
Strategies to Parallelize ILP Systems

Nuno A. Fonseca1, Fernando Silva1, and Rui Camacho2

1 DCC-FC & LIACC, Universidade do Porto,
R. do Campo Alegre 823, 4150-180 Porto, Portugal

{nf, fds}@ncc.up.pt
2 Faculdade de Engenharia & LIACC, Universidade do Porto,

Rua Dr. Roberto Frias, s/n 4200-465 Porto, Portugal
rcamacho@fe.up.pt

Abstract. It is well known by Inductive Logic Programming (ILP) prac-
tioners that ILP systems usually take a long time to find valuable models
(theories). The problem is specially critical for large datasets, preventing
ILP systems to scale up to larger applications. One approach to reduce
the execution time has been the parallelization of ILP systems. In this
paper we overview the state-of-the-art on parallel ILP implementations
and present work on the evaluation of some major parallelization strate-
gies for ILP. Conclusions about the applicability of each strategy are
presented.

Keywords: Parallelism, Scaling-up.

1 Introduction

There are two major motivations for using ILP. First, ILP provides an excellent
framework for learning in multi-relational domains. Second, the theories learned
by general purpose ILP systems are in a high-level formalism often understand-
able and meaningful for the domain experts. We believe that these two reasons
mostly explain the success of ILP systems in several well known industrial and
scientific relevant problems [1,2,3,4]. The success usually comes at a price, and
in the case of ILP systems the price is long execution times. For complex appli-
cations, ILP systems can take several hours, even days, to return a theory.

Research on reducing the execution time of ILP systems has deserved plenty
attention in the last years. The proposed approaches are very diverse, rang-
ing from new algorithms (see e.g., [5,6,7]), reducing the number of hypothe-
ses generated (see e.g., [8,9,10]), to efficiently testing candidate hypotheses (see
e.g., [11,12]), just to mention a few. A quite different line of research to re-
duce the execution time of ILP systems is through parallelization. This has
been pointed out as a promising approach to improve efficiency by several re-
searchers [13,14,15].

In this paper we survey the current state-of-the-art research on parallel ILP.
The many implementations described in the literature are succinctly presented
together with reported results. A comparison of the algorithms based only on

S. Kramer and B. Pfahringer (Eds.): ILP 2005, LNAI 3625, pp. 136–153, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Strategies to Parallelize ILP Systems 137

their reported results is hard since they were observed on different systems,
datasets, and platforms. We thus implemented three parallel algorithms, that
accomplish the main parallelization strategies that we have identified, and stud-
ied their performance using three well known applications and the same test
environment (i.e., the same underlying ILP system and the same parallel ar-
chitecture). The three parallel implementations were evaluated on a distributed
memory architecture.

The remainder of this paper is organized as follows. Section 2 provides some
background on parallelism and describes a generic ILP algorithm. Section 3
describes the main strategies to parallelize ILP systems and in Section 4 a survey
of the parallel ILP implementation is made. In Section 5 is made an evaluation
of three parallel algorithms. In Section 6 we present the conclusions.

2 Background

In this section we start by providing a small introduction to parallelism and then
describe a generic sequential covering algorithm.

2.1 Parallelism

By expressing parallelism in an algorithm one aims to improve its performance.
However, designing efficient parallel algorithms is still a difficult task as there are
many factors that can influence efficient parallel execution, for example balancing
the work among the available processors and controlling communication costs in
a distributed parallel architecture.

In order to clarify the discussion about parallel algorithms in ILP, we shall
first briefly define common terms. A task is typically a program (or set of in-
structions) that is executed by a processor. Parallel tasks are tasks whose com-
putations are independent of each other, so that all such tasks can be performed
simultaneously with correct results. The maximum number of tasks that can be
executed simultaneously at any time in a parallel algorithm, determines the de-
gree of parallelism of the application program. The granularity of a task measures
the ratio between the time a task takes to be executed and the corresponding
overhead time required to schedule that task. The higher the ratio (coarse-grain
parallelism) the better to scale up parallel execution.

A sequential algorithm is usually evaluated in terms of its execution time
(sometimes expressed as a function of the size of its input data). The execu-
tion time of a parallel algorithm depends on the number of processors used,
interprocess communication speed, and size of the input data.

One would expect that increasing the number of processors results in a pro-
portional decrease of the execution time of a program, but this is rarely observed
due to overheads associated with parallelism. There are three major sources of
overheads: interprocess communication, idling, and extra computation.

A number of performance metrics have been devised to be used in the study
of parallel algorithms performance [16]. The serial runtime (TS) of a program

138 N.A. Fonseca, F. Silva, and R. Camacho

is the time elapsed between the beginning and the end of its execution on a
sequential computer. The parallel runtime (TP) is the elapsed time from the
beginning of the parallel computation until it ends. Speedup (S) is the most
often used measure when studying the performance of parallel algorithms. It
captures the relative benefit of solving a problem in parallel and is defined as
the ratio between the time taken to solve a problem on a single processor and the
time required to solve the same problem on a parallel computer with p identical
processors.

S =
TS

TP

Theoretically, the speedup can never exceed the number of processors p. In
practice, a speedup greater than p, called super-linear speedup, is sometimes
observed. This happens when the work performed by a sequential algorithm is
greater than its parallel version or due to hardware features that slowdown the
sequential algorithm (for instance, as a result of using slower memory, i.e., disk).

