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Preface

“Change is inevitable.”1 Embracing this quote we have tried to carefully exper-
iment with the format of this conference, the 15th International Conference on
Inductive Logic Programming, hopefully making it even better than it already
was. But it will be up to you, the inquisitive reader of this book, to judge our
success. The major changes comprised broadening the scope of the conference
to include more diverse forms of non-propositional learning, to once again have
tutorials on exciting new areas, and, for the first time, to also have a discovery
challenge as a platform for collaborative work.

This year the conference was co-located with ICML 2005, the 22nd Interna-
tional Conference on Machine Learning, and also in close proximity to IJCAI
2005, the 19th International Joint Conference on Artificial Intelligence. Co-
location can be tricky, but we greatly benefited from the local support provided
by Codrina Lauth, Michael May, and others. We were also able to invite all ILP
and ICML participants to shared events including a poster session, an invited
talk, and a tutorial about the exciting new area of “statistical relational learn-
ing”. Two more invited talks were exclusively given to ILP participants and
were presented as a kind of stock-taking—fittingly so for the 15th event in a
series—but also tried to provide a recipe for future endeavours.

Abstracts of all invited events as well as full-length papers of 24 presentations
comprise this volume. All the presentations of the “Work-in-Progress” track as
well as all submissions to the “ILP Challenge” should be available both as a
technical report and on the Web.

We gratefully acknowledge the continued support of Kluwer Academic Pub-
lishers for the “Best Student Paper” award on behalf of the Machine Learning
journal; and Springer for continuing to publish the proceedings of these con-
ferences. The German Gesellschaft für Informatik acted as a guarantor for the
conference budget, relieving us from any imminent dangers of bankruptcy. Ad-
ditional support was provided by the SIGILP of the PASCAL network of excel-
lence. Finally, we are especially grateful for the efforts of Anne Einenkel, who
ran the online services of the conference in a very smooth and effective way.
Danke schön.

June 2005 Stefan Kramer
Bernhard Pfahringer

1 —except from a vending machine. –Robert C. Gallagher
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An Output-Polynomial Time Algorithm for

Mining Frequent Closed Attribute Trees

Hiroki Arimura1,� and Takeaki Uno2

1 Hokkaido University, Kita 14-jo, Nishi 9-chome, Sapporo 060-0814, Japan
arim@i.kyushu-u.ac.jp

2 National Institute of Informatics, Tokyo 101–8430, Japan
uno@nii.jp

Abstract. Frequent closed pattern discovery is one of the most impor-
tant topics in the studies of the compact representation for data mining.
In this paper, we consider the frequent closed pattern discovery problem
for a class of structured data, called attribute trees (AT), which is a sub-
class of labeled ordered trees and can be also regarded as a fragment of
description logic with functional roles only. We present an efficient algo-
rithm for discovering all frequent closed patterns appearing in a given
collection of attribute trees. By using a new enumeration method, called
the prefix-preserving closure extension, which enable efficient depth-first
search over all closed patterns without duplicates, we show that this al-
gorithm works in polynomial time both in the total size of the input
database and the number of output trees generated by the algorithm.
To our knowledge, this is one of the first result for output-sensitive algo-
rithms for frequent closed substructure disocvery from trees and graphs.

Keywords: frequent closed pattern mining, tree mining, attribute tree,
description logic, semi-structured data, the least general generalization,
closure operation, output-sensitive algorithm.

1 Introduction

Frequent closed pattern discovery [19] is the problem of finding all the frequent
closed patterns in a given data set, where closed patterns are the maximal pat-
terns among each equivalent class that consists of all frequent patterns with the
same occurrence sets in a tree database. It is known that the number of frequent
closed patterns is much smaller than that of frequent patterns on most realworld
datasets, while the frequent closed patterns still contain the complete informa-
tion of the frequency of all frequent patterns. Closed pattern discovery is useful
to increase the performance and the comprehensivity in data mining.

On the other hand, rapid growth of semi-structured data [1] such as HTML
and XML data enabled us to accumulate a massive amount of weakly struc-
tured data on the networks. There is a potential demand for efficient methods

� Present address: LIRIS, University Claude-Bernard Lyon 1, France.

