

Lecture Notes in Artificial Intelligence 3620
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Héctor Muñoz-Avila
Francesco Ricci (Eds.)

Case-Based Reasoning
Research
and Development

6th International Conference
on Case-Based Reasoning, ICCBR 2005
Chicago, IL, USA, August 23-26, 2005
Proceedings

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Héctor Muñoz-Avila
Lehigh University, Department of Computer Science and Engineering
19 Memorial Drive West, Bethlehem, PA 18015, USA
E-mail: munoz@cse.lehigh.edu

Francesco Ricci
Electronic Commerce and Tourism Research Laboratory, ITC-irst
Via Solteri 38, Trento, Italy
E-mail: ricci@itc.it

Library of Congress Control Number: 2005930340

CR Subject Classification (1998): I.2, J.4, J.1, F.4.1

ISSN 0302-9743
ISBN-10 3-540-28174-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-28174-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11536406 06/3142 5 4 3 2 1 0

Preface

The International Conference on Case-Based Reasoning (ICCBR) is the pre-
eminent international meeting on case-based reasoning (CBR). ICCBR 2005
(http://www.iccbr.org/iccbr05/) was the sixth in this series of biennial in-
ternational conferences highlighting the most significant contributions to the field
of CBR. The conference took place during August 23–26, 2005 at the downtown
campus of DePaul University, in the heart of Chicago’s downtown “Loop.” Pre-
vious ICCBR conferences were held in Trondheim, Norway (2003), Vancouver,
Canada (2001), Seeon, Germany (1999), Providence, Rhode Island, USA (1997),
and Sesimbra, Portugal (1995).

Day 1 of ICCBR 2005 was Industry Day, which provided real-world experi-
ences utilizing CBR in fielded applications. Day 2 featured various workshops on
CBR in the health sciences, textual case-based reasoning, computer gaming and
simulation environments, and similarities – Processes – Workflows. Days 3 and 4
comprised presentations and posters on theoretical and applied CBR research, as
well as invited talks from three distinguished scholars: Derek Bridge, University
College Cork, Craig Knoblock, University of Southern California, and Colleen
Seifert, University of Michigan.

The presentations and posters covered a wide range of CBR topics, including
adaptation, applications, case base maintenance, computer games, creative rea-
soning, knowledge representation, interactive systems, knowledge management,
knowledge acquisition, multiagent collaborative systems, similarity, tutoring sys-
tems, bioinformatics, and textual CBR.

This volume comprises papers for all of the presentations and posters. These
45 papers were chosen after a highly selective process. Of a total of 74 sub-
missions, the Program Committee selected 19 papers for oral presentation and
26 papers for poster presentation. Each submission was identified as being in
one of three categories and judged using the following criteria: 1. Theoreti-
cal/methodological research paper (scientific significance; originality; technical
quality; and clarity). 2. Applied research paper (significance for scientific re-
search or innovative commercial deployment; originality; technical quality; and
clarity). 3. Deployed application paper (demonstrated practical, social, environ-
mental or economic significance; originality; treatment of issues of engineering,
management and user acceptance; and clarity).

Many people participated in making ICCBR 2005 a success. Robin Burke,
DePaul University, served as Local Chair, with Héctor Muñoz-Avila, Lehigh
University, and Francesco Ricci, ITC-irst, as Program Co-chairs. We would es-
pecially like to thank Stefanie Brüninghaus, University of Pittsburgh, for serv-
ing as Workshop Coordinator, and Mehmet H. Göker, PricewaterhouseCoopers,
and Bill Cheetham, GE Research, for chairing Industry Day. We thank the Pro-
gram Committee and the additional reviewers for their thoughtful and timely

VI Preface

participation in the paper selection process. Finally, we gratefully acknowledge
the generous support of the sponsors of ICCBR 2005 and of Springer for its
continuing support in publishing the proceedings of ICCBR.

May 2005 Héctor Muñoz-Avila
Francesco Ricci

Organization

Program Chairs

Héctor Muñoz-Avila, Lehigh University, USA
Francesco Ricci, ITC-irst, Italy

Local Chair

Robin Burke, DePaul University, USA

Industry Day Coordinator

Mehmet H. Göker, PricewaterhouseCoopers, USA
Bill Cheetham, GE Research, USA

Workshop Coordinator

Stefanie Brüninghaus, University of Pittsburgh, USA

Program Committee

Agnar Aamodt Norwegian University of Science and
Technology, Norway

David W. Aha Naval Research Laboratory, USA
Vincent Aleven Carnegie Mellon University, USA
Klaus-Dieter Althoff Fraunhofer IESE, Germany
Kevin Ashley University of Pittsburgh, USA
Paolo Avesani ITC-irst Trento, Italy
Brigitte Bartsch-Spörl BSR Consulting, Germany
Carlos Bento University of Coimbra, Portugal
Ralph Bergmann University of Trier, Germany
Enrico Blanzieri University of Trento, Italy
L. Karl Branting LiveWire Logic, Inc., USA
Derek Bridge University College Cork, Ireland
Stefanie Brüninghaus University of Pittsburgh, USA
Robin Burke DePaul University, Chicago, USA
Hans-Dieter Burkhard Humboldt University Berlin, Germany
Bill Cheetham General Electric Co., USA
Michael T. Cox Wright State University, Dayton, USA
Susan Craw Robert Gordon University, UK
Pádraig Cunningham Trinity College Dublin, Ireland

VIII Organization

Boi Faltings EPFL Lausanne, Switzerland
Peter Funk Mälardalen University, Sweden
Ashok Goel Georgia Institute of Technology, USA
Mehmet H. Göker Kaidara Software, Los Altos, USA
Andrew Golding Lycos Inc., USA
Pedro A. González-Calero Univ. Complutense de Madrid, Spain
Igor Jurisica Ontario Cancer Institute, Canada
David Leake Indiana University, USA
Ramon López de Mántaras IIIA-CSIC, Spain
Michel Manago Kaidara Software, Paris, France
Cindy Marling Ohio University, USA
Bruce McLaren Carnegie Mellon University, USA
Lorraine McGinty University College Dublin, Ireland
Bruce McLaren CMU, USA
David McSherry University of Ulster, UK
Erica Melis DFKI, Saarbrücken, Germany
Bart Netten TNO TPD, The Netherlands
David Patterson University of Ulster, UK
Petra Perner IBaI Leipzig, Germany
Enric Plaza IIIA-CSIC, Spain
Luigi Portinale University of Eastern Piedmont, Italy
Lisa S. Purvis Xerox Corporation, NY, USA
Michael M. Richter University of Kaiserslautern, Germany
Edwina Rissland University of Massachusetts, USA
Thomas Roth-Berghofer DFKI, Germany
Rainer Schmidt Universität Rostock, Germany
Barry Smyth University College Dublin, Ireland
Raja Sooriamurthi Indiana University, USA
Henry Tirri University of Helsinki, Finland
Brigitte Trousse INRIA Sophia Antipolis, France
Manuela Veloso Carnegie Mellon University, USA
C. Gresse von Wangenheim Univ. do Vale do Itajai, Brazil
Ian Watson AI-CBR, University of Auckland, New Zealand
Rosina Weber Drexel University, USA
Stefan Wess empolis, Germany
David C. Wilson Univ. of North Carolina at Charlotte, USA
Qiang Yang Hong Kong University of Science &

Technology, China

Additional Reviewers

Steven Bogaerts
Sarah Jane Delany
Conor Hayes
John Loughrey

Ana G. Maguitman
Paolo Massa
Stewart Massie
Jens Mänz

Stefania Montani
Thomas Reichherzer
Ke Xu

Organization IX

Sponsoring Institutions

ICCBR 2005 was supported by Kaidara Software, empolis, the Naval Research
Laboratory, and PricewaterhouseCoopers. ICCBR 2005 was held in cooperation
with AAAI.

Table of Contents

Invited Talks

The Virtue of Reward: Performance, Reinforcement and Discovery in
Case-Based Reasoning

Derek Bridge . 1

Learning to Optimize Plan Execution in Information Agents
Craig A. Knoblock . 2

Cased-Based Reasoning by Human Experts
Colleen M. Seifert . 4

Scientific Papers

Learning to Win: Case-Based Plan Selection in a Real-Time Strategy
Game

David W. Aha, Matthew Molineaux, Marc Ponsen 5

An Ensemble of Case-Based Classifiers for High-Dimensional Biological
Domains

Niloofar Arshadi, Igor Jurisica . 21

Language Games: Solving the Vocabulary Problem in Multi-Case-Base
Reasoning

Paolo Avesani, Conor Hayes, Marco Cova . 35

Evaluation and Monitoring of the Air-Sea Interaction Using a
CBR-Agents Approach

Javier Bajo, Juan M. Corchado . 50

A Comparative Analysis of Query Similarity Metrics for
Community-Based Web Search

Evelyn Balfe, Barry Smyth . 63

A Case-Based Approach for Indoor Location
Carlos Bento, Joao Peixoto, Marco Veloso . 78

P2P Case Retrieval with an Unspecified Ontology
Shlomo Berkovsky, Tsvi Kuflik, Francesco Ricci . 91

XII Table of Contents

Autonomous Internal Control System for Small to Medium Firms
M. Lourdes Borrajo, Juan M. Corchado, J. Carlos Yáñez,
Florentino Fdez- Riverola, Fernando Dı́az . 106

The Application of a Case-Based Reasoning System to Attention-Deficit
Hyperactivity Disorder

Donald Brien, Janice Glasgow, Douglas Munoz . 122

Reasoning with Textual Cases
Stefanie Brüninghaus, Kevin D. Ashley . 137

Using Ensembles of Binary Case-Based Reasoners
Bill Cheetham, Joe Shultz . 152

Transfer in Visual Case-Based Problem Solving
Jim Davies, Ashok K. Goel, Nancy J. Nersessian 163

Generating Estimates of Classification Confidence for a Case-Based
Spam Filter

Sarah Jane Delany, Pádraig Cunningham, Dónal Doyle,
Anton Zamolotskikh . 177

Improving Gene Selection in Microarray Data Analysis Using Fuzzy
Patterns Inside a CBR System

Florentino Fdez-Riverola, Fernando Dı́az, M. Lourdes Borrajo,
J. Carlos Yáñez, Juan M. Corchado . 191

CBR for State Value Function Approximation in Reinforcement
Learning

Thomas Gabel, Martin Riedmiller . 206

Using CBR to Select Solution Strategies in Constraint Programming
Cormac Gebruers, Brahim Hnich, Derek Bridge,
Eugene Freuder . 222

Case-Based Art
Andrés Gómez de Silva Garza, Arám Zamora Lores 237

Supporting Conversation Variability in COBBER Using Causal Loops
Hector Gómez-Gauch́ıa, Belén Dı́az-Agudo,
Pedro Pablo Gómez-Mart́ın, Pedro A. González Calero 252

Opportunities for CBR in Learning by Doing
Pedro Pablo Gómez-Mart́ın, Marco Antonio Gómez-Mart́ın,
Belén Dı́az-Agudo, Pedro A. González-Calero . 267

Table of Contents XIII

Navigating Through Case Base Competence
Maarten Grachten, F. Alejandro Garćıa, Josep Llúıs Arcos 282

A Knowledge-Intensive Method for Conversational CBR
Mingyang Gu, Agnar Aamodt . 296

Re-using Implicit Knowledge in Short-Term Information Profiles for
Context-Sensitive Tasks

Conor Hayes, Paolo Avesani, Emiliano Baldo,
Pádraig Cunningham . 312

Acquiring Similarity Cases for Classification Problems
Andrew Kinley . 327

A Live-User Evaluation of Incremental Dynamic Critiquing
Kevin McCarthy, Lorraine McGinty, Barry Smyth, James Reilly 339

Case Based Representation and Retrieval with Time Dependent
Features

Stefania Montani, Luigi Portinale . 353

The Best Way to Instil Confidence Is by Being Right
Conor Nugent, Pádraig Cunningham, Dónal Doyle 368

Cooperative Reuse for Compositional Cases in Multi-agent Systems
Enric Plaza . 382

Evaluating the Effectiveness of Exploration and Accumulated
Experience in Automatic Case Elicitation

Jay H. Powell, Brandon M. Hauff, John D. Hastings 397

HYREC: A Hybrid Recommendation System for E-Commerce
Bhanu Prasad . 408

Extending jCOLIBRI for Textual CBR
Juan A. Recio, Belén Dı́az-Agudo, Marco Antonio Gómez-Mart́ın,
Nirmalie Wiratunga . 421

Critiquing with Confidence
James Reilly, Barry Smyth, Lorraine McGinty, Kevin McCarthy 436

Mapping Goals and Kinds of Explanations to the Knowledge Containers
of Case-Based Reasoning Systems

Thomas R. Roth-Berghofer, Jörg Cassens . 451

XIV Table of Contents

An Approach for Temporal Case-Based Reasoning: Episode-Based
Reasoning

Miquel Sánchez-Marré, Ulises Cortés, Montse Mart́ınez,
Joaquim Comas, Ignasi Rodŕıguez-Roda . 465

How to Combine CBR and RBR for Diagnosing Multiple Medical
Disorder Cases

Wenqi Shi, John A. Barnden . 477

Case-Based Student Modeling Using Concept Maps
Frode Sørmo . 492

Learning Similarity Measures: A Formal View Based on a Generalized
CBR Model

Armin Stahl . 507

Knowledge-Rich Similarity-Based Classification
Timo Steffens . 522

Autonomous Creation of New Situation Cases in Structured Continuous
Domains

Haris Supic, Slobodan Ribaric . 537

Retrieval and Configuration of Life Insurance Policies
Alexander Tartakovski, Martin Schaaf, Ralph Bergmann 552

Analogical and Case-Based Reasoning for Predicting Satellite Task
Schedulability

Pete Tinker, Jason Fox, Collin Green, David Rome, Karen Casey,
Chris Furmanski . 566

Case Adaptation by Segment Replanning for Case-Based Planning
Systems

Flavio Tonidandel, Marcio Rillo . 579

Selecting the Best Units in a Fleet: Performance Prediction from
Equipment Peers

Anil Varma, Kareem S. Aggour, Piero P. Bonissone 595

CCBR-Driven Business Process Evolution
Barbara Weber, Stefanie Rinderle, Werner Wild,
Manfred Reichert . 610

CBR for Modeling Complex Systems
Rosina Weber, Jason M. Proctor, Ilya Waldstein,
Andres Kriete . 625

Table of Contents XV

CBE-Conveyor: A Case-Based Reasoning System to Assist Engineers
in Designing Conveyor Systems

Fei Ling Woon, Brian Knight, Miltos Petridis, Mayur Patel 640

Author Index . 653

The Virtue of Reward: Performance,

Reinforcement and Discovery in Case-Based
Reasoning

Derek Bridge

Department of Computer Science, University College, Cork, Ireland
d.bridge@cs.ucc.ie

Agents commonly reason and act over extended periods of time. In some environ-
ments, for an agent to solve even a single problem requires many decisions and
actions. Consider a robot or animat situated in a real or virtual world, acting to
achieve some distant goal; or an agent that controls a sequential process such as
a factory production line; or a conversational diagnostic system or recommender
system. Equally, over its life time, a long-lived agent will make many decisions
and take many actions, even if each problem-solving episode requires just one
decision and one action. In spam detection, for example, each incoming email
requires a single classification decision before it moves to its designated folder;
but continuous operation requires numerous decisions and actions.

Reasoning and acting over time is challenging. A learner’s experiences may
prove unrepresentative of subsequent problems; a changing environment can ren-
der useless the system’s knowledge. A system that tries to solve hard combi-
natorial problems, for example, may find, through exploration in the space of
solutions, that earlier training examples are suboptimal. Concept drift in spam
detection is another example: spammers send new kinds of unwanted email or
find new ways of disguising spam as ham. Agents must be highly adaptive if, over
time, they are to attain and maintain high standards of, for example, accuracy,
coverage and efficiency.

To address these challenges in case-based agents, I have been drawing ideas
from another field, that of classifier systems. Classifier systems, first proposed by
John Holland, are rule-based systems. They comprise a performance component,
a reinforcement component and a discovery component. The performance com-
ponent chooses the agent’s actions. The other two components enable classifier
systems to exhibit two kinds of plasticity, parametric plasticity and structural
plasticity. The reinforcement component uses feedback from the environment to
update rule quality parameters. The discovery component uses genetic operators
and other techniques to propose new rules, which may displace existing rules.

I will describe my attempts to build a case-based counterpart to Stewart
Wilson’s XCS, which is one of the most popular, modern classifier systems. I
will describe each of its three components. In discussing the reinforcement com-
ponent, I will offer reflections on the relationship between Case-Based Reasoning
and reinforcement learning. In discussing the discovery component, I will offer
reflections on automatic case discovery and case base maintenance.

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, p. 1, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNAI

Learning to Optimize Plan Execution

in Information Agents

Craig A. Knoblock

University of Southern California, Information Sciences Institute,
4676 Admiralty Way, Marina del Rey, CA 90292

knoblock@isi.edu

Overview

We can build software agents to perform a wide variety of useful information
gathering and monitoring tasks on the Web [1]. For example, in the travel do-
main, we can construct agents to notify you of flight delays in real time, monitor
for schedule and price changes, and even send a fax to a hotel if your flight is
delayed to ensure that your hotel room will not be given away [2,3].

To perform each of these tasks, an agent is given a plan and its needs to
be able to efficiently execute this plan. In the Web environment, sources can be
quite slow and the latencies of the sources are also unpredictable since they can
be caused by heavy loads on both servers and networks. Since the primary bot-
tleneck of most agent plans on the web is retrieving data from online sources, an
agent should execute information requests as early as possible. To address these
issues, we have developed a streaming dataflow language and executor, called
Theseus [4], which is optimized for the Web environment in three ways. First,
since the executor is based on a dataflow paradigm, actions are executed as soon
as the data becomes available. Second, Theseus performs the actions in a plan
in separate threads, so they can be run asynchronously and in parallel. Third,
the system streams the output from one action to the next so that sequential
operations can be executed in parallel.

Theseus is similar to network query engines, such as Telegraph [5] or Tuk-
wila [6], in that they are also streaming dataflow execution systems. However,
the network query engines focus on the efficient execution of XML queries, while
Theseus provides an expressive language for expressing information gathering
and monitoring plans. The Theseus language supports capabilities that go be-
yond network query engines in that it supports recursion, notification operations,
and writing and reading from databases to support monitoring tasks.

We developed an approach to increase the potential parallelism in a stream-
ing dataflow execution system. This optimization technique, called speculative
execution [7,8], predicts the results of an operation based on data and patterns
that it has seen in the past. The predicted results can then be used to specu-
late about the operations that will need to be performed later in the plan. The
system decides where to speculate by analyzing a plan and determining the crit-
ical paths. On these paths it then inserts a “speculate” operation, which uses

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, pp. 2–3, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNAI

Learning to Optimize Plan Execution in Information Agents 3

input to earlier operations to predict the input to later operations. The system
also inserts a “confirm” operation, which ensures that the final result is cor-
rect regardless of whether the prediction is correct. This approach to optimizing
streaming dataflow plans can achieve arbitrary speedups by speculating on the
speculations. If the system is able to make accurate predictions, the executor
could speculate on all of the input, execute the entire plan in parallel, and then
confirm all of the results.

The effectiveness of the speculation technique depends on making accurate
predictions. We have developed a learning system that combines caching, classifi-
cation, and transduction to learn value predictors [9]. The system uses transducer
learning to discover patterns in Web navigation paths, decision tree learning to
make predictions on similar inputs, and caching when the first two learning
methods are not applicable. Our experiments on a number of real-world exam-
ples show that learning the value predictors for speculative execution can provide
significant performance improvements over the same plans without any learning.

References

1. Knoblock, C.A.: Deploying information agents on the web. In: Proceedings of the
18th International Joint Conference on Artificial Intelligence (IJCAI-2003), Aca-
pulco, Mexico (2003)

2. Ambite, J.L., Barish, G., Knoblock, C.A., Muslea, M., Oh, J., Minton, S.: Getting
from here to there: Interactive planning and agent execution for optimizing travel.
In: Proceedings of the Fourteenth Conference on Innovative Applications of Artificial
Intelligence (IAAI-2002), AAAI Press, Menlo Park, CA (2002)

3. Chalupsky, H., Gil, Y., Knoblock, C.A., Lerman, K., Oh, J., Pynadath, D.V., Russ,
T.A., Tambe, M.: Electric elves: Applying agent technology to support human
organizations. In: Proceedings of the Conference on Innovative Applications of
Artificial Intelligence. (2001)

4. Barish, G., Knoblock, C.A.: An expressive and efficient language for software agents.
Journal of Artificial Intelligence Research (2005)

5. Hellerstein, J.M., Franklin, M.J., Chandrasekaran, S., Deshpande, A., Hildrum, K.,
Madden, S., Raman, V., Shah, M.A.: Adaptive query processing: Technology in
evolution. IEEE Data Engineering Bulletin 23 (2000)

6. Ives, Z.G., Halevy, A.Y., Weld, D.S.: An XML query engine for network-bound
data. VLDB Journal 11 (2002)

7. Barish, G., Knoblock, C.A.: Speculative execution for information gathering plans.
In: Proceedings of the Sixth International Conference on Artificial Intelligence Plan-
ning and Scheduling (AIPS 2002), AAAI Press, Menlo Park, CA (2002)

8. Barish, G., Knoblock, C.A.: Learning value predictors for the speculative execution
of information gathering plans. In: Proceedings of the 18th International Joint
Conference on Artificial Intelligence (IJCAI-2003), Acapulco, Mexico (2003)

9. Barish, G.: Speculative Plan Execution for Information Agents. PhD thesis, De-
partment of Computer Science, University of Southern California (2003)

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, p. 4, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Cased-Based Reasoning by Human Experts

Colleen M. Seifert

University of Michigan, 530 Church Street, Ann Arbor, MI 48109-1043
seifert@umich.edu

Abstract. The central insight that led to the field of Case-Based Reasoning was
that human memory appears to be organized around individual episodic
experiences (Schank, 1982; Kolodner, 1980). At the time, there were few
empirical findings available that shed light on how humans encode, retrieve,
and reason about complex experiences. In the twenty years since then,
researchers in cognitive science have investigated both everyday
autobiographical memory and the performance of human experts who process
many individual cases within a domain, such as medical diagnosis. The results
identify some important features of the case-based reasoning process in
humans, and suggest new approaches to building computational models that
may display similar capabilities.

1 Introduction

The important role of cases in memory is both intuitive and compelling. Our
phenomenological experience confirms that memories for distinct episodes from our
pasts come to mind effortlessly, and appear to guide our reactions to new events.
Within domains of expertise, these memories for specific past cases appear to separate
the true expert from one who has learned only the “rules” of a domain. However, is
there any scientific evidence about what human experts can recall about cases, and
how their processing of cases leads to the ability to draw on past experiences?

1.1 Aspects of Cognitive Processes in Expert Case Memory

A survey of the current findings in cognitive science draws attention to several
features of human case-based reasoning:

1 Elaborative, social processing of interesting cases at the time of learning
2 Domain space “construction:” Rapid identification of novel, never-seen items
3 Cases as schematic, yet unique representations of domain knowledge

1.2 Proposals for Processes in Case-Based Reasoning Systems

The empirical findings suggest that case-based reasoning in human experts is
characterized by several distinctive, important processes. By determining how these
processes facilitate successful use of cases, we develop proposals for improvements in
CBR systems.

LNAI

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, pp. 5 – 20, 2005.

Learning to Win: Case-Based Plan Selection
in a Real-Time Strategy Game

David W. Aha1, Matthew Molineaux2, and Marc Ponsen3

1 Navy Center for Applied Research in Artificial Intelligence,
Naval Research Laboratory (Code 5515), Washington, DC 20375

2 ITT Industries, AES Division, Alexandria, VA 22303
3 Department of Computer Science and Engineering,

Lehigh University, Bethlehem, PA 18015

Abstract. While several researchers have applied case-based reasoning
techniques to games, only Ponsen and Spronck (2004) have addressed the
challenging problem of learning to win real-time games. Focusing on WARGUS,
they report good results for a genetic algorithm that searches in plan space, and
for a weighting algorithm (dynamic scripting) that biases subplan retrieval.
However, both approaches assume a static opponent, and were not designed to
transfer their learned knowledge to opponents with substantially different
strategies. We introduce a plan retrieval algorithm that, by using three key
sources of domain knowledge, removes the assumption of a static opponent.
Our experiments show that its implementation in the Case-based Tactician
(CAT) significantly outperforms the best among a set of genetically evolved
plans when tested against random WARGUS opponents. CAT communicates
with WARGUS through TIELT, a testbed for integrating and evaluating decision
systems with simulators. This is the first application of TIELT. We describe this
application, our lessons learned, and our motivations for future work.

1 Introduction

Research on artificial intelligence (AI) and games has an extraordinary history that
dates from 1950. Several luminaries have contributed to this field, and automated
game-playing programs now exist that outperform world champions in classic games
such as checkers, Othello, and Scrabble (Schaeffer, 2001). These efforts brought
about significant advancements in search algorithms, machine learning techniques,
and computer hardware. As a barometer of continued strong interest, several
conferences (e.g., International Game-On Conference on Computer Games: AI,
Design and Education, AI and Interactive Digital Entertainment) and journals (e.g.,
Journal of Intelligent Games and Simulation, Journal of Game Development) are
devoted to AI and games.

In recent years, AI researchers (e.g., Laird & van Lent, 2001; Buro, 2003) have
begun focusing on complex strategy simulation games that offer a variety of
challenges, including partially observable environments that contain adversaries who

1,2 {first.last}@nrl.navy.mil 3mjp304@lehigh.edu

LNAI

6 D.W. Aha, M. Molineaux, and M. Ponsen

modify the game state asynchronously, and whose decision models are unknown.
Among these, games that simulate the evolution of civilizations are particularly
intriguing due to their enormous state spaces, large decision spaces with varying
abstraction levels, multiple decision threads (e.g., economy, combat), and their need
for resource management processes.

Although many studies exist on learning to win classical board games and other
games with comparatively smaller search spaces, few studies exist on learning to win
complex strategy games. Some argue that agents require sophisticated representations
and reasoning capabilities to perform competently in these environments, and that
these representations are challenging to construct (e.g., Forbus et al., 2001).
Fortunately, sufficiently good representations exist for a small number of gaming
environments. In particular, Ponsen and Spronck (2004) developed a lattice for
representing and relating abstract states in WARGUS, a moderately complex real-time
strategy game. They also sharply reduced the decision space by employing a high-
level language for game agent actions. Together, these constrain the search space of
useful plans and state-specific subplans (i.e., tactics). This allowed them to focus on
an ambitious performance task: winning real-time strategy games. They reported good
results for a genetic algorithm that learns complete plans, and for a weight-learning
algorithm (dynamic scripting) that learn policies for selecting tactics that combine
into successful plans. However, both approaches assume a fixed adversary, and were
not designed to transfer learned knowledge so as to defeat opponents that use
dissimilar strategies.

In this paper, we relax the assumption of a fixed adversary, and develop a case-
based approach that learns to select which tactic to use at each state. We implemented
this approach in the Case-based Tactician (CAT), and report learning curves that
demonstrate its performance quickly improves with training even though the
adversary is randomly chosen for each WARGUS game. CAT is the first case-based
system designed to win against random opponents in a real-time strategy game.

We briefly review case-based approaches in games research and introduce WARGUS
in Section 2. We detail our approach and CAT in Section 3. We review our empirical
methodology and CAT’s results in Section 4, and close with a discussion in Section 5
that mentions several future research objectives.

2 Background

2.1 Case-Based Reasoning Research in Games

Many taxonomies exist for distinguishing computer games. For example, Laird and
van Lent (2001) distinguish game genres into action (e.g., WOLFENSTEIN),
adventure, role-playing (e.g., BALDUR’S GATE), strategy, god (e.g., SIMCITY),
team sports (e.g., MADDEN NFL FOOTBALL) and individual sports games.
Fairclough et al.’s (2001) taxonomy differs slightly, in that they classify god games as
a sub-type of strategy games, and place THE SIMS in a different category. We
instead adopt a taxonomy that is biased by our reading of case-based reasoning (CBR)

Learning to Win: Case-Based Plan Selection in a Real-Time Strategy Game 7

Table 1. A partial summary on applying CBR to games

identify preference
location, passing,
action selection, select
team members

various real-time multi-
agent coordination
and planning

RoboCup Soccer (Wendler &
Lenz, 1998; Gabel & Veloso,
2001; Wendler et al., 2001;
Karol et al., 2003)

Team
Sports

inflict/avoid damage,
plan recognition

projective
visualization, plan
recognition

real-time single
character planning

Bilestoad (Goodman, 1994),
Space Invaders (Fagan &
Cunningham, 2003)

Real-time
individual

planningplan adaptationreal-time single
city management

SimCity (Fasciano, 1996)Real-time
God

learn evaluation
function, move
selection, win

rote learning, min-
max, case
acquisition

n2 board, 2-
person, no
uncertainty

chess (Kerner, 1995), checkers
(Powell et al., 2004), Othello
(De Jong & Schultz, 1988)

Classic
board

hierarchical cases,
plan selection

reflection-guided
plan failure
recovery

planning &
dialogue
generation

Approaches

manage sub-tasks, winreal-time limited
civ. management

Wargus (Cheng &
Thawonmas, 2004; this paper)

Real-time
strategy

turn-based
civilization
management

puzzle-solving

Description

storyline/plot
generation and
management

Bonji’s Adventures in Calabria
(Fairclough & Cunningham,
2004)

Adventure

defend a cityFreeciv (Ulam et al., 2004)Discrete
Strategy

Performance TaskExamplesGenre

identify preference
location, passing,
action selection, select
team members

various real-time multi-
agent coordination
and planning

RoboCup Soccer (Wendler &
Lenz, 1998; Gabel & Veloso,
2001; Wendler et al., 2001;
Karol et al., 2003)

Team
Sports

inflict/avoid damage,
plan recognition

projective
visualization, plan
recognition

real-time single
character planning

Bilestoad (Goodman, 1994),
Space Invaders (Fagan &
Cunningham, 2003)

Real-time
individual

planningplan adaptationreal-time single
city management

SimCity (Fasciano, 1996)Real-time
God

learn evaluation
function, move
selection, win

rote learning, min-
max, case
acquisition

n2 board, 2-
person, no
uncertainty

chess (Kerner, 1995), checkers
(Powell et al., 2004), Othello
(De Jong & Schultz, 1988)

Classic
board

hierarchical cases,
plan selection

reflection-guided
plan failure
recovery

planning &
dialogue
generation

Approaches

manage sub-tasks, winreal-time limited
civ. management

Wargus (Cheng &
Thawonmas, 2004; this paper)

Real-time
strategy

turn-based
civilization
management

puzzle-solving

Description

storyline/plot
generation and
management

Bonji’s Adventures in Calabria
(Fairclough & Cunningham,
2004)

Adventure

defend a cityFreeciv (Ulam et al., 2004)Discrete
Strategy

Performance TaskExamplesGenre

research in games. In particular, we add categories that reflect more traditional games,
ignore some that have not attracted strong CBR interest (e.g., action games), and
refine categories of real-time games.

Many researchers have published work on CBR in games. We distinguish a subset
of this research according to task characteristics (i.e., game genre, state and decision
space complexity, adversarial presence, timing constraints, performance task) and
CBR approach. Table 1 summarizes some of this work.

Several researchers have addressed classic board games, beginning with Arthur
Samuel’s (1959) rote learning approach for playing checkers. De Jong and Schultz’s
(1988) GINA instead memorized a partial game tree for playing Othello. Chess has
been a popular topic. For example, Kerner (1995) described a method for learning to
evaluate abstract patterns. More recently, Powell et al.’s (2004) CHEBR learned to
play checkers given only a paucity of domain knowledge. While these efforts focused
on adversarial games, they are turn-based rather than real-time, and have
comparatively small decision complexities (see Section 2.2).

Case-based approaches have rarely been used in adventure games. However, this
genre may become a rich focus for automated story plot generation. For example,
Fairclough and Cunningham (2004) described OPIATE, which uses a case-based
planner and constraint satisfaction to provide moves for a story director agent so as to
ensure that characters act according to a coherent plot. Also, Díaz-Agudo et al. (2004)
described a knowledge-intensive approach that extracts constraints from a user’s
interactively-provided specification, uses them to guide case retrieval and adaptation,
and then creates a readable plot using natural language generation techniques. These
projects extend earlier CBR work on story generation (e.g., Meehan, 1981).

8 D.W. Aha, M. Molineaux, and M. Ponsen

Fig. 1. A screen shot of a WARGUS game

ROBOCUP SOCCER is a popular CBR focus. Wendler and Lenz (1998) described an
approach for identifying where simulated agents should move, while Wendler et al.
(2001) reported strategies for learning to pass. Gabel and Veloso (2001) instead used
a CBR approach to select (heterogeneous) members for a team. Karol et al. (2003)
proposed a case-based action selection algorithm for the 4-legged league. While these
real-time environments are challenging strategically, they do not involve complicating
dimensions common to strategy games, such as economies, research, and warfare.

Some researchers have addressed real-time individual games. Goodman (1994)
applied a projective visualization approach for BILESTOAD, a personal combat game,
to predict actions that would inflict damage on the adversary and/or minimize damage
to oneself. Fagan and Cunningham (2003) instead focused on a plan recognition task;
they acquire cases (state-action planning sequences) for predicting the next action of a
human playing SPACE INVADERS . In contrast, CAT does not perform projective
modeling, and does not learn to recognize adversarial plans. Instead, it acquires cases
concerning the application of a subplan in a given state, learns to select subplans for a
given state, and executes them in a more complex gaming environment.

Fasciano’s (1996) MAYOR learns from planning failures in SIMCITY , a real-time
city management game with no traditional adversaries. MAYOR monitors planning
expectations and employs a causal model to learn how to prevent failure repetitions,
where the goal is to improve the ratio of successful plan executions. In contrast, CAT
does not employ plan monitoring or causal goal models, and does not adapt retrieved
plans. Rather, it simply selects, at each state, a good tactic (i.e., subplan) to retrieve.
Also, our gaming environment includes explicit adversaries.

Ulam et al. (2004) described a meta-cognitive approach that performs failure-
driven plan adaptation for FREECIV, a complex turn-based strategy game. While they
employed substantial domain knowledge in the form of task models, it was only

Learning to Win: Case-Based Plan Selection in a Real-Time Strategy Game 9

enough to address a simple sub-task (defending a city). In contrast, CAT performs no
adaptation during reuse, but does perform case acquisition. Also, CAT focuses on
winning a game rather than on performing a subtask.

2.2 Reducing the Decision Complexity of WARGUS: A Real-Time Strategy Game

In this paper, we focus on WARGUS (Figure 1), a real-time strategy (RTS) game that is
a clone of the popular commercial game WARCRAFT II . WARGUS uses STRATAGUS,
an open-source engine for building RTS games. WARGUS is an excellent environment
for AI research because its fairly mature code can be modified for experimentation.

RTS games usually focus on military combat (versus one or more adversaries),
although they also include decision dimensions concerning tasks such as exploration,
economic development, research advancement, and limited diplomacy. For example,
WARCRAFT , AGE OF EMPIRES , and EMPIRE EARTH require players to control
armies (of multiple unit types) and defeat all opponents in real-time.

Humans and adversaries can use any available action to form their game strategy,
which is a plan. Typical actions include selecting a building to construct, researching
a specific new technology, setting a destination for a selected group, and assigning a
task to a group (e.g., construct a building). Humans are limited to executing a single
new action at any one moment, while existing actions continue to execute
simultaneously. Typically, RTS games provide users with a varying set of opponent
strategies, each encoded as a script. A subplan in these scripts is called a tactic.

In addition to having relatively a large state space (e.g., we experiment with a
128x128 map that can involve dozens of units and buildings), WARGUS’ decision
space is comparatively large. An analysis of this complexity requires some
understanding of the game. Winning (i.e., by destroying all the enemy units and
buildings) requires managing three key resources: buildings, the workforce, and an
army. Spending too little time on the army can lead to a crushing defeat at the hands
of a strong neighbor, while spending too much time will cause a lag in research
accomplishments, which prevent you from creating army units that are as strong as
your neighbors. A balance must be maintained among these three resources. To do
this, successful WARGUS players execute orders in one location, hurry to another, and
try to return attention to the first location before its orders have terminated.

The decision space is the set of possible actions that can be executed at a particular
moment. We estimate this as O(2W(A*P) +2T(D+S) + B(R+C)), where W is the
current number of workers, A is the number of assignments workers can perform
(e.g., create a building, gather gold), P is the average number of workplaces, T is the
number of troops (fighters plus workers), D is the average number of directions that a
unit can move, S is the choice of troop’s stance (i.e., stand, patrol, attack), B is the
number of buildings, R is the average choice of research objectives at a building, and
C is the average choice of units to create at a building. For the simple early game
scenario shown in Figure 1 (which includes some off-screen troops and an off-screen
building), this estimate yields a decision complexity of 1.5 x 103, which is
substantially higher than the average number of possible moves in many board games
(e.g., for chess, this is approximately 30).

Standard domain knowledge (e.g., cannot attack now, need more wood for
building) could reduce the number of sensible choices for a WARGUS player in Figure

10 D.W. Aha, M. Molineaux, and M. Ponsen

Fig. 2. A building-specific state lattice for
WARGUS, where nodes represent states (defined by
a set of completed buildings), and state transitions
involve constructing a specific building. Also
displayed are the evolved counter-strategies (a-h)
that pass through each state

 1: Th,Ba

a,b,c,d,e,f,g,h

2: Th,Ba,Lm

c,d
3: Th,Ba,Bs

a,e,g

5: Kp,Ba

b,f,h

6: Kp,Ba,Lm

d,f

4: Th,Ba,Lm,Bs

a,c

7: Kp,Ba,Bs

b,e,g

9: Kp,Ba,St

h

8: Kp,Ba,Lm,Bs

a,b,c,f,g

10: Kp,Ba,Lm,St

d

11: Kp,Ba,Bs,St

e,h

20: Kp,Ba,Lm,Bs,
St

a,c,d,e,f,g,h

20: Ca,Ba,Lm,Bs,
St

a,c,d,e,f,g,h

15: Ca,Ba,Lm,Bs,
St,Mt

c

14: Ca,Ba,Lm,Bs,
St,Ap

a

16: Ca,Ba,Lm,Bs,
St,Tm

d,e,f,g,h

18: Ca,Ba,Lm,Bs,
St,Ap,Tm

a,d,f,g

17: Ca,Ba,Lm,Bs,
St,Ap,Mt

c

19: Ca,Ba,Lm,Bs,
St,Mt,Tm

e,h

20: Ca,Ba,Lm,Bs,
St,Ap,Mt,Tm

d,f,g

a
b
c
d
e
f
g
h

= evolved_SC1
= evolved_SC2
= evolved_SC3
= evolved_SC4
= evolved_SC5
= evolved_LBLA
= evolved_SR
= evolved_KR

c,d a,e,g b,f,h

c
d a e,g f

b
h

a,c
f

d b,g e
h

a,c,f,g d e,h

a,c,d,e,f,g,h

a c d,e,f,g,h

a c d,f,g e,h

 d,f,g

Th
Ba
Lm
Bs
Kp
St
Ca
Ap
Mt
Tm

= Townhall
= Barracks
= Lumbermill
= Blacksmith
= Keep
= Stables
= Castle
= Airport
= Magetower
= Temple

1’s scenario to roughly ten.
However, acquiring, encoding, and
using this knowledge is
challenging. Thus, existing research
efforts on RTS games often focus
on simpler tasks. For example,
Guestrin et al. (2003) applied
relational Markov decision process
models for some limited WARGUS
scenarios (e.g., 3x3 combat). They
did not address more complex
scenarios because their planner’s
complexity grows exponentially
with the number of units. Similarly,
Cheng and Thawonmas (2004)
proposed a case-based plan
recognition approach for assisting
WARGUS players, but only for low-
level management tasks. Their state
representation is comprehensive
and incorporates multiple
abstraction levels. In contrast, CAT
employs a simple case
representation yet focuses on the
complete task of winning the game.

To do this, CAT employs three
significant sources of domain
knowledge, the first two of which
were developed by Ponsen and
Spronck (2004), who used dynamic
scripting to learn to win WARGUS
games against a static opponent
from a fixed initial state. The first
source, a state lattice, is an
abstraction of the state space, while
the second source, a set of tactics
for each state, is an abstraction of
the decision space.

Figure 2 displays their building
state lattice. Consisting of 20 states,

it defines sequences of building constructions that can occur during a WARGUS game,
where each state corresponds to the types of constructed buildings, which in turn
determine the unit types that can be trained and technologies that can be researched.
State changes occur when a tactic creates a new building. For example, starting with a
Town Hall and a Barracks, the next building choices are a Lumber Mill, a Blacksmith,
and a Keep, which replaces the Town Hall. Building these cause transitions from
State 1 to States 2, 3, and 5, respectively.

Learning to Win: Case-Based Plan Selection in a Real-Time Strategy Game 11

Table 2. Features used in the case Descriptions

Number of own worker units currently existingWorkersp,i

Number of own combat units currently existingCombatUnitsp,i

Number of own buildings currently existingBuildingsp,i

Number of opponent worker units ever createdWorkerso

Number of opponent combat units ever createdCombatUnitso

Number of opponent buildings ever createdBuildingso

Number of opponent buildings destroyed minus same for onself, in the preceding stateRazingsi-1

Number of opponent combat & worker units killed minus the same for oneself, in the preceding stateKillsi-1

DescriptionFeature

Number of own worker units currently existingWorkersp,i

Number of own combat units currently existingCombatUnitsp,i

Number of own buildings currently existingBuildingsp,i

Number of opponent worker units ever createdWorkerso

Number of opponent combat units ever createdCombatUnitso

Number of opponent buildings ever createdBuildingso

Number of opponent buildings destroyed minus same for onself, in the preceding stateRazingsi-1

Number of opponent combat & worker units killed minus the same for oneself, in the preceding stateKillsi-1

DescriptionFeature

Ponsen and Spronck (2004) manually designed their tactics and then improved
them by searching the space of strategies using a genetic algorithm, where each
chromosome is a complete plan (counter-strategy). Tactics were manually extracted
from chromosomes. They used dynamic scripting to learn weights on tactics, and
reported good learning performances versus four opponent strategies. In contrast,
Ponsen et al. (2005) automatically acquired tactics by extracting them from the
chromosomes based on the building states (i.e., all actions in a building state comprise
one tactic). We used this same automatic approach for CAT.

In this paper, we also rely on this state lattice and a set of state-specific tactics.
However, we add a third knowledge source: cases that map game situations to tactics
and their performance. We will use all three to test how well CAT can play in games
against a single, randomly selected WARGUS opponent.

3 Case-Based Strategy Selection

Our case-based approach for selecting which subplan (tactic) to use in each state
employs the state lattice and state-specific tactics libraries described in Section 2. By
doing this, the decision space (i.e., the number of tactics per state) becomes small, and
an attribute-value representation of game situations suffices to select tactics. We
define a case C as a tuple of four objects:

C = <BuildingState, Description, Tactic, Performance>

where BuildingState is an integer node index in the state lattice, Description is a set of
features of the current situation (see Section 3.1), Tactic is a counter-strategy’s
sequence of actions for that BuildingState, and Performance is a value in [0,1] that
reflects the utility of choosing that tactic for that BuildingState, where higher values
indicate higher performance (see Section 3.3). We next use Aamodt and Plaza’s
(1994) task decomposition model to detail our approach.

3.1 Retrieval

CAT retrieves cases when a new state in the lattice is entered (i.e., at the game’s start,
and when a transition building is finished). At those times, it records values for the
eight features shown in Table 2, which we selected because they were available and

12 D.W. Aha, M. Molineaux, and M. Ponsen

are intuitively informative. They also balance information on recent game changes
(i.e., the first two features), the opponent’s situation (e.g., Workerso), and the player’s
situation (e.g., Workersp,i). When games begin, the value of the first two features is 0
(i.e., because no units have yet been killed and no buildings have yet been razed),
while the others have small values (e.g,. only a few workers exist at the game’s start,
as exemplified in Figure 1). About 50 units are created, per side, in a short game, and
a player’s limit is 200. In addition to the ten in the state lattice, buildings include
farms, towers, and a few others that do not cause state transitions.

Cases are grouped by BuildingState, and, after each game ends, at most one case is
recorded per BuildingState. Our experiments involve repeated trials of only 100
games. Therefore, CAT does not require a fast indexing strategy for our evaluation.

CAT’s function for computing the similarity between a stored case C and the
current game description S is defined as:

Sim(C, S) = (CPerformance/dist(CDescription, S)) - dist(CDescription, S)

where dist() is the (unweighted, unnormalized) Euclidean distance among the eight
features. This simple function emphasizes distance, and prefers higher-performing
cases (i.e., those whose Tactic has performed well when selected in previous games)
among those whose distance to S is similar (i.e., if two cases are at approximately the
same distance from S, then the higher performer among them will have greater
similarity). This function is particularly useful for BuildingState 1 (i.e., the game’s
start), where case Descriptions are all identical, and thus equally distant to the game’s
initial state. We will consider more elaborate similarity functions in future work.

CAT uses a modified k-nearest neighbor function to select case Tactics for retrieval.
Among the k most similar cases, it retrieves one with the highest Performance.
However, to gain experience with all tactics in a state, case retrieval is not performed
until each available tactic at that state is selected e times, where e is CAT’s
exploration parameter. During exploration, CAT randomly retrieves one of the least
frequently used tactics for reuse. Exploration also takes place whenever the highest
Performance among the k-nearest neighbors is below 0.5.

3.2 Reuse

CAT’s reuse process is given the retrieved case Tactic. While adaptation takes place,
it is not controlled by CAT, but is instead performed at the level of the action
primitives in the context of the WARGUS game engine (e.g., if an action requests the
creation of a building, the game engine decides its location and which workers will
construct it, which can differ in each game situation).

3.3 Revision

Revision involves executing the reused tactic in WARGUS, and evaluating the results.
No repairs are made to these tactics; they are treated as black boxes.

Evaluation yields the Performance of a case’s Tactic, which is measured at both a
local and global level. That is, CAT records the WARGUS game score for both the
player and opponent at the start of each BuildingState and at the game’s end, which

Learning to Win: Case-Based Plan Selection in a Real-Time Strategy Game 13

occurs when one player eliminates all of the other’s units and buildings, or when we
terminate a game if no winner has emerged after ten minutes of clock time.

We define the Performance for a Tactic t of case C with BuildingState b as a
function of its “global” (Scorei) and “local” (Scorei,b) impact on the game score,
where the former focuses on relative changes between the time that t begins executing
in b and when the game ends, while the latter focuses only on changes during state b:

CPerformance = i=1,n CPerformance,i /n

CPerformance,i = ½(Scorei + Scorei,b)

Scorei = (Scorei,p-Scorei,p,b)/((Scorei,p-Scorei,p,b) + (Scorei,o-Scorei,o,b))

Scorei,b = (Scorei,p,b+1-Scorei,p,b)/((Scorei,p,b+1-Scorei,p,b) + (Scorei,o,b+1-Scorei,o,b))

where n is the number of games in which C was selected, Scorei,p is the player’s
WARGUS score at the end of the ith game in which C is used, Scorei,p,b is player p’s
score before C’s Tactic is executed in game i, and Scorei,p,b+1 is p’s score after C’s
Tactic executes (and the next state begins). Similarly, Scorei,o is the opponent’s score
at the end of the ith game in which C is used, etc. Thus, C’s performance is updated
after each game in which it is used, and equal weight is given to how well the player
performs during its state and throughout the rest of the game.

3.4 Retention

During a game, CAT records a Description when it enters each BuildingState, along
with the score and Tactic selected. It also records the scores of each side when the
game ends, along with who won (neither player wins a tie). For each BuildingState
traversed, CAT checks to see whether a case C exists with the same <Description,
Tactic> pair. If so, it updates C’s Performance. Otherwise, CAT creates a new case C
for that BuildingState, Description, Tactic, and Performance as computed in Section
3.3 (this counts as C’s first application). Thus, while duplicate cases are not created,
CAT liberally creates new ones, and does not employ any case deletion policy.

4 Evaluation and Analysis

Our evaluation focuses on examining the hypothesis that CAT’s method for selecting
tactics significantly outperforms (1) a uniform selection strategy and (2) simply using
the best counter-strategy. We report evidence that supports this hypothesis.

4.1 Competitors: WARGUS Players

Eight opponent scripts (see Table 3) were available for our experiments; some were
publicly available and others we manually developed. For each opponent, we used
Ponsen and Spronck’s genetic algorithm to evolve a set of counter-strategy scripts.
We use the best-performing counter-strategies among these (i.e., one per opponent) as
a source of tactics, which are sequences of actions within a single building state of a
counter-strategy. The names of the counter-strategies are shown in the lower left of
Figure 2, which indicates that, for example, the evolved_sc1 counter-strategy includes
tactics for building states 1, 3, 4, and 8, among others.

14 D.W. Aha, M. Molineaux, and M. Ponsen

Table 3. WARGUS opponents used in the experiments

The top 5 scripts created by students, based on a class tournament.

Knight’s Rush: This attempts to quickly advance technologically,
launching large offences as soon as strong units are available.

Soldier’s Rush: This attempts to overwhelm the opponent with
cheap offensive units in an early state of the game.

This balances offensive actions, defensive actions, and research.

Description

SC1-SC5

KR

SR

LBLA

Opponent

The top 5 scripts created by students, based on a class tournament.

Knight’s Rush: This attempts to quickly advance technologically,
launching large offences as soon as strong units are available.

Soldier’s Rush: This attempts to overwhelm the opponent with
cheap offensive units in an early state of the game.

This balances offensive actions, defensive actions, and research.

Description

SC1-SC5

KR

SR

LBLA

Opponent

The first WARGUS competitor, Uniform, selects tactics at each BuildingState
according to a uniform distribution. Uniform should perform poorly because its
selection is not guided by performance feedback. Uniform performs identically to
CAT during its early stages of an experiment when, due to exploration, it randomly
selects a tactic to use at each building state. To compute its results, we ran Uniform
48 times, six times per opponent script, and report its percentage of wins in Figure 4.

The next eight competitors are the counter-strategies. At each building state, they
must use the tactic that defines them. Because they were evolved from different
manually-generated scripts, we expect their performance to vary. Also, they should
outperform Uniform, at least against the opponent on which they were trained. We ran
each counter-strategy 10 times per opponent script, recorded the percentage of games
that each won among their 80 games, and report the best performer in Figure 4.

The final competitor is CAT, which, after an initial exploration period during which
it selects tactics using a uniform distribution, learns to intelligently select tactics at
each building state. It should outperform Uniform because it learns to map game
situations to a state’s tactics, where selected tactics have performed well under similar
game situations. Again, the counter-strategies supply the tactics for CAT to select.
Thus, it might always select tactics from the same (e.g., best-performing) counter-
strategy. Ideally, it should instead select tactics from different counter-strategies
throughout a game, and across different games, to outperform the best performing
counter-strategy. This is feasible: as shown in Figure 2, each counter-strategy
traverses a unique sequence of building states. Thus, CAT may learn to select
different tactics, for different game situations, from the same building state.

4.2 TIELT Integration

Integrating AI systems with gaming simulators can be a difficult and arduous task.
Also, the resulting interface may not be reusable for similar integrations that a
researcher may want to develop. Therefore, we used TIELT (Testbed for Integrating
and Evaluating Learning Techniques) to perform this integration. TIELT (Aha &
Molineaux, 2004) is a freely available middleware tool (http://nrlsat.ittid.com) that
facilitates the integration of decision systems and simulators. It provides specific
support for machine learning systems, and for complex gaming simulators. We
actively support its users, and will use it in a few 2005 workshops and competitions.

TIELT integrations require constructing or reusing five knowledge bases, as shown
in Figure 3. The Game Model is a (usually partial) declarative representation of the

Learning to Win: Case-Based Plan Selection in a Real-Time Strategy Game 15

E
d

ito
rs

TIELT’s
Internal

Communication
Modules

Selected/Developed Knowledge Bases

Game Player(s)

Evaluation
Interface

TIELT
User

TIELT
User

Selected
Game

Engine
(Wargus)

Selected
Decision
System

(CaT)

Knowledge Base Libraries

Game
Engine
Library

Wargus

Full
Spectrum
Command

...

Game
Model

Agent
Description

Game
Interface

Model

Decision
System

Interface
Model

Experiment
Methodology

Decision
System
Library

CaT

Soar

...

E
d

ito
rs

TIELT’s
Internal

Communication
Modules

Selected/Developed Knowledge Bases

Game Player(s)

Evaluation
Interface

TIELT
User

TIELT
User

Selected
Game

Engine
(Wargus)

Selected
Decision
System

(CaT)

Knowledge Base Libraries

Game
Engine
Library

WargusWargus

Full
Spectrum
Command

Full
Spectrum
Command

...

Game
Model

Agent
Description

Game
Interface

Model

Decision
System

Interface
Model

Experiment
Methodology

Decision
System
Library

CaT

Soar

...

Fig. 3. TIELT’s functional integration architecture

game. The Game Interface and Decision System Interface Models define the format
and content of messages passed between TIELT, the selected game engine, and the
decision system. The Agent Description includes an executable task structure that
distinguishes the responsibilities of the decision system from those of game engine
components. Finally, the Experiment Methodology encodes how the user wants to test
the decision system on selected game engine tasks. Our knowledge bases will be
available at TIELT’S www site for others to use (e.g., in future comparison studies).

We created a set of knowledge bases for integrating CAT with WARGUS using
TIELT. This required several modifications of STRATAGUS so that it could provide
access to subroutines that are germane to our investigation. Also, we increased the
speed of WARGUS by a factor of 10 to run games more quickly. (A typical game still
required an average of over 3-4 minutes to execute.)

This integration introduced a degree of non-determinism; while Ponsen and
Spronck’s (2004) earlier work involved updating WARGUS’ code directly, our TIELT

integration of CAT involves multiple threads and subsequent communication
latencies. Thus, although two WARGUS games may have the same initial state and
decision system, their results may differ greatly. This is the same that we might
expect of a human playing the game, or any external process giving commands.

TIELT’S Game Model for this integration includes operators for key game tasks
like building armies, researching technology advances, and attacking. Other operators
obtain information about the game (e.g., the player’s score). It also contains
information about key events such as when a building or unit is completed. This
information is maintained by the Game Interface Model, which contains information
about the interface format. Future research using STRATAGUS can reuse these models.

The Agent Description links CAT to the abstractions of the Game Model. TIELT
retrieves instructions from CAT and executes them using operators. When events
recognized by the Game Model occur, it notifies CAT, using information from the

16 D.W. Aha, M. Molineaux, and M. Ponsen

Decision System Interface Model to communicate. For example, when a building is
finished, WARGUS sends a message to TIELT. The Game Interface Model interprets
this, and fires a Game Model event. The Agent Description, listening for this event,
notifies CAT and asks for further instructions. This Agent Description would need to
be rewritten to work with another decision system, but the abstractions available from
the Game Model simplify this task.

The Experiment Methodology defines the number of runs, when to stop the game,
and resets CAT’s memory when experiments begin. Also, it records game data into an
EXCEL file for post-experiment analyses. It permits us to repeat experiments
overnight, and record any data passing from STRATAGUS to CAT, or vice versa.

4.3 Empirical Methodology

We compared CAT versus its competitors for its ability to win WARGUS games. We
used a fixed initial scenario, on a 128x128 tile map, involving a single opponent. The
opponent was controlled by one of the eight scripts listed in Table 3. With the
exception of the student scripts, these were all used in (Ponsen & Spronck, 2004).

Our only independent variable was the approach used to play against WARGUS
opponents (i.e., Uniform, one of the eight counter-strategies, or CAT). We fixed
CAT’s two parameters during the experiment. The value of k (the number of nearest
neighbors to consider when retrieving cases) was set to 3, as was the value of e (the
exploration parameter, which determines the number of times that tactics in each state
are used prior to permitting case reuse). We have not tuned either parameter setting.

For dependent variables, we collected average statistics on the percentage of games
won, lost, and tied, along with the average final game scores for both players.

We ran Uniform on 48 games – six times for each of the eight opponents. We also
tested each of the eight counter-strategies versus each opponent ten times. Averaging
over multiple games helps to ameliorate the effects of non-deterministic game play.

However, the non-determinism introduced by TIELT’s integration prevents testing
the competitors on the same problems. Furthermore, it prevents us from periodically
testing CAT on the same test set at different points during its training process.
Therefore, we report CAT’s average results across a sliding window, corresponding to
the preceding n games, during training. We set n to 25 in the experiments (i.e., the
measure after 100 games is the percentage of wins in games 76-100), and tested CAT
in five trials of 100 games each. (Time limitations prevented us from running
additional studies.) Cases are acquired throughout each trial, and the opponent for
each game was randomly selected from a uniform distribution on the eight available.

4.4 Results

Figure 4 summarizes our results . As expected, Uniform performs poorly, winning
an average of 22.9% of its games. CAT begins at this level, and after 100 games its
average winning percentage is 82.4%, while saving an average of 302.4 cases. The
best performer among the counter-strategies is evolved_SC5, which won 72.5% of its
games. We compared the results (i.e., whether the player had won) for evolved_SC5
versus the final 25 games for CAT’s five trials. A one-tail t-Test (2-sample assuming

Learning to Win: Case-Based Plan Selection in a Real-Time Strategy Game 17

Average Exploration and Win Percentage (window size = 25 games)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Games

CaT Win %

CaT Exploration %

Evolved SC5

Uniform Selection

Fig. 4. Comparison of average winning percentages of CAT (across 5 runs) vs. the non-learning
Uniform and best performing counter-strategy (Evolved SC5). Also shown is CAT’s average
exploration percentage. CAT’S plots are across a window of the 25 preceding games

unequal variances) does not quite reveal a significant difference (p=0.053). However,
there is a significant performance difference (p=0.00004) for the same test when
examining the ratios of the final game scores (i.e., player_score/(player_score +
opponent_score)), where CAT’s average ratio was 0.65 while evolved_SC5’s was
0.59. Also, CAT shows signs of overtraining, having peaked at 87.2%. Thus, CAT
clearly outperforms the best individual counter-strategy, and correcting for
overtraining should further increase its performance.

Also shown in Figure 4 is the average percentage of explorations performed by
CAT. This starts at 100% through 24 games and quickly drops to 1%. With this
setting for e, CAT relies almost exclusively on cases after 100 games.

5 Discussion

The results described in Section 4.4, although encouraging, are somewhat premature.
We have not analyzed whether correlations among the eight features motivate using a
more structured and informative case representation, such as the ones proposed in
(Muñoz-Avila & Aha, 2004). Perhaps features should be differentially weighted, or
normalized in distance computations. Also, CAT cheats; we will replace the three
opponent-focused features (Table 2) with ones that a human player can observe (e.g.,
opponent score, observed opponent buildings) to determine whether CAT required
them to obtain its good performance.

We have not yet tuned CAT’s parameters, and it probably needs a management
policy (e.g., for case filtering, deletion) to prevent overfitting, which may be the cause
of CAT’s final dip in performance in Figure 4. Moreover, CAT does not yet perform

18 D.W. Aha, M. Molineaux, and M. Ponsen

plan adaptation, which, given an appropriate domain model, may substantially
improve performance. Finally, opponent modeling or plan recognition techniques
could also prove useful (e.g., they may increase CAT’s learning rate).

Our empirical methodology could be improved by training on a subset of opponent
scripts and testing on the remainder, thus better assessing for generalization and
transfer. A larger set of opponent scripts (e.g., created using Ponsen and Spronck’s
(2004) genetic algorithm) would be handy for this type of evaluation.

Ponsen and Spronck’s (2004) dynamic scripting algorithm also learns to select
which tactic to use at each building state. Its results could be compared with CAT’s,
for a specific opponent, but this requires that they use the same set of tactics. In their
experiments, dynamic scripting selected from an average of 40 tactics per building
state level, while in our experiments CAT needed to select among eight per building
state level (in the lattice). We will compare these approaches in our future work.

CAT builds on Ponsen and Spronck’s (2004) work by relaxing the need to train
separately for each opponent. However, we have not tested its ability to work with
random initial states, or multiple simultaneous opponents. Also, CAT’S knowledge

sources provide no opportunity for online learning, which requires a topology of
abstract game states that can recur within a game play, and a means for recognizing
them. Thus, we will consider such state topologies for WARGUS and other games.

Dynamic scripting learns weight settings for plans in a plan retrieval process. Like
CAT, it exploits plan performance data. However, it does not identify game situations
in which those plans should be selected. We expect that dynamic scripting could be
enhanced by providing it with game situation information, which may help it to
increase its learning rate, and allow it to train on multiple opponents simultaneously.

6 Conclusion

We introduced an approach for case acquisition and tactic (subplan) selection, and its
implementation in CAT (Case-based Tactician). We described its application to
winning games against WARGUS opponents. CAT is the first case-based reasoning
system designed to win real-time strategy (RTS) games against randomly selected
opponents. Using Ponsen and Spronck’s (2004) state lattice, CAT selects a tactic for
each state transition, where the tactics were automatically extracted from a set of
genetically evolved counter-strategies. Our experiments showed that CAT learns to
perform significantly better than the best performing counter-strategy against
WARGUS opponents. In particular, after 100 games, it wins over 80% of its games.

This is the first significant application of TIELT, a tool that assists with integrating
decision systems (e.g., CAT) with simulators (e.g., WARGUS). Our experience
provided us with key lessons for its continued development (e.g., on how to integrate
RTS games, and the evaluation methodologies it should support).

CAT’s algorithm has not yet been tailored for this application; its performance can
probably be further improved. Also, many interesting research issues require further
attention, such as how to enhance dynamic scripting, CAT’s applicability to online
learning tasks, and learning to win in other gaming engines.

Learning to Win: Case-Based Plan Selection in a Real-Time Strategy Game 19

Acknowledgements

This research was supported by DARPA’s Information Processing Technology Office
and the Naval Research Laboratory.

References

Aamodt, A., & Plaza, E. (1994). Case-based reasoning: Foundational issues, methodological
variations, and system approaches. AI Communications, 7, 39-59.

Aha, D.W., & Molineaux, M. (2004). Integrating learning in interactive gaming simulators. In
D. Fu & J. Orkin (Eds.) Challenges in Game AI: Papers of the AAAI’04 Workshop
(Technical Report WS-04-04). San José, CA: AAAI Press.

Buro, M. (2003). Real-time strategy games: A new AI research challenge. Proceedings of the
Eighteenth International Joint Conference on Artificial Intelligence (pp. 1534-1535).
Acapulco, Mexico: Morgan Kaufmann.

Cheng, D.C., & Thawonmas, R. (2004). Case-based plan recognition for real-time strategy
games. Proceedings of the Fifth Game-On International Conference (pp. 36-40). Reading,
UK: University of Wolverhampton Press.

De Jong, K., & Schultz, A.C. (1988). Using experience-based learning in game playing.
Proceedings of the Fifth International Conference on Machine Learning (pp. 284-290).
Ann Arbor, MI: Morgan Kaufmann.

Díaz-Agudo, B., Gervás, P., & Peinado, F. (2004). A case based reasoning approach to story
plot generation. Proceedings of the Seventh European Conference on Case-Based
Reasoning (pp. 142-156). Madrid, Spain: Springer.

Fagan, M., & Cunningham, P. (2003). Case-based plan recognition in computer games.
Proceedings of the Fifth International Conference on Case-Based Reasoning (pp. 161-
170). Trondheim, Norway: Springer.

Fairclough, C.R., & Cunningham, P. (2004). AI structuralist storytelling in computer games.
Proceedings of the International Conference on Computer Games: Artificial Intelligence,
Design and Education. Reading, UK: University of Wolverhampton Press.

Fairclough, C., Fagan, M., Mac Namee, B., Cunningham, P. (2001). Research directions for AI
in computer games. Proceedings of the Twelfth Irish Conference on Artificial Intelligence
& Cognitive Science (pp. 333-344). Maynooth, Ireland: Unknown publisher.

Fasciano, M.J. (1996). Everyday-world plan use (Technical Report TR-96-07). Chicago,
Illinois: The University of Chicago, Computer Science Department.

Forbus, K., Mahoney, J., & Dill, K. (2001). How qualitative spatial reasoning can improve
strategy game AIs. In J. Laird & M. van Lent (Eds.) Artificial Intelligence and Interactive
Entertainment: Papers from the AAAI Spring Symposium (Technical Report SS-01-02).
Stanford, CA: AAAI Press.

Gabel, T., & Veloso, M. (2001). Selecting heterogeneous team players by case-based
reasoning: A case study in robotic soccer simulation (Technical Report CMU-CS-01-165).
Pittsburgh, PA: Carnegie Mellon University, School of Computer Science.

Goodman, M. (1994). Results on controlling action with projective visualization. Proceedings
of the Twelfth National Conference on Artificial Intelligence (pp. 1245-1250). Seattle, WA:
AAAI Press.

Guestrin, C., Koller, D., Gearhart, C., & Kanodia, N. (2003). Generalizing plans to new
environments in relational MDPs. Proceedings of the Eighteenth International Joint
Conference on AI (pp. 1003-1010). Acapulco, Mexico: Morgan Kaufmann.

20 D.W. Aha, M. Molineaux, and M. Ponsen

Karol, A., Nebel, B., Stanton, C., & Williams, M.-A. (2003). Case based game play in the
RoboCup four-legged league: Part I the theoretical model. In D. Polani, B. Browning, A.
Bonarini, & K. Yoshida (Eds.) RoboCup 2003: Robot Soccer World Cup VII. Padua, Italy:
Springer.

Kerner, Y. (1995). Learning strategies for explanation patterns: Basic game patterns with
applications to chess. Proceedings of the First International Conference on Case-Based
Reasoning (pp. 491-500). Sesimbra, Portugal: Springer.

Laird, J.E., & van Lent, M. (2001). Interactive computer games: Human-level AI’s killer
application. AI Magazine, 22(2), 15-25.

Meehan, J. R. (1981). Tale-spin and micro tale-spin. In R.C. Schank & C.K. Riesbeck (Eds.)
Inside computer understanding. Hillsdale, NJ: Erlbaum.

Muñoz-Avila, H., & Aha, D.W. (2004). On the role of explanation for hierarchical case-based
planning in real-time strategy games. In P. Gervás & K.M. Gupta (Eds.) Proceedings of the
ECCBR 2004 Workshops (Technical Report 142-04). Madrid, Spain: Universidad
Complutense Madrid, Departamento di Sistemos Informáticos y Programación.

Ponsen, M.J.V., Muñoz-Avila, H., Spronck, P., & Aha, D.W. (2005). Automatically acquiring
domain knowledge for adaptive game AI using evolutionary learning. To appear in
Proceedings of the Seventeenth Conference on Innovative Applications of Artificial
Intelligence. Pittsburgh, PA: AAAI Press.

Ponsen, M., & Spronck, P. (2004). Improving adaptive game AI with evolutionary learning.
Computer Games: Artificial Intelligence, Design and Education (pp. 389-396). Reading,
UK: University of Wolverhampton.

Powell, J.H., Hauff, B.M., & Hastings, J.D. (2004). Utilizing case-based reasoning and
automatic case elicitation to develop a self-taught knowledgeable agent. In D. Fu & J.
Orkin (Eds.) Challenges in Game Artificial Intelligence: Papers from the AAAI Workshop
(Technical Report WS-04-04). San Jose, CA: AAAI Press.

Samuel, A. (1959). Some studies in machine learning using the game of checkers. IBM Journal
of Research and Development, 3(3), 210-229.

Schaeffer, J. (2001). A gamut of games. AI Magazine, 22(3), 29-46.
Ulam, P., Goel, A., & Jones, J. (2004). Reflection in action: Model-based self-adaptation in

game playing agents. In D. Fu & J. Orkin (Eds.) Challenges in Game Artificial
Intelligence: Papers from the AAAI Workshop (Technical Report WS-04-04). San Jose,
CA: AAAI Press.

Wendler, J., Kaminka, G. A., & Veloso, M. (2001). Automatically improving team cooperation
by applying coordination models. In B. Bell & E. Santos (Eds.) Intent Inference for
Collaborative Tasks: Papers from the AAAI Fall Symposium (Technical Report FS-01-05).
Falmouth, MA: AAAI Press.

Wendler, J., & Lenz, M. (1998). CBR for dynamic situation assessment in an agent-oriented
setting. In D.W. Aha & J.J. Daniels (Eds.), Case-Based Reasoning Integrations: Papers
from the AAAI Workshop (Technical Report WS-98-15). Madison, WI: AAAI Press.

An Ensemble of Case-Based Classifiers

for High-Dimensional Biological Domains

Niloofar Arshadi1 and Igor Jurisica1,2

1 Department of Computer Science, University of Toronto,
10 King’s College Road, Toronto, Ontario M5S 3G4, Canada

niloofar@cs.toronto.edu
2 Ontario Cancer Institute, Princess Margaret Hospital,

University Health Network, Division of Cancer Informatics,
610 University Avenue, Toronto, Ontario M5G 2M9, Canada

juris@ai.utoronto.ca

Abstract. It has been shown that an ensemble of classifiers increases the
accuracy compared to the member classifiers provided they are diverse.
One way to produce this diversity is to base the classifiers on different
case-bases. In this paper, we propose the mixture of experts for case-
based reasoning (MOE4CBR), where clustering techniques are applied to
cluster the case-base into k groups, and each cluster is used as a case-base
for our k CBR classifiers. To further improve the prediction accuracy,
each CBR classifier applies feature selection techniques to select a subset
of features. Therefore, depending on the cases of each case-base, we would
have different subsets of features for member classifiers.
Our proposed method is applicable to any CBR system; however, in
this paper, we demonstrate the improvement achieved by applying the
method to a computational framework of a CBR system called TA3 .
We evaluated the system on two publicly available data sets on mass-to-
charge intensities for two ovarian data sets with different number of clus-
ters. The highest classification accuracy is achieved with three and two
clusters for the ovarian data set 8-7-02 and data set 4-3-02, respectively.
The proposed ensemble method improves the classification accuracy of
TA3 from 90% to 99.2% on the ovarian data set 8-7-02, and from 79.2%
to 95.4% on the ovarian data set 4-3-02. We also evaluate how individual
components in MOE4CBR contribute to accuracy improvement, and we
show that feature selection is the most important component followed
by the ensemble of classifiers and clustering.

1 Introduction

Case-based reasoning (CBR) has been successfully applied to a wide range of ap-
plications such as classification, diagnosis, planning, configuration, and decision-
support [1]. CBR can produce good quality solutions in weak theory domains
such as molecular biology, where the number and the complexity of the rules
affecting the problem are very large, there is not enough knowledge for formal
knowledge representation, and our domain understanding evolves over time [2].

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, pp. 21–34, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNAI

22 N. Arshadi and I. Jurisica

Protein expression profiling using mass spectrometry is a recent method for
profiling cancer cases to measure thousands of elements in a few microliters of
serum [3], and also an example of high-dimensional molecular biology domain.
The data obtained are mass-to-charge ratios (m/z values) of varying intensi-
ties. Mass spectrometry data sets are represented by two-dimensional matrices,
where each row contains the mass-to-charge intensities (known as biomarkers)
for cancer and control (normal) samples. In addition, clinical information is used
to label and further describe individual samples.

Using principles of case medicine for diagnosis and prognosis, CBR natu-
rally fits this application domain. However, (ultra) high-dimensionality of mass
spectrometry data sets (tens of thousands of biomarkers with only few hundreds
of samples) poses a challenge that needs to be addressed. One solution is to
combine CBR classifiers with other machine learning techniques to improve the
prediction accuracy and overcome the “curse of dimensionality”. Ensembles im-
prove the accuracy of CBR classifiers [4, 5]; however, since k-nearest neighbor
(kNN) and CBR classifiers are categorized under stable classifiers, having diverse
classifiers is essential to improve the accuracy [6]. Stable classifiers are stable
with respect to small changes in the training data.

One way to have diversity for stable classifiers is to select different subsets of
features for each classifier [4, 5]. In this paper, in addition to selecting a different
subset of features for each member classifier, we cluster the case-base into smaller
groups. Data clustering means to group items (data points or attributes) into
classes such that items within a cluster are similar to one another and dissimilar
to items in other clusters. Thus, by grouping the whole case-base into smaller
clusters, different classifiers would have different case-bases.

The goal of feature selection is to identify “informative” features among thou-
sands of available features, i.e., relevant features that improve CBR performance
for a given reasoning task. For mass spectrometry data sets, mining a subset of
features that distinguishes between cancer and normal samples can play an im-
portant role in disease pathology and drug discovery. Early detection of cancer
can reduce mortality, and identified biomarkers may also be useful drug discov-
ery targets that may lead to new therapeutical approaches. Moreover, removing
“non-informative” features helps overcome the “curse of dimensionality”, and
improves the prediction accuracy of classifiers.

Our hypothesis can be summarized as follows. Combining an ensemble of
CBR classifiers with feature selection and clustering techniques not only helps
overcome the “curse of dimensionality”, but also leads to diverse classifiers, which
is essential for improving the accuracy of ensembles. Our approach has three
main components: (1) an ensemble of CBR systems, (2) clustering, and (3) fea-
ture selection. In principle, any CBR system, clustering, and feature selection al-
gorithm can be used. However, the choice has to satisfy our performance criteria,
which is to maximize prediction accuracy, and be applicable to high-dimensional
domains.

We use an ensemble of CBR systems, called the mixture of experts (MOE)
to predict the classification label of an unseen data (query). A gating network

An Ensemble of Case-Based Classifiers 23

calculates the weighted average of votes provided by each expert. We apply
spectral clustering [7] to cluster the data set (case-base) into k groups. Each
cluster is considered as a case-base for the k CBR experts, and the gating network
learns how to combine the responses provided by each expert. The performance
of each CBR expert is further improved by using feature selection techniques.
We use logistic regression [8] to select a subset of features in each cluster.

Although the proposed method is applicable to any CBR system, we demon-
strate the improvement achieved by applying it to a specific implementation of a
CBR system, called TA3 [9]. TA3 is a computational framework for CBR based
on a modified NN technique and employs a variable context, a similarity-based
retrieval algorithm, and a flexible representation language.

The rest of the paper is organized as follows. Section 2 reviews ensembles,
clustering, and feature selection techniques. In Section 3, we present MOE4CBR,
a method that uses the mixture of CBR experts to classify high-dimensional data
sets. Section 4 introduces the TA3 CBR system, which is used as a framework for
evaluating MOE4CBR. In Section 5, we demonstrate the experimental results
of the proposed method on two publicly-available ovarian data sets.

2 Related Work

Ensembles improve the stability and accuracy of classifiers if there is diversity
in the classifiers [6, 5]. If small changes in training data produces quite different
models and thus different predictions, the learner is called an unstable learner
[5]. Neural networks and decision trees are examples of unstable learners. For
such classifiers, diversity can be achieved if classifiers are trained on different
subsets of training data. However, since lazy learners such as kNN and CBR
classifiers are relatively stable in the face of changes in training data [6], other
sources of diversity must be employed. One way of achieving diversity is to
consider a different subset of features for each classifier. Ricci and Aha [4] create
various NN classifiers, each one considers a different subset of features and then
their predictions are combined using error-correcting output codes (ECOCs).
Cunningham and Zenobi [5] show that an ensemble of kNN classifiers based on
different feature subsets can classify more accurately than a single kNN classifier
based on the best feature subset available.

Clustering and feature selection techniques have been applied to many do-
mains including high-dimensional biological domains [10, 11, 12]. Clustering
groups samples (cases) into partitions such that samples within a cluster are
similar to one another and dissimilar to samples in other clusters. Clustering
techniques can be categorized into partitional and hierarchical methods [13].
Partitional-based clustering techniques attempt to break a data set into k clus-
ters such that each cluster optimizes a given criterion, e.g., minimizes the sum
of squared distance from the mean within each cluster. Hierarchical clustering
proceeds successively by either merging smaller clusters into larger ones (ag-
glomerative approach), or by splitting larger clusters (divisive approach).

24 N. Arshadi and I. Jurisica

Clustering and feature selection techniques have been applied to CBR sys-
tems as well. Yang and Wu [14] propose a method that groups the case-base into
smaller case-bases, and then each case-base is maintained individually. They use
density-based clustering technique [15] in which a cluster is a region with a higher
density of points than its surrounding region.

Shiu and Yeung [16] cluster the case-base into smaller partitions and select
representative cases for each cluster in order to reduce the size of case-base. In
their clustering approach, the similarity matrix of cases is formed, and two cases
will be placed in the same cluster if their weighted Euclidean distance is smaller
than a predetermined threshold.

Smyth and McKenna [17] cluster the case-base by finding the related set of
each case. The related set of each case is the union of the set of cases that
can be solved by this case and the set of cases that this case can solve. Two
cases will be in the same cluster if the intersection of their related sets is not
empty. Common problem types are typically represented by large and densely
packed clusters, while smaller clusters, or even lone cases, generally represent
more unusual problem types. Those cases that do not make critical competence
contribution could be deleted. In their case-base editing approach, the size of
case-base is minimized, while the range of problems that can be solved remains
unchanged.

Feature selection techniques are classified into filter and wrapper methods
[18]. The filter approach selects feature subsets that are independent of the
induction algorithm, while the wrapper approach evaluates the subset of features
using the inducer, itself. Aha and Bankert [19] discuss how using filter and
wrapper techniques improve the classification accuracy of case-based classifiers
on the cloud data set with 204 features and a few thousand data points. Their
results show that a wrapper feature selection method (called BEAM) applied to
an NN classifier improves its prediction accuracy by ∼20%.

3 The MOE4CBR Method

The goal of our method is to improve the prediction accuracy of CBR classifiers
using the mixture of experts. The performance of each expert in MOE4CBR is
improved using clustering and feature selection techniques. Using the results of
our earlier performance evaluation [20], we selected spectral clustering [7] for
clustering the case-base, and the logistic regression model [8] as a filter feature
selection for the TA3 classifier. Given a labeled training data set, predicting
labels of the unseen data (query), is performed in two steps: (1) each CBR
experts retrieves l similar cases from its respective (non-overlapping) case-base;
(2) the class label for the query is predicted by assigning weights to each expert.
We discuss the process in details in the next section.

3.1 Mixture of Experts

The mixture of experts approach is based on the idea that each expert classifies
data points (cases) separately, and individual responses are combined by the

An Ensemble of Case-Based Classifiers 25

gating network to provide a final classification label [21]. A general idea of the
mixture of experts approach is depicted in Figure 1. In the first step, for an
unseen query case, each expert of CBR retrieves l similar cases from its case-
base (l can be chosen by the user). It should be noted that experts do not share
their case-bases, rather the case-base of each expert is obtained by clustering the
whole case-base into k non-overlapping clusters (k can be chosen by the user or
estimated by other analysis).

After retrieving l similar cases from the case-base, the expert applies the
weighting vote algorithm (see Section 4.3) to predict the class label of the query
case, i.e., performs weighted case adaptation. More precisely, let {C1, . . . , Ck}
denote the clusters (or the k case-bases of our k experts), x the unseen data, y a
class label, Sj the number of similar cases that belong to Cj , and Tj the number
of similar cases with class label y that belong to Cj , Pr(Y = y|Cj , x) is then
computed as Tj

Sj
.

We use CBR to assign weights to each expert – represented by gj , 1 ≤ j ≤ k.
Briefly, gj represents the probability that the unseen data x belongs to the case-
base of the jth expert. More precisely, in order to compute gj that can be shown
as Pr(Cj |x) as well, we perform the following steps. Let m represent the number
of similar cases retrieved from the whole initial case-base by the gating network
(m can be chosen by the user), Rj the number of similar cases to x belonging to
Cj (the case-base of the jth expert), gj then is calculated by dividing Rj by m.
Finally, in order to combine the responses of k experts, following formulas are
used [8]:

Pr(Y = y|x) =
k∑

j=1

gj × Pr(Y = y|Cj , x), (1)

with the constraint that:
k∑

j=1

gj =
k∑

j=1

Pr(Cj |x) = 1, (2)

As Figure 2 depicts, the MOE4CBR method has two main steps: First, the
case-base of each expert is formed by clustering the case-base into k groups. Sec-
ond, each case-base selects a subset of features “locally”. Each of the k obtained
sets is considered as a case-base for our k experts of CBR. We use Equations 1
and 2 to combine the responses of the k experts. Each expert applies the TA3
classifier to decide on the class label, and the gating network uses TA3 to assign
weights (represented by gj) to each classifier as explained above.

3.2 Clustering

Of the many clustering approaches that have been proposed, only some of the
algorithms are suitable for domains with (ultra) high number of features and
a low number of samples. The two widely used clustering approaches in (ul-
tra) high-dimensional DNA microarrays [22, 23] are k-means clustering [13] and

26 N. Arshadi and I. Jurisica

Network Network Network

Gating

Network

Expert 1 Expert 2

g1 = Pr(C1|x) gk = Pr(Ck|x)

Expert k

Pr(y|x,C1) Pr(y|x,Ck)

Pr(y|x)

Fig. 1. Mixture of Experts: Terminal nodes are experts, and the non-terminal node

is the gating network. The gating network returns the probability that the query x

belongs to class Y

Cluster 1

(Case−Base)

Gating
Network

TA3

TA3

TA3

Case−Base 1

Case−Base 2Cluster 2

Training Set

Pr(Ck|x)

Pr(C1|x)

Pr(y|x)

Case-Base kCluster k

Fig. 2. Mixture of Experts for Case-Based Reasoning: Training set is grouped into k

clusters, and after selecting a subset of features for each group (shown with vertical

bars), each group will be used as a case-base for the k CBR experts. The gating network

combines the responses provided by each TA3 expert considering the weights of each

expert (weights are shown on the arrows connecting TA3 experts to the gating network)

self-organizing maps (SOMs) [24]. Our earlier evaluation suggests that spectral
clustering [7] outperforms k-means clustering and SOMs [20].

Spectral clustering is based on the approach where data points are mapped
to a new space, prior to being clustered. More precisely, first, a matrix X holding
the Euclidean distance between any two data points (i.e., a transformation of the
affinity matrix) is formed. Second, matrix Y is formed from X by stacking the
k eigenvectors associated with the k largest eigenvalues of matrix X in columns.
Each row of Y is treated as a point in Rk and is clustered into k clusters using
k-means algorithm , where k represents the number of clusters and is set by the
user. In the next step, data point si is assigned to cluster j if and only if row
i of the matrix X was assigned to cluster j, where 1 ≤ i ≤ N , 1 ≤ j ≤ k, and
N is the number of data points. This clustering technique has been successfully
used in many applications, including computer vision and VLSI [7].

An Ensemble of Case-Based Classifiers 27

3.3 Feature Selection

The goal of feature selection is to improve the quality of data by removing re-
dundant and irrelevant features, i.e., those features whose values do not have
meaningful relationships to their labels, and whose removal improves the pre-
diction accuracy of the classifier.

Fisher’s criterion and standard t-test are two statistical methods that have
been successfully applied to feature selection problem in (ultra) high-dimensional
data sets [25]. In order to select a suitable feature selection approach, we eval-
uated the performance of Fisher’s criterion, t-test, and the logistic regression
model [8] when used in a CBR classifier [20]. We applied the three feature selec-
tion techniques to the TA3 classifier, and measured the improvement in accuracy
and classification error. Accuracy measures the number of correctly classified
cases, and classification error counts the number of misclassified cases. Based
on our evaluation, logistic regression as a feature selection method outperforms
Fisher and standard t-test techniques [26].

Assuming that classifier x is the logistic of a linear function of the feature
vector, for two classes, the logistic regression model has the following form:

Pr(y = 0|x, w) =
1

1 + e−wT x
, (3)

where w is a p + 1 column vector of weights, and p is the number of features
[8]. Logistic regression has been successfully applied to classifying (ultra) high-
dimensional microarrays [27]. However, we use the logistic regression classifier as
a filter feature selection method. In order to select a subset of features (genes),
the logistic regression classifier is trained using the above Equation on the train-
ing set, and features corresponding to the highest ranking magnitude of weights
are selected. The data sets are normalized such that all features (regressor vari-
ables) have the same mean and variance.

4 An Introduction to the TA3 Case-Based Reasoning
System

Although our method can be applied to any CBR system, we used the TA3
CBR system as a framework to evaluate our method. The TA3 system has been
applied successfully to biology domains such as in vitro fertilization (IVF) [28]
and protein crystal growth [29]. This section briefly describes the system.

4.1 Case Representation in TA3

A case C corresponds to a real world situation, represented as a finite set of
attribute/value pairs [28]. Using the information about the usefulness of indi-
vidual attributes and information about their properties, attributes are grouped
into two or more Telos-style categories [30]. In classification tasks, each case has

28 N. Arshadi and I. Jurisica

at least two components: problem description and class. The problem descrip-
tion characterizes the problem and the class gives a solution to a given problem.
Additional categories can be used to group attributes into separate equivalence
partitions, and treating each partition separately during case retrieval.

4.2 Case Retrieval in TA3

The retrieval component is based on a modified NN matching [31]. Its modifi-
cation includes: (1) grouping attributes into categories of different priorities so
that different preferences and constraints can be used for individual categories
during query relaxation; (2) using an explicit context (i.e., set of attribute and
attribute value constraints) during similarity assessment; (3) using an efficient
query relaxation algorithm based on incremental context transformations [9].

Similarity in TA3 is determined as a closeness of values for attributes de-
fined in the context. Context can be seen as a view or an interpretation of a
case, where only a subset of attributes are considered relevant. By selecting only
certain features for matching and imposing constraints on feature values, a con-
text allows for controlling what can and what cannot be considered as a partial
match: all (and only) cases that satisfy the specified constraints for the context
are considered similar and are relevant with respect to the context.

4.3 Case Adaptation in TA3

The adaptation process in CBR manipulates the solution of the retrieved case
to better fit the query. We adopt distance-weighted nearest neighbor [32] to
determine the classification label of the query based on the labels of similar
retrieved cases. Let x1, ..., xk denote the k cases retrieved from the case-base
that are similar to the query xq . In order to predict the label of xq shown with
f̂(xq), following equations are used [32]:

f̂(xq) ← argmax
v∈V

k∑
i=1

ωiδ(v, f(xi)),

where
ωi ≡ 1

d(xq, xi)2
,

and V is the finite set of class labels {v1, ..., vs}, f(xi) the class label of case xi,
and δ(a, b) = 1 if a = b and δ(a, b) = 0 otherwise.

5 Experimental Results

Here we demonstrate the results of applying the MOE4CBR method to the TA3
classifier. In [33], we showed MOE4CBR improves the prediction accuracy of
high-dimensional microarrays. In this study, we show the improvement in the
classification accuracy of two publicly mass spectrometry data sets by applying
MOE4CBR. Also, we experiment MOE4CBR with different number of experts
and evaluate its components separately.

An Ensemble of Case-Based Classifiers 29

5.1 Data Sets

The experiments have been performed on the following mass spectrometry data
sets. The two mass spectrometry data sets [34, 35] discussed in this paper, are
both provided online at the National Institutes of Health and Food and Drug
administration Clinical Proteomics Program Databank. 1

1. Ovarian data set 8-7-02 : Ovarian data set 8-7-02 comprises 162 mass spec-
tra from ovarian cancer patients and 91 individuals without cancer (control
group) with 15,154 mass-to-charge ratios (m/z values) measured in each
serum.

2. Ovarian data set 4-3-02 : Ovarian data set 4-3-02 contains spectra from 100
patients with ovarian cancer and 116 individuals without cancer (control
group). The serum mass spectrum for each subject consists of 15,154 mass-
to-charge ratios.

These two ovarian data sets have been previously analyzed [34, 35, 26, 20].
Sorace et al. [34] evaluate their extracted rules for selecting biomarkers on data
set 8-7-02 when it is randomly split into training and test data. Although they
achieve 100% sensitivity and 100% specificity, our results are not comparable, as
they evaluated their method on randomly selected training and test sets, while
we used 10-fold cross-validation. Also, their rules are extracted in an “ad hoc”
way, and might not be applicable to other similar data sets.

Ovarian data set 4-3-02 has also been analyzed by Zhu et al. [35]. They
achieve 100% specificity and 100% sensitivity. Our results are not comparable,
since we used 10-fold cross-validation, while they split the data set randomly
into training and test set. Furthermore, it had been recently reported that their
results cannot be replicated and the overall best performance achieved using the
proposed 18 markers is 98.42% [36].

Similarly, these two ovarian data sets have been analyzed using a TA3 classi-
fier combined with logistic regression [26]. This approach resulted in 98% accu-
racy and 2% error for the ovarian data set 8-7-02, and 95.4% accuracy and 4.6%
error for the ovarian data set 4-3-02, evaluated using 10-fold cross-validation.

Each of the studies have selected a different set of “informative” biomarkers,
and further biological validation, which is beyond the scope of this paper, will
be able to determine which list of biomarkers is clinically more “informative”
for diagnosis or drug discovery of ovarian cancer samples.

5.2 Evaluating MOE4CBR with Different Number of Experts

Table 1 depicts the results of applying MOE4CBR to our two ovarian data sets
with different number of experts. When there is a tie, the TA3 classifier cannot
decide on the label; resulting cases are categorized as “undecided” in the Table.
We used 10-fold cross-validation for validation, and the Table shows the average
over the 10 folds. In each iteration, MOE4CBR was trained using 9 folds, and

1 http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp

30 N. Arshadi and I. Jurisica

Table 1. Accuracy of MOE4CBR with different number of experts(shown with n) on

ovarian data sets. In all experiments, 15 biomarkers were selected by logistic regression,

and the whole case-base was clustered into smaller groups using spectral clustering

Ovarian Data Set 8-7-02
n = 1 n = 2 n = 3 n = 4

Accuracy 98%±2.8% 98.4%±2% 99.2%±1.6% 96.4%±2.9%
Error 2% 1.2% 0.8% 2.8%
Undecided 0% 0.4% 0% 0.8%

Ovarian Data Set 4-3-02
n = 1 n = 2 n = 3 n = 4

Accuracy 95.4%±4.3% 95.4%±4.8% 94.9%±5% 90.3%±4.9%
Error 4.6% 4.1% 5.1% 7.8%
Undecided 0% 0.5% 0% 1.9%

was tested on the remaining fold, i.e., the test set was quite unseen until the test
time, and clustering and feature selection techniques were applied only to the
training set.

When there is only one expert – TA3 classifier – the case-base does not split
into groups, and the size of the case-base is reduced by selecting 15 biomarkers
out of 15,154 biomarkers. For the ovarian data set 8-7-02, the minimum classifica-
tion error is achieved when the number of experts equals 3, while for the ovarian
4-3-02, the minimum classification error is realized with 2 experts (Table 1).

5.3 Evaluating Components of MOE4CBR

We used 10-fold cross-validation to evaluate our proposed method in terms of
accuracy, classification error, and “undecided” rate, and the results are averaged
over 10 folds. We evaluated the components of MOE4CBR as follows:

– This is our base line, where a single instance of TA3 classifies the query case
without being integrated with any FS or clustering technique, and only a
single classifier predicts the label.

– In order to evaluate the FS component, we use logistic regression to select
15 biomarkers out of 15,154 biomarkers, and then we apply TA3 as a CBR
classifier.

– In order to evaluate the clustering component, we split the case-base ran-
domly into two groups, and use MOE4CBR to classify the query case. In this
case, the number of experts equals 2, logistic regression selects 15 biomarkers,
and the results are averaged over 5 iterations.

– Finally, we apply MOE4CBR when logistic regression as a filter FS method
selects 15 biomarkers, and spectral clustering groups the case-base into two
clusters (i.e., there are only two experts).

As the Table 2 shows, the FS component contributes the most in improv-
ing the accuracy of the classifier, while spectral clustering has the least con-
tribution. As is typically found in most studies, kNN and CBR classifiers are

An Ensemble of Case-Based Classifiers 31

Table 2. Accuracy of MOE4CBR with different components

Ovarian Data Set 8-7-02
Method Accuracy Error Undecided
Single TA3 90% 9.2% 0.8%
TA3 with LR 98% 2% 0%
MOE4CBR with LR and RC 97.4% 2.6% 0%
MOE4CBR with LR and SC 98.4% 1.2% 0.4%

Ovarian Data Set 4-3-02
Method Accuracy Error Undecided
Single TA3 79.2% 18.5% 2.3%
TA3 with LR 95.4% 4.6% 0%
MOE4CBR with LR and RC 94.6% 5.2% 0.2%
MOE4CBR with LR and SC 95.4% 4.1% 0.5%

Note. LR: Logistic Regression; RC: Random Clustering; SC: Spectral Clustering

very “sensitive” to the selected features and the “curse of dimensionality” prob-
lem. Therefore, removing “non-informative” features helps improve the accuracy.
On the other hand, although spectral clustering outperforms k-means and self-
organizing maps in terms of precision, recall, and Dunn’s index [20], it still does
not perform much better than random clustering. This can be due to the ultra
high-dimensionality of data sets. Applying FS techniques before clustering may
help improve the performance of clustering techniques.

6 Conclusions

Molecular biology is a natural application domain for CBR systems, since CBR
systems can perform remarkably well on complex and poorly formalized domains.
Although high dimensionality poses a challege and reduces system performance,
the classification accuracy improves by using an ensemble of classifiers. Also,
removing “non-informative” features from the case-base of each member classifier
helps overcome the “curse of dimensionality”.

In this paper, we proposed the mixture of experts for case-based reasoning
(MOE4CBR) method, where an ensemble of CBR systems is integrated with
clustering and feature selection to improve the prediction accuracy of the TA3
classifier. Spectral clustering groups samples, and each group is used as a case-
base for each of the k experts of CBR. To improve the accuracy of each expert,
logistic regression is applied to select a subset of features that can better predict
class labels. We also showed that our proposed method improves the prediction
accuracy of the TA3 case-based reasoning system on two public ovarian data
sets.

Although we have used a specific implementation of a CBR system, our
results are applicable in general. Generality of our solution is also not degraded
by the application domains, since many other life sciences problem domains
are characterized by (ultra) high-dimensionality and a low number of samples.

32 N. Arshadi and I. Jurisica

Further investigation may take additional advantage of Telos-style categories in
TA3 for classification tasks. The system may also benefit from new clustering
approaches, and other feature selection approaches such as wrapper and hybrid
approaches.

Acknowledgments

This work is supported by IBM CAS fellowship to NA, and the National Sci-
ence and Engineering Research Council of Canada (NSERC Grant 203833-02)
and IBM Faculty Partnership Award to IJ. The authors are grateful to Patrick
Rogers, who implemented the current version of TA3 .

References

[1] Lenz, M., Bartsch-Sporl, B., Burkhard, H., Wess, S., eds.: Case-Based Reasoning:
experiences, lessons, and future directions. Springer (1998)

[2] Jurisica, I., Glasgow, J.: Application of case-based reasoning in molecular biology.
Artificial Intelligence Magazine, Special issue on Bioinformatics 25(1) (2004) 85–
95

[3] Petricoin, E.F., Ardekani, A.M., Hitt, B.A., Levine, P.J., Fusaro, V.A., Steinberg,
S.M., Mills, G.B., Simone, C., Fishman, D.A., Kohn, E.C., Liotta, L.A.: Use of
proteomic patterns in serum to identify ovarian cancer. Lancet 359(9306) (2002)
572–577

[4] Ricci, F., Aha, D.W.: Error-correcting output codes for local learners. In Nedellec,
C., Rouveirol, C., eds.: Proceedings of the 10th European Conference on Machine
Learning, Springer (1998) 280–291

[5] Cunningham, P., Zenobi, G.: Case representation issues for case-based reasoning
from ensemble research. In Aha, D.W., Watson, I., eds.: Case-Based Reasoning
Research and Development:4th International Conference on Case-Based Reason-
ing, Springer (2001) 146–157

[6] Breiman, L.: Bagging predictors. Machine Learning 24 (1996) 123–140
[7] Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an al-

gorithm. In G. Dieterich, S. Becker, Z.G., ed.: Advances in Neural Information
Processing Systems 14, MIT Press (2002)

[8] Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning.
Springer (2001)

[9] Jurisica, I., Glasgow, J., Mylopoulos, J.: Incremental iterative retrieval and brows-
ing for efficient conversational CBR systems. International Journal of Applied
Intelligence 12(3) (2000) 251–268

[10] Xing, E.P.: Feature selection in microarray analysis. In Berrar, D., Dubitzky,
W., Granzow, M., eds.: A practical approach to Microarray data analysis. Kluwer
Academic publishers (2003) 110–131

[11] Quackenbush, J.: Computational analysis of microarray data. Nat Rev Genet 2
(2001) 418–427

[12] Molla, M., Waddell, M., Page, D., Shavlik, J.: Using machine learning to design
and interpret gene-expression microarrays. AI Magazine 25 (2004) 23–44

[13] Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kauffmann
Publishers (2000)

An Ensemble of Case-Based Classifiers 33

[14] Yang, Q., Wu, J.: Keep it simple: a case-base maintenance policy based on clus-
tering and information theory. In Hamilton, H., ed.: Advances in Artificial Intelli-
gence, In Proceedings of the 13th Biennial Conference of the Canadian Society for
Computational Studies of Intelligence, Montreal, Canada, Springer (2000) 102–
114

[15] Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for dis-
covering clusters in large spatial databases with noise. In: Proceedings of the 2nd
international Conference on knowledge discovery and data mining, Portland, OR,
USA, AAAI Press (1996) 226–231

[16] Shiu, S.C., Yeung, D.S.: Transferring case knowledge to adaptation knowledge:
An approach for case-base maintenance. Computational Intelligence 17 (2001)
295–314

[17] Smyth, B., McKenna, E.: Building compact competent case-bases. In Althoff,
K.D., Bergmann, R., Branting, K., eds.: Proceedings of the 3rd International
Conference on Case-Based Reasoning Research and Development (ICCBR-99),
Seeon Monastery, Germany, Springer (1999) 329–342

[18] John, G., Kohavi, R., Pfleger, K.: Irrelevant features and the subset selection
problem. In: Machine Learning: Proceedings of the eleventh international confer-
ence, Morgan Kauffmann (1994) 121–129

[19] Aha, D.W., Bankert, R.: Feature selection for case-based classification of cloud
types: an empirical comparison. In Aha, D.W., ed.: Proceedings of the AAAI-94
workshop on Case-Based Reasoning, Menlo Park, CA: AAAI Press (1994) 106–112

[20] Arshadi, N., Jurisica, I.: Data mining for case-based reasoning in high-dimensional
biological domains. IEEE Transactions on Knowledge and Data Engineering
(2005) To appear

[21] Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixture of local
experts. Neural Computation 3 (1991) 79–87

[22] Golub, T., Slonim, D., Tamayo, P., Huard, C., Gassenbeek, M., Mesirov, J., Coller,
H., Loh, M., Downing, J., Caligiuri, M., Bloomfield, C., Lander, E.: Molecular
classification of cancer: class discovery and class prediction by gene expression
monitoring. science 286 (1999) 531–537

[23] Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Dmitrovsky, E., Lander, E., Golub,
T.: Interpreting patterns of gene expression with self-organizing maps: methods
and application to hematopoietic differentiation. In: Proceedings of the National
Academy of Science of the United States of America. Volume 96(6). (1999) 2907–
2912

[24] Kohonen, T.: Self-Organizing Maps. Springer (1995)

[25] Jaeger, J., Sengupta, B., Ruzzo, W.: Improved gene selection for classification of
microarrays. In: Pacific Symposium on Biocomputing. (2003) 8:53–64

[26] Arshadi, N., Jurisica, I.: Feature selection for improving case-based classifiers on
high-dimensional data sets. In: FLAIRS 2005 - The 18th International FLAIRS
Conference, AAAI Press (2005) To appear

[27] Xing, E.P., Jordan, M.L., Karp, R.M.: Feature selection for high-dimensional
genomic microarray data. In Brodley, C.E., Danyluk, A.P., eds.: Proceedings
of the Eighteenth International Conference on Machine Learning, Williamstown,
MA, USA, Morgan Kauffmann (2001) 601–608

[28] Jurisica, I., Mylopoulos, J., Glasgow, J., Shapiro, H., Casper, R.F.: Case-based
reasoning in IVF: prediction and knowledge mining. Artificial Intelligence in
Medicine 12 (1998) 1–24

34 N. Arshadi and I. Jurisica

[29] Jurisica, I., Rogers, P., Glasgow, J., Fortier, S., Luft, J., Wolfley, J., Bianca, M.,
Weeks, D., DeTitta, G.: Intelligent decision support for protein crystal growth.
IBM Systems Journal 40(2) (2001) 394–409

[30] Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.: Telos: Representing
knowledge about information systems. ACM Transactions on Information Systems
8(4) (1990) 325–362

[31] Wettschereck, D., Dietterich, T.: An experimental comparison of the nearest
neighbor and nearest hyperrectangle algorithms. Machine Learning 19(1) (1995)
5–27

[32] Mitchell, T.M.: Machine Learning. McGraw-Hill (1997)
[33] Arshadi, N., Jurisica, I.: Maintaining case-based reasoning systems: a machine

learning approach. In Funk, P., González-Calero, P.A., eds.: Advances in Case-
Based Reasoning: 7th European Conference, Springer (2004) 17–31

[34] Sorace, J.M., Zhan, M.: A data review and re-assessment of ovarian cancer serum
proteomic profiling. BMC Bioinformatics 4:24 (2003) 14666–14671 available at
http://www.biomedcentral.com/1471-2105/4/24.

[35] Zhu, W., Wang, X., Ma, Y., Rao, M., Glimm, J., Kovach, J.S.: Detection of
cancer-specific markers amid massive mass spectral data. Proceedings of the
National Academy of Sciences of the United States of America 100(25) (2003)
14666–14671

[36] Baggerly, K.A., Morris, J.S., Edmonson, S.R., Coombes, K.R.: Signal in noise:
Evaluating reported reproducibility of serum proteomic tests for ovarian cancer.
Journal of National Cancer Institute 97(4) (2005) 307–309

Language Games: Solving the Vocabulary

Problem in Multi-Case-Base Reasoning

Paolo Avesani, Conor Hayes, and Marco Cova

ITC-IRST, Via Sommarive 18 - Loc. Pantè, I-38050 Povo, Trento, Italy
{avesani,hayes,cova}@itc.it

Abstract. The problem of heterogeneous case representation poses a
major obstacle to realising real-life multi-case-base reasoning (MCBR)
systems. The knowledge overhead in developing and maintaining trans-
lation protocols between distributed case bases poses a serious challenge
to CBR developers. In this paper, we situate CBR as a flexible problem-
solving strategy that relies on several heterogeneous knowledge contain-
ers. We introduce a technique called language games to solve the inter-
operability issue. Our technique has two phases. The first is an eager
learning phase where case bases communicate to build a shared index-
ing lexicon of similar cases in the distributed network. The second is the
problem-solving phase where, using the distributed index, a case base can
quickly consult external case bases if the local solution is insufficient. We
provide a detailed description of our approach and demonstrate its effec-
tiveness using an evaluation on a real data set from the tourism domain.

1 Introduction

Case-based reasoning (CBR) is a powerful problem-solving strategy that utilises
a repository of past problem-solving episodes to search for solutions to new
problems. Although CBR has conventionally used a single local case base to solve
problems for a particular task domain, it has been recognised that it must adapt
to cater towards problem solving where the solution space may be distributed
amongst several case bases [15,14,25,17,20]. A key motivation for this is that
each case base may specialise in a particular part of the problem space.

Previous research on distributed case-based reasoning is based on the premise
of standardised case representation across distributed case bases where the do-
main problems are homogeneous and well defined [10,16,17]. Leake & Sooria-
murthi argue the benefits of a broader view for distributed CBR termed multi-
case-base reasoning (MCBR) in which case base containers may contain knowl-
edge collected in different contexts and for different tasks [13,15]. Such alter-
native sources of knowledge have the advantage of providing solutions, albeit
imperfect, when none are found locally. Furthermore, it may not be practical
or beneficial to merge multiple, heterogeneous case bases into a single unified
case base for reasons of ownership, retrieval efficiency, maintenance and stan-
dardisation [13]. In this paper we consider the role of CBR in the trend towards

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, pp. 35–49, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNAI

36 P. Avesani, C. Hayes, and M. Cova

decentralised, heterogeneous information and service providers on the Internet
as exemplified by the Blogger and P2P services [18,23].

A problem that stands out in this analysis is the vocabulary problem [9,14].
In single case base systems, the definition of the basic symbolic entities that
will be manipulated by the reasoning system is one of the primary development
stages [11,22]. In MCBR systems, unless the vocabulary elicitation process is
coordinated and agreed between case authors, there will be an interoperability
problem between case base containers. Thus, case base designers must either
agree a global schema to be shared between all case bases ex post, thus negating
the benefits of a locally maintained case problem space; or they can adopt a lazy
approach whereby the case base is designed independently but will later require
mappings or translations to be accessible from other case bases. The first pro-
posal is the type of eager approach being promoted by researchers developing
the semantic web protocols [7]. However, the key advantage of interoperability
is counterbalanced by the difficulty of producing ex ante agreement on a shared
schema and of encouraging widespread adoption. An example of the lazy ap-
proach is the widely used RSS1 format, an XML protocol for publishing website
information, which does not require shared agreement on the semantics of the
content.

In this paper, we present the results of our work on the vocabulary problem
where case authors represent their cases independently. We introduce a technique
called language games that has been used to explore the problem of learning
and communication among distributed, autonomous robots [26]. More generally,
however, a language game is a computational model that allows convergence
on a shared lexicon in a fully distributed framework. We address the problem of
case base interoperability by enabling the emergence of a shared lexicon between
case base peers. The technique involves the eager computation of case-to-case
similarity where each agent locally builds up a global view without having to
compromise local vocabulary. The effect of this technique is that participating
case bases converge on a commonly agreed indexing lexicon. The proposed solu-
tion respects the autonomy principle inherent in the MCBR model: case bases
do not have a global view of the solution space represented by external case
bases. Instead, they incrementally learn a global perspective.

In particular, our research addresses a key problem in MCBR: case dispatch-
ing – deciding when and where to dispatch the problem [25,13]. Using the lan-
guage game technique, each case base builds a local index of the distributed
solution space. As such, we adopt the view that there exists a continuum be-
tween single and MCBR systems [15]. Our technique clearly has an analogue
with indexing in single case bases. However, it differs in that each case base
learns to index the relevant cases found in the distributed peer case bases.

The original contribution of this paper is to demonstrate how the language
games model can address the vocabulary problem in MCBR. Using a learned
lexicon, peer case bases implicitly learn the competences of remote case bases.
As well as overcoming the interoperability issue, the advantages of this approach

1 RSS stands for Really Simple Syndication.

Language Games: Solving the Vocabulary Problem in MCBR 37

lie in reducing query time computation and bandwidth requirements. This is
because remote cases can be retrieved by issuing an indexing label, rather than
a full problem description. We demonstrate a proof of concept of our approach on
a real dataset from the tourism domain where the problem of mapping between
alternative representations has previously had to be solved by hand [8].

In section 2 we describe related work in the area of CBR, information retrieval
and machine learning. Section 3 analyses in more detail the vocabulary alignment
problem in distributed CBR systems and provides an example of the benefits of
our automated indexing approach. In section 4 we give a detailed explanation
of the language games technique and in section 5 we demonstrate and evaluate
the technique on a real dataset from the tourism domain. In sections 6 and 7 we
present a discussion and the conclusion related to our findings.

2 Related Works

CBML, an XML application for exchanging case data in standard form in dis-
tributed systems, has previously been proposed [10,3]. However, this initiative is
hampered by lack of support and dissemination among developers of CBR sys-
tems. Prasad et al. [19] describe a CBR system in which heterogeneous agents,
each with access to a case base, cooperate in solving a parametric design task.
However, although the agents may have different problem-solving strategies, they
share a common schema relating to the design problem. Martin et al. [16] intro-
duced a competence model for distributed case bases. The focus of this work is
on cooperative problem-solving and thus, unlike the model we present, agents
have a homogeneous representation language and the competence models of ex-
ternal agents are given in advance. McGinty & Smyth [17] demonstrate, with
an application in the route planning domain, how expertise from multiple case
bases can help plug gaps in knowledge in the local case base. Unlike the work
described here, the problem solving competence of the peer agents is determined
at query time by broadcasting to all peers in the network. Furthermore, the
agents share a common representation model so that cases can be transferred
between case bases without the need for translation.

The work of Leake & Sooriamurthi on MCBR bears the most relevance to our
paper. MCBR is a problem-solving paradigm where the knowledge from multiple
distributed knowledge containers is used, whenever necessary [13,25]. In [13,14],
an analysis is presented of the issues involved in supplementing a local case
base with knowledge from external ‘idiosyncratic’ case base containers, where
knowledge may have been collected in different contexts. Two central issues
relating to MCBR are identified: case dispatching, deciding when and from where
to supplement the local case base; and cross-case-base adaptation, a technique
for adapting solutions retrieved from one case base for use in another. In [13],
an experimental evaluation demonstrated the benefits of lazily drawing from
another case base when solution quality in the local case base was not high
enough, even when the external case base reflected a task difference. However,
in relation to our approach, the case bases used in the evaluation had differences

38 P. Avesani, C. Hayes, and M. Cova

in solution bias rather than case representation. In [14], a case-based dispatching
strategy is introduced whereby each case base learns the problem-solving utility
of external case bases for a range of test problems. Thus, each case base also
employs a dispatching case base method to decide where to dispatch a problem
that cannot be solved locally. This technique clearly has resonance with the
competence indexing described in this paper. However, as in [13], this work is
based on the premise of similar case representation in each case base.

2.1 Relationship to Semantic Web

We can view the vocabulary problem in MCBR systems as a subset of the prob-
lems of heterogeneous catalogue alignment being addressed by the Semantic Web
community [1]. An open issue is how to preserve local representation while at
the same time enabling communication between autonomous peers. The con-
ventional view is that a common ontology for the domain should be established
and then mappings produced between the local representation and the shared
ontology [6]. Although intuitive, this approach poses difficulties in terms of ex
ante agreement on the common ontology and on how the mappings will be
constructed. In the European project, Harmonise, for example, a mediator is
in charge of managing a shared representation of tourism concepts. Local sub-
scribers then are in charge of manually mapping their local encodings to the
predefined ontology [8].

Recently, research has been focused on the issues specifically related to the
mapping between schemas or shallow representations like taxonomies [5]. The au-
tomation of the mapping process would enable pervasive interoperability without
the constraint of a mediator, which in distributed applications becomes the “sin-
gle point of failure”. In such a scenario, each peer would autonomously manage
the mapping with respect to the other peers. Unfortunately, automatic schema
matching has proven to be a complex problem and a general solution is still not
available.

2.2 Relationship to Information Retrieval

The issue of vocabulary mismatch has been addressed in information retrieval
using techniques such as latent semantic analysis or cross-language indexing
to solve the synonymy or translation problems [4,2]. However such techniques
assume global access to the document corpus and are useful for providing a
centralised indexing on a single server. In contrast, the language games method-
ology has an inherent communication methodology that allows the development
of distributed indexing over autonomous, heterogeneous peers.

3 The Vocabulary Problem

The definition of the fundamental units of meaning that will be manipulated by
the reasoning system is the first step required of any developer working in AI.
In CBR, Richter has suggested that the term vocabulary knowledge describes

Language Games: Solving the Vocabulary Problem in MCBR 39

the basic symbolic entities used to build cases, e.g., attributes, predicates and
the schema structure [22]. Although, typically, domain experts are the source of
this knowledge, CBR has less problems with the knowledge elicitation bottleneck
than rule-based or model-based systems.

The vocabulary problem originally referred to a problem in human–computer
interaction whereby users were not able to guess the required input terms for
a computer programme [9]. The key observation was that programme designers
failed to take into account the variety of words people use to refer to the same
concept. The vocabulary problem in MCBR is similar. It refers to the problem
posed where cases in one case base may not be available to another case because
the case authors have used heterogeneous case representations. Of course, it is
reasonable to expect case authors to make representational choices that reflect
the type of problems they need to solve. Furthermore, the design choices may
be influenced by the IT infrastructure of which the CBR component is only one
part [24].

3.1 Possible Solutions

There are three possible solutions to this problem:

1. Case authors in a particular domain agree in advance a common schema
with which to mark up each case base.

2. Each case author encodes the case base using a local representation but
provides translations to the representations used in external case bases or to
a common schema.

3. Each case author encodes the case base using a local representation and an
automated process determines the relationship between cases/case bases.

Solution 1 is difficult to engineer because case authors may not be willing to
invest time in developing an ex ante agreement that might limit their indepen-
dence in modelling their perspective on the problem space. It will fail if develop-
ers choose to opt out. For solution 2, the work involved in providing a mapping
or translation layer may be greater than the benefits that would be gained. Also,
the development and maintenance overheads of this approach are considerably
higher, reducing the advantages of CBR over a model-based system. Solution
3 has the advantage of respecting the autonomy of the case base while at the
same time enabling interoperability. The drawback is that such automation has
proven to be a very challenging task.

3.2 Types of Alignment

We can consider the problem of case base alignment as having three types of
solution, as shown in Table 1. The first is a schema matching policy where, for
example, two case base schemas are matched on a feature by feature basis. Typ-
ically, this type of mapping would be done by hand although there are some
research initiatives to automate the process [21]. The negative impact of this
is the degree of investment required in terms of expert knowledge and main-
tenance. Rather than aligning features, the identifier matching policy involves

40 P. Avesani, C. Hayes, and M. Cova

Table 1. Types of case base alignment

Alignment Mapping Technique

Schema mapping Feature-to-feature Manual/semi-automated
encoding

Similarity mapping Case-to-case using a simi-
larity measure

Automated process using a
measure of ‘aggregate’ sim-
ilarity

Identifier mapping Case-to-case Exact matching using a
global identifier

matching cases using a global identifier such as an ISBN number. Clearly, there
are advantages if cases with heterogeneous representations can be unambiguously
identified. The disadvantage, however, is that few domains have global identifiers
although this is a key proposal of the Semantic Web project. We identify simi-
larity based alignment as occupying a middle ground between the two preceding
techniques. With this technique, alignment is based on assessing the similarity
between remote cases. In the next subsection, we introduce our similarity based
alignment strategy.

3.3 Lexical Indexing

Rather than aligning heterogeneous case representations at a feature by feature
level, our solution is to identify similar cases stored in remote case bases and to
have the distributed case bases learn how to index these cases using a learned
shared lexicon. The process has two stages:

1. Indexing stage: An eager learning stage in which external case bases com-
municate to assess similarity between their cases. During this phase a shared
indexing lexicon emerges. We will briefly discuss this in the next subsection
but we will leave a detailed explanation until section 4.

2. Problem-solving stage: Each case base can quickly retrieve relevant cases
by consulting its indexing lexicon and issuing a label identifier.

3.4 Introduction to Case-Based Language Games

Figure 1 provides a simple illustration of a pair of case bases after the language
games process. The objective of the process is to automatically produce a shared
label set, T, which is then used to index similar cases in external case bases. In
the diagram, the label l1 refers to case ci1 in case base CBi and case cj9 in case
base CBj . The alignment between cases ci1 and cj9 occurred during the indexing
stage of the language games process. As the figure also illustrates, although the
label set that emerges is shared, case bases do not have to compromise their
local representation.

The language game itself is a simple process whereby the reference between
a case in a local case base and a label is incrementally reinforced through a se-
ries of exchanges with other case bases. Let us briefly consider a single language

Language Games: Solving the Vocabulary Problem in MCBR 41

game between two autonomous case bases, CBi and CBj . The goal of the game
is for peer CBj to respond correctly to a lexical ‘hint’ sent by CBi. The basic
methodology involves CBi, selecting a case, ci, and then sending the correspond-
ing label lk to CBj . CBj looks up label lk in its local lexicon and returns a local
case cj to CBi. CBi then ranks the cases in its case base in relation to the case
cj . If the most similar case to cj is the probe case, ci, the language game is a
success and CBi reinforces the relationship in its lexicon between case ci and
label lk. The language games methodology is described in detail in section 4.

3.5 The Problem-Solving Stage

In the following example an MCBR strategy allows the user to solve problems
by drawing on various information sources. After the eager learning phase, the
network of distributed case information can be consulted. Figure 1 illustrates
the process. In this scenario, a case base is made up of a set of descriptions
of different entertainment itineraries. The solution part of each case description
consists of reviews and comments posted by a set of users on the quality of the
proposed entertainment package. In our example, each case base contains reviews
that are pertinent to a particular interest group. Let us take the scenario where,
after querying case base CBi, the user provides relevance feedback to the case
base engine that the solution of the retrieved case ci1 was not adequate: in our
example, the itinerary is not reviewed in sufficient detail. In response, the engine
looks up the case being inspected by the user in its local lexicon. It finds that
it corresponds to the lexical label l1. It then issues a request for solutions for l1
to the other case bases. Each case base looks up label l1 in its local lexicon and
decodes it to retrieve the local case(s) associated with it. In the example shown
in Fig. 1, the solution for case cj9 from case base CBj is returned to the user.

�������������

���������	��

�	� ��
�	 ��
�	� ��
�	� ��

������������	

���������	��

�� ���

��� ���

�� ���

��� ���

�
�������������������������������������

��������

���� ��� !��������
����! �"���������
��#$$! ��##$��
#���
���� �������
���������%����&��'(

#�!����������� "� �
����� ���"����

#��� ����##$�
�"����#�����������
����������%�)���&��'�(

������	*

��
��
��
�	
�

�

�����
	��

���������������

���������������
	*

��������

Fig. 1. An example of the distributed indexing produced using the language games

model

42 P. Avesani, C. Hayes, and M. Cova

Thus, the lexical indexing methodology allows the user to quickly query exter-
nal resources when necessary. Furthermore, as similarity computation has been
eagerly computed and indexed during the language games stage, the bandwidth
and computation overheads involved in sending and decoding a label are very
low, entailing fast query time response.

4 Language Games

As we have discussed in the previous section, the goal of the language games
model is to enable communication about shared concepts between autonomous
peer case bases. In the following we will focus our attention on a specific model
of language games known as naming games [26]. A naming game is defined by
a set of peers P , a set of objects O, and a set of labels L. A peer p ∈ P is then
defined as a pair p =< Lp, Op >.

Each peer p ∈ P has its own lexicon drawn from the Cartesian product
Lp = Op × Lp × N × N , where Op are the objects referenced by p (represented
as cases), Lp is the local label set of p, and N are the natural numbers used to
represent the degree of association between Op and Lp.

Table 2 illustrates the lexicon of case-base CBj from Figure 1 during the
learning phase. In the table, u refers to the number of times the label has been
used in different language games by this agent while, a refers to how often it
has been successfully used. We can see that the relationship between label l1
and case cj9 has been successfully used 8 times in 10 different language games
while the relationship between l1 and case cj6 has been successful only once in
8 games.

Table 2. The lexicon of case base CBj during the learning phase

Op Lp u a
cj9 l1 10 8

cj9 l2 3 0

cj5 l3 5 4

cj6 l1 8 1

The ultimate goal of the game is to bring the local lexica of the peers towards
the same association structure. If all the peers converge on the same label to de-
note the same object the lexica will enable effective communication among peers.

4.1 Let the Games Begin

A naming game involves an iterative process based on pairwise sessions. The
basic interaction involves two peers with different roles: a speaker and a listener.
We will denote a speaker as ps and the listener as ph (The subscript ‘h’ will
always refer to the listener). Figure 2 illustrates the interaction model.

In the beginning, the lexicon of each peer only contains a set of locally defined
labels, one for each case in the case base, and the values of u and a are set to
zero. The speaker ps selects an object representation os ∈ Os at random and

Language Games: Solving the Vocabulary Problem in MCBR 43

����������������������

����������������������

���������������
���������������������

�����������������

 ��!�������������"���

#���$������%	����!�

&������'������(�!�
)���$������%	����!�

�$��(��"�$� �	������"�$�

Fig. 2. An illustration of the interaction between the speaker and the listener

encodes it using its local label ls. The speaker sends the label to the listener.
The listener ph decodes the label by looking it up in its lexicon and, given that
this is the first game of the process, finds it is not associated with any object
oh ∈ Oh. Therefore it creates a new lexicon entry for ls and associates it with
an object representation oh, selected at random from Oh: 〈oh, ls, 0, 0〉 ∈ Lh.

The listener sends the object representation to the speaker. The speaker then
begins the assessment step. The speaker must verify that the object representa-
tion received from the listener refers to os, the object selected at the beginning
of the communication session. If the object referred to by the listener is the same
as that selected by the speaker, the speaker reinforces the relationship between
os and ol in its lexicon. It then sends feedback to the listener that the language
game was successful. Likewise, the listener reinforces the relationship between ls
and oh in its lexicon.

4.2 Updating the Lexicon

Based on the assessment phase, the speaker and the listener update their lexica.
If the game was successful (os ≡ oh) both of them positively reinforce their lexica
by updating the corresponding label–object association as follows: 〈os, ls, us +
1, as + 1〉 ∈ Ls and 〈oh, ls, us + 1, as + 1〉 ∈ Lh. If the listener replies with a
reference to a different object os 	= oh, it means that the communication failed
and the peers’ lexica are negatively reinforced by only increasing u, the count
of the number of times the association was used, while the success count of the
association remains the same: 〈os, ls, us+1, as〉 ∈ Ls and 〈oh, ls, us+1, as〉 ∈ Lh.

4.3 Subsequent Games

Encoding. In subsequent games, the speaker ps again selects an object os to
encode. The label ls is chosen according to the associations expressed in the

44 P. Avesani, C. Hayes, and M. Cova

current version of the local lexicon Ls (local to speaker ps). The encoding of
object os is obtained by looking at the most successful label. A label lj is more
successful than a label lk iff 〈os, lj, uj , aj〉 ∈ Ls, 〈os, lk, uk, ak〉 ∈ Ls, uj ≥ uk

and either aj/uj > ak/uk or aj/uj = ak/uk and uj > uk, where uj represents
how many times the label lj has been used and aj represents how many times
there was an agreement on label lj with other peers. In case of a tie, a random
choice is performed.

Decoding. Likewise, when the listener ph receives a label ls from the speaker
it looks up the label in its lexicon Lh. It selects the object oh with the most
successful label using the same criteria described for encoding. If the label ls has
zero score association (as = 0) in the lexicon or is not found at all, the listener
creates a new lexicon entry by selecting oh ∈ Oh at random: 〈oh, ls, 0, 0〉 ∈ Lh.
As before, the entry is initialised with a zero association score. The listener then
returns the object oh to the speaker ps.

4.4 Assessment

Clearly, the critical point of the game is the assessment step, given that objects
can be referenced by heterogeneous representations. In our example, a cultural
event is an object that can be referenced by case instances from different schemas.
One type of assessment strategy would be to exploit the mapping between the
two schemas. An alternative strategy is to assess the equivalence of the object
representations by looking directly at the data. In the next section we present
how we implement this strategy using similarity assessment.

5 Experimental Evaluation

The current section aims to show how the game model illustrated above can
be deployed in a real world scenario. For this purpose we refer to the example
scenario we sketched in section 3.5. As before, the user consults a website with a
case base back end in order to search for a specific event. An event matching his
requirements is retrieved from the local case base. However, the solution part,
containing reviews by other users, is not detailed enough. He indicates that the
retrieved information is not satisfactory. The second stage involves the case base
retrieving alternative reviews from external case bases. However, as Figure 3
demonstrates, the heterogeneity between case base representations poses critical
limitations to this approach. Our evaluation will demonstrate how, using the
language games approach to produce a distributed index, the user is enabled to
quickly retrieve an alternative set of reviews.

Figure 3 illustrates data collected from Harmonise, a European initiative to
align data from tourism and destination management companies. To enable in-
teroperability between different representations of the same event, the Harmonise
consortium proposes a manual mapping of the RDF schemas to an intermediate
schema [8]. In the following we will try to apply the language game approach
working at the level of examples rather than schemas.

Language Games: Solving the Vocabulary Problem in MCBR 45

<!--- TIS --->
<event>

<produniqueid>1</produniqueid>
<eventplace>Locale Antenna Pressa
Via Domenico Mascio</eventplace>

<endingdate_d>21</endingdate_d>
<endingdate_m>05</endingdate_m>
<endingdate_y>2004</endingdate_y>
<startingdate_d>21</startingdate_d>
<startingdate_m>11</startingdate_m>
<startingdate_y>2003</startingdate_y>
<eventtype>1</eventtype>
<proddescription>
Orari: dal martedi alla domenica
ore 9.00-12.00 e ore 16.00-19.00

</proddescription>
<prodname>
La Siri.La fabbrica della ricerca.
Luigi Casale e l’ammoniaca sintetica
a Terni - Mostra Storico Documentaria

</prodname>
</event>

<!--- WoW --->
<event>

<title>
La Siri.La fabbrica della ricerca. Luigi
Casale e l’ammoniaca sintetica a Terni -
Mostra Storico Documentaria

</title>
<description>
Orari: dal martedi alla domenica ore
9.00-12.00 e ore 16.00-19.00

</description>
<loc>
<name>Locale Antenna Pressa Via Domenico
Mascio</name>

</loc>
<date>
<date.from>20031121</date.from>
<date.to>20040521</date.to>

</date>
</event>

Fig. 3. Two heterogeneous representations of the same case

For our simulation we will refer to the Harmonise partners as distributed
case base providers. Each case base is designed as a collection of cases where
the events are represented according to the local RDF schema. For simplicity,
we can assume that user annotations, i.e., the solution part of the case, can be
homogeneously represented with the RSS format.

The competence of the providers is defined by the events covered by their case
bases. Therefore, searching for a given event in remote case bases can be con-
ceived as a task of competence assessment. In the language games model, compe-
tence is assessed eagerly by calculating the similarity between two heterogeneous
event instances. In this evaluation, we have defined a similarity metric based on
the notion of bipartite string matching [12]. First, a linearization preprocessing
is performed where the structural information of the schema is dropped and the
the event data tokenised. A bipartite graph-matching algorithm is then used,
with a distance function, to find the optimal matching of tokens.

We design a language game where players are represented by the case base
providers and the events represent the competence that has to be denoted by
common labels. Each player is configured with an initial lexicon where the labels
are autonomously defined. As the language game is not “linguistic” in terms of
natural language, the choice of candidate labels can be arbitrary.

The simulation is arranged as an iteration of pairwise communication ses-
sions. At each iteration, two case base ‘players’ randomly choose to play. They
are randomly assigned the roles of speaker and listener. Therefore, each player
meets every other player without any specific bias. The same random strategy
is also adopted by the single player in selecting what kind of competence to
focus on.

In this evaluation, we extracted 6 different records from the Harmonise
dataset, each encoded in 4 different case representations. We then initiated the
language games process for a few hundred iterations without any specific stop-
ping criteria.

46 P. Avesani, C. Hayes, and M. Cova

6 Discussion

The experimental setup described above simulates a scenario with 4 case bases,
each having a different representation of the same 6 cases. The evolution of the
learning phase of our method is presented in Figure 4 which shows the plot of a
sample language game session.

The x axis is used to represent the number of language games between case
base pairs. The y axis shows the percentage of lexica convergence: 0% conver-
gence means that there is no label on which all case bases agree; while 100%
indicates that all case bases have reached an agreement on how to reference the
common cases. At the early stage, as the distributed case bases autonomously
define their own lexicon, the probability of choosing the same label to denote
the same competence is very low. The steps in the plot represent the increasing
agreement in the lexicon: each step means that a competence has been denoted
with the same label by all the case bases. After a while, agreement is reached
for all competences. When the rate of successful communication reaches 100%,
the distributed case bases share a common lexicon.

Three conclusions can be drawn from the evaluation. Firstly, by using the
language games approach, it is possible to achieve a convergence on a common
lexicon, without the need for ex ante agreement among case bases. Secondly, once
the case bases have reached an agreement on a common lexicon, it can be used
as an index to encode case base competences. The retrieval of a case from remote
case bases can be performed by simply transmitting the corresponding label in
the common lexicon. This contrasts with retrieval methods usually employed in
distributed case-based systems, where large cases are broadcast to all the remote

Fig. 4. Formation of an indexing lexicon

Language Games: Solving the Vocabulary Problem in MCBR 47

case bases and where similarity computations take place on-the-fly, ensuring poor
query time response for the user.

A third, more general result is concerned with the design and deployment of
distributed case-based reasoning systems. While previous work explores hetero-
geneity at the level of case-base competence or similarity assessment, we enable
heterogeneity during the case authoring stage. We consider this point crucial to the
development of an open architecture for distributed case-based reasoning systems
that support the deployment of new case bases without constraints on their design.

We recognise that many issues have been neglected in this simulation. First
of all, the experimental evaluation involves a small number of case bases and
cases. However, we felt that, at this point of the research on distributed case
bases, the most critical factor to address was heterogeneity. As such, we decided
to demonstrate our approach on a dataset from a real world application rather
than on an artificial dataset. We have postponed an analysis of the issues related
to scaling for later work. There are other issues related to the deployment of this
technique in a real world application. For example, in a real scenario, new case
bases can be added to the system at any time. The addition of case bases can
affect the process of lexicon agreement and produce a temporary degradation of
the communication and problem-solving quality. Furthermore, we still have to
develop a fully distributed stopping criteria for the games process. Nevertheless,
we believe that our approach based on the language games technique opens a
new perspective for research in case-based reasoning.

7 Conclusion

In this paper we analysed the vocabulary problem in MCBR systems. Case-base
heterogeneity poses a considerable bar to developing real MCBR systems. For in-
stance, the solution of mapping between containers raises questions about whether
there are sufficient benefits in return for the knowledge and maintenance invest-
ment required. At the same time, there are clearly situations when knowledge from
external sources would improve the solutions provided by a local case-base. We
suggest an innovative approach to this problem. Using a technique called language
games, we eagerly build a distributed lexicon, whereby local cases index the com-
petence of external case-bases. When solutions cannot be found locally the lexi-
con can be consulted to provide access to similar cases in remote case-bases. We
suggest that this work makes three contributions to research in MCBR: firstly, it
enables external, heterogeneous sources to be used to solve problems. Secondly, it
does so by providing an efficient retrieval method for external cases whereby the
query time calculation of similarity on multiple case bases is avoided by broadcast-
ing a single label. Thirdly, it enables autonomous case authoring and maintenance,
which is one of the key benefits of the distributed CBR approach.

Acknowledgements

We would like to thank Mirella Dell’Erba and the Harmonise Consortium who
kindly provided us with a real world example of a heterogeneous data collection.

48 P. Avesani, C. Hayes, and M. Cova

This work was partially funded by the DiCA project, thanks to a grant from
INRM (Istituto Nazionale Ricerca Montagna) and PAT (Provincia Autonoma di
Trento).

References

1. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific Ameri-
can, 279, May 2001.

2. R. Chau and C.-H. Yeh. A multilingual text mining approach to web cross-lingual
text retrieval. Knowledge Based Systems - Special Issue on Web Intelligence, 17(5-
6):219–227, 2004.

3. L. Coyle, D. Doyle, and P. Cunningham. Representing Similarity for CBR in XML.
In P. Funk and P. A. Gonzalez-Calero, editors, Advances in Case-Based Reasoning,
7th European Conference on Case Based Reasoning (eccbr 2004), volume 3155 of
Lecture Notes in Computer Science, pages 119–127. Springer, 2004.

4. S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman. In-
dexing by latent semantic analysis. Journal of the Society for Information Science,,
41(6):391–407, 1990.

5. A. Doan, P. Domingos, and A. Y. Halevy. Reconciling schemas of disparate data
sources: a machine-learning approach. In SIGMOD ’01: Proceedings of the 2001
ACM SIGMOD international conference on Management of data, pages 509–520.
ACM Press, 2001.

6. J. Euzenat. An API for ontology alignment. In 3rd International Semantic Web
Conference (ISWC), Lecture notes in computer science 3298. Springer, 2004.

7. D. Fensel, F. van Harmelen, I. Horrocks, D. L. McGuinness, and P. F. Patel-
Schneider. Oil: An ontology infrastructure for the semantic web. IEEE Intelligent
Systems, 16(2):38–45, 2001.

8. O. Fodor, M. Dell’Erba, F. Ricci, and H. Werthner. Harmonise: a solution for data
interoperability. In Proceedings of the 2nd IFIP Conf.on E-Commerce, E-Business
& E-Government, Lisbon, Portugal, October 2002.

9. G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Dumais. The Vocabu-
lary Problem in Human-System Communication. Communications of the ACM,
30(11):964–971, 1987.

10. C. Hayes, P. Cunningham, and D. Michelle. Distributed CBR using XML. In Work-
shop: Intelligent Systems and Electronic Commerce, Bremen, September 1998.

11. J. L. Kolodner. Case Based Reasoning. Morgan Kaufmann, San Mateo, 1993.
12. H. Kuhn. The hungarian method for the assignment problem. In Naval Research

Logistic Quarterly, pages 83–97, 1955.
13. D. B. Leake and R. Sooriamurthi. When Two Case Bases Are Better than One:

Exploiting Multiple Case Bases. In ICCBR ’01: Proceedings of the 4th International
Conference on Case-Based Reasoning, pages 321–335. Springer-Verlag, 2001.

14. D. B. Leake and R. Sooriamurthi. Automatically Selecting Strategies for Multi-
Case-Base Reasoning. In ECCBR ’02: Proceedings of the 6th European Conference
on Advances in Case-Based Reasoning, pages 204–233. Springer-Verlag, 2002.

15. D. B. Leake and R. Sooriamurthi. Managing Multiple Case Bases: Dimensions and
Issues. In 15th FLAIRS conference, 2002.

16. F. Martin, E. Plaza, and J.-L. Arcos. Knowledge and experience reuse through
communications among competent (peer) agents. International Journal of Software
Engineering and Knowledge Engineering, 9(3):319–341, 1999.

Language Games: Solving the Vocabulary Problem in MCBR 49

17. L. McGinty and B. Smyth. Collaborative Case-Based Reasoning: Applications in
Personalised Route Planning. In ICCBR ’01: Proceedings of the 4th International
Conference on Case-Based Reasoning, pages 362–376. Springer-Verlag, 2001.

18. A. Oram, editor. Peer-to-Peer, Harnessing the Power of Disruptive Technologies.
O’Reilly & Associates, 2001.

19. M. Prasad, V. R. Lesser, and S. Lander. On retrieval and reasoning in distributed
case bases. In IEEE International Conference on Systems Man and Cybernetics,
October 1995.

20. M. Prasad and E. Plaza. Corporate memories as distributed case libraries. In
Dieng and Vanwelkenhuysen. 1996.

21. E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema match-
ing. The VLDB Journal, 10(4):334–350, 2001.

22. M. Richter. The knowledge contained in similarity measures, 1995.
23. D. J. Schiano, B. A. Nardi, M. Gumbrecht, and L. Swartz. Blogging by the Rest

of Us. In CHI ’04: Extended abstracts of the 2004 conference on Human factors
and computing systems, pages 1143–1146. ACM Press, 2004.

24. A. Sengupta, D. C. Wilson, and D. B. Leake. On Constructing the Right Sort of
CBR Implementation. In IJCAI-99 Workshop on Automating the Construction of
Case Based Reasoners, 1999.

25. D. L. R. Sooriamurthi. Case dispatching versus case-base merging: when mcbr
matters. International Journal on Artificial Intelligence Tools: Architectures, Lan-
guages and Algorithms (IJAIT), 13, No 1:237–254, 2004.

26. L. Steels and A. McIntyre. Spatially Distributed Naming Games. Advances in
Complex Systems, 1(4):301–323, January 1999.

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, pp. 50 – 62, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Evaluation and Monitoring of the Air-Sea Interaction
Using a CBR-Agents Approach

Javier Bajo1 and Juan M. Corchado2

1 Universidad Pontificia de Salamanca, C/ Compañía 5,
37002 Salamanca, Spain
jbajope@upsa.es

2 Departamento Informática y Automática, Universidad de Salamanca,
Plaza de la Merced s/n, 37008, Salamanca, Spain

corchado@usal.es

Abstract. This paper presents a model constructed for the evaluation of the
interaction of the atmosphere and the ocean. The work here presented focuses in
the development of an agent based architecture that has been constructed for the
evaluation of the interaction, between the atmosphere and the ocean waters, of
several parameters. Such evaluation needs to be made continuously in a
dynamic environment and therefore requires the use of autonomous models that
evolve with the time. The proposed architecture incorporates CBR-agents
whose aim is to monitor the evolution of the interaction of parameters and
facilitate the creation of an explanation model. The system has been tested and
this paper presents the results obtained.

1 Introduction

The agent paradigm is gaining relevance in the development of applications for
flexible and dynamic environments, such as the web, personalized user interfaces,
oceanography, control systems or robotic environments. Agents are often
characterized by their capabilities such as autonomy, reactivity, pro-activeness, social
ability, reasoning, learning, and mobility, among others. These capabilities can be
modelled in different ways and with different tools [26], one of the possibilities is the
use of CBR systems. This paper presents a CBR-agent based architecture that is the
core of a distributed system developed for the analysis and evaluation of the
interaction between ocean water masses and the atmosphere. The aim of this paper is
to present a successful architecture that allows the construction of dynamic systems
capable of growing in dimension and of adapting their knowledge to environmental
changes. In this work we are mainly interested in the modelling of deliberative agents
with CBR systems, as they can be used for implementing adaptive systems. Agents
must be able to respond to events, which occur within their environment, take the
initiative according to their goals, interact with other agents (even human), and to use
past experiences to achieve current goals. Several architectures have been proposed
for building deliberative agents, most of them based on the BDI model [21]. In this

LNAI

 Evaluation and Monitoring of the Air-Sea Interaction 51

model, agents have mental attitudes of Beliefs, Desires and Intentions. In addition,
they have the capacity to decide what to do and how to get it according to their
attitudes. The beliefs represent its information state, what the agent knows about itself
and its environment. The desires are its motivation state, what the agent is trying to
achieve. And the intentions represent the agent’s deliberative states. Intentions are
sequences of actions; they can be identified as plans. These mental attitudes determine
the agent’s behaviour and are critical in attaining proper performance when the
information about the problem is scarce [2, 15].

A BDI architecture has the advantage that it is intuitive and relatively simple to
identify the process of decision-making and how to perform it. Furthermore, the
notions of belief, desire and intention are easy to understand. On the other hand, its
main drawback lies in finding a mechanism that permits its efficient implementation.
There are several approaches to formalise and implement BDI agents, among them,
dMARS [8], PRS [18], JACK [4], JAM [14], and AgentSpeak(L) [20]. One of the
problems for an efficient implementation lies in the use of multi-modal logic for the
formalisation and construction of such agents, because they have not been completely
axiomatised and they are not computationally efficient. Rao and Georgeff [21] state
that the problem lies in the great distance between the powerful logic for BDI systems
and practical systems. Another problem is that this type of agent is not able to learn, a
necessary requirement for them since they have to be constantly adding, modifying or
eliminating beliefs, desires and intentions. It would be convenient to have a reasoning
mechanism that would enable the agent to learn and adapt in real time, while the
computer program is running, avoiding the need to recompile such an agent whenever
the environment changes.

In order to overcome these issues, we propose the use of a case-based reasoning
(CBR) system for the development of deliberative agents [5, 8]. The proposed method
facilitates the automation of their construction. Implementing agents in the form of
CBR systems also facilitates learning and adaptation, and therefore a greater degree of
autonomy than with a pure BDI architecture [13]. If the proper correspondence
between the three mental attitudes of BDI agents and the information manipulated by
a CBR system is established, an agent with beliefs, desires, intentions and a learning
capacity will be obtained. Our approach to establish the relationship between agents
and CBR systems differs from other proposals [1, 10, 17, 19, 25], as we propose a
direct mapping between the agent conceptualisation and its implementation, in the
form of a CBR system.

The next section reviews the relationships that can be established between CBR
and BDI concepts. Section three describes the environmental problem that motivates
most of this research. Section four describes the multiagent based system developed
paying special attention to the CBR-BDI agents constructed. Finally the conclusions
and the some preliminary results are presented.

2 CBR-BDI Agents

The purpose of case-based reasoning (CBR) is to solve new problems by adapting
solutions that have been used to solve similar problems in the past. The deliberative
agents, proposed in the framework of this investigation, use this concept to gain in

52 J. Bajo and J.M. Corchado

autonomy and improve their problem solving capabilities. Figure 1 shows the activity
diagram of a CBR-BDI agent for one of the possible actions, which is composed of a
reasoning cycle that consists of four sequential phases: retrieve, reuse, revise and retain.

An additional activity, revision of the expert’s knowledge, is required because the
memory can change as new cases appear during this process. Each of these activities
can be automated, which implies that the whole reasoning process can be automated
to a certain extent [6]. According to this, agents implemented using CBR systems
could reason autonomously and therefore adapt themselves to environmental changes.

Fig. 1. Activity diagram describing a set of activities, including a CBR-BDI agent reasoning
cycle

The CBR system is completely integrated into the agents’ architecture. The CBR-
BDI agents incorporate a “formalism” which is easy to implement, in which the
reasoning process is based on the concept of intention. Intentions can be seen as
cases, which have to be retrieved, reused, revised and retained. This makes this model
unique in its conception and reasoning capacities. The structure of the CBR system
has been designed around the concept of a case. A straight relationship between CBR
systems and BDI agents can also be established if the problems are defined in the
form of states and actions.

The relationship between CBR systems and BDI agents can be established
implementing cases as beliefs, intentions and desires which led to the resolution of the
problem. As described in [8], in a CBR-BDI agent, each state is considered as a
belief; the objective to be reached may also be a belief. The intentions are plans of
actions that the agent has to carry out in order to achieve its objectives [2], so an
intention is an ordered set of actions; each change from state to state is made after
carrying out an action (the agent remembers the action carried out in the past when it
was in a specified state, and the subsequent result). A desire will be any of the final
states reached in the past (if the agent has to deal with a situation, which is similar to a
past one, it will try to achieve a similar result to the previously obtained result). In [8]
can be seen a diagram with a representation of the relationship between BDI agents
and CBR systems.

 Evaluation and Monitoring of the Air-Sea Interaction 53

3 Quantification of the Ocean Interaction Budget

An understanding of the natural sources and sinks of atmospheric carbon dioxide is
necessary for predicting future atmospheric loading and its consequences for global
climate. Present estimates of emissions and uptake do not balance, and although some
have attributed the imbalance to a terrestrial sink, the magnitude of the oceanic sink
remains undefined [22]. The vast amount of new data on atmospheric CO2 content
and ancillary properties that have become available during the last decade and the
development of mathematical models to interpret this data have lead to significant
advances in our capacity to deal with such issues. However, a continuing major cause
of uncertainty is the role played by photosynthesis in providing a sink for
anthropogenic emissions [22]. The solution to these types of problems requires the
use of dynamic systems, capable of incorporating new knowledge and facilitating the
monitoring and estimation work carried out by oceanographers. The rapid increase in
atmospheric CO2 resulting from atmospheric changes in the carbon cycle has
stimulated a great deal of interest.

The need to quantify the carbon dioxide valence and the exchange rate between the
oceanic water surface and the atmosphere has motivated us to develop a distributed
system that incorporates CBR-BDI agents capable of estimating such values using
accumulated knowledge and updated information. The CBR-BDI agents receive data
from satellites, oceanographic databases, oceanic and commercial vessels. The
information received is composed of satellite images of the ocean surface, wind
direction and strength and other parameters such as water temperature, salinity and
fluorescence.

The goal of our project is to construct a model that calculates the global budgets of
CO2, a mean CO2 flux for the whole oceanographic basin. The oceans contain
approximately 50 times more CO2 in dissolved forms than the atmosphere, while the
land biosphere including the biota and soil carbon contains about 3 times as much
carbon (in CO2 form) as the atmosphere [24]. The CO2 concentration in the
atmosphere is governed primarily by the exchange of CO2 with these two dynamic
reservoirs. Since the beginning of the industrial era, about 2000 billion tons of carbon
have been released into the atmosphere as CO2 from various industrial sources
including fossil fuel combustion and cement production. This amounts to about 35%
of the pre-industrial level of approximately 590 billion tons as carbon. At present,
atmospheric CO2 content is increasing at an annual rate of about 3 billion tons which
corresponds to one half of the annual emission rate of approximately 6 billion tons
from fossil fuel combustion. Whether the missing CO2 is mainly absorbed by the
oceans or by the land and their ecosystems has been debated extensively over the past
decade.

It is important, therefore, to fully understand the nature of the physical, chemical
and biological processes which govern the oceanic sink/source conditions for
atmospheric CO2 [16, 24]. Satellite-borne instruments provide high-precision, high-
resolution data on atmosphere, ocean boundary layer properties and ocean
biogeochemical variables, daily, globally, and in the long term (Figure 2). All these
new sources of information have changed our approach to oceanography and the data
generated needs to be fully exploited. Wind stress, wave breaking and the damping of
turbulence and ripples by surface slicks, all affect the air-sea exchange of CO2. These

54 J. Bajo and J.M. Corchado

processes are closely linked to the "roughness" of the sea surface, which can be
measured by satellite radars and microwave radiometers. Sea surface roughness
consists of a hierarchy of smaller waves upon larger waves (photograph, left, and
close-up, below). Different sensors give subtly different measurements of this
roughness.

Fig. 2. Satellite colour pictures

Our final aim is to model both the open ocean and shelf seas, and it is believed that
by assimilating Earth Observation (EO) data into artificial intelligence models these
problems may be solved. EO data (both for assimilation and for validation) are vital
for the successful development of reliable models that can describe the complex
physical and biogeochemical interactions involved in marine carbon cycling. Satellite
information is vital for the construction of oceanographic models, and in this case, to
produce estimates of air-sea fluxes of CO2 with much higher spatial and temporal
resolution, using artificial intelligence models than can be achieved realistically by
direct in situ sampling of upper ocean CO2. To handle all the potentially useful data to
create daily models in a reasonable time and with a reasonable cost it is necessary the
use of automated distributed systems capable of incorporate new knowledge. Our
proposal is presented in the following section.

4 Multi Agent System

Our scientific focus is on advancing the science of air-sea interactions and reducing
the errors in the prediction of climate change. The primary goal is to quantify
accurately the global air-sea fluxes of carbon dioxide. Over the past few years several
models have been constructed and experiments carried out. Finally a distributed
system has been constructed for solving the previously described problem. Gaia [27]
has been initially used for the design of the distributed system, then AUML (Agent-
based Unified Modelling Language) has been used for the low level design.

This system incorporates several agents each of them in charge of a different task.
Figure 3 presents an extension of the acquaintance model of a Gaia diagram and

 Evaluation and Monitoring of the Air-Sea Interaction 55

represents the multiagent architecture, its components and interactions. It incorporates
reactive agents, in charge of repetitive tasks, and more complex deliberative CBR-
BDI agents in charge of monitoring, modelling and evaluating the interaction between
the water surface and the atmosphere.

Fig. 3. Multiagente architecture

Fig. 4. Super User agent class diagram

The system includes a Super-user agent and several user agents, Modelling agents,
CaStore agents and Vessel Agents. The User and Super-user are interface agents that
facilitate the access to the system. Figure 4 and 5 show their AUML class diagrams.

56 J. Bajo and J.M. Corchado

Fig. 5. User agent class diagram

Fig. 6. Vessel agent class diagram

The vessel agents are installed in the oceanographic and commercial ships that
collaborate with the research project. They receive information from different sensors

For example the Super-user agent facilitates the interaction between the super user
and all the agents of the systems, as shown in Figure 4. These agents also facilitate the
access to the data and to the constructed models. They also allow the users to follow
and to modify the modelling process.

 Evaluation and Monitoring of the Air-Sea Interaction 57

Fig. 7. CaStore agent class diagram

and store it. They can send their stored data to the CaStore agents on demand. The
vessel agent may act on the boat sensors and EPRONS. They can also initiate an
evaluation process of a given model. Models are always constructed by the Modelling
agents. The CaSrore agents transform the satellite images and the data received form
the vessel agents in cases. When new cases are constructed the Modelling agents are
informed so the model in use may be improved. These agents also facilitate the user
the access to the case store. The CaStore agents store historical and updated
information incoming form the Vessel agents and from satellites. This data is sent to
the Modelling agents, which have the goal of monitoring the ocean evolution and of
evaluating the carbon dioxide interaction between the water surface and the
atmosphere. The Modelling agents are CBR-BDI agents that use a CBR system to
achieve their goals. Figure 8 shows the class diagram of these Modelling agents. The
Modelling agents use CoHeL IBR system to achieve their goals [7]. The Cooperative
Maximum Likelihood Hebbian Learning (CoHeL) method is a novel approach that
features both selection, in which the aim is to visualize and extract information from
complex, and highly dynamic data. The model proposed is a mixture of factor
analysis and exploratory projection pursuit based on a family of cost functions
proposed by Fyfe and Corchado [12] which maximizes the likelihood of identifying a
specific distribution in the data while minimizing the effect of outliers. It employs
cooperative lateral connections derived from the Rectified Gaussian Distribution [23]
in order to enforce a more sparse representation in each weight vector. This method is
used for the clustering of instances, and during the retrieval stage of the IBR cycle,

58 J. Bajo and J.M. Corchado

Fig. 8. Modelling agent class diagram

Fig. 9. Modelling agent interaction model, user request

Figure 9 shows one of the possible collaboration diagrams of the interaction model
between the Modelling agent and the user of the system. This sequence of actions
facilitates the construction of a model of the ocean surface – atmosphere interaction of
a particular area of the ocean. Each Modelling agent is in charge of a particular

the adaptation step is carried out using a radial basis function network. Finally, the
system is updated continuously with data obtained from the CaStore agents. The
CoHeL IBR system is described in [7].

 Evaluation and Monitoring of the Air-Sea Interaction 59

Fig. 10. State diagram for the Modelling agent

oceanic area, for example the North Atlantic Ocean. The relationship between CoHel
IBR systems and the BDI agent in which it is embedded can be established
implementing instances such as beliefs, intentions and desires which lead to the
esolution of the problem. When the Modelling agent starts to solve a new problem,
with the intention of achieving a goal (identifying the carbon dioxide rate), it begins a
new IBR reasoning cycle, which will help to obtain the solution. The retrieval, reuse
and revision stages of the IBR system facilitate the construction of the agent plan. The
agent’s knowledge-base is the instance-base of the IBR system that stores the
instances of past beliefs, desires and intentions. The agents work in dynamic
environments and their knowledge-base has to be adapted and updated continuously
by the retention stage of the IBR system. Figure 10 presents the state diagram for the
Modelling agent. It shows how the agent is continually working and using the IBR
life cycle for reasoning and achieving its goals. Figure 2 shows the activity diagram
describing a CBR-BDI agent reasoning cycle, which can be applied to this agent too.

5 System Evaluation and Conclusions

The previously described system was tested in the North Atlantic Ocean during 2004.
During this period of time the multiagent system has been tuned and updated and the
first autonomous prototype started to work in may 2004. Although the system is not
fully operational and the aim of the project is to construct a research prototype and not
a commercial tool, the initial results have been very successful from the technical and
scientific point of view. The construction of the distributed system has been relatively
easy using previously developed CBR-BDI libraries [5, 6, 7, 8]. From the software
engineering point of view AUML and Gaia [27] provide an adequate framework for
the analysis and design of distributed agent based systems. The formalism defined in
[13] facilitates the straight mapping between the agent definition and the CBR

60 J. Bajo and J.M. Corchado

construction. The user can interact with the Modelling agent (via his/her user agent)
following the interaction model described in Figure 10 and obtain information about
the carbon dioxide exchange rate of a given area.

Table 1. Instance values

Instance Field Measurement
DATE Fecha
LAT Latitude
LONG Longitude
SST Temperature
S Salinity
WS Wind strength
WD Wind direction
Fluo_calibrated fluorescence calibrated with chlorophyll
SW pCO2 surface partial pressure of CO2

The Modelling Agents have their own interface and can also be accessed via the
User or Super user agents. These agents handle beliefs, desires and intention from a
conceptual point of view and cases from an implementation point of view. A case is
composed of the attributes described in Table 1. Cases can be viewed, modified and
deleted manually or automatically by the agent (during its revision stage). The agent
plants (intentions) can be generated using different strategies since the agent
integrates different algorithms.

Table 2. Million of Tones of C02 exchanged in the North Atlantic

 October 04 November 04 December 04
Multiagent System -18 19 31
Casix manual models -20 25 40

The interaction between the system developers and oceanographers with the
multiagent system has been continuous during the construction and pruning period,
from December 2003 to September 2004. The system has been tested during the last
three months of 2004 and the results have been very accurate. Table 2 presents the
results obtained with the Multiagent systems and with mathematical Models [16] used
be oceanographers to identify the amount of CO2 exchanged. The numerical values
represent the million of Tonnes of carbon dioxide that have been absorbed (negative
values) or generated (positive value) by the ocean during each of the three months.

The values proposed by the CBR-BDI agent are relatively similar to the ones
obtained by the standard technique. In this case the case/instance base has been
constructed with over 100,000 instances, and includes data since 2002. The
multiagent system has automatically incorporated over 20,000 instances during these
three months and eliminated 13% of the initial ones. While the CBR-BDI Modelling
Agent generates results on a daily basis without any human intervention, the Casix
manual modelling techniques require the work of one researcher processing data

 Evaluation and Monitoring of the Air-Sea Interaction 61

during al least four working days. Although the proposed system requires further
improvements and more work the initial results are very promising. The CoHel IBR
systems embedded within the Modelling agent has provided relatively accurate results
in the North Atlantic Waters as well as in the Pacific Ocean [7]. The generated
framework facilitates the incorporation of new agents using different modelling
techniques and learning strategies so further experiment will allow to compare these
initial results with the ones obtained by other techniques.

References

1. Bergmann, R. and W. Wilke (1996). On the role of abstraction in case-based reasoning.
Lecture Notes in Artificial Intelligence, 1186, pp. 28-43. Springer Verlag.

2. Bratman M.E., Israel D., and Pollack M.E. (1988). Plans and resource-bounded practical
reasoning. Computational Intelligence, 4. pages 349-355.

3. Bratman, M.E. (1987). Intentions, Plans and Practical Reason. Harvard University Press,
Cambridge, M.A.

4. Busetta, P., Ronnquist, R., Hodgson, A., Lucas A. (1999). JACK Intelligent Agents
Components for Intelligent Agents in Java. Technical report, Agent Oriented Software
Pty. Ltd, Melbourne, Australia, 1998.

5. Corchado J. M. and Laza R. (2003). Constructing Deliberative Agents with Case-based
Reasoning Technology, International Journal of Intelligent Systems. Vol 18, No. 12,
December. pp.: 1227-1241

6. Corchado J. M. and Lees B. (2001). A Hybrid Case-based Model for Forecasting. Applied
Artificial Intelligence. Vol 15, no. 2, pp.105-127.

7. Corchado J. M., Aiken J., Corchado E. Lefevre N. and Smyth T. (2004) Quantifying the
Ocean’s CO2 Budget with a CoHeL-IBR System. 7th European Conference on Case-
based Reasoning, Lecture Notes in Computer Science, Lecture Notes in Artificial
Intelligence 3155, Springer Verlag. pp. 533-546.

8. Corchado J. M., Pavón J., Corchado E. and Castillo L. F. (2005) Development of CBR-
BDI Agents: A Tourist Guide Application. 7th European Conference on Case-based
Reasoning 2004. Lecture Notes in Artificial Intelligence 3155, Springer Verlag. pp. 547-
559.

9. D’Iverno, M., Kinny, D., Luck, M., and Wooldridge, M. (1997). A Formal Specification
of dMARS. In: Intelligent Agents IV, Agent Theories, Architectures, and Languages, 4th
International Workshop, ATAL '97, Providence, Rhode Island, USA, July 24-26, 1997,
Proceedings. Lecture Notes in Computer Science 1365, Springer Verlag, pp. 155-176.

10. Feret M. P. and Glasgow J. I. (1994). Explanation-Aided Diagnosis for Complex Devices,
Proceedings of the 12th National Conference an Artificial Intelligence, (AAAI-94),
Seattle, USA, August 94.

11. Freedman J. and Tukey J. (1974) A Projection Pursuit Algorithm for Exploratory Data
Analysis. IEEE Transaction on Computers, (23): 881-890, 1974.

12. Fyfe C. and Corchado E. S. (2002) Maximum Likelihood Hebbian Rules. European
Symposium on Artificial Neural Networks. 2002.

13. Glez-Bedia M., Corchado J. M., Corchado E. S. and Fyfe C. (2002) Analytical Model for
Constructing Deliberative Agents, Engineering Intelligent Systems, Vol 3: pp. 173-185.

14. Huber, M. (1999). A BDI-Theoretic Mobile Agent Architecture. AGENTS '99.
Proceedings of the Third Annual Conference on Autonomous Agents, May 1-5, 1999,
Seattle, WA, USA. ACM, pp. 236-243.

62 J. Bajo and J.M. Corchado

15. Kinny, D. and Georgeff, M. (1991). Commitment and effectiveness of situated agents. In:
Proceedings of the Twelfth International Joint Conference on Artificial Intelligence
(IJCAI’91), Sydney, Australia, pp. 82-88.

16. Lefevre N., Aiken J., Rutllant J., Daneri G., Lavender S. and Smyth T. (2002)
Observations of pCO2 in the coastal upwelling off Chile: Sapatial and temporal
extrapolation using satellite data. Journal of Geophysical research. Vol. 107, no. 0

17. Martín F. J., Plaza E., Arcos J.L. (1999). Knowledge and experience reuse through
communications among competent (peer) agents. International Journal of Software
Engineering and Knowledge Engineering, Vol. 9, No. 3, 319-341.

18. Myers, K. (1996). A Procedural Knowledge Approach to Task-Level Control. Proceedings
of the Third International Conference on Artificial Intelligence Planning Systems,, pp.
158-165.

19. Olivia C., Chang C. F., Enguix C.F. and Ghose A.K. (1999). Case-Based BDI Agents: An
Effective Approach for Intelligent Search on the World Wide Web, AAAI Spring
Symposium on Intelligent Agents, 22-24 March 1999, Stanford University, USA.

20. Rao, A. S. (1996). AgentSpeak(L): BDI Agents speak out in a logical computable
language. Agents Breaking Away, 7th European Workshop on Modelling Autonomous
Agents in a Multi-Agent World, Eindhoven, The Netherlands, January 22-25, 1996,
Proceedings. Lecture Notes in Computer Science 1038, Springer Verlag, pp. 42-55.

21. Rao, A. S. and Georgeff, M. P. (1995). BDI Agents: From Theory to Practice. First
International Conference on Multi-Agent Systems (ICMAS-95). San Franciso, USA.

22. Sarmiento J. L. and Dender M. (1994) Carbon biogeochemistry and climate change.
Photosynthesis Research, Vol. 39, 209-234.

23. Seung H.S., Socci N.D. and Lee D. (1998) The Rectified Gaussian Distribution, Advances
in Neural Information Processing Systems, 10.

24. Takahashi T., Olafsson J., Goddard J. G., Chipman D. W. and Sutherland S. C. (1993)
Seasonal Variation of CO2 and nutrients in the High-latitude surface oceans: a
comparative study. Global biochemical Cycles. Vol. 7, no. 4. pp 843-878.

25. Wendler J. and Lenz M. (1998). CBR for Dynamic Situation Assessment in an Agent-
Oriented Setting. Proc. AAAI-98 Workshop on CBR Integrations. Madison (USA) 1998.

26. Wooldridge, M. and Jennings, N. R. (1995) Agent Theories, Architectures, and
Languages: a Survey. In: Wooldridge and Jennings, editors, Intelligent Agents, Springer-
Verlag, pp. 1-22.

27. Wooldridge, M. and Jennings, N. R. and Kinny, D. (2000) The Gaia Methodology for
Agent-Oriented Analysis and Design. Journal of Autonomous Agents and Multi-Agent
Systems, 3 (3). pp. 285-312.

A Comparative Analysis of Query Similarity

Metrics for Community-Based Web Search

Evelyn Balfe and Barry Smyth

Smart Media Institute, Department of Computer Science,
University College Dublin, Belfield, Dublin 4, Ireland

{Evelyn.Balfe, Barry.Smyth}@ucd.ie�

Abstract. Collaborative Web search is a community-based approach
to adaptive Web search that is fundamentally case-based: the results of
similar past search sessions are reused in response to new target queries.
Previously, we have demonstrated that this approach to Web search can
offer communities of like-minded searchers significant benefits when it
comes to result relevance. In this paper we examine the fundamental issue
of query similarity that drives the selection and reuse of previous search
sessions. In the past we have proposed the use of a relatively simple form
of query similarity, based on the overlap of query-terms. In this paper
we examine and compare a collection of 10 alternative metrics that use
different types of knowledge (query-terms vs. result-lists vs. selection
behaviour) as the basis for similarity assessment.

1 Introduction

None of the major Web search engines really consider context, at least in any
meaningful way, when responding to typical user queries, even though many
searches can be usefully informed by different search contexts. For example,
searches that originate from a search box on a motoring Web site are likely to
relate to motoring topics and searchers with queries like beatle will probably be
looking to select results that are car-related. Similarly, searches that originate
from the employees of a software company, for queries like tomcat, will probably
relate to application servers instead of wild cats. There are two important points
to make here. First, Web queries are often very vague or ambiguous. Second,
many queries originate from ad-hoc communities of like-minded searchers (eg.
the visitors to a motoring Web site or the employees of a software company).

When we examined the behaviour of searchers, especially those that relate
to community-based search scenarios, we found a high degree of repetition in
the types of queries submitted and a high degree of regularity in the types
of pages that are selected for these queries [1]. This repetition and regularity
motivates our case-based approach to Web search, which works to re-order the
search results of a base-level search engine according to the preferences of the
� The support of the Informatics Research Initiative of Enterprise Ireland is gratefully

acknowledged.

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, pp. 63–77, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNAI

64 E. Balfe and B. Smyth

community. To do this we record the community’s search histories as a case-base
of search cases and when faced with a new target query we retrieve a set of these
cases that have similar queries and then reuse their selected results to adapt the
results returned from the base-level search engine.

Previously we have presented a range of evaluation results to show that
this so-called collaborative search technique can deliver significant benefits to
users [1,2]. In the past we have adopted a straightforward term-based model of
query similarity, one that measures the relative overlap between the terms of two
queries. In this paper, after reviewing the collaborative Web search approach,
we describe and evaluate 10 new similarity metrics that use a range of different
sources of knowledge to inform the similarity judgement. In addition to new
term-based metrics, we also propose a family of result-based metrics (which es-
timate the similarity between two queries by examining the result-lists returned
by the base-level search engine) and a family of selection-based metrics (which
compare the selection behaviours of users for the two queries).

2 A Review of Collaborative Web Search

Figure 1 outlines the basic I-SPY architecture which implements collabora-
tive Web search. I-SPY is a meta-search engine, drawing on the results pro-
duced by a set of underlying search engines; I-SPY can be found online at
‘http://ispy.ucd.ie’. When I-SPY receives a new query, qT , from some user, it
submits this query to each of its underlying search engines (S1, ..., Sn) and com-
bines the result-lists that are returned (R1, ..., Rn). To do this I-SPY must adapt
both the new query, to match the format of each underlying search engine, and
also the result-lists that are returned to produce a modified result-list Rm.

I-SPY’s key innovation stems from its ability to personalize search results by
re-ranking results based on the selection history of previous searchers, effectively
transforming the meta-search result-list Rm in to a modified result-list, RT .
Further detail is available in [1].

2.1 Profiling Search Histories

The hit-matrix, H, maintains a record of the results selected in past search ses-
sions. Each time a searcher selects page (pj) for some target query (qT) the
value of HTj is incremented. Thus, HTj is the number of times that pj has been
selected as a result for query qT . The row of H that corresponds to qT provides
a complete account of the relative number of all previous page selections for this
query, where each page selection is represented by a unique column in H. In
essence the hit-matrix is a case-base and each row is a search case that contains,
as its specification part, a query, and, as its solution part, a record of the number
of selections for different pages in response to this community.

2.2 Reusing Similar Queries

When a searcher submits a new target query (qT) we use I-SPY to locate all
search cases (rows of the hit-matrix) whose queries (qc) are similar to the target

A Comparative Analysis of Query Similarity Metrics 65

Fig. 1. The I-SPY system architecture

query. To do this we compute the overlap between the terms in qT and the terms
in each candidate query qc, as shown in Equation 1. I-SPY then selects all search
cases, whose queries exceed a given similarity threshold, to produce its list of
related search cases. If no similar queries exist or if the hit-matrix is empty then
I-SPY performs at least as well as the underlying search engines.

Sim(qT , qc) = TermOverlap(qT , qc) =
|qT ∩ qc|
|qT ∪ qc|

(1)

2.3 Result Relevancy

Next we must calculate the relevance scores for the result pages from the re-
trieved search cases. The relevance of a result-page, pj, to some query, qT , can
be estimated directly from the hit-matrix entries for qT . Equation 2 calculates
relevance as the number of page selections that have occurred for pj in response
to query qT (that is, HTj) as a proportion of the total number of page selections
that have occurred for all pages selected in response to qT (that is,

∑
∀j HTj).

For example, a relevance of 0.25 for pj and qT , means that 25% of the page
selections from result-lists for qT have been for this page, pj .

Relevance(pj, qT) =
HTj∑
∀j HTj

(2)

Of course if multiple similar search cases (and their queries) are selected for
a target query, then there are potentially multiple search histories to inform the
relevance of a given page. For example, the page www.sun.com may have a high

66 E. Balfe and B. Smyth

relevance value (let’s say, 0.8) for a past query ‘java language’ but it may have a
lower relevance for another past query ‘java’ (let’s say 0.33). It is then a matter
of combining these individual relevance values to produce a single relevance score
for this page relative to the target query, say ‘java inventor’.

We propose a normalised weighted relevance metric that combines the rele-
vance scores for individual page-query combinations. This is achieved using the
weighted-sum of the individual relevance scores, such that each score is weighted
by the similarity of its corresponding query to the target query. Thus, in our ex-
ample above, the relevance of the page www.sun.com to ‘java inventor’ is 0.516:
the sum of 0.264 (that is, 0.8 page relevance to query ‘java language’, multiplied
by the 0.33 query similarity between this query and the target, ‘java inventor’)
and 0.165 (0.33*0.5 for the past query, ‘java’), divided by 0.83, the sum of the
query similarities. Equation 3 provides the details of this weighted relevance met-
ric with respect to a page, pj , a target query, qT , and a set of queries q1, ..., qn

from the retrieved search cases. Exists(pj , qi) is simply a flag that is set to 1
when pj is one of the result pages selected for query, qi.

WRel(pj, qT , q1, ..., qn) = (3)∑
i=1...n Relevance(pj, qi) • Sim(qT , qi))∑

i=1...n Exists(pj , qi) • Sim(qT , qi)

The notion of relevance is driven by user’s previous page selections and so is
dependent on the reliability of the users selection behaviour. However, [3] shows
that I-SPY’s collaborative search method is robust to high levels of selection
noise.

2.4 Communities and Collaboration

The above approach is likely to work as long as the query-space is limited to a
relatively narrow and uniform context. One of the fundamental ideas in I-SPY,
and the reason for the term ‘collaborative search’, is that a given hit-matrix
should be populated with queries and selections from a community of users
operating within a specific domain of interest. As such, I-SPY facilitates the
creation of multiple hit-matrices. This affords different communities of users
access to a search service that is adapted for their query-space and its preferred
pages. For example, a motoring Web site might configure a hit-matrix for its
users. I-SPY facilitates this through a simple form-based Web interface and, in
doing so, provides the motoring Web site with access to a search interface that
is associated with this new hit-matrix. As the community uses its search service,
their queries and page selections will populate the associated hit-matrix and
I-SPY’s ranking metric will help to disambiguate vague queries by promoting
previously preferred pages.

A large Web portal might create a range of different hit-matrices, and place
corresponding search boxes in different parts of the portal (e.g. News, Sports,
Business sections) on the grounds that searchers are more likely to submit queries

A Comparative Analysis of Query Similarity Metrics 67

that are related to the content that is found within this portal section. Alterna-
tively, more formal communities of searchers can be formed by setting up private
I-SPY groups that are only made accessible to individuals by invitation.

3 Query Similarity Metrics

Our interest in this paper lies in the role of query similarity. Not only is query
similarity pivotal when it comes to the selection of similar search cases, it is also
intimately involved in the weighting of relevant results from these cases. So far
we have assumed a straightforward model of query similarity, namely the term-
overlap metric as shown in Equation 1. Detailed experiments using this metric
have been described in [2].

The apparent simplicity of the term-overlap metric begs the question as to
whether more sophisticated metrics might deliver further improvements. And
so in this paper we compare term-overlap to a number of alternative metrics
that fall into three basic categories. First, term-based techniques estimate query
similarity by examining the differences between the terms used in two queries;
obviously the standard overlap metric is one example of this type. A less direct
way to compare two queries is to examine the pages that are returned by the
base-level search engine in response to them. Thus our second category of metric
looks for similarities between the result-lists of the base-level search engine that
are returned for the two queries. Finally, our third category of metric measures
query similarity by comparing queries in terms of the behaviour of the searchers
that have used them; specifically, we compare the result pages that were selected
in previous search sessions for the queries.

3.1 Term-Based Approaches

The standard term-overlap metric is certainly an obvious and computationally
simple way to measure the similarity between two queries but it appears to have
some shortcomings. For example, it views individual terms as atomic units and
as such cannot cope with minor term variations such as plurals; for example, “In-
ventor of internet” is deemed to be only 33% similar to “Inventors internet”. And
while this problem can be relieved by stemming query terms it is symptomatic
of a deeper underlying problem.

Edit-Distance. To address these problems we propose the use of the Leven-
shtein Distance (LD) metric; also known as edit-distance (see [4]). The LD of
two strings is the minimum number of edit operations needed to transform one
string into the other where an operation is either an element insertion, dele-
tion or substitution of a character in the string. For example, the LD between
“Inventor of internet” and “Inventors internet” is 3. We propose the use of a
normalised version of LD to compare two query strings, as shown in Equation 4,
which measures the similarity between a target query, qT , and a related query,
qi, relative to a set of queries, q1, ..., qn.

68 E. Balfe and B. Smyth

EditDistance(qT , qi) =
1 − LD(qT , qi)

maxLD(qT , (q1, ..., qn))
(4)

In fact we consider two variations of edit-distance similarity. The first calcu-
lates the edit-distance similarity between the target query and all other search
cases whose corresponding queries, q1, ..., qn, share at lease one term with the
target query , we label this EditDist. In our ModifiedEditDist metric we extend
the range of q1, ..., qn to refer to the set of all search case queries regardless of
whether they meet this minimal term-overlap constraint; that is every query in
the hit-matrix, H. This modified metric is likely to be inefficient as it will retrieve
many unrelated queries. However it is included for completeness.

Combining Overlap & Edit-Distance. Of course it is possible to combine
the similarities produced by the overlap and edit-distance similarity metrics.
We propose to combine them using the harmonic mean so as to give preference
to those queries that enjoy high overlap values and high edit-distance similar-
ity values – see Equation 5 – whilst penalising those queries that present with
contrasting overlap and edit-distance scores.

HarmonicMean(qT , qi) = (5)
Overlap(qT , qi) • EditDistance(qT , qi)

(Overlap(qT , qi) + EditDistance(qT , qi)/2

3.2 Result-Based Approaches

Sometimes queries are related even though they have no terms in common. For
example, jaguar and OS X both refer to the Macintosh operating system, and
we might expect searchers using these queries to be looking for similar types
of results. By comparing the result-lists returned by the base-level meta-search
engine in response to these queries, we can detect the fact that these queries are
similar even though their terms do not suggest it. Of course for efficiency reasons
this approach would require the caching of past search results, but assuming that
this is feasible then we can propose the following result-based similarity metrics.

Result Overlap. Equation 6 is the simplest option. It calculates the percentage
overlap between the result URLs (we look at the top 20 results) from the result-
list for the target query (ResultSet(qT)) and the result-list for a candidate query,
(ResultSet(qi)), in much the same way that term overlap is calculated.

ResultOverlap(qT , qi) =
|ResultSet(qT) ∩ ResultSet(qi)|
|ResultSet(qT) ∪ resultSet(qi)|

(6)

Result Position Correlation. Of course two result-lists might contain lots
of the same results but they may order these shared results differently, indicat-
ing potentially important differences between their queries. The ResultOverlap
metric is blind to this but Equation 7 is not. It calculates similarity based on

A Comparative Analysis of Query Similarity Metrics 69

the Pearson’s correlation coefficient between the positions of the shared results
from each query’s result-list; {r1, ..., rn} = ResultSet(qT) ∩ ResultSet(qi) and
Posi,k is the position of the kth shared result for query qi.

ResultPosCorrel(qT , qi) = Correl({PosT,1, ..., PosT,n}, {Posi,1, ..., Posi,n})
(7)

Result Position Differences. An alternative way to consider the positions of
results in the result-list is to calculate the positional difference between corre-
sponding shared results in the result-lists for qT and qi. Equation 8 shows how
this can be converted into a normalised similarity metric; note that n is the
number of shared results and m is the union of the two result-lists.

ResultPosDiff(qT , qi) = 1 −
∑

∀k=1...n |PosT,1 − Posi,1|
n • m

(8)

3.3 Selection-Based Approaches

Our final family of metrics takes advantage of the selection data that I-SPY
collects. These selection-based techniques attempt to evaluate query similarity
by looking for similarities in the selection patterns of searchers. For instance, we
might consider two queries to be similar if users tend to select the same results
from their respective result-lists.

Selection Overlap. Once again we start with a straightforward overlap met-
ric. The similarity of two queries is estimated by the percentage overlap between
the sets of pages that have been selected for these queries during past search
sessions. We call this the SelectionOverlap metric and it is presented as Equa-
tion 9 between a target query, qT , and a related query, qi, from some similar
search case. Note that, SelectionSet(q) refers to the set of pages that have been
previously selected for query q; that is the set of pages that have hit values in
the hit-matrix for q.

SelectionOverlap(qT , qi) =
|SelectionSet(qT) ∩ SelectionSet(qi)|
|SelectionSet(qT) ∪ SelectionSet(qi)|

(9)

Selection Hits Correlation. As with our previous overlap metrics, this new
one has its obvious shortcomings. In particular, it gives no credit to the relative
number of times that individual result pages have been selected for two queries.
Hence, we propose an alternative metric that uses the correlation between the
number of times that overlapping pages have been selected for two queries as
a measure of query similarity. We call this the Selection Correlation metric as
shown in Equation 10. In this formula Correl refers to the standard Pearson’s
correlation formula, the set p1, ..., pn refers to the set of result pages that have
been selected for both qT and qi and Hi,k refers to the number of hits that pk

has received for qi.

SelectionHitsCorrelation(qT , qi) = Correl({HT,1, ..., HT,n}, {Hi,1, ..., Hi,n})
(10)

70 E. Balfe and B. Smyth

Selection Position Correlation. As with the result-based metrics, we also
consider the positions of selected results from a result list. Equation 11 calculates
the similarity from Pearson’s correlation coefficient between the positions of the
shared selections from p1, ..., pn, the set of selected results from each query; where
Posi,k is the position of the kth shared selection for query qi.

SelectionPosCorrel(qT , qi) = Correl({PosT,1, ..., PosT,n}, {Posi,1, ..., Posi,n})
(11)

Selection Position Differences. Once again we calculate the positional dif-
ference between corresponding shared selections in the result-lists for qT and
qi. Equation 12 shows how this can be converted into a normalised similarity
metric; note that n is the number of shared selections and m is the union of the
two result lists.

SelectionPosDiff(qT , qi) = 1 −
∑

∀k=1...n |PosT,1 − Posi,1|
n • m

(12)

4 Evaluation

At this point we have 10 new similarity metrics, 3 that are term-based, 3 that
are result-based and 4 that are selection-based. Many of these are designed to
improve upon the standard term-based overlap benchmark and in this section
we will evaluate each of these metrics using live-user data.

4.1 Live-User Data

The data used in this evaluation was collected during a live-user experiment that
involved 92 computer science students from the Department of Computer Sci-
ence at University College Dublin and took place in October 2003. The original
experiment was designed to evaluate the benefits of the standard I-SPY system,
relative to a standard meta-search engine, in the context of a fact-finding or
question-answering exercise. In this implementation our underlying search en-
gines for our meta-search were Google, HotBot, WiseNut and AllTheWeb. To
frame the search task, we developed a set of 25 general knowledge AI and com-
puter science questions, each requiring the student to find out a particular fact
(time, place, person’s name, system name etc.).

The students were randomly divided into two groups. Group 1 contained 45
students and Group 2 contained the remaining 47. Group 1 served as the training
group for I-SPY, in the sense that their search histories were used to populate
the I-SPY hit-matrix but no re-ranking occurred for their search results. This
group also served as a control against which to judge the search behaviour of
the second group of users, who served as the test group. In total the Group 1
users produced 1049 individual queries and selected a combined total of 1046
pages, while the Group 2 users used 1705 queries and selected 1624 pages. The
question of bias within the user groups is examined in [1].

A Comparative Analysis of Query Similarity Metrics 71

4.2 Methodology

The data from this earlier live-user experiment provides the following key in-
formation to form the basis of our current evaluation: the queries submitted by
each user; the pages that they selected from the subsequent result-lists; the posi-
tion of these pages within the result-list; the pages where they located a correct
answer to a particular question; and the hit-matrix produced by the Group 1
users. We also have a set of test problems (the Group 2 queries), and a set of
correct solutions to these problems (the pages that are known to contain the
correct answer to a particular question, verified by manual inspection). In pre-
vious experiments we considered a solution, or correct answer, to be associated
with an individual query. This time we have altered our methodology slightly by
considering a solution set that is associated with a question. This question itself
contains a set of related queries q1,...,qn. In other words, our notion of relevance
is with respect to the question and covers the set of queries used by searchers in
trying to answer a particular question.

For our experiment we can “re-run” the live-user experiment by responding
to Group 2 queries with the new result-lists that are recommended by I-SPY
using the 11 query similarity metrics. In addition we also consider the result-
lists that are produced prior to promotion. These result-lists correspond to the
results of a standard meta-search engine and help us to understand the relative
impact of I-SPY’s result promotion and re-ranking.

We test our metrics for 3 different query selection thresholds, in each case
limiting I-SPY to the selection of the top Q related queries, where Q is set to
5, 10 or 20. Note that this does not actually mean that this number of related
queries will always be retrieved for every search session, rather it indicates the
maximum number of related queries that can be retrieved. This will allow us to
understand the relative performance of each metric for different levels of query
similarity. If Q = 5 then I-SPY will focus on only the top related queries and
thus will have access to limited result selection information. On the other hand
if Q = 20 then many more queries can be considered but some of these may not
be closely related to the target query and so may not contribute useful results
to the final result-list.

Thus, each Group 2 user query is replayed and the results (for the different
Q thresholds) are computed and compared against a ground-truth of known
correct results for each question. This ground-truth (the pages that are known
to contain the correct answer to a particular question) is a strong measure of
relevance in the sense that we only consider a page to be relevant for a query if
it contains the correct answer to the test question that the query was designed
to satisfy. Obviously weaker notions of relevance might have been considered.
Nevertheless, we believe that it is appropriate to focus on this stronger measure
of relevance, given the search task used in our evaluation.

4.3 Precision vs. Recall

The standard objective test of search engine accuracy is the precision and recall
test: the former computes the percentage of returned results that are relevant

72 E. Balfe and B. Smyth

while the latter computes the percentage of relevant results that are returned.
We measure the percentage precision and recall values for each of the techniques
under review for different result-list sizes (k=5 to 30).

The results are presented as precision vs. recall graphs, for each value of Q,
in Figure 2(a, b & c). Each graph presents the plot of precision against recall for
the 11 similarity metrics, along with Meta. Each point on a given curve refers to
a different result-list size, k. As expected we find that precision tends to fall-off
with increasing result-list sizes, while recall improves; typically the number of
relevant results is much less than k, and the majority of these relevant results
should be positioned near the top of result-lists.

In general we notice that the term-based metrics tend to dominate in terms of
their precision and recall performance. For example, at Q = 5, the performance
of the term-based metrics is significantly better than any of the other techniques
with the standard term-overlap metric performing the best. In Figure 2(a) we see
that TermOverlap precision at k=5 is 40%. This is compared to precision values
of between 28% for Meta, 30% for ResultOverlap (the best of the result-based
methods) and 31% for SelectionPositionDifference (the best of the selection-
based methods). The recall results tell a similar story with a noted improvement
in performance for TermOverlap compared to the other techniques.

As Q increases, the performance benefits of the term-based metrics tend to
reduce in comparison to some of the competing result-based and selection-based
methods, for low values of k. Mostly these competing methods appear to either
increase slightly in performance or remain stable as we increase Q. This suggests
that at low values of Q, genuinely similar queries are being retrieved by the term-
based methods whereas the result-based and selection-based metrics provide
little additional related information compared to Meta. We have to retrieve either
10 or 20 similar cases in order for these metrics to perform well. However it is
worth noting that when Q = 10 and Q = 20, if the result-based and selection-
based methods are preforming better than the term-based metrics they are only
doing so for a result-list size of 5. For example when Q = 20 the loss in precision
for the term-based metrics between k=5 and k=10 is on average 2% compared
to an average loss of 10% for the result-based and selection-based metrics.

As expected the ModifiedEditDistance performed poorly and this perfor-
mance diminishes greatly as we increased Q. It is an inefficient technique as it
retrieves far too many unrelated cases. So much so that the performance, even
at Q = 5 is not as good as Meta. As we will show in the following section this
poor performance is also reflected in other aspects of these experiments.

4.4 Efficiency Concerns

Query similarity plays a pivotal role in collaborative Web search and it is obvi-
ously important to use a similarity metric that facilitates the retrieval of search
cases that are likely to contribute positively to the relevance of promoted results.
Certainly, in the experiments so far it is clear that term-based techniques (with
the exception of the modified edit-distance metric) offer greater reliability than

A Comparative Analysis of Query Similarity Metrics 73

Fig. 2. Precision vs. Recall for (a) Q=5 (b) Q=10 (c) Q=20

74 E. Balfe and B. Smyth

Fig. 3. (a) Average Time per Query (b) Average Position of the First Correct Answer

result-based or selection-based methods, with the term-overlap metric perform-
ing best overall. Of course, when choosing between competing similarity metrics
we must also consider their efficiency characteristics. This is especially impor-
tant in I-SPY and collaborative Web search because the chosen metric will be
applied repeatedly during every search session and users are unlikely to accept
appreciable increases in search time.

Figure 3(a) presents the results of timing studies carried out during our
experiments for each of the different similarity metrics under review. Each time-
value corresponds to an average over the 1705 test queries. Instead of measuring
the actual time taken to compute a single query similarity, we instead measured
the average time taken for I-SPY to produce a set of promoted results from
its hit-matrix using each of the metrics. Since the only difference between the
techniques is their query similarity metric, the timing differences must relate
to differences in query similarity calculation times. The results indicate that
the result-based techniques perform the worst by taking roughly 10 times longer
than the other techniques. The selection-based methods are slightly quicker than
the term-based techniques, mainly because the term-based techniques tend to
retrieve more similar queries than the selection-based methods, and hence lead
to additional relevance calculations. For example, at Q = 10 the term-based
techniques retrieve on average 8.78 similar queries. This is in comparison to 2.17
similar queries being retrieved by the selection-based techniques. The timings,
for both the term-based metrics and the selection-based metrics, are obviously
directly dependent on the number of similar cases being retrieved.

4.5 Result Position

Before concluding our evaluation section we examine one final statistic that is
again related to the accuracy of the result-lists. Result position is an extremely
important factor when it comes to evaluating Web search techniques. For in-
stance, many researchers have highlighted how users are often reluctant to ven-
ture beyond the first few results, regardless of how many results are presented to
them [5]. Hence in our final experiment we investigate the average position of the
first correct answer within the result-lists returned by the various techniques.