2.2 Generic ILP Algorithm

A plethora of rule learning algorithms [17], ILP algorithms included, use a vari-
ant of the generic covering algorithm (also called separate-and-conquer). An
example of a generic covering algorithm is presented in Figure 1. This algorithm
learns one rule at a time using some generalization procedure that performs a
search through an ordered space of legal rules. After finding a rule, all covered
positive examples are separated (removed) from the training set and the next
rule is learned from the remaining examples. Rules are learned until no positive
examples are left or some other stopping criteria is met.

covering(E+,E−,B)
Input: set of positive (E+) and negative (E−) examples, and background knowledge
(B)
Output: A set of rules (RulesLearned)
1. Rules Learned = ∅

2. while E+ �= ∅ do

3. R = learn rule(E+, E−, B)
4. Rules Learned = Rules Learned ∪ {R}
5. B = B ∪ {R}
6. E+ = E+ \ {Examples Covered by R}
7. end while

8. return Rules Learned

Fig. 1. A generic covering algorithm. learn rule() should return a (the best) rule that
explains a subset of the positive examples(E+).

Strategies to Parallelize ILP Systems 139

Most ILP systems use some variant of the generic covering algorithm. The
main difference between the existing ILP systems and algorithms that use a
variant of this covering algorithm (e.g., [18,19,20]) concerns the learn rule()
procedure (step 3). Given a set of examples and prior knowledge, the procedure
returns a consistent rule (clause) that explains some or all positive examples.
This procedure is the most time consuming and will be described next in more
detail.

learn rule(E+,E−,B)
Input: set of positive (E+) and negative (E−) examples, and background knowledge
(B)
Output: The “best” rule
1. Good = ∅

2. S = START RULE
3. Pick = pickRule(S)
4. NewRule = genNewRule(Pick)
5. V al = evalOnExamples(NewRule)
6. if is good(NewRule, V al) then Good = NewRuleendif
7. S = S \ {Pick}
8. if stop criterium satisfied then return bestOf(Good) endif

9. goto 3

Fig. 2. An example of a generic learn rule() procedure

The learn rule() procedure, as described in Figure 2, searches the (poten-
tially infinite) hypothesis space for a rule that optimizes some quality criteria.
At each node of the search one rule is generated and evaluated. The evaluation
of a rule usually requires the computation of its coverage, i.e., computing how
many examples the rule explains. The time taken to compute the coverage of
a rule depends, primarily, on the number of examples. Thus, scalability prob-
lems may arise when dealing with a large number of examples or/and when the
computational cost of evaluating a rule is high.

3 Strategies for Parallelizing ILP Systems

Parallel algorithms aim to divide the work among the available processors so
that a solution is achieved as fast as possible. The main difficulty faced by
implementors is how to efficiently divide the work. Ideally, one would want to
divide the computation and data evenly, and, at the same time, minimize the
communication among processors, striving for a coarse-grained parallelism.

We classify the strategies to parallelize ILP systems described in the liter-
ature into four main approaches: parallel exploration of independent hypothe-
ses [21]; parallel exploration of the search space [22,21,23,24]; parallel cover-
age test [21,25,26]; parallel execution of an ILP system over a partition of the

140 N.A. Fonseca, F. Silva, and R. Camacho

data [27,22,25]. Surely, one could consider other views, however, we consider
that these cover the main approaches to parallelize an ILP system. A parallel
algorithm may not fit solely in a single strategy, but may combine several. Each
strategy is next described in detail.

3.1 Parallel Exploration of Independent Hypotheses

Parallel exploration of independent hypotheses is performed as follows. Let n be
the number of classes of the target predicate. Learning each class value is an
independent task and can be done in parallel. This procedure requires that each
processor owns a replica of the whole data.

Parallel exploration of independent hypotheses has a major drawback: it is
not a general approach. It is adequate only for applications where the target
predicate is composed by several independent predicates. Learning a definition
of the target predicate can be seen as learning several sub-concepts, correspond-
ing each subconcept to a class value. Since the induction of sub-concepts is
inherently independent, it can be easily performed in parallel, For instance,
consider the task of learning a predicate that classifies emails into categories
such as priority(+Email,-Priority), where Priority ∈ {low, medium, high}.
The task of learning can thus be divided into 3 subtasks, one learning task for
priority(+Email,low), other for priority(+Email,medium), and priority
(+Email, high).

The degree of parallelism of this strategy corresponds to the number of sub-
concepts. The granularity is very high, since the learning of each subconcept
corresponds to calling an ILP system to learn n sub-concepts independently.

3.2 Parallel Exploration of the Search Space

The search for a hypothesis involves traversing the generalization lattice in some
way (e.g., top-down, bottom-up, bidirectional). The search space can be divided
and explored in parallel by each processor to find a hypothesis.

The degree of parallelism and granularity of this strategy depends on the
approach adopted to divide the search space.

3.3 Data Parallelism

Data parallelism consists in partitioning the data in subsets, assigning each sub-
set of data to a processor. Each processor applies an algorithm (or part of an
algorithm, e.g., coverage test) or the whole sequential ILP algorithm, on its local
data. Generally, data partitioning is usually performed in the beginning of the
execution. This happens because it is expensive to reassign the examples during
execution, i.e., perform load-rebalancing.