S. Kramer and B. Pfahringer (Eds.): ILP 2005, LNAI 3625, pp. 1–19, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 H. Arimura and T. Uno

for extracting useful patterns from these semi-structured data, so called semi-
structured data mining. For the last years, a number of researches on efficient al-
gorithms for semi-structured data mining have been done for ordered trees [3,27],
unordered trees [4,11,15,22] , and general graphs [14,26]. Presently, one of the
major topics in semi-structured data mining is so-called closed tree mining, an
extension of closed pattern mining framework to semi-structured data [11,23,26].

In this paper, we consider the frequent closed pattern discovery problem for a
class of structured data, called attribute trees (AT ), which is a subclass of labeled
ordered trees and can be also regarded as a fragment of description logic [9] with
functional roles only. We present an efficient algorithm for discovering all frequent
closed patterns appearing in a given collection of attribute trees.

Most of the present closed tree mining algorithms adopted an approach that
combines fast enumeration of frequent patterns and explicit checking of its max-
imality [11,23,26]. Unfortunately, this approach does not yield any efficient al-
gorithms with theoretical performance guarantee, in terms of output-sensitive
algorithms or enumeration algorithm. To overcome this problem, we developed
a new enumeration technique, called the prefix-preserving closure expansion,
which is originally introduced to frequent closed itemset discovery by Uno et
al. [24], with combining the notions of the rightmost expansion [3,18,27] and the
least general generalization [20] for trees.

Based on these techniques, we present an efficient algorithm Cloatt (Closed
Attribute Tree Miner) that enumerates all frequent closed attribute trees in a
given collection of attribute trees without duplicates in polynomial time per
closed tree in the total size n of the database using a small amount of memory
space that only depends on n. The key of the algorithm is a tree-shaped search
space generated by the prefix-preserving closure expansion, that enables us to
make efficient enumeration using depth-first search of closed patterns, without
storing any of the previously discovered patterns for maximality check.

To the best of our knowledge, this is one of the first results on output-
polynomial time closed pattern miners for structured objects. Hence, this is a
first step towards efficient closed pattern discovery for general structured objects
including trees and graphs.

Related Works: Termier et al. [23] recently considered the frequent closed
tree discovery problem for a class of trees with same constraint as attribute
trees in AT . Though they presented an efficient algorithm using an interesting
idea of hooking , its output-sensitive complexity is not yet analyzed. Cumby and
Roth [13] presented a framework for learning and inference with relation data
using a fragment of description logic, called feature description logic, which is
similar to the class AT of attribute trees considered in this paper. However,
the focus is on the knowledge representation issues in complex structural data
domains, and closed pattern discovery is not considered [13]. Wang and Liu [25]
studied the frequent tree discovery problem for the class of sets of paths from a
given collection of labeled trees, which is closely related to frequent discoverry
problem for the class AT.
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Organization of This Paper: The rest of this paper is organized as follows.
In Section 2, we give basic notion and definitions on attribute trees and closed
patterns. In Section 3, we give a characterization of closed trees in terms of
least general generalization. In Section 4, we develop the ppc-expansion (prefix-
preserving expansion) and then present an output-polynomial time algorithm
for frequent closed attribute trees. In Section 4, we show an experimental result,
and in Section 5, we conclude.

2 Preliminaries

In this section, we introduce basic definitions on the class of ranked trees and
closed tree discovery.

For a set A, |A| denotes the cardinality of A and ε ∈ A∗ denotes the empty
sequence of length zero. We denote by A∗ and A+ = A∗\{ε}, respectively, the
sets of all finite sequences and all non-empty finite sequences over A. For se-
quences α, β ∈ A∗, we denote by αβ the concatenation of α, and β and by |α|
the length of α. If αγ = β holds for some possibly empty sequence γ ∈ A∗ then
we say that α is a prefix of β. Furthermore, if γ is not the empty sequence then
the prefix α is said to be proper . For a binary relation R ⊆ R2 over a set X , R+

denotes the transitive closure relation of R.