A Comparative Analysis of Query Similarity Metrics 75

The results are presented in Figure 3(b). Once again it is clear that there is a
significant benefit for the term-based metrics. TermOverlap, EditDistance and
Harmonic are the only metrics to consistently return the first correct answer in
the top 5 results across all values of Q. The average position for these 3 metrics for
all values of Q is 3.91, in comparison to 6.85 for the result-based techniques and
7.0 for the selection-based metrics. Once again the ModifiedEditDist performs
the worst with an average position of 8.04.

4.6 Summary

This paper was motivated by the observation that the simplicity of our existing
query-similarity metric might be limiting the performance of our collaborative
Web search technique. In fact, our results indicate that this is not so, at least
in relation to a comprehensive list of 10 alternative similarity models. We have
found that in general the term-based metrics offer superior performance when
compared to the result-based and selection-based methods. Significantly, we have
also shown that our original term-based overlap metrics offer the best all-round
performance when retrieval efficiency and accuracy are considered.

5 Related Work

This work is perhaps most closely related with recent work in the area of query
reuse and query refinement and expansion techniques, as a means to improve
search-engine performance. Cui et al [6], for example, take advantage of the
information contained in Web search-logs as the basis for query expansion. Tra-
ditionally, query expansion techniques extract terms from a subset of the top
documents returned in response to an initial query. However, Cui et al. exploit
the relationship between query terms and document terms which are extracted
from user search logs. Frequently occurring, high-quality query terms that lead
to result selections are used to expand the initial queries; see also [7] for re-
lated work. On the CBR front the Broadway recommender system [8] is also
focused on query refinement but, it applies case-based techniques to recommend
query refinements to a user based on the successful refinements of similar users.
Also, the work of [5] applies CBR techniques to Web search. Briefly their Per-
sonalSearcher agent combines user profiling and textual case-based reasoning to
dynamically filter web documents according to a user’s learned preference.

The core focus in this paper is on evaluating different models of query sim-
ilarity as a form of case similarity. Alternative approaches to query similarity
have mostly centered on the more traditional IR-based techniques. For instance,
[9] use past query similarity metrics and document relevance to expand the cur-
rent query. Their technique relies on term-based similarity methods similar to
our own, with past queries selected as similar if they exceed a given similar-
ity threshold. These selected queries are then used to rebuild the new query.
One difference, compared to our term-based metrics, however, is the use of term
frequency information as term weights during similarity assessment; we will con-
sider weighting options as a matter for future work.

76 E. Balfe and B. Smyth

Both [10] and [11] discuss the use of query similarity metrics based on result-
set overlaps, again as a guide for automatic query expansion. Raghavan et al.
[10], in particular, highlight the importance of query-query similarity metrics
during query expansion and argue that existing query-document metrics are in-
appropriate in this context. Fitzpatrick et al. [11] again focus on the reuse of past
queries. They concluded that query reuse based methods can outperform more
conventional document-based methods in terms of precision-recall performance.
Interestingly in both cases result-overlap metrics were found to be better than
term-overlap metrics as a measure of establishing query-query similarity. In our
experiments, our result-based metrics performed poorly in comparison to the
term-based techniques.

6 Conclusions

The history of Web search has mostly been dominated by term-based IR ap-
proaches to document retrieval. Recently researchers have developed new ap-
proaches to Web search to solve problems with these term-based methods. Link
analysis [12] and query reuse [6,8] techniques are good examples. Even though
there are obvious similarities between case-based reasoning and Web search, the
case-based reasoning community has largely steered clear of Web search as an
application domain. In our own work we have shown how the reuse-based ap-
proach of CBR has much to offer in the Web search task.

We have previously described the I-SPY case-based Web search engine [1,2]
that is designed to operate with existing search engines. Our basic approach
involves the reuse of past search sessions as a source of relevant results. The cen-
tral contribution of this paper concerns the development of a range of alternative
case similarity metrics to drive this reuse. In particular, we have compared fami-
lies of term-based, selection-based and result-based similarity models. Through a
comprehensive evaluation we have shown that the former offer significant advan-
tages, and, in particular, our original term-based metric offers the best overall
performance despite its apparent simplicity. While some of the other techniques
perform well in certain conditions, for example the selection-based ones in terms
of timing, the term-based techniques and in particular the term-overlap metric
perform consistently well in all conditions.

References

1. Smyth, B., Balfe, E., Freyne, J., Briggs, P., Coyle, M., Boydell, O.: Exploiting
Query Repetition & Regularity in an Adaptive Community-Based Web Search En-
gine. User Modeling and User-Adapted Interaction: The Journal of Personalization
Research ((In Press))

2. Balfe, E., Smyth, B.: Case Based Collaborative Web Search. In: Proceedings of
the 7th European Conference on Cased Based Reasoning. (2004) 489–503

3. Boydell, O., Smyth, B.: A Study of Selection Noise in Collaborative Web Search.
In: Proceedings of the 19th International Joint Conference on Artificial Intelligence,
IJCAI-05. (2005) In Press Edinburgh, Scotland.

A Comparative Analysis of Query Similarity Metrics 77

4. Masek, W., Paterson, M.: A Faster Algorithm Computing String Edit Distances.
Journal of Computer and System Sciences 20 (1980) 18–31

5. Godoy, D., Amandi, A.: PersonalSearcher: An Intelligent Agent for Searching Web
Pages. In: IBERAMIA-SBIA. Volume 1952., Springer (2000) 62–72

6. Cui, H., Wen, J.R., Nie, J.Y., Ma, W.Y.: Probabilistic Query Expansion Using
Query Logs. In: Proceedings of the 11th International Conference on World Wide
Web. (2002) 325–332

7. Balfe, E., Smyth, B.: Improving Web Search Through Collaborative Query Rec-
ommendation. In: Proceedings of the 16th European Conference on Artificial In-
telligence. (2004) 268–272

8. Kanawati, R., Jaczynski, M., Trousse, B., J-M, A.: Applying the Broadway Recom-
mendation Computation Approach for Implementing a Query Refinement Service
in the CBKB Meta-search Engine. In: Conférence Française sur le Raisonnement
á Partir de Cas (RáPC’99). (1999)

9. Hust, A., Klink, S., Junker, M., Dengel, A.: Query Reformulation in Collabo-
rative Information Retrieval. In: Proceedings of the International Conference on
Information and Knowledge Sharing, IKS 2002. (2002)

10. Raghavan, V.V., Sever, H.: On the Reuse of Past Optimal Queries. In: SIGIR’95,
Proceedings of the 18th Annual International ACM SIGIR, Conference on Research
and Development in Information Retrieval. (1995)

11. Fitzpatrick, L., Dent, M.: Automatic Feedback Using Past Queries: Social Search-
ing? In: SIGIR ’97: Proceedings of the 20th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, July 27-31,
1997, Philadelphia, PA, USA, ACM (1997) 306–313

12. Brin, S., Page, L.: The Anatomy of a Large-Scale Web Search Engine. In: Pro-
ceedings of the 7th International World Wide Web Conference. Volume 30(1-7).,
Networks and ISDN Systems (1998) 107–117

A Case-Based Approach for Indoor Location

Carlos Bento, Joao Peixoto, and Marco Veloso

Centro de Informatica e Sistemas da Universidade de Coimbra,
Departamento de Engenharia Informatica,

Polo II da Universidade de Coimbra, Portugal
bento@dei.uc.pt, joao.peixoto@coimbra.ccg.pt

mveloso@student.dei.uc.pt

Abstract. Location is an important dimension for context-awareness
in ubiquitous devices. Nowadays different techniques are used alone or
together to determine the position of a person or object. One aspect of
the problem concerns to indoor location. Various authors propose the
analysis of Radio Frequency (RF) footprints.

In this paper we defend that case-based reasoning can make an important
contribution for location from RF footprints. We apply an empirical dis-
similarity metric for footprint retrieval and compare this approach with
the results obtained with a neural network and C5.0 learning algorithms.
The RF footprints are obtained from a Global System for Mobile Com-
munications and General Packet Radio Service (GSM/GPRS) network.
Signals from these networks are particularly complex when compared to
the ones obtained from WiFi or Bluetooth networks.

1 Introduction

A problem of crucial importance in ubiquitous computing is the determination
of place for persons and objects. Many proactive decisions are mainly, or in part,
dependent on location determination.

Although the problem of open air positioning is, in general, well addressed by
Global Positioning System (GPS) technologies, indoor location is a much more
challenging one and various approaches have been adopted in the past.

Some of these approaches comprise a specific infrastructure for location. It
is the case of active badge systems based on infrared technology [1], or active
bats supported on RF and ultrasound signals [2]. Both solutions provide good
results in terms of accuracy and precision under adequate conditions.

Another approach to indoor location is indoor GPS. In this approach RF
emitters placed in buildings produce signals similar to GPS emitters [3].

Active badges and indoor GPS have in common the need for a dedicated
infrastructure which makes these systems expensive and time consuming in terms
of implementation.

A different approach is followed by systems that support location on the
analysis of RF footprints provided by radio stations, wireless Local Area Net-
works (LAN), GSM infrastructures or Bluetooth ad-hoc networks.

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, pp. 78–90, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNAI

A Case-Based Approach for Indoor Location 79

A system that scans radio stations is RightSPOT [4]. In this program the
location of a device is supported on signal strengths from FM radio stations.
RADAR is another system for location based on a WiFi structure [5]. In this
system signals are received from various WiFi base stations. Triangulation is
used to determine user’s coordinates. Other approaches comprise, for instance,
the use of Bluetooth signals [6].

The RF footprint produced by GSM/GPRS networks can also be the basis
for indoor location, similarly to what is performed on WiFi scenarios. Notwith-
standing, it is much harder to work with GSM scenarios. In general, indoor GSM
signals are instable due to complex reflection mechanisms and to the variance re-
sultant from weather and other fluctuations on the propagation conditions. This
characteristic of GSM signals has as a consequence that classical classification
by feed forward networks and decision tree algorithms does not seem to be the
best approach for this problem.

It happens that when comparing a footprint in memory with a new probe
the dissimilarities between them seem to confuse these algorithms.

We think that an algorithm that incorporates empirical and theoretical knowl-
edge in the function that calculates the dissimilarities/similarities that can occur
between footprints can help improving this task. It is in this way that we are
exploring how case-based reasoning (CBR) can assist achieving better results for
indoor location based on GSM footprints.

In this paper we present our starting work on this area and the first results
we obtained with a dissimilarity metric for retrieval of RF footprints. We use
this metric in the context of a case-based reasoning system for indoor location.
We tested our approach at our Department, a six floor building, with an hetero-
geneous structure.

Section two describes the problem of indoor location from RF footprints.
In the next section we describe why we think CBR can help and present our
approach. In section four we describe the experimental data. Section five re-
ports the results achieved using a neural network, C5.0, and our CBR approach.
Section six outlines the main points for this paper and future work.

2 Propagation of RF Signals

The radio frequency signal is an electromagnetic phenomenon. RF propagation
refers to how well a radio signal travels in free space. The RF coverage is mainly
determined by three key factors: the height and type of the antenna at the Base
Station (BS) and the RF power level radiation. The propagation of RF signals
is primarily supported on direct beams. Although, it does not mean that signals
are limited to line of sight. However, depending on the orientation, we have dif-
ferent propagation values for the same distance between receiver and antenna
(see Figure 1). Propagation of signal from the BS to the Mobile Unit (MU) is
affected by many factors. Until the signal finds the first physical obstacle, the
propagation takes place in the atmosphere, where it is subject to ducting (a re-
fraction of the signal propagation caused by differences of temperature between

80 C. Bento, J. Peixoto, and M. Veloso

Fig. 1. Antenna’s Radio Channels Propagation

two air masses) and attenuation. Ducting is undesirable in RF propagation, but
also unavoidable. Normally, the refraction of air decreases as the temperature
increases. In free-space, the propagation is attenuated by dense vegetation, pre-
cipitation and distance. The attenuation in free-space is determined in terms of
distance and is calculated using the following formula:

L[dB] = 32.44 + 20logD + 20logf . (1)

where D is the distance (in kilometers), between the antenna and the receiver,
and f is the frequency (in megahertz). Because the antennas are directional, this
is an approximate value.

When a signal hits a solid object, like a building, it may be reflected, dif-
fracted and absorbed. Reflection is an abrupt change in direction of a beam and
creates a phenomenon called Multipath Fading or Rayleigh Fading, an interfer-
ence between a direct beam and the reflected beam, which can be added to or
subtracted from the received direct beam. The duration of the effect may vary
from seconds to minutes. Fading is a random increase in signal loss along a path
[7,8]. Diffraction is the bending and spreading of beams when they meet an ob-
struction. Absorption is a process in which signal is absorbed by particles of solid
objects, increasing signal loss. The more solid objects are found between the BS
and the MU, the higher is the interference suffered by RF propagation. All these
factors influence RF propagation in buildings and are cause of indoor attenua-
tion. For networks, operating at the 2.4GHz radio frequency, indoor attenuation
for the received signal can be calculated using the following formula 1 [9]:

Pl(dj,k)[dB] = Pl(d0) + 10 ∗ α ∗ log(dj,k/d0) . (2)

where Pl(d0) is the free-space path loss, α is the path loss exponent, Pl(d0) is
the reference distance, and (dj,k) is the physical distance between receiver and
1 Unfortunately, it is common that, real values vary significantly from the ones pro-

duced from the theoretical approach.

A Case-Based Approach for Indoor Location 81

transmitter. Concerning the GSM network, there are no studies that allow us to
determine indoor attenuation. However, with reference to the 900Mhz to 4.0Ghz
radio frequency, Seidel’s work [10] shows that the attenuation has nearly the
same profile.

Although this model gives us a pattern for indoor attenuation it cannot be
directly applied as the distance between the MU and the BSs in the vicinity of
the MU are unknown. Another factor of uncertainty concerns the α coeficient
that can vary from 1 to 6, with the value dependent on the number and type of
obstructions between transmitter and receiver plus the number of building floors.
Notwithstanding this formula gives us an important argument for the statement
that indoor attenuation is quite diverse along different building zones. This is a
starting point for assuming that RF footprints can be good predictors for indoor
location.

We consider RF footprints at the channel level. Different base stations com-
municate with the MU on different channels. Each operator settles its base sta-
tions in an hexagonal disposition. Our Country is served by three operators.
Base stations have different locations relatively to a building. Because the prop-
agation of the signal is influenced by the path between the various BSs and
the MU, and by the configuration of the building, we assume that the various
radio channels (transmitting at different frequencies) will have different signal
strengths at different zones, making possible to infer location based on this infor-
mation. This makes quite suggestive to learn cases representing the RF scenarios
at the channel level for the different positions and create suitable retrieval and
selection algorithm that incorporates theoretical and empirical knowledge to per-
form the selection of the footprint(s) in memory that better predicts the current
position.

3 Opportunities for Case-Based Reasoning

Case-based reasoning is a lazy learning method that supports a decision on
previous observations saved in a case library [11].

The CBR cycle comprises gathering the data for a probe, comparing this
probe with cases in memory, retrieving the most similar cases, reusing these
cases, revising them in order to generate a new case (solution for the new problem
represented by an RF footprint), and possibly retaining the new case in the case
library [12].

The main goal of our work is to study the advantages of CBR for indoor
location, supported on RF footprints, and compare with other approaches like
neural networks and decision tree generation algorithms. Our point is that indoor
location accommodates, quite naturally, the CBR paradigm.

The type of disturbances that can occur in the signals that were in the origin
of the RF footprints and probe suggest the need for a complex similarity function
for case retrieval. The similarity function must incorporate domain knowledge
and empirical knowledge on the mechanisms concerning line of sight (LOS) and
non-line of sight (NLOS) propagation.

82 C. Bento, J. Peixoto, and M. Veloso

Another characteristic that makes CBR an appealing choice is that it is
quite suitable for cooperative location in the sense that different explorers can
contribute with cases to a shared case library that incrementally improves the
location capabilities of a community of ”navigators”. This gives space for the
study of adequate mechanisms for collaborative CBR [13].

RF footprints change also with time, due to periodical adjustments of the sig-
nal power in the Base Stations (BT), modification in the network structure, city
landscape - buildings that are constructed or demolished can change the foot-
prints for various locations. This is an opportunity for the study and application
of suitable case-base maintenance algorithms [14].

Sometimes we cannot determine indoor location at a pre-defined level of
accuracy [15], but it is possible , and acceptable, to relax accuracy constraints.
In terms of CBR an hierarchical structure for cases (footprints) would be an
interesting approach for accuracy acomodation, which is another opportunity
for the study and application of hierarchical case-based reasoning [16].

The use of domain knowledge for case-adaptation, specially when a probe
fires cases from different locations and an interpolation process are necessary.
This is also another opened topic of research in the context of CBR [17].

In summary, we defend that various aspects of CBR can contribute to solve
the complex problem of indoor location using GSM footprints2. In the next
subsections we describe, case representation, dissimilarity metric, and present a
global picture for the process as it is currently defined within our framework.

3.1 Case Representation

A case resembles cases in Figure 2. A case comprises a vector of channel num-
bers. Each channel number has associated with it the mean value of the signal
strength obtained with five readings along 15 seconds 3, the standard deviation
for these readings, and a relevance factor that is calculated by the following
formula:

Relevance = MeanRx − StandardDeviation2 . (3)

with MeanRx the mean value of the five signal readings along 15 seconds and
StandardDeviation the standard deviation for these readings. This formula as-
signs importance to channels with higher mean signal level and lower standard
deviation. It is an empirical formulation that is supported on the theoretical
and simulation work from [9] that states that for channels with a large stan-
dard deviation, the probability of the probe being close to the respective mean
is small, also this implies that the probe has a similarity that is not very different

2 We stress the context of GSM as for other RF scenarios like WiFi and Bluetooth
various solutions with good accuracy and precision are available nowadays. In fact,
as we explained before, it is the use of GSM signals that is a much more challenging
and a not yet solved problem. Finding a good approach for indoor location using
GSM signals is of great impact considering the number of GSM terminals that are
currently available.

3 We use XPanelLog, a program for signal scanning in Qtek smartphones.

A Case-Based Approach for Indoor Location 83

CASE N. Place Channel Mean St Dev
Channel

Relevance
CASE N. Place Channel Mean St Dev

Channel
Relevance

001 1.1 1 51.6 3.13 41.8 004 1.3 1 51.2 2.68 44
1.1 5 40.8 1.3 39.1 1.3 5 28.4 4.72 6.1
1.1 7 18.4 1.14 17.1 1.3 17 1 1 0
1.1 499 8.8 1.79 5.6 1.3 11 0.2 0.84 -0.5
1.1 19 11 2.65 4 1.3 25 -0.6 0.89 -1.4

002 1.1 1 51.6 6.27 12.3 005 1.4 1 50 0 50
1.1 5 33.2 4.66 11.5 1.4 5 33.4 0.55 33.1
1.1 21 14.8 2.28 9.6 1.4 21 0.4 0.55 0.1
1.1 19 10.8 2.05 6.6 1.4 19 -1.6 0.89 -2.4
1.1 500 7 1 6 1.4 23 -2.4 0.55 -2.7

003 1.2 1 52 1 51

1.2 5 25.2 3.11 15.5 PROBE ?? 1 60.2 0.84 59.5
1.2 21 1.2 0.45 1 5 37 1 36.0
1.2 23 -2 0 -2 7 15.8 1.79 12.6
1.2 9 -1.8 0.84 -2.5 19 14 1.22 12.5

21 13.2 1.64 10.5

Fig. 2. Cases and a probe (only with five channels per case for simplicity reasons)

to all the cases in memory. For each footprint we have the signal strength for
about 16 channels, but we exclude from the channel vectors these channels with
highest and lowest mean signal strength. The reason to do this comes from our
observation that the signals with the highest signal although being more stable,
due to a lower multipath fading effect are not good predictor, they tend to
have the same mean value along all the building. The signals with the lowest
strength are, in general, very instable and in this way are also bad predictors.
This vector is sorted by decreasing relevance value calculated by formula (3) as
can be observed in Figure 3.

To generate a probe we produce a signal strength sample along 15 seconds
which corresponds approximately to five readings for each channel. We calcule
the mean strength, standard deviation, and channel relevance for each channel,
sort channels by decreasing relevance and discard the signals with highest and
smallest mean signal strength.

The vector of channels in the probe and the corresponding vector for each
case are then compared according to our similarity metric.

3.2 Dissimilarity Metric

After generating the probe vector this vector is compared with all vectors of the
cases in memory. Figure 3 shows the two vectors for a case and a probe. Two
factors contribute to the similarity metric that, in fact, is a dissimilarity metric.
One is the distance concerning the position of the channels in each vector. For
instance, if the same channel is present in the same position in the case and
probe vectors, the distance for this channel is 1. If a channel is in the second
position in the probe vector and in the fifth position in the case vector then its
distance is 4. For channels present in the probe that do not match channels in a
case vector we empirically assign a distance of 10. Currently, we do not consider
channels in a case that do not match channels in the probe. We think that this
is something that needs further consideration in the future.

Another factor that is taken into account for the dissimilarity metric is the
difference of strength between matching channels in probe and case vectors. For a

84 C. Bento, J. Peixoto, and M. Veloso

Position 1.2
Relevance 51 19 0.3 -1.5 -2
Std Dev Rx 1 2.05 0.55 0.71 1
Mean Rx 52 23.2 0.6 -1 -1

CASE Channel N. 1 5 21 11 7

PROBE Channel N. 1 5 21 7 25
Mean Rx 46 35.6 2.2 -1.2 2
Std Dev Rx 0.71 0.89 0.45 0.84 2.08
Relevance 45.5 34.8 2 -1.9 -2.33
Position ??

Position 1.2
Relevance 51 19 0.3 -1.5 -2
Std Dev Rx 1 2.05 0.55 0.71 1
Mean Rx 52 23.2 0.6 -1 -1

CASE Channel N. 1 5 21 11 7

PROBE Channel N. 1 5 21 7 25
Mean Rx 46 35.6 2.2 -1.2 2
Std Dev Rx 0.71 0.89 0.45 0.84 2.08
Relevance 45.5 34.8 2 -1.9 -2.33
Position ??

Fig. 3. Matching between a probe and a case

channel in the probe that does not match a case we cannot calculate a difference,
so we use the strength of the channel present in the probe.

These two metrics are combined in the following dissimilarity formula:

Dissim(p, c) =
5∑

i=1

(distancepi ∗ ABS(Rxpi − Rxci)) . (4)

with p a probe, c a case, i the position of the channel in the probe vector,
distancepi the distance between a channel in the probe vector and the case
vector, ABS the absolute value function, and Rxpi , Rxci , respectively, the signal
strengths of the ith channel in the probe and case vectors.

As an example, considering vectors in Figure 3 the dissimilarity value for this
probe and case is:

Dissim(p, c) = |46.0−51.0|+|35.6−23.2|+|2.2−0.6|+2∗|−1.2+1|+10∗|2| = 39.4 .
(5)

3.3 Putting All Together

In this section we present the CBR cycle. The first step is the acquisition of seed
cases. It is important to stress that later the equipment can acquire new cases
by applying revision mechanisms and generating new cases from the old ones,
provided a suitable validation process is performed.

In the acquisition phase readings are made at different points and trans-
formed into cases by making the calculations described above.

In the localization phase new probes are acquired each 15 seconds and
processed in background mode. This processing comprises sorting the channels in
the probe, accordingly to the channel relevance, and calculating the dissimilarity
metric for this probe against each case in memory.

Then the case with the lowest dissimilarity value, plus the cases with a dis-
similarity value not higher than 30% of the value for the best case are retrieved.

If all retrieved cases suggest the same symbolic position it means there is no
conflict and this position is assigned to the probe. If this is not the situation,
then the system enters into a voting process in which the best case contributes
with 3 votes for its position suggestion, and the other cases with one vote for the
respective position suggestion. The position with more votes is the one assigned
to the probe.

A Case-Based Approach for Indoor Location 85

4 Acquisition of RF Footprints

Our work took place on data acquired at the Department of Informatics Engi-
neering along the six floors of the building. In this paper we only consider the
data and results concerning floors one and two. Data from floor one was acquired
from a long open area, and data from floor two from a sequence of rooms. The
points where data were gathered are presented in Figure 4.

The reason for the different strategy concerning first and second floor has to
do with considerations on the literature, and the intuitive feeling that making
accurate predictions at indoor open spaces is much more difficult then at closed
spaces.

Fig. 4. Floor 1 and 2 of the Department of Informatics Engineering

XPanelLog program was integrated into another program that produces a
trace of the RF scenario. This trace comprises the Received Signal level (Rx)
along the various channels accessed by our mobile equipment (we used a Qtek
9090 smartphone for tests). In Figure 5 we present the evolution of Rx along
three channels with very different mean signal levels. It is evident from these
histograms that some signals are very instable. Another observation that we
made, is the signal tends to more instable at the higher places in a building. We
think these are the strongest challenges in dealing with these signals for indoor
location.

In Figure 6 we show the row data produced by XPanelLog, and in Figure 3
we present the transformation of these row data into cases plus a new probe for
location determination.

For these tests we used data from seven points at floor one and five points
at floor two. From each point we collected 8 cases. Each case is the result of 15
seconds of tracing. Altogether we have 56 cases for floor one and 40 cases for
floor number two.

From the total of 96 cases we inserted 56 older ones in memory and used the
other 40 as probes.

86 C. Bento, J. Peixoto, and M. Veloso

Signal Level Channel 52

-5

0

5

10

15

20

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106

Time

R
x Series1

Signal Level Channel 01

0

10

20

30

40

50

60

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106

Time

R
x Series1

Signal Level Channel 431

-8

-7

-6

-5

-4

-3

-2

-1

0

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106

Time

R
x Series1

Signal Level Channel 52

-5

0

5

10

15

20

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106

Time

R
x Series1

Signal Level Channel 01

0

10

20

30

40

50

60

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106

Time

R
x Series1

Signal Level Channel 431

-8

-7

-6

-5

-4

-3

-2

-1

0

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106

Time

R
x Series1

Fig. 5. Signals acquired along 5 minutes for three channels at place 1.2

Place Channel Rx 001 Rx 002 Rx 003 Rx 004 ... Average St Dev
1.2 1 41 47 42 31 44.24 3.97
1.2 5 23 34 18 24 25.32 4.33
1.2 21 1 2 1 1 4.02 2.65
1.2 7 1 3 5 1 1.99 2.81
1.2 17 -1 -1 -2 -3 0.16 5.25
1.2 19 -2 0 -1 2 -0.57 2.69
1.2 29 -3 -2 -3 -3 -0.77 5.63
1.2 25 -2 -3 -3 -2 -0.80 5.20
1.2 31 -2 -3 -4 -5 -1.44 4.94
1.2 11 1 -2 -3 -2 -1.56 3.59
1.2 9 -2 -4 -1 -1 -1.70 2.67
1.2 23 -2 5 -3 -3 -2.08 2.64
1.2 499 -4 -1 0 -2 -3.15 1.15
1.2 500 -6 -3 -2 -3 -3.71 0.99
1.2 424 -5 -3 -4 -4 -4.20 0.80
1.2 431 -6 -4 -4 -5 -4.44 0.81

Fig. 6. Sample of signal data acquisition for place 1.2

5 Experimental Results

For tests we used separately the case library and probes for floor 1 and 2. With
the cases in floor 1 we made two other tests, one with all the points and another
with more spaced points (1.1, 1.2, 1.3, and 1.7).

We run the three groups of examples separately. Figures 7 and 8 show the
results obtained using these cases to train a neural network and C5.04. Results
are presented in terms of a coincidence matrix. The topology of the neural net-
works comprised 15 neurons in the input layer, 20 in the hidden layer and n
nodes in the output layer, being n the cardinality of the location variable. For
the neural network we used the RBFN method with preventive overtraining. For
C5.0 we favored accuracy which means that we accepted a low level of punning.
It is clear from these results that using a feed forward network or C5.0 does not
drive to good location classifiers, and the results are in fact quite poor when we
use the same attributes we used for CBR.
4 C5.0 is a commercial version of the C4.5 algorithm.

A Case-Based Approach for Indoor Location 87

Fig. 7. Coincidence matrices for the NN trained with data from floors 1 and 2

Fig. 8. Coincidence matrices for the C5.0 trained with data from floors 1 and 2

Correct 15 88.24%
Wrong 2 11.76%
Total 17

Correct 10 100.00%
Wrong 0 0.00%
Total 10

Correct 10 76.92%
Wrong 3 23.08%
Total 13

Correct 15 88.24%
Wrong 2 11.76%
Total 17

Correct 10 100.00%
Wrong 0 0.00%
Total 10

Correct 10 76.92%
Wrong 3 23.08%
Total 13

Fig. 9. Coincidence matrices for the CBR with data from floors 1 and 2

88 C. Bento, J. Peixoto, and M. Veloso

Figure 9 presents the results obtained with our case-based system. From these
results it is evident that the CBR system performs acceptably for the group of all
points in floor one (correctness: 88.24%), very well when points are more distant
between them (correctness: 100%), not as well for points in floor 2 in contiguous
rooms (correctness: 77.92%).

Although it is necessary to look with care to these results - we need to
acquire more cases and more probes in different days to make this experiment
significant, we think that there is an opportunity for a deeper study of this
approach and the mechanisms that are provided by CBR for this task. In fact
the CBR approach introduces a dramatic improvement versus the neural network
and C5.0 experimental results.

Surprisingly to our previous intuition the CBR approach did not work very
well for points in contiguous closed spaces as was our expectation. Further work
and understanding on this aspect is necessary in the future.

6 Summary and Future Work

Performing indoor location based on footprints of GSM/GPRS signals is a chal-
lenging task due to the variability of the received signals. Those signals are quite
sensitive to changes due to movements of people and objects, weather conditions,
changes in the physical path from the base stations to the receiver, and build-
ing structures. In this way, although the task is similar to the one performed
by other systems like RADAR, in fact GSM systems have to deal with a much
more complex RF scenario.

We defend that an approach supported on CBR is worth pursuing. We can
incorporate theoretical and empirical knowledge in the similarity/dissimilarity
metric. Also a case-based approach is quite suitable for symbolic location as
cases naturally embody the discrete points that must be considered for location.
Cases can be organized into an hierarchical structure making the process of
case retrieval to go as deeply in the case hierarchy as it is permitted by the
quality of these cases. Also a case-based approach is quite suitable for location
in a cooperative way. Various systems can contribute with cases along their
navigation to a shared case base. Due to changes on the environment along
time the RF scenario can change gradually or sometimes abruptly. This is an
opportunity for applying the work performed along years of research on case base
maintenance. Finally, it is important to stress that according to its nature this
is an incremental learning process, that can start with a set of seed cases that
when not able to make good classifications can improve itself by incorporating
new cases.

A drawback of this kind of approach has to do with the fact that these
systems need a learning phase to associate symbolic points to RF footprints.
Also changes in the network imply the refreshment of the case base. This is
something common to system based on the analysis of RF scenarios.

The present work is at its beginning and a lot of things have to be done to
improve results. First we think that it is important to extend the tests and to

A Case-Based Approach for Indoor Location 89

improve the dissimilarity metric. Things like how long should be the case and
probe vectors? What can we do to improve the relevance metric? The present
metric gives attention to the channels with the highest mean level discounted
by the standard deviation, and discarding the channels in the extremes of the
ranking. It is this the best approach?

Another aspect concerns creation of conflict resolution rules - what to do
when two or more cases exhibit similar dissimilarity values? Also it is important
to investigate revision mechanisms as they are understood by the CBR commu-
nity. It is possible that when two cases are in conflict the best practice be not
to choose one of them but to use both to construct a new case. Also it will be
interesting to study how a community of ”navigators” can cooperate producing
cases to a common library.

We need to produce further work on which are the factors that maintain rel-
atively stable along space and those that are discriminant for a place in order to
understand which are the CBR mechanisms that are suitable for indoor location.

Acknowledgements. We would like to thank the anonymous reviewers for their
valuable comments, suggestions, and insightful suggestions for future work.

References

1. Roy Want, Andy Hopper, Veronica Falcao, and Jonathan Gibbons. The active
badge location system. ACM Transaction on Information Systems, 10(1):91102,
January 1992.

2. Andy Ward, Alan Jones, and Andy Hopper. A new location technique for the active
office. IEEE Personal Communications, 4(5):4247, October 1997.

3. Frank van Diggelen and Charles Abraham. Indoor GPS Technology. CTIA
Wireless-Agenda, Dallas, May 2001.

4. John Krumm, Gerry Cermak, and Eric Horvitz. RightSPOT: A Novel Sense of
Location for a Smart Personal Object, in Proceedings of UbiComp 2003: Fifth
International Conference on Ubiquitous Computing, Lecture Notes in Computer
Science volume 2864, USA, October 2003.

5. Paramvir Bahl and Venkata N. Padmanabhan. RADAR: An In-Building RF-based
User Location and Tracking System, in IEEE INFOCOM 2000. Tel-Aviv, Israel,
2000.

6. Abhishek Pramod Patil. Performance of Bluetooth Technologies and Their Applica-
tions to Location Sensing. Master of Science Dissertation. Department of Electrical
and Computer Engineering, 2002.

7. Beddel, P., Cellular/PCS Management, McGraw-Hill, New York, USA, 1999.
8. Freeman, R., Telecommunications Transmission Handbook, John Wiley and Sons,

Inc., USA, 1998.
9. K. Kaemarungsi and P. Krishnamurthy, ”Modeling of Indoor Positioning Systems

Based on Location Fingerprinting”, IEEE INFOCOM 2004, IEEE, 2004.
10. S. Seidel and T. Rappaport, ”914 MHz Path Loss Prediction Models for Indoor

Wireless Communications in Multifloored Buildings”, IEEE Transactions on An-
tennas and Propagation, IEEE, February 1992, pp. 207-217.

11. D. B. Leake, editor. Case-Based Reasoning: Experiences, Lessons, and Future Di-
rections. Menlo Park, CA: AAAI Press/MIT Press, Menlo Park, CA, 1996.

90 C. Bento, J. Peixoto, and M. Veloso

12. Aamodt A. and Plaza E. (1994). Case-Based Reasoning: Foundational Issues,
Methodological Variations, and System Approaches. Pages 39-59 in AICom - Ar-
tificial Intelligence Communications 7(1), March 1994.

13. Ontanon, P. Collaborative case retention strategies for CBR agents. in 5th Inter-
national Conference on Case-Based Reasoning, ICCBR 2003. 2003. Trondheim,
Norway: Springer Verlag, Heidelberg, Germany.

14. Zhong Zhang and Qiang Yang, Towards Lifetime Maintenance of Case Base Indexes
for Continual Case Based Reasoning. In Proceedings of the 1998 International
Conference on AI Methodologies, Systems and Applications (AIMSA98), Bulgaria,
October 1998.

15. Sirin Tekinay, Ed Chao, and Robert Richton. Performance Benchmarking for Wire-
less Location Systems. IEEE Communications Magazine, April 1998.

16. Barry Smyth, Mark T. Keane, and Pdraig Cunningham. Hierarchical Case-Based
Reasoning Integrating Case-Based and Decompositional Problem-Solving Tech-
niques for Plant-Control Software Design. IEEE Transactions on Knowledge and
Data Engineering archive Volume 13, Issue 5 (September 2001).

17. Wolfgang Wilke, Ralph Bergmann. Techniques and Knowledge Used for Adapta-
tion During Case-Based Problem Solving. IEA/AIE (Vol. 2) 1998: 497-506.

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, pp. 91 – 105, 2005.
© Springer-Verlag Berlin Heidelberg 2005

P2P Case Retrieval with an Unspecified Ontology

Shlomo Berkovsky1, Tsvi Kuflik2, and Francesco Ricci3

1 University of Haifa, Computer Science Department
slavax@cs.haifa.ac.il

2 University of Haifa, Management Information Systems Department
tsvikak@is.haifa.ac.il

3 ITC-irst, Trento
ricci@itc.it

Abstract. Traditional CBR approaches imply centralized storage of the case
base and, most of them, the retrieval of similar cases by an exhaustive compari-
son of the case to be solved with the whole set of cases. In this work we pro-
pose a novel approach for storage of the case base in a decentralized Peer-to-
Peer environment using the notion of Unspecified Ontology. In our approach
the cases are stored in a number of network nodes that is comparable with the
number of cases. We also develop an approximated algorithm for efficient re-
trieval of most-similar cases. The experiments show that the approximated algo-
rithm successfully retrieves the most-similar cases while reducing the number
of cases to be compared.

1 Introduction

Peer-to-Peer (P2P) networks provide a distributed computing platform with theoreti-
cally unlimited storage, communication and processing capabilities. P2P systems,
however, lack any notion of centralized management, depending rather on distributed
autonomous management of the resources contributed by the connected peers. Storage
resources of P2P systems were used until now for data sharing and distribution,
mainly multimedia files. P2P is a fast growing research area that is producing interest-
ing applications [9].

This paper proposes using the resources of a P2P network as a case-based reasoning
tool for the purposes of distributed storage of a case base and to support distributed
retrieval of similar cases. Since a P2P system does not require central management, and
in fact this is the primary motivation for P2P solutions, the cases inserted autonomously
by a community of users are described in a fully distributed way, possibly using differ-
ent features for the same type of cases. This implies that similar cases might be not only
different with respect to certain feature values, as in classical CBR approaches, but also
capable of being described in different ways (different features, different names for the
same concept). Thus, efficient management of the case base requires a stable semantic
infrastructure allowing the identification of similarities between these heterogeneous
cases. Moreover, this infrastructure should support a retrieval process that: i) maintains
decentralized retrieval with low communication overhead, and ii) guarantees discovery
of the most similar cases or at least a reasonably good approximation.

LNAI

92 S. Berkovsky, T. Kuflik, and F. Ricci

We used the hypercube-based approach of UNSO (UNSpecified Ontology) [1] to
maintain P2P storage of the case base and we developed an approximated algorithm
for case retrieval that copes with the constraints of such a distributed storage structure
(e.g. reduction of node to node communication). The algorithm is based on the notion
of implicit clustering in UNSO, i.e., on the fact that similar cases are inherently
located in a relatively close vicinity. Thus, an approximated retrieval algorithm over
UNSO is performed through a localized search. This means that the case most similar
to a given probe is not searched in the whole case base, but rather that the search
focuses on the nodes (storing cases) closer to the node storing the probe, thus decreas-
ing the number of target cases that are compared with the case to be solved. More-
over, since the underlying network consists of distributed connected peers, the
computation effort needed to assess the case similarity might also be spread among
the peers, eliminating a single computation bottleneck in traditional centralized CBR
systems.

The above approach was evaluated in five case bases storing E-Commerce adver-
tisements from five different domains. We have compared the proposed approximated
retrieval algorithm with a traditional exhaustive algorithm, and we showed that the
former significantly decreases the number of cases that are compared during the
retrieval stage, while preserving the essential quality of the retrieved cases. In particu-
lar, we measured the recall of the proposed algorithm and the number of case similar-
ity computations performed. We achieved high recall results while still keeping the
number of similarity computations smaller than that required by an exhaustive linear
search.

The ideas of distributed problem solving in CBR arose in multi-agent CBR systems
such as those proposed in [10] and [11], and more recently in [7] and [8]. In [10] the
task was solved by iterative negotiations between the agents, targeted to resolve the
constraints’ conflicts, while in [11] the agents exploited the past experience of other
agents. Our approach is quite different, since we assume that the agent/nodes of the
P2P network jointly contribute to a single retrieval rather than participating in the
problem solving process by performing independent retrievals or exchanging problem
solving knowledge.

Thus, the contributions of this work are two-fold. First, we propose a novel notion
of pure decentralized storage of the case base in a P2P mode. Second, we develop and
evaluate an efficient approximated algorithm for the retrieval of the most similar
cases over the above platform.

The rest of this paper is structured as follows. In Section 2 we present semantic
approaches to P2P data management. In Section 3 we describe our case model and the
UNSO distributed storage. In Section 4 we define the distance metric we have used in
our evaluation, and we present the approximate case retrieval algorithm. Finally in
Section 5 we present the results of the empirical evaluation, and we conclude in
Section 6 summarizing the obtained results and mentioning future lines of research.

2 P2P and Semantic Data Management

Peer-to-Peer (P2P) computing refers to a subclass of distributed computing, where
functionality is achieved in a decentralized way by using a set of distributed

 P2P Case Retrieval with an Unspecified Ontology 93

resources, such as computing power, data and network traffic. P2P systems usually
lack a dedicated centralized infrastructure, but rather depend on the voluntary contri-
bution of resources by the connected peers. Systems based on the P2P approach are
usually characterized by one or more of the following advantages: cost shar-
ing/reduction, improved scalability/reliability, resource aggregation and operability,
increased autonomy, dynamism, and high levels of anonymity/privacy [9].

A number of content-addressable P2P systems for data sharing, such as CAN [12]
and Pastry [13] were recently developed. These applications implement a highly scal-
able self-organizing infrastructure for fault-tolerant routing using distributed hash
tables (DHT) [6]. In DHT-based systems users and resources are assigned unique
identifiers (called nodes and resources, respectively) from a sparse space. As accepted
in the P2P system, the resources are distributed and stored at the user-side, i.e, each
user nodei manages a set of resources Ri={resource1, resource2, …, resourcen}. The
resources are inserted into the system through put(useri, resourcej) operation that uses
globally-known hashing functions that assign useri as a provider of resourcej by
coupling their identifiers in the DHT. As such, DHT is also partitioned and stored
distributively at the user-side. This setting facilitates further discovery of keyj’s pro-
vider by other users through get(keyj) operation exploiting the same global hashing
mechanism.

DHT-based systems are highly scalable, and provide a robust, self-organizable, and
completely decentralized structure. Due to an effective routing algorithm that routes
the messages to the relevant peers only instead of expensive network flooding, their
overall traffic is significantly lower [12,13]. However, DHT-based systems basically
rely on hashing-based put() and get() operations. This results in two major limitations:

• Support for exact-matching lookups only. Similar, but not identical keys key1 and
key2, will be treated as two diverse resources. Hence, just the searches, specifying
the same term used at the insertion of a key, will succeed to locate it.

• Support for single-key lookups only. The above put() and get() primitives handle a
single key only, i.e., a resource is described by a single string. Although the key
might be represented as a concatenation of the substrings representing parts of the
key, any minor change in one of them will prevent identifying the matching.

This has lead to the development of a more complex kind of P2P network, built
upon peers using their own, not shared, schemas to describe the objects. This
approach is further referred to as semantic or ontology-based data management. A key
concept in semantic data management is ontology, i.e., a formal shared conceptualiza-
tion of a particular domain of interest [5]. It acts as a standardized reference model,
providing both human-understandable and machine-processable semantic mecha-
nisms, allowing enterprises and application systems to collaborate efficiently.
Techniques for ontology-based data management in P2P networks were initially pro-
posed in HyperCup [14] and further extended in UNSO [1].

HyperCup [14] proposes a flexible ontology-based P2P platform generating a
hypercube-like graph of users, where each user is treated as a data source. HyperCup
needs predefined ontology of the domain, such that the dimensions of the hypercube
match the concepts (features characterizing the domain) of the ontology. According to
the above ontology, each user is categorized as the provider of particular data. This
categorization determines the location of the user within the hypercube. Thus, the

94 S. Berkovsky, T. Kuflik, and F. Ricci

hypercube is virtually constructed of the connected users, whereas each user main-
tains a data structure of its respective neighbors. For example, in 3-dimensional
hypercube a node located in coordinates (x,y,z) will be connected to 6 neighbors:
(x+1,y,z), (x-1,y, z), (x,y+1,z), (x,y-1,z), (x,y,z+1) and (x,y,z-1). The user providing
data from a number of domains will maintain a set of hypercube locations, i.e., a sepa-
rate data structure of neighbors for each location.

Due the fact that the ontology is predefined, and remains unchanged, data sources
providing the same content are mapped to the same location. Moreover, if the possible
values for ontology concepts (features) can be ordered a priori (as for instance in the
feature “quality of the paper”) then providers of similar contents are mapped to close
locations. This implies causes the formation of so-called “concept clusters”, which
facilitate multiple-key search by efficient semantic routing of queries constructed as a
logical combination of ontology concepts. However, such a setting where data
providers share a single global ontology would require central management of the
ontology, contradicting the decentralized spirit of a P2P network.

3 Case Representation and Storage in UNSO

UNSO (UNSpecified Ontology) [1] extends the above ideas by assuming that the
domain ontology is not fully defined and that parts of it can be dynamically specified
by the peers. The description of the resource is relatively free and is represented as an
“unspecified” vector <f1:v1, f2:v2,…, fn:vn>, where fi corresponds to a feature of the
resource being described, and vi to the value of the respective feature.

To manage pure distributive storage and retrieval of cases, we adopt the UNSO
representation of a case as an unspecified vector. Hence, the cases are represented as a
dynamic list of features and their respective values. Different domains may exploit
different features or values to describe a case. For example, a medical case may con-
tain features describing the patient and the disease, whereas, a weather forecasting
case base could include various geographical and climatic features. Note that when
operating in a pure decentralized environment without any form of central manage-
ment and any predefined ontology, different data sources might represent cases from
the same domain in different ways. As such, neither the set of features specified when
describing a particular case, nor their respective values can be anticipated. Thus, the
main target of UNSO is to manage ontologies that can grow and support updating in a
fully distributive way.

In detail, the UNSO generalization of a regular notion of ontology is performed in
the following manner:

• The ontological vector description can dynamically grow by allowing it to be for-
mulated by the users as a list of pairs featurei:valuei. Two hash functions are used
to map the “unspecified” vector to its location in the hypercube: one maps the fea-
ture featurei to a dimension of the hypercube, while another maps the value valuei
to a coordinate value within that dimension. For example, consider a case describ-
ing E-Commerce advertisement: <manufacturer:BMW | engine volume:3000 | year
of production:1987>. This is inserted into the hypercube by applying
hash1(manufacturer), hash1(engine volume), and hash1(year of production) to ob-
tain the relevant dimensions of the hypercube, while hash2(BMW), hash2(3000)

 P2P Case Retrieval with an Unspecified Ontology 95

and hash2(1987) will determine the coordinate values in the above dimensions. We
note that using two hash functions allows the order of featurei:valuei pairs appear-
ing in the case model to be ignored.

• The description can be organized in a “hierarchical” multi-layered structure
(instead of a single “flat” vector), constructing a hypercube, the vertices of which
recursively contain other hypercubes. This is regarded as a multi-layered hyper-
cube (MLH). For example, a 2-layered ontology with three vectors <manufacturer |
color | year of production> + < engine volume | transmission | ABS> with two
possible values for each slot will generate a hypercube with 8 recursive nodes,
containing “inner” hypercubes of up to 8 nodes. For example, if ABS feature might
be present only in cars of production years 1970 and after, there is no sense in
entering this dimension in the inner hypercubes of cars produced before 1970. This
would be compared to a fixed size 64-nodes hypercube, had we used one flat
vector for the whole ontological case model.

The conversion of a fixed specified ontology to the Unspecified Ontology is sum-
marized in figure 1. In the case of fixed ontology, a predefined set of features and
values is mapped to a location in the underlying hypercube graph. Conversely in
UNSO the number of featurei:valuei pairs in the description of a case is unlimited and
their order is insignificant. Thus, UNSO dynamically generates a hypercube-like graph
structure, where each vertex is recursively made of another hypercube. Note that the
ontology of inner hypercubes is also dynamic and depends on the properties characteriz-
ing the cases which correspond to the location in the upper-level hypercube.

To address the problem that cases may have different terms with the same semantic
meaning (synonyms), the featurei names are standardized using WordNet [3]. In
WordNet, English nouns, verbs, adjectives and adverbs are organized into synonym
sets, each representing one underlying lexical concept. For each concept, the set of
synonyms can be sorted according to the frequency of usage. To eliminate possible
ambiguity and improve the precision, the terms mentioned by the user in the descrip-
tion of a case undergo a simple semantic standardization, substituting the original
terms with its most frequent synonyms. Thus, similar, but not identical terms speci-
fied by the user as featurei names, are replaced by a single ‘representative’ term.

As a negative effect of the hashing used in UNSO, the order relations on the stored
resources are lost, since neither are the keys anticipated, nor do hashing primitives
keep the distance relation. Despite this, UNSO supports the notion of concept clusters
due to the fact that contents whose categorizations are identical with respect to a sub-
set of ontology concepts are mapped to locations, whose coordinates have a common
identical subset of coordinates. For example, two cases <manufacturer:BMW |
color:red | year of production:1987> and <manufacturer:BMW | color:green | year of
production:1987> will obviously be located closer than two arbitrary vectors, as two
features (coordinates in UNSO) do overlap.

Thus, UNSO provides a hypercube-based dynamic infrastructure for distributed
and fully decentralized management of the case base. The cases, modeled as unspeci-
fied ontological vectors, are organized in the hypercube in such a way that similar
cases are located in close locations, thus facilitating efficient answering of semantic
queries. Moreover, the connectivity maintenance protocols developed in [14] keep the
hypercube stable despite sporadic joinings and departures of cases.

96 S. Berkovsky, T. Kuflik, and F. Ricci

….
 val 1n

val21 val 2n <val1i , val2j , val 3k>

val31
val32

val3n

val 11
val 21

…

…

 fixed ontology

UNSO

…

f1:v1 f 2 :v 2 f 3 :v 3

…

f 3 :v 3 f 2 :v 2 f1:v1

f 3 :v 3 f 2 :v 2 f1:v1

Fig. 1. Generalization of the Fixed Ontology to the Unspecified Ontology

In this paper we consider a case base that stores E-Commerce advertisements (in
short, ads). Ads can be divided to two categories: supply ads where users offer prod-
ucts or services in exchange for payment, and demand ads where users seek products
or services provided by other users. The system is required to provide a matching
functionality between appropriate demand and supply ads. In a decentralized setting,
where the users do not use any predefined forms when inserting demand and supply
ads into the system, matching functionality is harder to achieve, as the system should
be capable of finding the relevant ads basing on possibly partial and incomplete de-
scriptions of the items.

In CBR terms, the case base is a collection of supply ads, stored in a distributed
manner and containing a set of descriptions of the products the users are interested in
selling. Each case (ad) is formulated as a list of <featurei:valuei> pairs, while neither
properties nor values being known a priori. Hence, the descriptions of demand ads
might be incomplete in comparison to the existing supply ads. The demand ad serves
as a problem to be solved, whereas the supply ads in the case base provide possible
solutions. Since the main target is providing matching functionality, the system
should implement the search of the most-similar supply ads, i.e., cases. In the next
section we shall describe the similarity metrics on possibly incomplete cases, and the
retrieval algorithm.

4 Case Similarity and Retrieval

Retrieving the most-similar cases is one of the primary goals of a CBR system. The
more accurate and efficient the similarity assessment, the more quickly the system
will indicate the most useful cases. Two policies for case retrieval are typically im-
plemented:

 P2P Case Retrieval with an Unspecified Ontology 97

• Retrieve a set of K most-similar cases - calculates the similarity for each target
case, ranks the cases according to their similarities and returns K highest cases
from the ranked list.

• Retrieve a set of cases whose similarity is above a given threshold β - calculates the
similarity for each target case and returns the case if the similarity is higher than β.

Each of the above-mentioned policies requires that the similarity function to be
explicitly defined. In this paper we compute the similarity of two cases c1 and c2 as
1-dist(c1,c2), where dist is a distance metrics. When cases are represented as a list of
<featurei:valuei> pairs, in order to compute the distance between the cases, we con-
sider each feature separately. Hence, for the homogeneous cases (all the cases contain
the same set of features), and assuming a linear dependency between the features and
the distance, the distance metrics dist(c1, c2) is defined by:

| |

1 2 1 2
1

(,) (,)
d

i i
i

i

dist c c w dist c c
=

= ⋅ ,

where d denotes the set of features specified in the cases, wi is the normalized (wi=1)
relative weight of the feature fi, and

1 2(,)i idist c c is the local distance metrics between

c1 and c2 with respect to the same feature fi.
To compute the local distance between the values of two features we consider the

possible types of values [2]. For Boolean values (true or false), the distance is a trivial
comparison between two values, giving 0 if the two values are equal or 1 otherwise.
For numeric features, the distance is the difference between them normalized by di-
viding it by the maximal possible difference (range). Moreover, the distance between
two locations in a tree-like taxonomy is defined as the shortest path distance between
the two nodes on the tree.

For symbolic or free-language values the distance can be computed as the differ-
ence between the numeric representations of the values. Although in particular
domains the translation between symbolic and numeric values can be performed
manually by a human expert, it is not clear whether it is feasible in any domain, espe-
cially if the features are not anticipated by the system. As the current work focuses on
distributed retrieval of similar cases, feature distance metric for symbolic and free-
language values is defined similarly as for the Boolean features, by:

Note that both k-nearest neighbor and above threshold retrieval techniques require
that the case to be solved be compared with the whole set of the cases in the case
base. Given a case base containing descriptions of N cases, the number of case dis-
tance computations needed for these retrievals is O(N). More efficient multidimen-
sional retrieval techniques, such as those based on K-d trees [4], were proposed in
[15]. K-d tree uses a multi-dimensional tree for management and retrieval of cases.
This technique requires O(N logN) to build the tree and O(logN) to retrieve the most-
similar case (for N>>2d). However, these techniques are applicable when cases are

0 1
ic = 2

ic

1 otherwise 1 2(,)i idist c c =

98 S. Berkovsky, T. Kuflik, and F. Ricci

described only with numeric features and they do not resolve the issue of cases with
symbolic or free-language feature values. Moreover, it is not obvious how this algo-
rithm could be implemented in a distributed environment, as that described here,
where case feature values are retrieved exploiting node-to-node communication.

As we noted above, in a P2P environment with no predefined ontology, users can
describe their cases in a relatively free form, hence cases will differ in terms of men-
tioned features. Therefore, we define a distance metrics for cases with an arbitrary set
of features. But, since we are interested in retrieving similar cases (certainly, from the
same domain), we can assume that there will be a set of overlapping features that are
mentioned both in c1 and c2. Thus, we modify the distance function to compute the
distance between two cases c1 and c2 exploiting only the set of overlapping features:

| '|

1 2 1 2
1

'(,) (,)
d

i i
i

i

dist c c w dist c c
=

= ⋅ ,

where d’ denotes the set of overlapping features, wi is their normalized relative
weight, and

1 2(,)i idist c c is the local distance metrics between the features. We note
that similarity ranges between 0 and 1 since also the distance is normalized.

We have exploited the P2P infrastructure of UNSO and the implicit clustering of
similar cases for improving the efficiency of case retrieval. Figure 2 presents the
pseudo-code of the algorithm we propose for the retrieval of cases whose similarity
with the case to be solved is above a threshold β.

Initially, the algorithm determines the location of the case to be solved using a
hashing mechanism similar to that used while inserting cases into the hypercube
(steps 1-3). Two functions are used to map the case. The first determines the dimen-
sions of the hypercube and the second the coordinate values within the dimensions.
Then the algorithm analyzes the cases stored in adjacent locations by assessing the
similarity between each candidate case and the case to be solved (steps 4-7). The
rationale is that in UNSO similar cases are located in close vicinity and therefore to
find similar cases we can check only a small portion of the case base. In other words
UNSO provides an implicit indexing of the case base. The similarity between each
one of the cases and the case to be solved is calculated using the distance metrics
discussed above. If the similarity value is higher than the threshold β, then the re-
trieved case is added to the set of cases with required similarity (steps 8-9). Finally,
the whole set of appropriate cases is returned (step 10).

For example, consider the following representation of a case to be solved
cs=<manufacturer:Ford | doors:2 | color:red> and a flat 3-dimensional hypercube.
Assume that the case cs is mapped to a location (2,3,4) in the hypercube. Then the
search will compare the cs with the cases located at (*,3,4), (2,*,4), and (2,3,*), where
* denotes any possible value in the respective dimension. In simple words, cs will be
compared against all the cases describing either 2-door red cars, or red Fords, or 2-
door Fords.

The search for top-K similar users is performed in a similar manner; however, the
length of the set of retrieved_cases is limited to K and every appropriate case is added
to retrieved_cases in such a way that the whole set remains sorted.

 P2P Case Retrieval with an Unspecified Ontology 99

Fig. 2. Algorithm for retrieving cases with similarity metrics above

Note that the above algorithm will compute an approximated solution since it
checks only cases with one modified feature with respect to the original case to be
solved. Intuitively, this is motivated by the fact that the higher number of modified
features will be reflected in a lower similarity. Thus, the probability of discovering a
similar case decreases with the number of modified features. However, in sparse case
bases, or for the retrieval of the K most-similar cases (for large K), it might be neces-
sary to search cases with more modified features. In order to adapt the algorithm to
this constraint, the loop in step 4 is replaced by a nested loop that will retrieve cases
from locations with a higher number of modified coordinates.

For the sake of simplicity, the above algorithm discusses the retrieval of similar
cases over a flat hypercube. Converting a flat hypercube to MLH will have a minor
impact on the retrieval process. The search for modified coordinates will partially take
place in another hypercubes. For example, for 2-leveled 3-dimensional cubes <f1:v1,
f2:v2, f3:v3>+<f4:v4, f5:v5, f6:v6> the searches for the modified values of f4, f5, and f6
will take place in the current secondary-level hypercube, while the searches for f1, f2,
and f3 will require cases stored in another secondary hypercubes (siblings of the cur-
rent hypercube) to be accessed.

As already noted above, the number of comparisons in a naïve retrieval algorithm
is O(N), where N is the number of cases in the case base. Intuitively, the complexity
of UNSO-based retrieval is significantly lower, as the case to be solved is compared
with only a subset of the cases in the case base. The complexity of the above algo-
rithm is O(nk), where n is the dimension of the hypercube, and k is the maximal
number of values for each dimension. Insertion of a case into the hypercube will re-
quire routing it to its proper location and connecting it to the neighbors in O(nk) steps.
Thus, total computational complexity of managing and retrieving cases in UNSO-
based structure is lower than the complexity of naïve exhaustive retrieval for a suffi-
ciently large case base.

Moreover, in this setting the retrieval stage is parallelized and the required compu-
tational effort is decreased, as the similarity of cases might be computed in parallel in
each node (i.e., processed by the user managing a particular node of the hypercube).
To implement this, the query with the description of the case to be solved is sent in
parallel over all the dimensions. Upon receiving a query, each node forwards the

 Retrieve (target_case,)

(1) map target_case to the hypercube of dimension n
(2) assume the location of target_case is (c

1
,…,c

n
)

(3) let retrieved_cases be a set of cases, initially empty
(4) for i=1 to n
(5) for each possible value x of the ith coordinate
(6) let current be the set of cases stored in

 the location (c
1
,…,c

i-1
,x,c

i+1
,…,c

n
)

(7) for each test_case∈current
(8) if sim(target_case, test_case) >
(9) retrieved_cases = retrieved_cases ∪ test_case
(10) return retrieved_cases

100 S. Berkovsky, T. Kuflik, and F. Ricci

query to the next neighbor in a pipeline manner and initiates local computations.
Upon discovering cases with the required similarity, nodes asynchronously send them
back to the neighbor from which the query was received.

In summary, the semantic mechanism of Unspecified Ontology facilitates maintain-
ing the case base as a distributed hypercube-like graph with a stable structure. The pro-
posed approximated algorithm allows efficient retrieval of the most similar cases that
spreads the required computational effort among the users comprising the hypercube.

5 Experimental Results

To validate the proposed retrieval algorithm, five corpuses of real-life E-Commerce
ads from different domains were collected from http://www.recycler.com Web-site
(61 refrigerator ads with 10 different features mentioned, 65 camera ads with 13 dif-
ferent features, 76 television ads with 11 different features, 94 printer ads with 11
different features, and 130 mobile phone ads with 9 different features), giving in total
426 ads. Most of the ads contain three to four features. Before inserting the ads into
the system, each ad was manually converted to the form of an ontological vector. For
example, an ad “Philips 50FD995 50" plasma television, new in box, $4800” was
converted to the following ontological description: <price:4800, manufac-
turer:Philips, model:50FD995, size:50, screen:plasma, condition:new>. The conver-
sions were done keeping as close as possible to the original contents of the ads to
mimic the insertions by naïve users.

The above UNSO-based model for storage and retrieval of cases was implemented.
The number of dimensions in the hypercubes was not limited, i.e., it was equal to the
number of different features mentioned by the users in their ads. The cardinality of
cube dimensions (the range of coordinates in each dimension) was chosen to be 7.
Version 2.0 of WordNet was used during the insertions of ads to standardize the
names of the features and to decrease the semantic ambiguity.

5.1 Retrieval Capabilities

In this experiment we retrieved the cases from the hypercube in two ways. Initially we
retrieved the set Re of the most similar cases using a regular CBR approach. This
approach exhaustively compares the case to be solved with each one of the cases
stored in the case base and retrieves only those cases whose similarity is above a
given threshold β. Then we retrieved the set of the most-similar cases Ru using the
above retrieval algorithm over the UNSO hypercube. The efficiency of our approach
was quantified by dividing the cardinality of the set retrieved using the UNSO re-
trieval method by the cardinality of the set retrieved by the exhaustive search. As Re is
the true set of cases with the required similarity, this metrics is notated as the recall of
the retrieval.

e

| |

| R |
uR

recall =

Recall values are always less than 1 because the set of cases checked by the ap-
proximate retrieval algorithm is a subset of the whole case base; hence we can only
miss some case that could be in the exact retrieval set.

 P2P Case Retrieval with an Unspecified Ontology 101

Figure 3 shows the measurements of the recall as a function of the similarity
threshold β and the maximal allowed number of modified features (i.e., the number
of nested loops in step 4 of the algorithm). The experiments were conducted on the
corpus of 94 printer ads. In each execution a single case to be solved was chosen, and
the total recall was computed as an average of recall values for each chosen case (the
number of executions is equal to the size of the corpus).

Fig. 3. Recall of the retrieval vs. similarity threshold for different values of

The results show that for high values of β (similarity close to 1) the recall con-
verges to 1, i.e., the cardinalities of both sets tend to be equal. This means that for
high values of β (for retrieval of relatively similar cases) the set of cases retrieved
using the UNSO approach is roughly equal to the set of cases retrieved by the tradi-
tional exhaustive approach. For low values of β the recall is low; however, this search
might retrieve many cases with low similarity, that are inapplicable in the further
adaptation stage of the CBR process. Increasing the value of increases the number
of pairs of cases that are compared. Thus, for higher values of the recall converges
more quickly and optimal recall is obtained even for relatively low values of β.

The same observation is true also for the other domains. The recall increases with β
and the curve converges more quickly to 1 with the increase in . Figure 4 shows the
recall for different domains as a function of β for =2. Certainly, the origin of the
different behavior of the curves is in the different types of data in the domains. For
example, recall might be influenced by the number of different features in the ads, their
density and so forth. Elaborate analysis of the data is beyond the scope of this work.

A similar behavior could be observed when comparing the results of both retrieval
approaches for top-K retrieval. Re denotes the set of cases retrieved by exhaustive
CBR search, and Ru the set of cases retrieved using UNSO. We gradually increase K –
the number of cases to be retrieved. The goal of the experiment was to measure the

102 S. Berkovsky, T. Kuflik, and F. Ricci

Fig. 4. Recall of the retrieval vs. similarity threshold for different domains of cases (Δ=2)

Fig. 5. Recall of top-K retrieval vs. K for different domains of cases

quality of UNSO retrieval, i.e., to verify that the cases retrieved using UNSO really
belong to the set of K most-similar cases. We modified the recall metrics to be

e

e

| R |
'

| R |
uR

recall
∩=

 P2P Case Retrieval with an Unspecified Ontology 103

Figure 5 shows the results of recall’ measurements for different domain as a func-
tion of K, with =2. It can be seen that for low values of K (retrieval of highly similar
cases only) there is a high correlation between the set retrieved using UNSO and the
real set of K most-similar cases found by the exhaustive search. For higher values of
K (and lower threshold of similarity), recall’ decreases, as Re contains fewer similar
cases that might not be retrieved using UNSO. Note that for high values of K (not
illustrated in the figure) recall’ rises and finally will converge to 1 for K equal to the
size of the case base. Thus, in the experiment K was limited to 24.

5.2 Computational Optimization

The result of the approximation applied in the UNSO-based retrieval is a decrease in
the number of cases compared during the retrieval process. The needed computational
effort is reduced because the case to be solved is compared only with cases with at
most modified properties, instead of with the whole set of cases stored in the case
base. Moreover, as the cases are stored distributively, the comparisons are performed
at the user-side, thus not involving central processing. This resolves a possible com-
putational bottleneck of central processing and allows additional spreading of the
computational effort.

In this experiment we performed over the threshold retrieval and compared the
number of evaluated pairs of cases for both exhaustive and UNSO-based retrieval. In
each execution a single case to be solved was chosen, and the total number of
compared cases was calculated as an average of the number of comparisons for each
chosen case. In this experiment the number of executions was also equal to the size of
the relevant corpus.

Figure 6 shows the average number of comparisons in a single UNSO-based
retrieval as a function of (the first triplet of bars in each quadruplet), and compares
it with the average number of comparisons in the exhaustive retrieval (the fourth bar).
The experiments were performed for all the available domains of cases.

Fig. 6. Average number of comparisons vs. for different domains of cases

104 S. Berkovsky, T. Kuflik, and F. Ricci

The results clearly show that, although in every domain the number of comparisons
increases with , even for =3 it is still lower than in the regular exhaustive retrieval.
The ratio of the number of comparisons in UNSO-based retrieval divided by the
number of comparisons in the exhaustive search varies as a function of the domain.
We hypothesize that this factor depends heavily on the characteristics of data in the
domain (density, number of mentioned features and so forth).

6 Conclusions and Future Research

In this paper we presented a novel approach to P2P storage of cases using a hyper-
cube-like graph built using UNSpecified Ontology (UNSO). This facilitates the use of
an approximated search algorithm for similar cases retrieval.

The experiments showed that the approximated search succeeds in retrieving the
most-similar cases. The results are pleasing both for K-nearest neighbor and threshold
retrieval techniques. The sets of cases retrieved by the exhaustive technique and
UNSO tend to be equal for low values of K or high thresholds, while the number of
comparisons is significantly lower compared to the traditional exhaustive search.

We plan to extend our work by using a more precise distance metrics that
computes similarity of heterogeneous cases using different sets of features, takes into
account the relative size of the matched case with respect to the total case, and han-
dles local similarity distance for the values of symbolic or free-language features. We
are also interested in exploiting different learning algorithms for determining the
relevance metrics for the features and identifying their weights wi.

Moreover, we plan to investigate the influence of different domains and different
types of data (for example, the density of the ads in the hypercube, the average num-
ber of features used in the ads, the total dimension of the hypercube, and so forth) on
the performance of the approximated algorithm. We also plan to conduct large-scale
experiments with real-life case bases containing a high number of cases.

References

1. Y. Ben-Asher, S. Berkovsky, “UNSO: Unspecified Ontologies for Peer-to-Peer E-
Commerce Applications”, In Proc. of the International Conference on Informatics, Tur-
key, 2004.

2. L. Coyle, D. Doyle, P. Cunningham, “Representing Similarity for CBR in XML”, In Proc.
of European Conference on Advances in Case-Based Reasoning, Spain, 2004.

3. C. Fellbaum, “WordNet - An Electronic Lexical Database”, The MIT Press Publishers,
1998.

4. J.H. Friedman, J.H. Bentley, R.A. Finkel, “An algorithm for finding best matches in loga-
rithmic expected time”, in ACM Transactions in Mathematical Software, vol.3(3), 1977.

5. T.R. Gruber, “A translation approach to portable ontology specifications”, Knowledge
Acquisition Journal, 6(2), pp. 199–221, 1993.

6. M. Harren, J.M. Hellerstein, R. Huebsch, B.T. Loo, S. Shenker, I. Stoica, “Complex que-
ries in DHT-based Peer-to-Peer networks”, In Proc. of the International Workshop on
Peer-to-Peer Systems (IPTPS'02), MA, 2002.

 P2P Case Retrieval with an Unspecified Ontology 105

7. D.B. Leake, R. Sooriamurthi. “When Two Case Bases are Better then One: Exploiting
Multiple Case Bases”. In Proc. of International Conference on Case-Based Reasoning,
Canada, 2001.

8. L. McGinty, B. Smyth. “Collaborative Case-Based Reasoning: Applications in Personal-
ised Route Planning”, In Proceedings of International Conference on Case-Based Reason-
ing, Canada, 2001.

9. D.S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard, S. Rollins,
Z. Xu, “Peer-to-Peer Computing”, Technical Report HPL-2002-57, HP Labs, 2002.

10. M.V. Nagendra Prasad, V. Lesser, S. Lander, “Retrieval and Reasoning in Distributed
Case Bases”, in Journal of Visual Communication and Image Representation, Special Is-
sue on Digital Libraries, vol.7(1), 1996.

11. E. Plaza, J.L. Arcos, F. Martin, “Cooperative Case-Based Reasoning, In Proc. of the
Workshop Distributed Artificial Intelligence Meets Machine Learning, Hungary, 1996.

12. S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, “A Scalable Content-
Addressable Network”, In Proc. of ACM SIGCOMM, CA, 2001.

13. A. Rowstron, P. Druschel, “Pastry: Scalable, distributed object location and routing for
large-scale Peer-to-Peer systems”, In Proc. of International Conference on Distributed
Systems Platforms (Middleware), Germany, 2001.

14. M. Schlosser, M. Sintek, S. Decker, W. Nejdl, “A scalable and ontology-based P2P infra-
structure for semantic Web services”, In proc. of IEEE International Conference on Peer-
to-Peer Computing, Sweden, 2002.

15. S. Wess, K-D. Althoff, G. Derwand, “Using K-d Trees to Improve the Retrieval Step in
Case-Based Reasoning”, In Proc. of European Workshop on Case-Based Reasoning, Ger-
many, 1993.

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, pp. 106 – 121, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Autonomous Internal Control System for Small
to Medium Firms

M. Lourdes Borrajo1, Juan M. Corchado2, J. Carlos Yáñez3,
Florentino Fdez-Riverola1, and Fernando Díaz4

1 Dept. Informática, University of Vigo, Escuela Superior de Ingeniería Informática,
Edificio Politécnico, Campus Universitario As Lagoas s/n,

32004 Ourense, Spain
{lborrajo, riverola}@uvigo.es

2 Departamento de Informática y Automática,
University of Salamanca, Plaza de la Merced s/n, 37008 Salamanca, Spain

corchado@usal.es
3 Department of Financial Accounting,

University of Vigo, Campus as Lagoas, s/n, 32004 Ourense, Spain
jcyanez@uvigo.es

4 Dept. Informática, University of Valladolid, Escuela Universitaria de Informática,
Plaza Santa Eulalia, 9-11, 40005 Segovia, Spain

fdiaz@infor.uva.es

Abstract. Small to medium enterprises require an internal control mechanism
in order to monitor their modus operandi and to analyse whether they are
achieving their goals. A tool for the decision support process has been
developed based on a case-based reasoning system that automates the internal
control process. The objective of the system is to facilitate the process of
internal auditing. The system analyses the data that characterises each one of
the activities carried out by the firm, then determines the state of each activity,
calculates the associated risk, detects the erroneous processes, and generates
recommendations to improve these processes. The developed model is
composed of two case-based reasoning systems. One is used to identify the
activities that may be improved and the other to determine how the activities
could be improved. Each of the two subsystems uses a different problem
solving method in each of the steps of the reasoning cycle. The system has been
tested in 22 small and medium companies in the textile sector, located in the
northwest of Spain during the last 29 months and the results obtained have been
very encouraging.

1 Introduction

Small to medium enterprises require an internal control mechanism in order to
monitor their modus operandi and to analyse whether they are achieving their goals.
Such mechanisms are constructed around series of organizational policies and specific
procedures dedicated to giving reasonable guarantees to their executive bodies. This

LNAI

 Autonomous Internal Control System for Small to Medium Firms 107

group of policies and procedures are named "controls", and they all conform to the
structure of internal control of the company. As a consequence of this, the need for
periodic internal audits has arisen. Nevertheless the evaluation and the prediction of
the evolution of these types of systems, characterized by their great dynamism, are, in
general, complicated. It is necessary to construct models that facilitate the analysis of
work carried out in changing environments, such as finance.

The processes carried out inside a firm are grouped in functional areas [7]
denominated “Functions”. A Function is a group of coordinated and related activities,
which are necessary to reach the objectives of the firm and are carried out in a
systematic and iterative way [14]. The functions that are usually carried out within a
firm are: Purchases, Cash Management, Sales, Information Technology, Fixed Assets
Management, Compliance to Legal Norms and Human Resources. In turn, each one
of these functions is broken down into a series of activities. For example, the function
Information Technology is divided in the following activities: Computer Plan
Development, Study of Systems, Installation of Systems, Treatment of Information
Flows and Security Management.

Each activity is composed of a number of tasks. For example, the activity
Computer Plan Development, belonging to the function Information Technology, can
be divided in the following tasks:

1. Definition of the required investment in technology in the short and medium time.
2. Coordination of the technology investment plan and the development plan of the

company.
3. Periodic evaluation of the established priorities on the technology investment plan

to identify their relevance.
4. Definition of a working group focused in the identification and control of the

information technology policy.
5. Definition of a communication protocol, in both directions: bottom-up and top-

down, to involve the firm employees in the maintenance strategic plan.

Control procedures have also to be established in the tasks to ensure that the
established objectives are achieved.

The developed system is composed of two fundamental subsystems [5]:

• Subsystem ISA (Identification of the State of the Activity) whose objectives are:
to identify the state or situation of each one of activities of the company and to
calculate the risk associated with this state.

• Subsystem GR (Generation of Recommendations), whose goal is to generate
recommendations to reduce the number of inconsistent processes in the firm.

Both subsystems are implemented using a case-based reasoning (CBR) system
[1, 12, 17, 13]. The CBR system associated with each subsystem uses different
problem solving techniques and shares the same case memory [11, 15].

The rest of this article is structured as follows: first, the proposed CBR based
model is presented. Then, its results are evaluated. Finally the conclusions are
presented.

108 M.L. Borrajo et al.

2 Neuro-symbolic System for Internal Control

This section describes the internal control system in detail. Although the aim is to
develop a generic model useful in any type of small to medium enterprise, the initial
work has focused in the textile sector to facilitate the research and its evaluation. The
model here presented may be extended or adapted for other sectors. Twenty two
companies from the North-west of Spain have collaborated in this research, working
mainly for the Spanish market. The companies have different levels of automation
and all of them were very interested in a tool such as the one developed in the
framework of this investigation. After analyzing the data relative to the activities
developed within a given firm, the constructed system is able to determine the state of
each of the activities and calculate the associated risk. It also detects any erroneous
processes and generates recommendations for improving these processes. As shown
below the problem solving mechanism developed takes its decision using the help of a
couple of CBR systems whose memory has been fed with cases constructed with
information provided by the firm and with prototypical cases identified by 34 internal
control experts who have collaborated and supervised the model developed.

Fig. 1. System reasoning process

The cycle of operations of the developed case based reasoning system is based on
the classic life cycle of a CBR system [1, 18]. This cycle is executed twice, since the
system bases its operation on two CBR subsystems (subsystem ISA-Identification of
the State of the Activity and subsystem GR-Generation of Recommendations), as can
be seen in Figure 1. Both subsystems share the same case base (Table 1 shows the
attributes of a case) and a case represents the “shape” of a given activity developed in
the company.

Every time that it is necessary to obtain a new estimate of the state of an activity,
the hybrid system evolves through several phases. This evolution allows the system,
on the one hand, (i) to identify the latest situations most similar to the current
situation, (ii) to adapt the current knowledge to generate an initial estimate of the risk

 Autonomous Internal Control System for Small to Medium Firms 109

of the activity being analysed, and on the other hand, (iii) to identify old situations
that serve as a basis to detect the erroneous processes developed within the activity
and (iv) to select the best of all possible activities. The activity selected will then
serve as a guide for the establishment of a set of recommendations that allow the
activity, its function and the company itself to develop in a more positive way. The
retention phase guarantees that the system evolves in parallel with the firm, basing the
corrective actions on the calculation of the error made previously. The following
sections describe the different phases of the proposed model.

2.1 Data Acquisition

The data used to construct the model were obtained from a set of surveys:

1. External auditors’ surveys. Through the results of the surveys, each one of the
functions and activities of a firm is assigned a level importance. This information
allows the system to calculate the control risk associated with an activity. Also, it
allows the system to prioritise the recommendations for improving the business
processes. This data is stored in the system database.

2. Experts’ surveys on the different functional areas. The second type of survey was
carried out among several experts in the different functional areas of various firms.
This type of survey attempts to reflect the experience of the experts in their
different fields. For each activity, the survey presents two possible situations: the
first one tries to reflect the situation of an activity with an incorrect activity state
and the second one tries to reflect the situation of an activity with a satisfactory
activity state. Both situations will be valued by the expert using a percentage. The
data acquired by the surveys have been used to build the prototype cases for the
initial case base.

Table 1 shows the case structure that constitutes the case base.

Table 1. Case structure

PROBLEM SOLUTION
Case

number
Input
vector

Function
number

Activity
number Reliability

Degree of
membership

Activity
State

Each case is composed of the following attributes:

• Case number: Unique identification: positive integer number.
• Input vector: Information about the tasks (n sub-vectors) that constitute an

industrial activity: ((IR1,V1),(IR2,V2),...,(IRn,Vn)) for n tasks. Each task sub-vector
has the following structure (GIi,Vi):

- IRi: importance rate for this task within the activity. It can only take one of
the following values: VHI (Very high importance), HI (High Importance),
AI (Average Importance), LI (Low Importance), VLI (Very low
importance)

- Vi: Value of the realization state of a given task: a positive integer number
(between 1 and 10).

110 M.L. Borrajo et al.

• Function number: Unique identification number for each function
• Activity number: Unique identification number for each activity
• Reliability: Percentage of probability of success. It represents the percentage of

success obtained using the case as a reference to generate recommendations.
• Degree of membership: ((n1 ,μ1), (n2, μ2), …, (nk, μk))

- ni: represents the ist cluster
- μi: represents the membership value of the case to the cluster ni

• Activity State: degree of perfection of the development of the activity, expressed by
percentage.

2.2 Subsystem ISA (Identification of the State of the Activity)

The subsystem ISA (Identification of the State of the Activity) identifies the state or
situation of each of the firm’s activities and calculates the risk associated with this
situation. The system uses the data for the activity, introduced by the firm’s internal
auditor, to construct the problem case. For each task making up the activity analyzed,
the problem case is composed of the value of the realization state for that task, and its
level of importance within the activity (according to the internal auditor).

In this way, a problem case for an activity of n tasks, will be composed of a vector
such as: ((IR1,V1),(IR2,V2),...,(IRn,Vn)) where:

• IRi: importance rate for this task within the activity. It can only take one of the
following values: VHI (Very high importance), HI (High Importance), AI
(Average Importance), LI (Low Importance), VLI (Very low importance).

• Vi: Value of the realization state of a given task. It is a positive integer number
(between 1 and 10).

2.2.1 Retrieval Phase
This phase has as its objective the retrieval of K cases – the most similar cases to the
problem case. This is carried out by means of a technique of cluster-based similarity.

Using the fuzzy C-means method [3,4], the most similar cases belonging to the
case base are grouped together. With this clustering method, n clusters are obtained,
each of them containing cases exclusively from the case base. Each case will have
associated a degree of membership for each cluster, expressed by a percentage.
A representative case or centre is identified for each cluster.

The object of the following step is to identify the cluster containing the cases
nearest to the problem case in order to reduce the size of the problem space. Thus, the
problem case is compared with the centre of each cluster. The cluster selected will be
the one whose centre is located closest to the problem case. The distance between the
problem case and the cluster centres was calculated using the Mahalanobis:

() () − −−= 1
)(, T

jijijiM xxxxxxd
(1)

Since a precise estimate, provided by the system, is necessary, only those cases
with a high degree of membership to the cluster and a high reliability will be
retrieved. The reliability indicates the percentage of probability of success using this
case in the process of generating recommendations. In our system, only those K cases

 Autonomous Internal Control System for Small to Medium Firms 111

with a degree of membership to the cluster greater than 65% and with a reliability
higher than 50% will be retrieved. These two percentages have been established by
the auditors interviewed.

Figure 2 shows the pseudocode for this retrieval phase. X represents the set of
cases that introduces the knowledge about an activity, vp represents the vector of
characteristics (attributes) that describes a new problem, n_cluster represents the
amount of clusters that the system is looking forward to obtaining (in this case
n_cluster=3 has been chosen), max_iter represents the highest number of iterations of
the algorithm and it has been initialized at 100, P represents the set of centres of the
n_cluster clusters, U is the matrix of memberships, umi represents the degree of
membership of the case i to the cluster m whose center is cm and K is the set of
retrieved cases.

Fig. 2. Pseudocode of the retrieval phase of the subsystem ISA (Identification of the State of
the Activity)

Fuzzy clustering techniques are used because of the size of the database and the
need to group the most similar cases together in order to help retrieve the cases that
most resemble the given problem.

Fuzzy clustering techniques are especially interesting for non-linear or ill-defined
problems, making it possible to treat tasks involved in the processing of massive
quantities of redundant or imprecise information. It allows the available data to be
grouped into clusters with fuzzy boundaries, expressing uncertain knowledge.

2.2.2 Re-use Phase
This phase aims to obtain an initial estimation of the state of the activity analysed. In
order to obtain this estimation, RBF networks are used [9, 6, 8]. As in the previous
stage, the number of attributes of the problem case depends on the activity analyzed.
Therefore it is necessary to establish an RBF network system, one for each of the
activities to be analysed.

When the new problem case is presented, the cluster whose centre is closest to the
case is identified and a set of K cases is retrieved from the system. These cases are

procedure retrieve_ISA (input: X,vp, n_cluster, max_iter; output: K)
{
00 begin
01 calculate_fuzzy_clusters: (P,U) FCM(X, n_cluster, max_iter)
02 for each center c ∈ P do
03 calculate_distance: dc DIS(vp, vc)
04 assign_couple_center_distance: CD (c,dc)
05 obtain_nearest_center: cm min (CD)
06 for each case i ∈ X do
07 if umi > 0.65 then
08 if reliability(i) > 0.5 then
09 K K + i
10 end.

}

112 M.L. Borrajo et al.

used by the RBF network as a training group that allows it to adapt its configuration
to the new problem encountered before generating the initial estimation.

The topology of each of the RBF networks used in this task consists of: an input
layer with as many neurons as attributes possessed by the input vector which
constitutes the problem descriptor ((IR1,V1),(IR2,V2),...,(IRn,Vn)), a hidden layer with
50 centres, and an output layer with a single neuron corresponding to the variable to
be estimated (correction level or state of activity analysed in x percent).

Figure 3 shows the pseudocode of the algorithm that roughly illustrates the steps
that need to be followed in order to obtain an initial estimate, using the K cases
retrieved in the previous phase and the descriptor of the problem for which an
estimate needs to be made. In the algorithm, vp represents the vector of characteristics
(attributes) that form the problem case, K is the group of most relevant retrieved
cases, confRBF is the group of neurons that make up the topology of the RBF network
and si represents the initial solution generated for the current problem.

Fig. 3. Pseudocode of the reuse phase of the ISA (Identification of the State of the Activity)
subsystem

The RBF network is characterized by its ability to adapt, to learn rapidly, and to
generalize (especially in interpolation tasks). Specifically, within this system the
network acts as a mechanism capable of absorbing knowledge about a certain number
of cases and generalizing from them. During this process, the RBF network,
interpolates and carries out predictions without forgetting part of those already carried
out. The system’s memory acts as a permanent memory capable of maintaining many
cases or experiences while the RBF network acts as a short term memory, able to
recognize recently learnt patterns and to generalize from them.

2.2.3 Revision Phase
The objective of the revision phase is to confirm or refute the initial solution proposed
by the RBF network, thereby obtaining a final solution and calculating the control risk.

In view of the initial estimation or solution generated by the RBF network, the
internal auditor will be responsible for deciding if the solution is accepted. For this it
is based on the knowledge he/she retains, specifically, knowledge about the company

procedure reuse_ISA (input: vp, K, confRBF; output: si)
 {
00 begin.
01 while TRUE do /* infinite loop */
02 for each case c ∈ K do /* network adaptation using K cases */
03 retrain_network: error ← annRBF(c)
04 move_centers: annRBF.moveCenters(c)
05 modify_weights: annRBF.learn(c) /* delta rule */
06 if (error / ⏐K⏐) < error_threshold then
07 go_to_line 8 /* end of infinite loop and adaptation */
08 generate_initial_solution: si ← annRBF(vp)
09 end.
 }

 Autonomous Internal Control System for Small to Medium Firms 113

with which he/she is working. If he/she considers that the estimation given is valid,
the system will take the solution as the final solution and in the following phase of the
CBR cycle, a new case will be stored in the case base consisting of the problem case
and the final solution. The system will assign the case an initial reliability of 100%. If
on the other hand, the internal auditor considers the solution given by the system to be
invalid, he will give his own solution which the system will take as the final solution
and which together with the problem case will form the new case to be stored in the
case base in the following phase. This new case will be given a reliability of 30%.
This value has been defined taking into account the opinion of various auditors in
terms of the weighting that should be assigned to the personal opinion of the internal
auditor.

From the final solution: state of activity, the system calculates the control risk
associated with the activity. Every activity developed in the business sector has a risk
associated with it that indicates the negative influence that affects the good operation
of the firm. In other words, the control risk of an activity measures the impact that the
current state of the activity has on the business process as a whole. In this study, the
level of risk is valued at three levels: low, medium and high. The calculation of the
level of control risk associated with an activity, is based on the current state of the
activity and its level of importance. This latter value was obtained after analysing data
obtained from a series of questionnaires (98 in total) carried out by auditors
throughout Spain. In these questionnaires the auditors were asked to rate subjects
from 1-10 according to the importance or weighting of each activity in terms of the
function that it belonged to. The higher the importance of the activity, the greater its
weighting within the internal control system.

The level of control risk was then calculated from the level of importance given to
the activity by the auditors and the final solution obtained after the revision phase. For
this purpose, if-then rules are employed.

2.2.4 Retention Phase
The last phase of the ISA (Identification of the State of the Activity) subsystem is the
incorporation of the system’s memory of what has been learnt after resolving a new
problem. Once the revision phase has been completed, after obtaining the final
solution, a new case (problem + solution) is constructed, which is stored in the
system’s memory. Apart from the overall knowledge update involving the insertion of
a new case within the system memory, the hybrid system presented carries out a local
adaptation of the knowledge structures that it uses.

The fuzzy cluster system contained within the prototypes related to the activity
corresponding to the new case is reorganised in order to respond to the appearance of
this new case, modifying its internal structure and adapting itself to the new
knowledge available.

In this way, the RBF network uses the new case to carry out a complete learning
cycle, updating the position of its centres and modifying the value of the weightings
that connect the hidden layer with the output layer.

The learning process is continuous whereby the RBF acts as a mechanism capable
of absorbing knowledge of a certain number of cases, and to use them as a base with

114 M.L. Borrajo et al.

which to generalise. During this process the RBF network interpolates and makes
predictions without forgetting part of predictions that have already been made. The
system’s memory acts as a permanent memory capable of maintaining many cases or
experiences while the RBF network acts as a short term memory, capable of
recognising recently learnt patterns and generalising on them.

2.3 GR Subsystem (Generation of Recommendations)

The objective of this subsystem is to carry out recommendations to help the internal
auditor decide which actions to take, once the stages of the previous subsystem have
concluded, in order to improve the company’s internal and external processes. This
subsystem is totally dependent on the previous subsystem as it begins its work from
the case (problem+solution) generated in the ISA – Identification of the State of
Activity – Subsystem (see Figure 1).

2.3.1 Retrieval Phase
The second subsystem (GR-Generation of Recommendations) is used to generate
recommendations that can guide the internal auditor in his task of deciding the actions
to be taken in order to improve the state of the activity analysed. In order to
recommend changes in the execution of the business processes it is necessary to
compare the current situation in the activity, represented by the problem case +
solution, generated by the ISA (Identification of the State of the Activity) Subsystem,
with those cases from the case base which best reflect the business management.

To this end, only cases most similar to the problem case are worked on. Given that
the cluster whose centre was closest to the case problem was identified during the
retrieval phase of the ISA (Identification of the State of the Activity) Subsystem, the
cases of this cluster will be used in the next reuse phase. The process followed in this
retrieval phase is based on the use of query relaxation [10] so that initially the cases
retrieved from the case base meet the following conditions:

1. The solution or state of activity must be 15-20% superior to the final solution
generated by the previous subsystem. If enough cases are not retrieved (25 is
considered to be enough) the percentages are relaxed further, increasing in range
by 5%.

2. Furthermore, they should possess a degree of membership to the cluster higher
than 75% and a level of reliability of over 50%. These two constant values have
been established by the auditors.

Figure 4 shows the retrieval process adopted, where X stands for the case group
which represents the knowledge of a determined activity that exists within the
memory of the system, vp represents the vector of attributes that describes the problem
case, sf is the final solution generated in the ISA subsystem as a solution to the
problem case, si is the solution to case i, m is the identifier of the cluster whose centre
is closest to the problem case, U is the matrix of memberships, umi is the level of
membership of case i to cluster m and K is the set of the most relevant retrieved cases.

 Autonomous Internal Control System for Small to Medium Firms 115

procedure retrieve_GR (input: X, vp, sf, m, U; output: K)
{

00 begin
01 increment 0;
02 repeat
03 for each case i ∈ X do
04 dif si - sf
05 if (dif 0.15 and dif (0.20+ increment))
 and (umi > 0.75)
 and (reliability(i) > 0.5) then
06 K K + i
07 increment increment +0,5;
08 until |K |>25;
09 end

}

Fig. 4. Pseudocode of the retrieval phase in the Generation of Recommendations
subsystem

2.3.2 Re-use Phase
Given that the objective of this subsystem is to generate a series of recommendations
from the problem case, it is necessary to search for a case from the case base (or a
combination of various cases) which serve as a guide to generate recommendations,
comparing this/these case/s with the problem case. This comparison will allow the
company to detect which processes need to be modified – in other words, which tasks
need to be improved.

As already explained above, in the retrieval phase, the cases obtained are those
which reflect a most favourable state of the activity, when compared to the state
presented by the analysed activity. From all these cases, in this phase of adaptation,
the subsystem should select the case which maximises the value of each of the tasks
(Vi) taking into account the level of importance (IRi) or weighting that each task has
for the overall activity. This way, the problem of selecting a case from all those
retrieved can be made similar to a multi-criteria decision-making problem where the
alternatives are the different cases retrieved and the objective is to maximise the
values of these tasks (which will then represent the attributes).

In this study, the initial version of the Electre method [2, 16] has been used in order
to tackle the problem of choosing one of the alternatives. The Electre method
proposes a strategy for reducing the size of all the possible solutions, through the
segregation of the most favourable case group from another group which encapsulates
the least favourable cases. The application of such a method will produce the
selection of one or various cases from among those retrieved.

The Electre method is based on the fact that the vector of preferential weightings
subjectively associated with each attribute is known. As in this study, the weighting of
an attribute (represented by its level of importance) is different for each alternative,
and it is necessary to obtain a single weightings vector for the attributes of the group
of alternatives or retrieved cases. In this case, the weighting vector is obtained by
calculating, for each attribute, the median weightings for the attribute in question, for
all the different alternatives.

116 M.L. Borrajo et al.

On the other hand, as a solution, Electre returns the best alternative, or group of
alternatives in the event that there is no single prevalent alternative. Given that for the
generation of recommendations it is necessary to begin with a single alternative,
where an output to a multicriteria decision method gives various alternatives, their
combination will be used, taking the median value for each attribute.

Figure 5 shows the pseudocode for the reuse phase where K is the group of most
relevant cases retrieved in the previous phase, vel is the case or alternative obtained
after the adaptation phase from group of cases K, vel(j) is the value of the attribute j of
the case vel, C is the group of alternatives or cases obtained as output by the Electre
method.

The case obtained as a result of the Electre method represents the objective to be
reached for the activity analysed or the standard to be followed in order to meet the
objectives of the company or, specifically, the objective associated with the activity.
In this way, the recommendations which are generated retrospectively, will be used to
ensure that the various tasks that make up the problem case achieve a situation which
is as similar as possible to the case obtained at the output of the Electre method.

Fig. 5. Pseudocode of the reuse phase of the GR (Generation of Recommendations) subsystem

In this way, in order to generate the recommendations, the output from the Electre
method is compared to the problem case, comparing the values (Vi) of each of the
attributes or tasks in each case. The objective is to detect which tasks should be
improved, establishing an order of priorities in terms of weighting (IRi) of each task
over the overall weighting of the activity. In other words, to identify the possible
deviations of the activity and to appreciate the extent of deviations in terms of the
tasks’ level of importance (IRi). In this way, the system generates recommendations
related to the inconsistent processes found, that is, the differences between the values
of the attributes in the problem case and those in the objective case (considered as the
standard) obtained by the Electre method, representing the potential recommendations
of the auditor.

The group of attributes of stored cases in the case base represent the overall values
that both experts in each activity and the auditors have judged to be effective (from
the surveys carried out) given the characteristics of the company. Since the
characteristics of the current case (problem) are similar to the objective case obtained,

procedure reuse_GR (input: K; output: vel)
{

00 begin
01 (C,n) ELECTRE (K)
02 if n > 1 then
03 for each attribute j do

04
n

C
v

n

i ij
el j

=← 1

05 end
}

 Autonomous Internal Control System for Small to Medium Firms 117

the auditor can argue that the values of the attributes must also be similar. This
provokes a more convincing argument than basing it on probabilities and estimated
losses or risks.

The generation of control recommendations by comparing the values of the current
case with those of past cases has also eliminated other problems such as the lack of
outputs or pre-defined results. Many possible values exist as well as a large number of
combinations that could be included in the recommendations of the auditor. But not
all the combinations are valid; some combinations may not be feasible or make sense.
In contrast to the CBRs, both the expert systems and the neuron networks will need to
have possible outputs specified for them previously.

Based on the predictions and recommendations generated by the system, the
internal auditor may inform the company of inconsistent processes and the measures
that should be adopted to resolve them. This is a decision support system that
facilitates the auditing process for internal auditors.

2.3.3 Retention Phase
After the time necessary for correcting the errors detected, the firm is evaluated again.
Auditing experts consider that three months are enough to allow the evolution of the
company towards a more favourable state. If it is verified that the erroneous processes
and the level of risk have diminished, the retention phase is carried out, modifying the
case used to generate the recommendations. The reliability (percentage of successful
identifications) of this case is thereby increased by 10%. In contrast, when the firm
happens not to have evolved to a better state, the reliability of the case is decreased in
10%. Furthermore, those cases whose level of reliability is smaller than 15% are
eliminated, and the remaining cases are regrouped into fuzzy clusters.

3 Results

The hybrid system developed has been tested over 29 months in 22 small to medium
companies (12 medium-sized and 10 small) in the textile sector, located in the
northwest of Spain. The data employed to generate prototype cases, in order to
construct the system’s case bases, have been obtained after performing 98 surveys
with auditors from Spain, as well as 34 surveys from experts within different
functional areas of the firms within the sector.

In order to test this system, various complete operation cycles were carried out. In
other words, for a given company, each one of its activities were evaluated, obtaining
a level of risk and generating recommendations. These recommendations were
communicated to the company’s internal auditor and he was given a limit of three
months in order to elaborate and apply an action plan based on those
recommendations. The action plan’s objective was to reduce the number of
inconsistent processes within the company. After three months, a new analysis of the
company was made and the results obtained were compared with those of the
previous three months. This process was repeated every three months.

Results obtained demonstrate that the application of the recommendations
generated by the system causes a positive evolution in firms. This evolution is

118 M.L. Borrajo et al.

reflected in the reduction of erroneous processes. Results obtained demonstrate that
the application of the recommendations generated by the system causes a positive
evolution in firms. The indicator used to determine the positive evolution of the
companies was the state of each of the activities analysed. If, after analysing one of
the company’s activities, it is proven that the state of the activity (valued between 1
and 100) has increased over the state obtained in the previous three month period, it
can be said that the erroneous processes have been reduced within the same activity.
If this improvement is produced in the majority of activities (above all in those of
most relevance within the company), the company has improved its situation.

In order to reflect as reliably as possible the suitability of the system for resolving
the problem, the results from the analysis of the 22 companies were compared with
those of 5 companies in which the recommendations generated by the system have not
been applied. In these five companies, the activities were analysed from the beginning
of the three month period until the end, using the ISA (Identification of the State of
the Activity). The recommendations generated by the second subsystem were not
presented to the firm managers (and consequently, the recommendations were not
applied).

In order to analyse the results obtained, it is necessary to consider that some of the
recommendations implied costs that the companies were not able to afford or that
involved a long term implementation. Therefore, companies are considered to have
followed the recommendations if they applied more of a 70% of them. On the other
hand, the evaluation process was ceased in two of the companies analysed at the
request of the companies themselves. Specifically, only one year’s data is available
for one company while in the case of the other, only data from the first 21 months is
available.

-11

-6

-1

4

9

14

jul-02 oct-02 ene-03 abr-03 jul-03 oct-03 ene-04 abr-04 jul-04 oct-04 ene-05 abr-05 jul-05 oct-05

Im
p

ro
ve

m
en

t
p

er
ce

n
ta

g
e

Firm 1 Firm 2 Firm 3 Firm 4 Firm 5 Firm 6 Firm 8 Firm 9

Firm 10 Firm 11 Firm 12 Firm 13 Firm 14 Firm 15 Firm 16 Firm 17

Firm 18 Firm 19 Firm 20 Firm 21 Firm 21 Firm 22

º

Fig. 6. Firms’ evolution

 Autonomous Internal Control System for Small to Medium Firms 119

The results obtained were as follows:

1. Of the 22 companies analysed, in those in which the recommendations generated
by the system were applied, the results were (see Fig. 6):

a) In 15 companies, the number of inconsistent processes was reduced, improving
the state of activities by an average of 11.5%.

b) In 5 of these companies, no improvement was detected in the state of activities. In
other words, the application of the recommendations generated by the system did
not have any effect on the activities of the company. In two of these companies,
the experiment had to be aborted after one year, and 21 months, respectively,
because the companies themselves did not allow us to complete the analysis. In
the other three companies (in which the system was applied for the full 29 month
period), after studying the possible reasons for the results, it has been concluded
that the recommendations given were not completely followed, with only certain
measures applied and the majority of recommendations ignored.

c) In two companies the inconsistent processes increased, in other words, the
application of recommendations generated by the system, prejudiced the positive
evolution of the company. Once the situation in each of the companies had been
analysed, it was concluded that in both there was a high level of disorganisation,
without a clearly defined set of objectives. This means that any attempt to change
the business organisation actually will lead to a worse situation.

In general, it could be said that these results demonstrate the suitability of the
techniques used for their integration in the developed intelligent control system. The
best results occurred in the companies of smaller size. This is due to the fact that these
firms have a greater facility to adapt and adopt the changes suggested by the system’s
recommendations.

2. On the other hand, for the 5 companies in which the recommendations generated
by the system were not applied, the results were as follows: four of them improved
their results, though reaching an average productivity that was 4% below the same
measurement for other companies that did use the system. The fifth company
analysed ceased operations before the end of the first year of evaluation.

4 Conclusions

This article presents a neuro-symbolic system that uses two CBR systems employed
as a basis for hybridization of a multicriteria decision-making method, a fuzzy
clustering method, and an RBF net. As such, the model developed combines the
complementary properties of connectionist methods with the symbolic methods of
Artificial Intelligence.

The used reasoning model can be applied in situations that satisfy the following
conditions:

1. Each problem can be represented in the form of a vector of quantified values.
2. The case base should be representative of the total spectrum of the problem.

120 M.L. Borrajo et al.

3. Cases must be updated periodically.
4. Enough cases should exist to train the net.

The prototype cases used for the construction of the case base are artificial and
have been created from surveys carried out with auditors and experts in different
functional areas. The system is able to estimate or identify the state of the activities of
the firm and their associated risk. Furthermore the system generates recommendations
that will guide the internal auditor in the elaboration of action plans to improve the
processes in the firm.

Estimation in the environment of firms is difficult due to the complexity and the
great dynamism of this environment. However, the developed model is able to
estimate the state of the firm with precision, and propose solutions that make it
possible to improve each state. The system will produce better results if it is fed with
cases related to the sector in which it will be used. This is due to the dependence that
exists between the processes in the firms and the sector where the company is located.
Future experiments will help to identify how the constructed prototype will perform
in other sectors and how it will have to be modified in order to improve its
performance.

Although the defined model has not been tested in big firms, it is believed that it
could work adequately, although changes would take place more slowly than in small
and medium firms. Steps toward this direction have been taken and it is expected that
an evaluation of the system will soon be possible in a major international company
from the textile sector.

References

1. Aamodt A. and Plaza E. (1994). Case-Based Reasoning: foundational Issues,
Methodological Variations, and System Approaches. AICOM. Vol. 7. Nº 1, Marzo 1994.

2. Barba-Romero, S. y Pomeral, J. (1997). Decisiones Multicriterio. Fundamentos teóricos y
utilización práctica. Colección de Economía. Servicio de publicaciones Universidad de
Alcalá.

3. Bezdek J. C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms.
Plenum Press, New York.

4. Bezdek, J.C., Keller, J.M., Krishnapuram, R. and Pal, N.R. (1999). Fuzzy Models and
Algorithms for Pattern Recognition and Image Processing. Kluwer Academic Publishers,
Norwell.

5. Borrajo, L.(2003). Sistema híbrido inteligente aplicado a la auditoría de los sistemas
internos. Phd Thesis. Teses de doutoramento da Universidade de Vigo. Universidade de
Vigo (Spain). ISBN: 84-8158-274-3. December, 2003.

6. Corchado, J.M., Díaz, F., Borrajo, L. and Fdez-Riverola F. (2000). Redes Neuronales
Artificiales: Un enfoque práctico. Departamento de publicaciones de la Universidad de
Vigo.

7. Corchado, J.M., Borrajo, L., Pellicer, M.A. and Yáñez, J.C. (2004). Neuro-symbolic
System for Business Internal Control. LNCS Volume 3275/2004. Springer-Verlag.
ISSN:0302-9743.

 Autonomous Internal Control System for Small to Medium Firms 121

8. Fdez-Riverola, F. and Corchado, J.M. (2004). FSfRT: Forecasting System for Red Tides.
Applied Intelligence. Special Issue on Soft Computing in Case-Based Reasoning. ISSN
0924-669X. Vol 21, num 3, pp 251-264.

9. Fritzke, B. (1994). Fast Learning with Incremental RBF Networks. Neural Processing
Letters. Vol. 1. No. 1. pp. 2-5.

10. Gardingen, D. & Watson, I. (1998). A Web Based Case-Based Reasoning System for
HVAC Sales Support. In, Applications & Innovations in Expert Systems VI. Milne, R.,
Macintosh, A. & Bramer, M. (Eds.), pp. 11- 23. Springer, London. ISBN 1-85233-087-2

11. Hunt, J. and Miles, R. (1994). Hybrid case-based reasoning. The Knowledge Engineering
Review. Vol. 9:4. pp. 383-397.

12. Kolodner J. (1993). Case-Based Reasoning. San Mateo. CA, Morgan Kaufmann. 1993.
13. Lenz M., Bartsch-Spörl B., Burkhard D. and Wees S. (eds.) 1998. Case-based Reasoning

Technology: From Fundations to Applications, Springer Verlag, LNAI 1400.
14. Mas, J. and Ramió, C. (1997). La Auditoría Operativa en la Práctica. Ed. Marcombo,

Barcelona.
15. Medsker L. R. (1995). Hybrid Intelligent Systems. Kluwer Academic Publishers.
16. Romero, C. (1993) Teoría de la decisión multicriterio: Conceptos, técnicas y aplicaciones.

Alianza Editorial. ISBN: 84-206-8144-X
17. Watson I. (1997). Applying Case-Based Reasoning: Techniques for Enterprise Systems.

Morgan Kaufmann.
18. Watson, I. and Marir, F. (1994). Case-Based Reasoning: A Review. The Knowledge

Engineering Review. Vol. 9. No. 4. pp. 355-381.

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, pp. 122 – 136, 2005.
© Springer-Verlag Berlin Heidelberg 2005

The Application of a Case-Based Reasoning System
to Attention-Deficit Hyperactivity Disorder

Donald Brien1, Janice Glasgow2, and Douglas Munoz1

1 Center for Neuroscience Studies, Department of Physiology, Queen’s University,
Kingston, Ontario K7L 3N6, Canada

donald@biomed.queensu.ca, doug@eyeml.queensu.ca
2 School of Computing, Queen’s University, Kingston, Ontario K7L 3N6, Canada

janice@cs.queensu.ca

Abstract. Attention-deficit hyperactivity disorder (ADHD) is a prevalent
neuropsychiatric disorder. Diagnosis is currently made using a collection of
information from multiple sources, many of which are subjective and not
always correlated. This highlights the need for more objective tests of ADHD.
We address this need with the development of a system for differentiation based
on altered control of saccadic eye movements. Our hypothesis is that there is
sufficient predictive information contained in eye movement data to allow for
the application of a case-based reasoning (CBR) system capable of identifying
meaningful groups of ADHD subjects. An iterative refinement methodology
was used to incrementally improve a CBR system, resulting in a tool that could
distinguish ADHD from control subjects with over 70% accuracy. Moreover,
the incorrectly classified ADHD subjects demonstrated a decreased benefit
from medication when compared to correctly classified subjects.

1 Introduction

Attention-Deficit Hyperactivity Disorder (ADHD) is a prevalent neuropsychiatric
disorder in children, adolescents and adults, affecting about 5% of school children in
North America [4,29]. ADHD is currently defined by symptoms of inattention,
hyperactivity and impulsivity [3]. In particular, ADHD subjects lack inhibitory
control; that is, they have difficulty suppressing reflexive, and often inappropriate,
behavioral responses [28,23]. Diagnosis is generally made using a collection of
information from parent and teacher interviews, rating scales of hyperactivity and
impulsivity, clinical history, cognitive assessments, and complete neurological and
physical examinations [4]. Many sources are needed because they are subjective and
often not significantly correlated [4]. The diagnostic process is further complicated by
comorbidity (i.e., the presence of other disorders in addition to ADHD) and the fact
that the classical symptoms are often situation dependant [5]. This brings into
question the reliability and consistency of the current diagnostic process, and
highlights the need for more objective tests [22].

Research into the etiology of ADHD has revealed some potential objective
diagnostic tests. One possibility is to use the altered control of saccadic eye

LNAI

 The Application of a CBR System to ADHD 123

movements. Saccades are rapid eye movements that bring new visual targets onto the
fovea of the retina (the region of highest visual acuity). They can be generated
volitionally or automatically in response to sensory stimuli that appear suddenly.
Studies have shown that subjects with ADHD have difficulties suppressing automatic,
visually-triggered saccades [23,26,30]. Tasks have been developed that can measure
the characteristics of saccades precisely [20]. In particular, the pro-saccade and anti-
saccade tasks are used to investigate automatic and volitional saccade generation,
respectively (see Fig. 1 A and B).

D Gap Condition
FP

T

Eye

C Overlap Condition
FP

T

Eye

gap SRT

SRT

A Pro-Saccade Task

FPT

B Anti-Saccade Task

FPT

Automatic Response Voluntary response

Fig. 1. The behavioral paradigms used to measure saccade performance. Eye represents a trace
of the eye movement with time. T = Target. FP = Fixation Point. SRT = Saccadic reaction
time

Both tasks begin with the subject looking at a central fixation point (FP) on a large
screen in front of them. A visual target (T) then appears to the left or right of the
fixation point. The subject is instructed (via the colour of FP) to either look toward
the target (pro-saccade) or away from target (anti-saccade). Measurements of
saccadic reaction time (SRT – time from target appearance to the onset of eye
movement), intra-subject variability in SRT, and direction errors are used to compare
the performance of subjects. Compared to age-matched controls, ADHD subjects
make significantly more direction errors in the anti-saccade task (i.e., they generate
the erroneous automatic pro-saccade) and generally have longer, more variable SRTs
in all tasks [23,26]. Some ADHD subjects cluster with the control groups in terms of
performance, while others differ significantly, suggesting that subgroups of the
disorder may also be present [26]. These results suggest that a subset of ADHD
subjects have difficulty suppressing automatic pro-saccades during the anti-saccade
test and generally have poor voluntary control over saccade production [26].

The goal of the research described in this paper is to develop a reasoning system
for making meaningful groupings of ADHD subjects based on differences in saccade

124 D. Brien, J. Glasgow, and D. Munoz

performance. The difficulty in developing such a system lies in the high complexity,
high dimensionality, and weakly understood theory of this domain (i.e., causality and
interactions are not well defined). This makes traditional artificial intelligence
approaches, that rely on first principles and a thorough understanding of the domain
to construct a model, impractical. However, the saccade data that have been collected
can be viewed as a case base of experiences to which a case-based reasoning (CBR)
system can be applied. In CBR, a novel problem (e.g., does a child have ADHD?) is
solved by retrieving and adapting similar problem/solution pairs within a case
database [19]. Each problem and its corresponding solution can be entered into the
database to provide immediate evolution and learning. Re-using the specific
knowledge contained in cases compensates for incomplete general domain
knowledge.

CBR is appealing in medical domains because a case base is often already present
(symptoms, diagnosis, treatment, and outcome for each patient). Furthermore, the
CBR cycle fits well with the approach that a health-care worker takes when presented
with a new case, making its incorporation into a clinical setting natural. As such,
several CBR systems for medical diagnosis and decision support have been
implemented (e.g., [2,12,16]). These systems are increasingly using a methodology
involving knowledge engineering techniques [32]. As more complex domains are
tackled by CBR systems, where representing cases and adapting the solutions of
retrieved cases becomes difficult, systematic approaches to CBR development using
knowledge engineering are needed [1,7]. This is important in these domains because
it elucidates knowledge that aids in the construction of a meaningful case
representation; meaningful, in that it allows for retrieved cases to be matched as
closely as possible to the target case in order that their solutions can be reused with
little adaptation. CBR still has clear benefits in these domains as long as the
knowledge engineering efforts required to construct such a case representation are
less than would be required to construct an entire general model [7]. This paper
describes the application of an iterative refinement scheme involving knowledge
engineering in a complex, weak theory domain. It is hypothesized that there is
sufficient predictive information contained in the ADHD saccade performance data to
allow the development of a CBR system capable of making meaningful groupings.

2 Methods

2.1 The TA3 Decision Support System

Jurisica and colleagues have provided a novel intelligent decision support system that
incorporates CBR and is directed at solving problems in biology and medicine
[15,16,17]. This system, known as TA3 (pronounced tah-tree), has a flexible design
and proven record in medical domains, making it an appealing system for use with the
saccade performance data.

The TA3 system uses a novel CBR paradigm [15]. Cases are represented as
attribute/value pairs. The attribute/value pairs and their domains are defined in what
is called a case description. There are three classes of data defined in a case
description: 1) Description is the non-predictive data, 2) Problem is the predictive

 The Application of a CBR System to ADHD 125

data, and 3) Solution is the classification, diagnosis, or outcome. Focusing on the
Problem class, attributes are grouped into categories. The advantage of grouping
attributes is that it allows the assignment of different constraints and priorities
depending on an attribute’s, or collection of attributes’, relevance (i.e., their value in
matching similar cases). This minimizes the effect that irrelevant or less relevant
attributes may have when trying to match similar cases. Category membership can
either be assigned by an expert with domain knowledge of the relevance of different
attributes or by a machine learning approach.

The retrieval process uses modified nearest neighbour matching: predictive
attributes are grouped to allow different priorities/constraints as explained, an explicit
context is used during similarity assessment, and the retrieval algorithm is guided by
incremental transformations of the context. A context is simply a subset of the
Problem class data of the case description with constraints applied to the
attribute/value pairs. Case retrieval proceeds by attempting to satisfy these
constraints. The similarity of cases is defined as the closeness of values defined in the
context. A case is said to satisfy a context if every attribute value in the case satisfies
the constraints imposed on those attributes in the context. Two cases are then said to
be similar if they both satisfy the same context [16].

Context based retrieval allows for specialization by the user or system in
considering what constitutes a match. To retrieve more or fewer similar cases, the
user or the system iteratively applies transformations to the context. Two
transformations are possible: relaxation and restriction. Relaxation can be broken
down into two implementations: reduction and generalization. Reduction, also called
m_of_n matching, reduces the number of attributes in a category needed for a match.
Generalization increases the range of allowable values that an attribute may take.
Similarly, restriction can be broken down into expansion and specialization, which
have the opposite effects of reduction and generalization, respectively. Lower priority
categories are relaxed before higher priority categories. Relaxation and restriction are
applied iteratively to control the number of cases retrieved. Typically, the retrieval
process is user guided and TA3 allows for complete control of the transformations.
For example, the user can specify which relaxation technique is used first, how many
times each technique should be called, whether or not they should be applied in a
round-robin fashion, whether one transformation should be favoured over another,
and how much relaxation or restriction should be applied at each iteration.

The flexible nature of TA3 means that its responsibility ends at the retrieval
process. It is up to the user to appropriately reuse the set of cases returned based on
the problem being solved. Similarly, there is no specific adaptation module in the
system. There is support for knowledge mining in TA3 through a context refinement
function. Given two or more test sets representing different classes of cases, this
function uses Genetic Algorithms to manipulate a context. This function maximizes
the distances between different classes and minimizes the distances within the same
class. The distance between two cases is defined as the amount of relaxations needed
to make the two cases similar. The Genetic Algorithm function works by iteratively
creating, mutating and evaluating the fitness of several hundred contexts (where
fitness is proportional to distance as defined above). Mutations include altering the
priorities of categories, reorganizing categories, or altering how much and the type of
transformations that can be applied to categories and attributes. The context with the

126 D. Brien, J. Glasgow, and D. Munoz

maximum fitness is output at the end. The information gained by this process may
not only determine previously unknown relations in the data, but may provide a new
context with which to guide the retrieval process with greater prediction accuracy.

2.2 Data

Cases were compiled from the pro-saccade and anti-saccade tasks performed on
children and adults by Munoz and colleagues [26] as well as additional cases tested
since then. These tasks are outlined in Fig. 1. Note that during the tasks the fixation
point can either remain lit during the appearance of the target (overlap condition; Fig.
1 C) or disappear 200 ms before its appearance (gap condition; Fig. 1 D). The
disappearance of the fixation point in the gap paradigm leads to faster SRTs [8] and
facilitates the generation of express saccades [9,24,27], which have a latency of
approximately 90 to 140 ms. This range of SRTs represents the shortest possible time
in which a visually-triggered saccade can be initiated under the restrictions of
sensory-motor control [25]. The percentage of express saccades may represent
another means of differentiating ADHD and control subjects.

The child cases consisted of 76 children diagnosed in the community with ADHD
and 76 normal control children, ages 6 to 16. Diagnosis was confirmed using the
traditional multiple source criteria outlined in the Diagnostic and Statistical Manual of
Mental Disorders 4th Edition (DSM-IV) [3]. ADHD subjects did not take medication
on the day of the experiment. Each subject performed 1 block of 80-120 pro-saccade
trials followed by 2 blocks of 80-120 anti-saccade trials. Horizontal eye movements
were measured and descriptive/experimental data collected (see [24,26]). The data
collected for each subject and each trial are shown in Table 1.

Table 1. Data collected for each subject and trial of the saccade performance tasks

Attribute Value

Paradigm The saccade task paradigm – pro or anti
Age Subject age at time of experiment
Sex Male or female
Handedness A numerical handedness score (left/right)
Hyperactivity Integer hyperactivity score used in diagnosis
Impulsivity Integer impulsivity score used in diagnosis
Trial The trial number
SRT The saccadic reaction time
Correct Subject moved correctly or incorrectly

In addition, data were collected for many of the ADHD child subjects on separate
days while on medication. The off-medication data sets were complete, with no
missing values. Not all subjects for the on-medication data had corresponding off-
medication trials. Two of the on-medication cases had missing values. In total, 53
off-medication cases with matching on-medication trials were available.

 The Application of a CBR System to ADHD 127

2.3 Iterative Refinement

While one of the strengths of CBR is the ability to apply reasoning in weak theory
domains, knowledge engineering is becoming fundamental to building a proper
system as the problems tackled become more complex and less well understood [1,7].
This is particularly important in domains where adaptation is difficult or the
information necessary to develop a proper adaptation strategy is absent. In these
domains, a clear case representation and similarity metric need to be developed in
order that cases are matched as closely as possible and solutions can be reused with
little change [7]. A knowledge engineering approach was taken in developing a proper
case representation, indexes, and retrieval scheme in the saccadic performance
domain. This domain can be referred to as a weak theory domain in that the causal
relationships and interactions are not well understood. It has been shown that some
characteristics of saccade performance of ADHD subjects differ significantly from
controls [26], but it is not known what performance attributes are most/least
predictive or if these data can be used for discrimination at all. There is certainly not
enough understanding of the disorder and its relation to saccadic eye movements to
allow for the construction of a general model for diagnosis.

Previous work involving the development of systematic methodologies for
managing the knowledge components (case representation, retrieval, and solution
adaptation) has been summarized by Aamodt [1]. A model construction view for
CBR was described, emphasizing modeling at the knowledge level – the level above
the implementation level where only the domain knowledge, tasks, and methods are
dealt with. These knowledge components are examined separately so that interactions
between them are more apparent and thus more relevant models can be built. Such a
knowledge-level view led to the CommonKads methodology for Knowledge-Based
Systems [32], a methodology used in weak theory domains where the requirements
and interactions of a domain are poorly known or poorly specified. It involves
starting with a simple prototype model that is iteratively refined using analysis,
design, develop, and test phases until an acceptable level of performance (which is
application specific) is achieved. In this way, a workable system can be developed
without the need for a clearly defined model. Cunningham and Bonzano successfully
applied this strategy to the Air Traffic Control Domain [7]. At each cycle of
development, they proposed new case features and then assessed the relevance of
these features. The generation of these features (what they call the abductive process)
was driven by an error analysis of the previous model by domain experts and
knowledge engineers. The iterative refinement scheme used here is based on this
approach.

2.4 Evaluation

The accuracy of the TA3 retrieval system in classifying cases (i.e., predicting
diagnosis) was determined by dividing the control and ADHD (off-medication) data
sets randomly into equally sized testing and training sets. This was necessary because
a case representation and context were built incrementally based on exploration of the
case base as described above. Case-base systems were constructed by analyzing the
training set and the test set was used to assess the performance of the system using

128 D. Brien, J. Glasgow, and D. Munoz

leave-one-out testing. Each case in the test set was removed from the case base in
turn and a context was created based on the current case description. The system was
then directed to retrieve at least one similar case from the case base using the
transformation parameters assigned to the current system. If more cases than one
were retrieved in an iteration, those cases were also considered valid. The diagnosis
for each retrieved case was examined and the proportion of ADHD and control was
determined. If the proportion of ADHD or control was higher than what would be
expected at random, that proportion was used as the final diagnosis.

3 Experiment and Results

3.1 Model 1 – Initial Prototype

In order to build a proper case base from the data and decide on a case description, the
goals and sub-goals were specified and the data were analyzed. The main goal of the
CBR system was to provide decision support in the diagnosis of ADHD based on
altered saccadic eye movements. One sub-goal was to elicit patterns and relationships
within the data. Initially, a checklist/difference-based approach [19] was used to
identify not only the potential indexes to be used for retrieval, but the representation
of the individual cases (i.e., what a case should look like).

The first step in the checklist-based approach was to identify the specific task(s) of
the reasoner. The task of this reasoner was to use saccade performance data as a
similarity measure between cases so that a suggested classification could be assigned
to a target case based on the classifications of a retrieved set. The next step was to
determine what features are predictors of classification. The hypothesis was that
saccade performance metrics are good predictors in this domain. These include mean
SRT and direction errors during specific tasks. Another good predictor is age,
because saccade performance varies greatly with subject age [10, 24]. Some studies
[14] indicate that sex may also be a discriminating factor since boys present more
severe symptoms than girls in respective age groups. The third step was to make
useful generalizations from these predictors. Summarizing statistics used to create the
default case representation were those identified important by Munoz and colleagues
[26]: mean SRT, coefficient of variation in SRT for correct trials (i.e., the Standard
Deviation/Mean * 100), percentage of direction errors (i.e., looking towards the target
in an anti-saccade task or away from target during a pro-saccade test – see Fig. 1) and
percentage of express saccades.

Table 2. Comparison of the performance of progressive CBR models. G.A. = Genetic
Algorithms

 Model 1
Benchmark

Model 2
Age Constraint

Model 3
Statistical

Model 4
Clustering/G.A.

Sensitivity (%) 44.21 55.26 61.32 63.16
Specificity (%) 60.58 65.79 70.52 81.58
Accuracy (%) 52.90 60.53 65.92 72.37

 The Application of a CBR System to ADHD 129

Note that there are 8 tasks when considering all possible conditions and 4 variables
measured in each task for a total of 32 task variables. These variables were placed in
one default category with no constraints for the prototype case description. Table 2
displays the leave-one-out evaluation results using this case description as well as for
subsequent models. As expected from such a basic model, relatively low sensitivity
and specificity were found. The system was more accurate, by about 15%, at
classifying control subjects than ADHD subjects in the test group.

3.2 Model 2 – Context Constraint

All of the attributes used in Model 1 were not equally predictive and their context
parameters needed to be modified to reflect this. One of the problems with Model 1
was that too many cases were being retrieved during a query. The retrieval was not
specialized enough. This suggested the need for constraining attributes. Saccade
performance varies greatly with age suggesting that it would be a constraint. While
there is evidence that sex has an affect on the severity of disorder [14], it has not been
shown to affect saccade performance. Therefore, sex was not considered in this
model, while age was given its own high priority category. During retrieval, the
system was directed to generalize the age category by 10% only once. For example,
if the test subject was 11 years old, the age category would be generalized to 10-12
years old.

This manipulation of the case description allowed for increases in sensitivity (over
10%) and specificity (5%) for the test set (see Table 2).

3.3 Model 3 – Statistical

Applying constraints to Model 1 so that fewer and more relevant cases could be
retrieved had a benefit to system performance. However, analysis of the remaining
summary attributes was not as straightforward as age because less is understood about
their relative predictive power. Less predictive attributes were still having a negative
effect on retrieval performance by allowing dissimilar cases to be retrieved. In the
same manner, more predictive attributes were not being given high enough priority.
In order to aid in organizing the performance data into a more effective case-
description and context, the following statistical analysis was performed on the
experimental data, in addition to that done previously [26]. In order to inspect the
variability and overlap of attributes, histograms were created to compare each of the
32 for control and ADHD cases. In addition, a t-test was done on the same attributes.

Through this simple statistical analysis, it was revealed that there were no
significant differences between the percentage of express saccades for the ADHD and
the control groups. There were also no significant differences for the percentage of
direction errors in the pro-saccade tasks. Hence, these attributes are not good
differentiators for ADHD and control and were assigned low priority. However, the
largest separations (i.e., greatest separation of their distributions) between the two
groups and the least variability were found in the percentage of direction errors in the
anti-saccade task and in the coefficient of variation in SRT, suggesting they were
strong predictors. Less separation was observed in mean latencies, but the difference
was still significant. Using this analysis, a new case description and context was

130 D. Brien, J. Glasgow, and D. Munoz

developed. SRTs were grouped into a priority 0 category, percentages of direction
error in the anti-saccade task were grouped into a priority 6 category, and coefficients
of variation in SRT were grouped into a priority 8 category. These priorities are
relative and in general represent the number of relaxations that are required before
that particular category is relaxed. Age was also placed in a separate category as in
the previous model. Percentages of direction error in the pro-saccade task and
percentages of express saccades were not included in this case description since they
would be placed in a low priority category, which would be fully relaxed during each
retrieval.

The accuracy of the system using this new case description (referred to as
statistical) was again determined by leave-one-out testing (Table 2). Further increases
of over 5% in sensitivity and specificity were realized using this new case description
and the test set.

3.4 Model 4 – Genetic Algorithms

The previous model demonstrated that the performance attributes were not equally
predictive and simply placing them in their own categories with different priorities
increased system performance. Due to the high dimensionality and complexity of the
domain, further increases in performance would need increasingly complex forms of
analysis. The context refinement tool of the TA3 system was used to aid in more
complex knowledge discovery.

Using the training set, this tool was applied to the context of the previous model
(statistical) for 400 generations. The resulting context was used to create a new case
description. However, no significant increase in performance could be discovered
using this method, even with repeated runs. The failure of this tool was likely due to
the heterogeneity of the ADHD or control groups. Are there natural subgroups within
the ADHD and control groups, which were making it difficult to separate the groups
further in a meaningful way? In support of this hypothesis, ADHD is known to be a
multidimensional disorder, covering a symptomatic spectrum, where factors of
inattention, impulsivity, and hyperactivity may be present in not only different
combinations, but to different severities [3]. Furthermore, previous studies involving
other tests of ADHD symptoms [11, 13, 22] showed that, while they could not be
used reliably in diagnosis, they were useful for identifying subgroups (such as
extreme cases of hyperactivity).

One method of discovering naturally occurring subgroups in a database is known
as cluster analysis, or unsupervised learning. In this type of analysis, components (or
cases) are separated into naturally occurring clusters where intra-group similarity is
maximized and inter-group similarity is minimized. This was the approach taken
here. Specifically, a probabilistic (Autoclass C [6]) tool was used to visualize the data
and determine the appropriate number of clusters or outliers present in the training
set. Autoclass C was chosen for its demonstrated ability to automatically determine
the appropriate number of clusters present and its comprehensive statistical summary
of those clusters. It was found that the ADHD training group subdivided into three
groups – two main groups differentiated on mean SRT and percentages of direction
errors and one group of outliers. The control group subdivided into four groups,
again differentiated on mean SRT and percentages of direction errors. The ADHD

 The Application of a CBR System to ADHD 131

and control groups were separated into these seven groups and the context refinement
tool was applied under the same conditions as before.

Fig. 2. Final case description. SRT = Saccadic reaction time. CV = coefficient of variation in
SRT. Dir. Error = Percentage of Direction Error. Anti = Anti-saccade task. Pro = Pro-saccade
task. Over = Overlap condition. Gap = Gap condition

Further increases in specificity and sensitivity were realized, with specificity now
reaching over 80% (Table 2). Upon inspection of the new case description (Fig. 2), it
was found that categories were left with the same priorities, but the individual
attributes had range modifiers applied to them which altered the amount of
generalization and reduction that was applied. In addition, a new category was
created with low priority and two of the SRT variables were placed in it (pro-saccade
gap left and pro-saccade overlap left), suggesting that they were not as predictive.
These are the types of complex and attribute specific alterations in the context
transformation that would be difficult to discover without a tool like this.

3.5 Final Error Assessment Using on/off Data

Having apparently reached a plateau in performance in the system (given the tools
used), a final error assessment was done comparing the performance of incorrectly

132 D. Brien, J. Glasgow, and D. Munoz

and correctly classified ADHD subjects while on and off medication. It was
hypothesized that if some of the false negatives represented a real sub-group within
the data, they might demonstrate an altered performance benefit from medication. In
order to test this hypothesis, a paired t-test was done to compare the coefficient of
variation in SRT data for each incorrectly and correctly classified subject in the test
group (as classified by the system using the case description derived in Model 4)
while on and off medication (for those subjects which had data collected in both
conditions). The coefficient of variation in SRT data were used because, by the earlier
statistical analysis, it was demonstrated to be the most predictive attribute (i.e., it was
the least variable and most separated between the ADHD and control groups).

Indeed, significant increases in performance, as demonstrated by significant
(p<0.05) decreases in coefficient of variation in SRT (Table 3), were observed for the
correctly classified ADHD subjects while on medication, while this effect was absent
among the incorrectly classified ADHD subjects. Incorrectly classified subjects had
non significant changes in coefficient of variation in SRT.

Table 3. The average coefficient of variation in SRT during each test paradigm for correctly
and incorrectly classified ADHD subjects while on and off medication. The p-value from a
paired t-test is also given and represents the likelihood that the difference in performance
between on and off medication would arise by chance. Anti = Anti-saccade task. Pro = Pro-
saccade task. Over = Overlap condition. Gap = Gap condition

Correctly Classified (N=15) Incorrectly Classified (N=11) Test paradigm

ON
(avg.)

OFF
(avg.)

p-value ON
(avg.)

OFF
(avg.)

p-value

Anti/Gap/Right 34.30 41.07 0.046 29.95 27.25 0.584
Anti/Gap/Left 35.29 40.20 0.200 29.00 33.67 0.293
Anti/Over/Right 35.30 41.29 0.072 31.68 31.24 0.935
Anti/Over/Left 34.47 37.67 0.047 26.67 31.82 0.032
Pro/Gap/Right 40.99 52.04 0.047 43.22 37.47 0.198
Pro/Gap/Left 41.04 50.04 0.025 43.41 36.13 0.203
Pro/Over/Right 42.33 47.69 0.103 41.37 41.54 0.968
Pro/Over/Left 36.87 47.86 0.018 37.83 39.57 0.710

4 Discussion and Conclusions

In the study outlined here, an iterative refinement methodology was used to develop a
CBR system that could distinguish ADHD from normal control subjects, based on
saccade performance, with increasing accuracy. It was further shown that many of
the false negatives represented a significant subgroup within the ADHD group.

Saccade performance variables were able to distinguish ADHD from control
children with an accuracy of over 70% (Table 2). The relative importance of these
variables was assessed and coefficient of variation in SRT was determined to be most
useful for predicting ADHD and distinguishing ADHD subjects from controls, while
SRT and percentage of direction errors in the anti-saccade task had moderate utility.
These results agreed with previous work [26] and support the hypothesis that impulse

 The Application of a CBR System to ADHD 133

inhibition in ADHD subjects can be measured through saccade performance and can
be used as a means of partially differentiating them from controls. Investigation of
the false negatives revealed that those subjects displayed no significant increase in
saccade performance while on medication, while the increases displayed by the true
positives while on medication were significant. The CBR system was successful at
distinguishing meaningful subgroups within the case base and could potentially have
clinical utility. These subgroups could either be misdiagnosed cases (by current
clinical methods) or naturally occurring subgroups within the disorder that do not
respond as well to medication. The fact that the test set is segregated into meaningful
subgroups also supports the results from the iterative refinement methodology.
Because the data set had to be separated into two groups to use this approach (one for
training/exploring and one for testing), there was a danger of selection effects. As the
data set grows, this will become less of a concern. The already large number of
subjects and the ability of the system to recognize significant subgroups within the
current ADHD group suggest that the increases in performance achieved through this
methodology were meaningful.

The results of this study are comparable to that of studies on the Continuous
Performance Test (CPT) [31], which is likely the most popular objective laboratory
test used to assess attention and vigilance. The utility of the CPT remains
controversial: studies have shown that ADHD subjects perform poorer than normal
controls (e.g., [21]) while others have found that it cannot distinguish ADHD subjects
from referred controls (e.g., [22]). However, several studies have found that CPTs
may be useful for identifying significant subgroups within the disorder such as
subjects that are significantly overactive [22] or subjects that achieve higher conduct
scores [11]. The utility of tests such as the CPT and the CBR system developed here
will be their ability to provide useful information to a comprehensive
neuropsychological assessment, not their use in isolation.

The concentration of the iterative refinement methodology was on the use of
knowledge acquisition techniques to develop a more relevant case description and
similarity assessment. This allowed the TA3 system to take advantage of more
complex relationships, in the form of contexts, in order to compensate for the lack of
adaptation strategies. As mentioned, Cunningham and Bonzano [7] used a similar
approach to develop the ISAC (Intelligent System for Aircraft Conflict Resolution)
system in the air traffic control domain. As with the system developed here, even
though the development was not straight forward, CBR still had benefits over a
general model approach due to the fact that it circumvented much of the need to
understand the underlying causal relationships in the domain. The main difference
between ISAC and the system developed here is that ISAC is used for planning tasks,
while this system is used for classification tasks in a medical domain. The iterative
refinement strategy to CBR development appears applicable across domains and
tasks. Further evidence for its applicability in medical decision support is provided by
systems developed by Frize and Walker [12] and Althoff and colleagues [2]. Frize
and Walker used such a strategy in the development of a system to determine patient
status, diagnosis, and therapy in an intensive care setting. Althoff and colleagues
used the Inreca (Induction and Reasoning from Cases) approach, along with an
incremental development strategy, to develop a system that could quickly aid in the
diagnosis and treatment of intoxication cases. One added difficulty in the

134 D. Brien, J. Glasgow, and D. Munoz

development of this ADHD system was the lack of feedback by experts (e.g.,
clinicians) on each model. The use of saccade parameters in diagnosis of ADHD is
unproven and it would therefore be difficult for a clinician to comment on the
usefulness of returned cases at this time. However, system evaluation was still
possible through research, simple statistical approaches and more complex, automated
knowledge discovery methods.

The performance of this system will likely increase significantly with the addition
of new cases and new knowledge. One problem identified when working with this
case base was the need for more cases within each respective age group. With a
larger case base, subjects could be restricted to individual ages, instead of groups, and
perhaps even sub-year categories in the case of younger children whose performance
scores change greatly and quickly. This would also allow for other constraints to be
applied, such as sex. In addition, more complex relationships in the data may be
discovered to allow more complex contexts to be used for retrieval. This new
knowledge could be elucidated through more sophisticated statistical and data
acquisition techniques. As a greater understanding of the domain unfolds, the use of
more advanced adaptation strategies and prototypical cases may become feasible.
The use of more complicated knowledge acquisition techniques will become more
prevalent in the field of CBR as more complex domains are tackled. This study
provides good support for that notion. Finally, performance could be increased with
the addition of an outcome category to cases. This outcome could be based on the
diagnosis given by the system. For example, cases that were correctly classified
would be given more weight when diagnosing new cases. In this way, the system
could also give a weight to the final diagnosis, which would be more useful in
decision support than a binary output.

In addition to continuing the refinement strategy with new and more complicated
techniques, this system could be applied to other related fields (such as Parkinson’s,
Tourette Syndrome, and Huntington’s) and in conjunction with other objective tests
of attention, impulsivity and hyperactivity. The multi-source diagnosis currently
being used for ADHD diagnosis is also a good candidate for CBR. Experts could
provide valuable feedback and justification to partially automate and perhaps remove
some subjectivity from the process. CBR could consolidate the myriad of information
currently used to diagnose ADHD, with that obtained from more objective tests such
as saccade performance and the CPT, into a database that could be used by clinicians
to review and compare cases. While no brief test is likely to diagnosis ADHD
conclusively, with its demonstrated ability to detect meaningful groups of ADHD
subjects, this system could provide a clinically useful contribution to multi-source
ADHD diagnosis.

Acknowledgements

Funding for this research has been provided by the Natural Science and Engineering
Research Council of Canada (NSERC), the Institute for Robotics and Intelligent
Systems (IRIS) Network Center of Excellence, the Canadian Institutes for Health
Research and the Canada Research Chair Program. We thank Igor Jurisica and
Patrick Rogers for their input and for providing the TA3 system. We also thank Irene

 The Application of a CBR System to ADHD 135

Armstrong, Andrew Bell, Susan Boehnke, Norah Brien, Brian Coe, Jillian Fecteau,
Joanna Gore, Karen Hampton, Ann Lablans, Robert Marino, and Kip Rogers for their
invaluable comments and support.

References

1. Aamodt, A.: Modeling the knowledge contents of CBR systems, In: Proceedings of the
Workshop Program at the Fourth International Conference on Case-Based Reasoning.
Naval Research Lab Technical Note AIC-01-003 (2001) 32-37

2. Althoff, K.D., Bergmann, R., Wess, S., Manago, M., Auriol, E., Larichev, O.I., Bolotov,
A. et al.: Case-based reasoning for medical decision support tasks: The Inreca approach.
Artif Intell Med. 12 (1998) 25-41

3. American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders
4th edition. American Psychiatric Association, Washington, DC. (1994)

4. Barkley, R.A.: ADHD and the Nature of Self-Control. Guilford, New York (1997)
5. Cantwell, D.P.: Attention deficit disorder: a review of the past 10 years. J Am Acad Child

Adolesc Psychiat. 35 (1996) 978-987
6. Cheeseman, P., Kelly, J., Self, M., Stutz, J., Taylor, W., Freeman, D.: AutoClass: A

Bayesian Classification System. In: Proceedings of the Fifth International Conference on
Machine Learning. Morgan Kaufmann Publishers, Ann Arbor, Michigan (June 12-14
1988) 54-64

7. Cunningham, P., Bonzano, A.: Knowledge engineering issues in developing a case-based
reasoning application. Knowl-Based Syst. 12 (1999) 371-379

8. Dorris, M.C., Munoz, D.P.: A neural correlate for the gap effect on saccadic reaction times
in monkey. J Neurophysiol. 73 (1995) 2558-2562

9. Fischer, B., Weber, H.: Express saccades and visual attention. Behav Brain Sci. 16 (1993)
553-610

10. Fischer, B., Biscaldi, M., Gezeck, S.: On the development of voluntary and reflexive
components in human saccade generation. Brain Res. 754 (1997) 285-297

11. Fischer, M., Newby, R., Gordon, M.P: Who are the false negatives of the continuous
performance tests? J Clin Child Psychol. 24(4) (1995) 427-433

12. Frize, M., Walker, R.: Clinical decision-support systems for intensive care units using
case-based reasoning. Med Eng Phys. 22 (2000) 671-677

13. Halperin, J.M., Sharma, V., Greenblatt, E., Schwartz, S.T.: Assessment of the Continuous
Performance Test: Reliability and Validity in a Nonreferred Sample. J Consult Clin
Psychol. 3(4) (1991) 603-608

14. Hartung, C.M., Willcutt, E.G., Lahey, B.B., Pelham, W.E., Loney, J., Stein, M.A., et al.:
Sex differences in young children who meet criteria for attention deficit hyperactivity
disorder, J Clin Child Adolesc Psychol. 31(4) (2002) 453-64

15. Jurisica, I., Glasgow, J.: Applying case-based reasoning to control in robotics. In: 3rd
Robtics and Knowledge-Based Systems Workshop. St. Hubert, Quebec (1995).

16. Jurisica, I., Mylopoulos, J., Glasgow, J., Shapiro, H., Casper, R.F.: Case-based reasoning
in IVF: prediction and knowledge mining. Artif Intell Med. 12 (1998) 1-24

17. Jurisica, I., Rogers, P., Glasgow, J.I., Fortier, S., Luft, J.R., Wolfley, J.R., et al.: Intelligent
decision support for protein crystal growth. IBM Syst Jl. 40(2) (2001) 394-409

18. Kim, K., Han, I.: Maintaining case-based reasoning systems using a genetic algorithms
approach. Expert Syst Appl. 21 (2001) 139-145

136 D. Brien, J. Glasgow, and D. Munoz

19. Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann Publishers Inc., San Mateo,
California (1993)

20. Leigh, R.J., Kennard, C.: Using saccades as a research tool in the clinical neurosciences,
Brain. 127(3) (2004) 460-477

21. Losier, B.J., McGrath, P.J., Klein, R.M.: Error patterns on the continuous performance test
in non-medicated and medicated samples of children with and without ADHD: A meta-
analytic review. J Child Psychol Psyc. 37 (1996) 971-987

22. McGee, R.A., Clark, S.E., Symons, D.K.: Does the Conners’ Continuous Performance
Test Aid in ADHD Diagnosis? J Abnormal Child Psychol. 28(5) (2000) 415-424

23. Mostofsky, S.H., Lasker, A.G., Cutting, L.E., Denckla, M.B., Zee, D.S.: Oculomotor
abnormalities in attention deficit hyperactivity disorder. A preliminary study, Neurology.
57 (2001) 423-430

24. Munoz, D.P., Broughton, J.R., Goldring, J.E., Armstrong, I.T.: Age-related performance
of human subjects on saccadic eye movement tasks. Exp Brain Res. 121 (1998) 391-400

25. Munoz, D.P., Dorris, M.C., Paré, M., Everling, S.: On your mark, get set: Brainstem
circuitry underlying saccadic initiation. Can J Physiol Pharocol. 78 (2000) 934-944

26. Munoz, D.P., Armstrong, I.T., Hampton, K.A., Moore, K.D.: Altered Control of Visual
Fixation and Saccadic Eye Movements in Attention-Deficit Hyperactivity Disorder. J
Neurophysiol. 90 (2003) 503-514

27. Paré, M., Munoz, D.P.: Saccadic reaction time in the monkey: advanced preparation of
oculomotor programs is primarily responsible for express saccade occurrence. J
Neurophysiol. 76 (1996) 1-23

28. Quay, H.C.: Inhibition and Attention Deficit Hyperactivity Disorder. J Abnormal Child
Psychol. 25(1) (1997) 7-13

29. Rapoport, J.L., Castellanos, F.X.: Attention deficit hyperactivity disorder. In: J.M. Weiner,
ed., Diagnosis and Psychopharmacology of Childhood and Adolescent Disorders, 2nd edn.
Wiley & Son, New York (1996) 265-280

30. Ross, R.G., Hommer, D., Breiger, D., Varley, C., Radant, A.: Eye movement task related
to frontal lobe functioning in children with attention deficit disorder. J Am Acad Child
Adolesc Psychiatry. 33(6) (1994) 869-874

31. Rosvold, H.E., Mirsky, A.E., Sarason, I., Bransome, E.D.J., Beck, L.H.: A continuous
performance test of brain damage. J Consult Clin Psychol. 20 (1956) 343-350

32. Schreiber, G., Wielinga, B., de Hoog, R., Akkermans, H., Van de Velde, W.:
CommonKADS: a comprehensive methodology for KBS development. IEEE Expert 9. 6
(1994) 8-37

Reasoning with Textual Cases

Stefanie Brüninghaus and Kevin D. Ashley

Learning Research and Development Center,
Intelligent Systems Program, and School of Law,

University of Pittsburgh,
3939 O’Hara Street, Pittsburgh, PA 15260, USA

Abstract. This paper presents methods that support automatically finding ab-
stract indexing concepts in textual cases and demonstrates how these cases can
be used in an interpretive CBR system to carry out case-based argumentation
and prediction from text cases. We implemented and evaluated these methods
in SMILE+IBP, which predicts the outcome of legal cases given a textual sum-
mary. Our approach uses classification-based methods for assigning indices. In
our experiments, we compare different methods for representing text cases, and
also consider multiple learning algorithms. The evaluation shows that a text rep-
resentation that combines some background knowledge and NLP combined with
a nearest neighbor algorithm leads to the best performance for our TCBR task.

1 Introduction

The goal of researchers investigating Textual CBR (TCBR) has been to enable tradi-
tional CBR systems to deal directly and intelligently with cases described as text. So
far, the work has focused on retrieving cases to help a human solve textually-described
problems, or on assigning indices to or highlighting passages in textual cases humans
will use in solving problems. An essential difference between TCBR and Information
Retrieval (IR) has been that IR methods tend not to take into account much seman-
tic information or background domain knowledge about problem-solving. By contrast,
TCBR methods attempt to leverage domain knowledge. Their indexing and retrieval
mechanisms apply domain-specific, problem-solving knowledge, as well as more gen-
eral knowledge, to process texts to help readers solve specific problems (Lenz 1999, p.
298; Burke 1998, pp. 13-14). IR researchers tend to dismiss such domain-specific tech-
niques as ad hoc; textual CBR systems “eschew flexibility and generality for precision
and utility for a given group of users.” (Burke 1998).

In the relatively brief history of TCBR research, it is a human reasoning agent who
solves the textually described problem using the cases returned by the program. How-
ever, in the work reported here, an automated reasoning agent solves the problems in-
putted as texts. Specifically, we describe a program called SMILE+IBP that uses CBR
to predict the outcomes of legal disputes inputted directly as text and to explain those
predictions. Fig. 1 shows an example of an annotated case text, the squib summariz-
ing the facts of National Rejectors v. Trieman, 409 S.W.2d 1 (Mo.1966), and Fig. 2
shows SMILE+IBP’s output for this case. The inputs to its predictive component, the
Issue-Based Prediction program IBP, are representations of the problem facts in terms

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, pp. 137–151, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNAI

138 S. Brüninghaus and K.D. Ashley

Since the 1940's, National was practically the sole supplier of coin-handling devices, which

are used in vending machines, amusement machines, and coin-operated washing machines.

[F15] National developed its products (rejectors and changers) through "many years of trial

and error, cut and try and experimentation." In 1957, National employees including defendant

Trieman, a sales manager, and Melvin, an engineer, started their own business for producing

coin-handling devices. … Melvin, working at his home, designed two rejectors that were as

close as possible to the comparable National rejectors. [F18] … He also used some National

production drawings, as well as a few parts and materials obtained, without consent, from

National.[F7] However, none of defendants' drawings was shown to be a copy of a drawing of

National. The resulting rejector improved on the National product in certain ways. Melvin

and Trieman resign from National. National's vice-president testified that the National

rejectors could be taken apart simply and the parts measured by a skilled mechanic who could

make drawings from which a skilled modelmaker could produce a handmade prototype. [F16]

The shapes and forms of the parts, as well as their positions and relationships, were all

publicized in National's patents as well as in catalogs and brochures and service and repair

manuals distributed to National's customers and the trade generally.[F27] National did not

take any steps at its plant to keep secret and confidential the information claimed as trade

secrets. [F19] It did not require its personnel to sign agreements not to compete with National.

[F19] It did not tell its employees that anything about National's marketed products was

regarded as secret or confidential. [F19] Engineering drawings were sent to customers and

prospective bidders without limitations on their use. [F10] …

F15, Unique-Product(p)

F18, Identical-Products(p)

F7, Brought-Tools (p)

F16, Info-Reverse-

Engineerable (d)

F27, Disclosure-In-

Public-Forum (d)

F10, Secrets-Disclosed-

To-Outsiders (d)

F19, No-Security-

Measures (d)

Fig. 1. Summary of the National Rejectors case, annotated with applicable Factors

Prediction for NATIONAL-REJECTORS

 Factors favoring plaintiff: (F18 F7 F6)

 Factors favoring defendant: (F25 F19 F16 F10)

Issue raised in this case is SECURITY-MEASURES

 Relevant factors in case: F19(D) F10(D) F6(P)

Theory testing did not retrieve any cases, broadening the query.

For SECURITY-MEASURES, query can be broadened for

DEFENDANT.

Each of the pro-D Factors (F10 F19) is dropped for new theory testing.

 Theory testing with Factors (F10 F6) gets the following cases:

 [11 cases won by plaintiff, 2 cases won by defendant]

Trying to explain away the exceptions favoring DEFENDANT

 MBL can be explained away with unshared ko-factor(s) (F20).

 CMI can be explained away with unshared ko-factor(s) (F27 F20 F17).

Therefore, PLAINTIFF is favored for the issue.

 In this broadened query, PLAINTIFF is favored.

 Theory testing with Factors (F19 F6) still does not retireve any cases.

There is no resolution for SECURITY-MEASURES, even when

broadening the query.

Issue raised in this case is INFO-USED

 Relevant factors in case: F25(D) F18(P) F7(P)

Theory testing did not retrieve any cases, broadening the query.

For INFO-USED, the query can be broadened for PLAINTIFF.

Each of the pro-P Factors (F7 F18) is dropped for new theory testing.

 Theory testing with Factors (F7 F25) still does not retrieve any cases.

 Theory testing with Factors (F18 F25) gets the following cases:
 (KG PLAINTIFF F6 F14 F15 F16 F18 F21 F25)

 (MINERAL-DEPOSITS PLAINTIFF F1 F16 F18 F25)

 In this broadened query, PLAINTIFF is favored.

By a-fortiori argument, PLAINTIFF is favored for INFO-USED.

Issue raised in this case is INFO-VALUABLE
 Relevant factors in case: F16(D)

 The case has only one weak factor related to the issue,

 which is not sufficient evidence to include this issue in the prediction.

Outcome of the issue-based analysis:
 For issue INFO-USED, PLAINTIFF is favored.

 For issue SECURITY-MEASURES, ABSTAIN is favored.

=> Predicted outcome for NATIONAL-REJECTORS is ABSTAIN

Fig. 2. Case-based analysis of National Rejectors text by SMILE+IBP

of abstract features, called Factors. These are prototypical fact patterns that tend to favor
plaintiff’s (p) or defendant’s (d) position (Aleven 2003; Ashley 1990). The classifica-
tion component, SMILE (SMart Index LEarner) assigns these features automatically to
the textual description of the problem’s facts using classifiers learned from a database
of marked-up case texts. This integration of IBP and SMILE, as shown in Fig.3, allows
us to assess the quality of SMILE’s index assignments and particularly to test two hy-
potheses about the best way to represent case texts for learning classifiers. The text rep-
resentation techniques are alternative means for capturing the kind of domain-specific,
problem-solving knowledge and more general knowledge that enable a traditional CBR
system to process case texts. In this way, we use enhanced text representations and ma-
chine learning to make TCBR techniques more general and automatic while preserving
their focus on domain-specific problem-solving.

Reasoning with Textual Cases 139

Case

Text

SMILE

For each Factor,

classifierlearned

from case texts

IBP

Hybrid CBR/ RBR

system to predict

outcome of case-

based arguments

Factors
Prediction

Experiment I

Experiment II

SMILE&IBP

Fig. 3. Setup of the SMILE+IBP system, and outline of the experiments

2 Text Representation for TCBR

The most widely used text representation in TCBR has been a bag-of-words, in which
the text is tokenized into single words, thereby doing away with word order. One of the
first projects aimed at indexing textual cases, SPIRE (Daniels & Rissland 1997), used a
small collection of excerpts related to its indexing concepts to locate the most promis-
ing text passages in a new unseen text. SPIRE relied on the passage retrieval module
of an IR system, which represents texts as a bag-of-words, to find those sections in a
new case that are most similar to its sample excerpts. The experiments compared dif-
ferent weighting schemes and variations of a bag-of-words representation. Other TCBR
projects focused on the retrieval of text cases, rather than assigning indices. (Burke et al.
1997) and (Lenz 1999) showed that adding semantic information from WordNet can
lead to better performance in retrieval-oriented TCBR systems. Recent work in TCBR
has considered other, more advanced representations. (Cunningham et al. 2004) present
a promising approach, which maintains some syntactic information by translating text
into a network structure. An evaluation in the legal domain remains somewhat inconclu-
sive, and further experiments will be necessary to show whether this intuitively appeal-
ing approach will lead to better performance. SCALIR was developed before the term
TCBR was introduced. It also relied on representing legal cases texts in a network struc-
ture, with favorable results (Rose 1994). A promising and highly ambitious approach,
using natural language processing (NLP) to derive a deep, logical representation, has
been proposed for the FACIT project (Gupta & Aha 2004).

As this overview suggests, representation remains a central issue for TCBR; many
researchers are exploring better representations for text cases. Our research carries this
a step further, in that we incorporate shallow NLP, and in that our CBR application
actually reasons with the automatically indexed cases.

Our approach to representing text cases was motivated by three observations and in-
tuitions we gained from indexing text cases manually. First, our collection of legal cases
comprises cases from many different jurisdictions and procedural settings, covering a
period of about 50 years. This variety is reflected in the texts. The authors follow dif-
ferent stylistic conventions and often use a different vocabulary, as well. For instance,
some judges, especially in older cases, tend to use “covenant,” whereas others prefer the
terms “contract” or “agreement.” Adding some form of semantic knowledge to a lexi-
con may help an indexing program to find commonalities between examples that use a

140 S. Brüninghaus and K.D. Ashley

different vocabulary. In past experiments (Brüninghaus & Ashley 1999), we found that
adding a thesaurus can lead to performance improvements.

Second, the names of the parties involved in a lawsuit are of little use for indexing,
especially in long and complex cases. Keeping track of different names can be hard
for humans, and is beyond today’s computer systems. Instead, replacing names by their
roles in the case makes cases more readable and enables a learning algorithm to better
generalize from cases. Moreover, the same name can occur in different cases, sometimes
even in different roles. Our collection has two cases involving IBM as plaintiff. Any
inferences based on the name IBM would be erroneous, however, because the cases
are completely unrelated and involve different scenarios. We hypothesize that replacing
the names of parties and products by their roles in the case will lead to better indexing
because it allows learning algorithms to generalize more accurately from examples.

Third, word order and other syntactic features are crucial for assigning some more
complex indexing concepts. Consider “Plaintiff sent a letter to defendant,” which of-
ten is related to Factor F1, Disclosure-In-Negotiations (d). A sentence with almost the
same words, “A letter was sent to plaintiff by defendant,” is not related to F1. In order
to distinguish these two instances, at least some level of linguistic analysis and repre-
sentation of syntactic features are required, like passive voice and the relations between
constituents.

More formally, these intuitions inspired the following research hypotheses:

Hypothesis I. Abstracting from names and individual entities in a case text to their
roles in the case allows a learning algorithm to better generalize from training ex-
amples.

Hypothesis II. Using some linguistic analysis to capture (1) patterns of actions and
(2) negation preserves crucial information from the text and thereby leads to better
classification.

In order to test our intuitions empirically, we implemented two representations that
correspond to adding the knowledge as per the above hypotheses, as well as a baseline.

Bag-of-words/BOW. Our baseline representation, against which all measures will be
compared, is the basic bag-of-words. The text is tokenized into single words, whose
relative position to each other is lost in the process. We do not eliminate stopwords,
and we do not remove suffixes with a stemmer. For instance, consider this sentence
from the ICM case, which is evidence for Factor F7, Brought-Tools (p): “Newlin
copied some files from ICM and brought them with him to DTI.” In BOW, it would
be represented as AND BROUGHT COPIED DTI FILE FROM HIM ICM NEWLIN SOME

THEM TO WITH.
Roles-Replaced/RR. In this representation, names and references to individual en-

tities in the text are replaced by their roles in the lawsuit. The sentence above
would become “Defendant copied some information from plaintiff and brought
them with him to defendant.” Then, this example is tokenized as a bag-of-words,
AND BROUGHT COPIED DEFENDANT HIM INFORMATION PLAINTIFF SOME THEM

TO WITH. While this representation is still limited to the degree that it is a bag-of-
words, it contains more relevant information about the case facts than the previous
representation as BOW.

Reasoning with Textual Cases 141

For our evaluation, we assumed there is a program that can automatically replace
names by roles with high accuracy, as suggested in (Brüninghaus & Ashley 2001).
In the experiments, we relied on texts where this substitution had been carried out
manually by experts. With error-free replacements, all observed differences in per-
formance, or their absence, could be attributed to the representation, rather than to
an implementation for role replacements.

Propositional-Patterns/ProP. Propositional patterns are intended to capture more of
the meaning contained in a sentence and thereby overcome some of the problems
of a bag-of-words (Brüninghaus & Ashley 2001). They are powerful features and
combine two terms that are in a specified syntactic relation with each other. ProPs
differ from bigrams, pairs of adjacent words sometimes used as features in IR, in
that we use syntax, and not adjacency, as a criterion. ProPs were inspired by the
automatically generated caseframes in the AutoSlog-TS system (Riloff 2003).For
SMILE, we are using Ellen Riloff’s AutoSlog tools, which include Sundance, a
robust partial parser that can be easily configured and adapted for new domains.

Roughly speaking, ProPs combine the headword of the trigger, the most rele-
vant word of the “if” part, and headword of the filler, the most relevant word of
the “then” part, of the extraction rules in an IE system. In addition to the syntactic
knowledge, ProPs also capture some of the semantic knowledge from Sundance’s
lexicon, similar to the integration of a thesaurus presented in (Brüninghaus & Ash-
ley 1999), by adding a new ProP for each synonym of the constituent words. Thus,
for the sentence from ICM, one would get (DEFENDANT COPY) (PERSON COPY)
(COPY INFORMATION) (COPY FROM PERSON) (COPY FROM PLAINTIFF) (DE-
FENDANT BRING) (PERSON BRING) (BRING THEM) (BRING TO DEFENDANT)
(BRING TO PERSON) (BRING WITH HIM). While this representation is still fairly
simple, it is much more likely to allow the inference that Factor F7 applies than the
RR representation. In our experiments, this sentence was correctly classified as F7
by RR and ProP, but not by BOW.

Generating the RR representation from the original text corresponds to Hypothesis
I, replacing names by roles. We therefore expect that, according to Hypothesis I, the
results with cases represented as RR in our experiments will be better than with BOW,
or RR > BOW. Deriving ProPs from text where the names are replaced by roles cor-
responds to Hypothesis II. Consequently, if Hypothesis II applies, ProP > RR. Since
ProPs are derived from text in which names are replaced by roles, we also expect that
the Hypotheses are transitive and that ProP > BOW.

3 Integration of Indexing and Reasoning in SMILE+IBP

We tested these hypotheses in the context of our SMILE (Brüninghaus & Ashley 2001)
and IBP (Brüninghaus & Ashley 2003) programs.

3.1 Classification-Based Indexing in SMILE

For the task of assigning indices, our case base with manually indexed cases together
with the textual representation of these cases can be viewed as a set of examples for

142 S. Brüninghaus and K.D. Ashley

SMILE - Classification
Classifier for F1

Case

text …

F1 applies?

F2 applies?

F27 applies?

Factors

• Break text into
sentences

• Represent as
RR, ProP or
BOW

Classifier for F2

Classifier for F27

SMILE – Training

• Break text into sentences

• Collect positive and

negative examples for Fi

• Represent as RR, ProP or

BOW

For each Factor Fi (1 i 27)

Learning

Algorithm

(Timbl, C4.5,

Naïve Bayes)

Marked-

up case

texts

Classifier for F1Classifier for F1Classifier for F1

Fig. 4. Architecture of the SMILE system

“how indexing should be done.” Following this characterization of the problem, we
take a classification-based approach to indexing in SMILE, treating our existing case
base as training set, and the Factors as target concepts.

As a machine learning (ML) approach, SMILE has two phases, classification and
training; see Fig. 4. In the classification phase, SMILE works in a very modular way. It
has 26 separate classifiers, one for each Factor F1 to F27 (for historical reasons, there is
no F9).1 Unlike many other text learning approaches, we treat the text cases as a set of
example sentences, rather than one example document. Evidence for Factors is usually
found in sentences, as illustrated in the National Rejectors squib in Fig. 1. SMILE
first splits a new case, which does not have any mark-ups, into a set of sentences and
represents them as BOW, RR or ProP. These sentences are then given as input to each
of the classifiers. SMILE assigns a Factor if at least one sentence from the case text
is labeled as a positive instance. The applicable Factors from all classifiers are then
collected for SMILE’s output.

In the training phase, the training set consists of the squibs from our collection,
marked up with the applicable Factors similar to the National Rejectors squib in Fig. 1.
As noted, SMILE learns separate classifiers for each Factor. It takes the cases where
the Factor applies, and collects the sentences marked up with the Factor as positive
training examples. All other sentences, those not marked up from a case where the
Factor applies as well as the sentences from the cases without the Factor, are collected
as negative training examples. The training examples are represented as BOW, RR, or
ProP, and given as inputs to the learning algorithm. The learned classifiers are used as
illustrated in Fig. 4.

3.2 Issue-Based Prediction in IBP

IBP is hybrid case-based/rule-based algorithm that predicts the outcome of legal cases.
Due to space limitations, we can only give a brief description of IBP, it is discussed in

1 Strictly speaking, although NN implements classification based on past cases, it does not ex-
plicitly learn a classifier in the sense that the other ML approaches do. For this paper, we ignore
that difference, and treat NN like other ML algorithms.

Reasoning with Textual Cases 143

Prediction for NATIONAL-REJECTORS, which was won by

DEFENDANT

 Factors favoring plaintiff: (F18 F15 F7)

 Factors favoring defendant: (F27 F19 F16 F10)

Issue raised in this case is INFO-USED

 Relevant factors in case: F18(P) F7(P)

The issue-related factors all favor the outcome PLAINTIFF.

Issue raised in this case is SECURITY-MEASURES

 Relevant factors in case: F19(D) F10(D)

The issue-related factors all favor the outcome DEFENDANT.

Issue raised in this case is INFO-VALUABLE

 Relevant factors in case: F27(D) F16(D) F15(P)

Theory testing did not retrieve any cases, broadening the query.

For INFO-VALUABLE, the query can be broadened for DEFENDANT.

Each of the pro-D Factors (F16 F27) is dropped for new theory testing.

 Theory testing with Factors (F16 F15) gets the following cases:

 [8 cases won by plaintiff]

In this broadened query, PLAINTIFF is favored.

 Theory testing with Factors (F27 F15) gets the following cases:

 (DYNAMICS DEFENDANT F4 F5 F6 F15 F27)

 In this broadened query, DEFENDANT is favored.

There is no resolution for INFO-VALUABLE, even when broadening

the query.

Outcome of the issue-based analysis:

 For issue INFO-VALUABLE, ABSTAIN is favored.

 For issue SECURITY-MEASURES, DEFENDANT is favored.

 For issue INFO-USED, PLAINTIFF is favored.

=> Predicted outcome for NATIONAL-REJECTORS is DEFENDANT

Fig. 5. IBP’s analysis of National Rejectors, Factors manually assigned by an expert

detail in (Brüninghaus & Ashley 2003) and (Ashley & Brüninghaus 2003). IBP com-
bines a weakly-predictive domain model, which was derived from authoritative legal
sources, and a CBR module. The domain model captures the general structure of the
domain, the issues and their relations. It relates Factors to issues, but does not include
rules to resolve conflicting Factors. For instance, the domain model captures that plain-
tiff has to show that the information was a trade secret in order to win a claim for trade
secret misappropriation. This requires that the information was valuable and that mea-
sures were taken to keep it a secret. Based on Hypo, IBP’s CBR module supports a form
of scientific hypothesis testing to resolve conflicting evidence related to an issue.

Fig. 5 shows IBP’s analysis, given an expert’s manual interpretation of the Na-
tional Rejectors case. Factors F27, Disclosure-In-Public-Forum (d), F16, Info-Reverse-
Engineerable (d) and F15, Unique-Product (p) are related to the issue whether the in-
formation is valuable. IBP can conclude that the issue is raised, but needs to rely on
its CBR module to find which side is favored on the issue. If the CBR module fails to
resolve conflicting evidence, as in National Rejectors, IBP abstains on the issue.

We evaluated IBP and compared its predictions to several other ML and CBR-based
methods. We found that IBP’s predictions are most accurate, with a significant margin
(Brüninghaus & Ashley 2003).

3.3 Combination of Indexing and Prediction

Our approaches to indexing in SMILE and prediction in IBP can be combined into
SMILE+IBP by using the Factors assigned by SMILE as input to IBP as illustrated in
Fig. 3. Thereby, we are in a position to generate a case-based analysis and prediction
for cases from case texts, without manual intervention beyond converting and copying
files. By combining SMILE and IBP, we have created a TCBR system that can carry
out real reasoning beyond just retrieval.

4 Evaluation

Using SMILE and SMILE+IBP, we ran a set of experiments to test the above hypotheses
to find out what makes a good text representation. We tried different representations for

144 S. Brüninghaus and K.D. Ashley

the cases to be indexed, and measured performance for Factor assignments as well as
prediction using the automatically assigned Factors.

4.1 Experimental Design

In these experiments, we used 146 cases from the CATO case database (Aleven 2003)
in two forms, represented as a set of applicable Factors and the squibs. The cases repre-
sented as Factors were used as the case base for IBP. The squibs summarize the courts’
written opinions and help students infer which Factors apply in a case. The full-text
opinions tend to be fairly long; National Rejectors’ is 48 pages. In writing the squibs,
the authors were encouraged to copy-and-paste from the opinions’ descriptions of case
facts. Only a relatively small part of the text of the squibs was written from scratch. The
squibs were manually marked up for inclusion in SMILE.

While the manual mark-up for SMILE usually corresponds to CATO’s list of Fac-
tors, there are some differences. For SMILE, we require that the evidence for a Factor
is explicit in the text, and that no indirect inferences are needed even if they are based
on common-sense interpretations of the text. As a result, some examples of the harder-
to-find Factors were not included in the mark-up, especially Factors F3, Employee-
Sole-Developer (d) and F5, Agreement-Not-Specific (d). We also decided not to fol-
low CATO’s conventions for Factors F6, Security-Measures (p) and F19, No-Security-
Measures (d). In CATO’s cases, Factor F6 is assigned whenever there are any security
measures. F19 will not apply, even when there is overwhelming evidence that the plain-
tiff neglected security measures as long as it took some measures. For SMILE, how-
ever, F19 is marked up whenever the court explicitly focuses on instances where the
plaintiff neglected to take certain security measures, even if plaintiff took some other
measures.

The experiments were conducted as a leave-one-out cross-validation over all cases
in the collection. For instance, when the National Rejectors case was the test example,
its squib was included neither in the training set for SMILE, nor in IBP’s database for
testing predictions; in this run, National Rejectors played no role in training SMILE’s
classifiers or in IBP’s predictions.

While the focus of our work is primarily on finding the best text representation,
we included three learning algorithms with very different characteristics and learning
biases. We considered multiple algorithms because it was not clear a priori how suitable
these algorithms would be for our task. These algorithms are commonly used in text
classification experiments and include Nearest Neighbor (NN), Decision Trees, and
Naive Bayes. We selected respectively: Timbl (Daelemans et al. 2004), C4.5 (Quinlan
2004) and Rainbow (McCallum 2004). All are suitable for learning from text, freely
available implementations from reliable sources. We used default parameters for Timbl,
which in particular means k = 1 (i.e., 1-NN). We explored other parameter settings, but
found that 1-NN was preferable. In C4.5, we set pruning to 100% confidence level.

Our experiments were run for three algorithms, three representations, 146 iterations
of cross-validation, and 26 Factors, for an overall of about 35,000 experiment runs. The
data included about 2,000 example sentences, with about 2,000 features for each rep-
resentation. The experiments for this in-depth evaluation on rather complex data ran
around the clock for several weeks. After our experiments, the most suitable represen-

Reasoning with Textual Cases 145

tation and algorithm can be identified to learn one classifier for each Factor, which will
be more efficient by three orders of magnitude.

In analyzing the results, we applied statistical tests to find whether the observed
differences are statistically significant, or merely caused by random effects. Because
our experiments were run as cross-validation, the commonly used T-test may not lead
to reliable results (Dietterich 1996; Salzberg 1997). Based on the recommendations in
(Dietterich 1996), we used Wilcoxon’s Signed-Rank test, a so-called non-parametric
test. A common pitfall in comparing multiple algorithms (or in our case, representa-
tions) is the repeated, pairwise comparison of results. However, this requires that a
significant difference among all alternatives is shown first. We used Friedman’s test for
this purpose. Following convention, we say that results with p < 0.05 are statistically
significant (Cohen 1995).

4.2 Experiment I

In our first set of experiments, we compared the effect of representation and learning
algorithm on Factor assignment. We kept everything fixed; the only change was the
combination of learning algorithm and representation. As a result, all observed differ-
ences can be attributed to these conditions.

We followed the evaluation commonly carried out for text classification. As illus-
trated in Fig. 3, the input in Experiment I is a raw case text, without any annotations,
the output a set of Factors. Performance for each Factor was measured in terms of the
F-measure, which is defined as the harmonic mean of precision and recall (Cohen 1995)
as follows: F = 2∗precision∗recall

precision+recall .
The averaged results over all Factors in Fig. 6 show two major results: Timbl is the

best learning algorithm for the task, and RR and ProP outperform BOW.
First, let us consider the differences between the representations, focusing on the

best algorithm in the experiments, the Timbl implementation of NN. Friedman’s test
indicates that the differences among all nine variants are statistically significant. For
the results with Timbl, in the top of both the chart and the table in Fig. 6, Wilcoxon’s
Ranked-Sign test shows that scores for ProP and RR are significantly higher that BOW.
These results provide evidence for Hypothesis I. RR has a higher score than ProP, which
is not consistent with Hypothesis II; however, the difference is not statistically signif-
icant. The second experiment discussed in Section 4.3 provides additional evidence
concerning Hypothesis II.

0.00 0.10 0.20 0.30

Naive

Bayes

C4.5

Nearest

Neighbor

F-Measure

ProP

RR

BOW

0.1210.0720.085Naïve Bayes

0. 1680.1670. 147C4.5

0.2110.2800.261
Nearest

Neighbor

BOWRRProPF-Measure

Fig. 6. Average F-measure for Experiment I

146 S. Brüninghaus and K.D. Ashley

One reason that Hypothesis II could not be confirmed here is that NLP remains one
of the main problems with generating ProPs. Even though Sundance is a very robust
state-of-the-art parser, its outputs are not always accurate enough for high-performance
indexing from complex texts. In National Rejectors, ProP does not find Factor F27,
Disclosure-in-Public-Forum (d). The relevant sentence is “The shapes and forms of
the parts, as well as their positions and relationships, were all publicized in plaintiff’s
patents as well as in catalogs and brochures and service and repair manuals distributed
to plaintiff’s customers and the trade generally.” This sentence has several constructs
that are notoriously difficult to parse. In the first clause, Sundance gets confused by the
verb phrase “were all publicized,” and parses it as an active verb construction, with “all”
as the subject. As a consequence, the ProPs generated for the sentence are hardly of any
use for assigning indices, and Factor F27 is missed. In order to show that the problem
is not a general limitation of ProPs, but rather caused by language too complex for the
parser, we modified the grammar to “The shapes and forms of the parts and their po-
sitions and relationships were publicized in plaintiff’s patents, catalogs and brochures
and manuals, which were distributed to plaintiff’s customers and the general trade.”
When we manually added the ProPs for this sentence’s parse, it was correctly classified
as an instance of F27. The sentence retrieved as most similar comes from the Dynamics
case: “The first two of these features were publicized in a conference paper and an ad-
vertizing brochure.” This example shows how minor grammatical adjustments can lead
to correct Factor assignments. It indicates that our experiments are a lower bound on
the performance of ProPs, which most likely will increase with more accurate parsing.

When we focus on the relative strengths of ProP and RR, we find that RR tends to
have an advantage for Factors that favor plaintiff, while ProP tends to have an advantage
for Factors that favor defendant. It appears that a number of pro-plaintiff Factors capture
situations or features of the product, like Factor F15, Unique-Product (p). Such Factors
can be represented fairly well through single words, and thus RR often suffices. Several
of the pro-defendant Factors, on the other hand, describe defendant’s actions, like F27.
This requires more information about “who did what” and lends itself to representation
with ProPs. Experiment II will further investigate how these relative strengths of ProP
and RR have an impact on reasoning with the cases.

Second, with regard to the best learning algorithm, we found that NN outperforms
C4.5 and Naive Bayes. The latter is remarkable because Naive Bayes is often hard to
beat for text classification tasks. In our experiments, Naive Bayes had fairly good scores
for only one Factor, F6, Security-Measures(p), which has 198 sentences marked-up. For
most other Factors, it failed to find any instances.

In our collection, it appears that the conditions are not favorable for Naive Bayes.
The distributions are extremely skewed. We have around 2,000 example sentences, yet,
for some Factors, fewer than ten sentences are marked up. Thus, the prior probability for
a Factor is low. In addition, the relevant vocabulary is large, around 2,000 features for
each representation. With such sparse data, there may not be sufficiently many examples
to derive reliable probability estimates.

On the other hand, NN does not rely on the prior class probabilities and has an
advantage, especially for Factors with very few positive instances. Our experience con-
firms the reasoning of (Cardie & Howe 1997), who had good results with a NN ap-

Reasoning with Textual Cases 147

proach for an information extraction task. They chose NN for an application where the
distributions are highly skewed and where the goal is to find the minority class.

Similarly, the experiments show that C4.5 is not ideal for the task. The inductive bias
of C4.5 is to learn trees with short branches; it does best when it can find relatively few
highly predictive words. However, C4.5 is less suited for more complex concepts, or
Factors, where multiple features may have to be weighed in a context-sensitive manner.
Another problem is the small number of positive instances for many of the Factors. For
instance, apart from the National Rejectors case, only Dynamics uses “was publicized”
in relation to F27. Thus, it would not be possible for C4.5 to correctly find F27 in
National Rejectors. In general, C4.5 has no way to generalize from singletons. A NN
approach, on the other hand, is more suitable for such concepts. Moreover, C4.5 appears
to provide evidence against Hypothesis II (see the middle column and line in Fig. 6); the
results for ProP are much lower than both BOW and RR. However, this observation is
related to the fact that C4.5 is not appropriate for singleton examples. ProPs are a more
powerful, but also more specific representation than BOW and RR, which alleviates the
problem of rare examples.

4.3 Experiment II

While Experiment I gives some important insights into how different representations
have an impact assigning individual Factors, it only considers Factors in isolation. It
does not capture the overall gestalt of a case, the interactions among Factors, or how
some Factors are more relevant for our CBR task than others. For instance, not assign-
ing Factor F27 to National Rejectors, as discussed above, is a critical error that can have
a strong impact on prediction. In Experiment II, we therefore push a step beyond the
sort of evaluation commonly carried out for text classification experiments by includ-
ing prediction as an indicator for how well the assigned Factors capture the contents
of a case. As before, the inputs in Experiment II are the squibs, but the outputs are
the predictions of the cases’ outcomes, as illustrated in Fig. 3. As in Experiment I, we
kept everything else constant; the only difference was the representation of the text
cases. Thus, all observed differences in performance can be attributed to the represen-
tation.

The experiments were scored by comparing IBP’s predictions to the cases’ real
outcomes. We recorded accuracy over the cases where IBP made a prediction, as well
as coverage, which is the percentage of cases where IBP made a prediction. Then, we
combined these by adapting the F-measure for predictions: Fpred = 2∗accuracy∗coverage

accuracy+coverage .

ProP has the best performance, with an Fpred-measure of 0.703, followed by RR,
with 0.6 and BOW with 0.585; see “Overall” in Fig. 7. The difference among the rep-
resentations is statistically significant, using Friedman’s test. The difference between
ProP and RR, as well as between ProP and BOW is also statistically significant, using
a Wilcoxon Ranked-Sign test, the difference between BOW and RR is not significant.

We grouped the cases by outcome in order to find out whether there is a difference
in performance between cases won by plaintiff and cases won by defendant. A good
prediction method, we would expect, has about equal performance for cases won by
either side. A method that always predicts the majority class may have high accuracy
and coverage, but would be of relatively little use for a practical application. It would

148 S. Brüninghaus and K.D. Ashley

0.000 0.200 0.400 0.600 0.800

BOW

RR

ProP

Fpred-Measure

Overall

Plaintiff

Defendant

0. 4590.4400. 724Defendant

0. 6450.6780. 689Plaintiff

0.5850.6000.703Overall

BOWRRProP
Fpred-

Measure

Fig. 7. Fpred-measure for the classification by SMILE+IBP as a function of case outcome

correspond to an attorney who always advises the plaintiff to sue, and the defendant to
settle, irrespective of the case facts.

Comparing prediction performance for the three representations in our experiment,
shown in Fig. 7, we found that only ProP satisfies this requirement. Its F-measure is
about the same for the cases won by plaintiff and those won by defendant. RR and
BOW, on the other hand, have very good performance for the majority class, cases won
by plaintiff, but do poorly for the minority class.

To summarize, ProP has significantly better performance than RR and BOW in Ex-
periment II. In addition, ProP is preferable because its performance does not depend on
which side won. ProPs are the better representations in both respects; thus, Experiment
II supports Hypothesis II.

5 Discussion

The performance of SMILE and SMILE+IBP leaves considerable room for improve-
ment. The average F-measure in Experiment I is below 0.3, which is clearly not suffi-
cient for a practical application. These results raise the question whether the predictions
based on automatic Factor assignments have any utility.

In Experiment II, we therefore compared the outputs of SMILE+IBP to an informed
baseline. For purposes of the baseline, we assume that it knows the probability of plain-
tiff and defendant winning. The baseline flips a biased coin, which predicts “plaintiff
wins” with the prior probability for plaintiff. This baseline is preferable to the frequently
used prediction of the majority class because it takes additional knowledge about the
underlying class distribution into account, and because it will have roughly equal per-
formance for cases won by either side, as required above.

SMILE+IBP with Timbl/ProP performs better than this informed baseline: It has an
F-measure of 0.70, the baseline’s is 0.66. This difference is statistically significant. In
interpreting these numbers, one should note that the F-measure is a derived value and
does not correspond to any observable features. In particular, we cannot conclude from
the difference of 0.04 that SMILE+IBP is “merely 4% more accurate than the baseline.”
In fact, SMILE+IBP has more than 15% higher accuracy for those cases where it makes
a prediction.

We also tested whether one could make equally accurate predictions as SMILE+IBP
directly from the case texts, without going through the Factor representation. In a leave-
one-out classification experiment with Timbl/ProP, we treated cases won by defendant

Reasoning with Textual Cases 149

as positive examples, cases won by plaintiff as negative examples. In 85% of the cases,
the classifier predicted “plaintiff wins.” The prediction that defendant wins was equally
likely for cases won by either side. In effect, the classifier learned to predict the majority
class. As argued above, these predictions are of no practical use. We conclude from this
experiment that predicting the case outcome directly from the texts is not possible, and
that representing cases in terms of Factors in SMILE+IBP is necessary.

In a more informal analysis, IBP’s output also provides evidence that SMILE+IBP
can generate useful reasoning, despite the many incorrect decisions it made. Shown
in Fig. 1, CATO’s “gold standard” representation of National Rejectors has Factors
F7, Brought-Tools (p), F10, Disclosure-to-Outsiders (d), F15, Unique-Product (p), F16,
Info-Reverse-Engineerable(d), F18, Identical-Products (p), F19, No-Security-Measures
(d), and F27, Disclosure-In-Public-Forum (d).

According to a legal publisher’s succinct summary of the court’s reasoning, “ev-
idence established that there were no actual trade secrets with respect to plaintiff’s
[products] and that, although individual defendants, former employees of plaintiff, had
improperly used plaintiff’s materials and drawings in production of products to com-
pete with plaintiff’s products, where plaintiff had not considered information regarding
its products to be trade secrets, no warning had been given against use of information.”
The corresponding issues in IBP’s domain model are whether security measures had
been taken (Security-Measures), whether the information was valuable (Info-Valuable),
and whether defendants had used the information (Info-Used).

As shown in Fig. 5, IBP’s analysis of the manually represented case finds all these
issues. It correctly reasons that plaintiff is favored for Info-Used, and that defendant is
favored for the issue Security-Measures. However, for Info-Valuable, which has Factors
for both sides, IBP cannot find sufficient evidence to conclude which side is favored and
abstains on that issue. Overall, this analysis matches the court’s opinion and leads to a
correct prediction.

SMILE+IBP’s automatic analysis identifies the same issues, but does not corre-
spond equally well to the court’s reasoning because of incorrect Factor assignments.
Fig. 2 shows that SMILE found two extra Factors, F6, Security-Measures (p), and
F25, Info-Reverse-Engineered (d). It also missed two Factors, F15, Unique-Product (p),
and, especially, F27, Disclosure-In-Public-Forum (d), as discussed in Section 4.2. IBP’s
analysis of National Rejectors correctly identifies the issue Info-Used, and comes to the
correct conclusion that the plaintiff was favored on the issue. Related to issue Info-
Valuable, SMILE assigned only Factor F16, Info-Reverse-Engineered (d). This Factor
tends to give inconclusive evidence on this issue and, therefore, is called a weak Factor.
IBP takes a conservative approach in this situation; if it finds only a weak Factor, it not
does include the issue in its prediction. SMILE also finds the issue Security-Measures.
Because of the incorrectly assigned Factor F6, however, IBP cannot resolve the con-
flicting evidence, which includes Factors F6 and F19; it abstains for the issue. Based on
this analysis of the issues, SMILE+IBP abstains for National Rejectors.

In processing the example, SMILE+IBP trips over an inconsistency between CATO’s
representation and SMILE’s mark-up conventions. As noted, cases may have textual
evidence for F6 as well as for F19 in SMILE+IBP because SMILE can assign both Fac-
tors, F6 and F19, to a case. On the other hand, IBP was developed following CATO’s

150 S. Brüninghaus and K.D. Ashley

conventions that F6 and F19 are mutually exclusive. As a practical matter, it is dif-
ficult to implement a principled strategy for SMILE’s choosing between F6 and F19
without deeper reasoning and an even more informative knowledge representation. In
order to maintain IBP’s accuracy and reliability, we do not attempt to resolve the con-
flict heuristically and let the program abstain on the issue. In a real-world application, a
human could easily be alerted if SMILE assigned both F6 and F19 to a case and could
determine manually which Factor should apply. Sometimes, indexing may be best han-
dled by a human. Thus, this example raises a more general question for TCBR systems,
whether and how best to keep a human in the loop.

6 Summary and Conclusions

This paper introduced SMILE+IBP, a system that integrates methods for assigning ab-
stract indexing concepts to text cases with an interpretive CBR system for argumenta-
tion and prediction. The resulting system can carry out reasoning from text cases that
goes beyond text retrieval. The goal of our investigation was to identify a good repre-
sentation for indexing text cases. The experiments showed that both adding background
knowledge to replace names and individual entities by their role for the case and using
NLP to generate more powerful features, called Propositional Patterns, leads to perfor-
mance improvements. While our experiments indicate that adding NLP is beneficial,
they also pointed to some limitations. Especially for our complex and hard-to-parse
texts, NLP remains a bottleneck to which many errors can be attributed, even though
we had a robust, high-performance parser. Further, our experiments suggest that ProPs
are most beneficial for Factors that correspond to relatively complex fact situations. On
the other hand, for simpler fact patterns, like our F15, a representation like RR, that
does not rely on NLP, may be suitable.

Among three different learning algorithms, NN had the best performance. Our data
are very skewed and sparse, which makes it difficult to find patterns or generalize from
the examples. Under these circumstances, NN did a better job identifying the most
relevant examples, especially for the harder-to-find concepts.

SMILE+IBP has not reached the level of performance that would be required by
attorneys. It is a step in that direction, however, in that it integrates indexing and rea-
soning with text cases. Despite all SMILE’s limitations, the program does significantly
better than an informed baseline. Moreover, as illustrated in the National Rejectors ex-
ample, IBP is fairly robust. IBP+SMILE’s analysis of the automatically indexed case is
reasonable and identifies the major issues. Due to errors by SMILE, IBP abstains, indi-
cating that human intervention may be required. Indexing text cases is a hard problem;
automatic indexing will always be subject to certain limits and a human may need to
tackle the harder problems of text interpretation.

Acknowledgements

This research has been supported by the National Science Foundation under award
IDM-9987869. We would like to thank Ellen Riloff for giving us access to AutoSlog/
Sundance, which have been a relevant resource and inspiration for this project.

Reasoning with Textual Cases 151

References

Aleven, V. 2003. Using Background Knowledge in Case-Based Legal Reasoning: A Computa-
tional Model and an Intelligent Learning Environment. Artificial Intelligence 150(1-2):183–
237.

Ashley, K., and Brüninghaus, S. 2003. A Predictive Role for Intermediate Legal Concepts. In
Proc. 16th Annual Conference on Legal Knowledge and Information Systems.

Ashley, K. 1990. Modeling Legal Argument, Reasoning with Cases and Hypotheticals. MIT-
Press.

Brüninghaus, S., and Ashley, K. 1999. Bootstrapping Case Base Development with Annotated
Case Summmaries. In Proc. 3rd International Conference on Case-Based Reasoning.

Brüninghaus, S., and Ashley, K. D. 2001. The Role of Information Extraction for Textual CBR.
In Proc. 4th International Conference on Case-Based Reasoning.

Brüninghaus, S., and Ashley, K. D. 2003. Combining Case-Based and Model-Based Reasoning
for Predicting the Outcome of Legal Cases. In Proc. 5th International Conference on Case-
Based Reasoning.

Burke, R.; Hammond, K.; Kulyukin, V.; Lytinen, S.; Tomuro, N.; and Schonberg, S. 1997.
Question-Answering from Frequently-Asked Question Files: Experiences with the FAQ-
Finder System. AI Magazine 18(1):57–66.