A problem arises when a sequential ILP algorithm is applied to a subset of the
training data: the hypotheses may be locally consistent and complete, but they
may not be globally consistent. A solution to this problem may involve sharing
the locally good hypotheses among all processors to obtain a global view.

Strategies to Parallelize ILP Systems 141

Another problem, that results from partitioning the set of positive examples,
is the impossibility of learning recursive rules. The only solution to this problem
is the replication of the set of positive examples through all processors while
dividing the set of negative examples.

The degree of parallelism of this strategy depends on the size of the data.
The granularity depends on the algorithm applied to the dataset and size of the
data.

3.4 Parallel Coverage Tests

The time to compute a hypothesis coverage depends on the cardinality of E+

and E−. Each example can be independently tested to determine if it is entailed
by a rule h and the background knowledge B. The parallel coverage test strategy
consists in performing the coverage test in parallel, i.e., for each example e ∈ E
the coverage test (B ∧ h � e) is performed in parallel.

The degree of parallelism depends on the number of examples evaluated in
parallel by each processor. The granularity in this strategy is, relatively, low.
However, the granularity can be enlarged either by increasing the number of
examples of each processor or/and by evaluating several rules in parallel instead
of a single one.

4 Parallel ILP Systems

We next survey the parallel ILP implementations, focusing on the strategy used
and results reported.

The first parallel ILP system we are aware of is Claudien [27]. The algorithm
followed a strategy based on parallel exploration of the search space where each
processor keeps a pool of clauses to specialize, and shares part of them to idle
processors (processors with an empty pool). In the end, the p set of clauses found
are combined and returned as the solution. One should note that Claudien follows
a non-monotonic setting of ILP instead of the usual normal ILP setting. The
parallel system was evaluated on a shared-memory computer with two datasets
and exhibited a linear speedup up to 16 processors.

Matsui et al. [22] evaluated and compared data parallelism (background
knowledge and the set of examples) and, what they called, parallel exploration
of the search space. The later approach consisted in evaluating, in parallel, the
refinements of a clause, therefore, corresponding to a strategy based on parallel
coverage tests. The two strategies were implemented in the FOIL [19] system and
were evaluated on a distributed memory computer using the trains dataset [28].
The results of the search space parallel approach showed very low speedups.
The reason pointed out by the authors for the poor results was that the size of
the divided tasks may not be all the same, hence reducing the efficiency. The
other two approaches based on data parallelism (background knowledge and the
set of examples) showed a linear speedup up to 4 processors. The speedup de-
creased above 4 processors as a result of an increase in communication due to
the exchange of the training set.

142 N.A. Fonseca, F. Silva, and R. Camacho

Ohwada and Mizoguchi [21] implemented an algorithm (based on Inverse
Entailment) using a logic programming parallel language that explored three
types of parallelism: parallel coverage tests; parallel exploration of independent
hypotheses; and parallel exploration of the search space (each processor followed
a branch of the search space). The parallel system was applied to three variants
of an email classification dataset and the experiments performed evaluated each
strategy. The results on a shared-memory parallel computer showed a non linear
speedup in all strategies. The strategy that appears to show better results, on
average, was the parallel coverage tests.

Ohwada et. al [23] implemented an algorithm that explores the search space
in parallel. The job allocation (set of nodes to be explored) was dynamic and
was implemented using contract-net [29] communication. The parallel system
was evaluated on two datasets and showed an almost linear speedup on a ten-
processor parallel machine.

Wang and Skillicorn [25] parallelized the Progol [30] system by partition-
ing the data and applying a sequential algorithm to each partition. The data
partitioning consisted in dividing the positive examples among all processors
and by replicating the negative examples. Each processor applies the sequential
algorithm on its local data to find a locally good clause. Such clause is then
shared among all processors to evaluate its quality on the whole training set.
If a processor considers that a clause is globally good then it exchanges this
information with all processors, so that all processors may add the clause to the
local theory and remove the examples explained by the clause. It is important
to point out that this algorithm is not complete in relation to the sequential
algorithm, i.e., the theory found by the parallel algorithm may be different to
the one found with the sequential algorithm. The evaluation of the algorithm
focused on speedup and did not allow the assessment of the impact on accu-
racy. They reported double and linear speedups in their experiments with three
datasets. The experiments were performed on shared-memory machines (with 4
and 6 processors).

Graham et al. [26] implemented a parallel ILP system, using the PVM [31]
message passing library. They employ data partition and parallel coverage tests
of parts of the search space on each processor. They reported an almost linear
speedup up to 16 processors on a shared memory machine.

Konstantopoulos [32] implemented a data parallel version of the Aleph [20]
system using MPICH [33] MPI [34] library. His algorithm performs the coverage
tests evaluation in parallel. This approach, although very similar to the one of
Graham et al., it only evaluates in parallel a single clause at a time while Graham
et al. evaluates a set of clauses. The smaller granularity of the parallel tasks, in
Konstantopoulos’ approach, is, probably, the main reason for the poor results
presented.

Wielemaker [24] implemented a parallel version of Aleph for shared memory
machines. The strategy adopted was parallel exploration of the search space.
The algorithm exploits parallelism by executing concurrently several random-
ized local searches [6] and was implemented on top of the Aleph system. The

Strategies to Parallelize ILP Systems 143

implementation was evaluated on the Carcinogenesis [4] dataset. The Aleph sys-
tem was configured to perform 16 random restarts, and made 10 moves per
restart, on each processor. The reported speedups (e.g., 7 on 16 processors) can
be considered low when compared to other shared memory implementations. In
spite of the results, this is an interesting proposal that could accomplish better
results if the granularity of the tasks is enlarged. This can be easily accomplished
by increasing the number of moves or the number of restarts done by each thread.