2.1 Attribute Trees
In this subsection, we model semi-structured data by a special type of labeled
rooted trees, called attribute trees.

Let A = {a0, a1, a2, . . .} be a countable set of labels associated with a total
order ≤ over A. Sometimes, we call the elements of A attributes or value, too.
For simplicity, we use a single alphabet A, and think of the labels at internal
nodes and leaves as the encodings of attributes and values, respectively, as in [10].
Throughout this paper, we assume without loss of generality that A is the set of
all nonnegative integers A = {0, 1, 2, . . .} and ≤ is the partial order over integers.

Definition 1. Let A is an alphabet of labels. An attribute tree on A (tree, for
short) is a rooted, node labeled, directed acyclic graph T = (V, E, r, label), where

1. The set V = {v1, . . . , vn} (n ≥ 0) is a finite set of nodes.
2. The set E ⊆ V × V is a finite set of edges. If (u, v) ∈ E then we say that

either u is the parent of v or v is a child of u.
3. The node r ∈ V is a distinguished node, called the root. Any node v except

r has exactly one parent.
4. The function label : V → A is a labeling function for assigning a label

label(v) to each node v of T .
5. For every label a ∈ A, each node v ∈ V has at most one child w labeled by

a. Then, the unique node w is called the a-child of v.

We assume that VT = {1, . . . , n} and identify the isomorphic patterns. The
size of T , denoted by |T |, is defined by the number |V | of the nodes in T . Let
u, v ∈ V . If (u, v) ∈ (E)+ then we say that either u is an ancestor of v or v
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Fig. 1. An example of a tree database and patterns in attribute trees, where each circle
indicates a node, each number in a circle indicates the node number, and each name
in italic or bold face next to a circle indicates a node label. For instance, the pattern
T1 occurs in the database at positions 2 and 36.

is a descendant of u, where (E+) is the transitive closure of E. A path in T is
a sequence of nodes π = (v1, . . . , vd), d ≥ 0, such that (vi, vi+1) ∈ E for every
i = 1, . . . , d − 1 and its length is the number of its nodes |π| = d. The depth of
node v is the length of the unique path from the root to v. Other notions on
trees such as height can be found in a standard textbook, e.g., [2]. We denote
by AT the class of all attribute trees over A. In what follows, for an attribute
tree T = (V, E, r, label), we refer to V, E,≤, r, label as VT , ET , rT , and labelT ,
respectively if it is clear from context.

In Fig. 1, we show an example of attribute trees, where nodes are numbered
in the preorder (as ordered trees), and each label is used to represents either an
attribute (in italic face) or a value (in block face). These labels can be used to
represent edge labels, too, since we deal with trees only.

2.2 Tree Matching Relation
The semantics of attribute trees is given by the matching functions as fol-
lows [3,8,16,17].

Definition 2. Let S and T ∈ AT be attribute trees over A. Then, S matches
T , denoted by S � T , if there exists some function ϕ : VS → VT that satisfies
the following conditions (i)–(iv) for any v, v1, v2 ∈ VS .

(i) ϕ is a one-to-one mapping: v1 �= v2 implies ϕ(v1) �= ϕ(v2).
(ii) ϕ preserves the parent-child relation: (v1, v2) ∈ ES iff (ϕ(v1), ϕ(v2)) ∈ ET .
(iii) ϕ preserves the node labels : labelS(v) = labelT (ϕ(v)).

The function ϕ is called a matching function from S to T .1 We denote by
Φ(S, T ) the set of all matching function from S to T .

1 In Kilpelainen and Mannila [16], ϕ is called a path inclusion since it preserves the
parent-child relationship. The fuction ϕ is called an embedding .



An Output-Polynomial Time Algorithm for Mining Frequent Closed AT 5

Example 1. In the example of Fig. 1, the tree T2 with node set VT2 = {1, 2, 3, 4}
occurs in the data tree D with matching functions ϕ1 = (2, 7, 9, 16), ϕ2 =
(23, 26, 28, 31), and ϕ3 = (36, 37, 39, 42), where each ϕ is represented by tuple of
its images (ϕ(1), ϕ(2), ϕ(3), ϕ(4)).