Burke, R. 1998. Defining the Opportunities for Textual CBR. In Proc. AAAI-98 Workshop on
Textual Case-Based Reasoning.

Cardie, C., and Howe, N. 1997. Improving Minority Class Prediction Using Case-Specific
Feature Weights. In Proc. 14th International Conference on Machine Learning.

Cohen, P. 1995. Empirical Methods for Artificial Intelligence. MIT-Press.
Cunningham, C.; Weber, R.; Proctor, J. M.; Fowler, C.; and Murphy, M. 2004. Investigating

Graphs in Textual Case-Based Reasoning. In Proc. 7th European Conference on Case-Based
Reasoning.

Daelemans, W.; Zavrel, J.; van der Sloot, K.; and van den Bosch, A. 2004. TiMBL: Tilburg
Memory Based Learner, version 5.02. http://ilk.kub.nl/software.html.

Daniels, J., and Rissland, E. 1997. Finding Legally Relevant Passages in Case Opinions. In Proc.
6th International Conference on Artificial Intelligence and Law.

Dietterich, T. 1996. Statistical Tests for Comparing Supervised Classification Learning Algo-
rithms. Oregon State University Technical Report.

Gupta, K., and Aha, D. W. 2004. Towards Acquiring Case Indexing Taxonomies from Text. In
Proc. 6th International Florida Artificial Intelligence Research Society Conference.

Lenz, M. 1999. Case Retreival Nets as a Model for Building Flexible Information Systems. Ph.D.
Dissertation, Humboldt University, Berlin, Germany.

McCallum, A. K. 2004. Bow: A toolkit for statistical language modeling, text retrieval, classifi-
cation and clustering. http://www.cs.cmu.edu/ ∼mccallum/bow.

Riloff, E. 2003. From Manual Knowledge Engineering to Bootstrapping: Progress in Informa-
tion Extraction and NLP. Invited Talk at the Fifth International Conference on Case-Based
Reasoning (ICCBR-03), http://www.iccbr.org/iccbr03/invited.html.

Rose, D. 1994. A Symbolic and Connectionist Approach to Legal Information Retrieval. Hills-
dale, NJ: Lawrence Earlbaum Publishers.

Salzberg, S. 1997. On Comparing Classifiers: Pitfalls to Avoid and a Recommended Approach.
Data Mining and Knowledge Discovery 1(3):317–328.

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, pp. 152 – 162, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Using Ensembles of Binary Case-Based Reasoners

Bill Cheetham and Joe Shultz

General Electric Global Research, 1 Research Circle, Niskayuna,
NY 12309, USA

{cheetham, Shultz}@research.ge.com

Abstract. An ensemble of case-based reasoning systems was created to diag-
nose unplanned shutdowns of large gas turbines. One case-based reasoning sys-
tem was created for each of the four most common causes of the shutdowns.
Each of these reasoners determines its confidence that the root cause it diagno-
ses is the actual root cause or not. A fusion module combines these confidence
values into a single diagnosis for the shutdown.

1 Introduction

Ensembles of Case-Based Reasoning (CBR) systems can have better results than a
single CBR system for many classification and diagnostic tasks. Recent work in
multi-classifier systems [7, 12] has shown that a set of binary (i.e. two class) classifi-
ers can improve the accuracy of multi-class (i.e. more than two classes) classifiers,
such as a diagnostic system. A set of binary classifiers decreases the complexity of the
individual classifiers but increases the complexity of the system by requiring the crea-
tion of multiple classifiers and a process for combining the results of the set of classi-
fiers. These increases in complexity can be reduced by using a Genetic Algorithm for
tuning the CBR system [1] and a confidence value in the result of the CBR system [5]
to facilitate the combination of the classifier results. This paper will show how an
ensemble of binary CBR systems that each produces a confidence value can be used
for multi-classification tasks, such as diagnostics for a large gas turbine.

1.1 Problem Description – Large Gas Turbines

General Electric (GE) Energy implemented a CBR system for diagnosing unexpected
shutdowns (also called trips) of large gas turbines. However, there was a problem
with creating the similarity measure for the CBR system. The problem is that there are
many causes for the turbine trips and different attributes are important for different
trips. The set of attribute weights for the similarity showed the average importance of
the attributes, but some causes had specific attributes that were only important for that
root cause. The standard sum of weighted attribute distance similarity algorithm did
not do a good job of retrieving the cases most appropriate to new problems with these
trip causes. A simple example of this problem can be shown in the car diagnostics
domain. Imagine a car diagnostic system that determines the reason for a car not start-
ing. In this example we will say that there are only two reasons a car will not start,

LNAI

 Using Ensembles of Binary Case-Based Reasoners 153

either the battery is dead or the car is out of gas. A standard CBR system will have
cases that have attributes for battery charge and gas gauge reading, see Figure 1a.
These attributes would both be important in the similarity calculation, so the battery
charge could have an effect on whether or not one out-of-gas case matches another
out-of-gas case. A ensemble of two CBR systems could be created for the car not
starting problem where one CBR system diagnoses if the battery is dead using the
battery charge attribute and another diagnoses if the car is out of gas using the gas
gauge attribute, see Figure 1b. Then a fusion module can take the output of the two
CBR systems and determine the correct output for the ensemble.

Fig. 1. Car Diagnostic as a) Standard CBR and b) an Ensemble

The car example is similar to our gas turbine diagnostics problem except there are
fifty-two ways to trip a turbine and identifying each way depends on a set of attributes
and possibly heuristic domain knowledge. This makes a single similarity function for
gas turbine diagnostics very complicated. We wanted to make a similarity function
that is simple to understand and maintain. In order to diagnose gas turbines we created
an ensemble of CBR systems where each system diagnoses if a single root cause was
present or not then the results from all CBR systems are combined to give the recom-
mendation for the ensemble.

1.2 Related Work

Using an ensemble of CBR systems is not a new idea. Cunningham and Zenobi de-
scribed how a diverse set of classifiers would produce a lower error than the member
classifiers [4]. They suggest each CBR classifier should have a different subset of the
attributes. They select a subset of attributes that does a “good” job as a classifier and
tends to disagree with the other classifiers when it is not correct. We are following
these guidelines and adding that these subsets can be constructed using domain
knowledge where each subset contains the attributes necessary for diagnosing a single
fault. Plaza and Ontanon showed how a set of CBRs could be used in a multiagent
system [9]. When one CBR agent asks another CBR agent to solve a problem the

154 B. Cheetham and J. Shultz

second agent can say “sorry, it cannot solve the problem” or “yes, it can solve the
problem.” If it can solve the problem it also says how many cases it has that support
the solution provided. We have built a system that can also say “sorry, it cannot solve
the problem” or “yes, it can solve it,” but when our CBR system can solve the prob-
lem it sends back a confidence value that predicts the correctness of the solution
based on how many cases it has that support the solution provided and many other
confidence indicators, see [5] for a list of confidence indicators. The confidence value
maps the outputs to approximate probability estimates [12] in the correctness of the
root cause suggested.

Friedman describes the use of a set of two-class classifiers to solve a multi-class
problem [7]. He suggests creating a decision boundary between every pair of prob-
lems. For example, if there were four classes (F1, F2, F3, F4) then there would be
decision boundaries between F1 and F2, F1 and F3, F1 and F4, F2 and F3, F2 and F4,
and F3 and F4. We will take this idea but create classifiers that differentiate a class
from the union of all other classes. In the example above there would be four classifi-
ers, F1 and the union of F2 + F3 + F4, F2 and the union of F1 + F3 + F4, F3 and the
union of F1 + F2 + F4, and F4 and the union of F1 + F2 + F3.

Two methods for combining two class classifiers in solving multiple class prob-
lems were described by Tax and Duin [12]. They compared having each two-class
classifier vote, using one vote per classifier, with a real valued confidence value for
each classification. Their confidence value is a function of the distance from the ob-
ject being classified to the nearest decision boundary. They found that the confidence
value gives at least as good and often better results than the voting strategy. We will
also use a confidence value, but as stated above it will be based on a larger set of
confidence indicators than just the distance to the nearest decision boundary.

There is no reason to restrict the individual reasoner to being CBR systems. Bonis-
sone [2] describes a system that uses a CBR system, neural net, and regression tree to
each solve the problem of determining the value of real estate. The final value for a
property is the combination of the values from the three systems.

1.3 Real World Ensemble Processes

Before we discuss the turbine domain we will briefly mention two domains where a
problem is solved in multiple ways. One domain is bird identification, where the gen-
eral impression, size and shape (GISS) technique is used. GISS identifies a bird based
on size and shape, plumage, activity, sound, nest, and egg. Each of these methods of
identification is done independently then combined to classify the bird. The plumage
module would use the attributes about the birds’ throat, collar, breast, wings, tail,
head, eyes, bill and legs. The eggs module would use attributes about the eggs’
length, width, shape, color, texture, weight, and markings. A web site that describes
GISS in more detail is http://www.sabirding.co.za/rmm/tour/id.htm. The GISS tech-
nique is a modified version of how World War II anti-aircraft gunners identified
friendly and enemy aircraft.

As another example, recent research in neurobiology [8] has shown that the human
brain acts as a coordinated ensemble. The brain is functionally divided into many
competing regions as is described by Koch.

 Using Ensembles of Binary Case-Based Reasoners 155

“The cortical areas in the back of the brain are organized in a loosely hierarchical
manner, with at least a dozen levels, each one subordinate to the one above it. …
Coalitions of neurons, coding for different objects in the world, compete with each
other; that is, one coalition strives to suppress the activity of neurons that code for
other objects. … Usually only a single coalition survives.”

The coalitions are organized in columns going up the cortical hierarchy. The firing
strength of the neurons in the columns is proportionate to the column’s confidence
that it has identified the object for which it codes. It is believed that these columns
also store explicit memories (i.e., cases), which are retained, retrieved, and reused to
allow the neurons to perform their pattern matching function. One goal of the authors
is to determine the usefulness of this brain model in solving their real world problems.

The book “Wisdom of Crowds” [11] gives guidelines on how a group can be
smarter than a single expert. The group should be diverse, independent, decentralized,
and as competent as possible. The individual CBR systems of an ensemble should
also follow these guidelines. Independence and decentralization are an easy task for
computer algorithms, so developers should strive for the system to be as diverse and
competent as possible. If different individual reasoners provide similar functionality
then there is little value in having both reasoners. So, each reasoner should perform a
different function than all others. You also want each reasoner to be as useful as pos-
sible for its function. So, they should be competent with the lowest error rate possible.

2 Existing CBR System

Engineers at GE Energy’s monitoring and diagnostics (M&D) center in Atlanta re-
motely diagnose gas turbine trips many times every day. A diagnostic CBR system
has been created to automate a portion of their analysis [6]. When a trip happens, real
time data from sensors on the turbines is automatically downloaded from the turbine’s
controller. The engineers usually look at a subset of the sensor values to make a hy-
pothesis about the root cause then review all data needed to confirm this hypothesis.
The CBR system will classify the trip into one of six possibilities. These possibilities
are four common trip causes, one bin called “Other” that represents any other trip
besides these four, or “Unknown.” We are not allowed to disclose the actual four trip
causes, but for this paper we can call them problems with Fuel, Controls, Sensors, and
Speed. As mentioned earlier, there are 52 ways to trip a turbine so 48 of these are
lumped together into the “Other” bin. A classification of “Unknown” means the CBR
system could not determine which of the root causes applied to the trip (i.e., could not
pick one of the other five choices with confidence). The architecture of the CBR sys-
tem is shown in Figure 2. When a trip is detected the features needed for diagnosis are
automatically calculated from sensor data and placed in the ‘New Trip” database
table. The CBR decision engine is started and the Retrieval module accesses weights
from the configuration file to select cases from a case base. The distance to each case
is calculated and the most similar ones are placed in the “Nearest Neighbor” table.
These nearest neighbors are used to determine the root cause of the trip and the confi-
dence [5] that the root cause is correct. The root cause and confidence are placed in
the “Root Cause” table. Information from the “New Trip,” Nearest Neighbors,” and
“Root Cause” tables are used to display the results of the CBR system to a user. After

156 B. Cheetham and J. Shultz

the turbine is fixed the root cause is verified and the case is added to the case base.
The initial architecture of this CBR system and an evolutionary algorithm (EA) that
optimizes the configuration parameters are described in [1].

Fig. 2. CBR Process

Each turbine has about two thousand sensors that record control settings, tempera-
tures, pressures, and many other pieces of information. A case consists of about thirty
attributes that are calculated from a subset of these sensors and the validated root
cause. Not all of these attributes are present in every case because of different turbine
configurations. One of the most useful attributes for each type of root cause is listed
below. The root cause which uses the attribute is listed first, then a dash, then a short
description of the attribute, and then the attribute name in parenthesis.

1) Fuel - Time before trip of last transfer of fuel (last trans)
2) Control - Time before trip of last change in the control setting (last change)
3) Sensors - Difference between high and low temperature sensors (temp diff)
4) Speed - Speed of turbine rotor at trip in revolutions per minute (RPM)

The case base has 456 verified cases. These cases include all root causes that took
place during the time data was collected. Only about 20% of the cases have the one of
the four root causes that the system can diagnose. There is a separate test set with 302
cases. The parameters of the CBR system were tuned using the EA, which used leave-
one-out testing on the case base to evaluate the fitness of a set of parameters. The
results of leave-one-out testing on the case base using the final set of parameters is
given in Table 1. The rows give the actual root cause and the columns are the root
cause suggested by the CBR system. For this paper, we used a simplified version of
the confidence calculation that was used in production. If the weighted sum of simi-
larities for a class is greater than 0.6 then that class is the one suggested. If there is no
class with a value of 0.6 then the suggested class is “Unknown.” The user interface

 Using Ensembles of Binary Case-Based Reasoners 157

shows the root cause when it is one of the four classes diagnosed and does not show it
when it is “Other” or “Unknown,” so Table 1 is functionally identical to Table 2,
which has “Other” combined with “Unknown.”

Table 1. Confusion Matrix for Training Set

 Fuel Control Sensors Speed Other Unknown
Fuel 25 0 0 0 2 1
Control 0 8 0 0 1 2
Sensors 0 0 5 0 12 7
Speed 0 0 0 13 0 2
Other 4 1 0 0 369 1

Table 2. Combined Confusion Matrix for Training Set

 Fuel Control Sensors Speed Unknown
Fuel 25 0 0 0 3
Control 0 8 0 0 3
Sensors 0 0 5 0 29
Speed 0 0 0 13 2
Other 4 1 0 0 370

A single numeric score for the competency of the case base is obtained by multi-
plying the cells of the confusion matrix with the corresponding cells of a reward ma-
trix and summing the products. Table 3 shows a reward matrix. The values on the
diagonal are correct so they get a positive score. The values not on the diagonal and
not in the “Unknown” column are incorrect so they get a negative score. The size of
the positive and negative scores depends on the monetary value of being correct and
incorrect respectively. The value of the cells in the “unknown” column can be posi-
tive, zero, or negative. A positive score would make the ensemble less likely to pro-
pose a guess the larger the value (i.e, having more false negatives). A negative score
would make the ensemble more likely to take a guess when the correctness is ques-
tionable (i.e., having more false positives). The score for the combination of Tables 2
and 3 is 551. The higher this number the better.

Table 3. Reward Matrix for Training Set

 Fuel Control Sensors Speed Unknown
Fuel 4 -12 -12 -12 1
Control -12 4 -12 -12 1
Sensors -12 -12 4 -12 1
Speed -12 -12 -12 4 1
Other -12 -12 -12 -12 1

158 B. Cheetham and J. Shultz

Using this numeric scoring we ran the EA multiple times and obtained some sur-
prising results. The weights returned by the EA were usually quite different from run
to run but the score was the same. The EA would usually converge in the first five
generations and then never surpass that score. We investigated the reason for this and
found two causes. First, when the weight of an attribute useful for one type of trip was
increased it would help the accuracy of that trip but could hurt the accuracy of all
other trip causes. Secondly, many of the cases that were incorrectly classified as
“Other” were surrounded in most dimensions by cases classified as “Other,” so no set
of weights would be able to correctly classify the case. Additional attributes, which do
not currently exist, may be needed to correctly classify some of the incorrect cases.

3 Gas Turbine Ensembles

The ensemble will make all possible hypotheses at once and have an individual CBR
system for each hypothesis. The transformation of the existing CBR system into an
ensemble of CBR systems involved

• Creating multiple CBR systems that determine if the root cause of the cases is
either the root cause being diagnosed by the individual CBR system or one of
the 51 other root causes,

• Retuning all parameters for each individual CBR module (including attribute
weights and confidence calculation) using the EA, and

• Creating a fusion module to combine the results of the individual CBR modules.

The multiple CBR systems shown in Figure 3 were used to replace the single CBR
Decision Engine from Figure 1. We wanted the ensemble of CBR modules to run off
the same database structure that was in place for the single CBR system, so adapting
the retrieve module was necessary. The retrieve module maps all root causes into just
two options, the root cause of the individual CBR system and “Other”. For example,
the Fuel CBR maps all root causes that are not Fuel to “Other.”

Fig. 3. Ensemble of Case-Based Reasoners

 Using Ensembles of Binary Case-Based Reasoners 159

3.1 Tuning the Parameters of the Individual CBR Systems

The EA was used to determine attribute weightings and confidence parameters in
each of the individual CBR systems. Table 4 shows the weightings for each individual
CBR system in the ensemble. The four attributes listed in section two are the attrib-
utes in the first four columns. The last column has the confidence value that needs to
be exceeded in order to suggest a root cause instead of “Unknown.”

Table 4. Parameter weights

 Last trans Last
change

Temp diff RPM Confidence

Fuel CBR 0.5 0.1 0 0.3 0.5
Control CBR 0.1 0.3 0.7 0.7 0.3
Sensor CBR 0 0.1 0.9 0.1 0.7
Speed CBR 0.2 0 0 0.6 0.3

The retrieval, distance, and decide modules of the individual CBR systems could
be further differentiated with customizations such as different values of k (from kNN)
in retrieval and domain knowledge specific to the individual root cause that changes
how the distance and decision calculations are performed. A fifth binary CBR system
could be created for the root cause “Other.” We have not made any of these changes,
but hope to when this project continues.

3.2 Fusion Module

The fusion module takes the confidence values from each individual CBR system and
determines a single suggested root cause. Published methods of fusing results range
from simple voting techniques to learning combination functions [10]. Burke sug-
gested a variety of methods for combining CBR recommender systems [3] that in-
cluded a weighted method of numerically combining recommendations and a switch-
ing method of having the fusion module select the best recommendation. None of
these methods had the advantage of individual classifiers or recommenders that pro-
vide a confidence value in the likeliness that they are correct. With this confidence
value, we simply selected the root cause with the highest confidence as our recom-
mendation and displayed it to the user. If no individual classifiers were confident in
the solution then we return “Unknown.” In practice, if more than one individual CBR
system had the same highest confidence or confidences within a predefined range
then we would display both root causes to the user. The user could choose to view all
root causes that had confidence. However, for a fair comparison with the single CBR
approach we forced the fusion module to select a single root cause or “Unknown.”
The result of the ensemble of CBRs is given in Table 5. The evaluation score for this
set of results is 567 as compared to 551 for the single CBR approach. The ensemble
had slightly better results. But there were more tunable parameters in the ensemble,
which increases the risk of over tuning the system. The next section applies both the
single CBR systems and the ensemble to a test set.

160 B. Cheetham and J. Shultz

Table 5. Confusion Matrix for Ensemble

 Fuel Control Sensor Speed Unknown
Fuel 27 0 0 0 1
Control 0 11 0 0 1
Sensors 0 0 4 0 30
Speed 0 0 0 14 1
Other 4 1 0 0 370

4 Test Results and Conclusion

The single CBR system and Ensemble of CBRs were both applied to a test set of 302
trips that we collected after the ones used for the case based. The confusion matrix for
the results of the single CBR system is shown in Table 5 and the results for the en-
semble are given in Table 6. The evaluation score for the single CBR is 229 and the
ensemble is 230, so the results are very similar. It would have been nice to have had
results that more clearly showed one of the techniques to be superior, but these are the
results we obtained. For now, we cannot conclude that the ensemble is better than the
single CBR system for this one example. However, the slight improvement in the
evaluation score coupled with the increased modularity and success of ensembles of
binary classifiers in other domains shows that there is enough potential to continue
this line of research. As a side note, the results for the test set were worse than those
for the case base. One reason for this is that there were some new types of control
trips that do not exist in the case.

Table 6. Confusion Matrix for Single CBR on Test Set

 Fuel Control Sensor Speed Unknown
Fuel 5 0 0 0 4
Control 0 0 1 0 7
Sensors 0 1 2 0 9
Speed 0 0 0 5 4
Other 4 4 2 1 253

Table 7. Confusion Matrix for Ensemble on Test Set

 Fuel Control Sensor Speed Unknown
Fuel 6 0 0 0 3
Control 0 1 0 0 7
Sensors 0 1 1 0 10
Speed 1 0 0 4 4
Other 4 4 1 1 254

 Using Ensembles of Binary Case-Based Reasoners 161

5 Future Work

We plan to continue gathering test data and increase the number of root causes cov-
ered by this CBR system. The ensemble technique can be re-evaluated when these test
cases and root causes are added. It is possible that the ensemble will be more scale-
able than the single CBR system. There are other domains at GE where single CBR
systems have been used to automate the diagnostic process [13], so we hope to apply
the ensemble technique to these domains. In general, the ensemble technique could
work for any decision problem where the problem is decomposable into sub-problems
or there are multiple ways of solving the problem.

Finally, we would like to add features that are inspired by neurobiology. Two of
these features are augmenting the confidence values sent to the fusion module and
having the fusion module provide feedback to the individual CBR systems. First, the
confidence values could be more than one crisp number. A variety of explanatory
information could be sent from the individual CBR systems to the Fusion module in
order to allow the Fusion module to make a more informed conclusion. Second, the
neurological connections in the brain go up to fusion modules and down from the
fusion modules to lower levels. Individual CBR systems could receive additional
attributes that are sent back down from the fusion module to resolve conflicts and
prompt another session that continues until a single conclusion is made, a cycle is
detected, or a set limit is reached. This feedback might also be used to maintain the
weights of the CBR system similar to the way backpropagation is used to train a neu-
ral net. Figure 4 shows an ensemble that would include these features.

Fig. 4. Ensemble Based on Neurobiological Model of Brain

References

1. Aggour, K., Pavese, M., Bonissone, P., Cheetham, W., SOFT-CBR: A Self-Optimizing
Fuzzy Tool for Case-Based Reasoning, The 5th International Conference on Case-Based
Reasoning, Trondheim, Norway, June 23 -26 (2003)

162 B. Cheetham and J. Shultz

2. Bonissone, P., Cheetham, W., Golibersuch, D., Khedkar, P., Automated Residential Prop-
erty Valuation: An Accurate and Reliable Approach Based on Soft Computing, in Soft
Computing in Financial Engineering, R. Ribeiro, H. Zimmermann, R.R. Yager, & J.
Kacprzyk (Eds.), Physica-Verlag Springer-Verlag, Heidelberg (1998)

3. Burke, R., Hybrid Recommender Systems with Case-Based Reasoning, Seventh European
Conference on Case-Based Reasoning, Madrid, (2004)

4. Cunningham, P., Zenobi, G., Case Representation Issues for Case-Based Reasoning from
Ensemble Research, Fourth International Conference on Case-Based Reasoning, Vancou-
ver, Canada, July/August (2001)

5. Cheetham, W., Price, J., Measures of Solution Accuracy in Case-Based Reasoning Sys-
tems, Seventh European Conference on Case-Based Reasoning, Madrid, August 30 - Sep-
tember 2 (2004)

6. Devaney, M., Cheetham, W., Case-Based Reasoning for Gas Turbine Diagnostics, The
18th International FLAIRS Conference, Clearwater Beach, Florida, (2005)

7. Friedman, J., Another approach to polychotomous classification, Technical report, De-
partment of Statistics, Stanford University, Stanford, CA, (1996)

8. Koch, C., The Quest for Consciousness: A Neurobiological Approach, Roberts and Com-
pany, Engelwood, Colorado, (2004)

9. Plaza, E., Ontanon, S., Ensemble Case-based Reasoning: Collaboration Policies for Multi-
agent Cooperative CBR, Fourth International Conference on Case-Based Reasoning, Van-
couver, Canada, July/August (2001)

10. Roli, F., Giacinto, G., Vernazza, G., Methods for Designing Multiple Classifier Systems,
Multiple Classifier Systems: Second International Workshop, MCS 2001 Cambridge, UK,
July 2-4, (2001)

11. Surowiecki, J., The Wisdom of Crowds, Doubleday, New York (2004)
12. Tax, D., Duin, R., Using two-class classifiers for multi-class classification. In International

Conference on Pattern Recognition, Quebec City, QC, Canada, August (2002)
13. Varma, A., ICARUS: Design and Development of a Case-Based Reasoning System for

Locomotive Diagnostics, Third International Conference on Case-Based Reasoning, Seeon
Monastery, Germany, July (1999)

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, pp. 163 – 176, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Transfer in Visual Case-Based Problem Solving

Jim Davies1, Ashok K. Goel2, and Nancy J. Nersessian2

1 School of Computing, Queen’s University, Kingston, Ontario, K7L 3N6, Canada
jim@jimdavies.org

2 College of Computing, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
{nancyn, goel}@cc.gatech.edu

Abstract. We present a computational model of case-based visual problem
solving. The Galatea model and the two experimental participants modeled in it
show that 1) visual knowledge is sufficient for transfer of some problem-
solving procedures, 2) visual knowledge facilitates transfer even when
non-visual knowledge might be available, and 3) the successful transfer of
strongly-ordered procedures in which new objects are created requires the
reasoner to generate intermediate knowledge states and mappings between the
intermediate knowledge states of the source and target cases. We describe Gala-
tea, the two models created with it, and related work.

1 Introduction

Experimental evidence shows that visual knowledge often plays a role in case-based
reasoning [2,7,11]. Why might this be? What functions do the visual representations
serve in retrieval, adaptation, evaluation and storage of cases? These questions are
very broad because they pertain to a variety of cognitive phenomena ranging from
visual perception to external memory to mental imagery. In order to explore these
issues deeply, in the following discussion we focus exclusively on case-based prob-
lem solving. Problem solving involves generating a procedure which may contain a
number of steps. We will call procedures with the following two properties “strongly-
ordered procedures:” 1) two or more steps are involved, and 2) some steps cannot be
executed before some other steps have already been executed. Case-based problem
solving is taking a solution from a source case and applying that solution or a modifi-
cation of it to a target case.

Many past case-based systems in problem-solving domains have used visual
knowledge and have supported visual reasoning (e.g., ARCHIE [13]. AskJef, [1]).
However, these systems typically contain multi-modal cases, i.e., cases that contain
both visual (e.g., photographs, drawings, diagrams, animations and videos) and non-
visual knowledge (e.g., goals, constraints, plans and lessons). As a result, the precise
role of visual knowledge in case-based problem solving remains unclear. In contrast,
the present work deals with cases that contain only visual knowledge. Further, past
case-based systems such as ARCHIE and AskJef leave the adaptation task to the user
and do not automate the transfer of diagrammatic knowledge from a source case to a
target problem. The present work directly addresses the transfer task in case-based
problem solving.

LNAI

164 J. Davies, A.K. Goel, and N.J. Nersessian

Some domains are replete with visual information (e.g. libraries of CAD files, pho-
tograph databases), but others that need not explicitly contain visual information can
be visually represented all the same. For example, effectively connecting a battery to
wires might be represented, among other ways, functionally (the battery needs to be
physically in contact with the wire so it can conduct electricity) or visually (the image
of the end of the wire is adjacent to the image of the battery). Even though other kinds
of knowledge and representations of these domains might be used to reason, human
beings often claim to experience visual imagery when reasoning about them. The first
hypothesis of this work is that visual knowledge alone is sufficient for automatic
transfer of problem-solving procedures in some domains. The second hypothesis is
that visual knowledge facilitates transfer even when non-visual knowledge might be
available. One important implication of this hypothesis is that cases that when repre-
sented non-visually are semantically distant, could be represented in visually similar
ways, thus facilitating transfer.

In this paper we describe the Galatea computational model, which, given a source
problem-solving case and a target problem case, both represented visually, can solve
the problem by transferring the solution from the source to the target case. We pre-
sent Galatea and models of two human experimental participants implemented with it.
The data we modeled comes from a cross-domain case-based problem-solving ex-
periment [3]. Here we focus on two participants, L14 and L22. The source case (see
Figure 1) is about a laboratory that needs to keep contaminated air from entering from
the outside through its single door. The solution is to put in an airlock or vestibule, so
that air is less likely to blow through both doors at once.

The unsolved target case describes a weed trimmer at the end of an arm that ex-
tends from the side of a truck. It clips the grass and weeds along the side of the road.
The problem is that street signs get in the way. The task is to make the arm so that it
can pass through the street signs. The transferred solution is to make an arm with a
vestibule: While one door lets the sign into the vestibule, the other supports the arm.
Then the first door closes, supporting the arm, and the second opens to release the
sign on the other side. L14 was one of the participants who successfully solved this
problem. The marks L14 made on his or her paper can be seen in Figure 2.

In the following section we will describe Galatea, using our model of L14 as a run-
ning example.

2 Galatea

The modeling architecture used to model L14 is an implemented LISP computer pro-
gram called Galatea. The issue is how a case-based problem solver might represent its
diagrammatic knowledge of the source case and target problem, and how might it
transfer the relevant problem-solving steps from the source to the target?

Galatea represents a source case as a series of knowledge states starting from the
initial knowledge state and ending in the final or goal knowledge state. A knowledge
state is represented diagrammatically in the form of shapes, their locations, sizes, and
motions (if any), and the spatial relationships among the shapes.

 Transfer in Visual Case-Based Problem Solving 165

Fig. 1. L14’s stimulus

Fig. 2. The inscriptions L14 made on his or her experiment sheet

Succeeding states in the series of knowledge states are related through visual trans-
formations such as move, rotate, scale and decompose. Each transformation relates
two knowledge states. Transfer works by applying, step by step, each transformation
in the source case to the knowledge states of the target case (See Figure 3).

166 J. Davies, A.K. Goel, and N.J. Nersessian

Source S-image1 Source S-image2 Source S-image n

Target S-image 1 Target S-image 2 Target S-image n

mapping mapping mapping

Source Analog

Target Analog
Output by reasoner

Fig. 3. Galatea’s processing in the abstract

2.1 Knowledge Representation

Galatea describes visual cases using Covlan (Cognitive Visual Language), which
consists of knowledge states, primitive elements, primitive relations, primitive trans-
formations, general visual concepts, and correspondence and transform representa-
tions. In Covlan, all knowledge is represented as propositions relating two elements
with a relation.

Knowledge States: Knowledge states in Covlan are symbolic images, or s-images,
which contain visual elements, general visual concepts, and relations between them.
Cases are represented by a series of s-images, connected with transformations.

Visual Transformations. An s-image in the sequence is connected to other s-images
before and after it with transformations. Transformations, like ordinary functions, take
arguments to specify their behavior.

These transformations control normal graphics transformations such as translation
(move-to-location), and rotation (rotate). In addition there are transformations for
adding and removing elements from the s-image (add-element, remove-element).
Certain transformations (start-rotating, stop-rotating, start-translation, stop-
translation) are changes to the dynamic behavior of the system under simulation. For
example, rotate changes the initial orientation of an element, but in contrast start-
rotating sets an element in motion.

Primitive Elements are the visual objects in a diagram. The element types are rec-
tangle, circle, arrow, line, and curve. Each element is represented as a frame with
attribute slots, such as location, size, orientation, or thickness. A particular example of
an element is referred to as an element instance.

General Visual Concepts. These act as slot values for the primitive elements as well
as arguments for the visual transformations. The concepts are location, size, thickness,
speed, direction, length, distance, angle, and direction. Each concept has several

 Transfer in Visual Case-Based Problem Solving 167

values it can take. For example, the size can be small, medium, or large, and thickness
can be thin, thick or very-thick. Location specifies an absolute qualitative location in
an s-image (bottom, top, center, etc.)

Primitive Visual Relations. This class of symbols describes how certain visual ele-
ments relate to each other and to the values taken by general visual concepts. The
visual relations are touching, above-below, and right-of-left-of. The motion relation is
rotation.

Correspondence and Transform Representations. The knowledge of which objects
in one s-image correspond to which objects in another is a mapping, which consists of
a set of alignments between objects. Different sets of alignments compose different
mappings. The ith s-image in the source and the ith s-image in the target have a corre-
spondence between them; each correspondence (or map) can have any number of
mappings associated with it (determining which mapping is the best is the “mapping
problem.”) The correspondence and mapping between the initial s-images (i=1) in the
source and target is given as part of the input to Galatea; the system generates the
subsequent correspondences and mappings.

Similarly, successive s-images in a series have transform-connections. These are
needed so that Galatea can track how visual elements in a previous knowledge state
change in the next.

2.2 Algorithm

Following is the control structure for Galatea’s transfer of problem-solving proce-
dures from a source case to the target problem. Figure 4 shows the s-image structure
for L14’s problem and solution. The Figure references in the algorithm description
below refer to Figure 4.

Fig. 4. Outline of our model of L14. The six images along the top represent the source, and the
six images along the bottom the target, left to right, are separated by transformations: 1) repli-

cate, 2) add connections, 3) add component, 4) another add component, and 5) add connections

The solution procedure (for the source, and then for the target) is that the doorway
mechanism gets replicated, and then moved to the correct positions. Two walls are
created to complete the vestibule, and finally they are placed in the correct position so
that the vestibule is complete.

168 J. Davies, A.K. Goel, and N.J. Nersessian

1. Identify the first s-images of the target and source cases. These are the cur-
rent source and target s-images.

2. Identify the transformations and associated arguments in the current
s-image of the source case. This step finds out how the source case gets from the
current s-image to the next s-image. The model of L14 involves five transformations
(see Figure 4). The first transformation is replicate. The second transformation is add-
connections which places the door sets in the correct position in relation to the top and
bottom walls. The third and fourth transformations are add-component, which adds
the top and bottom containment walls. The fifth transformation, another add-
connections, places these containment walls in the correct positions in relation to the
door sets and the top and bottom walls.

3. Identify the objects of the transformations. The object of the transformation is
what object the transformation acts upon. For L14’s first transformation, this object is
the parts of the door in the first s-image (we’ll call it door-set-l14s1).

4. Identify the corresponding objects in the target problem. In the target, the
trimmer arm’s door mechanism is the corresponding object.

5. Apply the transformation with the arguments to the target problem compo-
nent. A new s-image is generated for the target problem (bottom middle) to record the
effects of the transformation. Replicate takes two arguments: some object and some
number-of-resultants. In this case the object is door-set-b1s1 (b1s1 means “base one,
s-image two”) and the number-of-arguments is two. The replicate is applied to the
first L14 s-image, with the appropriate adaptation to the arguments: The mapping
between the first source and target s-images indicates that the door-set-b1s1 maps to
the door-set-l14s1, so the former is used for the target’s object argument. The number
two is a literal, so it is transferred directly. Galatea generates door-set1-l14s2 and
door-set2-l14s2 in the next s-image.

The second transformation is add-connections. The effect of this transformation is
to place the replicated door-sets in the correct spatial relationships with the other
element instances. It takes connection-sets-set-b1s3 as the connection/connection-set
argument. This is a set containing four connections. Galatea uses a function to recur-
sively retrieve all connection and set proposition members of this set. These proposi-
tions are put through a function which creates new propositions for the target. Each
proposition’s relation and literals are kept the same. The element instance names are
changed to newly generated analogous names. For example, door1-endpoint-b1s3
turns into door1-endpoint-l14s3.

Then, similarly to the replicate function, horizontal target maps are generated, and
the other propositions from the previous s-image are instantiated in the new s-image.

The inputs to this transformation are nothing (a literal denoting that there is not any
thing in the previous s-image that is being modified), the connection set connection-
sets-set-b1s3, the source s-image lab-base1-simage2, the current and next target s-
images l14-simage2 and l14-simage3, the mapping l14-simage2—l14-simage3-
mapping1, and the rest of the memory.

6. Map the original objects to the new objects in the target case. A transform-
connection and mapping are created between the target problem s-image and the new
s-image (not shown). Maps are created between the corresponding objects. In this
example it would mean a map between door-sets, as well as their component objects.
Galatea does not solve the mapping problem, but a mapping from the correspon-

 Transfer in Visual Case-Based Problem Solving 169

dences of the first s-image enables Galatea to automatically generate the mappings for
the subsequent s-images.

7. Map the new objects of the target case to the corresponding objects in the
source case. Here the parts of the door set in the target s-image are mapped to the
parts in the second source s-image. This step is necessary for the later iterations (i.e.
going on to another transformation and s-image). Otherwise the reasoner would have
no way of knowing which parts of the target s-image the later transformations would
operate on.

8. Check to see if goal conditions are satisfied. If they are, exit, and the solution
is transferred. If not, and there are further s-images in the source case, set the current
s-image equal to the next s-image and go to step 1.

We now present the main algorithm in pseudo code, followed by English descrip-
tions of some of its functions.

Main
Input:
1. Source
2. Target Problem
3. Vertical mapping between source and target cases
Output:
1. A set of new target s-images
2. Vertical mappings between corresponding source and

target s-images
3. Horizontal mappings between successive target states
4. Transformations connecting successive target states
Procedure
While more-source-states(goal-conditions, memory) do
 Current-target-s-image <- get-next-target-s-

image(target problem, current s-image)
 Current-source-s-image <- get-next-source-s-

image(source, current-s-image)
 Current-transformation <- get-

transformation(current-s-image)
 Current-arguments <- get-arguments(current-

source-s-image)
 Source-objects-of-transformation <- get-

target-object-of-trans(current-source-s-
image)

 Current-vertical-mapping <- get-
mapping(current-target-s-image, current-
source-s-image)

 Target-object-of-transformation <- get-source-
object-of-transformation(current-vertical-
mapping, source-objects-of-transformation)

 Target-arguments <- adapt-arguments(get-
arguments(current-source-s-image)

 Memory <- memory + apply-
transformation(current-transformation, tar-
get-object-of-transformation, target-
arguments)

 Memory <- memory + create-horizontal-
mapping(current-target-s-image, get-next-
target-s-image)

170 J. Davies, A.K. Goel, and N.J. Nersessian

 Current-target-s-image <- get-next-target-s-
image(target problem, current-s-image)

 Current-source-s-image <- get-next-source-s-
image(source, current-s-image)

 Memory <- memory + carry-over-unchanged rela-
tionships(applied-transformation)

 Memory <- memory + create-vertical-
mapping(current-target-s-image, current-
source-s-image)

Adapt Arguments. When an argument needs to be adapted to the target analog,
Galatea looks at the argument and determines whether it is a literal, a function, or an
element instance component of an s-image. Literals are returned verbatim. If the
argument is a function (e.g. the number of people in a group) then Galatea applies the
same function to the analogous group in the target and returns that value. If the argu-
ment is an element instance, then Galatea returns the analogous object in the target.

Carry Over Unchanged Relationships. The get-analogous-chunks sub-function
constructs and returns chunks that are identical to the input chunks, except that the
symbols that have maps in the input mapping are replaced with those symbols they
are associated with in those maps. The vertical map relationships are carried over as
well, constituting the vertical maps for unchanged element instances.

Creation of Horizontal Maps Between Changed Components. The creation-of-
horizontal-maps-between-changed-components is embedded in each of the transfor-
mations. The transformation results are obtained from running the transformation.
The target-objects-of-transformation are known because they are the input to the
transformation. The two lists are put in alphabetical order and maps are created be-
tween each nth list object.

Creation of Horizontal Maps Between Unchanged Components. Similarly, crea-
tion-of-horizontal-maps-between-unchanged-components makes maps between old
objects (the objects in the old s-image and new objects (from the current-s-image,
minus the objects created by the transformation), alphabetizes them, and creates maps
between the nth item in each list.

Creation of Vertical Maps Between Changed Components. The algorithm for
creating vertical maps between changed components takes as input the transformation
results in the source and target, alphabetizes them, and creates maps between the nth
item in each list.

We can now evaluate what made L14’s data (Fig. 2) differ from the stimulus draw-
ing (Fig. 1): L14 features a longer vestibule in the drawing than the vestibule pictured
in the stimulus. In fact, there is no trimmer arm (analogous to the wall in the lab prob-
lem) in the drawing at all that is distinct from the vestibule, save a very small section,
apparently to keep the spinning trimmer blade from hitting the vestibule. The entire
drawing is rotated ninety degrees from the source. The single lines in the source are
changed to double lines in the target. The doors also slide in and out of the vestibule
walls. What’s interesting about this modification is that it does not appear that this
kind of door opening is possible with the diagram given of the lab in the source: Since
the door is a rectangle that is thicker than the lines representing the walls, the door

 Transfer in Visual Case-Based Problem Solving 171

could not fit into the walls. In contrast L14 explicitly makes the doors and walls thick
(with two lines) and makes the doors somewhat thinner. L14 adds objects to the target
not found in the source: a blade and a twisting mechanism to describe how the doors
can work. L14 also included numerical parameters to describe the design of the trim-
mer: to describe length. Finally, L14 includes some mechanistic description of how
the trimmer would work.

Of these seven differences, our model successfully re-creates four of them. The ro-
tation of the source is modeled by a rotation in the target start s-image. In the s-image,
all spatial relationships are defined only relative to other element instances in the s-
image. Each instance is a part of a single set which has an orientation and direction. In
the case of s-image 1 of the target, it is facing right. Since all locations are relative,
there is no problem with transfer and each s-image in the model of L14 is rotated to
the right. The line to double line difference is accounted for by representing the vesti-
bule walls with rectangles rather than with lines, as it is in the source. Because the
mapping between the source and target correctly maps the side1 of the rectangle to
the startpoint of its analogous line, the rectangle/line difference does not adversely
affect processing transfer. The long vestibule difference is accounted for by specify-
ing that the heights of the vestibule wall rectangles are long. In the source the vesti-
bule wall lines are of length medium, but this does not interfere with transfer. The
trimmer head added object is accounted for by adding a circle to the first s-image in
the target.

Unaccounted for are the two bent lines emerging from the vestibule on the left
side, the numeric dimensions and words describing the mechanism. Also, L14 shows
one of the doors retracting, and the model does not. The model also fails to capture
the double line used to connect the door sections, because the single line is transferred
without adaptation from the source. This could be fixed, perhaps, by representing the
argument to the add-component as a function referring to whatever element is used to
represent another wall, rather than as a line.

3 The Galatea Model of Participant L22

L22 worked on the same problem as L14 and received in his or her stimuli the image
presented in Fig. 5. The marks L22 made on the experiment sheet are reproduced in
Fig. 6. Our model of L22 involves five transformations. The first transformation is
replicate. To replicate the door mechanism, the starting state, s-image 1, must have a
single door. A portion of the information in the first s-image of the source can be seen
in Fig. 7. All of the objects in Fig. 7 are a part of door-set-s1. It takes in the door-set1-
s1 as an argument, generating door-set1-s2 and door-set2-s2 as output in the second
s-image. There are three connected rectangles, corresponding to the top wall, door,
and bottom wall. The second transformation is add-connections which places the door
sets in correct position in relation to one another. The third and fourth transforma-
tions are add-component, which add the top and bottom containment walls. The fifth
transformation, another add-connections, places these containment walls in the cor-
rect positions in relation to the door sets.

172 J. Davies, A.K. Goel, and N.J. Nersessian

Fig. 5. The image from the source stimulus that L22 received in the experiment. It is a top-
down view of the airlock. This stimulus’s text (not shown) is identical to that of L14 (Figure 1)

Fig. 6. The marks L22 made on his or her experimental sheet

Top-door-s1

Door-s1

Bottom-door-s1

Top-door-side3-s1

Door-side1-s1

Door-side3-s1

Bottom-door-side1-s1

Top-door-side3-s1—door-side1-s1--connection

Door-side3-s1—bottom-door-side1-s1--connection

Fig. 7. A portion of the first s-image of the L22 model. S1 refers to the fact that the symbols are
in the first s-image. The top-door, door, and bottom-door are all in the door set that gets repli-
cated in transformation one

 Transfer in Visual Case-Based Problem Solving 173

Fig. 8. Outline of our model of L22. The six images along the top represent the source, and the
six images along the bottom the target, left to right, are separated by transformations: 1) repli-
cate, 2) add connections, 3) add component, 4) add component, and 5) add connections

The images along the top of Fig. 8 represent the source s-images. The images along
the bottom of Fig. 5 show the sequence of target s-images. Only the first s-image of
the target is given as input to the system. The rest are generated by Galatea. The circle
depicted represents a cross-section view of the sign that must pass through the arm.
The door mechanism in the arm, which gets replicated and connected up properly, is
oriented differently than the door in the lab problem, but the transformations are gen-
eral enough to allow transfer. In the bottom right s-image we can see the solution
state, as generated by Galatea. The redundant door mechanism will allow the sign to
pass through one, into the vestibule, while the other door keeps the structure in place.
Then the first door can close, supporting the structure, while the second door opens to
let the sign post out the other side.

We can now examine what made L22 differ from the stimulus drawing: The entire
drawing is rotated ninety degrees from the source. An object is added to the target
that has no analog in the source: the trimmer. L22 features a proportionately longer
vestibule than in the source, and has some explicit simulation diagrammed. Of these
differences, all but the last were modeled by changing the nature of the start s-image
for L22.

4 Related Work

In the introduction, we noted that the issue of visual knowledge in case-based reason-
ing is very broad and thus has attracted the attention of many researchers in several
areas. In order to look at the issue deeply, we focused our discussion exclusively on
case-based problem solving, i.e. case-based transfer of a procedure from a source case
to a target case. Below we relate our work to some representative case-based problem
solving systems with emphasis on systems use visual knowledge in transferring prob-
lem-solving procedures.

FABEL [8] is an example of a case-based system that adapts diagrammatic cases in
the domain of architectural design. In FABEL, the source diagram specifies the
spatial layout of a building or similar structure. FABEL adapts source diagrams by
extracting and transferring specific structural patterns to the target problem. It uses
domain-specific heuristics to guide pattern extraction and transfer. Galatea too adapts
diagrams by extracting and transferring patterns. Pattern transfer in Galatea is facili-

174 J. Davies, A.K. Goel, and N.J. Nersessian

tated by three main elements. Firstly, Galatea explicitly represents the knowledge
states of its source cases in the form of s-images. Secondly, each s-image is composed
of primitive visual elements and relations. Thirdly, succeeding knowledge states in
Galatea's source cases are related by primitive visual transformations. In this way,
Galatea captures the diagrammatic problem solving of the source cases. Given a
mapping between the visual elements in the target problem and a source case, this
knowledge enables Galatea to extract and transfer the appropriate series of visual
transformations from the source case to the target problem. In particular, the knowl-
edge states identify the names and arguments of specific transformations that need to
be transferred from the source case to the target problem.

REBUILDER [9] is a case-based reasoner that does retrieval, mapping, and trans-
fer of software design class diagrams. The diagrams are represented structurally, not
visually, however. This means that, for example, that the connection is between two
nodes is more important than the length and direction of that connection. That is,
REBUILDER works with a different level of visual abstraction, a level at which only
the structural relationships, such as connectedness, between visual elements are rele-
vant to the task. In contrast, Galatea takes into account additional geometric informa-
tion such as the length, direction and thickness of lines. What is the right level of
visual abstraction for visual case-based problems requires additional research. The
choices made by Galatea and REBUILDER depend largely on the specific domains in
which they operate. In REBUILDER’s domain of software design class diagrams,
only the structural relations appear to be important.

FAMING [6] is a case-based reasoning system that uses cases describing physical
mechanism parts. FAMING uses the SBF (Structure-Behavior-Function) ontology to
describe the cases. The structure is described in terms of a metric diagram (a geomet-
ric model of vertices and connecting edges), a place vocabulary (a complete model of
all possible qualitative behaviors of the device), and configuration spaces (a compact
representation of the constraints on the part motions.) Shape features can involve two
objects, expressing, for example, one part's ability to touch another part. Human
designers are necessary for FAMING's processing. The designer chooses which cases
and functions should be used, which dimensions the system should attempt to modify,
and which shape features should be unified. It uses qualitative kinematics to propose
design solutions for the desired function following the designer-suggested idea.
Though not described as a visual system, the important parts of physical mechanisms
of the sort FAMING uses inevitably contain much knowledge that could be construed
as visual. However, FAMING modifies cases according to shape substitution, and,
unlike Galatea, makes no attempt to transfer strongly-ordered procedures of any sort.

Non-visual case base problem-solving systems, such as CHEF [10] and PRODIGY
[14] provide interesting points of comparison regarding the transfer process. CHEF is
a case-based reasoner that transfers and adapts cooking recipes from a source to a
target. CHEF does not create intermediate knowledge states. This is because it does
not transfer procedures that create new objects. The Prodigy case-based reasoning
system implements the theory of Derivational Analogy. It models transfer using
memories of the justifications of each step, allowing for adaptation of the transferred
procedure. Traces, called “derivations,” are scripts of the steps of problem solving,
along with the justifications for why the steps were chosen over others. PRODIGY
too does not store the intermediate steps; instead it stores only a record of the changes

 Transfer in Visual Case-Based Problem Solving 175

made to them. This means that the states can be inferred, but are not explicitly present
in the case memory. CHEF and PRODIGY avoid the generation of intermediate
knowledge states and mappings because the examples with which they have been
implemented do not have procedures that create new objects.

5 Conclusions

In the introduction to this paper, we described the two main hypotheses of this work:
(1) visual knowledge alone is sufficient for transfer of problem-solving procedures in
some domains, and (2) visual knowledge facilitates transfer even when non-visual
knowledge might be available. Both hypotheses were strongly supported by the evi-
dence described above, and we had an unexpected discovery of a third, which makes
for three claims.

First, visual knowledge is sufficient for transfer of some problem-solving proce-
dures. There are seven models written in Galatea that support this claim. We de-
scribed the models of L14 and L22 in this paper. We modeled two additional partici-
pants from the Craig et al. experiment, a historical example from the scientific think-
ing of Maxwell [5], the fortress/tumor problem [4] and the cake/pizza problem [4].
Each of these models uses case-based reasoning to solve a problem using only visual
knowledge. The fact that four of these models are based on human experimental par-
ticipant data lend support to the hypothesis that this claim might apply to human prob-
lem solving, as well as artificial case-based reasoning systems, although more empiri-
cal research would be needed to substantiate this. As shown above, most of the differ-
ences between source and target, as displayed in the participant data, were accounted
for in our models. In light of this research we can speculate for which domains visual
knowledge might be sufficient for transfer of problem-solving procedures: those do-
mains, the solution procedures of which could be adequately described with descrip-
tions of changes to visio-spatial properties. A way to think about this is if the impor-
tant differences between the problem and the solution are reflected in visual differ-
ences, then that problem is likely to fall in this class.

The second claim is that visual knowledge facilitates transfer even when non-
visual knowledge might be available. L22’s lab/weed trimmer problem involves
physical systems that can be described visually or non-visually. Galatea’s visual on-
tology of primitive elements and transformations allows transfer between systems
that, though they may be semantically distant, have visual similarities, which facili-
tates the transfer. This is also true for the three other lab/weed trimmer participants, as
well as for the fortress/tumor example.

In the course of building the models of Galatea, we discovered that the successful
transfer of strongly-ordered procedures in which new objects are created requires the
reasoner to generate intermediate knowledge states and mappings between the in-
termediate knowledge states of the source and target cases. Galatea shows why, in
detail, this is so. Components of the problem are created by the operations, and these
components are acted on by later operations. For L22’s problem, for example, the
door set must be replicated before the two sets can be moved in relation to one an-
other. When the reasoner transfers the second operation of moving the door sets, how
does it know what the corresponding objects are in the target? It must have some

176 J. Davies, A.K. Goel, and N.J. Nersessian

mapping to make this inference. And since one of the door sets did not exist in the
start states of the problems, this mapping cannot be given as input with the initial
mapping. The new knowledge state with the duplicated door set must be generated,
and then a mapping must be made on the fly between it and the second knowledge
state of the source case.

References

1. Barber, J., Jacobson, M., Penberthy, L., Simpson, R., Bhatta, S., Goel, A., Pearce, M.,
Shankar, M. & Stroulia, E. Integrating artificial intelligence and multimedia technologies
for interface design advising. NCR Journal of Research and Development, 6(1), 75—85,
October 1992.

2. Casakin, H., Goldschmidt, G.: Expertise and the use of visual analogy: Implications for
design education. Design Studies. (1999)

3. Craig, D. L., Catrambone, R., Nersessian, N. J.: Perceptual simulation in analogical prob-
lem solving. In Model-Based Reasoning: Science, Technology, & Values. New York:
Kluwer Academic / Plenum Pubishers. (2002) 167–191

4. Davies, J., Goel, A. K.: Representation issues in visual analogy. Proceedings of the 25th
Annual Conference of the Cognitive Science Society. (2003) 300--305.

5. Davies, J., Nersessian, N. J., Goel, A. K.: Visual models in analogical problem solving.
Foundations of Science, Special Issue on Model-Based Reasoning: Visual, Analogical,
Simulative. By Magnani, L. and Nersessian, N.J. (Eds.) (in press)

6. Faltings, B., Sun, K.: FAMING: Supporting innovative mechanism shape design. Com-
puter-Aided Design, 28(3) (1996) 207—216

7. Farah, M. J.: The neuropsychology of mental imagery: Converging evidence from brain-
damaged and normal subjects. In Spatial Cognition- Brain Bases and Development. Erl-
baum (1988)

8. Gebhardt, F., Voss, A., Grather, W.: Reasoning with Complex Cases. Kluwer (1997)
9. Gomes, P., Seco, N., Pereira, F. C., Paiva, P., Carreiro, P., Ferreira, J. L., Bento, C.: The

importance of retrieval in creative design analogies. In Creative Systems: Approaches to
Creativity in AI and Cognitive Science. Workshop program in The Eighteenth Interna-
tional Joint Conference on Artificial Intelligence. (2003)

10. Hammond, K. J.: Case-based planning: A framework for planning from experience. Cog-
nitive Science. (1990)

11. Monaghan, J. M., Clement, J.: Use of computer simulation to develop mental simulations
for understanding relative motion concepts. International Journal of Science Education.
(1999)

12. Gebhardt, F., Voss, A. Grather, W. & Schmidt-Belz. Reasoning With Complex Cases,
Kluwer, 1997.

13. Pearce, M., Goel, A. K., Kolodner, J. L., Zimring, C., Sentosa, L., & Billington, R. Case-
based design support: A case study in architectural design. IEEE Expert: Intelligent Sys-
tems & Their Applications. 7(5): 14-20, (1992)Shepard, R., Cooper, L.: Mental Images
and Their Transformations. MIT Press. (1988)

14. Veloso, M. M.: Prodigy/analogy: Analogical reasoning in general problem solving.
EWCBR (1993) 33—52

Generating Estimates of Classification

Confidence for a Case-Based Spam Filter

Sarah Jane Delany1, Pádraig Cunningham2, Dónal Doyle2,
and Anton Zamolotskikh2

1 Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
sarahjane.delany@comp.dit.ie

2 University of Dublin, Trinity College, Dublin 2, Ireland
{padraig.cunningham, donal.doyle, zamolota}@cs.tcd.ie

Abstract. Producing estimates of classification confidence is surpris-
ingly difficult. One might expect that classifiers that can produce numeric
classification scores (e.g. k-Nearest Neighbour, Näıve Bayes or Support
Vector Machines) could readily produce confidence estimates based on
thresholds. In fact, this proves not to be the case, probably because these
are not probabilistic classifiers in the strict sense. The numeric scores
coming from k-Nearest Neighbour, Näıve Bayes and Support Vector Ma-
chine classifiers are not well correlated with classification confidence. In
this paper we describe a case-based spam filtering application that would
benefit significantly from an ability to attach confidence predictions to
positive classifications (i.e. messages classified as spam). We show that
‘obvious’ confidence metrics for a case-based classifier are not effective.
We propose an ensemble-like solution that aggregates a collection of con-
fidence metrics and show that this offers an effective solution in this spam
filtering domain.

1 Introduction

One might expect that classifiers that produce numeric scores for class mem-
bership would deliver effective estimations of prediction confidence based on
thresholds on these scores. Examples of classifiers that produce numeric scores
in this manner are; Näıve Bayes, k-Nearest Neighbour [1], Neural Networks [2],
Logistic Regression [3] and Support Vector Machines [4]. Our experience with
these classifiers suggests that the numeric scores from Logistic Regression are
predictive of confidence but those from Naive Bayes, Neural Networks, Support
Vector Machines (SVM) and k-Nearest Neighbour (k-NN) are not. We demon-
strate that this is the case for k-NN, Näıve Bayes and SVM in Section 3.

In this paper we are concerned with generating estimates of classification
confidence for a case-based spam filter called ECUE (Email Classification Using
Examples) [5]. ECUE has the advantage of being very effective at tracking con-
cept drift but this requires the user to identify False Positives (FPs) and False
Negatives (FNs) so that they can be used to update the case-base. Identifying
FNs is not a problem because they turn up in the Inbox (i.e. spam that has been

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, pp. 177–190, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNAI

178 S.J. Delany et al.

allowed through the filter). Identifying FPs involves monitoring a spam folder
to identify legitimate email that has been classified as spam. Our objective here
is to be able to partition this class so that the user need only monitor a subset -
the set for which the confidence is low.

A straightforward success criterion in this regard is the proportion of positives
for which prediction confidence is high and the prediction is correct (clearly there
cannot be any FPs in this set). A mechanism that could label more than 50% of
the positive class (i.e. classified as spam) as confident and have no FPs in this
set would be useful. The lower-confidence positives could be allowed into the
Inbox carrying a Maybe-Spam marker in the header or placed in a Maybe-Spam
folder that would be checked periodically.

In section 2 we provide a brief overview of research on estimating confidence.
The basic indicators for confidence that can be used with k-NN are described
in section 3 where we show that no single one of these measures is effective
in estimating confidence. In section 4 we present some simple techniques for
aggregating these basic indicators and present an evaluation on unseen data
that shows a simple voting technique to be very effective. The paper concludes
in section 5 with a summary.

2 Review

Cheetham and Price have recently emphasised the importance of being able to
attach confidence values to predictions in CBR [6,7]. This has been a research
issue since the earliest days of expert systems research: it is part of the body of
research on meta-level knowledge [8,9], the view being that it is important for
a system to ‘know what it knows’. TEIRESIAS is a system in this spirit, it was
designed to simply admit its ignorance instead of venturing risky advice [10].

More recently, the system SIROCCO from McLaren and Ashely [11] uses
meta-rules to determine the system’s confidence. Their system operates in an
engineering ethics domain, in which incorrect suggestions could be considered
sensitive and damaging. In this system, if any one of the meta-rules are fired then
the system considers itself inadequate for the task. Their evaluation of SIROCCO
shows that allowing the system to produce ‘don’t know’ results reduces the
number of incorrectly classified cases, with a small trade off whereby the number
of correctly classified cases is reduced.

So while it is clear that it is useful to be able to produce estimates of con-
fidence, it is also clear that that generating reliable estimates is not straight-
forward. Cheetham and Price [7] describe 12 measures of confidence that can
be applicable for a k-NN classifier. Some of these indicators increase with con-
fidence and some decrease. Since no single indicator is capable of producing a
robust measure of confidence they explore the use of a decision tree, that is al-
lowed to use all the measures, as a mechanism for aggregating all the available
metrics. The authors show that, even using a decision tree to learn a good con-
fidence measure from historic data, it is difficult to avoid the situation where
predictions labelled as confident prove to be incorrect. They also emphasise that

Generating Estimates of Classification Confidence 179

the confidence estimation mechanism will need to be updated over time as the
nature of the problems being solved can change.

Because of this we choose to concentrate on simpler aggregation mechanisms.
We engineered all indicators so that they increased in value as confidence in-
creased. This allowed us to consider additive and multiplicative mechanisms as
well as various ‘voting’ alternatives.

2.1 Indirect Methods of Conveying Confidence

It is worth mentioning that there are other more indirect ways of conveying
confidence to the user. Rather than conveying confidence as a term or a nu-
meric score it can be conveyed by giving the user some insight into the problem
domain. Confidence can be conveyed by presenting explanation cases [12] or
by highlighting whether a feature has a negative or positive correlation with
respect to the classification [13] or by highlighting features that contribute pos-
itively and negatively to the classification [14] Confidence may also be conveyed
by using visualisation tools to highlight features that contribute to similarity
and to differences [15].

3 Confidence Measures

This section describes a number of confidence measures that could be used to
predict confidence in ECUE, a case-based spam filter. We concentrate on using
measures appropriate for a k-NN classifier. We evaluate these measures on a
number of spam datasets to assess their performance at predicting confidence.

The k-NN measures that we propose evaluating, which are described in Sec-
tion 3.1, perform some calculation on a ranked list of neighbours of a target
case. We do not use the basic classification score of the target case as ECUE
uses unanimous voting in the classification process to bias the classifier away
from FPs. Unanimous voting requires all the k nearest neighbours retrieved to
be of classification spam in order for the target case to be classified as spam.
Therefore there is no classification ‘score’, as such.

3.1 Proposed k-NN Confidence Measures

The objective of the k-NN measures is to identify those cases that are ‘close’
(i.e. with high similarity) to cases of the same class as the target case and are
‘far’ (i.e. low similarity) from cases of a different class. The closer a target case
is to cases of a different class, the higher the chance that the target case is lying
near or at the decision surface. Whereas the closer a case is to other cases of the
same class, the higher the likelihood that it is further from the decision surface.

Similarity is determined by comparing features including the words and let-
ters used in the body of the email and certain header fields including the subject,
the ‘from’ address and addresses in the ‘to’ and ‘cc’ header fields [5].

For each k-NN confidence measure discussed in this section the same process
occurs. Each target case is classified by ECUE as either spam or non-spam. For

180 S.J. Delany et al.

those target cases predicted to be spam a ranked list of neighbours of the target
case is retrieved. This list of neighbours is a list of all the cases in the case-base
ordered by distance from the target case. Those cases with classification equal
to that of the target case (i.e. with classification spam) are considered to be
like cases, while those cases with classification of nonspam are considered to be
unlike cases. The measures can use

– the distance between a case and its nearest neighbours (let NNi(t) denote
the ith nearest neighbour of case t) or,

– the distance between the target case t and its nearest like neighbours (let
NLNi(t) denote the ith nearest like neighbour to case t) and/or

– the distance between a case and its nearest unlike neighbours (let NUNi(t)
denote the ith nearest unlike neighbour to case t).

The number of neighbours used in each measure is adjustable and is indepen-
dent of the number of neighbours used in the initial classification. All measures
are constructed to produce a high score to indicate high confidence and a low
score to indicate low confidence.

Avg NUN Index
The Average Nearest Unlike Neighbour Index (Avg NUN Index) is a measure of
how close the first k NUNs are to the target case t as given in Equation 1.

AvgNUNIndex(t, k) =
∑k

i=1 IndexOfNUNi(t)
k

(1)

where IndexOfNUNi(t) is the index of the ith nearest unlike neighbour of
target case t, the index being the ordinal ranking of the case in the list of NNs.

This is illustrated in Figure 1 where NLNs are represented by circles, NUNs
are represented by stars and target cases are represented by triangles. For k = 1,
the index of the first NUN to target case T1 is 5 whereas the index of the first
NUN to target case T2 is 2, indicating higher confidence in the classification of
T1 than T2.

Fig. 1. Average NUN Index Confidence Measure

Generating Estimates of Classification Confidence 181

Similarity Ratio
The Similarity Ratio measure calculates the ratio of the similarity between the
target case t and its k NLNs to the similarity between the target case and its k
NUNs, as given in Equation 2.

SimRatio(t, k) =
∑k

i=1 Sim(t, NLNi(t))∑k
i=1 Sim(t, NUNi(t))

(2)

where Sim(a, b) is the calculated similarity between cases a and b.
This is illustrated in Figure 2 where, for k = 1, the similarity between the

target case T1 and its NLN is much higher than the similarity between T1 and
its NUN. Whereas the similarity between target case T2 and its NLN is only
marginally higher than the similarity between T2 and its NUN. The ratio of
these similarites for T1 will give a higher result than that for T2 indicating
higher confidence in the classification of T1 than T2.

Fig. 2. Similarity Ratio Confidence Measure

Similarity Ratio Within K
The Similarity Ratio Within K is similar to the Similarity Ratio as described
above except that, rather than consider the first k NLNs and the first k NUNs
of a target case t, it only uses the NLNs and NUNs from the first k neighbours.
It is defined in Equation 3.

SimRatio(t, k) =
∑k

i=1 Sim(t, NNi(t))1(t, NNi(t))

1 +
∑k

i=1 Sim(t, NNi(t))(1 − 1(t, NNi(t)))
(3)

where Sim(a, b) is the calculated similarity between cases a and b and 1(a, b)
returns one if the class of a is the same as the class of b or zero otherwise.

This measure will attempt to reward cases that have no NUNs within the first
k neighbours, i.e. are in a cluster of k cases of the same class. This is illustrated
in Figure 3 where, considering k = 3, the target case T1 has no NUNs within the
first three neighbours whereas target case T2 has two NUNs and one NLN. The
Similarity Ratio Within K will be much larger for T1 than that for T2 indicating
higher confidence in the classification of T1 than T2.

182 S.J. Delany et al.

Fig. 3. Similarity Ratio Within K Confidence Measure

If a target case t has no NUNs then Equation 3 is effectively Equation 2 with
the denominator set to one.

Sum of NN Similarites
The Sum of NN Similarities measure is the total similarity of the NLNs in the
first k neighbours of the target case t, see Equation 4.

SumNNSim(t, k) =
k∑

i=1

1(t, NNi(t))Sim(t, NNi(t)) (4)

where Sim(a, b) is the calculated similarity between cases a and b and 1(a, b)
returns one if the class of a is the same as the class of b or zero otherwise.

For target cases in a cluster of cases of similar class this number will be
large. For cases which are closer to the decision surface and have NUNs within
the first k neighbours, this measure will be smaller. In fact for target cases with
no NUNs within the first k neighbours this measure will be equal to the value
of the Similarity Ratio Within K. Although this measure does not reward such
cases as strongly as the Similarity Ratio Within K does as the resulting measure
for the sum of the NLNs is not reduced by the influence of the NUNs.

Average NN Similarity
The Average NN Similarity measure is the average similarity of the NLNs in the
first k neighbours of the target case t, see Equation 5.

SumNNSim(t, k) =
∑k

i=1 1(t, NNi(t))Sim(t, NNi(t))∑k
i=1 1(t, NNi(t))

(5)

where Sim(a, b) is the calculated similarity between cases a and b and 1(a, b)
returns one if the class of a is the same as the class of b or zero otherwise.

3.2 Assessing k-NN Confidence Measure Performance

In order to assess the performance of these confidence measures we evaluated
each of them on a number of spam datasets. Five datasets were used. Each con-

Generating Estimates of Classification Confidence 183

Fig. 4. Criteria used to identify the best confidence threshold level

sisted of legitimate and spam emails received by a single individual over a period
of time. Each dataset represents a different period of time for a single individual.
Two different individual’s mail were used over all datasets. The legitimate emails
in the datasets include a mixture of business, personal and mailing list emails.
Case-bases were built from each of the five original datasets. Case representation
details are available in [5,16].

ECUE’s case-base maintenance procedure to handle concept drift in spam
filtering [17] has two components; an initial case-base editing stage and a case-
base update protocol. In order for the evaluation to closely reflect the operation
of ECUE, the case-base from each dataset was edited using the case editing
procedure [18]. After editing the datasets averaged 700 emails in size with an
average of 45% spam and 55% legitimate emails.

The evaluation involved performing a leave-one-out validation on each dataset
for each measure. We evaluated each measure using k neighbours from k = 1
upto k = 15 and identified the confidence threshold, over all the k values, that
gave us the highest proportion of correctly predicted spam emails when there
were no incorrect predictions (i.e. FPs). This is illustrated in Figure 4.

This was achieved by recording the confidence measure results for each target
case ci, i = 1 . . .N , that was classified by ECUE as spam. The results recorded
included the number of neighbours k used in the measure, whether the target
case was classified correctly or not and the measure calculated, mik. Setting
the threshold tk equal to the minimum value of mik for a given k and varying
the threshold in small units (tk = tk + .01) up to the maximum value of mik,
the number classified correctly with confidence (CCk) and the number classified
incorrectly with confidence (CIk) as given by Equations 6 and 7 , were calculated.

CCk =
N∑

i=1

gte(mik, tk) (6)

CIk =
N∑

i=1

lt(mik, tk) (7)

where gte(a, b) = 1 if a >= b and gte(a, b) = 0 otherwise and lt(a, b) = 1 if a < b
and lt(a, b) = 0.

184 S.J. Delany et al.

Table 1. Best percentage confidence achievable for each dataset using different confi-

dence measures

Confidence Measure Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Avg

Avg NUN Index 23% 76% 75% 41% 44% 51.8%

Sim Ratio 46% 84% 50% 49% 16% 49.0%

Sim Ratio Within k 21% 29% 71% 91% 57% 54.8%

Sum NN Sim 21% 29% 68% 91% 58% 53.4%

Avg NN Sim 20% 29% 49% 91% 60% 49.8%

Naive Bayes 0% 94% 0% 83% 56% 46.4%

SVM 29% 100% 77% 81% 33% 63.8%

ACM 55.4% 85.4% 83.8% 93.7% 77.3% 79.1%

The selected threshold value was the threshold tk that maximised CCk, the
number of spam correctly predicted with high confidence when the number of
incorrect predictions with high confidence was zero (i.e. CIk = 0).

The results of this evaluation are presented in rows 1 to 5 of Table 1 (the
other measures in rows 6 to 8 are described later). It details for each measure
the highest percentage confidence that can be achieved on each dataset. This
is the proportion of spam predictions that are made with high confidence. In
all situations no highly confident incorrect predictions were made so no FPs are
included in this proportion. In effect, this proportion of the spam can be ignored
by the user, whereas the remaining percentage would have to be checked by the
user.

Looking at the proportion of spam predictions for which confidence is high
across all datasets it is evident that no single measure achieves good percentage
confidence across all datasets. If we define “good” performance as having con-
fidence in at least 50% of the spam predictions, none of the measures achieve
“good” performance on more than three of the five datasets. The best performing
measure is the Similarity Ratio Within K which has good performance on three
of the five datasets with an average performance across all datasets of 54.8% but
with minimum performance of 21%.

3.3 Näıve Bayes and SVM Confidence Measures

Näıve Bayes is currently the machine learning technique of choice for spam filter-
ing [19,20,21,22,23] although there has been a lot of interest recently in applying
SVMs to the problem [23,24,25,26,27]. Näıve Bayes and SVM classifers pro-
duce numeric scores; Näıve Bayes produces a ‘probability’ of spam whereas an
SVM produces a ‘distance’ from the hyperplane separating the spam and non
spam classes. These scores can be used to predict confidence in the classifiers’
prediction.

We examined confidence measures produced by Näıve Bayes on the five
datasets. The implementation used is that described by Delany et al. [5]. The

Generating Estimates of Classification Confidence 185

confidence threshold was identified as the highest numeric score returned by the
classifier for a FP prediction. This ensured that no incorrectly classified spam
emails were considered confident predictions. The 6th row of Table 1 gives the
confidence predictions for the five datasets using the Näıve Bayes classifier. It
is clear from the results that the Näıve Bayes numeric score cannot be used as
a predictor of confidence. In two of the five datasets there are zero confident
predictions as there are FPs with the maximum score.

We also evaluated using a SVM on the five datasets. The implementation
used is a 2-norm soft-margin SVM as described in [4] with a dot product kernel
function. The confidence threshold was identified as the highest postive result
returned for nonspam email. This will ensure that no legitimate email will be
confidently considered as spam. The 7th row of the Table 1 gives the confidence
predictions for the five datasets using an SVM for classification. Although the
average score across all datasets of 63.8% is higher than the best of the k-NN
measures the SVM confidence measure does not realistically achieve any better
overall performance as it also only achieves “good” performance on three of the
five datasets but with slightly higher minimum performance of 29%. It is worth
noting that the performance of dataset 2 is actually 99.7% but is reported as
100% due to rounding.

3.4 Implications for Predicting Confidence in Spam Filtering

To summarise, it appears that the confidence measures for k-NN, Näıve Bayes
and SVMs presented here cannot consistently produce estimates of prediction
confidence for spam. The average performance of the k-NN and the SVM mea-
sures shows promise however the lack of consistency across all datasets is an
issue. The thresholds achieved for each k-NN measure across the five datasets
also varies considerably. For example, considering the Similarity Ratio Within K
measure which has the best of the k-NN measures performance, Table 2 shows
the variation in the threshold across the five datasets.

Table 2. Demonstrating the variation in thresholds for the Similarity Within K Ratio

confidence measure across the five datasets

Threshold Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

k - num neighbours used 11 7 14 1 3

Value 991.07 574.08 717.04 58 214.1

It is important to note that the figures in Table 1 are very optimistic as the
test data was used to set the threshold.

4 The Aggregated Confidence Measure

Since none of the individual measures discussed in Section 3 was consistently ef-
fective at predicting confidence we evaluated a number of aggregation approaches

186 S.J. Delany et al.

which involved combining the results from the individual measures. The aggre-
gation approaches we considered included:

(i) Summing the results from each of the 5 individual measures evaluated at
the same value of k and comparing the sum against a threshold;

(ii) Using the best threshold for each individual measure and indicating confi-
dence if a certain number of the measures indicate confidence;

(iii) Using a fixed k across all measures and indicating confidence if a certain
number of the measures indicate confidence.

We found that the simplest and most effective method of aggregating the
results is to assign confidence to a prediction if any of the individual measures
indicated that the prediction was confident as in (ii) above. We call this measure
the Aggregated Confidence Measure (ACM). The algorithm for the ACM has
two stages:

(i) calculation of the constituent measure threshold values in a pre-classification
stage,

(ii) determination of the ACM during classification.

The pre-classification stage involves pre-processing of the case-base to iden-
tify the best threshold for each individual constituent measure. This is performed
in the manner described in Section 3.2. A threshold consists of two values; the
k value indicating the number of neighbours to use in the calculation and the
actual threshold value above which the prediction is considered confident. These
constituent measure thresholds are stored.

The ACM is then determined during classification for each target case that
is classified as spam by ECUE. Using the appropriate threshold value of k, the
actual score for each individual constituent measure is calcuated for the target
case. The ACM specifies that if at least one of the calculated scores for the
individual measures is equal to or greater than the stored threshold value for
that measure, confidence is expressed in the prediction.

4.1 Assessment of ACM’s Performance

We evaluated the ACM on the five datasets already used in Section 3. The re-
sults are presented in row 8 of Table 1. It is evident that the ACM is effective
across all datasets with an average of 79% of the spam predictions being pre-
dicted with high confidence. The ACM also results in more than 50% of each
dataset being predicted with high confidence. It is worth noting that the level of
high confidence predictions for the ACM is also higher than the best individual
measure’s performance on each dataset (rows 1 to 5 of Table 1).

4.2 Evaluation on Unseen Data

One limitation of the evaluation performed in Section 4.1 is that the assessment
was performed on the datasets which themselves were used to derive the con-
fidence thresholds for the constituent confidence measures. In order to validate
the ACM it is necessary to evaluate its performance on unseen data.

Generating Estimates of Classification Confidence 187

Table 3. Performance of ACM on unseen data using Dataset 6

Month 1 2 3 4 5 6 7 8 Overall

Total emails classified 772 542 318 1014 967 1136 1370 1313 7382

Number of Spam 629 314 216 925 917 1065 1225 1205 6496

Number of Non Spam 93 228 102 89 50 71 145 108 886

%FPs classified 4.3% 2.6% 1.0% 1.1% 6.0% 1.4% 0.0% 1.9% 2.0%

%Confident FPs 0.0% 0.9% 0.0% 1.1% 0.0% 0.0% 0.0% 0.9% 0.5%

%Confidence 70% 87% 76% 94% 89% 73% 77% 99% 85%

Table 4. Performance of ACM on unseen data using Dataset 7

Month 1 2 3 4 5 6 Overall

Total emails classified 293 447 549 693 534 495 3011

Number of Spam 142 391 405 459 406 476 2279

Number of Non Spam 151 56 144 234 128 19 732

%FPs classified 0.7% 3.6% 3.5% 2.6% 1.6% 0.0% 2.2%

%Confident FPs 0.0% 3.6% 0.7% 0.4% 1.6% 0.0% 0.8%

%Confidence 95% 95% 87% 64% 89% 88% 85%

To do this we used ECUE along with two further datasets that have been
used in concept drift evaluations of ECUE [17]. Each dataset is derived from
an individual’s email received over the period of approximately one year. The
first 1000 emails (consisting of 500 spam and 500 legitimate emails) in each
dataset were used as training data to build the initial case-base classifier and
the remaining emails were left for testing. These datasets, 6 and 7, include eight
and six months of test emails repectively. The monthly class distribution of the
test emails is evident in rows 2 and 3 of Tables 3 and 4.

To evaluate the ACM on unseen data involved building confidence thresholds
for the ACM constituent measures on the initial case-base and then classifying
the remaining emails using the ACM to determine how confident the spam pre-
dictions are. In this way, the test emails were not used in the determination of
the confidence thresholds in any way.

The test emails were presented in date order for classification. Since this email
data is subject to concept drift, ECUE’s case-base update policy was applied
to allow the classifier to learn from the new types of spam and legitimate email
presented. The update policy has a number of components; an immediate update
of the case-base with any misclassified emails when a FP occurred, a daily update
of the case-base with any other misclassifieds emails that occurred that day, and
a monthly feature reselection process to allow the case representation to take any
new predictive features into account. In order to keep the confidence thresholds
in line with the updates to the case-base an update policy for the confidence
thresholds was also applied. This policy had two components; the confidence

188 S.J. Delany et al.

thresholds were updated whenever a confident FP email occurred and also after
a monthly feature reselect.

Tables 3 and 4 show the results of testing the performance of the ACM on
unseen data using the two datasets 6 and 7. The tables present the accumulated
monthly results for each dataset listing the total number and types of emails
that were classified, the percentage of incorrect spam predictions (i.e. FPs) made
(labeled %FP classified) and the percentage of incorrect spam predictions made
with high confidence (labeled %Confident FPs). The table also gives the total
percentage of spam predictions with high confidence (labeled %Confidence).

In both datasets predictions of confidence are high, averaging 85% in both
cases with a lowest monthly level of 64%. This is the percentage of spam pre-
dictions that can be ignored by the user, the remaining spam predictions can
either be flagged in the Inbox as Maybe Spam or placed in a separate Maybe
Spam folder for the user to check.

However in some of the months the ACM has resulted in confident incorrect
predictions. Although the actual numbers of emails are low (four emails for
Dataset 6 and six emails for Dataset 7) the ideal situation is one where all
incorrect predictions have low confidence and will be flagged for the user to
check. FPs flagged as confident will end up in the spam folder and may be
missed by the user. Examining the confident FPs, three are emails from mailing
lists and two are responses to Web registrations which users may not be too
concerned with missing. The remaining five are important, some work related
and one even a quotation in response to a online car hire request.

It is clear that we are approaching the limits of the accuracy of machine learn-
ing techniques in this domain. We see two possibilities for addressing these FPs.
Close examination of such emails may identify domain specific characteristics
that could be used as a feature or number of features in the case representation.
Secondly, most deployed spam filtering solutions do not rely on one approach for
filtering spam, they combine a number of techniques including white and black
listing, rules, collaborative and learning approaches. Incorporating additional
techniques into ECUE to add to its case-based approach could help in catching
these outlier FPs.

5 Conclusions

We have shown that confidence measures based on the numeric scores from
Näıve Bayes, SVM or measures based on the k nearest neighbours for a case-
based classifier are not consistent at predicting confidence in the spam filtering
domain.

We have described an aggregation-based approach to combining individual
k-NN confidence measures that shows great promise in confidently predicting
spam. We evaluated this aggregated confidence measure by incorporating it into
the classification process of a case-based spam filter and showed that it could
successfully separate the spam predictions into two sets, those with high confi-
dence of spam which can be ignored by the user and those with low confidence

Generating Estimates of Classification Confidence 189

which should be periodically checked for False Positives. The high-confidence set
included 85% of the predicted spam reducing the number of spam that the user
needs to check.

References

1. Mitchell, T.: Machine Learning. McGraw Hill, New York (1997)

2. Fausett, L.: Fundamentals of Neural Networks: Architectures, Algorithms, and
Applications. Prentice Hall (1993)

3. Hosmer, D.W., Lemeshow, S.: Applied Logistic Regression. Wiley Series in Prob-
ability and Statistics. Wiley (2000)

4. Christianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines:
And Other Kernel-based Learning Methods. Cambridge University Press (2000)

5. Delany, S., Cunningham, P., Coyle, L.: An assessment of case-based reasoning for
spam filtering. Artificial Intelligence Review (to appear) (2005)

6. Cheetham, W.: Case-based reasoning with confidence. In Blanzieri, E., Portinale,
L., eds.: 5th European Workshop on Case-Based Reasoning. Volume 1898 of LNCS.,
Springer (2000) 15–25

7. Cheetham, W., Price, J.: Measures of solution accuracy in case-based reasoning
systems. In Funk, P., González-Calero, P., eds.: 7th European Conference on Case-
Based Reasoning (ECCBR 2004). Volume 3155 of LNAI., Springer (2004) 106–118

8. Lenat, D., Davis, R., Doyle, J., Genesereth, M., Goldstein, I., Schrobe, H.: Rea-
soning about reasoning. In Hayes-Roth, F., Waterman, D.A., Lenat, D.B., eds.:
Building Expert Systems. Addison-Wesley, London (1983) 219–239

9. Davis, R., Buchanan, B.: Meta level knowledge. In Hayes-Roth, F., Waterman,
D.A., Lenat, D.B., eds.: Rule-Based Expert Systems. Addison-Wesley, London
(1985) 507–530

10. Davis, R.: Expert systems: Where are we? and where do we go from here? AI
Magazine 3 (1982) 3–22

11. McLaren, B.M., Ashley, K.D.: Helping a cbr program know what it knows. In
Aha, D., Watson, I., eds.: 4th International Conference on Case-Based Reasoning
(ICCBR-2001). Volume 2080 of LNAI., Springer (2001) 377–391

12. Doyle, D., Cunningham, P., Bridge, D., Rahman, Y.: Explanation oriented re-
trieval. In Funk, P., González-Calero, P.A., eds.: 7th European Conference on
Case-Based Reasoning (ECCBR 2004). Volume 3155 of LNAI., Springer (2004)
157–168

13. Nugent, C., Cunningham, P.: A case-based explanation system for black-box sys-
tems. Artificial Intelligence Review (to appear) (2005)

14. McSherry, D.: Explaining the pros and cons of conclusions in cbr. In Funk,
P., González-Calero, P., eds.: 7th European Conference on Case-Based Reasoning
(ECCBR-2004). Volume 3155 of LNAI., Springer (2004) 317–330

15. Massie, S., Craw, S., Wiratunga, N.: A visualisation tool to explain case-base rea-
soning solutions for tablet formulation. In: 24th SGAI International Conference on
Innovative Techniques and Applications of Artificial Intelligence (AI-2004). LNCS,
Springer (2004)

16. Delany, S., Cunningham, P., Coyle, L.: An assessment of case-based reasoning
for spam filtering. Procs. of 15th Irish Conference on Artificial Intelligence and
Cognitive Science (2004) 9–18

190 S.J. Delany et al.

17. Delany, S.J., Cunningham, P., Tsymbal, A., Coyle, L.: A case-based technique
for tracking concept drift in spam filtering. In Macintosh, A., Ellis, R., Allen, T.,
eds.: Applications and Innovations in Intelligent Systems XII, Procs. of AI 2004,
Springer (2004) 3–16

18. Delany, S.J., Cunningham, P.: An analysis of case-based editing in a spam filtering
system. In Funk, P., P.González-Calero, eds.: 7th European Conference on Case-
Based Reasoning (ECCBR 2004). Volume 3155 of LNAI., Springer (2004) 128–141

19. P.Pantel, Lin, D.: Spamcop: A spam classification and organisation program. In:
Procs of Workshop for Text Categorisation, AAAI-98. (1998) 95–98

20. Sahami, M., Dumais, S., Heckerman, D., Horvitz, E.: A bayesian approach to
filtering junk email. In: Procs of Workshop for Text Categorisation, AAAI-98.
(1998) 55–62

21. Androutsopoulos, I., J.Koutsias, Chandrinos, G., Paliouras, G., Spyropoulos, C.:
An evaluation of naive bayesian anti-spam filtering. In Potamias, G., Moustakis,
V., van Someren, M., eds.: Procs of Workshop on Machine Learning in the New
Information Age, ECML 2000. (2000) 9–17

22. Schneider, K.: A comparison of event models for näive bayes anti-spam e-mail
filtering. In: 10th Conference of the European Chapter of the Association for
Computational Linguistics (EACL’03). (2003) 307–314

23. Zhang, L., Zhu, J., Yao, T.: An evaluation of statistical spam filtering techniques.
ACM Transactions on Asian Language Information Processing (TALIP) 3 (2004)
243–269

24. Drucker, H., Wu, D., Vapnik, V.: Support vector machines for spam categorisation.
IEEE Transactions on Neural Networks 10 (1999) 1048–1055

25. Androutsopoulos, I., Paliouras, G., Michelakis, E.: Learning to filter unsolicited
commercial email. Technical Report 2004/02, NCSR ”Demokritos” (2000)

26. Kolcz, A., Alspector, J.: Svm-based filtering of email spam with content-specific
misclassification costs. In: TextDM’2001 (IEEE ICDM-2001 Workshop on Text
Mining), IEEE (2001) 123–130

27. Michelakis, E., Androutsopoulos, I., Paliouras, G., Sakkis, G., Stamatopoulos, P.:
Filtron: A learning-based anti-spam filter. In: 1st Conference on Email and Anti-
Spam (CEAS 2004). (2004)

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, pp. 191 – 205, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Improving Gene Selection in Microarray Data Analysis
Using Fuzzy Patterns Inside a CBR System

Florentino Fdez-Riverola1, Fernando Díaz2, M. Lourdes Borrajo1,
J. Carlos Yáñez3, and Juan M. Corchado4

1 Dept. Informática, University of Vigo, Escuela Superior de Ingeniería Informática,
Edificio Politécnico, Campus Universitario As Lagoas s/n, 32004 Ourense, Spain

riverola@uvigo.es
2 Dept. Informática, University of Valladolid, Escuela Universitaria de Informática,

Plaza Santa Eulalia, 9-11, 40005 Segovia, Spain
fdiaz@infor.uva.es

3 Dept. of Financial Accounting, University of Vigo,
Campus Universitario As Lagoas s/n, 32004 Ourense, Spain

jcyanez@uvigo.es
4 Dept. de Informática y Automática, University of Salamanca,

Plaza de la Merced s/n, 37008 Salamanca, Spain
corchado@usal.es

Abstract. In recent years, machine learning and data mining fields have found
a successful application area in the field of DNA microarray technology. Gene
expression profiles are composed of thousands of genes at the same time,
representing complex relationships between them. One of the well-known
constraints specifically related to microarray data is the large number of genes
in comparison with the small number of available experiments or cases. In this
context, the ability to identify an accurate gene selection strategy is crucial to
reduce the generalization error (false positives) of state-of-the-art classification
algorithms. This paper presents a reduction algorithm based on the notion of
fuzzy gene expression, where similar (co-expressed) genes belonging to different
patients are selected in order to construct a supervised prototype-based retrieval
model. This technique is employed to implement the retrieval step in our new
gene-CBR system. The proposed method is illustrated with the analysis of
microarray data belonging to bone marrow cases from 43 adult patients with
cancer plus a group of three cases corresponding to healthy persons.

1 Introduction and Motivation

Practically all cells in the human body have the same genes, but these genes can be
expressed differently at different times and under different conditions. Studying these
various states helps scientists understand more about how the cells function and about
what happens when the genes in a cell do not work properly. In the past, scientists
have only been able to conduct such genetic analyses on a few genes at once.
However, in recent years DNA microarray technology has become a fundamental tool

LNAI

192 F. Fdez-Riverola et al.

in genomic research, making the investigation of global gene expression of all aspects
of human disease possible [1-4]. Nowadays, it is possible to monitor simultaneously
the expression levels of thousands of genes during important biological processes and
across collections of related samples.

Microarray technology is based on a database of over 40,000 fragments of genes
called expressed sequence tags (ESTs), which are used to measure target abundance
using the scanned intensities of fluorescence from tagged molecules hybridised to
ESTs [5, 6]. Since the number of examined genes in an experiment is measured in
terms of thousands, different data mining techniques have been intensively used to
analyse and discover knowledge from gene expression data [7, 8]. However, having
so many fields relative to so few samples creates a high likelihood of finding false
positives. This problem is increased if we consider the potential errors that can be
present in microarray data, namely symmetric and random errors [9]. Symmetric
(controllable) errors produce approximately similar variations at microarray
experiments and it can be handled through normalization techniques [10]. Random
(uncontrollable) errors cause different degrees of variations in microarray experiments
by chance [11]. Considering a bidimensional matrix containing data from different
microarray experiments (from different patients, different times in the same
individual, or different tissue types within an individual), we have to deal with the
previous commented intra-experimental and inter-experimental variations. Other
issues related with the pre-processing stage within the microarray life cycle are well
illustrated in the work of [12].

For several years we have been working in the identification of techniques to
automate the reasoning cycle of case based reasoning (CBR) systems [13,14]. In this
paper, we propose a fuzzy codification for the gene expression levels of each sample
based on the discretization of real gene expression data into a small number of fuzzy
membership functions. The proposed method is able to generalize samples as a whole,
diminishing the effect of both inter and intra experimental variations. The developed
method can be used for different measure platforms (RT-PCR, Affymetrix GeneChip,
Rosetta oligoarrays, etc.) and serves as a pre-processing step before gene selection
and clustering methods, as we will see later.

We are interested in the development of a robust case-based reasoning system that
may be employed in the study of cancer treatment. The goal of the decision support
tool is to facilitate the construction of therapies, including the level of aggressiveness
of treatment, to more closely match the underlying disease, hopefully reducing side
effects in low risk cases and increasing cure rates in high-risk cases.

Input space reduction is often the key phase in the building of an accurate classifier
[15]. Based on the fuzzy discretization method presented in this paper, we propose the
use of a fuzzy prototype-based retrieval system able to differentiate several kinds of
cancer for microarray data. In this case, the goal is the identification of an expression
profile that can be used to classify the cancer in our CBR system.

The paper is organized as follows: Section 2 introduces the use of CBR systems
and reviews different gene selection approaches, as well as classification techniques
for microarray data analysis. Section 3 explains in detail the proposed fuzzy

Improving Gene Selection in Microarray Data Analysis 193

prototype-based retrieval method. Section 4 discusses the experimental results
obtained with the new gene-CBR system built with the proposed method. Finally,
Section 5 gives out the concluding remarks and future work.

2 Related Work

Case-based reasoning is a computational reasoning paradigm that involves the storage
and retrieval of past experiences to solve new problems. It is an approach that is
particularly relevant in scientific domains, where there is a wealth of data but often a
lack of theories or general principles.

The domain of molecular biology can be characterized by substantial amounts of
complex data, many unknowns, a lack of complete theories and rapid evolution,
where reasoning is often based on experience rather than general knowledge. Experts
remember positive experiences for the possible reuse of solutions while negative
experiences are used to avoid potentially unsuccessful outcomes. Similar to other
scientific domains, problem solving in molecular biology can benefit from systematic
knowledge management using techniques from AI. Case-based reasoning is
particularly applicable to this problem domain because it (i) supports rich and
evolvable representation of experiences/problems, solutions and feedback; (ii)
provides efficient and flexible ways to retrieve these experiences; and (iii) applies
analogical reasoning to solve new problems [16].

Several methods derived from machine learning have been applied to reduce
dimensions in the field of microarray data. These works include the application of
genetic algorithms [17], wrapper approaches [18], support vector machines [19],
etc. Other approaches focus their attention on redundancy reduction and feature
extraction [20, 21], as well as the identification of similar gene classes making
prototypes-genes [22]. One way or another, the selected method has to pursue two
main goals: (i) reduce the cost and complexity of the classifier and (ii) improve the
accuracy of the model.

Classical reduction dimension methods applied to microarray data [23] tend to
identify differentially expressed genes from a set of microarray experiments. A
differentially expressed gene is a gene which has the same expression level for all
examples of the same class, but different for those examples belonging to different
classes. The relevance value of a gene depends on its capacity of being differentially
expressed. However, a non-differentially expressed gene will be considered irrelevant
and will be removed from the classification process even though it might well contain
information that would improve the classification accuracy.

The task addressed here is slightly different from that of feature selection for gene
expression based classifiers [24, 25]. Our proposed method aims to find all genes that
are significantly expressed between the existing classes in order to obtain a fuzzy
representation of the expression levels belonging to those genes that best explain each
class in the form of a fuzzy-prototype. The final goal is the application of the
proposed method as a retrieval step for our gene-CBR system.

194 F. Fdez-Riverola et al.

3 Fuzzy Prototype-Based Retrieval Method for CBR Systems

The proposed method employs a fuzzy codification for the gene expression levels of
each case, based on the discretization of real gene expression data into a small number
of fuzzy membership functions. The whole algorithm comprises of two main steps.
First, we discretize the gene expression levels into binary variables according to a
supervised learning process. Then, a fuzzy pattern is generated from the data, which is
representative for each specific pathology. To carry out the integration of the
proposed method within the CBR life cycle, a measured distance has to be defined in
order to determine the distance of a gene expression profile (or new case) to a specific
gene expression pattern.

3.1 Fuzzy Discretization of Gene Expression Levels

Given a set of n features or attributes (in this work, gene expression levels), F = {F1,
F2, ..., Fn}, the discretization process is based on determining the membership
function of each feature to three linguistic labels (Low, Medium, and High). Then,
each real value Fj is replaced by its three values of membership to these fuzzy labels
(μjL, μjM and μjH, respectively), and so, a new set of 3n features, F' = {μ1L, μ1M, μ1H,
..., μnL, μnM, μnH} is constructed from the original set of features F.

The membership functions to linguistic labels are defined in a similar way to the
form that has been used by [26, 27]. These authors used a polynomial function that
approximates a Gaussian membership function, where its centre and amplitude
depend on the mean and on the variability of the available data respectively. The
original membership functions are considered symmetric, but, in this work we have
considered asymmetric functions for the linguistic labels in the extremes (labels Low
and High). To support this choice, it is assumed that values below the centre of
membership function for label Low are low values for the feature Fj at a fuzzy degree
of 1. The same consideration is made to the label High.

Concretely, the membership function for the label Low is defined by:

1 if 0

2

1 2 if 0
2

()
2

2 1 if
2

0 otherwise

x c jL

x c jL jL
x c jL

jL
xjL

x c jL jL
x c jL jL

jL

λ
λ

μ

λ
λ

− ≤

−
− ≤ − ≤

=
−

− ≤ − ≤

(1)

where cjL is the mean of the values of feature Fj below the mean of all values of the
feature Fj, (namely, given cjM = E[Fj], the centre cjL is is the mean of the values of
feature Fj that are comprised between min(Fj) and cjM) and the λjL parameter is the
distance between cjM and cjL, λjL = cjM - cjL. As it is defined, this function is
asymmetric, as is shown in Figure 1.

Improving Gene Selection in Microarray Data Analysis 195

For the label High the definition of its membership function is made in a similar
way,

1 if 0

2

1 2 if 0
2

()
2

2 1 if
2

0 otherwise

x c jH

x c jH jH
x c jH

jH
xjH

x c jH jH
x cjH jH

jH

λ
λ

μ

λ
λ

− ≥

−
− − ≤ − ≤

=
−

+ − ≤ − ≤−

(2)

but in this case, the centre cjH is the mean of the values of Fj that are comprised
between the mean value of all values, cjM, and the maximum value, max{Fj}, whereas
the amplitude parameter, λjH, is given by the difference cjH - cjM. This function extends
the right side of the domain of Feature Fj, and it is shown in Figure 1. It is also an
asymmetric membership function.

Last, the membership function to the label Medium is a symmetric function defined
as:

2

1 2 if 0
2

2

() 2 1 if
2

0 otherwise

x c jM jM
x c jM

M

x c jM Mx x cjM jM jM
jM

λ
λ

μ λ
λ

−
− ≤ − ≤

−
= − ≤ − ≤

(3)

where the centre parameter, cjM, is the mean of all values of feature Fj, cjM = E[Fj],
and the amplitude parameter λjM is given by the half of the distance between the
centres of the extreme functions, namely, λjM = ½ (cjH - cjL). The form of this function
is also shown in Figure 1.

Once defined the three membership functions for each feature Fj, a threshold value
Θ can be established (for example, 0.5) to discretize the original data in a binary way,
according to any linguistic label from the defined labels Low, Medium and High. The
discriminatory criterion for any label is simply defined by:

Θ<
Θ≥

=
•

•
•)(if0

)(if1
'

x

x
F

j

j
j μ

μ

(4)

As is shown in Figure 1, for concrete values of threshold Θ, specific zones of the
feature domain for which none of the labels will be activated can exist (see the
neighbour region of the intersection of membership functions of label Medium and
High in Figure 1). This fact must be interpreted as the specific value of the feature is

196 F. Fdez-Riverola et al.

not enough to assign it a significant linguistic label at the significance degree of
membership fixed by threshold Θ. On the other hand, one value can activate
simultaneously two linguistic labels, since at the significance level given by Θ, any
assignment of the measure to a linguistic label is significant (see, the neighbour
region of the intersection of label MEDIUM and HIGH in Figure 1).

0

0,2

0,4

0,6

0,8

1

1,2

0 50 100 150 200 250 300 350 400

Feature F j

M
em

b
er

sh
ip

 f
u

n
ct

io
n

μ jL (x) μ jM (x) μ jH (x)

threshold Θ

Fig. 1. Membership functions for the linguistic labels: LOW, MEDIUM and HIGH

This section has presented a method used to discretize numeric features into binary
variables according to the definition of three linguistic labels, and therefore the
method is defined in a fuzzy sets manner. Summarizing, given a data set D with m
observations {x1, ..., xm} about n numeric features F = {F1, ..., Fn}, namely, xi ∈ Rn,
the fuzzy discretization process, defined above, transforms the original data set into
another set with the same number of observations but a different number of features.
The new data set D' has m observations which are now referred to as a set of 3n
binary features, namely, x'i ∈ {0, 1}3n. The real value of feature Fj for the observation
xi, denoted by xij, is replaced by the three binary values given by expression (4) for
each linguistic label, that is to say, by the tuple F'jL(xij), F'jM(xij), F'jH(xij) .

3.2 Generating Fuzzy Patterns from Data

This section explains how to generate a fuzzy pattern from data, which is
representative for a specific decision class. The process is carried out according to a
supervised learning process from the available data as described below.

Given a subset of observations { } ,
miiii DxxxD ⊆= ,...,,

21
 which have associated

the same class label Ci, for any observation),(1 mli iii
l

≤≤x

• First, it is discretized with regard to the linguistic labels Low, Medium and High

associated to each feature, Fj. Namely, the discrete values),('
jijL l

xF),('
jijM l

xF

and)('
jijH l

xF are computed using the expression given by (4). Then, the three

Improving Gene Selection in Microarray Data Analysis 197

binary values for each feature are replaced by a single label,

}.* H, MH, M, LM, L,{)(" ∈
lijF x If only one of the three binary values is active,

the respective label is assigned: L (Low), M (Medium), and H (High). As
mentioned in Section 3.1, a unique real value can activate simultaneously two
linguistic labels, so it may occur that two binary values are activated - the
possible cases are LM (Low and Medium) and MH (Medium and High). Finally, it
is also possible that one value does not fire any linguistic label, and then, the label
* is assigned. The assignment criteria is given completely by expression (5).

=∧=∧=
=∧=∧=
=∧=∧=
=∧=∧=
=∧=∧=
=∧=∧=

=

0)('0)('0)(' if*

1)('0)('0)(' if

1)('1)('0)(' if

0)('1)('0)(' if

0)('1)('1)(' if

0)('0)('1)(' if

)("

jijHjijMjijL

jijHjijMjijL

jijHjijMjijL

jijHjijMjijL

jijHjijMjijL

jijHjijMjijL

ij

lll

lll

lll

lll

lll

lll

l

xFxFxF

xFxFxFH

xFxFxFMH

xFxFxFM

xFxFxFLM

xFxFxFL

F x

(5)

• Secondly, the fuzzy pattern (corresponding to the class Ci) is constructed from
the discretized and summarized data, selecting those labels of features which are
different to the label "*" and have an appearance relative frequency in set Di
equal to or greater than a predefined ratio Π (0 < Π ≤ 1, for example, Π = 2/3).
Formally, for each feature Fj, the appearance frequency of any label E ∈ E = {L,
LM, M, MH, H, *} in the set Di, πij(E), can be computed according to the
expression given by

=
== ≤≤

otherwise0

)(" if1
),(where,

),(

)(1
EF

E
i

E

E l

l

ml

l

ij
ij

m

iii
ij

ij

x
x

x

δ
δ

π

(6)

• Once, the frequency of each label is computed for every feature, a 3-tuple of the
form feature, label, frequency is included in the fuzzy pattern of class Ci, only
if its frequency exceeds the predefined ratio Π. Namely, the fuzzy pattern Pi is
given by:

{ } Π≥=∧≠∧==
∈∈

∧)(*)(maxarg:,,"
"

j
ij

jj
ij

E

jjj
j

F
i EEEEEF

j

ππππ
EF"

P

(7)

• The predefined ratio Π controls the degree of exigency for selecting a feature as
a member of the pattern, since the higher the value of Π, the fewer number of
features which make up the pattern.

The method presented in this section aims to construct a fuzzy pattern which is
representative of a collection of observations belonging to the same decision class,
namely, the gene expression pattern of a specific kind of cancer. The pattern's quality
of fuzziness is given by the fact that the labels, which make it up, come from the
linguistic labels defined during the discretization stage. On the other hand, if a
specific label of one feature is very common in all the examples (belonging to the
same class), this feature is selected to be included in the pattern and, therefore, a
frequency-based criteria is used for selecting a feature as part of the pattern.

198 F. Fdez-Riverola et al.

3.3 Measuring the Distance of a New Case to a Gene Expression Pattern

This section describes how to measure the distance of a gene expression profile to a
specific gene expression pattern. This feature is very important to perform different
tasks such as clustering, supervised classification, the recovery of similar cases in a
CBR system, and so on.

The defined metric is based on the comparison of the similarity of any two of the
linguistic labels defined in Section 3.1. It is assumed that the similarity of two
linguistic labels is determined by the degree of overlapping between labels and its
definition is argued below.

From the traditional theory of sets it is known that the similarity between two sets
A and B (and assuming that set A acts as a reference set), can be evaluated by:

A

BA
BAsim

∩
=),(

(8)

Likewise, a similarity metric can be defined between fuzzy sets. In this case, it has
been considered that the fuzzy intersection of two fuzzy sets A and B (represented by
its membership functions, μA and μB, respectively) is given by the application of the
min operator to the two membership functions, namely, μA ∩ B = min {μA, μB,}. On
the other hand, the cardinality operator can be replaced by the integral operator, and
then the similarity between two fuzzy sets can be evaluated by:

{ }
=

dxx

dxxx
BAsim

A

BA

)(

)(),(min
),(

μ

μμ

(9)

The metric sim(A, B) varies between the values 0 (total dissimilarity) and 1 (total
similarity). At this point, the analytical calculation of the integrals that appear in
expression (9) must be made. After some calculus, facilitated by the fact that the
defined membership-functions are polynomial, a closed form for these integrals has
been determined. These calculations are out of the scope of this work, and they do not
contribute to the explanation of our proposal.

Now, given a set of data D = {x1, ..., xm}, where xi ∈ Rn, is a vector of n real
values, each one referred to a feature in the set of features provided by a patient's gene
expression profile, F = {F1, F2, ..., Fn}. A representative pattern of the data set D can
be extracted according to the process described in the previous section, which is an
expression of the form:

nn

n

j

jj
j

jj
j

jj
j

F

EFEFEF πππ ,,,,,," ""

"

11

1
∧∧== ∧

∈

K
F"

P

(10)

where jn is the number of variables which the pattern has. Given a new observation
x ∈ Rn, we are interested in evaluating the distance between the observation x and the
pattern given by P. After discretizing and summarizing the novel observation x
following the process described in Section 3.1, the original vector x = F1(x), ..., Fn(x)
will be replaced by its discrete version, x" = F"1(x), ..., F"n(x) , where F"j(x) is
defined by (6).

Improving Gene Selection in Microarray Data Analysis 199

Then, assuming that the metric given by sim(A, B) is available, the distance
between the novel observation x and the pattern P, denoted by d(P, x), is defined as:

1
))·(",(

),(

1

−=

≤≤ nk

k

k

k

jjj

j
j

j
n

FEsim

j
d

πx
xP

(11)

This definition assumes that the similarity of an observation x to a pattern P
depends on the sum of the similarity of their individual labels - evaluated by the term
sim(Ej, F"j(x)) - and weighted by term π j - the relative frequency of the pattern's label
for the jth feature, Ej, in the original data set D. Then, the distance is defined as
inversely proportional to this similarity and normalized by the number of terms of the
pattern - to allow us to compare the same observation with patterns of different length -
and adjusted in such a way, that the range of the defined distance is between 0
(perfect match) to ∞ (complete dissimilarity).

Finally, it may be interesting to have threshold Δ associated to each pattern, so that
the distance between an observation (or other pattern) and a reference pattern exceeds
this threshold, it must be concluded that the observation is out of the influence area of
the reference pattern. To compute this threshold, we must consider the mean of the
distances of every observation xi ∈ D = {x1, ..., xm} (which were used to construct P)
to the pattern P, and the threshold is defined as the upper bound of the confidence
interval of this mean with a significance level of 5%. Then, the threshold for the
pattern P, ΔP, is defined as:

]),(Var[]),([
1

96,1
imiP ddE xPxP

−
+=Δ

(12)

and so, it depends on the mean distance of all observations (used to construct it) to the
pattern P, the variability of these distances and the number of available observations.

4 Case Study: Acute Myeloid Leukemia

The study described in this paper was carried out in the context of the FSfRT
architecture. FSfRT is a structured hybrid system that can employ several soft
computing techniques in order to accomplish the 4-steps of the classical CBR life
cycle [28].

The FSfRT architecture is an extension of a previous successful system [29] able to
make predictions of red tides (discolourations caused by dense concentrations of
microscopic sea plants, known as phytoplankton). The FSfRT architecture allows us
the combination of several soft computing techniques in order to test their suitability
working together to solve complex problems. The core and the interfaces of FSfRT
have been coded in Java language and new capabilities are being developed. The
general idea is to have different programmed techniques that are able to work
separately and independently in co-operation with the rest. The main goal is to obtain
a general structure that could change dynamically depending on the type of problem.
Figure 2 shows a schematic view of the system.

200 F. Fdez-Riverola et al.

The core of the system, which is composed of a Knowledge Acquisition Module
(KAM), is shown on the left of Figure 2. The KAM is able to store all the information
needed by the different techniques employed in the construction of the final gene-
CBR system. In the retrieval and reuse stages, several soft computing techniques can
be used [30, 31], while in the revise stage, our system employs a set of TSK fuzzy
systems [32] in order to perform the validation of the initial solution proposed by the
system.

Fig. 2. FSfRT system architecture

The gene-CBR system is being developed, and as a first step, the fuzzy prototype-
based retrieval method previously described has been evaluated. The main goal is to
reduce the original data set of features while maintaining the classification accuracy
of the system classifying the cancer.

Recent studies in human cancer have demonstrated that microarrays can be used to
develop a new taxonomy of cancer, including major insights into the genesis,
progression, prognosis and response to therapy based on gene expression profiles
[33]. Often, cancers that appear histologically similar can have dramatically different
responses to standard therapies and different courses of development. Since these
differences in behaviour are likely to be reflected in the differences in the set of genes
expressed, one promising use for microarrays is to more finely differentiate cancers
using gene expression levels to bolster standard histology.

In our experiments, we work with a database of bone marrow cases from 43 adult
patients with AML, a particular kind of cancer, plus a group of three samples
belonging to healthy persons for test purposes (see Table 1 for a concrete description).
The group of ill patients can be divided into four different groups, each of them
characterized for having a different type of cancer with a different treatment and
outcome. Each case (microarray experiment) stores 22,283 ESTs corresponding to the
expression level of thousands of genes. The data consisted of 1,025,018 scanned
intensities.

Improving Gene Selection in Microarray Data Analysis 201

Table 1. Classification of patients taking into account the type of cancer

 healthy APL AML-inv()
AML-

mono
AML-

other
Number of patients 3 10 4 7 22

In the group of patients suffering AML-other, it was detected by the experts that
new types of cancer would be able to rise. In our experiments, we randomly select 31
cases for training the method and 12 cases for test purposes (38% of the whole data,
including at least one example from each group).

In order to generate a fuzzy pattern for each pathology (as described in Section 3.3)
without taking into account the healthy people, the first step carried out was to
discretize the expression profiles of all the genes regarding the linguistic labels Low,
Medium and High. To do this, several experiments were carried out to select and
adequate value for the theta (Θ) threshold (Section 3.1). The next step was to define
the minimum appearance frequency, phi (Π), needed to consider a gene for
representing a pathology in its corresponding fuzzy pattern (Section 3.2).

Table 2. Percentage of misclassifications using the Fuzzy Prototype-based Retrieval Method

 Π = 0.66 Π = 0.75 Π = 0.80 Π = 0.83 Π = 0.86
Θ = 0.75 41.67% 33.33% 33.33% 25.00% 25.00%

Θ = 0.85 41.67% 25.00% 25.00% 8.33% 25.00%

Θ = 0.95 41.67% 16.67% 16.67% 8.33% 16.67%

Θ = 0.975 33.33% 16.67% 16.67% 8.33% 8.33%

Θ = 0.9875 33.33% 16.67% 16.67% 8.33% 16.67%

Θ = 0.99 25.00% 16.67% 16.67% 8.33% 25.00%

Θ = 0.999 16.67% 8.33% 8.33% 0.00% 25.00%

Fig. 3. Classification error varies accordingly phi and theta parameters

202 F. Fdez-Riverola et al.

Table 2 shows a summary of different values for the theta and phi ratios and the
percentage of misclassifications over the test cases while Figure 3 shows a
representation of the classification error versus phi and theta values.

From Table 2 and Figure 3 it can be seen that for Θ = 0.999 and Π = 0.83, the
proposed method was able to correct classify the whole test bed. Moreover, the
proposed method employs on average only 2% of the whole data for this task (see
Table 3).

As we mention above, the main goal of our method was to reduce the original set
of features while maintaining the classification accuracy of the system classifying the
cancer. In this context, Table 3 shows the gene reduction percentage using the
selected phi and theta values. For example, to identify the patients with APL leukemia
we only need to analyse 681 variables (genes) out of the 22,283 that compose the
whole case (patient descriptor).

Table 3. Reduction percentage obtained over the whole data using optimal values for theta and
phi parameters

 APL AML-inv() AML-mono AML-other
 Sub_1 Sub_2 Sub_3

Original set 22,283 22,283 22,283 22,283 22,283 22,283
Selected set 681 591 292 176 235 817
% reduction 96.9% 97.4% 98.7% 99.2% 98.8% 96.3%

As Table 3 shows, the fuzzy prototype-based retrieval method was able to identify
the three subtypes of AML-other as experts previously sensed. In this sense, the
outcome generated overcomes those obtained by specific classification techniques
such as PAM (Prediction Analysis of Microarrays) [34].

The main advantages of the proposed technique are that new subgroups of cancer
are correctly identified and that fewer genes are needed in order to classify each case.

These results are very promising considering the reduction percentage of genes
done by the proposed technique, especially if this work is compared with the previous
one presented in [33]. However, this work that has been developed in the past eight
months requires further experimental validation and follow up study. Many current
efforts are being directed towards this area of research.

5 Conclusions and Future Work

An advantage of CBR systems as a problem-solving paradigm is that it is applicable
to a wide range of problems. It can be used to propose new solutions or evaluate
solutions to avoid potential problems. In the work of [35] it is suggested that
analogical reasoning is particularly applicable to the biological domain, partly
because biological systems are often homologous (rooted in evolution). Also, due to
the fact that biologists often use a form of reasoning similar to CBR, where
experiments are designed and performed based on the similarity between features of a
new system and those of known systems.

Improving Gene Selection in Microarray Data Analysis 203

In this work, we have presented a fuzzy codification for the gene expression levels
of microarray data, based on the discretization of real gene expression data into a
small number of fuzzy membership functions. Our proposed method aims to find all
genes that are significantly expressed between the existing classes in order to obtain a
fuzzy representation of the expression levels belonging to those genes that best
explain each class in the form of a fuzzy-prototype. Then the proposed method is able
to generalize over all of the samples diminishing drastically the number of genes
needed to perform correct classifications. The fuzzy representation technique can be
used to implement the retrieval stage of gene-CBR system under construction.
Empirical studies show that this reduction technique allows to obtain a more general
knowledge about the problem and to gain a deeper insight into the importance of each
gene related to each pathology.

The remaining work is geared towards the study of new techniques that can be
used for implementing the reuse, revision and retain phases of the gene-CBR life
cycle. It is always important to completely define how a case could be represented
and how we can maintain clinical and biological characteristics as well as temporary
evolution of all the patients stored in the case base.

References

1. Schena, M., Shalon D., Davis, R., Brown, P.O.: Quantitative monitoring of gene
expression patterns with a cDNA microarray. Science, Vol. 270. (1995) 467-470

2. DeRisi, J., Penland, L., Brown, P.O., Bittner, M.L., Meltzer, P.S., Ray, M., Chen, Y., Su
Y.A., Trent, J.M.: Use of a cDNA microarray to analyse gene expression patterns in
human cancer. Nature Genetics, Vol. 14. (4). (1996) 367-370

3. The Chipping Forecast I. Special Supplement. Nature Genetics, Vol. 21. (1999)
4. The Chipping Forecast II. Special Supplement. Nature Genetics, Vol. 32. (2002)
5. Lipshutz, R.J., Fodor, S.P.A., Gingeras, T.R., Lockhart, D.H.: High density synthetic

oligonucleotide arrays. Nature Genetics, Vol. 21. (1999) 20-24
6. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller,

H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander, E.S.: Molecular
classification of cancer: class discovery and class prediction by gene expression
monitoring. Science. Vol. 286 (5439). (1999) 531-537

7. Articles on microarray data mining. ACM SIGKDD Explorations Newsletter, Vol. 5 (2).
(2003) 1-139

8. Cho, S.B., Won, H.H.: Machine learning in DNA microarray analysis for cancer
classification. Proc. of the First Asia-Pacific Bioinformatics Conference, Vol. 19. (2003)
189-198

9. Morrison, N., Hoyle, D.C.: Normalization concepts and methods for normalizing
microarray data. In Berrar, D.P., Dubitzky, W., Granzow, M. (eds.). A Practical Approach
to MicroArray Data Analysis, Kluwer Academic Publishers, Boston (2003)

10. Bilban, M., Buehler, L.K., Head, S., Desoye, G., Quaranta, V.: Normalizing DNA
microarray data. Current Issues in Molecular Biology, Vol. 4 (2). (2000) 57-64

11. Schuchhardt, J., Beule, D., Malik, A., Wolski, E., Eickhoff, H., Lehrach, H., Herzel, H.:
Normalization strategies for cDNA microarrays. Nucleic Acids Research, Vol. 28 (10).
(2000) e47

204 F. Fdez-Riverola et al.

12. Rubinstein, B.I.P., McAuliffe, F., Cawley, S., Palaniswami, M., Ramamohanarao, K.,
Speed, T.S.: Machine learning in low-level microarray analysis. ACM SIGKDD
Explorations Newsletter, Vol. 5 (2). (2003) 130-139

13. Corchado, J.M., Corchado, E.S., Aiken, J., Fyfe, C., Fdez-Riverola, F., Glez-Bedia, M.:
Maximum Likelihood Hebbian Learning Based Retrieval Method for CBR Systems. Proc.
of the 5th International Conference on Case-Based Reasoning, (2003) 107-121

14. Corchado, J.M., Aiken, J., Corchado, E., Lefevre, N., Smyth, T.: Quantifying the Ocean's
CO2 Budget with a CoHeL-IBR System. Proc. of the 7th European Conference on Case-
based Reasoning, (2004) 533-546

15. Cakmakov, D., Bennani, Y.: Feature selection for pattern recognition, Informa Press
(2002)

16. Jurisica, I., Glawgow, J.: Applications of case-based reasoning in molecular biology.
Artificial Intelligence Magazine, Special issue on Bioinformatics, Vol. 25 (1). (2004)
85-95

17. Li, L., Darden, T.A., Weinberg, C.R., Levine, A.J., Pedersen, L.G.: Gene assessment and
sample classification for gene expression data using a genetic algorithm/k-nearest
neighbor method. Combinatorial Chemistry and High Throughput Screening, Vol. 4 (8).
(2001) 727-739

18. Blanco, R., Larrañaga, P., Inza, I., Sierra, B.: Gene selection for cancer classification
using wrapper approaches. International Journal of Pattern Recognition and Artificial
Intelligence, accepted for publication (2004)

19. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification
using support vector machines. Machine Learning, Vol. 46 (1-3). (2002) 389-422

20. Jaeger, J., Sengupta, R., Ruzzo, W.L.: Improved gene selection for classification of
microarrays. Proc. of Pacific Symposium on Biocomputing, (2003) 53-64

21. Qi, H.: Feature selection and kNN fusion in molecular classification of multiple tumor
types. Proc. of the International Conference on Mathematics and Engineering Techniques
in Medicine and Biological Sciences, (2002)

22. Hanczar, B., Courtine, M., Benis, A., Hennegar, C., Clément, K., Zucker, J.D.: Improving
classification of microarray data using prototype-based feature selection. ACM SIGKDD
Explorations Newsletter, Vol. 5 (2). (2003) 23-30

23. Zheng, G., Olusegun, E., Narasimhan, G.: Neural network classifiers and gene selection
methods for microarray data on human lung adenocarcinoma. Prof. of Critical Assessment
of Microarray Data Analysis, (2003) 63-67

24. Hochreiter, S., Obermayer, K.: Feature selection and classification on matrix data: from
large margins to small covering numbers. Advances in Neural Information Processing
Systems, Vol. 15. (2003) 913-920

25. Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T., Vapnik, V.: Feature
selection for SVMs. Advances in Neural Information Processing Systems, Vol. 13. (2001)
668-674

26. Pal, S., Shiu, S.: Foundations of Soft Case-Based Reasoning. John Wiley, New York (2004)
27. Pal, S., Mitra, P.: Case Generation Using Rough Sets with Fuzzy Representation. IEEE

Transactions on Knowledge and Data Engineering, Vol. 16 (3). (2004) 292-300
28. Riesbeck, C.K., Schank, R.C.: Inside Case-Based Reasoning, Lawrence Erlbaum

Associates, Hillsdale, NJ, US (1999)
29. Fdez-Riverola, F., Corchado, J.M.: FSfRT, Forecasting System for Red Tides. An Hybrid

Autonomous AI Model. Applied Artificial Intelligence, Vol. 17 (10). (2003) 955-982
30. Pal, S.K., Dilon, T.S., Yeung, D.S.: Soft Computing in Case Based Reasoning, Springer

Verlag, London (2000)

Improving Gene Selection in Microarray Data Analysis 205

31. Sankar, K.P., Simon, C.K.S: Foundations of Soft Case-Based Reasoning, Wiley-
Interscience, Hoboken, New Jersey (2003)

32. Fdez-Riverola, F., Corchado, J.M.: Employing TSK Fuzzy models to automate the
revision stage of a CBR system. Current Topics in Artificial Intelligence, LNAI 3040.
(2004) 302-311

33. Gutierrez, N.C., López-Pérez R., Hernández, J.M., Isidro, I., González, B., García, J.L.,
Ferminán, E., Lumbreras, E., San Miguel, J.F.: Gene expression profile reveals
deregulation of new genes with relevant functions in the different subclasses of acute
myeloid leukemia. Blood, Vol. 102 (11). (2003)

34. Tibshirani, R., Hastie, T., Narasimhan, B., Chu, G.: Diagnosis of multiple cancer types by
shrunken centroids of gene expression. Proc. of the National Academy of Sciences of the
United States of America, Vol. 99(10). (2002) 6561-6572

35. Aaronson, J.S., Juergen, H., Overton, G.C.: Knowledge Discovery in GENBANK. Proc.
of the First International Conference on Intelligent Systems for Molecular Biology, (1993)
3-11

CBR for State Value Function Approximation

in Reinforcement Learning

Thomas Gabel and Martin Riedmiller

Neuroinformatics Group, Department of Mathematics and Computer Science,
Institute of Cognitive Science, University of Osnabrück,

49069 Osnabrück, Germany
{thomas.gabel, martin.riedmiller}@uni-osnabrueck.de

Abstract. CBR is one of the techniques that can be applied to the task
of approximating a function over high-dimensional, continuous spaces.
In Reinforcement Learning systems a learning agent is faced with the
problem of assessing the desirability of the state it finds itself in. If the
state space is very large and/or continuous the availability of a suitable
mechanism to approximate a value function – which estimates the value
of single states – is of crucial importance. In this paper, we investigate
the use of case-based methods to realise that task. The approach we take
is evaluated in a case study in robotic soccer simulation.

1 Introduction

Case-based Reasoning (CBR) is based on the assumption that similar problems
have similar solutions. Systems relying on that paradigm have been successfully
used in several application domains, such as diagnosis, classification, prediction,
control and action planning. Various reasons have contributed to the attractive-
ness of employing case-based methods: They are straightforward to implement,
help in reducing the knowledge acquisition effort and they are noise-tolerant due
to their approximate nature. In this work we will exploit these advantages in the
context of Reinforcement Learning and thus, more specifically, in an application
field that covers the tasks of prediction and action planning.

Reinforcement Learning (RL) follows the idea that an autonomously acting
agent obtains its behaviour policy through repeated interaction with its envi-
ronment on a trial-and-error basis. The experience the agent gathers that way is
then processed and integrated into a mathematical function that tells how much
it is worth aspiring to enter a specific state by performing a specific action. So,
one central issue in RL represents the learning of that function, which reflects the
value of a state and from which a good policy for action choice may be induced.
That task is aggravated when the set of states in which the agent can find itself
is infinite, i.e. when working with a large, continuous state space. Then, storing
states’ values explicitly is impossible and, hence, it becomes indispensable to
make use of a suitable function approximation mechanism.

In this paper we investigate the use of CBR methods for that task. Their
application seems promising insofar as they are considered suitable for han-
dling noisy data and learning and generalising fast from few training examples.

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, pp. 206–221, 2005.
Springer-Verlag Berlin Heidelberg 2005

LNAI

CBR for State Value Function Approximation 207

However, the approximation of a state value function in RL bears some inherent
difficulties to be coped with: In particular, the function that we want to approx-
imate with maximal accuracy is a moving target, i.e. changes over time, since
at the beginning of the learning process only little is known about its shape,
whereas at later stages of learning much more experience about its real shape
will have been collected. Therefore, we present a systematic compilation of vari-
ous CBR techniques to deal with this and other important problems and examine
the capabilities of a CBR-based state value function approximation compared
to a table-based and neural net-based function representation.

In Section 2 we introduce the necessary vocabulary, review some basics of
the Reinforcement Learning paradigm and motivate the use of CBR technol-
ogy to represent and approximate a state value function. Section 3 introduces
our CBR-based approach to state value function approximation. We present a
specialised RL algorithm, that employs a CBR-based function approximator,
as well as necessary methods required for case base management. Furthermore,
we discuss benefits and limitations of the ideas given. Section 4 reveals one of
the underlying motivations of our work: Our research group participates in the
RoboCup championship tournaments in robotic soccer simulation, where one
of our main research goals is to realise an increasing part of our soccer-playing
agents’ behaviour by using machine learning techniques. So, we outline a specific
sub-task – the intercept ball problem – of robotic soccer simulation and present
results in solving that task with RL which we obtained using CBR methods for
approximating the underlying state value function. Finally, Section 5 concludes.

2 The Reinforcement Learning Framework

One of the general aims of Machine Learning is to produce intelligent software
systems, sometimes called agents, by a process of learning and evolving. Re-
inforcement Learning represents one approach that may be employed to reach
that goal. In an RL learning scenario the agent interacts with its initially un-
known environment, observes the results of its actions, and adapts its behaviour
appropriately. To some extent, this imitates the way biological beings learn.

In each time step an RL agent observes the environmental state and makes a
decision for a specific action, which, on the one hand, may incur some immediate
reward (also called reinforcement) generated by the agent’s environment and, on
the other hand, transfers the agent into some successor state. The agent’s goal
is not to maximise the immediate reward, but its long-term, expected reward.
To do so it must learn a decision policy π that is used to determine the best
action for a given state. Such a policy is a function that maps the current state
s ∈ S to an action a from a set of viable actions A. This idea of learning through
interaction with the environment can be rendered by the following steps that
must be performed by an RL agent (illustrated and refined in Figure 1):

1. the agent perceives an input state s
2. the agent determines an action a using a decision making function (policy)
3. action a is performed

208 T. Gabel and M. Riedmiller

4. the agent obtains a scalar reward r from its environment (reinforcement)
5. information about the reward r that has been received for taking action a

in state s is processed

The basic Reinforcement Learning paradigm is to learn the mapping π :
S → A only on the basis of the rewards the agent gets from its environment. By
repeatedly performing actions and observing resulting rewards, the agent tries to
improve and fine-tune its policy. The respective Reinforcement Learning method
(step 5) specifies how experience from past interaction is used to adapt the policy.
Assuming that a sufficient number of states has been observed and rewards have
been received, the optimal decision policy will have been found and the agent
following that policy will behave perfectly in the particular environment.

E
nv

iro
nm

en
t

State
Transition

Reward
Generation A

ge
ntPolicy

Value
Function

Action a

Current State s

Reward r

determines

Fig. 1. Schematic View on RL Using State Value Functions

2.1 Learning Value Functions

The Reinforcement Learning problem is usually formalised as a Markov Decision
Process (MDP) within the context of Dynamic Programming [3]. An MDP is a
4-tuple M = [S, A, r, p] where S denotes the set of environmental states, A the
set of actions the agent can perform, and r : S×A → R the function of immediate
rewards r(s, a) (sometimes called costs of actions) that arise when taking action
a in state s. The function p : S ×A×S → [0; 1] depicts a probability distribution
p(s, a, s′) that tells how likely it is to end up in state s′, when performing action
a in state s.

Being in search of an optimal behaviour in an unknown environment, the
agent needs a facility to differentiate between the desirability of possible suc-
cessor states, in order to decide on a good action. A common way to rank
states is by computing and using a so-called state value function V π : S → R

which estimates the future rewards that can be expected when starting in a
specific state s and taking actions determined by policy π : S → A. Thus,
V π(s) = E[

∑∞
t=0 r(st, π(st)|s0 = s)], where E[·] denotes the expected value. If we

assume we are in possession of an “optimal” state value function V �, it is easy to
infer the corresponding optimal behaviour policy1 by exploiting that value func-
tion greedily according to π�(s) := arg maxa∈A{r(s, a)+

∑
s∈S p(s, a, s′)·V �(s′)}.

1 Note, that often – in particular, in cases where no model p of the environment is
available – state-action value functions Q : S × A → R are learnt, which provide an
estimation of how desirable it is to choose a specific action in a certain state. The
paper at hand, however, deals with state-value functions only.

CBR for State Value Function Approximation 209

So, the crucial question is, how to obtain the optimal state value function. To
perform that task, Dynamic Programming methods, e.g. value iteration [2], may
be employed which converges under certain assumptions to the optimal value
function V � of expected rewards. Value iteration is based on successive updates of
the value function for all states s ∈ S according to Vk+1(s) := maxa∈A{r(s, a)+∑

s′∈S p(s, a, s′) · Vk(s′)}, where index k denotes the sequence of approximated
versions of V , until convergence to V � is reached.

Research in Reinforcement Learning, however, has generated a variety of
methods that extend those well-known optimisation techniques, aiming at ap-
plicability also in situations where large state spaces must be handled or the
absence of a transition model p prevents the usage of simple value iteration.
Although some details of the RL learning algorithm we use in the scope of this
work are given in Section 2.2, a discussion on progress and state of the art in
RL goes beyond the scope of this paper; the interested reader is referred to [21].

2.2 Temporal Difference Methods

Temporal difference (TD) methods comprise a set of RL algorithms that incre-
mentally update state value functions V (s) after each transition (from state s to
s′) the agent has gone through. This is particularly useful when learning along
trajectories (s0, s1, . . . , sN) that start in some start state s0 and end in some
terminal state sN ∈ G, where G is a set of goal state. This means learning can
be performed online, i.e. the processes of collecting (simulated) experience and
learning the value function run in parallel. In this work we update the value
function’s estimates according to the TD(1) update rule [20], where the new
estimate for V (sk) is calculated as V (sk) := (1−α) ·V (sk)+α · return(sk) with
return(sk) =

∑N
j=k r(sk, π(sk)) indicating the summed rewards following state

sk and α representing a decaying learning rate. The whole episode-based TD(1)
learning algorithm to be used in conjunction with a table-based function repre-
sentation of V (i.e. the state value for each state is stored explicitly) proceeds
as in Algorithm 1.

One inherent feature of this learning algorithm – as well as of any algorithm
that optimises a state value function – is that at the beginning of learning the
estimates for V (s) are typically very coarse. To put it differently, initially V
represents a rather noisy estimate of the true optimal value function V �, steadily
converging towards V � as long as all criteria for convergence are fulfilled. For the
family of TD(λ) algorithms convergence is guaranteed, if each state is visited
by an infinite number of episodes and if the step size parameter α diminishes
towards zero at a suitable rate.

2.3 The Need for Function Approximation

As outlined in the previous sections, the determination of an optimal state value
function is crucial to most RL methods. Intending to show the functioning of
some new RL technique in principle, one usually chooses typical benchmark
problems (grid worlds) that are very limited in terms of state and action space

210 T. Gabel and M. Riedmiller

1. initialise state value function V arbitrarily, let policy π be given by ε-
greedy exploitation of V

2. repeat
(a) generate random start situation s0 for current episode, set k := 0
(b) while sk /∈ G and k < maxEpisodeLength do

i. choose next action ak by exploiting V ε-greedily according to
ak := argmaxa∈A(r(sk, a) +

∑
s′∈S p(sk, ak, s′) · V (s′))

or choose a random action with probability ε
ii. perform ak, entering state sk+1 and perceiving immediate reward

r(sk, ak)
(c) for all steps sk in episode (s1, . . . , sN)

i. return(sk) :=
∑N−1

j=k r(sj , aj) + r(sN)
ii. V (sk) := (1 − α) · V (sk) + α · return(sk) with α as learning rate

until stop criterion becomes true

Algorithm 1. Episode-Based RL Algorithm Using Table-Based State Value Function

size. In those cases, having to deal with only a finite number of states, it is fea-
sible to store V (s) for each single state s ∈ S explicitly using a tabular function
representation with |S| table entries. However, when aspiring to apply RL tech-
niques to real world problems – as we do in this paper – and thus working with
high-dimensional and probably continuous state spaces, computational and/or
memory limitations inhibit the use of a tabular function representation. Instead,
the employment of a function approximator becomes inevitable.

Thus, we deal with “suboptimal” methods that approximate the optimal
state value function V �(s): We replace the optimal value function by an appro-
priate approximation Ṽ (s, t), where t determines the set of the approximator’s
parameters. In particular, we focus on the use of Case-Based Reasoning as a
suitable technique to approximate V � using k-nearest neighbour regression and
compare it to other function approximation methods.

3 CBR-Based Value Function Approximation

When approximating some target function f(x) = y, the system is usually pro-
vided with a set of training data tuples (xi, yi) of f ’s desired input-output be-
haviour and tries to reconstruct f so that these data pairs are explained best.
So, for the case of approximating a state value function, an ideal training data
set would be made up of tuples (s, V �(s)) with s covering some subset of S. Un-
fortunately, learning the optimal state value function V � is the overall learning
goal, which is why obtaining such a training set is impossible. In other words,
the approximation of the value function must be conducted in parallel to com-
puting V �, which complicates the function approximator’s adjustment heavily.
As early estimates of V (s) can be interpreted as noise-afflicted versions of the
optimal values V �(s), the application of CBR to approximate V appears promis-
ing in that respect. Moreover, CBR systems are straightforward to implement

CBR for State Value Function Approximation 211

and comparatively easy to tune. This argument is striking when comparing CBR
as function approximation scheme with the use of neural nets, which are noto-
riously hard to tune in the context of RL algorithms. The latter advantage of
CBR is supported by Gordon [7]: A case-based function approximator can be
characterised as a contraction mapping (“averager”) whereas neural nets fall
into the category of expansion mappings (“exaggerators”), that can exaggerate
changes in their training values and cause instability in the respective learning
algorithm.

3.1 Related Work

CBR-related (case-based, instance-based, and sometimes so-called memory-
based) techniques have been used in the context of Reinforcement Learning at
times.

The idea of using instances of stored experience to predict the value of some
solution attribute of a new unseen example is the main feature of case-based
regression algorithms. In [8] the idea of weighted k-nearest neighbour regression
is introduced. Here, the numerical prediction of a query’s solution attribute is
determined as a weighted average of the solution attribute values of the query’s
nearest neighbours. Peng [13] was one of the first to use a nearest-neighbour
approach in the context of value function approximation for RL. In that work,
however, the important topic of case-base management is not addressed. Suitable
techniques to limit the potentially rapid growth of the case base by remembering
too many cases have been presented later on: For example, in [5] the authors
apply instance-based regression in a relational RL context and develop strategies
to confine the data inflow. Similar ideas are also part of the work of Ratitch [14],
though here Sparse Distributed Memories, which are a specialised application
of CBR using specific similarity measures, are used as the underlying predic-
tion technique. In both [17] and [6], promising results of approximating value
functions in continuous state spaces for dynamic control tasks are presented.
Their special focus is, in the case of the former, to learn from a small amount
of data, boosting the learning process with initial training examples from a hu-
man expert, and, in the case of the latter, relevant extensions that allow their
algorithms’ application also in more complex domains. A comprehensive article
addressing the comparison of several memory-based approaches to function ap-
proximation is the one by Santamaria et. al [16]. Using their terminology the
ideas we present in this paper ought to be classified as instance-based meth-
ods, as they reserve the term “case-based” explicitly for situations where the
actions to be chosen represent the cases’ solutions. Nevertheless, we proceed
using the well-established CBR vocabulary in the following. The contribution
of this work lies in a systematic compilation of various CBR techniques in an
RL context and their application to tasks with real-time constraints. Moreover,
we examine the performance of a CBR-based value function approximation in
a case study in robotic soccer and compare it to other function approximation
methods.

212 T. Gabel and M. Riedmiller

3.2 Function Approximation with k-Nearest Neighbour Regression

Our approach to CBR-based state value function approximation is based on the
following main characteristics, that will be discussed in more detail subsequently:

– an attribute-value based state/case representation,
– the local-global principle for similarity assessment and retrieval, and
– k-nearest neighbour regression to predict the cases’ solution attribute.

We assume a continuous, n-dimensional state space S ⊂ Rn where each
s = (s1, s2, . . . , sn) ∈ S is a vector of real numbers and each dimension has its
individual domain Di ⊂ R. Accordingly, we define a case cs for state s to be
an n + 1-dimensional real-valued vector cs = (s1, . . . , sn, cs

v), where the first n
elements represent the case’s problem part and correspond to state s. The last
entry depicts the case’s solution cs

v = V (s), i.e. the expected reward when the
RL agent starts from s.

Using this notation the global similarity between two cases is defined as

sim(cs1 , cs2) :=
n∑

i=1

wi · simi(cs1
i , cs2

i) (1)

The weights wi, which are normalised so that
∑n

i=1 wi = 1, are used to strengthen
or weaken the relevance of individual dimensions. For all i ∈ {1, . . . , n} a local
similarity measure simi : Di × Di → [0, 1] assesses the degree of similarity
along a single dimension. Currently, we use the Euclidian distance for all simi.
However, as previous research in learning similarity measure has shown [18],
the adjustment of feature weights as well as of local measures may have a sig-
nificant influence on the system’s performance. Therefore, we currently plan to
incorporate some of these ideas into our RL learning framework.

Case value (or state value, respectively) prediction according to k-nearest
neighbour regression is defined as

Ṽ (s, CB) :=

∑
csi∈NNk(cs) sim(cs, csi) · csi

v∑
csi∈NNk(cs) sim(cs, csi)

(2)

so that Ṽ (s, CB) stands for the currently predicted value of V �(s) approximated
with help of the CBR system’s case base CB, where NNk(cs) is the set of cs’s k
nearest neighbours in CB. Other authors [12] use kernel functions to support the
regression task: The weighted contribution of each neighbouring case’s value cv is
then computed using the kernel being parameterised by the similarity function.
Compared to that approach our regression scheme depicts a simplification, which
we chose with regard to the learning of similarity measures we plan.

Working with a CBR-based value function approximation requires slight
modifications to our episode-based RL algorithm given in Section 2.2. If that al-
gorithm needs an estimated value for a specific state s it now computes Ṽ (s, CB)
instead of V (s). However, the update of a state’s value, i.e. the assignment of a
new value to state s, cannot be realised in such a straightforward manner as in
the case of the algorithm using a table-based representation of V . As can be seen
in Algorithm 2 we add a new case containing the corresponding state’s backed-up
value to the case base, but also call appropriate case base management routines.

CBR for State Value Function Approximation 213

1. start with case base CB = ∅, let the approximated state value function
be Ṽ (s, CB), and policy π be given by greedy ε-exploitation of Ṽ

2. repeat
(a) generate random start situation s0 for current episode, set k := 0
(b) while sk /∈ G and k < maxEpisodeLength do

i. choose next action ak by exploiting Ṽ ε-greedily according to
ak := arg maxa∈A(r(sk, a) +

∑
s′∈S p(sk, ak, s′) · Ṽ (s′, CB))

or choose a random action with probability ε
ii. perform ak, entering state sk+1 and perceiving immediate reward

r(sk, ak)
(c) for all steps sk in episode (s1, . . . , sN)

i. return(sk) :=
∑N−1

j=k r(sj , aj) + r(sN)
ii. create a new case cnew := (sk, return(sk))
iii. CB := CB ∪ cnew

iv. call case base management routines
until stop criterion becomes true

Algorithm2.Episode-Based RL Algorithm Using CBR-based Function Approximation

3.3 Case Base Management

Starting with an empty case base, the learning algorithm steadily increases its
competence by storing new experiences. However, there are a number of reasons
why the inflow of new cases ought to be limited.

– The more cases the case base contains, the longer the retrieval of the query’s
nearest neighbours takes. Although there exist techniques to reduce the com-
putational effort during retrieval, e.g. kd-trees [6], it is advisable to limit the
growth of the case base’s size when intending to use the system for real-time
control tasks.

– As already noted early estimates of the state value function’s values repre-
sent rather noisy versions of the optimal values. Thus, it is indispensable to
also discard some cases already stored. At this point, the difficulty arises to
differentiate between important outliers and simply wrong estimates.

– Simple instance-based learning by just remembering all cases would not be
applicable since the amount of data the agent collects would become unman-
ageable as the agent continues to learn.

There exist a number of approaches to remove “useless” cases during train-
ing, e.g. the IBx algorithms by Aha [1]. For learning embedded in an RL context,
however, more specialised techniques are necessary. In [6] it is pointed out that
being selective in adding cases may slow down the learning rate. Furthermore,
we need to stress that each new case cnew = (sk, return(sk)) composed by Al-
gorithm 2 contains the currently most up-to-date estimate for the state value
V (sk). these reasons we insist on explicitly storing this piece of brand-new in-
formation by adding it to the case base and removing its very nearest neighbour
cj for which it holds sim(cnew, cj) > 1 − δ with some extremely small δ > 0.

214 T. Gabel and M. Riedmiller

Anyway, when the number of cases stored in CB exceeds some critical value
|CB| > μ, so that the realisation of a retrieval/regression within a certain amount
of time cannot be guaranteed, it is inevitable to also remove some cases. A first
approach to tackle that problem would be to remove the oldest or least frequently
used elements of CB. This idea seems intuitive, as old cases usually contain worse
estimates of the corresponding state’s value than newer ones, but this strategy
might lead to a function approximator that easily “forgets” some of its valuable
experience made in the past. This danger may become particularly problematic,
when some regions of the state space are visited rather rarely during learning
and hence eventually good estimates are erased due to infrequent occurrence.

More complex scoring measures calculating which cases are to be removed
have been proposed by several authors. In [6] it is suggested to remove those cases
that contribute least to the overall approximation. In [5] the authors pursue a
more error-oriented view and propose the deletion of cases that contribute most
to the prediction error of other examples. A considerable flaw of those more
sophisticated measures is their complexity. The determination of the case(s)
to be removed involves the computation of a score value for each ci ∈ CB
which in turn requires at least one retrieval and regression, respectively, for each
cj ∈ CB (j 	= i). These repeated entire sweeps through the case base induce an
enormous computational load, although optimisations may find a partial remedy.
Consequently, these approaches are not best suited in systems which are learning
with tight time requirements and handling a high-dimensional state space, which
necessitates the use of larger case bases.

For these reasons, we employ a heuristic scoring measure that is made up
of three components, computationally less demanding, and brought about good
results during evaluation. As formalised in Algorithm 3 this measure’s compo-
nents reflect the distribution of cases throughout the state space, the correctness
of predictions for values of the state value function as well as the case’s age.

3.4 Benefits and Limitations

The main CBR principle, telling similar problems have similar solutions, can
also be utilised when employing case-based methods for function approxima-
tion, provided that the target function to be approximated can be characterised
as locally smooth. So, CBR’s robustness against noisy data also applies when
approximating state value functions. All experience is stored explicitly so that
the negative influence of a wrong state value estimate is only local. In the RL
context the function to be approximated is learnt concurrently with acting and
thus is not static, but changes over time converging towards V �. Hence, early
experience may be considered as “noise” at later stages of learning.

CBR is an approximate technique by nature. Accordingly, the quality of a
case-based value function approximation depends strongly on the number of
cases stored. Aiming to tackle high dimensional state spaces, the case base size
that is needed to obtain high-quality approximations grows exponentially with
the number of dimensions. Then, not only a memory shortage may arise, but
also real-time usage of the system becomes impractical, as the time for case

CBR for State Value Function Approximation 215

1. if |CB| ≤ caseBaseMaxSize return
2. for all ci ∈ CB

(a) compute the set NNk(ci) of the k nearest neighbours around ci

(b) compute the similarity density around ci as
ϕ(ci) := 1

k

∑
cj∈NNk(ci) sim(ci, cj)

(c) compute the standard deviation of stored state values within ci’s near-

est neighbours as σv(cj) :=
√

1
k

∑
cj∈NNk(ci)(c

i
v − cj

v)2

(d) compute the score components
i. case neighbourhood score: Sn(ci) := ϕ(ci) · σv(ci)
ii. regress error score: Se(c

i) :=
∑

cj∈NNk(ci) sim(ci, cj) · |cj
v − ĉj

v|
where ĉj

v is the system’s prediction for cj
v using CB \ cj

iii. age score: Sa(ci) := t(ci)
2|CB| with t(ci) telling how many time steps

ago ci has been added to CB
(e) let the overall score S(ci) be the sum of its component

3. delete � cases with highest score values

Algorithm 3. Case Base Management: Deletion of Stored Cases

retrieval/regression grows at least logarithmically with the number of stored
cases. Thus, a trade-off between approximation quality and real-time constraints
has to be found. Another meaningful advantage of CBR systems is the speed
at which they learn. As each piece of experience is remembered explicitly, the
system is capable of representing a quite good, though far from perfect, function
approximation with a rather small number of cases.

To sum up, we can distinguish two main application fields for CBR-based
function approximators: If maximal accuracy in approximating V and/or real-
time application of the policy are not an issue, an RL agent using a case-based
value function representation can become applicable within shortest time. Oth-
erwise, a case-based function approximator might be used for the starting stage
of the learning process: That way, average or even good approximation results
may be obtained within a very short time and used to initialise and speed up the
training of another approximator (e.g. a neural net) with which nearly maximal
accuracy can be attained. As for the experiments presented in the following, we
focus on the latter use of a case-based state value function approximator.

4 Experimental Evaluation

In the previous section we have introduced a number of methods to apply a CBR-
based approach to state value function approximation within a Reinforcement
Learning context. Now, we want to investigate the performance and usability
of the ideas presented, comparing them to two different approaches to function
approximation, viz a table-based representation and neural nets. The application
scenario our evaluation is embedded in is robotic soccer simulation and thus, in
particular, our research group’s RoboCup competition team Brainstormers [10].

216 T. Gabel and M. Riedmiller

4.1 Robotic Soccer Simulation

RoboCup [22] is an international research initiative intending to expedite AI and
intelligent robotics research by defining a set of standard problems where various
technologies can and ought to be combined to solve them. Annually, there are
championship tournaments in several leagues – ranging from rescue tasks to real
soccer-playing robots and simulated ones. The focus of the evaluation at hand
is laid upon RoboCup’s 2D Simulation League, where two teams of simulated
soccer-playing agents compete against one another using the Soccer Server [11],
a real-time soccer simulation system.

Robotic Soccer represents an excellent testbed for Machine Learning and,
particularly, for RL tasks. Several research groups have dealt with the task of
learning parts of a soccer-playing agent’s behaviour autonomously (e.g. [9]), also
relying on case-based methods at times (e.g. [4]). From a learning point of view
it is also our long-term goal to realise an agent that obtains its behaviour by
entirely employing a Reinforcement Learning methodology: Although we made
some progress towards tackling the more complex task of learning a cooperative
team behaviour [10], the most convincing learning results have been obtained
for smaller sub-problems so far, especially for the learning of basic behaviours,
so-called skills.

Intercept Ball Task
One of the most important fundamental capabilities of a soccer player – whether
simulated or real – is to intercept a running ball as quickly as possible. Since
a match’s course of action can only be influenced significantly, if a team is in
ball possession, this skill is crucial for being competitive. In the scope of this
experimental evaluation we focus on the intercept ball task.

The optimal behaviour for ball interception is of course to compute the best
interception point and to move to that point along the shortest path. If the
physical laws of the environment are known and the simulation is deterministic
that calculation may be done exactly. An illustration of the intercept ball task is
given in Figure 2. For more details on analytical solutions the reader is referred to
[19]. However, as already mentioned, it is our aim to realise a growing part of our
agents’ behaviour as modules that were learnt using RL. Hence, we formalised the
intercept task as an MDP, applied Algorithm 2, and learnt a state value function
for this problem. The problem’s state space is continuous and 6-dimensional, i.e.
S = {s = (vb,x, vb,y, vp,x, vp,y, dbp, αbp)} where vb is the ball’s and vp the player’s
velocity, dbp the distance and αbp the relative angle between ball and player.
Viable actions for the player are, as determined by the Soccer Server, turn (real-
valued from [−180 , 180]) and dash (with dash power parameter within [0, 100]).
A ball is considered to have been intercepted successfully, when the player has
gained “control” over it, which means the player has moved to the point where
the ball is within the player’s kickable area. We here only consider a deterministic
soccer simulation environment where ∀s ∈ S and ∀a ∈ A there is a s′ ∈ S with
p(s, a, s′) = 1, although our algorithms and function approximation techniques
work for stochastic environments as well.

CBR for State Value Function Approximation 217

......

vb=()1
0

vp=()0
0

Action:
TURN(45°)

Action:
DASH(100)

...

player

player‘s
kickable
area

ball success

vp=()0
0

vp=()0.24
0

vp=()0.4
0

vb=()0.94
0 vb=()0.88

0

vb=()0.65
0

Fig. 2. Illustration of the Intercept Ball Task

4.2 Results

For the purpose of assessing the quality of learnt policies for ball interception,
we focus on two evaluation measures: The average success rate measures the per-
centage of successful episodes, i.e. of those episodes in which the agent managed
to intercept the ball in less than maxEpisodeLength = 80 simulation cycles.
Speed brings about competitiveness. Thus, the more relevant measure are the
costs (negative rewards) that are incurred during an episode. For the task at
hand, those are best expressible in terms of the average episode length, i.e. the
number of steps it took the agent to intercept the ball. All evaluation results
presented in this section are based on episodes that we obtained using (a) the
learnt state value function and the policy induced from it and (b) a fixed set of
randomly created starting situations from which the agent had to intercept the
ball.

In a first step we wanted to figure out which case base sizes are sufficient
to gain satisfactory interception results. As Figure 3 shows surprisingly good
results can be obtained with 1000 cases, reaching success rates of more than
90% and average sequence lengths of less than 25 steps. As a trade-off between
accuracy and intended retrieval speed (being proportional to case base size)
during real-time usage of the system we focus on |CB| = 2000 in the following.

Comparison to Other Function Approximation Methods
The most straightforward way to represent a state value function in a continuous
space is to discretise the state space along each of its dimensions and to use a
table to explicitly store state values. Then, of course each real state has to
be mapped into the grid induced and, the other way round, each table entry
represents an entire subset of the state space. For the intercept ball problem and
the comparison to a CBR-based approach we employed tables of different sizes
(5k, 100k, and 600k entries). Note, that with the exception of only the smallest
table, these approaches exceed the CBR-based approaches’ memory requirements
by far (Figure 3). As to be expected, finer discretisations yield improved results.
Interestingly, the difference between T 100k and T 600k is only marginal and even
the latter does not supersede the results of CB500/2000. Secondly, we employed
neural nets (feedforward with one hidden layer) to approximate V . After having
experienced a certain number of episodes and states, respectively, the net was
trained at a time with the collected data using the backpropagation variant
RPROP [15]. To generate efficient and stable learning results a considerable

218 T. Gabel and M. Riedmiller

amount of work had to be invested into tuning relevant parameters. Anyway, as
neural nets are capable of representing arbitrarily complex functions, this kind
of function approximator reached the best overall results, at least in the long
run of learning.

Having a look at the speed of the learning process, it becomes obvious that
the CBR-based versions yielded their maximal accuracy after comparatively few
training episodes. Thus, a good state value function approximation could be
obtained very quickly, in general within less than 2000 training episodes (note
the discontinuity in the chart’s abscissa). During that time neither a table-based
nor a neural net-based function approximation could reach comparable results.

0

10

20

30

40

50

60

70

80

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

50
00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

Number of Training Episodes

A
ve

ra
g

e
E

p
is

o
d

e
L

en
g

th

T5k T100k T600k NN CB500 CB2000

0

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Case Base Size

A
ve

ra
g

e
E

p
is

o
d

e
L

en
g

th

0%

20%

40%

60%

80%

100%

S
u

cc
es

s
R

at
e

in
 P

er
ce

n
t

episodeLength

successRate

Fig. 3. Intercept Results for Varying Case Base Sizes (left) and for Different Function
Approximators (right)

4.3 Discussion

The intercept case study has shown empirically that a CBR-based state value
function representation can provide an approximation of good quality within
very short learning time. However, it must be acknowledged that there are two
important objections that prevent the employment of a completely CBR-based
function approximator in a highly competitive domain like robotic soccer. First,
the accuracy reached in approximating V is not sufficient when compared to
the performance of the neural net as function approximator. Second, the time
consumption for case retrieval grows with increasing case base size and, hence,
with approximation accuracy. Consequently, it is unrealistic to perform an en-
tire case retrieval and corresponding state value regression once per simulation
cycle2.

Nevertheless, we spot two main application scenarios for a function approx-
imation using CBR in an RL context. On the one hand, its usage appears at-
tractive when a new learning task is tackled: Then, it is usually difficult to
figure out and settle upon relevant task-specific parameters appropriately (ei-
ther when hand-coding or when trying to learn a solution for the task at hand).

2 As far as a competition soccer team is considered, several agent behaviours will have
to be executed (not only a behaviour for ball interception), so the 100ms a simulation
cycle lasts in RoboCup cannot be reserved for the ball interception exclusively.

CBR for State Value Function Approximation 219

Using CBR might help to come to a good, though not optimal, behaviour pol-
icy, within little time, for example, when intending to learn more complex and
less well-understood behaviours such as team-play.

On the other hand, an existing case base of state value pairs might be em-
ployed to boost the training of another

0

10

20

30

40

50

60

70

0 4000 8000 12000 16000 20000

Number of Training Episodes
A

ve
ra

g
e

E
p

is
o

d
e

L
en

g
th

CBR/NN
NN

Switch from CBR to Neural Net (at Episode 750)

Fig. 4. Usage of CBR to Boost the Neural
Net-Based Learning

function approximator. Investigating
this idea, we first trained a CBR-based
function approximator for a fixed num-
ber of training episodes (750) and then
switched to using a neural net to rep-
resent the value function. We hereby
used all the stored cases including their
state values as training examples for
the first training of the net and then
switched to learning using that net.
Figure 4 shows that the learning pro-
cess could be decisively accelerated.

5 Conclusions

In this paper we applied case-based methods to approximate state value func-
tions over high-dimensional, continuous state spaces, as required in the context
of Reinforcement Learning. In so doing, we embedded a CBR-based function
approximator into an episode-based TD(1) learning algorithm, developed ap-
propriate procedures to handle the growth of the case base and, for the purpose
of evaluation, performed an empirical case study in the context of robotic soccer
simulation, where we compared our approach to function approximation with
two different ones. The results obtained showed that using a CBR-based state
value function representation yields good behaviour policies for the RL agent
within a very short time and with comparatively little case data. Almost opti-
mal policies could, however, not be obtained – the quality of policies induced
from neural nets representing the value function turned out to be superior, but
here more tuning effort was needed to produce stable learning results.

In our view, the major strength of the CBR-enhanced learning approach is the
speed with which good, though not optimal, learning results can be achieved.
This refers to the fact that little time is needed to tweak a CBR system as
well as to the little time needed for the learning process to run; after a few
hundred training episodes already good policies are learnt. Furthermore, if one
is interested in a near-optimal agent behaviour using, for example, a neural net-
based state value function approximation, the learning process can be boosted
using CBR as shown in Section 4.3.

An interesting issue for future research is the consideration of more sophisti-
cated similarity measures on the basis of which to perform k-nearest neighbour
retrieval and regression. This might increase the case-based function approxi-
mator’s accuracy, as inherent similarities and dissimilarities of regions within

220 T. Gabel and M. Riedmiller

the state space could be exploited better. Therefore, the incorporation of an ap-
proach to automatically optimise the CBR-based function approximator’s local
similarity measures and feature weights [18] seems promising.

References

1. D. Aha. Tolerating Noisy, Irrelevant and Novel Attributes in Instance-Based Learn-
ing Algorithms. Journal of Man-Machine Studies, 36(2):267–287, 1992.

2. R. E. Bellman. Dynamic Programming. Princeton University Press, USA, 1957.

3. D. P. Bertsekas and J. N. Tsitsiklis. Neuro Dynamic Programming. Athena Scien-
tific, USA, 1996.

4. H.D. Burkhard, J. Wendler, T. Meinert, H. Myritz, and G. Sander. AT Humboldt
in RoboCup-99. In RoboCup, pages 542–545, 1999.

5. K. Driessens and J. Ramon. Relational Instance Based Regression for Relational
RL. In Proceedings of ICML 2003, pages 123–130, Washington, 2003. AAAI Press.

6. J. Forbes and D. Andre. Representations for Learning Control Policies. In Pro-
ceedings of the ICML-2002 Workshop on Development of Representations, pages
7–14. The University of New South Wales, 2002.

7. G. J. Gordon. Stable Function Approximation in Dynamic Programming. In
Proceedings of ICML 1995, pages 261–268, San Francisco, 1995. Morgan Kaufmann.

8. J. D. Kelly and L. Davis. A Hybrid Genetic Algorithm for Classification. In
Proceedings of the Twefth International Joint Conference on Artificial Intelligence
(IJCAI 1991), pages 645–650, Sydney, Australia, 1991. Morgan Kaufmann.

9. Gregory Kuhlmann and Peter Stone. Progress in Learning 3 vs. 2 Keepaway. In
RoboCup-2003: Robot Soccer World Cup VII, Berlin, 2004. Springer Verlag.

10. A. Merke and M. Riedmiller. Karlsruhe Brainstromers – A Reinforcement Learning
Way to Robotic Soccer II. In RoboCup2001: Robot Soccer World Cup, 2001.

11. I. Noda, H. Matsubara, K. Hiraki, and I. Frank. Soccer Server: A Tool for Research
on Multi-Agent Systems. Applied Artificial Intelligence, 12(2-3):233–250, 1998.

12. D. Ormoneit and S. Sen. Kernel-Based Reinforcement Learning. Technical Report
TR 1999-8, Statistics Institute, Stanford University, USA, 1999.

13. J. Peng. Efficient Memory-Based Dynamic Programming. In 12th International
Conference on Machine Learning, pages 438–446, USA, 1995. Morgan Kaufmann.

14. B. Ratitch and D. Precup. Sparse Distributed Memories for On-Line Value-Based
Reinforcement Learning. In Machine Learning: ECML 2004, 15th European Con-
ference on Machine Learning, pages 347–358, Pisa, Italy, 2004. Springer.

15. M. Riedmiller and H. Braun. A Direct Adaptive Method for Faster Backprop-
agation Learning: The RPROP Algorithm. In Proceedings of the IEEE Inter-
national Conference on Neural Networks (ICNN), pages 586–591, San Francisco,
USA, 1993.

16. J. Santamaria, R. Sutton, and A. Ram. Experiments with RL in Problems with
Continuous State and Action Spaces. Adaptive Behavior, 6(2):163–217, 1998.

17. William D. Smart and Leslie Pack Kaelbling. Practical Reinforcement Learning
in Continuous Spaces. In Proceedings of the 17th International Conference on
Machine Learning (ICML 2000), San Francisco, USA. Morgan Kaufmann.

18. A. Stahl and T. Gabel. Using Evolution Programs to Learn Local Similarity Mea-
sures. In Proceedings of the 5th International Conference on Case-Based Reasoning
(ICCBR 2003), pages 537–551, Trondheim, Norway, 2003. Springer.

CBR for State Value Function Approximation 221

19. F. Stolzenburg, O. Obst, and J. Murray. Qualitative Velocity and Ball Interception.
In Advances in AI, 25th German Conference on AI, pages 283–298, Aachen, 2002.

20. R. S. Sutton. Learning to Predict by the Methods of Temporal Differences. Machine
Learning, 3:9–44, 1988.

21. R. S. Sutton and A. G. Barto. Reinforcement Learning. An Introduction. MIT
Press/A Bradford Book, Cambridge, USA, 1998.

22. M. Veloso, T. Balch, and P. Stone et al. RoboCup 2001: The Fifth Robotic Soccer
World Championships. AI Magazine, 1(23):55–68, 2002.

Using CBR to Select Solution Strategies

in Constraint Programming�

Cormac Gebruers1, Brahim Hnich1, Derek Bridge2, and Eugene Freuder1

1 Cork Constraint Computation Centre, University College Cork,
Cork, Ireland

{c.gebruers, b.hnich, e.freuder}@4c.ucc.ie
2 Department of Computer Science, University College Cork,

Cork, Ireland
d.bridge@cs.ucc.ie

Abstract. Constraint programming is a powerful paradigm that offers
many different strategies for solving problems. Choosing a good strat-
egy is difficult; choosing a poor strategy wastes resources and may result
in a problem going unsolved. We show how Case-Based Reasoning can
be used to select good strategies. We design experiments which demon-
strate that, on two problems with quite different characteristics, CBR
can outperform four other strategy selection techniques.

1 Introduction

Organisations, from factories to universities, must daily solve hard combinatorial
problems. Constraint programs, which reason with declaratively-stated hard and
soft constraints, are one of the most expressive, flexible and efficient weapons
in the arsenal of techniques for automatically solving these hard combinatorial
problems. They have been successfully employed in many real-life application
areas such as production planning, staff scheduling, resource allocation, circuit
design, option trading, and DNA sequencing [21].

Despite the broad applicability of constraint programs, constraint program-
ming is a skill currently confined to a small number of highly-experienced experts.
For each problem instance, a constraint programmer must choose an appropriate
solution strategy (see Sect. 2). A poor choice of solution strategy wastes compu-
tational resources and often prevents many or all problem instances from being
solved in reasonable time. The difficulty of choosing a good solution strategy is
compounded by the growing number of strategies. Our understanding of when it
is appropriate to use a strategy has not kept pace. Improvements in the quality
of decision-making would have considerable economic impact.

In this paper, we use decision technologies to support the choice of solution
strategy. That is, for a given problem, such as the Social Golfer Problem (defined
later), we try to predict good solution strategies for instances of that problem

� This material is based upon work supported by Science Foundation Ireland under
Grant No. 00/PI.1/C075.

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, pp. 222–236, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNAI

Using CBR to Select Solution Strategies in Constraint Programming 223

which differ in size, constraint density, and so on. In Sect. 2, we introduce con-
straint programming and define what we mean by a solution strategy. Sect. 3
shows how CBR and decision trees can be used to select solution strategies;
we also define three benchmark approaches. Sect. 4 explains our experimental
methodology. Experiments are reported in Sect. 5.

2 Constraint Programming

A solution strategy S comprises a model M , an algorithm A, a variable ordering
heuristic Vvar and a value ordering heuristic Vval : S =def 〈M, A, Vvar , Vval〉 [1].
We will look at each component in turn.

2.1 Models

The task of modelling is to take a problem and express it as a Constraint Satis-
faction Problem (CSP). We define a CSP to be a triple 〈X, D, C〉. X is a finite
set of variables. D is a function that associates each x ∈ X with its domain,
this being the finite, non-empty set of values that x can assume. C is a finite
set of constraints which restrict the values that the variables can simultaneously
assume. A simple example is given in Fig. 1. A solution to a CSP is an as-
signment of values to variables such that every variable has exactly one value
from its domain assigned to it and all the constraints are satisfied. For example,
{x1 = 1, x2 = 3} is one solution to the CSP in Fig. 1.

There are often multiple ways of taking an informally-expressed problem and
expressing it as a CSP. We refer to each formulation as a model. To exemplify,
we consider an example problem known as the Social Golfers Problem:

“The coordinator of a local golf club has come to you with the following
problem. In her club, there are 32 social golfers, each of whom play golf
once a week, and always in groups of 4. She would like you to come
up with a schedule of play for these golfers, to last as many weeks as
possible, such that no golfer plays in the same group as any other golfer
on more than one occasion.” Problem 10 in [6]

The problem is generalised with its instances being described by four parameters
〈w, m, n, t〉: the task is to schedule t = m × n golfers into m groups each of n
golfers over w weeks so that no golfer plays any other golfer more than once. The
Social Golfer Problem has elements in common with many real-world scheduling
problems. A factory needing a daily schedule might need to solve different in-
stances of such a problem (i.e. with different parameter values) every 24 hours.
Savings in solution time could be of considerable value.

X D C

x1 {1, 2, 3}
x2 {2, 3, 4} x1 ≤ x2

Fig. 1. A simple CSP

224 C. Gebruers et al.

We will briefly describe three possible models for the Social Golfers Problem.
In the set-based model [15], there are m × w variables. Each variable MW j

i

represents the ith group of players in the jth week. Hence, the values these
variables take on are sets, each containing n player identifiers.

In the integer total-golfer model [18], there are t×w variables. Each variable
TW j

i represents the ith golfer in the jth week. Hence, the values these variables
take on are integers between 1 and m, identifying which of the m groups golfer
i belongs to in week j. In fact, this model is not used in practice, because
no efficient way has been found of expressing the constraint that groups from
different weeks share at most one golfer.

However, even the integer total-golfer model does have a use, because there
is a practical model which combines the set-based model with the (incomplete)
integer total-golfer model [2]. Combining models is a commonplace and produc-
tive technique in constraint programming. The combined model contains both
the m×w set-valued variables and the t×w integer-valued variables. Additional
constraints, known as channelling constraints, ensure that, when a golfer is as-
signed to a group in the integer total-golfer model, the set-based model makes
that golfer a member of the appropriate set-valued variable, and vice-versa.

2.2 Algorithms

Solving a CSP involves search. Each variable is assigned a value in turn and the
legality of that assignment is tested. If any constraints involving that variable
have been violated, the value is retracted and another tried in its place. Suppose,
for the CSP in Fig. 1, that x1 = 3; if we now try to assign x2 = 2, we violate the
constraint x1 ≤ x2. Hence, we would backtrack: we would retract x2 = 2 and
try, e.g., x2 = 3 instead.

When, during search, a legal assignment has been made, certain values in the
domains of other variables may no longer be able to participate in the solution
under construction. These unsupported values can be removed from further con-
sideration, a process known as propagation. In Fig. 1, suppose we assign x1 = 3;
then 2 can be removed from the domain of x2: it cannot participate in any so-
lution where x1 = 3 as it would violate the constraint x1 ≤ x2. The constraint
programming community has devised numerous algorithms that give different
trade-offs between the relative degrees of search and propagation.

2.3 Variable and Value Ordering Heuristics

The efficiency of search and propagation may be influenced significantly by the
order in which variables are instantiated and the order in which values are chosen.
The constraint programming literature lists numerous heuristics for guiding these
choices; see, e.g., [20].

2.4 Strategy Selection

We have presented above the four components of a solution strategy, S =def
〈M, A, Vvar , Vval〉. Defining solution strategies in this modular way is convenient

Using CBR to Select Solution Strategies in Constraint Programming 225

but may be misleading. It is not meant to imply that each component of a strat-
egy can be chosen independently of the other components. Some components
may be incompatible with others; and good performance from a strategy will
require that the chosen components perform as a cohesive unit. Hence, we do
not treat strategy selection as four independent decisions, nor four cascaded de-
cisions. Instead, we treat each solution strategy, of which there are many, as if
it were an atomic entity. Strategy selection is then a single decision: choosing, if
possible, the best strategy from this large set of atomic strategies.

2.5 Related Work

CBR has previously been used to support software development tasks. There
is work, for example, on design reuse and code reuse, of which [7] and [8] are
representative. More in the spirit of the work we report in this paper, however,
is the use of CBR to choose data structures for storing matrices in scientific
problem-solving environments [22].

While many synergies between constraint technology and CBR have been
reported (with a review in [19]), the only work we know of in which CBR is used
to make constraint programming decisions is our own. In [12], we use CBR to
choose models for logic puzzles; in [5], we use CBR to choose between integer
linear programming and constraint programs for bid evaluation problems.

There is related work that does not use CBR. For example, Borret and Tsang
develop a framework for systematic model selection [3], building on Nadel’s the-
oretical work [14]. Minton dynamically constructs constraint programs by per-
forming an incomplete search of the space of possible programs [13]. The contrast
between his work and ours is that we seek to re-use existing strategies, rather
than construct new programs.

Rather different again is the system reported in [4], which executes multiple
strategies, gathers information at runtime about their relative performance and
decides which strategies to continue with. The focus in that system is domains
where optimisation is the primary objective, rather than constraint satisfaction.

Finally, we note that, outside of constraint programming, machine learning
has been used in algorithm selection tasks, e.g. sort algorithm selection [9].

3 Strategy Selection Techniques

We describe here how we have applied CBR and decision trees to strategy selec-
tion. We also describe three benchmark approaches.

3.1 Case-Based Reasoning

Each case represents one problem instance. The ‘description’ part of a case is a
feature vector that characterises the instance (see below for a discussion of the
features). The ‘solution’ part of a case identifies the solution strategies that have
performed well on this instance. This needs a little more explanation.

226 C. Gebruers et al.

Our decision to treat a solution strategy, although it is made up of four com-
ponents, as an atomic entity means that the ‘solution’ part of a case needs only
contain solution strategy labels. Thus, our task has become one of case-based
classification. In fact, as we will explain in detail in Sect. 4.2, it may be appro-
priate to regard more than one solution strategy as appropriate for a particular
instance. Hence, the ‘solution’ part of a case is a set of solution strategy labels.
In summary, each case 〈x, S〉 comprises feature vector x = 〈v1, . . . , vi〉 and a set
S of strategy identifiers.

With strategy selection reduced to a classification task, simple CBR tech-
niques suffice. We retrieve the k-nearest neighbours (we use k = 3) and we use
majority voting to to choose a strategy.

It remains to discuss the features we use. For three reasons, we have chosen
to use surface features in our work to-date:

– The over-riding reason is that, as a matter of good methodology, we need
to discover just how predictive surface features are before turning to other
approaches.

– A lesser reason is that, anecdotally, surface features (if anything) would
appear to be what human programmers use when selecting an initial strategy.

– Finally, surface features are cheap-to-extract and cheap-to-compare in the
similarity measure. By contrast, the main alternative is to compare the con-
straint graphs of problem instances. For reasons of computational complex-
ity, this is to be avoided, if possible.

The features we use might also be described as static features : they can be
obtained prior to execution; an example is the constraint density of the problem
instance. We are not using dynamic features, that are only obtainable during
execution, e.g. the number of backtracks at a certain point.

Finally, it has turned out that all our features are numeric, and so we compute
similarity as the inverse of Euclidean distance with range normalisation [23].

However, prior to using case bases for strategy selection, we use the Wrapper
method to select a predictive subset of the features [11] and these are the ones
used in the CBR.

3.2 Decision Trees

The decision trees we use are induced by C4.5 [17] from the same problem
instances that make up the case bases in our CBR approach. The tests that
label the interior nodes of the trees are drawn from the same features as used in
the CBR systems. Leaves are labelled by solution strategies. We use C4.5 with
all its default settings, also allowing it to prune the trees to avoid over-fitting.

3.3 Benchmark Approaches

We have used three benchmark approaches for strategy selection:

Random: A strategy is selected randomly, with equal probability, from among
the candidates.

Using CBR to Select Solution Strategies in Constraint Programming 227

Weighted Random: A strategy is selected randomly, but the probability that
a candidate is selected is proportional to how often that strategy is a winning
strategy in the dataset.

Use Best: In this approach, the same strategy is selected every time: the one
that is a winner most often in the dataset.

4 Experimental Methodology

4.1 Candidate Strategies

As Sect. 2 shows, for any given problem instance, there is a vast number of
possible strategies, combining different models, algorithms and heuristics. In
practice, human programmers entertain very few strategies. Similarly, in our
experiments it is not feasible to choose among all possible strategies. Instead,
we use around ten candidate strategies. Lest we be accused of thereby making
the prediction task too easy, we use candidates that informal experimentation
shows to be competitive on the different problem instances and which give, as
much as possible, a uniform distribution of winners because this maximises the
difficulty of strategy selection.

4.2 Winning Strategies

We have to define what it means for a candidate strategy to be a winner on a
problem instance. Surprisingly, it is not easy to obtain a consensus within the
constraint programming community on this.

To exemplify this, suppose the execution times of two strategies s1 and s2 on
a problem instance are 1000ms and 990ms respectively. While s2 is the winner,
some might argue that s2 exhibits no material advantage: the difference is 10ms,
which is only 1% of the faster execution time. Similarly, if s3 takes 505000ms
and s4 takes 500000ms, s4 is the winner; but in percentage terms the difference
between them is also 1%, the same as that between s2 and s1. In some domains,
where time is critical, any advantage may be worth having; in other domains,
performance within, e.g., an order-of-magnitude of the fastest strategy may be
regarded as acceptable. In the latter case, if a strategy selection technique were
to pick any of the high-performing strategies, it could be regarded as having
made a correct choice.

Our resolution to this lack of consensus is to use different definitions of win-
ner : we parameterise the definition of winning strategy and plot results for differ-
ent parameter values. We define a winning strategy using a window of execution
time. The best execution time recorded for an instance constitutes the window’s
lower bound. The upper bound is determined by a multiplication factor. We
denote different winning strategy definitions by their multiplication factor, e.g.
×1.0, ×10.0, etc. If a strategy’s execution times falls within the window, it is
considered one of the joint winners.

228 C. Gebruers et al.

4.3 Dataset Generation

For each problem, we generate a dataset of problem instances. We need to label
each instance with its set of winning strategies. So we solve each instance with
each of the candidate strategies in turn and record the execution times. Since
some strategies perform unreasonably poorly on certain instances, execution is
done subject to a timeout of 6000ms. We do not admit into a dataset instances
where all strategies time out and instances where all strategies are joint winners.
These instances are of no use in prediction experiments.

4.4 Evaluation

The dataset is randomly partitioned into a training set and a test set, where
the training set is 60% of the instances. For each instance in the test set, we
use CBR, decision trees and the benchmark approaches to predict a solution
strategy for that instance. We determine, in each case, whether the prediction
is one of the winning strategies. Results are subject to 10-fold cross-validation.

We report the following results:

Prediction Rate: This is the number of times a strategy selection technique
predicts a winning strategy — the higher the better.

Total Execution Time: This is the total execution time of the predicted
strategies over all test instances — the lower the better.

Where the strategy selection technique predicts a strategy that was one of
the timeout strategies, we add only the timeout value (6000ms) into the total.
This understates the true total execution time, which we would have obtained
had we not subjected strategy execution to a timeout. Strategy selection
techniques that incorrectly pick strategies that timeout are, therefore, not
being penalised as much as they could on these graphs.

Note that prediction rate on its own would be a misleading metric — there
would be little utility to a technique that picked the best strategy for 90% of the
instances if these were ones where solving time was short but which failed to pick
the best strategy for the remaining 10% of instances if these were ones where the
solving time exceeded the total for the other 90%. This motivates the use of total
execution time as an additional metric which gives a good indication of whether
the technique is making the right choices when it matters, i.e. when incorrect
choices of strategy lead to very long solving times. For comparison, we also plot
the minimum possible total execution time, i.e. the sum of the execution times
of the best strategy for each instance.

5 Experiments

For each problem, we describe the features we use, the candidate strategies, the
distribution of those strategies in the dataset and we plot the prediction rate
and the total execution time.

Using CBR to Select Solution Strategies in Constraint Programming 229

5.1 The Social Golfer Problem

Features. The features we use are summarised in Table 1. Note how we define
some features as ratios of others. One might argue that the feature, e.g., m/w
is unnecessary when we already have the features m and w. However, unless we
use a non-linear similarity measure [16], similarity on features m and w will not
necessarily be the same as similarity on feature m/w. By explicitly including
features such as m/w, we avoid the need for a non-linear similarity measure.

Table 1. Social Golfer Problem Features (w : number of weeks; m : number of groups;

n : number of golfers per group; t : total number of golfers)

Predictive?
Feature Type Min. Max. CBR Full DT Pruned DT

w integer 1 13 ✓ depth 1 ✕

m integer 2 7 ✓ ✕ ✕

n integer 2 10 ✕ ✕ ✕

t integer 4 70 ✕ depth 0 ✕

m/w real 2
13 7 ✓ depth 1 ✕

n/w real 2
13 10 ✓ depth 1 ✕

t/w real 4
13 70 ✕ depth 1 or 2 ✕

n/m real 2
7 5 ✓ ✕ ✕

The final three columns of Table 1 attempt to show which of the features are
selected by the Wrapper method for use in CBR and at what depth in the full
decision trees induced by C4.5 the different features appear. It has to be kept
in mind that this is only rough summary information: different outcomes are

Table 2. Social Golfer and Extra Golfer Strategies (Strategies s1 and s2 are used only

for the Social Golfer Problem)

Strategy
ID Model Algorithm Var. Heuristic Val. Heuristic

s1 set model dfs, IlcExtended group set lex (set)
s2 set model dfs, IlcExtended week set lex (set)
s3 fcpgfcdg dfs, IlcExtended group set IloChooseMinSizeInt, lex (set)
s4 fcpgfcdg dfs, IlcExtended week set IloChooseMinSizeInt, lex (set)
s5 fcpgfcdg dfs, IlcExtended static golfer IloChooseMinSizeInt, lex (set)
s6 fcpgfcdg dfs, IlcExtended static week IloChooseMinSizeInt, lex (set)
s7 fcpgfcdg dfs, IlcExtended min domain IloChooseMinSizeInt, lex (set)
s8 fcpgfcdd dfs, IlcExtended group set IloChooseMinSizeInt, lex (set)
s9 fcpgfcdd dfs, IlcExtended week set IloChooseMinSizeInt, lex (set)
s10 fcpgfcdd dfs, IlcExtended static golfer IloChooseMinSizeInt, lex (set)
s11 fcpgfcdd dfs, IlcExtended static week IloChooseMinSizeInt, lex (set)
s12 fcpgfcdd dfs, IlcExtended min domain IloChooseMinSizeInt, lex (set)

230 C. Gebruers et al.

possible on the different folds of the cross-validation. The full decision tree has
a depth of only 2; the reason that the final column, for the pruned tree, contains
no information is that the full tree is pruned to a tree containing just one node,
labelled by use s2, i.e. use strategy 2. In fact, this is not a good decision tree for
this dataset: in approximately 40% of the instances s2 is outperformed.

Candidate Strategies. Twelve strategies, summarised in Table 2, are used
in our Social Golfer experiments; each is the winner on certain instances. In
two strategies, we use the set-based model. In the rest, we use the combined
model. Using this combined model, Bessiere et al. investigate different ways of
expressing the partitioning and disjointness constraints [2]. They design ways
of expressing them ‘globally’, which we denote fcpg and fcdg respectively, and
ways of decomposing them into more primitive forms, which we denote by

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1

%
 o

f I
ns

ta
nc

es

Winner Definition

Clear Winner
x2
x3
x4
x5
x6
x7
x8
x9

x10
x11

Fig. 2. Ties, Social Golfer Dataset

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1

%
 o

f I
ns

ta
nc

es

Winner Definition

s1
s2
s3
s4
s5
s6
s7
s8
s9

s10
s11
s12

Fig. 3. Strategy Distribution, Social Golfer Dataset

Using CBR to Select Solution Strategies in Constraint Programming 231

Table 3. Extra Golfer Problem Features (w : number of weeks; m : number of groups;

n : number of golfers per group; x : extra golfers; t : total number of golfers)

Predictive?
Feature Type Min. Max. CBR Full DT Pruned DT

w integer 1 13 ✓ depth 3 ✕

m integer 2 7 ✕ depth 3 ✕

n integer 2 10 ✓ depth 1 or 3 depth 1

t integer 5 74 ✕ depth 2 or 3 ✕

x integer 1 4 ✕ depth 2 or 3 ✕

m/w real 2
13 7 ✓ depth 3 ✕

n/w real 2
13 10 ✓ depth 0 or 3 depth 0

t/w real 5
13 74 ✓ depth 2 depth 2

x/w real 1
13 4 ✕ depth 3 or 4 ✕

n/m real 2
7 5 ✓ depth 1 or 2 or 3 depth 2 or 3

t/m real 5
7 37 ✓ ✕ ✕

x/m real 1
7 2 ✓ depth 3 ✕

t/n real 5
10 37 ✓ depth 2 or 3 depth 2

x/n real 1
10 2 ✕ depth 3 ✕

x/t real 1
74

4
5 ✕ depth 3 or 4 depth 3 or 4

fcpd and fcpg respectively. So, in fact, there is not a single model here; there
are four, depending on which combination of constraints is used: 〈fcpg, fcdg〉,
〈fcpg, fcdd〉, 〈fcpd, fcdg〉 or 〈fcpd, fcdd〉. Experiments reported in [2] reveal that
fcpg and fcpd perform identically for the Social Golfers Problem, so we can ar-
bitrarily adopt fcpg . But this still leaves us with two models, 〈fcpg, fcdg〉 and
〈fcpg, fcdd〉.

For algorithms and heuristics, we follow [2], which gives us a good number of
competitive strategies. In particular, we use ILOG Solver’s Depth-First Search
algorithm (dfs) with the propagation level parameter for global constraints set
to IlcExtended, which maximises the propagation [10]. We have used five variable
ordering heuristics but just one value ordering heuristic, IloChooseMinSizeInt,
lex (set) [2]. Space limitations preclude a description of their details.

Dataset Characteristics. Our Social Golfer dataset contains 367 instances
prior to filtering. (The exact number of instances after filtering depends on the
parameterisation of the winning window.) Fig. 2 shows, for different winner
parameterisations, the number of instances where there are ties for first place; we
show in how many instances there is a clear winner, in how many two strategies
tie, in how many three strategies tie, and so on. More ties and higher cardinality
ties make prediction easier. Fig. 3 shows, for different winner parameterisations,
the percentage of instances for which each of the twelve strategies is one of the
winners. The sum of the percentages exceeds 100% because an instance can have
more than one winning strategy.

232 C. Gebruers et al.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1

%
 C

or
re

ct
 P

re
di

ct
io

ns

Winner Definition

CBR
C45 unpruned

Use-Best
Wt. Random

Random

Fig. 4. Prediction Rates, Social Golfer Dataset

 100000

 1e+06

 1e+07

 1e+08

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1

C
um

ul
at

iv
e

E
xe

cu
tio

n
T

im
e

Winner Definition

CBR
C45 unpruned

Use-Best
Wt. Random

Random
Best Possible

Fig. 5. Total Execution Time, Social Golfer Dataset

Results. Figs. 4 and 5 show the prediction rate and the total execution time
for CBR, unpruned decision trees (which gave better results than pruned ones)
and the benchmarks, again for different winner parameterisations. The results
are discussed in Sect. 5.3.

5.2 The Extra Golfer Problem

The Extra Golfers Problem is a generalisation of the Social Golfers Problem. It
introduces x additional golfers (in our experiments x ∈ [1..4]), i.e. t = m×n+x.
Thus there is an excess of golfers and some golfers rest each week, i.e. the set
of golfers is no longer partitioned into groups each week, as there will be some
golfers left over. This may not seem like a very different problem. But, in fact,
this small change to the problem brings large differences in terms of winning

Using CBR to Select Solution Strategies in Constraint Programming 233

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1

%
 o

f I
ns

ta
nc

es

Winner Definition

Clear Winner
x2
x3
x4
x5
x6
x7
x8
x9

Fig. 6. Ties, Extra Golfer Dataset

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1

%
 o

f I
ns

ta
nc

es

Winner Definition

s3
s4
s5
s6
s7
s8
s9

s10
s11
s12

Fig. 7. Strategy Distribution, Extra Golfer Dataset

strategies (compare Figs. 2 and 3 with Figs 6 and 7), and therefore it is an
interesting second problem for us.

Features. We summarise the features in Table 3. Compared with the Social
Golfer Problem, there are some additional features, and the ‘predictiveness’
of the features (summarised in the final three columns) is different. In this
dataset, there is no dominant strategy (unlike s2 in the Social Golfers dataset),
and so all the decision trees are more complex than they were for the Social
Golfers.

Candidate Strategies. Ten of the same strategies that were used for the Social
Golfer Problem (Table 2) can be used for the Extra Golfers Problem. The two
which use the pure set-based model, s1 and s2, are inapplicable because the
set-based model assumes that the golfers are partitioned.

234 C. Gebruers et al.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1

%
 C

or
re

ct
 P

re
di

ct
io

ns

Winner Definition

CBR
C45 unpruned

Use-Best
Wt. Random

Random

Fig. 8. Prediction Rates, Extra Golfer Dataset

 100000

 1e+06

 1e+07

 1e+08

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

C
um

ul
at

iv
e

E
xe

cu
tio

n
T

im
e

Winner Definition

CBR
C45 unpruned

Use-Best
Wt. Random

Random
Best Possible

Fig. 9. Total Execution Time, Extra Golfer Dataset

Dataset Characteristics. Our Extra Golfers dataset contains 440 instances
prior to filtering. The number of ties and the distribution of the strategies are
shown in Figs. 6 and 7. As we mentioned above, these graphs show the Extra
Golfer datasets to be quite different from those for the Social Golfer Problem.

Results. Results are shown in Figs. 8 and 9, and are discussed in Sect. 5.3.