PolyFarm [35] is a parallel ILP system for the discovery of association rules
targeted to distributed memory architectures. The system follows a master-
worker scheme. The master generates the rules and reports the results. The
workers perform the coverage tests of the set of rules received from the mas-
ter on the local data. The counts are aggregated by a special type of worker
(Merger) that reports the final counts to the master. No empirical evaluation of
the system was presented in [35].

Table 1. Summary of the parallel ILP implementations and reported results

Strategy Arch. Speedup/#procs. Work

Parallel
exploration of

the search space

Shared
Memory

linear/16 [27]
3/6 [21]
7/16 [24]
8/10 [23]

Parallel
exploration of
independent
hypotheses

Shared
Memory

2/6 [21]

Parallel coverage
tests

Distributed
Memory

1/15 [22]
no [32]

Shared
Memory

4/6 [21]
5/8 [26]

Data Parallelism

Distributed
Memory

4/15 (linear upto 5) [22]

not reported [35]
Shared
Memory

linear and super-linear/6 [25]
5/8 [26]

Table 1 summarizes the survey by presenting for each parallelization strat-
egy the implementations made, targeted computer architecture, and reported
results. The first observation concerns the fact that the majority of the parallel
implementations were made for shared memory architectures, where the cost
of data transmission is very low when compared to distributed memory archi-
tectures. In spite of the high cost of the communication, parallel ILP systems
targeted for distributed memory computers may still achieve good speedups (see
e.g., [22]). The results reported are generally good on all strategies except the
parallel coverage test. The results reported with this strategy differ considerably

144 N.A. Fonseca, F. Silva, and R. Camacho

if the target architecture is shared memory or distributed memory. The poor re-
sults of the latter can be explained by the higher communication cost not being
compensated by the granularity of the tasks.

Even though most implementations just described were for shared memory
machines, we share the view of the recent work reported [32,26], that is, to tar-
get distributed memory architectures when parallelizing ILP systems, therefore
favoring coarse grain approaches.

5 An Evaluation of Parallelization Strategies

In the previous section we summarized current state-of-the-art research on par-
allel ILP algorithms. It is hard to compare the results of the referred implemen-
tations since they were observed on different systems, platforms, and datasets.
We implemented on a distributed memory architecture three parallel algorithms
based on the most general strategies, namely parallel exploration of the search
space, parallel coverage tests, and data parallelism. No algorithm was imple-
mented based on parallel exploration of independent hypotheses because, as
discussed before, this strategy is not applicable to all applications. By imple-
menting these strategies on the same platform, using the same techniques to
distribute work among the processing units, and the same applications, we were
able to make a fair comparison.

5.1 Parallel Algorithms

We started with a sequential implementation of the April [36] ILP system. The
main loop of April’s algorithm is similar to the covering algorithm presented in
Section 2.2. For simplicity of presentation, all algorithms follow a master-worker
scheme. In the beginning of the execution the worker enters a loop and waits for
requests from the master. The master shares one processing unit with one of the
workers.

The parallel algorithms were implemented using the Prolog language. For the
communication layer we used LAM [37] MPI. LAM is a high-quality open-source
implementation of the Message Passing Interface (MPI) specification, that can
be used for applications running in heterogeneous clusters or in grids. Since the
development was made in Prolog and LAM does not provide a native YAP Prolog
interface, we had to develop a Prolog module for YAP, using the C language, to
act as an interface between Prolog and LAM/MPI libraries.

The implemented algorithms are next described. For each algorithm, we refer
the reader to Figure 3 for a schema of the messages exchanged between the
master and the workers.

Parallel Coverage Tests (pct). A clause is dispatched for a processor to be
evaluated on the local subset of examples. The master algorithm is similar to
the covering algorithm of Section 2.2 with two main changes: first, the examples
are divided evenly among the processors in the beginning of the execution (this

Strategies to Parallelize ILP Systems 145

could be done in the first line of the covering algorithm) and are then loaded
by each worker; secondly, line 5 of the learn rule is changed to

broadcast(evalOnExamples(NewRule))
Val = collectAndCombine()

where broadcast() is a procedure that sends a command to all processors to
be executed, each processor executes the command and returns the result to
the master. This corresponds to each slave evaluating a rule against its local
set of examples and then returning the coverage value. The master collects and
combines the coverage information using the collectAndCombine() procedure.
This algorithm is basically the algorithm implemented by Konstantopoulos [32].
However, there are two main differences at the implementation level: i) we used
asynchronous message passing communication for all operations involving the
sending of a message, while Konstantopoulos only used synchronous message
passing operations; ii) our implementation was done with LAM as opposed to
the MPICH platform used by Konstantopoulos.

Data Parallel Learn Rule (dplr). This algorithm is based on the Wang et
al. [25] algorithm mentioned in the previous section but it is next described in
more detail.