If S � T holds, then we also say that S occurs in T , S is included by T , or
S subsumes T . If S � T and T �� S then we define S � T and say that S is
properly included in T or S properly subsumes T . For convention, we assume a
special tree ⊥ of size 0, called the empty tree, such that ⊥ � T for every T ∈ AT .

Lemma 1. The subsumption relation � is a partial order over AT .

The matching problem w.r.t. � is the problem to decide if a pattern tree P
matches a data tree D, i.e., P � D holds.

Lemma 2. The matching problem w.r.t. � is computable in O(mn) time for
attribute trees, where m and n are the sizes of a pattern tree and a data trees.

2.3 Databases, Patterns, Denotations, and Closed Patterns
Let D = {D1, . . . , Dm} be a tree database (database, for short), where each Di ∈
AT is an attribute tree, called a data tree, and the node sets VD1 , . . . , VDm are
mutually disjoint. In the later sections, we often identify D as a single database
tree with a virtual master root v0 labeled by a null label.2 We define the domain
and the size of D by VD =

⋃
i VDi and ||D|| = |VD |, respectively.

A pattern or tree in D is any attribute tree T ∈ AT that occurs in D.
A position in D is any node v ∈ VD. If there exists some matching function
ϕ ∈ Φ(T,D) such that p = ϕ(rT ), then we say that either T occurs at position
p or p is an occurrence of T . For attribute trees, each occurrence p = ϕ(rT )
of tree T determines the matching function ϕ in a unique way. The occurrence
set of T in D, denoted by OccD(T ), is the set of all occurrences of T in D,
that is, OccD(T ) = { ϕ(rT ) |ϕ ∈ Φ(T,D) }. Trees S and T are equivalent if
OccD(S) = OccD(T ). The equivalent class for T on D is denoted by EQ(T ) =
{ T ′ ∈ AT |OccD(T ′) = OccD(T ) }. From now on, we fix a database D, and we
may omit the subscript D if no confusion arises in the future sections.

Let 0 ≤ σ ≤ ||D|| be a nonnegative integer, called a minimum frequency
threshold or a min-freq. Then, a tree T ∈ AT is frequent in D if |OccD(T )| ≥ σ
holds. Both of OccD(T ) and |OccD(T )| are computable in O(|T | · ||D||) time.

Definition 3 (Closed trees). A frequent tree T is closed in D if there exists
no equivalent tree to T within AT that properly includes T , that is, there exists
no such T ′ ∈ AT that (i) T � T ′ and (ii) OccD(T ′) = OccD(T ).

Example 2. In the database of Fig. 1, patterns T1 and T2 have the occurrence
sets OccD(T1) = {2, 36} and OccD(T2) = {2, 23, 36}, respectively. We also see

2 Note that the whole database tree D with the master root v0 is not an attribute tree
and represents a forest of data trees, since v0 may have children with possibly same
labels. However, it is justified whenever no pattern is allowed to occur at v0.
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that T2 � T1 holds. Let σ = 2 be a minimum frequency threshold. T1, T2, and
T3 are frequent patterns in D since. T1 is closed in D.

In other words, a closed tree T is a maximal element of EQ(T ). For threshold
σ, Fσ and Cσ denotes the classes of all frequent trees and all frequent closed trees,
respectively, in D. We write F and C for the threshold σ = 1. Now, we state our
data mining problem as follows.

Closed Pattern Mining Problem for Attribute Trees
Given a database D = {D1, . . . , Dm} (m ≥ 0) of attribute trees and a minimum
frequency threshold 0 ≤ σ ≤ ||D||, find all frequent closed trees T ∈ AT in D
without duplicates.

Our goal in this paper is to design an output-polynomial time algorithm for
the frequent closed pattern problem for the class AT using as small memory
footprint as possible. An algorithm M solves an enumeration problem Π in
output-polynomial time [5] if the running time of M is bounded by a polynomial
time in m and n, where m = |Cσ| and n = ||D||.