5.3 Discussion of Results

As we would expect, the graphs for prediction rate (Figs. 4 and 8) exhibit better
performance as the winning strategy definition is relaxed: as the number of joint
winners grows, it becomes easier to predict a wining strategy. Of the techniques,
for the Social Golfer dataset, CBR outperforms the next best techniques (use-
best and decision trees) by about 10%, achieving a prediction rate of between 70

Using CBR to Select Solution Strategies in Constraint Programming 235

and 80%. For the Extra Golfer dataset, while CBR still has the best prediction
rate, use-best and decision trees are not far behind.

The graphs for total execution time (Figs. 5 and 9) give an indication of the
quality of a technique, regardless of whether a winning strategy is predicted or
not. The Social Golfer dataset is the tougher of the two, because the differences
in execution times render the costs of making a wrong decision greater. Here,
CBR significantly outperforms the other strategies — note the logarithmic scale.
This is largely because it predicts far fewer strategies that time out. The Extra
Golfers dataset again brings use-best, decision trees and CBR closer in terms of
performance with CBR doing slightly better.

6 Conclusions and Future Work

In this paper, we have demonstrated that CBR outperforms four other strategy
selection techniques on two problems with quite different characteristics. We
have shown empirically that CBR achieves higher prediction rates than the other
techniques, and predicts fewer strategies that fail to find a solution in reasonable
time. By using CBR to select solution strategies, we have demonstrated that
significant amounts of computation time can be saved; such savings can have
considerable economic impact.

We have shown that it is possible to achieve good results using just surface
features. We have added clarity to strategy selection methodology by introducing
a parameterised definition of winning strategy and determining the impact of
different parameterisations.

Future work will involve other datasets for other constraint programming
problems; more considered selection of case base size and contents (including
consideration of case-base editing); scaling the system to facilitate a broader
selection of candidate strategies; deploying a wider range of strategy selection
teqhniques (e.g. statistical methods); and further analysis of how dataset char-
acteristics impact strategy selection.

References

1. Beacham, A., Chen, X., Sillito J. and Van Beek, P.: Constraint Programming
Lessons Learned from Crossword Puzzles. In Procs. of 14th Canadian Conference
on Artificial Intelligence, pp.78–87, 2001

2. Bessiere, C., Hebrard, E., Hnich, B. and Walsh, T.: Disjoint, Partition and Inter-
section Constraints for Set and Multiset Variables. In The Principles and Practice
of Constraint Programming, Procs. of CP-2004, pp.138–152, 2004

3. Borret, J.E. and Tsang, E.P.K.: A Context for Constraint Satisfaction Problem
Formulation Selection. Constraints, vol.6(4), pp.299–327, 2001

4. Carchrae, T. and Beck, J.C.: Low-Knowledge Algorithm Control. In Procs. of the
19th AAAI, pp.49–54, 2004

5. Gebruers, C., Guerri, A., Hnich, B. and Milano, M.: Making Choices using Struc-
ture at the Instance Level within a Case Based Reasoning Framework. In Inte-
gration of AI and OR Technologies in Constraint Programming for Combinatorial
Optimization Problems, Springer Verlag, pp.380–386, 2004

236 C. Gebruers et al.

6. Gent, I., Walsh, T. and Selman, B.: CSPLib: A Problem Library for Constraints.
http://4c.ucc.ie/{}∼tw/csplib/ (Last accessed 02/02/2005)

7. Gomes, P.: A Case-Based Approach to Software Design, PhD Dissertation, Univer-
sidade de Coimbra, Portugal, 2003.

8. Grabert, M. and Bridge, D.: Case-Based Reuse of Software Examplets. Journal of
Universal Computer Science, vol.9(7), pp.627-640, 2003

9. Guo, H.: Algorithm Selection for Sorting and Probabilistic Inference: A Machine
Learning-Based Approach. PhD Dissertation, Dept. of Computing and information
Sciences, Kansas State University, 2003

10. ILOG Solver. http://www.ilog.com/products/solver/ (Last accessed
02/02/2005)

11. Kohavi, R. and John, G.: Wrappers for Feature Subset Selection. Artificial Intelli-
gence, vol.97(1–2), pp.273–324, 1997

12. Little, J., Gebruers, C., Bridge, D. and Freuder, E.: Capturing Constraint Pro-
gramming Experience: A Case-Based Approach. In International Workshop on
Reformulating Constraint Satisfaction Problems, Workshop Programme of the 8th
International Conference on Principles and Practice of Constraint Programming,
2002

13. Minton, S.: Automatically Configuring Constraint Satisfaction Programs: A Case
Study. Constraints, vol.1(1), pp.7–43, 1996

14. Nadel, B.: Representation Selection for Constraint Satisfaction: A Case Study Us-
ing n-Queens. IEEE Expert, vol.5(3), pp.16–23, 1990

15. Novello, S.: An ECLiPSe Program for the Social Golfer Problem.
http://www.icparc.ic.ac.uk/eclipse/examples/golf.ecl.txt (Last accessed
02/02/2005)

16. Pang, R., Yang, Q. and Li, L.: Case Retrieval using Nonlinear Feature-Space Trans-
formation. In Procs. of the 7th European Conference on Case-Based Reasoning,
pp.361–374, 2004

17. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993
18. Smith, B.: Reducing Symmetry in a Combinatorial Design Problem. Technical Re-

port 2001.01, University of Leeds School of Computing Research Report Series,
2001

19. Sqalli M., Purvis, L. and Freuder, E.: Survey of Applications Integrating Constraint
Satisfaction and Case-Based Reasoning. In Procs. of the 1st International Confer-
ence and Exhibition on The Practical Application of Constraint Technologies and
Logic Programming, 1999

20. Tsang, E.: Foundations of Constraint Satisfaction. Academic Press, 1993
21. Wallace, M.G.: Practical Applications of Constraint Programming. Constraints,

vol.1(1–2), pp.139–168, 1996
22. Wilson, D. C., Leake, D. B. and Bramley, R: Case-Based Recommender Compo-

nents for Scientific Problem-Solving Environments. In Procs. of the 16th Interna-
tional Association for Mathematics and Computers in Simulation World Congress,
CD-ROM, Session 105, Paper 2, 2000

23. Wilson, R. and Martinez, T.: Improved Heterogeneous Distance Functions. Journal
of Artificial Intelligence Research, vol.6, pp.1–34, 1997

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, LNCS 3620, pp. 237 – 251, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Case-Based Art

Andrés Gómez de Silva Garza and Arám Zamora Lores

Computer Engineering Department, Instituto Tecnológico Autónomo de México (ITAM),
Río Hondo #1, Colonia Tizapán-San Ángel, 01000—México, D.F., México

agomez@itam.mx, aram_n1@hotmail.com

Abstract. While there have been plenty of applications of case-based reasoning
(CBR) to different design tasks, rarely has the methodology been used for gen-
erating new works of art. If the goal is to produce completely novel artistic
styles, then perhaps other reasoning methods offer better opportunities for pro-
ducing interesting artwork. However, if the goal is to produce new artwork that
fits a previously-existing style, then it seems to us that CBR is the ideal strategy
to use. In this paper we present some ideas for integrating CBR with other arti-
ficial intelligence techniques in order to generate new artwork that imitates a
particular artistic style. As an example we show how we have successfully im-
plemented our ideas in a system that produces new works of art in the style of
the Dutch painter Piet Mondrian. Along the way we discuss the implications
that a task of this nature has for CBR and we describe and provide the results of
some experiments we performed with the system.

1 Introduction

While there have been plenty of applications of case-based reasoning (CBR) to differ-
ent design tasks (e.g., see [1]), rarely has the methodology been used for generating
new works of art. If the goal is to produce completely novel artistic styles, then per-
haps other reasoning methods that rely less on examples as a source of knowledge
offer better opportunities for producing interesting (i.e., original, novel) artwork.
However, if the goal is to produce new artwork that fits a previously-existing style,
then it seems to us that CBR is the ideal strategy to use.

In this paper we present some ideas for integrating CBR with other artificial intel-
ligence techniques in order to generate new artwork that imitates a particular artistic
style. As an example we show how we have successfully implemented our ideas in a
system that produces new works of art in the style of the Dutch painter Piet Mondrian.
Exemplars of artwork produced by Mondrian are presented to the system in the form
of cases. The cases are then adapted in order to produce new artwork, and the new
works of art are evaluated to determine if they fit the required style.

The paper is organized as follows. In Section 2 we introduce Mondrian´s artistic
style and show the case representation scheme we have used. In Section 3 we discuss
issues related to case retrieval and case adaptation for tasks like ours and give the
results of some experiments related to these issues. Of particular interest is our case
adaptation method, which is based on an evolutionary algorithm, and our evaluation

238 A. Gómez de Silva Garza and A. Zamora Lores

module, which we implemented in two versions, one rule-based and one based on a
neural network. Section 4 briefly compares and contrasts our research with other
projects that use CBR and/or evolutionary algorithms for design. Finally, in Section 5
we discuss the results and implications of our work and give some conclusions.

2 Piet Mondrian’s Artistic Style and Case Representation Used

Piet Mondrian was a Dutch painter active mainly in the first half of the 20th century.
Like many other modern painters, Mondrian started his career painting landscapes,
human figures, and other realistic subjects, but eventually developed his own distinc-
tive and abstract style (called simply de stijl, which is Dutch for “the style”). Paint-
ings in Mondrian’s style typically include vertical and horizontal black lines over a
white background, with some or all of the primary colors (blue, red, and yellow), plus
black, filling in some of the square or rectangular regions (or parts of the regions)
separated out from the background by the black lines. It is this style that our system,
MONICA (MONdrian-Imitating Computer Artist), tries to emulate. Fig. 1 shows a
typical Mondrian painting in his distinctive style.

Fig. 1. A typical Mondrian painting

MONICA’s reasoning engine is implemented in C++ and its graphical output ca-
pabilities in OpenGL. We have gathered 55 cases of Mondrian paintings such as the
one shown in Fig. 1 from several Internet sites, and from [2] and [3], and we have
represented them as cases in MONICA’s case memory. Our cases do not include any
of Mondrian´s “lozenges” (rhomboidal paintings employing the same style), only
rectangular ones. They also do not include paintings that represent stylistic transitions
that Mondrian underwent through his career, only paintings that can truly be said to
belong to de stijl. After analyzing the 55 Mondrian cases we observed certain pat-
terns, such as the fact that there never seem to be more than 20 lines and colored re-
gions in any painting, and the fact that we can treat lines as if they were extremely
thin, black colored regions. These observations led us to come up with the following
case representation scheme.

A case is split into twenty parts, each of them corresponding to one of twenty pos-
sible colored regions (including lines) permitted in a painting. Fig. 2 illustrates this
division of a case at the highest level.

 Case-Based Art 239

Fig. 2. Case representation used

Fig. 3 shows at an intermediate level how each of the twenty parts of a case is split
into five sections in order to represent in them the color, width, height, and x- and
y-coordinates (of the center, as per OpenGL standards) of each colored region. These
last four measurements are all limited to the same range of values (which again de-
pend on the specifications of OpenGL).

Fig. 3. Representation of each colored region in a case

Fig. 4 shows, at the bit level, the internal details of the representation of the color
and one of the four measurements shown in Fig. 3.

Fig. 4. Bit-encoding of the color and any one measurement in the representation

3 Case Retrieval and Case Adaptation

The specification of the task we are interested in, “producing new artwork that fits a
particular style,” does not just characterize the class of problems that we would like to
solve, but is also the specification given at each problem-solving instance, each exe-
cution of the implementation. This specification is vaguer than the tasks that most
CBR systems are required to perform (in which, typically, specific values required for
particular parameters in a valid solution are given to a system when initiating a prob-
lem-solving episode). In fact, if it weren’t for the word “new” in our task specifica-
tion, then in the case of MONICA all the cases in memory already would be valid
solutions (as they all fit Mondrian’s style, since they are all Mondrian paintings), and
new solutions wouldn’t need to be generated—the old ones could just retrieved. This
observation has implications for both case retrieval and case adaptation.

240 A. Gómez de Silva Garza and A. Zamora Lores

With respect to case retrieval, in a situation like MONICA’s it can’t just be a mat-
ter of using the problem specification as an index to probe the case memory, because
of two reasons mentioned above: first of all the problem specification is too vague
and secondly all the cases in memory would match the problem specification. The
concept of elaborating on the problem specification (i.e., analyzing it in order to ex-
tract a more precise, formal, problem specification), which many researchers (e.g.,
[4], [5]) have suggested as a prior subtask to case retrieval, also doesn’t make sense.
There simply isn’t any additional, hidden, indirect, information in the problem speci-
fication that can be inferred and used to make the specification more precise (and
therefore used as a index that will end up retrieving only a subset of the cases in
memory). This suggests that either case retrieval is unnecessary or that the system’s
task has to be specified more precisely. As we don’t want to do the latter (since we
don’t want to bias the resulting paintings to appear more like some of Mondrian’s
prior paintings than like others by specifying additional requirements on their fea-
tures), it would seem that the first conclusion is the correct one (i.e., not to perform
case retrieval in the traditional sense).

This has implications for case adaptation and raises questions such as: do we use
all of the cases in memory or just one for case adaptation, and do we even need so
many cases or not? If we were to use only one case and adapt it to produce a new
painting (or even try the same with several cases, but adapting them one at a time), we
would again be biasing the resulting painting to look too much like the original case,
unless we could come up with extremely bizarre (and probably complicated) adapta-
tion procedures. From the point of view of art, it would be more interesting to have
the capacity to explore the entire space of paintings that fit Mondrian’s style, and from
the point of view of CBR, it would be nice to be able to do so without having to spend
much time inventing complex (and highly domain-specific) adaptation rules. Thus, it
would seem that being able to draw ideas from several cases at a time makes more sense
in order for case adaptation to have the capacity to produce Mondrian-like paintings that
do not resemble any of the originals too closely (yet still fit his artistic style).

No

Expanded
Population

Evaluation
of Initial

Population
Crossover Mutation

Evaluation
of New

Individs.

Selection

Yes

Initial
Population

Final
Solution(s)

New Initial
Population

Good
Enough?

Fig. 5. Flow diagram for evolutionary case adaptation

 Case-Based Art 241

Drawing ideas from several cases in order to explore the entire space of paintings
that fit Mondrian’s style can be achieved by ensuring that the case adaptation method
can perform not only parametric but also structural adaptation, the two types of case
adaptation that exist according to [6]. One general-purpose problem-solving method
that can achieve both parametric and structural adaptation is evolutionary algorithms
[7], and this is the method we have chosen to perform the case adaptation subtask.
We have in the past implemented the evolutionary approach to case adaptation suc-
cessfully for the design of tall buildings [8] and residential floor plans [9], and we
describe it formally in [10]. Fig. 5 shows this approach graphically. The rest of this
section discusses several of its characteristics and examines some of them through
some experiments.

3.1 Initial Population of the Evolutionary Algorithm

Evolutionary algorithms require a population of individuals (genotypes) to operate on,
and generally these individuals are generated at random in order to seed the initial
population. By turning to CBR, however, we can use cases to initialize the popula-
tion, thus giving a head-start to the evolutionary search mechanism by starting the
search from known solution states instead of having to randomly search the solution
space before converging on the vicinity of good solutions. We showed in [9] that the
solution-finding (convergence) time was cut in half by using cases rather than random
individuals as the initial population of an evolutionary algorithm. However, in evolu-
tionary algorithms (and biology!) an important issue is that of diversity in the popula-
tion [11], and there can’t be too much diversity if the entire population fits entirely
within a specific genetic mold (in this case, Mondrian’s artistic style).

One research group that has used cases in the initial population of an evolutionary
algorithm [12] has suggested that one way to achieve diversity is to create an initial
population that consists of both cases and random individuals, rather than only cases.
In fact, they have performed several experiments and have come to the conclusion
that only between 10% and 15% of the initial population should consist of cases, and
the rest should be random individuals, in order to achieve some diversity while at the
same time having some cases to guide the evolutionary search. However, it is our
contention that this figure depends largely on the problem-solving domain being ad-
dressed (which influences the landscape of the solution space and thus how much
diversity is really needed in order to explore all relevant areas of the space while look-
ing for appropriate solutions). It can also depend on the case/genotype representation
that is being used in the evolutionary algorithm and on the nature of the results that
one is interested in getting (for instance, whether the evolutionary algorithm is being
used to obtain one solution to a problem or many different ones, whether or not we
already know of some solutions—e.g., the cases—but are interested in finding new
ones, whether we are more interested in optimizing the quality of the solution or the
efficiency of the algorithm, etc.). In order to test this assertion we performed an ex-
periment with MONICA.

In the experiment, we ran MONICA 10 times on each of 10 combinations of cases
and random individuals in the initial population of the evolutionary algorithm. The
first combination used 10% of cases in the initial population and 90% of random
individuals, the second combination 20% of cases and 80% of random individuals,

242 A. Gómez de Silva Garza and A. Zamora Lores

etc. We ran the system 10 times on each of these combinations in order to get aver-
age results because, due to the random nature of some of the evolutionary operators
(see Subsection 3.2 below), one run wouldn’t be guaranteed to be representative. For
each of the 10 runs for a given combination, the same initial population was used, and
the cases that were included as part of this initial population were chosen randomly
from amongst the 55 MONICA has in its memory. This choice of which cases to
include in the initial population could be considered the equivalent of “case retrieval”
or “case selection” in our approach, but it is quite different from the traditional notion
of case retrieval in CBR. Since the last combination used in the experiment included
100% of cases and no random individuals in its initial population, since we have 55
cases, and since we didn’t want the size of the population to vary across different runs
(in order for this parameter to not affect the results), we chose 55 as the size of the
population for all 100 system executions. We left all other evolutionary algorithm
parameters constant across all runs.

In order to compare the results of the experiment we decided that the most impor-
tant thing for us would be to determine which combination of cases and random indi-
viduals in the population seem to maximize the efficiency of case adaptation. The
efficiency of an evolutionary algorithm can be measured both in CPU time or in the
number of evolutionary cycles (generations) required (see Subsection 3.2 below) in
order to obtain an acceptable solution. We measured both parameters, but the corre-
sponding results were analogous, so in Fig. 6 we present a graph showing only the
average CPU time needed to produce a good solution (i.e., a new painting fitting
Mondrian’s style) for each of the 10 combinations of cases and random individuals
we tried.

Average Convergence Time

0

5

10

15

20

25

10 20 30 40 50 60 70 80 90 100

Percentage of Cases in Initial Population

A
ve

ra
g

e
T

im
e

A
cr

o
ss

 1
0

R
u

n
s

[s
]

Fig. 6. Graph showing CPU time for different combinations of cases and random individuals in
the initial population

As can be seen in Fig. 6, for our particular case/genotype representation and do-
main, and using speed of convergence as the criterion for comparison, it seems that
any percentage higher than or equal to 30% of cases in the initial population is best
(with 60% being up to 30% faster than some of the other possibilities). This proves

 Case-Based Art 243

our assertion that the 10%-15% heuristic given in [12] is too simplistic and not neces-
sarily applicable to all situations. The probable reason for our results is that if there
aren’t enough cases in the initial population to give the system a head start, it may be
a long time before Mondrian-like paintings start resulting from the evolutionary algo-
rithm’s operations. For this particular domain the cut-off point (above which adding
more cases doesn’t seem to continue improving convergence time much) seems to be
somewhere between 20% and 30%, but there’s no reason to presuppose that it would
be the same for other domains or if we had used a different case/genotype representa-
tion. The slight increase in convergence speed when the percentage of cases is above
60% may be due to the diversity factor—having less than 40% of random individuals
in the initial population might not allow the algorithm to produce new Mondrian-like
paintings as quickly as with a larger amount of randomness (and thus diversity) in the
initial population.

3.2 Crossover and Mutation

The evolutionary operators which are applied cyclically on the individuals in the
population are mutation and crossover, both of which involve some random choices,
and which achieve parametric and structural adaptation, respectively. Mutation
achieves parametric adaptation by modifying the value of one parameter in a previ-
ously-known solution to produce a new offspring solution. Which parameter’s value
will be modified, and what its new value will be, are typically decided at random.
Crossover achieves structural adaptation by combining the parameters of two previ-
ously-known solutions (thus resulting in two offspring solutions that can have struc-
tures that are very different from those of their parents). The combination is achieved
by splitting the two original solutions in two and then interchanging their two halves
to create the new solutions. In MONICA we allow the split to occur between any two
of the bits that can be seen in Fig. 4 (which shows the detailed case representation
scheme used). Which two individuals in the population will be combined and where
exactly will the split occur in them are decisions that are again typically made at ran-
dom. If these two operators are applied continuously through several evolutionary
cycles, which is what normally occurs in evolutionary algorithms, and the new initial
populations (for each cycle) contain some of the new offspring solutions created dur-
ing the previous evolutionary cycles, then eventually solutions may be produced that
combine some features from many, if not all, of the original cases. This mechanism is
what allows us to explore the space of Mondrian-like paintings widely, rather than
being stuck with tweaking only one at a time, and thus never departing too much from
its overall appearance.

Our evolutionary case adaptation method represents a generate-and-test, trial-and-
error, brainstorming-like approach [13] in which many possible paintings (entire
populations of them) are generated quickly, by using mainly random decisions.
Probably most of these paintings are of quite low quality (i.e., do not fit Mondrian’s
style), but after being generated they are then evaluated to determine how much they
“make sense.” In the context of our research, making sense would imply being as
close as possible to the style of Mondrian. The best paintings (according to the
evaluation subroutine of the evolutionary algorithm) are kept for future evolutionary
generations, and the others are discarded (so as to keep the size of the population of

244 A. Gómez de Silva Garza and A. Zamora Lores

the algorithm constant across generations). This process is labeled “Selection” in the
flow diagram in Fig. 5 and ensures a monotonic increase in the average quality of the
paintings in the population between generations (a characteristic known as elitism in
the terminology of evolutionary algorithms). Depending on what is desired, either
when this average quality or when the quality of just one individual painting is good
enough according to the evaluation subroutine, the process is terminated. The evalua-
tion subroutine of the evolutionary algorithm, therefore, is of critical importance to
the success of the approach.

3.3 Evaluation of Adapted Cases

Every new solution generated and proposed by the evolutionary case adaptation
method is assigned a number between 0 and 1 (known as its fitness value in the evolu-
tionary algorithms literature) which represents its quality. In MONICA’s domain, a
value of 1 is assigned to paintings that belong to Mondrian’s style, and a 0 would be
assigned to paintings that are extremely far away from being able to be considered
Mondrian-like. In MONICA we implemented two methods for deciding how much a
painting fits the style of Mondrian. The first method is rule-based, and the second
method is based on a neural network.

In the rule-based evaluation method the rules were programmed based on the au-
thors’ observations of the stylistic patterns present in the 55 Mondrian cases used, and
the limits of these patterns. While art experts might be able to suggest subtle modifi-
cations or additions to these rules, we believe that they do capture the essence of
Mondrian’s style quite well (and have performed a cognitive experiment to support
our claim, the details and results of which can be found in [14]). The rules, if applied
to any of the original Mondrian cases, would give a fitness value of 1. If they are
applied to the new “cases” generated by the case adaptation algorithm, they give a
fitness value that can guide the evolutionary search in the right direction by giving it
an idea of how good or how bad each of the paintings it generates is. This influences
which individuals survive across evolutionary cycles and which are discarded during
the selection step. The eight rules we have implemented are the following:

1. EvaluateColor: Each colored region that is contained in a case must have one
of the five valid colors (blue, yellow, red, black, white).

2. EvaluateCoordinates: The height, width, x-coordinate, and y-coordinate of
each colored region in a case must all fall between 0 and 3.9999 (as per
OpenGL usage).

3. EvaluateLineThickness: Up to two black colored regions are allowed in a case
that are not thin, but all other black regions must be either vertically or hori-
zontally thin (and thus represent a line rather than a rectangular region).

4. EvaluateNumberOfVerticalLines: A minimum of two and a maximum of ten
vertical lines must be present in a case.

5. EvaluateNumberOfHorizontalLines: A minimum of two and a maximum of
ten horizontal lines must be present in a case.

6. EvaluateLimits: Each colored region in a case must be adjacent either verti-
cally (both above and below) or horizontally (both to the left and to the right),
or both, to another colored region or to the edge of the “frame” (with some
small tolerance).

 Case-Based Art 245

7. EvaluateFrame: All other colored regions in a case must fall within the coordi-
nates of the “frame” (which is a white colored region with fixed coordinates
that doesn’t participate in the evolutionary process).

8. EvaluateNumberOfColoredRegions: There must be at least one colored region
represented in a case, and at most 13, not counting lines (with a maximum of
20 including lines, as mentioned in Section 2).

Each case is assigned a value between 0 and 1 according to each of these rules.
Some rules are either completely satisfied or completely violated by a particular case,
and thus can assign only 0 or 1 as values. An example of this is Rule 5: if the number
of horizontal lines in a case falls within the acceptable values (2-10, inclusive) then
the case has a fitness of 1 according to this rule; otherwise the fitness value is 0.
Other rules can be satisfied to different degrees, and can thus return different values
between 0 and 1, inclusive. An example of this is Rule 7: if a case contains five col-
ored regions and four of them fall fully within the coordinates of the frame but one
doesn’t, then the case has a fitness of 4/5=0.8 according to this rule, if only two of the
five colored regions lie within the coordinates of the frame then the fitness of the case
would be 2/5=0.4, etc. The global fitness value for the case is assigned by finding the
average value given to the case according to each of the different rules (i.e., adding
the eight individual values and dividing the total by eight). The convergence times
shown in Fig. 6 were the result of running MONICA with the rule-based evaluation
method. As can be seen, the average time needed to produce a new Mondrian-like
painting was most of the time under 20 seconds.

For MONICA’s neural evaluation method we tried out a few different network ar-
chitectures and subsequently ended up implementing a neural network with 100 neu-
rons in its input layer, a hidden layer with 50 neurons, and one neuron in its output
layer, with a full set of connections between each neuron of a given layer and each
neuron in the next layer. The 100 neurons in the input layer correspond to the five
values needed to represent each of the 20 possible colored regions that make up a case
(as shown in Figs. 2-4). The one output neuron is due to the fact that the network’s
task is to simply assign a fitness value (between 0 and 1, as with the rule-based
method) that represents how much a painting fits Mondrian’s style. The size of the
hidden layer was determined empirically after a few trials with different numbers of
hidden neurons.

The neural network had to be trained to recognize Mondrian’s style. In order to do
this, of the 55 Mondrian cases 70% was used for the training procedure, with the
remaining 30% of the cases used to test the resulting network. The training procedure
took advantage of the already-programmed evolutionary algorithm (seeded with a
traditional random initial population) in order to generate possible weight assignments
for each of the neural network’s connections. Determining convergence (and there-
fore the end of the training period, leading to the final values for the weights of all the
connections) was based on having lowered the mean square error to below 0.03 when
using the neural network to classify the cases used for training (and verifying that the
error was likewise below that same threshold when classifying the test cases). This
error corresponds to a fitness of 0.85 for the set of weight assignments generated.

The neural network in MONICA took 5½ hours to train. Once trained, the weights
of its connections are fixed and never have to change again. Using these final weights
in the neural network to evaluate new paintings produced by case adaptation typically

246 A. Gómez de Silva Garza and A. Zamora Lores

required 30 minutes (from the beginning of a run to the generation of the first new
Mondrian-like painting), as compared to under 20 seconds for the rule-based evalua-
tion method (see Fig. 6). As the difference in time is so large, we decided to stick with
the rule-based evaluation method to evaluate the “Mondrianness” of new paintings.

4 Related Work

Our work on MONICA evolves from our previous work on the GENCAD project (see
[8], [9], and [10]) in which we proposed the use of evolutionary algorithms for case
adaptation and applied our ideas to the domains of structural design of tall buildings
and residential floor plan design. In GENCAD, a new problem, triggering the CBR
process, was specified by giving specific details about characteristics desired of a
solution (e.g., specific values for the dimensions, use, materials, etc., required for a
tall building). In contrast, in MONICA there is no need for the user to give any spe-
cific problem requirements, since the task is more vague (and the same from one
problem-solving episode to the next): to generate new artwork that fits within a
particular style. In GENCAD, the evolutionary algorithm’s entire initial population
consisted of cases retrieved from memory, and the mutation rate was relatively low,
so most of the content and structure of most of the solutions proposed by the system
was directly contributed by the cases. In MONICA, some of the initial population of
the evolutionary algorithm is created at random, as described above, and this factor,
together with a higher mutation rate, both contribute to a faster divergence from the
initial knowledge in the form of cases as the evolutionary algorithm proceeds. Finally,
the potential to produce creative results of GENCAD’s (and therefore MONICA’s)
process model was determined to be high according to two criteria, as reported in [15].

As with GENCAD, MONICA performs transformational rather than derivational
analogy: the cases that its evolutionary algorithm adapts are past solutions (Mondrian
paintings), not traces of past problem-solving episodes. This contrasts with some of
the initial work combining CBR with evolutionary algorithms, such as [16], in which
cases represented traces of changes in the parameters of an evolutionary algorithm
operating in dynamic environments (therefore having to re-adjust itself periodically).
More similar to both GENCAD and MONICA in the way that CBR is combined with
evolutionary algorithms is the work of Louis and his collaborators, summarized in
[12], which we mentioned with respect to the experiment described in Section 3.1. In
both our work and theirs, the evolutionary algorithm operates populations that, at least
partially, consist of cases, rather than using the cases exclusively to decide how to
initialize (and later on, during execution, to modify) the evolutionary algorithm’s
parameters, as in [16].

Some previous CBR work on design domains includes Kritik [17], CADSYN [18],
CADRE [19], CYCLOPS [20], JULIA [21], and a host of other, similar projects. All
of these projects have the disadvantage that usually large amounts of domain-specific
knowledge (apart from the cases) is either needed to perform case adaptation and/or to
decide which of many generic adaptation methods to use in a given situation. This
knowledge can be represented as heuristics, constraints, hierarchies, models, or other
formalisms. Domain knowledge is again used in order to evaluate the results of case
adaptation to verify if the solution produced meets the requirements of a given set of
problem specifications. In contrast, the evolutionary approach to case adaptation does

 Case-Based Art 247

not require any domain knowledge in order to generate potential solutions to a prob-
lem. The evolutionary operators of crossover and mutation do not worry about the
semantics of the genotypes they operate on, and domain knowledge is only needed for
recognition, during the evaluation phase (which is usually much less complex than the
generative phase), of whether proposed solutions are satisfactory or not. This has the
advantage of reducing the difficulty and slowness of knowledge acquisition that many
knowledge-based (including traditional CBR) systems suffer from.

Some previous work on evolutionary algorithms applied to design tasks is col-
lected in [22] and [23]. Several chapters in these collections describe evolutionary
systems for artwork generation, and even for the imitation of specific artistic styles
(such as Escher’s). However, they all rely on the user to provide feedback at each
evolutionary cycle in order to decide which new paintings produced by evolution are
“good enough” (resemble the style of interest), and therefore should be kept in the
population to participate in the next evolutionary cycle, and which ones to discard. In
contrast, in MONICA, the desire was to have a fully autonomous method for the imi-
tation of an artistic style. The use of cases as a basis for initiating the generation of
new paintings that might fit the desired style, and the use of the same cases in order to
come up with a set of evaluation rules and to train a neural network to recognize the
style of interest, allowed us to make MONICA an autonomous system instead of
having to include the user in the reasoning cycle.

5 Results and Discussion

We have presented our ideas for producing case-based art, exemplifying them in the
domain of generating new paintings in the style of the Dutch painter Piet Mondrian.
We haven’t yet shown any of the new paintings produced by our system, MONICA,
so in Fig. 7 we display three of them in order to prove its capabilities. Most people
would probably agree that they do belong to the same artistic style as the real Mon-
drian painting shown in Fig. 1.

Fig. 7. Three Mondrian-like paintings produced by MONICA at different times

Our approach for case-based art is a hybrid one. CBR is used as the main reasoning
method, but additional artificial intelligence techniques, specifically evolutionary
algorithms, neural networks, and rule-based reasoning, are used to help perform some
of the subtasks required by CBR. These four problem-solving methods are closely
integrated in MONICA, reinforcing each other and taking advantage of their individ-
ual characteristics.

248 A. Gómez de Silva Garza and A. Zamora Lores

CBR is used as the overall reasoning method because it uses knowledge in the
form of examples, and capturing the essence of an artistic style requires the observa-
tion of multiple exemplars. An evolutionary algorithm is used for case adaptation
because it provides the capability to perform both parametric and structural adapta-
tion, and it does so without the need to explicitly acquire and code a lot of domain-
specific knowledge. The initial population of this evolutionary algorithm is based at
least partially on some of the cases representative of the artistic style of interest. We
have described and shown the results of an experiment which explores how much of
the initial population should be composed of cases (and how much should be random,
as with traditional evolutionary algorithms). The experiment shows that for
MONICA’s task, problem-solving domain, and case representation used, seeding the
initial population of the evolutionary algorithm with 60% of cases and 40% of random
individuals seems to be the best choice.

The evaluation of new solutions suggested by the evolutionary algorithm in
MONICA is performed either in a rule-based fashion or with the aid of a neural net-
work. The rule-based approach implies having to code some explicit domain knowl-
edge, specifically knowledge of how to recognize whether a painting belongs to a
given style or not in the form of rules. The rules in MONICA were generated by its
programmers based on observing stylistic patterns (and limits on them) in the Mon-
drian cases in memory. In the case of Mondrian’s style, coming up with a set of rules
that help determine how much a painting fits his style was not very difficult, but Mon-
drian’s style is quite simple and geometric. More complicated and less abstract
artistic styles might be too complex to be able to code explicitly in a rule-based fash-
ion. There might just be too many rules that can be thought of, even a large amount
of rules might not constrain the search sufficiently, and there is always the possibility
of logical contradictions and similar problems when dealing with large sets of rules.

The neural-network approach to evaluating the new paintings produced by the evo-
lutionary algorithm might be more fruitful for more complex artistic styles. In order
to train the neural network the only explicit knowledge that is required is the set of
cases that we already have. The training mechanism of the neural network can even
use the same evolutionary algorithm as the case adaptation technique (but using it to
evolve possible weight assignments for the neural network, rather than to evolve pos-
sible new paintings), as we have done. Once the neural network has been trained, the
knowledge that it implicitly contains, distributed amongst its connections, would in
theory be equivalent to the potential set of recognition rules that embody the artistic
style of interest. We have shown that this second approach to evaluation requires a
lengthy training time and that using it during the production of new paintings slows
the process down considerably. Therefore, for generating imitations of Mondrian’s
paintings, the rule-based evaluation method makes more sense; however, for more
complex artistic styles the neural approach may be the only feasible solution, and we
have shown it to work as well, despite its lower efficiency.

Fig. 8 shows our complete process model for case-based art (while the flow dia-
gram shown in Fig. 5 shows additional internal details of the evolutionary cycle that
appears in the right side of Fig. 8), with annotations on the different reasoning mo-
dalities we have used for separate subtasks. Future work will center on using the
same hybrid CBR-based approach to produce new paintings in the styles of other
human artists (painters, but perhaps also musicians and writers), not just Mondrian,

 Case-Based Art 249

and on exploring further the benefits and effects of combining CBR with other artifi-
cial intelligence techniques. It might also be worth looking into different ways of
evaluating the potential solutions produced by the evolutionary algorithm to comple-
ment the rule-based and neural-based methods, such as measuring their distance from
the cases in memory as a way to determine how closely they fit Mondrian’s style. This
exploration of alternative forms of evaluating new artwork might be necessary in order
to continue using the same process model to imitate more complicated artistic styles.

Generation of
Random
Potential
Solutions

(and
Evaluation of
Their Fitness)

Random

Selection of
Cases

(Fitness=1.0)

Initial
Population

for
Evolutionary

Algorithm

Application

of
Evolutionary

Operators

Case
Base

Evolved

Population

Evaluation of

New
Individuals in

the
Population

Termination
Condition
Reached?

Yes

No

End

Case “Retrieval” Case Adaptation

So far we have
implemented rule-based

and neural network-
based evaluation

Fig. 8. Process model for case-based art

References

1. Maher, M.L. and Pu, P. (eds.): Issues and Applications of Case-Based Reasoning in De-
sign. Lawrence Erlbaum Associates, Mahwah, New Jersey (1997)

2. Deicher, S.: Mondrian. Benedikt Taschen Verlag GmbH, Cologne, Germany (1999)
3. Bax, M.: Complete Mondrian. Lund Humphries (Ashgate Publishing), Aldershot, United

Kingdom (2001)

250 A. Gómez de Silva Garza and A. Zamora Lores

4. Kolodner, J.L. and Wills, L.: Case-Based Creative Design. Proceedings of the American
Association for Artificial Intelligence Spring Symposium on AI and Creativity. AAAI
Press, Menlo Park, California (1993)

5. Bhatta, S. and Goel, A.: Model-Based Indexing and Index Learning in Analogical Design.
Proceedings of the Seventeenth Annual Conference of the Cognitive Science Society
(CogSci-95). Lawrence Erlbaum Associates, Hillsdale, New Jersey (1995)

6. Kolodner, J.L.: Case-Based Reasoning. Morgan Kaufmann, San Mateo, California (1993)
7. Mitchell, M.: An Introduction to Genetic Algorithms (Complex Adaptive Systems Series).

MIT Press, Cambridge, Massachusetts (1998)
8. Gómez de Silva Garza, A. and Maher, M.L.: A Knowledge-Lean Structural Engineering

Design Expert System. Proceedings of the Fourth World Congress on Expert Systems.
Mexico City, Mexico, pp. 178-185 (1998)

9. Gómez de Silva Garza, A. and Maher, M.L.: An Evolutionary Approach to Case Adapta-
tion. In Althoff, K.-D., Bergmann, R., and Branting, L.K., Case-Based Reasoning Re-
search and Development: Proceedings of the Third International Conference on Case-
Based Reasoning ICCBR-99 (Lecture Notes in Computer Science Vol. 1650). Springer,
Heidelberg, Germany, pp. 162-172 (1999)

10. Gómez de Silva Garza, A. and Maher, M.L.: A Process Model for Evolutionary Design
Case Adaptation. In Gero, J.S. (ed.), Artificial Intelligence in Design ’00. Kluwer Aca-
demic Publishers, Worcester, Massachusetts, pp. 393-412 (2000)

11. Mezura-Montes, E. and Coello Coello, C.A.: Adding a Diversity Mechanism to a Simple
Evolution Strategy to Solve Constrained Optimization Problems. Proceedings of the Con-
gress on Evolutionary Computation (CEC-03). IEEE Service Center, Piscataway, New Jer-
sey, pp. 6-13 (2003)

12. Louis, S.J.: Learning from Experience: Case Injected Genetic Algorithm Design of Com-
binatorial Logic Circuits. In Parmee, I.C. (ed.), Adaptive Computing in Design and Manu-
facture V. Springer-Verlag, Berlin, Germany, pp. 295-306 (2002)

13. Clark, C.H.: Brainstorming: The Dynamic Way to Create Successful Ideas. Doubleday,
Garden City, New York (1958)

14. Gómez de Silva Garza, A. and Zamora Lores, A.: A Cognitive Evaluation of a Computer
System for Generating Mondrian-like Artwork. In Gero, J.S. (ed.), Design Computing and
Cognition ’04. Kluwer Academic Publishers, Worcester, Massachusetts, pp. 79-96 (2004)

15. Gómez de Silva Garza, A. and Maher, M.L.: GENCAD: A Hybrid Analogi-
cal/Evolutionary Model of Creative Design. In Gero, J.S. and Maher, M.L. (eds.), Compu-
tational and Cognitive Models of Creative Design V. Key Centre of Design Computing
and Cognition, University of Sydney, Australia, pp. 141-171 (2001)

16. Ramsey, C.L. and Grefenstette, J.J.: Case-Based Initialization of Genetic Algorithms. Pro-
ceedings of the Fifth International Conference of Genetic Algorithms, pp. 84-91 (1993)

17. Goel, A.K., Bhatta, S.R., and Stroulia, E.: KRITIK: An Early Case-Based Design System.
In Maher, M.L. and Pu, P. (eds.), Issues and Applications of Case-Based Reasoning in De-
sign. Lawrence Erlbaum Associates, Mahwah, New Jersey, pp. 87-132 (1997)

18. Zhang, D.M.: A Hybrid Design Process Model Using Case-Based Reasoning, Ph.D. Dis-
sertation, Department of Architectural and Design Science, University of Sydney, Austra-
lia (1994)

19. Faltings, B.: Case Reuse by Model-Based Interpretation. In Maher, M.L. and Pu, P. (eds.),
Issues and Applications of Case-Based Reasoning in Design. Lawrence Erlbaum Associ-
ates, Mahwah, New Jersey, pp. 39-60 (1997)

 Case-Based Art 251

20. Navinchandra, D.: Case-Based Reasoning in CYCLOPS, A Design Problem Solver. In
Kolodner, J. (ed.), Proceedings of Case-Based Reasoning Workshop. Morgan Kaufmann,
San Mateo, California, pp. 286-301 (1988)

21. Hinrichs, T.R.: Plausible Design Advice Through Case-Based Reasoning. In Maher, M.L.
and Pu, P. (eds), Issues and Applications of Case-Based Reasoning in Design. Lawrence
Erlbaum Associates, Mahwah, New Jersey, pp. 133-159 (1997)

22. Bentley, P. (ed.): Evolutionary Design by Computers. Morgan Kaufmann Publishers, San
Francisco, California (1999)

23. Bentley, P. and Corne, D.W. (eds.): Creative Evolutionary Systems. Morgan Kaufmann
Publishers, San Francisco, California (2002)

Supporting Conversation Variability

in COBBER Using Causal Loops�

Hector Gómez-Gauch́ıa, Belén Dı́az-Agudo,
Pedro Pablo Gómez Mart́ın, and Pedro González-Calero

Dep. Sistemas Informáticos y Programación,
Universidad Complutense de Madrid, Spain

{hector, belend, pedrop, pedro}@sip.ucm.es

Abstract. Conversational Case Based Reasoning (CCBR) is a form of
CBR where users initiate conversations with the system to solve a cer-
tain problem. Current CCBR solutions are limited to specific domains.
In the solutions we find a lack of flexibility to deal with the user’s vari-
ability: different conversation strategies depending on the user’s current
mood, computer skills, and domain expertise. We focus our framework,
COBBER, in the user’s variability during a computer session. COBBER
is a CCBR framework to build CCBR applications in a systematic way.
The framework offers, independently to the domain, models of different
conversation strategies using causal loops.

1 Introduction

Conversational Case Based Reasoning (CCBR) is a form of CBR where users
initiate problem solving conversations to solve a certain problem. The whole user
query is defined by means of the set of questions and answers provided by the
user during the conversation. The CCBR approach is one of the most successful
types of CBR and has been typically used in interactive help-desk and WWW
diagnostic systems [15].

One of the distinguishing benefits of CCBR is that users are not required
to initially provide a complete description of their problem[1]. During each it-
eration of the conversation the user is prompted with a question or a ranked
set of questions. The user answers one or more of these questions and receives
suggestions about her problem.

Most previous work in CCBR has focused on minimizing the number or the
cost of questions asked by the system. Approaches include: inferring descrip-
tion details from the user’s text, and inferring answers to redundant questions
(because they have been already implicitly answered) [2], ordering questions ac-
cording to information gain criteria [5] or recognizing the point in the dialogue
at which no more questions are required [12].

In contrast, our research has focused on the dialogue capabilities of CCBR
systems, a topic of recent research [4]. We do not consider the natural language

� Supported by the Spanish Committee of Science & Technology (TIC2002-01961).

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, pp. 252–266, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNAI

Supporting Conversation Variability in COBBER Using Causal Loops 253

processing problems associated to dialogue understanding and generation. In-
stead, our research focuses on enhancing human-machine communication, trying
to make up for components that we lose from human-to-human communication,
mainly non-verbal cues and changes in conversational strategy. These changes
happen when the user needs variations during the conversation, e.g.: domain
oriented variations, once user confidence demands shorter, faster answers; in
contrast, if the user gets lost, she needs more extended answers. Other varia-
tions are oriented to personal characteristics. For example, colorful interfaces
and shortcut keys, if the user is a computer expert and likes graphic interfaces;
or a GUI adapted for users with poor computer skills. We also allow for varia-
tions in the user’s mood when she interacts with the system. It reacts differently
if the user is experiencing trouble to understand something or, to the contrary, is
fluent, improving and happy. The lack of variations like these results in deficient
user satisfaction.

We find a lack of CCBR systems regarding that type of communication with
the user. Current systems do not take a cognitive approach (created with the
user in mind), or take into account the variability of the user: her current state
(mood, emotions) together with her skills. Our current research emerges from
the study of current CCBR systems and from the difficulties we found in our
previous CCBR work [7]:

– Developing CCBR systems have been individually created, where every new
CCBR system represents an adhoc solution for the specific problem and
domain it solves. The drawback of this way is that building a new CCBR
system is an expensive effort.

– It is common that final users abandon good interactive systems because
they get frustrated using them. Users reach cognitive dead ends when they
do not understand something and the system keeps giving more and more
information, until they get lost and abandon the system. A common solution
is to model user’s knowledge when she is working with the system. But,
often, this solution does not help because the system does not react to the
user’s sensation of being lost or frustrated. The system keeps treating her
as if everything were going smoothly. And this frustrates the user more
until she abandons the system. This situation is common in the online help
applications, where the user gets more and more frustrated as the interaction
continues in a hard wired direction.

– The CCBR is guided by questions inside the cases to organize the dialogue.
The conversation is a sequence based only on the knowledge of the user
obtained by her descriptions and answers about the domain. The system
does not know anything about the kind of user, her personal tendencies and
tastes. For the system, all the users are the same.

– There is a lack of important dynamic knowledge related to the evolution and
the outcome of the conversation. This is unfortunate, because this knowledge
would be useful because the reactions of the user to the output of the system
determines the success of the conversation.

254 H. Gómez-Gauch́ıa et al.

Our proposed framework, COBBER, has four main objectives:

– To give a flexible framework to build CCBR applications in a systematic way,
instead of starting from scratch for each new application. This objective
includes reusing knowledge and tasks by making the domain independent
from the rest of the conversation tasks and knowledge.

– To have a cognitive approach that includes user variability: her domain
knowledge, her computer skills, her personal tendencies.

– To include, throughout the session, the dynamic changes of conversation
strategies depending on the current trend of the conversation and the cur-
rent user’s state, i.e.: her domain knowledge, her mood and her personal
tendencies or tastes.

– To include a guided process: for ontology conceptualization, for case base
authoring and framework instantiation.

To develop COBBER we are working on extending jCOLIBRI 1, a framework
for developing CBR systems [3], with a CCBR model. jCOLIBRI promotes soft-
ware reuse for building CBR systems, and tries to integrate the application of
well known Software Engineering techniques with the key idea of separating the
reasoning processes (using Problem Solving Methods) from the domain model
(ontologies with general knowledge).

This paper focuses on the idea of modeling CCBR system conversation strate-
gies with causal loops from the system dynamics field, that are described in sec-
tion 3. These loops allow for changing the style and approach of the conversation
if the user does not feel confident with it. In section 2 we describe an overview
of the COBBER architecture. Section 3 describes the main ideas behind system
dynamics and how we apply them to the conversations. In section 4 we give one
example in the domain of Help-Desk systems. And in section 5 a case study in a
different domain, Intelligent Tutoring Systems, is presented, which is our current
ongoing work.

2 The COBBER Architecture

The design of the framework follows the knowledge level paradigm, where the
system has a hierarchy of tasks shown in Figure 1. The reasoners solve the
tasks that represent the main functions of the framework. Each reasoner includes
several subtasks following the AI approach, e.g.: diagnosis, prediction, planning,
to obtain its goals. The core reasoners are those that execute the CCBR cycle,
while the additional reasoners perform auxiliary tasks, e.g. there is a reasoner
used for helping to instate the framework. The control of the activation sequence
of the tasks is in the supervisor reasoner. It also eliminates the contradictions
of the local actions of the other reasoners and generates the global actions. To
improve the reusability, the domain reasoner is independent to the rest of the
reasoners. Most of the reasoners are a compound of CBR systems, although

1 http://sourceforge.net/projects/jcolibri-cbr/

Supporting Conversation Variability in COBBER Using Causal Loops 255

others use other paradigms, such as the rule based system that is used for one
of the subtasks in the supervisor reasoner. Other new reasoners may be added
or exchanged if needed. In this article we include only the core and the GUI
adaptor reasoners.

Static knowledge is modeled with ontologies following the Description Logics
paradigm, written in OWL language. Each ontology describes knowledge for a
specific aspect of the model. The dynamic knowledge is modeled by case bases,
which are instantiations of the concepts described in the ontologies. One of the
main ontologies is the CBRonto, used in the jCOLIBRI framework, with the
concepts needed for the CBR tasks themselves. There is a CCBRonto that is a
conversational extension of the CBRonto.

Cases are indexed and retrieved using a set of concepts that corresponds to
the case description and exists in the ontologies. Each reasoner has its own case
bases. There is an example in Figure 1 of the three case types used by the system
dynamics reasoner. All the cases have the same structure: a name, a description,
and a solution. The description contains the concepts used to index the case.
The similarity between cases is measured by the proximity of the concepts in
the ontology. The description may have some slots that represent a stereotypical
situation in the domain. In these slots, we apply a standard similarity.

The solution has several types of slots depending on the reasoner. For ex-
ample, the domain reasoner has suggestions for the solution; and intentional

User Profile

Reasoner

Dynamics

Reasoner

Domain

Reasoner

Supervisor

Reasoner

Core Reasoners

...Other

Reasoners

Aditional Reasoners

GUI Adaptor

Reasoner

Instantation

Wizard

Maintenance

Reasoner

...Other

Reasoners

…

.....

Ontologies

Case Bases

GUI

USR

DYR

DOR

TASKS

KNOWLEDGE

DESCRIPTION (INPUT)

SOLUTION (OUTPUT)

DESCRIPTION (INPUT)

SOLUTION (OUTPUT)

DESCRIPTION (INPUT)

SOLUTION (OUTPUT)

Worsen-degree

Current-loop

Output of User Profile R.

Loop:

continue or exchange

Urgency-degree

NumberWorseningCycles

Urgency-degree

Detailed Current Mood

Previous step description

Change to

archetype-loop X

archetype loop X

(archetype strategy)

Suggestion types

Intentional question types

GUI modifications

LOOP EXCHANGE

DECISION LOOP TRANSITION
LOOP STRATEGY

IMPLEMENTATION

Case for Diagnosis Case for prEdiction Case for planning

Fig. 1. COBBER Architecture and conversation dynamic cases

256 H. Gómez-Gauch́ıa et al.

Answers

.....

DESCRIPTION

SOLUTION (OUTPUT)

Suggestions

Questions

DESCRIPTION

SOLUTION (OUTPUT)

Suggestions

Questions

DESCRIPTION

SOLUTION (OUTPUT)

Suggestions

Questions

4. User Asks

for Reasoning

1. User asks

for a solution

3. The system

suggests things to do and

gets more information

through questions

2. Ontology

Based Retrieval

Fig. 2. User interaction model

questions to guide the user to choose one of the possible paths from the current
point of the conversation. In opposition to the standard CCBR, these questions
are used in the next reasoning cycle, where we retrieve only those cases that the
user has shown interest in by answering questions related to them.

The GUI, shown in Figure 1, is divided into three main areas and another
one is at the bottom for interactive communication with the system. The three
main areas correspond to the three main tasks: the domain, the user profile,
and the conversation dynamics reasoners. This layout of the screen makes it
possible to communicate without interference among the tasks in any moment
of the reasoning cycle. The user may run a new reasoning cycle anytime without
answering some of the questions of the reasoners. The user may chose to work
only with the domain task, working as it were a standard CCBR system.

Figure 2 shows the interactions between the user and the system. Our ap-
proach models the users session with the CCBR system as a learning process:
the user needs to learn to solve a problem, like in the case of tutoring systems.
The system, throughout the interaction with the user, incrementally gives pieces
of knowledge to build the complete solution. The system guides the user at the
three views: domain content, user characteristics and conversation strategies. To
do so we need a user model. We extend the concept of user model of tutoring
systems, that we call extended user profile, to include these features:

– Learnt Domain Model: the user’s partial view of the domain knowledge at
the starting point of the current session. This is equivalent to the user’s
model in tutoring systems.

– Personal Model: the user’s self-identified characteristics provided by herself.
• The level of domain expertise (novice, experienced, expert)
• The level of computer skills (computer novice, computer literate, com-

puter expert.)
• The personality: personal tendencies dealing with the system.

Supporting Conversation Variability in COBBER Using Causal Loops 257

3 System Dynamics Applied to the Conversation

The main goal of managing the conversation dynamics independently from the
user profile and the domain model reasoners is to be able to model the strategy
of the conversation itself and change it if something goes wrong. This will pre-
vent users from giving up the communication with the system, when it fails to
meet their needs. This is known in other works as a breakdown [10]. The users
show some breakdown symptoms that we capture through simple multiple choice
questions. We ask about typical user reactions, which appear in the following
order[10]: tiredness, intolerance, anger, confusion, irony, humor, exhaustion, un-
certainty, lack of desire to communicate. After the diagnosis of the breakdown
symptoms, we apply a conversation strategy in order to correct the failure of
communication. The strategy actions will be at a meta-level of the conversation.
These strategies create different conversation dynamics when the user plays dif-
ferent roles and assigns to the computer other roles, depending on her appraisal
of the situation.

To model the conversation evolution along the time, we represent each conver-
sation’s dynamics with a different causal loop. It is used in the System Dynamics
field [6] and in the Systems Thinking field [13]. A generic loop, applied to the
conversation, has four phases in a cycle executed in this order:

1. Actions to give some knowledge to fulfill user expectations.
2. Effects, i.e., how the action impacts on the user knowledge about the domain

and on her personal state, e.g.: mood, breakdown symptoms, etc.
3. Detection of effects in the user, through questions.
4. Corrections i. e., expected domain knowledge and conversation meta-level

corrections to keep the user in the right mood to continue working with the
system. These corrections are implemented as new actions. That takes us to
the beginning of the loop again.

Our model is based on the conclusion from careful observation of our stu-
dents’ actual behavior working in our laboratories: the breakdown symptoms
appear not only due to user’s reactions to the system’s behavior but also some
user’s basic needs activated by that behavior, e.g.: having food if she gets fired.
When the user, in general, has a system problem, she asks for a solution. But,
when she has, let say, the previous example’s basic need, she is blocked by the
fear, and cannot dare to ask somebody about a solution. There are slight varia-
tions among the classification of those unfulfilled basic human needs. The most
common is Maslows pyramid[11]. Its main categories are: physiological needs,
safety needs, belonging and love needs, esteem needs and fulfillment needs. This
classification is commonly used in other areas, such as marketing. The way to
help to overcome those needs is by influencing the user through conversation
meta-level actions:

1. To help the user to perform an introspection to find out her needs that are
active. This is done through answering some intentional questions.

258 H. Gómez-Gauch́ıa et al.

2. To encourage the user to overcome the needs. This is done with a set of
supporting suggestions specific for each need.

3. To adapt the system to the user’s needs. This is done by a set of variations
of the GUI.

In the conversation dynamics reasoner, the goal of the intentional questions
is based on the therapy theories where users relieve their problems by talk-
ing about them to somebody, like a friend. 2 These theories have been applied
successfully in several well known areas, such as the support groups of the Alco-
holic Anonymous [9]. COBBER is not a therapy framework, it just reacts to the
mood indicated by the user and provides facilities to overcome some momentary
blockages.

3.1 System Dynamics: Archetypes of Causal Loops

The main idea behind these loops is simple: the feedback generated by some
actions in a loop can reinforce or counteract other actions. A basic loop, in which
the effect of the corrections counteracts the previous effect of the actions, is called
a balancing loop. On the contrary, when the conversation goes well we want to
keep the same trend doing improvement actions, instead of corrections. This is a
reinforcing loop. To model any system we may combine several of both kinds of
loops in infinite manners. But researchers find out that all combinations follow
a set of few patterns. They are known as archetypes of causal loops. The most
accepted archetypes are those that enumerate Senge [13]: AccidentalAdversaries,
Balancing, DriftingGoals, FixesThatFail, Reinforcing, and some others. We only
describe two loops because the article’s extension restriction. The descriptions
are applied to our domain, the interaction between the user and the computer,
i.e. the conversation:

The Balancing Loop shown in Figure 3 attempts to decrease the gap between
a current state and a desired state through some actions. The positive/negative
sign means that the influence in the target is in the same/opposite direction that
the influence that received the origin. In the balancing loop we see that when the
action favors the goal, it influences positively the current state. This causes that
the gap gets smaller because its sign is negative, i.e. the opposite direction. At the
contrary, if the action worsens the goal, the gap gets bigger. This loop represents
the usual fluent conversation strategy: the actions that the user does may get
smaller or bigger gap to the desired state. It is to have enough knowledge to solve
the problem. Then, the user take actions to correct the conversation deviation
until she reaches the solution. The problem arises when the user gets tired,
disoriented, or just blocked. In that moment the conversation strategy changes
completely, and should be modeled by different loops. Let us see one of the most
complex one.

The Accidental Adversaries loop shown in Figure 4 models a very problematic
conversation strategy where the user appraises the situation as if the computer
2 In fact, the word COBBER, the framework’s name, means “friend” in australian

english.

Supporting Conversation Variability in COBBER Using Causal Loops 259

Action:
User interacts with the

CCBR system:

- Questions

- Answers

Current State:
What the user currently knows

about solving the problem

Desired State:

(User’s Goal)

To learn to solve

a problem

Gap:
unknown knowledge

needed to solve the

problem

B

-

+

+

+

Fig. 3. Balancing loop applied to a fluent conversation

A's Success:
User’s Goal:

To learnt to solve

a problem

A's Activity: The User

-

- Asks new questions

Analyzes CCBR answers

- Relates answers with his knowledge

- Answers the new CCBR questions

+

B's Activity toward B: CCBR system(B)

reasons with user´s (A) answers

to find out how to continue:

what is needed about domain knowledge,

conversation strategy and user's profile

B's Sucess: CCBR goal:

- Overall goal : Teaching to A

what he ask for.

- Partial goals: Intermediate

conversation cycles.

B's Activities towards A:
CCBR system(B) output actions:

(answers to the user’s questions)

Suggestions, Knowledge/cases

about domain

A's Activities towards B:
User interacts with the

CCBR system:

- Questions

- Answers

+

+

+

+

++

+

-

-
B

B

Rexterior

RR

Rexterior

Fig. 4. Accidental Adversaries loop applied to a conversation with difficulties

were an enemy against him. Actually, what is happening is that both, the user
and the computer, have compatible goals that are favoring each other. But,
suddenly, the user feels that the actions of the computer start going against her
goal. As a reaction to this appraisal the user performs defensive actions, which are
against the computer’s goal. This is why it is called accidental adversaries loop.
It has three reinforcing loops marked with a big “R” and two balancing loops
marked with a big “B”. Overall system growth is driven by a global reinforcing
loop. Two local reinforcing loops create balancing loops that then limit the
growth of the overall system. It is not easy to understand at first sight, but
we expect that following the dynamics along the different loops the reader may
envision how the whole archetype works.

260 H. Gómez-Gauch́ıa et al.

3.2 Description of the Conversation Dynamics Reasoner

In this section we describe how causal loops are applied in the framework and
its tasks. They are supported by three types of cases included in Figure 1. The
reasoner has three tasks which follow the CBR paradigm. Each task uses its own
case type for the reasoning process. The tasks are:

– Diagnosis : Loop exchange decision. The main slots used in this task are:

• Conversation trend (input): how the conversation is going in respect to
the overall goals of the user. This uses the output of the user profile
reasoner.

• Worsening Level (input): how bad the conversation was in the previous
cycle.

• Loop Continuity (output): it is the decision to continue in the same
causal loop or to change to another one.

• Urgency Degree (output): how urgent is to perform the change.

– Prediction: Loop Transition. Although this task is a CBR system it acts
as a fuzzy finite state automaton, where each state is a loop type and the
transition conditions are the input of the cases. The main slots used in this
task are:

• The input of the previous task.
• Current loop (input) that is active in this reasoning cycle.
• Urgency Degree (input) that is the output of previous task.
• Detailed Users Current Mood (input) that is obtained with intentional

questions to the user. This mood is used to find out the active basic
needs that are affecting the user in relation to the conversation. This is
described in the next section.

• Change to loop X (output): which loop is predicted that will improve
the current conversation state.

– Planning: Loop strategy Implementation. This task implements the conver-
sation strategy for each loop, i.e.: how to affect the conversation tendency
and how to influence the user’s state. This is done with the only tool that
the system has, the variability of the system, that has these elements:

• Suggestion types: each type is directed to a different need of the Maslow’s
classification.

• Intentional question types: to help the user to explain her appraisal of
the situation.

• GUI modifications: they are the GUI look and behavior, which affect the
user’s appraisal of the situation.

Wether the second task will be activated depends on the outcome of the first
one. If the Loop Continuity says to continue in the same loop the second and
third task will not be executed.

Supporting Conversation Variability in COBBER Using Causal Loops 261

4 An Example of COBBER Applied to the Domain of
Help-Desk

We introduce the rest of the reasoners within an example. Its domain is a Help-
Desk system that solves problems about an invoicing application created by a
local software producer, GoldenSoft.

In Figure 5 there is an example of the user’s conversation. The order of
the steps is just for explanatory purposes. Note that the conversation has been
divided into two figures to fit into the article. In the descriptions of the conversa-
tion for each reasoner, there are some jumps from one figure to another in order
to describe the evolutions of different situations in two reasoning cycles. In the
figures, the names “DomainGUI”, “C. DynaGUI” and “UserProfGUI” represent
the system output to one of the three main parts in the GUI. The same names
with the word “user:” mean the input with the user’s answer to each of the three
parts. The same names ending with an “R” indicate what are the tasks executed
by that reasoner.

Let’s start with the initial cycle of the user’s session. We describe only the
CBR retrieve task of the reasoners. The adaptation for the CBR reuse task
is mainly on the degree applied to the action slots in the cases, i.e. the level of
worsening-degree of the conversation situation or the urgency-degree of exchange
of conversation strategy. All the case bases have degrees of intensity.

The Domain Reasoner (DOR). The domain cases are indexed by the con-
cepts in the case description and other additional properties, which create hi-
erarchies of cases. One example of these additional properties is the complexity
degree, which is used to retrieve cases at the adequate complexity according to
the user profile that is currently active. In the initial cycle of the example in Fig-
ure 5 the user is novice. Therefore, when she describes her problem in a vague
way in step 4, the system retrieves the “easy” and “generic” cases. There is one
case that has those characteristics, the company-chapter, shown in step 5. The
case is found because in the ontology are synonyms of the concept enterprise.
The solution of the retrieved case is also generic and easy. If the user is not
satisfied, she needs to go deeper by answering the intentional questions in step
12 of Figure 6. Then, the domain reasoner retrieves a deeper case, the create-
company case, which narrows the scope of the problem. The case solution and
intentional questions are shown to the user and the process continues until the
user is satisfied with the solution.

The User Profile Reasoner(USR). The user answers the questions of step 1
of Figure 5 to establish the user profile used in the current cycle. The profile
reasoner retrieves the case user type NoviceExcited-A.1.3. Based on the user’s
properties, the actions of this case modify the behavior of the system: activating
an on-line help for novice users in computer skills, giving a “delicate” qualifica-
tion to the personal suggestions, using a “most-text” GUI and applying a delay
of a hundred milliseconds in order to slow down the computer responses. This
user’s type may change in each reasoning cycle when the user answers the ques-
tions of the profile reasoner, e.g.: in the step 14, the user clicks on a angry face.

262 H. Gómez-Gauch́ıa et al.

-- CYCLE 1 (INITIAL) ---

1. (UserProfGUI) Please introduce your user name and password

-- output-- To serve you better, describe with which properties you identify most today:

(profile questions)

a)- Domain expertise (novice, experienced, expert)

b)- Computer skills (low,medium,high)

c)- Mood (, , ...)
d)- personal tendencies (Speed of work, Text - graphics, mouse - control keys)

2. (user: UserProfGUI) Peter, *****, a) novice, b) low ,c) , d)slow, text, mouse

-- input--

3. (Domain GUI) Please write a description of your problem:

-- output--

4. (user: DomainGUI) I have a problem with a new enterprise

-- input--

5. (Domain R) retrieve (with description concepts and DOMAonto + cases)

(result) case ‘Company_Chapter’

Solution:(actions)

- Suggestions: Company Actions describe the possibilities of the application to

manage enterprises…"

- Next Cycle Intentional Questions:

If you describe more your query I can be more specific? Might be a problem with

some of these tasks : Create, Duplicate, Delete?

6. (UserProf. R) retrieve (with profile answers and USERonto + cases)

(result) case ‘user type noviceExcited-A.1.3’ :

Solution: (actions)

- Turn on : computer skills explanations ‘novice’ (CBR of computer help)

personal suggestions : type ‘delicate’

- For GUI: general: most-text

speed: delayed 100 ms

….

7 (C. Dyna. R) retrieve

step1: loop exchange decision(DYNAonto + cases CB1)

(result) case ‘continueBL-BD-RL-INITIAL-A.2.5’ :

Solution: (actions)

- To do:Continue

- Level: High

Step2: loop transition(DYNAonto + cases CB2 + step1)

(result) No execution because previous step result: “continue in the same loop”

Step3: loop strategy implementation

(DYNAonto + cases CB3 + current-loop)

(result) case ‘BalancingLoop-INIT’

Solution:(actions)

- Suggestions Type: { }

- Next Cycle Intentional Questions Type:

{ 1.- VerificationOfSatisfaction}

- GUI: None

Fig. 5. The conversation example of a Help-Desk system: part 1 of 2

Then, the profile reasoner retrieves the user type noviceMad-A.1.4, that includes
a solution with a loop property value “very supportive”. This property feeds the
conversation dynamics reasoner.

The Conversation Dynamics Reasoner (DYR). In the initial reasoning
cycle, the balancing loop is active. In the second reasoning cycle the loop ex-
change decision task is activated because the user has changed her mood in the
step 14 in Figure 6 and her answer, in step 13, to the VerificationOfSatisfaction-
Question has been “no”. The output, in the step 17, of this task is to change
of loop, which activates the loop transition task that decides, based on some
input of the previous task and questions to the user, that the appropriate loop
for the new conversation strategy is the Accidental Adversaries. The last task
loop strategy implementation retrieves the case with the actions to implement
that strategy: a set of suggestion types, next cycle intentional question types and
GUI variations. These types act as a strategic filter when the supervisor decides
on the global suggestions and questions to output to the user.

Supporting Conversation Variability in COBBER Using Causal Loops 263

-- CYCLE 2 ---

12. (user : DomainGUI) Yes, my problem is in the insertion of a new enterprise -- input--

13. (user: C. DynaGUI) no -- input--

14. (user: UserProfGUI) c) Mood -- input--

15. (Domain R) retrieve (with description concepts and DOMAonto + cases)

(result) case ‘Create_Company’

Solution:(actions)

- Suggestions: “This task includes the creation of files and parameters to

perform invoicing, accounting, encashment, payments, assets management. To

generate the company you need..."

- Next Cycle Intentional Questions:

Click where you have the problem: parameters, generation of files, ….”

16. (UserProf. R) retrieve (with profile answers and USERonto + cases)

(result) case ‘user type noviceMad-A.1.4’ :

Solution: (actions)

- Turn on : computer explanations ‘novice’

personal suggestions : type ‘delicate’

- For GUI: general: most-text

speed: delayed 10 sec

- Loop Properties: very supportive

17. (C. Dyna. R) step1: retrieve loop exchange decision(DYNAonto + cases CB1)

(result) case ‘changeBL-BD-RL-INITIAL-H’ :

Solution: (actions)

- To do:Change

- Level: High
Step2: retrieve loop transition(DYNAonto + cases CB2 + step1)

(result) case ‘BalancingLoopToAccidentalAdversariesLoop’

Solution: (actions)

- Change Current-Loop to AccidentalAdversariesLoop

Step3: loop strategy implementation

(DYNAonto + cases CB3 + current-loop)

(result) case AccidentalAdversariesLoop

Solution:(actions)

- Suggestions Type: { 1.- SafetyNeed (2) , 2.- RecognitionNeed(1)

3.- RealizationOfPotentialsNeed(1)}

- Next Cycle Intentional Questions Type:

{ 1.- SafetyNeed(2) , 2.- RealizationOfPotentialsNeed (1)

3.- ProblemSolved(1)}

- GUI: MoreGraphics, MoreBrightColours, MoreSimplifiedInformation

18. (Supervi . R) RuleSystemTMS (output of previous reasoners + CB + SUPEonto)

(result) Solution:(actions)

- global suggestions : NormalGraphics(GUR)

- activated rules:

Rules for suggestions: No more than 2 of SafetyNeed type

Rules for contradictions:
<for GUI> If MoreGraphics(loop) & mostText(USR) then

choose NormalGraphics(GUR)

Fig. 6. The conversation example of a Help-Desk system: part 2 of 2

The Supervisor Reasoner(SUR). This task has two main functions: to acti-
vate the right reasoner at the right time and to solve the conflicting local actions
proposed by the reasoners in order to obtain a set of coherent global actions. The
first function is the control of the reasoning flow. In a cycle some steps should
not be performed, like the loop transition of the conversation dynamics reasoner
in step 7 of Figure 5. Therefore the supervisor skips that activation. The conflict
resolution is implemented as a Truth Maintenance System (TMS) with a rule
base that decides between the conflicting actions. Some rules are shown in step
18 of Figure 6. The rule base includes filtering rules, like the rule shown in the
same figure, that limits the number of suggestions of the same kind to avoid
boring the user.

The GUI Adaptor Reasoner (GUR). The GUI has a set of variability
features, which are used to adapt to the user’s types, personal preferences, and
moods. These features are adapted according to the actions proposed by the
other reasoners. In the example of Figure 5 the answers to section “d)” in step 2
are processed by this reasoner to adapt to the user personal tendencies. The

264 H. Gómez-Gauch́ıa et al.

“for GUI” actions of the case in steps 6 and 16 of the user profile reasoner
are processed by the GUI adaptor reasoner as well. It acts again with the loop
strategy implementation in step 17. And, again, the GUI adaptor is activated in
step 18, when the supervisor decides GUI changes.

5 Ongoing Work: Javy

In parallel to COBBER and jCOLIBRI, we are working on JV2M, an Intelligent
Tutoring System that aims to teach the Java source code compilation process3.
In order to understand the underlying mechanisms, pupils need to know the
Java Virtual Machine (JVM) structure and instructions, because the generated
object code must be fed to it.

Instead of a boring application, JV2M immerses the student in a 3D vir-
tual environment that represents a metaphorical JVM. This way, pupils are not
required to write the resulting object code, but execute it in that JVM manipu-
lating the virtual objects. We use COBBER to enrich the previous Javy-student
interaction providing additional knowledge about the personality and the mood
of the user.

The recreated world is also inhabited by Javy, an animated pedagogical
agent ([8]) that monitors the student while she is solving the exercises. If the
pupil makes a mistake, Javy offers a hint. The user can also ask him for help
when she gets stuck. In that case, a conversation starts between Javy and the
student in a similar way to the example previously shown in the help desk
domain.

Conversation is controlled using a case base, with cases arranged as was
described in section 2. Specifically, we have a case for each concept of the domain
being taught, and for each identified misconception students can suffer. Apart of
the explanation to be provided to the user, each case has also a set of intentional
questions that are used to drive the conversation to more specific cases. Usually,
CCBR systems ask the user to write a first description of her problem using
natural language, which is used as an initial case description. However Javy
doesn’t let the user introduce any text, because the first case description is
inferred from the context, avoiding the user’s having to manually specify her
problem. How this is performed is out of the scope of this paper.

As an example of the current interaction, let suppose the user is solving an
exercise where she must run a JVM instruction, concretely the “imul”. She gets
stuck and asks Javy for help. A fragment of the conversation follows:

– Javy: This instruction is used to multiply two numbers. Both values are
retrieved from the operand stack, and the result is left in the same place.
Does it solve your problem? You can also be wondering what the operand
stack is, or the way you can get one operand from it.

– User: Could you please explain what the operand stack is?

3 http://gaia.sip.ucm.es/grupo/projects/javy/index.html

Supporting Conversation Variability in COBBER Using Causal Loops 265

– Javy: operand stack is the stack where temporary results of arithmetic logic
expressions are stored. It is also used to keep parameters in the method
invocation or to deposit the return values of some JVM instructions.
Now, what do you want to know? You can have problems about what a stack
or an operand is, or about how you can manipulate the operand stack in the
virtual environment.

The explanations given by Javy are retrieved from the cases solution in the
case base. Intentional questions are also extracted from each case. The student
does not write free natural language because the system proposes a set of alter-
natives and the graphical user interface only lets the user pick one of them.

6 Conclusions

We identified several difficulties to build CCBR systems. To overcome them we
propose a framework, named COBBER, that uses a cognitive approach. Cog-
nition refers to mental activity including thinking, remembering, learning, and
using language. When we apply a cognitive approach to learning, we focus on
the understanding of information and concepts. We centered in two aspects of
the criticism to cognitive approach [14] that may be considered in the CCBR
systems too. The first one is the emotion challenge: cognitive science neglects the
important role of emotions in human thinking and working. And the second one
is the dynamic systems challenge: The mind is a dynamic system, not a compu-
tational system. We overcame these critics by the idea that the system should
react to the variability of the user by the dynamic adaptation, throughout the
session, using the variability of the system:

– For the user conversation strategies: modeling them with causal loops.
– For the user mood: influencing her with intentional questions, intentional

suggestions, and GUI variations.
– For the user tendencies or tastes: adapting the system to them with GUI

variations.
– For the user domain knowledge query: obtaining the domain answers to user

questions with a basic CCBR cycle.
– For the user domain knowledge expertise: adapting the level of complexity

of the domain knowledge presentation.
– For the user computer skills: simplifying the GUI and with an additional

computer help subsystem.

References

1. D. W. Aha and L. A. Breslow. Refining conversational case libraries. In Interna-
tional Conference on CBR (ICCBR 97). Springer-Verlag, 1997.

2. D. W. Aha, T. Maney, and L. A. Breslow. Supporting dialogue inferencing in
conversational cbr. In B. Smyth and P. Cunningham, editors, Advances in Case-
Based Reasoning – (EWCBR’98). Springer-Verlag, 1998.

266 H. Gómez-Gauch́ıa et al.

3. J. Bello, P. González-Calero, and B. Dı́az-Agudo. Jcolibri: An object-oriented
framework for building cbr systems. In ECCBR, pages 32–46, 2004.

4. K. Branting, J. C. Lester, and B. W. Mott. Dialogue management for conversa-
tional case-based reasoning. In ECCBR, pages 77–90, 2004.

5. M. Doyle and P. Cunningham. A dynamic approach to reducing dialog in on-line
decision guides. In European Workshop on CBR (EWCBR 2000). Springer-Verlag,
2000.

6. J. Forrester. Industrial Dynamics. MIT Press, 1956.
7. H. Gómez-Gauch́ıa, B. Dı́az-Agudo, and P. A. González-Calero. A case study of

structure processing to generate a case base. In ECCBR, pages 587–600, 2004.
8. W. L. Johnson, J. Rickel, R. Stiles, and A. Munro. Integrating pedagogical

agents into virtual environments. Presence: Teleoperators & Virtual Environments,
7(6):523–546, December 1998.

9. K. Makela, I. Arminen, K. Bloomfield, and I. E.-S. et al. Alcoholics Anonymous
As a Mutual-Help Movement: A Study in Eight Societies. University of Wisconsin
Press, 1996.

10. T. D. Martinovski, B. Breakdown in human-machine interaction: the error is the
clue. In ISCA tutorial and research workshop on Error handling in dialogue sys-
tems, pages 11–16, August 2003.

11. A. Maslow. Motivation and personality. New York: Harper and Row, 1970.
12. D. McSherry. Increasing dialogue efficiency in cbr without loss of solution quality.

In International Joint Conference on Artificial Intelligence (IJCAI). Acapulco,
Mexico, 2001.

13. P. M. Senge. The Fifth Discipline: The Art and Practice of the Learning Organi-
zation. Currency Doubleday, 1990.

14. P. Thagard. Cognitive science. The Stanford Encyclopedia of Philosophy (Summer
2004 Edition).

15. I. Watson. Applying case-based reasoning: Techniques for enterprise systems. Mor-
gan Kaufmann, San Francisco, 1997.

Opportunities for CBR in Learning by Doing�

Pedro Pablo Gómez-Mart́ın, Marco Antonio Gómez-Mart́ın,
Belén Dı́az-Agudo, and Pedro A. González-Calero

Dep. Sistemas Informáticos y Programación,
Universidad Complutense de Madrid, Spain
{pedrop,marcoa,belend,pedro}@sip.ucm.es

Abstract. In this paper we partially describe JV2M, a metaphorical sim-
ulation of the Java Virtual Machine where students can learn Java lan-
guage compilation and reinforce object-oriented programming concepts.
This description is contextualised within an abstract categorization of
learning-by-doing tutoring systems intended to identify different activi-
ties where CBR can be applied. We concentrate on one of those activities,
concretely on the automatic generation of new exercises through retrieval
and adaptation of seed cases representing prototypical examples.

1 Introduction

Helping students with learning is a complex, demanding, and often frustrating
task. “Learning by doing” or “active learning” is a model of teaching/learning
that means engaging all of our senses and attention into discovering something
new. It is the counterpart of the traditional educational model or “passive learn-
ing” consisting of an instructor lecturing to a big number of students. Research
has long shown that people retain information longer when they have explored
it with multiple senses. There is an old Chinese proverb that says: “Tell me - I
forget. Show me - I remember. Let me do - I understand.”

Computer interactive knowledge-based learning environments are considered
a good solution to instruct students in those domains where “learning by doing”
is the best methodology of teaching. Students are faced with more and more
complex problems, tailored to their needs depending on their increasing knowl-
edge. Note that learning with a computer does not necessarily imply an active
learning. Our goal is that when a student sits in front of a screen, she does not
automatically assume a passive intellectual stance.

We are developing one of such learning environments, called JV2M [5]. Stu-
dents can learn the Java Virtual Machine (JVM) structure [10] and Java language
compilation. To avoid passive attitudes, the system presents a metaphorical 3D
virtual environment which simulates the JVM. The user is symbolized as an
avatar which interacts with the virtual objects. An animated pedagogical agent
called Javy (JavA taught VirtuallY) also inhabits this virtual environment, and
is able to monitor the student whilst she is solving a problem, with the purpose

� Supported by the Spanish Committee of Science & Technology (TIC2002-01961).

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, pp. 267–281, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNAI

268 P.P. Gómez-Mart́ın et al.

of detecting errors she makes in order to give her advice or guidance. He can even
solve the exercise by himself giving explanation at each step. Figure 3 shows a
screenshot of the system1.

Case-based reasoning (CBR) techniques fit in many ways in those systems
that conform to the active learning methodology. For example, recovering previ-
ously resolved exercises in order to show them as examples is a marvellous way of
feedback. Also, CBR can be used to decide which exercise to practise next. De-
pending on the taught domain, different degrees of additional knowledge should
be incorporated in the traditional CBR cycle.

In the next section we present our vision of the learning by doing approach of
teaching, and we identify the points where CBR techniques can fit. Once the big
picture has been described, section 3 focuses on our system, JV2M, describing
one of the CBR uses, the next exercise selection. Section 4 finishes with some
conclusions and future work.

2 Learning by Doing and CBR

Learning-by-doing is an experience-based style of learning where the student is
aware what she needs to learn during the resolution of a problem.

We claim that trying to learn skills, abilities or creativity in a comfortable
passive position is absolutely useless and ineffective. The learning-by-doing ap-
proach attacks this problem giving students exercises that are considered a valu-
able learning experience. Each problem is selected for a purpose, putting into
practise some concepts of the taught domain. In order to be effective, prob-
lems selection must be adequate, following a pedagogical direction. A balance
is needed between the exercise difficulty and the student knowledge in order to
neither overestimate nor bore her.

Our utilisation of the learning-by-doing model unfolds in a cycle, shown in
Figure 1. It consists of five steps:

1. Selection of concepts to practise: concepts of the taught domain are chosen.
As said before, if we want a successful learning, this selection cannot be
arbitrary, but depending on the current student knowledge. This selection
opens the door for pedagogical decisions. For example, the so called “learning
by discover” methodology can be put into practise if always some unknown
concept is chosen in order to force the students to investigate and build their
own knowledge.

2. Exercise selection: using the previous selected concepts, the student is pro-
vided with an exercise to put them into practise.

3. Exercise resolution: the pupil solves (or tries to solve) the problem she faces.
4. Solution verification: the student answer is tested (compared with the system

solution) in order to evaluate its correctness.
5. Feedback: using the conclusions reached in the previous step, advices are

provided to the student. The tutor can give explanations about the mistakes
made or even supply theoretical knowledge when needed.

1 http://gaia.sip.ucm.es/grupo/projects/javy/index.html

Opportunities for CBR in Learning by Doing 269

Concepts

selection

Exercise

selection

Solution

verification

User model

Feedback

Concepts Errors CorrectionsExercise

Student

Solution

Previous

Cases

Background

Knowledge

Learnt
case

R
E

M
E

M
B

E
R

New
Case

Retrieved
case

RETRIEVE

Repaired
case

REVISE

Solved
case

R
E

U
S

E

Problem

New
case

Previous

Cases

Background

Knowledge

Learnt
case

R
E

M
E

M
B

E
R

New
Case

Retrieved
case

RETRIEVE

Repaired
case

REVISE

Solved
case

R
E

U
S

E

Problem

New
case

Previous

Cases

Background

Knowledge

Learnt
case

R
E

M
E

M
B

E
R

New
Case

Retrieved
case

RETRIEVE

Repaired
case

REVISE

Solved
case

R
E

U
S

E

Problem

New
case

Previous

Cases

Background

Knowledge

Learnt
case

R
E

M
E

M
B

E
R

New
Case

Retrieved
case

RETRIEVE

Repaired
case

REVISE

Solved
case

R
E

U
S

E

Problem

New
case

Learning By Doing Cycle

Fig. 1. Workflow between stages

This cycle is valid for both traditional teaching system, driven by human tu-
tors, and for computer stand-alone application where the teacher is an interactive
program, such as the Intelligent Tutoring Systems (ITS) [14].

When the student solves the exercise using a computer, the three last stages
usually blend. As the system often provides contextualised help, it needs to test
continuously the partial solution (stage 4) and to provide feedback before the
student entirely finishes her answer (stage 5).

2.1 Where Does CBR Fit in a Learning by Doing Model?

The system must participate in four of the five previous steps (all except the third
one). When developing a learning-by-doing ITS, each step can be considered an
independent problem to be solved. Figure 1 sumarises this idea, and shows the
inputs and outputs of each step.

We claim that in some domains each step in Figure 1 can be solved using
CBR techniques:

1. Selection of concepts to practise: the common approach ([2] [14]) is to have a
hierarchy of concepts classified by the difficulty level, and organized in some
kind of chapters and sections. The next concepts to practise are chosen de-
pending on the user model and the previously visited sections. We believe
that this task can also be done using a simple CBR cycle. Case descriptions
would contain partial user models and the proposed concepts as the solu-
tions. Learning should be the main benefit of using CBR: new cases can be
added, taking into account the successes and failures of past pupils trying
to overcome the chosen concepts.

2. Exercise selection: using the chosen concepts to learn, an exercise must be
proposed. Depending on the interaction between this stage and the previous
one, more information can be used. For example, not only the concepts to
practise can be provided, but also the concepts that should not be used

270 P.P. Gómez-Mart́ın et al.

at all because the student has no idea about them yet. This task can be
performed using a CBR approach [14]. If the adaptation capacity is limited
(or there is no adaptation at all), the system will demand a big amount of
exercises (many of them quite similar), in order to let the user practise the
same concept more than once without repeating the same exercise. On the
other hand, the system will require fewer but archetypical exercises if it can
modify them by itself, creating variations of exercises to avoid user solving
the same problem over and over again.

CBR cycle has a problem description as its input, and a solution as
output. Curiously, in this stage the output case is in fact a problem, but one
that the student (instead the system) has to solve.

This paper is dedicated specially to this stage, and how we are putting
it into practise in our system, JV2M.

3. Solution verification: once the student has proposed a solution, the system
must test its correctness. In some domains, an expert system can be built to
correct the answer of the student. This idea is used, for example, in Andes
[4], a model tracing tutor for teaching quantitative physics. Other areas are
more complex to formalize and require the existence of a correct solution
to be compared with the student’s one. If a CBR approach was used in
the previous stage, the right solution could be attached to the exercise. If
adaptability was done, both components (exercise and solution) should have
been changed.

Another choice is to have some CBR subsystem which constructs a valid
solution (instead of holding it on the case), and then compare the student
answer and the system one.

4. Feedback: if it want to be educative, the system should be more communica-
tive than a mere “It’s Ok” or a “You’re wrong”. We need the previous step
to give us more information about the errors in order to provide some useful
help.

One alternative is what it is called “Case Based Teaching” [15]. CBR
techniques are used to provide the student with previously resolved exercises
related in some way to the current one, so she is supposed to realise her own
mistakes by herself.

Another option is to store common problems in a case base using the
conversational CBR approach [1]. When a new problem is detected, the
system starts a conversation with the pupil until some tip is provided. An
improvement to this idea would be to automatically answer some of the
questions using the current context of the exercise to focus the conversation.
Ideally the system could retrieve a case (containing the feedback) without
need a conversation with the student at all.

In this paper we are considering the role that CBR plays within step 2 of
the learning by doing cycle (Figure 1), i.e., the election or creation of the next
exercise to practise.

Opportunities for CBR in Learning by Doing 271

3 JV2M: A Case-Based Intelligent Tutoring System

In this section, we will describe the way we are using Knowledge Intensive CBR
to select the next exercise presented to the user. A set of concepts to practise
is supposed to have been chosen, and at this stage we select the exercise that
matches them.

Case descriptions include the concepts of the discipline which each exercise
(case) contains. Case solutions store the exercises themselves. Concretely, in
JV2M they consist on Java compilation exercises that the student must resolve.

The simplest CBR approach would represent cases as plain source code. Un-
fortunately, adaptation of the recovered exercises would become quite difficult.

Our Knowledge Intensive approach to CBR benefits from the use of an on-
tology with general knowledge about the domain of compiling Java programs.
We claim that the use of additional domain knowledge avoids the use of a big
exercise repository, and eases adaptation based on deleting some elements, or
substituting them by other related ones.

As we will describe in section 3.5, adaptation benefits from the structured
representation of the exercises and from the relations among the individuals
through the domain knowledge ontology.

For example, suppose I want to retrieve an exercise that contains multiplica-
tive expressions. The system could retrieve the example shown in Figure 2, which
has no multiplicative expression but an additive one and an “if” instruction.
Adaptation would remove the “if” structure –task a bit dirty and error prone
if it was performed directly over the plain text– and substitute the “a + 3” ex-
pression by other one using the multiplicative operator: “a * 3”. Afterwards,
operands could also be replaced: “a * a”, “5 * 3”, ...

We will now focus in the exercise selection, the second stage of Figure 1.
Before going into the details, we will briefly describe JV2M in order to clarify
the context.

3.1 JV2M

JV2M is a learning by doing approach to teach the compilation of object-oriented
languages, in particular teaching Java compilation. It includes a metaphorical
simulation of the Java Virtual Machine (JVM), where compilation scenarios
are explored. The learning environment is complemented with a pedagogical
agent, a human-like figure that assists the student in the learning process ([8] [9]
[12]). This agent, called Javy, monitors the user providing help when needed.
Interaction is similar to a 3D-graphical adventure game that tries to guarantee
student motivation. Figure 3 shows a screen shot of the system running, with
the user in the middle of the screen and Javy in the right down corner.

Actually, real-world compilers need to understand two languages: the source
language and the object language. In our domain they are Java and the JVM
‘assembler instructions’ respectively. Despite the fact that we are assuming our
students know how to program in Java, we don’t want to force them to under-
stand the JVM in advance. To overcome this limitation, JV2M actually teaches
simultaneously both things: Java compilation and JVM structure.

272 P.P. Gómez-Mart́ın et al.

public class IfExample {
public static void main (S t r ing params) {

int a ;
a = 12 ;
i f (a < 5) {

int c ;
c = a + 3 ;

}
}

}

Fig. 2. Retrieved case

Fig. 3. Student is examining the Java source of the current exercise

It could be argued that learning how to compile Java code is not a very
useful task. But the JVM is in fact an advanced stack machine, as the major-
ity of the theoretical machines commonly used during compiler courses. It also
possesses some high level instructions referring to some basic concepts of the
object-oriented programming (OOP), for example dynamic linking. So we claim
that teaching these instructions can reinforce the OOP ideas.

During the first interactions with the system, the user is presented with both
source and object code. The user needs only worry about executing the compiled
code provided in the metaphorical JVM shown in the virtual environment. Nev-
ertheless, the student is supposed to pay attention to both of the codes and to
understand their relationships because she will be asked to compile the source
code by herself (without seeing any object code) in the subsequent exercises.

Interaction in the virtual environment is performed using four actions im-
ported from the entertainment software arena: “look at”, “take”, “use” and
“use with”. Also, an inventory is available to temporary store objects. The vir-

Opportunities for CBR in Learning by Doing 273

Fig. 4. Java compilation elements

tual world is populated with other characters (apart from Javy and the user’s
avatar) that represent basic structures of a real JVM. When talking to them
and interchanging objects, basic actions (“microinstructions”) are executed in
the underlying JVM simulation.

3.2 Domain Knowledge

The domain ontology contains knowledge related with the Java language com-
pilation and it is partially based on the Java Language Specification. Figure 4
partially shows this ontology. It has been designed using Protégé 3.0 and formal-
ized in OWL2. Concretely we are using OWL-DL sublanguage because we need
both the maximum expressiveness and automatic reasoning with that knowledge,
so computational completeness is required.

2 http://www.w3.org/TR/owl-features/

274 P.P. Gómez-Mart́ın et al.

Our first impulse in creating the ontology was to mimic the Java language
grammar. We soon realised that this would have been an error. Generally speak-
ing, grammars need a big amount of non-terminal symbols, becoming quite com-
plex. If we had used this option, our ontology would have been populated with
a lot of useless concepts as “FieldModifierOptional” or “MethodHeader”.

Actually, grammars are just a tool used by compilers to generate the syntactic
tree. This tree is then enriched in order to create the semantic tree, becoming a
key aspect in the compilation process. So it become clear that a more realistic
approach was to use concepts based on the syntactic tree instead of the grammar,
because compilation process depends closer on them.

3.3 The Case Base

Each case represents a Java compilation exercise, i.e., a simple piece of code that
the student has to learn to compile.

Lets suppose the system is at the beginning of the second stage of Figure 1. At
this point, it has a set of concepts of the discipline that the student must learn.

Each case of the case base of exercises is composed of:

– Description: concepts that it puts into practise, and
– Solution: one or more exercises the student must resolve to learn the con-

cepts of the case description.

Each Java exercise is not stored as plain source code. Instead we represent
it as a structured description in OWL (individual) that is classified and indexed
by the ontology concepts. Figure 5 partially shows the instance graph used to
represent the exercise of Figure 2 (case solution).

The case description is represented as a simple instance that is classified
below the domain concepts that the exercise help to learn (or practise): “if”
expression, variables, additive expression, and assignment. These index concepts
are shown in Figure 6 and belong to the ontology shown in Figure 4.

Note that the program of the exercise shown in Figure 2 is quite useless. For-
tunately, our domain does not need to retrieve source code that does something
useful. It is only required to compile. This loosening in the exercises restrictions
opens the door to a more sophisticated adaptation process. Nevertheless, it is
still unclear if this fact has some kind of repercussion in the pedagogical aspects
of the application.

Next, we describe the CBR processes over this case base. The goal is to
choose the best exercise to be practised next.

3.4 Case Retrieval

As we have described, each case represents a compilation exercise and it is in-
dexed by the domain concepts that the exercise practises.

The query to the CBR system is defined by:

– A set of concepts Ci that the user needs to learn (or practise) in the next
exercise.

Opportunities for CBR in Learning by Doing 275

…

lefthand

has__condition

“main”
has_name

“ int”

has_description

Classi

“ object”
has_name

ClassJ

inherits_from

has_method Methodk

has_parameter

has_code

has_localvar

has_type

has_name

parametern

has_Instrucion

…

…
has_Yescode

has_Instrucion

Assignement

_Instkhas_type
“ int”

has_namer

righthand

“a”

“C”

Expr

3
operand1

operand2

operator

AddExpression

Instruction_SequenceJ

has_instrucion

If_Instruction

Assignement

_Instructionv
Before

LocalVarA

LocalVarC

c
a

se
_solut i on

CaseiDescription

Casei

Instruction_Sequencek

has_localvar

Fig. 5. Instance Graph to represent the if example of Figure 2

– A set of concepts Lj with which the user is already familiarized. The set
of Lj are extracted from the user model representation whose description is
out of the scope of this paper.

– A set of concepts Nk that should not be practised in the next exercise. The
pedagogical module (first step of Figure 1) obtains this set of Nk mainly
describing the concepts that the user does not know yet.

The goal of the retrieval task is finding an exercise to help learning concepts
Ci without including any concept Nk.

The representational approach to case retrieval [11] assigns similarity mean-
ing to the path joining two individuals in a case organization structure or in the
domain terminology (note we use rich domain taxonomies). With this approach
A is more similar to B than C to B iff A is closer to B than C is to B.

In this system we have applied this approach using the subsumption links
in the domain ontology to define the distance between two individuals. In fact,

276 P.P. Gómez-Mart́ın et al.

we are using retrieval operations based on Description Logics instance recogni-
tion that have been proposed in the literature [7,13,3]. Retrieval is defined as a
classification process where the queries are represented as DL instances.

Given a query individual q the retrieval process has two steps:

1. Filtering
(a) R = set of instances that belong to the conjunction concept

(and[C1, . . . , Cn]). This process will get instances belonging to all Ci

concepts.
(b) If R is empty, find the set of most specific concepts [C1, . . . , Cn], where

q is an instance of all concepts in this set, and add their instances to R.
This process will get instances belonging to some Ci concepts.

2. Selection
(a) The retrieved individuals from R will be ranked by a similarity function

and the most similar will be returned. The similarity measure will take
into account the Lj and Nk concepts.

Note that, even in the best situation (1.a.), adaptation can still be required
because the retrieved case could include Nk concepts to be removed. Besides, the
pedagogical module can ask for variations of a certain retrieved exercise if the
student has already solved it, but she needs more practice of the same concepts.

Figure 6 shows an example where:

– C1 = Multiplication
– L1 = Local Variables, L2 = Assignment Instruction.
– U1 = If Instruction, U2 = While Instruction.

Compilation_Element

Mult_Expr

Add_Expr

Binary_Expression

Local_Variable

Instruction

Assignement_Inst

If_Instruction

CaseDescriptioni

Variable

query

Fig. 6. Case Adaptation Example

Opportunities for CBR in Learning by Doing 277

3.5 Case Adaptation

Case adaptation plays a fundamental role in the ability of CBR systems to solve
new problems. Case adaptation is a knowledge-intensive task and most CBR
systems have traditionally relied on an enormous amount of built-in adaptation
knowledge in the form of adaptation rules.

Our knowledge intensive approach to CBR relies on the explicit representa-
tion of general terminological knowledge about the domain. That way, certain
adaptation knowledge is explicitly represented in the domain knowledge taxon-
omy, as it indicates, for instance, that individuals that are close in the taxonomy
are eventually interchangeable.

In [6] we formalize an adaptation scheme based mainly on deletions and
substitutions, where:

– Instead of having rules, dependencies within a case are explicitly represented
in order to guide the adaptation.

– The search for substitutes is guided by a set of memory instructions (a path
of relations). The system developer could include some of them, but the rest
are learned by the system.

In the ongoing example we distinguish two situations requiring adaptation:

1. Adaptation due to the query, i.e., the retrieved case does not teach all the
required concepts, or teaches some concepts that are too advanced. We need
to apply the deletion and/or substitution adaptation operators. After adap-
tation the case will teach a different set of concepts (asked by the query but
not included in the retrieved case).

2. Adaptation to generate a variation to practise certain concepts. The retrieved
case teaches all the required concepts, but we have to change the arguments
and operands.

We propose an adaptation mechanism as a process that propagates changes
from description to solution items, as follows:

1. The list L = LR ∪ LS of items in the solution that need to be adapted is
obtained. These items are:
– LR: concepts that depend on a feature of the case description which does

not appear in the query.
– LS : concepts that have been substituted by a different value in the query.

2. Every item in L is deleted or substituted by a proper new item. First, those
that only depend on values from the case description, then, those that depend
on other items of the solution that have already been adapted. Of course,
circularity is not allowed in the dependency relation.

In the example domain there are clear implicit dependencies, for instance,
between the declaration of a variable, a parameter or an attribute –static or
dynamic– and its uses.

Figure 6 shows an example where the query asks for an exercise to practise
multiplication. Lets assume that the best retrieved case is Casei (sketched in
Figure 5. To obtain the list L of items in the solution that need to be adapted:

278 P.P. Gómez-Mart́ın et al.

…

lefthand

“ int”

has_localvar

has_type

has_name

has_Instrucion

Assignement

_Instkhas_type
“ int”

has_namer

righthand

“a”

“C”

Expr

3
operand1

operand2

operator

AddExpression

Instruction_SequenceJ

has_instrucionAssignement

_Instructionv

LocalVarA

LocalVarC

has_localvar

Fig. 7. Case Adaptation Example (Delete If)

public class IfExample {
public static void main (S t r ing params) {

int c ;
c = 5 ∗ 3 ;

}
}

Fig. 8. Retrieved case

1. Find items to be removed: those items depending on the If Instruction con-
cept because it appears in the retrieved case and belong to the unknown
concepts (U1).
LR = {If Instruction}

2. Find items to be substituted: those items appearing in the retrieved case
and not in the query and all the items depending on these ones.
LS ={Add Expression}

Which concepts are included in LR and which are in LS depends on the
query.

Remove Example. Given LR = {If Instruction} we find the dependent items.
In the “if” instruction there are clear dependencies with its condition and the
item that aggregates its “yes” code (Instruction Sequence K) (see Figure 5).

The inner code (int c; c = a + 3;) will be related to the outer code block
(Instruction Sequence J). Result is shown in Figure 7.

Substitution Example. Giving LS ={Add Expression} we are substituting
Add Expression by Multiplication Expression that is required in the query (see
Figure 6). Using the domain ontology we can know that these items are similar.

Opportunities for CBR in Learning by Doing 279

These changes are due to the query, i.e., the retrieved case does not teach all
the required concepts, or teaches some too advanced concepts.

As we described, there are other type of adaptation to generate a variation
to practise certain concepts. Now that the adapted case teaches all the required
concepts we could change the operands. For instance changing the constant 3
for another one.

The final result exercise is shown in Figure 8.

3.6 Revise Solution

Previous sections have described the way we choose the next exercise to practise.
Once the complete exercise has been decided, it should be revised in order for
the system to be sure about its correctness, in other words, whether the adapted
exercise has a solution.

Fortunately, this step becomes quite easy in our domain, because an “expert
system” exists which is able to solve all the valid exercises: the Java compiler,
javac. A tool is needed to translate back the exercise structure modelled in
OWL to plain source code to feed the compiler3. The same code that has been
tested with javac will be shown to the user in the virtual environment.

4 Conclusions and Future Work

In this paper we have described our vision of active learning systems, and we
have identified some points where CBR techniques match on them.

One of such systems, JV2M, has also been presented. We have detailed how
knowledge intensive CBR is applied to it in one of the identified stages of the
“learning by doing” cycle: the exercise selection.

The “source code” used throughout the system has only one restriction: it
must be correct. The system does not need to propose exercises that execute
useful algorithms while they compile without problems. That relaxes the re-
strictions for the CBR adaptation task allowing us attempt more sophisticated
changes.

We plan analyse deeply the use of CBR in the other stages of the active
learning cycle. We envision a first step also developed with knowledge intensive
CBR, where the additional knowledge will be composed of both pedagogical
knowledge and domain curriculum knowledge.

Regarding to the selection of the exercise described in this paper, we will
analyse different alternatives to incorporate some kind of difficulty level. Exercise
selection currently depends on the concepts to practise but no complexity level
for each of them is provided. More work is needed in this area.

The next step in this work is addressing the evaluation of the student solution.
We are currently considering some alternatives that will be soon analysed.

3 We are currently working in this tool.

280 P.P. Gómez-Mart́ın et al.

Some research is still needed in the feedback phase. We think it is promising
the use of conversational CBR (CCBR) techniques in order to start a conversa-
tion with the user when she gets stuck. This conversation can be contextualised
using the user model.

References

1. D. W. Aha, L. Breslow, and H. Muñoz-Avila. Conversational Case-Based Reason-
ing. Applied Intelligence, 14(1):9–32, 2001.

2. P. Brusilovsky, E. W. Schwarz, and G. Weber. Elm-art: An Intelligent Tutoring
System on World Wide Web. In C. Frasson, G. Gauthier, and A. Lesgold, editors,
Intelligent Tutoring Systems, volume 1086 of Lecture Notes in Computer Science,
pages 261–269. Springer, 1996.

3. B. Dı́az-Agudo and P. A. González-Calero. A declarative similarity framework for
knowledge intensive CBR. In Procs. of the (ICCBR 2001). Springer-Verlag, 2001.

4. A. S. Gertner and K. VanLehn. Andes: A coached problem solving environment
for physics. In G. Gauthier, C. Frasson, and K. VanLehn, editors, Intelligent
Tutoring Systems, volume 1839 of Lecture Notes in Computer Science, pages 133–
142. Springer, 2000.

5. P. P. Gómez-Mart́ın, M. A. Gómez-Mart́ın, and P. A. González-Calero. Javy: Vir-
tual Environment for Case-Based Teaching of Java Virtual Machine. In V. Palade,
R. J. Howlett, and L. C. Jain, editors, KES, volume 2773 of Lecture Notes in
Computer Science, pages 906–913. Springer, 2003.

6. P. A. González-Calero, M. Gómez-Albarrán, and B. Dı́az-Agudo. A substitution-
based adaptation model. In Challenges for Case-Based Reasoning - Proc. of the
ICCBR’99 Workshops. University of Kaiserslautern, 1999.

7. G. Kamp. Using Description Logics for Knowledge Intensive Case-Based Reason-
ing. In B. Faltings and I. Smith, editors, Third European Workshop on Case-Based
Reasoning (EWCBR’96), Lausanne, Switzerland, pages 204–218. Springer-Verlag,
Berlin, 1996.

8. J. C. Lester, C. Callaway, B. Stone, and S. Towns. Mixed initiative problem solv-
ing with animated pedagogical agents. In Working Notes of the AI & Education
Workshop on Pedagogical Agents, pages 56–62, Kobe, Japan, August 1997.

9. J. C. Lester, S. A. Converse, S. E. Kahler, S. T. Barlow, B. A. Stone, and R. Bhogal.
The persona effect: affective impact of animated pedagogical agents. In Proceedings
Human Factors in Computing Systems (CHI’97), pages 359–366, Atlanta, March
1997.

10. T. Lindholm and F. Yellin. The Java Virtual Machine Specification. 2nd Edition.
Addison-Wesley, Oxford, 1999.

11. B. Porter. Similarity assessment: Computation vs. representation. In Proc. of the
CBR Workshop DARPA 1989., 1989.

12. J. Rickel and W. L. Johnson. Animated agents for procedural training in virtual
reality: perception, cognition and motor control. Applied Artificial Intelligence,
13(4):343–382, 1999.

13. S. Salotti and V. Ventos. Study and Formalization of a Case-Based Reasoning
System using a Description Logic. In B. Smyth and P. Cunningham, editors,
Advances in Case-Based Reasoning – (EWCBR’98). Springer-Verlag, 1998.

Opportunities for CBR in Learning by Doing 281

14. R. H. Stottler. Tactical Action Officer Intelligent Tutoring System (TAO ITS). In
Proceedings of the Industry/Interservice, Training, Simulation & Education Con-
ference (I/ITSEC 2000), November 2000.

15. G. Weber and T. J. Schult. CBR for tutoring and help systems. In M. Lenz,
B. Bartsch-Spörl, H.-D. Burkhard, and S. Wess, editors, Case-Based Reasoning
Technology, volume 1400 of Lecture Notes in Computer Science, pages 255–272.
Springer, 1998.

Navigating Through Case Base Competence

Maarten Grachten, F. Alejandro Garćıa, and Josep Llúıs Arcos

IIIA, Artificial Intelligence Research Institute,
CSIC, Spanish Council for Scientific Research,

Campus UAB, 08193 Bellaterra, Catalonia, Spain
{maarten, fgarcia, arcos}@iiia.csic.es

http://www.iiia.csic.es

Abstract. The development of large-scale case-based reasoning systems
has increased the necessity of providing tools for analyzing the case base
structure. In this paper we present a hierarchical competence model ap-
proach based on the solution qualities. Using this hierarchical approach
we propose a new method for visualizing case base competence and un-
derstanding the way a CBR system behaves in different parts of the
problem space. The visualization method has been used in the Tempo-
Express system, a CBR system for applying expressivity-aware tempo
transformations to recordings of musical performances.

1 Introduction

The development of large-scale case-based reasoning systems has increased the
necessity of providing tools for analysing the case base structure and its relation
with the similarity measures used in the retrieval phase [1,2]. These tools may be
used either in the design stage or in the maintenance stage of the CBR systems.

Reinartz and Iglezakis [3] proposed a collection of properties for monitoring
the quality of a CBR system. Moreover, they defined a collection of modify
operators on cases for improving the quality of the case base. Their proposal is
focused on syntactical measures and tries to avoid domain-specific measures.

The competence model introduced by Smyth et al. [4] is a nice contribution
of the analysis of case base structure by assessing the local competence contri-
butions of cases and their interactions. The competence model proposes the use
of a Solves relation between cases (being either true or false for a given pair of
cases). This interpretation of the Solves concept (being either true or false) is
obvious for classification problems but may be inappropriate for other tasks such
as design or configuration. In these tasks it seems more natural to define Solves
as a function (indicating the quality of the solution) rather than a relation. In
this paper we present the concept of an hierarchical competence model that is
based on such a function and allows for a finer analysis of the case base structure.

We believe that, with increasing complexity of CBR systems, the analysis of
the case base structure becomes a hard task without the support of tools capable
of accurately visualizing the complex case base structure. The navigation through
the case base space may play an important role for understanding the similarity

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, pp. 282–295, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNAI

Navigating Through Case Base Competence 283

relationships between cases and the quality of the contribution of a given case
to the solution of other problems.

Previous work on visualizing the case base structure includes the profil
system [5] and the Picture Perfect tool [6]. The profil system is a CBR decision
support tool for metallic sections design that provides a visualization tool for
relating target problem with the collection of retrieved cases. Cases are plotted
on a two-dimensional plane where the first dimension represents the similarity of
the cases with the target case and the second dimension represents the solution
quality. Nevertheless, the visualization is problem centered and only preserves
the similarity relationship between the target problem and each case. That is,
the similarity relationship among the retrieved cases is lost.

The Picture Perfect tool [6] provides an alternative two-dimensional plot
where the similarity relationships among all the cases of the case base is pre-
served. A force-directed graph-drawing algorithm is used for preserving the sim-
ilarity relationships among cases. The algorithm is an iterative algorithm that
uses the case similarities as force vectors. The drawback of the approach is that
the quality of solutions is not visualized.

Using the competence model analysis, Smyth et al. [4] proposed a case-
authoring tool for visualizing the competence of an evolving case base and help
the application designers to identify redundant cases for deletion and useful new
cases for addition. Nevertheless, the visualization tool is focused on showing the
relationship between the competence group sizes and their coverage.

We propose a new visualization method for case base competence based on
the solution qualities. This method allows us not only to draw ‘competence
islands’ in an ‘unsolved ocean’, but rather to draw the complete surfaces, with
hills and valleys.

With respect to the mapping, this poses some new problems. In complex
CBR systems, it is usually impossible to find a mapping of the cases to the
two-dimensional plane that preserves the case distances. When the distortion is
too high, it is impossible to draw a competence map using straight-forward 2D
multidimensional scaling (the competence groups would not appear as separated
regions). Therefore we propose an alternative way of mapping the cases to the
two-dimensional plane, that uses both case distance information and hierarchical
competence information.

The paper is organized as follows: In section 2 the competence model is
summarized and extended. In section 3 we present a new technique for visual-
izing competence surfaces using the notion of hierarchical competence groups
presented in section 2. In section 4 we exemplify and report the use of the vi-
sualization technique in the TempoExpress system, a CBR system for applying
expressivity-aware tempo transformations to recordings of musical performances.
The paper ends with a discussion of the results, and the planned future work.

2 Computation of Case Base Competence

Competence groups were defined by Smyth and McKenna [4] as a proposal for
an effective model of case base global competence measure that assesses the local

284 M. Grachten, F.A. Garćıa, and J.L. Arcos

competence contributions of cases and their interactions. Competence groups are
defined from the notions of coverage and reachability. The coverage set of a case
ci is defined as the set of all target problems that can be solved using ci. The
reachability set of a target problem is defined as the set of all cases that can be
used to solve it. Formally:

CoverageSet(ci ∈ CB) = {cj ∈ CB : Solves(ci, cj)} (1)
ReachabilitySet(ci ∈ CB) = {cj ∈ CB : Solves(cj , ci)} (2)

where the Solves predicate has to be defined for the CBR system under
inspection.

From the coverage and reachability definitions, Smyth and McKenna define
a Related Set of a case ci as the union of its coverage and reachability sets. Then,
a set of cases G ⊆ CB is a competence group if and only if:

∀ci ∈ G, ∃cj ∈ G − {ci} : SharedCoverage(ci, cj) (3)
∧∀ci ∈ G, 	 ∃cj ∈ CB − G : SharedCoverage(ci, cj)

where two cases have a SharedCoverage when their related sets have a non empty
intersection.

Using the notion of competence groups, the case base can be organized with
a set of case clusters that do not interact from a competence viewpoint.

The use of a Solves predicate is possibly a good indicator in analytical tasks
(see [7] for a conceptual distinction of CBR tasks). In analytical tasks there is
a limited number of solutions and solutions are simple, non-aggregate entities
(classification/diagnosis is a typical analytical task). Nevertheless, in synthetic
tasks—where the solutions have a composite structure, and as a result the num-
ber of possible solutions is usually very large (a typical example of a synthetic
task is structural design)—modeling Solves as a binary predicate on cases of
the case base CB (a subset of CB × CB) is not satisfactory. CBR systems for
solving synthetic tasks can be viewed as systems that locally approximate a
complex target function. In that context, it is more natural to conceive of the
Solves notion as a function of type CB × CB → [0, 1] that assesses the quality
of the solution. Thus, in synthetic tasks we will say that the solution generated
from a case cj for a target problem ci is of quality γ.

Then, we can extend the definitions of coverage and reachability in the fol-
lowing way:

CoverageSetγ(ci ∈ CB) = {cj ∈ CB : γ ≤ Solves(ci, cj)} (4)
ReachabilitySetγ(ci ∈ CB) = {cj ∈ CB : γ ≤ Solves(cj, ci)} (5)

where γ can take values in the interval [0,1].
Using the above equations (4) and (5), the competence groups defined in a

given case base may vary depending on the threshold value used for γ. Then,
defining a collection of γ-cuts a hierarchical competence model of the case base
can be constructed.

Navigating Through Case Base Competence 285

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

Threshold

P
e
r
c
e
n

ta
g

e
 o

f
C

o
m

p
e
te

n
c
e
 G

r
o

u
p

s

>400

351-400

301-350

251-300

201-250

151-200

101-150

51-100

26-50

11-25

6-10

2-5

Fig. 1. Competence group sizes in TempoExpress for different γ values

This hierarchical competence model allows a finer analysis of the case base
competence. The first analysis we can perform is the study of the changes on
the sizes of the competence groups when we relax the quality criterion γ.

Figure 1 shows the effect varying the quality threshold in the TempoExpress
system (see section 4). For a quality threshold of 0.9 (right side column) 50 % of
the competence groups are formed by at most 5 cases and 36 % of the competence
groups are formed by collections between 6 and 10 cases. On the other side, for
a quality threshold of 0.2 there are competence groups with over 400 cases —
more than a quarter of the whole case base size.

Given a hierarchical competence model of the case base, it is interesting
to analyse the correlation between the case similarities and the quality of the
solutions they provide. For this purpose, in the next section we will describe a
technique for visualizing the case base taking into account this relationship.

3 Mapping Competence to the Plane

After obtaining the competence partitioning of the cases base at several threshold
levels, we can map the cases to a plane, in order to visualize the hierarchical
structure of the partitioning. Ideally, the cases would be mapped to the plane
so that their mutual euclidean distances are proportional to their real distances.
But as mentioned before, there is no guarantee that high dimensional data can be
faithfully mapped to a two-dimensional plane. As a consequence, the positioning
of the cases according to their real distances do not necessarily provide a good
separation of the competence groups. Therefore, a method is needed to alter the
case positioning in such a way that the competence groups at each threshold

286 M. Grachten, F.A. Garćıa, and J.L. Arcos

level are spatially separated, preferably with minimal distortion of the real case
distances. In this section we propose an algorithm for finding a mapping in the
two-dimensional plane that satisfies our requirements. The method is similar
to the visualization technique employed by Smyth et al. [6], in the sense that
it starts with a random positioning of the cases in the plane and iteratively
changes the positions to have the euclidean distances in the plane approach
the real distances between the cases. Our method however is more elaborate
to accommodate for the additional requirements that are involved to draw the
hierarchical competence groups.

The input to the mapping algorithm is the hierarchical structure of compe-
tence groups, together with a distance matrix D containing the distances between
all pairs of available cases. Rather than considering the competence groups as
sets of cases (which they are really), we consider them as nodes in a tree. Nodes
at the lowest level in the tree (i.e. with the highest γ-threshold) have as children
the cases that are in the corresponding competence groups. But nodes at higher
levels have nodes as children rather than cases. To position the set of nodes at
a particular γ-level, it is necessary to know something about the way the chil-
dren of those nodes are arranged. This implies a bottom up traversal of the tree,
positioning the nodes level by level.

The first step is thus to position the cases of each node at the lowest level
independently. For every bottom-level node, the positioning of its cases is guided
by a single (soft) constraint:

– the euclidean distance between two cases in the plane should be equal to the
target distance dt(as defined in D) between the cases

In an iterative process a random positioning of the cases is repeatedly altered
to satisfy this constraint as good as possible. If no more progress can be made,
the iteration is stopped. The resulting positioning is saved. Note that at this
point the cases in the nodes are only positioned internally to the node, not with
respect to the cases in the other nodes at the same level. But since we calculated
the node internal positionings, we can now compute the positioning of the nodes
with respect to each other. To do that, we calculate two values for each node n:
the centroid and width:

Centroid(n) =
1
N

∑
c∈Children(n)

pc =
1
N

∑
c∈Children(n)

〈xc, yc〉 (6)

W idth(n) = max
c∈Children(n)

d(〈xc, yc〉, Centroid(n)) (7)

where N is the number of children of node n and pc = 〈xc, yc〉 is the position
of case c in the plane. The centroid is the center of gravity of the positioning
of the children and the width of the node is the euclidean distance between the
centroid and the child furthest away from the centroid.

The positioning of the nodes with respect to each other is then guided by
two (soft) constraints:

Navigating Through Case Base Competence 287

1. the distance between the centroids of two nodes should not be smaller than
the sum of the widths of the two nodes.

2. the euclidean distance between the centroids of two nodes should be equal
to the target distance between two nodes.

The target distance between two nodes ni, and nj is defined simply as the av-
erage target distance between the cases of the corresponding competence groups
CG(ni), and CG(nj):

dt(ni, nj) =
∑

c∈CG(ni)

∑
c′∈CG(nj)

dt(c, c′) (8)

In the same way as the cases were positioned, the nodes are positioned by
iteratively adapting a random positioning to satisfy the constraints. At each
iteration, the two constraints are used to calculate two new positionings from
the previous positioning. The two positionings are combined linearly to obtain
the final positioning for that iteration. As before, when no further improvements
can be made to the positioning, the iteration is stopped, the positions of each
node are saved, and the process is repeated for the parent nodes.

When the tree has been traversed from bottom to top in this way, we have
a positioning for each node in the tree (the position of the root node was not
derived but is set to the origin). But note that the positions that were computed
for the cases in the initial stage were not updated after computing the positions
of the parent nodes. So the final stage is to traverse the tree again in a top down
manner to propagate the parent positions down to the children. So for every
child n its position pn is updated as follows:

pn = pn + pParent(n) − Centroid(Parent(n))

The resulting positioning of cases in the two-dimensional plane will reflect
the real distances between the cases as good as possible while at the same time
preventing overlap between competence groups at the same γ-level.

3.1 Analysis of Various Competence Scenarios

The mapping obtained in this way provides valuable information about the way
a CBR system behaves in different parts of the problem space. Some typical
scenarios have been plotted in figure 2. The figure shows the contours of the
competence groups for the complete range of γ-values. Dark colors represent
regions with low competence without cases (or low competence cases) and light
colors represent regions with high competence.

Figure 2(a) shows a part of the problem space where there are many cases
that form a single high competence group, without low competence cases (i.e.
even with a high solution quality threshold, the cases have shared coverage with
each other). This means that in such a region, a case can be solved well even if
there is not a very nearby case. Another situation is shown in figure 2(b), which
is also a well covered region, but it is composed of separated high competence sub

288 M. Grachten, F.A. Garćıa, and J.L. Arcos

a b c d e f

Fig. 2. Some typical competence scenarios

regions. So although cases can be solved well here, the target solutions are not
the same for every part of the region. Figure 2(c) shows a situation where high
competence and low competence regions are mixed. This means that even though
quite similar problems can be retrieved from the case base, they may not provide
a good solution for the target problem. In figure 2(d) a region is shown that has
only a single dense competence group in an otherwise low competence area. In
this scenario, it is probable that the region needs many more cases to provide
good competence. The opposite is shown in figure 2(e), where a predominantly
high competence region contains single dense low competence area, implying that
although the cases in the region can be generally be solved well, there are some
similar cases that are hard to solve, and cannot either be used to solve other
cases in the region. Finally, figure 2(f) shows a region with low competence. This
may indicate that there are either no cases at all in this region, or the cases in
this region all have low competence.

4 Experimentation

We have applied the techniques described in this paper in the TempoExpress sys-
tem [8]. TempoExpress is a CBR system for applying expressivity-aware tempo
transformations to monophonic audio recordings of musical performances. Tem-
poExpress has a rich description of the musical expressivity of the performances,
that includes not only timing deviations of performed score notes, but also rep-
resents more rigorous kinds of expressivity such as note ornamentation, and note
consolidation/fragmentation. Within the tempo transformation process, the ex-
pressivity of the performance is adjusted in such a way that the result sounds
expressively natural for the new tempo. A case base of previously performed
melodies is used to infer the appropriate expressivity.

A case is represented as a complex structure embodying three different kinds
of knowledge: (1) the representation of the musical score (notes and chords), (2)
the musical model of the score (automatically inferred from the score using Nar-
mour’s Implication/Realization model and Lerdahl and Jackendoff’s Generative
Theory of Tonal Music as background musical knowledge [9,10]), and (3) a col-
lection of annotated performances. These annotated performances are acquired
automatically from the recordings using a technique explained in detail in [11].

For the case base design, several saxophone performances were recorded from
5 jazz standards, each one consisting of 4–5 distinct phrases. The performances
were played by a professional performer, at 9–14 different tempos per phrase.
From this, the initial case base was constructed, containing 20 scores of musical

Navigating Through Case Base Competence 289

phrases, each with about 11 annotated performances (in total more than 5.000
performed notes).

When a new problem has to be solved in TempoExpress—i.e. an input phrase
performance that must be transformed to another tempo—the problem is solved
stepwise by decomposing the input phrase into segments. These segments are
sequences of consecutive notes of around five notes and usually correspond to
the musical motifs that constitute the musical phrase. The solution for each
input melody segment is constructed from the most similar melody segments in
the case base.

We have analyzed the TempoExpress case base composed of 1310 cases. A
case consists of a phrase performance at a particular tempo (the input tempo)
and a number representing the desired output tempo. Because an output per-
formance is generated segmentwise for the input case, segments from various
retrieved cases are usually involved in the solution of the different segments of
the problem. As a consequence, a case may provide only a partial solution to
the problem. To represent this relation, we define a solution function as follows:

Solves(ci, cj) =
||SolvedNotes(ci , cj)||

||Notes(cj)||
(9)

Where SolvedNotes(ci , cj) are the notes in the melodic phrase of cj that were
provided with a solution (an expressive interpretation) from the retrieved case ci

(whether a solution for a note can be provided depends on whether segments can
be convincingly matched between the input and retrieved phrases). Notes(cj)
is the complete sequence of notes in the melodic phrase of cj . Rather than
representing the true Solves relation, this is a confidence measure for the solution
that serves as an approximation. Roughly speaking, the confidence measure is
proportional the amount of solution information that could be transferred from
the retrieved solutions to the current problem.

The distance function between cases is a linear combination of the pairwise
distance of the three case components: phrase, input tempo, and output tempo.
The phrase distance is measured as the edit distance between abstract sequen-
tial representations of the phrases (using the Implication/Realization model [9],
see [12] for details).

With the Solves function as defined above, we computed competence groups
at ten different quality threshold values (see section 2). Using the case distance
function explained above, the resulting hierarchical competence structure was
mapped to the two-dimensional plane, following the method described in sec-
tion 3. The results are shown as a contour plot in figure 3, and as a 3D surface in
figure 4. In both figures, low competence regions are represented by darker colors
and high competence regions are represented by lighter colors. In the 3D plot,
valleys and hills correspond to low and high competence regions respectively. In
the contour plot, the cases are plotted on top of the map as plus signs1 (the

1 The plus signs on some shades may be hard to see when printed in black and white.
It is recommended to inspect the pdf version of this document which contains colored
graphics. Feel free to contact the authors to obtain an electronic copy.

290 M. Grachten, F.A. Garćıa, and J.L. Arcos

Fig. 3. Contour representation of the competence of TempoExpress

colored map was derived from the scattered case information using gnuplot ’s
dgrid3d function).

Viewing the contour map at a glance, some comments can be made. The map
shows a rather non-homogeneous distribution of cases and competence areas.
The lattice-like positioning of some groups of cases (mostly in the lower part of
the figure) reflects the fact that the case distance takes into account the input
and output tempos of the cases (phrase performances are available at regularly
spaced tempos). It makes sense that each of these lattice structures tends to
have a single competence level, since the cases within the structures are various
tempo transformation tasks of the same phrase, and the major factor determining
whether a case is hard to solve is the phrase (i.e. whether the phrase consists
of melodic fragments for which examples are known). Note also that the larger
single-colored areas at the edges of the figure should be interpreted with some
care, since they are unpopulated and the competence estimates mainly result
from far-reaching extrapolations of the competence of the nearest-by cases.

Navigating Through Case Base Competence 291

Fig. 4. 3D surface representation of the competence of TempoExpress

The contour map shows roughly three distinct areas within the problem
space. Firstly, in the upperleft quadrant of the map there is a coherent set of
problems for which no good solution could be constructed (conform scenario f,
section 3.1). Secondly, in the lower part of the map, there is another rather pop-
ulated area for which generally good solutions are found (conform scenario a/b,
section 3.1). Lastly, there is a mixed competence region in the upperright quad-
rant, that shows scattered high and low competence groups (conform scenario
c, section 3.1).

A disadvantage of the visualization technique is that the final positioning
of the cases is only an approximation of a map that satisfies the constraints of
faithful case distances and non-overlapping groups (since usually there is no map
that completely satisfies both constraints at the same time). It thus sometimes
happens that in the global competence map (figure 3), the shade indicating the
competence is an average of partially overlapping competence branches of the
hierarchical competence structure. Figure 5 shows this situation schematically
for two competence branches mapped on a single dimension. In order to get a
better impression of individual competence branches, it is therefore useful to
view them in isolation.

The competence tree of the TempoExpress case base turned out to consist of
46 competence branches just below the root of the tree. In figure 6, two of such
branches are shown. Note that the competence distribution of in these maps is

292 M. Grachten, F.A. Garćıa, and J.L. Arcos

Competence surface derived from case competence

Mapping Dimension

C
om

pe
te

nc
e

Cases from competence branch 1

Cases from competence branch 2

Fig. 5. Problems of non-ideal mapping: Branches from the hierarchical competence

structure overlap and the competence surface does not accurately reflect the true com-

petence of the cases

less complex than the distribution of the global map. Apart from the fact that
the number of cases is smaller, the relation between the positioning of the cases
and their competence is more comprehensible. Figure 6(a), for example shows a
pattern of steadily increasing competence from the lowerleft to the upperright
corner. Inspection of the individual cases showed that cases clustered at a partic-
ular competence level tended to have the same musical phrase. A clear relation
between competence and input or output tempo was not found. Additionally,
note that the case-distance for this particular subset could be mapped to a single
dimension, since the cases are positioned roughly on a straight line.

Figure 6(b) shows another, relatively large branch. Since this branch is well
separated spatially, it is easy to locate it in the global contour map. It corre-
sponds to the lower part of the map, that was identified earlier as the major
high competence area of the map. As before, particularly for the lower compe-
tence levels, a clustering of cases in various competence levels can be noticed,
that turns out to be correlated with the musical phrase of the case. There are
some phrases, like Body And Soul [phrase B2] (Green), and Like Someone In
Love [phrase B2] (Van Heusen/Burke), that appear in the low competence re-
gions of both branches. Since cases pertaining to those phrases tend to be in
low competence areas, regardless of the input and output tempos of the cases,
an obvious conclusion is that the case base lacks musical material sufficiently
similar to those phrase, and therefore no good tempo transformations can be
constructed for those phrases.

On the other hand, the phrases Like Someone In Love [phrase A1], and Up
Jumped Spring [phrase A1] (Hubbard) occur on the high competence region of
both branches. The latter case proves that even distinct phrases can have shared
coverage, and that a solution to one can be helpful to construct a solution of the
other (this is possible, since the final solution is constructed from parts of other
solutions).

Navigating Through Case Base Competence 293

a b

Fig. 6. Two competence branches in isolation

5 Conclusions

We believe that in the design and maintenance of complex CBR systems, the
use of tools for analyzing the case base structure become indispensable. More-
over, these analysis tools must be capable of accurately visualizing the complex
case base structure in a way that the system designers/users may improve the
performance of the CBR system.

In this paper we presented a hierarchical competence model approach, that
extends the existing competence model allowing a finer analysis of the case base
structure, particularly for CBR systems that perform synthetic tasks. Using this
hierarchical approach we have proposed a new visualization method for case
base competence based on the solution qualities. This method allows us not
only to draw ‘competence islands’ in an ‘unsolved ocean’, but rather to draw the
complete surfaces. The mapping obtained using the proposed method provides
valuable information about the way a CBR system behaves in different parts
of the problem space. Moreover, some typical competence surfaces have been
identified and described.

We wish to add a measure that indicates the faithfulness of the two-
dimensional mapping. This is indispensable, since a rigorous reduction in data
dimensionality inherently comes with distortion. Especially if more detailed in-
formation can be provided about the fidelity/distortion at various regions in the
map, this may facilitate the interpretation of the visualized data.

The visualization method has been used for analyzing the case base of the
TempoExpress system, a CBR system for applying expressivity-aware tempo
transformations to recordings of musical performances. Although currently com-
petence maps were only shown as ‘snapshot’ images, we believe that the ap-
proach is very suitable for an interactive case base visualisation tool, where the
user can for example zoom in on certain competence areas, or view the effect of

294 M. Grachten, F.A. Garćıa, and J.L. Arcos

raising/lowering the solution-quality threshold on the average case characteris-
tics for a particular competence group.

We plan to use visualization technique presented here in the T-Air system,
a case-based reasoning application developed for aiding engineers in the design
of gas treatment plants [13].

Acknowledgments

This research has been supported by the Spanish project TIC 2003-07776-C2-
02 “CBR-ProMusic: Content-based Music Processing using CBR”, EU-FEDER
funds, and a FPI fellowship.

References

1. Smyth, B., Keane, M.T.: Remenbering to forget: A competence-preserving case
delection policy for case-based reasoning systems. In: Proceedings of IJCAI-95.
(1995) 377–382

2. Wilson, D.C., Leake, D.B.: Maintaining case-based reasoners: Dimensions and
directions. Computational Intelligence 17 (2001) 196–213

3. Reinartz, T., Iglezakis, I., Roth-Berghofer, T.: Review and restore for case-based
maintenance. Computational Intelligence 17 (2001) 214–234

4. Smyth, B., McKenna, E.: Competence models and the maintenance problem. Com-
putational Intelligence 17 (2001) 235–249

5. Wybo, J.L., Geffraye, F., Russeil, A.: PROFIL: a decision support tool for metallic
sections design using a cbr approach. In Veloso, M., Aamodt, A., eds.: Proceed-
ings of the First International Conference on Case-Based Reasoning (ICCBR-95).
Number 1010 in Lecture Notes in Artificial Intelligence. Springer-Verlag (1995)
33–42

6. Smyth, B., Mullins, M., McKenna, E.: Picture perfect - visualization techniques
for case-based reasoning. In Horn, W., ed.: ECAI 2000. 14th European Conference
on Artificial Intelligence, IOS Press (2000) 65–69

7. Plaza, E., Arcos, J.L.: Constructive adaptation. In Craw, S., Preece, A., eds.:
Advances in Case-Based Reasoning. Number 2416 in Lecture Notes in Artificial
Intelligence. Springer-Verlag (2002) 306–320

8. Grachten, M., Arcos, J.L., de Mántaras, R.L.: Evolutionary optimization of music
performance annotation. In: CMMR 2004. Lecture Notes in Computer Science,
Springer (2004)

9. Narmour, E.: The Analysis and cognition of basic melodic structures : the
implication-realization model. University of Chicago Press (1990)

10. Lerdahl, F., Jackendoff, R.: An overview of hierarchical structure in music. In
Schwanaver, S.M., Levitt, D.A., eds.: Machine Models of Music. The MIT Press
(1993) 289–312 Reproduced from Music Perception.

11. Arcos, J.L., Grachten, M., de Mántaras, R.L.: Extracting performer’s behaviors
to annotate cases in a CBR system for musical tempo transformations. In Ashley,
K.D., Bridge, D.G., eds.: Proceedings of the Fifth International Conference on
Case-Based Reasoning (ICCBR-03). Number 2689 in Lecture Notes in Artificial
Intelligence. Springer-Verlag (2003) 20–34

Navigating Through Case Base Competence 295

12. Grachten, M., Arcos, J.L.: Using the Implication/Realization Model for Measuring
Melodic Similarity. In: Proceedings of the 16th European Conference on Artificial
Intelligence, ECAI 2004, IOS Press (2004)

13. Arcos, J.L.: T-air: A case-based reasoning system for designing chemical absorption
plants. In Aha, D.W., Watson, I., eds.: Case-Based Reasoning Research and Devel-
opment. Number 2080 in Lecture Notes in Artificial Intelligence. Springer-Verlag
(2001) 576–588

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, pp. 296 – 311, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Knowledge-Intensive Method for Conversational CBR

Mingyang Gu and Agnar Aamodt

Department of Computer and Information Science,
Norwegian University of Science and Technology, Sem Sælands vei 7-9,

N-7491, Trondheim, Norway
{Mingyang.Gu, Agnar.Aamodt}@idi.ntnu.no

Abstract. In conversational case-based reasoning (CCBR), a main problem is
how to select the most discriminative questions and display them to users in a
natural way to alleviate users’ cognitive load. This is referred to as the question
selection task. Current question selection methods are knowledge-poor, that is,
only statistical metrics are taken into account. In this paper, we identify four
computational tasks of a conversation process: feature inferencing, question
ranking, consistent question clustering and coherent question sequencing. We
show how general domain knowledge is able to improve these processes. A
knowledge representation system suitable for capturing both cases and general
knowledge has been extended with meta-level relations for controlling a CCBR
process. An “explanation-boosted” reasoning approach, designed to accomplish
the knowledge-intensive question selection tasks, is presented. An application
of our implemented system is illustrated in the car fault detection domain.

1 Introduction

The basic idea underlying case-based reasoning (CBR) is to reuse the old solution to
the previous most similar problem in helping solve the current problem. Before we
can reuse any existing solution, we have to find the most similar previous problem,
corresponding to the retrieve phase in the standard CBR cycle [5].

In the traditional CBR process, users are assumed to be able to give a well-defined
problem description (a new case), and based on such a well-defined description a CBR
system can find the most appropriate previous case. But this assumption is not always
realistic. Users usually only have vague ideas about their problems when beginning to
retrieve cases, and often describe them by surface features, while the previous cases
have been described by providers using the essential features. Furthermore, even if users
understand what their problems are and what aspects they should describe, they do not
know exactly what terms to use to express their problems.

In general, the knowledge gap between case users and case providers is a major
cause for the difficulty of case retrieval. Users usually input a problem description by
“guessing” the appropriate feature terms, and the system either returns too many
matched cases or none. Conversational Case-Based Reasoning (CCBR) [6] has been
proposed to bridge this knowledge gap.

LNAI

 A Knowledge-Intensive Method for Conversational CBR 297

Conversational CBR provides a mixed-initiative dialog for guiding users to refine
their problem descriptions incrementally through a question-answer sequence. In the
CCBR process, a user’s initial problem description is used to retrieve the first set of
candidate cases. Subsequent questions, prompted by the CCBR system, will cut down
this case set iteratively until a manageable number of cases remain. That is, instead of
letting a user guess how to describe her problem, CCBR discovers a sequence of
discriminative questions, which help to extract information from the user, and to
construct the problem description automatically and incrementally. CCBR
applications have been successfully fielded, e.g., in the troubleshooting domain
[11, 16] and in the products and services selection in E-Commerce [23].

A core research concern in conversational CBR is how to minimize the cognitive
load demanded on users to retrieve their desired cases [23, 22], which requires to
select the most discriminative questions [6, 8, 9] and ask them in a natural way in the
conversation process [8, 12].

Up to now, several methods, such as the static decision tree [10], the information
gain metric [11, 13, 23], the occurrence frequency metric [6], the information quality
metric [9], the similarity variance metric[21], and the attribute-selection strategies
[20], have been proposed to support question selection in the conversational CBR
process. However, all the methods mentioned above are basically knowledge-poor,
that is, they only take statistical information into account. The potential that general
domain knowledge has for playing a positive role in the question selection process is
little explored. For example, if the answer to question B can be inferred from that of
question A, or the answer to question A is easier or cheaper to obtain than that to
question B, question A should be prompted to users before question B. Such a
knowledge-intensive question selection approach can select and display
discriminative questions based on their semantic relations rather than only their
statistical metrics.

We have identified four tasks in conversational CBR, for which general domain
knowledge has a potential to control and improve the process: feature inferencing,
question ranking, question clustering, and question sequencing.

Feature Inferencing (FI). If one feature of a problem can be inferred from the current
problem description, this feature can be added to the problem description
automatically, instead of posing a question to the user. Users are likely not to trust a
communicating partner who asks for information that is easy to infer. General domain
knowledge (domain rules or domain models) can be used to infer the features implicit
in the problem description.

Question Ranking (QR). In the conversation process, the identified discriminative
questions need to be ranked intentionally before displaying them to users. An
integrated method should be adopted, which uses not only the superficial statistical
metrics of the questions, but also the semantic relations among them. For example, if
the answer to question C can be inferred from one of the possible answers to question
D, it may be better to ask question D first.

Even though an integrated question ranking module outputs a set of sorted
questions, their screen arrangement and questioning sequence should not be decided
by such a sorted order alone. The main reason lies in that people always hope to
inspect or answer questions in a natural way. They would prefer to see a set of

298 M. Gu and A. Aamodt

questions that are connected by some semantic relations, grouped together, and to
answer them in an uninterrupted sequence. These requirements are captured by the
following two tasks:

Consistent Question Clustering (CQC). The arrangement of questions on the screen
should be consistent, that is, the questions with some semantic relations among them
should be grouped and displayed together, and the order of the questions in each
group should be decided intentionally. For example, the questions having dependency
relations among them should be grouped and displayed together.

Coherent Question Sequencing (CQS). The questions asked in the sequential
question-answer cycles should be as related as possible, that is, the semantic contents
of two sequential questions should avoid switching too often. For example, if in the
previous question-answer cycle a more general question in an abstraction taxonomy is
asked, the downward more specific question should be asked in the succeeding cycle
rather than inserting other non-related questions between them.

The suggested knowledge-intensive conversational CBR process is illustrated in
Fig. 1. The lines in bold are the modules used to complete the tasks identified above.

Fig. 1. The knowledge-intensive CCBR process

In this paper we present an explanation-boosted reasoning approach for support of
knowledge-intensive question selection. The use of explanation in case-based
reasoning is not new, but the meaning of the term differs. In our approach, the
explanation part of the process mainly uses general domain knowledge (rather than
specific cases), targeted at system internal reasoning (rather than user understanding).
However, the explanations constructed can also be displayed to the user for
transparency, justification, and increased understanding. What we mean by
explanation-boosted reasoning is a particular method for constructing explanation
paths that exploit general domain knowledge for the question selection tasks. The
method was briefly introduced in an earlier workshop paper [14], in which only two

NewCase := New-Case-Formalize(InitialProblemDescription);
SequentQuestions :=null; //(CQS)
Repeat:

NewCase := Feature-Inference(NewCase); // (FI)
SortedRetrievedCases := CBR-Retrieve(NewCase);
DiscriminativeQuestions := Question-Identify(SortedRetrievedCases, NewCase);
RankedDiscriminativeQuestions := Integrated-Question-Rank(DiscriminativeQuestions); // (QR)
RankedDiscriminativeQuestions :=

Ranked-Questions-Adjust (SequentQuestions, RankedDiscriminativeQuestions); // (CQS)
GroupedRankedDiscriminativeQuestions := Question-Group(RankedDiscriminativeQuestions); // (CQC)
Display(GroupedRankedDiscriminativeQuestions, SortedRetrievedCases);
If (users find their desired cases or have no question to answer) then

Return SelectedCases;
Else

SelectedQuestionAndAnswer := User-Select-and-Answer-Question();
SequentQuestions := Sequent-Question-Identify(SelectedQuestionAndAnswer); // (CQS)
NewCase :=NewCase-Update(NewCase, SelectedQuestionAndAnswer);

End If

 A Knowledge-Intensive Method for Conversational CBR 299

of the four question selection tasks were described. In the presented paper we extend the
description to cover more CCBR tasks, we explicitly relate the tasks with meta-level
relations for reasoning, and we present the first implemented version of the system.

The rest of this paper is organized as follows. In Section 2, we identify several
semantic relations related to question selection. In Section 3, our explanation-boosted
question selection method is described from the perspectives of knowledge
representation, explanation construction and reasoning method. The system
implementation of this approach, and related research, are summarized in Section 4
and Section 5, respectively. Our conclusion is drawn in Section 6.

2 Semantic Relations for Question Selection

General domain knowledge enables question selection to be based on semantic rather
than purely syntactic criteria. Below, we describe a set of semantic relations among
features, which influence question selection.

• Feature Abstraction. A feature can be described at different abstraction levels that
form a subsumption hierarchy. The lower the level a feature belongs to, the more
specifically it can describe the case, but the more difficult it will be to obtain. The
appearance of a lower level feature can be used to infer the existence of higher
level features. For instance, the feature of “Fuel Transmission Faulty” is a lower
level feature than that of “Fuel System Faulty”. In [17], Gupta argued that the
conversations should follow a downward taxonomic traversal to extract questions
from general to specific, which prunes questions deemed irrelevant or implicitly
inferred by the taxonomy. Here, we define a relation “subclass of” to express the
relation of “feature abstraction”. “A is a subclass of B” means A is a lower level
feature than B.

• Dependency Relations. A dependency relation between two features exists if the
appearance of one feature depends on the existence of the other. For instance, the
assertion that the fuel pump can pump fuel depends on that the car has fuel in its
fuel tank. We define a relation “depends on” to describe dependency relations. “A
depends on B” means B is a necessary condition for A.

• Causality Relations. The causality relation means that one feature can cause the
occurrence of another feature. For example, an electricity system fault in a car can
cause its engine not to start. Here, we define a relation “causes” to express
causality relations. “A causes B” means B is the result of A.

• Co-occurrence Relations. A particular relation, “co-occurs with”, is defined to
express that two features happen together, even though we cannot tell which one
causes the other.

• Answer Acquisition Costs. The costs or difficulties of obtaining answers to
different questions are various [11]. For instance, to test whether a switch has a
fault is more difficult than to test whether the battery has electricity. The relation
“is more costly than” is defined to represent that the answer to one question is
more difficult or costly to obtain than the answer to another question.

How the above relations can be used to support the knowledge-intensive question
selection tasks is illustrated in Table 1.

300 M. Gu and A. Aamodt

Our intention here is not to enumerate all the semantic relations that influence the
question selection in conversational CBR, but to give some examples and illustrate
how our approach can utilize them to improve the question selection process. System
implementors can also define their own semantic relations which they think influence
the question selection process. We will show that it is straightforward to add a new
semantic relation into the question selection application later in the paper.

Table 1. Semantic relations used in the knowledge-intensive question selection

 Feature
Inferencing

Knowledge-
Intensive Question
Ranking

Consistent
Question
Clustering

Coherent
Question
Sequencing

Feature Abstraction
(A is a subclass of B)

Inference B from
A

Ask A after B Group A and
B together

A succeeds
B

Dependency Relations
(A depends on B)

Inference B from
A

Ask A after B Group A and
B together

A succeeds
B

Causality Relations
(A causes B)

Inference B from
A

Ask B after A Group A and
B together

Co-occurrence Relations
(A co-occurs with B)

Inference B from
A; Inference A
from B

 Group A and
B together

Answer Acquisition
Costs
(A is more costly than B)

 Ask A after B

3 An Explanation-Boosted Question Selection Approach

In this section, the explanation-boosted question selection approach is described,
focusing on three architectural and methodological issues: knowledge representation,
explanation construction, and explanation-boosted reasoning method.

3.1 Knowledge Representation

A frame-based knowledge representation model, which is a part of the CREEK
system [1, 3, 24], is adopted in our system. In CREEK, both case-specific knowledge
and general domain knowledge are captured as a network of concepts and relations,
each concept and relation is represented as a frame in a frame-based representation
language. A frame consists of a set of slots, representing relationships with other
concepts or with non-concept values, e.g. numbers. A relationship is described using
an ordered triple <Cf, T, Cv>, in which Cf is the concept described by this relationship,
Cv is another concept acting as the value of this relationship (value concept), and T
designates the relation type, simply called relation. The equation T = Cv can also be
used to describe a relationship when Cf is default. Viewed as a semantic network, a
concept corresponds to a node and a relation corresponds to a link between two nodes.

In the system presented here, knowledge is represented at two levels. The first is
the object-level, in which case-specific knowledge and general domain knowledge are
represented within a single representation framework. The second is the meta-level,

 A Knowledge-Intensive Method for Conversational CBR 301

which is used to express the inter-relations of the semantic relations influencing the
question selection tasks.

3.1.1 An Object-Level Knowledge Representation Model
As an illustration of how a case is described, Fig. 2 shows, in a frame view, the
contents of a new case in the car fault domain, while Fig. 3 shows, in a semantic
network view, a part of the integrated knowledge base for that domain. As can be
seen, the semantic relations identified in Section 2 are represented as relations
connecting different concepts. Cases are integrated into the general domain model,
since all case features are defined as concepts within it.

The relationship values, which have corresponding relationships in the retrieved
cases, but do not have the same type relationships in the new case, can be converted
into discriminative questions. For example, if the relationship value, “Engine Dose
Not Turn”, has a relationship in one of the retrieved cases, that is, “has engine status =
Engine Does Not Turn”, but does not have the same type relationship in the new case,
then a discriminative question, “What is the engine status of your car?”, is added to
the discriminative question list.

We define a function that maps a set of relationship values to a set of questions, Q:
relationship value set question set. On this function, we define the following
properties:

− The question transformed from one relationship value is the same as those formed
by the relationship values that belong to the same relation type. So we only
predefine one question for each relation, which is shared by the relationship values
belonging to this relation. For example, Q(“Engine Fires”) = Q(“Engine Turns”) =
Q(“Engine Does Not Fire”) = Q(“Engine Stops After A Few Seconds”) = “What is
the engine status of your car?”.

− The semantic relations that exist between two relationship values are transferred to
the two questions transformed by these two relationship values. For instance, the
“causes” relation that “Fuel Pump Damaged” “causes” “Engine Stops After A Few
Seconds” is transformed to Q(“Fuel Pump Damaged”) “causes” Q(“Engine Stops
After A Few Seconds”). Following the “has question” link to the actual question,
“What is the fuel pump status of your car?”, it follows that this question “causes”
the question “What is the engine status of your car?”.

Fig. 2. The frame structure for a car starting case in CREEK

302 M. Gu and A. Aamodt

3.1.2 Meta-level Relations and Reflective Reasoning
Four meta-level relations have been defined in order to control the inference
processes related to each of the four question selection tasks. For feature inferencing,
we define the “infers” relation to express that if A infers B, we can get B from the
existence of A. This relation has the property of transitivity that if A infers B and B
infers C then A infers C. Several semantic relations identified in Section 2, “subclass
of”, “depends on”, “causes” and “co-occurs with” are subclass relations of the
“infers” relation since all these relations can be used to infer the existence of the post-
condition based on the appearance of the pre-condition.

Fig. 3. The “Dialogue” pane in one conversation session

The second metal-level relation, “appears after”, is defined to complete the
question ranking task. “A appears after B” means that Q(A) should be asked after
Q(B). This relation also has the property of transitivity that if A appears after B and B
appears after C then A appears after C. We define several relations identified in
Section 2, “subclass of”, “depends on”, “caused by” and “is more costly than” as the
subclass relations of the “appears after” relation because all these relations can rank
the pre-condition question to be asked after the post-condition question.

The third meta-level relation, named “joins”, is defined to realize the consistent
question clustering task. “A joins B” means that Q(A) should be grouped and
displayed together with Q(B). We define several relations identified in Section 2,

 A Knowledge-Intensive Method for Conversational CBR 303

“subclass of”, “depends on”, “causes” and “co-occurs with” as subclass relations of
the “joins” relation because all the questions connected by these relations should be
grouped and displayed together. The transitivity property is not defined on “joins”
because we assume that only the questions that have direct “joins” relations between
them can be grouped and displayed together.

The last meta-level relation, called “succeeds”, is used in the coherent question
sequencing task. “A succeeds B” means Q(A) should be asked directly after Q(B) in
two sequential question-answer cycles. There are two relations, “subclass of” and
“depends on”, defined as the subclass relations of this “succeeds” relation. On this
basic relation, the transitivity property is also defined, that is, if A succeeds B and B
succeeds C, we can get A succeeds C.

Fig. 4. The structure of the meta-level knowledge representation model

Fig. 4 shows the structure of the meta-level knowledge representation model
described above. The top part relations are the meta-level relations defined above,
while the bottom part relations are the semantic relations identified in Section 2. The
lines from the top part relations to the bottom part relations designate the “has
subclass” relations, while the line from “causes” to “caused by” is a “has inverse”
relation.

One type of reflective reasoning operation, subclass inheritance, is made explicit in
this meta-level knowledge representation model. Subclass inheritance is a special case
of the more general “plausible inheritance” mechanism in CREEK [1], and makes
subclass relations inherit the properties and reasoning operations (e.g. explanation
construction, as introduced in the next sub-section) defined on their parent relation.
Thus we need only define the properties and reasoning operations once on the meta-
level relations, and all its subclass relations that express much richer domain-specific
meanings can inherit them automatically. The other benefit is that new semantic
relations can be easily incorporated through defining them as the subclasses of one of
the meta-level relations.

3.2 Explanation Construction

Explanation construction is to set up explanation paths between concepts in the
semantic network, which are used to explore solutions for particular knowledge-
intensive question selection tasks.

304 M. Gu and A. Aamodt

We have defined two levels of explanation construction operations. The first level
is called “Direct Explanation Construction”, which is suitable when there is a direct
(local) relation between two concepts. For example, if there are two questions Q(A)
and Q(B) and there is a relation “A is a subclass of B”, then a direct explanation is
constructed that “Q(A) is ranked after Q(B) because A (one possible answer of Q(A))
is a lower level concept than B (one possible answer of Q(B))” in the knowledge-
intensive question ranking phase.

 The second level is referred to as “Transitive Explanation Construction”, which is
suitable where there is no direct relation between two concepts in the knowledge base,
but we can set up a new semantic relation between them through exploring other
relations in the knowledge base.

The transitive explanation construction is based on the transitivity property defined
on different relations. In the meta-level knowledge model, we define the transitivity
property on the “infers” relation, the “appears after” relation and the “succeeds”
relation, and all their sub-class relations can inherit such property from them. So in
each relation category (formed by one of these three basic relations and its sub-class
relations), all the subclass relations can be transferred on each other to construct new
super-class type relations.

 Q(“Battery
Status”)

Q(“Electricity
System Status”)

Q(“Switch
Status”) subclass of is more costly than

New “appears after” relation

Fig. 5. How to construct a new “appears after” relation

Fig. 5 gives an example of how to build up a new explanation path in the “appears
after” relation category through exploring two different subclass relations. In this figure,
there are two relations: Q(“Switch Status”) “is more costly than” Q(“Battery Status”)
and Q(“Battery Status”) is a “subclass of” Q(“Electricity System Status”). Following the
“is more costly than” relation and the “subclass of” relation, a new “appears after”
relation, Q(“Switch Status”) “appears after” Q(“Electricity System status”), is
constructed. Thus if we have two questions Q(“Switch Status”) and Q(“Electricity
System Status”), we can rank them through constructing the explanation path that
“Q(“Switch Status”) should be asked after Q(“Electricity System Status”), because to
answer Q(“Switch Status”) is more costly than to answer Q(“Battery Status“), and
Q(“Battery Status”) is a lower level question than Q(“Electricity System Status“)” in the
concept taxonomy about the electricity system fault.

As discussed in the previous subsection, the “joins” relation does not have the
property of transitivity. So we can only use the “Direct Explanation Construction”
operation to construct explanations to accomplish the consistent question clustering
task.

In the CREEK representation, each relation has a default explanation strength
attached to it. The explanation strength of a constructed chain of linked relations,
which constitute an explanation path, is calculated on the basis of these defaults (in

 A Knowledge-Intensive Method for Conversational CBR 305

our implementation introduced in Section 4, we will simply use the product of the
defaults to indicate the explanation strength of the constructed explanation path).

3.3 Explanation-Boosted Reasoning Process

The explanation-boosted reasoning process can be divided into three steps:
ACTIVATE, EXPLAIN and FOCUS. The three steps, which constitute a general
process model for knowledge-intensive CBR, was initially described for the retrieve
phase [1], although it applies in principle to all four phases of the CBR cycle. Here
this model is instantiated for the different question selection tasks. ACTIVATE
determines what knowledge (including case-specific knowledge and general domain
knowledge) is involved in one particular task, EXPLAIN builds up explanation paths
to explore possible solutions for that task, and FOCUS evaluates the generated
explanation paths and identify the best one/ones for that particular task. The
operations, done at each step in accomplishing a knowledge-intensive question
selection task, are shown in Table 2.

Table 2. Explanation-boosted Reasoning Process in the knowledge-intensive question selection

 Feature
Inferencing

Knowledge-
intensive Question
Ranking

Consistent
Question
Clustering

Coherent Question
Sequencing

ACTIVATE
(identify
knowledge)

New case
features and
the related
“infers”
relations

Discriminative
questions and the
related “appears
after” relations

Sorted
questions
and the
related
“joins”
relations

Answered questions in the
last conversation session
and the “succeeds”
relations between them
and the discriminative
questions in current
session

EXPLAIN
(construct
explanation
paths)

Feature
inferencing
explanation
paths

Knowledge-
intensive question
ranking
explanation paths

Question
clustering
explanation
paths

Question sequencing
explanation paths

FOCUS
(evaluate
explanation
paths and use
them to
accomplish
particular tasks)

The
accepted
explanations
are
transformed
to new case
features

The accepted
explanations are
combined together
with statistical
metrics to rank
discriminative
questions

The
accepted
explanations
are used to
group the
sorted
questions

The accepted explanations
are used to re-rank the
discriminative question
groups

4 System Implementation

We have implemented our proposed approach within the TrollCreek system [2].
TrollCreek is an implementation of CREEK that contains a graphical knowledge model
editor and a knowledge-intensive case-based reasoner. Our implementation adds the
conversational process with its explanatory mechanism into the retrieve phase.

We are currently exploring two application domains for our CCBR method, car
fault detection, and component retrieval for reuse of useful components when

306 M. Gu and A. Aamodt

developing image processing software [15]. Car fault detection is an example domain
adopted in our group for the study of basic knowledge modeling, and representational
and reasoning methods, related to particular research directions (e.g. conversational
CBR). The knowledge base in this domain incorporates the car fault detection domain
knowledge and 29 stored cases. In the graphic window of the knowledge base, we can
select an existing case or create a new case to start a knowledge-intensive
conversational case retrieve process.

A conversational retrieve process contains one or several conversation sessions
(the number of the sessions depends on when the searcher finds her desired case or
whether there are still discriminative questions left).

Fig. 6. The “ExtendedNewCase” pane in one conversation session

In the computer interface there are five window panes to move between within
each session: The OriginalNewCase pane (the example of the content of this pane
can be seen in Fig. 2) is used to display the new case in the particular conversation
session. The new case extended by the inferred features in the feature inferencing
phase is then displayed in the ExtendedNewCase pane (as shown in Fig. 6). Based on
the extended new case, the CBR retrieve module retrieves a set of sorted cases and
displays them in the RetrieveResult pane (as illustrated in Fig. 7). In this pane you
can inspect the matching details between each retrieved case and the extended new
case. The solution for the extended new case is then calculated by the retrieved cases
and displayed on the ReuseResult pane. If you are not satisfied with the retrieved
cases and the reuse result, you can go to the Dialogue pane (shown on Fig. 8) to select
and answer the discriminative questions, and enter a new conversation session.

The question ranking module divides the identified discriminative questions into
two groups: Group one includes the questions that are constrained to be ranked after
other questions by some constructed “appears after” explanation paths; Group two
contains all the remaining questions. The questions in Group two then gets ranked
based on their occurrence frequency metrics [6]. Each question in Group one has one
or more “appears after” explanation attached to it. The questions are sorted according

 A Knowledge-Intensive Method for Conversational CBR 307

to the strongest explanation attached to each questions. Then the ranked questions in
Group two are sorted in front of the questions in Group one. If there are some
“succeeds” explanation paths between the answered questions in the last conversation
session and the current questions, the ranking priority of these involved questions are
further increased (putting them in the front of the question queue), and the internal
sequence of these “succeeding” questions are decided by their explanation strengths
in the “succeeding” explanation paths. The ranked questions are displayed in the
Dialogue pane. When each question is selected, its “joined” questions are also
displayed in the “Dialogue” pane to prompt the user for further selecting and
answering.

Fig. 7. The “RetrieveResult” pane in one conversation session

Our studies so far indicate that using general domain knowledge as explanatory
support in a conversational CBR process improves the focusing of question-asking,
and hence reduces the cognitive load needed to identify the best matching case. The
target application for empirical testing of our approach will be software component
reuse. We are currently building a knowledge base for the components existing in the
DynamicImager system [15], a visualization and image processing development
environment, in which there are about 200 different image operating components that
can be combined in various ways. Our evaluation process will compare component

308 M. Gu and A. Aamodt

retrieval with and without the explanation method, applied to one-shot vs.
conversational CBR retrieval.

5 Related Research

In [22], Schmitt and Bergmann propose a formal model for dialogs between users and
a conversation system, in which they identify four important issues in the
conversation process: a small number of questions, comprehensible questions, low
answering cost of questions and comprehensible question clustering. They also argue
that the main reason for the unnatural question sequence during dialogue is due to the
ignorance of the relations between different questions. However, they do not give
methods about how to incorporate the semantic relations during the dialog process.

In [8], Aha, Maney and Breslow propose a model-based dialogue inferencing
(feature inferencing) method. In their method, the general domain knowledge is
represented in a library model (including object models and question models) taking the
form of a semantic network. At run time, a set of rules are extracted from the library
model using an implication rule generator, and the generated rules and the existing
problem description are input to a PARKA-DB to infer the implicit knowledge.

Fig. 8. The “Dialogue” pane in one conversation session

In [17], Gupta proposes a taxonomic conversational CBR approach to tackle the
problems caused by the abstraction relations among features. In his approach, cases
are described using one or more factors. For each factor, an independent subsumption
taxonomy is created by the library designer in advance, and only the most specific
feature in each factor taxonomy is selected to describe a case. The similarity between
one <question, answer> pair in a case query and one in a case is calculated based on
their relative positions in the taxonomy. The question generated from a higher level
feature in one factor taxonomy is constrained to be asked before those that come from
the lower level features.

 A Knowledge-Intensive Method for Conversational CBR 309

Aha, Gupta and Sandhu identify the dependency relation among features [7, 18]. In
their method, dependency relations are only permitted to exist between the root nodes
among various factor taxonomies and the post-condition node in one dependency
relation is excluded from the case representation. In the question ranking step, the
question generated from a post-condition node in a dependency relation has higher
priority to be asked than the question formalized by the pre-condition node.

Carrick, Yang, Abi-Zeid and Lamontagne try to eliminate the trivial and the
repeated questions from users by accessing other information sources to answer them
automatically [9]. They take the question answer acquisition costs into account when
selecting a task (question) to execute instead of only the information quality metric. In
this method, an execution plan is formulated for each question using a hierarchical
task network (HTN). The estimated cost for each question is calculated through
propagating cost values upward from leaves to the root using the mini-max algorithm.

Comparing with the above knowledge-intensive question selection methods, our
approach contributes to the conversational CBR research in two ways: we propose a
common integrated framework (including knowledge representation model,
explanation construction mechanism and three-step reasoning process) to solve the
knowledge-intensive question selection tasks comprehensively (feature inferencing,
integrated question ranking, consistent question clustering and coherent question
sequencing); and by creating a meta-level knowledge representation model, our
approach has the capability to be easily extended to support richer semantic relations
that influence the question selection in conversational CBR.

6 Conclusion

The explanation method presented in this paper is based on the CREEK knowledge-
intensive CBR approach. The method described extends the existing system with a
conversational method and an explanation mechanism targeted at conversational CBR
support.

Limitations of the approach include the following two problems. The first is the
method’s dependence on knowledge engineering. The knowledge base combining
both specific cases and general domain knowledge is assumed to exist initially. The
construction of this knowledge base puts a significant workload on the development
team. However, recent developments in the areas of Knowledge Acquisition and
Modeling, as well as Ontology Engineering, provide systematic methods that help
reduce this problem [4] . We are also looking into machine learning methods,
particularly Bayesian Networks, for solving parts of the problems involved [19] .

The second is conflicting knowledge correction. We store the general domain
knowledge in the knowledge base, which explicitly expresses the relations among
concepts. However, the knowledge provided by users, including the initial problem
description and later answers to discriminative questions, can conflict with this stored
general domain knowledge. The problem can be reduced by incorporating an
automatic mechanism to detect the knowledge conflicts in order to warn users to
revise their new cases, or help knowledge base designers to update the predefined
mistaken knowledge.

310 M. Gu and A. Aamodt

References

1. Aamodt A. Explanation-driven case-based reasoning. Topics in Case-based reasoning
1994:274-88.

2. Aamodt A. Knowledge-intensive case-based reasoning in Creek. In Funk P, Calero PAG
eds. 7th European Conference on Case-Based Reasoning. Madrid, Spain: Spinger, 2004.

3. Aamodt A. A Knowledge Representation System for Integration of General and Case-
Specific Knowledge. International Conference on Tools with Artificial Intelligence. New
Orleans, 1994:4.

4. Aamodt A. Modeling the knowledge contents of CBR systems. Workshop Program at the
Fourth International Conference on Case-Based Reasoning. Vancouver: Naval Research
Laboratory Technical Note AIC-01-003, 2001:32 - 7.

5. Aamodt A, Plaza E. Case-Based Reasoning: Foundational Issue, Methodological
Variations, and System Approaches. AI Communications 1994;7:39-59.

6. Aha DW, Breslow LA, Munoz-Avila H. Conversational Case-Based Reasoning. Applied
Intelligence 2001;14:9-32.

7. Aha DW, Gupta KM. Causal Query Elaboration in Conversational Case-Based
Reasoning. International Florida Artificial Intelligence Research Society Conference.
Pensacola Beach, Florida, USA, 2002:95-100.

8. Aha DW, Maney T, Breslow L. Supporting Dialogue Inferencing in Conversational Case-
Based Reasoning. European Workshop on Case-Based Reasoning. Dublin, Ireland,
1998:262-73.

9. Carrick C, Yang Q, Abi-Zeid I, et al. Activating CBR Systems through Autonomous
Information Gathering. International Conference on Case Based Reasoning. Germany,
1999.

10. Cunningham P, Bergmann R, Schmitt S, et al. WEBSELL: Intelligent Sales Assistants for
the World Wide Web. KI - Kunstliche Intelligenz 2001;1:28-31.

11. Cunningham P, Smyth B. A Comparison of Model-Based and Incremental Case-Based
Approaches to Electronic Fault Diagnosis. Case-Based Reasonging Workshop. Seattle,
USA, 1994.

12. Doyle M, Cunningham P. A Dynamic Approach to Reducing Dialog in On-Line Decision
Guides. European Workshop on Advances in Case-Based Reasoning. Trento, Italy,
2000:49-60.

13. Göker MH, Thompson CA. Personalized Conversational Case-Based Recommendation.
the 5 th European Workshop on Case-Based Reasoning(EWCBR 2000). Trento, Italy,
2000.

14. Gu M, Aamodt A. Explanation-boosted question selection in conversational CBR.
ECCBR-04 workshop on Explanation in CBR. Madrid, Spain, 2004:105-14.

15. Gu M, Aamodt A, Tong X. Component retrieval using conversational case-based
reasoning. In Shi Z ed. International Conference on Intelligent Information Systems.
Beijing, China, 2004.

16. Gupta KM. Knowledge-based system for troubleshooting complex equipment.
international Journal of Information and Computing Science 1998;1:29-41.

17. Gupta KM. Taxonomic Conversational Case-Based Reasoning. International Conference
on Case-Based Reasoning. Vancouver, BC, Canada, 2001:219-33.

18. Gupta KM, Aha DW, Sandhu N. Exploiting Taxonomic and Causal Relations in
Conversational Case Retrieval. European Conference on Case Based Reasoning.
Aberdeen, Scotland, UK, 2002:133-47.

 A Knowledge-Intensive Method for Conversational CBR 311

19. Langseth H, Aamodt A, Winnem OM. Learning Retrieval Knowledge from Data. In
Anand SS, Aamodt A, Aha DW eds. Workshop ML-05: Automating the Consruction of
Case-Based Reasoners, in Sixteenth International Joint Conference on Artificial
Intelligence. Stockholm, 1999:77 - 82.

20. Mcsherry D. Interactive Case-Based Reasoning in Sequential Diagnosis. Applied
Intelligence 2001;14:65-76.

21. Schmitt S. simVar: A Similarity-Influenced Question Selection Criterion for e-Sales
Dialogs. Artificial Intelligence Review 2002;18:195-221.

22. Schmitt S, Bergmann R. A Formal Approach to Dialogs with Online Customers. The 14th
Bled Electronic Commerce Conference. Bled, Slovenia, 2001:309-28.

23. Shimazu H. ExpertClerk: A Conversational Case-Based Reasoning Tool for Developing
Salesclerk Agents in E-Commerce Webshops. Artificial Intelligence Review 2002;18:223
- 44.

24. Sørmo F. Plausible Inheritance: Semantic Network Inference for Case-Based Reasoning.
Department of Computer and Information Science. Trondheim: Norwegian University of
Science and Technology, 2000:102.

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, pp. 312 – 326, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Re-using Implicit Knowledge in Short-Term Information
Profiles for Context-Sensitive Tasks

Conor Hayes, Paolo Avesani, Emiliano Baldo1, and Pádraig Cunningham2

1 ITC-IRST, Via Sommarive 18, 38050 Povo, Trento, Italy
{hayes, avesani}@itc.it

2 Department of Computer Science, Trinity College Dublin
Padraig.Cunningham@cs.tcd.ie

Abstract. Typically, case-based recommender systems recommend single items
to the on-line customer. In this paper we introduce the idea of recommending a
user-defined collection of items where the user has implicitly encoded the
relationships between the items. Automated collaborative filtering (ACF), a so-
called ‘contentless’ technique, has been widely used as a recommendation
strategy for music items. However, its reliance on a global model of the user’s
interests makes it unsuited to catering for the user’s local interests. We consider
the context-sensitive task of building a compilation, a user-defined collection of
music tracks. In our analysis, a collection is a case that captures a specific short-
term information/music need. In an offline evaluation, we demonstrate how a
case-completion strategy that uses short-term representations is significantly
more effective than the ACF technique. We then consider the problem of
recommending a compilation according to the user’s most recent listening
preferences. Using a novel on-line evaluation where two algorithms compete
for the user’s attention, we demonstrate how a knowledge-light case-based
reasoning strategy successfully addresses this problem.

1 Introduction

There have been many research and application initiatives promoting case-based
reasoning (CBR) as a suitable recommender methodology for on-line services [27,5].
When a CBR reasoning component is employed to advise on purchasing configurable
products such as personal computers, holidays and electronic equipment, additional
knowledge is required to encode the constraints and dependencies between
components. This type of expert knowledge is often deployed during the adaptation
[24] stage.

In this paper we introduce the concept of recommending a collection of items using
case-based techniques. A collection is a set of items that have been assembled by a
user according to a particular idea or motivation. While it has much in common with a
configurable entity, it differs in that the relationships between component parts cannot
be described a priori in a formal way. Rather, they are implicitly encoded by the user
during his/her construction of the collection. The recommendation strategies

LNAI

Re-using Implicit Knowledge in Short-Term Information Profiles 313

described in this paper make use of these implicitly encoded rules of thumb to provide
advice to other users.

Our research is based upon experiments conducted on data from the Smart Radio
system, an online streaming music system which allowed users to build collections of
music (compilations) which could be recommended to other users with similar tastes
[15, 14, 13]. The music domain is a classic example in which an acute knowledge
elicitation bottle neck applies [7,9], making it very difficult to extract the expert rules
that encode the relationships between music items. However, with the arrival of new
on-line music services, consumers are faced with the familiar problem of information
overload often described for textual material [10,22]. As such, automated
collaborative filtering (ACF), a so-called ‘contentless’ approach to recommendation
and personalisation, has dominated in applications in the music domain [14,25,18].
One serious drawback with ACF is that it is not able to make recommendations that
are sensitive to the local interests or activities of the user [19].

In this paper we consider two context-sensitive tasks in this domain that cannot be
satisfactorily performed using the ACF algorithm.

1. Providing advice to the user when he/she is building a compilation.
2. Recommending a new compilation based on the user’s current listening

preference.

In previous work Aguzzoli and Avesani proposed a simple case-based
recommendation strategy for collections of music items [1]. A key idea here is that
long-term user profiles are not used to make recommendations. Instead, each
compilation is viewed as representing a short-term, context-specific need. In this
paper we reformulate the compilation-building task as an incremental case completion
exercise. As each track is added to a target compilation, similar compilations are
retrieved and the tracks extracted from these compilations are offered to the user to
complete the partial compilation. Whereas the experiments in [2] were based on
compilations synthesised from a collaborative filtering data set, we present for the
first time experiments based on real compilation data collected from users of the
Smart Radio system.

We then address the problem of automatically providing a suitable follow-up
compilation based on the user’s current listening preferences. Using a MAC/FAC [12]
approach, compilations retrieved by the ACF algorithm are re-ranked using a
knowledge-light, case-based process. In contrast to the evaluation of compilation
completion, we demonstrate how an on-line evaluation can give a true indication of
user satisfaction with one algorithm over another.

Section 2 briefly describes the Smart Radio system operation, and introduces the
idea of a compilation, a user-defined collection of music tracks. In Section 3 we
describe our solution to the compilation-building task using a case completion
strategy, and in Section 4 we introduce the idea of a context and the strategy we use to
further refine recommendations made by the ACF engine. Section 5 presents an
offline evaluation of the compilation completion technique. By contrast, Section 6
introduces an online evaluation of the context-boosted ACF technique. Finally, we
discuss our conclusions and future work in Section 7.

314 C. Hayes et al.

2 Music Recommendation

Although a late starter, the online retail of music has grown rapidly over the past two
years. With record companies increasingly making their back catalogues of music
available online, consumers are presented with an information overload problem.
This problem is exacerbated by the fact that, unlike documents, which can be rapidly
downloaded and scanned for relevance, a music file has a longer download time and
must be listened to in real time to determine its relevance.

Smart Radio is a web-based client-server application that allows users to build
compilations of music that can be streamed to the desktop [15,14,13]. The idea behind
Smart Radio is to encourage the sharing of music programmes using automated
recommendation techniques (see Figure 1). The unit of recommendation in Smart
Radio is the compilation, a collection of music tracks assembled on the fly by one
listener and recommended to other like-minded listeners.

Fig. 1. A screen shot of the Smart Radio recommendation screen

In contrast to text-based information retrieval where a page of text can be
automatically parsed into a vector of words, there is great difficulty in extracting
fundamental units of meaning equivalent to words from music files [11,7,9].
Typically, some metadata is available such as genre, artist, release date, but this data
is sparse, non-standardised and often not useful for prediction purposes.

Thus, music recommender systems such as Smart Radio generally rely upon
techniques such as ACF where explicit content mark-up is not required. The key idea
in ACF is that users can be clustered together based on their usage patterns.
Recommendations can be made to a target user based on the accumulated data in
neighbouring user profiles. As similarity between user profiles is calculated based on
the intersection of the item ids between profiles and not on content description, ACF
allows recommendations to be made in domains like music where there is a
knowledge-elicitation bottleneck. A second strength of ACF is that it can make
recommendations that would otherwise escape content-based recommender strategies.
This is because it relies upon implicit knowledge expressed in user preferences that
may capture the subtle relationship between items that would otherwise escape a
content-based system [8]. It is this type of implicit knowledge that we wish to explore
in this paper.

Re-using Implicit Knowledge in Short-Term Information Profiles 315

Recent work in the CBR community has drawn a parallel between ACF and CBR
as case completion [16,1]. Despite this, ACF has a weakness that is not apparent in
CBR systems. Whereas the CBR case has typically been viewed as capturing a single
problem/solution episode, a single ACF user case may capture several heterogeneous
episodes reflecting the various interests of the user over time. Thus, the ACF
recommender caters to the user’s global interests but is unable to make context-
sensitive recommendations. In the next section, we describe a solution to this problem
by using short-term, task-oriented profiles.

3 Compilation Building as Case Completion

A compilation is a user-defined collection of music, very often made up of a mixture
of tracks by different artists, but not necessarily so. We view a compilation as a case
that captures a particular short-term music/information requirement. Apart from its
component tracks, it also implicitly contains the knowledge and search effort required
to assemble the collection. Our hypothesis is that each compilation is built according
to an implicitly articulated guiding principle. Thus, each compilation case inherently
contains information about the relatedness between component tracks. Indeed, a
similar type of ‘relatedness’ information, useful for accurate recommendation, has
been mined from lists of favourite artists posted by music fans on the Web [8].

In Smart Radio, a compilation consists of a collection of 10 tracks that is
assembled for immediate delivery using streaming protocols. Thus, the user must
choose the composition of the compilation with care because once the compilation
has started to play, its composition cannot be modified. In the next subsection, we
describe how we allow users to reap the benefit of the compilation-building expertise
of previous users.

Fig. 2. A screen shot of a compilation advisor system

3.1 The Compilation Completion Advisor

Building a compilation is a context-sensitive task where tracks are selected according
to a particular theme or idea of the user. The key to this approach is to realise that a

316 C. Hayes et al.

short-term profile can capture a single problem-solving episode that is better able to
provide context-sensitive recommendations. Thus, instead of using user profiles to
make recommendations we choose to tap the specific knowledge in other
compilations.

In earlier work Aguzzoli & Avesani have described the basic mechanism for
recommending compilations [1]. The process is akin to the interactive case
completion methodology of the NaCoDAE system [2]. As the user adds tracks to a
compilation, the retrieval engine retrieves similar compilations by ranking the
compilations in the case base according to similarity to the partial compilation. It then
offers the user a choice of the top 10 ranked compilations (the top ranked compilation
is displayed by default) or a list of tracks ranked by frequency of occurrence from the
top 10 ranked compilations (see Figure 2). The process iterates until the maximum
number of tracks in a compilation has been achieved. In the case of the Smart Radio
system this is 10.

Using a compilation as a short-term profile is problematic in that similarity can
only be measured on items shared in common between compilation profiles. As a
compilation is made up of 10 out of a possible 2148 tracks, many compilations cannot
be compared because they do not have any tracks in common. In contrast, a typical
user profile would contain tracks from many sessions and thus have a better chance of
intersecting with other profiles. We address this problem using the agave algorithm to
reduce the sparsity of the compilation data set [1]. Using agave, each compilation is
transformed from binary vector (of component tracks) to a vector of mu values where
each mu value represents the degree of relatedness between the compilation and each
track in the data set. Thus, compilations can be easily matched using metrics like the
Pearson coefficient. In earlier work Avesani & Aguzzoli have demonstrated that
agave performs better than singular value decomposition (SVD), another technique
for reducing sparsity in ACF data sets [1]. In Section 5, using compilations collected
from real users, we evaluate the compilation advisor at different stages of compilation
completion.

4 Recommending Compilations in Context

Whereas in section 3 we described how we used the implicit compilation-building
knowledge to help the user build a compilation, we now turn our attention to
recommending a full compilation. Many of the same issues still apply. Using a typical
ACF strategy, recommended compilations may not suit the user’s current compilation
preferences. Our goal is to make recommendations that are appropriate within the
user’s listening context.

In the field of user modelling, the objective in isolating context information is that
tasks being undertaken by the user may be anticipated and a portion of the work
carried out automatically in advance. Applications such as Watson [4] and Letizia
[20], which monitor the user’s behaviour and attempt to retrieve or predict relevant
information, have been termed ‘reconnaissance aides’. In both Watson and Letizia the
context is represented by a content-based analysis of the topics currently of interest to
the user. If the user digresses or switches subject while researching a topic, both
reconnaissance aides will require time to respond. However, the advantage of an

Re-using Implicit Knowledge in Short-Term Information Profiles 317

implicitly generated profile is that it is a “zero input” strategy, i.e. the user does not
need to explicitly describe his/her goals [20].

Using a zero input strategy, our goal is to enhance the ACF technique so that
compilations based on the user’s current context are promoted. We use a MAC/FAC
influenced methodology to achieve this:

1. The ACF module selects a subset of the compilation case base.
2. These primed cases are then ranked according to their similarity to the user’s

listening context.

This process is indicated in Figure 3 where the darker shaded cases to the right
represent cases ranked by similarity to the user’s listening context.

Fig. 3. The two-stage strategy for providing context-sensitive recommendations

4.1 ACF Module

The typical ACF matrix (users X ratings) is based on the ratings (explicit and
implicit) that users have assigned tracks. Thus, the correlation between users is
calculated based on tracks from compilations users had built or played. A
neighbourhood is formed for a target user and a set of candidate compilations that the
user has not yet heard is extracted from the neighbour profiles. In order to rank these
compilations the ACF module makes a prediction for the component tracks not rated
by the user. The overall score for a compilation is a weighted sum of the predictions
or real scores for the tracks in a compilation where the weight is a user preference for
the fraction of unfamiliar music in a compilation [14].

Unlike typical ACF systems where items are recommended once only (and
accepted or rejected by the user), compilations are recycled in Smart Radio. The
rationale is that people are receptive to listening again to music they like as long as
the time between repeats is not too short. So during the compilation ranking phase, if
the top recommended compilation did not meet a threshold, we performed the
compilation extraction process again, this time considering compilations (by other
users) that the user had already listened to n days earlier. We set n = 30.

Furthermore, in order that we do not recommend compilations containing tracks
the user has just recently played we employ a 'refractory period' of several hours for
each track played by a user. Compilations with a high overall refractory period are not
considered for recommendation for the user. However, once the period has expired
those compilations can be considered for recommendation again.

318 C. Hayes et al.

4.2 Case Ranking Module

Unlike the examples of the reconnaissance aides described above, which used
information retrieval analyses to build a short-term user profile, the Smart Radio
domain suffers from a deficit of content descriptions. Therefore, the solution is to use
a lightweight case-based representation of each compilation using some freely
available meta-data. The content descriptors we use are the genre and artist tags
found in a few bytes of information at the end of the mp3 file. Although the
information this inexpensive process yielded was not particularly rich, the alternatives in
the music domain are expensive. We transform the compilation representation into a
case-based representation where the case features indicate the genre/artist mixture
within the compilation. Our goal is to capture the type of music mix, using the
available features that would best indicate this property. We have two feature types
associated with each track, genre_ and artist_. The case representation we used
in Smart Radio is illustrated in Table 1.

Table 1. A case captures the composition of the compilation in terms of the quantity of genres
and artists present. For reasons of space only one artist feature is shown

Feat. type Feature Value
genre_ Jazz 1
genre_ Blues 2
genre_ Folk 3
genre_ Country 4
artist_ John Coltrane 1

By playing a compilation the user triggers a context event. The contents of the
compilation are assumed to indicate the user’s current listening preference. We term
this contextualising by instance. The transformed compilation has two types of
features: genre_ features and artist_ features. The currently playing
compilation is used as the target for which we try and find the most similar cases
available from the compilation cases retrieved by the ACF step. Compilation
similarity is determined by matching the proportions of genre and artist contained in a
compilation [13].

In section 6, we present an online evaluation of this technique where we test user
response to recommendations presented from the context-boosted ACF strategy and
the standard ACF strategy.

The content-based strategy in Smart Radio evolved through our identification of
the problem of insensitivity to user context in version 1.0 of the system. For this
reason, the content-based strategy was always designed as an augmentation of the
primary ACF strategy. Within the taxonomy of hybrid strategies suggested by Burke,
the Smart Radio hybrid is best described as a Cascading system [6]. Unlike the
EntreeC system, another type of Cascading hybrid, the Smart Radio system uses ACF
as its primary recommendation strategy and the content-based ranking as a
supplemental process. A complete description of the integrated ACF−CBR approach
we adopt is beyond the scope of this paper. Readers are directed to [13] for a more in-
depth discussion of the similarity techniques and the architecture we use.

Re-using Implicit Knowledge in Short-Term Information Profiles 319

5 Off-line Evaluation of Case Completion

As we described in section 3, compilations are built according to the ‘expert
knowledge’ of users. In this section we describe an offline evaluation performed on
real compilation data collected from Smart Radio listeners. The evaluation had the
following objectives:

1. To demonstrate that short-term information profiles are more successful than
typical long-term profiles for a context-sensitive task such as compilation
completion.

2. To evaluate whether completion information should be based on individually
retrieved compilations or an aggregation of tracks from the k-nearest
neighbours.

5.1 Compilation Completion

Our evaluation strategy involved simulating a case completion process whereby we
measured recall at different stages of case completion. The recall measure represents
the probability that a relevant item will be retrieved. Each compilation in the case
base is a unique, user-defined collection of music. A leave-one-out approach was used
whereby we removed a percentage of tracks for each compilation. By retrieving a set
of k-nearest compilations we then attempted to predict the missing tracks. In order to
simulate performance at difference levels of completion, the missing tracks were
removed in increments of 10%. In calculating recall at each percentage of the
partially completed compilation, the relevant set refers to the set of items removed.
The algorithms we used are described below.

• TopN: This technique was used as a baseline approach. We recommend the
N most frequent tracks in the data set.

• Order-based: Collections assembled by users are biased in terms of the
order in which users are presented with candidate items by the system
interface. For instance, the Smart Radio file browser orders tracks
alphabetically by artist. Users will have a tendency to include some tracks in
their compilations that are ‘nearby’, such as tracks by the same artist or from
the same album. The order-based technique tests the extent of this bias by
recommending the next n tracks (as presented by the Smart Radio file
browser) to the last track in the partial compilation. Tracks already in the
compilation are not considered. n = 10.

• Overlap_Userbased_knn_topN: This is the standard user-based ACF
algorithm. We represent the data in the training set as a set of long-term user
profiles containing tracks from the compilations that the user has
downloaded in the past. Using the overlap method, recommendations are
made by firstly retrieving the best matching user profiles (knn) for the target
compilation and then choosing the most frequently occurring items in the
retrieved profiles (topN) [23]. However, as each user profile has a binary
representation in terms of tracks, similarity between the target and candidate
profiles is based on the amount of overlapping tracks.

320 C. Hayes et al.

• Overlap_Comp-based_knn_topN: We then retrieve compilations rather
than user profiles using the overlap method as before. Again, track
recommendations are made by choosing the most frequently occurring items
in the retrieved profiles.

The next three approaches use agave sparsity reduction. We make recommenda-
tions based on the first k compilations retrieved.

• Agave_P_knn: The similarity metric is the Pearson coefficient.
Recommended items are presented in the order they occur in the k ranked
compilations. Items already in the target compilations and any lower ranking
duplicate items are removed.

• Agave_LS_knn_topN: The similarity metric is based on the Least Squares
metric used by Shardanand and Maes [25]. Recommended items are ranked
according to their frequency in the k compilations.

5.2 Evaluation Methodology

The Smart Radio data set contains 803 compilations built by listeners to the Smart
Radio system from a corpus of 2148 tracks. Each compilation has 10 tracks. Each
compilation in the data set is evaluated using the leave-one-out methodology. When
we use the agave approach we recalculate the mu scores using the data set minus the
compilation being tested. For each compilation test, recall is measured at incremental
stages of completion. For example, in the first test we remove 90% of the
compilation. The remaining 10% is used as the target and the 90% we removed acts
as the relevant set with which we can calculate the recall score for the retrieved
tracks. We continue to test in increments of 10% until we finally evaluate recall when
90% of the compilation is present and 10% acts as the relevant set. In each test, the
retrieval size is set at 10 compilations. However, the Agave_P_knn algorithm only
used the track data in the first or second compilation. In measuring recall, we consider
the ranked list of tracks produced by each algorithm. Tracks already found in the
target compilation or duplicates of tracks already ranked higher in the retrieval list are
considered non-relevant items for the purpose of calculating recall.

5.3 Results

Figure 4 illustrates the Recall graph for case completion where the x axis represents
the percentage of the compilation used as the target compilation. Clearly, the topN
and user-based approaches perform very poorly when faced with a context-specific
task. The comp-based approach, which utilises short-term profiles in the form of other
compilations, performs significantly better even though the similarity is based only on
compilation overlap. The order-based approach performs relatively well suggesting
that users are influenced by the logical ordering of tracks by artist and album. The
order-based approach performs worse than the comp-based approach up to the 60%
mark. At the 90% level, however, its performance jumps to match the best performing
algorithms. This suggests that at 90% of compilation completion users tend to opt for
a nearby track in order to terminate the compilation building process. Clearly,

Re-using Implicit Knowledge in Short-Term Information Profiles 321

however, the algorithms that use the short-term profiles and the agave sparsity
reduction techniques perform best overall.

The difference between the performance of the user-based approach and the
approaches based on compilation retrieval seems to be due to the loss of context
information in the user profiles.