Rules Learned = ∅

< (E+
1 , E−), . . . , (E+

p , E−) >=partition E+ into p subsets
broadcast(load files)
while ∪p

k=1E
+
k �= ∅ do

RulesBag=collect(broadcast(learn rule()))
while RulesBag �= ∅ do

Results=collect(broadcast(eval(RulesBag)))
R=pickBest(RulesBag)
RulesBag=RulesBag \ {R}
Rules Learned=Rules Learned ∪ {R}
collect(broadcast(addRule2Theory(R)))

end while
end while
return Rules Learned

The algorithm consists of 1) dividing the set of positive examples among all
processors and replicating the negative examples; 2) learning p rules in paral-
lel (line 3 of the covering algorithm) starting at different points of the search
space (using different seeds), where p is the number of processors available; 3)
exchanging rules found among all processors to obtain their coverage values on
the whole training set; 4) selecting a rule and mark examples covered on all
subsets.

146 N.A. Fonseca, F. Silva, and R. Camacho

Master Worker 1 Worker p...

<E ,E ,B>+
1

-
1

<E ,E ,B>+ -

<E ,E ,B>+
p

-
p

Broadcast
eval rule

eval rule eval rule

Send
Result

Send
Result

Collect
Results

Broadcast
load()

+ -
Partition
E and E

a) pct

Master Worker 1 Worker p...

<E ,E ,B>+
1

-

<E ,E ,B>+ -

<E ,E ,B>+
p

-Broadcast
load()

Broadcast
learn rule

learn rule learn rule

Send
Rule

Send
Rule

Broadcast
Eval Rules

Eval Rules Eval Rules

Collect
Rules

+
Partition
E

Send
Result

Send
Result

Collect
Results

Broadcast
AddRule...

AddRule
2theory

AddRule
2theory

Master Worker 1 Worker p...

<E ,E ,B>+ -

Collect
Theories

Broadcast
induce

induce induce

Send
Theory

Send
Theory

<E ,E ,B>+
1

-
1 <E ,E ,B>+

p
-
p

b) dplr c) dpilp

Fig. 3. Simplified schemes of the messages exchanges by the parallel algorithms. Solid
lines represent the execution flow, horizontal dashed lines message passing between
the processes, and vertical dashed lines idleness. The algorithms are ordered by the
granularity of their parallel tasks, from the finest-grained to the most coarse-grained.

Strategies to Parallelize ILP Systems 147

The AddRule2theory(R) performs steps 5 and 6 of the covering algorithm of
Section 2.2, i.e., adds the rule to the background knowledge, marks the examples
locally covered, and returns the number of examples locally covered.

Note that the first algorithm described in this section returns the same so-
lution as the sequential algorithm, whereas this algorithm may not return the
same solution due mainly to the order by which the rules are found and added
to the theory.

Data Parallel ILP (dpilp). This algorithm starts by dividing the set of exam-
ples (positive and negatives) among all processors. It then induces p theories in
parallel, using the covering algorithm on each subset, and then combines the p
theories found using the whole training set. The combination of the theories (i.e.,
rules that compose the theories) can be made using several strategies (e.g., [38]).
In order to make the comparison with the sequential algorithm more clear, we
chose a simple strategy, very similar to the one used by the sequential algo-
rithm. The rules are ordered using a metric (coverage in our implementation).
The best rule is added to the theory and the remaining rules are reevaluated
and reordered. The process is repeated while there are good rules to add to the
theory. Like the previous algorithm, the solution returned by this algorithm may
not be the same as the sequential version. It is obvious that this algorithm has
the largest granularity of the three algorithms.

5.2 Materials

We used 3 ILP applications in the experiments. Table 2 characterizes the datasets
used, in terms of number of examples (positive and negative) as well as back-
ground knowledge size (i.e., number of relations used in the learning task). AET
is the average time required to test if an example is explained by a rule. This
value is presented in microseconds and was estimated by dividing the sequen-
tial execution time by the number of examples evaluated during execution. This
estimative of the cost of evaluating an example is a useful indicator when one
considers the use of a parallelization strategy based on parallel coverage tests.

Table 2. Datasets Characterization

Dataset | E+ | | E− | | B | AET (µs)

Carcinogenesis [4] 162 136 38 305
Mesh [2] 2272 223 29 46
Mutagenesis [1] 114 57 21 20846

The experiments were performed on a Beowulf Cluster composed by 8 nodes.
Each node is a dual processor computer with 2GB of memory, and running
the Linux Fedora OS. We used the YAP Prolog system version 4.5. The ILP
system was configured to perform breadth-first search to find a rule. The search

148 N.A. Fonseca, F. Silva, and R. Camacho

was guided using a heuristic that relies on the number of positive and negative
examples.

We used 3-fold cross validation. The evaluation was focused on training time
speedup and accuracy. We measured the accuracy because two of the imple-
mented parallel algorithms may produce theories different from the ones ob-
tained with the sequential version. The accuracy variation is the ratio between
the predictive accuracy observed when using P processors and the predictive
accuracy observed when using a single processor.

Table 3. Settings

Dataset i-depth Nodes Noise Minacc CL

Carc 4 20000 5% - 10
Mesh 4 10000 10% 85% 8
Mut 2 500 25% 70% 4

We tuned the settings so that the sequential runs would not take more than
one hour to complete (except for the Mut dataset). Table 3 shows the main
settings used for each dataset. The parameter nodes specifies an upper bound
on the number of rules generated during a search for a rule. The i-depth [39]
corresponds to the maximum depth of a literal with respect to the head literal of
the rule. MinAcc specifies the minimum accuracy that a rule must have in order
to be considered good. The parameter CL defines the maximum length that a
rule may have. Finally, the noise parameter defines the percentage of negative
examples that a rule may cover in order to be accepted.