Since a transaction database with attributes A can be encoded by a forest of
depth three over alphabet A ∪ {�db, �record}, the following lemmas for attribute
trees follows from the corresponding lemmas for transaction databases.

Lemma 3. There exist some database D ⊆ AT and σ ≥ 0 such that |C| is
exponentially larger than the input size ||D||.

Lemma 4 (Uno et al. [24]). There exists some database D ⊆ AT and σ ≥ 0
such that |Fσ| is exponentially larger than |Cσ|.

From Lemma 3 and Lemma 4, we see that a näıve generate-and-test algorithm
with enumeration of all frequent patterns cannot be output-sensitive.

2.4 Relationship to Other Models of Semi-structured Data
The class AT of attribute trees can be related in several ways to the existing
models of structured and semi-structured data as follows.

• AT is a slight modification of ranked trees in the studies of tree automata
and formal logic. In ranked trees, the domain of indices is restricted to non-
negative integers rather than arbitrary countable set A. Also the number of
children of each node, called rank is determined by the symbol attached to
the node.

• AT is a special case of labeled ordered trees [3,18,27] and labeled unordered
trees [4,15], which are extensively studied in semi-structured data mining.
Trees in AT have the constraint that the labels of the children of each node
are mutually distinct.

• AT is corresponds to the class of complex objects with the tuple constructor
only [6,10] where a complex object over an attribute alphabet A is either an
empty object O = ∅ or a hierarchical tuple O = {a1 : O1, . . . , an : On} for
attributes a1, . . . , an ∈ A and complex objects O1, . . . , On.
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• AT can be considered as a fragment of description logic [9] where only func-
tional roles/attributes are allowed and equivalence constraints and complex
logical constructs are not allowed. The relation � corresponds to the sub-
sumption relation of such logic. Furthermore, roughly speaking, if we regard
a tree database D as a model ID and a tree pattern T as a formula φT in this
version of description logic, then the occurrence set Occ(T ) of T corresponds
to the extension of φT in ID, where a matching function is not necessarily
one-to-one.

• AT corresponds to a simple subclass of conjunctive queries in deductive
databases and first-order logic programs. The database has monadic predi-
cates Q1(·), . . . , Qm(·) for labels and a binary predicate R(·, ·) for edges. A
database has tree structure in the edge predicate, and a pattern is a definite
clause of the form

P (X) ← Q1(X1), . . . , Qm(Xm), E1(Y1, Z1), . . . , En(Yn, Zn)

with an underlying variable dependency structure of tree-shape, with some
constraint on the appearance of monadic predicate corresponding to the def-
inition of attribute trees.

A natural question is how useful the class of attribute trees is. Clearly, not
all XML databases are attribute trees. For a non-attribute labeled tree T , there
are two possible ways to derive an attribute tree version of T as follows. The
first way is to simply remove all but first nodes with the same label in siblings.
The second way is recursively merge the siblings with the same labels starting
from the root node of T . In Section 5, we give an example of such an attribute
tree derived from a real world dataset.

3 Characterization of Closed Attribute Trees

In this section, we give a characterization for closed attribute trees, which plays
a central role in our output-polynomial time algorithm for frequent closed tree
mining. This characterization used the notion of least general generalization for
trees, and is a natural generalization of properties of closed itemsets to attribute
trees.

In this and the next sections, we identify a tree in AT and its address set
representation if no confusion arises.

3.1 A Representation for Attribute Trees
In this subsection, we introduce the address set representation of attribute trees,
which is a combination of sequence representation for frequent itemsets [7] with
tree domains for ranked trees.

