-programmed decision-making capabilities. In its
infancy, a CHEBR agent will perform many incorrect actions until valid behavior is en-
countered, as dictated by the environment. Valid actions taken by the agent (in this case
specific checkers moves) are stored as cases and committed to the agent’s case-base,
along with a rating which is used as a predictive measure of the case’s future worth. In
CHEBR, all experiences are stored as cases, instead of generalizations of experiences or
environment states. When a CHEBR agent assigns credit to an action, it assigns credit
based on the final outcome of the interaction with the environment, rather than appor-
tioning credit based on how the move affected the rest of the game. As a CHEBR agent
gains experience, the need to rely upon arbitrary move generation is greatly reduced as
the requisite behavior for survival is stored in the agent’s case-base.

The power and flexibility of a CHEBR agent is tied in part to its ability to acquire
knowledge from scratch. With no pre-programmed domain rules, a CHEBR agent is
given free reign to explore its environment. This is contrasted by the limited abilities
of an agent designed around a pre-existing problem solver. Static underlying problem
solvers can be inherently inflexible, due to the fact that their capabilities are hard-coded.
Relying upon the decision-making skills of agents with limited flexibility in novel sit-
uations can hinder the ability of an agent to derive unique or “creative” solutions to
new situations. An agent given the power to explore freely has the potential to generate
inventive solutions to previously un-encountered situations.

5 Results

Automatic case elicitation (through the system CHEBR) was tested in repeated two
hour training sessions against a static lookahead agent without any experience-based
learning augmentations, as well as the DeJong agent with experience-based learning
capabilities.

Figure 3 illustrates the winning percentages of CHEBR in competition with a stan-
dard four-ply lookahead agent utilizing a minimax algorithm and alpha beta pruning.
Figure 4 illustrates the winning percentages of CHEBR in competition with a DeJong
agent that makes use of the same four-ply lookahead agent as its core. The results shown
were duplicated through repeated training sessions with a slight variability in results
due to the use of random move generation on the part of CHEBR. As the lookahead
and DeJong agent’s shown made use of predefined domain knowledge, they were able
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Fig. 3. Agent Win/Loss Ratio for CHEBR vs. Lookahead

to defeat CHEBR a significant portion of the time during the initial stages of game play
while CHEBR was learning and exploring its environment. However, after approxi-
mately one hundred to two hundred games (about one-tenth of each training session),
the winning rates of CHEBR and its opposition converged. For the remainder of each
training session, CHEBR’s acquired knowledge, through exploration, was sufficient to
clearly defeat its opponents a majority of the time. The eventual slow growth rate of
CHEBR’s win ratio could be caused by overtraining against each particular opponent.3

As illustrated by Figures 3 and 4, it was slightly more difficult for CHEBR to adapt
to the DeJong agent and defeat it as compared to the lookahead agent, helping to confirm
the results of DeJong and Schultz, which state that augmenting an pre-existing problem
solver using experience-based learning can create a more capable reasoner than the
underlying system alone.

We believe that CHEBR’s ability to defeat the DeJong approach lies in its ability to
explore. To support this argument, a non-exploring version of CHEBR (Non-Explore
CHEBR) was created. In Non-Explore CHEBR, the abilities to explore by applying
random move selection as well as random move generation were removed and replaced
with a four-ply lookahead. Figure 5 illustrates the winning percentages of CHEBR in
competition with Non-Explore CHEBR. The results tentatively confirm that automatic
case elicitation in CHEBR depends heavily on the ability to explore.

Although CHEBR began its life with no prior domain knowledge (cases), it proved
capable of acquiring knowledge about its environment through repeated exploration and
interaction with its environment. As CHEBR gained experience and acquired knowl-
edge, it was able to learn the behavior required to succeed. Further training allowed
CHEBR to refine its case-base sufficiently to defeat each of its opponents a majority of

3 CHEBR is generally quick to adapt to new opponents. However, the speed with which CHEBR
is able to conquer new opponents is diminished as the size of the case library becomes ex-
tremely large.
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Fig. 4. Agent Win/Loss Ratio for CHEBR vs. DeJong

the time. CHEBR’s ability to explore allowed it to locate and exploit the weaknesses
of its opponents, and as a result created a challenging and adaptable game player. The
inability of the lookahead and DeJong agents to explore due to a fundamental reliance
on a static rule-based system prevented them from responding to new situations created
by CHEBR. The results suggest that experience can substitute for the inclusion of pre-
coded model-based knowledge as seen in the success of CHEBR against the DeJong
agents (which use model-based knowledge). The results further suggest that the abil-
ity to explore is crucial to the performance of automatic case elicitation which relies
primarily on its ability to acquire new experiences.