5.3 Results

Table 4 presents the execution time (in seconds) and speedups observed, on
each dataset and algorithm, for 1, 2, 4, 6, 8 and 16 processors. Some runs were
not performed for one of two reasons: i) no speedup would be achieved; ii) the
subset of data associated to each processor becomes too small (for the dplr or
dpilp algorithms).

The effects on execution time of the parallel coverage tests approach (pct)
show quite different behaviors. In the Carc and Mesh datasets the parallel
version is slower than the sequential one, while in the Mut dataset a considerable
speedup is observed. Since the Mut dataset has less examples than the other two,
we can only deduct that the higher cost of evaluating an example (see Table 2) is
the main reason for the speedups. However, when the subset becomes too small,
as is the case for 16 processors, we stop obtaining gains.

The poor results with the Carc and Mesh suggest that the distribution of
the work, and consequent parallel evaluation of the examples, is not compensated
by the cost of message passing. Clearly, this fine-grain approach to parallelize ILP
system seems only suited for datasets with a complex background knowledge,
where the cost of evaluating an example is high, or for very large datasets (as the

Strategies to Parallelize ILP Systems 149

Table 4. Execution time (T) and speedup (S)

Dataset 1 2 4 8

Carc T 416 554 999 -
S 0.75 0.42 -

Mesh T 717 948 912 901
S 0.76 0.79 0.80

Mut T 8,022 4,565 2,502 -
S 1.75 3.20 -

a) pct

Dataset 1 2 4 8 16

Carc T 416 311 180 530 -
S 1.34 2.31 0.79 -

Mesh T 717 1,904 1,347 608 592
S 0.38 0.53 1.18 1.21

Mut T 8,022 6,339 3756 - -
S 1.26 2.13 - -

Dataset 1 2 4 8 16

Carc T 416 347 129 81 -
S 1.20 3.23 5.17 -

Mesh T 717 260 207 165 164
S 2.75 3.46 4.35 4.37

Mut T 5,865 6,339 3,756
S 1.26 2.13 - -

b) dplr c) dpilp

number of examples is concerned) where the parallel evaluation of the examples
on a subset outweighs the parallel overhead. A way of increasing the granularity
of the parallel task is to evaluate in parallel a set of rules, as proposed in [35],
instead of evaluating a single rule.

The impact of the dplr algorithm on the execution time is variable. In the
Carc dataset a speedup is observed up to four processors and is nonexistent for
eight processors. Interestingly, in the Mesh dataset, although we do not get a
speedup for two and four processors, we observe a decrease in the execution time
as the number of processors increases. A small speedup is observed with 8 and
16 processors.

One should note that the order by which the rules are found and added to
the theory is a crucial factor to the execution time since it conditions the amount
of the hypotheses space traversed. Recall that each worker gets a subset of E+

but all E−. If one of the workers does not find a globally “good” rule using its
local subset, it will have to do a more extensive search. This may happen when
a rule has an accuracy bellow the threshold, in the subset of the data where is
being generated (thus not being considered good), and is above the threshold if
the whole dataset is considered We observed that the final set of rules found by
the dplr algorithm is far bigger than the set found by the sequential algorithm
and that the rules are also lengthier. This suggests that the algorithm is unable
to find a small number of simple rules.

The dplr is a master-worker implementation of the algorithm described by
Wang et al. [25]. The results reported here are quite different from the ones pre-
viously reported. In [25] super-linear speedups (up to 6 processors) were reported
while the speedups we found are not even linear or, in some cases, inexistent.
The reason for this is two-fold. First, Wang et al. run the experiments in a shared

150 N.A. Fonseca, F. Silva, and R. Camacho

Table 5. Variation on predictive accuracy

Dataset Alg. 2 4 8 16

Carc
(56%)

dplr +5% +14% -1% -
dpilp +4% -5% +10% -

Mesh
(72%)

dplr -25% -25% - -
dpilp +17% +21% +23% +25%

Mut
(86%)

dplr -2% -13% - -
dpilp -1% -12% - -

memory machine while we run on a distributed memory machine (a cluster, in
fact). Second, in the experiments performed by Wang et al. no good rules were
lost while learning because they did not define parameters, such as minimum
accuracy or minimum coverage. These parameters are used when considering if
a rule is good or not. However, when dealing with real world applications, these
parameters are often used to make the learning process more tractable and to
discard rules with very low coverage that may represent “overfitting”.

Since the dplr is not complete, when compared to the sequential algorithm,
the predictive accuracy of the theory found may vary. In Table 5 we can see
that predictive accuracy is affected negatively by the use of this algorithm. The
reason for this is also related to loosing “good” rules while looking for a rule in
the subsets. The theories found by the algorithm are composed by much more
specific and lengthier rules than the ones found by the sequential version.

The results obtained with the dpilp algorithm are clearly the best ones. This
algorithm not only provides a consistent speedup but can also improve the theory
predictive accuracy. dpilp differs from dplr in the amount of negative examples.
In dpilp a worker gets a percentage of the total negatives whereas in dplr each
worker gets a percentage of the positives but all of the negatives. dpilp also needs
much less communication among the processors. This confirms the theory that
greater task granularity results in bigger speedups.