For an attribute tree T ∈ AT , each node v of T has the unique path π
from the root to v. Then, the address of v, denoted by dom(v), is the sequence
α = (a1, . . . , am) ∈ A∗ of node labels spelled out by the path π. We also call any
element of A∗ an address on A. The address set (or domain) of a tree T ∈ AT
is defined by the set dom(T ) = { dom(v) ∈ A∗ | v ∈ VT } ∪ {ε}, the set of all
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Tree T

1

3 5
cpu storage

harddisk

6

arch

7

product

8
maker

toshiba

9

2
maker

4

type

Address set dom(T)

0 ε
1 product
2 product.maker
3 product.cpu
4 product.cpu.arch
5 product.storage.
6 product.storage.type
7 product.storage.type.harddisk
8 product.storage.maker
9 product.storage.maker.toshiba

0 ε

Fig. 2. A attribute tree T and its address set dom(T )

addresses for the nodes of T . For the empty tree ⊥, we define dom(⊥) = {ε}.3
Intuitively, an address and an address set over A∗ correspond to a node and a
tree in A, respectively.

For an address α = (a1, . . . , ad−1, ad) of length d ≥ 1, the parent address of α
is the address pa(α) = a1, . . . , ad−1 of length d−1. A set A ⊆ A∗ is prefix-closed
if α ∈ A implies pa(α) ∈ A for any address α ∈ A∗. The following lemmas are
well known saying that the address set precisely encodes an attribute tree.

Lemma 5. Let A ⊆ A∗ be any set of addresses. Then, dom(T ) = A for some
tree T ∈ AT iff A is prefix-closed.

Lemma 6. Trees T1 and T2 ∈ AT are isomorphic iff dom(T1) = dom(T2) holds.

The conversion between T and dom(T ) can be done in each direction in linear
time of the input size.

Consider the set A∗ of all addresses and the lexicographic order <lex over
A∗. It is often convenient to regard an address set A = {α1, . . . , αn} as an or-
dered sequence (αi1 , . . . , αin), where αi1 <lex · · · <lex αin for some permulation
{i1, . . . , in} = {1, . . . , n}. With this sequence notation, we have the following
definition. Let γ ∈ A∗ be any address. The γ-prefix and the strict γ-prefix of A
are the elements of A that are less than or equal to γ and strictly less than γ,
that is, A(γ) = { α ∈ A |α ≤lex γ }, and A(γ − 1) = { α ∈ A |α <lex γ }, respec-
tively.4 The head and the tail of A is the the minimum and the maximal elements
hd(A) = min(A) and tl(A) = max(A), respectively (They are equivalent to αi1

and αin in the sequence notation above).
For a tree A, an address α ∈ A∗ is open for an address set A if pa(α) ∈ A

and α �∈ A hold. We denote by Open(A) the set of all open addresses for A.
3 Here, we assume that every tree T contains an invisible grand root with the address

ε. This treatment is just necessary to ensure a tree domain to be the prefix-closed.
4 If A is finite then actually the address γ − 1 exists as the predecessor of address γ.

It is not the case when A is countably infinite and γ ends with the smallest letter in
A. However, we can still use this notation safely if A is finite as in our case.
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T = Lgg(S)
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Fig. 3. The least general generalization T = Lgg(S) of set of trees {S1, S2}. The tree
T is the unique maximal tree that is more general than both of S1 and S2.

3.2 The Least General Generalization and Closure Operation
In this subsection, we introduce the least general generalization for attribute
trees by extending the original definition for atomic formulas by Plotkin [20]
and Reynolds [21]. Then, we give the closure operation for trees in AT .

We define a binary relation  over AT , called the generalization relation,
as follows. For any trees S, T ∈ AT , if there exists some ϕ ∈ Φ(S, T ) such that
ϕ(rS) = rT then we define S  T and say that S is more general than T or T
is more specific than S. If S  T but T � S then S is properly more general
than T or T is properly more specific than S. Clearly, S  T implies S � T , and
thus,  is a partial order. However, the converse does not hold in general since
ϕ have to map the root of S into the root of T in the case for .

Lemma 7. For any S, T ∈ AT , S  T iff dom(S) ⊆ dom(T ).

The generalization relation satisfies the following anti-monotonicity.

Lemma 8. Let S, T ∈ AT be any trees.