One of our objectives was to test whether presenting compilations in the order they
are ranked by the similarity metric is an adequate recommendation strategy. Our
hypothesis is that the first 1 or 2 ranked compilations are likely to contain sufficient
track information to complete the test compilation. In fact, agave_P_knn perform very
well indeed. These algorithms represent the view the user would have when choosing
the ‘compilations’ tab in Figure 2. All the other algorithms aggregate the track data
from the k-nearest compilations, ranking them by frequency, for example. This is
equivalent to the view in the ‘tracks’ tab of Figure 2. Our evaluation suggests that the
knowledge contained in the first two top-ranking compilations is strong enough to
compete with the aggregated data from k compilations.

Recall at % of compilation completion

.0

.050

.10

.150

.20

.250

.30

.350

.40

0 20 40 60 80 100

Percent of compilation completed

R
ec

al
ll

TopN

overlap_user_knn_topN

overlap_comp_knn_topN

order-based

Agave_P_knn

Agave_LS_knn_topN

Fig. 4. Recall graph for compilation completion

6 An Online Evaluation of Context-Boosted ACF vs. ACF

The evaluation in section 5 is an example of an off-line evaluation of a recommender
strategy which is typically based on techniques in machine learning and information
retrieval [3]. However, it has been regularly observed that off-line evaluations of

322 C. Hayes et al.

recommender systems have a number of shortcomings [26,17,19]. For example, it is
not at all clear whether users are sensitive to slight improvements in prediction error of
one algorithm over another. Secondly, an algorithm can only be evaluated on
predictions it makes on items that have been observed by the user, which may be only a
fraction of the overall items in the domain. Thus, in an offline evaluation, there is no
way of measuring ‘true recall’ because we are unable to measure the potential relevance
of items that have not been rated by the user.

This problem is particularly apparent when evaluating the success of a recommender
strategy like the content-boosted ACF where we need to analyse the correctness of the
ranking produced in response to a context event. It was not clear how we might
perform this in an off-line setting. Therefore, to test our hypothesis we performed a
comparative analysis of how the algorithm performs in an online setting. Unlike the off-
line analysis, this methodology plays one recommendation strategy against the other in a
live system and measures the relative degree of success of each strategy according to
whether the user utilises the recommendations of either system. A more detailed
discussion of our on-line evaluation framework for recommender systems is presented
in [17].

6.1 Evaluation Environment

The evaluation environment was the Smart Radio system − a live, on-line application
used by a community of users, with a well defined recommendation task using a
specific user interface. The application was serviced by two competing recommendation
strategies: ACF and context-boosted ACF. The ACF implementation was that
described in Section 4.1. The context-boosted ACF implementation deployed the same
ACF technique described in Section 4.1 but then re-ranked the results using the case-
based ranking described in Section 4.2.

In order to be able to gauge a relative measure of user satisfaction with the two
strategies, we logged the user interactions with respect to the recommendations made
by either strategy. Other aspects of the recommendation process that might have
influenced user satisfaction were kept the same (interface, interaction model). The
proposed methodology can be seen as a competition between two different
approaches to solving the same problem (in this case, winning user satisfaction). In
this regard, we define three evaluation policies.

Presentation Policy: The recommended compilations in Smart Radio were presented as
a ranked list. For evaluative purposes, we interleaved recommendations from each
strategy. As a user is most likely to inspect the top-ranked compilation in the
recommendation set, this position is alternated between each recommender strategy
after each compilation ‘play’ event.

Evaluation Policy defines how user actions can be interpreted to express a preference
for one algorithm over the other. In this evaluation, a preference was registered for one
strategy when a user inspected and then played a compilation from his/her
recommendation set.

Comparison Policy defines how to analyse the evaluation data in order to determine
a winner. Obviously, the simplest way is to count the number of rounds won by the
competing systems. However, certain algorithms, such as ACF, may only start to

Re-using Implicit Knowledge in Short-Term Information Profiles 323

perform well after sufficient data has been collected. Therefore, we analyse the
performance of each system over time. As individual users may have different
degrees of interaction with the system, we provide a comparative analysis of users
based on how intensively they used the system.

6.2 Results

The results refer to the listening data of 58 users who played a total of 1012
compilations during the 101-day period from 08/04/2003 until 17/07/2003. Table 3
gives the breakdown of the sources of compilations played in the system for this
period. The recommendation category was by far the most popular means of finding
compilations. Building compilations from scratch or explicitly searching for
compilations should not be considered ‘rival’ categories to the recommendation
category given that an ACF-based system requires users to find a proportion of new
items from outside the recommendation system itself.

Cumulative Score: Table 3 gives the cumulative breakdown between ACF and
context-boosted ACF recommendations for the period. From a total of 504
recommended compilations played, 311 were sourced from context-boosted
recommendations, while 177 came from normal ACF recommendations. 16 came
from bootstrap recommendations, which we haven’t discussed here.

Interval-Based Evaluation: In order to check that these results were consistent
throughout the evaluation period, we divided the period into 15 intervals of one week.
Figure 8 shows the proportions of ACF to context-boosted recommendations analysed
on a weekly basis for the period. We can see that the context-boosted ACF
outperformed the pure ACF recommendation strategy in all but one of the intervals.
We have tested these results using a paired t-test and found them to be statistically
significant within a confidence level of 99%.

User-based Evaluation: An analysis of our users’ behaviour demonstrated
considerable variance. During the evaluation period we had users who used the
system several times a week, sometimes for hours every day, as well as other users
who used the system much less frequently. In order to check that the performance of
our recommender holds for different degrees of usage, we split the dataset according
to the number of compilations each user listened to. There are 10 categories in which
users may fall, representing different degrees of usage of the system. Figure 9
illustrates the comparative success of the two strategies in each usage range.

Whilst ACF is marginally greater in two intervals, if we use a paired t-test on the
individual user recommendation data we find that the hypothesis, ACF context-
boosted ACF, once again holds with a confidence level of 95%. However, Figure 3
would suggest that the preference for context-boosted ACF is more pronounced
among regular users of the system. Light users simply might not have used the
system enough to have formed a preference for either recommendation strategy.
Heavier users, on the other hand, have a much greater chance to explore the facilities
of the system and implicitly express preferences for one strategy over another through
regular use.

324 C. Hayes et al.

Table 2. Source of compilations played from 24:00 08/04/2003 until 24:00 17/07/2003

Source Number Percentage
Top Compilations 87 8
Past Compilations 194 19
Trusted Neighbour 23 2
Recommendations 504 50
Explicit Search 94 9
Compiled from Scratch 110 11

Table 3. The cumulative scores for the ACF vs. context-boosted ACF analysis

Algorithm name Number of ‘play’ events Percentage
Standard ACF 177 35

Context-boosted ACF 311 62

Source of playlist recommendations played: ACF vs.
Context Boosted ACF

0
5

10
15
20

25
30
35
40

W
ee

k 1

W
ee

k 3

W
ee

k 5

W
ee

k 7

W
ee

k 9

W
ee

k 1
1

W
ee

k 1
3

W
ee

k 1
5

n
u

m
b

er
 o

f
p

la
yl

is
t

im
p

re
ss

io
n

s

ACF recommendation

Context Boosted ACF
Recommendation

Fig. 5. ACF vs. context-boosted ACF over 15 weekly intervals

ACF vs. Context Boosted ACF per usage range

0
10
20
30
40
50
60
70
80
90

100

ra
ng

e
1-

5

ra
ng

e
6-

10

ra
ng

e
11

-1
5

ra
ng

e
16

-2
0

ra
ng

e
21

 -3
0

ra
ng

e
31

-4
0

ra
ng

e
41

 -5
0

ra
ng

e
51

-6
0

ra
ng

e
61

-8
0

ra
ng

e
81

 +

Usage Range

N
u

m
b

er
 o

f P
la

yl
is

ts

ACF

Context Boosted ACF

Fig. 6. A user-based analysis of the evaluation

Re-using Implicit Knowledge in Short-Term Information Profiles 325

7 Conclusions

In this paper we demonstrate the importance of considering the context of the online
user’s interests or tasks. In the domain of music, however, there is great difficulty in
extracting content or knowledge with which to model user profiles. Conventionally,
the ACF technique is used. However, ACF makes recommendations based on a global
model of the user’s interests. We show how short-term profiles in the form of
collections of music are much more successful in providing advice in the compilation-
building exercise. The key observation we make is that such short-term collections
contain implicit knowledge as to the relatedness of their component tracks. However,
we note that typical off-line approaches are limited to evaluating algorithmic
performance on items the user has rated in the past. In our second evaluation we
demonstrate how an online test gives evidence of user satisfaction with one strategy
over another. In particular, we show user preference for a context-enhanced ACF
algorithm over a standard ACF algorithm.

We recognize that our concept of context is defined specifically by the music
domain. A compilation gives us a convenient, short-term representation of the user’s
local listening interests. Without such a structure, the division of a user’s browsing
habits into categories is much more problematic. However, our approach does
demonstrate that where a user must make informed choices about assembling related
objects, tapping the implicit knowledge from previous user knowledge is helpful.

Furthermore, the knowledge-light approaches in this paper are motivated by the
difficulty of extracting rich content description for music. If richer content was
available, the possibility of using more sophisticated case-based techniques for music
retrieval would be very attractive. Unfortunately, for the moment, several recent
reviews in the field of music retrieval would suggest that the problem of capturing
and representing the semantics of musical artifacts in a scalable way is far from being
solved [7,9].

References

1. Aguzzoli, S., Avesani, P., Massa, P. Collaborative case-based recommender systems. In
ECCBR 2002, Aberdeen, Scotland, Springer Verlag, 2002.

2. Aha, D. W., Maney, T., Breslow, L. Supporting dialogue inferencing in conversational
case-based reasoning. EWCBR 1998, Dublin, Ireland, pp. 262−273, 1998.

3. Breese, J.S., Heckerman, D., Kadie, C. Empirical analysis of predictive algorithms for
collaborative filtering. In Proceedings of the 14th Annual Conference on Uncertainty in
Artificial Intelligence, pp. 43–52, July 1998.

4. Budzik, J., Hammond, K. J. User interactions with everyday applications as context for
just-in-time information access. In Proc. of the 2000 International Conference on
Intelligent User Interfaces, (New Orleans, Louisiana, USA), ACM Press, 2000.

5. Burke, R., (ed). Proceedings of the workshop on Case-based Reasoning in Electronic
Commerce. ICCBR, Vancouver, BC. 2001

6. Burke, R., Hybrid Recommender Systems: Surveys and Experiments in User Modelling
and User-Adapted Interaction 12(4): 331-370; Kluwer press, Nov 2002..

7. Byrd, D., Crawford, T. Problems of music information retrieval in the real world,
Information Processing and Management: an International Journal, v.38 n.2, 2002

326 C. Hayes et al.

8. Cohen, W., Fan, W. Web-collaborative filtering: Recommending music by crawling the
web. In Proceedings of the Ninth International World Wide Web Conference, 2000.

9. Downie, J. Stephen. Music information retrieval (Chapter 7), In: Cronin, Blaise (Hg.)
Annual Review of Information Science and Technology 37: Information Today Books,
pp.295-340, 2003

10. Foltz, P.W., Dumais, S.T. Personalized information delivery: An analysis of information
filtering methods. Communications of the ACM 35(12), 51–60, 1992

11. Foote, J., an overview of Audio information retrieval. Multimedia Systems 7: 2–10
Springer Verlag, 1999.

12. Gentner, D., Forbus, K. D., MAC/FAC: A model of similarity based access and mapping.
In Proc. of the 13th Annual Conference of the Cognitive Science Society. Erlbaum

13. Hayes, C., Cunningham, P. Context Boosting Collaborative Recommendations. In the
Journal of Knowledge Based Systems, Volume 17, Issue 5-6, July 2004, Elsevier, 2004

14. Hayes, C., Cunningham, P., Clerkin, P., Grimaldi, M. Programme-Driven Music Radio. In
the proc. of ECAI 2002, Lyons France ed.: Frank van Harmelen, IOS Press, 2002

15. Hayes, C., Cunningham, P., SmartRadio–community based music radio; Knowledge
Based Systems, special issue ES2000, Volume 14, Issue3-4, , Elsevier, 2001

16. Hayes, C., Cunningham, P., Smyth, B. A case-based reasoning view of automated
collaborative filtering, in: Aha, D.W., Watson, I. (Eds.), Proc. of 4th International
Conference on Case-Based Reasoning, LNAI 2080. Springer Verlag, pp. 234–248, 2001

17. Hayes, C., Massa, P., Avesani, P., Cunningham, P., An on-line evaluation framework for
recommender systems in the proceedings of the IWorkshop on Recommendation and
Personalization Systems, AH 2002, Malaga, Spain, 2002. Springer Verlag.

18. Hayes, C., Smart Radio: Building Community Based Radio. PhD thesis. Department of
Computer Science. Trinity College Dublin, 2004

19. Herlocker, J. L., Konstan, J. A., Terveen, L. G., and Riedl, J. T. Evaluating Collaborative
Filtering Recommender Systems. In Proceedings of the ACM Transactions on Information
Systems, vol. 22, no. 1, pp. 5-53, 2004

20. Lieberman, H., Fry, C., and Weitzman, L., Exploring the Web with Reconnaissance
Agents," Communications of the ACM, Vol. 44, No. 8, August 2001.

21. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J. An Open Architecture for
Collaborative Filtering of Netnews. pp. 175-186. ACM Conference on Computer
Supported Co-operative Work, 1994.

22. Resnick, P., Varian, H. R. Recommender Systems. Communications of the ACM 40(3),
56–58, 1997

23. Sarwar, B., Karypis, G., Konstan, J., Riedl, J. Analysis of recommendation algorithms for
e-commerce, in: Proceedings of ACM E-Commerce, 2000

24. Schmitt,S., Bergmann, R. Applying Case-Based Reasoning Technology for Product
Selection and Customization in Electronic Commerce Environments. In Proc. of 12th
International Bled Electronic Commerce Conference, Bled, Slovenia, June 7 - 9, 1999

25. Shardanand, U., and Mayes, P., Social Information Filtering: Algorithms for Automating
'Word of Mouth', in Proceedings of CHI95, 210-217, 1995.

26. Swearingen, K., Sinha, R., Beyond Algorithms: An HCI Perspective on Recommender
Systems, ACM SIGIR Workshop on Recommender Systems, 2001.

27. Wilke, W., Lenz, M., Wess, S. Case-Based Reasoning for Electronic Commerce. In: Lenz
et al. (Eds.): Case-Based Reasoning Technology from Foundations to Applications,
Springer, 1998.

Acquiring Similarity Cases for Classification

Problems

Andrew Kinley

Fordham University
kinley@cis.fordham.edu

Abstract. The situation assessment and similarity components of the
interpretive case-based reasoning process are integral for a successful
case retrieval. However, for classification problems there are domains
where it can be difficult to define sets of relevant features to extract
from a problem description. Likewise it is not always obvious which of
these features to apply to the similarity assessment process and what, if
any, weights they should be given. We suggest learning the concept of
similarity by training on a set of past situations. Rather then develop a
general function, we store the knowledge gained in individual similarity
comparisons as similarity cases. These similarity cases define a similarity
space that can be searched to identify how new problem situations can
be classified. This paper describes our approach of acquiring similarity
cases in the context of a straightforward classification task. A proof of
concept system was built that creates similarity cases from a repository
of known spam email messages and can use the similarity cases to classify
unknown messages as positive or negative examples of spam.

1 Introduction

Case-based reasoning (CBR) solves problems by retrieving prior problem solving
episodes and reusing the past solutions as basis for solving and or interpreting the
current situation. The success of the retrieval is based in large part on accurate
situation assessment of the current input problem and employing appropriate
similarity criteria. In some problem domains it can be difficult to predefine the
most relevant set of features to extract from a problem description for use in
similarity assessment. Further, when and how to apply the sets of features to
specific problems may require a more complete domain theory than is available.
The classification of spam email messages is one such domain that is not only
ill-defined but suffers from problems such as concept drift[1] and ongoing and
deliberate attempts to disguise itself as legitimate email.

In this paper, we present an approach of acquiring similarity knowledge
through supervised learning to build specific instances of feature sets that cap-
ture the essence of successful similarity assessments. These feature sets are
recorded as similarity cases. These similarity cases can then be used as a basis
for interpretive CBR on classification tasks. Each similarity case is constructed
from the subset of features most responsible for the similarity between two train-
ing examples. The similarity cases represent different views and interpretations

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, pp. 327–338, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNAI

328 A. Kinley

of examples in the domain and provide several alternatives for examining new
classification problems. To explore this idea, a proof of concept system was built
that creates similarity cases from a repository of known spam email messages
and uses the similarity cases to classify test messages as positive or negative
examples of spam.

This paper describes the acquisition of similarity cases in the context of a
straightforward classification task. It begins by examining the problem in greater
depth, and then identifies characteristics of domains for which this approach
might be applicable. Following this, spam-filtering is defined and presented as
the experimental domain. Next we describe the approach used to create and
deploy similarity cases for reuse in classifying unknown spam messages. Early
results from our proof of concept system are reported and discussed along with
known challenges. Finally we conclude by examining our work in the context of
prior similar work and suggesting some areas requiring additional study.

2 Background

Two important aspects of using case-based reasoning for interpretative classifica-
tion are situation assessment and similarity assessment. During situation assess-
ment the current problem is examined to determine what information would best
match indexes in the case base. This aspect of CBR is well documented by Kolod-
ner’s text [2] and many approaches have been described [3, 4, 5, 6, 7]. Situation
assessment approaches may make use of all of the information available or ex-
tract a subset of the available information using predefined checklists of features.
When too much information is maintained a large number of less useful cases
may be retrieved or it may be difficult to distinguish between disparate partially
matching cases. When too little information is kept, the similarity metric may
have incomplete information with which to make useful matches or may have
lost a crucial piece of data needed for the classification of the current scenario.

The pitfalls of situation assessment can be illustrated by a simple example.
Consider a common problem in academia; the selection of students for acceptance
on the basis of applications for admission. An admissions officer studies each
application to determine if the individual is the type of student likely to succeed.
These determinations are often based on past examples of student success and
failure. If the admissions officer only chooses a few aspects of the application
to examine – such as grade point average or standardized test scores – he or
she may miss relevant and valuable information that has been submitted by
the applicant. If, in contrast, the admissions officer considers all aspects of the
application then the importance of a single recommendation letter, no matter
how strong, may be diminished if it is only considered as one small part of the
whole. Ideally an admission officer determines the key aspects of each application
on an individual basis. Thus one student with strong scores may be examined
differently then a student with strong recommendation letters and still result
in a positive outcome for that student. However, there is no a priori way of
determining what the relevant features of a given application should be.

Acquiring Similarity Cases for Classification Problems 329

Similarity assessment takes over where situation assessment ends. It examines
the case-base of stored solutions and, taking the problem description developed
during situation assessment, retrieves a case or set of cases that match most
closely. Typical approaches take the features and or dimensions identified dur-
ing situation assessment and use a weighted matching function to compare the
features to each case index. Many successful approaches and alternatives to simi-
larity assessment have previously been reported [8, 9, 5, 10, 11, 12]. This process
faces many of the same problems as situation assessment where too much, too
little or incorrect information can degrade the comparison. Simply because a
stored case achieves a high score when compared with a problem description
does not guarantee that it is applicable in the current situation.

Consider again the admissions problem. If similarity assessment weighs grade
point average and standardized tests scores higher than other features of an
application, a past student could be remembered with close if not exact matching
features. While the past student may have been rejected, it is perhaps suggestive
but not a guarantee that the current student should also be rejected. Other,
typically lesser, aspects of the past application may have in fact been the cause
of the previous rejection. The problem does not necessarily get easier if all pieces
of information are accounted for. The matching past student may have been
rejected. The current student while identical in most aspects may require a
different and relatively unique interpretation if that student has an influential
parent. Examination of the past cases is insufficient to explain this difference
at the time of retrieval and thus some other mechanism is required to fill this
knowledge gap.

3 Similarity Cases

The problems described in the previous section are not necessarily typical of all
or even many case-based reasoning systems. However, interpretive classification
tasks are one area in which these problems can arise, particularly in domains
that are ill-defined. This paper describes the development of a novel similarity
learning approach that attempts to learn a concept theory for similarity in a
given domain using a supervised learning algorithm. Our approach can be ex-
emplified by the admissions officer who might record for each student accepted,
which aspects of that student were relevant to his or her admission. Thus a
student admitted on the basis of grades would have that information recorded,
while a child of an influential alumnus would have that fact recorded. We call
the recorded relevant similarity features similarity cases. Thus when evaluat-
ing a new applicant, each stored similarity cases can be examined to determine
its applicability to the current situations and use that knowledge to guide the
decision making process.

The addition of similarity cases into a case-based reasoning process creates
its own set of issues for a system:

330 A. Kinley

– How can similarity cases be learned? Given a set of classified cases, sim-
ilarity cases can quickly be generated by finding similarly classified examples
and extracting the relevant features they have in common.

– How does a new situation handle conflicting similarity cases? It
is possible for one problem description to match or partially match with
several similarity cases and this can be problematic if it leads to different
proposed classifications. Since different matches can use disparate sets of
features, it is entirely reasonable that our applicant for admission has the
influential parent that suggests acceptance and a poor GPA which another
case suggests rejection. If the similarity cases provide insufficient coverage
of the similarity space this can be problematic and perhaps best left for
guidance from an expert user. In situations such as this, the similarity cases
may suggest reverting to the original complete past problem descriptions
and then can be used to guide their processing.

– What are the added costs of using similarity cases? The addition of
similarity cases to the case-based reasoning process has the potential to add
significant overhead to the incremental learning process. However, since the
majority of similarity cases are created from seed cases prior to full deploy-
ment of the system much to the infrastructure cost is avoided. Otherwise
similarity cases have the effect of acting like typical case indexes and should
not require large amounts of added time to process.

4 Spam Filtering

A common problem computer users face today is tackling the daily influx of
unwanted junk e-mail commonly known as spam. Estimates on the prevalence of
spam have indicated that it comprises approximately 55% of all email messages
[13]. In fact, certain free email servers indicate that over 90% of all the messages
received can be classified as spam. The problem has grown to such an extent that
legislation, albeit ineffective, has been created in many places to attempt and
reduce the amount of unsolicited email. The prevailing opinion is that technology
will need to solve the problem and spam filtering tools have become integral parts
of many email servers and end-user email applications.

Several approaches to spam filtering are in wide spread use and include:

– Creating blacklists of spam distributors. This is effective when certain do-
mains or users are frequent contributors of spam. However, most spam dis-
tributors vary the names and domains listed within their spam messages. In
the long term this may not be a successful approach in reducing spam.

– Using collaborative methods in which users submit spam signatures to a
central server or share their signatures with other users. When these same
messages are distributed in the future they can be quickly removed. Spam
distributors circumvent this strategy by varying aspects of the content of the
message without changing the primary message.

Acquiring Similarity Cases for Classification Problems 331

– Using content based filtering which is by far the largest and currently the
most successful approach to spam filtering. In content based filtering, dif-
ferent aspects of each email can be examined. By using an assortment of
methods, a determination can be made as to the likelihood of a message
being spam. The most successful of the content-based filtering methods is
a naive Bayesian algorithm that determines a probabilistic value for each
email. Appropriate thresholds on this value can be determined to eliminate
the vast majority of incoming spam. By some accounts the Bayesian ap-
proach can accurately identify 80% of all spam messages without removing
wanted emails. While successful, Bayesian methods are still subject to prob-
lems of concept drift and as the spam distributors significantly change their
strategies the probabilistic models need to be rebuilt.

One related problem that compounds the identification of spam is that different
individuals may classify the same message differently. Thus one person’s spam
is another’s wanted email. In response, many spam- filtering strategies attempt
to learn individual user’s preferences, but are of limited success as users are
not always diligent with providing the necessary feedback to the spam-filtering
agent.

We have selected the spam identification domain to study our ideas on sim-
ilarity learning. Spam has the property that there is no clear definition of what
makes message spam other than the “I will know it when I see it” method.
Some spam messages closely resemble non-spam messages when using certain
comparison criteria. Two spam messages may have little to nothing in common
with one another. One strategy of spam distributors is to disguise the message
as something a user may want to read or try to “phish” the user into reading
the message by providing urgent and seemingly relevant information. This can
make it difficult to automatically classify a message as spam if it is not clear
which aspects of the message identify it as spam and which aspects are meant to
disguise the message. This research with spam filtering is predicated on several
assumptions:

– We are not currently attempting to outdo commercial spam filtering ap-
proaches, and in fact believe that Bayesian classifiers in combinations with
other methods will continue to be the most accurate and quickest approaches
to the solving problem.

– We are studying the concept of similarity assessment, and spam filtering pro-
vides a readily accessible and practical domain for examining this problem.

– Our goal is to classify messages as spam that are clearly spam to most users.
We are not, at this time, concerned with messages that could be classified
differently by different users.

5 Knowledge Representation

We initially examine each spam message as the raw text email message. While
potentially of great value, we have chosen to ignore all of the information pro-
vided in the header of the email. While fields in the header can potentially yield

332 A. Kinley

valuable clues as to the classification of a message, spam distributors are capable
of framing these headers in ways that would be undetectable by the best current
methods. For each message we extract the text as words from its body, removing
common words and stemming appropriate terms [14]. From an analysis of many
messages we have identified a fixed set of N terms that appear in our corpus.
From these N terms we construct, for each message, vectors of length N that
store the number appearances of that term in the message.

For example, if our vector stores values for the terms
< apple, cat, hot, milk, sell >

and the following message was presented ”The cat drank hot milk, but the cat
did not like hot apples.” The vector for this message would appear as

< 1, 2, 2, 1, 0 > .
This vector provides us with an easy way to represent the content of each

term. One draw back of this approach is that it loses the context of each term.
We hope to develop additional methods to study the question of context in the
future.

A traditional CBR approach might store these vectors (or another compara-
ble representation) as cases. Comparisons between this case repository and new
problem descriptions could be used to effectively classify large amounts of spam
messages. However, these vectors can contain values for many terms that do
not contribute to a message’s classification. Thus our term ”cat” might appear
frequently in a given message and yet not be an indicator that a case is spam.
Thus we are potentially faced with identifying which features are relevant while
avoiding terms that could incorrectly raise or lower a similarity score.

6 Our Approach

We approach this problem by creating similarity cases from a set of known
spam messages. In brief, this process is performed by examining each pair of
messages and determining what features exist in common between them. The
resulting similarity case is a snap shot of which features were most relevant in
the comparison of two similarly classified messages. These similarity cases are
then used as potential classifiers of new test messages.

Our algorithm can be described more formally as consisting of of two general
steps: a pre-processing phase (step 1) and a classification phase (step 2):

1. For each training message:
(a) Compute the intersection of all features with similar classification.
(b) Score each computed intersection with respect to relevance and frequency

of terms.
(c) Record the K highest scores intersections as similarity cases.

2. When a test message is presented to the system for classification.
(a) Retrieve all similarity cases applicable to the test message.
(b) Compute a likelihood score for the test message based on the the simi-

larity cases retrieved.
(c) If a predefined threshold is reached then classify the message as spam.

We will now examine each of these steps in greater detail.

Acquiring Similarity Cases for Classification Problems 333

6.1 Computing the Intersections (Step 1a)

When comparing two training messages, no assumptions are made about the
relative importance of terms in the message. There is a tacit assumption that
the filtered terms of the message will act as features in lieu of any other possibly
available information.

6.2 Scoring the Intersections (Step 1b)

Each intersection computed from comparisons using each test message is the
given a quality score based on the size of the intersection and the importance
of the terms in the intersection. Small intersections are generally of less interest
since they suggest that the comparison found little in common between messages.
Larger intersections can also be troublesome and suggestive of identical messages.
This is tempered by weighing the relevance of each individual term based on its
frequency in the compared messages and its overall frequency in the test set.

6.3 Building the Similarity Case (Step 1c)

For each of K highest scoring intersections, we construct a similarity case based
solely on the relevant intersections.

6.4 Retrieve Similarity Cases (Step 2a)

The step is perhaps misnamed since similarity cases are not retrieved in the
traditional sense. Rather all similarity cases are applied to the test problem
to find a best fit. A good fit between a similarity case is achieved when all
or at least most of the terms stored in the similarity case appear in the test
message. We have found that as allowing as few as 50% the terms to match
for a “good fit” has produce reasonable results. This process while potentially
computationally intensive, the vector representations of terms allow for some
speedup in processing. All similarity cases that pass the good fit test are retained
for the next step.

6.5 Score the Test Message (Step 2b)

We score the test message based on the number of similarity cases retained
from the prior step. The option also exist to create weights for stored similarity
cases based on a user defined relevance score or other usability metrics. This
later option is useful to account for examples that are rare and for which most
similarity cases are not applicable. However, their may be similarity cases that,
while infrequently used, provide accurate results and deserve greater weighting.

6.6 Classify Message

Finally, the score from the prior step is taken and if a designated threshold is
achieved them classify the message appropriately.

334 A. Kinley

7 Evaluation

We built a small proof of concept system to verify the integrity of our model
as a precursor to a much large system currently under development. We wanted
to identify whether similarity cases could be successful at driving the spam
classification task while identifying potential questions and problems that might
arise in its deployment. We selected 50 training spam messages at random from
a larger collected repository. From these training message we created similarity
cases using our algorithm (K = 4) for a total of 200 similarity cases. These
similarity cases were then used to classify a collection of 40 test messages of
which 20 were spam and 20 were non-spam. For the purposes of this experiment
a “strong classification” of spam was one in which there were over ten similarity
case matches. A “weak classification” had fewer then ten similarity case matches.
Finally, “no classification” was given if there were no matching similarity cases.

Table 1. Results of similarity cases

Test Case Number Strongly Spam Weakly Spam No Classification

Spam 20 12 5 3
Non Spam 20 0 5 15

The results of this test, captured in table 1, were mixed. The similarity cases
were able to strongly suggest a test message was spam slightly over half of the
time. Another quarter of these test message were weakly suggestive of spam.
Non-spam cases faired well as about a quarter were weakly suggestive of spam
and the remainder found no relevant similarity cases.

An examination of the data introduced an insightful and unfortunately clas-
sic AI problem that is present in this approach. Despite the fact the learning
is supervised, there is not external influence affecting the causal links that are
captured in the similarity cases. One such example of a type that was not uncom-
mon among the similarity cases contained only the terms <http email> neither
of which tend to be good indicators of spam messages. However, on further re-
flection these terms are excellent indicators that a message is email which is yet
another trait that the root messages had in common.

Developing similarity cases from a larger training case-base would provide us
with broader coverage of the similarity space which may produce better results
but perhaps could discover other unintended similarities between messages. Some
expert knowledge may be required by the system to better guide it in its initial
creation of similarity cases.

8 Related Work

There is a substantial amount of work in both the areas of similarity assessment
and spam filtering.

Acquiring Similarity Cases for Classification Problems 335

Similarity assessment is a classic problem in Case Base Reasoning. Rissland
[8] was one of the earliest to describe using dimensions of cases to project cases
onto the case base. In fact, the goal of similarity cases can be viewed as trying to
discover these dimensions from the cases themselves. The importance of being
able to examine existing cases from different perspectives and using different
lines of reasoning is critical in interpretive CBR and has played a major role in
the legal reasoning systems such as the work on HYPO [5]and GREBE [9]. Those
system used expert knowledge to define these dimensions in advance while this
approach attempts induce and discover them.

The idea of storing similarity knowledge is not new. Leake et al [15] described
recording case adaptation knowledge and using it as the basis of learning new
similarity criteria. Their approach suggested doing away with feature assessment
altogether and instead evaluated past cases on the basis on their adaptability.
These adaptation cases were learned by a separate module of the system. Our ap-
proach differs from this in that we are trying to capture the elements of similarity
assessment that are contributing to accurate retrievals. We learn what features
produce successful results and store the successful feature set as a unique case.

Some early systems like Prodigy/Analogy [10] have advocated refining simi-
larity criteria to focus on goal-relevant portions of the problem description and
thus retrieve past cases with the most relevant similarities. Our approach differs
from this in that we do not explicitly assign relevance to features but instead
store similarity cases that capture prior sets of relevant features.

Our actual approach to similarity assessment is inspired by the K-NN sim-
ilarity assessment approach which is described in numerous locations including
Aha [16]. We extract the relevant features from episodes of applying the KNN
approach and store the results as similarity cases. Several approaches have been
presented to build a similarity function including decisions trees [17]. However,
these attempt to induce a general model of similarity for the system whereas our
approach attempts to not define a specific model of similarity but looks to cap-
ture those types of similarity comparison that may be indicative of a particular
classification. It has also been shown that trying to induce feature weights from
examples can lead to overfitting [18].

Prior research that most closely matches our work has involved applying lazy
learning methods to vary local weight across the feature space [19, 20]. A similar
idea has also been espoused by [21] who created different feature subsets called
ensembles to produce diversity in nearest neighbor classifiers. Their approach,
however, emphasizes the selection of diverse ensembles while we store similar
feature subsets within similarity cases derived from past successful similarity
assessment episodes.

Spam filtering has been the subject of several research projects many of which
are summarized in [22]. Case-based reasoning has been used for spam filtering
by [1], although they paid special attention to how the incremental learning of
CBR could more robustly handle the issues of concept drift.

336 A. Kinley

9 Future Work

This project is best classified as early work and there are several aspects of this
problem currently under study. We are currently working with a much larger
system and intend to perform a far more rigorous cross-validation study using
a larger body of test and training messages. In addition, we intend to apply
human expertise to rank the similarity cases to compare these rankings to the
algorithms rule based rankings.

To improve spam classification there are several augmentations to our system
that we could examine. We have previously mentioned that there are several dif-
ferent representations of terms from a given email message that can be studied.
In particular we can explore different types of weightings on textual features
based of the perceived importance and relevance of a term in a document. Fur-
ther, we can add textual context to our representation in attempt to capture
relationships between terms in a email message, as well as building knowledge
hierarchies to capture similar meanings between terms.

Interesting questions on the benefits of similarity cases still have to be an-
swered. We have not yet examined the utility of the ”similarity case” case base.
How do the stored similarity cases accurately reflect the notion of similarity in
the domain? Given that our initial domain was purposely restricted and simple,
are the similarity cases effective discriminants to the concept of spam? We intend
to expand the domain to examine whether the system can continue to distinguish
between message types when negative instances of spam are added. We would
also like to examine whether there are any lessons to be learned from exam-
ine the meta-reasoning that occurs in the selection and application of similarity
cases.

10 Conclusions

We have presented an alternative method for determine similarity in the domain
of spam filtering. We create similarity cases to be snapshots of different possible
views of similarity among spam messages. Test messages find “best fit” similarity
cases and from them determine a likelihood of themselves being classified as
spam. Thus the similarity case can store the concept of “spam” in many disparate
ways some of which might be applicable at any given time. By storing these
concepts of similarity for spam messages, we have the ability to avoid some of
the pitfalls that traditional models for spam-filtering might face. Spam messages
may become disguised, filled with distractor terms or other clever approaches
but at their essence they must still remain spam. Similarity cases are potentially
one approach to identify some of these essential characteristics.

Our approach has only been evaluated as a proof of concept but has shown
itself to be capable of producing accurate classifications. Additional work will
further refine the effectiveness of the method and determine how similarity cases
can be exploited as part of other machine learning methods.

Acquiring Similarity Cases for Classification Problems 337

References

[1] Cunningham, P., Nowlan, N., Delany, S.J., Haar, M.: A case-based approach
to spam filtering that can track concept drift. In: Proceedings of ICCBR-2003.
Workshop on Long-Lived CBR Systems. (2003)

[2] Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann, San Mateo, CA (1993)

[3] Kolodner, J., Simpson, R., Sycra-Cyranski, K.: A process model of case-based
reasoning in problem-solving. In: Proceedings of the Ninth International Joint
Conference on Artificial Intelligence, Los Angeles, CA., IJCAI (1985)

[4] Koton, P.: Smartplan: A case-based resource allocation and scheduling system. In
Hammond, K., ed.: Proceedings of the DARPA Case-Based Reasoning Workshop,
San Mateo, DARPA, Morgan Kaufmann (1989) 290–294

[5] Ashley, K.: Modeling legal argument: reasoning with cases and hypotheticals.
MIT Press, Cambridge (1990)

[6] Yang, Q., Abi-Zeid, I., Lamontagne, L.: An agent system for intelligent situation
assessment. In: Artificial Intelligence: Methodology, Systems, and Applications:
8th International Conference, Springer Verlag (1998) 466–474

[7] Leake, D.: Constructive similarity assessment: Using stored cases to define new
situations. In: Proceedings of the Fourteenth Annual Conference of the Cognitive
Science Society, Hillsdale, NJ, Lawrence Erlbaum (1992) 313–318

[8] Rissland, E., Valcarce, E., Ashley, K.: Explaining and arguing with examples. In:
Proceedings of the Fourth National Conference on Artificial Intelligence, Austin,
TX, American Association for Artificial Intelligence (1984) 299–294

[9] Branting, K., Porter, B.: Rules and precedents as complementary warrants. In:
Proceedings of the Ninth National Conference on Artificial Intelligence, Menlo
Park, CA, AAAI Press (1991) 3–9

[10] Veloso, M.: Planning and Learning by Analogical Reasoning. Springer Verlag,
Berlin (1994)

[11] Leake, D., Kinley, A., Wilson, D.: Linking adaptation and similarity learning.
In: Proceedings of the Eighteenth Annual Conference of the Cognitive Science
Society, Mahwah, NJ, Lawrence Erlbaum (1996) 591–596

[12] Smyth, B., Keane, M.: Retrieving adaptable cases: The role of adaptation knowl-
edge in case retrieval. In Wess, S., Althoff, K., Richter, M., eds.: Topics in Case-
Based Reasoning, Berlin, Springer Verlag (1994) 209–220

[13] Beaver, K.: The Definitive Guide to E-mail Management and Security. Real-
timepublishers.com (2003)

[14] Porter, M.: An algorithm for suffix stripping. Program 14 (1980) 130–137

[15] Leake, D., Kinley, A., Wilson, D.: Case-based similarity assessment: Estimating
adaptability from experience. In: Proceedings of the Fourteenth National Confer-
ence on Artificial Intelligence, AAAI Press (1997)

[16] Aha, D.: Feture weighting for lazy learning algorithms. In Liu, H., Motoda, H.,
eds.: Feature Extraction, Construction adn Selection: A Data Mining Perspective.
Kluwer, Norwell, MA (1998)

[17] Cardie, C.: Using decision trees ot improve case-based reasoning. In: Proceeding
of the Tenth International Confernece on Machine Larninng, Morgan Kaufmann
(1993) 25–32

[18] Kohavi, R., Langley, P., Yun, Y.: The utility of feature weighting in nearest
neighbor algorithms. In: Proceedings of the European Conference on Machine
Learning. (1997)

338 A. Kinley

[19] Aha, D., Wettschereck, D.: Case-based learning: Beyond classification of feature
vectors. Call for papers of ECML-97 workshop (1997)

[20] Bonzano, A., Cunningham, P., Smyth, B.: Using introspective learning to improve
retrieval in cbr: A case study in air traffic control. In: Proceedings of ICCBR-97,
Springer (1997) 291–302

[21] Cunningham, P., Zenobi, G.: Using diversity in preparing ensembles of classifiers
bases on different feature subsets to minimize generalization error. In: Machine
Learning: EMCL: 12th European Conference on Machine Learning, Springer Ver-
lag (2001) 576–587

[22] Androutsopoulos, I., Paliouras, G., Sakkis, V., Spyropoulos, C., Stamatopoulos,
P.: Learning to filter spam-email: A compariosn of a naive bayesian and memory-
based approach. In: Workshop on Machine Learning and Textual Information
Access, 4th European Conference on Principles and Practices of KDD. (2000)
160–167

A Live-User Evaluation

of Incremental Dynamic Critiquing

Kevin McCarthy, Lorraine McGinty, Barry Smyth, and James Reilly

Adaptive Information Cluster�, Smart Media Institute,
University College Dublin, Dublin, Ireland

{kevin.mccarthy, lorraine.mcginty, barry.smyth,
james.d.dreilly}@ucd.ie

Abstract. Feature critiquing has emerged as an important feedback
strategy for conversational recommender systems as it offers a useful
balance between user effort and recommendation efficiency. Dynamic
critiquing has recently been presented as an extension to conventional
(single-feature) critiquing that supports the simultaneous critiquing of
multiple features. To date, dynamic critiquing has been evaluated through
a variety of artificial user trials to demonstrate its potential advantages,
when it comes to improving recommendation efficiency and quality. How-
ever these advantages have never been verified through any large-scale
user trial. The contribution of this paper is that we present the results of
such an evaluation, which confirms the advantages of dynamic critiquing
in a realistic online, e-commerce setting. Furthermore we investigate the
impact of implicitly maintaining session specific user models to influence
the selection of compound critiques. These models are incrementally con-
structed as the user critiques example recommendations from cycle to
cycle. Our live-user evaluation also enabled us to analyse how real users
interact with the compound critiques that are produced in this way. The
results demonstrate that our incremental critiquing approach has the
capability of generating more relevant critique options, and that users
frequently recognise the benefits associated with using these as feedback
options, leading to significantly shorter recommendation sessions.

1 Introduction

Critiquing has emerged as a important form of feedback in conversational recom-
mender systems especially in e-commerce settings. Shoppers are presented with
a sequence of product suggestions and are offered an opportunity to critique
individual features in order to refine their preferences [2,3,4,10,14]. For example,
when shopping for a digital camera, a user might be presented with a suggestion
for a $500, 6M Pixel, Canon and they might indicate that they are looking for
something a little less expensive by selecting the cheaper critique; this effectively
constrains the price of recommendations during the next recommendation cycle.
� This material is based on works supported by Science Foundation Ireland under

Grant No. 03/IN.3/I361.

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, pp. 339–352, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNAI

340 K. McCarthy et al.

In our work we have been interested for some time in improving the effective-
ness of the basic approach to critiquing. In particular, we have proposed an ap-
proach known as dynamic critiquing, which presents users with a set of so-called
compound critiques, in addition to the standard (single-feature) unit critiques
that are normally available. Importantly, these compound critiques are automat-
ically generated by mining the cases that remain during a given recommendation
cycle. Essentially each compound critique represents a set of unit critiques that
are found to recur in multiple remaining cases. In previous work, [6,12], we have
shown that dynamic critiquing has the potential to lead to improved recommen-
dation efficiency by reducing average session length when compound critiques
are selected. However since our previous evaluations were limited to the use
of artificial-user data, their true significance is unknown without independent
confirmation from live-user trials.

As part of this paper we describe a recent extension to dynamic critiquing
called incremental critiquing [13], which maintains a record of the critiques (unit
and compound) that a given user has selected during a recommendation session.
This record is then used to influence future recommendations and is designed
to provide the user with intelligent recommendations that reflect their previ-
ous critiques as well as their most recent critique applications. In addition, and
the main contribution of this paper, we describe the results of a comprehensive
live-user trial of dynamic critiquing involving more than 1000 live-user recom-
mendation sessions. This data provides, a compelling account of the real benefits
of dynamic critiquing and serves to confirm the benefits suggested by previous
artificial user trials.

2 From Dynamic to Incremental Critiquing

The novelty of dynamic critiquing stems from its ability to mine the available
cases in order to identify frequently recurring feature differences (relative to the
currently recommended case). Groups of these differences become the compound
critiques that are presented to the user as part of the current recommendation
cycle. Figure 1 shows a screen-shot of a conversational recommender system that
we have developed to showcase and evaluate the dynamic critiquing approach.
It shows a recommended case, its unit critiques and three relevant compound
critiques. From here the user can select a critique (i.e., unit or compound) to
inform the next recommendation cycle, terminating their session when they see
a satisfactory camera.

In [12] we have described how these compound critiques are identified (using
the Apriori data mining algorithm), ranked and selected. In this section we
will review this critique generation algorithm. In addition, we will discuss a
number of shortcomings of this standard approach to dynamic critiquing that
have led to the development of a new variant called incremental critiquing. In
the next section we will detail the latest version of incremental critiquing; an
earlier version has been presented in [13].

A Live-User Evaluation of Incremental Dynamic Critiquing 341

Fig. 1. A digital camera recommender system that implements unit and compound

critiquing

2.1 The Standard Dynamic Critiquing Approach

The standard approach to dynamic critiquing has been previously described by
[6,12]. The basic idea is that during every recommendation cycle, in addition to
selecting a new case to recommend to the user, the system should also present
a set of compound critiques that describe the feature relationships that exist
between the remaining cases. For example, in Figure 1 we see an example of a
compound critique leading to 169 cases with less resolution and a different for-
mat for a cheaper price. Generating these compound critiques involves 3 steps:

STEP 1 - Generating Critique Patterns: For a given recommendation
cycle each of the remaining cases is redescribed by a critique pattern which
captures the relationship between each case and the current recommended case.
For example, Figure 2 shows an example from the Digital Camera domain. The
resulting critique pattern reflects how a case c differs from the current case
in terms of individual directional feature critiques. For example, the critique
pattern shown includes a “<” critique for Resolution— we will refer to this as
[Resolution <]—because the comparison case has a less pixels than the current
recommendation.

STEP 2 - Mining Compound Critiques: This step involves identifying
recurring patterns of unit critiques within the current set of critique patterns.

342 K. McCarthy et al.

Fig. 2. Generating a critique pattern

This is similar to the market-basket analysis task where the well-known Apriori
algorithm [1] has been used to characterize recurring itemsets as association
rules of the form A → B. During this stage, Apriori is applied during each
cycle to the remaining product cases in order to identify groups of recurring
unit critiques; we might expect to find the co-occurrence of unit critiques like
[Resolution >] infers [Price >]. Apriori returns lists of compound critiques
of the form {[Resolution >], [Price >]} along with their support values (the
percentage of critique patterns for which the compound critique holds).

STEP 3 - Grading Compound Critiques: It is not practical to present
large numbers of different compound critiques as user-feedback options in each
cycle due to interface restrictions. A filtering strategy is used to select the k
most useful critiques for presentation purposes based on their support values;
compound critiques with low support values have the ability to eliminate many
product cases from consideration if chosen. The work of [12] has looked at a
number of ways to filter critiques, concluding that preferring critiques with low
support values has the potential to offer the best recommendation efficiency
benefits.

2.2 Consistency and Continuity

Regardless of the type of critiquing used (unit or compound, or a mixture of
both), or the manner in which the critiques have been generated (fixed versus
dynamic), there are a number of important issues that need to be kept in mind
from an application deployment perspective. This is especially important when
it comes to anticipating how users are likely to interact with the recommender
system. In particular, users cannot be relied upon to provide consistent feedback
over the course of a recommendation session. In fact this is almost inevitable since
many users are unlikely to have a clear understanding of their requirements at
the beginning of a recommendation session. Indeed in our experience many users
rely on the recommender as a means to educate themselves about the features of
a product-space. As a result users may select apparently incompatible critiques
during a session as they explore different areas of the product space in order to

A Live-User Evaluation of Incremental Dynamic Critiquing 343

build up a clearer picture of what is available. For example, in one cycle we may
find a prospective digital camera owner looking for a camera that is cheaper than
the current 500 euro recommendation, but later on she may ask for a camera that
is more expensive than another 500 euro recommendation. There are a number of
reasons for this inconsistent feedback: perhaps she has made a mistake; perhaps
she is just interested in seeing what is available at the higher price; or perhaps
her preferences have changed from the start of the session as she recognises the
compromises that are associated with lower priced cameras [9].

For the most part, recommender systems that employ critiquing tend not
to consider the implications of such inconsistency or changes in user behaviour.
Most focus on the current critique and the current case only, without consider-
ing the critiques that have been applied in the past. This, we argue, can lead to
serious problems, depending on whether critiques are implemented as hard or
soft constraints. For instance, if the recommender uses each critique to perma-
nently filter-out incompatible product-cases (a hard constraint), then a user may
find that there are no remaining cases when they come to change their mind.
For example, having indicated a preference for sub-500 euro cameras early-on,
the user will find the recommender unable to make recommendations for more
expensive cameras in future recommendations.

As a result of problems like this, such a strict filtering policy is usually not
employed by conversational recommender systems in practice. Instead of perma-
nently filtering-out incompatible cases, irrelevant cases for a particular cycle tend
to be temporarily removed from consideration, but may come to be reconsid-
ered during future cycles as appropriate. Of course this strategy introduces the
related problem of how past critiques should influence future recommendations,
especially if they conflict or strengthen the current critique.

Current implementations of critiquing tend to ignore these issues in the blind
hope that users will either behave themselves — that they will responsibly select
a sequence of compatible critiques in pursuit of their target product — or that
they will have the patience to backtrack over their past critiques in order to try
alternatives. In our experience this approach is unlikely to prove successful. In
real user trials common complaints have included the lack of consistency between
successive recommendation cycles that arise because of these issues.

3 Incremental Critiquing

Incremental critiquing is a direct response to the issues outlined above [13]. It
is designed to give due consideration to past critiques during future recommen-
dation cycles by maintaining a record of the critiques that have been applied
(compound and unit) by the user in the current recommendation session (See
Figure 3). This record serves as a type of in-session critiquing-based user model,
U = {U1, ..., Un} (where Ui is a single unit critique), and it is used during recom-
mendation to influence the choice of a new product case, along with the current
critique; see also the work of [5,14] for related ideas. The key idea is that the
critiques that a user has applied so far are a reflection of their evolving under-

344 K. McCarthy et al.

standing of the product space and subsequent preference requirements. At the
end of each cycle, after the user has selected a new critique, we add this critique
to the user model.

3.1 Modelling the User

To maintain an accurate user model, however, is not quite as simple as storing
a list of previously selected critiques. As we have mentioned above, some cri-
tiques may be inconsistent with earlier critiques. For example, in the case of a
camera recommender, a user selecting a critique for higher resolution, beyond
the 5M Pixels of the recommended case, during one cycle may later contradict
themselves by indicating a preference for lower resolution than the 2M Pixels
offered by a subsequent case. In addition, a user may refine their requirements
over time. They might start, for example, by indicating a preference for more
than 128MB of memory (with a more memory critique on a current case that
offers 128MB). Later they might indicate a preference for more than 256MB of
memory with a more memory critique on a case that offers 256MB.

Fig. 3. The Incremental Critiquing algorithm

Our incremental critiquing strategy [13] deals with inconsistencies such as
the above by updating the user model with the most recent critique only after
pruning previous critiques, which conflict with it, (see lines 23-26 in Figure 3).
Thus, prior to adding a new critique all existing critiques that are inconsistent
with it are removed from the user model. Similarly, if the new critique is a refine-
ment of existing critiques then it is assumed to override these earlier critiques
and they are deleted from the model. To keep things simple, we deal with com-
pound critiques by splitting them up into their constituent unit critiques so that
the update procedure then involves making a set of unit directional preference
updates.

A Live-User Evaluation of Incremental Dynamic Critiquing 345

3.2 Biasing Recommendation

The basic idea behind the user model is that it should be used to bias (i.e.,
more effectively control) the recommendation process, prioritising those product
cases that are compatible with the majority of the recorded critiques. This can
be thought of as a generalisation of the standard approach to critiquing-based
recommendation, in which the current recommendation cycle is constrained by
the current critique only as part of a two-step process. First, the remaining cases
are filtered by eliminating all of those that fail to satisfy the current critique.
Next, these filtered cases are rank ordered according to their similarity to the
current recommendation.

We modify this procedure in an important way. Instead of ordering the fil-
tered cases on the basis of their similarity to the recommended case alone, we
also compute a compatibility score for each candidate case, which is essentially
the percentage of critiques in the user model that this case satisfies (see Equa-
tion 1 and note that satisfies(Ui, c

′) returns a score of 1 when the critique, Ui.

satisfies the filtered case, c, and returns 0 otherwise). Thus a case that satisfies
3 out of the 5 critiques in a user model obtains a compatibility score of 0.6.

Compatibility(c′, U) =
∑

∀i satisfies(Ui, c
′)

|U | (1)

Quality(c′, c, U) = α ∗ Compatibility(c′, U) + (1 − α) ∗ Similarity(c′, c) (2)

This compatibility score is then combined with the candidate’s (c′) similarity
to the recommended case, c, in order to obtain an overall quality score (see
Equation 2). This quality score is used to rank order the filtered cases prior to
the next recommendation cycle. The case with the highest quality is then chosen
as the new recommendation (see lines 30-34 in Figure 3).

Importantly, in this updated version of incremental critiquing, a weighting
function has been introduced. The α parameter can be used to adjust the relative
weight that is given over to previous critiques during the current recommendation
cycle. In our experiments we have set this parameter to 0.75 so that more weight
is placed on compatibility with past critiques than current-case similarity. This
setting was found to work best in our digital camera domain through off-line
evaluation but should not be viewed as a judgement on the optimal value for
this parameter. It is likely that different recommendation scenarios will lead
to different values for α. Indeed, an interesting avenue for future research is
to consider how this parameter may be learned automatically. It is also likely,
for example, that different users may benefit from different α setting; a user
with a clear understanding of their requirements will probably provide more
consistent feedback, thus obviating the need for a high α value. In certain cases
it may even be useful to consider varying α as a session proceeds. However, such
considerations are beyond the scope of this paper.

The essential point is that the above formulation allows us to prioritise those
candidate cases that: (1) satisfy the current critique; (2) are similar to the pre-
vious recommended case; and (3) satisfy many previous critiques. In so doing

346 K. McCarthy et al.

we are implicitly treating the past critiques in the user model as soft constraints
for future recommendation cycles; it is not essential for future recommendations
to satisfy all of the previous critiques, but the more they satisfy, the better they
are regarded as recommendation candidates. Moreover, given two candidates
that are equally similar to the previously recommended case, our algorithm will
prefer the one that satisfies the greater number of recently applied critiques.
Furthermore, there are many ways that we could have combined compatibility
and similarity, and alternatives are left for future work.

4 Evaluation

Previously we have reported on a number of evaluations of dynamic critiquing
[6,12]. However, these studies have always used artificial user data, and as such
can only serve as a guide when it comes to truly understanding the benefits
of dynamic critiquing. In this section we describe the results of a large-scale
live-user trial. We are especially interested in understanding how users interact
with the compound critiques that are produced according to the standard and
incremental dynamic critiquing approaches by the different critiquing strategies.
We pay particular attention to aspects of recommendation efficiency, comparing
standard dynamic critiquing to incremental critiquing.

4.1 Setup

Users for our trial were made up of both undergraduate and postgraduate stu-
dents from the department of Computer Science at University College Dublin.
Trial participants were invited to use our Digital Camera Recommender (see
Figure 1) from December 13 to December 20, 2004. The trial consisted of two
parts. In the first part, each trialist was asked to participate in a so-called train-
ing session so that they could become acquainted with the critiquing mode of
interaction. Here they were presented with a specific camera case as a starting
point and then asked to shop from this case to locate their ideal camera. In the
second part, they were presented with a fixed start case and target case. The
users were then asked to locate the target case by using critiques (unit or com-
pound) of their choice. There were 25 different start–target pairs and these were
randomly assigned at the beginning of every session. Trialists were permitted to
use the system as often as they liked. This setup ensured that any learning effect
was minimised as it is unlikely that users started at the same point more than
once.

Here we report on results from part 2 of the trial, which generated 1092 user
sessions from 76 unique users. The trialists were made up of 53% undergrad-
uate and 47% postgraduate students with 61 male and 15 female participants.
The standard dynamic critiquing approach (Standard) and the new incremental
critiquing approach (Incremental) were used on different days of the trial (unbe-
knownst to the users) and a variety of session details were logged for each user
session.

A Live-User Evaluation of Incremental Dynamic Critiquing 347

4.2 Recommendation Efficiency

Recommendation efficiency is always an important consideration when it comes
to evaluating conversational recommender systems [8,11]. Users are notoriously
intolerant of protracted recommendation dialogs that require a lot of feedback,
so the ability of a recommender system to guide the user efficiently to their
target product will have an important bearing on its deployment success.

Previously we have shown how the use of compound critiques can lead to
short recommendation sessions than the use of unit critiques on their own. For
now we are primarily interested in the relative efficiency of the Standard and
Incremental strategies, although we will return to the issue of compound versus
unit critiques in a moment. In Figure 4 we present the overall average session
length and compound critique application frequency for the different versions of
our recommender system.

The results show a clear benefit accruing to the Incremental strategy. On the
days when this strategy was used, the average session length was only 7.5 cycles
as compared to 11.44 cycles for the sessions produced when Standard dynamic
critiquing was used; in other words, the standard sessions are, on average, almost
50% longer than the incremental critiquing sessions. Remember both critiquing
strategies generate compound critiques in the same way, but their recommenda-
tion processes differ, with Incremental allowing past critiques to influence the
current recommendation. This advantage due to Incremental suggests it is better
able to use the compound critiques in order to focus the search in on the target
product. We also see that these critiques are used slightly more frequently, than
those produced by the standard dynamic critiquing method.

It is also important to consider the value of compound critiques relative to
unit critiques. To do this we divide the sessions produced using Standard and
Incremental into two groups each by splitting them by the median compound

0

3

6

9

12

IncrementalStandard

S
e
s
s
io

n
 L

e
n

g
th

20%

25%

30%

A
p

p
li

c
a

ti
o

n
 F

re
q

. Session Length

Application Freq.

Fig. 4. Average session length and compound critique application frequency for Stan-
dard and Incremental dynamic critiquing strategies

348 K. McCarthy et al.

Fig. 5. The average session length for low frequency and high frequency sessions for the

(a) Standard and (b)Incremental dynamic critiquing strategies. Note that the average

application frequency for each group of sessions is also shown

critique application frequency for each strategy. This allows us to compare the
sessions produced when relatively few compound critiques are used (the low
frequency sessions) to the sessions when compound critiques are used more often
(the high frequency sessions). The results are presented in Figure 5. In each chart
(for Standard and Incremental) we see that the average session length for the low
frequency sessions is longer than the average session length for the high frequency
sessions. For example, in the case of the Standard approach, we see that the low
frequency sessions are almost twice the length of the high frequency sessions
and for the Incremental approach the low frequency sessions are more than 20%
longer than the high frequency sessions. While there is a greater relative benefit
(between low and high frequency sessions) for the Standard approach than the
Incremental approach, we must remember that the Incremental sessions are
significantly shorter than the Standard sessions to begin with.

4.3 Target Analysis

The results of the previous section show that there is a significant advantage
for users who frequently use compound critiques. Moreover, the Incremental
strategy is capable of delivering more efficient recommendation sessions than
the Standard strategy. Of course these results reflect recommendation efficiency
across all target product-cases and users and as such it is not clear if they
are biased towards certain targets of users. For example, it might be that the
benefits observed are due to large improvements for a relatively small number
of targets of users. In this section, and the next, we will answer such questions
by examining recommendation efficiency on a target-by-target and user-by-user
basis. For reasons of space we will focus on the Incremental version of dynamic
critiquing only; as our best performing strategy this takes priority over Standard.

Figure 6 presents the results for each of the 25 target product cases used in
the trial. It is worth noting here that in dividing the sessions into low frequency
and high frequency sessions we used the median application frequency observed

A Live-User Evaluation of Incremental Dynamic Critiquing 349

Fig. 6. The average session lengths for low frequency and high frequency incremental

critiquing sessions on a target-by-target basis

for the sessions associated with each target product case. The results indicate a
clear benefit for the high frequency sessions for nearly every target product case.
The average improvement in session length, for the high frequency sessions, is
just under 25% and in a number of cases it is above 35%. These benefits are all
significant at the 99% significance level. The only exception is noted for target
case number 10, where there is a 4% increase in session length due to the high fre-
quency sessions, but in this instance this difference is not statistically significant.

4.4 User Analysis

We adopt a similar methodology to compare the low and high frequency sessions
for Incremental on a user-by-user basis, although this time we select the top 13
users who had take part in the most individual sessions. This allowed us to ensure
that all of these users had participated in recommendation sessions involving all
25 of the target product cases.

The results are presented in Figure 7, once again as the average session length
observed for the low frequency and high frequency sessions for each user. Note
also that the low and high frequency sessions are separated according to the
median application frequency for each individual user. The results clearly show
a significant advantage for each user: there is a 25% average reduction in session
length for the high frequency sessions across all users. The benefit that is due
to the more frequent use of compound critiques appears to be closely related
with baseline (low frequency) session length for each user. In particular, the
correlation between the low frequency session lengths and the relative session
length reduction observed for the corresponding high frequency sessions is 0.83.

350 K. McCarthy et al.

Fig. 7. The average session lengths for low frequency and high frequency incremental

critiquing sessions on a user-by-user basis

5 Discussion

In related work (see [7]) we have examined different aspects of how users interact
with compound critiques during recommendation sessions. In particular, we were
especially interested in how the usage of compound critiques tends to change
during the course of a cycle. We found that compound critique usage is most
prevalent during the early stages of a recommendation session and users have
a tendency to use unit critiques in the later cycles. This make sense because
compound critiques allow the user to take large jumps through the product-
space. This is useful early on as the user tries to focus in on a particular region
of a product-space. However, once the user is in the correct region then the
finer-grained unit critiques are more useful in order to locate a precise target
product.

One of the issues that remains to be investigated concerns the cognitive load
associated with the interpretation of compound critiques. Most of the compound
critiques generated by our algorithms are made up of 3 separate unit critiques —
although this could be limited to 2 if required — and it is interesting to consider
whether this means it will take a user 3 times as long to interpret a compound
critique than a unit critique. In addition, while the above results indicate that
sessions are shorter, in terms of their number of cycles, with frequent compound
critique use, this does not mean that they are shorter in total elapsed time.
Given the additional complexity of compound critiques it is possible that the high
frequency sessions will take longer than the low frequency sessions, in which case

A Live-User Evaluation of Incremental Dynamic Critiquing 351

their value will very much depend on how users perceive the trade-off between
the number of cycles in a session (and the degree of feedback associated with
these cycles) and session time. Users may be willing to accept longer sessions, in
terms of their time, if they require less feedback. We are currently investigating
these issues.

Related to this cognitive load issue is that of critique labelling. Currently,
each compound critique is made up of the concatenation of unit critiques, but
a more efficient labelling may be possible since oftentimes compound critiques
can be translated into more efficient representations. For example, consider the
compound critique, {[Price >], [Resolution >], [Format =]} in relation to a
$1000, 5M pixel, SLR camera. This compound critique suggests that the user is
looking for some more professional camera and so it should be possible to label
it as such without greatly affecting its interpretability. The advantage of this
is that most users will understand that a more professional camera is likely to
come at a higher price and with a better resolution; they may all not realise the
importance of the SLR format, but this should not be a significant problem. We
intend to investigate if relabelling compound critiques in this way makes them
easier (and faster) to interpret.

6 Conclusions

Critiquing is an important form of feedback for conversational recommender
systems. Dynamic critiquing is a recent critique-generation strategy that auto-
matically creates compound (multi-feature) critiques during each recommenda-
tion cycle. Both standard and incremental approaches generate their compound
critiques in the same way, but incremental critiquing improves on dynamic cri-
tiquing by allowing the past critique-selections of a user to influence future rec-
ommendations.

In this paper we have compared standard dynamic critiquing and incremen-
tal critiquing using live-user data from a prototype digital camera recommender
system. The results are consistent with previously reported artificial-user trials.
They show that dynamic and incremental critiquing are capable of delivering sig-
nificant reductions in session length. They also show that incremental critiquing
enjoys a significant session length advantage over standard dynamic critiquing.

References

1. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. Inkeri Verkamo. Fast Dis-
covery of Association Rules in Large Databases. Advances in Knowledge Discovery
and Data Mining, pages 307–328, 1996.

2. R. Burke, K. Hammond, and B. Young. Knowledge-based Navigation of Com-
plex Information Spaces. In Proceedings of the Thirteenth National Conference
on Artificial Intelligence, pages 462–468. AAAI Press/MIT Press, 1996. Portland,
OR.

3. R. Burke, K. Hammond, and B.C. Young. The FindMe Approach to Assisted
Browsing. Journal of IEEE Expert, 12(4):32–40, 1997.

352 K. McCarthy et al.

4. B. Faltings, P. Pu, M. Torrens, and P. Viappiani. Design Example-Critiquing
Interaction. In Proceedings of the International Conference on Intelligent User
Interface(IUI-2004), pages 22–29. ACM Press, 2004. Funchal, Madeira, Portugal.

5. G. Linden, S. Hanks, and N. Lesh. Interactive Assessment of User Preference
Models: The Automated Travel Assistant. In C. Paris A. Jameson and C. Tasso,
editors, User Modeling: Proceedings of the Sixth International Conference, pages
67–78. Springer Wien, 1997.

6. K. McCarthy, J. Reilly, L. McGinty, and B. Smyth. On the Dynamic Generation
of Compound Critiques in Conversational Recommender Systems. In P. De Bra,
editor, Proceedings of the Third International Conference on Adaptive Hypermedia
and Web-Based Systems (AH-04), pages 176–184. Springer, 2004. Eindhoven, The
Netherlands.

7. K. McCarthy, J. Reilly, L. McGinty, and B. Smyth. On the Evaluation of Dy-
namic Critiquing: A Large-Scale User Study. Submitted to the Twentieth National
Conference on Artificial Intelligence (AAAI-05), 2005. Pittsburgh, Pennsylvania,
USA.

8. D. McSherry. Minimizing Dialog Length in Interactive Case-Based Reasoning. In
Bernhard Nebel, editor, Proceedings of the Seventeenth International Joint Con-
ference on Artificial Intelligence (IJCAI-01), pages 993–998. Morgan Kaufmann,
2001. Seattle, Washington.

9. D. McSherry. Similarity and Compromise. In D. Bridge and K. Ashley, editors, Pro-
ceedings of the Fifth International Conference on Case-Based Reasoning (ICCBR-
03), pages 291–305. Springer-Verlag, 2003. Trondheim, Norway.

10. Q.N. Nguyen, F. Ricci, and D. Cavada. User Preferences Initialization and Integra-
tion in Critique-Based Mobile Recommender Systems. In Proceedings of Artificial
Intelligence in Mobile Systems 2004, in conjunction with UbiComp 2004, pages
71–78. Iniversitat des Saarlandes Press., 2004. Nottingham, UK.

11. P. Pu and P. Kumar. Evaluating Example-based Search Tools. In Proceedings of
the ACM Conference on Electronic Commerce (EC 2004), pages 208–217. ACM
Press, 2004. New York, USA.

12. J. Reilly, K. McCarthy, L. McGinty, and B. Smyth. Dynamic Critiquing. In
P.A. Gonzalez Calero and P. Funk, editors, Proceedings of the European Conference
on Case-Based Reasoning (ECCBR-04)., pages 763–777. Springer, 2004. Madrid,
Spain.

13. J. Reilly, K. McCarthy, L. McGinty, and B. Smyth. Incremental Critiquing. In
M. Bramer, F. Coenen, and T. Allen, editors, Research and Development in Intel-
ligent Systems XXI. Proceedings of AI-2004, pages 101–114. Springer, 2004. Cam-
bridge, UK.

14. S. Sherin and H. Lieberman. Intelligent Profiling by Example. In Proceedings of the
International Conference on Intelligent User Interfaces (IUI 2001), pages 145–152.
ACM Press, 2001. Santa Fe, NM,.

Case Based Representation and Retrieval

with Time Dependent Features

Stefania Montani and Luigi Portinale

Dipartimento di Informatica, Università del Piemonte Orientale,
Alessandria, Italy

Abstract. The temporal dimension of the knowledge embedded in cases
has often been neglected or oversimplified in Case Based Reasoning sys-
tems. However, in several real world problems a case should capture the
evolution of the observed phenomenon over time. To this end, we propose
to represent temporal information at two levels: (1) at the case level, if
some features describe parameters varying within a period of time (which
corresponds to the case duration), and are therefore collected in the form
of time series; (2) at the history level, if the evolution of the system can
be reconstructed by retrieving temporally related cases.

In this paper, we describe a framework for case representation and
retrieval able to take into account the temporal dimension, and meant
to be used in any time dependent domain. In particular, to support case
retrieval, we provide an analysis of similarity-based time series retrieval
techniques; to support history retrieval, we introduce possible ways to
summarize the case content, together with the corresponding strategies
for identifying similar instances in the knowledge base. A concrete ap-
plication of our framework is represented by the system RHENE, which
is briefly sketched here, and extensively described in [20].

1 Introduction

The Case Based Reasoning (CBR) methodology [1] is particularly appealing in
those domains where acquiring and formalizing knowledge would be a signifi-
cantly hard and time consuming task.

As a matter of fact, CBR allows one to build a knowledge base of past
situations (cases), which represent an operative form of knowledge, that can be
reused in present problems, possibly after an adaptation step. Representing a
real-world situation as a case is often straighforward: given a set of meaningful
features for the application domain, it is sufficient to identify the value they
assume in the situation at hand; sometimes a case also stores information about
the solution applied and the outcome obtained. Due to this quick procedure,
in many applications the knowledge acquisition bottleneck can be extremely
reduced with respect to the exploitation of other reasoning methodologies.

The relative simplicity of defining cases has often led researchers to neglect or
oversimplify a very important aspect of the knowledge embedded in past situa-
tions: the temporal dimension. On the other hand, in several (especially medical)

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, pp. 353–367, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNAI

354 S. Montani and L. Portinale

applications, the need of accounting for time is widely recognized. Actually, in
many domains cases cannot be interpreted merely as snapshots of the world at a
given time instant: in a lot of real problems a case should capture the evolution
of the observed phenomenon over time. In medical practice, for example, before
prescribing a therapy (i.e. the case solution) the physician needs to keep in mind
the clinical history that led the patient to the current situation; actually, the
pattern of the patient’s changes is often more important than the final state
[18]. Similarly, forecasting tasks often require an analysis of temporal sequences
of observations or of interactions between involved agents [25]. The definition of
a case as a set of feature/value pairs needs therefore to be refined.

In particular, we envision the possibility of addressing the temporal dimen-
sion at two levels:

1. at the case level, if some features describe parameters varying within a period
of time (which corresponds to the case duration), and are therefore collected
in the form of time series;

2. at the history level, if the evolution of the system can be reconstructed by re-
trieving temporally related cases (e.g. in a medical domain, cases concerning
consecutive visits of a given patient).

As an example, in hemodialysis treatment it is possible to define a case
as a dialysis session, which includes time series features, that justify the need
of accounting for temporal information at the case level. Moreover, in clinical
practice physicians use to judge the patient’s behaviour in the latest two weeks
(i.e. they deal with a history of a few consecutive cases); only in particularly
critical situations, they enter the detail of single sessions. Both levels are therefore
needed in this context.

If we want to guarantee consistent results, we have to take into account the
fact that the temporal dimension complicates not only the knowledge represen-
tation task, but the retrieval process as well. In particular, similarity-based time
series retrieval has to be addressed on the one hand, while strategies for matching
patterns made by “consecutive” cases needs to be defined.

In this paper, we describe a framework for case-based representation and
retrieval meant to be used in any time dependent domain. In particular, in section
2 we describe related works; in section 3, we deal with knowledge representation
and retrieval at the case level, while in section 4 we extend our discussion to the
history level. Section 5 describes how our theoretical work is being applied in
the system RHENE [20], a tool for managing patients in a hemodyalisis regimen.
Finally, section 6 is devoted to conclusions and future work.

2 Related Work

Despite the need of accounting for the temporal dimension in a CBR system
may appear important, rather interestingly the representation of time-dependent
information and its impact on the CBR cycle [1] have been scarcely inspected
in the literature.

Case Based Representation and Retrieval with Time Dependent Features 355

Actually, just a few works in this sense exist. Most of them afford the prob-
lem of representing and retrieving cases with time-extended features (i.e. time
series), and each work is substantially limited to fit a single application domain:
robot control [24], process forecast [21,26], process supervision [10], prediction
of faulty situations [14] and time course prognoses for medical problems [27].
Almost all of these contributions adopt a representation of temporal knowledge
requiring that absolute time points are associated with the temporal objects be-
ing modelled. This hypothesis may be unrealistic in many applications, where
only relative, and often qualitative, temporal knowledge is available; a more suit-
able interval-based model [3] has been chosen only in [14] (see section 3.1 for
details on these knowledge representation concepts). Moreover, all works share
two main limitations: (1) in most cases, since they have been thought to support
a specific application, their generalizability is limited or not discussed at all;
(2) they address the temporal dimension only at the case level. With respect to
issue 1, actually a more general framework for case representation and retrieval
with time-dependent features has been proposed in [13]; this paper deals with
the problem of time series similarity and proposes a complex retrieval strategy;
nevertheless, it is still limited to the case level temporal dimension.

On the other hand, a recent contribution [29] deals with temporal information
at the history level, in the respiratory sinus arrhythmia domain. More interest-
ingly, [19] presents an application independent logic formalism addressing history
representation. From the temporal model point of view, this work is particularly
interesting because it accommodates both points and intervals as primitive time
elements. Nevertheless, how to deal with retrieval is not described; the authors
only claim that graph similarity algorithms could be adopted. Moreover, they
still do not address the temporal dimension in CBR as a whole, because features
in the form of time series are not taken into account.

Finally, temporal knowledge representation for CBR is discussed in [8]. In
this work, both points and intervals are exploited as well. However, here a clear
distinction between cases and histories is not provided. In particular, a single case
captures the overall evolution of the system under observation (i.e. the patient,
since the work is applied to a medical domain), but snapshots of the feature
values, limited to specific time intervals, are used for retrieval. Thus, to our
knowledge, our work represent a meaningful effort towards a more comprehensive
treatment of the two levels of the temporal dimension, as introduced in section 1.

3 The Temporal Dimension in Case-Based Retrieval: The
Case Level

3.1 Case Representation

In our framework, we adopt a model for representing temporal information based
on both the point and the interval primitives, in order to deal with as much real
world situations as possible (see also [19]). In particular:

356 S. Montani and L. Portinale

– a point is identified by an absolute (i.e. numeric) or relative (i.e. qualitative)
temporal coordinate, expressed with respect to the reference system and the
granularity of the application domain;

– an interval is identified by an ordered pair of points, which represent its
starting point and its ending point respectively.

Given these premises, we have to detail what we mean for case, and how temporal
information at the case level can be formalized.

As previously observed, in some real world applications, it may be limiting
to conceive a case as an instantaneous situation, where all feature values are
singletons and remain unchanged. In our framework, therefore, some features can
take the form of (typically discretized) uni-dimensional time series. In addition,
we associate to each case an interval - Case Interval (CI) henceforth - meant to
represent the period of time in which all the feature values were measured.

With respect to the CI, features must satisfy these requirements:

1. each feature in the form of a single value has to be measured at a time point
which is included between the starting and the ending point of the CI;

2. for a feature in the form of a time series, each value has to respect require-
ment (1) above.

3.2 Case Retrieval

Case retrieval needs to cope with the different types of features that can be
defined in a case: time stamped single valued data points, and time series (we
make the hypothesis that all features values at the case level are raw data).

Although it is not necessary, the different nature of features could suggest to
treat them in different ways in the retrieval process. Without the expectation
of providing an exhaustive panorama of alternatives, we would like to propose
a modular architecture, that appears relatively general, in the sense that its
elements can be skipped or differently combined, in order to obtain new solutions.

The proposed retrieval process (see figure 1) can be sketched as follows (at
a very high level):

– use (some) single valued features for a classification/grouping step, to reduce
the search space for retrieval itself;

– perform a multi-step retrieval in the output class:
1. select some particularly relevant time series features;
2. search for a set of cases similar to the query one in the direction of one

of the selected features at a time;
3. provide some kind of combination of the sets of locally similar cases

identified above;
4. order the results on the basis of all features, including also time stamped

data points.

As regards the combination of locally similar cases, to be merged into a unique
set, different alternatives may be devised. A possible combination function is

Case Based Representation and Retrieval with Time Dependent Features 357

single valued
features

time series feature 1

time series feature 2

time series feature n

class j

locally similar cases
combination

best cases
ordering and

selection

dimensionality
reduction

temporal
abstractions

(x,y,..)

(x,y,..)

(x,y,..)

indexing

pattern
matching

retrieval
wrt single

time series features

classification/
grouping

selection
among

alternatives

selection
among

alternatives

range
query

reduced time series

temporal patterns

Fig. 1. A general architecture for case retrieval with time varying features. A classi-

fication/grouping step may be used to reduce the search space. Retrieval then takes

place, in the direction of a single time series feature at a time. To optimize similarity-

based time series retrieval, it is possible to select one out of two alternatives: (1) reduce

dimensionality (e.g. by applying DFT) and then exploit spatial indexing techniques;

(2) summarize the raw data by applying Temporal Abstractions (TA) and then ex-

ploit pattern matching techniques. Locally similar cases are then properly combined

to produce the final output. The modules of the general architecture that have been

implemented in the system Rhene (namely: classification, dimensionality reduction,

indexing, range query and combination - see section 5) are highlighted in bold. Notice

that, even if not shown in the figure, the process involves a query represented by raw

time series data that are reduced or abstracted depending on the retrieval technique

that is used (i.e. range query on an index structure or pattern matching over TA)

358 S. Montani and L. Portinale

intersection. Suppose that locally similar cases were extracted through a set
of range queries, one in each feature’s direction; intersection extracts the cases
that satisfy the request of being within all the specified ranges of similarity
contemporaneously. Clearly this is quite a strong requirement. A less strict result
may be obtained by using union as a combination function. In this hypothesis,
a case will be globally accepted if it belongs at least to one range of similarity.
Clearly, other combination operators may be introduced as well.

As a concrete example of multistep retrieval, section 5 describes the architec-
ture of the system Rhene [20], developed by the authors in collaboration with
the University of Pavia in Italy. Rhene’s architecture instantiates a subset of
the modules of figure 1, highlighted in bold.

While the retrieval of cases with single valued features is a classical topic of
CBR, we can spend a few words on the retrieval of cases with time series features.
For the sake of clarity, we will concentrate on the search of cases similar to the
input one in the direction of one particular parameter, which is in the form of a
discretized time series.

A wide literature exists about how to optimize similarity-based retrieval of
time series. Before entering the details, we propose to distinguish between two
main directions:

– apply a dimensionality reduction technique;
– summarize the raw data by means of a technique able to derive higher level

information from them, such as Temporal Abstractions [6].

Blocks applying these methods in the general retrieval architecture can be recog-
nized in figure 1. The following subsections provide a deeper insight of these two
alternative procedures.

Dimensionality Reduction. In the literature, most of the approaches to
similarity-based time series retrieval are founded on the common premise of
dimensionality reduction (see the survey in [12]).

As a matter of fact, a discretized time series can always be seen as vector in
an n-dimensional space (with n typically extremely large). Simple algorithms for
retrieving similar time series take polynomial time in n. Multidimensional spatial
indexing (e.g. resorting to R-trees [11]) can even lead to sub-linear retrieval; nev-
ertheless, these tree structures are not adequate for indexing high-dimensional
data sets [7].

One obvious solution is thus to reduce the time series dimensionality, by
means of a transform that preserves the distance between two time series, or
underestimates it: in this case a post-processing step will be required, to filter
out the so-called “false alarms”; the requirement is never to overestimate the
distance, so that no “false dismissals” can exist [12]. Widely used transforms are
the Discrete Fourier Transform (DFT) [2], and the Discrete Wavelet Transform
(DWT) [9].

DFT maps time series to the frequency domain. DFT application for dimen-
sionality reduction stems from the observation that, for the majority of real-world

Case Based Representation and Retrieval with Time Dependent Features 359

time series, the first (1-3) Fourier coefficients carry the most meaningful infor-
mation, and the remaining ones can be safely discarded. Moreover, Parseval’s
theorem [22] guarantees that the distance in the frequency domain is the same
as in the time domain, when resorting to any similarity measure that can be ex-
pressed as the Euclidean distance between feature vectors in the feature space.
In particular, resorting only to the first Fourier coefficients can underestimate
the real distance, but never overestimates it.

On the other hand, wavelets are basis functions used to represent other func-
tions. The wavelet transform can be repeatedly applied to the data, obtaining
that each application brings out a higher resolution of the data, while at the
same time it smoothes the remaining data. The output of the DWT consists
of the remaining smooth components and of all the accumulated detail compo-
nents. DWT, like any orthonormal transform, preserves the Euclidean distance
as the DFT does. The number of wavelet coefficients to be kept, although lower
than the original data dimensionality, is often higher than in the case of DFT
application.

Retrieval of series transformed either by DFT or by wavelets can then benefit
from the use of spatial index structures, such as the R-tree [11], the X-tree [7], and
the TV-tree [31], whose features are widely discussed in the database literature,
or from other specific indexing techniques (see e.g. [23]).

A different approach to dimensionality reduction is Piecewise Constant Ap-
proximation (PCA) (see e.g. [16,17]): it consists in dividing a time series into
k segments, and in using their average values as a k-dimensional feature vector
(where obviously k << n, the original data dimensionality). The best value of k
can also be estimated.

The choice of the most cost-effective transformation to apply should be done
on the basis of the application at hand.

Temporal Abstractions. While dimensionality reduction is a widely accepted
technique for optimizing similarity-based retrieval of time series, the use of Tem-
poral Abstractions (TA) [28,6] in this field is not often reported. Nevertheless,
we believe it represents a valuable alternative to dimensionality reduction itself,
in particular when:

– a more qualitative abstraction of the time series values is sufficient;
– a clear mapping between raw and transformed data has to be made available;
– the mapping itself needs to be easily interpretable by end users as well.

TA is an Artificial Intelligence methodology able to solve a data interpretation
task [28], whose goal is the one of deriving high level concepts from time stamped
data. Through TA, huge amounts of temporal information, like the one embedded
in a time series, can be effectively mapped to a compact representation, that not
only summarizes the original longitudinal data, but also abstracts meaningful
behaviours in the data themselves.

Operatively, the basic principle of TA methods is to move from a point-
based to an interval-based representation of the data [6], where: (i) the input

360 S. Montani and L. Portinale

d u i d u i d i u i d i d i

Fig. 2. An example of trend TA, applied to a blood glucose level time series [5]. The

abstraction produces a pattern where symbols d, i, u stand for decreasing, increasing

and undecided respectively

points (events henceforth) are the elements of the discretized time series; (ii)
the output intervals (episodes henceforth) aggregate adjacent events sharing a
common behaviour, persistent over time. More precisely, the method described
above should be referred to as basic TA [6].

Basic abstractions can be further subdivided into state TA and trend TA.
State TA are used to extract episodes associated to qualitative levels of the mon-
itored feature, e.g. low, normal, high values; trend TA are exploited to detect
specific patterns, such as increase, decrease or stationarity, from the time series.
The output results of a basic TA depend on the value assigned to specific para-
meters, such as the granularity (the maximum temporal gap between two events
allowed for aggregating them into the same episode) and the minimum extent
(the minimum time extent for considering an episode relevant) for state TA, and
the slope (the minimum allowed rate of change in an episode) for trend TA.

Complex TA [6] can be defined as well: instead of aggregating events into
episodes, complex TA aggregate two series of episodes into a set of episodes of
higher level (i.e., they abstract output intervals over precalculated input inter-
vals). In particular, complex abstractions search for specific temporal relation-
ships between episodes which can be generated from a basic abstraction or from
other complex abstractions. The relation between intervals can be any of the
temporal relations defined by Allen [3]. This kind of TA can be exploited to ex-
tract patterns that depend on the course of several features, or to detect patterns
of complex shapes in a single feature.

If the time series has been pre-processed through TA, similarity based re-
trieval can benefit of the use of pattern matching techniques. Sequence match-
ing can in fact be performed by a number of well-established methods [30] like
dynamic programming based on edit distance approach [32], suffix tree-based
approaches [33] or general formal transformations of patterns [15]. For example
the framework in [15] defines similarity between a pattern A and a pattern B

Case Based Representation and Retrieval with Time Dependent Features 361

(in a formal pattern language P) as a function of the transformations (defined
on a transformation language T) needed to reduce B to A (or vice versa). The
approach allows one to answer also queries such as “find all patterns similar to
some pattern A, but not similar to pattern B”. Figure 2 shows an example of a
trend TA producing a pattern (over a granularity based on days) where symbols
d, i, u stand for decreasing, increasing and undecided respectively.

Finally, we can notice that the use of TA can be limited to query the case
library, if we do not want to explicitly abstract raw time series data, but we
still want to maintain the capability of using the language of TA at the query
level. For example, [34] introduces an algorithm where a symbolic query (in the
form of sequence of symbols like those produced by a TA) can be answered over
a database of raw time series data, by producing those subsequences that best
match the query itself, following specific abstraction rules (like for instance those
that may be used to define a TA).

4 The Temporal Dimension in Case-Based Retrieval: The
History Level

By history we mean a set of temporally related or time consecutive cases, which
refer to the same “object” or “entity” (e.g. the same patient in a medical do-
main, or the same class of devices in a fault diagnosis domain). Histories could
be of various length; actually the number of cases that compose a history is
a typical application dependent parameter. Histories themselves could be built
“on the fly”, when instances similar to the input one have to be retrieved; al-
ternatively, they may be precompiled, and stored in a memory in which history
search will then take place. In the case of precompilation, supposing that the
history length is a known parameter1, all possible histories could be built from
the library of cases, or just a subset of them. The system could then precalculate
all the histories for the given patient (or for all the patients in the case base),
within the given time window. Of course, a trade-off exists between the cost of
precompilation (and history storage) and the complexity of retrieval if histories
have to be built just at retrieval time.

History retrieval can be the only goal of the retrieval system or it can be ex-
ploited as a search space reduction step (alternative to classification/grouping,
see section 3.2), to be followed by case retrieval itself, which will then be fo-
cused only on the cases composing the retrieved histories. Figure 3 presents an
architecture where history retrieval provides the first results, at a high level of
abstraction; if the user is interested in more details, case retrieval (on a search

1 This is not necessarily an unrealistic assumption. Actually, in some (e.g. medical)
applications, the temporal window to take into account (i.e. the history length) could
be well identified on the basis of the domain knowledge, and could also be explicitly
provided by a guideline. For example, in hemodialysis treatment, the temporal win-
dow is normally made of two weeks, which correspond to a sequence of 6 consecutive
cases.

362 S. Montani and L. Portinale

space shrinked as described above), will refine the output, concentrating e.g. on
more specific features values (at the case level).

4.1 History Representation

It is worth noting that history retrieval requires less detailed information with
respect to case retrieval: the modelled object behaviour is being observed from a
higher level perspective; therefore, for each case composing the history, the case
content has to be somehow summarized.

To this hand, we envision different possibilities:

– first, a single value, “valid” in all the CI, can be assigned to each feature
(see also [19]). This is trivially the case if the feature is a single data point.
Dealing with time series, on the other hand, the value could correspond e.g.
to the mean, or to the most frequent value in the feature measurements; more
interestingly, it could be obtained as a pattern approximately stable over the
CI, typically extracted through TA techniques, applied to the original data;

– as a second possibility, summarization can be obtained through a granularity
change: a history can be interpreted as a “macro-case”, whose features derive
from the corresponding features in the cases composing the history. For
time series, the macro-case features would be time series (inter-case data)
of multidimensional time series (intra-case data). This information needs
to be synthesized, for example through some sufficient statistics indexes,
such as the median and the 10th and 90th percentiles of each variable. The
macro-case features would then become the series of the medians and of the
percentiles (or simply the series of the values for single valued features) over
all the cases reported in the history. In the resulting macro-case, all features
will then be in the form of time series. This second possibility seems more
easily applicable if cases don’t overlap in time.

In the next section, we discuss proper retrieval strategies for both the sum-
marization alternatives.

4.2 History Retrieval

When each case has been mapped to a pattern stable over an interval, TA
and pattern matching techniques immediately appear as good candidates for
retrieval.

In particular, when intervals are the input to the TA process, complex TA
(see section 3.2) can be applied to extract temporal patterns in the history, that
correspond to significant behaviours in the process being observed. For example,
a peak in a case feature f defined by two consecutive cases can be identified
by a complex TA of the form “an increasing trend in f meets a decreasing
trend in f”, where meets is an operator of Allen’s interval algebra [3]. The
mechanism can still be applied if the cases are (partially) overlapping. Once
meaningful patterns have been identified in the query history, similar histories
can be extracted relying upon pattern matching techniques. As for the case level,

Case Based Representation and Retrieval with Time Dependent Features 363

various retrieval architectures could be designed; typically, some features could
be more relevant than others in history retrieval, and could be used for the
selection of very relevant histories, to be then ordered on the basis of all feature
values (see section 3.2 and figure 3).

On the other hand, if a granularity change has been applied, the problem is
basically reduced to case retrieval, and the considerations of section 3.2 hold.
In this situation, all case features are in the form of time series, that require a
preprocessing for optimizing retrieval itself. Since in history retrieval the goal
is the one of abstracting higher level concepts from raw data, the use of TA
appears particularly appealing in this case as well. Pattern matching techniques
will then help for a similarity-based search in the case memory (see figure 3).
In particular, some ground cases features are now mapped to more than one
history features (e.g. median and percentiles, or mean and standard deviation).
The different meaning of these features could correspond to a different role in
the retrieval process. For example, a preprocessing step could filter out histories
in which standard deviation values are too high. Alternatively, if a weight defines
the importance of each feature (at the case level), the weight of a case feature
that has been mapped to a mean and a standard deviation at the history level
could be decomposed in two numbers, to be assigned as the weights of the mean
and of the standard deviation respectively. A combination (e.g. the product) of
the two numbers (at the history level) would provide the weight of the original
feature at the case level.

5 The Framework in Practice: The Rhene System

Rhene (Retrieval of HEmodialysis in NEphrological disorders) is a multi-step
case retrieval system applied to the domain of patients affected by nephropa-
tologies and treated with hemodialysis [20]. Defining a dialysis session as a case,
retrieval (at the case level) has to operate both on single valued and time series
features.

Rhene implements a subpart of the modules of the general architecture in
figure 1 (highlighted in bold).

In particular, a preliminary classification/grouping step, based on single-
valued features, reduces the retrieval search space. Intra-class retrieval then takes
place by considering time series features, and is articulated as follows: (1) locally
similar cases (considering one feature at a time) are extracted and the intersec-
tion of the retrieved sets is computed; (2) global similarity is computed, as a
weighted average of local distances, and the best cases are listed. For similarity-
based time series retrieval (step (1)), we rely on dimensionality reduction, and
in particular on DFT. Thanks to specific index structures (i.e. k-d trees and TV
trees) range queries can be efficiently performed on our case base. Both ranges
and weights are tunable parameters; this choice provides the tool with great
flexibility.

The current prototype has been positively tested on a case base of more than
6500 cases, belonging to 48 real patients.

364 S. Montani and L. Portinale

feature 1

feature 2

feature n

locally similar histories combination
& best histories selection

temporal
abstractions

pattern
matching

retrieval wrt single
history features

(see figure 1)

HISTORY RETRIEVAL

CASE RETRIEVAL

single valued
features

classification/
grouping

selection
among

alternatives

Fig. 3. A general retrieval architecture, in which history retrieval can be used, in

alternative to classification/grouping, to reduce the search space for case retrieval.

Case retrieval can then be exploited to obtain more detailed results, concentrating on

more specific features values. History retrieval is sped up by the use of TA and of

pattern matching techniques. For the case retrieval block, please refer to figure 1. As

in case of figure 1, we omit here to explicitly show the query

In the future, we plan to work at the history level as well, by redefining
a case as a longer monitoring period (see section 4), typically made by all the
dialysis sessions of a patient within two weeks. As a matter of fact, as observed in
the introduction, this enlarged granularity is closer to the viewpont from which
physicians use to evaluate the dialysis data and to judge the patient’s evolution
over time. A tool (called emostat) able to summarize the raw data along these
lines, and to provide an off-line monitoring facility to nephrologists, has already
been implemented at the University of Pavia [4]. In particular, in emostat time
series data are synthesized through the median and the 10th and 90th percentiles
of each monitoring variable.

Case Based Representation and Retrieval with Time Dependent Features 365

This tool is going to be integrated with Rhene2, in order to implement his-
tory retrieval. On the history features, we want to look for particular patterns
(e.g. episodes of increasing values, peaks, etc.), that we will highlight by pre-
processing the data through TA, and by applying approximate string matching
techniques. As a second step, the physician will be allowed to enter the detail of
the cases composing the retrieved histories, and formulate stricter queries, on the
basis of feature values of particular interest. History retrieval will therefore be
available as an autonomous facility, or as a preprocessing step for case retrieval,
as described in figure 3. The overall architecture resulting from the integration
of the two systems will provide a support for patient examination and therapy
evaluation, but could also be adopted as a means for assessing the quality of the
hemodialysis service, producing a useful input from the knowledge management
perspective. Technically speaking, quality assessment requires to fulfil two tasks:
(1) discover relationships between the time patterns of the process data and the
performance outcomes; (2) retrieve similar critical patterns within the process
data, in order to assess their frequency. While emostat is able to address task
(1), the role of Rhene is the one of implementing task (2), thus providing a
comprehensive approach towards the realization of an auditing procedure, able
to summarize the dialysis sessions from a clinical quality viewpoint.

6 Conclusions and Future Works

In this paper, we have presented a domain-independent framework for dealing
with the temporal dimension in case representation and retrieval. In particular,
we have proposed a multi-step retrieval architecture whose modules can be dif-
ferently instantiated and combined, in order to cover the various needs of the
possible application domains. An example of implementation is represented by
the system Rhene, described in section 5. Rhene currently implements a sub-
part of the overall architecture, limited to the case level. In the future, we plan
to deal with knowledge representation and retrieval at the history level as well,
in order to provide physicians with a more flexible tool, that will enable them
to inspect patients’ data by referring to different time granularities. This work,
which will be supported by a grant of the Italian Ministry of Education, will be
limited to a specific application domain. Nevertheless, it will represent a first
step towards a better understanding of the advantages possibly provided by the
methodology proposed in this paper, and will allow us to inspect its usability in
practice.

References

1. A. Aamodt and E. Plaza. Case-based reasoning: foundational issues, methodolog-
ical variations and systems approaches. AI Communications, 7:39–59, 1994.

2 This work will be supported by the grant PRIN 2004 number 2004094558, funded
by the Italian Ministry of Education.

366 S. Montani and L. Portinale

2. R. Agrawal, C. Faloutsos, and A.N. Swami. Efficient similarity search in sequence
databases. In D. Lomet, editor, Proc. 4th Int. Conf. of Foundations of Data Or-
ganization and Algorithms, pages 69–84. Springer-Verlag, Berlin, 1993.

3. J.F. Allen. Towards a general theory of action and time. Artificial Intelligence,
23:123–154, 1984.

4. R. Bellazzi, C. Larizza, P. Magni, and R. Bellazzi. Temporal data mining for the
quality assessment of a hemodialysis service. Artificial Intelligence in Medicine (in
press).

5. R. Bellazzi, C. Larizza, P. Magni, S. Montani, and M. Stefanelli. Intelligent analysis
of clinical time series: an application in the diabetes mellitus domain. Artificial
Intelligence in Medicine, 20:37–57, 2000.

6. R. Bellazzi, C. Larizza, and A. Riva. Temporal abstractions for interpreting dia-
betic patients monitoring data. Intelligent Data Analysis, 2:97–122, 1998.

7. S. Berchtold, D.A. Keim, and H.P. Kriegel. The x-tree: an index structure for
high-dimensional data. In Proc. VLDB 96, pages 28–39. Morgan Kaufman, San
Mateo, CA, 1996.

8. I. Bichindaritz and E. Conlon. Temporal knowledge representation and organiza-
tion for case-based reasoning. In Proc. TIME-96, pages 152–159. IEEE Computer
Society Press, Washington, DC, 1996.

9. K.P. Chan and A.W.C. Fu. Efficient time series matching by wavelets. In Proc.
ICDE 99, pages 126–133. IEEE Computer Society Press, Washington, DC, 1999.

10. B. Fuch, A. Mille, and B. Chiron. Operator decision aiding by adaptation of
supervision strategies. In Case-Based Reasoning Research and Development, LNAI,
pages 23–32. Springer-Verlag, Berlin, 1995.

11. A. Guttman. R-trees: a dynamic index structure for spatial searching. In Proc.
ACM SIGMOD, pages 47–57. ACM Press, New York, NY, 1984.

12. M.L. Hetland. A survey of recent methods for efficient retrieval of similar time
sequences. In H. Bunke M. Last, A. Kandel, editor, Data Mining in Time Series
Databases. World Scientific, London, 2003.

13. M. Jaczynski. A framework for the management of past experiences with time-
extended situations. In Proc. ACM conference on Information and Knowledge
Management (CIKM) 1997, pages 32–38. ACM Press, New York, NY, 1997.

14. M.D. Jaere, A. Aamodt, and P. Skalle. Representing temporal knowledge for case-
based prediction. In S. Craw and A. Preece, editors, Proc. European Conference on
Case Based Reasoning (ECCBR) 2002, in: Lecture Notes in Artificial Intelligence
2416, pages 174–188. Springer-Verlag, Berlin, 2002.

15. H.V. Jagadish, A.O. Mendelzon, and T. Milo. Similarity based queries. In Proc.
14th ACM Symp. on Principles of Database Systems, San Jose, CA, 1995.

16. E. Keogh. Fast similarity search in the presence of longitudinal scaling in time
series databases. In Proc. Int. Conf. on Tools with Artificial Intelligence, pages
578–584. IEEE Computer Society Press, Washington, DC, 1997.

17. E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra. Dimensionality reduction
for fast similarity search in large time series databases. Knowledge and Information
Systems, 3(3):263–286, 2000.

18. E.T. Keravnou. Modeling medical concepts as time objects. In Proceedings AIME
1995, LNAI 934, pages 67–90. Springer-Verlag, Berlin, 1995.

19. J. Ma and B. Knight. A framework for historical case-based reasoning. In K.D.
Ashley and D.G. Bridge, editors, Proc. International Conference on Case Based
Reasoning (ICCBR) 2003, in: Lecture Notes in Artificial Intelligence 2689, pages
246–260. Springer-Verlag, Berlin, 2003.

Case Based Representation and Retrieval with Time Dependent Features 367

20. S. Montani, L. Portinale, R. Bellazzi, and G. Leonardi. Rhene: a case retrieval sys-
tem for hemodialysis cases with dynamically monitored parameters. In P. Funk and
P.A. Gonzales Calero, editors, Proc. European Conference on Case Based Reason-
ing (ECCBR) 2004, in: Lecture Notes in Artificial Intelligence 3155, pages 659–672.
Springer-Verlag Berlin, 2004.

21. G. Nakhaeizadeh. Learning prediction from time series: a theoretical and empirical
comparison of cbr with some other approaches. In Topics in Case-Based Reasoning,
LNAI 837, pages 65–76. Springer-Verlag, Berlin, 1994.

22. A.V. Oppenheim and R.W. Shafer. Digital signal processing. Prentice Hall, London,
1975.

23. D. Patterson, M. Galushka, and N. Rooney. An effective indexing and retrieval
approach for temporal cases. In Proc. 17th FLAIRS 2004, AAAI Press, Miami,
2004.

24. A. Ram and J.C. Santamaria. Continuous case-based reasoning. In Proc. AAAI
Case-Based Reasoning Workshop, pages 86–93, 1993.

25. F.E. Ritter and J.H. Larkin. Developing process models as summaris of hci action
sequences. Human Computer Interaction, 9:345–383, 1994.

26. S. Rougegrez. Similarity evaluation between observed behaviours for the predic-
tion of processes. In Topics in Case-Based Reasoning, LNAI 837, pages 155–166.
Springer-Verlag, Berlin, 1994.

27. R. Schmidt, B. Heindl, B. Pollwein, and L. Gierl. Abstraction of data and time
for multiparametric time course prognoses. In Advances of Case-Based Reasoning,
LNAI 1168, pages 377–391. Springer-Verlag, Berlin, 1996.

28. Y. Shahar. A framework for knowledge-based temporal abstractions. Artificial
Intelligence, 90:79–133, 1997.

29. M. Sollenborn and M. Nilsson. Building a case-base for stress diagnosis: an analysis
of classified respiratory sinus arrhythmia sequences. In Proc. Case-Based Reasoning
in the Health Sciences Workshop, European Conference on Case Based Reasoning
(ECCBR) 2004.

30. G.A. Stephen. String searching algorithms. In Lecture Notes Series in Computing,
volume 3. World Scientific, 1994.

31. V.S. Subrahmanian. Principles of Multimedia Database Systems. Morgan Kauf-
mann, San Mateo, CA, 1998.

32. E. Ukkonen. Algorithms for approximate string matching. Information Control,
64:100–118, 1985.

33. E. Ukkonen. Approximate matching over suffix trees. In Lecture Notes in Computer
Science, volume 684, pages 228–242. Springer Verlag, 1993.

34. B.B. Xia. Similarity search in time series data sets. Technical report, School of
Computer Science, Simon Fraser University, 1997.

The Best Way to Instil Confidence

Is by Being Right

An Evaluation of the Effectiveness of Case-Based
Explanations in Instilling User Confidence

Conor Nugent, Pádraig Cunningham, and Dónal Doyle

Department of Computer Science, Trinity College Dublin
{Conor.Nugent, Padraig.Cunningham, Donal.Doyle}@cs.tcd.ie

Abstract. Instilling confidence in the abilities of machine learning sys-
tems in end-users is seen as critical to their success in real world prob-
lems. One way in which this can be achieved is by providing users with
interpretable explanations of the system’s predictions. CBR systems have
long been understood to have an inherent transparency that has partic-
ular advantages for explanations compared with other machine learning
techniques. However simply supplying the most similar case is often not
enough. In this paper we present a framework for providing interpretable
explanations of CBR systems which includes dynamically created dis-
cursive texts explaining the feature-value relationships and a measure of
confidence of the CBR system’s prediction being correct. We also present
a means by which the trade-off between being overly confident or overly
cautious can be evaluated and different methods compared. We have car-
ried out a preliminary user evaluation of the framework and present our
findings. It is clear from this evaluation that being right is important. It
appears that caveats and notes of caution when the system is uncertain
damage user confidence.

1 Introduction

CBR systems have long been understood to have an inherent transparency that
has particular advantages for explanations compared with other machine learn-
ing techniques [1]. The realisation that there is a need to make machine learning
systems more interpretable and user friendly has brought this fact back into
focus in recent years. Research by Cunningham et al. found that CBR expla-
nations where the user is simply supplied with the most similar case are more
convincing than rule-based explanations in some domains [2].

Recently researchers have begun to look at ways in which this method can
be improved upon. The issue with case-based explanations lies in the perceived
appropriateness of the presented cases to the validity of the prediction. This is
an issue that has received a lot of attention in the CBR community. In CBR ex-
planations, the ability of the user to make meaningful comparisons between the
query and the retrieved explanation case is of critical importance to the success of

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, pp. 368–381, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNAI

The Best Way to Instil Confidence Is by Being Right 369

the explanation [3]. CBR systems are not wholly transparent and much domain
knowledge can be contained within the similarity metrics used in the system. It
is implicitly assumed in simple CBR explanations systems that the user has this
same domain knowledge and so the appropriateness of the explanation case is
clear. However, this may not be the case and the relevance of the retrieved case
may be lost on novice users. This is an issue that McSherry has addressed in his
ProCon System [4]. McSherry has focused on making the relationship between
the feature values within a case and its predicted value explicit. Similarly we ad-
dress this issue in our case-based explanation system for black-box systems [5].
However in our approach we used localised information to ensure that our system
captured any non-linear feature interactions that occurred in the feature space.

In other work, Doyle et al. have focused on the observation that the nearest
retrieved case in a CBR system may not be the best case to present as an
explanation [6]. They use these cases to form a fortiori arguments in favour of
the CBR systems prediction. They argue that in classification tasks, cases that
are between the query case and the decision boundary provide more convincing
explanations. That is, cases that are more marginal on the important criteria
are more convincing. With such cases the user is better able to assess whether
the classification of the target case is justified.

The primary motivation in providing users of CBR systems with interpretable
explanations is to increase their confidence in the system. However, as is pointed
out by Cheetham and Price, people can quickly lose confidence in a system if it
makes predictions which then turn out to be incorrect [7]. To address this issue
Cheetham and Price propose using confidence measures to alert the user when
a system may be making a mistake.

We have developed an explanation framework for CBR systems which at-
tempts to address the issue of providing user confidence by providing inter-
pretable explanations coupled with a measure of confidence of the systems pre-
diction. We have performed preliminary evaluations on the explanation frame-
work and the results are presented.

The paper is structured as follows. Section 2 outlines how the framework
works. Section 3 outlines a methodology for investigating the trade-offs in gen-
erating estimates of system confidence. Section 4 describes the evaluation we
have carried out and presents the results of those evaluations. Finally we end
with the conclusions in Section 5.

2 Explanation Framework

We have developed a framework for providing interpretable explanations in CBR
systems. The explanations produced by the framework contain a number of
elements;

– Cases that form a fortiori arguments,
– Discursive text describing the effects of differences in feature-values between

the Query Case and the Explanation Case,
– A measure of confidence in the system’s prediction.

370 C. Nugent, P. Cunningham, and D. Doyle

The framework expands on earlier work in which we used localised models to
help explain the feature-value relationships in regression tasks [5]. The two key
aspects of our localised approach are; the generation of a local case-base and the
use of a local model. The local model is used to help describe the feature-value
relationships and to inform the search for an explanation case. In this paper we
describe an implemenation for use in binary classification problems. To build a
local case-base in such problems we simply use a Nearest Neighbour algorithm
to create a subset case-base of the original case-base. First we find the Query
Case’s nearest neighbours and include them in our new subset case-base until
we have at least K cases of each of the two classes. This ensures that our local
case-base traverses the decision boundary in the area of our Query case. Once
we have our localised case-base we then build our local model on it. As a model
to use to capture the local information stored in the casebase we have selected
to use logistic regression models. Logistic regression models are quite simple yet
powerful and allow us to realise all the elements of our explanation framework
listed above. In the coming sections we discuss the logistic regression model and
how it is used in the generation of explanations.

2.1 Logistic Regression

Logistic regression, like linear regression, produces a set of coefficients from which
the relationship of an input variable to the target class variable can be deduced.
However unlike linear regression, logistic regression coefficients don’t directly
correspond to slope values in the same way. Logistic regression models are re-
stricted to binary tasks and the two possible class values are coded as being
either 0 or 1. Because the value predicted by the model, the conditional mean,
is no longer an unbounded value as in linear regression but a value between 0
and 1, the data is fitted to a distribution that ensures the outputted value always
meets this bounding criteria.To do this the logistic distribution is applied as can
be seen below (1).

Y (x) =
eβ0+β1x

1 + eβ0+β1x
(1)

Here Y (x) is the conditional mean for a particular value of x while β0 and
β1 are the model parameters. The distribution produces the conditional mean, a
value between 0 and 1, for any given inputted value of x. Importantly, for binary
problems the conditional mean is in fact the probability of class 1 given x. This
allows us, in a very direct way, to determine the level of belief of an input x
belonging to a particular class. Using such measures of belief we can inform
users of our confidence in a particular solution. Exactly how this is done is
discussed in greater detail in Sections 2.2 and 3.

At first glance this model looks quite intimidating and seems to offer no hope
of offering an insight into the relationship between x and our class variable. How-
ever, the logistic distribution is chosen because it can be easily transformed into
another form which has many of the desirable properties of a linear regression
model. By applying the logit transform, Equation 2, we end up with a simple
and interpretable model, the logit (3).

The Best Way to Instil Confidence Is by Being Right 371

g(x) = ln
Y (x)

1 − Y (x)
(2)

g(x) = β0 + β1x (3)

The parameters of the logit model can easily be converted into odds ratios.
The odds ratio of an event is the odds of that event occurring over the odds
of it not happening. For instance if someone were to state the odds ratio of
smokers to non-smokers getting cancer is 2 then this would mean smokers are
twice as likely to develop cancer as non-smokers. Alternatively, if we looked at
the relationship the other way round, non-smokers to smokers, we would get an
odds ratio of 0.5. This means that non-smokers are half as likely to get cancer. In
general an odds ratio greater then one for possibility A over possibility B means
A makes the event more likely than the alternative while an odds ratio of less
then one means it makes it less likely. The logistic regression model makes the
calculation of odds ratios quite easy and this is extremely useful and informative.
It is this simple relationship between the model coefficients and the odds ratio
and their natural interpretation that has made logistic regression such a popular
tool. We will discuss in a very general sense how this is done as it will be of use in
Section 2.3 where we use the logistic regression model to explain the differences
in feature-values between the query case and the explanation case.

In order to extract the odds ratio, two steps are taken. First the logit dif-
ference is found. Imagine we are interested in the odds ratio of two different
events, x = c and x = d. the logit difference can be calculated as in Equation 4.
The logit difference, ld, is simply the difference in the logit function for the two
values of x we are interested in. Once this value has been obtained it can then
be converted into an odds ratio, see Equation 5.

Logit Difference(x = c, x = d) = g(c) − g(d) = ld (4)

Odds Ratio(x = c, x = d) = eld (5)

One of the major reasons for the popularity of the logistic regression model
is that in many cases it is not necessary to calculate the logit difference. If the
model variables have been properly coded then the desired information usually
can be obtained by inspecting the model coefficients directly (chapter 4, [8]).
However for our purposes since we are interested in specific cases and not general
trends we can simply find the odds ratio for specific values using Equation 5.
Once we have the odds ratio the relationship between input variable and the
class variable is clear. We have focused most of our discussion on examples with
only a single input variable for simplicity sake but the above observations are
also true in multi-variable problems. In the next section we discus how exactly
information derived from the logistic regression model can be used to provide
convincing explanations.

2.2 Finding a Fortiori Cases and a Measure of Confidence

Using the local logistic regression model we can generate a fortiori arguments
dynamically and without any prior domain knowledge. As discussed in Section

372 C. Nugent, P. Cunningham, and D. Doyle

Table 1. Explanation Case Retrieval Process

Features Query Nearest Nearest Nearest
Case Neighbour 1 Neighbour 2 Neighbour 3

Weight 88 82 79 76
Duration 120 120 120 120
Gender Male Male Male Male
Meal Full Full Full Full
Units 5.2 5.0 7.2 4.6

BAC Under Under Under Under
Probability 0.98 0.97 0.89 0.96

2.1 Logistic Regression models allow us to generate a probability for a given
set of inputs. In the explanation case retrieval process we can then use this to
find an explanation case that is nearer the decision boundary and so a more
convincing argument. We consider each of the cases in our localised case-base
as a candidate case for inclusion in the explanation. By passing each of our
candidate explanation cases through our local logistic model using Equation 1 we
can generate a probability for each. A case that is nearer the decision boundary
and of the same class as our CBR system has predicted will have a more marginal
probability and so this should be the case we select.

To make this process a little clearer we will discus it in relation to the Blood
Alcohol Content (BAC) domain [2,6]. The task involves using information such as
peoples weight, gender, number of units of alcohol consumed to predict whether
someone’s blood alcohol content (BAC) exceeds the drink driving limit. We built
a simple Nearest Neighbour algorithm on the data set and applied our framework
to providing explanations of it’s predictions. After the Query Case has been
classified we can then build our logistic model on our local data. In Table 1 we can
see the Query Case, its predicted classification and three candidate explanation
cases which are in fact the Nearest Neighbours used to classify it. In order to
select a case to use in our explanation we first run each of the cases including the
Query Case through our local logistic regression model. This gives us the set of
probabilities that can also be seen in Table 1. We can see that Nearest Neighbour
2 has the lowest probability and so is the case nearest the decision boundary.
This is an alternative to the explanation utility framework described by [6] for
selecting the cases to present to the user which make more convincing arguments
than the nearest neighbours. Although Nearest Neighbour 2 had consumed more
units of alcohol and weighed less, they were under the limit so it seems reasonable
that our Query Case should be too.

We can make this argument more explicit to the end user by explaining the
effects of the feature differences between the Query Case and Explanation Case.
In the next section we will outline how this can be done using the local logistic
regression model. As Cheetham and Price point out, being able to provide a
measure of prediction confidence is an extremely useful asset in maintaining
end-users confidence in a system [7]. By substituting the Query Case values
into Equation 1 we can derive a probability of the Query Case being a certain

The Best Way to Instil Confidence Is by Being Right 373

class. If this probability is below a certain threshold we can inform the user
that confidence is low. How this threshold might be decided upon is discussed in
Section 3. When the confidence in a decision is low we should consider presenting
the user with extra information to help them in making their decision. One way
in which this can done is by presenting the user with counter examples, cases
that are similar but have a different classification. We will discus the selection
of counter examples in Section 2.4.

2.3 Explaining Feature-Value Relationships

The logistic regression model can be used to determine the effects of differences
in cases. Using Equations 4 and 5 from Section 2.1 we can substitute each of the
feature differences into the equations individually and get an odds ratio for each.
Using the odds ratio we can then determine the effect of the change. As discussed
in section 2.1 an odds ratio greater than 1 means that a feature difference makes
an event more likely and vice versa. Looking at each feature difference in turn we
can then make lists of features differences that make the classification more likely
and those that have the opposite effect. Canned texts are then used to describe
the feature differences appropriately. As an example of how this process is carried
out consider the Weight feature in the Sample Explanation in Table 2. Using
the logistic regression models we find that the odds ratio is less than one when
the Explanation and Query Case values, 79 and 57 kilograms respectively, are

Table 2. Sample Explanation

Query Explanation
Case Case

Weight (kgs) 57.0 79.0
Duration (mins) 240.0 240.0
Gender Male Male
Meal Full Full
Amount (Units) 12.6 9.6
BAC Over

The prediction for the individual in the Quey Case is: Over the limit

The confidence that this prediction is correct is: high

Discursive Text:

In support of this prediction we have the person presented by the Explanation
Case who was also Over the limit. Weight being lighter and Amount being
bigger have the effect of making the Query individual more likely to be Over
the limit than the Explanation individual.

374 C. Nugent, P. Cunningham, and D. Doyle

Table 3. Sample Explanation with Counter Example

Explanation Query Counter
Case Case Example

Weight (kgs) 52.0 53.0 73.0
Duration (mins) 270.0 330.0 210.0
Gender Male Female Male
Meal Lunch Lunch Lunch
Amount (Units) 9.1 10.4 9.0
BAC Over Under

The prediction for the individual in the Query Case is: Over the limit

The confidence that this prediction is correct is: low

Discursive Text:

In support of this prediction we have the person represented by the Expla-
nation Case who was also Over the limit. Gender being Female and Amount
being bigger have the effect of making the Query individual more likely to be
Over the limit than the Explanation individual. However, Weight being heav-
ier and Duration being longer have the effect of making the Query individual
less likely to be Over the limit than the Explanation individual

As there is low confidence in the prediction we also have a counter example of
someone who is similar but Under the limit for you to inspect

Duration being longer has the effect of making the Query individual more
likely to be Under the limit than the counter example. However, Weight being
lighter, Gender being Female and Amount being bigger have the effect of making
the Query individual less likely to be Under the limit than the counter example

substituted into Equation 4 and the odds ratio determined using Equation 5.
This then means that the Query Cases’ value for this feature, 57, contributes to
making the Query Case more likely to be Over the limit than the Explanation
Case. By simple inspection of the feature values we can determine that Query
Case value is less than the Explanation value and the term lighter is retrieved
from a stored set of relationship terms specific to describe this relationship. This
process is carried out for each of the features differences and the discursive text
built up as can be seen in Table 2. It is worth noting that if the case-base used to
build the local model doesn’t adequately represent the problem, counter intuitive
explanations can be produced. For instance we found that if too few cases were
used duration could be heavily correlated with units and so a larger duration
value could be seen as evidence in favour of being over the limit.

The Best Way to Instil Confidence Is by Being Right 375

2.4 Presenting Counter Examples

By presenting the user with similar cases that lie either side of the decision
boundary we can help them make a more informed decision. This kind of ap-
proach has previously been introduced by Leake et al. [9] who used bracketing
cases to help delineate the limits of the problem being considered. When confi-
dence is low we can adopt a similar approach: presenting the user with cases from
either side of the decision boundary and using discursive texts to explain how
the feature values affected the different classifications. Again using the logistic
regression model in the same way that it was used to find a fortiori arguments it
is possible to find the nearest case on the opposite side of the decision boundary.

In Table 3 we can see the type of counter example explanation produced. The
user is presented with both explanation cases either side of the Query Case and
a discursive text describing the effects of differences between each of the cases
and the Query Case. It is hoped that this will help the user in deciding whether
to accept the prediction or reject it.

3 Investigating Confidence Measures

The key issue in providing any confidence measure is ensuring that when it
is confident it is correct without bringing too many correct predictions into
question. Constantly supplying users with predictions that we are unsure about
is bound to damage their confidence in the system. There often is a trade-
off between the two and a tolerance level where the level of confidence versus
pessimism is acceptable must be chosen. This can make comparing different
schemes less than straightforward as one scheme may be better at one level of
tolerance and another at a different level. The characteristics of this problem
led us to investigate adapting ROC curves to the task [10]. We can characterize
our wish for accurate confidence as being our Confident Correct Rate (CCR)
as defined in Equation 6. Likewise we can encapsulate our need to minimise
pessimism in the Not Confident Correct Rate (NCCR) as defined in Equation 7.

CCR =
CC

CC + CI
(6)

NCCR =
NCC

NCC + NCI
(7)

Where CC is the number of times the measure is confident and the system
is correct and CI is the number of times measure is confident and the system
is incorrect. Likewise NCC is the number of times the measure is not confident
and the system is correct and NCI is the number of times the system is not
confident and is right to be so. To make the definition of these parameters a
little clearer we have displayed them in the form of a truth table in Table 4. Our
scheme for confidence requires one parameter K, the number of cases of each
class that is required in order to stop the local case-base building process. As
an example of how the methodology we described can be used to investigate the

376 C. Nugent, P. Cunningham, and D. Doyle

Table 4. A Truth Table Defining the Equation Parameters

Incorrect Correct

Confident CI CC
Not Confident NCI NCC

Characteristic Confidence Curves

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

0 0.2 0.4 0.6 0.8 1

Not Confident Correct Rate

C
on

fid
en

t C
or

re
ct

 R
at

e

K=3

K=6

K=9

Fig. 1. The Characteristic Confidence Curves for the UCI Spam Data set for a Range

of K Values

confidence measure trade-off we have applied it two data sets; the BAC set and a
Spam data set from the UCI repository. In our confidence scheme we must chose
a level of probability that we must have in a prediction in order to be confident
in it. We performed leave-one-out cross-validations on both data sets recording
the required statistics while varying both K and the confidence threshold. We
then plotted the results of the evaluation on Characteristic Confidence Curves
which are very similar to ROC curves as can be seen in Figures 1 and 2. For
each scheme there is a separate curve and the points on those curves represent
different threshold levels for those schemes. Like in ROC curves our ideal so-
lution would lie in the top left hand corner and the solution which is nearest
this point optimises the trade-off. However different applications may have re-
strictions about how often the system can be confident and incorrect. It is quite
easy using the characteristic curves to find the scheme that best meets these
requirements. It is also possible eliminate certain schemes as being definitely
worse than another (like in ROC curves) if the curve of one scheme lies entirely
inside another then it is worse than that scheme.

In Figure 1 we can see that the three different schemes are all quite closely
aligned but that generally the scheme for k=6 out performs the others although
at certain points k=3 is slightly more favourable. Likewise in Figure 2 we can see

The Best Way to Instil Confidence Is by Being Right 377

Characteristic Confidence Curves

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

0 0.2 0.4 0.6 0.8 1

Not Confident Correct Rate

C
on

fid
en

t C
or

re
ct

 R
at

e

K=3

K=6

K=9

Fig. 2. The Characteristic Confidence Curves for the BAC Data set for a Range of K

Values

Table 5. The Confidence Measures Results

Spam BAC

Incorrect Correct Incorrect Correct

Confident 13 366 3 78

Not Confident 18 3 7 10

that our best solution is clearly when k=3 as the two points on its curve lie far
closer to the upper left hand corner than any others. There are only two points
on the k=3 curve because it very quickly goes from being entirely not confident
to reaching the minimum possible threshold value. The minimum threshold value
is the probability of 0.5 as any belief below this actually represents a belief in
the other class in binary problems. As an example of how accurately we can
predict confidence we chose the two points on both graphs that maximised the
trade-off. These can be see in Table 5.

In the case of the Spam data set we are Confident and Correct 91.5% of the
time while being Confident and Incorrect just 3.25% of the time. Importantly
we are not confident when correct less than 1% of the time. In the alcohol data
set Confident and Correct 79% of the time while Confident and Incorrect 3% of
the time.

4 Evaluation

In this section we examine the results of a preliminary investigation into the
effectiveness of the explanation framework. In order to assess the usefulness of

378 C. Nugent, P. Cunningham, and D. Doyle

the framework’s explanations we performed a user trial. We will now outline the
structure of the user trial and discuss our findings.

4.1 User Trials

In designing the user trial there were three principle questions we wished to
address; do people find the explanations understandable and useful, do the ex-
planations increase users’ confidence in the case-based system and finally can the
explanations alert users to when the system might be in error. The case-base on
which the trial was carried out was again the Blood Alcohol Content case-base
[2,6]. We built a simple Nearest Neighbour algorithm on the data set and applied
our framework to providing explanations of its predictions.

In the trial, subjects were given a questionnaire in which they were shown
three different forms of explanation;

– The Full Framework Explanation: This is an explantion that includes
the selected a fortiori explantion case, a discursive text and a measure of
confidence as seen in Table 2.

– Case-based Explanation: In this form of explanation the subject is just
shown the selected a fortiori case as evidence in favour of the prediction.

– No Explanation: The user is just presented with the feature-values of the
query and the systems prediction.

The trial subjects were shown four examples of each type of explanation and
asked two questions after each example shown;

– Question One: Do you think the prediction is correct?
– Question Two: How would you rate this Explanation?

Below each question the trial subject had five options to select from. In
question one the options were; No, Maybe No, Don’t Know, Maybe Yes and Yes.
In question two the options were; Poor; Fair; Okay, Good and Very Good.

To assess the use of explanations in terms of alerting users to when the
system might be in error one of the four examples shown of each explanation
type was a mis-classification. Twelve people from a number of different academic
backgrounds took part in the evaluation and the results are discussed in the next
section.

User Trial Results: In question one we looked at the frequencies with which
users chose each of the five options when the prediction made by the system was
correct. These can be see in Figure 3. It is clear that the explanations given by
the framework give the users far greater confidence in the system than either of
the other two schemes. The trial subjects answered Yes 88% for the time with
just four answers being anything other than yes. Three people answered Maybe
Yes, one Don’t Know and there were no negative answers. We also examined
the users responses when the system had made an incorrect classification and
the results can be seen in Figure 4. The graph of frequencies reveals a very

The Best Way to Instil Confidence Is by Being Right 379

0

5

10

15

20

25

30

35

No Maybe No Don't Know Maybe Yes Yes

Framework

Case

None

Fig. 3. The distribution of user responses when the system predictions were correct

0

1

2

3

4

5

6

No Maybe No Don't Know Maybe Yes Yes

Framework

Case

None

Fig. 4. The distribution of user responses when the system predictions were wrong

different user response pattern. Although no one responded Yes in the case of
the explanations produced by the framework there is far less certainty in the
users’ responses.

In question two we were trying to determine how satisfactory people found the
explanations. We coded the trial subjects responses as being a number between
one and five. One being Poor and five beingVery Good. We then looked at the
average value given to each explanation for each scheme. The results are shown

380 C. Nugent, P. Cunningham, and D. Doyle

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Framework Case None

Explanation Type

A
v
e
r
a
g

e
 R

a
ti

n
g

Fig. 5. The Average Rating Scores for Question Two of the Explanations Produced by

Each Different Scheme

in Figure 5. Clearly people found the framework explanations to be far more
satisfying then the other two schemes and generally the rating for the framework
explanation was quite high.

It is worth noting that although the ratings were still high there was a no-
ticeable dip in the average ratings for explanations when confidence is low and
the user was presented with counter examples. From comments returned by test
subjects the addition of a counter example at times of uncertainty led to con-
fusing explanations. Such confusion may damage user confidence in the system.
We would like to do a further survey to investigate the use of counter examples
in greater detail. However it is clear that generally the framework explanations
added to users confidence in the system’s predictions however user confidence
was damaged when the system made errors.

5 Conclusions

In this paper we have addressed the issue of instilling confidence in the ability
of machine learning systems in their users. We have developed an explanation
framework which supplies users with interpretable explanations of the systems
predictions along with a measure of confidence in that prediction. We have also
presented a means by which the trade-off between being overly confident or
overly pessimistic can be inspected and different methods compared.

We carried out a preliminary evaluation on the explanation framework and
have found that the use of interpretable explanations does indeed increase con-
fidence in the system as can be seen in Figure 3. The addition of discursive text
explaining the relationship between the presented explanation and the query
cases clearly had an effect in instilling this confidence as can be seen in the satis-

The Best Way to Instil Confidence Is by Being Right 381

faction ratings shown in Figure 5. However, when the system fails this confidence
can be damaged. This can be clearly seen in Figure 4 as the users display far
less certainty about the system prediction compared with when the system is
correct. This could be a result of the extra cognitive load associated with the
explanations produced when the level of confidence is low. However users were
still unable to reliably perceive that the system was making an error and so their
confidence in the system could be lost when the resulting error becomes evident.
It seems that notifying the user of uncertainty in the recommendation from the
system creates an element of doubt and confidence could be damaged.

This a matter that has only been touched on in our preliminary investigation
and it is one which we would like to address further in a more comprehensive
study. In the future we would also like to investigate localised logistic regression
as a CBR classification technique as well as find improved means by which we
can generate local case-bases.

References

1. Leake, D.: Case-Based Reasoning: Experiences, Lessons and Future Directions.
AAAI/MIT Press (1996)

2. Cunningham, P., Doyle, D., Loughrey, J.: An evaluation of the usefulness of case-
based explanation. In Ashley, K.D., Bridge, D.G., eds.: Case-Based Reasoning
Research and Development, 5th International Conference on Case-Based Reasoning
(ICCBR 2003). Volume 2689 of Lecture Notes in Computer Science., Springer
(2003) 122–130

3. Nugent, C., Cunningham, P.: A case-based explantion system for black box sys-
tems. Artificial Intelligence Review (2005) To Appear.

4. McSherry, D.: Explanation in case-based reasoning: an evidential approach. In:
8th UK Workshop on Case-Based Reasoning. (2003) 47–55

5. Sørmo, F., Cassens, J., Aamodt, A.: Explanation in case-based reasoning: Perspec-
tives and goals. Artificial Intelligence Review (2005) To Appear.

6. Doyle, D., Cunningham, P., Bridge, D., Rahman, Y.: Explanation oriented re-
trieval. In Funk, P., Calero, P.A.G., eds.: Advances in Case-Based Reasoning, 7th.
European Conference on Case-Based Reasoning (ECCBR 2004). Volume 3155 of
Lecture Notes in Computer Science., Springer (2004) 157–168

7. Cheetham, W., Price, J.: Measures of solution accuracy in case-based reasoning
systems. In Funk, P., Calero, P.A.G., eds.: Advances in Case-Based Reasoning,
7th. European Conference on Case-Based Reasoning (ECCBR 2004). Volume 3155
of Lecture Notes in Computer Science., Springer (2004) 106–118

8. Hosmer, D., Lemeshow, S.: Applied Logistic Regression. 2nd edn. Wiley (2000)
9. Leake, D., Birnbaum, L., Hammond, K., Marlow, C., Yang, H.: An integrated

interface for proactive, experience-based design support. In: Proceedings of the
2001 International Conference on Intelligent User Interfaces. (2001) 101–108

10. Flach, P., Blockeel, H., Ferri, C., Hernandez-Orallo, J., Struyf, J. In: Decision
support for data mining: introduction to ROC analysis and its application. Kluwer
Academic Publishers (2003) 81–90

Cooperative Reuse for Compositional Cases

in Multi-agent Systems

Enric Plaza

IIIA - Artificial Intelligence Research Institute,
CSIC - Spanish Council for Scientific Research,

Campus UAB, 08193 Bellaterra, Catalonia (KoS)
Vox: +34-93-5809570, Fax: +34-93-5809661

enric@iiia.csic.es
http://www.iiia.csic.es

Abstract. We present a form of case-based reuse conducive to the co-
operation of multiple CBR agents in problem solving. First, we present
a form of constructive adaptation for configuration tasks with compo-
sitional cases. We then introduce CoopCA, a multi-agent constructive
adaptation technique for case reuse. The agents suggest possible com-
ponents to be added to the ongoing configuration problem, allowing an
open, distributed process where components used in cases of different
agents are pooled together in a principled way. Moreover, the agents can
use their case base to inform about a similarity-based likelihood that
the suggested component will be adequate for the current problem. We
illustrate CoopCA by applying it to the task of agent team formation1.

1 Introduction

We present a form of case-based reuse conducive to the cooperation of multi-
ple CBR agents in problem solving. First, we present a form of constructive
adaptation for configuration tasks with compositional cases. Constructive adap-
tation is composed of the Hypotheses Generation and the Hypotheses Ordering
processes. Then we introduce CoopCA, a multi-agent constructive adaptation
technique for case reuse, showing how Hypotheses Generation can be extended
to a multi-agent system. The agents suggest possible components to be added to
the ongoing configuration problem, allowing an open, distributed process where
components used in cases of different agents are pooled together in a principled
way. Moreover, the agents can use their case base to inform about a similarity-
based likelihood that the suggested component will be adequate for the current
problem. This information is used by the Hypotheses Ordering process that thus

1 Thanks to David Aha who during ECCBR-2004 in Madrid observed that distributed
and multi-agent approached to CBR focused on the Retrieve process and wondered
aloud why Reuse process had not been extended to cover distributed and multi-agent
scenarios. This work has been partially supported by the CBR-ProMusic project
(IC2003-07776-C02-02) and the SAMAP project (TIC2002-04146-C05-01).

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, pp. 382–396, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNAI

Cooperative Reuse for Compositional Cases in Multi-agent Systems 383

explores the configuration space guided by the cases of all the involved agents.
We illustrate CoopCA proposal by applying this technique to the task of agent
team formation.

1.1 Generative Reuse with Constructive Adaptation

The Reuse process in case-based reasoning when the solution is a complex struc-
ture, like a plan or a design, can be performed in two ways: transformational
reuse and generative reuse [1]. Transformational Reuse takes the solution struc-
ture of one (or several) retrieved case(s) and transforms that structure using
some specific algorithm or search process until a new solution structure is found
that is adequate for the new problem [6, 7]. Generative Reuse, on the other
hand, generates the new solution by construction; the generative process uses
past cases (and their similarity to the new case) to construct the solution struc-
ture of the new case. The canonical technique in CBR literature for planning
tasks is derivational analogy [9].

Constructive adaptation (CA), as presented in [8], is a general technique for
generative reuse based on two basic notions: a) that building a solution for a new
case is a search process, and b) that the search process is guided by a similarity
measure over the precedent cases stored in a case base. The third basic idea of CA
is that there are two related but distinct tiers of representation, namely case repre-
sentation (useful to compute similarities) and state representations (useful to per-
form search process). Therefore, CA proposes a two-tiered process for constructive
adaptation, as shown in Fig. 1. Notice that CA fulfills the requirements for being
a form of compositional adaptation [11, 10] since CA is a reuse technique where
solution parts coming from multiple cases are reused and combined together.

This paper presents a more specific version of the Constructive Adaptation ap-
proach adequate for design and configuration tasks. Although less general than [8],

Solved

Case

Final

State

New

Case

Initial

State

Case

Base

Search

Process

Search

 Tier

Case

 Tier

TRANSLATE TRANSLATEGUIDE

Fig. 1. The two-tiered process of constructive adaptation

384 E. Plaza

this specialization allows us to define CA in a more detailed and formal manner.
The contribution of this paper is three fold. First, we present an abstract and for-
mal specification of Compositional Cases, a case description formalism that is ad-
equate for CBR systems dealing with design and configuration tasks. The second
contribution is a detailed description of Constructive Adaptation for design and
configuration tasks using Compositional Cases. Finally, we present CoopCA, a dis-
tributed form of CA applied to team formation in multiagent systems.

2 Constructive Adaptation for Compositional Cases

Configuration tasks are amenable to be supported in CBR systems using com-
positional cases— i.e. cases that express the relation between a component and
the role it plays in the object being configured. For instance, in the task of con-
figuring a PC, HardDrive is a role and ATA/IBM-DJSA-210 is a component
that can fulfill that role.

Constructive adaptation is composed of the Hypotheses Generation (HG) and
the Hypotheses Ordering (HO) processes. Both HG and HO work upon states
(see Fig. 1) representing a partial configuration being considered by the system.
Concerning compositional cases, HG takes a state and generates new states with
refined partial configurations; specifically it takes a open role Ri and generates a
new state for each particular component Cj that can fulfill role Ri. Components
Cj are obtained by retrieval of the configurations in case-base with a role Ri.

Concerning Hypotheses Ordering, HO orders open states assessing the simi-
larity of the state’s partial configuration with respect to the case base of config-
urations. Specifically, let Cj in role Ri be the last component added to a state;
HO will give the state a rank value that is the highest similarity of a case with
Cj in role Ri with respect to the current problem. Notice that we are assess-
ing similarity comparing the problem specification and not the solutions (the
configuration of the cases and the partial configuration of the state).

The only requirement to use CoopCA in a configuration task is that the CBR
system has to be able to describe the characteristics that specify the possible
components that may fill a role. We will call this description as a task specification
(or simply a task) of a role2. As we will see, task specification is the means used
to inform other agents about the current focus of interest in the reuse process.
Then, the agents receiving a task specification can use it as a query to their case
base —and from which the components satisfying it are retrieved.

2.1 A Framework for Compositional Cases

This section develops a domain-independent description framework for case-
based compositional design (or configuration, in the following we will use both
terms synonymously).

2 The simplest task specification is just a role name Ri; however, often some con-
straints on the type and/or properties of components that can legally fill the role
are expressed in the task specification.

Cooperative Reuse for Compositional Cases in Multi-agent Systems 385

Fig. 2. Compositional cases consist of a complex component Ci that specifies the roles
for the required subcomponents (Ri

j) and the bindings (W) of those roles with fur-
ther components (Ckj). Compositional cases and roles have descriptions (D) used to
establish valid matchings in the application domain

First, we will define a language L = 〈R, T , C, O〉 for compositional design,
where R is the set of roles, T is the set of tasks, C is the set of components,
and O is an object language with a subsumption (�) relation3 used to describe
tasks and components. Moreover, a task Tj ∈ T is a triple Tj = 〈R, C, D〉 where
R is a role in component C and D is a description D(R) of the characteristics
that specify the possible components that may fill role R. We will use the dot
notation to refer to an element of a tuple, e.g. Tj.R denotes the role of task Tj .

We will distinguish two types of components (C = CE ∪ CX), namely ele-
mentary and complex components. As shown in Fig. 2, a complex component
Ci ∈ CX is a pair 〈D, T 〉 where the D is a description of the component D(Ci)
in the object language O and T is the collection tasks {Tj}j=1...n, where a task
is a triple 〈Ri

j , Ci, D(Ri
j)〉 describing a role Ri

j of Ci. An elementary component
is simply one that has no tasks.

Component matching (Tj � Ck) is a relation that establishes whether a
component Ck is suitable for task Tj. This fact is determined by checking if
the descriptions of the component satisfies the description of the task’s role:
D(Ri

j) �O D(Ck). Since both descriptions, D(Ri
j) and D(Ck), are expressed in

the object language O the relation �O also depends on the object language.

Definition 1. (Binding) A binding W = (Tj
.= Ck) is the assignment of a

specific component Ck to a particular role Tj.R of a component Tj .C.

We note W as the set of all possible bindings in a language L and W.T (resp.
W.C) the task (resp. component) of a binding W . A binding W = (Tj

.= Ck) is
legal when their elements satisfy the component matching relation Tj � Ck.
3 Subsumption is the inverse relation to satisfaction: given two formulae ψ,ψ′ ∈ O

that ψ subsumes ψ′ (ψ � ψ′) if all that is true for ψ is also true for ψ′ (or that ψ′

satisfies ψ).

386 E. Plaza

Fig. 3. Compositional cases represent a configuration that is complete and valid; this
figure shows a configuration with 12 roles that is complete (since all roles are bound).
Elementary components are shown as gray boxes

Definition 2. (Configuration) A configuration K ∈ K is a collection of bind-
ings K = {Wi = (Tj

.= Ck)}i=1...m. If all bindings are legal we say the configu-
ration K is valid.

A configuration may be partial or complete: intuitively a configuration is com-
plete when every task introduced by a complex component is bound to some
other component, and otherwise it’s partial. We can now define a composite case,
and for that purpose we will assume that a problem specification (or query) Q
is a special type of task Q = 〈−, −, D(Q)〉, namely one that has no role or
component but only a description D(Q) in the object language O specifying the
requirements that a solution to the problem has to satisfy.

Definition 3. (Composite Case) A composite case is a pair (Q, K) where
(Q .= Ci) ∈ K and K is both valid and complete.

Notice that the above definitions of a complete and valid configuration K
does not imply that is satisfies the requirements put forward by Q. In fact, this
is the information provided by a (correct) case base; that is to say, a case (Qr, Kt)
states that it is known that Kt is an adequate solution for Qr. As we will see
in the following sections, this is the information source that will be used by the
process of constructive adaptation.

2.2 Compositional Design Specialized Descriptions

In order to specialize the general description of constructive adaptation (CA)
to the task of compositional design we will make a further assumption con-
cerning the descriptions of tasks and components. We will assume from now on
that tasks and components are described as pairs (B, A) — where B are the
Before-formulae (or preconditions) and A are the After-formulae (or goals) that
characterize what they assume to be true in the world before and after they are
used inside a configuration.

Cooperative Reuse for Compositional Cases in Multi-agent Systems 387

Fig. 4. Matching T 	 C between a task (role or user query) T and a component C
is valid when their Before-formulae and After-formulae satisfy the plug-in matching
criteria

Concerning a component C with D(C) = (BC , AC), AC is a collection of
formulae in language O that express what is true after a component is used for
some role with a legal binding, while BC express what C assumes to be true in
the designed configuration (and should be provided by some other component
in the configuration in order to insure that C fulfills its role).

Concerning a task T = 〈R, C, D(R)〉 with D(R) = (BT , AT), AT is a collec-
tion of formulae in language O that express what needs to be true after whatever
component has been chosen to fulfill role R in C, while BT express that which
any component fulfilling role R of C can assume to be true.

Now, since a problem query Q is also a task, it will be a tuple (Q =
〈−, −, (BQ, AQ)〉), where Q.D is a pair of B- and A-formulae. Notice that the
interpretation of the task induced by a query is the following: AQ are the goals
that the configured design has to satisfy and BQ specifies the statements that
can be assumed to be true by the configured design.

Component matching may now also be specialized to this description frame-
work. Since the matching Tj � Ck is defined as D(Ri

j) �O D(Ck), now we have
that the matching can be defined over B-formulae and A-formulae. Adopting
the usual notion of matching from software components literature (often called
plug-in matching) we have that Tj � Ck is

(BT � BC) ∧ (AT � AC) (1)

that is to say, (AT � AC) the component’s A-formulae satisfy all task’s A-
formulae (all of task’s goals are achieved by the component) and (BT � BC) the
task’s preconditions satisfy all component’s preconditions (i.e. a component can
achieve the same goals with equal or less stringent preconditions).

2.3 Compositional Design Constructive Adaptation

We will present now the search process of constructive adaptation for compo-
sitional design. For this purpose, we will define what a state is, how states are
generated (Hypotheses Generation) and how to select the state to be expanded
(Hypotheses Ordering).

388 E. Plaza

Definition 4. (State) A state Z given a query Q is a tuple
Z(Q) = 〈B⊥, A⊥, B	, A	, W⊥, W	, WH〉, where

1. B⊥ and A⊥ are open B- and A-formulae, i.e. those not satisfied in Z

2. B	 and A	 are closed B- and A-formulae, i.e. those satisfied in Z

3. W⊥ is the set of open bindings (those tasks that are not bound to any com-
ponent in Z), W	 is the set of closed bindings (those tasks already bound
to a component in Z), and WH is the last binding (that introduced in the
predecessor state of Z)

A state Z is valid when all bindings in Z.W	 are valid.

As we have seen, constructive adaptation is a two-tiered process where case-
based problem solving works both at the case representation tier and the state
representation tier. Therefore, we will need some mapping functions that both
tiers. The first function initial state (IS : Q → Z) that transforms a query Q
into an (initial) state Z0(Q), as follows

IS(Q) = 〈∅, Q.D.A, Q.D.B, ∅, Q, ∅, ∅〉

that is to say, a state where the Q’s B-formulae become closed preconditions,
A-formulae become open goals, there are no closed bindings, and the only open
binding the query itself (recall that the query is a special task).

Hypothesis Generation. The Hypothesis Generation function (HG : Z → 2Z)
generates the successor states of a state Zi in three steps: 1) an open task is
selected, 2) the components that match that task are gathered, and 3) a successor
state is generated for each of the components that can be bound to the task.
Specifically:

1. (Open Task Selection). HG selects a task T j
Zi

from the state’s open bindings
Zi.W

⊥. This selection is random since there is no reason to order the open
tasks.

2. (Component Gathering). HG gathers the set of components that match
this task: C(T j

Zi
) = {C|T j

Zi
� C}. There are two ways of gathering compo-

nents:
(a) (Catalog Component Gathering) If all components descriptions are placed

in a repository then we only have to check for those components C(T j
Zi

)
in the catalog that satisfactorily match the task description . This ap-
proach is adequate when all information on components (a Catalog) is
directly available.

(b) (Case-based Component Gathering) If the component descriptions avail-
able are those used in previous configurations stored as cases then a CBR
system with a retrieval technique supporting subsumption (�) can infer
which components will match the selected task —since we have already
defined � in terms of � in (1).

Cooperative Reuse for Compositional Cases in Multi-agent Systems 389

3. (Successor States). HG generates a new successor state for each component
Ck ∈ C(T j

Zi
), were a successor state is defined as follows

succ(Zi, T
j
Zi

, Ck) = 〈B⊥, A⊥, B	, A	, W⊥, W	, WH〉

where T j
Zi

is no longer an open task in W⊥ and a new binding T j
Zi

.= Ck

has been added to W	. Essentially the new component Ck achieves some
new goals not yet achieved in Zi and therefore A	 and A⊥ are updated
accordingly. Moreover, if Ck has subtasks they are added to W⊥ and since
each subtask introduces A-formulae and B-formulae again A	 and A⊥ need
to be updated accordingly.

Hypothesis Ordering. The essential notion of constructive adaptation is to
use cases similar to the current problem to guide the search process. Since in
compositional design a problem query Q = (BQ, AQ) is a specification of the
properties desired for the solution (AQ) plus the assumptions of what can be
assumed to be true (BQ), we need a similarity relation S between Q and the
problem specification part of composite cases (Qi, Ki). Thus, for a case base
Σ = {(Qi, Ki)}i=1...N , the relation S provides a ranking S of the cases based on
the value S(Q, Qi), as follows

S(Q, Σ) = {〈(Qi, Ki), S(Q, Qi)〉}i=1...N

Next, we have to transform this case ranking into a ranking of the open states
Zopen

t (Q) ⊂ Z at a step t in the CA process.
For this purpose, consider the latest hypothesis to which the CA process

is committed to in an open state, namely the last component added to the
configuration and stored in Z.WH . Since CA will pick the highest ranking state in
Zopen

t (Q) to expand (generating successor states) we are interested into assessing
how likely that the partial configuration of an open state Z is to lead to a correct
solution. Since comparing the whole structure of the of the partial configuration
with the case base would be excessively time consuming, CA will assess this
likelihood by considering only the latest hypothesis Z.WH of each open state.
Notice that the the other hypothesis were considered in previous steps of the
search process.

Let us note Z.WH .C the component Cj bound by the latest hypothesis
Z.WH = (Ti, Cj) in state Z and let be Σ|(Ti

.=Cj) ⊂ Σ the subset of cases in
the case base where the component Cj fills role Ti. Since the similarity relation
S induces also a ranking S(Q, Σ|(Ti,Cj)) on the cases in this subset, we can now
define the function M that yields the similarity degree of highest ranking case
in Σ|(Ti,Cj), namely

M(Σ, Ti, Cj) = max({S(Q, Qk)|(Qk, Kk) ∈ Σ|(Ti,Cj)}) (2)

The ranking relation R induces a ranking over the open states by computing
a heuristic value ri for each open state Zi ∈ Zopen

t (Q):

R(Zopen
t (Q)) = {〈Zi, ri〉}Zi∈Zopen

t (Q)〉 ; ri = M(Σ, Zi.W
H .T, Zi.W

H .C)

390 E. Plaza

that is to say, each open node Zi is ranked according to the degree of similarity
of the highest ranking case that has current hypothesis component Zi.W

H .C
fulfilling the current hypothesis role Zi.W

H .T .

Goal Test. The last element of constructive adaptation is the Goal Test func-
tion GT: Z → {True, False}. Goal Test checks whether a state Z is solution,
i.e. whether the state corresponds to a valid solution that satisfies the problem
query Q:

GT(Z, Q) = V alid(Z)∧Satisfies(Z, Q) = (Z.W⊥ = ∅)∧(Z.A⊥ = ∅)∧(Z.B⊥ = ∅)

namely, there are no open bindings left (Z.W⊥ = ∅), all Q.A goals are satisfied
(Z.A⊥ = ∅), and there is no B-formula required by a configured component that
is not satisfied (Z.B⊥ = ∅).

Notice that in CA the similarity relation S is left open and may vary across
different application domains and representation languages used to specify the
problem query Q. In our agent team formation application we have used SHAUD,
a similarity relation for feature terms [3], but other similarity relations can be
used — e.g. edit distance [2] for musical applications using feature terms, or
RIBL-2 for Horn clause representation[4].

3 Multi-agent Cooperative Constructive Adaptation

In this section we will present a distributed framework for case reuse using con-
structive adaptation. For this purpose we will focus on a particular application
that is essentially distributed: team formation of cooperative agents. Team for-
mation is the process by which, given a task to be achieved specified by a user or
an agent, such that no single agent is capable of achieving it, a selection of agents
with the required capabilities is made and then organized as a multi-agent team
with the required interactions protocols to coordinate those agents.

The reason we focus of team formation is that a distributed form of the case
reuse process only makes sense if the knowledge used for reuse is itself distrib-
uted. Multi-agent systems can be characterized precisely by this fact: there is no
central repository containing the required knowledge. In other words, each agent
has a local view of the problem solving episodes in which it has been involved,
and each agent has its specific capabilities (and its individual knowledge).

We will now present the cooperative constructive adaptation (CoopCA) tech-
nique in the framework of agent team formation. CoopCA assumes that the agents
are willing to cooperate in forming a team and sharing the necessary information.
The next subsections will first express the concept of team as a compositional
case and later will present the distributed reuse technique of CoopCA.

3.1 Teams as Compositional Cases

Agent teams can be modeled as compositional cases; in fact, the ORCAS frame-
work [5] represents agent teams as compositional cases and uses case-base rea-
soning to form teams adequate for specific tasks. Recall the general schema of

Cooperative Reuse for Compositional Cases in Multi-agent Systems 391

Fig. 5. Team as a compositional case

compositional cases in Fig. 2: an agent team fills this schema if we interpret
components Ci as agents, roles Ri

j as subtasks, component descriptions D(Ci)
as descriptions of agent capabilities, and role descriptions D(Ri

j) as descriptions
of agents subtasks as shown in Fig. 5. A team is formed when the bindings W are
established associating to each role/subtask an agent with a capability suitable
to achieving that task. We say an agent that an agent Ci acts as coordinator of
the agents that play the roles/subtasks {Ri

j}j=1...n defined by Ci. Moreover, an
agent Ck plays role Ri

j in a team when a binding W = (Tj
.= Ck) exists, and

agent Ck can either solve role/subtask Ri
j either alone or defines further subtasks

{Rk
j }j=1...m that will be achieved by a subteam of which Ck is the coordinator.
We will view the process of team formation as a compositional design task.

Let us assume there is a user that poses a query Q to a broker, i.e. an agent
that will be in charge of designing the team structure, then negotiate the spe-
cific agents that will fulfill the team roles, and finally setting up the interaction
protocols for the agent team. In this paper we will deal mainly with the first
stage, namely designing the team structure, although some issues on selecting
agents will be briefly discussed. Concerning the second and third stages, no CBR
is used there, but see [5] for details. Now, the current approach in multi-agent
systems (MAS) is to assume there is one or several “yellow pages” services where
agents register their capabilities.

Our model, however, will be to use an experience-based approach. Specifi-
cally, we assume that the broker agent that uses CBR on a case base composed of
previous teams; the broker will try to use CoopCA to form new teams by reusing
old teams in its case base. In fact, these two approaches to find adequate agents
as team components are called in Section 2.3 Catalog Component Gathering
(since yellow pages is a catalog of agent capabilities) and Case-based Component
Gathering (since the new team will have capabilities used in past teams stored in
the case base). Moreover, these two approaches are not incompatible: the broker
may resort to use the yellow pages catalog if need be.

392 E. Plaza

Finally, notice that what we call broker agent is in fact a role; that is to
say, there is no such a thing as the broker, but a number of agents that have
played the broker role in forming new teams. Therefore, there is no unique and
centralized repository of cases describing teams; instead, we have that agents
playing the role of brokers have individual case bases storing their experience
in team formation. We can now see that the knowledge for team formation is
essentially distributed and thus the reuse process that CoopCA embodies should
be such that makes use to this distributed knowledge as far as possible. In what
follows, we will call a description of a team stored as a case in the case base of
an individual agent a team-case.

3.2 Cooperative Constructive Adaptation

The assumptions made by CoopCA for any given broker agent ab are the follow-
ing: 1) there is a collection of agents Bl(ab) that played the role broker and store
their team designs on an individual case base; and 2) there is an acquaintance
relation A(ab, ak) among the agents in Bl(ab) such that for an agent ab then
∀ak ∈ Bl(ab) : Al(ab, ak); i.e. either A(ab, ak) (ak is an acquaintance of ab) or
there is a chain of acquaintances of length not larger that l that links ab and ak.
When an agent ab receives a query Q that requires a team ab will use CoopCA to
design such a team using the collective experience on past teams of the agents
in Bl(ab). Moreover, notice that in a MAS framework there are several agents
that can possess the same capability and, thus, the same team design can be
realized by different collections of agents. We assume in the following that the
capabilities are the components of CoopCA for team design.

CoopCA follows basically the CA search process described in section 2.3 and
summarized in Fig. 6 with a few modifications. The broker ab that receives the
query Q will perform the CA search process (i.e. it will generate new states
and maintain the open and closed states) but it will need the help of other
agents to generate the hypothesis and to rank them. In other words, Hypothesis
Generation and Hypothesis Ordering will require the broker to communicate
with other agents and use the acquired information to generate and order the
hypothesis during search. Let us first consider Hypothesis Generation and later
we will turn to Hypothesis Ordering.

Cooperative Hypothesis Generation. The cooperative hypothesis genera-
tion function will generate the successor states with the help of other agents in
Bl(ab). For this purpose we need to modify the second step (Component Gather-
ing) —while steps Open Task Selection and Successor States are not modified.
We will use a distributed form of Case-based Component Gathering such that
ab will send a message (containing a task description) to its acquaintance agents
A(ab, ak); in turn they will send this message to their acquaintance agents up to
l times. Those agents in Bl(ab) that receive the message and find a component
in their case bases that satisfy that task description will answer to the broker ab

with a message containing a component and a degree of similarity.

Cooperative Reuse for Compositional Cases in Multi-agent Systems 393

Fig. 6. Constructive adaptation two-tiered process

More formally, the broker agent interacts with its acquaintance agents to
obtain the information concerning a specific task in the following steps:

(1) Start Cooperation: First the broker agent ab informs its acquaintance
agents of the task to be performed and sends a message m1 containing the
query Q = (BQ, AQ). This information is forwarded by ab’s acquaintances to
their respective acquaintances until all agents in Bl(ab) receive this information.
Notice that Q will be used by the agents to compute the similarity using equation
(2). The agents are of course free to decline to cooperate, so only those that send
back an acceptance message before a time τm1 will be considered in the following
steps as members of the multi-agent system A.

(2) Current Task: Let T j be the current task given by Open Task Selection.
The broker agent broadcasts a message m2 containing the task description T j

to the agents in A and waits for their answers before time τm2 . Figure 7 shows a
snapshot of the visualization tool of the ORCAS platform with the current state
of a CBR broker agent using constructive adaptation; notice the goals on the left
(the first 6 achieved and the last 3 still open) and the task/capability bindings of
the current sate on the right (tasks in light color and components in darker color).

(3) Available Capabilities: Every agent ak ∈ A will receive message m2
and execute the Case-based Component Gathering process over their case base

394 E. Plaza

Fig. 7. Image capture of the CBR broker in ORCAS

retrieving a set of components Ck(T j) that match the task description T j. Notice
that a retrieved “component” is in fact a specific agent that uses a capability in
some role in some team-case, and what interests the broker ab are the available
capabilities matching the current task T j. For each component Ci ∈ Ck(T j)
agent ak will send a message m3 with a tuple 〈T, C, A, M〉 containing:

〈T j, Ci, Ak(Ci), Mk(Ci)〉

where Ci is a capability adequate for task T j, Ak(Ci) is the set of agents known to
ak that possess capability Ci, and Mk(Ci) is the maximum degree of similarity—
defined in Hypothesis Ordering in equation (2).

(4) Hypothesis Generation: After the broker ab has received a set of messages
M3 of type m3 the set of available capabilities Ck(T j) =

⋃
m∈M3

m.C is known.
Next, a new successor state is generated for each capability Ci ∈ Ck(T j), and
this ends the Hypothesis Generation precess. Moreover ab also builds a list of
available agents A(Ci) =

⋃
m∈M3(Ci) m.A for each capability Ci ∈ Ck(T j) from

the relevant messages M3(Ci) = {m ∈ M3|Ci = m.C}.

(5) Hypothesis Ordering: Since M3 also contains the similarity information
needed for Hypothesis Ordering, the broker simply has to aggregate the values
coming from different agents for each capability Ci ∈ Ck(T j). For our purposes,
the maximum similarity value is a good option so a capability Ci will have
as similarity value M(A, T j, Ci) = maxm∈M3(Ci)m.M . This value allows the
broker to use the ranking relation R to order the open states in the constructive
adaptation process. Once Hypothesis Ordering finishes, then either the search is
terminated by the Goal Test and the next step is (6), or it moves to step (2).

Cooperative Reuse for Compositional Cases in Multi-agent Systems 395

(6) Agent Selection and Instruction: When the team design is finished
the broker ab has a complete specification of the hierarchical team structure.
This last step consists of selecting for each particular task/capability (T j .= Ci)
binding an agent with capability Ci, i.e. one of the set A(Ci) built in step (3).
We will not go into the details of this process (explained in [5]), suffice to say
the broker has to negotiate with the candidate agents and select a crew to fully
staff the team and then provide the selected agents with the instructions on how
to coordinate to achieve the global task.

We have seen that CoopCA is a straightforward extension of constructive
adaptation for compositional cases for multi-agent scenarios. CoopCA is in fact
applicable to scenarios where the knowledge exploited in the Reuse process is in
some way distributed over a collection of entities, e.g. web services.

4 Conclusion

This paper discusses three different but related issues relevant to case-based
reasoning. First, the definition of compositional cases as a useful abstraction
for a wide variety of CBR applications in design and configuration tasks; com-
positional cases are however limited to tasks where the designed structure is
hierarchical. Second, constructive adaptation (CA) for compositional cases spe-
cializes the basic ideas of CA [8] in a generic reuse algorithm that is valid for any
CBR system that espouses compositional cases for a task; CA for compositional
cases leaves open which representation language O is used for B-formulae and
A-formulae. The language O can be anyone (from Horn clauses to description
logics to simple concept taxonomies) such that has defined both a) an operation
of subsumption (or satisfaction), and b) a similarity measure for relational cases
(e.g. SHAUD [3] in ORCAS, edit distance [2] in musical CBR applications, or
RIBL-2 [4] for Horn clauses).

Third, we have shown that CA can be extended in a natural way to a dis-
tributed design task, and we have focused on applying CoopCA to the task of
agent team formation. CoopCA shows the power of applying CBR to multi-agent
systems tasks such as team formation. Often in MAS agents are supposed to be
capable of reasoning and learning but they rarely are on practice. Let’s think
about the yellow pages approach to team formation: agents are assumed to go
to the yellow pages every time a new team is to be formed: this is just because
agents are assumed not to learn. We have shown that learning team-cases a bro-
ker agent will not need to repeat needles work for every team it forms. Once
a broker ab has formed a team for task T i and a new task T j similar to T i

arrives, ab already knows most of the components (agents and their capabili-
ties) that most likely will be in the new team. Thus learning cases decreases not
only search costs but also communication costs among agents. In fact, since in
a given environment most tasks tend to be repetitive, CoopCA shows that the
CBR approach offers a straightforward way to form teams efficiently.

Currently CoopCA is simply using a best-first search regime with similarity-
based heuristic; as future work we want to use more powerful (satisficing) search
regimes that would allow also to minimize solution costs.

396 E. Plaza

References

1. Agnar Aamodt and Enric Plaza. Case-based reasoning: Foundational issues,
methodological variations, and system approaches. Artificial Intelligence Com-
munications, 7(1):39–59, 1994.

2. J. Ll. Arcos, M. Grachten, and R. López de Mántaras. Extracting performer’s
behaviors to annotate cases in a CBR system for musical tempo transformations.
In Kevin D. Ashley and Derek G. Bridge, editors, Proceedings of the Fifth Interna-
tional Conference on Case-Based Reasoning (ICCBR-03), number 2689 in Lecture
Notes in Artificial Intelligence, pages 20–34. Springer-Verlag, 2003.

3. Eva Armengol and Enric Plaza. Relational case-based reasoning for carcinogenic
activity prediction. Artificial Intelligence Review, 20:121–141, 2003.

4. W. Emde and D. Wettschereck. Relational instance-based learning. In Lorenza
Saitta, editor, Machine Learning - Proc. 13th Int. Conf. Machine Learning, pages
122 – 130. Morgan Kaufmann, 1996.

5. Mario Gómez and Enric Plaza. ORCAS: Open, reusable and configurable multi-
agent systems. In Proc. Third International Joint Conference in Autonomous
Agents and Multiagent Systems, pages 144–152. ACM Press, 2004.

6. K. J. Hammond. Case-based Planning. Academic Press, 1989.
7. T. Heinrich and J. L. Kolodner. The roles of adaptation in case-based design. In

Proc. AAAI Worksop on Case-based Reasoning. AAAI, 1991.
8. Enric Plaza and Josep-Llúıs Arcos. Constructive adaptation. In Advances in Case-

Based Reasoning, volume 2416 of Lecture Notes in Artificial Intelligence, pages
306–320. Springer Verlag, 2002.

9. Manuela M. Veloso and Jaime G. Carbonell. Derivational analogy in PRODIGY.
Machine Learning, 10(3):249–278, 1993.

10. W. Wilke and R. Bergmann. Techniques and knowledge used for adaptation during
case-based problem solving. In IEA/AIE (Vol. 2), pages 497–506, 1998.

11. W. Wilke, B. Smyth, and P. Cunningham. Using configuration techniques for
adaptation. In Case-based Reasoning Technology, volume 1400 of Lecture Notes in
Artificial Intelligence, pages 139–168. Springer Verlag, 1998.

Evaluating the Effectiveness of Exploration and
Accumulated Experience in Automatic Case Elicitation

Jay H. Powell1, Brandon M. Hauff2, and John D. Hastings1

1 University of Nebraska at Kearney,
Dept. of Computer Science & Information Systems,

Kearney NE 68849, U.S.A
hueljh@hotmail.com, hastingsjd@unk.edu

2 University of Nebraska at Lincoln,
Dept. of Computer Science & Engineering,

Lincoln NE 68588, U.S.A
brandon@genxian.com

Abstract. Non-learning problem solvers have been applied to many interesting
and complex domains. Experience-based learning techniques have been devel-
oped to augment the capabilities of certain non-learning problem solvers in or-
der to improve overall performance. An alternative approach to enhancing pre-
existing systems is automatic case elicitation, a learning technique in which a
case-based reasoning system with no prior domain knowledge acquires knowl-
edge automatically through real-time exploration and interaction with its envi-
ronment. In empirical testing in the domain of checkers, results suggest not only
that experience can substitute for the inclusion of pre-coded model-based knowl-
edge, but also that the ability to explore is crucial to the performance of automatic
case elicitation.

1 Introduction

Non-learning problem-solving algorithms are commonly used to solve problems in a
variety of complex and challenging domains including the application of alpha-beta
search to checkers [1] and the use of the null-move heuristic in chess [2]. Such non-
learning, non-adaptable algorithms are sufficient for domains that are either simple,
static, or deterministic, but are incapable of adapting to changing environments. For
domains that are sufficiently complex or dynamic, it has been argued that a system
capable of learning and adapting to its environment is needed [3]. DeJong and Schultz
[4] describe a technique for designing and implementing architectures for extending the
capabilities of non-learning systems by automatically extending the knowledge bases of
static problem solvers. Unfortunately, the process of enhancing a pre-existing problem
solver is complicated by the fact that interfacing with the underlying problem solver
can be difficult, and by the fact that overall problem-solving abilities can be hampered
by the abilities of the underlying problem solver.

An alternative approach to augmenting a non-learning problem solver is for a sys-
tem to acquire knowledge automatically without the need for predefined domain knowl-
edge. One existing technique for the automatic capture of knowledge without a reliance

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, pp. 397–407, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNAI

398 J.H. Powell, B.M. Hauff, and J.D. Hastings

upon prior domain knowledge is automatic case elicitation [5]. Automatic case elici-
tation is a case-based reasoning (CBR) technique that relies on the system’s ability to
explore its domain in real time through trial and error in order to acquire knowledge
from scratch. Due to its exploratory capabilities and case-based knowledge acquisition
techniques, automatic case elicitation is particularly well suited to learning in domains
with observable outcomes (e.g. robot navigation or game playing).

This paper extends initial research on automatic case elicitation detailed in Pow-
ell et al. [5]. In contrast to this previous research, the methodologies described in this
paper make use of a probabilistic approach to case selection to ascertain the value of
exploration in an unknown environment in the context of automatic case elicitation.
This paper compares automatic case elicitation against non-exploring experience based
learning techniques to further determine the merit of free exploration within an auto-
matic case elicitation system.

We detail automatic case elicitation in Section 2, and follow in Section 3 with a brief
overview of extending non-learning systems through experience-based learning. We
compare the two approaches in Section 4. Section 5 sets forth an empirical evaluation
that demonstrates that experience can substitute for predefined knowledge, and that
exploration is crucial to the performance of automatic case elicitation. We close with a
discussion of related work in Section 6.

2 Automatic Case Elicitation

Automatic case elicitation (ACE) is a learning technique whereby a CBR system auto-
matically acquires knowledge (in the form of cases) from scratch during real-time trial
and error interaction with its environment without reliance on pre-coded domain knowl-
edge (e.g. rules or cases). A probabilistic reinforcement learning approach is utilized to
evaluate the effectiveness of each case (acquired or stored) after an interaction is com-
plete, providing a means for an ACE system to learn and improve from experience. The
use of reinforcement learning [6] allows an automatic case elicitation system to be used
in environments which are capable of being explored as well as allow for the system
to learn from its experiences (e.g. autonomous robot navigation or game playing). For
implementation purposes, a case contains the following:

1. an observation or snapshot of the environment,
2. the action taken in response to the observation, and
3. a rating of the success of the applied action in meeting a goal.

Figure 1 illustrates the procedure Ace, the primary reasoning module within a sys-
tem using automatic case elicitation. Ace operates on the sequence of observations (O1
through On) made during interaction with the environment and completes at the point
at which the effectiveness of the interaction can be determined (e.g. in chess, the ef-
fectiveness of an interaction will be determined at the completion of a game). For each
observation of the environment (Oi), the system selects and applies actions (A) sug-
gested by its case library until a change in the environment is observed. The process of
selecting and applying an action is as follows. First, the system finds and loads the set

Evaluating the Effectiveness of Exploration and Accumulated Experience 399

Procedure Ace()
C := case base
AC := φ ; applied cases
While success of interaction unknown Do

Oi := ObserveEnvironment()
M := MatchingCases(C, Oi)
Repeat

A := Decision(M)
ApplyAction(A)
Oj := ObserveEnvironment()

Until Oi
= Oj

AC := AC ∪ Case(Oi, A)
End While
AC := Evaluate(AC)
Store(C, AC)

End Ace

Fig. 1. ACE Algorithm for Interacting within an Environment

Function Decision(var M : matching cases) : Action
If M = φ

A := NewAction()
Else If Rating(M0) ≥ Random(0..1)

A := ExtractAction(M0)
Else

M = M - M0

A := Decision(M)
End If
Return A ; action to take

End Decision

Fig. 2. ACE Algorithm for Determining the Appropriate Action

of all cases whose observation closely1 matches the current observation. If the current
situation is novel or sufficiently distant from prior experience, the set of matching cases
returned will be empty. If the current scenario has previously been encountered, the
system makes use of an indexing scheme which counts the distinct elements in the case
to quickly retrieve all cases which most closely correspond.

Once an ACE system has determined the set of matching cases (possibly empty),
it calls the function Decision, illustrated in Figure 2. Decision selects and returns an
action to apply. Decision may need to be invoked multiple times in order for the agent
to formulate a legal action. In automatic case elicitation, the legality of an action is
not determined by the system itself, but by the environment in which the system is
interfacing (e.g. a chess engine). In other words, an ACE system attempts an action
and observes whether changes to the environment occur in response. If so, the system

1 The current implementation of ACE handles only exact matches, but will in the future support
“close” matches in a domain-independent fashion.

400 J.H. Powell, B.M. Hauff, and J.D. Hastings

has entered a new situation, and will react accordingly. Otherwise, it would attempt a
different action.2

The action returned by Decision depends on M , the set of matching cases given by
Ace. When M is empty (i.e., the system has encountered a novel situation), Decision
generates a new random action. When applying random actions to a new situation, Ace
repeatedly calls Decision until a valid random action (i.e., one which affects the envi-
ronment) is found. This technique for the generation of new actions through random
exploration is utilized because an ACE system does not rely on any pre-coded domain
knowledge. Without the dependence on pre-coded knowledge or exterior problem solv-
ing techniques, random exploration is necessary for the acquisition of the minimum
knowledge to operate in a given domain.

If cases are found in the case-base which correspond to the current state of a sys-
tem’s environment, the Decision module determines which of the returned cases to ap-
ply, if any. A case from the set M (arranged from M0 to Mn in descending order based
upon case ranking) is chosen on a pseudo-random basis to encourage exploration. The
probability P (M0) of the most successful case in the set, M0, being selected is equal to
the case’s rating, the derivation of which will be discussed later. The probability of the
system iterating deeper through the list of matching cases is 1−P (M0). The probability
of case Mi being selected is

P (Mi) = (1 − P (M0)) × (1 − P (M1)) × ... × (1 − P (Mi−1)). (1)

If the highest-rated case M0 is not selected for reuse, then it is removed from the set
M and Decision is called again. If the entire set of matching cases is searched and
no case has been chosen for reuse, a new random action is created using the process
described above. This approach differs from previous implementations of automatic
case elicitation which made use of a win/loss ratio, as compared to the current use of
probability to select cases for reuse. The motivation for implementing this new case
selection algorithm was to encourage exploration and the subsequent growth of the
system’s knowledge base.

Once an ACE system has created an action, it applies the action and observes the
resulting consequences. If changes in the environment are observed, the ACE system
remembers the action (along with the observation of the environment). For new situa-
tion/action pairs, a new case is created. Reused cases are simply remembered so that
their success rating can be updated.

Upon the completion of the interaction, Evaluate is called to update the ratings of
each applied case. Each case is rated according to its success in attaining a goal at the
completion of the interaction using the formula

rn =

⎧⎪⎨
⎪⎩

1
2s0 if n = 0,

1
2sn + 1

2rn−1 = (1
2)1sn + (1

2)2sn−1 + ... + (1
2)n+1s0 if n> 0

(2)

2 Disregarding actions which do not immediately result in an observable change in the environ-
ment is less than desirable for domains in which a combination of actions are needed to affect
a single change in the environment. For such domains, a case structure that encapsulates a
sequence of actions is likely required.

Evaluating the Effectiveness of Exploration and Accumulated Experience 401

In (2), ri represents the rating (between 0.0 and 1.0 inclusive) and si represents
the outcome (1 for success, 0 for failure) of the ith application of a case within the
environment. The purpose of this formula is to provide a decaying memory represen-
tation of each case, where the consequences of applying a case early in the system’s
life (when cases are applied with little thought) are quickly forgotten. In contrast to
work on forgetting complete cases [7,8], only the older applications of a case, not the
cases themselves, are forgotten by mathematically diminishing their affect on the case
rating. The rating of each case initially tends to fluctuate near 0.5 early in the system’s
life, while success or failure is equally probable and the system is simply attempting
to learn valid domain behavior. As the system gains experience, the case’s ranking can
tend towards either 1 (highly successful) or 0 (completely ineffectual). Upon comple-
tion of Evaluate, the ratings for each of the applied cases, AC, have been updated and
any new cases are committed to the case library using the procedure Store.

3 Extending Non-learning Systems Through Experience-Based
Learning

DeJong and Schultz [4] describe the use of experience-based learning in improving the
capabilities of non-learning systems by automatically extending the knowledge bases
of static problem solvers. In their approach, actions in the knowledge base are initially
suggested by the underlying problem solver. Over time, their system applies only those
experiences proven to produce the best results. They illustrate that proper application of
experience-based learning algorithms in combination with an underlying static problem
solver can lead to the development of a system capable of quickly recalling and applying
actions from the knowledge base.

To demonstrate their approach, they made use of the system GINA, an experience-
based learning Othello game-playing agent. GINA relied upon a static minimax looka-
head agent as the foundation of the system’s experience base. When GINA encountered
a scenario which did not exist in its knowledge base, it was able to consult its underlying
problem solver for advice and commit the given advice to memory. At the conclusion
of each game, a minimax algorithm was used to apportion credit to every move used
during the game that could be found in the agent’s experience base. In their paper, the
authors suggested that their approach could be applied to other domains with success
similar to theirs.

4 Comparison of Methodologies

The primary purpose of this paper is to compare and contrast automatic case elicitation
against the technique by DeJong and Schultz [4] in order to demonstrate the power
of exploration. For the purposes of testing, the performance of the two approaches
is compared in the domain of checkers. A DeJong agent was created which can play
checkers. Automatic case elicitation is demonstrated in the system CHEBR (CHeckers
case-Based Reasoner), a system in which CBR agents utilize automatic case elicitation
to learn and test their expertise in the game of checkers.

402 J.H. Powell, B.M. Hauff, and J.D. Hastings

Several key differences exist between the DeJong approach and automatic case elic-
itation in the knowledge acquisition process. A DeJong system relies upon an underly-
ing problem-solver and thus begins its life with pre-existing domain knowledge. When
a situation is encountered that is novel or sufficiently distant from prior experience,
such a system can query its problem-solver for pre-programmed guidance. When a sce-
nario is encountered that is similar to previous experience, a system can refer back to
its knowledge base for advice. At the end of each game played, a minimax algorithm is
used to distribute credit to each individual move, based on how the move affected the
rest of the game.

A CHEBR agent begins its life with no prior domain knowledge. Domain knowl-
edge is acquired through a process of trial and error interaction with the checkers envi-
ronment, rather than relying upon pre-programmed decision-making capabilities. In its
infancy, a CHEBR agent will perform many incorrect actions until valid behavior is en-
countered, as dictated by the environment. Valid actions taken by the agent (in this case
specific checkers moves) are stored as cases and committed to the agent’s case-base,
along with a rating which is used as a predictive measure of the case’s future worth. In
CHEBR, all experiences are stored as cases, instead of generalizations of experiences or
environment states. When a CHEBR agent assigns credit to an action, it assigns credit
based on the final outcome of the interaction with the environment, rather than appor-
tioning credit based on how the move affected the rest of the game. As a CHEBR agent
gains experience, the need to rely upon arbitrary move generation is greatly reduced as
the requisite behavior for survival is stored in the agent’s case-base.

The power and flexibility of a CHEBR agent is tied in part to its ability to acquire
knowledge from scratch. With no pre-programmed domain rules, a CHEBR agent is
given free reign to explore its environment. This is contrasted by the limited abilities
of an agent designed around a pre-existing problem solver. Static underlying problem
solvers can be inherently inflexible, due to the fact that their capabilities are hard-coded.
Relying upon the decision-making skills of agents with limited flexibility in novel sit-
uations can hinder the ability of an agent to derive unique or “creative” solutions to
new situations. An agent given the power to explore freely has the potential to generate
inventive solutions to previously un-encountered situations.

5 Results

Automatic case elicitation (through the system CHEBR) was tested in repeated two
hour training sessions against a static lookahead agent without any experience-based
learning augmentations, as well as the DeJong agent with experience-based learning
capabilities.

Figure 3 illustrates the winning percentages of CHEBR in competition with a stan-
dard four-ply lookahead agent utilizing a minimax algorithm and alpha beta pruning.
Figure 4 illustrates the winning percentages of CHEBR in competition with a DeJong
agent that makes use of the same four-ply lookahead agent as its core. The results shown
were duplicated through repeated training sessions with a slight variability in results
due to the use of random move generation on the part of CHEBR. As the lookahead
and DeJong agent’s shown made use of predefined domain knowledge, they were able

Evaluating the Effectiveness of Exploration and Accumulated Experience 403

Fig. 3. Agent Win/Loss Ratio for CHEBR vs. Lookahead

to defeat CHEBR a significant portion of the time during the initial stages of game play
while CHEBR was learning and exploring its environment. However, after approxi-
mately one hundred to two hundred games (about one-tenth of each training session),
the winning rates of CHEBR and its opposition converged. For the remainder of each
training session, CHEBR’s acquired knowledge, through exploration, was sufficient to
clearly defeat its opponents a majority of the time. The eventual slow growth rate of
CHEBR’s win ratio could be caused by overtraining against each particular opponent.3

As illustrated by Figures 3 and 4, it was slightly more difficult for CHEBR to adapt
to the DeJong agent and defeat it as compared to the lookahead agent, helping to confirm
the results of DeJong and Schultz, which state that augmenting an pre-existing problem
solver using experience-based learning can create a more capable reasoner than the
underlying system alone.

We believe that CHEBR’s ability to defeat the DeJong approach lies in its ability to
explore. To support this argument, a non-exploring version of CHEBR (Non-Explore
CHEBR) was created. In Non-Explore CHEBR, the abilities to explore by applying
random move selection as well as random move generation were removed and replaced
with a four-ply lookahead. Figure 5 illustrates the winning percentages of CHEBR in
competition with Non-Explore CHEBR. The results tentatively confirm that automatic
case elicitation in CHEBR depends heavily on the ability to explore.

Although CHEBR began its life with no prior domain knowledge (cases), it proved
capable of acquiring knowledge about its environment through repeated exploration and
interaction with its environment. As CHEBR gained experience and acquired knowl-
edge, it was able to learn the behavior required to succeed. Further training allowed
CHEBR to refine its case-base sufficiently to defeat each of its opponents a majority of

3 CHEBR is generally quick to adapt to new opponents. However, the speed with which CHEBR
is able to conquer new opponents is diminished as the size of the case library becomes ex-
tremely large.

404 J.H. Powell, B.M. Hauff, and J.D. Hastings

Fig. 4. Agent Win/Loss Ratio for CHEBR vs. DeJong

the time. CHEBR’s ability to explore allowed it to locate and exploit the weaknesses
of its opponents, and as a result created a challenging and adaptable game player. The
inability of the lookahead and DeJong agents to explore due to a fundamental reliance
on a static rule-based system prevented them from responding to new situations created
by CHEBR. The results suggest that experience can substitute for the inclusion of pre-
coded model-based knowledge as seen in the success of CHEBR against the DeJong
agents (which use model-based knowledge). The results further suggest that the abil-
ity to explore is crucial to the performance of automatic case elicitation which relies
primarily on its ability to acquire new experiences.

6 Related Work

Previous work has investigated the automatic generation of cases from predefined ex-
pert knowledge. For example, the planning system SHOP/CCBR [9] automatically ac-
quires cases from manually entered project plans. A related approach has been seen in
chess games [10,11] which use CBR for chess play by automatically generating case
libraries from sets of pre-existing grandmaster games. Shih [12] integrates CBR and
the idea of sequential dependency to learn bridge play from a set of existing games. In
contrast, automatic case elicitation does not compile cases from manually entered or
existing data, but instead acquires knowledge automatically through the experiences of
the agents who learn completely from scratch.

CBR has also seen use in a real-time games. For example, Fagan and Cunningham
[13] describe the use of case-based plan recognition to predict a player’s actions in
real time interaction with the game Space Invaders. Construction of the plan library is
delayed until after the player has played the game three times, although it would seem
possible that the system would not require such a delay. The authors suggest that their

Evaluating the Effectiveness of Exploration and Accumulated Experience 405

Fig. 5. Agent Win/Loss Ratio for CHEBR vs. Non-Exploring CHEBR

approach could be extended to adjust the behavior of non-player characters, although
such an action selection mechanism is not present.

Wendler and Lenz [14] employ CBR in a real-time setting to appropriately position
soccer agents based on previously collected cases. Their agents learn during the game
and adapt their behavior accordingly. In contrast to our approach, Wendler and Lenz do
not use CBR as their sole reasoning technique.

MAYOR [15] is a player of the simulation game SimCity and is based on a pre-
defined understanding of an incomplete world model. A case-based planner comple-
ments the world by using a library of plans manually built prior to game play. In auto-
matic case elicitation, cases are gathered in real time and are used as the sole reasoning
mechanism.

Goodman [16,17] describes the use of off-line built decision-tree induction projec-
tors to predict the outcome of various actions during game play in Bilestoad. Automatic
case elicitation differs in that agents learn in real time and projection is not coded as a
separate step but is instead encapsulated within individual case ratings.

Samuel [18,19] describes the use of rote-learning and argues that a program can
learn to play a domain better than the creator. A lookahead of two or three plays is used
to find moves to be scored for a checker game. Samuel’s approach requires that the
game must have at least one intermediate goal. Automatic case elicitation differs in that
it does not require intermediate goals, instead utilizing only the final success rating of
the interaction with its environment. In addition, automatic case elicitation does not use
a pre-existing reasoner such as that described by Samuel.

Likhachev et al. [20] use CBR to tune the parameters used to guide a robot through
obstacles. The cases provide a mapping from mathematical sensor input to sensor pa-
rameters that guide a robot. Over time, the results of applying a case are used to fur-
ther fine tune the contained parameters. Similar to our approach, Likhachev et al. use

406 J.H. Powell, B.M. Hauff, and J.D. Hastings

randomness to encourage exploration. In an extension to this work, Kira and Arkin
[21] describe the use of forgetting as a means to compensate for a limited case library
size when moving the robot to different environments. Our approach in a sense makes
use of a forgetting mechanism inherent to the case rating. The approach described by
Likhachev et al. and Kira and Arkin is relatively domain specific. In contrast, we feel
our approach is generally applicable in a wide variety of domains.

7 Conclusion

For domains that are sufficiently complex or dynamic, a system capable of learning
and adapting to its environment is needed. One approach is to extend the capabilities
of a non-learning system with a mechanism that automatically records and evaluates
experiences. An alternative known as automatic case elicitation supports the automatic
capture of knowledge from scratch in real time without a reliance upon prior domain
knowledge. In testing in the domain of checkers, an agent using automatic case elici-
tation (CHEBR) was shown to successfully defeat opponents using a standard looka-
head agent, and an agent using experience-based learning with an underlying looka-
head agent. In addition, CHEBR minus the ability to explore was shown to perform at
a lower level than when using full automatic case elicitation. The results suggest not
only that experience can substitute for the inclusion of pre-coded model-based knowl-
edge, but also that the ability to explore is crucial to the performance of automatic case
elicitation.

References

1. Schaeffer, J.: One Jump Ahead: Challenging Human Supremacy in Checkers. Springer
Verlag (1997)

2. Beal, D.F.: A generalised quiescence search algorithm. Artificial Intelligence 43 (1990)
85–98

3. Grefenstette, J.J., Ramsey, C.L.: An approach to anytime learning. In: Proceedings of the
Ninth International Machine Learning Workshop, San Mateo, CA, Morgan Kaufmann (1992)
189–195

4. DeJong, K.A., Shultz, A.C.: Using experience-based learning in game-playing. In: Pro-
ceedings of the Fifth International Conference on Machine Learning, San Mateo, California,
Morgan Kaufmann (1988) 284–290

5. Powell, J.H., Hauff, B.M., Hastings, J.D.: Utilizing case-based reasoning and automatic case
elicitation to develop a self-taught knowledgeable agent. In Fu, D., Orkin, J., eds.: Challenges
in Game Artificial Intelligence: Papers from the AAAI Workshop (Technical Report WS-04-
04), AAAI Press (2004) 77–81

6. Kaelbling, L.P., Littman, M.L., Moore, A.P.: Reinforcement learning: A survey. Journal of
Artificial Intelligence Research 4 (1996) 237–285

7. Smyth, B., Keane, M.T.: Remembering to forget: A competence-preserving case deletion
policy for case-based reasoning systems. In: Proceedings of the 14th International Confer-
ence on Artificial Intelligence (IJCAI-95), Montreal, Canada (1995) 377–382

8. Watanabe, H., Okuda, K., Fukiwara, S.: A strategy for forgetting cases by restricting memory.
IEICE Transactions on Information and Systems (1995) 1324–1326

Evaluating the Effectiveness of Exploration and Accumulated Experience 407

9. Mukkamalla, S., Muñoz-Avila, H.: Case acquisition in a project planning environment.
In: Proceedings of the Sixth European Conference on Case-based Reasoning (ECCBR-02),
LNAI 2416, Springer-Verlag (2002) 264–277

10. Flinter, S., Keane, M.T.: On the automatic generation of case libraries by chunking chess
games. In: Proceedings of the First International Conference on Case Based Reasoning
(ICCBR-95), LNAI 1010, Springer Verlag (1995) 421–430

11. Sinclair, D.: Using example-based reasoning for selective move generation in two player
adversarial games. In: Proceedings of the Fourth European Workshop on Case-Based Rea-
soning (EWCBR-98), LNAI 1488, Springer-Verlag (1998) 126–135

12. Shih, J.: Sequential instance-based learning for planning in the context of an imperfect
information game. In: Proceedings of the Fourth International Conference on Case-Based
Reasoning (ICCBR-01), LNAI 2080, Springer-Verlag (2001) 483–501

13. Fagan, M., Cunningham, P.: Case-based plan recognition in computer games. In: Proceedings
of the Fifth International Conference on Case-Based Reasoning (ICCBR-03), LNAI 2689,
Springer Verlag (2003) 161–170

14. Wendler, J., Lenz, M.: CBR for dynamic situation assessment in an agent-oriented setting.
In Aha, D.W., Daniels, J.J., eds.: Case-Based Reasoning Integrations: Papers from the AAAI
Workshop (Technical Report WS-98-15), Madison, WI, AAAI Press (1998)

15. Fasciano, M.J.: Real-time case-based reasoning in a complex world. Technical Report TR-
96-05, Computer Science Department, University of Chicago (1996)

16. Goodman, M.: Projective visualization: Acting from experience. In: Proceedings of the
Eleventh National Conference on Artificial Intelligence (AAAI-93), Menlo Park, Calif.,
AAAI Press (1993) 54–59

17. Goodman, M.: Results on controlling action with projective visualization. In: Proceedings
of the Twelfth National Conference on Artificial Intelligence (AAAI-94), Menlo Park, Calif.,
AAAI Press (1994) 1245–1250

18. Samuel, A.L.: Some studies in machine learning using the game of checkers. IBM Journal
on Reseach and Developement 3 (1959) 211–229

19. Samuel, A.L.: Some studies in machine learning using the game of checkers, ii – recent
progress. IBM Journal on Reseach and Developement 11 (1967) 601–617

20. Likhachev, M., Kaess, M., Arkin, R.C.: Learning behavioral parameterization using spatio-
temporal case-based reasoning. In: Proceedings of the 2002 IEEE International Conference
on Robotics and Automation. Volume 2. (2002) 1282–1289

21. Kira, Z., Arkin, R.C.: Forgetting bad behavior: Memory management for case-based naviga-
tion. In: Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). (2004) 3145–3152

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, pp. 408 – 420, 2005.
© Springer-Verlag Berlin Heidelberg 2005

HYREC: A Hybrid Recommendation
System for E-Commerce*

Bhanu Prasad

Department of Computer and Information Sciences, Florida A&M University,
Tallahassee, FL 32307, USA

bhanu.prasad@famu.edu

Abstract. Product recommendation is very important in business to customer
(B2C) e-commerce. Automated Collaborative Filtering (ACF) is an important
approach for product recommendation. However, a major drawback with this
approach is that it can’t avoid the “sequence recognition problem”, explained in
this paper. Here we present a system that addresses the sequence recognition
problem by recording and utilizing the users’ purchase patterns and ratings. The
proposed system is a fruitful combination of ACF and Case-Based Reasoning
Plan Recognition (CBRPR) methods. The evaluation studies prove that the hy-
brid system provides better performance when compared to ACF and CBRPR
methods used individually.