6 Final Remarks

This paper has two main contributions: first, it surveys the state-of-the-art on
parallel ILP implementations; secondly, the performance impact of three par-
allel algorithms on a distributed memory computer is studied using real world
applications.

The parallel ILP algorithms described in the literature were grouped into
four main approaches: parallel exploration of independent hypotheses; parallel
exploration of the search space; parallel coverage test; parallel execution of an
ILP system over a partition of the data. Parallel exploration of independent
hypotheses is not a general approach since it is only adequate for applications
where the target concept is composed by several independent subconcepts. How-
ever, when this approach is applicable it can be combined with other approaches
to learn the subconcepts.

Strategies to Parallelize ILP Systems 151

Three algorithms were implemented based on the three more generic strate-
gies: parallel exploration of the search space; parallel coverage test; parallel ex-
ecution of an ILP system over a partition of the data. The results show that a
good approach to parallelize ILP systems in a shared-memory computer is one of
the simplest to implement: divide the set of examples into p subsets; run the ILP
system in parallel on each subset; combine the theories found. This approach not
only reduces the execution time but can also improve predictive accuracy.

We have also noticed a significant difference between shared and distributed
memory machines. In shared memory machines the communication overhead is
significantly reduced and strategies, like dlpr, may give super-linear speedups.
However, in distributed memory machines, where the communication costs are
higher, fine-grained strategies are severely penalized.

A natural extension of this work is to perform a larger experimental eval-
uation over a greater number of datasets. This could provide us more insights
about the applicability of each strategy. It would also be interesting to extend
the evaluation of the strategies to shared memory architectures.

Acknowledgments. We are thankful to the anonymous referees for their valuable

comments. The work presented in this paper has been partially supported by project

APRIL (Project POSI/SRI/40749/2001) and funds granted to LIACC through the

Programa de Financiamento Plurianual, Fundação para a Ciência e Tecnologia and

Programa POSI. Nuno Fonseca is funded by the FCT grant SFRH/BD/7045/2001.

References

1. A. Srinivasan, S. Muggleton, R.D. King, and M.J.E. Sternberg. Mutagenesis: Ilp
experiments in a non-determinate biological domain. In S. Wrobel, editor, Proceed-
ings of the 4th International Workshop on Inductive Logic Programming, volume
237 of GMD-Studien, pages 217–232, 1994.

2. B. Dolsak, I. Bratko, and A. Jezernik. Machine Learning, Data Mining and Knowl-
edge Discovery: Methods and Applications, chapter Application of machine learning
in finite element computation. John Wiley and Sons, 1997.

3. Muggleton S., King R.D., and Sternberg M.J.E. Predicting protein secondary
structure using inductive logic programming. Protein Engineering, (5):647–657,
1992.

4. A. Srinivasan, R. D. King, S. Muggleton, and M. J. E. Sternberg. Carcinogenesis
predictions using ILP. In S. Džeroski and N. Lavrač, editors, Proceedings of the
7th International Workshop on Inductive Logic Programming, volume 1297, pages
273–287. Springer-Verlag, 1997.

5. Lappoon R. Tang, Raymond J. Mooney, and Prem Melville. Scaling up ilp to
large examples: Results on link discovery for counter-terrorism. In Proceedings of
the KDD-2003 Workshop on Multi-Relational Data Mining (MRDM-2003), pages
107–121, 2003.

6. F. Železný, A. Srinivasan, and D. Page. Lattice-search runtime distributions may
be heavy-tailed. In S. Matwin and C. Sammut, editors, Proceedings of the 12th
International Conference on Inductive Logic Programming, volume 2583 of LNAI,
pages 333–345. Springer-Verlag, 2003.

152 N.A. Fonseca, F. Silva, and R. Camacho

7. A. Srinivasan. A study of two probabilistic methods for searching large spaces with
ilp. Technical Report PRG-TR-16-00, Oxford University Computing Laboratory,
2000.

8. Rui Camacho. Improving the efficiency of ilp systems using an incremental lan-
guage level search. In Annual Machine Learning Conference of Belgium and the
Netherlands, 2002.

9. A. Srinivasan, R.D. King, and M.E. Bain. An empirical study of the use of relevance
information in inductive logic programming. JMLR, 2003.

10. Nuno Fonseca, Vitor Santos Costa, Rui Camacho, and Fernando Silva. On avoiding
redundancy in Inductive Logic Programming. In Rui Camacho, Ross D. King, and
Ashwin Srinivasan, editors, Proceedings of the 14th International Conference on In-
ductive Logic Programming, volume 3194 of Lecture Notes in Artificial Intelligence,
pages 132–146, Porto, Portugal, September 2004. Springer-Verlag.

11. H. Blockeel, L. Dehaspe, B. Demoen, G. Janssens, J. Ramon, and H. Vandecasteele.
Improving the efficiency of Inductive Logic Programming through the use of query
packs. Journal of Artificial Intelligence Research, 16:135–166, 2002.

12. V.S. Costa, A. Srinivasan, R. Camacho, H. Blockeel, and W. Van Laer. Query
transformations for improving the efficiency of ilp systems. JMLR, 2002.

13. Luc De Raedt. A perspective on inductive logic programming. In The logic pro-
gramming paradigm - a 25 year perspective, pages 335,346. Springer-Verlag, 1999.