1. If S  T then Occ(S) ⊇ Occ(T ).
2. If S  T then |Occ(S)| ≥ |Occ(T )|.

Then, the least general generalization of a set of trees is defined as follows. Let
S ⊆ AT be a finite set of trees. A tree T ∈ AT is a common generalization for
S if T  S for every S ∈ S. A common generalization T of S is the least general
generalization (lgg) of S if T is more specific than any common generalization
for S, i.e., T ′  T for any common generalization T ′ for S. We denote the lgg of
S by Lgg(S). The following theorem says that Lgg(S) always exists and unique.

Lemma 9. For any set S ⊆ AT , Lgg(S) is the unique tree T∩ such that
dom(T∩) =

⋂
S∈S dom(S).

Proof: Let S = {S1, . . . , Sn} ⊆ AT be a finite set of trees, where m ≥ 0.
Then, we can show that Lgg(S) is the unique tree T∩ ∈ AT whose address set
is given by the intersection of all address sets A1, . . . , An, that is, A∩ =

⋂
i Ai,

where Ai = ad(Si) for every i = 1, . . . , m. Now, we give the proof for the above
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claim. Let T∩ ∈ AT be the tree defined in the above statement. If both sets A1

and A2 are prefix-closed then so is A1 ∩ A2. Thus, the intersection A∩ is also
prefix-closed. From Lemma 6 and Lemma 5, such a tree T∩ always exists and is
unique. On the other hand, assume that we have a common p-generalization T ′

of S. If T ′  Si then A′ = ad(T ′) is included in Ai = ad(Si) for every i. Thus,
A′ ⊆

⋂
i ad(Si) = A∩ holds. From Lemma 7, this implies that T ′  T for any

common generalization T ′. Hence, we know that T is the unique least general
generalization of S w.r.t. . �

Theorem 1. The least general generalization Lgg(S) for a finite set S ⊆ AT
of attribute trees is unique, of polynomial size, and polynomial time computable
in the total size of S.

From the proof of the above theorem, we present an O(mn) time algorithm
for Lgg(S) as in [20]. Cohen et al. [12] studied the least general generalization
for a more general fragment of description logic, called Classic.

Now, we give the closure operation for trees.
For a position v ∈ VD, the subtree (or half-tree) rooted at position v is the

tree S whose domain is given by dom(S) = { β ∈ A∗ |αβ ∈ dom(D) } for the
address α of v. For a set P ⊆ VD of positions, the tree set of tree T for P ,
denoted by Tree(T ), is the set of all subtrees of D rooted at some positions in
P .

Definition 4 (The closure operation). Let D be a database. The closure of
a tree T ∈ AT is the tree CloD(T ) = Lgg(TreeD(OccD(T ))).

Lemma 10. Clo(T ) is computable in O(mn) time in the size m = |T | of T and
the total size n = ||D|| of D.

Theorem 2. Clo(T ) is the unique maximal tree in the equivalence class EQ(T )

Proof: Let S be the set of all half-trees in D rooted at the occurrences of T in
the database. Then, the closure of T is L = Lgg(S). Now, we show that if P is
any member of EQ(T ) then the pattern P is also more general than the closure
Lgg(S). Let P be any member of EQ(T ). Then, P occurs at all occurrences
of T in the database, i.e., Occ(T ) ⊆ Occ(P ). By the definition of half-trees,
this implies that P is more general than all half-trees in S. From the definition,
Lgg(S) is the unique greatest tree that is more general than all half-trees in S.
Thus, it immediately follows that P is more general than Lgg(S). Since this is
valid for all P ∈ EQ(T ), we see that Lgg(S) is the greatest member of EQ(T )
in terms of . �

Theorem 3. A tree T ∈ AT is a closed tree in D iff Clo(T ) = T .

From Theorem 3 and Lemma 10, we can test if T is closed or not in polyno-
mial time in |T | and ||D||. We listed below some properties of closed trees, which
are useful in show in the above theorems and also for the discussion in the later
sections.
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Lemma 11. For any trees T, T1, T2 ∈ AT , the following properties hold:

1. T  Clo(T ).
2. If T1  T2 then Clo(T1)  Clo(T2).
3. If Occ(T1) ⊆ Occ(T2) then Clo(T1)  Clo(T2).
4. Clo(Clo(T )) = Clo(T ).
5. Clo(T ) is the unique smallest closed tree including T .
6. For closed trees T1, T2 ∈ C, T1  T2 iff Occ(T1)  Occ(T2).