1 Introduction

The internet has been transforming the commercial activities such as shopping, nego-
tiation, and auctions into e-commerce activities such as e-shopping, e-negotiation, and
e-auctions since the end of the last century. There are two types of e-commerce appli-
cations. The first one focuses on importing existing products and selling them online
and the second one focuses on the intelligent techniques. The first one is a natural
mapping from the traditional commerce and the latter is considered as an intelligent
transformation from the traditional commerce to intelligent e-commerce. CBR plays a
major role in the development of this latter category of e-commerce.

In recommendation systems, a set of products that best matches the user’s profile
and/or specifications is retrieved and recommended to the user. If the user likes one or
more of the retrieved products then he selects those products. In some systems, it is
possible for the user to refine the specifications, and the recommendation process
continues until he is satisfied or until he exits the process.

* This research was partly supported by the National Science Foundation under the Grant

Award CNS-0424556. The views and conclusions contained in this document are those of
the author and should not be interpreted as representing official policies, either expressed or
implied, of the US government or any of the sponsoring organizations.

LNAI

 HYREC: A Hybrid Recommendation System for E-Commerce 409

1.1 Automated Collaborative Filtering

Automated collaborative filtering is used to automate word-of-mouth recommenda-
tions [29, 32, 34]. If a person A matches strongly with another person B in rating a set
of given products then it is possible to predict the rating of a new product by A, if B’s
rating for that product is available. In other words, let us assume that three users X, Y,
and Z have a common interest in the products P1, P2, and P3. The users X and Y
bought the products P4 and P5 and rated them high. The ACF system will thereby
recommend the products P4 and P5 to user Z. A common way of implementing the
ACF systems is by using the mean squared difference formula [13].

There are two types of ACF approaches namely non-invasive and invasive, based on
the type of data available or based on how the users’ preferences are recorded [20, 35].
An invasive approach requires explicit user feedback. In this approach, users’ prefer-
ences are floating numbers between 0 and 1. A non-invasive approach observes the
user’s behavior, requiring no more input than the user’s normal interaction with the
system. In this approach, the preferences are Boolean values. An example is provided to
explain these two types. Let us assume the following scenario. There are five products
P1, P2, P3, P4, and P5 available in an online shop. User X bought the products P1, P2,
and P5 and rated them. In an invasive approach, the ratings could be 0.4, 0.9, 0, 0, and
0.8. The same ratings will become 1, 1, 0, 0, and 1 in a non-invasive approach. The
values 0 indicate that the user has not rated the products. A problem with the non-
invasive approach is that the user’s rating for a product is considered as 1 even if the
user rated it very low. As a result, the non-invasive approaches need feedbacks from
more users than the invasive approaches.

The Grouplens system [25, 31] is aimed to provide pseudonymous collaboration
filtering solutions for movies and Usenet news. Video Recommender [21] and Ringo
[34] are used for web-based and email systems that provide recommendations on
movies and music respectively.

In ACF systems, a user doesn’t need to enter all his recommendations at the same
time. The ratings can (and normally will) be entered incrementally. There are two
immediate consequences of this. The first is that the recommendations will improve
as more ratings are accumulated in the system. Secondly, the time lag in the recom-
mendations means that the recommendation set will not be completely self consistent
(if the data were complete, there would be no need for ACF to predict the missing
patterns/sequences).

1.2 Case-Based Reasoning in B2C E-Commerce

CBR has been widely used in e-commerce. It is used to create automated sales assis-
tants and automated reasoning agents for online technical support [18, 39]. In addi-
tion, CBR has been successfully applied for product retrieval, product selection,
product recommendation, product negotiation, and related activities of e-commerce
[6, 14, 16, 24, 26, 30, 36, 38, 41]. A widely used formula for CBR in identifying and
recommending similar products is nearest neighbor retrieval, which is based on
weighted Euclidean distance [40].

Learning the similarity and/or the utility of the retrieved cases is another important
problem addressed by some CBR approaches [5]. These approaches focused on: (1)

410 B. Prasad

Learning similarity measures between cases, without a need for pre-classified cases [36]
and (2) Acquiring the preferences of users from the return sets of products [7, 30].

There are some hybrid approaches for product retrieval and recommendation. The
approach presented by Burke [9] is predominantly knowledge-based, as ACF is used
only during the post processing stage. Some systems check whether there are a suffi-
cient number of feedbacks from previous users [37]. If the number is less than a
threshold then CBR is used, otherwise ACF is used. The system presented by Hayes
et al. [20] uses case retrieval nets to relate different users’ feedbacks to form the
cases. Some systems use CBR to perform ACF [17]. Hayes and Cunningham [19]
present an approach for improving the ACF by leveraging a content-based technique
that captures the context of the users. The approach consists of a two stage retrieval
process where ACF recommendations are ranked according to the users’ current in-
terests. The recommendation system presented by Balabanovic and Shoham [3] com-
bines the content-based and ACF approaches, although the system is not intended for
recommending products. Cotter and Smyth [12] presents a system that is used as a
personalized TV (PTV) program recommendation guide. This system is based on
nearest neighbor and ACF methods.

1.3 Plan Recognition

Plan Recognition (PR) is the process of observing the current actions/behavior of an
agent to predict its future actions. AI approaches are extensively used for PR. For
example, Kautz [22] is based on deduction; Ferguson and Allen [15] is based on ab-
duction; Charniak and Goldman [10] is based on probabilistic methods; Bui [8] is
based on Markov decision processes; and the methods presented by Kerkez and Cox
[23] and Hayes et al. [20] are based on CBR. The work presented by Yang et al. [42]
combines data mining and CBR, allowing cases (i.e., plans) to be mined efficiently.

There are two types of PR methods, namely intended and keyhole [11, 22]. In the
first approach, the observed system conveys its findings to the observer, and this kind
of setup is useful in interactive systems [2, 22] as the aim of these systems is to help
the observer. If there is no interactive communication between the observer and the
observed system then it is called keyhole [1, 11]. The keyhole approaches are used in
competitive environments such as games, in which the observed system does not
cooperate with the observer. PR systems use a library of previous plans in predicting
the actions of the agents. For real world problems, the library construction is auto-
mated using some AI techniques [4, 23, 27].

2 System Details

Here we discuss the details of the proposed system. In the first section we present the
“sequence recognition problem”. The later sections present more details of the system.

2.1 Sequence Recognition Problem

Let us assume the following situation. Some users bought the books Mathematics-1,
Mathemathics-2, Mathematics-3, Mathematics-4, and Mathematics-5 from an ACF
system. Note that the users have bought these products on different dates, but the

 HYREC: A Hybrid Recommendation System for E-Commerce 411

order of the purchase is as above. The users highly rated these products. A new user
bought Mathematics-3 and later Mathematics-4, is now looking for recommendations
from the system. Obviously the recommendation includes Mathematics-1 and Mathe-
matics-2. But the recommendation is of no use because the users who bought
Mathematics-3 and Mathematics-4 never bought Mathematics-1 or Mathematics-2 in
the past. As another example, assume that some users bought manual lawn mowers
and used them well for some time and later bought power lawn mowers to best meet
their purpose. But ACF systems recommend manual lawn mowers to those who just
bought the power lawn mowers. These kinds of recommendations are very common
with ACF because it simply records the set of products and their ratings but does not
recognize the sequence/order (i.e., temporal dependencies) of the purchases. As a
result, the recommendations may not be of much use. This problem is named the
sequence recognition problem in this paper. The paper presents a system to overcome
this drawback by combining the ACF and CBRPR approaches. The system is named
HYREC.

2.2 Plan Representation and Utilization

Capture, organization, and utilization of the users’ purchase sequences (i.e., patterns)
and their feedback is an important issue. The plan-base (i.e., library of plans) is cre-
ated automatically by observing and recording the users’ purchase sequences and the
feedbacks. In this system, the users’ purchase sequences and feedbacks are repre-
sented as a collection of plans. There is exactly one plan that corresponds to each
user of the system. A plan consists of an ordered sequence of states. Each state con-
tains a product bought by the user, the identity of the user, the feedback he supplied,
and the time of purchase. A state S1 precedes another state S2 in a plan if the purchase
time of the product in S1 is earlier than that of S2. The user feedbacks are of invasive
type. Note that a plan is also divided and organized as sub-plans, as explained in Sec-
tion 2.3.

The plan recognition process is of intended type and it works on (i +1) steps to rec-
ommend the product(s) to the user. Here i represents the number of products that are
most recently purchased by the user. Generally i is set to 2. The process is explained.

A conflict set of sub-plans is determined, based on the products purchased by the
user. The set consists of sub-plans having the following properties: (i). The length of
each sub-plan (i + 1) and (ii). The products in the first i adjacent (i.e., consecutive)
states respectively match with the i most recent products purchased by the user. Now
there are two cases, namely Case 1 and Case 2.

Case 1: If the conflict set is non-empty then the product having the following three
characteristics is recommended to the user. (i). The product is well-rated in the major-
ity of the sub-plans in the conflict set (ii). The product is in the (i + 1)th or the above
state (iii). The product is in the nearest state, while traversing each of the sub-plans
from left to right.

In case there is more than one product that fulfills these conditions then the product
that is most recently purchased is recommended. If there is more than one product that
is most recently purchased (note: these products are named “competing products at
level i”) then i is incremented by 1 and the entire process is repeated.

Case 2: If the conflict set is empty then the sub-plans, in each of which the following
two conditions are satisfied, are added to the conflict set. (i). The products that are

412 B. Prasad

purchased by the target user are in the same sequence but not necessarily adjacent. (ii)
The products that are well-rated by other users, but are not purchased by the target
user, are not presenting in between the products that are purchased by the target user.

Now there are four cases and these cases are executed in the specified order.

Case 2.1: If the conflict set is non-empty then recommend a product, as explained in
Case 1.

Case 2.2: If the conflict set is empty and i > 2 then the competing products at level (i -
1) are recommended as various options to the user. Note that there are at least two
competing products at level (i – 1) because the process initially started with i = 2 and
the current situation i > 2 implies that there were competing products at all the levels
starting from 2 to (i - 1).

Case 2.3: If the conflict set is empty and i = 2 then the entire process is performed by
reducing the value of i by 1, provided the process is not already performed for this
reduced value of i. If the process is already performed for this reduced value then the
competing products at level 1 are recommended as various options to the user.

Case 2.4: If the conflict set is empty and i = 1 then no product is recommended. This
case is true if and only if the product that is most recently bought by the target user is
bought by no other user in the past.

The algorithm is formally presented below. In this, we consider that K is the total
number of products the user ever purchased from the system. The algorithm starts
with i := 2 if K 2. If K = 1 then the algorithm starts with i := 1. It is assumed that the
value of K is at least one. Otherwise, the algorithm doesn’t work. In this discussion,
“:=” represents the assignment operator.

Algorithm(i)

 /* INTIALIZATION */
1. Conflict set S := Empty.

Pi, ..., P1 are respectively the i most recent products purchased by the user.
Here, P1 is the most recent and Pi is the least recent among all.
SSP1 := The set of all existing sub-plans that start with Pi.
SSP2 := An empty set.
COMPETING-PRODUCTS-AT-LEVELi := Empty.

/* DETERMINE THE CONFLICT SET BASED ON THE PURCHASE
SEQUENCE OF THE PRODUCTS */
2. Repeat the following operations in the specified order until SSP1 is empty.

Randomly select a sub-plan SP from SSP1. Remove SP from SSP1. Add SP to
SSP2. Add SP to S if and only if all the products in the first (i + 1) adjacent
states of SP are rated and also the products in the first i adjacent states respec-
tively match with Pi,…, P1.

/* CHECK THE CONFLICT SET */
3. If S is empty then go to Step 4 else go to Step 6.

/* DETERMINE THE CONFLICT SET BASED ON THE WELL-RATED
PRODUCTS, BUT RELAXING THE “ADJACENT” CONDITION */

 HYREC: A Hybrid Recommendation System for E-Commerce 413

4. Repeat the following operations in the specified order until SSP2 is empty.
Randomly select a sub-plan SP from SSP2. Remove SP from SSP2. Add it to
S if and only if it fulfills all the following conditions: (i). Pn is well-rated in
SP for 1 n i (ii). If i > 1 then Pn follows (not necessarily adjacent) P(n +
1) for 1 n < i, in SP (iii). If i > 1 then there is no well-rated product in be-
tween P(n + 1) and Pn for 1 n < i, in SP.

/* CHECK THE EMPTYNESS OF THE CONFLICT SET AGAIN AND
PERFORM THE OPERATIONS*/
5. Check the following conditions and perform the corresponding operations in

the specified order: (i). If S is non-empty then go to Step 6. (ii). If S is empty
and i > 2 then all the products from COMPETING-PRODUCTS-AT-LEVEL
(i - 1) are recommended as various options. Go to Step 8. (iii). If S is empty
and i = 2 then i := 1 and then Algorithm(1), provided Algorithm(1) is not al-
ready executed in the past. If it is already executed in the past then all the
products from COMPETING-PRODUCTS-AT-LEVEL(1) are recommended
as various options. (iv). If S is empty and i = 1 then go to Step 7.

/* DETERMINE THE NEXT PRODUCT BASED ON THE RATINGS,
MAJORITY AND SEQUENCE */
6. A product P from S is selected for recommendation if it fulfills the following

condition. P is well-rated in the majority of the sub-plans in S and there is no
other well-rated product between P1 and P, while traversing each of these
sub-plans from P1 towards the end of the sub-plan.

If more than one product that fulfills the above condition then do the follow-
ing in the specified order: (i). If there is a single product that is most recently
bought then recommend that product and then go to Step 8. (ii). If more than
one recent product exists then do the following in the specified order.

(a). Add all these competing products to COMPETING-PRODUCTS-AT-
LEVELi. (b). If i < K then i = i + 1 and then Algorithm(i) (c). If i = K then all
the products from COMPETING-PRODUCTS-AT-LEVELi are recommended
as various options.

/* CONFLICT SET IS STILL EMPTY */
7. No recommendation.

/* REPEAT OR QUIT THE PROCESS */
8. If the user purchases a product then K := K + 1.

 i := 2 if K 2.
 i := 1 if K = 1.
 If the user purchases a product and he is looking for another product then go
to Step 1. Else exit the process.

In the above algorithm, any product for which the recommendation rating is 0.5 or

more is considered as well-rated. Two examples are provided in the next section.

414 B. Prasad

2.3 Storage and Recommendation of Sub-plans

Plan retrieval is an important issue because it is performed continuously while the
users buy new products. Each product is represented using a unique integer. The plan
library is implemented as a hash-table and the sub-plans are stored in bins. The bins
are indexed by a common product number. This approach is borrowed from Kerkez
and Cox [23]. It is observed that a plan of length pl has (pl - (sl - l)) sub-plans of
length sl. The retrieval process is explained using two examples. The timings and the
users’ identities are not shown in these examples.

Example 1:

Consider the following sample conflict set.
1/0.6 2/0.2 6/0.4 3/0.7 4/0.8 9/0.1
1/0.7 2/0.3 15/0.2 7/0.6 8/0.4
1/0.2 2/0.7 6/0.3 3/0.4
1/0.8 2/0.6 4/0.2 7/0.8 12/0.9
1/0.1 2/0.4 5/0.1 6/0.9
1/0.5 2/0.4 23/0.4 3/0.1

Assume that a user, who already bought the products 1 and 2 respectively, is look-
ing for recommendation. In this example, there are 6 sub-plans in the conflict set. The
first sub-plan conveys the fact that a user bought the products 1, 2, 6, 3, 4, and 9 and
the ratings for these products are 0.6, 0.2, 0.4, 0.7, 0.8, and 0.1 respectively. Other
sub-plans have similar meanings. Product 7 is recommended to the user, based on the
algorithm in Section 2.2. Steps 4 and 5 of the algorithm are not executed for this ex-
ample.

Example 2: Consider the following sample conflict set.

1/0.6 2/0.2 4/0.8 3/0.7 4/0.8 9/0.1
1/0.7 2/0.3 15/0.2 7/0.6 8/0.4
1/0.2 2/0.7 6/0.3 3/0.4
1/0.8 2/0.3 4/0.7 7/0.8 12/0.9
1/0.1 2/0.4 5/0.1 6/0.9
1/0.5 2/0.4 4/0.6 3/0.8

Assume that a user, who already bought the products 1 and 4 respectively, is look-
ing for recommendations. Product 3 is recommended to the user, based on the algo-
rithm in Section 2.2. The value of S is found to be empty at Step 3 of the algorithm.
Steps 4 and 5 of this algorithm are executed. The condition (i) of Step 5 is found to be
true. In addition, the condition, “If more than one product that fulfills…” of Step 6 of
this algorithm is not true for this example.

Users’ purchase trends may change over time. This notion is explained in the next
section.

2.4 The Change of Trend: Detection and Adjustment

The change of trend can be explained by using a simple example. Users who bought a
TV may prefer to buy a digital video recorder rather than a VHS recorder, due to the

 HYREC: A Hybrid Recommendation System for E-Commerce 415

convenience with digital recorders. In other words, the users’ purchase trend is
changed from TV VHS-recorder to TV Digital-recorder.

In general, if a user does not buy the recommended product but instead selects an-
other product, then it should not be treated as a change of trend. This is because there
may not be many qualified products/plans in the system or the user might have al-
ready purchased the recommended product elsewhere. But if the acceptance rate of
the recommendations starts decreasing and falls below a threshold value then the
situation is treated as a change of trend. In this system, if the acceptance rate of the
recommended products starts decreasing monotonically and falls below 50% then it is
considered as a change of trend. Once it is detected, the system changes its recom-
mendation process as follows. The sub-plans that are recorded on or after the date on
which the acceptance rate initially started decreasing monotonically will only be con-
sidered for recommendation. This restriction aims to prevent the older sub-plans,
which are now found to be less effective in the recommendation process, from influ-
encing the future recommendation decisions of HYREC. Evaluation details are pre-
sented in the next section.

3 Evaluation

In this section we discuss the effectiveness of the proposed approach by conducting
some experiments. The evaluation is conducted on an experimental server located at
www.technologyai.com. 25,000 different users and 950 different products were in-
volved in the evaluation process.

In this discussion, the following conventions are followed. If HYREC is unable to
provide any recommendation or if it provides a recommendation and the user doesn't
buy any product then it is considered as a recommendation failure. If the user pur-
chases a different product that is not in the list of recommendations then HYREC gets
the user’s feedback on whether the list of recommendations stimulated him to
purchase the different product. If the answer is “no” then the recommendation is
considered as a failure. If the answer is “yes” then it is considered as a success. This is

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900

Fig. 1. Number of plans on the X-axis vs. product acceptance rate on the Y-axis. The arc corre-
sponds to HYREC

416 B. Prasad

because HYREC fulfilled the goal of increasing the purchases. Any other situation,
which is not discussed above, is also treated as a successful recommendation. The
details of the experiments are presented.

3.1 Experiment 1

The relation between the number of plans and the effectiveness of the recommendations
is studied in this experiment. Fig. 1 corresponds to HYREC. The X-axis represents the
number of plans and the Y-axis represents the acceptance rate of the recommendations.
After the first 350 plans, the acceptance rate started decreasing monotonically and it
eventually fell below the threshold value (50%) at around the 500th plan. As a result,
only the sub-plans that are recorded on or after Nov 22nd 2004 (corresponding to the
location (350, 85) in the graph) are considered for the recommendation purposes. Note
that the date is not shown in the graph due to simplicity reasons. After the adjustment in
the recommendation process, the acceptance rate has quickly increased. We further
investigated the relationship between the number of plans and the product acceptance
rate by modifying the definition of the change of trend for which the acceptance rates
were 30% and 80% respectively. In case of 30%, we observed that more plans are
required (i.e., it takes more time) to reach higher acceptance rates, once the change of
trend is detected. As a result, the users may loose trust in HYREC if the threshold value
is too low. In case of 80%, we observed that the system triggered the change of trend,
although sometimes there was no change of trend detected in the real world.

3.2 Experiment 2

In this experiment, HYREC is compared with ACF approach and two different kinds
of CBRPR approaches. The ACF approach and the CBRPR approaches used in this
experiment are explained.

The ACF approach considers 2 common products in order to provide a recommen-
dation. The recommendation process is explained using an example. Assume that
X1,…, Xn (n 2) are the users of the system. P1 and P2 are the products that are

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900

Fig. 2. Number of products on the X-axis vs. product acceptance rate on the Y-axis. The arcs
connecting the squares, triangles, and circles correspond to HYREC, ACF and 1st kind of
CBRPR respectively

 HYREC: A Hybrid Recommendation System for E-Commerce 417

most recently purchased by X1 and subsequently received high ratings from him.
Assume also that the users X2,…, Xn purchased the products (not necessarily in the
given order) P1, P2, P3,…, Pm (m 3) and rated them high. Then the ACF system
recommends P3,…, Pm to X1. In this example, P1 and P2 are the “2 common prod-
ucts” mentioned above. The ACF approach is implemented by using the mean
squared difference formula.

The CBRPR approaches work on 3 steps, without considering the users’ ratings for
the products. A conflict set of plans is determined, based on the products purchased
by the user. In the 1st kind of CBRPR approach, all the products those immediately
follow the sequence (in the sub-plans of the conflict set) are recommended as various
options to the user. In the 2nd kind of CBRPR approach, the product that immediately
follows the sequence (in the sub-plans of the conflict set) and is present in the major-
ity of these sub-plans is recommended. If more than one such product exists then the
one that is most recently purchased is recommended. Still if there is more than one
such product exists then all these competing products are recommended as different
options.

In Fig. 2, the arcs connecting the squares, triangles, and circles correspond to
HYREC, ACF, and the 1st kind of CBRPR respectively. The X-axis represents the
number of products in the system and the Y-axis represents the acceptance rate of the
recommendations. From this graph, we can observe that the acceptance rate of
HYREC increased with the number of products. But the rate started decreasing mono-
tonically and it eventually fell below the threshold value (50%). Later the rate started
increasing, once the sub-plans that were recorded after a particular date were only
considered, as explained for Fig 1. But in case of the ACF approach and also in case
of the 1st kind of CBRPR approach, the acceptance rates were very low because they
were recommending too many products to the users, introducing confusion. The
acceptance rate for the 2nd kind of CBRPR, which is not shown in this figure, is al-
most similar to that of the 1st kind of CBRPR. This is because the products, which
were not considered by HYREC due to their low ratings, played a vital role in the
recommendation process of the 2nd kind of CBRPR.

4 Conclusions

In this paper we presented a hybrid approach for product recommendation. We ob-
served that the results will slightly vary based on the interface issues such as how
many products are displayed and recommended at a time.

In HYREC, there is no provision for the users to correct their purchasing mistakes,
which they have noticed at a later stage. For example, if a user bought a product P1
before P2 and later noticed that he would have bought P2 before P1 (i.e., he noticed
that P2 is a prerequisite to properly use P1) then it is a purchasing mistake. We are
investigating the mechanisms on how to rectify this.

In this system, the plans are considered to be linear. HYREC has no mechanism to
handle non-linear plans. We are also working on other heuristics to identify the
change of trend.

In this work, we assumed that a user purchases a product only once. But in some
cases, the same product or the same sequence of products may be purchased more

418 B. Prasad

than once. We are investigating the mechanisms on how to handle this kind of knowl-
edge. We are also investigating the mechanisms to identify the temporal dependencies
among the products that are purchased by a user at the same time.

The ACF systems have to deal with extremely sparse data. By considering the se-
quence of products (rather than the “set” of products used in ACF), HYREC is only
considering a part of the available data. Hence, the sparse data issue is more important
for HYREC, when compared to the traditional ACF systems. We are investigating
some solutions, including those provided by Sarwar et al. [33], to address this issue.

In some cases, the sequence of purchases doesn’t matter. For example, buying the
music CDs produced by two different artists. We are working on improving HYREC
so that, in these cases, the performance is at least equal to that of an ACF system.

As mentioned by Pazzani [28], the current recommendation systems have little or
no commonsense in identifying the users’ goals. A lot of work needs to be done to
address this issue.

References

1. Albrecht, D. W., Zukerman, I., Nicholson, A., Bud, A.: Towards a Bayesian Model for
Keyhole Plan Recognition in Large Domains. Proceedings of the 6th International Confer-
ence on User Modelling (1997) 365-376.

2. Allen, J. F., Perrault, C. R.: Analyzing Intention in Dialogues. Artificial Intelligence, Vol.
15, No. 3 (1980) 143-178.

3. Balabanovic, M., Shoham, Y.: Fab: Content-based, Collaborative Recommendation.
Communications of the ACM, 40(3) March (1997).

4. Bauer, M.: Acquisition of User Preferences for Plan Recognition. Proceedings of the 5th
International Conference on User Modelling (1998) 936-941.

5. Bergmann, R., Richter, M.M., Schmitt, S., Stahl, A., Vollrath, I.: Utilityoriented Match-
ing: A New Research Direction for Case-Based Reasoning. Professionelles Wissensman-
agement: Erfahrungen und Visionen, Proceedings of the 1st Conference on Professional
Knowledge Management, Shaker (2001).

6. Bergmann, R., Schmitt, S., Stahl, A.: Intelligent Customer Support for Product Selection
with Case-based Reasoning, E-commerce and Intelligent Methods. Physica-Verlag, (2002)
322-341.

7. Branting, K.L.: Learning Feature Weights from Customer Return-Set Selections, Journal
of Knowledge and Information Systems, 6(2) (2004).

8. Bui H.H.: Efficient Approximate Inference for Online Probabilistic Plan Recognition.
Technical Report 1/2002, School of Computing, Curtin University of Technology, Perth,
WA, Australia (2002).

9. Burke, R.: Integrating Knowledge-Based and Collaborative-Filtering Recommender Sys-
tems. Proceedings of the AAAI-99 Workshop on AI for Electronic Commerce (1998).

10. Charniak, E., Goldman, R.: A Bayesian Model of Plan Recognition. Artificial Intelligence
Journal, Vol. 64 (1993) 53-79.

11. Cohen, R., Song, F., Spencer, B., van Beek, P.: Exploiting Temporal and Novel Informa-
tion from the User in Plan Recognition. User Modelling and User-Adapted Interaction,
Vol. 1, No. 2 (1981) 125-148.

12. Cotter, P., Smyth, B.: PTV: Intelligent Personalised TV Guides. Proceedings of the 12th
Innovative Applications of Artificial Intelligence (IAAI-2000) Conference, AAAI Press
(2000).

 HYREC: A Hybrid Recommendation System for E-Commerce 419

13. Cunningham, P.: Intelligent Support for E-commerce. Keynote speech slides presented at
the International Conference on Case-Based Reasoning (ICCBR 1999). Also available at:
http://www.cs.tcd.ie/Padraig.Cunningham/iccbr99-ec.pdf (1999), Accessed on December
26 2004.

14. Cunningham, P., Bergmann, R., Schmitt, S., Breen, S., Smyth, B, Traphoener, R.: Intelli-
gent Support for Online Sales: The Websell Experience. http://www.aic.nrl.navy.mil/ pa-
pers/2001/AIC-01-003/ws3/ws3toc6.pdf (2001) Accessed on December 26 2004.

15. Ferguson, G., Allen, J.F.: Events and Actions in the Interval Temporal Logic. Journal of
Logic and Computation, Special Issue on Actions and Processes, Vol. 4, No. 5 (1994)
531-579.

16. Gronau, N., Kreymborg, C., Laskowski, F.: Improving Information Retrieval in Knowl-
edge Management Systems using CBR - The Multi Reuse Approach of the Project
TO_KNOW. Proceedings of the 1st Indian International Conference on Artificial Intelli-
gence, Hyderabad, India (2003) 779-788.

17. Hammond, K., Schmitt, K.: A Case-Based Approach to Knowledge Navigation. Proceed-
ings of the AAAI Workshop on Indexing and Reuse in Multimedia Systems, AAAI Press
(1994).

18. Hayes, C., Cunningham, P.: Shaping a CBR view with XML. Proceedings of the 3rd Inter-
national Conference on Case-based Reasoning (2000) 468-481.

19. Hayes, C., Cunningham, P.: Context Boosting Collaborative Recommendations. Knowl-
edge-Based Systems, Vol. 17, No. 2-4 (2003) 131-138.

20. Hayes, C., Cunningham, P., Smyth, B.: A Case-based Reasoning View of Automated Col-
laborative Filtering. Proceedings of 4th International Conference on Case-Based Reason-
ing. LNAI 2080 (2001) 234-248.

21. Hill, W., Stead, L., Rosenstein, M., Furnas, G.: Recommending and Evaluating Choices in
a Virtual Community of Use. Proceedings of Conference on Human Factors in Computing
Systems (1995)

22. Kautz., H.: A Formal Theory of Plan Recognition and its Implementation. In Allen, J., Pe-
lavin, R., Tenenberg, J. (eds.): Reasoning About Plans. Morgan Kaufmann, San Mateo,
California, USA (1991) 69-125.

23. Kerkez, B., Cox, M.: Incremental Case-Based Plan Recognition Using State Indices. Pro-
ceedings of 4th International Conference on Case-Based Reasoning (2001) 291-305.

24. Kohlmaier, A., Schmitt, S., Bergmann, R.: A Similarity-based Approach to Attribute Se-
lection in User Adaptive Sales Dialogs. Proceedings of the 4th International Conference on
Case-Based Reasoning, Lecture Notes in Artificial Intelligence 2080, Springer (2001)
306–320.

25. Konstan, J., Miller, B., Maltz, D., Herlocker, J., Gordon, L., Riedl, J.: GroupLens: Apply-
ing Collaborative Filtering to Usenet News. Communications of the ACM, 40(3) (1997)
77-87.

26. Kowalczyk, R., Pham, A., Rahwan, D.: Intelligent Agents for One-to-Many Automated E-
Commerce Negotiation. Proceedings of the Australasian Computer Science Conference,
Australia (2002).

27. Lesh, N., Rich, C., Sidner, C.: Using Plan Recognition in Human-Computer Collabora-
tion. Proceedings of the 7th International Conference on User Modelling (1999) 23-32.

28. Pazzani, M.J.: Beyond Idiot Savants: Recommendations and Common Sense. Beyond Per-
sonalization 2005: A Workshop on the Next Stage of Recommender Systems Research,
held in conjunction with the 2005 International Conference on Intelligent User Interfaces
(IUI 2005), San Diego, California, USA (2005). The paper is also available at:
http://www.grouplens.org/beyond2005/position/pazzani.pdf. Accessed on March 18 2005.

420 B. Prasad

29. Perry, P.: Resources on Collaborative Filtering, http://www.paulperry.net/notes/cf.asp.
Accessed on December 26 2004.

30. Prasad, B.: Learning the Users’ Preferences in E-Commerce: A Weight-adjustment Ap-
proach. International Journal of Knowledge-Based and Intelligent Engineering Systems,
Vol. 8, No. 4 (2004) 205-211.

31. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: GroupLens: An Open Ar-
chitecture for Collaborative Filtering of Netnews. Proceedings of the ACM 1994 Confer-
ence on Computer Supported Cooperative Work (CSCW ’94), Chapel Hill, NC, USA,
1994.

32. Resnick, P., Varian, H.R.: Recommender Systems. Special issue of Communications of
the ACM 40(3) (1997).

33. Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.: Item-based Collaborative Filtering
Recommendation Algorithms. Proceedings of the 10th International World Wide Web
Conference (WWW10), Hong Kong (2001).

34. Shardanand, U., Maes, P.: Social Information Filtering: Algorithms for Automating
"Word of Mouth". Conference on Human Factors in Computing Systems (1995).

35. Sollenborn, M., Funk, P.: Category-Based Filtering and User Stereotype Cases to Reduce
the Latency Problem in Recommender Systems. 6th European Conference on Case Based
Reasoning, ECCBR2002, Springer Lecture Notes, Aberdeen, Scotland (2002) 395-405.

36. Stahl, A.: Learning Feature Weights from Case Order Feedback. Proceedings of the 4th In-
ternational Conference on Case-Based Reasoning, Lecture Notes in Artificial Intelligence,
Springer 2080 (2001) 502–516.

37. Tran, T., Cohen, R.: Hybrid Recommender Systems for Electronic Commerce. Proceed-
ings of the AAAI-00 Workshop on Knowledge-Based Electronic Markets, USA, (1999).

38. Vollrath, I., Wilke, W., Bergmann, R.: Case-Based Reasoning Support for Online Catalog
Sales. IEEE Internet Computing, 2(4) (1998) 45-54.

39. Watson, I.: Applying Case-Based Reasoning: Techniques for Enterprise Systems. San
Francisco, California, USA: Morgan Kaufmann Publishers (1997).

40. Wettschereck, D., Aha, D.W.: Weighting Features. Proceedings of the 1st International
Conference on Case-Based Reasoning, Springer, New York, USA (1995).

41. Wilke, W.: Knowledge Management for Intelligent Sales Support in Electronic Com-
merce. Ph.D. Dissertation, University of Kaiserslautern, Germany (1999).

42. Yang, Q., Li, I.T.Y., Zhang, H.H.: Mining High-Quality Cases for Hypertext Prediction
and Prefetching. Proceedings of the 4th International Conference on Case-Based Reason-
ing (ICCBR 2001), Springer-Verlag (2001).

Extending jCOLIBRI for Textual CBR�

Juan A. Recio1, Belén Dı́az-Agudo1, Marco A. Gómez-Mart́ın1,
and Nirmalie Wiratunga2

1 Dep. Sistemas Informáticos y Programación,
Universidad Complutense de Madrid, Spain

jareciog@fdi.ucm.es, {belend, marcoa}@sip.ucm.es
2 School of Computing, The Robert Gordon University,

Aberdeen AB25 1HG, Scotland, UK
nw@comp.rgu.ac.uk

Abstract. This paper summarises our work in textual Case-Based Rea-
soning within jCOLIBRI. We use Information Extraction techniques to
annotate web pages to facilitate semantic retrieval over the web. Simi-
larity matching techniques from CBR are applied to retrieve from these
annotated pages. We demonstrate the applicability of these extensions
by annotating and retrieving documents on the web.

1 Introduction

jCOLIBRI is an object-oriented framework for developing Case Based Reasoning
(CBR) applications[2]1. It provides most of the code needed to represent struc-
tured cases, methods and similarity functions used in these systems. jCOLIBRI
includes facilities to work with different case representations, namely, first order
logics, data based records or XML files. In CBR past experiences are generally
available in structured form. However in domains where past experiences are
documents, there is a need to map these in to structure/semi-structured cases
to enable informed comparison and retrieval. Textual CBR involves reasoning
with past experiences that are stored in text form. We believe that jCOLIBRI
needs to be extended to support Textual CBR if it is to achieve its aim of of
providing a general CBR framework.

Textual CBR (TCBR) analyses texts of a given domain and typically builds
semi-structured cases with which new text can be meaningfully compared. Do-
main-specific ontologies that are acquired manually are often employed for this
purpose. TCBR systems in the literature have been developed for specific do-
mains. Consequently it is hard to establish a common architecture that can cover
needs of the TCBR community. Although a general framework may not cater
to domain-specific requirements, we hope that textual extensions to jCOLIBRI
will provide system developers with sufficient functionality to create a workable
initial system solution. However the general framework of jCOLIBRI is partic-
ularly suited for content retrieval over the web. Semantic Web is based on the
� Supported by the Spanish Committee of Science & Technology (TIC2002-01961).
1 http://sourceforge.net/projects/jcolibri-cbr/

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, pp. 421–435, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNAI

422 J.A. Recio et al.

availability of meta-data describing web content. The difficulty is that relevant
documents on the WWW must first be manually annotated before semantic
retrieval is possible. Therefore an obvious application of jCOLIBRI will be to
apply its textual extensions to help with this annotation task.

This paper summarises our work in extending jCOLIBRI to operate over
experiences that are recorded in text form. Key decisions concerning mapping of
text into cases and functionality provided by jCOLIBRI to achieve this mapping
and retrieval will be discussed. We demonstrate the usability of these extensions
with retrieval over documents obtained from the web.

2 Case Structure

One of the main challenges is to establish structures with which text can be
represented as cases. Many textual CBR systems work with cases that operate
over plain text but typically we need representations that can combine both text
(unstructured) and structured data. This is discussed in [16] with the example of
a help-desk application. Here the operator assigns values to attributes concerning
product details and also writes textual annotations in a separate text attribute.
Here a mixed representation is required to facilitate effective reuse.

As jCOLIBRI uses the composite pattern, it allows us to represent these
semi-structured cases easily. A case is composed by several individuals that can
also be composed by other individuals. So we need only define an individual
subclass that represents texts and is composed of other attributes within the
case. This mixed representation can be very useful when the developer needs
to extract information from texts whereby it can be stored as a text attribute
within the case. This structure is shown in Figure 1.

Case

attribute1: Integer

attribute2: Bool

attribute3: Concept
i

attribute4: Concept
J

attribute5: text

……………………

……………………

……………………

……………………

……………………

……

attributeN: …

Text

………

………

extracted

information

Fig. 1. jCOLIBRI semi-structure case representation

Extending jCOLIBRI for Textual CBR 423

3 Generic Framework for TCBR

Once the case structure is defined the next issue is to identify the different forms
of functionality that can be offered by a general framework. It should be flexible
enough to facilitate knowledge artifacts that are commonly needed for TCBR
but without having to rely on domain-specific details. There does not appear to
be a standard or consensus about the structure of a textual CBR system. This is
mainly due to the different knowledge requirements in application domains. For
classification applications typically only a basic stemmer algorithm and a cosine
similarity function is needed, while with other applications more intense Natural
Language Processing (NLP) derived structures are employed (see [3] and [5]).

Although a common functionality for TCBR systems is difficult to establish,
several researchers have attempted to define the different knowledge require-
ments for TCBR([7], [15]). We have chosen the Lenz layered model [9] as a
reference architecture because it is one of the most generic architectures and its
flexibility allows for different combinations and/or additions of new text process-
ing mechanisms. We also believe that any TCBR framework should be developed
with two views in mind:

Involved Technologies: Using texts as a source of information implies a Natu-
ral Text Processing to prepare the data for being extracted using Information
Retrieval (IR) algorithms.

Domain Relation: These technologies can use domain specific or independent
information during the data processing. This is a key idea behind the devel-
opment of the framework as it should provide efficient domain-independent
functionalities but also general and extensible domain-dependent ones.

jCOLIBRI should implement all these features but also allow developers to skip
some of them when required (for instance due to high computational costs asso-
ciated with an algorithm).

4 Theoretic Model

Lenz [9] proposes a layer division for textual cases processing:

Keyword Layer. This layer separates texts into terms, removes stop-words,
stem terms and calculates statistics about frequency of terms. It also pro-
poses a part-of-speech tagger in this layer that could be useful by the fol-
lowing ones. This layer is domain-independent, so it can be shared between
applications.

Phrase Layer. Recognises domain-specific phrases using a dictionary. Here,
the problems are that some parts of the phrase can be separated and that
the dictionary must be built manually.

Thesaurus Layer. This layer identifies synonyms and related terms. Methods
implemented in this layer must be reusable in the query stage of the CBR
cycle. WordNet can be used as an english thesaurus. This phase is domain-
independent.

424 J.A. Recio et al.

Glossary Layer. Is the domain-specific version of the thesaurus layer. So it is
desirable to define a common interface for both layers. The main difficulty
with this layer resides in the glossary acquisition.

Feature Value Layer. With semi-structured cases, this layer extracts features
about the case and stores it as 〈attribute, value〉 pairs in the case represen-
tation. It is also domain-specific.

Domain Structure Layer. Uses the previous layer to classify documents in a
high level. It assigns “topic” features to the cases that can be useful in the
indexing process.

Information Extraction Layer. Some parts of the texts can be better rep-
resented with a structured approximation. This layer accomplish this task.
(note that this functionality can overlap with the two previous layers).

These layers can be grouped into Case Representation and Information Re-
trieval layers. Keyword, Phrase and Feature value layers are applied in the case
representation using natural language processing, whereas Thesaurus, Glossary,
Domain Structure and Information Extraction (IE) layers are related to Infor-
mation Retrieval (IR).

5 Natural Language Processing Using Maximum Entropy

Most of the algorithms outlined here are very common in IR and NLP and there
are standard implementations than can be applied in the domain-independent
layers. This is very important in the NLP layers because there are several al-
gorithms that can be applied. In these layers jCOLIBRI uses the Maximum
Entropy method that is one of the most powerful and extensible algorithms.
Before describing the implementation of the NLP layers within the jCOLIBRI
architecture, we will first outline the main ideas behind it.

A simple definition of maximum entropy could be: model all that is known
and assume nothing about that which is unknown. In other words, given a col-
lection of facts, choose a model consistent with all the facts, but otherwise as
uniform as possible (see [10] and [12]).

On the engineering level, using Maximum Entropy is an excellent way of
creating programs which perform very difficult classification tasks very well.
This is proved in Adwait Ratnaparkhi’s dissertation [13], where the author shows
that this technique can achieve state-of-the-art performance in NLP. The main
reason is that with NLP problems it is impossible to find a complete set of
training examples. This is due to the variability of the language, so it is not
correct to add “information” constraints from the examples.

To illustrate this idea, consider this Ratnaparkhi’s example. Suppose the task
is to estimate a joint probability distribution p defined over {x, y} ∗ {0, 1}. Fur-
thermore suppose that the only facts known about p are that p(x, 0) + p(y, 0) =
0.6 and that p(x, 0) + p(y, 0) + p(x, 1) + p(y, 1) = 1.0. This problem consists of
learning the values marked with a “?” in Table 1(a). There are many consis-
tent ways to fill in its the cells; Table 1(b) shows one of them. The Principle of
Maximum Entropy recommends the assignment in Table 1(c), which is the most
non-committal assignment of probabilities that meets the constraints on p.

Extending jCOLIBRI for Textual CBR 425

Table 1. Maximum Entropy Examples

p(a,b) 0 1

x ? ?
y ? ?

total 0.6 1.0

p(a,b) 0 1

x 0.5 0.1
y 0.1 0.1

total 0.6 1.0

p(a,b) 0 1

x 0.3 0.2
y 0.3 0.2

total 0.6 1.0

(a) Unknown (b) One possible (c) Maximum Entropy
distribution distribution inferred distribution

The Maximum Entropy model has been implemented and applied to Natural
Language tasks in the OpenNLP package2. It is divided into independent layers
that can be used separately, providing a stop-word remover, sentence detector,
part-of-speech tagger, grammar layer and, in the future, an interface to WordNet.
The main advantage of this implementation is that it can be extended easily,
training the algorithm with new data to adapt it to new situations (for example,
languages other than English).

6 jCOLIBRI Extended Architecture

jCOLIBRI is built around a task/method ontology, a knowledge level descrip-
tion [11] that guides the framework design, determines possible extensions and
supports the framework instantiation process. Tasks and methods are described
in terms of domain-independent CBR terminology which is mapped into the
classes of the framework.

Although various authors have applied knowledge level analysis to CBR sys-
tems, the most relevant work is the CBR task structure developed in [1]. At the
highest level of generality, they describe the general CBR cycle in terms of four
tasks (4 Rs): Retrieve the most similar case/s, Reuse its/their knowledge to solve
the problem, Revise the proposed solution and Retain the experience. Each one
of the four CBR tasks involves a number of more specific sub-tasks. There are
methods to solve tasks either by decomposing it into subtasks or by solving it
directly. The task structure identifies a number of alternative methods for a task,
and each method sets up further subtasks in turn. This form of task-method-
subtask analysis is carried on to a level of detail whereby tasks are decomposed
into primitives with respect to the available knowledge. Importantly it is the
decomposed primitive that can then be associated with a resolution method.

jCOLIBRI standard version provides a task ontology and a library of meth-
ods that resolve the tasks (usually named as Problem Solving Methods PSMs).
This task ontology is shown in Figure 2. The framework is designed to support
the construction of CBR systems taking advantage of the task/method division
paradigm described previously. Building a CBR system is a configuration pro-
cess where the system developer selects the tasks the system must fulfill (one or

2 http://opennlp.sourceforge.net

426 J.A. Recio et al.

CBR_TASK

Copy_Solution

Reuse

Adapt_Solution

Modify_Solution

Select_Strategy

Select_Discrepancy

Apply_Transformation

Local_Revision

CBR_TASK

ObtainCases

AssessSim

Select

Retrieve

AssessLocalSim

AgregateSim

Retain_Knowledge

Retain

Retain_reuse_knowledge

Retain_Case

Retain_retrieval_knowlege

Repair

Revise

Evaluate

Fig. 2. CBROnto Task Structure

Fig. 3. Task decomposition and tasks related with textual CBR

more) and, for every task, the system developer assigns the method that will do
the job. In order to alleviate framework instantiation effort, jCOLIBRI provides
a number of GUI tools [14] that support the management of tasks and methods
as well as the construction of the particular combination of tasks/methods that
defines a CBR system. A simple CBR application configured using the GUI is
shown in Figure 3. Once the CBR system configuration is specified, jCOLIBRI
will generate a code template with most of the code needed to run the specified
CBR system. The textual extension provides new text related tasks with asso-
ciated methods for resolution. In this manner, a new textual CBR application
can also be developed using the jCOLIBRI GUI tools by configuring the system
as depicted in Figure 3.

Extending jCOLIBRI for Textual CBR 427

T ext

S en tence i-1 S en tence i S en tence i+ 1

P aragraph i-1 P aragraph i P aragraph i+ 1

T oken i-1 T oken i T oken i+ 1

T ext

S en tence i-1 S en tence i S en tence i+ 1

P aragraph i-1 P aragraph i P aragraph i+ 1

T oken i-1 T oken i T oken i+ 1

Fig. 4. Text Structure

6.1 Textual Cases

We mentioned before that textual cases are implemented as jCOLIBRI individ-
uals (i.e. a part of a case) to allow the representation of semi-structured cases.
Such a representation will consist of Texts decomposed into Paragraphs, then
into Sentences, and finally Tokens (see Figure 4). Tokens store information be-
longing to a word, such as:

– CompleteWord: The original string.
– StemmedWord: Stemmed string, output of StemmerMethod.
– PosTag: POS tag, output of PartofSpeechMethod.
– TokenIndex: Token position within the paragraph.
– WordPosition: Word position within the paragraph raw data.
– RelatedTokens: Collection of WeightedRelation objects that relate similar to-

kens.
– IsName: Boolean value to indicate if the token is a name, output of ExtractNames-

Method.
– IsNotStopWord: Boolean value to indicate if the token is not a stop word, output

of WordsFilterMethod.

Sentences and paragraphs are used to structure the data and as information con-
tainers. Text is the final container and the object directly stored inside jCOLIBRI
individuals.

6.2 Textual Methods

The new library of methods contain implementations of the Lenz layers. These
methods are configured using the GUI to define CBR applications. Available
methods are:

Words Filter. Filters and tokenizes the text removing stop-words and special
characters.

428 J.A. Recio et al.

Part-of-Speech Tagging. This method uses a Maximum Entropy tagger (im-
plemented by OpenNLP) to assign Part-of-Speech tags.

Stemmer Algorithms. This method can perform several stemmer algorithms
for different languages. It uses the Snowball3 external package that also de-
fines a stemmer language to allow parsing other languages.

Name Extraction. Selects the main names of the text using a Maximum En-
tropy algorithm.

Phrase Identification. Extracts Phrases using Regular Expressions. Develop-
ers can define phrase using a configuration file like:

#Rules Format:
[FeatureName]FeatureRegularExpresion
Examples:
[Compaq Presario 2100](Compaq|HP|Hewlett-Packard)? Presario 2100

This example rule finds the same concept (a computer model) which can
be written using different words. The concrete syntax to specify each rule is
described in the configuration file.

Glossary. Relates query words to cases words using a domain specific glossary.
It also uses a configuration file where developers can define the similarity
between words:

Glossary Format:
[Part-of-Speech Tag]{Similarity} word1 word2 ... wordn
#Examples (TCBR domain)
[NOUN]{2} case instance
[NOUN]{3} cbr nbr
[NOUN]{1} word term speech

Here the developer must specify the part-of-speech tag, because the same
word can have different meanings if it is used as a verb, noun, adjective,
etc. These rules also allow the definition of three levels of similarity between
words.

Thesaurus (WordNet). Relates query words to case words using WordNet.
This method takes advantage of the same idea as in the FAQ Finder System
[6], which is to improve query and case matching by taking into account rela-
tionships between words. It has been implemented using an external package
called JWordNetLibrary (JWNL) that defines a simple API to WordNet.

Feature Extraction. Extracts features using Regular Expressions and stores
it as attribute-value pairs:

#Rules Format:
#[FeatureName]{FeaturePosition}FeatureRegularExpresion
#FeatureName is used to store the extracted information
#Examples:
[Person]{2}(Mr.|Mss.) ((\p{Lu}(\w+|\.)\s)+)
[University]{1}((\p{Lu}\w+\s)+)University
[Company]{1}((\p{Lu}\w+\s)+)(Inc\.|Corporation|Associates|Bank)

3 Snowball (http://snowball.tartarus.org) supports English, French, Spanish, Por-
tuguese, Italian, German, Dutch, Swedish, Norwegian, Danish, Russian and Finnish.

Extending jCOLIBRI for Textual CBR 429

These examples extract features by identifying typical structures: a person
name is often preceeded by Mr or Ms, a company name is followed by Inc,
Corporation, Associates, etc.

Topic Classification. Associates a Topic using extracted Features and Phrases
as conditions. This layer defines a top level description of the text that can
be very useful for indexing purposes. It uses a configuration file as:

Rules Format:
[Topic] <FeatureName,value> <FeatureName,value>... <Phrase> <Phrase>
Topic: Topic classification
FeatureName: FeatureName defined in the features extraction Layer
value: FeatureName value. It also can be ’?’, meaning any value.
Phrase: You can use the phrases detected in the phrase Layer
Example
[MyProyect]<University,Complutense de Madrid><Person,Juan Antonio>

<Company,?> <Compaq Presario 2100>

This example shows a description of a topic. A text about a project should
have features about a university, a person and the PC of that person.

Basic Information Extraction. Extracts texts information and stores it in
case individuals (if defined). This is the idea behind Figure 1. If the textual
processing finds a feature with a label and there is an individual within the
case with this label then the method will copy the content of the feature to
the individual.

Finally, notice that jCOLIBRI only provides the option of using these meth-
ods. It is not mandatory to use them in every applications. It provides the system
with the option of choosing all or a subset of available methods (ignoring the
rest). Table 2 summarizes the implementations that are provided with each layer.

Table 2. Layers Architecture

Layer
Domain
Specific

Functionality ExternalPackages

Keyword Layer No
Terms identification,

stemming and
part-of-speech tagging

OpenNLP, SnowBall

Phrases Layer Yes
Domain-specific phrases

identification
OpenNLP

Thesaurus Layer No
Synonymous and related

words identification
JWNL

Glossary Layer Yes
Relates application-specific

terms
OpenNLP

Features Value Layer Yes Extracts relevant attributes -

Domain Structure
Layer

Yes Extracts global features -

Information
Extraction Layer

Yes
High Level Structure

representation of some text
parts

-

430 J.A. Recio et al.

ALEJO’S PRESTO TRATTORIA
4002 Lincoln Blvd., Marina del Rey
(310) 822-0095
While cooking in some of the finest (and most expensive) restaurants
in L.A., chef Alejo had an idea. Why not open a small, intimate eatery
that serves the same gourmet food at lower prices? Alejo’s now has two
restaurants serving delectable, homemade Italian specialties like pasta
primavera ($6.95), linguine pescatore (shrimp, squid and clams, $9.95)
and chopped salad (\$4.95). Try the authentic paella ($10.95) on Friday
and Saturday nights, and don’t forget Alejo’s famous classic, spaghetti
and meatballs ($6.95). Lunch Mon.-Fri., dinner seven nights. Beer and
wine (Westchester); takeout. AE, DIS, MC, V.

Fig. 5. Restaurant example

6.3 Textual Similarity Functions

Usually, TCBR extracts information from the plain text and creates structured
cases that are compared later. Even so, it can be useful to provide similarity
functions that work directly with the text. jCOLIBRI provides these textual
similarity functions, which are based on the vector space representation and are
applicable to token relations created with the Wordnet layer:

– Cosine Coefficient: |(o1 ∩ o2)|/(
√

|o1| ∗
√

|o2|)
– Dice Coefficient: 2 ∗ |(o1 ∩ o2)|/(|o1| + |o2|)
– Jaccard Coefficient: |(o1 ∩ o2)|/(|o1| ∪ |o2|)
– Overlap Coefficient: |(o1 ∩ o2)|/ min (|o1|, |o2|)

As example, these functions could be applied to compare attribute 5 in Figure 1.

7 Experimental Results

To illustrate jCOLIBRI’s Textual extensions, we have developed a restaurant
adviser system. The entire case base contains roughly 100 different restaurants
extracted from a traditional web page4. These pages contain texts with descrip-
tions of restaurants, that have been also used in the Ariadne project [8]. Once the
visualisation information has being removed and HTML tags are dropped, the
information of each restaurant includes name, address and a description about
its offer, as it is shown in Figure 5.

We identified 13 common attributes (location, food type, prices, time tables,
dishes, etc.), and then developed an ontology to categorise the extracted infor-
mation into 15 location types, 20 food concepts, 13 timetable categories and 100
categories of dishes. Then domain dependent knowledge (in the form of rules and
regular expressions) for each layer was created for the restaurant application:

4 Available in http://www.laweekly.com/food/listsearch.php

Extending jCOLIBRI for Textual CBR 431

Phrases: To detect restaurant food types:
[FISH DISHES]fish|seafood|shrimp|swordfish
[MEAT DISHES]meat|chicken|beef
[PASTA DISHES]pasta|spaghetti

Features: The regular expression extracts the name of the chefs. It should
appear with the word “chef” followed by another words that begin with a
capital letter:
[CHEF]{2}(chef) ((\p{Lu}\w+\s)+)

Glossary: The glossary contains synonyms in the restaurants/food context:
[NOUN]{1} burger hamburger

Domain Structure. This layer is used to assign topics or identifiers to the
restaurants by means of rules. For example, if the texts contains “Alejo” in
the CHEF feature and contains the PASTA phrase, then this text depicts
the “Alejo’s Restaurant”
[Alejo’s Restaurant]<CHEF,Alejo><PASTA>

In order to illustrate the advantages of jCOLIBRI’s algorithms for retriev-
ing text represented using the structuring provided by different layers, we have
perform queries using three different approaches:

– Using Information Retrieval (IR) techniques with textual queries.
– Using Information Retrieval and Information Extraction (IE) with textual

queries:
– Using Information Retrieval and Information Extraction with structured

queries (the user has to choose several values for an attribute in a struc-
tured form).

The test set consisted of 30 manually categorised texts with the correct val-
ues.

As regard the similarity calculation, in the IR experiment we used the cosine
coefficient (|(o1∩o2)|/(

√
|o1|∗

√
|o2|)) without any structured calculated by Java

code external to jCOLIBRI. On the other hand, the similarity in the other two
experiments is computed using both the query and the cases. We calculate local
similarity using the ontologies described above. These ontologies store attributes
similarity: location, food type, timetable and dish. We also use simple numeric
calculations for the remaining attributes. Once the local similarity is ascertained,
the system computes the global similarity using the following formula:

GlobalSimliarity = 0.2 ∗ LocationSim + 0.3 ∗ FoodTypeSim +

0.1 ∗ P riceSim + 0.1 ∗ T imeTableSim +

0.2 ∗ DishesSim + 0.1 ∗ OthersSim (1)

Where TimeTableSim is the average of the breakfast, lunch and dinner sim-
ilarities, while OthersSim is the average of the Alcohol, Takeout, Delivery and
Cathering similarities.

An example of IE with textual query is “italian pasta restaurant”. With this
query, the application retrieve the “ALEJO’S PRESTO TRATTORIA” restau-
rant (case 87e704) showed in Figure 5. The log reported by the system is:

432 J.A. Recio et al.

Table 3. Example of query using IR+IE with structured query

Lo
ca
tio

n

Fo
od

Ty
pe

Pr
ice

Br
ea
kF

as
t

Lu
nc

h

Din
ne

r

D
ish

es

Alco
ho

l

Ta
ke
ou

t

D
eli

ve
ry

Ca
te
rin

g

Pa
rk
in
g

Q Beverly Hills Japanese 7 never never Sat beef true true false true true
C Torrance Japanese 9.95 never 7d 7d ..,beef,... true true false false true
LS 0.5 1 0.8525 1 1 1 1 1 1 1 0 1

Query: jcolibri.cbrcase.CBRCaseRecord@4a5c78 --> Attribute:
text_relation Value: Paragraph 0: italian pasta restaurant

Sentence 0. Position: 0 Data: italian pasta restaurant
Token:

POSTag: NNP CompleteWord: italian
is name: false StemmedWord: italian
Word Position: 0 Token Index: 0
IsNotStopWord: true

Retrieved Case: jcolibri.cbrcase.CBRCaseRecord@87e704 -->
Attribute: text_relation Value: Paragraph 0: While cooking in some
of the finest (and most expensive) ...

Sentence 0. Position: -1 Data: While cooking in some of the finest ...
Token:

POSTag: IN CompleteWord: While
is name: false StemmedWord: while
Word Position: 0 Token Index: 0
IsNotStopWord: false

Token:
POSTag: NN CompleteWord: cooking
is name: false StemmedWord: cook
Word Position: 6 Token Index: 1
IsNotStopWord: true

Finally, Table 3 shows an example of use of IE + IR with structured query. The
first row (row Q) shows the values of each attribute established by the user. For
example, the user has specified that she does not mind if the restaurant is open
at lunch time, because she will never go at that time. One of the cases retrieved
by the system is shown in row C, and the similarity between each attribute in
the query and the case is shown in row LS. For example the local similarity in
the attribute Lunch is calculated using an specific ontology, and report that the
similarity is 1, because the user does not mind if it is open at that time. With
these local similarities, the Global Similarity is calculated using (1).

In order to be able to compare the results of each approach, we define:

P recision = RETREL/RET

Recall = RETREL/REL

Where RET is the set of all pages the system has retrieved for a specific query,
and REL is the set of relevant pages for the query. RETREL = RET ∩ REL
i.e. set of the retrieved relevant pages.

Extending jCOLIBRI for Textual CBR 433

Fig. 6. Experimental Test

After launching several queries in the system we obtained the results showed
in Figure 6. The experiment shows a better result with the structured query,
obviously caused by the loss of information when extracting the attributes from
the textual query. The computed similarity with the most significant case using
IR+IE was usually higher than 0.75 while the higher similarity value in the pure
IR approach was 0.35. That is the reason of the low recall obtained using this
approach.

8 Related Work

Textual CBR systems with knowledge requirements at the token level, borrow
retrieval mechanisms from information retrieval ([6], [16]). jCOLIBRI is able to
facilitate case representations that are keyword based and provides case matching
functionality using coefficient similarity functions.

In domains such as law and education there is a need to analyse text from
a semantic instead of a token level. We believe that jCOLIBRI is able to assist
developers because it enables part-of-speech tagging and provides functionality
to incorporate feature extraction rules. Its ability to operate with regular expres-
sions is particularly useful to specify indexing vocabulary consisting of keyword
combinations as in the Smile system [4] or as logical combinations extracted for
text routing and filtering tasks [17].

Information extraction techniques are often employed to represent text data
in template form, where extraction rules are used to fill slots of the template [15].
Description of template slots and rules for filling these slots can also be facilitated
by jCOLIBRI by use of regular expressions and rules. However unlike state-
of-the-art information extraction tools (e.g. AutoSlog) jCOLIBRI does not
automatically learn extraction from annotated sentences [5].

434 J.A. Recio et al.

9 Conclusions

This paper summarizes our work in extending the jCOLIBRI framework for
textual CBR. The utility of this extension was demonstrated by developing a
TCBR system for restaurant recommendation over the web. We have enhanced
jCOLIBRI’s library of PSMs to facilitate common techniques in the areas of
textual CBR. For this purpose we have incorporated techniques from Informa-
tion Retrieval and provided basic Information Extraction functionality. This is
important in itself because it widens jCOLIBRI’s applicability and importantly
gives coverage to a very important type of CBR.

We have shown an experiment where CBR similarity computation techniques
were applied to retrieve annotated pages from the Web. We have pointed out
an emerging application area to use CBR techniques in general, and Textual
CBR in particular. Tagging an HTML page for the semantic Web is a manual
process. We propose the use of automatic techniques based on Textual CBR and
Information Extraction.

References

1. A. Aamodt and E. Plaza. Case-based reasoning: Foundational issues, methodolog-
ical variations, and system approaches. AI Communications, 7(i), 1994.

2. J. J. Bello-Tomás, P. A. González-Calero, and B. Dı́az-Agudo. jCOLIBRI: An
object-oriented framework for building cbr systems. In Proceedings of Advances
in Case-Based Reasoning, 7th European Conference, ECCBR-04, Madrid, Spain,
pages 32–46, 2004.

3. M. Brown, C. Förtsch, and D. Wissmann. Feature extraction - the bridge from
case-based reasoning to information retrieval.

4. S. Brüninghaus and K. D. Ashley. Bootstrapping case base development with anno-
tated case summaries. In Proceedings of Case-Based Reasoning and Development,
Third International Conference, ICCBR-99, Seeon Monastery, Germany, volume
1650 of Lecture Notes in Computer Science. Springer, July 1999.

5. S. Brüninghaus and K. D. Ashley. The role of information extraction for textual
CBR. In Proceedings of the 4th International Conference on Case-Based Reasoning,
ICCBR ’01, pages 74–89. Springer-Verlag, 2001.

6. R. D. Burke, K. J. Hammond, V. A. Kulyukin, S. L. Lytinen, N. Tomuro, and
S. Schoenberg. Question-answering from FAQs files: Experiences with the FAQ-
finder system. AI Magazine, 18:57–66, 1997.

7. K. M. Gupta and D. W. Aha. Towards acquiring case indexing taxonomies from
text. In Proceedings of the Seventeenth International FLAIRS Conference, pages
307–315, Miami Beach, FL, 2004. AAAI Press.

8. C. K. Ion Muslea, Steve Minton. Wrapper induction for semistructured, web-based
information sources. In Proceedings of the Conference on Automatic Learning and
Discovery CONALD-98, 1998.

9. M. Lenz. Defining knowledge layers for textual case-based reasoning. In Proceedings
of the 4th European Workshop on Advances in Case-Based Reasoning, EWCBR-98,
pages 298–309. Springer-Verlag, 1998.

10. C. D. Manning and H. Schütze. Foundations of Statistical Natural Language Pro-
cessing. The MIT Press, Cambridge, Massachusetts, 1999.

Extending jCOLIBRI for Textual CBR 435

11. A. Newel. The knowledge level. Artificial Intelligence, 18:87–127, 1982.
12. K. Nigam, J. Lafferty, and A. McCallum. Using maximum entropy for text classi-

fication, 1999.
13. A. Ratnaparkhi. Maximum entropy models for natural language ambiguity reso-

lution, 1998.
14. J. A. Recio-Garćıa and B. Dı́az-Agudo. An introductory user guide to jCOLI-

BRI 0.3. Technical Report 144/2004, Dep. Sistemas Informáticos y Programación,
Universidad Complutense de Madrid, Spain, November 2004.

15. R. Weber, D. W. Aha, N. Sandhu, and H. Munoz-Avila. A textual case-based
reasoning framework for knowledge management applications. In Proceedings of
the 9th German Workshop on Case-Based Reasoning. Shaker Verlag., 2001.

16. D. Wilson and S. Bradshaw. Cbr textuality. In In Proceedings of the Fourth UK
Case-Based Reasoning Workshop., 1999.

17. N. Wiratunga, I. Koychev, and S. Massie. Feature selection and generalisation
for textual retrieval. In Proceedings of the Seventh European Conference on Case-
Based Reasoning, ECCBR-04, pages 806–820, Madrid, Spain, 2004. Springer.

Critiquing with Confidence

James Reilly, Barry Smyth, Lorraine McGinty, and Kevin McCarthy

Adaptive Information Cluster�, Smart Media Institute,
Department of Computer Science, University College Dublin (UCD), Ireland

{james.d.reilly, barry.smyth, lorraine.mcginty, kevin.mccarthy}@ucd.ie

Abstract. The ability of a CBR system to evaluate its own confidence in
a proposed solution is likely to have an important impact on its problem
solving and reasoning ability; if nothing else it allows a system to respond
with “I don’t know” instead of suggesting poor solutions. This ability is
especially important in interactive CBR recommender systems because
to be successful these systems must build trust with their users. This
often means helping users to understand the reasons behind a particular
recommendation, and presenting them with explanations, and confidence
information is an important way to achieve this. In this paper we propose
an explicit model of confidence for conversational recommendation sys-
tems. We explain how confidence can be evaluated at the feature-level,
during each cycle of a recommendation session, and how this can be ef-
fectively communicated to the user. In turn, we also show how case-level
confidence can be usefully incorporated into the recommendation logic
to guide the recommender in the direction of more confident suggestions.

1 Introduction

Conversational recommender systems help users navigate through complex
information spaces, such as product-spaces in an e-commerce setting
[1,2,3,4,12,29,30,31]. Typically users are guided through a sequence of recom-
mendation cycles. In each cycle a new product is suggested and the user can
provide feedback in order to guide the next cycle. This process continues until
the user is satisfied with a new recommendation or until they abandon their
search. A significant degree of research has been devoted to various aspects of
such recommender systems. One important theme has been on the different
forms of feedback (e.g., value elicitation, ratings-based, critiquing, preference-
based) that might be used during each cycle, with a particular emphasis on how
different approaches impact recommendation efficiency and quality [18,24,25,31].

Critiquing, in particular, has emerged as an important form of feedback that
is well-suited to many complex product domains where users have only a partial
understanding of a feature-space. A critique is a constraint over the value-space
of a specific feature (unit critique [4,5,11,22]) or a group of features (compound
critique [4]). For example, when shopping for a digital camera a user might
� This material is based on works supported by Science Foundation Ireland under

Grant No. 03/IN.3/I361.

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, pp. 436–450, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNAI

Critiquing with Confidence 437

look for one with high resolution, without having a precise resolution in mind.
When presented with a 2M pixel camera he might select a ‘greater resolution’
critique in order to constrain the next recommendation cycle to those cameras
with a higher resolution. Recently a number of researchers have begun to build
on the original critiquing work of Burke & Hammond [5], in order to improve
the performance of critique-based recommenders [11,24,27,28].

A second important theme concerns the interactive nature of conversational
recommender systems. The ability of a recommender system to explain or justify
its recommendations is now seen as a vital step in the development of systems
that are capable of fully engaging with the user [21,23,30]. An important part
of such explanation components includes the ability of a recommender system
to evaluate its own confidence in the recommendations it makes. Thus, rec-
ommender systems need confidence models and the availability of an accurate
model of confidence can allow the recommender to respond more effectively to a
user’s needs. For example, by communicating its confidence along with its rec-
ommendations, a recommender system can help the user to better understand
the reliability of these recommendations. Alternatively, a confidence model can
help the recommender decide whether it is even appropriate to make a recom-
mendation at a given point in time; there is probably little point in making any
recommendations if all of the best options have a very low associated confidence.

We investigate the use of a feature-based confidence model in a critique-based
conversational recommender system. This model develops an estimate of confi-
dence in relation to each case feature during the course of a recommendation
session. High confidence indicates that the recommender is confident that the
value of a feature in the current recommended case is likely to be correct with
respect to the user’s needs. Low confidence means that the recommender system
is not sure about the current feature-value. We describe how these confidence
values can be presented to the user during recommendation. Users can help to
improve the recommender systems confidence level for features with low confi-
dence scores by providing feedback in relation to these features. We show that
in this way users can benefit from significantly shorter recommendation sessions
when compared to a standard critique-based recommender.

2 Related Work

The notion of confidence is relatively new to case-based reasoning and the first
introduction appears to be the work of Cheetham [6,7]. This work highlights how
CBR systems can estimate their own confidence in the solutions they propose
and how this can be used during reasoning. Cheetham [7] argues that in the
past CBR systems have often relayed confidence in an implicit manner. For
example, case similarity scores are often presented to users and interpreted as a
form of confidence or reliability information. Other systems have attempted to
simulate solutions to convince the user of their bona fides (e.g., CHEF’s recipe
simulator [13]) and the work of Massie et al. [16] has argued that confidence can
be conveyed through visualisation techniques by helping users to understand

438 J. Reilly et al.

the relationship between retrieved cases and through exposing deficiencies in
the reasoning process.

Recent work in the area of case-based explanation is also closely related to
the confidence concept, with explanations and justifications often used to encode
a form of confidence. For example, Nugent and Cunningham [23] propose that
providing explanatory feedback gives a user confidence in prediction tasks (such
as blood alcohol levels); that is, by alerting the user to when the system is not
confident of a prediction, it is more likely the system will be trusted in the
long term. In related work [21], McSherry shows that increased transparency
through explanation can prevent users from incorrectly inferring the relationship
between feature-values and the prediction. Instead McSherry’s ProCon system
provides the user with additional relational information, and ProCon informs
them as to whether a particular feature is a supporter or opposer of a given
prediction. Shimazu’s ExpertClerk [30] is an example of a CBR recommender
that uses explanation as a means of securing user confidence. ExpertClerk can
explain why it is proposing two contrasting product options, allowing the user
to provide feedback in different ways. The idea is that the explanations help
the user provide feedback which in turn helps the system make more confident
suggestions in the next cycle.

In general, it is probably more useful to think of explanation and confidence
as complementary concepts. Returning to the seminal work of Cheetham [6,7],
we see the development of the first explicit model of confidence in a CBR system.
This model is based on a set of confidence indicators and a method for converting
these indicators into a confidence value. Here case similarity (i.e., the similar-
ity between a retrieved case and a target problem) is seen as the fundamental
indicator of confidence alongside measures such as the typicality of the target
problem with respect to the case-base, the deviations in the solutions suggested
by the retrieved cases and the percentage of cases retrieved that suggest a spe-
cific solution. These indicators act as the raw confidence data and they must be
mapped on to a specific scale by the confidence model. Cheetham [7] describes
how this can be achieved using nonlinear regression techniques in order to fit
confidence indicators to solution errors. This provides a piecewise linear function
that allows confidence to be calculated from indicators such as similarity, typi-
cality and solution deviation. The resulting confidence measures can be usefully
applied in a variety of ways. For example, [7,8] describes how confidence is used
in the colour-matching application developed by GE to evaluate whether the
colour match suggested by the CBR system should be accepted or if the more
labour-intensive manual colour matching process should be started.

More recent work has seen Cheetham et al. [9] extend this original confidence
model by including up to 14 secondary confidence indicators derived from differ-
ent measures of case and solution similarity. These secondary indicators include
such things as: the sum of the similarities for retrieved cases with the best solu-
tion; the number of cases retrieved with the best solution etc. The point is that
there is an inferred relationship between the values of these indicators and the
confidence of a system in a given solution. This time they expose this relationship

Critiquing with Confidence 439

by adopting a machine learning approach. C4.5 [26] is used in a leave-one-out test
to determine which indicators are most predictive of confidence; those indica-
tors that are the best determiners of solution correctness. The resulting decision
tree can be used as the basis for a confidence calculation based on acceptable
error rates. This approach can lead to the production of a symbolic or numeric
estimate of confidence and this confidence model can be optimised as cases are
added and deleted from the case-base over time [9]. This approach has been
trialled in a number of applications (including residential real estate valuation,
diagnostic applications etc.) with some success; simply put, using confidence as
a way to evaluate when a CBR system should say “I don’t know” in response
to a target problem has been shown to improve overall system performance; see
also the work of McLaren [19] for related work.

3 Confidence-Based Critiquing

In this paper we are especially interested in the notion of confidence and the
idea that, by maintaining a model of confidence, a recommender system may
be able to provide a more effective platform for interactive recommendation. In
particular, we see such a model as a way to improve a recommender system in
two important ways. First, by presenting confidence values to the user we can
help him to better understand the recommendations that are made. For example,
if a system can provide a reliable estimate of its confidence then a user may be
better able to appreciate the likelihood that the recommendation will be a good
one. Indeed, more fine-grained confidence estimates, at the level of individual
features, may help the user to better appreciate gaps in the recommender’s
current understanding of his needs.

The second way that a confidence model can improve a recommender sys-
tem is by allowing confidence to influence the next recommendation cycle. For
example, when selecting a new case for the next cycle we can focus not only its
similarity to the current query but also on its confidence. In this way, we can
bias recommendation in the direction of cases that are similar to the current case
(in a manner that satisfies the current critique) and that the system is confident
about. Thus, all other things being equal, more confident cases are preferred
over less confident ones and, a less similar case may be preferred over a more
similar case if the system has a higher degree of confidence in it. In this section
we describe a model of confidence that is designed with conversational recom-
mendation systems in mind, specifically those that employ critiquing as their
primary source of feedback. This model is unique in that it is based on mod-
elling confidence at the individual feature-level and we show how this can be
used to generate a case-level model that can guide the recommendation process.

3.1 A Model of Confidence

In this section we discuss how a confidence model can be constructed from user
feedback during a recommendation session, relative to the feature values of the

440 J. Reilly et al.

cases that remain at a given recommendation cycle. During each new recom-
mendation cycle, the confidence of individual features is updated based on the
user’s recent feedback (in this case, their recent critique). We will describe how
confidence is computed differently for ordinal and nominal features and how
feature-level confidence can be combined to produce case-level confidence.

Modelling the Confidence of Ordinal Features. Consider a particular rec-
ommendation cycle where the recommended item is a camera with Price=$500.
How confident might the recommender system be that the user is looking for a
camera with this price? Our idea is to look at the past critiques that the user has
provided over the Price feature. Suppose that the user has applied the following
sequence of critiques [Price < 1000],[Price < 750],[Price > 400]. All of these
critiques satisfy the price of the current suggestion and so we might be relatively
confident about this price compared to a situation where the user’s past critique
sequence was say [Price < 1000],[Price < 400],[Price > 200]. In the latter only
66% of the critiques satisfy the current price. We can use this idea to calculate
confidence over ordinal features by simply calculating the percentage of past
critiques that a given feature value satisfies. In this way the confidence model,
mf for each each ordinal feature f is associated with a set of past critiques,
{c1, ..., cn} (see Equation 1) and the confidence value for a particular value, v of
f is given by Equation 2.

mf = {c1, ..., cn} (1)

Confidence(f, v) =

∑
∀ciεmf

satisfies(ci, v)

|mf | (2)

Modelling the Confidence of Nominal Features. The semantics of cri-
tiques differ when applied to nominal features compared to ordinal features. In
the latter, in our implementation, we only offer a not equal to critique, so that the
user can indicate [Manufacturer <> Sony] when they do not want a Sony cam-
era. Because of this it is not appropriate to use the confidence model developed
above for ordinal features; in experiments we found that the confidence values
did not develop in a useful manner, especially in relation to ordinal features with
large value spaces.

mf = {w1, ..., wk} (3)

Confidence(f, v) =
wv∑

∀wεmf
w

(4)

As a result, we took the opportunity to develop a different confidence model
for ordinal features, one in which we maintain a set of confidence weights for
each feature value; thus mf is made up of a set of feature weights as shown
in Equation 3. These weights are all initialised to 1 and during the course of
the recommendation session, based on the critiques that are applied for f , they
are updated using a variation of the Monte-Carlo method for reinforcement
learning [14]. Simply put, if a user uses the critique [Manufacturer <> Sony]

Critiquing with Confidence 441

then the weight associated with the Sony value for the Manufacturer feature
is decremented while the weights associated with all other feature values that
the user may be interested in are incremented. Computing an overall confidence
value for a given value of some nominal feature f is then a matter of computing
the weight of this value relative to the other values of this feature as shown in
Equation 4; note wv refers to the weight in mf that corresponds to the value v
for f .

Modelling the Confidence of a Case. In their own right the individual
feature-level confidence values can be used to provide the user with direct feed-
back about how confident the recommender system is about specific feature
values in the current recommended case; see Section 3.3. These confidence val-
ues can also be combined to produce an overall value of case-level confidence.
The most straightforward way to do this is by simply computing the average of
the feature-level confidence values as shown in Equation 5. In the next section
we will describe how these case-level confidence estimates can be used to guide
the recommendation process itself.

Confidence(C) =

∑
∀(f,v)εC Confidence(f, v)

|C| (5)

3.2 Confidence-Based Recommendation

Our recommendation algorithm is a version of comparison-based recommenda-
tion [17]. In each cycle a case is suggested based on the system’s view of the
user’s query. During each cycle the user is offered an opportunity to provide
feedback (in this case in the form of a critique—see lines 10-13 in Figure 1) and
the system’s view of the user is updated; in the current work the critiqued case
becomes the new query as per lines 14-16 in Figure 1. Usually the new query and
the critique are used as the basis for selecting the next case to recommend to
the user, by selecting a case, from those that satisfy the current critique, which
is maximally similar to the current query. However, in this work we change the
algorithm to take account of confidence during recommendation.

The first change sees the inclusion of a model update routine (see line 8 and
lines 17-22 of Figure 1) to update the current confidence model during each
cycle. This involves updating the feature-level models, mf , for each ordinal and
nominal feature as described above. The second change occurs in line 31 of Figure
1. Instead of simply selecting a new recommended case based on similarity to
the current query (q), the new case or item (i) is selected based on its quality,
where quality is a function of query similarity and its case-level confidence as
shown in Equation 6. Notice that the relative importance of confidence and query
similarity can be manipulated through the α parameter in the obvious way and
we will investigate different setting of this parameter in our evaluation.

Quality(q, i) = α • Confidence(i) + (1 − α) • Similarity(q, i) (6)

442 J. Reilly et al.

Fig. 1. High-level algorithm for confidence-influenced critiquing

Fig. 2. At the start of a session the system has low confidence in its recommendations

3.3 An Example Session

In this section we will look at an example walk-through of confidence-based
recommendation at work. We have incorporated the nominal and ordinal fea-
ture confidence values and the overall confidence score into a prototype Digital
Camera recommender system. There are many different ways in which we could
have achieved this, some more effective than others. For example, [15] describes
a live-user evaluation of a number of different explanation visual techniques
for a collaborative filtering movie recommender. From that evaluation, it was
found that presenting explanation information graphically was an effective way

Critiquing with Confidence 443

of conveying sometimes complex information, in a way that could be quickly
understood by the users.

Accordingly, our system presents the confidences values as percentage scores
and colour-codes them. Figures 2-4 illustrate how we have added the case-level
and feature-level scores to our standard recommendation interface; obviously
these interface changes are in the early stages of development and we expect
further refinements in due course. One of the advantages of placing the confi-
dence scores on the interface is that it allows users to understand which features
the system is confident about and which features it is uncertain about. We hope
that by providing feedback on these uncertain features users can help the rec-
ommender system to improve the quality of its recommendations during each
cycle and so reduce average session length. Figures 2-4 help to explain how indi-
vidual feature confidence and overall confidence values evolve during the course
of a session. In Figure 2, at the start of a recommendation session, the user is
presented with a low-end compact camera for 200 Euro. The feature confidence
values appear to the left of the individual features and are colour-coded to rep-
resent low (0-33% as red), medium (33%-66% as amber) and high (66% - 100%
as green) levels of confidence. Initially all feature confidence values are at 0%
and overall confidence in this recommendation is also 0%.

Figure 3 corresponds to a mid-session cycle. The user has made a series of
critiques and is presented with a Casio camera for 485 Euro. Up until now the
user has been concentrating on critiquing the Price, Format and Resolution
features, and the system’s confidence in these features has increased. The overall
confidence of the system is now 36%. In Figure 4, the user is recommended a
camera they are happy to purchase; a high-end Canon with an overall confidence

Fig. 3. Towards the middle of a session we find the recommender able to make sugges-
tions with increasing levels of confidence; many of the feature confidence values have
now increased and the overall confidence is now at 36%

444 J. Reilly et al.

Fig. 4. At the end of the session the user has selected their camera. At this point
system confidence is relatively high (68%)

of 68%. The system is now confident about 6 of the 10 features in the current
case and is uncertain about only two features (Model and Storage).

4 Evaluation

In the previous section we have described our confidence model and how its
confidence values might be usefully communicated to the user. One of the ad-
vantages of this approach is that it allows users to understand which features
the system is confident about and which features it is uncertain about. By pro-
viding feedback about these uncertain features users can help the recommender
system to improve the quality of its recommendations during each cycle and so
reduce average session length. In this section we test this hypothesis using a
well-known recommender dataset. In particular, we look at a range of factors in-
cluding how confidence changes over time during a typical recommender session
and its potential impact recommendation efficiency.

4.1 Setup

We follow the evaluation methodology as described in [17,18] to run a series
of test recommendation sessions over the well-known PC dataset. This dataset
consists of 120 PC cases each described in terms of 8 features including type,
manufacturer, processor, memory etc. We test two recommender systems. A
standard critiquing-based recommender (STD) serves as a baseline. Using this
recommender we assume that, during each cycle, our ‘users’ (see below) will se-
lect a random critique from among those that are compatible with their target
case. As an alternative, our confidence-based recommender system (CONF) de-
velops a confidence model and we assume that users will critique those features

Critiquing with Confidence 445

that present with low confidence values (with ties broken by random choice). By
default we set α to 0.75 unless otherwise stated.

As in [17,18], each case (base) in the case-base is temporarily removed and
used in two ways. First it serves as the basis for a set of queries constructed
by taking random subsets of its features. We focus on subsets of 1, 3 and 5
features to allow us to distinguish between hard, moderate and easy queries,
respectively. Second, we select the case that is most similar to the original base.
These cases serve as the recommendation targets for the experiments. Thus, the
base represents the ideal query for a ‘user’, the generated query is the initial
query that the ‘user’ provides to the recommender, and the target is the best
available case for the ‘user’, based on their ideal; this best case may not contain
the initial features themselves. Each generated query is a test problem for the
recommender, and in each recommendation cycle the ‘user’ picks a critique that
is compatible with the known target case; that is, a critique that, when applied
to the remaining cases, results in the target case being left in the filtered set of
cases. As mentioned above, the STD recommender sees users choosing among
the compatible critiques essentially at random, while CONF users critique low
confidence features. Each leave-one-out pass through the case-base is repeated 50
times and recommendation sessions terminate when the target case is returned.

4.2 The Evolution of Confidence

Our model is composed of a set of confidence scores for each feature of a rec-
ommendation. Each score indicates how confident the recommender is that the
value of a feature is correct for the user in question. In this section we consider
how confidence evolves during the course of a typical session.

We begin by looking at how these feature-level confidence scores tend to
change over time. We divide confidence into 3 value ranges—low, medium and
high—as discussed in Section 3. We measure the feature-level confidence val-
ues during each cycle and count the average number of low, medium and high
confidence features. The results (averaged over all cycles for queries containing
a single initial feature) are presented in Figure 5(a) as the average number of
features in each confidence category across a range of cycles, from the start of
a session up to cycle 14. During the first cycle most features, except the initial
feature, have low confidence but as the sessions progresses there is a gradual
increase in the number of features with medium and high levels of confidence.
For example, by the 7th cycle the recommender is highly confident about the
values of nearly half of the features. By the 14th cycle there are typically very
few (< 2) features falling in to the low confidence category.

Ideally we would like to see case-level confidence improve as sessions
progress—the feature-level results suggest that this is likely—and the case-level
results presented in Figure 5(b) confirm this. Once again these results are based
on single-feature initial queries and this time we present average case-level confi-
dence values over the first 14 cycles. Case-level confidence is seen to grow rapidly
for the first 8 cycles, up to just over 50%, and then levels off after this at about
60%. These results indicate that case similarity and confidence are combining

446 J. Reilly et al.

Fig. 5. (a) Feature confidence levels vs cycle number; and (b) Case confidence and
target similarity vs cycle number

effectively during recommendation to drive the recommender towards more con-
fident cases. The graph also show how similarity to the target case grows in line
with confidence; the correlation between confidence and target similarity is 0.89.

4.3 Recommendation Efficiency

One of the key measures of success for conversational recommenders is recom-
mendation efficiency or session length. Recommenders that present users with
good recommendations are likely to produce shorter and more successful cycles
[10,20]. Our basic assumption is that by conveying feature-level confidence val-
ues to the user, the system can encourage the user to provide more effective
feedback by highlighting the features that the system is not sure about. If the
user provides feedback on these features then our confidence-based approach
should converge on the target product more efficiently. In this section and the
next we explore different aspects of recommendation efficiency by comparing our
confidence-based approach to the standard critiquing approach. We measure rec-
ommendation efficiency in terms of session length—that is, the number of cycles
its takes for the user to find their target case—running the leave-one-out test
for the PC dataset for the STD and CONF variations. In fact we run 4 different
variations of CONF for different settings of α (0.25,...,1) in order to vary the
influence that the confidence model has on each cycle.

Summary Efficiency Results. Summary results are presented in Figure 6
as the average session lengths, over all query types, for the different system
variations. We can see that confidence-based recommendation has a clear and
significant advantage over standard critiquing, with all 4 CONF variations out-
performing the standard system; the best session length reduction (36%) is found
for CONF with α = 0.75. In general, allowing confidence to have a greater influ-
ence over each recommendation cycle tends to improve session lengths, but only
up to a point. Beyond α = 0.75 we find that session lengths tend to increase
again, although it is significant that even with α = 1 session lengths remain
shorter than STD; remember at α = 1 each recommendation cycle is influenced
by the applied critique and the confidence model only. So while confidence is

Critiquing with Confidence 447

Fig. 6. Session lengths of a confidence-based recommender vs a standard critiquing-
based recommendation

important during recommendation selection it is not optimal and case similarity
still has a role to play.

Query Difficulty. Earlier we mentioned how our initial queries could be divided
into different classes by their expected difficulty levels, in terms of the number
of initial features (1, 3 or 5) they contain. In Figure 7(a) we present the average
session length results for each of the 5 recommender system variations, grouped
according to different levels of query difficulty. Once again, the results point
to a significant advantage due to confidence-based critiquing. In all cases the
confidence-based systems present with shorter sessions than STD, but the scale
of the reduction is influenced by query difficulty. In particular we see the greatest
difference in session length for the most difficult queries. For example, for these
queries the average session length for STD is about 10, compared to 5.4 (for
CONF with α = 0.75), a reduction of 46%. This reduction falls to about 40%
for moderate queries (containing 3 initial features) and to just over 20% for
the simplest queries with 5 fully specified features. A similar trend is seen for
other values of α. This dependency on query difficulty is perhaps to be expected
perhaps since easier queries naturally result in shorter sessions and thus there
are fewer opportunities for low-confidence features to be critiqued and hence
fewer opportunities for their benefit to be felt.

4.4 Preference Tolerance

The previous evaluations assume the user is looking for a very particular product
and that the recommendation session terminates only when they have found
this product. In reality, it is likely that users will be more flexible with their
requirements and that they may be satisfied with close matches to their ideal
product. The question then becomes whether this greater tolerance of partial
target matches has any significant impact on the performance of the confidence-
based approach relative to the standard critiquing approach. To evaluate this

448 J. Reilly et al.

Fig. 7. Average session lengths for (a) varying query difficulty and, (b) varying pref-
erence tolerance

idea, we relaxed the termination condition—so that a session could terminate
once a case was recommended that was within a set similarity threshold of the
ideal target—and we repeated the above efficiency test.

The results are presented above in Figure 7(b) for α=0.75. As expected,
relaxing the terminating condition results in shorter recommendation for both
the standard critiquing-based approach and the confidence-based approach. For
example, at the 100% similarity threshold level—this corresponds to the previous
setup where the user is looking for an exact target match—sessions take on
average almost 10 cycles for standard critiquing, but fall to about 6 cycles if the
user is willing to accept a 70% match. Once again, the confidence-based system
out-performs the STD system for all levels of preference tolerance. At the lowest
similarity threshold level (60%), the confidence-influenced system reduces session
lengths by 10.2%, relative to STD, but this then rises to above 45% for similarity
thresholds of 80% and above.

5 Conclusions

Explanations and confidence have an important role to play in recommender
systems both as a way of engendering user trust and as a means by which the
system can judge how best to respond to users. We have presented a confidence
model that is designed for conversational recommender systems, in general, and
critiquing-based approaches in particular. We have described how this model can
be developed, through user feedback, by estimating confidence at the feature-
level and at the case-level. In turn, we have proposed how this model can be
used at recommendation time in order to inform users about the recommender’s
current confidence, in the hope that users will focus their feedback in a way
that helps to improve overall confidence. We have also described how case-level
confidence can be used to good effect during recommendation, by supplementing
traditional case similarity, in order to guide the recommender towards more
confident suggestions. Finally, we have demonstrated how this confidence-based
recommendation strategy helps to improve recommendation efficiency, leading
to reductions of up to 50% in average session length.

Critiquing with Confidence 449

References

1. David W. Aha, Leonard A. Breslow, and Héctor Mun̂oz-Avila. Conversational
Case-based Reasoning. Applied Intelligence, 14(1):9–32, 2001.

2. J. Allen, G. Ferguson, and A. Stent. An Architecture for More Realistic Conversa-
tional Systems. In Proceedings of Intelligent User Interfaces 2001 (IUI-01), pages
1–8, 2001. Santa Fe, NM.

3. D. Bridge. Product Recommendation Systems: A New Direction. In D. Aha and
I. Watson, editors, Workshop on CBR in Electronic Commerce at The International
Conference on Case-Based Reasoning (ICCBR-01), 2001. Vancouver, Canada.

4. R. Burke. Interactive Critiquing for Catalog Navigation in E-Commerce. Artificial
Intelligence Review, 18(3-4):245–267, 2002.

5. R. Burke, K. Hammond, and B.C. Young. The FindMe Approach to Assisted
Browsing. Journal of IEEE Expert, 12(4):32–40, 1997.

6. W. Cheetham. Case-Based Reasoning with Confidence. Ph.D. Thesis, Rensselaer
Polytechnic Institute, 1996.

7. W. Cheetham. Case-Based Reasoning with Confidence. In E. Blanzieri and
L. Portinale, editors, Proceedings of the Fifth European Conference on Case-Based
Reasoning, EWCBR ’00, pages 15–25. Springer, 2000. Trento, Italy.

8. W. Cheetham. Benefits of Case-Based Reasoning in Color Matching. In D. Aha
and I. Watson, editors, Proceedings of the International Conference on Case-Based
Reasoning (ICCBR-01), pages 589–596. Springer-Verlag, 2001. Vancouver, Canada.

9. W. Cheetham and J. Price. Measures of Solution Accuracy in Case-Based Rea-
soning Systems. In P. A. González Calero and P. Funk, editors, Proceedings of
the European Conference on Case-Based Reasoning (ECCBR-04), pages 106–118.
Springer, 2004. Madrid, Spain.

10. M. Doyle and P. Cunningham. A Dynamic Approach to Reducing Dialog in On-
Line Decision Guides. In E. Blanzieri and L. Portinale, editors, Proceedings of the
Fifth European Workshop on Case-Based Reasoning, (EWCBR-00), pages 49–60.
Springer, 2000. Trento, Italy.

11. B. Faltings, P. Pu, M. Torrens, and P. Viappiani. Designing Example-Critiquing
Interaction. In Proceedings of the International Conference on Intelligent User
Interface(IUI-2004), pages 22–29. ACM Press, 2004. Funchal, Madeira, Portugal.

12. M. Göker and C. Thompson. Personalized Conversational Case-based Recommen-
dation. In E. Blanzieri and L. Portinale, editors, Proceedings of the 5th European
Workshop on Case-based Reasoning, (EWCBR-00), pages 99–111. Springer, 2000.

13. K.J. Hammond. CHEF: A Model of Case-Based Blanning. In Proceedings of
AAAI-86. AAAI Press/MIT Press, 1986. Cambridge, MA.

14. M.E. Harmon. Reinforcement Learning: A Tutorial. 1996.

15. Jonathan L. Herlocker, Joseph A. Konstan, and John Riedl. Explaining Collab-
orative Filtering Recommendations. In Proceedings of the 2000 ACM Conference
on Computer Supported Cooperative Work, pages 241–250, 2000. ACM Press.

16. S. Massie, S. Craw, and N. Wiratunga. Visualisation of Case-Based Reasoning
for Explanation. In Proceedings of the the Explanation Workshop of the Seventh
European Conference on Case-Based Reasoning (ECCBR-04), pages 135–144, 2004.
Madrid, Spain.

17. L. McGinty and B. Smyth. Comparison-Based Recommendation. In Susan Craw,
editor, Proceedings of the Sixth European Conference on Case-Based Reasoning
(ECCBR-02), pages 575–589. Springer, 2002. Aberdeen, Scotland.

450 J. Reilly et al.

18. L. McGinty and B. Smyth. Tweaking Critiquing. In Proceedings of the Workshop
on Personalization and Web Techniques at the International Joint Conference on
Artificial Intelligence (IJCAI-03). Morgan-Kaufmann, 2003. Acapulco, Mexico.

19. B. McLaren and K. Ashley. Helping a CBR Program Know What It Knows. In
D. Aha and I. Watson, editors, Proceedings of the International Conference on
Case-Based Reasoning (ICCBR-01), pages 377–391. Springer-Verlag, 2001. Van-
couver, Canada.

20. D. McSherry. Minimizing Dialog Length in Interactive Case-based Reasoning. In
Bernhard Nebel, editor, Proceedings of the Seventeenth International Joint Con-
ference on Artificial Intelligence (IJCAI-01), pages 993–998. Morgan Kaufmann,
2001. Seattle, Washington.

21. D. McSherry. Explanation in Case-based Reasoning: An Evidential Approach. In
B. Lees, editor, Proceedings of the Eighth UK Workshop on Case-Based Reasoning
(UKCBR-03), page 4755, 2003.

22. Q.N. Nguyen, F. Ricci, and D. Cavada. User Preferences Initialization and Integra-
tion in Critique-Based Mobile Recommender Systems. In Proceedings of Artificial
Intelligence in Mobile Systems 2004, in conjunction with UbiComp 2004, pages
71–78. Iniversitat des Saarlandes Press., 2004. Nottingham, UK.

23. C. Nugent and P. Cunningham. A Case-Based Explanation System for ’Black-
Box’ Systems. In Proceedings of the Explanation Workshop of the 7th European
Conference on Case-Based Reasoning (ECCBR-04), pages 155–164, 2004. Madrid,
Spain.

24. P. Pu and B. Faltings. Decision Tradeoff Using Example Critiquing and Constraint
Programming. Special Issue on User-Interaction in Constraint Satisfaction. CON-
STRAINTS: an International Journal., 9(4), 2004.

25. P. Pu, B. Faltings, and M. Torrens. User-Involved Preference Elicitation. In Pro-
ceedings of the Workshop on Configuration at the Eighteenth International Joint
Conference on Artificial Intelligence (IJCAI 2003), 2003. Acapulco, Mexico.

26. J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
27. J. Reilly, K. McCarthy, L. McGinty, and B. Smyth. Dynamic Critiquing. In

P. A. González Calero and P. Funk, editors, Proceedings of the European Conference
on Case-Based Reasoning (ECCBR-04), pages 763–776. Springer, 2004. Madrid,
Spain.

28. J. Reilly, K. McCarthy, L. McGinty, and B. Smyth. Incremental Critiquing. In
M. Bramer, F. Coenen and T. Allen, editors, Research and Development in Intel-
ligent Systems XXI. Proceedings of AI-2004, pages 101–114. Springer, 2004. Cam-
bridge, UK.

29. J. Ben Schafer, Joseph A. Konstan, and John Riedl. E-Commerce Recommendation
Applications. Data Mining and Knowledge Discovery, 5(1/2):115–153, 2001.

30. H. Shimazu, A. Shibata, and K. Nihei. ExpertGuide: A Conversational Case-based
Reasoning Tool for Developing Mentors in Knowledge Spaces. Applied Intelligence,
14(1):33–48, 2002.

31. B. Smyth and L. McGinty. An Analysis of Feedback Strategies in Conversational
Recommender Systems. In P. Cunningham, editor, Proceedings of the Fourteenth
National Conference on Artificial Intelligence and Cognitive Science (AICS-2003),
2003. Dublin, Ireland.

Mapping Goals and Kinds of Explanations

to the Knowledge Containers
of Case-Based Reasoning Systems

Thomas R. Roth-Berghofer1,2 and Jörg Cassens3

1 Knowledge-Based Systems Group, Department of Computer Science,
University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern

2 Knowledge Management Department,
German Research Center for Artificial Intelligence DFKI GmbH,

Erwin-Schrödinger-Straße 57, 67663 Kaiserslautern, Germany
thomas.roth-berghofer@dfki.uni-kl.de

3 Norwegian University of Science and Technology (NTNU),
Department of Computer and Information Science (IDI),

7491 Trondheim, Norway
jorg.cassens@idi.ntnu.no

Abstract. Research on explanation in Case-Based Reasoning (CBR) is
a topic that gains momentum. In this context, fundamental issues on
what are and to which end do we use explanations have to be reconsid-
ered. This article presents a prelimenary outline of the combination of
two recently proposed classifications of explanations based on the type
of the explanation itself and user goals which should be fulfilled. Further
on, the contribution of the different knowledge containers for modeling
the necessary knowledge is examined.

1 Why Bother to Explain?

In everyday human-human interactions explanations are an important vehicle to
convey information in order to understand one another. Explanations enhance
the knowledge of the communication partners in such a way that they accept
certain statements. They understand more, allowing them to make informed
decisions. According to Schank [1] explanations are the most common method
used by humans to support their decision making.

This is supported by Spieker’s investigation into natural language explana-
tions in expert systems [2]. We identify some typical reactions of humans as soon
as we cannot follow a conversation:

– we ask our conversation partner about concepts that we did not understand,
– we request justifications for some fact or we ask for the cause of an event,
– we want to know about functions of concepts,
– we want to know about purposes of concepts, and
– we ask questions about his or her behavior and how he or she reached a

conclusion.

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, LNCS 3620, pp. 451–464, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

452 T.R. Roth-Berghofer and J. Cassens

All those questions and answers are used to understand what has been said and
meant during a simple conversation. An important effect of explanations is that
the process of explaining certainly has some effect on one’s trust in the compe-
tence of a person or machine: We keep our trust, we increase or decrease it. At
least, providing explanations makes decisions more transparent, and motivates
the use to further use the system.

The need for explanations provided by knowledge-based systems is well-
known and was addressed by such fields as expert systems. For knowledge-based
systems, explanations and knowledge acquisition are the only two communica-
tions channels with which they interact with their environment.

The adequacy of explanations as well as of justifications is dependent on
pragmatically given background knowledge. What counts as a good explanation
in a certain situation is determined by context-dependent criteria [3,4].

The more complex knowledge-based systems get, the more explanation capa-
bilities the users expect when using such systems. This requirement was recog-
nized early on in expert systems research and development [5,6,7]. Considerable
results were produced, but research activity decreased together with the gen-
eral decline of expert systems research in the 1990s. The major problems in
connection with classical expert systems seemed to be solved.

At the same time there was an increasing interest on this topic in Case-Based
Reasoning (CBR) [8,9]. At the turn of the century, we find the issue discussed
again in the context of knowledge-based systems [10,11]. Recently, we can see
a renewed focus in CBR on this track of research. ECCBR 2004 featured, for
example, a workshop on Explanation in Case-Based Reasoning as well as a couple
of papers on explanation at the main conference [12,13].

Research on explanation is of interest today because it can be argued that
the whole scenario on research on knowledge-based systems has changed [14]:
knowledge-based systems are no longer considered as boxes that provide a full
solution to a problem. Problem solving is seen as an interactive process (a socio-
technical process). Problem description as well as the special input can be incom-
plete and changing. As a consequence, there has to be communication between
human and software agents. Communication requires mutual understanding that
can be essentially supported by explanations. Such explanations can improve the
problem solving process to a large degree.

It is important to note here that the term explanation can be interpreted
in two different ways. One interpretation deals with explanations as part of
the reasoning process itself. The other interpretation deals with usage aspects:
making the reasoning process, its results, or the usage of the result transparent
to the user. In this paper, we will focus on the second interpretation.

The remainder of this paper is organized as follows: In the next section, we
describe the setting for explanation-aware CBR systems as being a component
of socio-technical systems. In section 3, we present two perspectives on expla-
nation that can help understand and organize what to explain and when. The
subsequent section focusses on knowledge containers and their contribution to
the explanation capabilities of CBR systems. In Section 5, we propose a system

Mapping Goals and Kinds of Explanations 453

design process achitecture. We explore further on the relations of explanation
goals, explanation kinds, and knowledge containers in a simplified example. We
conclude our paper with an outlook on further research.

2 Explanation in Socio-Technical Systems

Whenever one talks about a ‘system’ one has to clarify what is meant by that
term. In decision- support scenarios, the human and the computer are the de-
cision system. Such socio-technical systems can for example be modelled with
the help of the Actor Network Theory, ANT ([15,16]). The basic idea here is
fairly simple: whenever you do something, many influences on how you do it
exist. For instance, if you visit a conference, it is likely that you stay at a hotel.
How you behave at the hotel is influenced by your own previous experience with
hotels, regulations for check-in and check-out, the capabilities the hotel offers
you (breakfast room, elevators).

So, you are not performing from scratch, but are influenced by a wide range
of factors. The aim of the ANT is to provide a unified view on these factors and
your own acting. An actor network in this notion is the act linked together with
all of its influencing factors (which again are linked), producing a network (see
[16, p. 4]).

In this network, you find both technical and non-technical elements. In the
ANT, technological artifacts can stand for human goals and praxis. Hotel keys,
for example, are often not very handy, because the hotel owner has inscribed
his intention (that the keys do not leave the hotel) into metal tags (which is
why the guests subscribe to the owners intention: they do not want to carry
this weight). A software system for workflow management is a representation of
organizational standards in the company where it is used (and makes human
users follow these standards).

One advantage of the ANT in the setting of intelligent systems is that it
already comprises technical artifacts and humans in the same model. Humans
and artifacts are to a certain degree exchangeable and can play the same role in
the network. But in contrast to traditional artifacts, which are merely passive
(black boxes in which human interests are subscribed) or which active role is
restricted to translating intentions of the designer into changes of the praxis
of the user, AI systems play a more active role. It has also been argued that
intelligent systems have to show certain capabilities usually ascribed to humans
in order to interact with the user in a meaningful way [17], and we would include
the ability to give good explanations.

Moreover, the issue of ‘trust’ is generally important for socio-technical sys-
tems. ‘Trust’ can be defined in different ways, for the purpose of this paper it is
sufficient to describe the problem as to whether and to which degree a human
is willing to accept proposals from technical components, and to which degree
he is willing to give up control. For a detailed survey on different definitions of
trust in the context of automation systems, see e.g. [18]. In the context of expert
systems, it has been shown that explanation capabilities have a large effect on
the user’s acceptance of advices given by the system [19].

454 T.R. Roth-Berghofer and J. Cassens

To summarize, the ability of an IT system to give good explanations is impor-
tant for the functioning of a socio-technical system. Good explanations depend
on the context, it would therefore be helpful to be able to include an analysis
into the system design process.

3 Views on Explanations

In this section, we outline two perspectives on explanation: The Explanation
Goals focus on user needs and expectations towards explanations and help to
understand what the system has to be able to explain and when to explain
something. The Kinds of Explanations focus on different types of explanations,
their usefulness for the user, and how they can be represented in the different
knowledge-containers [20].

Any kind of interactivity implies that one has some kind of user model that
provides answers based on what the user knows and what he or she does not
know [21]. The user (probably) knows about the used vocabulary, about general
strategies, policies, or procedures to follow, and about (most of) the standard
situations in the given problem domain. But he or she may not know all the
details and data, about rare cases and exceptions, and about consequences of
combinatorial number of interactions of different alternatives. Then, a basic ap-
proach to explanation would be to not comment on routine measures (without
being asked), to emphasize on exceptional cases (e.g., exceptions from defaults
and standards, exceptions from plausible hypotheses), and to allow for further
questions.

It is hard to anticipate user needs due to two main reasons [21]: First, not all
of the needs must be met, but those important to the user. Second, all deficits and
their estimated importance depend on the specific user. Thus, personalization is
a basic requirement, not only some added value.

3.1 Explanation Goals

Sørmo et al. [22,23] suggest several explanation goals for Case-Based Reasoning
systems (which are valid for knowledge-based systems, in general). They also
argue that those goals are indeed reachable because case-based reasoners are
mostly made to perform limited tasks for a limited audience, thus allowing to
make reasonable assumptions about the user’s goals and the explanation context.
The identified explanation goals are:

Transparency: Explain how the system reached the answer
“I had the same problem with my car yesterday, and charging the battery fixed it.”

The goal of an explanation of this kind is to impart an understanding of how the
system found an answer. This allows the users to check the system by examining
the way it reasons and allows them to look for explanations for why the system
has reached a surprising or anomalous result. If transparency is the primary
goal, the system should not try to oversell a conclusion it is uncertain of. In other

Mapping Goals and Kinds of Explanations 455

words, fidelity is the primary criterion, even though such explanations may place
a heavy cognitive load on the user. The original how and why explanations of
the MYCIN system [24] would be good examples.

This goal is most important with knowledge engineers seeking to debug the
system and possibly domain experts seeking to verify the reasoning process [10].
It is also reasonable to think that in domains with a high cost of failure it can be
expected that the user wishes to examine the reasoning process more thoroughly.

Justification: Explain why the answer is a good answer
“You should eat more fish - your heart needs it!”
“My predictions have been 80% correct up until now.”

This is the goal of increasing the confidence in the advice or solution offered by
the system by giving some kind of support for the conclusion suggested by the
system. This goal allows for a simplification of the explanation compared to the
actual process the system goes through to find a solution. Potentially, this kind
of explanation can be completely decoupled from the reasoning process, but it
may also be achieved by using additional background knowledge or reformulation
and simplification of knowledge that is used in the reasoning process.

Empirical research suggests that this goal is most prevalent in systems with
novice users [25], in domains where the cost of failure is relatively low, and in
domains where the system represents a party that has an interest in the user
accepting the solution.

Relevance: Explain why a question asked is relevant
“I ask about the more common failures first, and many users do forget to connect
the power cable.”

An explanation of this type would have to justify the strategy pursued by the
system. This is in contrast to the previous two goals that focus on the solution.
The reasoning trace type of explanations may display the strategy of the system
implicitly, but it does not argue why it is a good strategy. In conversational
systems, the user may wish to know why a question asked by the system is
relevant to the task at hand. It can also be relevant in other kinds of systems
where a user would like to verify that the approach used by the system is valid. In
expert systems, this kind of explanations was introduced by NEOMYCIN [24].

Conceptualization: Clarify the Meaning of Concepts
“By ‘conceptualization’ we mean the process of forming concepts and relations be-
tween concepts.”

One of the lessons learned after the first wave of expert systems had been ana-
lyzed was that the users did not always understand the terms used by a system.
This may be because the user is a novice in the domain, but also because differ-
ent people can use terms differently or organize the knowledge in different ways.
It may not be clear, even to an expert, what the system means when using a
specific term, and he may want to get an explanation of what the system means
when using it. This requirement for providing explanations for the vocabulary
was first identified by Swartout and Smoliar ([7]).

456 T.R. Roth-Berghofer and J. Cassens

Learning: Teach the user about the domain
“When the headlights won’t work, the battery may be flat as it is supposed to deliver
power to the lights.”

All the previous explanation goals involve learning – about the problem domain,
about the system, about the reasoning process or the vocabulary of the system.
Educational systems, however, have learning as the primary goal of the whole
system. In these systems, we cannot assume that the user will understand even
definitions of terms, and may need to provide explanations at different levels of
expertise. The goal of the system is typically not only to find a good solution
to a problem, but to explain the solution process to the user in a way that
will increase his understanding of the domain. The goal can be to teach more
general domain theory or to train the user in solving problems similar to those
solved by the system. In other words, the explanation is often more important
than the answer itself. Systems that fulfill the relevance and transparency goals
may have some capabilities in this area, but a true tutoring system must take
into account how humans solve problems. It cannot attempt to teach the user a
problem solving strategy that works well in a computer but that is very hard to
reproduce for people.

For the remainder of this paper we will not focus on the learning goal since
it is specifically targeted towards educational systems.

3.2 Kinds of Explanations

Roth-Berghofer [26] looks at explanations from a knowledge-container perspec-
tive. He addresses the issue of what can naturally be explained by the four
containers (see Section 4).

One starting point is the work of Spieker [2] on the usefulness of explanations.
According to Spieker, there are five useful kinds of explanations he discusses in
the context of expert systems:

Conceptual Explanations: They are of the form ‘What is . . . ?’ or ‘What is the
meaning of . . . ?’. The goal of conceptual explanations is to build links between
unknown and known concepts. Conceptual explanations can take different forms:

– Definition: “What is a bicycle?” “A bicycle is a land vehicle with two wheels in
line. Pedal cycles are powered by a seated human rider. A bicycle is a form of
human powered vehicle.”

– Theoretical proposition: “What is force?” “Force is Mass times Acceleration.”
– Prototypical example: “What is a bicycle?” “The thing, the man there crashed

with.”
– Functional description: “What is a bicycle?” “A bicycle serves as a means of

transport.”

Conceptual explanations are answers to extensional or descriptional questions.

Why-explanations: Why-explanations provide causes or justifications for facts
or the occurrence of events. Whereas the first concept is causal in nature and

Mapping Goals and Kinds of Explanations 457

not symmetrical, the latter only provides evidence for what has been asked for.
For example:

– Justification: “Why is it believed that the universe expands?” “Because we can
observe a red shift of the light emitted by other galaxies.”

– Cause: “Why is it believed that the universe expands?” “Because, according to
the Big Bang theory, the whole matter was concentrated at one point of the
universe and the whole matter moves away from each other.”

Why-explanations explain single events or general laws and can consist of single
causes/justifications (among others) or a complete list of causes/justifications.

How-explanations: How-explanations are a special case of why-explanations,
describing processes that lead to an event by providing a causal chain. They
are similar to action explanations (see below) that answer how-questions. How-
questions ask for an explanation of the function of a device, for example:

– “How does a combustion engine work?” “A combustion engine is an engine that
operates by burning its fuel.”

Purpose-explanations: The goal of Purpose-explanations is to describe the
purpose of a fact or object. Typical questions are of the form ‘What is . . . for?’
or ‘What is the purpose of . . . ?’, for example:

– “What is a valve for?” “The valve is used to seal the intake and exhaust ports.”

Cognitive Explanations: Cognitive Explanations explain or predict the be-
havior of ‘intelligent systems’ on the basis of known goals, beliefs, constraints,
and rationality assumptions. There are action and negative explanations:

– Action explanation: “Why was this seat post selected?” “For the given price,
only one other seat post for this bicycle is currently available. But that seat post
is too short.”

– Negative explanation: “Why was no carrier chosen?” “A carrier is only available
for touring bikes. The user did not choose a touring bike.”

4 Knowledge Containers

Knowledge containers, according to Richter [27,28], contain and structure the
knowledge of a knowledge-based system. A knowledge container is a collection
of knowledge that is relevant to many tasks. For rule-based systems, for instance,
one can easily identify facts and rules as important knowledge containers. For
CBR systems, Richter describes four knowledge containers: vocabulary, similarity
measures, adaptation knowledge, and case base. They are depicted in Fig. 1.

The vocabulary defines attributes, predicates, and the structure of the domain
schema. Thus the vocabulary forms the basis for all of the other three containers.
Hierarchies, if available, can be used to order domain concepts.In object-oriented

458 T.R. Roth-Berghofer and J. Cassens

Case base

Vocabulary

Similarity
measures

Adaptation
knowledge VocabularyV

oc
ab

ul
ar

y

Fig. 1. The four knowledge containers of a CBR system

models, inheritance (is-a) and decomposition (part-of) induce hierarchical order-
ings quite naturally. Additional ontological relations can further add hierarchical
information. Those hierarchies can be exploited for conceptual and (partly) for
purpose explanations (because the ordering often is inferred from specializa-
tion/generalization). Other easily available information is information on the
kind of attribute. Input attributes may be used to infer information for retrieval
attributes as well as for filling output attributes of a query or a case. For ex-
ample, imagine a CBR system for PC configuration in an electronic commerce
scenario. The request for a multimedia PC triggers completion rules for filling
such retrieval attributes as processor and graphic card accordingly. Not spec-
ified attributes of the query automatically become output attributes. The CBR
system now could use the information for cognitive explanations based on why
it filled the retrieval attributes etc.

The knowledge that determines how the most useful case is retrieved and by
what means the similarity is calculated, is held by the similarity measures con-
tainer, which can be further divided into the sub-containers for local similarity
measures and amalgamation functions. Each local measure compares values of
one attribute of a case. It contains domain knowledge, e.g., about different pro-
cessor speeds or graphic cards. Amalgamation functions are task oriented and
contain utility knowledge (relevances for the task, e.g., the importance of the
graphic card vs. the importance of the processor speed when selecting a multi-
media PC). The already mentioned completion rules provide knowledge about
dependencies between attributes.

The adaptation knowledge container covers the knowledge for translating a
prior solution to fit a given query and the case base stores the experience of
the CBR system, i.e., the cases. Knowledge about the types of cases used by

Mapping Goals and Kinds of Explanations 459

Table 1. Knowledge containers and their contribution to explanations [26]

Knowledge container contributes to

Vocabulary conceptual explanations,
why-explanations,
how-explanations, and
purpose explanations

Similarity measures why-explanations,
how-explanations,
purpose explanations, and
cognitive explanations

Adaptation knowledge why-explanations,
how-explanations, and
cognitive explanations

Case base why-explanations,
how-explanations, and
context

the case-based reasoner, such as homogeneous vs. heterogeneous and episodic vs.
prototypical cases [29] as well as cases of rule vs. constraint type [30], structures
this knowledge container further.

Table 1 shows an overview of which knowledge container contributes to which
kind of explanation (see [26] for details).

5 Exploring the Relations of Goals and Kinds

As we have outlined before, there is a need to take the context of explanations
as well as different goals with and types of explanation into account. A method-
ology for the development of explanation-aware CBR systems should therefore
comprise components for the workplace analysis (like ANT described in section 2
or activity theory [31]) as well as methods to translate the analytical findings
into system synthesis. Further on, this process has to be integrated with methods
for the continuous maintenance of the CBR system [32]. We propose therefore a
overall process architecture as depicted in figure 2.

During the remainder of this article, we will propose a 3-step process to
identify which explanations a CBR system should be able to give and to under-
stand how to make the necessary knowledge accessible in the different knowledge
containers (see the grey box in figure 2):

1. Use the Explanation Goals perspective to identify user needs for explanations
from a user model and system view which takes the usage situation into
account.

2. Use the Explanation Kinds view to find useful prototypical explanations and
assess the requirements for contents that have to be modeled into the system.

3. Use the different Knowledge Containers to store the necessary knowledge to
support the different kinds of explanation identified.

460 T.R. Roth-Berghofer and J. Cassens

Fig. 2. The overall process architecture

The mapping of goals to kinds and kinds to containers, respectively, is not nec-
essarily a one to one relation which can be followed mechanically. The mapping
proposed in this paper gives rather hints for the modeling task by focusing the
work of the system designer on probable solutions.

As a simplified example, we look at a case-based diagnostic system for engine
failures. We have a mixed initiative dialogue system where the system can ask
questions about the engine status and the user can voluntarily provide informa-
tion he deems important.1 The system can give detailed explanations on possible
causes for the problems as well as advice on how to avoid future occurrences. It
is supportive, e.g., the user should be enabled to understand similar situations
in the future without having to rely on the system.

There is no adaptation of cases since we are purely interested in the possible
cause of a failure and not a solution to solve this problem. Further on, we assume
the system to be capable of generating plausible and justified explanations itself
without going into details about the underlying mechanism.

Conceptualization goal fullfilled by a conceptual explanation (defini-
tion): During the symptom assessment, the system asks the user to fill in the
specific gravity of the fuel. The user is not familiar with the term specific gravity
so he asks the system to explain this. The system gives this explanation in the
form of a conceptual explanation, in our example as a definition:
User: “What is the specific gravity?”
System: “It is a measure of the density of a liquid relative to the density of water,
with water having a specific gravity of 1.0.”

Following our argument on the contribution of different Knowledge Contain-
ers to explanation kinds, the necessary knowledge for this kind of answers would
come from the vocabulary of the system. Undoubtedly, conceptual explanations

1 Please, keep in mind that there are other possible human computer interfaces than
natural language dialogue systems as depicted here for exemplary reasons. For ex-
ample, one possibility is to provide the user with pre-formulated queries from which
he or she can choose the most appropriate one.

Mapping Goals and Kinds of Explanations 461

need much more knowledge than provided in most CBR systems, even in knowl-
edge rich systems such as CREEK [33,34], where general (domain-dependent)
knowledge is represented as semantic network.2

Relevance goal fullfilled by a causal why-explanation: The user can
further on ask to know why the system asked this specific question. The sys-
tem should give explanations which set the question asked into context with
the symptoms already known. This can be described in terms of a causal why-
explanation:
User: “Why is the density of the fuel interesting?”
System: “Air/Fuel ratio is based on pounds of AIR to pounds of FUEL. Changing
the specific gravity of your fuel can have a profound affect on the A/F ratio of your
engine since carburetors are metered by volume.”

Again, the necessary knowledge to answer this question can be found in
the vocabulary. This causal why-explanation will typically rely on the domain
knowledge modelled in the vocabulary of the system.

Justification goal fullfilled by a theoretical conceptual explanation:
The system finally presents a solution to the user which requires him to change
the spark lead time. In this situation, the user might want to know why this
is a solution. This goal can be satisfied by presenting a theoretical conceptual
explanation:
User: “How is this adjustment related to the problem of too much CO2 in the
exhaust gases?”
System: “Different fuels and engine setups require different spark lead times. When
using a wrong timing, the combustion process is suboptimal, and this will lead to
high CO2 values.”

Also here, the necessary knowledge can best be stored in the vocabulary
container. In order to answer this question we need some explicitly modeled
domain knowledge. A knowledge poor CBR system could only point to cases
and its own similarity measure and leave it to the user to find the explanation
himself.

Transparency goal fullfilled by a cognitive explanation: The user might
not be fully satisfied and tries to understand how the system came up with this
answer. The system can explain the reasoning process using a how explanation:
User: “How did you come up with this answer?”
System: “Looking at my case base we can see that the most relevant cases had
problems with the spark lead time as well, with only the exception of those cases
where the problem can be explained by the wrong type of fuel.”

The explanatory knowledge for this question can be found in the similarity
measure of the system. The system needs to be able to explain why it delivered
a certain case in terms of its similarity assessment. The case base container
provides the context for the explanation by restricting the problem space to the

2 In CREEK, explanations are generated to explain reasoning steps or to justify con-
clusions to the user, but mainly for the internal use of the reasoner.

462 T.R. Roth-Berghofer and J. Cassens

available cases. Please note that a knowledge rich CBR system might be able
to explain the absence of certain features in the solution case by referring to its
domain knowledge, stored in the vocabulary.

6 Conclusions and Future Research Directions

We have outlined a unified view on explanations in Case-Based Reasoning, which
takes both the goals of the user and the type of an explanation into account.
Both perspectives are to a certain degree independent from each other.

The next step in our fellow work is to integrate an explanation goals view with
methods for the analysis of workplace situations like ANT and activity theory (as
proposed, e.g., by Cassens [31]) and integrate the explanation kind perspective
with existing design and maintenance methodologies (such as Inreca [35] and
Siam [32]).

We want to develop further our structural view on explanations and support-
ing knowledge available in CBR systems, with the ultimate goal of providing a
methodology on how to develop explanation-aware CBR systems in the future.

References

1. Schank, R.C.: Explanation Patterns: Understanding Mechanically and Creatively.
Lawrence Erlbaum Associates, Hillsdale, NJ (1986)

2. Spieker, P.: Natürlichsprachliche Erklärungen in technischen Expertensystemen.
Dissertation, University of Kaiserslautern (1991)

3. Cohnitz, D.: Explanations are like salted peanuts. In Beckermann, A.,
Nimtz, C., eds.: Proceedings of the Fourth International Congress of the So-
ciety for Analytic Philosophy. (2000) http://www.gap-im-netz.de/gap4Konf/
Proceedings4/titel.htm [Last access: 2004-08-11].

4. Leake, D.B.: Goal-Based Explanation Evaluation. In: Goal-Driven Learning. MIT
Press, Cambridge (1995) 251–285

5. Swartout, W.: What Kind of Expert Should a System be? XPLAIN: A System for
Creating and Explaining Expert Consulting Programs. Artificial Intelligence 21
(1983) 285–325

6. Buchanan, B.G., Shortliffe, E.H.: Rule-Based Expert Systems: The MYCIN Exper-
iments of the Stanford Heuristic Programming Project. Addison Wesley, Reading
(1984)

7. Swartout, W., Smoliar, S.: On Making Expert Systems More Like Experts. Expert
Systems 4 (1987) 196–207

8. Leake, D.B., ed.: Case-Based Reasoning: Experiences, Lessons, & Future Direc-
tions. AAAI Press/MIT Press, Menlo Park (1996)

9. Schank, R.C., Kass, A., Riesbeck, C.K., eds.: Inside Case-Based Explanation.
Lawrence Erlbaum Associates, Hillsdale, New Jersey (1994)

10. Gregor, S., Benbasat, I.: Explanations From Intelligent Systems: Theoretical Foun-
dations and Implications for Practice. MIS Quarterly 23 (1999) 497–530

11. Swartout, W.R., Moore, J.D.: Explanation in second generation expert systems.
In David, J., Krivine, J., Simmons, R., eds.: Second Generation Expert Systems.
Springer Verlag, Berlin (1993) 543–585

Mapping Goals and Kinds of Explanations 463

12. Gervás, P., Gupta, K.M., eds.: Proceedings of the ECCBR 2004 Workshops. Num-
ber 142-04 in Technical Report, Madrid, Departamento de Sistemas Informáticos
y Programación, Universidad Complutense Madrid (2004)

13. Funk, P., Calero, P.A.G., eds.: Advances in Case-Based Reasoning: Proceedings
ECCBR 2004. Number 3155 in LNAI, Berlin, Springer (2004)

14. Richter, M.M.: Remarks on current explanation research in artificial intelligence
(2005) Personal notes.

15. Latour, B.: Technology is Society made Durable. In Law, J., ed.: A Sociology of
Monsters. Routledge (1991) 103–131

16. Monteiro, E.: Actor-Network Theory. In Ciborra, C., ed.: From Control to Drift.
Oxford University Press (2000) 71–83

17. Pieters, W.: Free Will and Intelligent Machines. Project Report, NTNU Trondheim
(2001)

18. Lee, J.D., See, K.A.: Trust in Automation: Designing for Appropriate Reliance.
Human Factors 46 (2004) 50–80

19. Ye, L.R., Johnson, P.E.: The impact of explanation facilities on user acceptance
of expert systems advice. MIS Q. 19 (1995) 157–172

20. Richter, M.M.: The knowledge contained in similarity measures. Invited Talk at
the First International Conference on Case-Based Reasoning, ICCBR’95, Sesimbra,
Portugal (1995)

21. Richter, M.M.: Prinzipien der Künstlichen Intelligenz. 2. edn. B. G. Teubner,
Stuttgart (1992)

22. Sørmo, F., Cassens, J.: Explanation goals in case-based reasoning. [12] 165–174
23. Sørmo, F., Cassens, J., Aamodt, A.: Explanation in Case-Based Reasoning – Per-

spectives and Goals. To be publisehd (2005)
24. Clancey, W.J.: The epistemology of a rule-based expert system: A framework for

explanation. Artificial Intelligence 20 (1983) 215–251
25. Mao, J.Y., Benbasat, I.: The Use of Explanations in Knowledge-Based System:

Cognitive Perspectives and a Process-Tracing Analysis. Journal of Managment
Information Systems 17 (2000) 153–179

26. Roth-Berghofer, T.R.: Explanations and case-based reasoning: Foundational issues.
In Funk, P., Calero, P.A.G., eds.: Advances in Case-Based Reasoning, Springer-
Verlag (2004) 389–403

27. Richter, M.M.: The knowledge contained in similarity measures. In-
vited Talk at the First International Conference on Case-Based Rea-
soning, ICCBR’95, Sesimbra, Portugal (1995) http://wwwagr.informatik.
uni-kl.de/˜ lsa/CBR/Richtericcbr95remarks.html [Last access: 2002-10-18].

28. Lenz, M., Bartsch-Spörl, B., Burkhard, H.D., Wess, S., eds.: Case-Based Reasoning
Technology: From Foundations to Applications. Volume LNAI 1400 of Lecture
Notes in Artificial Intelligence. Springer-Verlag, Berlin (1998)

29. Watson, I.: Survey of CBR application areas (1999) Invited Talk at the 3rd Inter-
national Conference on Case-Based Reasoning ICCBR.

30. Richter, M.M.: Generalized planning and information retrieval. Technical re-
port, University of Kaiserslautern, Artificial Intelligence – Knowledge-based Sys-
tems Group (1997)

31. Cassens, J.: Knowing what to explain and when. [12] 97–104
32. Roth-Berghofer, T.R.: Knowledge Maintenance of Case-Based Reasoning Systems

– The SIAM Methodology. Volume 262 of Dissertationen zur Künstlichen Intelli-
genz. Akademische Verlagsgesellschaft Aka GmbH / IOS Press, Berlin, Germany
(2003)

464 T.R. Roth-Berghofer and J. Cassens

33. Aamodt, A.: Explanation-driven case-based reasoning. In Stefan Wess, K.D.A.,
Richter, M., eds.: Topics in Case-Based Reasoning, Berlin, Springer-Verlag (1994)

34. Aamodt, A.: Knowledge-Intensive Case-Based Reasoning in CREEK. [13] 1–15
35. Bergmann, R., Althoff, K.D., Breen, S., Göker, M., Manago, M., Traphöner, R.,

Wess, S.: Developing Industrial Case-Based Resoning Applications: The INRECA
Methodology. Second edn. LNAI 1612. Springer-Verlag, Berlin (2003)

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, LNCS 3620, pp. 465 – 476, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Approach for Temporal Case-Based Reasoning:
Episode-Based Reasoning∗

Miquel Sánchez-Marré1, Ulises Cortés1, Montse Martínez2,
Joaquim Comas2, and Ignasi Rodríguez-Roda2

1 Technical University of Catalonia,
Knowledge Engineering & Machine Learning Group,

Campus Nord-Edifici Omega, Jordi Girona 1-3, 08034 Barcelona,
Catalonia University of Girona

{miquel, ia}@lsi.upc.edu
2 Chemical & Environmental Engineering Laboratory,

Campus de Montilivi s/n, 17071 Girona, Catalonia
{montse, quim, ignasi}@lequia.udg.es

Abstract. In recent years, several researchers have studied the suitability of
CBR to cope with dynamic or continuous or temporal domains. In these do-
mains, the current state depends on the past temporal states. This feature really
makes difficult to cope with these domains. This means that classical individual
case retrieval is not very accurate, as the dynamic domain is structured in a
temporally related stream of cases rather than in single cases. The CBR system
solutions should also be dynamic and continuous, and temporal dependencies
among cases should be taken into account. This paper proposes a new approach
and a new framework to develop temporal CBR systems: Episode-Based Rea-
soning. It is based on the abstraction of temporal sequences of cases, which are
named as episodes. Our preliminary evaluation in the wastewater treatment
plants domain shows that Episode-Based Reasoning seems to outperform clas-
sical CBR systems.

1 Introduction

Continuous or dynamic or temporal domains commonly involve a set of features,
which make them really difficult to work with, such as: (1) a large amount of new
valuable experiences are continuously generated, (2) the current state or situation of
the domain depends on previous temporal states or situations of the domain, and (3)
states have multiple diagnoses.

This means that classical individual case retrieval is not very accurate, as the dy-
namic domain is structured as a temporally related stream of cases rather than in sin-
gle cases. The CBR system solutions should be also dynamic and continuous, and
temporal dependencies among cases should be taken into account.

∗ The partial support of TIN2004-01368 and DPI2003-09392-C02-01 Spanish projects and IST-

2004-002307 European project are acknowledged.

466 M. Sánchez-Marré et al.

Some typical examples are the monitoring and on-line control of dynamic proc-
esses such as power stations control, wastewater treatment plants control, and jet
plane control. Some applications in the medical domain are the monitoring of patients
in an intensive care unit, or the diagnosis and/or the prognosis and cure of some
medical diseases. Also, the forecasting of some meteorological or seismic phenomena
and autonomous robot navigation are instances of such temporal domain.

Our approach proposes a new framework for the development of temporal CBR
systems: Episode-Based Reasoning. It is based on the abstraction of temporal se-
quences of cases, which are named as episodes. In this kind of domains, it is really
important to detect similar temporal episodes of cases, rather than similar isolated
cases. Thus, a more accurate diagnosis and problem solving of the dynamic domain
could be done taking into account such temporal episodes of cases rather than only
analysing the current isolated case.

Working with episodes instead of single cases is useful in temporal domains, but
also raise some difficult tasks to be solved, such as:

• How to determine the length of an episode,
• How to represent the episodes, taking into account that they could be overlapping,
• How to represent the isolated cases,
• How to relate them to form episodes,
• How to undertake the episode retrieval,
• How to evaluate the similarity between temporal episodes of cases,
• How to continually learn and solve new episodes.

The paper answers almost all of these questions, and proposes a new approach and
a new framework to model temporal dependencies by means of the episode concept.
The Episode-Based Reasoning framework can be used as a basis for the development
of temporal CBR systems. The new framework provides mechanisms to represent
temporal episodes, to retrieve episodes, and to learn new episodes. Episode adaptation
is not discussed, as it is highly domain-dependant, and will be studied in the near fu-
ture.

An experimental evaluation is presented in the paper as an example of the new
framework for temporal domains.

1.1 Related Work

From a logical point of view, temporal features in automated reasoning have been
widely studied within the field of Artificial Intelligence. For instance, the logic of
time work by van Benthem [1]; the work by Allen [2, 3, 4] about the temporal interval
logic; or the work of temporal logic by Ma and Knight [5, 6] and by Shoham [7]; or
the circumpscriptive event calculus by Shanahan [8]. All these approaches model rea-
soning processes under temporal constraints, which can modify the truth of logic as-
sertions.

In CBR systems, this temporal reasoning in continuous or dynamical domains was
not studied until recently. Ma & Knight [9] propose a theoretical framework to sup-
port historical CBR, based on relative temporal knowledge model. Similarity evalua-
tion is based on two components: non-temporal similarity, based on elemental cases,
and temporal similarity, based on graphical representations of temporal references.

 An Approach for Temporal Case-Based Reasoning: Episode-Based Reasoning 467

Most related publications, such as those of [10, 11] use temporal models with absolute
references. [12] use a qualitative model derived from the temporal interval logic from
Allen. In [13, 14, 15], several approaches are proposed in the field of mobile robots,
emphasising the problem of the continuity of data stream in these domains. However,
none of these do not give an answer for temporal episodes. In addition, they focused
more on the predicting numerical values, which can be described as time series, rather
than on using the correlation among cases forming an episode. In [16], we proposed a
method for sustainable learning in continuous domains, based on a relevance measure.

Anyway, we are not aware of any approach proposing a mechanism for explicit
representation for both temporal episodes and isolated cases, and addressing the prob-
lem of overlapping temporal episodes. Also the feature dependency among isolated
cases forming an episode are not addressed by main known approaches, and rather
they provide temporal logic reasoning mechanisms, which cannot solve all related
problems.

1.2 Overview

This paper is organised as follows. In Section 1, the scope of the problem and some
related work are discussed. Section 2 defines the basic terminology of the approach.
Section 3 defines the EBR memory model. In Section 4, the episode retrieval step is
described. Section 5 details the similarity evaluation between episodes. Section 6 de-
scribes a case study where the approach has been used. Conclusions and some future
work are outlined in Section 7.

2 Basic Terminology for Episode-Based Reasoning Model

Definition 1. An isolated case, or simply a case describing several features of a tem-
poral domain at a given moment t, is defined as a structure formed by the following
components:

(:case-identifier CI
 :temporal-identifier t
 :case-situation-description CD
 :case-diagnostics-list CDL
 :case-solution-plan CS
 :case-solution-evaluation CE
)

An isolated case will have an associated identifier (CI), as well as a temporal iden-
tifier (t). This time stamp could be measured in any unit of time, depending on the
temporal domain at issue. Thus, it could be the month, the day, the hour, the minute,
the second or any other unit. The description of the domain situation at a given mo-
ment (CD), is a snapshot of the state of the domain, which will consist of the values
(Vi) of the different attributes (Ai) characterising the system:

CD = ((A1 V1) (A2 V2) ... (AN VN)) (1)

468 M. Sánchez-Marré et al.

In the temporal domains being addressed by our proposal, the basic data stream de-
scribing the domain can be structured as a feature vector. This hypothesis is not a
great constraint, since most of real temporal systems use this formalism, and also be-
cause other structured representations can be transformed into a vector representation.
Notwithstanding, some information loss can occur with this transformation process.

Formally, an isolated case at a given time t is:

Ct = <CI, t, CD, CDL, CS, CE> (2)

For instance, an isolated case in the domain of volcanic and seismic prediction do-
main, could be as follows:

(:case-identifier CASE-134
 :temporal-identifier 27/11/2004
 :case-situation-description ((SEISMIC-ACT Invaluable)
 (DEFORMATIONS mean-value)

 (GEOCHEMICAL-EVOL normal)
 (ELECT-PHEN level-1))

 :case-diagnostics-list (No-eruption, Seismic-pre-Alert)
 :case-solution-plan (Alert-Emergency-Services)
 :case-solution-evaluation correct
)

Definition 2. A temporal episode of cases of length l, which is a sequence of l con-
secutive cases in time, is a structure formed by the following components:

(:episode-identifier EI
 :initial-time t
 :episode-length l
 :episode-description ED
 :episode-diagnosis d
 :episode-solution-plan ES
 :episode-solution-evaluation EE
 :initial-case Ct
 :final-case Ct+l-1
)

Formally, an episode with diagnostic d, length l, which starts at a given instant
time t is:

d
ltE , = <EI, t, l, ED, d, ES, EE, Ct, Ct+l-1> (3)

From a temporal point of view, an episode with diagnostic d, length l, which starts
at initial time t can be described as the sequence of l temporal consecutive cases:

d
ltE , = [Ct, Ct+1, Ct+2, …, Ct+l-1] (4)

 An Approach for Temporal Case-Based Reasoning: Episode-Based Reasoning 469

3 Episode-Based Reasoning Memory Model

There are several choices to organise and to structure the memory of our Episode-
Based Reasoning (EBR) system. Some previous models in the literature had not taken
into account some key points. Main outstanding features to be considered are the fol-
lowing. (1) The same case could belong to different episodes. (2) The description, or
state depicted by a case could correspond to several situations or problems (multiple
diagnostics) at the same time, and not only one, as it is assumed by most CBR system
models. (3) Episodes could overlap among them, and this fact should not imply a case
base representation redundancy of the common cases overlapped by the episodes. (4)
Episode retrieval, and the case retrieval for each case belonging to an episode, should
be as efficient as possible.

Taking into account these facts, our memory proposal will integrate hierarchical
formalisms to represent the episodes, and flat representations for the cases. Thus, both
episode and case retrieval will be fast enough. This representation model will set an
abstraction process that allows splitting the temporal episode concept and the real
case of the domain. Discrimination trees for the episodes (Episode Base or EpB), and
a flat structure for cases (Case Base or CsB) are proposed.

The discrimination tree enables to search which episodes should be retrieved, ac-
cording to the feature values of the current episode description. Episodes have the ap-
propriate information to retrieve all cases belonging to them.

This structure of the experience base or memory of the EBR system allows one
case to belong to more than one episode. In addition, it allows the overlapping of epi-
sodes, and even though the extreme scenario, which is very common in complex tem-
poral real domains, where the exactly same cases form several different episodes.

This integration of the hierarchical Episode Base and the flat Case Base is depicted
in Figure 1. The nodes are labelled with the predictive features or attributes (Ai) and
branches are labelled with the discrete values (Low, Normal or High for instance) of
attributes.

To increase even more the efficiency and accuracy of the retrieval step, the use of
the mechanism of episode abstraction by means of episode prototypes or meta-
episodes is proposed. This technique was originally proposed in [17] for a case base.
Here it is used for episode categorisation instead.

The meta-episodes and induced episode bases are semantic patterns containing as-
pects considered as relevant. These relevant aspects (features and feature ordering)
constitute the basis for the biased search in the general episode base. The use of these
relevant aspects is in fact equivalent to using declarative bias during the identification
phase, prior to searching cases within the case base. This new step adds the use of
domain knowledge-intensive methods to understand and bias the new problem within
its context.

The setting of several meta-episodes induces the splitting of the general episode
base into several episode bases with different hierarchical structures. Each episode
base will store similar episodes that can be characterised with the same set and order
of predictive features.

470 M. Sánchez-Marré et al.

A3

A5A5 . . .

A2 . . .

L H

L

N

Ct Ct+l-1

EPISODE 3EPISODE 21

EPISODE 34

FLAT
CASE BASE

HIERARCHICAL
EPISODE BASE

N

Fig. 1. Mixed memory model using both episodes and cases

A3

A5A5 . . .

A2 . . .

L H

L

N

Ct Ct+l-1

EPISODE 3EPISODE 21

EPISODE 34

N

META-EPISODE 1 META-EPISODE 2 META-EPISODE N

A7

L

A1 . . .

A3 . . .
L

EPISODE 12EPISODE 51

N

A5

N

A13 . . .

EPISODE 49

H

H

H N

H

NEW EPISODE

. . .

HIERARCHICAL
EPISODE
 BASES

FLAT
CASE
BASE

META-EPISODE
 BASE

Fig. 2. Hierarchical three-layered memory structure

 An Approach for Temporal Case-Based Reasoning: Episode-Based Reasoning 471

In the retrieval step, first, the EBR system will search within the previously estab-
lished classification to identify which kind of episode it is coping with. For each es-
tablished class (meta-episode) there will be a possible different set of specific dis-
criminating features and a different episode base. Then, the retrieval will continue in
the episode base/s induced by the meta-episode/s best matching the current episode.

The memory model of the approach is composed by a set of meta-episodes, which
will constitute the Meta-Episode Base (MEpB). For each meta-episode there exists a
hierarchical Episode Base (EpB). Cases are organised within a flat case base
(CsB).Also there exists a Meta-Case Base (MCsB) for the diagnostic list computation
of a case. This hierarchical three-layered structure will allow a more accurate and
faster retrieval of similar episodes to the current episode/s. Figure 2 shows this mem-
ory structure.

4 Episode Retrieval

Retrieval task of episodes is activated each time the EBR system receives a new cur-
rent case (Cct) with data gathered from the domain, at the current time (ct). First step
is getting the possible diagnostics of the current case.

This label list can be obtained by different ways. For example, using a set of infer-
ence rules, which can diagnose the state or situation of the domain from the relevant
features. These classification rules could be directly collected from domain experts or
could be induced from real data. Another way is using the meta-cases technique, and
to evaluate the similarity between the current case (Cct) and the meta-cases. The cur-
rent case is labelled with the diagnostic labels of most similar meta-cases. Meta-cases
can be obtained, in the same way as the rules: from experts or from an inductive clus-
tering process. In our proposal, meta-cases technique is used.

Next step is the generation of possible episodes arising from the current case. This
means to check whether some episodes are continuing from prior cases to the current
case, and/or to build new episodes, which are starting from the current case. At this
time, finished episodes are detected, and the EBR system can learn new episodes,
which will be added to the EBR system memory. Figure 3 depicts several alternative
episode formation and episode ending from current case.
For each possible current episode, most similar episodes must be retrieved. Retrieval
task proceeds with the hierarchical three-layered memory structure as explained be-
fore in section 3.

CASE
BASE

TIME

1 ct

d2

d2

d5

d3

d4

d5

d3

d4

d6

d3

d4

d6

C1 Cct

Fig. 3. New and/or continued episodes arising from the current case

472 M. Sánchez-Marré et al.

For each one of the retrieved episodes and the corresponding current episode, a de-
gree of similarity is computed. This value is computed through an episode similarity
measure, which will be described in next section. Each retrieved episode is added to a
sorted list of episodes by decreasing degree of similarity. Thus, at the end of the proc-
ess, the first episode of the list is the episode with a higher similarity value to a possi-
ble current episode. The EBR system will use this episode to solve the domain prob-
lem, but other policies, such as user-dependent choice, are envisioned. Similar
episode retrieval task can be described as follows:

Input: Cct, EpB, MEpB, CsB, MCsB
Sorted_Ep_L ← ∅
CDLct ← Get_Diagnostics_Current_Case (Cct, MCsB)
for each d ∈ CDLct do

if (ct = 1) or (d ∉ CDLct-1) then {new episodes}
 Retr_Ep ← Retr_Sim_Episodes (d

ct
E

1,
, MEpB, EpB)

 Eval_Ep ← Eval_Sim_Episodes (d

ct
E

1,
, Retr_Ep)

 Sorted_Ep_L ← Sorted_Add (Eval_Ep, Sorted_Ep_L)
else {continued episodes}

 l ← Comp_Ep_Length (ct, d, CsB)

 Retr_Ep ← Retr_Sim_Episodes (
d

llct
E

1, +−
, MepB, EpB)

 Eval_Ep ← Eval_Sim_Episodes (d

llct
E

1, +−
, Retr_Ep)

 Sorted_Ep_L ← Sorted_Add (Eval_Ep, Sorted_Ep_L)
endif

endfor
if ct ≠ 1 then
 for each (d ∈ CDLct-1) and (d ∉ CDLct) do {ended episodes}
 l ← Comp_Ep_Length (ct, d, CsB)

 EpB ← EpB + Learn_New_Episode (d

llct
E

,−
) {add a new Ep}

 endfor
endif

Returns: Sorted_Ep_L {First Ep is the most similar}
where the computation of episode length can be done as follows:

Input: ct, d, CsB
t ← ct – 2 ; l ← 1
if t ≠ 0 then
 CDLt ← Get_Diagnostics_Case (Ct, CsB)

while d ∈ CDLt do
 l ← l + 1
 t ← t – 1

endwhile
endif

Returns: l

 An Approach for Temporal Case-Based Reasoning: Episode-Based Reasoning 473

5 Episode Similarity

Episodic similarity evaluation is based on the computation of a similarity value within
the float interval [0,1], between a possible current episode (Ep_ct) and each one of the
retrieved episodes (Retr_Ep). This function could be described as follows:

Input: Ep_ct, Retr_Ep
Eval_Ep ← ∅
for each Ep ∈ Retr_Ep do

Sim_Degree_Ep ← Episodic_Sim (Ep, Ep_ct)
Eval_Ep ← Eval_Ep ∪ Build_Pair (Sim_Degree_Ep, Ep)

endfor

Returns: Eval_Ep
Episodic similarity between two episodes is computed based on the aggregation of the
similarity values among cases belonging to each episode. Episodes are compared
based on a left alignment of cases. There are two different scenarios. For equal length
episodes, episodic similarity is computed as an equally weighted mean value among
the similarity values between each pair of corresponding cases. For different length
episodes, only similarity values for cases until reaching the minimum length of both
episodes are considered. The computed value is normalised into the interval [0,1].
This episodic similarity measure can be formalised as:

≠

==

=

=
−+−+

=
−+−+

21),(
)2,1(

1

21),(
1

),(
)2,1mín(

1
1211

1
1211

2,21,1

llifCCSim
llmax

lllifCCSim
l

EESim
ll

i
ititC

l

i
ititC

d
lt

d
ltEp

 (5)

where SimC can be computed with any case similarity measure. In this approach,
L'Eixample measure [18] is proposed, because some performance tests done showed it
as one of the best measures.

6 An Experimental Evaluation

Biological wastewater treatment is a complex process that involves chemical and bio-
logical reactions, kinetics, catalysis, transport phenomena, separations, and so on. The
quality of the treated water must be always maintained in a good condition to mini-
mise any environmental impact. Nevertheless, some features such as the inflow
changes, both in quantity and in quality, and the population variation of the microor-
ganisms over time, both in quantity and in the relative number of species, makes the
process very complex. In addition, the process generates a huge amount of data from
different sources (sensors, laboratory analyses and operator’s observations), but these
data are often uncertain, subjective or vague.

In the wastewater treatment plant (WWTP) operation, problems frequently appear-
ing such as solids separation problems, biological foam in the bioreactors or under-
loading derived from storms and heavy rains. Some of them affect the process for
long periods of time. Due to the lack of a well-defined model capable of simulating

474 M. Sánchez-Marré et al.

the process under the influence of these problems, classical control has been ruled out
as suitable single control technique. However, operators have to make decisions to
manage the process in their day-to-day operation, even when it is affected by multiple
problem episodes at the same time. They learn a valuable knowledge that optimally
managed can be decisive when facing similar problems in the future.

Classical CBR has been successfully applied to manage the biological process of
wastewater treatment plants [19, 20, 21], especially to control single non-biological
situations with fast dynamics such as mechanical, physical or electrical problems.
However, CBR showed limitations to face up complex problems with slow dynamics.
A prototype of EBR is currently being validated at the Girona wastewater treatment
plant [22] since September, 2004. The tool has been developed to manage solids sepa-
ration problems in the process. A three-layered architecture has been proposed, and
21 different variables are used to compare and retrieve the episodes (six variables
provided on-line from sensors and meters, nine gathered from the laboratory, and the
remaining six variables correspond to microscopic observations of the biomass). Pre-
liminary results show that EBR improves the support of the decision-making process
when facing problematic situations with temporal dependency of data with respect to
conventional CBR systems. Specifically, this initial experimental evaluation enables
to state that the EBR approach provides more precise diagnosis of new episodes aris-
ing in the process as well as that solution plans of past episodes retrieved (the more
similar ones) are more useful than with the conventional CBR approach.

The efficiency of EBR in diagnosing new cases was evaluated by using historical
cases of the year 2004, which include the situation description (by means of the 21
variables), the diagnosis lists (obtained from real diagnosis of the process) and the so-
lution plan. Through 2004, 28 different episodes of solids separation problems, with
episode length varying from 2 days up to 73 days and some of them overlapped, were
detected, representing the 69% of the whole year. The results obtained using EBR and
CBR approaches were compared with the real diagnosis of the labelled cases of 2004.
The conventional CBR approach gave already a high precision of about 91% when
diagnosing the current problem [23]. However, an efficiency of 97% in determining
the correct diagnosis of episodes was obtained when using the EBR system, including
correct diagnosis of isolated cases and correct identification of episodes (determina-
tion of initial and final cases).

Concerning the usefulness of the solution plans provided by the most similar
case/episode retrieved, the use of EBR also contributes to obtain more useful control
plans to solve the complex problems arising in the process. The solution plan and so-
lution evaluation retrieved from the most similar episodes helped plant operators to
determine a long-term control strategy. An episode control plan, containing all the
control actions applied during a whole episode and the evaluation of its application,
was more useful for plant operators to solve a slow dynamic problem than the solu-
tion plan provided by the isolated case retrieved by the CBR approach. Therefore,
during these problematic situations, the retrieval of similar past episodes helped the
system to define new control plans to restore the process, proving that EBR can easily
manage multiple diagnosis of the process status, giving real support to the operators.
The results with the EBR system showed even higher efficiency than when CBR was
applied in the same domain of WWTPs but for solving general problems, where
around 80% of efficiency was obtained [24].

 An Approach for Temporal Case-Based Reasoning: Episode-Based Reasoning 475

7 Conclusions and Future Work

In this paper, most of the questions raised in section 1 have been answered. A new
framework and a new approach, based on the episode concept have been presented.
Episode-Based Reasoning is a promising model to manage the temporal component of
many real world domains, with continuous data flow. This approach supports the
temporal dependency of data on past cases to solve a new case, improving the accu-
racy of basic CBR systems. Also, multiple diagnostics of a state or situation of the
domain can be managed. Basic model terminology about episodes and isolated cases
has been given. The three-layered architecture memory model for the EBR has been
proposed, and the retrieval procedure has been detailed. Furthermore, the similarity
evaluation step has been explained too, and the learning of new episodes has been
outlined within the retrieval algorithm.

There are some outstanding features in the proposal. The abstraction procedure
from real data, structured in cases, towards temporal episodes is one of them. Multiple
diagnostics of real cases are identified and managed by the model. The distinction be-
tween episodes and cases allows episode overlapping over the same real data without
data redundancy. The hierarchical three-layered structure of the EBR memory, com-
posed by Meta-Episodes, Episode Bases, and the Case Base enables a fast access to
similar past episodes to current episodes.

This model has been partially tested in a real domain, as explained in section 6.
Supervision of WWTP is a hard real problem, which is a very good benchmark for the
new EBR approach. Results from the experimentation have shown a very good poten-
tial of the EBR model, and an improved performance output has been obtained.

One concern to be solved in the future is the uncontrolled increase of the Case
Base and the Episode Bases. New Episodes can be learnt only if they are relevant
enough, but new cases management is not so easy. A splitting of the Case Base by
some time unit: year, month, or so, could be a first approach. There are other features
to be taken into account in the near future. The extension of the EBR approach to
formalise the adaptation step, and the solution evaluation task should be precisely
stated into the main EBR cycle.

Of course, some tuning of the approach can be made at several points. Finally, the
validation of the whole EBR model should be extended to other real domains to check
the usefulness, the consistency, the efficiency and the generalisation of our approach.

References

1. J. van Benthem. The Logic of Time, Kluwer Academic, Dordrecht, 1983.
2. J. Allen and G. Ferguson. Actions and Events in Interval Temporal Logic. The Journal of

Logic and Computation, 4(5):531-579, 1994.
3. J. Allen. Towards a General Theory of Action and Time. Artificial Intelligence, 23:123-

154, 1984.
4. J. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM,

26(11):832-843, 1983.
5. J. Ma and B. Knight. Reified Temporal logic: An Overview. Artificial Intelligence Review,

15:189-217, 2001.

476 M. Sánchez-Marré et al.

6. J. Ma and B. Knight. A General Temporal Theory. The Computer Journal, 37(2):114-123,
1994.

7. Y. Shoham. Temporal Logics in AI: Semantical and Ontological Considerations, Artificial
Intelligence, 33: 89-104, 1987.

8. M.A. Shanahan. Circumscriptive Calculus of Events, Artificial Intelligence, 77(2):249-
384, 1995.

9. J. Ma and B. Knight. A Framework for Historical Case-Based Reasoning. In Procc. of 5th Int.
Conference on Case-Based Reasoning (ICCBR'2003), pages 246-260, LNCS2689, 2003.

10. M. Jaczynski. A Framework for the Management of Past Experiences with Time-Extended
Situations. In Proc. of the 6th Int. Conference on Information and Knowledge Management
(CIKM'97), pages 32-39, Las Vegas, Nevada, USA, November 1997.

11. G. Nakhaeizadeh. Learning Prediction of Time Series: A Theoretical and Empirical Com-
parison of CBR with Some Other Approaches. In Proceedings of the Workshop on Case-
Based Reasoning, pages 67-71, AAAI-94. Seattle, Washington, 1994.

12. M. Jaere, A. Aamodt, and P. Shalle. Representing Temporal Knowledge for Case-Based
Reasoning. In Proc. of the 6th European Conference, ECCBR 2002, pages 174-188, Aber-
deen, Scotland, UK, September 2002.

13. M. Likhachev, M. Kaess and R. C. Arkin. Learning Behavioral Parameterization Using
Spatio-Temporal Case-Based Reasoning. Procc. of IEEE Int. Conference on Robotics and
Automation (ICRA 2002), 2002.

14. M. T. Rosenstein and P. R. Cohen. Continuous Categories for a Mobile Robot. IJCAI-99
Workshop on Sequence Learning, pages 47-53, 1999.

15. A. Ram and J. C. Santamaría. Continuous Case-Based Reasoning. Artificial Intelligence,
90:25-77, 1997.

16. M. Sànchez-Marrè, U. Cortés, I. R.-Roda and M. Poch, Sustainable case learning for con-
tinuous domains. Environmental Modelling & Software 14:349-357, 1999.

17. M. Sànchez-Marrè, U. Cortés, I. R.-Roda and M. Poch. Using Meta-cases to Improve Ac-
curacy in Hierarchical Case Retrieval. Computación y Sistemas 4(1):53-63, 2000.

18. H. Núñez, M. Sànchez-Marrè and U. Cortés. Improving Similarity Assessment with En-
tropy-Based Local Weighting. In Procc. of 5th Int. Conference on Case-Based Reasoning
(ICCBR’2003), pages 377-391, LNAI-2689, Trondheim, Norway. June 2003.

19. J. Wiese, A. Stahl and J. Hansen. Possible Applications for Case-Based Reasoning in the
Field of Wastewater Treatment. In Procc. of 4th ECAI Workshop on Binding Environ-
mental Sciences and Artificial Intelligence (BESAI'04), pages 10-1:10-10, 2004.

20. R.-Roda, I., Sànchez-Marrè, M., Comas, J., Cortés, U. and Poch, M. Development of a
case-based system for the supervision of an activated sludge process. Environmental Tech-
nology, 22(4): 477-486, 2001.

21. Kraslawski A., Koiranen T. and Nystrom L. Case-Based Reasoning System for Mixing
Equipment Selection, Computers & Chemical Engineering, 19:821-826, 1995.

22. M. Martínez, M. Sànchez-Marrè, J. Comas and I. Rodríguez-Roda. Case-Based Reason-
ing, a promising tool to face solids separation problems in the activated sludge process.
Water Science & Technology, in press, 2005.

23. M. Martínez, C. Mérida-Campos, M.Sànchez-Marrè, J. Comas and I. Rodríguez-Roda.
Improving the efficiency of Case-Based Reasoning to deal with activated sludge solids
separation problems. Submitted to Environmental Technology (2005)

24. I. Rodríguez-Roda, M. Sànchez-Marrè, J. Comas, J. Baeza,, J. Colprim, J. ,Lafuente, U.
Cortés, and M. Poch. A Hybrid Supervisory System to Support Wastewater Treatment
Plant Operation, Water Science & Technology 45(4-5), 289, 2002.

How to Combine CBR and RBR

for Diagnosing Multiple Medical Disorder Cases

Wenqi Shi and John A. Barnden

School of Computer Science, The University of Birmingham,
Edgbaston, Birmingham, B15 2TT, UK

W.Shi@cs.bham.ac.uk

Abstract. Multiple disorders are a daily problem in medical diagnosis
and treatment, but most expert systems make an implicit assumption
that only single disorder occurs in a single patient. We show the need for
performing multiple disorder diagnosing, then inspired by the common
idea of combining CBR with Rule-based Reasoning, we present a hybrid
approach for diagnosing multiple faults. We applied our hybrid reasoning
approach to two medical casebases taken from real world applications
demonstrating the promise of the approach. The method could also be
applied to other multiple fault domains, e.g. car failure diagnosis.

1 Introduction

The Medical Diagnosis problem has absorbed lots of the attention of AI re-
searchers, since the medical domain is not well understood in some ways by
human beings and AI has the potential to help diagnosis. Multiple disorders
are a daily problem in medical diagnosis and treatment. However, due to a
common diagnosis assumption (single-fault assumption) in diagnostic problem-
solving domain, only one single disorder or fault is assumed to cover all the
observed findings [12].

Many medical expert systems for diagnosis and treatment have been investi-
gated since the middle of the 1970s. The MYCIN System of the Stanford Heuris-
tic Programming Project [6] was possibly one of the first expert systems which
attempted to use the concepts of AI, i.e. production rules to help diagnosis
and treatment advice in the domain of bacteremias (then expanded to include
meningitis). But the need to generate of rules and the static knowledge structure
highlight the knowledge acquisition problem which most expert systems suffered
from. In contrast to this, the case-based reasoning methodology uses previous
experience for current problem solving, thus reducing the costs of knowledge
acquisition and maintenance, and has therefore become popular in experience
rich domains, e.g., medical domain.

However, using naive case-based reasoning to handle multiple disorders faces
a major challenge. For instance, for a single disorder casebase dealing with 100
disorders, the chance of reusing a case is roughly one in a hundred. But owing to
the combinatorial situation, the chance of reusing a case with even 3 independent

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, pp. 477–491, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNAI

478 W. Shi and J.A. Barnden

diagnoses from 100 alternatives is roughly just one in a million. In one of our real
world applications, the casebase contains about 7 disorders per case on average,
and has 221 disorders in total, thus the chance of reusing an entire previous case
is quite small. Atzmueller and Baumeister proved the naive case-based method
was only able to solve about 3% of the cases on their real world dataset [2].

In this paper, we present a hybrid approach which uses case-based reasoning
and rule-based reasoning to target multiple disorder problems. This hybrid rea-
soning approach has been evaluated on two medical casebases taken from real
world applications and demonstrated to be promising.

The rest of the paper is organised as follows: In section 2, we will explain the
need for performing multiple disorder diagnosis, give some notations concerning
the multiple disorder problem, and review previous work on multiple disorders. In
the following section, we describe how we generate rules from inductive learning,
define the similarity measure we are using, and explain in detail how to combine
case-based reasoning and rule-based reasoning. In section 4, we evaluate our
method by applying it to two real world medical casebases, and compare it
with other methods. We conclude the paper with some points worth noting, and
pointers to some promising directions for the future.

2 Multiple Disorder Problem

2.1 The Need for Performing Multiple Disorder Diagnosis

Most previous medical expert systems follow a single disorder assumption, which
stems from the fact that finding minimal sets of disorders that cover all symptoms
for a given patient is generally computationally intractable (NP-hard) [23]. But
in spite of the difficulty for expert system implementation, reality needs to be
faced in the real world application.

As medical documentations become more and more structured, it is not rare
to see more than one disease in a patient record. This is especially true for old
people and those with many chronic diseases (e.g. diabetes, high brood pres-
sure) or a syndrome (e.g. Aids). One of the casebases we got from the real world
contains an overall number of 221 diagnoses and 556 symptoms, with a mean
MD = 6.71 ± 04.4 of diagnoses per case and a mean MF = 48.93 ± 17.9 of
relevant findings per case. Disorders in this casebase include diseases such as
Fat liver/Liver greasing (K76.0), Illness of the Thyroid (E07.9), Kidney illness
(N28.9), Nephrolithiasis (N20.0), Struma (E04.9) etc. Moreover, multiple dis-
orders occur in psychiatric cases as well, approximately 63.3% of incarcerated
adolescents had 2 or more psychiatric disorders [22].

In this context, the observed set of the symptoms for a given patient may be
better explained by more than one disorder.

2.2 Multiple Disorder Notation

We define necessary notions concerning our knowledge representation schema as
follows: Let ΩD be the set of all possible diagnoses, and d ∈ ΩD be a disease

How to Combine CBR and RBR 479

patient may have. Let ΩA the set of all attributes. To each attribute a ∈ ΩA a
range dom(a) of values is assigned. Further we assume ΩF to be the (universal)
set of findings, and a finding f ∈ ΩF is (a = v), where a ∈ ΩA is an attribute
and v ∈ dom(a) is an assignable value to attribute a.

Let CB be the case base containing all available cases that have been solved
previously. A case c ∈ CB is defined as a tuple as follows

c = (Fc, Dc, Ic) (1)

Fc ⊆ ΩF is the set of findings observed in the case c. The set Dc ⊆ ΩD is the
set of diagnoses for this case. Ic contains additional information, like therapy
advices or prognostic hints. In CBR-problems the findings are commonly called
the problem description, while the diagnoses are described as the solution of the
case.

2.3 Previous Work on MD Problem

INTERNIST matches symptoms and diseases in general internal medicine based
on forward and backward conditional probabilities [17]. It generates multiple
disorders with likelihood, but it does not deal with the interacting disorders
properly because if the findings can be explained by a disorder, then these find-
ings will be deleted immediately, no matter how these findings could also lead
to diagnosis of another disorder.

HYDI decomposes knowledge from the causal models into diagnosis units
to prevent re-computation for similar problem to improve efficiency [12]. It can
produce multiple disorder output about heart diseases, but the diagnosis units in
HYDI largely rely on the causal models built in Heart Failure Program (HF) on
heart disease. Only when all the causal models for other disorders are available
could HYDI’s method be applied to diagnose other disorders.

HEPAR
∏

[19] extends the structure of Bayesian network and [8] uses belief
networks to diagnose multiple disorders, but they are both based on the medical
literature and conversations with medical domain experts, which highlights the
knowledge acquisition problem.

Set-covering theory [20] has been combined with CBR, and partition class
method was used in SONOCONSULT to solve multiple disorder problem [4].
Since these two methods are recent work and they are using CBR as well, we
will focus on analysing and comparing our method with them in the evaluation
section.

3 Combining CBR and RBR for Multiple Disorders

Case-based Reasoning (CBR) employs existing experience to support problem
solving without necessarily understanding the underlying principles of applica-
tion domain. It has been demonstrated to be suitable for weak theory domains,
especially for medical domain [9].

480 W. Shi and J.A. Barnden

However, case-based diagnosis handling multiple disorders is still a challeng-
ing task. Majority of the work done so far is using CBR to diagnose single dis-
order, little work has been concentrated on multiple disorder [9]. In this paper,
we combine CBR and RBR to handle this problem.

In this section, we describe how we generate rules from inductive learning,
define the similarity measure we are using, and explain how compositional case-
based reasoning works, and how we combine case-based reasoning and rule-
based reasoning to compensate for the weakness of naive case-based reasoning
on multiple disorder problem.

3.1 Inductive Learning of Diagnostic Rule

Diagnostic rule is one of wide spread formalisms for medical decision-making. But
for most of expert systems, the rules are difficult to get, because the generation
of diagnostic rules has the knowledge acquisition problem and how to maintain
the rules. In our method, to reduce the knowledge elicitation costs, we propose
an inductive learning method to generate diagnostic rules. It can be refined by
applying different types of background knowledge.

Inspired by [3], we apply the χ2 test for independence [26]to identify depen-
dencies between findings f and diagnoses d. For small sample sizes, the Yates’
correction has been applied for a more accurate result. In general, all possible
combinations between diagnoses d ∈ ΩD and findings f ∈ ΩF have to be taken
into account. However, to reduce the search space, we only consider the set of
findings f which co-occur with disorder d.

χ2(f, d) =
(m + n + p + q)(mq − np)2

(m + n)(p + q)(m + p)(n + q)
(2)

where m is the number of cases when finding f and disorder d co-occur, n is the
number of cases when finding f happens but disorder d does not appear, p is the
number of cases when finding f does not appear but disorder d happens, and q
is the number of cases when neither of f nor d happens.

For those tuples <f, d> with χ2(f, d) > th1 (th1=3.84 when p= .05, df =1),
we measure the quality of the dependency by using the φ coefficient

φ(f, d) =
mq − np√

(m + n)(p + q)(m + p)(n + q)
(3)

According to Cohan’s guidelines for effect size, we consider the pairs < f, d >
with φfd > 0.25 as strong relation effect; those pairs < f, d > with φfd > 0.09
as medium relation effect; those pairs < f, d > with φfd > 0.01 as weak relation
effect. We then define the diagnostic rule on those tuples < f, d > with strong
relation effect, which means the finding f is significantly important for diagnosing
disorder d.

Definition 1 (Diagnostic Rule). A diagnostic rule R is defined as follows:

R : f
φfd−→ d (4)

How to Combine CBR and RBR 481

where f ∈ ΩF and d ∈ ΩD. For each rule, the coefficient φfd (defined in equa-
tion 3) is marked as the effect of the dependency (φfd > 0.25). Finding f is
called significant finding for disorder d.

We outline the inductive learning process as follows:

1. Construct all the finding-disorder pairs < f, d > for those f and d occur in
cases of the casebase CB.

2. For each finding-disorder pair, compute χ2
fd=χ2(f, d).

3. If χ2
fd is greater than th1, then define f as significant finding for diagnose d.

4. For each significant finding f of each diagnose d, compute the correlation
φfd = φ(f, d).

5. For those tuples < f, d > with φfd > 0.25, define corresponding Diagnostic
Rules.

After finishing inductive learning of diagnostic rules, we figure out which
findings are significant for some disorders, which will help in our future reasoning
procedure.

3.2 Overall vs. Partial Similarity Measure

To compare the similarity of a query case c with another case c′, we measure two
similarities. One is based on all the findings observed in both retrieved case and
query case, called Overall Similarity. Another one is based on those significant
findings, to measure how the retrieved case is similar on these features, with
the query case. We call the similarity measure on significant features as Partial
Similarity. We use both overall similarity measure and partial similarity measure
in our retrieval to get better suitable cases.

For both of these two similarities, we apply Manhattan distance for contin-
uous or scaled parameters,

md(xi, yi) = | x − y

amax − amin
| (5)

and Value Difference Metric (VDM) for discrete parameters[25].

vdm(xi, yi) =
1

|ΩD| ·
∑

d∈ΩD

|N(a = xi|d)
N(a = xi)

− N(a = yi|d)
N(a = yi)

| (6)

where x and y are values of parameter a in case c and c′ respectively.
The final similarity is measured as follows:

Similarity(c, c′) =
1
m

m∑
i=1

ωimd(xi, yi) +
1
n

n∑
j=1

�jvdm(xj , yj) (7)

where m is the number of continuous or scaled findings, n is the number of dis-
crete findings for overall similarity measure. When measuring partial similarity,
m is the number of continuous or scaled significant findings, n is the number of
discrete significant findings.

One difference of overall similarity and partial similarity is that the findings
taken into account vary. Another difference is that the weights, which have been
set for respective findings, are different.

482 W. Shi and J.A. Barnden

3.3 Compositional Case-Based Reasoning

Compositional Case-based Reasoning is inspired from the concept of composi-
tional adaptation, which was originally developed for configuration tasks. Com-
positional Adaptation decomposes problems into sub-problems and retrieves
those sub-problems in the casebase, and then combines different parts of the
solutions of similar cases [24].

In our multiple disorder situations, decomposition can’t be performed with-
out the help of experts. This is because the findings cannot automatically be sep-
arated into different subsets which will be diagnosed to corresponding diseases in
final solution. Thus in our application, we discard the concept of decomposition
which need to divide observed findings into groups, but accept the concept of
composition which combine different parts of the solutions of similar cases, and
we developed our compositional CBR [1].

When we apply compositional CBR on multiple disorder problem, we assume
that in the multiple disorder situations, not all the diagnoses in the solutions
of the k most similar cases will be suggested as the final diagnoses. Only the
diagnoses with a high occurrence among the k most similar cases have a high
probability to appear in the final solution of the query case. At the same time,
we assume that the more similar the retrieved case is to the query case, the
higher the probability that the diagnoses in this retrieved case will appear in the
final solution. Thus, we add weights to the frequency of diagnoses in the set of
retrieved cases.

Definition 2 (Similarity-Weighted Frequency). The similarity-weighted
frequency of a diagnosis d is the weighted frequency of d within the k most similar
cases.

Fqc(d) =
∑k

i=1 Wi · δ(Ci, d)∑k
i=1 Wi

, (8)

where d ∈ ΩD is a diagnosis; Ci ∈ CB is the ith most similar case to the query
case; δ(Ci, d) is 1 if d occurs in Ci, and 0 otherwise. Wi represents the associated
weight, where we used the squared relative similarity between Ci and the query
case Cq.

CompositionalCBR (Cq, CB, SimilaritySet, k)
{ KMostSimiCase = Retrieve MostSimi (Cq, CB, SimilaritySet, k);

for each disorder d in casebase CB
{ Fqc(d) = Calculate Fqc(d, KMostSimiCase);}

return Fqc;}

In Compositional CBR, we retrieve the most k similar cases, and calculate
the frequency for each disorder.

Not all the disorders will be suggested as final diagnosis, only those diagnoses
with high similarity-weighted frequency will be included into the candidate so-
lution. We introduce a candidate solution defined as follows:

How to Combine CBR and RBR 483

Definition 3 (Candidate Solution). A candidate solution

CS = {D ∈ ΩD : Fqc(D) ≥ ε} , (9)

is the set of diagnoses with a similarity-weighted frequency above a dynamic
threshold ε = α ∗ maxD∈ΩD Fqc(D). where α is a coefficient.

3.4 Combining CBR with RBR

We combine CBR with RBR in two ways: firstly we use the diagnostic rules to
figure out those significant findings, and help retrieval procedure in Composi-
tional CBR. Secondly, we use the rule-based reasoning to generate the candidate
diagnoses and adapt the solutions from CBR.

When we refine compositional CBR with the diagnostic rules, we first con-

struct diagnostic rules (R : f
φfd−→ d), and then look through the query case to

Match the given findings with the antecedents of the diagnostic rules to find out
those significant findings PartialSimSet. We retrieve cases from the casebase by
measuring the partial similarity on PartialSimSet, and get the k1 most similar
cases. We retrieve cases from the casebase again but using the overall similarity
measure on OverallSimSet, and get the k2 most similar cases. The disorder fre-
quency for each disorder is calculated for both k1 and k2 most similar case sets.
Then we take a weighted sum of the disorder frequencies from the two retrievals
to compose the final solution (Wp, Wo present the weights for disorder frequency
in the retrieval based on partial similarity and overall similarity).

We summarise it as follows:

Hybrid CBR&RBR algorithm
{ Given a query case Cq and casebase CB,

DiagnosticRules = ConstructRules(CB);
PartialSimSet = Match(Cq, DiagnosticRules);
OverallSimSet = AllFinding(Cq);
Fqcpartial = CompositionalCBR(Cq, CB, PartialSimSet, k1);
Fqcoverall = CompositionalCBR(Cq, CB, OverallSimSet, k2);
PhiSet = RuleBasedReasoning(Cq));
for each disorder d in casebase CB
{ Fqc(d) = Wp ∗ Fqcpartial(d) + Wo ∗ Fqcoverall(d)

if ((Fqc(d) >= ε) || (PhiSet(d) > φ))
{ Add Solution (d, solution); }}

return solution;}

When we perform rule-based reasoning, we use our diagnostic rules to match
observed findings, and calculate the possibilities of each disorder occurrence
(PhiSet(d)). The higher the PhiSet(d) is, the more confidently d should be
included into final solution, according to rule-based reasoning. The disorders,
either Compositional CBR recommends (Fqc(d) >= ε) or rule-based reasoning
recommends (PhiSet(d) > φ), will be suggested to the doctors as the final
diagnoses. Here we set φ be a high threshold, thus only those disorders which
rule-based reasoning very much recommends will be considered.

484 W. Shi and J.A. Barnden

4 Evaluation

This section presents the evaluation of our approach. We applied two casebases
from the knowledge-based documentation and consultation system for sonogra-
phy SonoConsult, an advanced and isolated part of HepatoConsult [11].

4.1 Experimental Setup

Casebase 1 consists of 1370 cases, among which are 31 single disorder cases
and 1339 multiple disorder cases. Originally Casebase 1 has 3506 attributes,
consisting of 1911 symptom attributes (findings) and 1595 disorder attributes.

In the procession of analysing the Casebase 1, we detect that not all these
3605 attributes are meaningful to us. Lots of attributes do not even have a
value in all those 1370 cases, they are all presented by ‘?’. Thus we preprocess
Casebase 1, after preprocessing, Casebase 1 contains an overall number of 137
diagnoses and 286 symptoms, with a mean Md = 7.60 ± 4.12 of diagnoses per
case and a mean Mf = 52.99 ± 15.89 of relevant findings per case and a mean
Md/f = 8.80 ± 5.65 of findings per diagnose per case.

The second evaluation casebase (we call Casebase 2) consists of 744 cases,
among which there are 65 single disorder cases and 679 multiple disorder cases.
The casebase contains an overall number of 221 diagnoses and 556 symptoms,
with a mean MD = 6.72 ± 04.40 of diagnoses per case and a mean MF =
71.13 ± 23.11 of relevant findings per case and a mean Md/f = 15.46 ± 12.52 of
findings per diagnose per case.

4.2 Evaluation Metrics

In the usual task of assigning an example to a single category, the accuracy
is just the percentage of cases which are correctly classified. But to quantita-
tively measure the accuracy of multiple disorder diagnosis, the simple accuracy
measurement does not fit.

We adopt the Intersection Accuracy [7], as a measure for multiple disorder
problems. Intersection accuracy is derived by the two standard measures: sensi-
tivity and Specificity.

Definition 4 (Intersection Accuracy). The Intersection Accuracy IA(c, c′)
is defined as

IA(c, c′) =
1
2

·
(

|Dc ∩ Dc′ |
|Dc|

+
|Dc ∩ Dc′ |

|Dc′ |

)
(10)

where Dc ⊆ ΩD is the set of correct diagnoses, and Dc′ ⊆ ΩD is the set of
diagnoses generated by the system.

Besides Intersection Accuracy, we also measure Standard Accuracy which is
defined as (T ++T−)/N , where T +(True Positives) is the number of disorders in
the correct diagnosis that are also in the system diagnosis (|Dc ∩Dc′ |), T−(True
Negatives) is the number of disorders which are neither in the correct diagnosis
nor in the system diagnosis, and N is the total number of disorders.

How to Combine CBR and RBR 485

Moreover, sensitivity is defined by (T +/C+), where T + is True Positives, C+

is the number of disorders in the correct diagnosis. Sensitivity measure accuracy
over the disorders actually present. Specificity is defined as (T−/C−), where T−

is True Negatives and C− is the number of disorders not in the correct diagnosis.
Specificity measures the accuracy over disorders which are not present.

When our system diagnoses for patients, it will estimate the confidence level
for the results it generates. To those cases with low confidence level, the system
will mark these cases as unsolved cases and seek for doctor’s help. Thus, another
measure is the percentage of the solved cases. We define the mean intersection
accuracy to be the average intersection accuracy of all solved cases.

4.3 Refine Compositional CBR with RBR

The objective of this evaluation was to examine at a detailed level the per-
formance of the system with Compositional CBR refined with RBR on both
Casebase 1 and Casebase 2.

We used 10 fold cross-validation. The test cases are from one fold of the
casebase, while the remaining 9 fold of the casebase will be used to construct
diagnostic rules and help case retrieval. The detailed results on Casecase 1 are
presented in Fig. 1. In order to illustrate the performance improvements offered
by refining compositional CBR with RBR, Fig. 1. also includes the results of
using compositional CBR only. Finally, for comparison purposes, Fig. 1. includes
the results of applying naive case-based reasoning on casebase 1 and the results
of only using Rule-based Reasoning on the casebase. (Naive CBR retrieve the
most similar case from the casebase and propose the solution of this similar case
as final solution for the query case; Rule-based Reasoning uses diagnostic rules
to match observed findings for diagnosing)

The graphs in Fig 1 illustrate a number of things:

– Naive Case-based reasoning can not cope with multiple disorder problem
efficiently: percentage of solved case stays below 20% for most of the 10
folds, overall percentage of solved case is 16.13%.

– Rule-based reasoning could solve more cases than Naive CBR, but significant
decrease in intersection accuracy and standard accuracy have been noticed.

– Compositional CBR significantly improved the performance than naive CBR
and Rule-based Reasoning, in both 10 fold measure and the overall results,
which demonstrates the relevance of this method in the multiple disorder
situation

– After refining compositional CBR with RBR, Intersection Accuracy im-
proved for each fold, although the percentage of solved case slightly drops
on some folds. The overall result for solved percentage is 76.64%, where that
for compositional CBR is 77.81%. Both Sensitivity and Specificity increase
after the refinement.

Fig. 2. presents the detailed results on Casebase 2 which illustrates the fol-
lowing results:

486 W. Shi and J.A. Barnden

0 1 2 3 4 5 6 7 8 9
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fold

P
er

ce
nt

ag
e

Percentage of Solved Cases

Naive CBR
Compositional CBR
RBR
Hybrid CBR & RBR

0 1 2 3 4 5 6 7 8 9
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Fold

In
te

rs
ec

tio
n

A
cc

ur
ac

y

Intersection Accuracy

Naive CBR
Compositional CBR
RBR
Hybrid CBR & RBR

0 1 2 3 4 5 6 7 8 9
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fold

S
en

si
tiv

ity

Sensitivity

Naive CBR
Compositional CBR
RBR
Hybrid CBR & RBR

0 1 2 3 4 5 6 7 8 9
0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

Fold

S
pe

ci
fic

ity

Specificity

Naive CBR
Compositional CBR
RBR
Hybrid CBR & RBR

0 1 2 3 4 5 6 7 8 9
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

Fold

S
ta

nd
ar

d
A

cc
ur

ac
y

Standard Accuracy

Naive CBR
Compositional CBR
RBR
Hybrid CBR & RBR

Traditional CBR Compositional CBR RBR Hybrid CBR & RBR
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Overall Results

Solved Percentage
IA
Sen.
Spec.
SA

Fig. 1. Results of Casebase 1: 1370 cases

– Naive Case-based reasoning solves less than 10% for each of 10 folds. Inter-
section Accuracy varies greatly from each fold, which may be due to the size
of casebase and Naive CBR fails to find the most similar case with similar
diagnostic solution.

– The performance of Compositional CBR and Rule-based Reasoning on Case-
base 2 is similar to that on Casebase 1.

– Hybrid CBR and RBR method improved both percentage of solved cases
and Intersection Accuracy, compared to Compositional CBR. This is possi-
bly because not only RBR is used to generate candidate diagnose, not also
inductive diagnostic rules are helping improve the performance of composi-

How to Combine CBR and RBR 487

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fold

P
er

ce
nt

ag
e

Percentage of Solved Cases

Naive CBR
Compositional CBR
RBR
Hybrid CBR & RBR

0 1 2 3 4 5 6 7 8 9
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Fold

In
te

rs
ec

tio
n

A
cc

ur
ac

y

Intersection Accuracy

Naive CBR
Compositional CBR
RBR
Hybrid CBR & RBR

0 1 2 3 4 5 6 7 8 9
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fold

S
en

si
tiv

ity

Sensitivity

Naive CBR
Compositional CBR
RBR
Hybrid CBR & RBR

0 1 2 3 4 5 6 7 8 9
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Fold

S
pe

ci
fic

ity

Specificity

Naive CBR
Compositional CBR
RBR
Hybrid CBR & RBR

0 1 2 3 4 5 6 7 8 9
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Fold

S
ta

nd
ar

d
A

cc
ur

ac
y

Standard Accuracy

Naive CBR
Compositional CBR
RBR
Hybrid CBR & RBR

Traditional CBR Compositional CBR RBR Hybrid CBR & RBR
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Overall Results

Solved Percentage
IA
Sen.
Spec.
SA

Fig. 2. Results of Casebase 2: 744 cases

tional CBR here by retrieving the cases from the casebase based on partial
similarity.

We also notice that Intersection Accuracy is more suitable for evaluating
multiple disorder problems than Standard Accuracy. Since the number of po-
tential disorders is much larger than the number of disorders actually present
(T− >> T +), Standard Accuracy stays high for all these four methods compared
above. We even can get perfect specificity by assuming that all cases have no dis-
order and get perfect sensitivity by assuming that all cases have got all disorders.
Thus Intersection accuracy is a better measure which avoids such extremes.

488 W. Shi and J.A. Barnden

4.4 Ours vs. Set-Covering Strategy

In another experiment, we compared our method with Naive CBR, Set-Covering
method [4] and Partition Class method [2] on Casebase 2. These four meth-
ods were implemented and evaluated using the same casebase. The set-covering
approach combined case-based reasoning and set-covering models for diagnosis.
The partition class method uses partitioning knowledge provided by the expert to
split cases into several parts. Decomposed cases are retrieved and combined to get
the candidate solution. The evaluation results are shown in the following table.

Table 1. Comparison of the approaches, using 744 cases

744 Cases from the SonoConsult Case Base

Approach solved cases (percentage) mean IA
Naive CBR 20 (3%) 0.66

Set-Covering 502 (67%) 0.70

Hybrid CBR and RBR 582 (78%) 0.74

Partition Class 624 (84%) 0.73

The results in the first line show, that the Naive CBR method performs
poorly with cases having multiple disorders. Naive CBR utilising no adaptation
and no additional background knowledge can only solve 3% of the cases in the
case base, which is obviously insufficient. Hybrid CBR and RBR solves 582, i.e.,
78% of the cases in the case base, with a mean accuracy of 0.74, which performs
significantly better than naive CBR. This demonstrates the relevance of this
method in the multiple disorder situation.

Hybrid CBR and RBR is performed better than the set-covering approach.
This is probably due to: The set-covering approach returns candidate cases with
all their solutions and no sophisticated adaptation step is applied, while Hybrid
CBR and RBR method compose the final diagnosis in its adaptation process,
by only selecting parts of the solutions of the similar cases. The knowledge-
intensive method using partition class knowledge performs best. However the
multiple CBR method and the set-covering approach do not need background
knowledge, and so can be applied in arbitrary situations when the partitioning
knowledge is not available, while the partition class strategy needs additional
background knowledge.

5 Related Research

Most of CBR/RBR hybrids have taken either of two approaches to integratation.
The first approach is to have two separate systems, both CBR and RBR systems
can solve the problem independently. If the problem can’t be solved by finding a
matched case, rule-based reasoning will be called [15]. Or RBR is applied first,
when it fails to provide an acceptable solution, CBR will be utilised to retrieve
similar cases to generate possible solutions [21]. The second approach is that take

How to Combine CBR and RBR 489

either RBR or CBR as the essential system, and the alternative provides some
overall functionality. A LA CARTE [18] tunes the rules by using cases which store
evaluations and hypothetical alternatives to the rules. Anapron [10] supplements
the rule-based reasoning by using cases to fill in small pockets of exceptions in
the rules. DIAL [14] combines general rules and previous adaptation cases to
learn case adaptation knowledge. CAMPER [16] contributes an initial menu
that meets multiple numeric constraints and RBR allows “what if” analysis of
alternatives in the domain of nutritional menu planning.

There is some work combining CBR with Model-based reasoning (MBR).
The classic system CASEY which diagnoses heart failures [13], integrated case-
based reasoning with an early MBR System. When CASEY could not find a close
enough case to match a new case, the early MBR system was recalled. CARMA
incorporates numeric models developed by entomologists with specific cases of
past infestations. The integration of CBR and MBR improves the accuracy,
since neither CBR nor MBR alone could produce accurate predictions because
of incomplete models and few cases [5].

Our system differs from previous approaches to combination. First of all,
our approach generates diagnostic rules by inductive learning, which reduces the
knowledge acquisition bottleneck, compared to acquiring rules or models from
domain experts. Secondly, CBR is intrinsically enhanced by the RBR module.
Case retrieval is enhanced by measuring the partial similarity based on the sig-
nificant findings derived from rules. Thirdly, when constructing final diagnosis,
we combine the results from CBR and RBR by including a given disorder in
the final solution of its strongly recommended by either CBR or RBR. There-
fore the final solution can be a mixture of CBR recommendations and RBR
recommendations.