14. David Page. ILP: Just do it. In J. Cussens and A. Frisch, editors, Proceedings of
the 10th International Conference on Inductive Logic Programming, volume 1866
of LNAI, pages 3–18. Springer-Verlag, 2000.

15. David Page and Ashwin Srinivasan. Ilp: a short look back and a longer look
forward. J. Mach. Learn. Res., 4:415–430, 2003.

16. Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar. Introduction
to Parallel Computing. Addison-Wesley, 2nd edition, 2003.

17. Johannes Fürnkranz. Separate-and-conquer rule learning. Artificial Intelligence
Review, 13(1):3–54, February 1999.

18. S. Muggleton. Inverse entailment and Progol. New Generation Computing, Special
issue on Inductive Logic Programming, 13(3-4):245–286, 1995.

19. J. R. Quinlan and R. M. Cameron-Jones. FOIL: A midterm report. In P. Brazdil,
editor, Proceedings of the 6th European Conference on Machine Learning, volume
667, pages 3–20. Springer-Verlag, 1993.

20. Ashwin Srinivasan. Aleph manual, 2003.
21. Hayato Ohwada and Fumio Mizoguchi. Parallel execution for speeding up inductive

logic programming systems. In LNAI, number 1721, pages 277–286. Springer-
Verlag, 1999.

22. T. Matsui, N. Inuzuka, H. Seki, and H. Itoh. Comparison of three parallel imple-
mentations of an induction algorithm. In 8th Int. Parallel Computing Workshop,
pages 181–188, Singapore, 1998.

23. Hayato Ohwada, Hiroyuki Nishiyama, and Fumio Mizoguchi. Concurrent execution
of optimal hypothesis search for inverse entailment. In J. Cussens and A. Frisch,
editors, Proceedings of the 10th International Conference on Inductive Logic Pro-
gramming, volume 1866 of LNAI, pages 165–173. Springer-Verlag, 2000.

24. Jan Wielemaker. Native preemptive threads in swi-prolog. In ICLP, pages 331–345,
2003.

25. Y. Wang and D. Skillicorn. Parallel inductive logic for data mining. In Workshop
on Distributed and Parallel Knowledge Discovery, KDD2000, Boston, 2000. ACM
Press.

Strategies to Parallelize ILP Systems 153

26. James Graham, C. David Page, and Ahmed Kamal. Accelerating the drug design
process through parallel inductive logic programming data mining. In Proceeding
of the Computational Systems Bioinformatics (CSB’03). IEEE, 2003.

27. L. Dehaspe and L. De Raedt. Parallel inductive logic programming. In Proceed-
ings of the MLnet Familiarization Workshop on Statistics, Machine Learning and
Knowledge Discovery in Databases, 1995.

28. R.S. Michalski. Pattern recognition as rule-guided inductive inference. In Proceed-
ings of IEEE Transactions on Pattern Analysis and Machine Intelligence, pages
349–361, 1980.

29. R.G. Smith. ”The contract net protocol: High-level communication and control
in a distributed problem solver”. IEEE Trans. Computers, 29(12):1104–1113, Dec
1980.

30. Stephen Muggleton and John Firth. Relational rule induction with cprogol4.4: A
tutorial introduction. In Saso Dzeroski and Nada Lavrac, editors, Relational Data
Mining, pages 160–188. Springer-Verlag, September 2001.

31. Pvm:parallel virtual machine. http://www.csm.ornl.gov/pvm/.
32. Stasinos K. Konstantopoulos. A data-parallel version of aleph. In Proceedings

of the Workshop on Parallel and Distributed Computing for Machine Learning,
co-located with ECML/PKDD’2003, Dubrovnik, Croatia, September 2003.

33. W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable im-
plementation of the MPI message passing interface standard. Parallel Computing,
22(6):789–828, September 1996.

34. Message Passing Interface Forum. MPI: A message-passing interface standard.
Technical Report UT-CS-94-230, 1994.

35. Amanda Clare and Ross D. King. Data mining the yeast genome in a lazy functional
language. In PADL, pages 19–36, 2003.

36. Nuno Fonseca, Fernando Silva, Rui Camacho, and Vitor S. Costa. Induction with
April - A preliminary report. Technical Report DCC-2003-02, DCC-FC & LIACC,
Universidade do Porto, 2003.

37. Jeffrey M. Squyres and Andrew Lumsdaine. A Component Architecture for
LAM/MPI. In Proceedings, 10th European PVM/MPI Users’ Group Meeting, num-
ber 2840 in LNCS, Venice, Italy, September / October 2003. Springer-Verlag.

38. Ronaldo Cristiano Prati and Peter Flach. Roccer: an algorithm for rule learning
based on roc analysis. In Nineteenth International Joint Conference on Artificial
Intelligence (IJCAI’2005), 2005.

39. S. Muggleton and C. Feng. Efficient induction in logic programs. In S. Muggleton,
editor, Inductive Logic Programming, pages 281–298. Academic Press, 1992.

	Introduction
	Background
	Parallelism
	Generic ILP Algorithm

	Strategies for Parallelizing ILP Systems
	Parallel Exploration of Independent Hypotheses
	Parallel Exploration of the Search Space
	Data Parallelism
	Parallel Coverage Tests

	Parallel ILP Systems
	An Evaluation of Parallelization Strategies
	Parallel Algorithms
	Materials
	Results

	Final Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