6 Related Work

Previous work has investigated the automatic generation of cases from predefined ex-
pert knowledge. For example, the planning system SHOP/CCBR [9] automatically ac-
quires cases from manually entered project plans. A related approach has been seen in
chess games [10,11] which use CBR for chess play by automatically generating case
libraries from sets of pre-existing grandmaster games. Shih [12] integrates CBR and
the idea of sequential dependency to learn bridge play from a set of existing games. In
contrast, automatic case elicitation does not compile cases from manually entered or
existing data, but instead acquires knowledge automatically through the experiences of
the agents who learn completely from scratch.

CBR has also seen use in a real-time games. For example, Fagan and Cunningham
[13] describe the use of case-based plan recognition to predict a player’s actions in
real time interaction with the game Space Invaders. Construction of the plan library is
delayed until after the player has played the game three times, although it would seem
possible that the system would not require such a delay. The authors suggest that their



Evaluating the Effectiveness of Exploration and Accumulated Experience 405

� � � � � � � � � � � � � � � ��
� 
 �
� 
 �
� 
 �
� 
 �
� 
 �
� 
 �
� 
 �
� 
 
� 
 �

�
� � � � �

� � � � � � � � � �  � � � � �

# % ' ) + - . % / ) 0

12 33
2 3

45 67
863

9 :
46

Fig. 5. Agent Win/Loss Ratio for CHEBR vs. Non-Exploring CHEBR

approach could be extended to adjust the behavior of non-player characters, although
such an action selection mechanism is not present.

Wendler and Lenz [14] employ CBR in a real-time setting to appropriately position
soccer agents based on previously collected cases. Their agents learn during the game
and adapt their behavior accordingly. In contrast to our approach, Wendler and Lenz do
not use CBR as their sole reasoning technique.

MAYOR [15] is a player of the simulation game SimCity and is based on a pre-
defined understanding of an incomplete world model. A case-based planner comple-
ments the world by using a library of plans manually built prior to game play. In auto-
matic case elicitation, cases are gathered in real time and are used as the sole reasoning
mechanism.

Goodman [16,17] describes the use of off-line built decision-tree induction projec-
tors to predict the outcome of various actions during game play in Bilestoad. Automatic
case elicitation differs in that agents learn in real time and projection is not coded as a
separate step but is instead encapsulated within individual case ratings.

Samuel [18,19] describes the use of rote-learning and argues that a program can
learn to play a domain better than the creator. A lookahead of two or three plays is used
to find moves to be scored for a checker game. Samuel’s approach requires that the
game must have at least one intermediate goal. Automatic case elicitation differs in that
it does not require intermediate goals, instead utilizing only the final success rating of
the interaction with its environment. In addition, automatic case elicitation does not use
a pre-existing reasoner such as that described by Samuel.

Likhachev et al. [20] use CBR to tune the parameters used to guide a robot through
obstacles. The cases provide a mapping from mathematical sensor input to sensor pa-
rameters that guide a robot. Over time, the results of applying a case are used to fur-
ther fine tune the contained parameters. Similar to our approach, Likhachev et al. use
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randomness to encourage exploration. In an extension to this work, Kira and Arkin
[21] describe the use of forgetting as a means to compensate for a limited case library
size when moving the robot to different environments. Our approach in a sense makes
use of a forgetting mechanism inherent to the case rating. The approach described by
Likhachev et al. and Kira and Arkin is relatively domain specific. In contrast, we feel
our approach is generally applicable in a wide variety of domains.

7 Conclusion

For domains that are sufficiently complex or dynamic, a system capable of learning
and adapting to its environment is needed. One approach is to extend the capabilities
of a non-learning system with a mechanism that automatically records and evaluates
experiences. An alternative known as automatic case elicitation supports the automatic
capture of knowledge from scratch in real time without a reliance upon prior domain
knowledge. In testing in the domain of checkers, an agent using automatic case elici-
tation (CHEBR) was shown to successfully defeat opponents using a standard looka-
head agent, and an agent using experience-based learning with an underlying looka-
head agent. In addition, CHEBR minus the ability to explore was shown to perform at
a lower level than when using full automatic case elicitation. The results suggest not
only that experience can substitute for the inclusion of pre-coded model-based knowl-
edge, but also that the ability to explore is crucial to the performance of automatic case
elicitation.
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