6 Conclusion and Future Work

In this paper, we introduce a hybrid approach to deal with multiple disorder
problems. We combine compositional case-based reasoning and Rule-based Rea-
soning to construct diagnostic solution from a multiple disorder casebase. Using
real medical data, this method has been demonstrated to be promising.

There are several points worth noting about our approach. Firstly, the case-
based reasoning method itself corresponds to the diagnosing process that physi-
cians use when they recall former similar diagnostic case for diagnosis. Secondly
our method is different from other CBR and RBR hybrids. It generates diagnos-
tic rules by inductive learning, and CBR is intrinsically enhanced by RBR, and it
construct final diagnosis by considering both CBR and RBR recommendations.
Thirdly, our system deals with the problem of multiple disorder, which hasn’t
been identified by most knowledge-based diagnostic systems [9]. Fourthly, our
approach uses flexible knowledge, and allows the automatic generation of the
knowledge base from an existing database, which not only makes the system
easy to integrate into existing clinical information systems, but also reduces the
knowledge acquisition problem.

490 W. Shi and J.A. Barnden

There are also many opportunities for future work. Firstly, we believe that
employing learning methodology to explore interactions between disorders will
help to filter the candidate disorders or to add potential disorders during case
adaption. Secondly, experiments in other domains are desirable. Our work has
the potential to be used to diagnose multiple faults in other diagnostic problem
areas, such as diagnosis problems concerning machine faults.

References

1. M Atzmueller, W Shi, J Baumeister, F Puppe, and J A Barnden. Case-based ap-
proaches for diagnosing multiple disorders. In Proceedings of the 17th International
Florida Artificial Intelligence Research Society Conference 2004 (FLAIRS-2004),
pages 154–159, USA, 2004. AAAI Press.

2. Martin Atzmueller, Joachim Baumeister, and Frank Puppe. Evaluation of two
strategies for case-based diagnosis handling multiple faults. In Proceedings of
the 2nd German Workshop on Experience Management(GWEM 2003), Luzern,
Switzerland, 2003.

3. Martin Atzmueller, Joachim Baumeister, and Frank Puppe. Quality measures for
semi-automatic learning of simple diagnostic rule bases. In Proceedings of the
15th International Conference on Applications of Declarative Programming and
Knowledge Management (INAP 2004), Potsdam, Germany, 2004.

4. Joachim Baumeister, Martin Atzmueller, and Frank Puppe. Inductive learning
for case-based diagnosis with multiple faults. In S.Craw and A.Preece, editors,
Advances in Case-based Reasoning (ECCBR2002), pages 28–42. Springer Verlag,
2002. Proceedings of the 6th European Conference on Case-based Reasoning.

5. L. Karl Branting. Integrating cases and models through approximate-model-based
adaptation. In Multimodal Reasoning: Papers from the 1998 AAAI Spring Sympo-
sium, pages 1–5, Menlo Park, CA, 1998. AAAI Press.

6. Bruce G. Buchanan and Edward H. shortliffe, editors. Rule-Based Expert Systems
The MYCIN Experiments of the Stanford Heuristic Programming Project. Addison-
Wesley Publishing Company, 1984.

7. Thompson Cynthia A and Raymond J. Mooney. Inductive learning for abductive
diagnosis. In Proc. of the AAAI-94, volume 1, pages 664–669, 1994.

8. Linda Gaag and Maria Wessels. Efficient multiple-disorder diagnosis by strategic
focusing. In A Gammerman, editor, Probabilistic Reasoning and Bayesian Belief
Networks, pages 187–204, London, 1995. UCL Press.

9. Lothar Gierl, Mathias Bull, and Rainer Schmidt. Cbr in medicine. In Mario Lenz
etc., editor, Case-based Reasoning Technology:From Foundations to Applications,
pages 273–297. Springer-Verlag, 1998. ISBN 3-540-64572-1.

10. Andrew R. Golding and Paul S. Rosenbloom. Improving rule-based systems
through case-based reasoning. In Proceedings of the National Conference on Arti-
ficial Intelligence, pages 22–27, Anaheim, 1991. MIT Press.

11. Matthias Huettig, Georg Buscher, Thomas Menzel, Wolfgang Scheppach, Frank
Puppe, and Hans-Peter Buscher. A Diagnostic Expert System for Structured Re-
ports, Quality Assessment, and Training of Residents in Sonography. Medizinische
Klinik, 99(3):117–122, 2004.

12. Yeona Jang. HYDI: A Hybrid System with Feedback for Diagnosing Multiple Dis-
orders. PhD thesis, Massachusetts Institute of Technology, 1993.

How to Combine CBR and RBR 491

13. Phyllis Koton. Using Experience in Learning and Problem solving. PhD thesis,
Massachusetts Institute of Technology, 1988.

14. David B. Leake. Combining rules and cases to learn case adaptation. In Proceedings
of the Seventeenth Annual Conference of the Cognitive Science Society, pages 84–
89. Cognitive Science Society, 1995.

15. M. R. Lee, W. Y. Wong, and D. M. Zhang. A knowledge-based framework for
clinical incident management. Expert Systems with Application, 17:315–325, 1999.

16. C.R. Marling, G.J. Petot, and L.S. Sterling. Integrating case-based and rule-
based reasoning to meet multiple design constraints. Computational Intelligence,
15(3):308–332, 1999.

17. R. A. Miller, H. E. Pople, and J. D. Myers. Internist-1:an experimental computer-
based diagnostic consultant for general internal medicine. New england Journal of
Medicin, 8(307):468–476, 1982.

18. Yoshio Nakatani. Tuning rules by cases. In Stefan Wess, Klaus-Dieter Althoff,
and Michael M. Richter, editors, Topics in Case-based Reasoning: First Euro-
pean Workshop, EWCBR-93, pages 313–324, Berlin Heidelberg New York, 1993.
Springer-Verlag.

19. Agnieszka Onisko, Marek J. Druzdzel, and Hanna Wasyluk. Extension of the
heparii model to multiple-disorder diagnosis. In M. Klopotek etc., editor, Intelligent
Information Systems, pages 303–313. Physica-Verlag, 2000.

20. Yun Peng and James A. Reggia. Abductive Inference Models for Diagnostic
Problem-Solving. Springer-Verlag, 1990.

21. J. Surma and K. Vanhoff. Integrating rules and cases for the classification task.
In Lecture Notes in Artificial Intelligence 1010, Proceeding of 1st ICCBR, pages
325–334. Springer Verlag, 1995.

22. Thaddeus PM Ulzen and Hayley Hamiton. The nature and characteristics of psy-
chiatric comorbidity in incarcerated adolescents. Original Research, 43(1), 1998.

23. Staal Vinterbo and Lucila O. Machado. A genetic algorighm approach to multi-
disorder diagnosis. Artificial Intelligence in Medicine, 18(2):117–132, 2000.

24. Wolfgang Wilke and Ralph Bergmann. Techniques and knowledge used for adap-
tation during case-based problem solving. In IEA/AIE (Vol. 2), pages 497–506,
1998.

25. D. Randall Wilson and Tony R. Martinez. Improved heterogeneous distance func-
tions. Journal of Artificial Intelligence Research, 1997.

26. Robert S. Witte and John S. Witte. Statistics. John Wiley & Sons, Inc, 2004.

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, pp. 492 – 506, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Case-Based Student Modeling Using Concept Maps

Frode Sørmo

NTNU, Department of Computer Science, Division of Intelligent Systems,
Sem Sælands vei 7-9, NO-7491 Trondheim, Norway

frodeso@idi.ntnu.no

Abstract. Intelligent Tutoring Systems require student models to tailor tutoring
to the individual student. This paper presents CREEK-Tutor, an exercise-
oriented tutoring system that uses a student modeling technique based on
case-based reasoning to find students of similar competence. We describe a
similarity measure for concept maps in student modeling is described, and pre-
sent an initial evaluation of the approach.

1 Introduction

In tutoring and educational support systems, it is important to have a model of the
student’s competence that is as accurate as possible. This student model can be cre-
ated in a number of ways, such as asking the student questions before the tutoring
session starts, or tracking behavior during the session. Early intelligent tutoring sys-
tems using the first method matched the student to prototypical student profiles and
used these to customize the tutoring [1]. Using case-based reasoning, the natural
choice is to use real student profiles instead of prototypical profiles and using the
concrete experience from these students to tailor the new session such as is done for
instance in [2,3].

In this paper we present a case-based approach to student modeling that use con-
cept maps as a central mechanism for the student himself to represent what he knows
about a domain. A concept map is an informal knowledge representation that allows a
student to relate concepts in a domain in a way visually similar to what is done in
semantic networks. Our hypothesis is that using the student’s own representation of
what he or she knows in the form of a concept map will help us to predict the stu-
dent’s competence on practical exercises. We test this using an early version of the
CREEK-Tutor system, which is an intelligent tutoring system focused on assisting
students in solving exercises in areas such as mathematics, computer programming
and medical diagnosis, where exercises are usually an important part of the learning
process. In order to tie these exercises to the textbook knowledge and help the system
in developing an accurate student model, CREEK-Tutor asks the student to draw
concept maps.

In Section 2, we will give a brief background of the concept map techniques and
introduce a similarity measure for comparing concept maps in the context of student
modeling. In Section 3, we present the CREEK-Tutor system where we use case-
based reasoning with cases containing concept maps in order to predict student com-

LNAI

 Case-Based Student Modeling Using Concept Maps 493

petence. Section 4 contains a description of the evaluation of data we collected in an
experiment with 48 students using our system to solve Java programming exercises.

2 Concept Maps

Concept maps (sometimes called topic maps) were originally designed as an educa-
tion aid to assist students in organizing the concepts in a limited domain by connect-
ing them with labeled links [4]. They have since been widely used on many levels of
education from elementary school to university studies as an aid to help people con-
ceptualize and organize their knowledge. The concept maps looks similar to semantic
networks (see Figure 1 for an example), but while the goal of a knowledge representa-
tion in the AI sense is to establish a common representation between human and com-
puter, the concept map is primarily meant as an aid in human learning, organization
and communication. Even when concept maps are represented through a computer
tool, the computer is not typically expected to understand the contents any more than
a word processor would understand this paper. It may provide helpful tips (such as on
spell checking in a word processor), but it is not expected to reason over the contents.

Fig. 1. A simple concept map: “Arrays in Java”

Various styles of concept maps have been used and evaluated in a wide variety of
educational settings to present, organize and assess information. The technique has
also been used to support performance in business and government, for instance in
assisting knowledge management. In this paper, we will focus on using concept maps
as evaluation tools, but we recommend [7] for an in-depth survey.

2.1 Concept Maps as Tools of Assessment

Concept maps were introduced by Novak as a way for students to organize their
knowledge about a particular topic in a free-form way [4]. Although some simple

494 F. Sørmo

rules were presented to limit their complexity and to help the student in structuring
the concepts, the student was essentially free to form any concepts and links. Because
a student’s concept map is an expression of the student’s knowledge, Novak also
suggested that the maps could be used to assess the student’s knowledge about a do-
main. The original proposal from Novak was based on an expert (teacher) examining
the concept map and awarding points based on structure, inclusion of relevant con-
cepts, relations and examples. This and later point-based scoring techniques provide
guidelines, but they depend to some degree on the judgment of the evaluator and are
hard to automate. Completely free-form approaches may also lead the student to (at
best) different conceptualizations of the domain and (at worst) to model something
quite different from what we wish to evaluate.

In order to guide the students towards modeling the intended topic, it is normal for
concept map based assessment tools to use a less free-form approach to mapping.
This may range from concept maps that are almost complete where the student’s task
is to fill in missing links, link names or concept names, to simply providing hints
about the central concepts in the domain. Ruiz-Primo[8] identifies a scale from low to
high directedness in the approach to concept mapping (Figure 2).

Fig. 2. Concept map techniques according to directedness of the mapping task (adapted from
[8, p.2])

The computational approaches to assessing concept maps tend to gravitate towards
the high directedness end of this scale. The most obvious reason for this is that be-
cause the concept maps are not easily understood by a computer, it is hard to auto-
mate the assessment. While constrained maps do not necessarily make it possible to
understand the maps, it makes it easier to compare concept maps. This allows a com-
puter system to compare concept maps created by students to a teacher or expert map
and thus grade it on the similarity to this map. Researchers from CRESST (Center for

Degree of Directedness

(No Concepts, Linking
 Labels or Structure

 Provided)

High

(Concepts Provided)

Fill-in-the-Map

Low

Consutrct-a-Map

Construct-a-Map

Construct-a-Map
(Concepts Provided &
Structure Suggested)

Fill-in-Lines Fill-in-Nodes

Construct-a-Map
(Concepts & Linking
 Phrases Provided)

 Case-Based Student Modeling Using Concept Maps 495

Research on Evaluation, Standards and Student Testing) have investigated computer-
ized techniques using this approach [9]. In their approach, the teacher will first draw a
concept map for a topic, and then the concepts and linking names are extracted from
this map. The students are then asked to form a map using the same concepts and
link-names, which greatly simplifies computational scoring. This method corresponds
to the Construct-a-Map (Concepts & Linking Phrases Provided) on the middle of the
degree-of-directedness scale in Figure 2.

In our research, we have used a similar approach to what is done in the CRESST
research, where the student is presented with a pre-made list of concepts and link
labels. This is primarily motivated by pragmatic concerns in allowing the compari-
sons of maps to be automated, but we also wish to ensure that the maps produced by
students are constrained within the topic decided by the teacher, while also allowing
the student some degree of freedom of expression. Our approach is different from the
CRESST approach in that our goal is not to score the student’s concept map by its
similarity to the teacher’s map, but to use it to find students that are similar in ability.

Leake and Canas et.al. [5,6] have developed a case-based approach to use concept
maps in knowledge management, but their goal is not primarily to assess the similar-
ity of different people modeling the same topic. Their goal is to assist domain experts
in the process of knowledge modeling. The experts should be treated as equals, and as
such they cannot constrain the expression of the modeler to concepts or labels that are
used by others. Neither is such information easily available since the experts typically
model domains and topics not already known by the system. Because of this, they are
faced with the harder task of finding mappings between the elements of concept maps
made by different experts.

2.2 Definitions

Concept maps follow the basic syntactical structure of labeled graphs. While there are
typically also other considerations when creating concept maps, these are usually not
absolute rules and harder to encode explicitly in the syntax. For instance, many map-
ping methods require that the map should be hierarchical with general concepts gen-
erally positioned higher on the surface used to draw the map. This means that when
storing conceptual maps, it is important to store the position of nodes on the surface in
order to be able to reproduce them exactly as drawn. However, when multiple persons
are asked to draw the same map, the positions of the nodes can vary much between
different maps even if the graph are the same. Because of this we do not currently use
the node’s position when computationally comparing concept maps and below we use
definitions that do not include positional information.

We will use the definitions of Champin and Solnon [10] to facilitate comparing our
approach for the similarity of concept maps to their more general approach for com-
paring labeled graphs. Given a set of vertex labels LV and edge labels LE, Champin
and Solnon defines a labeled graphs as a triplet G = <V, rV, rE> where

 V is a finite set of vertices
 rV ⊆ V × LV defines a relation that associates vertices with labels.
 rE ⊆ V × V × LE defines a relation that defines the edges between vertices and
associates a label with each edge.

496 F. Sørmo

Using this definition, rV and rE completely describe the graph as they contain both
the vertex labels and edge labels.

As an example, the concept map pictured in Figure 1 can be represented formally
using the above definition as:

LV = {Array, Index, Variable name, String[] sentences, Two-dimensional Array,

int[[]] table, int[][] table},
LE = {identified by, is a kind of, correct example of, erroneous example of}
V = {a, b, c, d, e, f, g},
rV = {(a, Array) (b, Index) ,(c, Variable name), (d, String[] sentences), (e, Two-

dimensional Array), (f, int[[]] table), (g, int[][] table)},
rE= {(a, b, identified by), (a, c, identified by), (d, a, correct example of), (e, a, is a

kind of), (f, e, erroneous example of), (g, e, correct example of)}.

2.3 Similarity of Concept Maps

In order to measure the similarity of two graphs with different sets of vertices, it is
necessary to create a mapping function between the sets of vertices and then measure
the similarity between each different possible mapping. Unfortunately, the problem of
searching this space for the maximum similarity of the two graphs is combinatorial -
as Champin and Solnon points out, the problem is more general than the isomorph
graph problem that is known to be NP complete. If the task is to compare the similar-
ity of any two concept maps, a greedy approach such as that proposed by Champin
and Solnon may be required.

Fortunately, the constraints we have introduced on the concept maps makes com-
paring the maps much less complex. Although we allow the teacher to first model the
domain freely by creating any labeled graph, the student may use only the concepts
(vertex labels) and edge labels used in the teacher’s map. The student is free to use
any of the vertex labels, but may not create more than one vertex using the same la-
bel. He may then draw any edge between any of the vertices using edge labels defined
in the teacher’s map, and these edge labels may be used on as many edges as the stu-
dent wants. In order to separate the free-form maps created by teachers from the con-
strained maps formed by students, we will call the former teacher maps and the latter
student maps in the discussion below.

This means that given a teacher map Gt = <Vt, rVt, rEt>, we can compare two stu-
dent maps represented by two labeled graphs G1 =<V1, rV1, rE1> and G2 =<V2, rV2, rE2>
where V1,V2 ⊆ Vt. Because both V1 and V2 are subsets of Vt, the rV1, rV2, rE1 and rE2
relations are all defined over the same set of vertices Vt. In essence, the teacher cre-
ates the mapping ahead of time, and guarantees a one-to-one correspondence between
vertices used in the student maps. Because the vertex labels LV and edge labels LE are
also the same, the degree of overlap between the graphs can be measured by doing
intersection operations on the vertices and edges. Because the major computational
complexity associated with comparing graphs is finding this mapping, this makes
computing the similarity of this kind of concept maps trivial. We use a similarity
measure that is an adaptation of the Jaccard Coefficient also used by Champin and
Solnon, which measure the difference between the union and intersection of the two
graphs.

 Case-Based Student Modeling Using Concept Maps 497

Through testing we have found that some students like to place all the available
concepts on the drawing surface before drawing relations between them. This may
leave them with several concepts that are not connected to the graph, and if they are
included in the similarity measure they may introduce inaccuracies when compared to
another student that places concepts on the drawing surface on demand. The presence
or non-presence of concepts in the graphs are thus not really indicative of similarity.
Because of this, we only use the relations to measure the similarity (see Figure 3).

 sim(G1,G2) =

Fig. 3. Similarity measure for comparing student maps

Another interesting property of the pre-defined set of vertices and edge labels is
that it imposes a finite number of degrees of freedom on the student when creating the
concept map. There is |V|2*|LE| possible relations that can be included in a student
map formed from any given teacher map. In theory, this allows us to represent the
student maps as bit vectors, where each dimension in the vector represents the
presence or non-presence of one of the possible relations. Although this would allow
standard instance-based similarity measures to be used, it is a space-inefficient
representation of the map since very few of the possible relations will be present in
any one map.

3 The CREEK-Tutor System

The goal of the CREEK-Tutor system is to use case-based reasoning (CBR) tech-
niques to assist students in solving exercises. We look primarily at domains such as
mathematics, computer programming and medical diagnosis where the student typi-
cally combines text-book learning with some form of learning through exercises. In
particular we would like to address three major issues in these domains:

 Helping the student to find exercises appropriate to his skill level.
 Relating the textbook learning to the exercises.
 Assisting the student in solving the exercises.

In order for the system to assist the student in this, it needs to know the capabilities
of the student. To capture this, most intelligent tutoring systems (ITS) have student
models that contain an overview of what the student knows about the domain, and this
knowledge can then be applied to tailoring the tutoring to the student. Typically, a
student model consists of an overlay of an expert model that records whether the
student knows about each piece of knowledge in the expert model [1]. In addition,
many systems contain a library of common misconceptions in the domain (bug librar-
ies) and attempts to identify if the student is likely to subscribe to any of the known
misconceptions. Case-based reasoning has been used in the past to assist in student-
modeling (see e.g. [2,3]). Given a student model, an ITS system should find learning

| rE 1∪ rE2|

| rE1∩ rE 2|

498 F. Sørmo

tasks for the student that will challenge his skills without being too difficult for the
student to solve. This task could be a specific learning goal, or an exercise designed to
train some operational skill as in [11] where exercises are formed to train Air Traffic
Control operators.

In the previous section, we briefly reviewed how concept maps can be used to help
students organize their knowledge and suggested that concept maps might be used to
assess a student’s knowledge. However, concept maps primarily measure declarative
knowledge of the type gained from lectures and textbooks rather than the internalized
skill gained from exercises. On the other hand, cases may serve well as examples and
potential exercises, but do not serve equally well in associating these concrete exam-
ples with generalized knowledge gained, for instance, through reading textbooks.

The CREEK-Tutor system is an approach to exercise tutoring that combines con-
cept maps and case-based reasoning and their relative strengths in episodic and gener-
alized knowledge. The method of the system can be summarized as:

 Exercise Selection:
1. Ask student to draw a concept map of a particular topic.
2. Find similar concept maps drawn by other (previous or prototypical) students.
3. Predict the difficulty of exercises based on performance of students found to

have similar concept maps.
4. Suggest an exercise of appropriate difficulty level.
5. Justify exercise selection by showing which part of the concept map it ad-

dresses.

 Exercise Solution Support:
1. If student asks for help, look at current state of problem solving.
2. Match current state of problem solving to reasoning traces performed by previ-

ous or prototypical students solving the same exercise
3. Suggest next step in reasoning trace
4. Justify reasoning step by displaying the part of matched student’s concept map

relevant for this reasoning step.

In the work presented in this paper, we will focus on the exercise selection part of
the system. Of particular interest is if it is possible to use concept maps in a case-
based reasoning technique to assess how difficult a set of exercises will be for a par-
ticular student. Will, for instance, two students with similar concept maps be at the
same skill level? Will they find the same exercises easy and will they have problems
with the same exercises? This is by no means assured – even though concept maps
may reflect the level of declarative knowledge, this kind of knowledge does not nec-
essarily correlate with the ability to solve more practical exercises.

In order to test if concept maps may be used in this manner, we have developed an
environment for exercise solving for use in beginner courses in Java programming.
This domain was chosen for several reasons. First and foremost, it has the combina-
tion of textbook and practical knowledge, and exercises are central to teaching pro-
gramming. Second, the nature of programming makes it easy for computers to evalu-
ate the students’ exercises – one obvious test is for instance if the program compiles.
Other automated tests may also be designed in a similar fashion to how unit tests are

 Case-Based Student Modeling Using Concept Maps 499

created in normal software development. Finally, as a computer department, we have
good access to the students in programming courses, and it is a subject matter we are
ourselves fairly well versed in. Our first trials using CREEK-Tutor has not focused on
real-time exercise selection for the students, but has served as an environment where
student combine concept map creation with solving traditional programming exer-
cises. The results was recorded and used as an offline dataset that contains for each
student a concept map and various measures of how the student performed on each
programming task. This dataset allows us to analyze various case-based reasoning
strategies for predicting a student’s competence based on his concept map.

3.1 Representation

For the representation of both cases and concept maps formed by teachers and stu-
dents, we used the CREEK system. In CREEK, cases and general knowledge are
stored in a densely coupled semantic network [12] and this fits will with the graph-
based concept maps. The major representation features in CREEK are, as in concept
maps, labeled concepts and relations. The concepts in CREEK correspond to the
nodes and the relations to the edges the graph-based formalism presented in Section 2.

This means that the teacher may model his expert maps directly in CREEK using a
graphical user interface we have developed. This tool is similar in style to the concept
map editor from CREEK-Tutor (described in Section 3.2 and shown in Figure 3), but
here the teacher is given complete freedom to model his concept map, including the
ability to create new labeled concepts, relation labels and relations between concepts.

As described in Section 2, we only allow the students to describe their concept
maps using the concepts and relation labels defined by the teacher. They may, how-
ever, create any set of relations over these concepts. In order to represent these stu-
dent maps, we require the capability to represent disparate graphs in the same seman-
tic network and associate them with student cases. This is solved by a recent addition
to the representational language of CREEK that makes it possible to store submodels
containing a subset of the relations and concepts in a given model. These submodels
may be associated with a concept in the semantic network, for instance the concept
representing a student’s case. When a student adds a concept to his concept map by
dragging it to the drawing surface, this is represented in CREEK as adding this con-
cept to the submodel associated with the student. Similarly, when the student draws a
relation, this relation is added to his submodel.

The case representation we use in this paper only use the concept map in the
matching process. In addition to this, retained cases have stored information about
which exercises the student managed to solve and which remained unsolved.

3.2 Exercise Environment

The CREEK-Tutor exercise environment is a general environment for solving exer-
cises and may be extended for particular subjects. Typically, the exercise starts with a
text page explaining the background for the exercise. Following this, the student is
asked to assemble a concept map on the topic of the exercise before he is presented

500 F. Sørmo

Fig. 4. The CREEK-Tutor page for assembling concept maps. Concepts are dragged-and-
dropped using the mouse from the bottom list on the right hand side to the drawing area in the
middle. Relation labels are chosen from the top list on the right hand side and are drawn using
the mouse. Concepts may only be used once

Fig. 5. The programming task environment in CREEK-Tutor. The right bottom pane contains
the output from compiling or running the program, while the larger top pane contains an editor
where the student may create or change the program code

with a set of tasks to accomplish. In this paper we describe a use of CREEK-Tutor in
assisting a Java programming course, and as such these tasks are typically program-
ming problems. The exercise author is also allowed to define a path through the tasks,
specifying that one must be solved before another will be accessible.

 Case-Based Student Modeling Using Concept Maps 501

The first task presented to the user in is assembling a concept map for the topic of
the exercise (Figure 4). In designing the exercise for the experiment, we chose to
force the students to complete the concept map before they are allowed to start the
programming tasks, and they were not allowed to update the concept map once the
programming tasks are started. This is done to provide us with a dataset where we
know that the concept maps are created before the exercises are solved.

After the student has finished the concept map, the “Next” button takes him to the
next task. The tasks are also listed on the left-hand side.

The programming task page is a simple development environment that consists
of a short textual description of the task, a text editor (possibly containing a pre-
made program that must be modified) and buttons to compile and run the program
(Figure 5). In addition the user has a “Test” button that will use automated tests on the
program output and source code to determine if the goal of the task has been
accomplished.

4 Evaluation

We have performed an initial evaluation of CREEK-Tutor by using the exercise envi-
ronment described in Section 3.2 to gather data from students performing exercise in
an entry level Java programming course. Our first goal is to use this data to test our
hypothesis that the concept maps formed by students may be used to predict compe-
tence on the programming exercise task. As we have mentioned, this is not necessar-
ily the case since the skill involved in creating actual Java programs are different from
the theoretical knowledge about programming. In an attempt to bridge this gap be-
tween the theoretical knowledge and practical skill, we included a lot of examples of
program code snippets, such as “int[] integerArray” in the concept maps. These
statements should be identified as correct or erroneous examples of higher level con-
cepts in the map. For instance, “int[] integerArray” could be connected to “Declara-
tion” by a “correct example of” relation.

The second goal of our experiment was to gather more qualitative information
about how student model using concept maps in this domain, with an eye to how we
can better integrate the theoretical and practical aspects.

In all, 48 out of approximately 130 students attending the basic programming class
volunteered to participate in the experiment. Participation in the experiment gave the
same credit as delivering a required exercise in the course, as long as students either
finished all the tasks or were present working on them during two three-hour sessions.
Only two of the students were able to complete all the tasks in the six-hour period,
and these students finished late in the six hour period. This means that the resulting
dataset contains a fairly accurate snapshot of what tasks the students were able to
solve in the six hours of exercise work.

The students participating in the project could receive help from a teaching assis-
tant during the exercise, but they would not be given the solution of any tasks out-
right. The students were also allowed to ask each other and discuss the solutions.

Based on the dataset gathered from the CREEK-Tutor environment, we have
evaluated our first attempt at creating a case-based reasoner to assess the difficulty of
the various programming tasks based on the concept maps of the students. From the

502 F. Sørmo

dataset, we formed one case for each student. Each case contains the concept map
created by the student as well as an entry for each programming task. So far, this
entry only contains information about if the student managed to solve this task or not.
We have gathered additional information, but this is not used in the quantitative
evaluation so far.

Fig. 6. The result of a case matching in CREEK-Tutor. “Case #14” represents a student, and the
only feature used in the case matching is the partially matched concept map that is found to be
35% similar to the concept map of Case #26 (the other features that are 100% matches above
are all part of the solution and thus not used for matching). This proved to be a very good solu-
tion, as the student represented by Case #26 managed to solve exactly the same exercises as the
student represented by Case #14 although their concept maps only overlapped by 35%

The task of the case based reasoner is to predict what exercises a student will be
able to solve based on this student’s concept map. This is similar to classic machine-
learning classification tasks, except that the data we use as the basis for classification
is in the format of a labeled graph.

In the retrieval phase of the case-based reasoning, CREEK-Tutor attempts to match
the concept map of the input case to all the concept maps of the students in the case
base using the similarity measure provided in Section 2.3. Figure 6 contains a sample
output of a classification of a case using this method.

In evaluating the performance of the case-based reasoner on our dataset, we did a
standard leave-one-out cross validation where we removed one case at a time from the
case base and used the remaining cases to classify the removed case. The goal of the
classification was to predict how the student performed on the ten programming tasks
included in the exercise. Initially, we used only the nearest case, and thus the classifi-
cations consisted of copying the solution profile from this case. When more than one
case were used, the k nearest neighbors voted on each task.

We compared this with a baseline where for each task the majority class was cho-
sen as the prediction. Although almost all students were able to solve the easy tasks,

 Case-Based Student Modeling Using Concept Maps 503

very few solved the most difficult tasks. This caused the frequency of the majority
class to vary widely from one task to the next. In particular the very easy and very
hard tasks had a very high frequency for the majority class, but the middle difficulty
tasks discriminated better between the students, giving a baseline close to 50% (see
Figure 7).

50

60

70

80

90

100

1a 1b 1c 2a 2b 2c 3a 3b 4a 4b

Task

%
 c

or
re

ct
ly

 p
re

di
ct

ed

Baseline

CREEK

Fig. 7. Breakdown of the performance of the CREEK-Tutor classifier compared to the baseline
for each programming task given to the student. While the baseline for the very easy tasks
(1a,1b and 2a) and very hard tasks (3b, 4a and 4b) are high and hard to beat, Creek show a very
large improvement over the baseline in the more discriminate tasks (1c, 2b, 2c and 3a)

The results of testing showed that CREEK-Tutor were able to predict correctly
how the student fared on an average of 8.42 out of the 10 tasks, or 84%. This com-
pares to the baseline based on the majority class that guessed on average 7.65 correct
out of the 10 tasks, or 77%. The CREEK-Tutor prediction is significantly (p < 0.05 on
a standard paired T-Test) better than the baseline. When we break down the predic-
tions to the individual tasks, it becomes clearer what is the source of this increase –
CREEK-Tutor is seemingly able to accurately predict what students will be able to
solve the tasks of middle difficulty, although there is far less room for improvement
over the baseline on the less discriminating tasks.

We did find, however, that some of the concept maps overlapped very little with
any other maps. If only the cases where the best matched case were over 20% similar
on the concept map was included, we were left with 28 cases. Repeating our test with
these 28, we found that the accuracy increased to 91% (significant to p < 0.01).

When we first found these results, we were a bit surprised by how well the case-
based reasoner predicted exercise competence from the concepts maps. Because the
concept maps focus more on the theoretical side of the programming, we did not ex-
pect the correlation to be quite as strong. Further investigations revealed that there is
an alternative reason that may explain these results – student cooperation. In our data
collection, we attempted to stay as close to real-life exercise solving as possible,
which allowed students to cooperate and discuss the solutions. While we informally
observed that many students worked alone, quite a few students discussed the tasks in
pairs (although groups bigger than pairs were not observed). This means that while
the students separately solved the task through the systems, it is likely that they were

504 F. Sørmo

influenced by their cooperation partner. If this is the case, it is likely that not only
would their concept maps be similar, but it is also more likely that they were able to
solve the same exercises. Since we in our leave-one-out cross validation technique
only remove one of the student cases at a time, any cooperating partner will be left in
the case base, and it is likely to be the most similar case.

We have yet to conclude the degree to which the case based reasoner predicts co-
operation or competence based on the concept maps. We have, however, done some
further analysis in order to come closer to an answer. We repeated the evaluation
using k=3 so that the result is averaged over the three most similar cases. As we have
mentioned, we did not observe significant cooperation in groups over two, so this
should diminish the influence of eventual cooperation partners. This method did in-
deed show a drop in the accuracy to 78%, which is not a significant increase over the
baseline. However, this includes very many matches where the concept maps matched
very poorly. If we again limit ourselves to the cases that were classified with an aver-
age of at least 20% similarity, we find that 26 cases fulfill this criterion, and the pre-
diction accuracy increases to 87% compared to a baseline for this set of cases of 77%
(significant to p < 0.05).

In our last experiment we purposely ignore the most similar case when doing re-
trieval and use only the second most similar case. This is an unusual approach to case-
based reasoning, but in our situation it should eliminate eventual cooperation partners,
if we assume that they are represented by the most similar case. However, it also
ignores the most similar case for those students that did not cooperate or where the
cooperation partner was not very similar. At the very least, it ought to give us a lower
bound, given that there is no cooperation in groups of more than two. The test on the
full case base showed that the accuracy decreased dramatically when using this ap-
proach – the classifier achieved only 76% accuracy, which is a slight decrease in
accuracy compared to the baseline, although this is not a significant difference.

5 Conclusion

We have demonstrated that although concept maps may seem like complex structures,
they are not very computationally expensive to match in a case-based reasoning proc-
ess as long as they relate to a common teacher map that defines the concepts and
relation labels.

Unfortunately, our evaluation leaves us unable to conclude at this time if concept
maps will be useful in predicting how students that are not cooperating perform on
exercises. It is likely that additional experiments are required for conclusive evidence
on this. Our qualitative analysis of the concept maps suggests that the students pro-
duce surprisingly different maps even with the restrictions imposed. Although many
of these differences result from confusion about the domain, others are just different
from the teacher’s conceptualization but not necessarily wrong. This suggests that
there may be something to be gained from using case-based reasoning to match a
student’s concept map to other students’ maps instead of comparing it to the teacher
map, although the approach used so far may be too unconstrained to get good matches
because students with low knowledge of the topic tend to create maps that have large
parts that do not match any other student (or teacher) maps. For this reason, we would

 Case-Based Student Modeling Using Concept Maps 505

like to explore if partial concept maps may be indicative of particular misconceptions
so that these can be identified even in a “noisy” map.

We would also like to investigate further how the declarative nature of concept
maps may be brought closer to the practical nature of exercises. Our first attempts at
bridging this gap included using program statements as concrete examples in the
concept maps, but further analysis is required to see if this approach is enough to
make the concept maps relevant for the exercises.

The concept maps may also serve as knowledge sources for explanation. For in-
stance, partial concept maps can be associated with each exercise, and exercises can
be matched with student’s concept maps with the goal of identifying those maps that
require relatively small changes in the student’s current map, along with an illustra-
tion of what changes – additions or modifications – the system suggests will be illus-
trative for the exercise. In this way, the CBR system helps the student associate de-
clarative and practical knowledge.

References

1. Wenger, E.: Artificial Intelligence and Tutoring Systems: Computational and Cognitive
Approaches to the Communication of Knowledge. Morgan Kaufmann, Los Altos, CA
(1987)

2. Seitz A.: A case-based methodology for planning individualized case oriented tutoring.
Case Based Reasoning Research and Development Third International Conference on
Case Based Reasoning, ICCBR 99 Proceedings (Lecture Notes in Artificial Intelligence
Vol 1650). Springer Verlag, Berlin, Germany (1999) 318-28

3. Shiri A., Aimeur E., Frasson C.: SARA: a case-based student modeling system. Advances
in Case Based Reasoning 4th European Workshop, EWCBR 98 Proceedings. Springer
Verlag, Berlin, Germany (1998) 394-403

4. Novak, J.D: and Gowin, D.B: Learning How to Learn. Cornell University Press, Ithaca,
NY (1984)

5. Canas, A.,Leake., D.B., Maguitman, A.: Combining Concept Mapping with CBR: To-
wards Experience-Based Support for Knowledge Modeling. Proceedings of the Fourteenth
International Florida Artificial Intelligence Research Society Conference. AAAI Press,
Menlo Park (2001) 286-290.

6. Leake, D.B., Maguitman, A. and Canas, A.: Assessing Conceptual Similarity to Support
Concept Mapping. Proceedings of the Fifteenth International Florida Artifical Intelligence
Research Socity Conference. AAAI Press, Menlo Park (2001) 186-172

7. Canas, A.: A Summary of Literature Pertaining to the Use of Concept Mapping Tech-
niques and Technologies for Education and Performance Support, http://www.ihmc.us/us-
ers/acanas/Publications/ConceptMapLitReview/IHMC%20Literature%20Review%20on%
20Concept%20Mapping.pdf (last access 06.02.05) (2003)

8. Ruiz-Primo, M.A.: Examining Concept Maps as an Assessment Tool. Proc. Of the First
Int. Conference on Concept Mapping. Pamplona, Spain, http://cmc.ihmc.us/papers/
cmc2004-036.pdf (last access 13.04.05) (2004).

9. O’Neil, H.F., Klein D.C.D.: Feasibility of Machine Scoring of Concept Maps. CSE Tech-
nical Report 460. CRESST (1997)

10. Champin, P.A. and Solnon, C.: Measuring the Similarity of Labeled Graphs. Case-Based
Reasoning Research and Development: Proc. Of ICCBR 2003. Springer, Trondheim,
Norway (2003) 80-95

506 F. Sørmo

11. Dong Mei Zhang, Alem L.: Using case-based reasoning for exercise design in simulation-
based training. Intelligent Tutoring Systems Third International Conference, ITS '96 Pro-
ceedings. Springer Verlag, Berlin, Germany (1996) 560-568

12. Aamodt A.: A Knowledge-Intensive Integrated Approach to Problem Solving and Sus-
tained Learning. PhD. Dissertation. University of Trondheim, Department of Electrical
Engineering and Computer Science, Trondheim (1991)

Learning Similarity Measures: A Formal View

Based on a Generalized CBR Model

Armin Stahl

German Research Center for Artificial Intelligence DFKI GmbH,
Research Group Image Understanding and Pattern Recognition (IUPR),

Erwin-Schrödinger-Str. 57, 67663 Kaiserslautern, Germany
Armin.Stahl@dfki.de

Abstract. Although similarity measures play a crucial role in CBR ap-
plications, clear methodologies for defining them have not been devel-
oped yet. One approach to simplify the definition of similarity measures
involves the use of machine learning techniques. In this paper we inves-
tigate important aspects of these approaches in order to support a more
goal-directed choice and application of existing approaches and to initi-
ate the development of new techniques. This investigation is based on a
novel formal generalization of the classic CBR cycle, which allows a more
suitable analysis of the requirements, goals, assumptions and restrictions
that are relevant for learning similarity measures.

1 Introduction

The concept of similarity is certainly one of the most important and charac-
teristic aspects of Case-Based Reasoning (CBR). In spite of the importance of
similarity measures, clear methodologies for defining them efficiently and accu-
rately are still missing. Instead, similarity measures are often defined in an ad
hoc manner or one simply applies quite general distance metrics. When defining
more complex measures that take account of domain knowledge, this is often
done in an unstructured and not in a goal-directed fashion and often only expe-
rienced and skilled knowledge engineers are able to produce satisfactory results.
Therefore, different machine learning approaches have been developed in order
to facilitate the definition of similarity measures. However, the choice and ap-
plication of an accurate learning approach is also a difficult task since one often
is not aware of the actual requirements, goals, assumptions and restrictions of
the application domain, the employed CBR system and the available learning
techniques. Hence, learning is often performed in a trial-and-error fashion. Ba-
sically, when considering the application of learning techniques, some important
questions have to be answered first, for example:

– What is the desired semantics of the similarity measure?
– What kind of training data is suitable and how can it be acquired?
– Which learning techniques are suitable to achieve best results?

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, pp. 507–521, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNAI

508 A. Stahl

Until now little or no work to clarify these questions and to provide a cate-
gorization of current learning approaches has been done. Only for learning fea-
ture weights in classification tasks such a categorization has been provided [19].
One problem when trying to answer the questions above is, that this requires
a deeper understanding of the relationships between CBR functionality, appli-
cation requirements, training data and available learning algorithms. In order
to be able to analyze these relationships, a unified terminology and a certain
degree of formality is mandatory. Unfortunately, the common CBR model [2]
seems not to be suited to represent a good foundation because it is described
rather informally and does not accurately model all important aspects.

Therefore, the goal of this paper is to provide a formal foundation and ter-
minology for analyzing and categorizing approaches to learning similarity mea-
sures. Therefore, first a generalization and formalization of the classic CBR cycle
is introduced in Section 2. An overview and first categorization of existing learn-
ing techniques is presented in Section 3. Finally, in Section 4 we examine some
important issues for future research towards improved approaches for learning
similarity measures.

2 A Formal Generalized Model for CBR

The classical CBR cycle introduced by Aamodt and Plaza [2], consisting of the
four basic steps retrieve, reuse, revise and retain, is certainly the most established
and accepted model for CBR. The success of this model may be explained by
its simplicity and clarity, in particular for CBR novices. However, for describing
and analyzing certain current research issues and popular application scenarios
we argue, this classical model has some crucial limitations.

2.1 Limitations of the Classical CBR Cycle

In the following, we want to discuss some of the deficiencies of the classical
CBR cycle in order to motivate the introduction of a more generalized model
capturing also some of the current developments in CBR research.

CBR-Scenarios: Problem-Solving vs. Utility-Oriented Matching. One
motivation of CBR was to imitate problem solving strategies of humans in order
to enable computers to solve problems more efficiently. Hence, the traditional
CBR cycle assumes a typical problem solving situation, i.e. the input—also called
query—is expected to describe a problem and the output is expected to describe
a corresponding solution suggestion. Typical application tasks that fit this as-
sumption are classic problems of artificial intelligence such as classification, di-
agnosis, configuration or planning.

This assumption was the decisive factor for the structure of today’s CBR sys-
tems, the underlying concepts, and the central paradigm of CBR: “Similar prob-
lems have similar solutions”. One quite important consequence of the problem
solving scenario is the traditionally used structure to described case knowledge.
Here, a case is supposed to consist of the following two distinct parts:

Learning Similarity Measures 509

Problem part: The problem part describes a particular problem situation of
the past, e.g. in a diagnosis situation a set of symptoms and other relevant
information about the entity under consideration.

Solution part: The solution part describes a corresponding solution success-
fully applied to solve the past problem, e.g. a correct diagnosis and a cor-
responding therapy. Although cases are usually supposed to contain only
‘good’ solutions, the solution part may contain any further information that
might be useful when trying to reuse the solution, e.g information about the
quality of the solution, justifications, explanations, etc.

In classical CBR applications, one is often interested only in the information
contained in the solution part, whereas the problem part is used as an index
to find useful solution information. However, in recent years CBR techniques
have been applied very successfully to other application tasks that actually do
not match this problem solving scenario. One important characteristic of such
scenarios is a different case structure, where a clear distinction between a problem
and a solution part is impossible. A typical example of such applications is
product recommendation[8]. Here, queries represent requirements and wishes
of customers with respect to desired products. Cases contain descriptions of
available products and the task of the CBR system is to identify particular
products that are most suitable to fulfill the given customer demands.

In principle this task could be solved in the traditional case-based manner.
Therefore, one would have to store customer queries of the past—representing
the problems—together with the description of successfully sold products—
representing the solutions. Here, it would be sufficient to store only a product-ID
to describe products uniquely. New customer queries then could be compared
with customer queries of the past using similarity measures in order to select
products that probably will also be bought by current customers.

However, most case-based product recommendation systems follow a different
approach. Here, a case typically consists of a detailed description of an available
product solely. In order to select suitable products, a customer query is compared
with these product descriptions by applying an accurate similarity measure.

The product description can be interpreted as the solution part of traditional
cases but the traditional problem part (here this would be a past customer
query) is missing completely. Hence, such systems compare problems, namely
current customer queries, directly with solutions, namely product descriptions.
This procedure does not really comply with the traditional idea of CBR. Instead,
it may be characterized as utility-oriented matching [3] because one tries to
estimate the utility of a solution for a given problem more or less directly. Similar
situations also occur in other applications scenarios, for example, in the area of
Knowledge Management. Most of those scenarios have in common that they may
be seen more as intelligent information retrieval than actual problem solving.

Advanced CBR Techniques. Another limitation of the traditional CBR cycle
is that it does not consider some crucial aspects and issues of current CBR
systems sufficiently which have come into the focus of research just recently.
Some quite important of those issues are for example:

510 A. Stahl

Dialog Strategies: The traditional CBR cycle assumes a formalized query
given as input prior to the actual reasoning process without considering how
this query can be obtained. However, the efficient acquisition of an accurate
query is a crucial issue in diagnosis tasks and has also come into focus of
research in the area of product recommendation systems recently [14].

Explanation: A popular topic of current CBR research is explanation [1]. How-
ever, the traditional CBR cycle does not explicitly consider the generation of
explanations about presented solutions or the underlying reasoning process.

Feedback: An important characteristic of the traditional CBR cycle is the pos-
sibility to learn new cases during the retain phase. Although Aamodt and
Plaza have mentioned the possibility to learn not only cases but also general
knowledge (e.g. refining indexes), the traditional CBR cycle does not explic-
itly introduce a feedback loop which is required to realize advanced learning
approaches.

2.2 A Formal Generalization of the Classical CBR Cycle

In this section we introduce a more general and more formal model for CBR. This
model aims to avoid some of the deficiencies of the classical CBR cycle. Although
it does not capture all aspects of current CBR research, at least it represents
a foundation for analyzing certain CBR functionality in more detail. Our main
goal is to introduce a formalism that can be used to examine important aspects
to be considered when developing approaches for learning similarity measures.
In the future the model may be extended to describe other, still disregarded
CBR aspects. An illustration of the model is shown in Fig. 1.

The starting point is a given informal situation s in the application environ-
ment which triggers some more or less abstract information need. The task of a

query qoutput o

di

lica
se
c id'i

l'i

a(
c i)

r(q,sim,CB)

sc

rof

op

sim

feedback fb

CB

situation s' situation s

a

f

lsiml of lCB
la

l sc

CBR System

Application
Environment

similarity teacher

Fig. 1. A Formal Model for CBR

Learning Similarity Measures 511

CBR system is to provide the necessary information by generating a correspond-
ing output o. For example, in the traditional problem solving scenario, s is an
unsolved problem for which a solution is required and o may be the description
of suitable solution or a solution method, respectively. In a first step the situ-
ation s has to be described formally in order to obtain a query q that can be
processed by the CBR system:

Definition 1 (Situation-Characterization, Query). A situation character-
ization sc : S → Q where S is the situations space and Q is the query space,
characterizes the informal situation s formally through query q = sc(s). The set
of all situation characterizations is denoted by SC.

In practice, sc implements certain transactions between the application envi-
ronment and the CBR system. In the simplest case it might import query data
from some data source but usually the query will be acquired from the user, for
example, by providing a query form or by performing an elaborate dialog [14].

In the next step, q has to be compared with cases in the case base in order to
select cases that are expected to contain information that is useful for satisfying
the information need of s.

Definition 2 (Case, Case Characterization, Case Lesson, Case Space).
A case c is a tuple (d, l) ∈ D × (L ∪ ∅) where d is called a case characterization
and l is called a case lesson. D and L are the corresponding spaces of case
characterizations and case lessons. C = D × L is called the case space and the
set of available cases CB = {c1, . . . , cm | ci ∈ C} is called the case base.

In our model we explicitly allow empty lesson parts, i.e. a case may consist
of a characterization only. It is important to note, that case characterizations
have not necessarily to represent problem descriptions but any information that
is useful to estimate the utility of cases. This means, that cases may also be
characterized by using solution information.

Definition 3 (Similarity Measure). A similarity measure is a function sim :
Q × D → [0, 1]. To simplify the notation we write sim(q, c) instead of sim(q, d)
for representing the similarity between a query q and a case c = (d, l). The set
of all similarity measures is denoted by SIM.

Definition 4 (Retrieval Function). A retrieval function r : Q × SIM ×
P(CB) → P(CB) returns a subset of the case-base CB for a given query q
according to a given similarity measure sim ∈ SIM. The returned cases cr ∈
r(q, sim, CB) are assumed to be ordered w.r.t. to their corresponding similarity
values sim(q, cr).

We do not make any assumptions about the realization of r, e.g. it might sim-
ply return the most similar case, i.e. r(q, sim, CB) = argmaxci∈CB sim(q, ci).
After having retrieved a set of cases, the information contained in the retrieved
cases may be adapted in order to construct a new, more accurate case:

Definition 5 (Adaptation Function). An adaptation function a : Q×P(CB)
→ Ck generates a set of new cases {ca1 , . . . , cak

} given a set of input cases

512 A. Stahl

{c1, . . . , cn} with ci ∈ CB, n, k ≥ 1 and a query q. The set of all adaptation
functions is denoted by A.

Typically it holds k ≤ n. If a single adapted case cai is constructed from
several input cases, this is called compositional adaptation. A simple example are
voting policies like those applied in k-nearest-neighbor classification. In systems
without adaptation, a is considered to be the identity function with respect to the
input cases. The result of the adaptation process is used as source information
for generating the final output of the CBR system:

Definition 6 (Output Function, Output Space). Given a query q and set
of cases {c1, . . . , cn}, the output function of : Q×P(C) → O generates an output
o = of (q, c1, . . . , cn) where O is the space of outputs. OF denotes the set of all
output functions.

In principle one might put a lot of ‘intelligence’ into the output function, but
in practice the output function typically is used

– to select appropriate cases to be returned to the application environment,
e.g. to ensure the right degree of diversity,

– to extract the required information from the given cases, e.g. class labels,
– to generate additional explanations in order to explain the result of the CBR

system to the users.

The resulting output then is returned to the application environment in order
to satisfy the information need of the initial situation s:

Definition 7 (Output Processing Function). The output processing func-
tion op : S × O → S generates a new situation s′ = op(s, o) by applying the
output o to situation s within the application environment.

In practice, the output processing function typically is an informal process
which is executed within the application environment with little or no support
from the CBR system. For example, a suggested therapy in a medical diagnosis
situation will be applied by a doctor where the new situation s′ will be a mod-
ified state of health of the patient. If s′ is still associated with an unsatisfied
information need, it might be used as a new initial situation for executing the
cycle again.

For enabling a CBR system to improve its performance by applying learning
strategies it must receive feedback from the application domain about the actual
usefulness of its output:

Definition 8 (Feedback Function). The feedback function f : S × O → F
evaluates the usefulness of output o for situation s and returns some feedback
fb = f(s, o), where F is called the feedback space.

Here, we do not assume a particular form of feedback but in Section 3.2
we will discuss this issue with respect to learning similarity measures in more
detail. Feedback may be used by the CBR system to improve its functionality
by modifying one or several of its knowledge containers [13]:

Learning Similarity Measures 513

Definition 9 (Learning Functions). The following functions allow to modify
the case base CB, the similarity measure sim, and the adaptation function a
w.r.t. given feedback:

lCB : Q × O × F × P(C) → P(C)

lsim : F × SIM → SIM
la : F × A → A

The function lCB realizes the traditional idea of learning in CBR systems,
namely a modification of the case base, e.g. by storing new or deleting obsolete
cases. While lsim and la allow to learn general knowledge already considered in
the classical CBR cycle, one might also introduce similar learning functions, e.g.
lsc for improving dialog strategies [14] or lof for improving the generation of
explanations.

2.3 Advantages of the Generalized CBR Model

In principle, our general model can be divided into the same phases as the
classical CBR cycle: The functions sc and r implement the retrieval phase, the
functions a and of implement the reuse phase, the functions op and f represent
the revise phase and the learning functions lx implement the retain phase.

However, by abstracting from the traditional problem solving scenario, the
model is more suitable to describe popular ‘modern’ application scenarios such
as product recommendation. For example, we do not assume that a case con-
sists of a problem and a solution part. Instead, cases may only consist of case
characterizations that may describe arbitrary information. This also means that
queries and case characterizations do not necessarily have the same semantics,
for example, they do not both represent problem descriptions. We will discuss
this issue again in Section 4.

By introducing additional processes in the form of the situation character-
ization and the output function, our model can also be used to describe new
research directions such as dialog strategies and explanations more accurately
than possible with the classical CBR cycle. Moreover, by introducing the feed-
back function and a set of learning functions, it enables a better description of
advanced learning approaches beyond storing of new cases.

However, the model in its current version is not intended to capture all as-
pects of any CBR application. For example, more complex dialog strategies that
involve case retrieval cannot be described exclusively with sc but require a re-
peated execution of the entire cycle. Nevertheless, the model may represent
a good foundation to be extended for explaining other functionality of CBR
systems.

2.4 The Goal of a CBR System

Before we use the introduced model to analyze the task of learning similarity
measures, first we will discuss some important general consequences of it.

514 A. Stahl

A CBR system’s goal is to generate an output o that is maximally useful for
satisfying the information need of a given situation s, i.e. it should help to reach
a new, improved situation s′ by exploiting the information contained in o. In a
formal view, an optimal CBR system should realize the following goal function:

Definition 10 (Goal Function, Utility Function). The goal function g :
S → O generates an output o that is maximally useful for a given situation s,
i.e. g(s) := arg maxo∈O u(s, o), where u : S × O → R is the domain specific
utility function.

In practice u is usually only implicitly and informally defined within the
application environment. However, during the lifetime of a CBR system certain
information about u may be provided by the feedback function f . Depending on
the application scenario, u may be influenced in many ways, e.g., by

– the correctness of suggested solutions,
– the outputs’ degree of applicability or reusability,
– the satisfaction of the user (e.g. a customer) or
– the output’s information gain for the user.

The basic idea of a CBR system is to acquire and encode knowledge about
u by using different knowledge containers [13], namely the vocabulary, the case
base, the similarity measure and the adaptation knowledge1. The vocabulary de-
fines the important aspects required to describe situations, cases, outputs and
feedback, i.e. it determines Q, C, O and F . Traditionally, the cases represent
known points of u corresponding to a maximal or at least high utility and adap-
tation knowledge defines knowledge about additional points or certain subspaces
of u. Finally, the similarity measure should encode knowledge about the rela-
tionships between different points of the input space of u. However, due to the
difficulty of acquiring this knowledge, the employed similarity measures often
only represent quite simple heuristics about the typically expected shape and
smoothness of u.

In order to facilitate the acquisition of similarity knowledge and the definition
of more accurate similarity measures, several learning approaches have been
developed, e.g. see [19,16]. In the following we investigate important general
issues of such learning approaches in more detail on the basis of the previously
introduced formal CBR model.

3 Learning Similarity Measures: A Formal Analysis

CBR systems often generate output that is composed of a set of independent
output alternatives. This functionality is typically desired when presenting the
output to human users, e.g. alternative products to customers. Here, we assume
that only single retrieved cases cr ∈ r(q, sim, CB) are adapted and used to
generate a single output alternative or. This means, first we do not consider
1 In our formal model represented through the adaptation function a.

Learning Similarity Measures 515

compositional adaptation. The entire output then is an ordered collection of
alternative outputs o = (o1, o2, . . . , ok), where the order is based on the computed
similarities, i.e. it holds ∀ 1 ≤ i < j ≤ k sim(q, ci) ≥ sim(q, cj). We assume that
the utility of o only depends on the sum of the or’s utilities and their ranking2.
According to our formal CBR model the utility of an output alternative or is
defined as

u(s, or) = u(s, of(q, a(q, cr))) = u(s, of(sc(s), a(sc(s), cr)))

Moreover, we assume that u(s, or) can be expressed by numbers of the interval
[0, 1], i.e. it holds u : S × O → [0, 1] where a value of 1 represents the maximal
possible and 0 represents the minimal possible utility. From now on, we assume
that a and of are static, i.e. that the adaptation and output function are not
modified during the lifetime of the CBR system.

3.1 Semantic of Similarity Measures

In general, the basic task of a similarity measure is to estimate the a-posteriori
utility of a given case cr, i.e. in the best case sim(q, cr) should approximate the
a-priori unknown utility u(s, of(q, a(q, cr))) as closely as possible. This would
obviously require that sim is completely informed about the remaining parts
of the CBR system, namely the functions a and of as well as about the exter-
nal utility function u. In practice this ideal property of sim usually cannot be
achieved, and hence sim represents a more or less well informed heuristic only.

Retrieval Requirements. Before defining a similarity measure for a particu-
lar CBR application one should be aware of the application specific requirements
on the expected output. Basically, a similarity measure should help to realize the
goal function g, i.e. to maximize the utility of the output u(s, o). According to
our assumptions on o we can deduce different criteria that an optimal similarity
measure simo should fulfill, namely:

Determining the Most Useful Case: In certain application scenarios, in
particular when processing the output within the application environment
automatically, only a single output alternative is of interest, i.e. o = {o1}.
Then it should hold:

argmax
cr∈CB

simo(q, cr) = arg max
cr∈CB

u(s, or)

Separating Useful and Useless Cases: Often the utility of output alterna-
tives is of a binary nature, i.e. an or may be useful or completely useless. In
some application scenarios binary output utility can be achieved by introduc-
ing artificial utility thresholds, e.g. in information retrieval, the retrieved doc-
uments are simply treated as ‘relevant’ or ‘irrelevant’. In such situations we

2 This assumption does not hold in some application scenarios, e.g. if a certain diversity
of the output alternatives is desired.

516 A. Stahl

may demand the following from simo: Let CB+ = {ci ∈ CB | u(s, oi) ≥ θ}
be the set of useful and CB− = {ci ∈ CB | u(s, oi) < θ} be the set of useless
cases, then

∀ci ∈ CB+, cj ∈ CB− : simo(q, ci) > simo(q, cj)

Ranking the Most Useful Cases: Let CBu = {ci ∈ CB | u(s, oi) ≥ σ} be
the set of most useful cases. One may demand that simo ranks these cases
correctly:

∀ci, cj ∈ CBu, ∀c ∈ CB \ CBu :
simo(q, ci) > simo(q, cj) ⇔ u(s, oi) > u(s, oj)
∧ simo(q, ci) > simo(q, c)

Approximating the Utility of the Most Useful Cases: Although in most
present CBR applications a good approximation of the cases’ absolute utility
is not the main goal when defining sim, such a requirement would help the
user to judge the reliability of each presented or:

∀cr ∈ CBu : simo(q, cr) � u(s, or)

The first three criteria only demand that the similarity measure partially
reproduces the preference relation induced by the utility function, i.e. one is
only interested in an estimate of the cases’ relative utility with respect to other
cases. The last requirement is stronger since it requires an approximation of the
cases’ absolute utility.

Probabilistic Similarity Measures. Up to now we have implicitly assumed,
that it is possible, at least in principle, to compute the utility u(s, or) given only
q and cr. However, in practice this often does not apply because one is confronted
with incomplete and/or noisy data or non-deterministic domains and hence with
uncertainty. For example, queries as well as case characterizations often do not
contain all information required to describe the underlying situations and cases
sufficiently. In such situations a probabilistic interpretation of similarity values
seems to be more accurate, i.e. the value sim(q, cr) then may be interpreted
as the probability that the resulting output or is maximally useful given q and
cr, i.e. sim(q, cr) := P (u(s, or) = 1 | q, cr). Nevertheless, this interpretation is
consistent with the previously discussed demands on simo as well.

3.2 Training Data

When thinking about developing or applying an approach for learning similar-
ity measures, one of the most crucial issues is the quality and the amount of
available training data. When being confronted with little and noisy training
data, many learning techniques tend to overfit the training data resulting in
poor generalization performance.

In principle, the training data must contain some implicit or explicit knowl-
edge about the a-posteriori utility of certain cases. This means for a case cr and
a given query q certain information about u(s, or) is required. According to our

Learning Similarity Measures 517

formal CBR model we assume that such information can be obtained via the
feedback function f either offline during a particular training phase or online
during the application of the CBR system. In the following we discuss different
types of such utility feedback.

Utility Feedback. Basically, information about the a-posteriori utility u(s, or)
of a case cr given a query q may be provided in different ways:

Absolute Case Utility Feedback (ACUF): One possibility is to provide in-
formation about the absolute value of u(s, or). Here, the feedback space F is
defined as (Q × C × [0, 1])n. This means feedback fb consists of a collection
of training examples fb = (te11, . . . , telk) where a single training example
teij = (qi, cj , u(s, oj)) represents utility feedback for a particular case cj

w.r.t. a given query qi.
Absolute Utility Feedback (AUF): When allowing compositional adapta-

tion, i.e. o = of(q, a(q, c1, . . . , cn)), a special kind of absolute utility feed-
back can be acquired. In this situation, the utility of o cannot simply be
traced back onto the utility of individual cases. Then F is defined as Q ×
O × [0, 1] where corresponding training examples te = (q, o, u(s, o)) repre-
sent information about the performance of the entire CBR system for a given
query q.

Relative Case Utility Feedback (RCUF): Another possibility is to provide
information about u(s, or) only in a relative manner with respect to other
output alternatives. By defining F as (Q×C×C×UR)n where UR represents
a set of relation symbols (e.g. UR = {<, ≤, =, ≥, >, 	=}) a training example
can be represented as a tuple te = (q, ci, cj , R) where u(s, oi)Ru(s, oj) for
some R ∈ UR.

Absolute feedback (ACUF/AUF) is mandatory for learning similarity mea-
sures that are intended to approximate absolute utility values. When only fo-
cusing on a reproduction of the induced preference relation, RCUF feedback
is sufficient. However, depending on the desired semantic one should acquire
feedback for different cases.

Acquisition of Training Data. Now we describe how the introduced kinds of
feedback can be acquired in practice, i.e. how to implement the feedback function
f . Basically, two different approaches are possible.

The first approach is self-optimization. In traditional problem solving sce-
narios, i.e. if case characterizations di describe past (problem) situations si and
case lessons li represent corresponding outputs (typically solutions) with high
utility, a CBR system is able to extract training data from its case base CB. On
the one hand, cases themselves can be interpreted as ACUF where each case ci

represents a training example te = (di, ci, u(si, oi)). Information about u(si, oi)
may be contained in case lessons or u(si, oi) = 1 is assumed.

On the other hand, additional feedback can be obtained by performing a
leave-one-out-crossvalidation, i.e. single cases ci are temporarily removed from
CB and di is used as query qi. The resulting output o (or or) then has to be

518 A. Stahl

compared with an output li known to have high utility (mostly u(si, li) = 1 is
assumed). Depending on the implementation of a the corresponding feedback is
typically of the kind ACUF or AUF.

Self optimization is applied by most existing approaches for learning sim-
ilarity measures, typically for feature weight learning in classification scenar-
ios (see Section 3.3). Here, training examples are simply defined as teACUF =
(di, cr, u(si, or)) or teAUF = (di, o, u(si, o)), respectively, where u(si, o(r)) =
1 ⇔ o(r) = li (i.e. if the classification is correct) and u(si, o(r)) = 0 other-
wise. In [18] we have proposed a generalization of this approach where we set
u(si, o(r)) = simS(o(r), li), i.e. we employ a domain specific solution similarity
measure simS : O × L → [0, 1] in order to estimate the utility of the generated
output in non-classification domains or when misclassification costs [20] have to
be considered.

An approach to utilizing self optimization in the utility-oriented matching
scenario by generating RCUF is described in [17,16]. Here, the influence of the
adaptation function a on the target similarity measure simT is estimated by
evaluating the utility of adapted cases with a given utility measure represented
by an additional similarity measure simU that can be defined more easily than
simT .

The second approach for acquiring training data is to ask some similarity
teacher. In the utility-oriented matching scenario an extraction of training data
from the case base is usually impossible because here the cases do not contain in-
formation about u. For example, pure descriptions of technical products contain
no explicit knowledge about their suitability for particular customer demands3.
Therefore, utility feedback has to be provided by an external similarity teacher
who possesses certain knowledge about u. In principle, the previously mentioned
measures simS and simU as well as external simulation procedures might be in-
terpreted as artificial similarity teachers. However, often only human domain
experts or the system’s users are able to provide the required feedback, but only
a few learning approaches consider human similarity teachers [6,9,21].

3.3 Learning Techniques

In this section we give an overview on techniques that have been applied for
learning similarity measures in CBR. The following aspects may be used to
categorize the techniques:

– the desired semantic of the target similarity measure (cf. Section 3.1)
– the type of the training data and the corresponding approach to acquisition

(cf. Section 3.2)
– the representation of the similarity measure to be learned
– the applied learning algorithm
– whether background knowledge is used to improve the learning process

3 In current CBR applications this knowledge is often inferred by applying simple
distance metrics.

Learning Similarity Measures 519

Basically, the representations used to model similarity measures determine
the hypothesis space SIM. Here, we can distinguish the following commonly
applied approaches:

Feature Weights: Because in many CBR systems only simple weighted dis-
tance metrics are employed, modifying the weights assigned to features in
feature-value based case representations is often the only possibility to influ-
ence the similarity measure [19]. Here, one also distinguishes between global
and local (e.g. case specific) weighting methods.

Local Similarity Measures: Most commercial CBR tools allow us to define
local similarity measures for each feature in order to be able to incorporate
more domain specific knowledge. Suitable learning techniques must be able
to learn the particular parameters used to describe such local similarity
measures [16,17].

Probabilistic Similarity Models (PSM): Another possibility to represent
similarity measures are probabilistic models. Here, the similarity function
is encoded using probability distributions which have to be determined by
using appropriate techniques (e.g. frequency counts, kernel estimation tech-
niques, neural networks, etc.) [7,4].

For characterizing learning techniques, Wettschereck and Aha [19] have in-
troduced the following categorization:

Incremental Hill-climbers: Here, single training examples (typically based
on ACUF or AUF) trigger the modification of the similarity measure af-
ter each pass through the CBR cycle. Existing approaches [5] increase or
decrease feature weights in classification scenarios, where success driven
(te = (q, cr, 1)) and failure driven (te = (q, cr, 0)) policies can be distin-
guished.

Continuous Optimizers: The idea of continuous optimizers is to collect a
sufficiently large training data set first and to apply optimization approaches
afterwards in order to generate a similarity measure that shows optimal
results on this training data.
Typically, this is realized by minimizing a particular error function which
compares generated outputs with corresponding utility feedback contained in
the training data. For learning feature weights, gradient descent approaches
have shown good results [15,19,20]. While most existing approaches apply
ACUF or AUF, we have proposed an approach that utilizes RCUF in order
to enable learning in the utility-oriented matching scenario [16]. For more
complex local similarity measures we have developed a corresponding evolu-
tionary algorithm [17,16].
PSM are usually also learnt by applying continuous optimizers which either
optimize probabilistic error functions [12] or estimate underlying probability
distributions by applying statistical and Bayesian methods [7].

Ignorant Methods: These methods do not exploit explicit feedback, but only
perform a statistical analysis of the ACUF contained in CB, for example, to
determine accurate feature weights based on class distributions [4].

520 A. Stahl

Concerning the incorporation of background knowledge into the learning pro-
cess, few approaches have been developed so far. Approaches that use background
knowledge in order to improve the performance of an evolutionary algorithm have
been presented in [11,10].

4 Conclusions and Future Work

In the first part of this paper we have presented a novel formal generalization
of the classical CBR cycle. The advantages of this model are its generality,
allowing us to describe recent developments in CBR research more accurately,
and its formality, allowing more detailed analyses of important research issues.
In the second part we have used the novel model to analyze crucial questions
concerning the development of approaches for learning similarity measures. On
the one hand, this analysis allows us to categorize existing learning techniques
in order to simplify the choice of accurate techniques in particular applications.
On the other hand, it represent a good foundation for future research.

While traditional approaches towards learning similarity measures in CBR
mainly focus on learning of feature weights by employing ACUF/AUF, recently
developed approaches also allow to employ RCUF which can be acquired in
non-classification scenarios more easily than ACUF/AUF. Moreover, these ap-
proaches also enable learning of complex local similarity measures.

For future research we intend to develop new approaches towards the appli-
cation of PSM. In our view, PSM have some advantages compared with explicit
models (e.g. feature weights, local similarity measures). On the one hand, they
may allow to weaken the hard attribute independence assumptions underlying
common representations. Moreover, they would allow the definition of similarity
measures in utility-oriented matching scenarios where it might hold: Q 	= D.
For example, this would allow to compute ‘similarities’ between abstract queries
(e.g. “I want a PC suited for video processing”) and precise product descriptions
(e.g. HD-Size = 200GB). However, existing learning approaches for PSM are only
applicable in classification scenarios. To employ PSM in other scenarios we plan
to develop techniques to learn PSM from RCUF. Moreover, we want to inves-
tigate how to incorporate background knowledge efficiently. Last but not least
we want to develop new techniques that aim to learn similarity measures that
approximate the absolute utility values as closely as possible. This would allow
to build more dependable CBR systems because the user would get information
about the reliability of the presented output.

References

1. Proceedings of the ECCBR-2004 Workshop on Explanation, 2004.
2. Aamodt, A., Plaza, E. Case-based Reasoning: Foundational Issues, Methodological

Variations, and System Approaches. AI Communications, 7(1):39–59, 1994.
3. Bergmann, R., Richter, M.M., Schmitt, S., Stahl, A., Vollrath, I. Utility-Oriented

Matching: A New Research Direction for Case-Based Reasoning. In Proceedings of
the 1st Conference on Professional Knowledge Management. Shaker, 2001.

Learning Similarity Measures 521

4. Blanzieri, E., Ricci, F. Probability Based Metrics for Nearest Neighbor Classifica-
tion and Case-Based Reasoning. In Proceedings of the 3rd International Conference
on Case-Based Reasoning. Springer, 1999.

5. Bonzano, A., Cunningham, P., Smyth, B. Using Introspective Learning to Improve
Retrieval in CBR: A Case Study in Air Traffic Control. In Proceedings of the 2nd
International Conference on Case-Based Reasoning. Springer, 1997.

6. Branting, K. Acquiring Customer Preferences from Return-Set Selections. In
Proceedings of the 4th International Conference on CBR. Springer, 2001.

7. Breuel, T. Character Recognition by Adaptive Statistical Similarity. In Proceedings
of the 7th Int. Conf. on Document Analysis and Recognition. Springer, 2003.

8. Burke, R. The Wasabi Personal Shopper: A Case-Based Recommender System.
In Proceedings of the 11th International Conference on Innovative Applications of
Artificial Intelligence, 1999.

9. Coyle, L., Cunningham, P. Exploiting Re-ranking Information in a Case-Based
Personal Travel Assistent. In Workshop on Mixed-Initiative Case-Based Reasoning
at the 5th International Conference on Case-Based Reasoning. Springer, 2003.

10. Gabel, T. On the Use of Vocabulary Knowledge for Learning Similarity Measures.
In Proceedings of the 3rd German Workshop on Experience Management. Springer,
2005.

11. Gabel, T., Stahl, A. Exploiting Background Knowledge when Learning Similarity
Measures. In Proceedings of the 7th European Conference on Case-Based Reason-
ing. Springer, 2004.

12. Lowe, D. Similarity Metric Learning for a Variable-Kernel Classifier. Neural Com-
putation, 7, 1993.

13. Richter, M. M. The Knowledge Contained in Similarity Measures. Invited Talk at
ICCBR’95, 1995.

14. Schmitt, S. Dialog Tailoring for Similarity-Based Electronic Commerce Systems.
dissertation.de, 2003.

15. Stahl, A. Learning Feature Weights from Case Order Feedback. In Proceedings of
the 4th International Conference on Case-Based Reasoning. Springer, 2001.

16. Stahl, A. Learning of Knowledge-Intensive Similarity Measures in Case-Based
Reasoning, volume 986. dissertation.de, 2004.

17. Stahl, A., Gabel, T. Using Evolution Programs to Learn Local Similarity Measures.
In Proceedings of the 5th International Conference on CBR. Springer, 2003.

18. Stahl, A., Schmitt, S. Optimizing Retrieval in CBR by Introducing Solution Sim-
ilarity. In Proceedings of the Int. Conf. on AI. CSREA Press, 2002.

19. Wettschereck, D., Aha, D. W. Weighting Features. In Proceeding of the 1st Inter-
national Conference on Case-Based Reasoning. Springer, 1995.

20. Wilke, W., Bergmann, R. Considering Decision Cost During Learning of Feature
Weights. In Proceedings of the 3rd European Workshop on CBR. Springer, 1996.

21. Zhang, Z., Yang, Q. Dynamic Refinement of Feature Weights Using Quantitative
Introspective Learning. In Proceedings of the 16th International Joint Conference
on Artificial Intelligence, 1999.

Knowledge-Rich Similarity-Based Classification

Timo Steffens

Institute of Cognitive Science, Osnabrueck, Germany
timosteffens@gmx.de

http://www.cogsci.uos.de/~tsteffen

Abstract. This paper proposes to enhance similarity-based classifica-
tion with different types of imperfect domain knowledge. We introduce
a hierarchy of knowledge types and show how the types can be incorpo-
rated into similarity measures. Furthermore, we analyze how properties
of the domain theory, such as partialness and vagueness, influence clas-
sification accuracy. Experiments in a simple domain suggest that partial
knowledge is more useful than vague knowledge. However, for data sets
from the UCI Machine Learning Repository, we show that even vague
domain knowledge that in isolation performs at chance level can sub-
stantially increase classification accuracy when being incorporated into
similarity-based classification.

1 Introduction

Case-Based Reasoning (CBR) is mainly considered a knowledge-light approach
that is suited for domains in which no perfect domain knowledge exists. However,
there is increasing research in the subbranch of knowledge-intensive CBR on
how to incorporate domain knowledge. The focus is on acquiring knowledge for
case adaptation (e. g. [30,14]), the vocabulary [10], and case-specific knowledge
[14]. The retrieval component is often enhanced by explanation-based knowledge
[1,4]. In this paper we focus on similarity measures for classification and show
how different types of domain knowledge can be exploited in order to improve
classification accuracy.

One contribution of this paper is to show that domain knowledge can be use-
ful even if it is imperfect (e. g. partial or vague). This will alleviate the knowledge
acquisition bottleneck, as it reduces the requisites of obtaining expert knowledge.
The other main contribution is to propose a hierarchy of knowledge types which
were previously seen as unconnected.

Although similarity-based classification is only used in domains where no
perfect domain theories exist, often there exists imperfect domain knowledge
and isolated chunks of knowledge [1,4,7,19]. For example, in [1] open and weak
domain theories were integrated into a CBR system. Similarly, matching knowl-
edge was used to improve the performance of the well-known PROTOS system
[19]. Furthermore, it was shown that the combination of CBR and a domain the-
ory outperforms both CBR and the theory itself [7]. In contrast to weak theories,
strong domain theories were used to filter irrelevant features [4].

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, pp. 522–536, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNAI

Knowledge-Rich Similarity-Based Classification 523

We present a new approach that exploits imperfect domain knowledge in
similarity-based classification mainly by inferring abstract features. Furthermore,
we analyze the impact of the knowledge’s vagueness and partialness.

The next section introduces a hierarchy of knowledge types. Section 3 dis-
cusses properties of imperfect domain theories. Section 4 gives an overview over
how knowledge types can be exploited in similarity measures and how they im-
prove classification accuracy. Section 5 reports experiments with two domains
from the UCI Machine Learning Repository [5]. Finally, the last section con-
cludes and outlines future work.

2 Types of Domain Knowledge

This section discusses which types of knowledge are useful for similarity-based
classification. Previous works incorporated isolated knowledge types (e. g., match-
ing knowledge [19] or contextual knowledge [28]). A systematic analysis of which
knowledge types are useful will provide insights into which information should
be learned from the instances if the knowledge is not explicitly given. For each
knowledge type we will refer to CBR systems that employ such knowledge.

It should be noted that we do not start from the knowledge types as pro-
posed by knowledge representation work, such as frames, scripts, and semantical
networks. Rather, we group the types from the perspective of how they can be
used and incorporated into similarity measures.

For the examples, we use the following notation: C1, C2, C3 ∈ R are contin-
uous attributes. D1, D2 ∈ Z are discrete attributes. P (x) is a binary concept
applicable to instance x. Ci(x) or Di(x) denote the value of instance x for at-
tribute Ci or Di. w ∈ R is a weight.

We categorize the relevant types of knowledge into a hierarchy (see figure 1),
stating that methods that can be used for a knowledge type can also be used for
its subtypes. At the most general level, we distinguish virtual attributes [20] (or
derived attributes) from distributional knowledge. The latter includes knowledge
about the range and distribution of attributes and their values. Knowledge about
the range of an attribute is commonly used to normalize the attribute similarity

Virtual attributes

Matching knowl.

Continuous Distinct

Transformational

knowledge

Inferential knowlegde

Relational knowledge

Ordering

Contextual knowl.

=Attribute importance

Weights

Distributional

knowledge

Knowledge

Fig. 1. Hierarchy of knowledge types

524 T. Steffens

to [0,1]. Since this type of knowledge is widely used in CBR, we focus on the less
researched type of knowledge that can be formalized as virtual attributes.

Virtual attributes are attributes that are not directly represented in the cases
but can be inferred from other attributes [20]. They are common in database
research. In CBR, virtual attributes are useful if the monotonicity-principle is
violated. If sim(A, B) > sim(A, C) is necessary to reflect class membership,
then there must at least be one pair of local similarities, so that sim(Ai, Bi) >
sim(Ai, Ci). If such a pair does not exist, the similarity measure must make
use of interdependencies between attributes. For example, the similarity may
not depend on two attributes A1, A2 themselves, but on their difference A1 −
A2. Virtual attributes can express such interdependencies (e. g., deposit(A) =
income(A) − spending(A)) and can also encapsulate non-linear relations.

We further distinguish between matching knowledge and inferential knowl-
edge. Discrete matching knowledge states that two values of an attribute are
equivalent. The PROTOS system made extensive use of this type of knowledge
[19]. Also taxonomies are instantiations of matching knowledge and were used in
CBR [3]. Continuous matching knowledge defines regions in the instance space.
Examples: C1(x) > 30 ∧ C1(x) < 50 (continuous) and D1(x) ≡ D1(y) (dis-
crete). This can be formulated as virtual attribute, stating that an attribute is
a member of the interval or is identical to one of the equivalent values.

Matching knowledge can be used to match syntactically different attributes
that are semantically equivalent. Note that for binary virtual attributes, match-
ing knowledge is hardly different from inferential knowledge (apart from the
label/predicate name). Only if the virtual attribute has more than two possible
values, matching knowledge is different from inferential knowledge.

Transformational knowledge is a special form of matching knowledge where
usually some arithmetic or operations are involved in order to map a point in the
instance-space to another point. For example, transformational knowledge has
been used to establish identity despite geometric rotation (e. g. [22]). Example:
C1(x) = rotate(C1(y), 30) The similarity of two attributes is maximal if they
can be transformed into each other or if they are identical.

Inferential knowledge specifies the value of an attribute that is inferrable
from some other attributes’ values. This type of knowledge has been used in
explanation-based CBR (e. g. [1]). Example: P (x) ← C1(x) > 30 ∧ C1(x) < 50
Note that the condition part makes use of matching knowledge.

Contextual knowledge is a special form of inferential knowledge. It states that
some feature is important given some other features. For an overview over contex-
tual features, refer to [28]. Example: important(P (x))← C1(x)>30∧C1(x)<50.

In our hierarchy, weights are a special form of contextual knowledge. They
express the importance of a feature on a continuous scale. Thus, we can express
feature weights in a global way (important(P (x), w) ← TRUE), or in a local
way (important(P (x), w) ← C1(x) > 30 ∧ C1(x) < 50). The virtual attribute
perspective is usually lost for global weights, since the TRUE condition is not
stated explicitly. Contextual knowledge and weights can be called ”attribute
importance” knowledge.

Knowledge-Rich Similarity-Based Classification 525

Relations are special forms of inferential knowledge, since whether a relation
holds or not is inferred from attributes. The condition part uses at least two dif-
ferent attributes. Relational knowledge for similarity is prominent in computa-
tional modelling of human categorization [16]. Example: P (x) ← C1(x) > C2(x).
Note that relations usually make use of matching knowledge in the condition
part, as they define regions in which the relation holds.

Ordering of nominal feature values is a subtype of distribution knowledge. It
establishes a dimension in the instance space. In [26] it was shown that knowledge
of the ordering of discrete feature values can increase classification accuracy.

In previous work [23] we used goal-dependency networks (GDNs) as proposed
in [25]. In this framework, GDNs are a combination of relational knowledge
about the subgoal-relation and contextual knowledge (a property is important
if a certain subgoal is active).

3 Properties of Domain Theories

Domains in which CBR is applied usually lack a perfect domain theory. Hence,
the domain theories that we work with have at least one of the following proper-
ties (cf. Figure 2). In this paper, we focus on partial and vague domain theories.

– Partialness: This is the case if some parts of the domain are not modelled,
for example a) if conditions are used but not defined, or b) the relation of
intermediates or directly represented case attributes (”observables”) to the
classification goal is not known, or c) the classification goal does not exist
in the rulebase at all. Note that these situations correspond to gaps at the
”top” or ”bottom” of the domain theory [17].

– Vagueness: Values can only be given within a certain confidence interval.
If a value is selected from the interval, it is likely to be incorrect.

– Inconsistency: There are two or more rules (or even alternative theories)
that make different classifications and it is not known which one is correct.
CBR is often used to overcome this problem, because the cases provide
knowledge on which classification is correct for certain cases.

Fig. 2. Properties of domain theories. The theories describe parts of the target concept,
of which there are positive (+) and negative (-) instances. Left: Partial knowledge,
only parts of the concept boundaries are known. Middle: Vague knowledge, concept
boundaries are believed to be somewhere within the shaded areas. Right: Inconsistent
knowledge, different rules make differing predictions

526 T. Steffens

4 Effects of Incorporating Knowledge Types

In this section we show how to incorporate different knowledge types, show
their effects on the classification accuracy, and also report on experiments about
partial and vague knowledge. Due to space limitations we focus on the general
method of virtual attributes (which can be used for all of its subtypes) and on
a special method for matching knowledge.

4.1 Virtual Attributes

Every virtual attribute forms an additional dimension of the instance space (see
Figure 3 (right)). This is most intuitive for numerical attributes. An example is
the concept expectedWealthT illRetirement(C) = (65 − age(C)) ∗ income(C)
Unfortunately, these dimensions can change assumptions about instance distri-
butions and are most likely not orthogonal to the other dimensions, since they
are inferrable from other attributes.

In this paper we focus on binary virtual attributes. Although formally they
are additional dimensions, they can be visualized as separating lines within the
original instance space (see Figure 3 (left)). They divide the instance space
into two regions. For example, taxF ree(C) ← income(C) < 330 may divide
some instance space into salaries that are or are not subject to paying taxes
in Germany. We will show that virtual attributes that describe target concept
boundaries are especially useful.

Since virtual attributes are defined by other attributes, a hierarchy of at-
tributes can be formed. At the bottom level are attributes that are directly
represented in the cases (observables), at the top level are attributes that cor-
respond to the classification goals. In between are intermediate attribuets [17].
Intermediate attributes that are fully defined (i. e., that do not have gaps at the
bottom of the domain theory) can be computed from the values of observables
and other intermediates. We propose to use intermediates as virtual attributes.
This can be accomplished by adding them to the local similarities of the similar-
ity measure, that is, si = 1, iff both instances satisfy the intermediate concept
or both do not satisfy it, and si = 0 otherwise. In the following, additional
attributes are assumed to be discrete.

- - -

- -

- -

- -

- -

+

+ +

+

- - -

- -

- -

- -

- -

+

+ +

+

- -

-

- -

-

+

+ -

- + -

+

Income Income Income

Age Age Age

Fig. 3. Types of virtual attributes. Left: A binary virtual attribute divides the instance
space into instances satisfying or not satisfying it. Middle: A conjunction of binary
attributes. Right: The most general type of virtual attributes is to add a dimension to
the instance space

Knowledge-Rich Similarity-Based Classification 527

Fig. 4. Distribution of classification errors for the target concept hardened(C) ←
temp(C) > 100 ∧ temp(C) < 150 ∧ press(C) > 2 ∧ press(C) < 3 without virtual
attributes (left) and with the virtual attribute V (C) ← press(C) <= 2 (right)

Let us look at how binary virtual attributes influence classification. Assume
for sake of illustration that the instance space is formed by the attributes temp
and press denoting the temperature and pressure of a manufacturing oven.
Let us assume furthermore that the (to be approximated) target concept is
hardened(C) ← temp(C) > 100∧temp(C) < 150∧press(C) > 2∧press(C) < 3.
The error distribution of an unweighted kNN-classifier for the target concept is
depicted in Figure 4 (left). Not surprisingly, the misclassifications occur at the
boundaries of the target concept.

Now let us analyze the effect of different amounts and different qualities
of domain knowledge on the classification. In order to control the independent
variables like partialness and vagueness of the domain knowledge, we created a
simple test domain. There were two continuous attributes X and Y , uniformly
distributed over the interval [0,100]. The target concept was T (C) ← X(C) >
30 ∧ X(C) < 70 ∧ Y (C) > 30 ∧ Y (C) < 70. There were 100 randomly generated
cases in the case-base and 200 test cases were used. Each experiment was re-
peated 1000 times with random cases in the case-base and random test cases. We
used a square centered in the instance space as target concept, because it is one
of the few concepts for which the optimal weight setting for kNN-classification
can be calculated analytically. The optimal weight setting for the target concept
is to use equal weights [15]. Thus, the accuracy of 1-NN with equal weights is
the optimal accuracy that can be achieved without adding additional attributes.

Partialness of the domain theory: In this experiment, we operationalize
the partialness of the domain knowledge as number of known target concept
boundaries. The more boundaries are known, the less partial it is.

Adding virtual attributes that correctly specify a boundary of the target
concept makes the misclassifications at those boundaries disappear (see Figure 4
(right)). Thus, by adding virtual attributes that describe a boundary correctly,
the classification accuracy is increased (see Figure 5).

Obviously, even partial knowledge (e. g. adding only one virtual attribute) can
improve classification accuracy. A formal treatment will be published elsewhere
due to space constraints. In short, classification errors can be approximated as

528 T. Steffens

Fig. 5. Percentage of correctly classified cases with different numbers of target concept
boundaries described by virtual attributes

0 5 1
0

1
5

2
0

2
5

2
9

3
0

3
1

3
5

4
0

4
5

5
0

5
5

6
0

6
5

6
9

7
0

7
1

7
5

8
0

8
5

9
0

9
5

1
0
0

c

94,75

95,00

95,25

95,50

95,75

96,00

96,25

M
e

a
n

a
c

c
u

r
a

c
y

Fig. 6. Accuracy of similarity measures using a virtual attribute of the form V (c) ←
X(C) < c, where c is plotted on the horizontal axis. c-axis is stretched at the position
of the concept boundaries

sum of the errors on concept boundaries [15]. The classification error is reduced
by each concept boundary that is specified.

In this experiment we assumed that the virtual attributes were correct. In the
next experiment we analyzed the influence of the correctness of virtual attributes.

Correctness: Vague knowledge can be informally described as knowing that
an attribute should be more or less at a certain value. The higher the vagueness,
the higher is the probability for high incorrectness. We operationalize correctness
of a virtual attribute as its distance from the correct value. We created virtual
attributes of the form V (C) ← X(C) < c, where c was varied from 0 to 100 at

Knowledge-Rich Similarity-Based Classification 529

steps of 5. Remember that the correct X-value (which was used in the domain
theory to generate the cases) was 30. The accuracy of classification when adding
these virtual attributes is depicted in Figure 6.

The results are somewhat disappointing. The accuracy drops rapidly if the
virtual attribute is inaccurate. Fortunately, the accuracy with inaccurate virtual
attributes is not much lower than using no virtual intermediates (the accuracy
of a similarity measure with no virtual attribute is equivalent to setting c=0 or
c=100). The second peak at X = 70 which is the other boundary on the X-
attribute is due to the fact that similarity-based classification is direction-less:
only the position of the concept boundary has to be known, the side on which
positive and negative instances are located is encoded in the cases.

These experiments with a simple domain suggest that partial knowledge is
more useful than vague knowledge. Adding partial knowledge is likely to increase
the classification accuracy, whereas vague knowledge is only useful if there is good
evidence that the knowledge is correct.

4.2 Matching Knowledge

Matching knowledge is a specialization of virtual attributes. Thus, matching
knowledge can be used to define an additional attribute as described in sec-
tion 4.1. Additionally, it can be used to specify that values in a certain subregion
should be viewed as equivalent (i. e., set their similarity to the maximal value).
In comparison to using matching knowledge as virtual attribute, using it to spec-
ify equivalence does not require setting or learning weights. In this section we
empirically compare the equivalence method and the virtual attribute method.

Defining equivalence within intervals is for example done in discretizing con-
tinuous attributes. In contrast, here we do not discretize the whole range of
an attribute, but only an interval. As a further difference, matching knowledge
usually specifies subregions using several dimensions, not just one dimension.

For simplicity, here we only cope with matching knowledge which specifies
an interval on one dimension. Informally, such knowledge corresponds to the
information that certain values behave identically, e. g. ”the machine behaves
identically within the interval from 2.6 to 3.2 bar pressure”.

In the experiments, we assume that there are two continuous variables X and
Y , both in the range [0,100]. The target concept is again (like in the experiments
with virtual attributes) T (C) ← X(C) > 30∧X(C) < 70∧Y (C) > 30∧Y (C) <
70. There were 100 random cases in the case-base, 200 random test cases were
used, and this setting was repeated 3000 times. All attribute (including the
additional one) weights were equal in both methods.

In the equivalence method, the local similarity for attribute X is defined as:

s(x1, x2) =
{

1 : if x1 = x2 ∨ (l ≤ x1 ≤ r ∧ l ≤ x2 ≤ r)
1 − |x1 − x2|/100 : else

This is the same local similarity as used in the other experiments, except that the
similarity is also 1 if both values are within the interval [l,r]. This corresponds to
matching knowledge which states that differences between cases in this interval

530 T. Steffens

0 8 1
6

2
4

3
2

4
0

4
8

5
6

6
4

7
2

8
0

8
8

9
6

Length of interval

160

170

180

190

200

M
e

a
n

a
c

c
u

r
a

c
y

equivalence

virtual

attribute

Fig. 7. Accuracy of a similarity measure using matching knowledge as virtual attribute
and as equivalence within an interval

are due only to their difference on the other dimension. To simulate the effects
of vague knowledge, the interval-length was varied from 0 to 100 for a centered
interval at X = (r + l)/2 = 50. Thus, perfect matching knowledge would state
the interval-length to be 40, and l = 30,r = 70.

In the virtual attribute method, a predicate is defined as follows: V (C) ←
X(C) ≥ l ∧ X(C) ≤ r The local similarity for this additional attribute is 1 iff
both cases satisfy the predicate, and 0 else.

The accuracy of the similarity measure for the different intervals is plotted
in Figure 7. The baseline (i. e., using no matching knowledge) is equivalent to
setting the interval length to zero. Apparently, both ways of using matching
knowledge can improve classification accuracy dramatically. While the baseline
classifies 190.0 cases correctly on average, both knowledge-rich methods correctly
classify more than 195.0 cases if the matching knowledge is perfect. However, the
equivalence method is more robust concerning vague knowledge that estimates
the interval too small, as the shallow slope suggests. In contrast, the virtual
attribute method degrades faster if the knowledge estimates the interval as too
big. On the other hand, it does not degrade as dramatically as the equivalence
method for very inaccurate knowledge.

5 Experiments in Real Domains

5.1 The Domains

The domain of the previous sections allowed us to vary the incorrectness and
partialness of the domain theory and to create pure forms of knowledge types.
However, since the domain was handcrafted and simple, we ran additional exper-
iments with two data sets from the UCI Machine Learning Repository. We used

Knowledge-Rich Similarity-Based Classification 531

only data sets that provided imperfect domain theories. Note that some data
sets in the repository come along with perfect domain models, as the instances
were created by those models. But we used only data sets whose domain theo-
ries were imperfect. Contextual, matching and inferential knowledge is present in
these domain theories, but in a mixed manner. Thus, we used the most general
method of virtual attributes to incorporate the knowledge.

– Japanese Credit Screening (JCS): This domain comes with a domain theory
that was created by interviewing domain experts. Accordingly, the theory is
imperfect and classifies only 81% of the cases correctly.

– Promoter gene sequences (PGS): Its domain theory reflects the knowledge of
experts in the field of promoter genes. It is highly inaccurate and performs
at chance level when used in isolation [27]. We included this domain to serve
as a worst case scenario, since the domain knowledge is most inaccurate.

5.2 The Virtual Attributes

The domain theories of JCS and PGS have been created by domain experts
for real world applications. Hence, they do not separate positive from negative
instances in a perfect way. The accuracy of the JCS domain theory is 81%, the
accuracy of the PGS domain theory is only 50%. The structure of both theories
is depicted in Figure 8.

Most of the intermediate concepts contain several knowledge types. For ex-
ample, rejected age unstable work defines regions and an additional attribute and
states that in this context age and number years are important:

rejected_age_unstable_work(S) :-
age_test(S, N1),
59 < N1,
number_years_test(S, N2),
N2 < 3.

Although the concepts are highly imperfect, our experiments show that these
concepts can improve classification accuracy when used as virtual attributes in
similarity measures. Not all intermediate concepts will increase classification
accuracy when used as virtual attributes [24]. Hence, mechanisms to select or
weight virtual attributes are necessary. We apply several existing weighting ap-
proaches which will be described in the next section.

5.3 Weighting Methods

According to the classification of weighting methods as proposed in [29], we
selected four methods with performance bias, and six with preset bias (i. e.,
statistical and information-theoretic methods).

– Performance bias: Weighting methods with a performance bias classify in-
stances in a hill-climbing fashion. They update weights based on the outcome
of the classification process. The performance bias is known to perform well

532 T. Steffens

Jobless ItemGender

Married Problema-

tic region

Age

Bank

deposit

Monthly

Payment

Number

Months

Company

Years

Jobless male
Jobless unmarried

Female

Unmatch

Female

Discredit

Bad region

Rejected age

Unstable work

Ok_credit

Promoter

Contact Conformation

Minus10 Minus35

Sequence Positions

Bad_credit

Fig. 8. The domain theory of the JCS domain (top) and of the PGS domain (bottom)

if there are many irrelevant features [29]. Since the intermediate concepts of
the domain theories can be assumed to be relevant, we expected performance
bias methods to perform badly.
1. EACH [21] increases the weight of matching features and decreases the

weight of mismatching features by a hand-coded value.
2. IB4 [2] is a parameter-free extension of EACH. It makes use of the con-

cept distribution and is sensitive to skewed concept distributions. It as-
sume that the values of irrelevant features are uniformly distributed.

3. RELIEF [12] is a feature selection- rather than feature weighting-
algorithm. It calculates weights based on the instance’s most similar
neighbors of each class and then filters attributes whose weights are be-
low a hand-coded threshold. We used extensions for non-binary target
classes and kNN with k > 1 as proposed in [13].

4. ISAC [6] increases weights of matching attributes and decreases weights
of mismatching attributes by a value that is calculated from the ratio of
the prior use of the instance. The more often the instance was retrieved
for correct classifications, the higher the update value.

– Preset bias: The bias of the following weighting methods is based on prob-
abilistic or information-theoretic concepts. They process each training in-
stance exactly once.

Knowledge-Rich Similarity-Based Classification 533

1. CCF [8] binarizes attributes and weights them according to the classes’
probability given a feature.

2. PCF [8] is an extension of CCF which takes the distribution of the fea-
ture’s values over classes into account. It calculates different weights for
different classes.

3. MI [9] calculates the reduction of entropy in the class distribution by
attributes and uses it as the attribute weight.

4. CD [18] creates a correlation matrix of the discretized attributes and the
classes. The weight of an attribute increases with the accuracy of the
prediction from attribute value to class.

5. VD [18] extends CD in that it considers both the best prediction for a
class and the predictions of all attributes.

6. CVD [18] combines CD and VD.

5.4 Results

For brevity, we will refer to the similarity measure which uses only observables as
the non-extended measure. The similarity measure which uses virtual attributes
will be called extended. For evaluation we used the leave-one-out method.

Table 1. Classification accuracies of the non-extended similarity measures and the
extended measures. The columns report the accuracies for the unweighted classification
and for several weighting methods

Domain unw. EACH RELIEF IB4 ISAC CCF PCF MI CD VD CVD

JCS (w/o) 74.19 74.19 78.23 74.19 72.58 72.58 72.58 74.19 74.19 72.58 71.77
JCS (w/) 74.19 72.58 79.03 72.58 79.03 73.39 75.0 75.0 77.42 75.0 75.0
PGS (w/o) 86.79 89.62 96.23 88.68 50.0 85.85 87.74 68.87 88.68 77.36 83.02
PGS (w/) 85.85 93.40 96.23 90.57 96.23 91.51 86.79 98.11 88.68 97.17 87.74

For most of the weighting methods, the extended similarity measure per-
forms better than the non-extended one. In table 1 we underline the accuracy of
the extended similarity measure if it outperformed the non-extended similarity
measure when using the same weighting method. In the PGS domain, seven of
ten weighting methods perform better if the similarity measure is extended with
virtual attributes. Even more so, in the JCS domain the accuracies of eight of
ten weighting methods were improved by using virtual attributes.

In its optimal setting, with an accuracy of 98.11% our approach performs
also better than the results from the literature reported for the PGS domain.
The accuracy of KBANN in [27] is 96.23%, which to our knowledge was the
highest accuracy reported so far and also used the leave-one-out evaluation. We
found no classification accuracy results for JCS in the literature1.
1 The domain often referred to as ’credit screening’ with 690 instances is actually the

credit card application domain.

534 T. Steffens

Obviously, these improvements are not restricted to a certain class of weight-
ing methods. Methods with performance bias (most notably ISAC), information-
theoretic bias (i. e. MI), and with a statistical correlation bias (e. g. VD) benefit
from processing virtual attributes.

Even in the PGS domain, the improvements are substantial. This is surpris-
ing, since the domain knowledge is the worst possible and classifies at chance
level when used for rule-based classification. This is a promising result as it
shows that adding intermediate concepts may increase accuracy even if the do-
main theory is very inaccurate. We hypothesize that this is due the fact that
even vague rules-of-thumb provide some structure in the instance space which
will be exploited by the similarity measure.

6 Conclusion and Future Work

The main contribution of this paper is to show that several types of imperfect
domain knowledge from domain theories can enhance similarity-based classifi-
cation. We showed in the domains from the Machine Learning Repository that
even highly inaccurate (i. e., in our sense, vague) domain knowledge can be ex-
ploited to drastically improve classification accuracy. This facilitates knowledge
elicitation from domain experts as it removes the requirements of completeness
and accurateness. Furthermore, we proposed a hierarchy of knowledge types that
were previously researched in isolation and showed that they can be incorporated
as virtual attributes. The benefit of such a hierarchy is to guide CBR designers
which types of knowledge should be acquired from domain experts or should be
extracted from the instances by statistical or machine learning methods. Future
work includes experiments in further domains and transforming intermediate
attributes by feature generation [11].

References

1. Agnar Aamodt. Explanation-driven case-based reasoning. In Stefan Wess, Klaus-
Dieter Althoff, and Michael M. Richter, editors, Topics in Case-Based Reasoning,
pages 274–288. Springer, 1994.

2. David W. Aha. Tolerating noisy, irrelevant and novel attributes in instance-based
learning algorithms. International Journal of Man-Machine Studies, 36(2):267–
287, 1992.

3. Ralph Bergmann. On the use of taxonomies for representing case features and
local similarity measures. In Lothar Gierl and Mario Lenz, editors, Proceedings of
the Sixth German Workshop on CBR, pages 23–32, 1998.

4. Ralph Bergmann, Gerhard Pews, and Wolfgang Wilke. Explanation-based similar-
ity: A unifying approach for integrating domain knowledge into case-based reason-
ing. In Stefan Wess, Klaus-Dieter Althoff, and Michael M. Richter, editors, Topics
in Case-Based Reasoning, pages 182–196. Springer, 1994.

5. C. L. Blake and C. J. Merz. UCI repository of machine learning databases, 1998.

Knowledge-Rich Similarity-Based Classification 535

6. Andrea Bonzano, Pdraig Cunningham, and Barry Smyth. Using introspective
learning to improve retrieval in cbr: A case study in air traffic control. In David
Leake and Enric Plaza, editors, Proceedings of the second ICCBR conference, pages
291–302, Berlin, 1997. Springer.

7. Timothy Cain, Michael J. Pazzani, and Glenn Silverstein. Using domain knowledge
to influence similarity judgements. In Proceedings of the Case-Based Reasoning
Workshop, pages 191–198, Washington D.C., U.S.A., 1991.

8. Robert H. Creecy, Brij M. Masand, Stephen J. Smith, and David L. Waltz. Trad-
ing mips and memory for knowledge engineering. Communications of the ACM,
35(8):48–64, 1992.

9. Walter Daelemans and Antal van den Bosch. Generalization performance of back-
propagation learning on a syllabification task. In Proceedings of the Third Twente
Workshop on Language Technology: Connectionism and Natural Language Process-
ing, pages 27–37, Enschede, The Netherlands, 1992. Unpublished.

10. Belen Diaz-Agudo and Pedro A. Gonzalez-Calero. Knowledge intensive cbr made
affordable. In Agnar Aamodt, David Patterson, and Barry Smyth, editors, Pro-
ceedings of the Workshop Program at the Fourth International Conference on Case-
Based Reasoning, 2001.

11. Tom Elliott Fawcett and Paul E. Utgoff. Automatic feature generation for problem
solving systems. In Derek H. Sleeman and Peter Edwards, editors, Proceedings of
the 9th International Conference on Machine Learning, pages 144–153. Morgan
Kaufmann, 1992.

12. Kenji Kira and Larry A. Rendell. A practical approach to feature selection. In
Derek H. Sleeman and Peter Edwards, editors, Proceedings of the Ninth Interna-
tional Workshop on Machine Learning, pages 249–256. Morgan Kaufmann Pub-
lishers Inc., 1992.

13. Igor Kononenko. Estimating attributes: Analysis and extensions of RELIEF. In
F. Bergadano and L. de Raedt, editors, Proceedings of the European Conference
on Machine Learning, pages 171–182, Berlin, 1994. Springer.

14. David B. Leake and David C. Wilson. Combining CBR with interactive knowledge
acquisition, manipulation and reuse. In Klaus-Dieter Althoff, Ralph Bergmann,
and Karl Branting, editors, Proceedings of the Third International Conference on
Case-Based Reasoning, pages 203–217, Berlin, 1999. Springer-Verlag.

15. Charles X. Ling and Hangdong Wang. Computing optimal attribute weight settings
for nearest neighbour algorithms. Artificial Intelligence Review, 11:255–272, 1997.

16. Douglas L. Medin, Robert L. Goldstone, and Dedre Gentner. Respects for similar-
ity. Psychological Review, 100(2):254–278, 1993.

17. Raymond J. Mooney and Dirk Ourston. Constructive induction in theory refine-
ment. In Lawrence Birnbaum and Gregg Collins, editors, Proceedings of the Eighth
International Machine Learning Workshop, pages 178–182, San Mateo, CA, 1991.
Morgan Kaufmann.

18. H. Nunez, M. Sanchez-Marre, U. Cortes, J. Comas, I. Rodriguez-Roda, and
M. Poch. Feature weighting techniques for prediction tasks in environmental pro-
cesses. In Proceedings of the 3rd Workshop on Binding Environmental Sciences
and Artificial Intelligence (BESAI 2002), 2002.

19. Bruce W. Porter, Ray Bareiss, and Robert C. Holte. Concept learning and heuristic
classification in weak-theory domains. Artificial Intelligence, 45(1-2):229–263, 1990.

20. Michael M. Richter. Fallbasiertes Schliessen. Informatik Spektrum, 3(26):180–190,
2003.

21. Steven Salzberg. A nearest hyperrectangle learning method. Machine Learning,
6(3):251–276, 1991.

536 T. Steffens

22. Joerg W. Schaaf. Detecting gestalts in CAD-plans to be used as indices. In Angi
Voss, editor, FABEL - Similarity concepts and retrieval methods, pages 73–84.
GMD, Sankt Augustin, 1994.

23. Timo Steffens. Adapting similarity-measures to agent-types in opponent-modelling.
In Mathias Bauer, Piotr Gmytrasiewicz, Gal A. Kaminka, and David V. Pynadath,
editors, Workshop on Modeling Other Agents from Observations at AAMAS 2004,
pages 125–128, 2004.

24. Timo Steffens. Similarity-measures based on imperfect domain-theories. In Steffen
Staab and Eva Onainda, editors, Proceedings of STAIRS 2004, pages 193–198. IOS
Press, Frontiers in Artificial Intelligence and Applications, 2004.

25. Robert E. Stepp and Ryszard S. Michalski. Conceptual clustering: Inventing goal-
oriented classifications of structured objects. In Ryszard S. Michalski, Jaime G.
Carbonell, and Tom M. Mitchell, editors, Machine Learning: An Artificial Intel-
ligence Approach, volume II. Morgan Kaufman Publishers, Inc., Los Altos, CA,
1986.

26. Jerzy Surma. Enhancing similarity measure with domain specific knowledge. In
Proceedings of the Second European Conference on Case-Based Reasoning, pages
365–371, Paris, 1994. AcknoSoft Press.

27. Geofrey G. Towell, Jude W. Shavlik, and Michael O. Noordenier. Refinement of
approximate domain theories by knowledge based neural network. In Proceedings
of the Eighth National Conference on AI, volume 2, pages 861–866, 1990.

28. Peter Turney. The management of context-sensitive features: A review of strategies.
In Proceedings of the Workshop on Leaning in Context-sensitive Domains at the
13th International Conference on Machine Learning, pages 60–65, 1996.

29. Dietrich Wettschereck, David W. Aha, and Takao Mohri. A review and empirical
evaluation of feature weighting methods for a class of lazy learning algorithms.
Artificial Intelligence Review, 11:273–314, 1997.

30. Wolfgang Wilke and Ralph Bergmann. Techniques and knowledge used for adap-
tation during case-based problem solving. In Proceedings of the 11th International
Conference on Industrial and Engineering Applications of Artificial Intelligence
and Expert Systems, volume 2, pages 497–506, Berlin, 1998. Springer.

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, pp. 537 – 551, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Autonomous Creation of New Situation Cases in
Structured Continuous Domains

Haris Supic1 and Slobodan Ribaric2

1 Faculty of Electrical Engineering, University of Sarajevo, Skenderija 70,
71000 Sarajevo, Bosnia and Herzegovina

haris.s@bih.net.ba
2 Faculty of Electrical Engineering and Computing, University of Zagreb,

Unska 3, 10 000 Zagreb, Croatia
slobodan.ribaric@fer.hr

Abstract. A case-based reasoning (CBR) system that continuously interacts
with an environment must be able to autonomously create new situation cases
based on its perception of the local environment in order to select the
appropriate steps to achieve the current mission goal. Although many
continuous problem domains seem appropriate for case-based reasoning, a
general formal framework is still missing. This paper presents a step in the
direction of developing such a formal model of autonomous creation of new
situation cases. The model is based on the notion of the step for attentional
shift. This notion allows us to define the representation scheme for situation
cases. We have introduced two types of situation cases: contextual cases and
action cases. The solution component of contextual cases, also called a
contextual behavior routine, is used as a resource to direct the attention of the
CBR system to the relevant aspects of the local environment. The solution
component of action cases, also called an action behavior routine, is used to
guide selection of manipulative steps. There are two key roles of steps for
attentional shift in our model. The first one is that steps for attentional shift
represent a description structure of situation cases. The second role is that steps
for attentional shift represent an abstract representation of actions by which the
CBR system moves the attention to the relevant aspects of a local environment.

1 Introduction

Case-based reasoning systems have traditionally been used to perform high-level
reasoning in problem domains that can be adequately described using discrete,
symbolic representations. In general, a case consists of a problem, its solution and an
outcome [1, 2]. Although many continuous situations seem appropriate for case-based
reasoning, a general formal framework is still missing. Several issues need to be
addressed. Consider, for example, a robot navigation problem [3]. What is the scope
of a single case? What are the cases in an autonomous navigation domain? Is the
entire mission a case, or some part of it? Which parts? How can we identify them? In
continuous environments, it is not so obvious where the cases start or end. Examples

LNAI

538 H. Supic and S. Ribaric

of CBR systems that use case-based methods in continuous environment are given in
[3, 4, 5, 6]. Olivia et al. [7] describe a framework that integrates CBR capabilities in a
BDI (belief, desire, intention) architecture. The relationships between autonomous
systems and CBR systems constitute the research reported in [8, 9]. Situations in
which case boundaries are not obvious are often situations in which planning and
acting are interleaved. In this paper we develop an approach to continuous CBR
system-environment interaction that we called stepwise case-based reasoning
(SCBR). The SCBR approach uses plan cases to support the planning process and
situation cases to support the acting of an SCBR system. This paper does not focus on
plan cases, but only notions which refer to plan cases that are relevant for better
understanding of situation cases will be defined in this work.

Most continuous environments contain structures that remain static during the
lifetime of a system. These static structures represent local environments and each
local environment represents a particular context. An SCBR system that performs
stepwise case-based reasoning is adequate for the environments that contain
identifiable configurations (structures) of the local environment. In this paper, types
of identifiable local environments are called contextual classes. Furthermore, concrete
examples of local environments are called contextual instances. This means that such
structured environments can be described as a set of contextual instances. To help in
understanding the term contextual class used throughout the paper, we show an
example of autonomous navigation in an indoor environment. Figure 1 shows the
graphical representation of the contextual classes for autonomous navigation tasks in
indoor environments. Each contextual class is characterized by its specific
configuration of relevant perceivable objects in the local environment.

Fig. 1. Examples of contextual classes for autonomous navigation tasks in indoor
environments. The figure shows contextual classes as follows: (a) Hallway, (b) Room, (c) L-
shaped junction, (d) T-shaped junction. Each contextual class is characterized by its specific
configuration of relevant perceivable objects in the local environment

(a) (b)

(c) (d)

Autonomous Creation of New Situation Cases in Structured Continuous Domains 539

Fig. 2. Example of an indoor environment that contains instances of contextual classes that are
illustrated in Figure 1

Figure 2 shows an indoor environment. This indoor environment is created using
the set of contextual classes shown in Figure 1.

The rest of this paper is organized as follows. In the next section we describe the
model of the SCBR system-environment interaction. In Section 3 we give the basic
definitions associated with the representational scheme of the situation cases. This
scheme is described in Section 4. In Section 5 we outline the stepwise case-based
reasoning cycle. An illustration for autonomous navigation in indoor environments is
given in Section 6. Section 7 draws conclusions and discusses the future work.

2 Model of the SCBR System-Environment Interaction

An SCBR system is an entity that can perceive and affect its environment. We first
introduce the three basic terms: environment, perception stimulus and step.

Definition 1 (Environment). An environment is defined as everything that surrounds
an SCBR system. Formally, an environment E is defined as the four-tuple E=(Em, Ec,
PI, US), where

− Em is a part of the environment that is manipulated by the SCBR system,
− Ec is a part of the environment that cannot be manipulated, but represents

contextual constraints,

540 H. Supic and S. Ribaric

− PI is a perception interface, and
− US is a user of the SCBR system.

We do not make any assumptions about the representational structure of the
elements Em and Ec. Notice that the SCBR system does not have a complete influence
over its environment, it just has a partial influence. According to our interaction
model, we assume that the environment also contains a perception interface that
generates perception stimuli. A user of an SCBR system defines new missions. Also,
a user can give directions to the SCBR system when the SCBR system is unable to
select an appropriate step.

Definition 2 (Perception stimulus). A perception stimulus is a sensory information
about the environment used as an input to the SCBR system.

Definition 3 (Step). A step is any action selected by the SCBR system. According to
our interaction model, there are three types of steps as follows:

− the act of shifting the attention is called a step for attentional shift,
− the act of changing some part of the world external to the SCBR system is called an

action step, and
− the act of asking for help is called a step for help.

Now, we will briefly describe the SCBR system-environment interaction. The SCBR
system and environment interact at each of a sequence of interaction loops. Each
interaction loop includes the following phases:

1. perceive the environment,
2. select a step, and
3. step execution.

Fig. 3. The SCBR system-environment interaction loop. Each interaction loop includes the
following phases: 1. perceive the environment, 2. select a step, and 3. execute the selected step

Throughout each interaction loop, the SCBR system receives a perception
stimulus, pi∈ P, where P is a set of all possible perception stimuli, and on that basis
selects a step a∈A, where A is the set of all possible steps. One interaction loop later,
as a consequence of its step, the SCBR system finds itself in a new situation. Figure 3
shows the SCBR system-environment interaction. The SCBR system does not use

SCBR SYSTEM

 ENVIRONMENT

pi:perception stimul us in
th interaction loop

ai: selected step in i-th
interaction loop

pi ai

Autonomous Creation of New Situation Cases in Structured Continuous Domains 541

case-based reasoning in each step selection phase of an interaction loop. Instead,
throughout certain interaction loops, the SCBR system routinely selects steps without
reasoning processes. Throughout these interaction loops the SCBR system uses
behavior routines that are selected by case-based reasoning from a certain previous
interaction loop. We define behavior routine in Section 3, and describe stepwise case-
based reasoning cycles in Section 5.

3 Basic Definitions

In this section we introduce the formal definitions associated with the representational
scheme of the situation cases that are described in Section 4. First, we will introduce
the notion of intention. An intention refers to what the SCBR system intends to do or
achieve. Intentions direct an SCBR system’s attention to the relevant aspects of the
local environment. A relationship between intentions and steps for attentional shift is
formally defined in Section 5. Definition 4 introduces the classification of intentions
in our model.

Definition 4 (Intentions). Let I denote a set of all intentions that can be selected by
the SCBR system,

I={i1, i2, …, ij, ….i|I|}, 1≤ j ≤ |I|. (1)

This set can be partitioned into two disjoint sets Ip and Ic such that I = Ip∪ Ic, and
 Ip ∩ Ic =∅, where

− Ip is a set of all plan intentions, and
− Ic is a set of all contextual intentions.

Each intention starts a selection of a step for attentional shift. Plan intentions and
contextual intentions are in hierarchical relationships. A plan intention represents an
SCBR system’s desire to move from one contextual instance to another contextual
instance. A contextual intention represents an SCBR system’s desire that is the most
appropriate for the given contextual conditions. A contextual intention tends to
promote the fulfillment of a plan intention. The selection of contextual intention
depends on the current contextual conditions, but plan intentions can be planned at the
beginning of the current mission. Plan intentions are planned in advance at the
beginning of the current mission due to the fact that the environment contains certain
static structures that do not change over time. This is an opposite of the contextual
intentions. Contextual intentions will have to be left unspecified until the situation in
which they are required arises and relevant perception attributes of the local
environment can be determined by selecting an appropriate step for attentional shift.
For example, a plan intention for autonomous navigation tasks is "exit-from-room".
Following are some examples to illustrate contextual intentions: "move-right-to-
avoid-obstacle", "left-wall-following" etc.

Definition 5 (Perception attribute). A perception attribute is a relevant feature of
the environment that is important to the SCBR system’s next step selection.

542 H. Supic and S. Ribaric

To act in a continuously changing environment, an SCBR system must be able to
react appropriately to changes and unexpected events in the environment. To
overcome this problem, we have introduced the notion of the step for attentional shift.
An attention can be seen as a filter that decides which aspects of the local
environment are relevant to the current situation [10]. However, the step for
attentional shift represents the act of shifting the attention to the currently relevant
attributes of the local environment. By applying this step, an SCBR system can
autonomously create new situation cases that reflect changes in the local environment.

Definition 6 (Step for attentional shift). Let UA denote a set of all perception
attributes, UA={A1, A2, …Ai, …A|UA|}, i=1,2,…|UA|. A step for attentional shift f is an
n-tuple f=(A1, A2, …An) where

− Ai is a perception attribute, i=1,2,…n.

Each perception attribute Ai corresponds to exactly one domain Di, i=1, 2, ...n. A
domain is a set of values from which one or more perception attributes draw their
actual values.

Therefore, the task of a step for attentional shift is to extract the appropriate aspects
of the local environment in the current situation. This step is an abstract representation
of the SCBR system’s perceptual action. We have used the formalization in Section 4
for describing the representational scheme of situation cases.

We now introduce the classification of steps for attentional shift. Let F denote a set
of all steps for attentional shift that can be selected by the SCBR system. This set can
be partitioned into three disjoint sets Fc , Fa and {fqc, fqa , fr} where

− Fc is the set of all contextual steps for attentional shift,
− Fa is the set of all action steps for attentional shift, and
− { fqc, fqa, fr } is the predefined set containing three elements where

 fqc denotes a step for attentional shift to the outcome of a
contextual behavior routine, fqa denotes a step for attentional shift to
the outcome of an action behavior routine, and fr denotes a step for
attentional shift for revision of a currently selected behavior routine.
The role of these steps in stepwise case-based reasoning cycles is
described in Section 5.

Section 6 of this paper illustrates the basic notions of the stepwise case-based
reasoning approach: plan intentions, contextual intentions, contextual steps for
attentional shift and action steps for attentional shift. Also, this section describes
relationships among these notions in the SCBR system’s reasoning cycles. As
mentioned earlier, we assume that the environment contains a perception interface
that is capable to interpret selected steps for attentional shift and generate a perception
stimulus according to the selected step f.

Definition 7 (Synthetic perception stimulus). Let f denote a step for attentional shift
f=(A1, A2,…, An) and let Di, i=1,2,…n, denote a domain of a perception attribute Ai. A
synthetic perception stimulus over a step for attentional shift spf is an n-tuple spf=(v1,
v2 …,vn), vi ∈ Di, i=1,2,…n.

Autonomous Creation of New Situation Cases in Structured Continuous Domains 543

Notice that a synthetic perception stimulus is a special kind of perception stimuli. An
SCBR system receives a synthetic perception stimulus from a perception interface as
a consequence of a previously selected step for attentional shift.

Definition 8 (Action step). An action step m is an n-tuple m=(v1, v2,…vp) ∈ R
p that

represents manipulative actions selected by the SCBR system that change some part
of the world external to the SCBR system.

In the rest of this paper we will use M to denote a set of all manipulative actions
that can be selected by an SCBR system,

M={m1, m2, …, mj, ….m|M|}, 1 ≤ j ≤ |M| (2)

3.1 Behavior Routines

As mentioned earlier in this paper, the SCBR system does not use case-based
reasoning throughout each interaction loop. Instead, throughout certain interaction
loops, the SCBR system routinely selects steps based on behavior routines that are
generated by case-based reasoning throughout certain previous interaction loop. We
will now introduce the three types of behavior routines: plan behavior routines,
contextual behavior routines, and action behavior routines.

Definition 9 (Plan behavior routines). Let Ip denote a set of all plan intentions. A
plan behavior routine bp is an n-tuple bp=(i1, i2, …ij,…in) where

− ij∈ Ip , j=1,2,…n.

In this paper we concentrate on the situation cases, and on certain notions which
refer to plan cases and are relevant for understanding the description of situation cases.
An example of such notion is a plan behavior routine. As described in Section 5, a
behavior routine directs the selection of contextual steps for attentional shift.

Definition 10 (Contextual behavior routines). Let Ic denote a set of all contextual
intentions. A contextual behavior routine bc is an n-tuple bc=(i1, i2,…ij,…im) where

− ij∈ Ic , j=1,2,…m.

As described in Section 4, a contextual behavior routine represents the solution
component of a contextual situation case.

Definition 11 (Action behavior routines). Let M denote a set of all action steps. An
action behavior routine ba is an n-tuple ba=(m1,m2, …mj, …mp) where

− mj∈ M , j=1,2,…p.

An action behavior routine represents the solution component of an action case.
Different types of behavior routines represent a behavior of an SCBR system at
various levels of abstraction. Plan behavior routines and contextual behavior routines
direct the attention to the relevant aspects of the local environment. Action behavior
routines provide a selection of the appropriate manipulative steps.

544 H. Supic and S. Ribaric

4 The Representation Scheme for Situation Cases

The definitions presented in Section 3 allow for a formal description of the notion of a
situation case in terms of its components. First, we introduce the description
component of a situation case.

4.1 Description Component of Situation Cases

Definition 12 (Description component of situation cases). A description
component of situation cases d is a two-tuple d=(f, spf) where

− f is a step for attentional shift, and
− spf is a synthetic perception stimulus over the step for attentional shift f.

An Alternative Interpretation of a Description Component. A description
component of a situation case could be alternatively interpreted as follows. In general,
each n-tuple t=(v1, v2, …vi, …vn) can be interpreted as a function,

t: {1,2, …n}→ {v1, v2, …vn},

where

− t(i)=vi, i=1,2,…n.

In this way, elements f and spf could also be represented as functions. Since the spf

function operates on f -1(Ai), we can write the composition as spf(f -1(Ai)). Let's call
the new function d(Ai) = spf(f -1(Ai)), i=1,2,…n. Figure 4 shows a graphical
representation of the function d=spf

o f where o denotes the composition of functions.

Fig. 4. The graphical representation of a description component as a composition function
d=spf

o f

4.2 An Example

Let f=(A1, A2, A3) represent the step for attentional shift and let spf be a synthetic
perception stimulus over f. The step f can be represented in another way as the
function f:

A2

An

A1 1

2

n

v1

v2

vn

f spf

d=spf
o f

-

… … …

Autonomous Creation of New Situation Cases in Structured Continuous Domains 545

f:{1, 2, 3}→{A1, A2, A3},

where

− f(1)=A1, f(2)=A2, f(3)=A3.

Furthermore, let spf=(0.5, 1.8, 3.5) represent the synthetic perception stimulus over
the step for attentional shift f. The synthetic perception stimulus spf can be represented
in another way as the function spf:

spf : { 1, 2, 3 } → { 0.5, 1.8, 3.5 } ,

where

− spf(1)=0.5, spf(2)=1.8, spf(3)=3.5.

The inverse of the function f is the f -1 where

− f -1(A1)=1, f -1(A2)=2, f -1(A3)=3.

The composite function d=spf(f -1(Ai)), i∈{1,2,3}, represents the description
component of a situation case where

− d(Ai)=0.5, d(Ai)=1.8, d(A3)=3.5 .

The composite function d could be represented in another way as:

d={(A1, 0.5), (A2, 1.8), (A3, 3.5)} . (3)

4.3 Outcome Component of Situation Cases

As stated earlier in this paper, F denotes a set of all possible steps for attentional shift.
This set contains elements denoted by fqc and fqa , where

− fqc is a step for attentional shift to the outcome of contextual behavior routines, and
− fqa is a step for attentional shift to the outcome of action behavior routines.

Therefore, when an SCBR system wants to complete a current situation case, it must
select a step that shifts the attention to the perception attributes that describe an
outcome of execution of behavior routines. In other words, the SCBR system must
select one of the steps: fqc or fqa. A selection of one of the two steps will cause the
perception interface to generate a perception stimulus that represents the outcome
component of a situation case. The following definitions describe the outcome
component of a contextual case and the outcome component of an action case.

Definition 13 (Outcome component of a contextual case). Let fqc=(Ac1, Ac2, …Acn)
denote a step for attentional shift to an outcome of contextual behavior routines. An
outcome component of a contextual case is a perception stimulus spf=(v1,v2,…vi…vn),
vi∈ Dci, i=1,2,…n, where Dci is a domain of a perception attribute Aci.

Definition 14 (Outcome component of an action case). Let fqa=(Aa1, Aa2, …Aam)
denote a step for attentional shift to an outcome of action behavior routines. An
outcome component of an action case is a perception stimulus spf=(v1,v2,…vi,…vm),
vi∈ Dai, , i=1,2,…m, where Dai is a domain of a perception attribute Aai.

546 H. Supic and S. Ribaric

4.4 Definitions of Situation Cases

The definitions presented in Section 3 and subsections 4.1 and 4.3 allow for a formal
definition of the two types of situation cases called contextual cases and action cases.

Definition 15 (Contextual case). Let Fc denote a set of all contextual steps for
attentional shift. A contextual case is a three-tuple cc=(dc, bc, qc) where

− dc is a description component of a situation case d=(f, spf), where f is a contextual
step for attentional shift, f∈ Fc , and spf is a perception stimulus over the step f,

− bc is a contextual behavior routine, and
− qc is an outcome component of a contextual case.

Notice that a contextual behavior routine represents a solution component of a
contextual case. This component describes how to choose the appropriate contextual
intentions in situation described by a description component dc.

Definition 16 (Action case). Let Fa denote a set of all action steps for attentional
shift An action case is a three-tuple ca=(da, ba, qa) where

− da is a description component of a situation case, da=(f, spf), where f is an action
step for attentional shift, f∈Fa, and spf is a perception stimulus over the step f.

− ba is an action behavior routine, and
− qa is an outcome component of an action case.

Notice that an action behavior routine represents a solution component of an action
case. This component describes how to choose the appropriate manipulative action
steps in situation described by a description component da. The relationship between
contextual cases and action cases throughout stepwise case-based reasoning cycles is
presented in Section 6.

Contextual cases include not only a description of the relevant aspects of the local
environment, but also information about how to select the appropriate contextual
intentions in this situation. On the other side, action cases include not only a
description of the relevant aspects of a local environment for next action step
selection, but also information on how to select the appropriate action steps to
manipulate a part of the environment Em.

4.5 Examples of Situation Cases

Here we show the two situation cases: the contextual case cc and the action case ca.
We use the following perception attributes: distance from obstacle to the left wall (L),
distance from obstacle to right wall (R), distance from obstacle (D), angle to front-
right corner of obstacle (θ) and distance from current position to right wall (W). All
perception attributes are illustrated in Figure 5. Let the set Ic as a part of the dictionary
of the SCBR system, among others contains elements: mrao (moving-right-to-avoid-
obstacle) and md (moving-to-door). Furthermore, let action steps be represented as a
three-tuple m=(Δx, Δy, Δθ) where Δx denotes the shift of the robot in X direction, Δy
denotes the shift of the robot in Y direction and Δθ denotes the shift of the robot
orientation. Table 1 gives the formal specifications for the contextual case
cc=(dc,bc,qc). Table 2 gives the formal specifications for the action case ca=(da,ba,qa).

Autonomous Creation of New Situation Cases in Structured Continuous Domains 547

The meaning of the outcome components is determined by the steps for attentional
shift to the outcome of behavior routines. We will assume the following steps:

− fqc=(ΔS, ΔT), and
− fqa=(ΔT),

where ΔS denotes the perception attribute that represents a distance, and ΔT denotes
the perception attribute that represents a time interval.

Table 1. An example of a contextual case for autonomous navigation in structured domains

description, dc dc = (f, spf), f = (L, R), spf = (1, 2)
solution, bc bc = (mrao, md)
outcome, qc qc = (5, 1)

Table 2. An example of an action case for autonomous navigation in structured domains

description, da da = (f, spf), f = (D, θ, W), spf = (1, 1.5, 3)
solution, ba ba = (a1, a2), a1 = (1, 2,1.2), a2 = (3, 0, 0)
outcome, qa qa = (4.5)

The outcome component qc=(5, 1) of the contextual case cc indicates the traveled
distance ΔS=5 by applying behavior routine bc, and time interval ΔT=1 it takes the
robot to travel the distance ΔS. The outcome component qa=(4.5) of the action case
ca indicates the time interval ΔT=4.5 that robot took to execute the behavior routine
ba. Therefore, the meaning of outcome components of situation cases is determined by
the meanings of the perception attributes that constitute steps for attentional shift to
the outcome of behavior routines.

5 Outline of Stepwise Case-Based Reasoning Cycles

We now introduce a connectivity function cf that is used throughout stepwise case-
based reasoning cycles. This function connects intentions and steps for attentional
shift.

Definition 17 (Connectivity function): A connectivity function cf defines the
mapping from a set of all intentions I = Ip ∪ Ic to a set of all steps for attentional shift
F = Fc ∪ Fa, cf: Ip∪ Ic → Fc ∪ Fa, with the following properties:

− cf(i)∈ Fc if i∈ Ip, and

− cf(i)∈ Fa if i∈ Ic.

The phases of stepwise case-based reasoning while the SCBR system is situated in a
certain contextual instance are now outlined.

548 H. Supic and S. Ribaric

<Create new contextual case>: From a plan behavior routine the SCBR system
selects a current plan intention ip. Using a connectivity function, a contextual step for
attentional shift is selected, f=cf(ip), and a perception interface sends a synthetic
perception spf to the SCBR system. In this way, the description component of the new
contextual case is created, dc=(f, spf).

<Retrieve contextual case>: The contextual case similar to the new contextual case
is retrieved from the casebase. Contextual behavior routines bc=(ic1, ic2, …icn) is
obtained from the retrieved case. The behavior routine is adapted to the new
conditions.

<Create new action case>: Using a connectivity function cf an action step for
attentional shift f is selected and a perception interface sends a synthetic perception spf
to the SCBR system. Thus, the description component of the new action case is
created, da=(f, spf).

<Retrieve action case>: An action case similar to the new action case is retrieved
from the casebase. Action behavior routine ba=(m1, m2, …mn) is obtained from the
retrieved case. The behavior routine is adapted to the new conditions. An action
behavior routine ba is an ordered sequence of action steps mi, i=1,2,…n.

<Reuse of action case>: In this phase, the action behavior routine ba=(m1,m2,….mn)
is used by a step by step approach. In this phase, after each selected action step mi, the
action behavior routine ba is evaluated. It must be checked if the behavior routine as a
plan to achieve a current contextual intention is adequate. When all action steps are
selected and executed, the step for attentional shift to the outcome of the action
behavior routine is selected. The SCBR system receives a perception stimulus that
represents the outcome component of the new action case.

<Retain action case>: The new action case is stored in the casebase.

<Revise contextual behavior routine>: In this phase, before selection of a new
contextual intention ic from the contextual behavior routine bc, this routine is revised
and eventually adapted. If the contextual behavior routine bc=(ic1, ic2, …icn) contains
unrealized contextual intentions, then the reasoning goes to the phase <Create new
action case>, else the SCBR system selects a step for attentional shift to the outcome
of the current contextual routine. As a result of the selected step, the SCBR system
receives a perception stimulus that represents the outcome component of the new
contextual case. The SCBR system’s reasoning cycles continue with the phase
denoted as <Retain contextual case>.

<Retain contextual case>: The new contextual case is stored in the casebase. The
SCBR system selects a next plan intention from the current plan behavior routine bp,
and reasoning cycles continue with the phase denoted as <Create new contextual
case>.

6 An Illustration

To help in understanding how stepwise case-based reasoning model works, we show
one situation from autonomous navigation domain. The SCBR system’s planning

Autonomous Creation of New Situation Cases in Structured Continuous Domains 549

module generates a current plan intention, based on plan cases. The solution
component of plan cases is an ordered sequence of plan intentions. An SCBR system
selects a current plan intention ip. Assume that the current plan intention is "exit-from-
room". This intention directs the SCBR system’s attention to the relevant perception
attributes: distance from obstacle to the left wall (L) and distance from obstacle to the
right wall (R) (see Figure 5). Formally, the SCBR system selects the contextual step
for attentional shift f=(L, R). A perception interface generates the synthetic perception
stimulus spf=(1, 2). Thus, the new contextual case is created cc=(dp, ?, ?), dp=(f, spf),
where ? denotes temporarily undefined components. Then, the most similar
contextual case is retrieved from the casebase rcc=(dc, bc, qc), and the solution
component bc is adapted to the new conditions. The adapted solution component of
the retrieved case is an ordered sequence of contextual intentions. Assume, that this
component is bc=(mrao, md) where

− mrao denotes the contextual intention "move-right-to-avoid-obstacle", and
− md denotes the contextual intention "move- to-door".

The SCBR system selects the intention mrao that directs the attention to the relevant
perception attributes: distance from obstacle (D), angle to front-right obstacle’s corner
(θ), and distance from right wall (W) (see Figure 5). Formally, the SCBR system
selects the action step for attentional shift f=(D, θ, W). Then, the perception interface

Fig. 5. An illustration of the perception attributes for autonomous navigation in indoor
environments. (a) A simulated vision from the current position of the robot (b) 2D
representation of the relevant perception attributes for the current situation

perception attributes:

R distance from obstacle to the right wall,
L distance from obstacle to the left wall,
θ angle to the front-right corner of the obstacle,
D distance from the obstacle,
W distance from current position to the right wall,

 current position and orientation of the robot.

θ=1
W=3 D=1.5

RL

(a)

(b)

550 H. Supic and S. Ribaric

generates the synthetic perception stimulus spf =(1.5, 1, 3) over the step for attentional
shift f. The step for attentional shift f and the synthetic perception spf are elements of
the new action case’s description component, da=(f, spf). Then, the most similar
action case is retrieved, ca=(da, ba, qa) and the solution component ba is adapted to the
new conditions. The adapted solution component ba is an ordered sequence of action
steps. The SCBR system selects the action steps from ba and controls the path of a
moving robot.

When all action steps are selected and executed, the step for attentional shift to the
outcome of the action behavior routine is selected. As a result of the selected step, the
SCBR system receives a perception stimulus that represents the outcome component
of the new action case. The new action case is stored in the casebase. Before
selection of the intention md ("moving-to-door") from the contextual behavior routine
bc, this routine is revised and eventually adapted. When all contextual intentions from
the contextual behavior routine bc are achieved, the SCBR system selects the step for
attentional shift to the outcome of the current contextual behavior routine. As a result
of the selected step, the SCBR system receives a perception stimulus that represents
the outcome component of the new contextual case. The new contextual case is
stored in the casebase. Furthermore, the SCBR system selects a next plan intention ip
from the plan behavior routine bp, and stepwise case-based reasoning cycles are
repeated throughout the new contextual instance similarly as previously described for
achieving the plan intention "exit-from-room".

7 Conclusions

We have presented an approach to autonomous creation of new situation cases. The
central notion of this approach is the step for attentional shift. There are two key roles
of the step for attentional shift in our formal model. The first one is that steps for
attentional shift represent description structures of situation cases. The second role is
that steps for attentional shift represent an abstract representation of actions by which
the SCBR system moves the SCBR system’s attention to the relevant aspects of a
local environment. We believe that the SCBR approach may have a more general
application than autonomous navigation in indoor environments. The next step in this
line of research should concentrate on developing an original indexing scheme for
efficient situation case retrieval.

References

1. Aamodt, A., Plaza, E.: Case-Based Reasoning: Foundational Issues, Methodological
Variations and System Approaches, in AICOM (1994), vol 7(1), 39-59

2. Kolodner, J.L.: Case–Based Reasoning. Morgan Kaufmann Publishers, Inc., San Mateo,
CA, (1993)

3. Ram, A., Arkin, R.C.: Case-Based Reactive Navigation: A Case-Based Method for On-
line Selection and Adaptation of Reactive Control Parameters in Autonomous Systems.
Tech. Rep. GIT-CC-92/57,College of Computing, Georgia Institute of Technology,
Atlanta,USA, (1992)

Autonomous Creation of New Situation Cases in Structured Continuous Domains 551

4. Kruusmaa, M.: Global Navigation in Dynamic Environments Using Case-Based
Reasoning, in Autonomous Robots, Kluwer, Vol 14, No. 1, Jan. 2003, pp. 71 – 91. (2003)

5. Corchado J. M. i Laza R.: Creation of Deliberative Agents Using a CBR Model.
Computing and Information Systems Journal. Vol 8, No 2, pp 33-39, ISBN: 1352-9404.
(2001)

6. Urdiales, C., Perez, E.J., Vázquez-Salceda, J., Sandoval, F.: A Hybrid Architecture for
Autonomous Navigation Using a CBR Reactive Layer. Proceedings of the 2003
IEEE/WIC International Conference on Intelligent Agent Technology (IAT 2003),
Halifax, Canada, pp 225-232. IEEE Computer Society 2003. ISBN 0-7695-1931-8. (2003)

7. Olivia, C., Chang, C.F., Enguis, C.F., Ghose ,A.K.: Case-Based BDI Agents: An Effective
Approach for Intelligent Search on the World Wide Web, AAAI Spring Symposium on
Intelligent Agents in Cyberspace, CA: AAAI Press, pp 20-27 (1999).

8. Martin, F. J., Plaza, E., Arcos J.L.: Knowledge and Experience Reuse through
Communications among Components (peer) Agents. International Journal of Software
Engineering and Knowledge Engineering, Vol. 9, No. 3, pp. 319-341, (1999).

9. Wendler, J. and Lenz, M. : CBR for Dynamic Situation Assesment in an Agent-Oriented
Setting. Proc. AAAI-98 Workshop on CBR Integrations, Madison ,USA, (1998).

10. Balkenius, C. and Hulth, N.: Attention as selection-for-action: a scheme for active
perception. In Schweitzer, G., Burgard, W., Nehmzow, U., and Vestli, S. J. (Eds.),
Proceedings of EUROBOT '99 (pp. 113-119). IEEE. (1999)

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, pp. 552 – 565, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Retrieval and Configuration of Life Insurance Policies

Alexander Tartakovski1, Martin Schaaf2, and Ralph Bergmann1

1 University of Trier, Department of Business Information Systems II,
54286 Trier, Germany

{Alexander.Tartakovski, bergmann}@wi2.uni-trier.de
2 University of Hildesheim, Institute for Mathematics and Applied Computer Science,

Data and Knowledge Management Group,
31113 Hildesheim, Germany

schaaf@dwm.uni-hildesheim.de

Abstract. When searching for the right life insurance product, one can either
confide in her/his insurance broker or fill out lengthy questionnaires at Internet
Portal sites before gathering a large amount of knowledge for interpreting the
results. While the first alternative is risky, the second is cumbersome. In this
paper, we present an approach that overcomes these drawbacks. It makes use of
Structural Case-Based-Reasoning (SCBR) extended by the concept of general-
ized cases. Here, each insurance product is represented as a generalized case
and therefore similarity assessment and indexing of case bases consisting of
generalized cases is one of the topics of this paper.

1 Introduction

In this paper, we present an approach for selecting life insurance policies that makes
use of the Structural Case-Based-Reasoning (SCBR) extended by the concept of
generalized cases [3]. It is developed to overcome several drawbacks by searching for
a suitable policy by a prospective customer.

Nowadays, trading life insurance products is usually done in cooperation with an
insurance broker who can offer several products from a limited amount of insurance
companies. Life insurances are configurable and the decision about their suitability
requires the broker to perceive the personal and financial situation of the client, to
consider the desired degree of protection and, of course, to keep in mind his own
acquisition commission. However, even the best insurance broker can offer only a
small fraction of insurance products available on the market. As a consequence,
clients are required to obtain additional information like independent comparisons of
insurance products. Meanwhile, some dedicated portal sites on the Internet provide
interactive assistance for finding suitable insurance products based on questionnaires.
However, such questionnaires either cover only a small amount of important facts or
are cumbersome to fill out. In addition, they do not allow the client to emphasize
personal preferences and other aspects important to him, e.g. she/he may be flexible
for the insurance premium but fixed to a particular insurance sum. The ranking of the
insurance products is usually done only according to one specific attribute that is

LNAI

 Retrieval and Configuration of Life Insurance Policies 553

functionally dependant on the others. Neither the functions behind nor the rationales
how the attributes of a particular insurance product depend on each other are dis-
closed and, in fact, will be rarely understood by a potential client. This, again, re-
quires confidence, but this time in the programmer and his abilities.

Following the approach, presented in this paper, each insurance product is repre-
sented as a generalized case. Thereby, the products can be retrieved and configured
according to customer requirements. The potential customer is free to provide as
much information about his desired degree of protection, financial, and personal situa-
tion as she/he wants. Furthermore, it is possible for her/him to emphasize specific
requirements to the insurance by providing weights.

Section 2 introduces the concept and details to temporary life insurance products.
Section 3 provides an approach for similarity assessment between a customer query
and a life insurance product and furthermore, an approach for indexing of product
databases. The methodology presented in this section is generic and can be used for
other domains where items to be retrieved can be represented as generalized cases.
Section 4 provides an evaluation of approaches presented in this paper. Since nonlin-
ear optimization solvers are employed for the purpose of similarity assessment, effi-
ciency and quality of retrieval are important criteria regarded in this section.

2 Temporary Life Insurance

There are several different types of insurance products on the market. Among them
the well-known cash value life insurance, temporary life insurance, property-linked
life insurance and so on. Furthermore, products of the same type offered by diverse
insurance companies often differ in their price structure and benefits.

We demonstrate our approach on an example of the classical temporary life insur-
ance described in [1, 6]. Of course, it can be applied to temporary life insurance prod-
ucts of different companies and also to the other types of life insurance products.

We start this section with a brief introduction to the general temporary life insur-
ance. Then we continue with a classical example and go hereby especially into the
corresponding insurance formula and its parameters.

2.1 Concept of Temporary Life Insurance and Search for Right Policy

A temporary life insurance is a special form of life insurance. It is a contract where
the insurer pays the insurance sum if the death of the assured person occurs within a
specific period [1]. During this period the assured person pays the insurance premium
e.g. on an annual base. The aim of a temporary life insurance is first of all the finan-
cial security of the assured person’s affiliates.

To pick the right policy, the customer should provide some personal data and re-
quirements to the insurer or insurance broker. Important personal data is e.g. the age,
the sex, the health status, and some lifestyle information e.g. smoker/ no smoker,
sports and so on. The requirements can contain the favored insurance duration, insur-
ance sum, and insurance premium. They have not to be completely specified, e.g.
providing insurance duration and insurance sum could be sufficient for insurance
broker to choose some offers. Furthermore, the broker is usually not strictly bound to

554 A. Tartakovski, M. Schaaf, and R. Bergmann

fulfill all requirements exactly. For instance he may propose to slightly reduce the
insurance sum or duration if this results in a favorable premium.

2.2 Parameters and Formula of Temporary Life Insurance

A single insurance product is, to a certain degree, parameterized and therefore config-
urable. The personal data reflects data that cannot be changed within a short period of
time. Therefore, from the customer perspective, they are constant values. Contrary,
the requirements to the contract are parameters that can be affected directly by the
customer.

For simplicity but without loss of generality, the insurance formula (1) [1, 6] re-
garded in this work is limited to healthy males with a normal lifestyle. The parameters
used in the formula are:

• age - x,
• period of insurance – n,
• insurance sum – C,
• insurance premium p.a. - .

The formula defines the dependencies between the parameters and therefore all
their valid assignments:

),()1(

),()),(1(),(

nxh

nxhnxgnxf
C

β
γα

−
+−+=

(1)

It is based on the principle of equivalence between expected benefit of the insured
person and expected benefit of an insurance company. Both expected values are cal-
culated using mortality tables. Furthermore, this formula includes different fees
reflecting the costs of the insurance company: α-, β- and γ-costs:

• α-costs are acquisition costs. A customer pays them only once when signing the
contract. This kind of costs covers expenditure for advertisement, for medical ex-
amination, broker’s acquisition commission, and so on.

• β-costs are collection costs. This kind of costs covers all activities concerning the
collection of fees.

• γ-costs are administration costs. This kind of costs covers all internal costs except
acquisition costs.

The functions f(x,n), g(x,n), and h(x,n)1 are the standard functions for the insurance
mathematics and therefore, they can be found in product-formulas of different insur-
ance companies. Their values depend on customer age x, period of insurance n, but
also on the mortality table and the assumed interest. The exact explanation of these
terms goes beyond the scope of this paper. The interested reader may refer to the
books [1, 6].

1 Insurance mathematicians often use other names for the functions f(x,n), g(x,n), and h(x,n),

namely:
1

|nxA ,
1
|nxA , |nxa .

 Retrieval and Configuration of Life Insurance Policies 555

3 Configuration and Retrieval of Temporary Life Insurance
Policies

This section provides a new method for solving the task of configuring and selecting
life insurance policies. It will be demonstrated using an example of the classical tem-
porary life insurance described in [1, 6].

The approach is applicable for systems supporting customers as well as insurance
brokers and is based on structural CBR extended by the concept of generalized cases.
The section begins with an introduction of its general idea and carries on with a de-
tailed description of its realization.

3.1 General Idea of Configuration and Retrieval

Before the beginning of configuration and retrieval process the customer provides
her/his personal data and requirements to a wanted contract. The requirements
shouldn’t be complete and exact, e.g. the customer provides a wanted period of insur-
ance and an insurance sum, but doesn’t provide an exact insurance premium, since the
wanted contract price is unknown to her/him. In this case the customer might com-
municate if she/he is interested on chip policies with a possibility of not satisfying
other requirements or if the other requirements have greater priority than the price.
Since every contract could be a trade-off between requirements the customer might
provide their priorities e.g. through weights. This approach is more flexible than ques-
tionnaires, since on the one hand, it allows the customer to provide incomplete
information and on the other hand, it allows a providing of priorities.

After receipt of information from a customer most suitable products should be pre-
sented according to their best configuration. Hereby, every retrieved product is con-
figured according to the customer requirements and their priorities. To get the most
suitable products a retriever component ranks the products according to a satisfaction
grade of requirements. In contrast to a broker, such a computer-aided system can offer
much more products of different companies.

Since this idea can be realized using the concepts of generalized cases and struc-
tural CBR, the next section begins with a brief introduction of the both concepts.

3.2 Extension of Structural CBR Approach Through Generalized Cases

The structural CBR (SCBR) approach has been proven useful when modeling and
searching for products within e-commerce scenarios. Its extension by the new concept
of generalized cases allows the representation of complex and configurable products,
for instance, parameterized insurance products. SCBR with generalized cases has
been successfully applied and tested for management of reusable electronic design
components [2, 4, 10]. Following the structural CBR approach, each case is described
by a finite set of attribute-value pairs that characterize the problem and the solution.
In contrast to a traditional case, a generalized case doesn’t cover only a point of the
case space CS but a whole subspace of it [3]. Therefore, the simple formalization for a
generalized case GC is:

CSGC ⊆ (2)

556 A. Tartakovski, M. Schaaf, and R. Bergmann

The usual way for representing generalized cases defined over numerical domains is
applying constraints for the definition of a subspace like (real domain, here):

}0)(0)(

0)(0)(|{

1

1

=∧∧=∧
≥∧∧≥∈=

+ xcxc

xcxcIRxGC

lk

k
n

(3)

The concept of generalized cases implies the extension of similarity measures. In
[3, 10] the similarity between a query and a generalized case has been defined as the
similarity between the query and the most similar point-case contained in the general-
ized case:

}|),(max{:),(* GCccqsimGCqsim ∈= (4)

According to this definition, the value of the extended similarity function sim*(q,GC)
is equal to the similarity sim(q,c) between a query q and the most similar point case c
contained in the generalized case.

The similarity assessment problem can be viewed as a specific optimization prob-
lem [7], which is maximizing or minimizing an objective function under restrictions
given through constraints. By defining the objective function as f(x):=sim(q,x) and the
feasible set F:=GC the similarity assessment problem is transformed to a specific
optimization problem.

3.3 Modeling of Temporary Life Insurance Products

A single temporary life insurance product can be viewed as a generalized case with
parameterized attributes: age - x, period of insurance – n, insurance sum – C, and
insurance premium - . The first step is the definition of the description space that is
a Cartesian product spanned by attribute domains. The domains regarded in this work
are summarized in the following table:

Table 1. Domains of the description space

Attribute Domain Integer/Real
x {18, 19, … , 64} integer
n {1, 2, … ,47} integer
C [100, 1000000] real

 [10, 5000] real

Then, particular insurance products can be entered as a single constraint and stored
as described in [2]. Some insurance companies use different mortality tables with the
consequence that the functions f(x,n), g(x,n), and h(x,n) differ. In order to get the
right values, none standard tables should be saved together with product constrains.

3.4 Modeling Similarity Measures

Since the definition of a similarity measure for generalized cases is based on tradi-
tional similarity measures, the first step is to define the local similarities for each

 Retrieval and Configuration of Life Insurance Policies 557

attribute. The local similarities for n, C, and shouldn’t be symmetric. For example,
the customer is satisfied when getting a cheaper product or a product with a greater
period of insurance as required.

The aggregation function is usually the weighted sum, with weights provided by a
user in the query. By specifying the weights the customer emphasizes attributes that
are important for him. For example the insurance sum is a very important criterion for
some customer and he chooses a great weight for this attribute.

The similarity measure for generalized cases defined in [3] is adequate for insur-
ance products retrieval. This measure defines the similarity between a query and a
product as a similarity between the query and the most similar configuration of the
product. It means that each product is qualified according to its best configuration.

3.5 Similarity Assessment and Configuration

In this work we use the methods of mathematical optimization for solving the similar-
ity assessment and configuration problem for generalized cases [2]. As mentioned
before, the similarity assessment can be viewed as a specific optimization problem.
When making use of optimization software, it should be transferred to the adequate
standard class of optimization problems. Since, the formula types regarded in this
work have numerical parameters – real and integer, the adequate class is Mixed Inte-
ger Nonlinear Problem (MINLP) [5,8]. The standard problem of this class has the
following formulation:

nm

l

k

k

yx

yIRx

yxc

yxc

yxc

yxcts

yxf

Ζ∈∈

=

=
≥

≥

+

,

,0),(

,0),(

,0),(

,0),(..

),(min

1

1

,

(5)

Table 2. Values of f(x,n), g(x,n), and h(x,n)

n f(x,n) g(x,n) h(x,n)

24 0.17 0.36 16.24
25 0.18 0.34 16.6
26 0.19 0.32 16.94

The transformation should map the insurance formula to a single or several con-
straints and the similarity function to the objective function f. Such a mapping intro-
duces a difficulty with the functions f(x,n), g(x,n), and h(x,n), which values are de-

558 A. Tartakovski, M. Schaaf, and R. Bergmann

pending on integer age and period of insurance. The following table provides values
of insurance terms for a 40 years old male using mortality table: 1960/62 males, Ger-
many [6].

The generalized case and hereby the configuration space according to these values
is represented in figure 1.

Fig. 1. Temporary life insurance as a generalized case

In [2] a first approach is presented, which transforms the similarity assessment
problem for generalized cases defined over mixed, continuous and discrete, domains
into a MINLP problem. Using this approach, the insurance formula can be trans-
formed into constraints used by MINLP taking the discrete character of insurance
values into account. The transformation will be explained on the concrete temporary
life insurance product, which is derived from formula (1) by using the values of f(x,n),
g(x,n), and h(x,n) according to the table 2 and by assuming the interval n∈{24,…,26},
and costs α=0.025, β=0.01, γ=0.002.

By applying if-then conditions the instantiated formula can be understood as the
following one:

.
94.16)01.01(

94.16002.0)32.01(025.019.0
26

,
6.16)01.01(

6.16002.0)34.01(025.018.0
25

,
24.16)01.01(

24.16002.0)36.01(025.017.0
24

⋅−
⋅+−+==

⋅−
⋅+−+==

⋅−
⋅+−+==

Cthennif

Cthennif

Cthennif

(6)

In order to get MINLP compatible constraints, the following steps are necessary:
Instead of the variable n, three new binary variables must be introduced: n24, n25,
n26∈{0,1} . These correspond to the variable n as follows: n=i iff ni=1. To avoid that

 Retrieval and Configuration of Life Insurance Policies 559

several variables get the value 1 a new constraint must be introduced:
n24 + n25 + n26 =1. Consequently, the formulas (3) can be transferred to standard
MINLP constraints as follows:

IBnnnIRC

nnn

Cn

Cn

Cn

∈∈
=++

=−
⋅−

⋅+−+

=−
⋅−

⋅+−+

=−
⋅−

⋅+−+

262524

262524

26

25

24

,,,,

,1

,0
94.16)01.01(

94.16002.0)32.01(025.019.0

,0
6.16)01.01(

6.16002.0)34.01(025.018.0

,0
24.16)01.01(

24.16002.0)36.01(025.017.0

(7)

Because of the substitution the corresponding local similarity must be changed to:

)26,()25,()24,(

),,,('),(

262524

262524

periodperiodperiodperiodperiodperiod

periodperiodperiodperiod

qsimnqsimnqsimn

nnnqsimnqsim

⋅+⋅+⋅

=

(8)

The objective function of the MINLP is then the following one:

),(),(),,,('max 322625241
,,,, 262524

qsimwCqsimwnnnqsimw premiumsumperiodperiod
Cnnn

++

(9)

The objective function (9) together with the constraints (7) is the wanted MINLP.
The majority of available optimization software tools calculate not only an optimal

value of an objective function, but additionally a feasible variable assignment corre-
sponding to the optimal value. This assignment is the desired configuration of tempo-
rary life insurance products for the scenario regarded in this work.

Furthermore, it is possible to control the accuracy of the optimization software. In-
creasing the accuracy leads to a better configuration, but a poorer performance. Re-
spectively, decreasing the accuracy decrease the configuration quality, but improves
the performance.

3.6 Index Based Retrieval Methods

This section includes an overview of indexing methods presented in [2] and an ap-
proach to apply them to case bases consisting of insurance.

Similarity Based Index Method
This method presented for the first time in [2] consists of two parts: an index-builder
and a retriever.

Because of the high complexity of the similarity assessment problem for general-
ized cases the index-builder uses a fix similarity measure for generating an index
structure. It partitions the case space into hyperrectangles with faces parallel to the
coordinate planes. Every subspace is a potential place holder for a query. Regarding
some subspace and some generalized case one can estimate the upper and the lower

560 A. Tartakovski, M. Schaaf, and R. Bergmann

similarity bounds between the query belonging to an arbitrary point in the subspace,
and the case. Doing this not for one case, but for a whole case base, the partial order
in terms of similarity can be estimated. The cases having many predecessors, e.g. 10,
can be directly excluded, since the customer usually doesn’t like to get a large result
set. The index-builder stores the remaining cases in conjunction with the partition.

When a customer provides the query, the retriever determines the subspace the
query belongs to. Furthermore the retriever load the cases stored together with the
subspace and performs the sequential retrieval.

Kd-Tree Based Retrieval Method
The second method presented in [2] adopts the idea of kd-trees [9]. In contrast to the
first method it doesn’t use the similarity measure, but only the case base for building
an index-structure. It consists also of two parts: an indexer, building the adopted kd-
tree, and a retriever searching in the tree using a backtracking strategy.

The adopted kd-tree differs from the standard one in the way of storing cases. The
original structure is, among other things, the partition of a description space with
cases allocated to subspaces including them. Every common point case is allocated to
exactly one subspace. Since the generalized cases are sets of possibly infinitely
number point cases it is allowed in the adopted variant to allocate cases to subspaces
having a not empty intersection with them. Therefore, one generalized case can be
allocated to several subspaces.

Indexing Insurance Products
As noticed in section 2, a single insurance product is configurable with respect to
personal data of a customer and his requirements to the contract. Since a customer is
usually not interested in products that don’t match his personal data, e.g. his age, it
makes sense to take this fact in account by building of index structures.

The main idea to achieve the improvement of a retrieval performance is to con-
struct, as far as possible, a separate index structure for each individual configuration
of personal data.

The personal data in case of the regarded formula for temporary life insurance
products is reflected through the age parameter. Therefore index structure can be
constructed for every age-value using insurance products restricted to the selected
age. After a customer provides his age and his requirements the corresponding index
structure is chosen and the products are configured with respect to the customer’s
requirements.

3.7 Characteristics of Insurance Products of Different Types and Companies

As mentioned before, in previous sections we regarded a special case of the tempo-
rary life insurance. The specialty of this insurance is the linear dependence between
the premium and the insurance sum by the fixed value of the period of insurance.
There are companies having other price structure where the linearity between these
parameters doesn’t hold [1]. Therefore, the single constraints are not linear in contrast
to the regarded case.

Furthermore, different types of life insurances have partly different parameters. For
instance, cash value life insurance has additionally a second insurance sum for the
case a customer survives the period of insurance.

 Retrieval and Configuration of Life Insurance Policies 561

There are companies mixing life insurance with disability insurance to one product,
with a consequence that the number of flexible parameters increases.

4 Empirical Evaluation of Similarity Assessment and Retrieval

This section provides an empirical evaluation of the similarity assessment and index-
based retrieval methods for the domain of life insurance products. The first part of the
evaluation determines the average computation time for a single similarity assessment
depending on chosen characteristics of the products. The second one determines the
speedup of the performance by using index-based methods.

4.1 Testing the Similarity Assessment

According to the section 3.5, life insurance products differ on the number of flexible
attributes, on the type of constraints (linear / nonlinear) and, furthermore, on the do-
mains of attributes (discrete / continuous). Adding the accuracy of the optimization
software, i.e. the allowed absolute error, to these characteristics, completes the set of
test-criteria.

General Test Setup
− The optimization software used in the evaluation is GAMS2 (General Algebraic

Modeling System). It encapsulates several solvers which are developed for differ-
ent classes of optimization problems. For similarity estimation by mixed, discrete
and continuous domains, such as the insurance products domain, the MINLP solver
GAMS/BARON is chosen. It requires two further solvers, an LP solver
GAMS/CPLEX and an NLP solver GAMS/MINOS.

− The computer used by the evaluation is a Pentium 4, 3.0 GHz, with 3 GB RAM,
and the platform is MS-Windows 2000.

− The case bases are constructed with a case generator, which is developed especially
for this evaluation. It allows generating case bases according to all variations of the
chosen criteria.

− Similarity functions used in all test cases are constructed by the weighted average
as an amalgamation function and nonlinear local similarities. Therefore all similar-
ity assessment problems regarded here are reduced to NLPs (nonlinear optimiza-
tion problems) or MINLPs (mixed integer nonlinear optimization problems).

Test Cases
a. Test Setup: The case generator produces 3 case bases, each with 200 cases. The
domain models of the case bases include respectively 2, 4 and 8 flexible attributes.
All attributes are defined over the same continuous domain. Furthermore, each
generalized case in each case base is defined over 8 linear constraints. In this case
similarity assessment problems are reduced to optimization problems by introducing
of variables in place of attributes and by taking all constraints over. The aim of the
test is the calculation of the average duration of a single similarity assessment depend-
ing on the number of variables in the corresponding optimization problem and

2 Produced through GAMS Development Corporation.

562 A. Tartakovski, M. Schaaf, and R. Bergmann

accuracy. The accuracy hereby is a maximal allowed absolute error, which is a stop-
ping condition for the solver.

Test: number of variables / accuracy

0

50

100

150

200

number of variables

ti
m

e
/ m

se
c

accuracy: 0.1

accuracy: 0.01

accuracy: 0.001

accuracy:
0.1

9,64 24,92 114,69

accuracy:
0.01

6,83 25,32 155,78

accuracy:
0.001

9,75 28,9 188,415

2 4 8

Results: According to the chart, the average computation time for a single similarity
assessment is strongly (exponential) depending on the number of flexible attributes.
Consequently, only similarity assessment problems can be solved quickly that are
reducible to an optimization problem with a few variables. The solver accuracy plays
a role in terms of the similarity assessment performance by 8 or more variables and is
rather irrelevant by fewer variables.

b. Test Setup: This test differs from the first one through one criterion. Instead of
solver accuracy this test case regards the percentage of discrete attributes among all
attributes.

Test: number of variables / % discrete attributes

0

50

100

150

200

250

300

number of variables

ti
m

e
/ m

se
c

discrete 0%

discrete 50%

discrete 100%

discrete 0% 9,75 28,9 188,42

discrete
50%

14,77 30,22 205,17

discrete
100%

12,56 35,52 239,52

2 4 8

 Retrieval and Configuration of Life Insurance Policies 563

Results: According to the evaluation, the average duration of a single similarity com-
putation increases by increasing the number of discrete attributes. However, the num-
ber of variables seems to be the most significant criterion affecting the performance.

4.2 Evaluation of Retrieval Methods

The evaluation of the similarity assessment presented in the previous section shows
that the performance decreases already by a small amount of variables. Therefore, the
application of index-based retrieval methods is very important for the domain of life
insurances. This section includes a general evaluation of the effectiveness of these
index structures.

Test Setup:
− Both retrieval methods partition the case space by building an index-tree. The

recursive construction is:

1. selection of some attribute
2. selection of a separation point for the attribute
3. creation of two subspaces separated by the separation point
4. stop or recursive partition the subspaces

The attributes are selected in a fix order and the separation points are on the medi-
ans of the types of attributes. Furthermore, the maximal tree depth is restricted to 5
and to 10. By achieving this depth the both algorithms stop to partition the subspaces
in current branch.

− The size of case base is 200 generalized cases.
− Case bases are constructed with 2, 4 and 8 continuous attributes.
− Every generalized case is described through 8 linear constraints.
− The chosen size of a retrieval set is 10 cases.

Results: According to the table 3, both index-based methods improve the retrieval
step significantly, when comparing with the sequential retrieval. The required
tree-depth by both methods is strongly dependant on the number of variables. Larger
number of variables leads to larger tree-depth and therefore to larger index structure.
E.g. the tree depth of 10 is insufficient for 8 variables (see table 3). In this case the
much greater index structure is required. Based on these facts, further improvements
of both index-based methods are necessary. Currently, by the recursive partitioning of
the case space the attributes are selected in the fix order and the separation points are
on the medians of the types of attributes. It is planed to develop two heuristics for
each method improving the required median tree-depth. The first one should deter-
mine the attribute to be used for partitioning the case base in the current brunch. The
second one should determine the exact value used for splitting the case base.

Surprisingly, at the depth 10 the kd-tree based method provides nearly the same
number of similarity evaluations as the similarity based index method. It is remark-
able, that the similarity based index method becomes much more information for the
indexing, namely the similarity function, and doesn’t outperform the other one.

564 A. Tartakovski, M. Schaaf, and R. Bergmann

Table 3. Evaluation of Retrieval Methods

Similarity based approach,
case base with 200 cases

0

100

200

number of variables

nu
m

be
r

of
 s

im
ila

ri
ty

ev
al

ua
ti

on
s

max tree depth: 5

max tree depth: 10

max tree
depth: 5

86,9 121,7 180,3

max tree
depth: 10

20,3 85 138,8

2 4 8

Kd-tree based approach,
case base with 200 cases

0

100

200

number of variables

nu
m

be
r

of
 s

im
ila

ri
ty

ev
al

ua
ti

on
s

max tree depth: 5

max tree depth: 10

max tree
depth: 5

47,6 139,1 167,5

max tree
depth: 10

22,6 84,4 149,3

2 4 8

Similarity based index approach vs. Kd-tree based approach,
case base with 200 cases

0

20

40

60

80

100

120

140

160

180

200

number of variables

n
u

m
b

er
 o

f s
im

ila
ri

ty
 e

va
lu

at
io

n
s

sim based, max depth: 5
sim based, max depth: 10

kd-tree, max depth: 5
kd-tree, max depth: 10

sim based, max depth: 5 86,9 121,7 180,3

sim based, max depth: 10 20,3 85 138,8

kd-tree, max depth: 5 47,6 139,1 167,5

kd-tree, max depth: 10 22,6 84,4 149,3

2 4 8

5 Conclusion and Future Work

In this paper we showed an approach for the retrieval and selection of temporal life
insurance policies based on Structural CBR that makes use of generalized cases, a
concept that allows the representation of configurable products as cases. In contrast to
the widespread questionnaires, which currently provide some kind of assistance for
assessing insurance products, this facilitates to emphasize personal preferences and
works even in the case when the user provides only incomplete information about his
personal and financial situation. For the next months it is planned, to launch an
experiment with three different student groups. Each group has to select insurance
products for a set of imaginary clients respective their personal and financial situation.
One group has to use only the Internet; another will work in cooperation with profes-
sional insurance brokers; the third group uses the approach developed so far.

 Retrieval and Configuration of Life Insurance Policies 565

Furthermore, we provide an empirical evaluation of sequential and two index based
retrieval methods. We show that on the one hand the index based methods improve
the retrieval significantly. On the other hand we show that the similarity assessment
for cases with more as eight flexible parameters has poor performance and leads to
great index-structures in order to compensate the drawback. Therefore, it is planned to
improve both index-based methods through heuristics saving retrieval time, indexing
time and memory by clever partitioning the description space.

References

1. Gerber, H.U.: Life Insurance Mathematics. Springer-Verlag, Berlin Heidelberg (2001)
2. Tartakovski, A., Schaaf, M., Maximini, R., and Bergmann, R.: MINLP Based Retrieval of

Generalized Cases, Proceedings of 7th European Conference, ECCBR 2004. In Peter Funk,
and Pedro A. González Calero, editors, Advances in Case-Based Reasoning, LNAI3155,
pages 404-418, Madrid, Spain, Springer Verlag, Berlin Heidelberg New York (2004)

3. Bergmann, R.: Experience management. Springer-Verlag Berlin Heidelberg New York
(2002)

4. Maximini, R. and Tartakovski, A.: Approximative Retrieval of Attribute Dependent
Generalized Cases. In Workshop on Knowledge and Experience Management (FGWM
2003), Karlsruhe Germany (2003)

5. Leyffer, S.: Deterministic methods for mixed integer nonlinear programming. PhD Thesis,
Department of Mathematics and Computer Science, University of Dundee (1993)

6. Isenbart, F., and Münzner H.: Lebensversicherungsmathematik für Praxis und Studium. Dr.
Th. Gabler Verlag (1994)

7. Mougouie, B., and Bergmann, R.: Similarity Assessment for Generalized Cases by
Optimization Methods. In S. Craw, and A. Preece, editors, European Conference on Case-
Based Reasoning (ECCBR'02), volume 2416 of LNAI, Springer (2002)

8. Tawarmalani, M., Sahinidis, N.: Convexification and global optimization in continuous and
mixed-integer nonlinear programming: Theory, algorithms, software, and applications.
Kluwer Academic Publishers, Boston MA (2002)

9. Wess, S., Althoff, K.D., Derwand, G.: Using k-d trees to improve the retrieval step in case-
based reasoning. University of Kaiserslautern (1993)

10. Bergmann, R., Vollrath, I., and Wahlmann, T.: Generalized cases and their application to
electronic designs. In E. Melis, editor, 7th German Workshop on Case-Based Reasoning,
1999.

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, pp. 566 – 578, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Analogical and Case-Based Reasoning for Predicting
Satellite Task Schedulability

Pete Tinker1, Jason Fox1, Collin Green3,
David Rome4, Karen Casey4, and Chris Furmanski2

1 HRL Laboratories, LLC, 3011 Malibu Canyon Road, Malibu, CA 90265, USA
2 Formerly HRL Laboratories, LLC

3 NASA Ames Research Center
4 Raytheon Company

patinker@hrl.com, jrfox@hrl.com,
cgreen@mail.arc.nasa.gov, drrome@raytheon.com,

klcasey@raytheon.com, chris@furmanski.net

Abstract. Satellites represent scarce resources that must be carefully scheduled
to maximize their value to service consumers. Near-optimal satellite task
scheduling is so computationally difficult that it typically takes several hours to
schedule one day’s activities for a set of satellites and tasks. Thus, often a re-
questor will not know if a task will be scheduled until it is too late to accommo-
date scheduling failures. This paper presents our experiences creating a fast
Analogical Reasoning (AR) system and an even faster Case-Based Reasoner
(CBR) that can predict, in less than a millisecond, whether a hypothetical task
will be scheduled successfully. Requestors can use the system to refine tasks for
maximum schedulability. We report on three increasingly narrow approaches that
use domain knowledge to constrain the problem space. We show results that in-
dicate the method can achieve >80% accuracy on the given problem.

1 Introduction

This paper examines the adaptation and application of Analogical Reasoning (AR)
techniques to a pressing real-world problem: task scheduling for satellite resources.
The problem is important because during times of crisis many organizations must
compete for scarce satellite resources. Because task scheduling can take many hours,
users submit requests in advance with no assurance their requests will be included in a
near-term schedule. Schedules are then produced in batch mode for the current set of
requested tasks. Given a set of satellite resources, can we predict, quickly and accu-
rately whether a specific new task will be scheduled?

The remainder of the paper is organized as follows. We first discuss the problem of
interest, then present prior relevant work in Analogical Reasoning and the use of CBR
in general for schedulability prediction. We present descriptions of three
solution implementations. For the most promising implementation, we supply
experimental results, including performance data. A short conclusion expands on the
utility of our method.

LNAI

 Analogical and CBR for Predicting Satellite Task Schedulability 567

1.1 Satellite Task Scheduling

This section describes the problem we attempted to solve and the parameters associ-
ated with it. We chose to consider a scenario that closely matched real-world
conditions, using realistic satellite task data and parameters. Under typical operating
conditions the scheduling situation remains consistent over time, especially in terms
of the number of tasks requested and the distribution of task priorities. However,
world events can trigger a surge in demand for satellite resources. As more resources
are needed, the number of requests increases, as does the average request priority.

Because the parameters of competing tasks are unknown, a requester generally
does not know if a task is schedulable until the complete schedule is produced. A
schedule typically takes several hours to compute. As a result, requestors cannot make
decisions that depend on knowing if the scheduler will fulfill their request. Their tasks
may not be scheduled because other requestors parameterized tasks differently
“squeezed out” their request. Fig. 1 illustrates the current situation with the “legacy”
scheduler currently used; later we will introduce a proxy “HRL” scheduler that
mimics the proprietary scheduler as closely as possible.

1. Generate new task

Task requirements
Priority

4. Submit
schedule or
change task

3. Report schedule status 2. Attempt to schedule

Requestor

Scheduler

1. Generate new task

Task requirements
Priority

4. Submit
schedule or
change task

3. Report schedule status 2. Attempt to schedule

Requestor

Scheduler

Fig. 1. Current satellite task scheduling relies on experience-based trial and error

This problem motivated us to determine if an AR engine could predict the likeli-
hood that a given task would be scheduled, based on the previous performance of the
legacy scheduler. We also explored the effects of changes in demand (and other
parameters) on the speed and accuracy of AR and CBR performance. Additionally,
we evaluated the ability of the CBR engine to suggest how requests might be altered
to improve the probability of being scheduled. Fig. 2 shows our proposed scheduling
system with prediction.

We based our experiments on the best available data regarding current satellite task
loads. Our sponsoring organization, Raytheon Intelligence and Information Systems
(IIS) in Aurora, Colorado, characterized the data.

Our work incorporates these assumptions:

• All tasks are independent (due to a limitation in the legacy scheduler).
• Each task occupies a single time window (tasks cannot be split).

568 P. Tinker et al.

• There are 50 to 60 satellite sensors that can be tasked.
• There are 10 to 60 task types, which describe the task’s sensor and time require-

ments. A task type may be able to use more than one satellite to satisfy its require-
ments.

1. Generate new task

Task requirements
Priority

Requestor

Analogical
Reasoner

2. Novel situation is
compared to prior
experience

3. Solution used in prior
experience is inferred
into novel situation

4. Feedback
provided:
likelihood of
task being
scheduled;
suggestions to
improve
schedulability.

1. Generate new task

Task requirements
Priority

Requestor

Analogical
Reasoner

2. Novel situation is
compared to prior
experience

3. Solution used in prior
experience is inferred
into novel situation

4. Feedback
provided:
likelihood of
task being
scheduled;
suggestions to
improve
schedulability.

Fig. 2. Analogical Reasoning eliminates the need for a costly complete schedule

• The scheduler coordinates multiple satellites, targets, and sensors.
• 4800 to 12500 tasks are submitted for scheduling per day.
• Tasks are assigned one of five task priorities (lower is more important).
• Each task requires from five to 120 minutes to complete.
• The number of tasks and sensors implies a typical 2:1 – 4:1 resource oversubscrip-

tion.
• The Knowledge Base (KB) from which analogies can be made includes data from

30 to 365 days.

Each task is described by a vector of feature values that include task type, start and
end execution times (in minutes from the start of the day), and priority. A task’s type
determines the satellites it may use, the duration of the task (time, in minutes, for the
task to execute), and the length in minutes of the time window during which the task
may be scheduled. We derive two additional features from these base features. Flexi-
bility is defined as the ratio of a task’s duration to its windows; subscription is defined
as the ratio of the total time requested by all tasks of this type, during a predetermined
range of dates for which data have been collected, to the total time available to per-
form this task type by all satellites during the same period. For historical data used to
construct a KB, we also include whether or not the HRL scheduler actually scheduled
each task.

 Analogical and CBR for Predicting Satellite Task Schedulability 569

2 Prior Work

2.1 Analogical Reasoning

HRL Laboratories, LLC has constructed a performance-optimized general Analogical
Reasoner called SAGE (Self-Aware Generalization Engine)1. SAGE’s network
structure is adapted from the LISA model [1]. LISA (Learning and Inference with
Schemas and Analogies) is a symbolic-connectionist model of structure mapping that
employs distributed representations of objects and predicates (e.g. the entity “John”
might be represented by a collection of units that describe features like “adult”,
“human”, “male”, etc.), and local symbolic representations to manipulate the distrib-
uted elements (e.g., there is a single unit called “John” that is connected to the collec-
tion of distributed units).

SAGE and LISA are distinct from traditional symbolic models of analogy in that
they use both local and distributed representations of objects and predicates. The dis-
tributed representations are implemented across a pool of semantic units that represent
generic concepts. These semantic units are shared among all objects and predicates,
and SAGE, like LISA, calculates the similarity of two objects or predicates as similar
as a function of their overlap in the semantic space (instead of relying on string com-
parisons or externally-provided pairwise similarity scores). These semantic units are
the basis of the correspondences SAGE finds between conceptually similar entities.

At the same time, SAGE avoids many pitfalls of non-symbolic (purely connection-
ist) systems by implementing localist tokens for each instance of an object or predi-
cate. The localist tokens allow SAGE to track multiple instances of a single type of
object or predicate, and to represent objects and predicates independently. That is, an
object or predicate’s representation is invariant across the statements or propositions
into which it enters.

The combination of distributed and localist representations renders SAGE a sym-
bolic system, and at the same time captures the flexibility of connectionist networks.
As such, SAGE is an excellent architecture for simulating analogical reasoning, which
depends on the ability to encode the (fuzzy) similarity of objects and predicates, but
also requires an appreciation of the abstract structure of information.

Like LISA, SAGE’s goal is to discover analogical correspondences between a
familiar situation (a source) and a novel situation (a target). These correspondences
may stem from relational symmetries, object similarities, or a combination of the
two. SAGE finds correspondences by activating nodes in the network representing
the source (Fig. 3), and allowing activation to pass into the network representing the
target (Fig. 4) through shared semantics (Fig. 5). The spread of activation in SAGE’s
network is carefully controlled so that information about the structure of the source
network is accurately represented by the pattern of activation on the shared semantic
units. Consequently, activation vectors are established in the target network that re-
flect the structure of the source network. The arrows in Fig. 3-5 represent the direc-

1 A paper detailing SAGE is in preparation for AAAI 2005. If accepted, an appropriate refer-

ence will be “Furmanski, C., Green, C., & Fox, J. Efficient dynamic binding in a neural net-
work for analogical reasoning. In M.Veloso & S. Kambhampati (Eds.): Proceedings of the
20th National Conference on Artificial Intelligence (AAAI 2005), (xxx-xxx). Menlo Park,
CA: AAAI Press.

570 P. Tinker et al.

tion of activation passing. Note that in Fig. 5 there are no arrows between the target
task and the semantic layer. This figure represents a hypothetical situation in which
activation values are suppressed to allow us to make a distinction between relational
and superficial similarity and are therefore not propagated further.

Source
Analog

Proposition
Subproposition

Relation Task

Source
Analog

Proposition
Subproposition

Relation Task

Fig. 3. SAGE source analogs are represented by a set of nodes describing propositional rela-
tions between entities

Target
Analog
Target
Analog

Fig. 4. SAGE target analogs are represented by similar sets of nodes

Semantic
Layers

Source Analog

Target Analog

Semantic
Layers

Source Analog

Target Analog

Fig. 5. Source and target analogs are related through semantic layers

Once activation vectors have been established in the target network, SAGE begins
calculating correspondences. Each unit in the source is restricted to correspond with
units in the target of the same type. Disambiguating which specific target unit best
corresponds requires a comparison of the evidence for various mappings. By com-
petitively normalizing the strengths of alternative mappings, SAGE finds the best
overall mapping of the source and target networks.

2.2 Schedulability Prediction

Most prior work on schedulability has focused on scheduling real-time processes, es-
pecially computing processes [2,3]. The approaches taken generally attempt to pro-

 Analogical and CBR for Predicting Satellite Task Schedulability 571

vide a functional determination of schedulability using either rate-monotonic algo-
rithms (RMA) or a small set of exemplars [4]. The first approach does not accommo-
date using a large number of task features in considering schedulability. The second
approach can use many features extracted from the exemplar set; however, the exem-
plar set must be shown to be representative of all possible tasks, and this has not been
accomplished.

3 Three AR/CBR-Based Prediction Algorithms

We implemented and evaluated three different prediction algorithms, summarized in
Table 1. We derived each later algorithm from earlier ones, incorporating new insights
about the impact of domain knowledge. We first considered using SAGE as described
above; based on knowledge of our goals, however, we progressed to increasingly nar-
row, but more efficient mechanisms. Algorithms 1 and 2 used networks similar to
SAGE, but removed some node types, simplifying the activation passing. Algorithm
3’s structure and execution were very different: it removed the network structure com-
pletely, eliminated activation passing, and used simple hashing to find good source ana-
logs for each target. Algorithm 3 was, in effect, a CBR derived from an AR.

We generated source analog tasks on a per-day basis; that is, we constructed a full
day’s worth of tasks before attempting to schedule them, and one day’s task set and
schedule did not affect subsequent days’ tasks or schedules. We generated “ground
truth” schedules using an HRL-constructed one-pass deterministic scheduler that as-
signed a metric to each task. We sorted the tasks according to the metric and assigned
one at a time to the first available resource across all satellites. We collected exten-
sive data on the tasks, resources, and schedules to establish adequate criteria for form-
ing the KB and target analogs.

Table 1. Summary of algorithm properties

 Task Structure
Source to Target

Task Structure
Target to Source

Discrete Feature
Matching

Knowledge Base task specialized net-
work

task specialized net-
work

feature hashing

Matching Strat-
egy

activation passing activation passing Feature matching

Theoretic Time
Complexity

O(kn2) O(kn) O(kn)

Magnitude of k small constant large constant small constant
Measured Time
Complexity

t = 0.03n1.6 t = 0.08n t = 0.03n

Ease of use Knowledge base is
straightforward

Knowledge base is
straightforward

Must define fea-
ture metrics

572 P. Tinker et al.

We tested each algorithm on synthetic data modeled closely on actual situational
and task data derived from Raytheon Company sources as described earlier. We rep-
resented source and target analogs by task feature vectors of the form

[Duration Priority Flexibility Subscription Scheduled]

We used the feature scheduled only for source analogs to indicate, for a source/target
pair, whether the target could be predicted to be scheduled or not. For target analogs,
this value provides a “ground truth” to determine the accuracy of our predictions.

After building the KB from the source analogs, we submitted target analogs one at
a time to the algorithm under consideration. For each target, we found the single ana-
log with the highest activation, and determined if it would have been scheduled. We
then compared this schedulability with the actual schedulability of the target analog as
provided by the HRL scheduler.

3.1 Task Structure with Activation Passing from Source to Target

Our analysis of SAGE indicated that much of its execution time would be spent in ac-
tivation passing that did not contribute to the identification of matches. This “wasted”
work results from including knowledge of relationships between individual tasks that
we could assume were independent. Since we were interested only the schedulability
of one specific target task, we did not need to know the relationships between tasks to
predict the schedule outcome of any given target task. We therefore eliminated all
parts of the network that described inter-task relationships: proposition, subproposi-
tion, relation, and relation semantic nodes.

Semantic
Layers

Source
Analog

Target
Analog

...Semantic
Layers

Source
Analog

Target
Analog

Semantic
Layers

Source
Analog

Target
Analog

...

Fig. 6. Algorithms 1 and 2 operated without certain types of SAGE nodes and did not use direct
activation propagation. This figure shows activation spreading from source to target

To accommodate relative contributions of each feature type, we added task features
to the network. With task features, we could modify the weight (importance) of dif-
ferent task features, e.g., priority versus duration. Fig. 6 shows the reduced network.
We refer to Algorithm 1 as “source to target” because we began activation at the sub-
proposition (source task) level. Algorithm 1 is similar to using SAGE in operation,
but with the revised network structure. Algorithm 1 manifested very large activation
vectors, since there were a great many (> 10,000) source analogs.

 Analogical and CBR for Predicting Satellite Task Schedulability 573

3.2 Structure with Activation Passing from Target to Source

Noting the very large activation vectors of Algorithm 1, we modified the process to
produce “target-to-source” activation. Algorithm 1 began activation at the highly-
populated source task level; in this algorithm we began the activation at the (single)
target task. Each task had relatively few (< 5) features, so the size of activation
vectors grew more slowly. Furthermore, we could add features without significantly
impacting the memory or computational requirements for accumulating the large
activation vectors.

Algorithm 2’s performance is superior to Algorithm 1’s because it explores a much
smaller fraction of network nodes. The reduction arises because Algorithm 2 only
visits nodes that are directly connected to the (single) target task rather than the
(many) source tasks. Overall efficiency improves as the combinatorial explosion of
activations decreases.

3.3 Discrete Feature Matching

In the same manner as Algorithm 1 followed from the full SAGE approach by
pruning unnecessary node types, Algorithm 3 followed from Algorithm 2. We noted
that we could consider the problem starting from the target task rather than the source
tasks, and that we could consider only features of the tasks rather than the tasks them-
selves. These conditions meant that we could remove activation passing entirely,

T
as

k
F

ea
tu

re
 V

ec
to

rs

Task
A

...
SCHEDULED

Task
D

...
NOT SCHEDULED

Task
C

...
NOT SCHEDULED

Task
D

...
SCHEDULED

Feature
1

Feature
n

…

n-Dimensional
Feature Space

“Binned” Task

Feature
2

Feature
n

Feature
1

Task

T
as

k
F

ea
tu

re
 V

ec
to

rs

Task
A

...
SCHEDULED

Task
D

...
NOT SCHEDULED

Task
C

...
NOT SCHEDULED

Task
D

...
SCHEDULED

Feature
1

Feature
n

…

T
as

k
F

ea
tu

re
 V

ec
to

rs

Task
A

...
SCHEDULED

Task
D

...
NOT SCHEDULED

Task
C

...
NOT SCHEDULED

Task
D

...
SCHEDULED

Task
A

...
SCHEDULED

Task
D

...
NOT SCHEDULED

Task
C

...
NOT SCHEDULED

Task
D

...
SCHEDULED

Task
A

...
SCHEDULED

Task
A

...
SCHEDULED

Task
D

...
NOT SCHEDULED

Task
D

...
NOT SCHEDULED

Task
C

...
NOT SCHEDULED

Task
C

...
NOT SCHEDULED

Task
D

...
SCHEDULED

Task
D

...
SCHEDULED

Feature
1

Feature
n

…Feature
1

Feature
n

…

n-Dimensional
Feature Space

“Binned” Task

Feature
2

Feature
n

Feature
1

Task

n-Dimensional
Feature Space

“Binned” Task

Feature
2

Feature
n

Feature
1

Task

Fig. 7. Algorithm 3 eliminates the network, resulting in very fast execution

574 P. Tinker et al.

relying instead on a simpler feature matching. Algorithm 3 could not reasonably be
called an AR algorithm, but rather a CBR algorithm. Fig. 7 illustrates the process used
for Algorithm 3.

In Algorithm 3, we collected identical discretized source analog (task) feature
vectors using a very fast binning approach based on hashing of feature values. When
we had collected all source analogs, we identified the bin corresponding to the target
analog’s feature vector. This bin contained source analogs whose n-dimensional (n =
number of task features selected for matching) feature vectors matched that of the tar-
get analog. Potentially there were as many bins as the cardinality of the power set of
feature values. In practice, the number of bins produced was usually much smaller:
our sample data sets had only 10% to 30% of the potential bins occupied with at least
one source task. The small fraction of populated bins followed from using fewer fea-
tures, each with a small number of possible discrete values, and from the algorithmic
behavior of the scheduler producing sets of tasks.

Fig. 8 illustrates the effect of reducing the number of network nodes considered
and the direction of activation flow. While Algorithms 1, 2, and 3 all exhibit linear
time behavior, the rate of increase is much smaller for Algorithms 2 and 3.

y = 0.0343x1.6134 y = 0.0844x

y = 0.0382x

1

10

102

103

104

105

106

10
Number of Source Tasks

T
o

ta
l R

u
n

 T
im

e
(m

s)

Source to Target

Target to Source

Feature Hashing

Source to Target
(Power curve fit)
Target to Source
(Linear curve fit)
Feature Hashing
(Linear curve fit)

103102 104 105 106 107

y = 0.0343x1.6134 y = 0.0844x

y = 0.0382x

1

10

102

103

104

105

106

10
Number of Source Tasks

T
o

ta
l R

u
n

 T
im

e
(m

s)

Source to Target

Target to Source

Feature Hashing

Source to Target
(Power curve fit)
Target to Source
(Linear curve fit)
Feature Hashing
(Linear curve fit)

103102 104 105 106 107

Fig. 8. Algorithms 2 and 3 perform faster than Algorithm 1; Algorithm 3 is fastest

The size of a bin’s population was important in appraising the confidence we could
put in any source/target matching. Bins with few source analogs produce lower confi-
dence in the matching results than bins with a many because the probabilistic sam-
pling is poorer. Bins with more source analogs were most useful in identifying dis-
criminators (feature combinations that had a strong positive or negative correlation
with actual schedulability).

4 Experimental Results

Algorithm 3 proved to be the fastest of the three implemented solutions, and this
section supplies detailed results of its speed and accuracy. Fig. 9 illustrates our

 Analogical and CBR for Predicting Satellite Task Schedulability 575

experimental setup. A parameterized scheduler (“HRL Scheduler”) acted as a proxy
for the legacy Raytheon scheduler. For a given set of parameters, it created a set of
tasks and scheduled them to the best of its capabilities. The scheduler produced n+1
sets of tasks and accompanying schedules. We used the first n sets of tasks to con-
struct the Analogical Reasoning KB (source analogs). We used the final task set as a
set of target analogs for which the AR/CBR engine would predict schedulability. Each
set was completely independent of all other sets.

After we created the KB for a series of task sets, the AR/CBR engine received each
of the tasks in the last run as a target analog. The reasoner then produced a prediction
of whether the target task would have been scheduled, suggested task parameter
changes to improve the likelihood of being scheduled, timing results, and reported the
accuracy of the prediction by comparing it to the result of actually scheduling the task
in the context of the final run of the set. Table 2 summarizes these results.

HRL
Scheduler

Analogical
Reasoner

Parameter
File

Schedule

Knowledge
Base

Scheduled
Tasks

Unscheduled
Tasks

Scheduled
Tasks

Unscheduled
Tasks

Schedule

Current
Schedule

Tasks

First Series
of Runs

Last Run

Ground Truth Prediction
Execution

Time

Suggested
Parameter
Changes

HRL
Scheduler

Analogical
Reasoner

Parameter
File

Schedule

Knowledge
Base

Scheduled
Tasks

Unscheduled
Tasks

Scheduled
Tasks

Unscheduled
Tasks

Schedule

Current
Schedule

Tasks

First Series
of Runs

Last Run

Ground Truth Prediction
Execution

Time

Suggested
Parameter
Changes

Fig. 9. We used this general architecture for detailed analysis of Algorithm 3

Table 2. Algorithm 3 performance summary

Tasks in KB 6192485 Build Knowledge Base 37.6 microseconds

Predictions 89810 Precompute KB .001 microseconds

Accuracy 87.83% Prediction 37.2 microseconds

Table 3 lists the “standard” parameters we used to determine prediction accuracy.
Fig. 10 shows the prediction accuracy achieved by Algorithm 3 on the standard

576 P. Tinker et al.

parameters and variations from those parameters. The dotted line (and second bar)
indicates the accuracy using the standard parameters. The bars represent the accuracy
when we made specific changes to the standard task parameters. It was our intent to
determine the resilience of the prediction mechanism to sudden changes in task
characteristics. These changes can occur, for example, when world conditions change
suddenly, resulting in rapid changes in the user community and the characteristics of
the tasks users submit for scheduling. It is worth noting that 100% accuracy is
theoretically impossible; the scheduling algorithms whose behavior we are trying to
predict are non-deterministic. Two runs on the same data will rarely produce the same
result, limiting our ability to predict any single task outcome.

Table 3. Standard Parameters

Number of days represented in knowledge base 30
Number of satellites 60
Number of tasks (source analogs) per day 7,500 to 12,500
Task priority mean 3
Task priority standard deviation 1.2
Task duration mean (minutes) 8
Task duration standard deviation 10

P rediction Accuracy

81.9% 82.1%
88.7% 90.0% 91.7%88.0%87.8%87.3%86.9%

93.7%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

D
ura

tio
n15

Sta
nda rd

Prio
rit

y2

Sensors
80

D
ays

365

Prio
r it

y4

D
u ra

tio
n5

Sensors
40

Task
sP

erD
ay10000

Ta sk
sP

erD
ay8000

Correct

Prediction accuracy using Standard Parameters

P rediction Accuracy

81.9% 82.1%
88.7% 90.0% 91.7%88.0%87.8%87.3%86.9%

93.7%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

D
ura

tio
n15

Sta
nda rd

Prio
rit

y2

Sensors
80

D
ays

365

Prio
r it

y4

D
u ra

tio
n5

Sensors
40

Task
sP

erD
ay10000

Ta sk
sP

erD
ay8000

Correct

Prediction accuracy using Standard ParametersPrediction accuracy using Standard Parameters

Fig. 10. Prediction accuracy for Standard Parameters and variations

One of the salient extensions we implemented for Algorithm 3 is the ability to sug-
gest how the request could be altered to improve the likelihood of being fulfilled by

 Analogical and CBR for Predicting Satellite Task Schedulability 577

the legacy scheduler. It does this by creating hypothetical target analogs that are slight
variants of the original target. If the hypothetical target produces a higher probability
of being scheduled, the altered feature value is suggested to the user. The user can
then decide if the change satisfies his requirements, and, if so, can submit it with a
greater confidence that it will be scheduled.

The effect of changing task parameters varies greatly from parameter to parameter,
as illustrated in Figs. 11 through 14. Fig. 11 shows the number of tasks per priority
level as well as the number of tasks scheduled with those priorities. Fig. 12 shows the
relationship between priority value and schedulability (on a scale from 0.0 to 1.0).
The generally high values in Fig. 12 mean that priority is, overall, a good discrimina-
tor. (However, a priority value near the mean is not a good discriminator due to the
dip in Fig. 12’s group) Figs. 13 and 14 show similar data for task duration. The
graph in Fig 14 is overall much lower than that of Fig. 12, meaning that there is less
correlation between duration and schedulability. A task’s duration is not a good pre-
dictor of its schedulability.

0

500000

1000000

1500000

2000000

2500000

1 2 3 4 5

Total
Scheduled

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

Fig. 11. Task priority vs. number of tasks
scheduled and unscheduled

 Fig. 12. Task priority vs. schedula-
bility probability over all tasks

0

500000

1000000

1500000

2000000

2500000

1 2 3 4 5

Total
Scheduled

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

Fig. 13. Task duration vs. number of tasks
scheduled and unscheduled

 Fig. 14. Task duration vs. schedula-
bility pro-bability over all tasks

578 P. Tinker et al.

5 Conclusion

The work reported here demonstrates the utility of Analogical and Case-Based Rea-
soning for a problem of great practical significance. Through a series of optimiza-
tions to our initial Analogical Reasoning algorithm, we achieved a capability to pre-
dict, with accuracies typically > 80%, whether a given satellite task would be
scheduled. The time to make the prediction was so small that a great many such pre-
dictions could be made, enabling users to customize their requests for maximum
probability of successful scheduling. This level of fast and accurate predictability has
not been available in the past, and can eliminate many lost opportunities for efficient
satellite usage. Fast and accurate schedulability prediction gives decision makers the
ability to take action (such as changing parameters) rather than wait for the results of
time consuming batch scheduling. The results have the potential to change the way
people use and think about scheduling.

The prediction process requires no significant cost or change to the existing sched-
uling infrastructure. It can be used with Raytheon’s legacy scheduler, augmenting its
utility without affecting its performance. The legacy scheduler needs to collect and
record information about tasks it attempts to schedule, in order to build the prediction
KB. Otherwise, no changes are necessary.

References

[1] Hummel, J.E., and Holyoak, K.J. A symbolic-connectionist theory of relational inference
and generalization. Psychological Reviews, 2003 Apr; 110(2):220-64

[2] Sweeney, John, and Li, Huan Li, and Grupen, Rod and Ramamritham, Krithi. Scalability
and Schedulability in Large, Coordinated, Distributed Robot Systems. International Con-
ference on Robotics and Automation, Sept 2003.

[3] Heidmann, Paul S. A Statistical Model for Designers of Rate Monotonic Systems. Pro-
ceedings of the Second Annual Rate Monotonic User's Forum (hosted by the SEI), No-
vember, 1993.

[4] Martí-Campoy, Antonio and Sáez, Sergio and Perles, Angel and Busquets, Jose Vicente.
Schedulability analisys in EDF scheduler with cache memories. 9th International Confer-
ence on Real-Time and Embedded Computing Systems and Applications, 2003.

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, pp. 579 – 594, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Case Adaptation by Segment Replanning for Case-Based
Planning Systems*

Flavio Tonidandel and Marcio Rillo

Centro Universitário da FEI – UniFEI,
Av. Humberto de A. Castelo Branco, 3972

09850-901 - São Bernardo do Campo – SP - Brazil
{flaviot, rillo}@fei.edu.br

Abstract. An adaptation phase is crucial for a good and reasonable Case-Based
Planning (CBP) system. The adaptation phase is responsible for finding a
solution in order to solve a new problem. If the phase is not well designed, the
CBP system may not solve the desirable range of problems or the solutions will
not have appropriate quality. In this paper, a method called CASER – Case
Adaptation by Segment Replanning – is presented as an adaptation rule for
case-based planning system. The method has two phases:. the first one
completes a retrieved case as an easy-to-generate solution method. The second
phase improves the quality of the solution by using a generic heuristic in a
recursive algorithm to determine segments of the plan to be replanned. The
CASER method does not use any additional knowledge, and it can find as good
solutions as those found by the best generative planners.

1 Introduction

The adaptation phase of a CBR (Case-Based Reasoning) system is responsible for
finding a solution from a retrieved case. Specifically for Case-Based Planning
systems, the adaptation phase is important for finding good quality plans, where the
quality refers to the solution plan length and the rational use of resources and time.

However, a high quality solution is not easy to find. In fact, searching for an
optimal solution is NP-Hard [12] even for generative planning or case-based planning
systems. Actually, many solutions usually obtained by case-based planning systems
[14] are longer than necessary. Although there is no advantage for adapting plans over
a complete regeneration of a new solution in the worst case, as shown by Nebel and
Koehler [12], the adaptation of plans can be the best choice in most situations [6] and
it has great potential to be better than planning from scratch [2].

Gerevini and Serina [6] propose the ADJUST-PLAN algorithm that adapts an
existing plan in order to find a solution to a new problem. Their algorithm, although
not designed for Case-Based Planning (CBP) systems, adapts an existing plan instead
of finding an entire plan when the problem is modified. The main problem of the

* This work was partially supported by FAPESP under contract number 98/15835-9.

LNAI

580 F. Tonidandel and M. Rillo

algorithm is that its technique requires constructing an entire planning graph, which
can be computationally expensive for complex domains [6].

Another approach is the Planning by Rewriting paradigm [1]. It addresses the
problem of adapting a solution plan through rewriting rules in order to find a better
quality plan. However, rewriting rules are domain-dependent rules that can be
determined by hand or by a learning process [1], which requires some extra
knowledge about the domain.

In contrast of the previous approaches, this paper presents an domain-independent
adaptation process. This method, called CASER (Case Adaptation by Segment
Replanning), has two phases. First it finds a low quality solution by a simple
completion of the retrieved case, and then the second phase uses the FF-heuristic [9]
to detect sub-plans (or segments) in the solution plan that can be replanned in order to
improve the quality of the solution.

This paper focuses in a STRIPS-like version of the CASER method, where just the
number of steps can define a solution plan’s quality. Its improving to deal with
metrical and temporal domains is discussed in the discussion section.

2 Solution Quality and Plan Adaptation

The challenge of most plan adaptation processes is to determine which part of a plan
must be adapted in order to achieve a correct solution, guaranteeing its high quality.

In a case-based planning domain, a case is a plan and the improvement of the case
quality in the STRIPS-version is the reduction of the number of actions that guides
the plan from the initial state to the final state. The purpose of an adaptation process
applied to a Case-Based planning system is to change, add or even delete appropriate
actions of the case in order to find a better solution.

There are in the literature dedicated efforts on adaptation processes. One adaptation
process is the ADJUST-PLAN method [6], which refines a plan until it becomes a
new solution. In fact, it tries to find a complete solution from a given plan by refining
sub-plans on the graph created by the Graphplan system [4]. It is well specified to
work in a domain where problems are partially modified and, consequently, some
sub-graphs used to solve previous problems can be re-used to find and refine a
solution to a new problem. However, in general, when a case is retrieved from a case
base, the case does not contain any previous planning graph, forcing the ADJUST-
PLAN method to create the entire graph. The process to create an entire graph can be
computationally expensive and the method can be unable to be used efficiently in
case-based systems. Similar to ADJUST-PLAN is the replanning process called
SHERPA [10]. Although not designed to improve solution quality, it finds replanned
solutions whose qualities are as good as those achieved from scratch [10].

The adaptation of a plan can also be useful for generative planning systems. A new
planning paradigm, called Planning by Rewriting (PbR), uses an adaptation phase,
called rewriting, that turns a low quality plan into a high quality plan by using some
domain dependent rules. PbR is a planning process that finds an easy-to-generate
solution plan and then adapts it to yield a better solution by some domain-dependent
rules. These rules can be designed by hand or through an automated learning process

 Case Adaptation by Segment Replanning for Case-Based Planning Systems 581

[1]. In both cases, PbR needs additional domain specific knowledge and a complete
specification of the rules or some training instances for the learning process.

In fact, there is no adaptation method which finds and improves the solution
quality from a retrieved case without any additional knowledge besides standard
planning knowledge, such as an operator’s specification and initial and goal states.

This paper introduces a domain-independent and anytime behavior adaptation
process, called CASER (Case Adaptation by Segment Replanning), that finds an easy-
to-generate solution with low quality and adapts this solution to improve it. It follows
the same idea as PbR. However, this method does not require any additional domain
knowledge apart from an operator’s specification, an initial state and a goal state. As
we discuss later, the CASER method is very useful for case-based planners that uses
Action Distance-Guided (ADG) similarity [13] to retrieve cases, as used in the FAR-
OFF system [14], or even for those CBP systems where the solutions are usually
longer than necessary.

3 The CASER Method

The CASER method has two main phases, namely:

1. The completion of a retrieved case in order to find a new solution (easy-to-
generate solution); It uses a modified version of the FF planning system [9] to
complete the case.

2. A recursive algorithm that replans solution segments in order to improve the
final solution quality by using a modified version of the FF-heuristic and of the
FF planning system [9].

The two processes do not use any additional knowledge and use a generative
planning system, which is a modified version of the original FF planning system [9]
in this STRIPS-like version, described below.

3.1 A Modified Version of the FF Planner

The original FF planning system, as presented in [9], is designed to plan in a fast way
by extracting an useful heuristic, called FF-heuristic, from a relaxed graph similar to
GraphPlan [4] graph but without considering delete lists of actions. The FF-heuristic
is the number of actions of the relaxed plan extracted from the relaxed graph. The FF
planner uses the FF-heuristic to guide the Enforced Hill-climbing search to the goal.

In order to improve the efficiency of the FF planner, Hoffmann and Nebel [9]
introduces some additional heuristics that prunes states, such as the added-goal
deletion heuristic. In this modified version of the FF planner, the FF-heuristic is used
in its regular form with a small modification: it permits that the relaxed graph expands
further until a fixpoint is reached.

As defined by Hoffmann and Nebel [9], the relaxed graph is created by ignoring
the delete list of the actions. It is constituted by layers that comprise alternative facts
and actions. The first fact layer is the initial state (initst). The first action layer
contains all actions whose preconditions are satisfied in initst. Then, the add lists of
these actions are inserted in the next fact layer together with all facts from the

582 F. Tonidandel and M. Rillo

previous fact layer, which leads to the next action layer, and so on. The regular
specification of the FF-heuristic is that the relaxed graph is expanded until all goals
are in the last fact layer. With the modification discussed above, the relaxed graph
must be created until a fixpoint is found, i.e., when there are no more fact layers that
are different from the previous ones.

With the relaxed graph created until the fixpoint, a relaxed solution can be found
for any state that can be reached from initst. The process of determining the relaxed
solution, following Hoffmann and Nebel [9], is performed from the last layer to the
first layer, finding and selecting actions in layer i-1 if it is the case that their add-list
contains one or more of goals initialized in layer i. After that, the preconditions of the
selected actions are initialized as new goals in their previous and corresponding layer.
The process stops when all unsatisfied goals are in the first layer, which is exactly the
initial state. The relaxed solution is the selected actions in the graph and the estimate
distance is the number of actions in this relaxed solution.

The FF-heuristic returns, therefore, the number of estimated actions between initst
and any possible state reached from initst. We will use this heuristic in the modified
version of the FF planner.

However, the modification of the FF-heuristic to expand the graph until fixpoint is
not enough for the modified version of the FF planner. In fact, we must also change
the added-goal deletion heuristic. In its regular specification, the added-goal deletion
heuristic does not consider a state on which a goal that has been just reached can be
deleted by the next steps of the plan in the search tree. The heuristic analyzes the
delete lists of all actions in the relaxed solution provided by the FF-heuristic. If a
reached goal is in the delete list of any action in the relaxed solution, the FF planner
does not consider this state in the search tree.

The heuristic works fine when the goal contains no predicates that are easy to
change, like handempty in the Blocks World domain or the at(airplane,airport) in the
logistic domain. If one of these easy-to-change predicates is in the goal, the FF
planner can not find a solution.

For example, consider that the initial state of a planning problem in Blocks World
domain is on(A,B), clear(A), ontable(B) and holding(C); and the goal is on(A,C) and
handempty. The regular solution plan must have many actions that delete the
handempty predicate. The FF planning system, therefore, is unable to find a solution
because the added-goal deletion will try to avoid that the handempty be deleted and,
consequently, it will prune the next states.

Since the CASER method will consider complete and consistent states as goals,
called extended goals, it would experience some problems by using the original FF
planning system to find an alternative plan. Therefore, in order to avoid this problem,
we implemented a modified version of the FF planning system. In this version, a
relaxed added-goal deletion heuristic is implemented.

The relaxed added-goal deletion heuristic does not prune a state if the predicate
goal reached has one of the following conditions:

1. It is presented in the add-list of more than one action;
2. It is the unique predicate in a precondition of at least one action.

The first condition excludes predicates like holding(_) and handempty in the
Blocks World domain. The second condition allows that a specific action with a
unique predicate in preconditions can be used.

 Case Adaptation by Segment Replanning for Case-Based Planning Systems 583

Initial State Goal

Wi Final State

Retrieved case
Final plan

New problem

Initial plan

Fig. 1. The Completion Process – it shows the retrieved case and its Wi and Final State. Given a
new problem, the retrieved case becomes a sub-plan of the solution composed by the Initial
Plan + Retrieved Case + Final Plan

Besides the relaxed added-goal deletion heuristic, the modified version of the FF
planner has also the following features:

• It does not switch to the complete Best First Search if a solution was not found
by using Enforced Hill-Climbing search;

• It avoids an specific action as the first action in the solution plan;
• It allows to specify the maximal length of a solution;
• It allows to specify an upper-time limit time to find a solution.

The first constraint described above is imposed because it is not important to find a
solution at any time cost; the remaining three items are imposed to permit the CASER
method to focus the FF planning to its purpose.

The aim of these modifications is not to improve the FF planning system capacity,
but only adapts the system to be used in the CASER method. Since these
modifications relax some FF planner features, there is also a great probability that the
original system outperforms this modified version.

3.2 The Completion Process – The First Phase

The easy-to-generate solution may be obtained by completing a retrieved case. Each
retrieved case must be a plan (a complete solution of an old problem) and it must have
its correct sequence of actions.

In fact, the CASER method in this first phase receives an initial state, a goal state
and a totally ordered plan from the retrieved case that does not match on either of two
states necessarily. In other words, the retrieved case is a sub-plan of the solution.

The completion of the case must extract the precondition of the retrieved case. This
precondition is called Wi [13]. Informally, Wi is a set of those literals that are deleted
by the plan and that must be in the initial state necessarily. It is equal to the result of
the foot printing method used by PRODIGY/ANALOGY system [17].

The completion phase of the CASER process finds a simple way to transform the
retrieved case into a solution. It just tries to expand the retrieved case backward in
order to match the initial state and expand it forward in order to satisfy the goal.

The backward expansion is a plan, called initial plan, that bridges the initial state
and the retrieved case. This plan is found by a generative planner applied from the
initial state to Wi of the case, where Wi is the goal to be achieved. Since the Wi may

584 F. Tonidandel and M. Rillo

be an extended goal, the CASER method uses the modified version of FF planning
system as its generative planner. Figure 1 shows the completion process.

procedure CASER_completion(retrieved_case, initst, goalst)
Wi find_Wi (retrieved_case);
FS find_final_state(retrieved_case);
Initial_plan modified_FF(initst, Wi);
Final_plan modified_FF(Final_state, goalst);
return Initial_plan + retrieved_case + Final_plan;
end;

Fig. 2. The completion algorithm. The initst is the initial state of a problem and goalst is the
goal state. The modified_FF finds a plan from its first argument to its second argument

The forward expansion is similar to the backward expansion, but it finds a plan,
called final plan, that fits the final state of the case and the goal of the new problem.
The final state of the case can be easily found by executing the actions effects of the
new adapted case (initial plan joined with the retrieved case) from the initial state.

The final state of the case becomes a new initial state for the modified FF-planner
that finds the final plan from this final state direct to the new goal.

At this stage of the CASER method, a complete solution of the new problem is
stated by the joint of initial plan, retrieved case and final plan. Figure 2 summarizes
the algorithm of this first phase.

However, as stated before, the solution obtained by the completion phase is just an
easy-to-generate plan and it may not have appropriate quality since it can have more
actions than necessary. The second phase of the CASER method is designed to reduce
the length of the plan and, consequently, increases its quality.

3.3 The Recursive Replanning Process – The Second Phase

The planning search tree is usually a network (e.g. a graph) of actions composed of all
states and all actions in a specific domain. For total-order planners, a solution plan is
necessarily a sequence of actions, and it can be represented as a path in a directed
graph where each node is a consistent state and each edge is an action.

Considering a distance function, hd, it is possible to estimate the number of actions
between two planning states. If this function is applied to estimate the distance from
an initial state to all other states in a directed graph, it is possible to determine the
costs of reaching each state from the initial state in number of actions.

However, there is no accurate distance function to determine optimal costs for each
state without domain specific rules or that takes reasonable time to do it. An
approximation of these optimal costs can be obtained by using a heuristic function
used by the heuristic search planners, such as FF-heuristic [9] and HSP-heuristic [5].
Considering the recent results of the FF system, the FF-heuristic is one of the best
choices to be used in this cost estimation. It was also successfully used in other
methods, such as the ADG similarity [13] and the FAR-OFF system [14].

 Case Adaptation by Segment Replanning for Case-Based Planning Systems 585

The CASER method uses the FF-heuristic in its second phase in order to calculate
the cost of each state and to determine the segments for replanning. This second phase
was first published in [15] as the SQUIRE method (Solution Quality Improvement by
Replanning) for refining solution plans from generative planning system. This paper
improves this method and uses it to adapt plan reused from cases.

procedure det_costs(plan, initst)
fixpoint create_relaxed_graph(initst)
S0 initst;
v0 0;
i from_state;
while i < number of actions of the plan do
 i i+1;
 Si execute_action (Ai of the plan on the Si-1 state)
 vi determine_relaxed_solution(Si);
 endwhile
return array of values <v0,v1,v2,v3..,vn>
end;

Fig. 3. Algorithm of a function that determines the distances of each intermediate state from the
initial state initst of a plan. The from_state variable is the number of the first state that
must be considered in the plan

The second phase has two steps. The first step determines the cost of each
intermediate state of a solution plan provided by the completion phase. The algorithm
in Figure 3 calculates, given an initial state and a solution plan, the estimated distance
of each intermediate state from the initial state by using the FF-heuristic.

In order to determine the final and the intermediate state, the algorithm executes
each action of the plan from the initial state (function execute_action in Figure 3).

The functions create_relaxed_graph and determine_ relaxed_solution in Figure 3
are algorithms extracted from the FF-heuristic [9]. The function create_relaxed_
graph is modified to expand the graph until a fixpoint is found.

The algorithm of Figure 3 returns an array of costs that contains the distance
estimation value of each intermediate state from the initial state. In an optimal or
optimized plan, these values must increase constantly from the beginning to the end.
Any value that is less than the value before it can indicate a hot point of replanning,
because it indicates a possible return in the directed graph of search. This value and
its respective state are called returned.

The main idea of the CASER method is to find a misplaced sub-plan by detecting
three kind of potential states: a Returned State (Sr) which is a potential state of a
misplaced sub-plan, a Back State (Sb) that would be the final part of the misplaced
sub-plan; and a State with Misplaced action (Sm) that would be the initial part of the
sub-plan. Therefore, the misplaced sub-plan would be formed by the actions between
Sm and Sb states. Figure 4 summarizes the main idea of the CASER method.

586 F. Tonidandel and M. Rillo

Definition 1: (Returned State) For a plan with <S0,S1,S2,S3,...,Sn> intermediate states,
a Sr is an intermediary state where its value, obtained by a heuristic function, hd, is
less than the value of Si-1.

This returned value indicates that its respective intermediate state is nearer to the
initial state than the intermediate state immediately before it. The returned state and
its returned value are indicated as Sr and vr respectively. The CASER method detects
the first occurrence of a returned state in the solution plan. The algorithm that
determines the Sr and vr is presented in Figure 5. The symbol Sr just indicates that
this point can be a part of a misplaced segment.

S 7 5 4 64 63 2

return back1st action

Sr Sb Sm

Misplaced Sub-plan Rp

1

Distance values

Sr

Sm Sb

Fig. 4. A solution plan with the intermediate state represented as circles with their respective
values and a misplaced sub-plan

function determine_Sr (<v0,v1,v2,v3..,vn>, from_state)
retv 0;
i from_state;
while (retv=0) and (i<n) do
 i i+1;
 if vi<vi-1 then retv i;
 endwhile
return retv;
end;

Fig. 5. Algorithm to detect the first occurrence of Sr and vr in a plan from the State
from_state. The variable retv stores the position of the Sr state in the solution plan

After detecting a Sr, the CASER method tries to detect the next intermediate state
that continues to pursue the goal. This intermediate state, called Sb, and its respective
value vb, indicate for the CASER method the point where the plan back to converge
directly to the goal after the Sr state.The back State (Sb) an its value (vb) is
determined as follows:

Definition 2: (Back State) Given a plan with <S0,S1,S2,S3,...,Sn> intermediate states,
and a state Sr, a Sb state is a state Si , with i>r, where its value vb, obtained by a
heuristic function, hd, is more than or equal to the Si-1 value.

 Case Adaptation by Segment Replanning for Case-Based Planning Systems 587

The idea of the CASER method is to create an alternative plan that bridges the
correct segments of the solution with the segment of the plan after the state Sb. This
alternative plan will substitute a misplaced sub-plan, called Rp, which the last state is
the Sb State. Figure 6 presents the algorithm that detects the Back State and its value.

In order to determine the beginning of the misplaced sub-plan Rp, the CASER
method finds a state with the highest value among all states before Sr but less than the
vb value. This state, called Sm, becomes the initial state of a possible misplaced sub-
plan, and its value is indicated as vm. Formally, Sm can be defined as follows:

Definition 3: (State with misplaced action) Given a plan with <S0,S1,S2,S3,...,Sn>
intermediate states, and a state Sr and the vb value, a Sm state is a state Si, with i<r,
where its value vm is the highest value among all other intermediate states
<S0,S1,S2,S3,...,Sr-1> and less than vb value.

function determine_Sb (<v0,v1,v2,v3..,vn>, r)
backv 0;
i r;
while (backv=0) and (i<n) do
 i i+1;
 if vi>=vi-1 then backv i;
 endwhile
return backv;
end;

Fig. 6. Algorithm to detect the first occurrence of Sb and vb in a plan from the position r. The
variable backv stores the position of the Sb state in the solution plan

function determine_Sm(<v0,v1,v2,v3..,vn>, r, b)
misv, i 0;
for i 0 to r-1 do

if (vi>misv) and (vi<vb) then misv vi;
endfor;

return misv;
end;

Fig. 7. Algorithm to detect the first occurrence of Sm and vm in a plan from the first state to the
position r-1. The Sm is that state that has the highest value less than vb value. The variable
misv stores the position of the Sm state in the solution plan

The algorithm that determines the position of Sm and vm in the solution plan is
given in Figure 7. In fact, the CASER method considers the Sm as a state
immediately before a possible sub-plan with misplaced actions and that must be
replanned.

The Rp sub-plan, then, is formed by the actions between Sm and Sb. The Sm can
be considered the initial state and the state Sb as the final state of the Rp sub-plan.

588 F. Tonidandel and M. Rillo

function CASER_replan(plan, initst, from_state, maxtime, maxbktk)

<v0,v1,..,vn> det_costs(plan,initst);

r determine_Sr(<v0,v1,..,vn>,from_state);

if r<>0 then

 b determine_Sb(<v0,v1,v2,..,vn>,r);

 m determine_Sm(<v0,v1,v2,..,vn>,r,b);

 Rp the sub-plan between Sm and Sb;

 bktk 0; // controls the number of backtrackings

 i m;

 isRp false;

 while (time<maxtime) and (i>0) and (bktk<maxbktk) and not(isRp) do
 <vp0,vp1..,vpn> det_costs(Rp,Si);
 if determine_Sr(<vp0,vp1,vp2,..,vpn>,0)= 0 then

isRp true;

else

i i-1;

 Rp plan between Si and Sb;
 endif;

 endwhile

 if isRp then Rp call modified_FF (Si,Sb) with

- changing the 1st action of Rp;

- maximal_length b-i-1;
- time < maxtime;

 if Rp = null then isRp false;

 endif;

if not(isRp) then

from_state b;

else

substitute Rp in plan between Si and Sb;

endif

if time<maxtime then plan CASER_replan(plan,initst,from_state);

return plan;

end;

Fig. 8. The complete CASER second phase algorithm. It needs a solution plan, an initial state
(initst) and the first position of the plan that will be considered (from_state). It also
needs the maximal time and the maximal number of backtracking (maxbktk)

However, the actions of the sub-plan Rp can not be misplaced by themselves, and
the returned value can be caused by any other action before Sm. To determine if the
Rp sub-plan really contains misplaced actions, the algorithm det_costs, presented in
Figure 3, is applied for the Rp sub-plan. If there is any returned value in the Rp sub-

 Case Adaptation by Segment Replanning for Case-Based Planning Systems 589

stack(B,D)

putdown(C)

unstack(C,D)

unstack(A,B)

unstack(A,C)

stack(A,C)

stack(C,B)

stack(A,C)

pick-up(B)

pick-up(C)

pick-up(A)

putdown(A)

1

2

3

4

5

6

7

6

7

8

9

10

1st action

1st action

1st action

Replanning Area for a Misplaced Sub-Plan Rp

Initial State
Actions Dist values

1st action
Substitute

Plan

putdown(A)

pick-up(B)

stack(B,D)

pick-up(C)

1

2

3

2

3

4

3

4

5

4

3

4

1 2 3

1 2

1

Final State

Rp

no bktk
no

return

Rp

1st bktk
no return

Rp
2nd bktk
no return

Rp

3rd bktk
misplaced
Sub-plan

i = Distance values obtained by the FF-heuristic

return

Fig. 9. Example of the 2nd phase of the CASER applied in a plan of the Blocks World domain

plan, it becomes a potential misplaced sub-plan that must be replaced. If the Rp does
not contain any returned value by itself, then the initial state of the Rp sub-plan is
backtracked. The new initial state becomes the state immediately before the state Sm.
The algorithm det_costs is applied to this new Rp sub-plan in order to determine if it
contains a returned state or not. The state backtracking continues until the initial state
is reached or a misplaced sub-plan is detected.

When a misplaced sub-plan Rp is determined, the CASER method starts the
replanning process by calling the modified version of the FF planning system to

590 F. Tonidandel and M. Rillo

create an alternative plan to the Rp sub-plan. This alternative plan cannot have the
same first action and must have fewer actions than the Rp sub-plan. The objective of
changing the first action is to force the planning system to find an alternative solution.
If no other alternative plan is found, the CASER backtracks the initial state of the Rp
sub-plan and tries again. The backtracking continues until the initial state of the plan
is found or until a specific number, maxbktk, of backtrackings are performed.

If there is no backtracking and no alternative solution is found, the CASER method
continues to detect points of replanning after the Sb State.

Table 1. Results of the CASER method applied to some STRIPS domains. The time is in
milliseconds and #act means number of the actions in the plan solution

CASER METHOD

1st phase 2nd phase Final results

LPG system
reference results in

quality track
DriverLog Dmain

Problems
IPC´02 time #act time time #act #act
dlog-01 12 11 70 82 9 7
dlog-02 24 19 65 89 19 20
dlog-03 13 33 231 244 20 12
dlog-04 27 31 119 146 28 16
dlog-05 31 22 105 136 21 18
dlog-06 300 22 1835 2135 16 17

dlog-07 4846 30 125 4971 26 13
dlog-08 340 32 776 1116 30 22
dlog-09 21 31 120 141 31 23
dlog-10 10978 28 90 11068 23 17

CASER METHOD
1st phase 2nd phase Final Results

FF system reference
results

Logistic domain

problems
IPC´00 time #act time time #act #act

LOGISTICS-04-0 14 26 68 82 26 49
LOGISTICS-05-0 23 45 175 198 41 49

LOGISTICS-06-0 19 33 70 89 33 25
LOGISTICS-07-0 45 63 851 896 53 36
LOGISTICS-08-0 66 52 170 236 43 31

LOGISTICS-09-0 65 56 205 270 49 36
LOGISTICS-10-0 200 86 425 625 74 46

CASER METHOD Reference Results
1st phase 2nd phase Final Results FF HSP

Blocks World

Domain Problems
IPC´00 time #act time Time #act #act #act

BLOCKS-04-0 11 6 70 81 6 6 6
BLOCKS-05-0 2 12 105 107 12 12 12

BLOCKS-06-0 19 26 255 274 12 16 12
BLOCKS-07-0 22 40 1640 1662 22 20 26
BLOCKS-08-0 52 26 1665 1717 26 18 18
BLOCKS-09-0 30 42 1511 1541 30 30 40
BLOCKS-10-0 22 34 9285 9307 34 34 98
BLOCKS-11-0 44 38 3296 3340 34 32 44

BLOCKS-12-0 35 42 5600 5635 42 36 36

 Case Adaptation by Segment Replanning for Case-Based Planning Systems 591

On the other hand, if an alternative plan is found, it substitutes the Rp sub-plan and
the CASER method continues to detect points of replanning after the Sb state until the
final state is reached. The complete CASER algorithm is presented in Figure 8. Figure
9 shows the behavior of the backtracking for an example in the Blocks World domain.
The replanning process can be fast due to two factors. One is the use of a modified FF
planning that permits the system to work with a complete state as goal. The other is
that the modified FF must find a plan with a limited length what can reduce the time
to find long solutions. However, the numbers of backtrackings and the complexity of
a solution plan can turn the CASER method into a time consuming process.

Because of this time consuming risk, the CASER method allows the user to define
the maximal time that the method can try to improve the solution quality and also the
maximal number of backtrackings that the process can do.

4 Empirical Tests

The complete CASER method was tested in some STRIPS-model domains for some
retrieved cases obtained by the FAR-OFF Case-Based Planning system [14]. The
cases retrieved by the FAR-OFF system are from a case base with random cases
generated by a case base seeder [15].

The STRIPS domains used in the tests are retrieved from the IPC’00 (International
Planning Competition) [3] and IPC’02 [11]. The problems considered in the tests are
the first one proposed in those competitions for each domain.

The tests, in Table 1, show the performance and results of the CASER method
when applied to a retrieved case in Blocks World, Logistic and DriverLog domains.

The solutions of the LPG [7], FF [9] and HSP [5] planning systems in IPC’02 [11]
and IPC’00 [3] planning competitions are used as a comparative result of the quality
of the solution. They had one of the best results in such domains and provide a good
validation for CASER results.

The tests were performed in a Windows® environment on a Pentium® III 450
MHz computer with 512 Mbytes of RAM memory and considering a number of
backtrackings limited to 15. As stated by Tonidandel and Rillo [15], in a general
frame, the use of unlimited backtracking is not relevant for the quality solutions, and
it still spends much more time than when a limited of 15 backtracking is imposed. In
addition, there is no imposition of time limit, even though the CASER method allows
that the user specifies a maximal time that can be used to improve the solution. The
definition of a limited time for replanning does not affect the planning problem
solution; it only reduces the time for the improvement of the solution quality.

The second phase of the CASER method reduces the easy-to-generate solution in
most of the situations and for some of them it reduces up to the optimal plan length.
There is some quality improvement from the easy-to-generate solution in the tests, as
can be seen in BLOCKS 6.0 and BLOCKS 7.0 problems where the replanning phase
reduces the easy-to-generate solution in about 50%.

The tests results show that the CASER method is effective for a case-based
planning system (e.g. the FAR-OFF system) in all domains considered in the tests.
Considering the solution quality provided by the generative planning systems, the
CASER returns the best solution in about 35% of the results. These results do not

592 F. Tonidandel and M. Rillo

empirically prove that the CASER is better than generative planners; they just show
that the CASER method works suitably. The CASER method is just a part of an entire
case-based planning system and, therefore, it can not be compared with an entire
generative planner in terms of solution quality and time performance.

The time spent by the second phase of the CASER method depends on the number
of returned values and misplaced sub-plans. Since the more actions a plan have, the
higher is the possible number of returned values and misplaced sub-plans. Therefore,
the CASER method takes more time to adapt a solution plan with more actions.

5 Discussion

Considering the conditions of the tests, the CASER method is a very promising tool
of case adaptation. The tests were performed in hard conditions. The cases retrieved
by the FAR-OFF system are not very similar to the possible solution because they are
retrieved from a case base constituted by random cases, from where retrieved cases
are not necessarily good similar cases. A random case is created by a Case-Based
Seeding process that finds random initial and goal states and applies a generative
planning system to find a plan between the states [16].

In fact, even with a retrieved case from a case base filled of random cases and with
the same knowledge used by generative planners, the CASER can return some best
solutions, about 35% of the solutions in the tests. The results only show that the
CASER method can work well with the same knowledge provided to a generative
planner.

However, there are some efficiency bottlenecks that must be solved. One of these
bottlenecks is the behavior of the CASER method that tries to replace an optimal sub-
plan in some situations (e.g. BLOCKS-5.0 test). It is caused by the FF-heuristic,
which is not appropriate to detect whether a plan is optimal or not. Because of this,
the time of replanning applications is higher than necessary occasionally. Other
heuristics or some new verification methods will be considered in the future.

The CASER method does not guarantee to find an optimal solution of a specific
problem because it only analyses the intermediate states and the final state that were
provided by the solution plan. The method is restricted to reduce the plan found by an
easy-to-generate phase. For instance, if an optimal solution of a specific problem is to
consider another final state than that provided by the easy-to-generate plan, the
CASER method is unable to find this optimal solution. This limitation of the CASER
method is responsible for the difficulty that this method presented in the DriverLog
domain. This limitation will be analyzed in our future research.

This version of CASER method is designed to improve the solution quality by
decreasing the number of steps of the solution plan. However, this method is not
restricted to the solution length, but it can also be extended to deal with complex
domains with resources and time.

In order to work in domains with numerical variables, a heuristic function that
estimates the cost of a state by taking in consideration these numerical values must be
available. The metric-FF planner system [8] provides a metric-heuristic that can be
used to extend the CASER method to numerical domains. However, it will be left for
further studies.

 Case Adaptation by Segment Replanning for Case-Based Planning Systems 593

6 Conclusion

The CASER method, presented in this paper, is an domain-independent method to
adapt retrieved cases. The method uses the FF-heuristic and a modified version of the
FF planning system to determine and find a solution from a retrieved case by a
recursive quality improvement algorithm with anytime behavior.

The first phase of the CASER method just finds an easy-to-generate solution
whereas its second phase modifies some misplaced sub-plans and bad segments of the
entire solution in order to improve the solution quality.

The empirical tests show that the CASER method is a promising adaptation
process that can find good quality solutions for case-based planning systems. The
most important feature of the CASER method is that it does not require any additional
knowledge neither any other process like invariants extractions or learning
algorithms. In fact, the CASER is a method that can be applied to any planning
domain without any specification of adaptation rules or extra domain dependent
information.

The method proposed in this paper focuses on the plan length and does not
consider time or resources. This method will be extended in the future to support
domains with such features.

References

1. Ambite, J. L.; Knoblock C. A..Planning by Rewriting. In: Journal of Artificial Intelligence
Research, 15, (2001), 207-261.

2. Au, T.; Muñoz-Avila, H.; Nau, D. S. On the Complexity of Plan Adaptation by
Derivational Analogy in a Universal Classical Planning Framework. In: Craw, S.; Preece,
A. (Eds.)Procedings of the 6th European Conference on Case-Based Reasoning - ECCBR-
2002. Lecture Notes in Artificial Inteligence. Vol 2416. Springer-Verlag. (2002) 13-27.

3. Bacchus, F. AIPS-2000 Planning Competition Results. Available in: http://www.cs.
toronto.edu/aips2000/. (2000)

4. Blum, A.; Furst M. Fast Planning through Planning Graphs Analysis, Artificial
Intelligence, 90, (1997) 281-300.

5. Bonet, B; Geffner, H. Planning as Heuristic Search. Artificial Intelligence. 129 (2001) 5-33.
6. Gerevini A.; Serina, I. Fast Adaptation through Planning Graphs: Local and Systematic

Search Techniques. In: Proceedings of the 5th International Conference on Artificial
Intelligence Planning and Scheduling AIPS´00. AAAI Press. (2000).112-121.

7. Gerevini A.; Serina, I.. LPG: A Planner Based on Local Search for Planning Graphs with
Actions Costs. In: Preprints of the 6th International Conference on Artificial Intelligence
Planning and Scheduling AIPS´02. AAAI Press. (2002) 281-290.

8. Hoffmann J. Extending FF to Numerical State Variables, in: Proceedings of the 15th
European Conference on Artificial Intelligence, Lyon, France (2002)

9. Hoffmann, J.; Nebel, B. 2001. The FF Planning System: Fast Plan Generation Through
Heuristic Search. Journal of Artificial Intelligence Research. 14 (2001) 253 – 302.

10. Koenig,S. , Furcy, D., Bauer, C. Heuristic Search-Based Replanning. In: 6th Proceedings
of the International Conference on Artificial Intelligence on Planning and Scheduling
(AIPS-2002). Toulouse. (2002).

594 F. Tonidandel and M. Rillo

11. Long, D.; Fox, M. The 3rd International Planning Competition - IPC´2002. Available in
http://www.dur.ac.uk/d.p.long/competition.html. (2002).

12. Nebel,B. ; Koehler, J. Plan reuse versus plan generation: A theoretical and empirical
analysis. Artificial Intelligence, n. 76, p.427-454,. Special Issue on Planning and
Scheduling (1995).

13. Tonidandel, F.; Rillo, M. An Accurate Adaptation-Guided Similarity Metric for Case-
Based Planning In: Aha, D., Watson, I. (Eds.) Proceedings of 4th International Conference
on Case-Based Reasoning (ICCBR-2001). Lecture Notes in Artificial Intelligence. vol
2080. Springer-Verlag. (2001) 531-545.

14. Tonidandel, F.; Rillo, M. 2002. The FAR-OFF system: A Heuristic Search Case-Based
Planning. In: Proceedings of 6th International Conference on Artificial Intelligence on
Planning and Scheduling (AIPS-2002). Toulouse. (2002).

15. Tonidandel, F.; Rillo, M. Improving the Planning Solution Quality by Replanning. In:
Anais do VI Simpósio Brasileiro de Automação Inteligente. Bauru São Paulo (2003).

16. Tonidandel, F.; Rillo, M. A Case base Seeding for Case-Based Planning Systems. In:
Lemaitre, C., Reyes, C., Gonzales, J (Eds.) Proceedings of 9th Ibero-American Conference
on AI (IBERAMIA-2004). Lecture Notes in Artificial Intelligence. vol 3315. Springer-
Verlag. (2004) 104-113.

17. Veloso, M. Planning and Learning by Analogical Reasoning. Lecture Notes in Artificial
Intelligence, Vol 886. Springer-Verlag. (1994).

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, pp. 595 – 609, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Selecting the Best Units in a Fleet:
Performance Prediction from Equipment Peers

Anil Varma, Kareem S. Aggour, and Piero P. Bonissone

GE Global Research, One Research Circle,
Niskayuna, NY 12309

{varma, aggour, bonissone}@research.ge.com

Abstract. We focus on the problem of selecting the few vehicles in a fleet that
are expected to last the longest without failure. The prediction of each vehicle’s
remaining life is based on the aggregation of estimates from ‘peer’ units, i.e.
units with similar design, maintenance, and utilization characteristics. Peers are
analogous to neighbors in Case-Based Reasoning, except that the states of the
peer units are constantly changing with time and usage. We use an evolutionary
learning framework to update the similarity criteria for peer identification. Results
indicate that learning from peers is a robust and promising approach for the
usually data-poor domain of equipment prognostics. The results also highlight the
need for model maintenance to keep such a reasoning system vital over time.

1 Introduction

The problem of selecting the best units from a fleet of equipment occurs in many
military and commercial applications. For example, given a specific mission profile, a
commander may have to decide which five armored vehicles to deploy in order to
minimize the chance of a breakdown. In the commercial world, rail operators often
need to make decisions on which locomotives to use in a train traveling from coast to
coast with time sensitive shipments. Asset selection for complex electromechanical
equipment is often driven by heuristics and/or expert opinions. Some ‘obvious’
strategies include picking the newest, the most recently serviced, or the latest model
equipment.

Long-term data that allows reliability and MTBF (mean time between failure)
computations at the fleet and individual unit level can also drive such decisions.
However, this work was motivated by the special needs of military equipment on new
platforms. In the case of a new aircraft, tank, or ship, there is simply no long-term
data to assess reliability across the vast range of potential missions. Second, the usage
pattern of military equipment can be described as a sequence of ‘pulses’—long
periods of inactivity followed by relatively short periods of intense usage. Given the
possibility of very sparse deployment history on any individual unit, how can we best
assess its feasibility for a new mission in a new environment and terrain?

We present an approach where the time-to-failure prediction for each individual
unit is computed by aggregating its own track record with that of a number of ‘peer’
units—units with similarities along three key dimensions: system design, patterns of

LNAI

596 A. Varma, K.S. Aggour, and P.P. Bonissone

utilization, and maintenance history. The notion of a ‘peer’ is close to that of a
‘neighbor’ in CBR, except that the states of the peers are constantly changing.
Odometer-type variables like mileage and age increase, and discrete events like major
maintenance or upgrades occur. It is reasonable to assume that after every significant
mission, the peers of a target unit may change based upon changes in both the unit
itself, and the fleet at large. This is in contrast to a conventional diagnostic system
such as the locomotive CBR system described by Varma and Roddy (1999), where,
once stored in the case base, the case description remains static.

Our results suggest that estimating unit performance from peers is a practical,
robust and promising approach. Two types of experiments were conducted—
retrospective estimation and prognostic estimation. In the first experiment, we explore
how well the median time-to-failure for any unit can be estimated from the equivalent
median of its peers. In the second experiment, for a given instant in time, we predict
the time to the next failure for each unit using the history of the peers.

Because we use estimates composed from peers, constructing an effective
similarity criterion for peer selection is critical (as it is for any case-based reasoning
system). However, because the elements in the case base are changing with time,
systematically evaluating and updating the similarity criterion for peer selection is
necessary. We use an evolutionary algorithm to tune the similarity criterion, and show
than an evolutionary learning framework contributes significantly to keeping the
reasoning process vital.

Section 2 provides an overview of the motivation for this work, the data sources,
and the experimental setup. Section 3 reviews related work and approaches. Sections
4 and 5 focus on the system design, parameter optimization, and model maintenance
using the evolutionary learning framework. Section 6 presents the results, and Section
7 contains our conclusions.

2 Problem Framework

2.1 Motivation

In military deployments, commanders often have to select a subset of available units
from a fleet to last the duration of a mission in a self-sustained manner. Data from the
National Training Center in Fort Irwin, California indicate that M1A1 tanks and
Bradley vehicles have a non-mission-capable rate of 27% 46% over a 7-day
mission duration (‘pulse’) for half and full tempo operations respectively. The US
Defense Advanced Research Projects Agency (DARPA) approached GE Global
Research to explore learning and reasoning methodologies to address this unit
selection problem, characterized by sparse data over a wide variety of performance
environments, making direct application of standard statistical techniques difficult.
We seek to predict mission reliability by using a collective of equipment peers for a
given unit, each with limited performance data.

The specific application domain is an extension of the locomotive diagnostics
system described by Varma and Roddy (1999). GE Rail remotely monitors about
4000 locomotives, and uses a case base of fault logs to diagnose if any proactive
maintenance is needed. The case base is populated with successful diagnoses verified

 Selecting the Best Units in a Fleet: Performance Prediction from Equipment Peers 597

by actual repair, represented as about a 3-day fault log supplying the input variables
and the maintenance action code as the output variable. The cases are episodic, have
definite beginning and ending times, and do not change once entered into the case
base. The system has been operational for about 6 years.

In working with DARPA’s steering committee, we determined that the extensive
remote monitoring and diagnostics data accumulated by GE Rail could prove an
excellent surrogate for conducting experiments for the selection phase of mission
support.

Railroad Yards

Utilization Information

Railroad YardsRailroad Yards

(1 download/~ 30 days)

Railroad Yards

Utilization Information

Railroad YardsRailroad Yards

(1 download/~ 30 days)

Fault codes
(3 uploads/day)
Fault codes Fault codes

Locomotives with EOA Service

Fault codes
(3 uploads/day)
Fault codes Fault codes

Locomotives with EOA Service GE Rail Locomotives Services

RecommendationsRecommendationsRecommendations
(4-8 Rx/yr)

GE Rail Locomotives Services

RecommendationsRecommendationsRecommendations
(4-8 Rx/yr)

Data Links

GE Rail / Railroads Repair Shops

Repair Execution
(4-8 repairs/year)-

GE Rail / Railroads Repair Shops

Repair Execution
(4-8 repairs/year)-

Data Category Source
1. Design & Configuration Information GE Rail
2. Maintenance Information

- Fault Codes EOA Service
- Recommendations GE Rail
- Repairs GE Rail / Railroads

3. Utilization Information Railroads

Fig. 1. Locomotive Design, Maintenance, and Utilization Data Sources

2.2 Data Sources

As shown in Figure 1, three distinct types of data are available for each locomotive:

1. Design and Configuration: This data was obtained from GE Rail as the original
equipment manufacturer. This includes information about the locomotive model,
in-service date, upgrades, options and configuration items.

2. Maintenance: This information was obtained from the GE Expert on Alert™
(EOA) center in Erie, Pennsylvania. Data from each locomotive is uploaded to
the center three times a day. The EOA diagnostic tools analyze this data and if a
problem is identified, a workflow case is created for review by a monitoring
engineer. The expert can then issue a Red, Yellow or White recommendation
(Rx) to the railroad, or choose to wait. A Red recommendation implies serious
problems that need to be addressed in the next 3-5 days. A Yellow

598 A. Varma, K.S. Aggour, and P.P. Bonissone

recommendation should be addressed in the next 7-14 days, and a White
recommendation is usually informational with no impending failure expected.

Once a Red or Yellow recommendation is delivered, the actual repair is
carried out soon afterwards. The measure of ‘time to failure’ from any given
point in time is the time until the next repair.

Table 1 shows a sequence of Red recommendations issued on a particular
unit. The Rx Close Date indicates the date of repair. Each entry in column 5
(days from previous Red or Yellow repair) indicates the length of time that the
unit operated without a failure.

Table 1. Maintenance Recommendation Information

SERIAL
NO

RECOMMENDATION
DELIVERY DATE URGENCY RX CLOSE

DATE

DAYS from
previous RED or

YELLOW
repair

1001 7/28/2002 18:14 R 7/29/2002 21:39 12.72
1001 7/16/2002 23:03 R 7/17/2002 4:20 14.01
1001 7/2/2002 7:47 R 7/3/2002 4:01 15.78
1001 6/13/2002 9:25 R 6/14/2002 20:38 6.94

3. Utilization: Each locomotive records parameters on-board that are cumulative in
nature, and consequently monotonic. Examples of these include, age, mileage,
total megawatt hours developed, total hours moving, and total hours idle. About
every 30 days, these are downloaded by the railroad and stored. Additional
parameters can be computed from these values. Table 2 shows columns
indicating the cumulative hours spent by a unit in any one of 8 ‘notches’ or gear
positions. These, divided by total operating time, provide what percentage of time
the unit spends in lower vs. higher gear positions—an approximation to an
operating profile.

Table 2. Utilization Information

DOWNLOAD
DATE

CUM
N1 HS

CUM
N2

HRS

CUM
N3

HRS

CUM
N4

HRS

CUM
N5

HRS

CUM
N6

HRS

CUM
N7

HRS

CUM
N8

HRS

CUM
BRAKE

HRS

CUM
ENGINE HRS

MOVING

DELTA
ENGINE

HRS
MOVING

5-Apr-03 361.4 148.6 136.5 102.5 91.2 72.6 46.6 254.0 274.8 1,488.13 31.8
2-Apr-03 351.6 142.6 130.8 100.4 89.5 71.3 46.1 253.5 270.5 1,456.30 43.4

28-Mar-03 340.5 138.4 127.0 97.4 86.5 68.8 44.3 247.4 262.6 1,412.90 116.5
 … …

28-Jul-01 259.0 113.1 97.7 79.5 72.1 55.9 36.4 176.0 196.4 1,086.24 0.0

We consolidated and scrubbed the data from GE Rail and utilization data from
Union Pacific to generate a case base with 1,178 locomotives. A single data vector
was associated with each unit, containing raw data such as age, mileage, and number
of repairs/year as well as compound variables generated from the raw data (number of
repairs per 100,000 miles, for example).

 Selecting the Best Units in a Fleet: Performance Prediction from Equipment Peers 599

2.3 Experiment Description and Metrics

The data collected for the experiment spanned approximately two years. To simulate
the military scenario of a sequence of missions, we selected three instances in time
approximately six months apart, as indicated in Figure 2. We refer to these as time
slices. The first time slice was on 22 May 2002. Treating this date as the present
time, the case base had data on 262 units. By Slice 2, about six months later on 01
Nov 2002, the case base had data on 634 units, as several locomotives entered service
or had at least two failure events to provide a time-to-failure computation. Slice 3
was set at 01 May 2003, and by this time data was available on 845 units. Once we
imposed the requirement that each unit have at least two failures recorded, the number
of usable units declined from 1178 to 965.

After consulting with domain experts, we restated the objective as: At the
beginning of each time slice, select the best 20% of the locomotives, measured by
their ability to operate the longest without requiring repair (starting at the beginning
of the time slice). With this definition, the performance metric was easily computed.
At Slice 1, with a fleet of 262 locomotives, a given algorithm would pick 52
locomotives that it determined to be the best. Because this was historical data, the
locomotives could be ranked by how they actually performed, producing the top 52
“golden units” based on actual time to failure. The success rate was defined as the
number of golden units selected by the algorithm divided by the total number of
golden units. If a given algorithm, after picking 52 units, had 20 golden units in its
pool, its performance would be 20/52 = 38%. Once the mission was over, the case
base would be updated with any new fleet data, and the selection process would be
repeated for the next mission.

Slice 1
Slice 2

Slice 3

22 May 2002 01 Nov 2002 01 May 2003

262 units 634 units 845 units 965 units

01 Nov 2003

Full fleet

Slice 1
Slice 2

Slice 3

22 May 2002 01 Nov 2002 01 May 2003

262 units 634 units 845 units 965 units

01 Nov 2003

Full fleet

20% Threshold
20% = 52 units

20% Threshold
20% = 127 units

20% Threshold
20% = 169 units

Repair
Recommendation
Repair
Recommendation

Fig. 2. Experiment Time Slices and Unit Counts

For our experiment, the performance metric was computed once for each slice.
With chronological data, Slice 2 had the benefit of seeing the aging of the Slice 1

600 A. Varma, K.S. Aggour, and P.P. Bonissone

units, the addition of some new units, as well as information on the performance of
the algorithm on Slice 1. Similarly, Slice 3 benefits from both Slice 1 and 2. We
expected that with increasing information, the selection performance would improve.

3 Background

Three main concepts are embedded in this work. The first is the notion of estimating
electromechanical equipment readiness from the performance of other similarly used
and maintained units. This is especially applicable to military domains where any
single unit may not get enough usage to build a long individual track record to
estimate its fitness for a given mission. We address this through incremental learning
from experience fragments drawn from fleet peers. This application is probably most
relevant to the maintenance community, and we will not discuss it in detail in this
paper.

The second concept of interest is the idea of viewing an equipment fleet as a case
base whose cases evolve with time, with extended time histories describing their state.
The notion of a ‘case’ in a case-based system is often episodic in nature. A case
traditionally captures a set of attributes that define an episode of interest at a
particular instant in time—whether a customer call, meal plan, or a failure requiring
diagnosis, with an associated outcome. The episode, once captured as a case, is itself
not expected to change (though its relevance calculation may be weighed by the age
of the case).

We believe the notion of peers and peer-based-reasoning is a useful specialization
of the general CBR approach when dealing with a case base of complex equipment.
Representing and reasoning with time-extended cases has been discussed by a variety
of authors in different domains. The notion that the state of each case in a case base
can be a function of time was referred to as ‘Continuous Case-Based Reasoning’ and
identified as distinct from discrete, symbolic representations by Ram and Santamaria
(1997). They describe Continuous CBR in the context of a driving task, where
problem solving is incremental due to limited prior knowledge, and continuous
adaptation and learning is essential to incorporate new experiences. An important
issue raised by the authors is case representation—whether the entire experience to
date is a single case, or if there should be a criterion that defines the scope of a single
case. In our application, a major maintenance or overhaul could define such a splitting
criterion. Jaczynski (1997) focuses on the retrieval aspects of cases that reflect time-
extended situations. He distinguishes between sampled numeric series and event-
based time series. In our application, each unit is associated with a sequence of
maintenance events, and to that extent meets the second definition. While we have not
made an attempt to characterize the series of maintenance events in a richer context,
this is a logical extension of our work.

Schlaefer, Schröter, et al. (2001) and Fritsche, Schlaefer, et al. (2002) describe
using CBR on a series of medical tests for kidney transplant recipients. Their data is
described as a “series of infrequent measurements at irregular intervals.” They utilize
dynamic time warping (Berndt and Clifford 1996) to normalize multiple series for
similarity computation and retrieval. In our application, events in a locomotive’s
history are not represented as a time series to be used for similarity matching. We use

 Selecting the Best Units in a Fleet: Performance Prediction from Equipment Peers 601

the ‘odometer’ approach, where the entire history is summarized in a state vector. We
feel that this is a limitation, since the type and sequence of maintenance events,
upgrades, and missions are likely to have a significant impact on readiness.

The third concept of interest is the importance of model maintenance, including
both adaptation and optimization, and its special importance in peer-based reasoning.
As time passes, the attributes of the object under consideration change, and so do its
peers. This is in addition to the expected turnover in the case base as units are
decommissioned and new units enter service. The learning task here is to update the
‘similarity metric’ or the criterion for peer selection.

Research in the CBR community has focused extensively on case based
maintenance. Leake and Wilson (1998), in their review of CBR maintenance
dimensions, point out that the indexing scheme is an integral part of the case base
along with the cases themselves. Smyth (1998) describes a strategy for case deletion
with minimal impact on performance—a pruning approach. Zhang and Yang (1998)
also stress index maintenance to keep a CBR system current. They propose an
iterative approach to weight refinement. An evolutionary algorithm handles the
corresponding function in our application. Leake and Wilson (1999) explicitly address
the situation when changing tasks and environment could render part of the case base
obsolete or invalid. They identify problem-solution regularity as a basic premise of
CBR and advocate monitoring performance over time to spot a decline in this
measure. In our application, unit to peer irregularity over time is almost a given, and
the analogous issue becomes how often to update the ‘peer selection’ or similarity
metric to maintain performance while incorporating new knowledge. In our
experiments, similarity metric updates occur at each of the three time slices. Results
presented later highlight the need for continual adaptation and parameter
optimization.

4 System Implementation

Each case in the case base represents a distinct locomotive with a number of features
associated, including age, mileage, and parameters related to maintenance and repair
history. Neighbor retrieval is based on these features, resulting in peers that are of
similar design and usage. Each locomotive record also contains a record of its own
pulse durations between repairs, i.e., how long the train was in a useful state. These
pulses represent the availability durations of the locomotives, and so the peer’s pulses
are used to predict the remaining availability of the probe.

The CBR system was implemented using SOFT-CBR: a Self-Optimizing Fuzzy
Tool for Case-Based Reasoning (Aggour, Pavese, et al. 2003). SOFT-CBR is an
extensible, component-based tool with a number of pre-existing modules to
implement a CBR system in Java. SOFT-CBR significantly reduced the
implementation and testing cycles for these experiments, as it provided large portions
of the functionality pre-built and pre-tested.

SOFT-CBR is configured using an eXtensible Mark-up Language (XML) file.
Changing the parameters in the file can change the attributes used to define cases, the
method by which similarities are calculated, and determine what types of outputs are

602 A. Varma, K.S. Aggour, and P.P. Bonissone

valid. Optimizing the engine requires the optimization of a set (or subset) of the
parameters in this configuration file. The SOFT-CBR modules used are described
below.

4.1 Retrieve

An Oracle database contains the complete case base, with individual cases occurring
as single rows in a table. In SOFT-CBR, neighbors are first retrieved, and then a
similarity score is calculated between the probe and each neighbor. The probe refers
to the unit for which we are trying to predict the remaining life.

Neighbor Retrieval
A SOFT-CBR case base component is responsible for constructing an SQL database
query to retrieve peers of the probe case. Each case in the case base is represented by
an array of N distinct features, creating an N-dimensional feature space. To retrieve
neighbors, a range query is constructed around each numerical feature, defining an N-
dimensional hyperrectangle in the feature space. A single support value si is defined
for each dimension i. Neighbors are retrieved if and only if each of their features xi
fall within the support of the probe’s features pi, such that pi – si xi pi + si ∀
i=1,…,N. The case base component returns all cases that appear similar to the probe
(fall within this hyperrectangle), and then the engine uses a similarity calculation
component to rank them.

Similarity Calculation
A Truncated Generalized Bell Function (TGBF) (Jang 1993) along each dimension is
a fuzzy membership function that produces a score representing the degree of
similarity of that feature. For each dimension i, a separate TGBFi(xi;ai,bi,pi) function
exists centered at the feature values of the probe pi, as shown in Equation 1. Here, is
a truncation parameter, e.g. = 10-5.

>−−+=

−

otherwise

pxif
a

px
pbaxTGBF ii

b

i

ii

iiiii

i

0

)(1),,;(

12

ε
(1)

Feature value xi is determined from the peer and value pi is from the probe, so each
TGBFi has only two free parameters, ai and bi. This function was selected because it
affords these two degrees of freedom, enabling the control of both the spread and
curvature of the fuzzy membership function.

The most similar peers should be the closest to the probe along all N dimensions,
so a similarity measure defined as the intersection of the individual TGBFi values is
used. Further, to represent the different relevance that each criterion should have in
the evaluation of similarity, a weight wi is attached to each feature. The similarity
measure S(p,x) between probe p and neighbor x becomes a weighted minimum
operator, as shown in Equation 2, where weights wi ∈ [0,1].

()[]{ }),,;(,1maxmin),(1 iiiiii
N
i pbaxTGBFwxpS −= = (2)

 Selecting the Best Units in a Fleet: Performance Prediction from Equipment Peers 603

The set of values for the supports si, weights wi, and parameters ai and bi are design
choices that impact the proper selection and ranking of peers. Each value is initially
chosen by hand and then optimized using an evolutionary algorithm.

4.2 Reuse

Once identified, the peers are used to make a prediction of the remaining operational
availability of the probe locomotive. Each pulse begins with the return of a
locomotive to service, and ends with an event that renders the locomotive temporarily
unavailable (a breakdown or scheduled or unscheduled maintenance). The SOFT-
CBR reuse component uses the peer’s historical pulses to first estimate the next pulse
of each peer. These estimates are then aggregated to predict the remaining availability
of the probe. If no neighbors are retrieved, then a default value specified in the
configuration file is used. This default value represents “no decision” from the
engine.

Each neighbor x has mx historical pulses, which can be represented in a vector Hx =
[P1,x, P2,x, …, Pm,x]. For each neighbor, the goal is to determine the duration of the
next pulse Pm+1,x. There was not enough historical data to generate reliable local
regressions, so simpler models were experimented with, such as averages and
medians. It was found that the most reliable way of generating the next pulse Pm+1,x
from the pulse vector Hx was to use an exponential average that gives more relevance
to the most recent information. The exponential average function can be found in
Equation 3, where weight ∈ [0.5,1]. Also critical to the performance of the model is
the choice of the value of .

x
m

xi
imm

i

xmxmxmxm

PP

PPPP

,1
1

,2

,1,,,1

)1()1(

)1(
−−

=

−+

−+−=
−+==

ααα
αα (3)

These individual predictions Pm+1,x are aggregated to make a prediction Pm+1,p of the
remaining availability of the peer. A weighted average of the individual neighbor
predictions is calculated, using the similarities of the peers as weights. Equation 4
shows the specific weighted average calculation.

=

= +
+

×
=

n

x

n

x xm

pm
xpS

PxpS
P

1

1 ,1

,1
),(

),(
 (4)

5 Optimization

The CBR had a number of parameters that required tuning to identify an optimal
combination of values. Using the Evolutionary Algorithm (EA) already implemented
in SOFT-CBR greatly simplified the task of optimizing the CBR’s parameters. EA’s
(Goldberg 1989; Holland 1992) define an optimization paradigm based on the theory
of evolution and natural selection.

An EA is composed of a population of individuals (“chromosomes”), each of
which contains a vector of elements that represent distinct tunable parameters within

604 A. Varma, K.S. Aggour, and P.P. Bonissone

the CBR configuration. For our system, given N dimensions in the universe of
features, the chromosome vector c can be found in Equation 5.

() () ()[]

[]

 weightaverage lexponentia

parameters),(

 weightsfeature1,0

parameterssupport retrieval

;, ..., ,, ,,;, ... , ,;, ... , , 22112121

=
=

=∈
=

=

α

α

iii

i

i

NNNN

TGBFba

w

swhere

bababawwwsssc

(5)

Figure 3 visualizes how the EA and CBR interact in SOFT-CBR. A chromosome
defines a complete configuration of the CBR, so an instance of the CBR can be
initialized for each chromosome, as shown in Figure 3. On the left-hand side there is
a population P(t) of chromosomes ci, each of which go through a decoder to allow
them to initialize a CBR on the right. The CBR then goes through a round of leave-
one-out testing.

The EA maintains a population of 30 individuals evolved over 200 generations.
Two types of mutation (randomly permuting parameters of a single chromosome) are
used to produce new individuals in the population pool: Gaussian and uniform. The
more fit chromosomes in generation t will be more likely to be selected for mutation
and pass their genetic material to the next generation t+1. Similarly, the less fit
solutions will be culled from the population. At the conclusion of the EA’s execution,
the single best chromosome is written to the SOFT-CBR configuration file as the new
CBR configuration.

Fig. 3. EA and CBR Interaction

The quality of the CBR instance (the “fitness” of the chromosome) is determined
by analyzing the results of the leave-one-out testing. A fitness function f is used to
give a quantitative representation of the quality of the output. The objective of the
experiment is to identify the top 20% of the locomotive population based on

 Selecting the Best Units in a Fleet: Performance Prediction from Equipment Peers 605

remaining availability, so the fitness function is defined by ordering each test case in
descending order by the prediction Pm+1,p of their remaining pulses. The top 20% are
then selected, and this predicted top 20% is compared to the actual top 20%—the
golden units. Equation 6 is then used to give a final fitness score f(c) to the
chromosome. A True Positive is simply a locomotive predicted to be in the top 20%
that was in the actual top 20%. A False Positive is a locomotive falsely predicted to
be in the top 20%.

Positives False ofcount

Positives True ofcount

)(

=
=

+
=

FP

TPwhere
FPTP

TP
cf

 (6)

6 Results and Analysis

Earlier we mentioned some simple heuristics that might be used for unit selection.
We tested these by selecting the best 20% of the fleet sorted on the dimensions in
Table 3. Through random selection, a sample should have 20% of its population
composed of the verified golden units. It is interesting to note that the newest units by
age, or those with the lowest mileage produced selections that were no better than the
random selection. Having a low frequency of maintenance appeared to provide the
best performance.

Table 3. Single Heuristic Classification Results

Single Heuristic % of Correctly
Classified Units

Lowest Mileage 17%
Newest Units 18%
Random 20%
Highest Energy (MWHRS) Generated 24%
Highest Miles / Hours Moving 26%
Highest Percentage Hours Moving 29%
Lowest Percentage of: Subsystem 10 Failures 38%
Lowest Ratio: Recommendations / Age [Rx/yr] 49%

We next used Weka (Witten and Frank 2000), a freely available data-mining
software suite, to perform k-Nearest Neighbor retrieval over each time slice with
leave-one-out testing. Some parameters like the aggregation function and number of
neighbors to retrieve were manually tuned through trial and error. As the prediction
variable, we used the median time to failure for each unit, and the best 20% were
defined as those with the best medians. This was a first step to see how well peers
can approximate an individual units’ retrospective performance. The average
performance achieved on a 10-fold cross-validation run was reported. The results are
shown in Figure 4.

606 A. Varma, K.S. Aggour, and P.P. Bonissone

54%

20% 20%20%

50%
46%

32%

55%

41%

10%

20%

30%

40%

50%

60%

1 2 3 Time Slice

S
el

ec
ti

o
n

 P
er

fo
rm

an
ce

Random

Non Peers

Peers

Fig. 4. Results of 1st Set of Experiments (Manual Tuning)

Using peers consistently outperformed the best available non peer-based single
heuristic at each time slice. Another aspect of interest was that the number of peers
required for the best estimates appeared to stabilize at ~1% of the total fleet size.
These promising results led us to develop a CBR system with the ability to evolve the
best parameter settings for peer retrieval and aggregation. This produced varying
gains in performance, as shown in Table 4, in the column ‘Evolved Peers’.

Table 4. Results with Evolutionary Tuning of Peer Selection Parameters

 Selection Performance

Slice Evolved Peers Peers Non-Peer Random

1 48.1% 41% 32% 20%

2 55.6% 55% 46% 20%

3 60.4% 54% 50% 20%

After these experiments we approached our final objective—predicting the best
units for the next mission. The retrospective median used earlier was replaced by the
time-to-failure for each unit immediately after each slice. This resulted in a true
prognostic experiment. Based on the DARPA steering committee’s suggestions, we
changed the selection metric from a percentage to a fixed number: 52 units. In Slices
1, 2, and 3 we now try to pick the best 52 units, representing 20%, 8% and 6% of the
fleet, respectively.

The most difficult experiment (Slice 3) also produced the most encouraging results.
Using the best single heuristic (Non-Peer) resulted in a performance plateau around
37% (Table 5). Using a peer-based approach and evolving the selection criterion for
each slice, we were able to correctly identify 63% of the units that lasted the longest.
This is superior to the non-peer and random selection performance, as shown in Table 5.

 Selecting the Best Units in a Fleet: Performance Prediction from Equipment Peers 607

Table 5. Selecting the Best Performers for the Next Pulse

 Selection Performance

Slice Evolved Peers Non-Peer Random

1 48.1% 32% 20%

2 55.8% 37% 8%

3 63.5% 37% 6%

Finally, we studied the impact of not updating the peer similarity model after
optimizing it for Slice 1. As shown in Figure 5, by Slice 3, the performance
deteriorated to near random. This reinforces the importance of not only investing
effort in the right representation and reasoning model, but also into the ability to
maintain it over time.

54.88%

42.24%

24.81%

42.85%

25.86%

20%20% 20%

10%

20%

30%

40%

50%

60%

1 2 3 Time Slice

S
el

ec
ti

o
n

 P
er

fo
rm

an
ce

Evolved Peers - w ith Updates

Evolved Peers - no Updates

Random

Cost of not
maintaining
the models

Fig. 5. Decline in Selection Performance Due to Lack of Peer Similarity Model Maintenance

7 Conclusions

For DARPA, the motivation of these experiments was to test if equipment readiness
could be computed with relatively sparse deployment history. This required a
specialized data set derived from actual equipment operation, one that GE was able to
provide by drawing on the breadth of its transportation operations. The results show
that the physical analogy of ‘equipment peers’ holds promise as a way to incrementally
reason from experience. We believe this is a key contribution of this work.

From the beginning, CBR has effectively relied on analogy to position itself as a
reasoning approach. The notion of a case base of ‘objects’ and ‘entities’ rather than
experiences was intriguing to us. Peer groups forming and disbanding over the
lifecycle of the fleet was a natural extension of the analogy. Maintenance of the
criteria for peer identification was critical to this task, given the dynamic nature of the
domain.

608 A. Varma, K.S. Aggour, and P.P. Bonissone

Directions for future work include experimenting with fleets with a mix of long
and short track records, and better understanding how a unit’s own track record
should be integrated with the estimates provided by its peers. We also plan to test this
approach on data from different kinds of vehicles, including aircraft and medical
imaging equipment.

Acknowledgements

This work was funded by DARPA, through contract CACI 621-04-S-0031. The
authors acknowledge the help of Drs. Norm Sondheimer, Al Wallace, and Peter Will,
members of the DARPA Steering Committee, and GE Rail who provided us with the
data sets and domain knowledge that were indispensable for the model generation and
validation.

References

Aggour, K.S., Pavese, M., Bonissone, P.P., and Cheetham, W.E. 2003. SOFT-CBR: A Self-
Optimizing Fuzzy Tool for Case-Based Reasoning, Proceedings of the 5th International
Conference on Case-Based Reasoning, Springer-Verlag, pp 5-19

Berndt, D.J. and Clifford, J. 1996. Finding patterns in time series: A dynamic programming
approach, Advances in Knowledge Discovery and Data Mining, American Association for
Artificial Intelligence, pp 229-248

Fritsche, L., Schlaefer, A., Budde, K., Schröter, K., and Neumayer, H.H. 2002. Recognition of
Critical Situations from Time Series of Laboratory Results by Case-Based Reasoning,
Journal of the American Medical Informatics Association, vol. 9, no. 5, pp 520-528

Goldberg, D.E. 1989. Genetic Algorithms in Search, Optimization and Machine Learning,
Addison-Wesley Longman Publishing Co., Inc.

Holland, J.H. 1992. Adaptation in Natural and Artificial Systems, MIT Press
Jaczynski, M. 1997. A Framework for the Management of Past Experiences with Time-

Extended Situations, Proceedings of the 6th International Conference on Information and
Knowledge Management, ACM Press, pp 32-39

Jang, R. 1993. ANFIS: Adaptive-Network-Based Fuzzy Inference System, IEEE Transactions
Systems, Man, and Cybernetics, vol. 23, no. 3, pp 665-685

Leake, D.B. and Wilson, D.C. 1998. Categorizing Case-Base Maintenance: Dimensions and
Directions, Proceedings of the 4th European Workshop on Case-Based Reasoning,
Springer-Verlag, pp 196-207

Leake, D.B. and Wilson, D.C. 1999. When Experience is Wrong: Examining CBR for
Changing Tasks and Environments, Proceedings of the 3rd International Conference on
Case-Based Reasoning, Springer-Verlag, pp 218-232

Ram, A. and Santamaria, J.C. 1997. Continuous Case-Based Reasoning, Artificial Intelligence,
vol. 90, pp 25-77

Schlaefer, A., Schröter, K., and Fritsche, L. 2001. A Case-Based Approach for the
Classification of Medical Time Series, Proceedings of the 2nd International Symposium on
Medical Data Analysis, pp 258-263

Smyth, B. 1998. Case-Base Maintenance. Proceedings of the 11th International Conference on
Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, vol.
2, pp 507-516

 Selecting the Best Units in a Fleet: Performance Prediction from Equipment Peers 609

Varma, A. and Roddy, N. 1999. ICARUS: design and deployment of a case-based reasoning
system for locomotive diagnostics, Engineering Applications of Artificial Intelligence, vol.
12, no.6, pp 681-690

Witten, I.H. and Frank, E. 2000. Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations. Morgan Kaufmann Publishers

Zhang, Z. and Yang, Q. 1998. Towards Lifetime Maintenance of Case Base Indexes for
Continual Case Based Reasoning. Proceedings of the 8th International Conference on AI
Methodologies, Systems and Applications, pp 489-500

CCBR–Driven Business Process Evolution

Barbara Weber1, Stefanie Rinderle2, Werner Wild3, and Manfred Reichert4

1 Quality Engineering Research Group, Institute of Computer Science,
University of Innsbruck – Technikerstrasse 21a, 6020 Innsbruck, Austria

Barbara.Weber@uibk.ac.at
2 Dept. Databases and Information Systems, University of Ulm, Germany

rinderle@informatik.uni-ulm.de
3 Evolution Consulting, Innsbruck, Austria

werner.wild@evolution.at
4 Information Systems Group, University of Twente, The Netherlands

m.u.reichert@cs.utwente.nl

Abstract. Process-aware information systems (PAIS) allow coordinat-
ing the execution of business processes by providing the right tasks to the
right people at the right time. In order to support a broad spectrum of
business processes, PAIS must be flexible at run-time. Ad-hoc deviations
from the predefined process schema as well as the quick adaptation of the
process schema itself due to changes of the underlying business processes
must be supported. This paper presents an integrated approach com-
bining the concepts and methods provided by the process management
systems ADEPT and CBRFlow. Integrating these two systems enables
ad-hoc modifications of single process instances, the memorization of
these modifications using conversational case-based reasoning, and their
reuse in similar future situations. In addition, potential process type
changes can be derived from cases when similar ad-hoc modifications at
the process instance level occur frequently.

1 Introduction

For a variety of reasons companies are developing a growing interest in aligning
their information systems in a process-oriented way to provide the right tasks to
the right people at the right point in time. However, when automating business
processes it is extremely important not to restrict users. Early attempts to real-
ize process-aware information systems (PAIS) have been unsuccessful whenever
rigidity came with them [1,2]. Therefore, a flexible PAIS must allow authorized
users to deviate from the pre-modeled process schema if needed (e.g., by dynam-
ically inserting, deleting or moving process steps). In addition, the PAIS must
be quickly adaptable to changes of the underlying business processes, e.g., due
to business process reengineering efforts or the introduction of new laws [3,4,5].

In the ADEPT project we have developed a next generation process man-
agement system (PMS) that satisfies these needs. On the one hand, the ADEPT
PMS offers full functionality with respect to the modeling, analysis, execution,

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, pp. 610–624, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNAI

CCBR–Driven Business Process Evolution 611

and monitoring of business processes [1,3,6]. On the other hand, it provides sup-
port for adaptive processes at both the process instance and the process type
level. Changes at the instance level may affect single process instances and be
performed in an ad-hoc manner, e.g., to deal with exceptional or unanticipated
situations [1]. Process type changes, in turn, can be applied to adapt the PAIS
to business process changes. In this context, concurrent migration of hundreds
up to thousands of process instances to the new process schema may become
necessary. ADEPT allows to perform the respective migrations on-the-fly while
preserving process consistency and system robustness [3,6,7].

In practice, process type changes are often driven by previous ad-hoc adap-
tations of individual process instances. Usually, similar or equivalent changes of
a larger number of process instances indicate the need for adapting the process
type (i.e., the process template) itself [8]. For example, in a patient treatment
process an additional lab test activity has been inserted for a significant number
of process instances; in order to better reflect the real-world process, a process
schema evolution should then be initiated to create a new process template ver-
sion which includes this additional activity (cf. Fig. 2). So far, ADEPT has not
adequately dealt with this fact and has not considered the reuse of information
about previous ad-hoc changes. In particular, it has not maintained semantic in-
formation about these changes (e.g., their reason and context). Thus, it has been
the responsibility of the process designer to identify frequently applied changes
and to adapt process types accordingly.

By contrast, CBRFlow [9] enables users to apply process instance changes in a
more intelligent way. Particularly, it allows to document the reasons for a process
instance change and to reuse information about previously performed ad–hoc
changes when defining new ones. For this conversational case-based reasoning
(CCBR) [10] is used. So far, focus has been put on ad–hoc changes of single
process instances whereas process type changes have not yet been considered. In
order to provide comprehensive change support a PAIS must capture the whole
process life cycle and all kinds of changes in an integrated way.

In this paper we provide such an integrated approach, which combines the
concepts and methods offered by ADEPT and CBRFlow: On the one hand, the
combined system provides a powerful process engine, which supports all kinds
of changes in one system. On the other hand, it enables the intelligent reuse of
process instance changes and the derivation of process type changes from the
collected information. The added value offered by this integration is shown in
Table 1.

Table 1. Benefits from Integrating ADEPT and CBRFlow

ADEPT CBRFlow ADEPT+CBRFlow

process instance changes + + +
reuse of process instance changes + +
process type changes + +
deriving process type changes +

612 B. Weber et al.

Section 2 provides background information, Section 3 discusses issues that
arise when trying to derive process type changes from cases. In addition to the
resulting evolution of the business processes the corresponding case-bases evolve
over time as well. This important issue is covered in Section 4. Section 5 discusses
related work and Section 6 closes with a summary and an outlook on future work.

2 Background

In this section we provide background information regarding process manage-
ment and case-based reasoning (CBR) as used in our approach.

2.1 Process Management

For each business process supported (e.g., booking of a business trip or handling
a medical order) a process type T has to be defined. Formally, such a type is
represented by a process schema S of which different versions may exist. In
Fig. 1, for example, S and S′ correspond to different schema versions of the
same process type T (thus reflecting the evolution of T).

In the following, a process schema is represented by a directed graph, which
defines a set of activities – the process steps – and the control flow between
them.1 In Fig. 1 process schema S consists of 6 activities: for example, activity
Admit patient is followed by activity Make appointment in the flow of control
whereas Prepare Patient and Inform Patient can be processed in parallel.
Formally:

Definition 1 (Process Schema). A process schema S is defined by a tuple
(N, E) where N denotes the set of activities and E the set of control edges (i.e.,
precedence relations) between these activities.

At runtime new process instances can be created and executed based on
schema S. Similar to Petri Nets, the execution state of a particular process in-
stance is captured by a marking function M = (NS, ES). It assigns to each
activity n its current status NS(n) ∈ {NOT ACTIVATED, ACTIVATED, FIN-
ISHED} and to each control edge its marking ES(e) ∈ {NOT SIGNALED, SIG-
NALED}. For the top most process instance I

(1)
ν in Fig. 1, for example, activity

Admit patient has already been finished and therefore its outgoing edge is
marked as SIGNALED. Activity Make appointment, in turn, is currently acti-
vated, i.e., offered to users for execution in their worklists.

Usually, a process instance I is executed according to the control flow de-
fined by its original schema S. As motivated in Section 1, however, users may
have to deviate from the original schema (e.g., by adding new activities or by

1 In this paper we restrict our considerations to schemes with sequential and parallel
activities. Our approach, however, considers more complex control structures as well
(e.g., conditional branchings, loops, and synchronizations between parallel execution
branches). Details of the process meta model used can be found in [1,6,7].

CCBR–Driven Business Process Evolution 613

I (= 1...n)

Admit

patient

Inform patient

Prepare patient

Examine

patient

Deliver

report

Schema Version S:

Make

appointment

Lab

test

Schema Version S‘:

Migrate compliant

instances

Admit

patient

Make

appointment

Prepare

patient

Examine

patient

Deliver

report

I
‘

(‘ {1, ..., n})

Lab

test

I
μ

(μ = 1...m)

I (= 1...l)

Migrate compliant

instances

I ‘ (‘ {1, ..., m})

I ‘ (‘ {1, ..., l})

Lab

test

Migrate compliant

instances

Process Type

Change
T

Process Instance Level:

Activity finished

Activity activated

Process Type Level:

(1)

(2)

(3)

(1)

(2)

(3)

Fig. 1. Migration of Process Instances – Clinical Example

deleting existing ones). For this reason, we must distinguish between two ba-
sic classes of process instances, those that still follow their original schema and
those that have been individually modified during runtime. In the following, we
call instances of the former class unbiased and those of the latter one biased.
Correspondingly, a biased instance I cannot solely be characterized by its orig-
inal schema S and marking M , but must also capture the sequence of ad-hoc
changes ΔI = (a1, . . . , ak) applied to it so far. Generally, several ad-hoc changes
may have been applied to a biased instance I at different points in time.

For example, consider Fig. 1: Process instances I
(1)
ν , ν = 1 . . .n are unbiased.

By contrast, process instances I
(2)
μ , μ = 1 . . .m and I

(3)
ω , ω = 1 . . . l are biased

since their current execution schema deviates from their original schema S. In-
stances I

(3)
ω , ω = 1 . . . l, for example, are biased due to the dynamic deletion of

activity Deliver report. Formally:

Definition 2 (Process Instance).
A process instance I is defined by a tuple (S, ΔI , M) where

– S = (N, E) denotes the process schema I was originally created on.
– ΔI = (a1, . . . , ak) comprises the instance–specific sequence of ad–hoc modi-

fications which have been applied to I so far (i.e., changes transforming the
process schema S, instance I was created from, into the current execution
schema SI = S + ΔI = (N ′, E′)).Thereby ai = (op, s, paramList) denotes
an operation op ∈ OP which operates on a schema subject s (i.e., activities

614 B. Weber et al.

Table 2. A Selection of ADEPT Change Operations∗

Change Operation op Effects on Schema S
applied to Schema S

Additive Change Operations

serialInsert(S, X, A, B) insert activity X into schema S between
the two directly connected activities A and B

parallelInsert(S, X, (A)) insert activity X into schema S parallel to activity A

Subtractive Change Operations

deleteActivity(S, X) delete activity X from schema S
∗A detailed description of all change operations supported by ADEPT can be found in [11,12].

or edges) using parameters paramList. OP is the set of change operations
provided by ADEPT, a subset of these operations is given in Table 2.

– M =(NS, ES) reflects the current marking of I. It assigns to each activity
n ∈ N ′ its current status NS(n) and to each edge e ∈ E′ its marking ES(e).

2.2 Case-Based Reasoning and Learning Processes

Case-based reasoning is a contemporary approach to problem solving and learn-
ing. New problems are dealt with by applying past experiences – described as
cases – and by adapting their solutions to the new problem situation [13]. Thus,
CBR contributes to incremental and sustained learning: Every time a new prob-
lem is solved, information about it and its solution is retained and therefore
immediately made available for solving future problems [14].

Conversational CBR is an extension to the CBR paradigm, which actively
involves users in the inference process [15]. A CCBR system can be character-
ized as an interactive system that, via a mixed-initiative dialogue, guides users
through a question-answering sequence in a case retrieval context. Unlike tra-
ditional CBR, CCBR does not require the user to provide a complete a priori
problem specification for case retrieval, nor requires him to provide knowledge
about the relevance of each feature for problem solving. Instead, the system as-
sists the user in finding relevant cases by presenting a set of questions to assess
the given situation. Furthermore, it guides users who may supply already known
information on their initiative. Therefore, CCBR is especially suitable for han-
dling exceptional or unanticipated situations that cannot be dealt with in a fully
automated way.

In our approach a case c represents a concrete ad-hoc modification of a pro-
cess instance I which can be reused by other instances. It consists of a textual
problem description, a set of question-answer pairs, and a solution part (i.e.,
the action list). The question–answer pairs describe the reasons for the ad-hoc
change and the action list comprises the change operations (and related context
information) applied to I.

CCBR–Driven Business Process Evolution 615

Definition 3 (Case, Case–Base).
A case c is a tuple (pd, { q1an1, . . . , qnann }, sol, freq) where

– pd is a textual problem description
– { q1an1, . . . , qnann} denotes a set of question-answer pairs
– sol = { aj | aj = (opj , sj , paramListj), j = 1, ..., k} is the solution part

of the case denoting a list of actions (i.e., a set of changes that have been
applied to one or more process instances; see also Def. 2)

– freq ∈ N denotes the reuse frequency of case c

A case–base CB = { c1, . . . , cm} is defined as a set of cases.

3 Deriving Evolutionary Process Changes from Cases

Fig. 2 illustrates our approach: it shows how CCBR is used to perform ad-hoc
changes of single process instances (cf. Section 3.1) and how it triggers process
type changes if the same or similar ad-hoc changes happen over and over again
(with respect to instances of a given process type; cf. Section 3.2). Fig. 2 also
indicates that the evolution of a process schema may require the concurrent
migration of the associated case-base (cf. Section 4).

As already mentioned, new instances can be created based on a given process
schema and then be executed according to that schema. If required, authorized
users may deviate from the pre-modeled process schema during runtime at the
level of single process instances. They apply CCBR to retrieve knowledge about
previous ad-hoc changes. In addition, they document the new change and collect
information about the reasons which required the respective ad-hoc deviation.
This information is then immediately available for future reuse in similar sit-
uations. Finally, if a case is frequently reused (i.e., the same ad-hoc change is
often applied to instances of a particular process type), case usage may exceed a
predefined threshold. In this situation, the knowledge engineer is notified about
the potential need of a process type change. He can then take action, e.g., by
adapting the process type and migrating the case-base.

3.1 Performing Ad-Hoc Changes Using CCBR

Integrating ADEPT and CBRFlow offers promising perspectives: It allows for
ad-hoc modifications at the process instance level in a correct and consistent
manner, it facilitates the memorization of these modifications using CBR tech-
niques, and it provides for reusing respective cases in similar, future situations.
The underlying CBR cycle [14] can be described as follows:

Adding a New Case. Whenever a user wants to apply an ad-hoc change at the
process instance level and no similar cases can be found in the CCBR system,
she adds a new case c = (pd, {q1an1, . . . ,}, sol, 1) to the case-base. The user
enters this case by briefly describing the current problem, by entering a set of
question-answer pairs describing the reasons for the ad-hoc deviation, and by
specifying the actions to be taken from the list of available change operations.

616 B. Weber et al.

Lab

test

Add / Reuse

Case LabTest

I (= 1...n)

I (= 1...n)

Changed Process

Instances

Lab

test

CCBR

In
s
ta

n
ti
a
ti
o
n

P
ro

c
e
s
s

T
y
p
e

C
h
a
n
g
e

Process Instance Change

Notific
ation

Threshold exceeded

Process Instances

Workflow User

Knowledge Engineer

Knowledge

Engineer

Migrate

case-base

Prepare

Patient

Examine

patient

Make

appointment

Schema S‘:

Enter

order Inform

patient

Lab

Test

Make

appointment

Deliver

report

Prepare

Patient

Schema

S:

Enter

order Inform

patient

Prepare

Patient

Examine

patient

Deliver

report

Make

appointment

Fig. 2. Deriving Evolutionary Process Changes from Cases

Question-answer pairs can be entered by either selecting the question from a list
of previously entered questions (i.e., reusing questions from existing cases) or,
when no suitable question is already in the system, by defining a new question
and giving the appropriate answer. Depending on the permissions of the user
and the current state of the process instance (i.e., which activities are currently
performed) only a subset of the ADEPT operations may be applicable. The user
selects the desired change operations op1, . . . , opp and the subjects s1, . . . , sp

they operate on (e.g., activities and control edges). In addition, she provides the
parameters for each selected operation. Finally, the case is retained and thus
immediately made available for future reuse.

Retaining a Case. Unlike CBRFlow [9], our approach stores cases not relative
to the location in the process graph where the ad-hoc modification occurred (e.g.,
relative to an activity), but in reference to the process schema itself. There is one
case-base version for each process schema version S, as they might be relevant
at different locations in the process. For example, the insertion of a particular
activity (e.g., order lab test) might become necessary at different points in time
during process execution.

Case Retrieval. For case retrieval the CCBR approach as described in [10]
has been adapted. When deviations from the predefined process schema become
necessary the user initiates case retrieval in the CCBR component. The system
then assists her in finding already stored, similar cases by presenting a set of
questions. Users can directly answer any of the displayed questions (in arbitrary
order) or additionally apply a filter to the case-base by specifying an operation op

CCBR–Driven Business Process Evolution 617

as well as the subject s on which the operation is supposed to operate. Filtering
is done by selecting values from predefined lists and by ignoring those cases that
do no match the filter criteria (i.e., that do not have the selected operation and
subject in the actions list); only the remaining cases are presented. Formally:

Definition 4 (Filtered Case–Base). Let CB = {c1, . . . , ck} be a case–base
with ci = (. . . , soli, . . .) (i = 1, .., k) and soli = {(opj , sj , . . .)} (j = 1, .., m) (cf.
Def. 3). Then the filtered case-base CBfilter can be determined as follows:

CBfilter =

⎧⎨
⎩

{ci ∈ CB | ∃(opj, sj , . . .) ∈ soli : opj = op ∧ sj = s} ifA
{ci ∈ CB | ∃(opj, sj , . . .) ∈ soli : opj = op} ifB
CB otherwise

whereby
• A: user has specified change operation op ∈ OP and subject s
• B: user has specified change operation op ∈ OP

The system then searches for similar cases by calculating the similarity for
each case in the case-base CBfilter . It then displays the top n ranked cases
(ordered by decreasing similarity) and their reputation score, which indicates
how successfully each case has been applied in the past. Similarity is calculated
by dividing the number of correctly answered questions minus the number of
incorrectly answered questions by the total number of questions in the case.
Formally:

Definition 5 (Similarity). Let c = (pdc, QAc= {qc
1anc

1, . . . , q
c
nanc

n}, . . .) be
a case of case–base CB and Q = {qQ

1 anQ
1 , . . . , qQ

manQ
m} be a query against CB.

Then sim(Q, c) denotes the similarity between Q and c. Formally:

sim(Q,c) = same(Q,c)−diff(Q,c)
|QAc|

whereby
• same(Q, c) = |QAc ∩ Q|
• diff(Q, c) = |{qc

i anc
i ∈ QAc | ∃ qQ

j anQ
j ∈ Q with

qc
i = qQ

j ∧ anc
i
= anQ

j ; i = 1,..,n; j = 1,.., m}|

Case Reuse. ADEPT supports different kinds of ad-hoc changes which, for ex-
ample, allow users to skip activities, to change activity orders, or to insert new
activities [1]. In particular, the system ensures that ad-hoc changes do not lead
to unstable system behavior2 or to inconsistent instance states. When an excep-
tional or unexpected situation occurs, the user is assisted in selecting the desired
change operations and in setting the change context (e.g., the predecessors and
successors of an activity to be inserted) accordingly.

Generally, change definition requires user experience, in particular if the in-
tended change requires concurrent adaptations (e.g., when deleting a particular

2 None of the guarantees (e.g., absence of deadlocks, correctness of data flow) which
have been achieved by formal checks at buildtime are violated due to the change.

618 B. Weber et al.

activity, data-dependent activities may have to be deleted as well). Therefore,
the reuse of existing knowledge about previous ad-hoc changes is highly desir-
able. When a user decides to reuse an existing case, the actions specified in the
solution part of the case are forwarded to and carried out by the ADEPT change
engine. The reuse counter is increased and a work item is created for evaluating
the ad-hoc change later on to maintain the quality of the case-base.

When the reuse counter exceeds a certain configurable threshold the knowl-
edge engineer is notified about the potential need to perform a schema evolution
(cf. Section 3.2). Altogether, the reuse of existing ad-hoc changes contributes to
hide as much complexity from users as possible.

Ensuring Quality Through Case Evaluation. The accuracy of the cases in
the case-base is crucial for the overall performance of a CBR system and conse-
quently for the trust users have in it. When cases are not added by the knowledge
engineer but by end users, evaluation mechanisms are needed to ensure quality
of the cases in the case-base.

Therefore, similar to Cheetham and Price [16], we propose to augment the
CBR cycle with the ability to determine the confidence in the accuracy of indi-
vidual solutions. However, for CCBR systems the accuracy cannot be determined
automatically as the semantics of the question-answer pairs are, unlike in tra-
ditional CBR systems, unknown to the system. For this purpose we apply the
concept of reputation from e-commerce where such systems are used to build
trust among strangers like, for instance, in eBay’s feedback forum [17]. There,
each positive feedback on a transaction increases the reputation score of a seller,
while each negative feedback results in a decrease. In our approach, we use the
concept of reputation to indicate how successfully a case has been reused in the
past, i.e., how much it has contributed to the performance of the case-base, thus
indicating the degree of confidence regarding the accuracy of this case. Like in
eBay, users are encouraged to provide feedback when adding or reusing a case.
For this purpose, a new work item representing an optional feedback task is
automatically created and inserted into the worklist of the user who entered or
applied the case. She can then rate the performance of the case either with 1
(positive), 0 (neutral) or −1 (negative), and may optionally specify an addi-
tional comment. The reputation score of a case is then calculated as the number
of distinct users who gave a positive feedback minus the number of those who
gave a negative feedback. Negative feedback usually results in a notification of
the knowledge engineer (see below).

During case retrieval the CCBR system displays the overall reputation score
together with a table of the totals of each rating in the past 7 days, the past
month, and the past 6 months to the user. Upon request the user can read all
comments provided in the past and decide whether the reputation of the case is
high enough for her to have confidence in its accuracy.

Case Revision. Negative feedback results in a notification of the knowledge
engineer who can then revise the case or decide to deactivate it (no deletion is
allowed to foster traceability).

CCBR–Driven Business Process Evolution 619

Workflow User

Title: Perform Lab Test

Description: Additional lab test is needed

Question-Answer Pairs: Patient has diabetes? Yes

Patient has overweight? Yes

Patient is older than 35? Yes

Blood pressure? High

Actions: Insert (LabTest, PreparePatient, ExaminePatient)

Process

Instance I:

Enter

order
Inform

patient

Prepare

Patient

Examine

patient

Deliver

report

Make

appointment

Lab

test

Add Case

Insert (LabTest, Prepare Patient, Examine Patient)

Fig. 3. Adding a New Case to Insert a Process Step

Select Operation

Patient has diabetes?

Patient has overweight?

Patient is older than 35?

Blood pressure?

Question Answer

Yes

Yes

Yes

High

Select Activity/Edge

Insert

LabTest

Case ID

1

Score

100%

Title

Lab test required

Reputation Score

25

positive

Past 7

Days

25

Past

Month

30

Reputation Score: 25

Positive Feedback: 83%

Positive: 30

Negative: 5

Recent Ratings for Case 1:

Past 6

Months

0

neutral 1 1 0

negative 2 5 0

Overall Ratings for Case 1:

Fig. 4. Retrieving Similar Cases

Example. To illustrate the above concepts we provide a simplified medical ex-
ample. As depicted in Fig. 1 the examination of a patient usually takes place
after a preparation step. During the examination the physician recognizes that
the patient suffers from diabetes and he detects several other important risk
factors. Therefore, the physician decides to request an additional lab test for
the patient to be performed after activity Prepare patient and before activ-
ity Examine Patient. As the system contains no similar cases, the physician
enters a new case describing the situation and the action to be taken (Fig. 3).
ADEPT then checks whether the insertion of activity Lab Test is possible for
the respective process instance, and - if so - applies the specified insert operation
to that instance. The latter includes updating the instance markings and user
worklists. If, for example, Prepare patient is completed and Examine Patient

620 B. Weber et al.

is activated, this activation will be undone (i.e., respective work items are re-
moved from user worklists) and the newly inserted activity Lab test becomes
immediately activated. In any case, the newly inserted activity is treated like
the other process steps, i.e., the same scheduling and monitoring facilities exist.

When talking with another diabetic patient some time later, the physician
remembers that there has been a similar situation before and initiates the CCBR
sub-system to retrieve similar cases. As he still remembers that he had performed
an additional lab test, he selects the Insert operation as well as the Lab Test
activity to filter the case-base. He then answers the questions presented by the
system, finds the previously added case, and reuses it (Fig. 4). Of course, the
physician could also directly answer any of the presented questions without se-
lecting an operation or an activity first (e.g., when he doesn’t remember a similar
previous situation).

3.2 Deriving Process Type Changes

When the usage of a particular case exceeds the specified threshold value (i.e.,
based on the frequency the case was reused, cf. Def. 3), the system sends a
notification to the knowledge engineer. He may then initiate a process type
change in order to derive a new version of the process schema. For this purpose
he may directly apply the change operations captured by the respective case;
alternatively, he can adapt the case’s operation set (e.g., by only considering a
subset of it).

When a new process schema is released future instances can be created from
it. However, the challenging question is how to treat already running process
instances, i.e., instances that have been derived from the old process schema
version. Particularly for long-running processes, it is crucial that respective in-
stances can be migrated to the new process schema version if desired (cf. Fig. 1).
In this context ADEPT first checks whether these instances are compliant with
the new process schema or not. Compliant means that the process schema change
can be applied to the instance in its current state so that it can be smoothly
re–linked to the new schema, i.e., migrated to it without causing inconsistencies
or errors (e.g., deadlocks). Then the set of compliant process instances is divided
into unbiased and biased instances. The former can be directly re–linked to the
new schema. For each instance its marking with respect to the new schema
version is automatically determined. For biased process instances further cor-
rectness checks are necessary, e.g., regarding structural correctness (for details
see [12]). Finally, all compliant process instances are running according to the
new schema version whereas non compliant process instances remain running on
the old schema. An example is given in Section 4.

4 Migrating the Case-Base

Assume that the frequencies for reusing certain cases exceed specified thresholds
(cf. Section 3.2). For instance, as illustrated in Fig. 5 the specified thresholds for
reusing case c1 (freq = 51) and c5 (freq = 60) are exceeded, thus triggering a

CCBR–Driven Business Process Evolution 621

Schema Version S: Schema Version S‘:

Process Type

Change
T1

CCBR:

Process Type Level:

X

D

X

Process Type

Change
T2

FF X

Schema Version S‘':

CB:

c1: (..., {sInsert(S, X, C, E)}, 51)

c2: (..., {sInsert(S, X, C, E)}, 1)

c3: (..., {pInsert(S, B, ...)}, ...)

c4: (..., {deleteAct(S, D)}, 60)

c5: (..., {deleteAct(S, D),

sInsert(S, X, C, E)}, 2)

c6: (..., {pInsert(S, C)}, ...)

M
ig

r
a

ti
o

n CB':

c3: (..., {pInsert(S, B, ...)}, ...)

c6: (..., {pInsert(S, C)}, ...)

c7: (..., {deleteAct(S‘, F)}, 55)

c8: (..., {sInsert(S‘, K, ...)}, ...)

c9: (..., {deleteAct(S‘, F)}, 1)

CB'':

c3: (..., {pInsert(S, B, ...)}, ...)

c6: (..., {pInsert(S, C)}, ...)

c8: (..., {sInsert(S‘, K, ...)}, ...)

c10: (..., {sInsert(S‘‘, U, ...)}, ...)

M
ig

r
a

ti
o

n

new cases added for process instances

based on schema version S'

Case-Base Migration

Filter all c
j
= (…, sol

j
, …) from CB with sol

j T1

A B

C

E BA C E BA C E

T1
= {sInsert(S, X, C, E), deleteAct(S, D)}

T2
= {deleteAct(S‘, F)}

Case-Base Migration

Filter all c
k

= (…, sol
k

, …) from CB‘ with sol
k T2

new cases added for process instances

based on schema version S‘'

Fig. 5. Migrating the Case-Base

process type change. The knowledge engineer is informed and decides that the
respective instance changes serialInsert(S,X,C,E) (sInsert(S,X,C,E) for short)
and deleteActivity(S,D) (deleteAct(S,D) for short) should be pulled up to the
process type level. He derives a new process schema version S’ by applying
process type change ΔT1 = {sInsert(S,X,C,E), deleteAct(S,D)}.

This process type change is accompanied by the migration of compliant pro-
cess instances to the new schema version S’, whereas non-compliant process
instances remain running on the old schema version (cf. Section 3.2). In addi-
tion, the challenging question is, which cases of the previous case-base CB (on
S) shall be valid for process instances of S’ as well. This consideration becomes
necessary as the solution part of certain cases may be covered by a process type
change ΔT . Therefore the respective cases are no longer needed. In our approach,
only cases whose solution part is not reflected in the process type change ΔT

are migrated to CB’. By contrast, cases whose solution part is a subset of ΔT

are omitted. Formally:

Definition 6 (Case-Base Migration). Let CB = (c1, . . . , ck) be a case-base
stored for process instances running according to process schema S. If then pro-
cess type change ΔT transforms S into another process schema S’ the new version
CB’ of CB can determined as follows:

CB’ = CB \ {ci = (. . . , solj , . . .) ∈ CB | solj ⊆ ΔT (j = 1,..,m)}

In the example depicted by Fig. 5, cases c1 and c4 that initiated the process
type change, as well as case c2 and c5 are already covered by the new schema
version S’. Consequently, the new version CB’ of case-base CB is built by mi-

622 B. Weber et al.

grating only cases c3 and c6. Of course, new cases may be added to CB’ due to
ongoing ad-hoc changes of instances based on S’. Again, the migration of this
case-base will become necessary if another process schema migration takes place
later on. In our example, type change ΔT2 = {deleteAct(S’,F)} is triggered by
case c7 which exceeds a certain frequency freq (55). The resulting case-base
CB” is shown in Fig. 5.

5 Related Work

This paper is based on the idea of integrating PMS and CCBR. In related work
CBR has been applied to support process modeling [18,19], to the configuration
of complex core processes [20], to the handling of exceptions [21] and for the
composition of Web Services [22]. All of these approaches apply traditional CBR,
to our knowledge there are no other approaches relying on CCBR.

Related work also includes adaptive process management. Existing approaches
either support ad-hoc changes at the process instance level or schema modifica-
tions at the process type level (for an overview see [3]). Except for ADEPT [12]
none of these approaches considers both kinds of changes in an integrated man-
ner. In particular the full life cycle support using CCBR techniques has not been
addressed so far. Though CBRFlow [9] fosters the reuse of ad-hoc changes, it has
not yet considered process type changes. This gap is closed by the integration of
ADEPT and CBRFlow.

AI planning, especially mixed-initiative case-based planning (e.g., NaCo-
DAE/HTN [23], MI-CBP [24], SiN [25] and HICAP [26]) can be seen as com-
plementary to our approach as we primarily focus on the execution of processes
and not on modeling or planning. Process management approaches rely on a pre-
defined process schema (i.e., plan) that is instantiated during run-time in high
numbers. In contrast, in AI planning the user is supported in generating a new
plan for every new problem situation, which prevents the problem of having to
change other running instances of the same plan. Other than in AI planning our
meta-model supports complex control flow constructs (e.g., conditional branch-
ing, loop backs, and synchronizations between parallel execution branches).

Process-based knowledge management systems are suitable for knowledge
intensive workflows and are often used to provide additional process informa-
tion to the user in order to support them during the execution of activities
(e.g., DECOR [27], FRODO TaskMan [28], KnowMore [29]). FRODO TaskMan
extends the approach taken in KnowMore by supporting integrated modeling
and enactment of weak workflows. Like our approach, FRODO TaskMan allows
instance level modifications of the workflow during run-time, but does not sup-
port process type changes. Additionally it supports working with an incomplete
process schema due to its late modeling capabilities.

6 Summary and Outlook

The integration of ADEPT and CBRFlow offers promising perspectives. It re-
sults in a new generation of adaptive process technology, which facilitates and

CCBR–Driven Business Process Evolution 623

speeds up the implementation of new as well as the adaptation of existing pro-
cesses. Both, the capability to quickly and correctly propagate type changes to
in-progress process instances as well as the intelligent support of ad-hoc adapta-
tions will be key ingredients in next generation PMS, resulting in highly adap-
tive PAIS. Currently, we are working on the implementation of a prototype that
combines the methods and concepts provided by ADEPT and CBRFlow. Fu-
ture research will include the evaluation of this approach in different application
settings, like healthcare processes and emergent workflows (e.g., in the automo-
tive domain). Our future research will include the extension of the presented
approach towards agile process mining, i.e., fostering to start with a simple, in-
complete process schema and then learn from the living processes to evolve the
schema over time.

References

1. Reichert, M., Dadam, P.: ADEPTflex - supporting dynamic changes of workflows
without losing control. JIIS 10 (1998) 93–129

2. Jørgensen, H.D.: Interactive Process Models. PhD thesis, Norwegian University of
Science and Technology, Trondheim, Norway (2004)

3. Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in
workflow systems – a survey. Data and Knowledge Engineering 50 (2004) 9–34

4. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow evolution. Data and Knowledge
Engineering 24 (1998) 211–238

5. v.d. Aalst, W., Basten, T.: Inheritance of workflows: An approach to tackling
problems related to change. Theoret. Comp. Science 270 (2002) 125–203

6. Rinderle, S., Reichert, M., Dadam, P.: Flexible support of team processes by
adaptive workflow systems. Distributed and Parallel Databases 16 (2004) 91–116

7. Rinderle, S., Reichert, M., Dadam, P.: On dealing with structural conflicts between
process type and instance changes. In: Proc. BPM’04. (2004) 274–289

8. Rinderle, S., Reichert, M., Dadam, P.: Disjoint and overlapping process changes:
Challenges, solutions, applications. In: Proc. Int’l Conf. on Cooperative Informa-
tion Systems (CoopIS’04). LNCS 3290, Larnaca, Cyprus (2004) 101–120

9. Weber, B., Wild, W., Breu, R.: CBRFlow: Enabling adaptive workflow manage-
ment through conversational case-based reasoning. In: Proc. European Conf. on
Cased based Reasoning (ECCBR’04), Madrid (2004) 434–448

10. Aha, D.W., Breslow, L., Muñoz-Avila, H.: Conversational case-based reasoning.
Applied Intelligence 14 (2001) 9–32

11. Reichert, M.: Dynamic Changes in Workflow-Management-Systems. PhD thesis,
University of Ulm, Computer Science Faculty (2000) (in German).

12. Rinderle, S.: Schema Evolution in Process Management Systems. PhD thesis,
University of Ulm, Computer Science Faculty (2004)

13. Kolodner, J.L.: Case-Based Reasoning. Morgan Kaufmann (1993)
14. A. Aamodt, E.P.: Case-based reasoning: Foundational issues, methodological vari-

ations and system approaches. AI Communications 7 (1994) 39–59
15. Aha, D.W., Muñoz-Avila, H.: Introduction: Interactive case-based reasoning. Ap-

plied Intelligence 14 (2001) 7–8
16. Cheetham, W., Price, J.: Measures of solution accuracy in case-based reasoning

systems. In: Proc. European Conf. on Case-Based Reasoning (ECCBR’04). LNCS
3155, Madrid (2004) 106–118

624 B. Weber et al.

17. eBAY: Feedback Forum. (2005)
http://pages.ebay.com/services/forum/feedback.html.

18. Kim, J., Suh, W., Lee, H.: Document-based workflow modeling: a case-based
reasoning approach. Expert Systems with Applications 23 (2002) 77–93

19. Madhusudan, T., Zhao, J.: A case-based framework for workflow model man-
agement. In: Proc. 1st Int’l Conf. on Business Process Management (BPM’03),
Eindhoven (2003) 354–369

20. Wargitsch, C.: Ein Beitrag zur Integration von Workflow- und Wissensmanagement
unter besonderer Berücksichtigung komplexer Geschäftsprozesse. PhD thesis, Er-
langen (1998)

21. Luo, Z., Sheth, A., amd J. Miller, K.K.: Exception handling in workflow systems.
Applied Intelligence 13 (2000) 125–147

22. Limthanmaphon, B., Zhang, Y.: Web service composition with case-based reason-
ing. In: Proc. of 15th Australasian Database Conf. (ADC’02), Australia (2002)

23. Muñoz-Avila, H., McFarlane, D., Aha, D., Ballas, J., Breslow, L., Nau, D.: Using
guidelines to constrain interactive case-based htn planning. In: Proceedings of the
Third International Conference on Case-Based Reasoning, Munich (1999) 288–302

24. Veloso, M., Mulvehill, A., Cox, M.: Rationale-supported mixed-initiative case-
based planning. In: Proceedings of the Ninth conference on Innovative Applications
of Artificial Intelligence, Providence, Rhode Island (1997) 1072–1077

25. Muñoz-Avila, H., Aha, D., Nau, D., Breslow, L., Weber, R., Yamal, F.: Sin: In-
tegrating case-based reasoning with task decomposition. In: Proc. IJCAI-2001,
Seattle (2001) 99–104

26. Muñoz-Avila, H., Gupta, K., Aha, D., Nau, D.: Knowledge Based Project Plan-
ning. In: Knowledge Management and Organizational Memories. Kluwer Academic
Publishers (2002)

27. Abecker, A., et al.: Enabling workflow-embedded OM access with the DECOR
toolkit. In Dieng-Kuntz, R., Matta, N., eds.: Knowledge Management and Orga-
nizational Memories. Kluwer Academic Publishers (2002)

28. Elst, L., Aschoff, F., Bernardi, A., Maus, H., Schwarz, S.: Weakly-structured work-
flows for knowledge-intensive tasks: An experimental evaluation. In: Proc. 12th Int’l
Workshop on Enabling Technologies. (2003) 340–345

29. Abecker, A., Bernardi, A., Hinkelmann, K., O. Kühn, O., Sintek, M.: Context-
aware, proactive delivery of task-specific knowledge: The KnowMore project. Int.
Journal on Information Systems Frontiers 2 (2000) 139–162

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, pp. 625 – 639, 2005.
© Springer-Verlag Berlin Heidelberg 2005

CBR for Modeling Complex Systems

Rosina Weber1, Jason M. Proctor2, Ilya Waldstein3, and Andres Kriete4,5

1,2,3 College of Information Science & Technology, Drexel University
4 School of Biomedical Engineering, Science and Health Systems, Drexel University
5 Drexel and Coriell Bioinformatics Initiative, Coriell Institute for Medical Research

{1rw37,2jp338,4ak3652}@drexel.edu,3sainet@snip.net

Abstract. This paper describes how CBR can be used to compare, reuse, and
adapt inductive models that represent complex systems. Complex systems are
not well understood and therefore require models for their manipulation and
understanding. We propose an approach to address the challenges for using
CBR in this context, which relate to finding similar inductive models
(solutions) to represent similar complex systems (problems). The purpose is to
improve the modeling task by considering the quality of different models to
represent a system based on the similarity to a system that was successfully
modeled. The revised and confirmed suitability of a model can become
additional evidence of similarity between two complex systems, resulting in an
increased understanding of a domain. This use of CBR supports tasks (e.g.,
diagnosis, prediction) that inductive or mathematical models alone cannot
perform. We validate our approach by modeling software systems, and illustrate
its potential significance for biological systems.

1 Introduction

This paper explores the contribution of the CBR methodology for the modeling task,
particularly when the system (e.g. biological, organizational, computational) to be
modeled is complex i.e., not well understood or not easily accessible. We envision
using CBR to recommend a model to a previously unknown system based on its
similarity to previously recorded systems and their adopted models. Modeling is the
task concerned with creating a description of a system with the purpose of
understanding or predicting its functioning and/or effects. When data is available,
models can be created with inductive methods. When theory is available, models can be
created with mathematical methods. When neither is available, we propose reusing
models through CBR. The role we propose for CBR in the modeling task is one of an
aggregator or manager of data and knowledge pertinent to the case-based
recommendation of models – not as an alternative to inductive or mathematical models.

This paper’s intended contribution is to propose an approach to assess similarity
between complex systems and between inductive models, and to demonstrate that a
suitable inductive model can be recommended to represent a system on the basis of
the system’s similarity to other systems. As a result, CBR can be used as the
underlying methodology for reasoning with complex cases, whose problems are
complex systems and whose solutions are their models. This use of CBR will allow

LNAI

626 R. Weber et al.

the performance of tasks such as prediction and diagnosis; but even more importantly,
it will leverage the understanding of the systems it will model.

The CBR methodology can
combine knowledge from different
sources into one aggregated reasoning
task to propose a solution. When
domain knowledge is incorporated
into the design of a case base that
recommends models to represent
complex systems, it represents a
potential advantage over selecting
models without domain knowledge.

Determining the quality of a model also requires domain knowledge. Therefore, when
a model is proposed and its suitability is revised and confirmed, the case base learns a
new case and measures of quality of how a model represents a system can be verified
(i.e. confirmed or rejected). Besides the individual power of one more case to improve
a future recommendation, this new case becomes a new (properly positioned) piece of
the puzzle, allowing a better understanding of the domain, and potentially advancing
the field. The ability to assess similarity between complex systems and between
inductive models is critical to allow the combination of domain knowledge with the
manipulation and understanding of complex systems.

Recommending models for systems that are not well understood or not easily
accessible encompasses uncertainty. This uncertainty is associated with the suitability
of a model to describe a system. After each confirmed solution, the enhanced
understanding of the domain problem is expected to result in reduced levels of
uncertainty.

The significance of the approach described in this paper is illustrated by its
applicability in modeling software programs and biological systems. Both in software
engineering and in bioinformatics, modeling methods used are mathematical or
inductive, but neither can be leveraged into a system-wide understanding of the role
of models and their interplay with the environment. The conception of a
computational approach that benefits from the power of inductive modeling and also
takes advantage of analogical reasoning has the potential to drastically improve the
performance of tasks such as prediction and diagnosis, and even enhance the
understanding of these systems.

1.1 Two Target Problems: Software Programs and Biological Systems

We describe the problems of modeling software programs and biological systems
because they are sufficiently similar so that one can serve as a proof of concept for the
other. We have already implemented the first one, modeling software programs, and
we use it to understand research challenges and test strategies to address them. The
second problem seems more significant because of its potential benefits to human
health.

Both software programs and biological systems process inputs to produce outputs.
In software programs, inputs and outputs are the terms used to describe the values
entered and results from programs’ computations. An individual’s biological system

Fig. 1. Models represent complex systems

 CBR for Modeling Complex Systems 627

receives inputs from the environment (e.g. nutrition) and produces as a result health
outcomes. In fact, a reasonable explanation for the functioning of cells and genes is
that they follow programs to produce an outcome like processed data. Both problems
are complex systems that require system modeling. In both problems, the essence of
the modeling task is to represent input-output analysis (Fig. 1). Given the suitability of
using artificial neural networks to model input-output analysis, they are chosen to
model both software (e.g. [18]) and biological systems (e.g. [14]).

The problem we focus on in the software engineering domain is to model software
programs with the purpose of generating test cases for software testing. This may be
useful because it is easier to manipulate a model than it is to manipulate a real and
complete program and because the entire program’s details may not always be
available. The model can be built inductively by the analysis of randomly generated
inputs and the corresponding resulting outputs [18].

In biology, we focus on modeling an individual’s biological system with the
purpose of predicting health outcomes based upon dietary inputs. This can improve
medical understanding, helping individuals predict and achieve desired health
outcomes. The model is necessary because it is impossible to submit each individual
to different inputs to study what the outputs would be. The model can only be built by
comparing and combining models generated with data from other individuals and
partial data from the target individual. This is where a computing platform requires
analogical reasoning for the modeling task: to help find a quality model to represent
an individual, it is necessary to assess genetic similarities to make use of biological
assumptions (e.g. twins may have similar susceptibility to environment).
Consequently, a reasoning platform to model biological systems has to be able to
manipulate inductive models and assess similarity between them.

There are uncertainties in both systems. We may know the programming language
and we may be able to infer how a program might have been written; but even if we
have the code, it is not clear how to use it to define good test cases for its testing. In
human biological systems, we may know the genetic constitution of an individual and
may have the expression of genes from blood cells and some other accessible organs,
but there is always uncertainty with respect to the remaining cells as long as the
human individual is alive. Gene expression varies with age [21][23], so even if we
know the current expression of genes in some cells, there is uncertainty as to what the
expression will be in the future.

Improvements in software testing methods can be significant. The cost of poor
software testing is estimated to reach up to 60 million US dollars annually [11]. In the
domain of biology, the recent availability of the human genome and knowledge of
pathways has created a demand for computing solutions to understand the behavior of
molecular processes. This is an area with potential high payoffs in human health but
where data is still expensive or impossible to obtain. It is therefore necessary that
these computing solutions are able to leverage existing data to support, manipulate,
complement, and explain phenotypical and medical facts. These same computing
infrastructures can recommend testing methods to support high quality software.

In Section 2 we describe a case-based platform applied to model software
programs. Section 3 proposes our approach to overcome the main obstacle to apply
CBR: what makes a system similar to another such that we can reuse their models?
This approach is validated in Section 4. It is then used as the basis to design a second

628 R. Weber et al.

platform, which we discuss in Section 5 to model biological systems. Section 6
discusses related work and Section 7 presents concluding remarks and future work.

2 CBR for Modeling Software Programs

The application we describe here models software programs with the purpose of
generating test cases. The current application integrates a case-based framework [22]
into a system (CI-Tool) [4] that uses computational intelligence methods (e.g.,
inductive [11][18]) to generate test cases. Although CBR itself does not perform the
modeling task, it creates cases to improve the overall quality of the system [22].

We limit our presentation of the software program modeling system to one
inductive method: artificial neural networks (ANN). The elements we discuss when
representing cases with ANN are also present when using other inductive modeling
methods. Fig. 2 depicts the modules of the software program modeling system. A data
mart retains data and functions, managing the communications between the modules.
A software program is the input to the system; the ANN module creates an inductive
model for it. The individual case base is dedicated to storing cases where problems
describe features of software programs, solutions describe elements of an ANN, and
the outcome describes the accuracy of the ANN as a model of the software program.

Elements of an ANN include its
configuration parameters (e.g.
learning rate, training dataset, pruning
accuracy). We assess model quality
based on the evaluation of the ANN
training. Our model’s accuracy is
obtained through the average error
rate between the expected outputs and
actual output with the final weight
matrix.

There are two problems when
using inductive models like ANN as
part of case representation; they both

stem from the presence of random functions in the computation of ANN. One
problem is that one parameter configuration can produce more than one accuracy
score. In order to ensure we use values that are sufficiently representative, we train
each ANN ten times, using the same training data, and use the average accuracy.

The second problem is that multiple parameter configurations can produce similar
accuracies, making it impossible to guarantee one parameter configuration to be
optimal. To address this problem, we adopted the notion of a configuration of good
quality. Starting from the default parameter configuration defined in the CI-Tool
[4][18], we evolve configurations with a genetic algorithm [16]. We refer to the
configuration resulting from this process as being of good quality.

The purpose of the CBR module is to recommend the reuse of an ANN for
modeling previously unknown software programs. Here is where the challenges become
apparent. In order to reason, the case-based reasoner has to be able to assess the
similarity between different software programs and between different ANN models.

Fig. 2. Software Program Modeling system

 CBR for Modeling Complex Systems 629

3 Strategy to Overcome Challenges for Using CBR

The CBR system for modeling software programs has revealed the most important
challenges for using a CBR platform to support such a modeling task. First, because
the system we want to model is not well understood, how can we determine what
makes one system similar to another? Second, how can we assess similarity between
inductive models such as ANN? In other words, if we do not understand the cases
well, how can we find similar solutions for similar problems?

To allow the case-based platform to recommend a model to describe a new
(previously unknown) problem (i.e. system), it may seem that we need to first identify
similar problems. However, if we find similarity between problems, we would not
know which similar elements are relevant for making two problems amenable to be
solved with the same solution. Therefore, we need to first identify similar solutions.
Once similar solutions are identified, that is, solutions that would require minimal
adaptation to be reused by another problem, we can assume that there may be
similarity between problems that have been solved with similar solutions. The main
challenge we focus on is to learn what makes one problem similar to another, such
that the solutions can be reused.

The first step of our approach is to cluster existing problem-solution pairs (cases)
based on features of the solutions. Note that for these problems the same exact
solution may not appear in more than one case. Once the cases are organized in
clusters, the second step is to identify the subset of problem features that support these
clusters. If we find these features, then it means that they can be used to guide
similarity between problems whose solutions can be reused. The final step is to use
these features to define the similarity measure across cases. We base our strategy on
three assumptions.

Our first assumption is that similar solutions can be recognized by individual
similarities between elements (i.e. features) of a detailed representation for the
solution. Therefore, if the solution is an inductive model, two solutions are similar if
the majority of their representational elements are similar; and they are dissimilar
otherwise. In an ANN, for example, some of these elements are the values assigned to
parameters in its training (e.g. number of epochs). Note that these elements do not
assess how well the inductive method models the system. These elements are
exclusively the ones that will be used in the reuse step of the CBR cycle.

Because it is important to define similarity and dissimilarity of solutions; in the
absence of domain knowledge, we chose an unsupervised learning method to group
solutions based on the values of their elements: clustering. Clustering is a well-known
method to organize data elements in groups based on attribute values that describe the
elements. It produces a set of clusters that group elements that are similar to each
other within the same cluster and dissimilar to elements in different clusters.

Our second assumption is that, for the task in question, similar problems are the
ones that share similar solutions. The first step produces clusters of cases based on the
similarity of the solutions. However, to employ the CBR paradigm, we need to
determine what makes problems similar so that we can reuse their solutions. Hence,
the second step is to identify the subset of problem features that support these clusters.

630 R. Weber et al.

We propose to perform the second step with discriminant analysis (DA). DA is a
statistical method that defines boundaries that separate the data into categories to
analyze the predictive value of a set of independent variables. Stepwise DA is a
variation that initially considers all of the independent variables (our problem
features), but removes those that do not make a significant contribution to the overall
predictive ability, including those that are closely correlated with other variables. In
short, it determines the predictive features from the problem descriptions and
eliminates non-predictive features.

Our third assumption is that we can use the discriminant functions produced by the
DA to assess the similarity between a new, unseen problem and the previously
recorded problems. The discriminant functions describe the location of features with
respect to each cluster. The rationale of using these functions for similarity is to assess
how similarly localized features of a target case are to the features of each of the
previously recorded candidate cases. There is always one fewer function than the
number of clusters, so if there are 5 clusters, each tuple will be a vector of 4
discriminant function values. The selection step indicates the most similar case by
finding the closest tuple using Euclidean distance. This step yields the best matching
case, whose solution (i.e. model) we can reuse to describe the target problem (i.e.
system). It is important to note that reusing inductive models is not trivial. In fact, we
do not reuse the exact model, but the strategy (i.e. parameter configuration) adopted
in the most similar case.

4 Validation

In this section, we evaluate the hypothesis that our approach to similarity assessment
can support the recommendation of a model to a previously unknown problem with an
accuracy that is as high as the accuracy of the models recorded in the case base. That
is, it should, on average, produce accuracy that is not significantly lower. We use two
metrics for the comparison: AccuracyORIG is the average original accuracy of the
models recorded in the case base; AccuracyCBR is the average accuracy obtained with
the parameter values recommended with our CBR approach.

4.1 Dataset

This study uses twenty-one (21) software programs that constitute our cases. We have
identified 23 features to describe these problems. Note that domain knowledge does
not indicate what makes two programs similar for the purposes of recommending an
inductive model for them. Thus, we include all the features we could determine and
expect the approach to indicate the relevant features. Table 1 shows 4 out of the 23
problem features used in the study and values for these features in three software
programs T01, T02, and T03. The solutions for these 21 cases were obtained with the
system described in Section 2; the quality of the solutions is substantiated by the
method in [16]. The solution features consist of elements of ANN such as
configuration parameter values and the dataset used for the training. Cases also have
an outcome, which indicates the resulting accuracy of the ANN training.

 CBR for Modeling Complex Systems 631

Table 1. Subset of features for three software programs

 Features Testbed T01 T02 T03

No. of Input Variables 3 5 4
No. of Program Variables 0 1 0

Highest Max of Input Variables Range 1000 10 25000

Problem Features

No. of Conditionals 1 0 0
Training Accuracy 91 91 94
Pruning Accuracy 93 91 90

Solution Features

Learning Rate 0.48 0.54 0.47
Outcome Feature Accuracy 93.4% 90.3% 86.8%

4.2 Methodology

Our methodology is to employ leave-one-out cross validation (LOOCV) across the 21
software programs. At each iteration, the 20 remaining cases are clustered based on
linearly normalized solution features, using hierarchical clustering with squared
Euclidean distance as the similarity metric. Then, we perform stepwise DA on the
problem features to obtain the set of coefficients that describe each cluster. We apply
these coefficients to the feature values of all 21 cases (20 known cases and 1 target) to
compute tuples to assess their similarity and obtain the closest case. The values used
to configure the ANN in the closest case are reused to train a new ANN for the target
problem. We use these parameters to train ten ANNs to compute the AccuracyCBR.
Note that we use the same training data for these ten runs that we use for the ten runs
to compute AccuracyORIG.

4.3 Results

The results support our hypothesis that our approach can recommend a model that is
as accurate as the models originally recorded in the case base 71.4% (15 out of 21) of
the time. Table 2 shows the distribution of accuracy comparisons using ANOVA
between our two metrics AccuracyCBR and AccuracyORIG for the 21 cases. We define
significance at p < 0.05, and present the averages (Avg) and standard deviations (SD)
of the p values for each category in Table 2.

Table 2. Summary of accuracy comparisons

Performance of AccuracyCBR No. of Cases % to 21 Avg p SD p

AccuracyCBR is significantly higher 2 Cases 9.5 0.001 0.001
AccuracyCBR produces no significant difference 13 Cases 61.9 0.329 0.224

AccuracyCBR is significantly lower 6 Cases 28.6 0.002 0.002

4.4 Discussion

The consistency of the results indicates that our approach can support the use of CBR
to recommend inductive models to represent complex systems. Indirectly, they
indicate our assumptions (Section 3) were sound. In this discussion we attempt
explore the validity of our approach and investigate ways of improving these results.

632 R. Weber et al.

The DA identified 13 problem features that contributed to the similarity calculation
in every iteration of the LOOCV, and 6 more that were used in fewer than half. Of the
171 possible pairs of these features (each of the 19 features compared symmetrically
with the 18 others), only 23 pairs showed any significant correlation at p < 0.05, and
these were primarily between the infrequently used features. This shows that the
features are independent, so the discriminant functions are reliable for the overall
validation.

Our choice for the clustering analysis revealed satisfactory results. We confirmed it
by observing that the data in our dataset had natural groupings, making it amenable to
clustering. The evidence is that for 18 (85.7%) of the LOOCV iterations, the clusters
obtained with 20 cases were identical (except for the presence of the target case). In
the 3 (14.3%) iterations when they varied, only one or two cases changed clusters.
There were five stable clusters identified, and these were confirmed using other
distance metrics as well as k-means tests for 3 through 7 clusters.

Our choice for the discriminant analysis to capture the relative importance of the
features and use it for similarity assessment also proved to be satisfactory. DA is a
way to represent the organization of features in the discriminant space in respect to
the clusters. Thus, our approach implies that not only the clusters but the relative
position with respect to a cluster are relevant for similarity assessment. For 20 (out of
the 21) iterations, the reused case (the closest according to our approach) was
originally a member of a different cluster than the target case for the iteration. This
indicates that clusters could not have been used as outcome classes and that the
success of the approach also depends upon the relative position of each case in
relation to the cluster.

In order to further investigate the use of clusters, we applied gradient descent (GD)
and extracted the relative importance of the features for the entire case base, using the
clusters to measure classification accuracy. The results generated a case base that
produced an accuracy with LOOCV of 14.3%, i.e. only 3 times the most similar case
received the correct classification. In addition, only 3 times (for different cases) the
results with the GD weights coincided with the closest case recommended by our
approach.

We wanted to employ an algorithm that could reveal a subset of features (and
possibly their relative weights) that could be used in the entire case base for similarity
assessment. Such results would contribute new knowledge to the domain. In our
dataset, for example, we would be able to indicate how to compare two software
systems to reuse software testing approaches. However, at least with our dataset, there
was no subset of features that could justify the reuse of models with the same
accuracy as our proposed approach.

Another potential source of improvement is the refinement of the reuse step. In this
study, we did not contemplate the second closest case as a candidate for reuse, and a
brief analysis showed the second closest case would have improved our results.

The similarity between solutions could have also been explored by using extracted
rules as an explicit representation of the ANN. On examination, there was no
correlation between rules and the resulting accuracy. The rules are the ANN's
restatement of the problem, but they do not necessarily reflect their quality.

Finally, we believe that the two iterations where the recommended model produced
accuracy significantly higher than the one previously recorded indicate that our

 CBR for Modeling Complex Systems 633

approach can also be used to improve the quality of model recommendation. That is,
not only CBR may be indicated as an alternative when data is not available, but it may
also be used to find highly suitable models. This supports our ultimate goal for our
case-based platform to increase our understanding of modeling complex systems.

5 Case-Based Platform for Modeling Biological Systems

The diagnosis-prediction task can realize the Nutrigenomics and e-diagnosis dreams.
Nutrigenomics is the field that interfaces nutritional environments with genetic and
cellular processes [9]. E-diagnosis [10][26] is concerned with bringing quantitative
biological information into the problem of medical diagnosis. The goal of the
prediction task is to successfully determine which model accurately describes a
human individual so that health outcomes, such as the diet-regulated influence of
genes on chronic diseases [9][15], can be predicted based on this individual’s genetic
constitution and diet. Thus, diet and other forms of intervention can be designed to
specifically meet each individual’s genetic needs and to personalize recommendations
to guarantee health outcomes. Imagine a simple exam at the time of birth to establish
environmental and nutritional boundaries a child should stay in order to guarantee a
long and healthy life.

Our genetic constitution interacts with the environment to either predispose or
protect us from disease. The interplay of these two factors is most obvious if one
compares cancer incidences in different countries [1]. Only specific genetic diseases
show a clear and strong genetic background due to genetic mutations. Otherwise, the
interplay between DNA and environment can be ranked according to the amount of
genetic influence; e.g. the following conditions are sorted from most genetic to most
environmental influence: psoriasis, depression, schizophrenia, diabetes, asthma,
cardiac condition, cancer, and multiple sclerosis [7]. Environmental factors can be
divided up into two components: 1) nutrition, treatments like drugs, air quality, and
presence of toxins; and 2) lifestyle, like activities that impact metabolism, amount of
sleep, stress, etc.

Recently, for the first time, a relationship between stress and the impact on the
genetic constitution itself was reported [8]. However, it is important to notice that
even normal aging has an effect on the genetic constitution and gene expression
[21][23]. Changes are not consistent between individuals and may vary most at mid-
lifespan [12], giving rise to a difference between chronological and biological age.
Genetic changes, on the other hand, impact biological organization, e.g., immune
system, respiratory system, mental abilities, bone structure. As a consequence, these
changes, on whatever level of organization they occur, determine the interaction
between the individual and the environment and shift with age.

The problem of modeling biological systems in order to support tasks such as
diagnosis and prediction must consider genetic information, and it must be able to
capture both how genes are influenced by the environment and how changes in gene
expression impact an individual’s health. In practice, given a partial description of a
target individual, the goal is to fit a model (which could be created from a
combination of models) that can accurately predict the individual’s health from the
environment to which the individual is exposed.

634 R. Weber et al.

Table 3. Cases in case-based modeling platform

case individual K individual M individual N
De-facto
age

35 58 35

nutrition chemicals x,y,z chemicals p,q,r,s,t,u,v,x,y,z chemicals x,y,z
genotype TGGGGACACCTCGCCTGC TGGGGACACCTCTCCTGCAC TCAGGACACCTCGCCTGCAC
gene
expression

AA80AB20 AA80AB80 AA80AB20 pr
ob

le
m

health BP 120x180 BMI 40 BP 120x150 BMI 26 BP 120x180 BMI 40

so
lu

tio
n models 1 2 n 1 2 n 1 2 n

ou
tc

om
e accuracy .6 .85 .15 .5 .65 .15 .3 .3 .5

Legend: BP=blood pressure; BMI=body mass index

For example, we would like to predict the health of individual K. The available
information for individual K is a description of his interaction with his environment,
with detailed proportions of nutrients, chemicals (e.g. drugs), and toxins; his genetic
constitution through his DNA; his tissue, gene product expression profiles and blood
clinical chemistry; and a description of his health through biomarkers and medical
evaluation. The black area in Table 3 represents a case for individual K, who is 35
years old and obese.

Obtaining an accurate model for K’s biological system will allow us to diagnose
the causes for his obesity by determining the relationship between environmental and
lifestyle parameters on one end and molecular constitution and physiological
capabilities on the other end. It will be possible to prescribe a personalized strategy
based on the predictive ability of such a model. The confirmation of the model’s
suitability will increase the overall understanding of biological systems.

A case-based platform for modeling biological systems has one crucial distinction
from the software program system described in Section 2. Software programs can be
easily modeled because it is possible to randomly generate inputs for training the
inductive method as many times as necessary for a reasonably accurate model. With
living biological systems, it is not typically feasible to submit the required amounts of
inputs to observe changes in outputs. Sometimes it is possible to do it partially, or in
varying scales, and targeting different systems (human, animal, or cellular). Modeling
human systems is especially problematic because there are health risks, limited
number of human subjects, uncertainty in intervention commitment, and it requires a
long term for observance of outcomes. It is easier to conduct experiments with
animals (e.g. mice), but tailoring results for humans is bounded by the different
biological structure of the different species. It is possible to use human cells, but
studies with a subset of cells lose the interaction with the rest of the body. Therefore,
instead of one model to describe the biological system of an individual, we propose a
case-based platform that will incorporate a series of models (Table 3), obtained from
different sources (e.g. partial genetic data from the individual, other individuals,

 CBR for Modeling Complex Systems 635

animal cells), to represent potential ways of describing an individual’s biological
system. This adds complexity to the CBR cycle, as a series of solutions are needed
when acquiring cases and the reuse step has to contemplate the suitability of potential
models before a solution can be proposed.

In order to determine a model to describe individual K, we first have to assess the
similarity between K and other cases in the case base. Those candidate cases from the
case base are described with a series of models and their corresponding estimated
qualities to describe each biological system (M and N in Table 3). Let us now suppose
that individual M resulted with a high similarity score when compared to K, whereas
individual N obtained low score. The reuse step would examine the nature of the
models in order to assess their potential viability. Thus, not only the similarity
between individuals would be used for the basis of reuse, but also the suitability of the
models based on how the models were obtained. We use the similarity between inputs
used to obtain the model and the individual’s inputs as indicators of the expected
accuracy of the model.

For individual M, let us assume Model1 was obtained from a study with mice, like
the one in [17]. This study used as inputs a portion of knockout mice (i.e. mice that
had some genes turned off) and obtained as outputs different responses to
polyunsaturated fatty acids. The small accuracy estimated for Model1 stems from the
fact that the source data was obtained from mice. Let us assume that Model2 was built
using human cells, such as studies described in [2]. This study has associated the lack
of some specific chemicals, let us call them chemicals p, q, r, s, with an output of
DNA damage. The higher accuracy for Model2 originates from the fact that the model
used human cells and that chemicals targeted by the study were also present in M’s
nutrition.

The reuse step would examine Model1 and would balance the fact that the model
was built for mice and K is human. Additionally, it would assess if there is domain
knowledge to correlate low gene expression in K (AA20) with knockout genes in the
mice population, which would cause to increase the accuracy of Model1 for K to .6.
For Model2, K and M are genetically similar and therefore Model2 would be
potentially a good model for K. However, the chemicals used as inputs in Model2
match the chemicals that are absent in K’s nutrition, suggesting that if Model2 is a
good fit then the DNA damage might be present in K, increasing the accuracy for the
model in K to .85. This is further corroborated by K’s surface features, which include
a BMI of 40 – severe obesity. K’s solution is shown in the gray area in Table 3.

The high accuracy of Model2 to describe K can be used to support the diagnosis
that K has DNA damage due to the lack of chemicals p, q, r, s in his nutrition, and the
DNA damage could be responsible for K’s inability to process fatty acids, making
him obese. The reuse step in this case allows us to better understand how to fit models
to humans and a revision step (e.g. confirming a recommendation) after observing a
patient along the years can potentially improve the understanding of such biological
system.

This is how case-based reasoning can contribute and improve results compared to
inductive or mathematical models alone. The contribution of CBR for this task is that
it combines knowledge from different sources into one reasoning that enables a
solution otherwise not feasible. This is where the ability to assess similarity between
partially described systems and inductive models pays off: we can use domain

636 R. Weber et al.

knowledge supporting similarity between different problems in order to assess the
quality of a model to represent one of the problems (i.e. systems). To implement such
a platform in practice the approach introduced in Section 3 is required, because it
allows us to manipulate and assess similarity between systems and models that are not
well understood.

6 Related Work

The CBR platform described in Section 5 reflects an ongoing trend to unite different
computer science approaches to biomedicine [24]. Biological data abounds. Projects
have been started to establish databases to organize such data. For example, the UK
Biobank is a long-term project to start at the beginning of 2006 to gather information
on the health and lifestyle of 500,000 volunteers [25]. CBR can become an essential
methodology to analyze this data.

The problem of retrieving similar cases when the target problem is incomplete due
to missing feature values was investigated in [6]. This work differs from ours in that
their problems are sufficiently understood to design a similarity measure. Our
problems are not well understood to design a similarity measure using conventional
methods.

The most extensive analysis of neuro-CBR integrations [13] proposes a hierarchy
for their description. When interpreting our use of ANN as an integration of the ANN
technique into the CBR methodology, it could be categorized as chain-processing.
CBR is the main processor and the ANN is responsible for a preprocessing (ANN
models are trained for case acquisition) and a post-processing step (new ANNs are
trained for reuse).

One aspect of our approach resembles the philosophy of the work discussed in
[19], where authors propose an integration of ANN and memory-based learning. They
argue that memory-based learning allows them to reuse the memory of the training
instances used to train the ANN – what is never done with ANN, because inputs are
discarded after the network is trained. The similarity is that we use ANN training data
to help determine the suitability of potential models to represent a complex system
(Section 5).

Notable CBR systems limit the biological information in their problem descriptions
to the use of biomarkers. For example, blood pressure and blood clinical chemistry
are used in ALEXIA [5]; and chemical compounds are represented in [3] to predict
carcinogenic activity. These applications neither model individuals’ biological
systems nor reason at the genetic level.

7 Concluding Remarks and Future Work

We proposed an approach to assess similarity between complex systems and between
inductive models. We have demonstrated that an inductive model can be
recommended to represent a system on the basis of the system’s similarity to other
systems. This illustrates how CBR can contribute to the modeling task when systems
to be modeled are not well understood. Our approach represents an important step

 CBR for Modeling Complex Systems 637

towards a learning platform that benefits from the combination of CBR and inductive
modeling. Such a platform has the potential to enable unprecedented understanding of
complex phenomena.

Biological data is usually partial and incomplete; different studies are pieces in a
complex puzzle that humans are not capable of understanding. A case-based platform
for biological systems would aggregate partial data into a lazy learning paradigm,
where each new iteration would help increase the understanding of biological
systems.

7.1 Future Work

This paper demonstrated the suitability of CBR for solutions that consisted of neural
networks. We plan to test our approach using other inductive methods, i.e. info-fuzzy
networks [11] and also with mathematical models.

We implemented the reuse step in our approach without considering the potential
usefulness of the second closest case. A brief examination revealed this alternative
may be useful to improve the accuracy of the 6 cases where the accuracy from the
CBR recommendation in the LOOCV was lower than previously recorded data for
that case. Our approach revealed that 13 features were consistently included in the
DA functions, whereas the remaining 10 were consistently excluded. We plan to use
these features in an attempt to help assess adaptation needs to reuse a solution of
better quality, similar to adaptation-guided retrieval [20].

We also plan to test different variations of algorithms like the backward strategy
removing one problem feature at a time and then confirming the clustering until one
set of features for the entire dataset supports the clustering. This will probably require
the elimination of some outliers, and a bigger dataset.

Finally, we plan to explore rule sets generated by each run of the ANN in order to
learn more about what features make some rule sets more successful than others. This
could help us predict the quality of the model without having to apply it.

Acknowledgements

The authors would like to thank Dr. M. Last, Dr. A. Kandel, and T. Barr for their
continuous support in different stages of our work. Thanks R. J. Upadhyay for his
help in developing testbeds. Dr. R. Weber and J. M. Proctor are supported in part by
the National Institute for Systems Test and Productivity at USF under the USA Space
and Naval Warfare Systems Command grant no. N00039-02-C-3244, for 2130 032
L0, 2002.

References

[1] Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology
of the Cell. 4th edn. Garland Publishing, New York (2002)

[2] Ames, B.N.: DNA Damage from Micronutrient Deficiencies is Likely to Be a Major
Cause of Cancer. Mutat Res. 475 1-2 (2001) 7-20

638 R. Weber et al.

[3] Armengol, E., Plaza, E.: Relational Case-based Reasoning for Carcinogenic Activity
Prediction. Artificial Intelligence Review, 20, 1 - 2 (2003) 121 - 141

[4] Barr, T.: Architectural Overview of the Computational Intelligence Testing Tool. In:
Proceedings of the Eighth IEEE International Symposium on High Assurance Systems
Engineering. IEEE Computer Society, Los Alamitos (2004) 269- 270

[5] Bichindaritz, I.: Memoire: Case Based Reasoning Meets the Semantic Web in Biology
and Medicine. In: Gonzalez Calero, P.A., Funk, P. (eds.): Case-Based Reasoning
Research and Development. LNAI, Vol. 3155. Springer, Berlin Heidelberg New York
(2004) 47-61

[6] Bogaerts, S., Leake, D. B.: Facilitating CBR for Incompletely-Described Cases: Distance
Metrics for Partial Problem Descriptions. In: Gonzalez Calero, P.A., Funk, P. (eds.):
Case-Based Reasoning Research and Development. LNAI, Vol. 3155. Springer, Berlin
(2004) 62-76

[7] Chakravati, A., Little, P.: Nature, nurture and human disease. Nature. 421 (2003) 412-
414

[8] Epel, E.S., Blackburn, E.H., Lin, J., Dhabhar, F.S., Adler, N.E., Morrow, J.D., Cawthon
R.M.: Accelerated Telomere Shortening in Response to Life Stress. Proc. Natl. Acad.
Sci. 101 49 (2004) 17312-5

[9] Kaput, J., Rodriguez, R.L.: Nutritional Genomics: the Next Frontier in the Postgenomic
Era. Physiol. Genomics 16 (2004) 166-177

[10] Kriete, A., Boyce, K.: Automated tissue analysis – a bioinformatics perspective.
Methods Inf. Medicine 1 (2005) 32-37

[11] Last, M., Friedman, M., Kandel, A.: The Data Mining Approach to Automated Software
Testing. In: Proceedings of the Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM Press, New York (2003) 388-396

[12] Lu, T., Pan, Y., Kao, S.Y., Li, C., Kohane, I., Chan, J., Yankner, B.A.: Gene Regulation
and DNA Damage in the Ageing Human Brain. Nature 429, 6994 (2004) 883-91

[13] Malek, M.: Hybrid Approaches for Integrating Neural Networks and Case-Based
Reasoning: From Loosely Coupled to Tightly Coupled Models. In: Pal, S.K., Dillon.
T.S., Yeung, D.S. (eds.): Soft Computing in Case Based Reasoning. Springer Verlag,
London (2001) 73-94

[14] McFarlane, A.C., Yehuda, R., Clark, C.R.: Biologic Models of Traumatic Memories and
Post-Traumatic Stress Disorder. The role of neural networks. Psychiatr Clin North Am.
25, 2 (2002) 253-70

[15] Park, E.I., Paisley, E.A., Mangian, H.J., Swartz, D.A., Wu, M., O’Morchoe, P.J., Behr,
S.R., Visek, W.J., Kaput, J.: Lipid Level and Type Alter Stearoyl CoA Desaturase
mRNA Abundance Differently in Mice with Distinct Susceptibilities to Diet-Influenced
Diseases. J Nutr. 127, 4 (1997) 566-73

[16] Proctor, J. M., Weber, R.: Systematically Evolving Configuration Parameters for
Computational Intelligence Methods. Submitted to the First International Conference on
Pattern Recognition and Machine Intelligence (PReMI'05) (2005)

[17] Ren, B., Thelen, A.P., Peters, J. M., Gonzalez, F.J., Jump, D.B.: Polyunsaturated Fatty
Acid Suppression of Hepatic Fatty Acid Synthase and S14 Gene Expression Does not
Require Peroxisome Proliferator-Activated Receptor- . J. Biol. Chem. 272 (1997) 26827–
26832

[18] Saraph, P., Last, M., Kandel, A.: Test Set Generation and Reduction with Artificial
Neural Networks. In: Last, M., Kandel, A., Bunke, H. (eds.): Artificial Intelligence
Methods in Software Testing. World Scientific (2004) 101-132

 CBR for Modeling Complex Systems 639

[19] Shin, C. K, Park, S. C.: Towards Integration of Memory Based Learning and Neural
Networks. In: Pal, S.K., Dillon. T.S., Yeung, D.S. (eds.): Soft Computing in Case Based
Reasoning. Springer Verlag, London (2001) 95-114

[20] Smyth, B., Keane, M.T.: Experiments on Adaptation-Guided Retrieval in Case-Based
Design. In: Veloso, M., Aamodt, A. (eds.): Proceedings of the 1st International
Conference on Case-Based Reasoning. LNAI, Vol. 1010, Springer, Berlin (1995) 313-
324

[21] Thomas, R.P., Guigneaux, M., Wood, T., Evers, B.M.: Age-Associated Changes in Gene
Expression Patterns in the Liver. J Gastrointest Surg. 6 3 (2002) 445-53

[22] Weber, R., Wu, D.: Knowledge Management for Computational Intelligence Systems.
In: Proceedings of the Eighth IEEE International Symposium on High Assurance
Systems Engineering. IEEE Computer Society, Los Alamitos (2004) 116-125

[23] Welle, S., Brooks, A.I., Delehanty. J.M., Needler. N., Thornton, C.A.: Gene Expression
Profile of Aging in Human Muscle. Physiol. Genomics 14, 2 (2003) 149-59

[24] Wiemer, J., Schubert, F., Granzow, M., Ragg, T., Fieres, J., Mattes, J., Eils, R.:
Informatics United: Exemplary Studies Combining Medical Informatics,
Neuroinformatics and Bioinformatics. Methods Inf. Med. 42, 2 (2003) 126-33

[25] Wright, A., Carothers, A.D., Campbell, H.: Gene-environment interactions – the
Biobank UK study. Pharmacogenomics J. 2 (2002) 75-82

[26] Zhao, L.P., Gilbert, S., Defty, C.: E-Diagnosis Using GeneChip Technologies
Proceedings of the Fourth International Conference on Advances in Infrastructure for e-
Business, e-Education, e-Science, e-Medicine on the Internet. CD-ROM. (2002)

H. Muñoz-Avila and F. Ricci (Eds.): ICCBR 2005, 3620, pp. 640 – 651, 2005.
© Springer-Verlag Berlin Heidelberg 2005

CBE-Conveyor: A Case-Based Reasoning System to Assist
Engineers in Designing Conveyor Systems

Fei Ling Woon, Brian Knight, Miltos Petridis, and Mayur Patel

University of Greenwich, School of Computing and Mathematical Sciences,
London SE10 9LS, UK

{f.woon, b.knight, m.petridis, m.patel}@gre.ac.uk

Abstract. In this paper, we address the use of CBR in collaboration with
numerical engineering models. This collaborative combination has a particular
application in engineering domains where numerical models are used. We term
this domain “Case Based Engineering” (CBE), and present the general
architecture of a CBE system. We define and discuss the general characteristics
of CBE and the special problems which arise. These are: the handling of
engineering constraints of both continuous and nominal kind; interpolation over
both continuous and nominal variables, and conformability for interpolation. In
order to illustrate the utility of the method proposed, and to provide practical
examples of the general theory, the paper describes a practical application of the
CBE architecture, known as CBE-CONVEYOR, which has been implemented
by the authors. Pneumatic conveying is an important transportation technology
in the solid bulks conveying industry. One of the major industry concerns is the
attrition of powders and granules during pneumatic conveying. To minimize the
fraction of particles during pneumatic conveying, engineers want to know what
design parameters they should use in building a conveyor system. To do this,
engineers often run simulations in a repetitive manner to find appropriate input
parameters. CBE-Conveyor is shown to speed up conventional methods for
searching for solutions, and to solve problems directly that would otherwise
require considerable intervention from the engineer.

1 Introduction

Numerical models can provide useful advice to engineers in many fields. They are
often designed to simulate the behaviour of physical processes in a forward time
direction. Generally, engineers will specify inputs I = (I1, I2, …, Ik), and the model
will calculate outputs O=(O1, O2, …, Ol), where O is a function of I. However,
engineering problems are often not straightforward applications of such models.
Engineers often require a model that can be queried in an inverse fashion. For
example, a designer may want to know what inputs produce desired outputs. Also,
they often want to add constraints to outputs, searching for the right inputs. In
addition, there may be other physical constraints on inputs; engineers want to explore
what alternatives they can use to produce a given output. To solve these inverse or
constraint problems, we often have to resort to running the numerical model

LNAI

 CBE-Conveyor: A Case-Based Reasoning System to Assist Engineers 641

repeatedly: running the model, looking at the results and changing the inputs
accordingly for another run. In effect, the engineer is astutely generating cases from
the numerical model.

Experimental data is often collected by engineers in order to assist in their design
task. This data is often more reliable than the modeled data, covering all possible
experimental scenarios. However, it is also sometimes much more expensive to
produce. In contrast, numerical models can be used to generate databases which may
then be tested for accuracy of prediction. A database model of the processes may be
represented by a set of stored predicates: P(I1, …, Ik, O1, …, Ol). Such a model can be
queried flexibly using Structured Query Language (SQL), specifying either inputs or
outputs, and constraints. However, such a model also suffers from some
disadvantages:

• It can be a very large database, particularly if k and l are large, or if high
accuracy is required.

• Queries using SQL can often give null results if the database is kept small.

The motivation of this study is to use a Case-Based Reasoning (CBR) system
generated using a numerical model as a flexible query engine for engineers. One of
the advantages of using CBR is that in engineering fields there is usually a great deal
of regularity in numerical models; one would expect fine detail to be well represented
by some adaptive process such as interpolation. This would allow a great reduction in
case base storage. Also, CBR retrieval is more amenable to usability questions than is
SQL, giving cases ordered by closeness to input criteria; it will always give answers,
and they can be ordered according to user needs.

A number of researchers have used case-based reasoning (CBR) and machine
learning techniques to improve the usability of numerical models. Cheetham and Graf
[3, 4] describe a CBR tool that helps users to select a subset of the allowable
colourants for colour matching in plastics. The CBR tool was shown to be cost saving
and to increase the colour matcher productivity. Schwabacher et al. [12] invented a
case-based system based on induction learning for the numerical optimization setup of
engineering designs. Results show that inductive learning can improve the speed and
the reliability of design optimization. Kalapanidas and Avouris [6] have given an
account of a prototype, NEMO, built using a CBR approach combining heuristic and
statistical techniques to support short-term prediction of NO2 maximum concentration
levels in Athens, Greece. The NEMO classifier can give fast prediction for the
likelihood of an occurrence. It is robust to noisy data. However, there is no evidence
of a general CBR architecture proposed to improve the usability of numerical models.

The motivation of this paper is two-fold: First, in Section 2, we discuss the general
architecture of a CBR – Numerical model system, to be used in the engineering
domain. We look at the advantages and characteristics of this general architecture. In
what follows, we term this architecture and domain as “Case Based Engineering”
(CBE). There are several problems which we encounter in attempting to set up a
generally flexible query tool. Ideally, we need to allow an engineer to assign a variety
of queries for the search. These can contain both inputs and outputs, and contain
either continuous or nominal values. In Section 3 of this paper, we discuss each of the
problems of interpolation which we encounter in such a domain, and give a solution
based upon the interpolative method proposed previously by the authors [8, 9].

642 F.L. Woon et al.

In Section 4 we provide the background information of the pneumatic conveyor
model, and in Section 5 we present the findings of a completed practical development
known as CBE-Conveyor. This is a CBE system to assist engineers in the design of
pneumatic conveyor systems. The application is used to exemplify the general
approach, and to show examples of the general problems discussed in Section 3, and
their resolution. We conclude in Section 6, with a summary and indications of future
work.

2 The General CBE Architecture

In this section, we show how CBR can be used as a flexible query engine to assist
engineers to solve inverse or constraint problems. Ideally engineers would like to be
able to express their problem constraints without worrying whether the variables are
inputs or outputs. Sometimes they need the right inputs for given outputs; sometimes
they know some inputs and some outputs. For example, in the conveyor problem the
engineer may only have certain bend types available for a design. This is expressed as
a constraint on inputs. They may also need to be certain that not too much small
particle dust appears in the output receiver: this is a constraint on outputs. The CBE
architecture proposed here is designed to handle constraints of this type, allowing the
engineer to define any constraints over the unified input and output space.

Fig. 1. The diagram for the general CBE architecture

Before examining the special problems we encounter in CBE, we first describe the
collaborative CBE architecture, between the engineer, CBR system and numerical
model. We also include the case base maintainer as a separate agent in the overall

 CBE-Conveyor: A Case-Based Reasoning System to Assist Engineers 643

architecture. These agents work together by sharing individual knowledge and
expertise to solve inverse and constraint problems.

Fig. 1 is a UML collaboration diagram showing the interactions between these
agents. The sequence of steps in a typical query session is as follows:

1.1 The engineer defines a set of constraints over input-output space defining the
problem.

1.2 The CBR model retrieves cases near to the problem definition.
1.3 The CBR model presents a list of useful cases to the engineer. The engineer

can examine these cases, and possibly redefine the problem if the initial
definition was not complete, or was incorrect in some way. There is also an
opportunity for the engineer to select some of the retrieved cases manually
for the next phase (adaptation). This would be useful in situations where the
engineer needs to have more ‘hands–on’ control of the whole retrieval
process.

2. The engineer requests the CBR model to perform interpolation on a retrieved
set of cases. The retrieved set may be that selected by the engineer, or simply
the k nearest neighbours. It has also been shown in [9] that interpolation can
work better on diverse sets. The interpolation phase needs often to be able to
deal with nominal values, and to handle a variety of constraints. It also has to
make sure that the interpolation set is conformable for interpolation;
sometimes two solutions, though close in the problem space, are not at all
close in the solution space and should not be used for interpolation. We
examine these problems of interpolation later, in Section 3.

3.1 The adapted solution produced by the CBR system has values for all inputs
and outputs. It is now possible to run the model against the inputs, and verify
the outputs.

3.1.1The Simulation results are then presented to the engineer who can decide
whether the solution is acceptable. It may well be that they may need to
return to Step 1.3 and select a different set for adaptation. In situations where
there is a large difference between the modelled and adapted solution, we
have the possibility to add the new modelled case to the case base. The
addition of a new case will give reason to return to Step 1, and the session
can continue with the new case base.

There are also two interactions shown in the collaboration diagram separate from
those described above, which involve the case base maintainer. These are:

4.1 Generation of the initial case base. This must depend upon the dimensionality
of the problem space, and the cost of model generation. For fast models and
low dimensionality, we can simply produce a regular dense database.
However, for high cost, long run time models of high dimensionality (for
example computational fluid dynamics models), the case base would of
necessity be sparse, and we would have to rely on the effectiveness of the
interpolation scheme.

4.2 Subsequent maintenance of the case base such as the addition or removal of
cases is managed by the Case Base Maintainer, which may utilise case
reduction schemes co-operating with the numerical model.

644 F.L. Woon et al.

3 Elements of the CBE Architecture

In this section we examine in detail some of the special issues that arise in the design
of a working CBE system. These are mainly due to the need of the engineer to search
and interpolate over the whole input – output space. This entails two main problems,
which we discuss here. The first problem is the definition of constraints, over
mappings which are not necessarily one to one. The second problem is to do with the
handling of constraints and interpolation over nominal values.

3.1 Constraints and Interpolation

Constraints of interest in CBE are of two main types: real and nominal. Real
constraints are expressible as f(x) > 0, and are usually handled by adding a derived
attribute a = f(x) to the cases, and using a prohibitive similarity measure for cases
with a< 0. Nominal value constraints occur, for instance, when equipment or methods
are not available to the engineer, so that these must be eliminated from the search for
reasons of practicability.

Numerical models are generally deterministic in nature, so that O is given as a
single valued function of I. However, the inverse problem cannot be assumed as
single valued. As in Fig. 2, there may be several solutions to a given query where
outputs are specified. For 1-NN retrieval (i.e., k-Nearest Neighbour (k-NN) where
k=1, [5]), this gives little problem, since the multiple nearest cases may be ordered as
equal for the user to select. However, for k-NN, it is not desirable to interpolate
between cases which are not close in the input domain. Also, problems which are
close in the problem domain are not necessarily close in the solution domain.
Bergmann et al. [1] have also addressed this problem in that the similarity of cases in
the problem space does not always correspond to the usefulness of the cases in

 Outputs Inputs

Inappropriate interpolation

C3

C2

C1

Target

 Outputs Inputs

Fig. 2. Direct problem (single-valued
solutions)

Fig. 3. Inverse problem (multiple solutions)

 CBE-Conveyor: A Case-Based Reasoning System to Assist Engineers 645

solving the problem. The approach to this problem which we take here is to perform
adaptation on the cases that are close in the unified (problem: solution) space. Fig. 3
shows an inappropriate interpolation (adaptation using C1 and C2) and also shows that
there is a much more relevant case (i.e., C3) to a given target (in the input space)
which may be a better candidate case than C2 in adaptation.

In this paper, we view cases which are close in the unified space as “conformable
for interpolation”. This is an important concept for interpolation, since it determines
whether we can usefully interpolate over a set of cases, as we shall see in Section 5.
Informally, we define:

A set of cases is conformable for interpolation if the cases are near in unified
space.

Near cases in the problem domain which are not close in the solution domain will not
be close in the unified domain. These cases are not conformable to interpolation. In
Step 2, where interpolation is performed, we make the restriction that the whole
interpolation set must be conformable to interpolation.

Of course, to implement the conformability criterion we have described, we need
to define a similarity metric over the whole input – output space. The standard
method used for defining similarity metrics is the weighted sum method [10]. There
are several ways of defining metrics in solution space. These include the use of cluster
centre distances [16], attributes independent of problem space [9], Value Difference
Metric [13] and definition by a human expert. Wilson & Martinez give an account
various distance functions’ definition in [15].

The second problem which we face is the handling of nominal values in constraints
and interpolation. In the conveyor example discussed below, two attributes are
nominal in nature: the bend type, and the angle of the bend. These also happen to be
values the engineer is searching for in a typical query. For example, they may want to
know what bend type is best for a given output size distribution of particles.
According to Step 2 of the scenario in Section 2, this means we should interpolate to
find the bend type from a set of cases. This requires interpolation over nominal
values. In addition, the engineer will often want to express the fact that she/he only
has certain bend types available. We need to be able to express this available list of
types as a constraint that the interpolation can take into account.

Campbell and Chatterjee [2] have proposed a method for interpolation over
nominal value, which assumes a natural ordering. The ranking of nominal values is
based on a linear distance metric derived from the ordering. However, their
approach cannot take account of a general metric defined over the output space. In
addition, it is not obvious how to incorporate nominal constraints when using a
system like this.

The problem of the interpolation over nominal values may be approached by the
Generalized Shepard Nearest Neighbour (GSNN) method proposed by the authors [8,
9]. This method handles generally defined metrics over the solution set. The method
has the extra advantage that it is able to handle nominal constraints. GSNN works by
evaluation of the minimum of a function as follows:

646 F.L. Woon et al.

Generalised Shepard Nearest Neighbour Algorithm

))(,(minarg)(
1

2

=∈

∧
←

k

i
iyi

Yy
q xfydwxf

 (1)

Where

p
iqx

i xxd
w

),(
1≡

Here the minimum is taken over the set Y of nominal values. This property makes
GSNN very suitable for handling nominal value constraints. All we have to do is to
subject the set Y to be constrained to the desired set of nominal values. For example if
only some bend types are available, these will form the set Y. Hence by using GSNN,
we are able to handle both continuous and nominal constraints.

4 Illustrative Example: The Pneumatic Conveyor Model

The pneumatic conveyor design problem is part of the Quality in Particulate
Manufacturing (QPM) initiative funded by the UK EPSRC Innovative Manufacturing
Initiative for Process Industries. Degradation of powders and granules during dilute
phase pneumatic conveying is a problem that has existed for a long time. Degradation
refers to the breakage and surface damage of particles during transport and handling.
One of the major industry concerns is to investigate how parameters such as air
velocity, loading ratio, the angle of the bend and etc. affect particle degradation. Such
knowledge is of great use in the design of conveyors. Research [7, 11, 14] shows that
conveyor design has critical effects on the particles degradation.

4.1 Engineering Problems of the Conveyor Design

In this problem, there are four input parameters: velocity of air, bend type and bend
angle; the output is the particle size distribution at the outlet (see Fig. 4). The
engineer’s task is to determine suitable input parameters so that there will not be too
much dust formed particles.

Feed hopper

)))

Fan

Air

Inlet
Bend 1

Sugar

Receiver

Outlet
Bend 2

Bend angle

Fig. 4. The schematic diagram of a sample pneumatic conveyor

 CBE-Conveyor: A Case-Based Reasoning System to Assist Engineers 647

Fig. 4 shows the schematic diagram of a sample pneumatic conveyor. Particles are
fed into a hopper and being transported to a receiver using a pneumatic conveyor. In
this example the transported particulate is sugar. Engineers can specify the fan speed,
bend angle and bend type.

5 Development of CBE-CONVEYOR

In CBE-CONVEYOR, cases are represented by the predicate:

c = (Out_1, … , Out_6; VairIn, BendType, BendAngle, In_1,…, In_6)

where Out_i means the fraction of particles at the outlet in size range i, In_i means the
fraction of particles at the inlet in size range i, where i=1, 2, …, 6. VairIn is the air
velocity. Bend type and angle are nominal values.

The similarity metric between a target case and cases in the case base is computed
using the standard weighted sum method. For continuous domains such as air
velocity, the distance between two points is normalized by the range value. For a
nominal domain such as bend type, the distance metric is provided by a human expert,
experienced in the construction and use of the various bend types.

We now use the conveyor example to illustrate the problems outlined in Section 3.
For convenience of exposition, we leave out the values of In_1,…, In_6, which were
kept constant in the example. First we consider interpolation over nominal values.
Table 1 shows two cases selected for interpolation to find Bend type and bend angle
for a given target. The target outputs are Out_1 = 24 and Out_6= 3.85.

Table 1. Two cases selected for interpolation

Two cases selected for interpolation

Distance Case Id Out_1 Out_6 VairIn BendType BendAngle

0.0047 67 24.09 3.90 14.28 Tdrum 70 deg

0.0052 151 24.16 3.84 14.28 ShortRadius 70 deg

Interpolated value
0.003 - 24.12 3.87 14.28 Btee 70 deg

Model solution

0.003 - 24.13 3.86 14.28 Btee 70 deg

Table 1 shows the interpolated solution given by GSNN. Notice that the bend type
is neither of those in the interpolation set. Finally Table 1 shows the modelled case,
which confirms the accuracy of the interpolation.

Next we consider an example of a nominal constraint. We use the same example as
above, but this time we add the constraint that only bend types: LongRadius,
ShortRadius and Tdrum are available.

648 F.L. Woon et al.

Table 2. Two cases selected for interpolation

Two cases selected for interpolation
Distance Case Id Out_1 Out_6 VairIn BendType BendAngle

0.0047 67 24.09 3.90 14.28 Tdrum 70 deg

0.0052 151 24.16 3.84 14.28 ShortRadius 70 deg

Interpolated value, where bend types are constrained to {LongRadius,
ShortRadius, Tdrum}

0.0038 - 24.13 3.87 14.28 Tdrum 70 deg

Model solution
0.0047 - 24.09 3.9 14.28 Tdrum 70 deg

In this case, GSNN has constrained the search to the available bend types. It should
be noticed that the solution is further from the target than for the unconstrained
search.

Finally, we show an example of a multi-valued mapping. In this example, the
engineer wants to achieve an output where the fraction of the largest particles is 6
times the fraction of the smallest particles. The derived attribute Out_1/Out_6 is
accordingly added to the cases, and we search for cases close on this attribute. This is
a good example of a multi-valued mapping, since there can be cases with a wide
diversity of inputs which can produce this output ratio. But, as is shown here, it is not
acceptable to interpolate from these at random. First, we must check for
conformability.

Table 3. A retrieved set searching for Out_1/Out_6 = 6

Distance CaseId Out_1 / Out_6 VairIn BendType BendAngle

0.1063 98 6.1063 19.49 LongRadius 45 deg

0.1328 80 6.1328 12.52 Tdrum 90 deg

0.1769 67 6.1769 14.28 Tdrum 70 deg

0.1951 116 5.8049 14.28 LongRadius 80 deg

0.2024 103 5.7976 15.96 LongRadius 65 deg

0.2079 38 6.2079 12.52 Btee 90 deg

0.2451 158 5.7549 14.28 ShortRadius 80 deg

Table 3 shows the result of a query subject to a constraint: Out_1/Out_6 =6. As we
see, the first two cases are not conformable to interpolation. Although they are close
to the target Out_1 / Out_6, they are not close at all in the whole space, including
VairIn, Bend type and bend angle. In Table 4, we show the interpolated result based
on these two cases. We see that the modelled result shows the interpolation has failed.
Indeed the interpolation is worse than either of the cases used for the interpolation.

 CBE-Conveyor: A Case-Based Reasoning System to Assist Engineers 649

Table 4. Non Conforming set: cases 98 and 80

Interpolated solution
Out_1/Out_6 Out_1 Out_6 VairIn BendType BendAngle

6.2328125 23.934 3.84 12.52 LongRadius 45 deg
Model solution

10.17 27.26 2.68 12.52 LongRadius 45 deg

In Table 5, we show that the interpolation based on cases 80 and 67 is far better.
Although these two cases are further from the target than the previous set, they give a
much better interpolation result. This verifies the approach to conformability that we
have adopted in this project.

Table 5. Conforming set : 80, 67

Interpolated solution
Out_1/Out_6 Out_1 Out_6 VairIn BendType BendAngle

6.0328125 23.166 3.84 12.83 Tdrum 80 deg

Model solution
6.0431 22.299 3.69 12.83 Tdrum 80 deg

6 Conclusion

In conclusion, the solutions to the problems inherent in the discipline of Case Based
Engineering presented in this paper may all be seen as consequential to one central
idea: that we should regard the case base holistically as a unified problem + solution
space, and define a similarity metric over the whole unified space. If the metric is
defined as the weighted sum of similarity over attributes, then the attribute set should
cover the whole unified space, and should include continuous and nominal attributes.

The problems of CBE that are addressed in the paper are: flexibility of query
forms, interpolation, multi-valued case mapping, and constraints. The first of these
problems is to allow the engineer to specify queries over the whole space (in effect
defining his/her own problem space). This provides prime motivation for adopting the
unified space approach. However, this approach also impacts on the solution to the
other problems, and gives an interesting insight into the ‘similarity assumption’ in the
traditional view.

The second problem of CBE is that of interpolation. For many engineering
problems, interpolation can provide a powerful adaptation method, improving the
accuracy of solutions considerably. The problem which arises here is that many
interpolations will be over nominal values. We need an interpolation method that will
give the nominal value that minimizes the distance to target in the unified space. Such
a method (GSNN) has been developed previously by the authors [8], In fact, since
GSNN work depends only on similarity metrics, it works equally well on nominal-

650 F.L. Woon et al.

valued attributes and on real-valued attributes. This is an important feature for CBE,
since many numerical models will include nominal parameters, particularly in their
set-up definition.

The problem of multi-valued problem solution mappings arises in conjunction
with interpolation over several cases. In a deterministic numerical model, we can
assume that the problem solution mapping is many one. However, because CBE
gives the engineer the freedom to define his/her own problem and solution space, we
can only assume that it is many many. How do we determine which cases are
compatible when we are interpolating? Once again, we can use the concept of unified
space to solve this problem. Using k nearest neighbours for interpolation, we know
that they are all near in the problem space. In order to be sure that they are
conformable for interpolation, we require that they are also near in the solution space.
Hence we define a set of cases as conformable for interpolation if they are near in
unified space.

This question is closely related to the well known ‘similarity assumption’ which
posits that near cases in the problem space are also near in the solution space. This
assumption may be re-formulated in unified space as ‘near cases in the problem space
are conformable for interpolation’ (i.e., also near in the solution space). The similarity
assumption in this form seems to be too restrictive for CBE, with its emphasis on
dynamic problem:solution separation; we therefore prefer to examine the
conformability dynamically as well, selecting only cases near in the whole unified
space for interpolation.

References

1. Bergmann, R., Richter, M. M., Schmitt, S., Stahl, A., Vollrath, I., Utility-oriented
Matching: A New Research Direction for Case-Based Reasoning, Proceedings of the 9th
German Workshop on Case-Based Reasoning, GWCBR'01, Baden-Baden, 14.-16. März
(2001)

2. Chatterjee, N., Campbell, J. A., Adaptation through Interpolation for Time Critical Case-
Based Reasoning. Lecture Notes in Artificial Intelligence, Vol. 837: published by
Springer-Verlag, 1st European Workshop, EWCBR-93, Kaiserslautern, Germany,
November (1993) 221-233

3. Cheetham, W., Benefits of Case-Based Reasoning in Color Matching, Proceedings of the
4th International Conference on Case-Based Reasoning, ICCBR-01, Vancouver, BC,
Canada, (2001) 589-596.

4. Cheetham, W., Graf, J., Case-Based Reasoning in Color Matching, Proceedings of the 2nd
International Conference on Case-Based Reasoning, ICCBR-97, RI, USA, (1997) 1-12.

5. Cover, T. M., Hart, P., Nearest Neighbour Pattern Classification, IEEE Transactions on
Information Theory, 13, (1967) 21-27.

6. Kalapanidas, E., Nikolaos, A., Short-term Air Quality Prediction using a Case-Based
Classifier, Environmental Modelling & Software, 16, (2001) 263-272.

7. Kalman, H., Attrition of Powders and Granules at Various Bends during Pneumatic
Conveying, Powder Technology, 112 (2000) 244-250

8. Knight, B., Woon, F. L., Case Base Adaptation Using Solution-Space Metrics,
Proceedings of the 18th International Joint Conference on Artificial Intelligence, IJCAI-03,
Acapulco, Mexico (2003) 1347-1348.

 CBE-Conveyor: A Case-Based Reasoning System to Assist Engineers 651

9. Knight, B., Woon, F. L., Case Base Adaptation Using Interpolation over Nominal Values,
Proceedings of the 24th Specialist Group on Artificial Intelligence (SGAI) International
Conference on Innovative Techniques and Applications of Artificial Intelligence,
Research and Development in Intelligent Systems XXI, Cambridge, UK (2004) 73-86.

10. Kolodner, J., Case Based Reasoning, Morgan Kaufmann Publishers; ISBN: 1558602372;
(November 1993).

11. Chapelle, P., Christakis, N., Abou-Chakra, H., Tuzun, U., Bridle, I., Bradley, M. S. A.,
Patel, M. K., Cross, M., Computational model for prediction of particle degradation during
dilte phase pneumatic conveying. Modelling of dilute phase pneumatic conveying,
Advanced Powder Technology, 15 (1), (2004) 31-49.

12. Schwabacher, M., Ellman, T., Hirsh, H., Learning to Set Up Numerical Optimizations of
Engineering Designs, Artificial Intelligence for Engineering Design Analysis and
Manufacturing, 12 (2), (1998) 173-192.

13. Stanfill, C., Waltz, D., Toward memory-based reasoning, Communications of the ACM,
Vol. 29, (1986) 1213-1228.

14. Weinberger, C. B., Shu, M. T., Helical Gas––Solids Flow II. Effect of Bend Radius and
Solids Flow Rate on Transition Velocity, Powder Technology 48 (1986) 19-22

15. Wilson, D. R., Martinez, T. R., Improved Heterogeneous Distance Functions, Journal of
Artificial Intelligence Research, 6 (1997) 1-34.

16. Woon, F., Knight, B., Petridis, M., Case Base Reduction Using Solution-Space Metrics,
Proceedings of the 5th International Conference on Case-Based Reasoning, ICCBR-03,
Trondheim, Norway (2003) 652-664.

Author Index

Aamodt, Agnar 296
Aggour, Kareem S. 595
Aha, David W. 5
Arcos, Josep Llúıs 282
Arshadi, Niloofar 21
Ashley, Kevin D. 137
Avesani, Paolo 35, 312

Bajo, Javier 50
Baldo, Emiliano 312
Balfe, Evelyn 63
Barnden, John A. 477
Bento, Carlos 78
Bergmann, Ralph 552
Berkovsky, Shlomo 91
Bonissone, Piero P. 595
Borrajo, M. Lourdes 106, 191
Brüninghaus, Stefanie 137
Bridge, Derek 1, 222
Brien, Donald 122

Casey, Karen 566
Cassens, Jörg 451
Cheetham, Bill 152
Comas, Joaquim 465
Corchado, Juan M. 50, 106, 191
Cortés, Ulises 465
Cova, Marco 35
Cunningham, Pádraig 177, 312, 368

Davies, Jim 163
Delany, Sarah Jane 177
Dı́az, Fernando 106, 191
Dı́az-Agudo, Belén 252, 267, 421
Doyle, Dónal 177, 368

Fdez-Riverola, Florentino 106, 191
Fox, Jason 566
Freuder, Eugene 222
Furmanski, Chris 566

Gabel, Thomas 206
Garćıa, F. Alejandro 282
Gebruers, Cormac 222
Glasgow, Janice 122

Goel, Ashok K. 163
Gómez de Silva Garza, Andrés 237
Gómez-Mart́ın, Marco Antonio 267, 421
Gómez-Mart́ın, Pedro Pablo 252, 267
Gómez-Gauch́ıa, Hector 252
González-Calero, Pedro A. 252, 267
Grachten, Maarten 282
Green, Collin 566
Gu, Mingyang 296

Hastings, John D. 397
Hauff, Brandon M. 397
Hayes, Conor 35, 312
Hnich, Brahim 222

Jurisica, Igor 21

Kinley, Andrew 327
Knight, Brian 640
Knoblock, Craig A. 2
Kriete, Andres 625
Kuflik, Tsvi 91

Mart́ınez, Montse 465
McCarthy, Kevin 339, 436
McGinty, Lorraine 339, 436
Molineaux, Matthew 5
Montani, Stefania 353
Munoz, Douglas 122

Nersessian, Nancy J. 163
Nugent, Conor 368

Patel, Mayur 640
Peixoto, Joao 78
Petridis, Miltos 640
Plaza, Enric 382
Ponsen, Marc 5
Portinale, Luigi 353
Powell, Jay H. 397
Prasad, Bhanu 408
Proctor, Jason M. 625

Recio, Juan A. 421
Reichert, Manfred 610
Reilly, James 339, 436
Ribaric, Slobodan 537

654 Author Index

Ricci, Francesco 91
Riedmiller, Martin 206
Rillo, Marcio 579
Rinderle, Stefanie 610
Rodŕıguez-Roda, Ignasi 465
Rome, David 566
Roth-Berghofer, Thomas R. 451

Sánchez-Marré, Miquel 465
Schaaf, Martin 552
Seifert, Colleen M. 4
Shi, Wenqi 477
Shultz, Joe 152
Smyth, Barry 63, 339, 436
Sørmo, Frode 492
Stahl, Armin 507
Steffens, Timo 522
Supic, Haris 537

Tartakovski, Alexander 552
Tinker, Pete 566
Tonidandel, Flavio 579

Varma, Anil 595
Veloso, Marco 78

Waldstein, Ilya 625
Weber, Barbara 610
Weber, Rosina 625
Wild, Werner 610
Wiratunga, Nirmalie 421
Woon, Fei Ling 640

Yáñez, J. Carlos 106, 191

Zamolotskikh, Anton 177
Zamora Lores, Arám 237

	Frontmatter
	Invited Talks
	The Virtue of Reward: Performance, Reinforcement and Discovery in Case-Based Reasoning
	Learning to Optimize Plan Execution in Information Agents
	Cased-Based Reasoning by Human Experts

	Scientific Papers
	Learning to Win: Case-Based Plan Selection in a Real-Time Strategy Game
	An Ensemble of Case-Based Classifiers for High-Dimensional Biological Domains
	Language Games: Solving the Vocabulary Problem in Multi-Case-Base Reasoning
	Evaluation and Monitoring of the Air-Sea Interaction Using a CBR-Agents Approach
	A Comparative Analysis of Query Similarity Metrics for Community-Based Web Search
	A Case-Based Approach for Indoor Location
	P2P Case Retrieval with an Unspecified Ontology
	Autonomous Internal Control System for Small to Medium Firms
	The Application of a Case-Based Reasoning System to Attention-Deficit Hyperactivity Disorder
	Reasoning with Textual Cases
	Using Ensembles of Binary Case-Based Reasoners
	Transfer in Visual Case-Based Problem Solving
	Generating Estimates of Classification Confidence for a Case-Based Spam Filter
	Improving Gene Selection in Microarray Data Analysis Using Fuzzy Patterns Inside a CBR System
	CBR for State Value Function Approximation in Reinforcement Learning
	Using CBR to Select Solution Strategies in Constraint Programming
	Case-Based Art
	Supporting Conversation Variability in COBBER Using Causal Loops
	Opportunities for CBR in Learning by Doing
	Navigating Through Case Base Competence
	A Knowledge-Intensive Method for Conversational CBR
	Re-using Implicit Knowledge in Short-Term Information Profiles for Context-Sensitive Tasks
	Acquiring Similarity Cases for Classification Problems
	A Live-User Evaluation of Incremental Dynamic Critiquing
	Case Based Representation and Retrieval with Time Dependent Features
	The Best Way to Instil Confidence Is by Being Right
	Cooperative Reuse for Compositional Cases in Multi-agent Systems
	Evaluating the Effectiveness of Exploration and Accumulated Experience in Automatic Case Elicitation
	HYREC: A Hybrid Recommendation System for E-Commerce
	Extending jCOLIBRI for Textual CBR
	Critiquing with Confidence
	Mapping Goals and Kinds of Explanations to the Knowledge Containers of Case-Based Reasoning Systems
	An Approach for Temporal Case-Based Reasoning: Episode-Based Reasoning
	How to Combine CBR and RBR for Diagnosing Multiple Medical Disorder Cases
	Case-Based Student Modeling Using Concept Maps
	Learning Similarity Measures: A Formal View Based on a Generalized CBR Model
	Knowledge-Rich Similarity-Based Classification
	Autonomous Creation of New Situation Cases in Structured Continuous Domains
	Retrieval and Configuration of Life Insurance Policies
	Analogical and Case-Based Reasoning for Predicting Satellite Task Schedulability
	Case Adaptation by Segment Replanning for Case-Based Planning Systems
	Selecting the Best Units in a Fleet: Performance Prediction from Equipment Peers
	CCBR--Driven Business Process Evolution
	CBR for Modeling Complex Systems
	{\itshape CBE-Conveyor}: A Case-Based Reasoning System to Assist Engineers in Designing Conveyor Systems

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