4 Output-Polynomial Time Algorithm for Closed Trees

In this section, we present an efficient algorithm for enumerating all frequent
closed trees in polynomial time per tree without duplicates in the total size of
the input database.

4.1 Possible Approaches
In this subsection, we consider and briefly summarize the possible approaches
for computing frequent closed trees and point out some problems in them.

The first approach is to use a frequent tree mining algorithm. In mining
of labeled ordered trees, an efficient enumeration technique, called rightmost
expansion in [3], is used for generating all frequent labeled ordered trees with
depth-first search. In our representation for attribute trees with address set, the
definition is given as follows.

Definition 5 (Rightmost expansion). Let k ≥ 1 and S ∈ AT be a tree of
size k − 1. Then, a tree T of size k is said to be a rightmost expansion of S if
T = S ∪ {β} for some open address β ∈ Open(S) such that β >lex td(S).

Using rightmost expansion, we can implement an algorithm that enumerates
all frequent trees in AT without duplicate, which starts from the empty tree,
and searches all frequent trees from smaller to larger by the rightmost expansion
as Asai et al. showed for the computation of frequent ordered trees [3].

We can modify this algorithm to compute all frequent closed trees by first
enumerating each tree, and then testing if it is closed. This algorithm requires
at least time proportional to ||Fσ|| > ||Cσ||. Thus, it cannot be an output-
polynomial time algorithm at all.

The second approach is to use the closure operation to generate closed trees.
T is an expansion for S if T = S ∪ {β} for some open address β ∈ Open(S).

Definition 6 (Closure expansion). Let k ≥ 1 and S ∈ AT be a tree of size
k − 1. Then, a tree T of size k is said to be a closure expansion of S if T is the
closure of an expansion for S, that is, T = CloD(S∪{β}) for some β ∈ Open(S).

It is not hard to see that any closed tree T is a closure expansion of some
closed tree S. Then, we can implement an algorithm for computing all frequent
closed trees working with level by level using breadth-first search or level-wise
search as Uno et al. showed for the computation of frequent closed itemsets [24].



12 H. Arimura and T. Uno

This algorithm starts from the set of frequent closed trees of size one, and for
every level k = 1, 2, . . . then iteratively computes from the set Ck of trees of
size k the set Ck+1 by using closure expansion. Since the same tree can be
generated more than one parent tree by closure expansion, we have to check if
each generated closed tree is not repeated, using the current set of closed trees
in a breadth-first manner.

We can prove that the computation time of this approach can be output-
polynomial in ||D||, using the results to be shown in the following sections.

Corollary 4. There exists an output-polynomial time algorithm in ||D|| for
the frequent closed pattern problem using the space proportional to the output
size ||Cσ||.

However, this algorithm with closure expansion alone requires at least the
memory space proportional to the total size ||Cσ|| of outputs due to its breadth-
first search scheme.

Overall, neither of the approaches with rightmost expansion alone and with
closure expansion alone are not satisfactory yet. To overcome these problems,
we combine both approaches in the following sections to achieve efficient enu-
meration with small amount of space proportional to ||D|| rather than ||Fσ||
and ||D||.

4.2 Tree-Shaped Search Space for Closed Trees
In this subsection, we introduce a tree-shaped search structure over C, which is
based on a search technique, called reverse search [5].

We first give a parent function over closed trees. Let D be a database. Then,
the root closed pattern is the smallest tree rootC = Clo(⊥) equivalent to the
empty pattern ⊥ and always exists. Let A ⊆ A∗ be an address set of a tree.
Recall that we introduced the notations A(γ) and A(γ−1) for an address γ ∈ A∗

in Section 3.1, where A(γ) is the set of addresses in A less than or equal to γ
and A(γ−1) is the set of addresses strictly less than γ. We define the core index
of A by

core i(A) = min{ γ ∈ A |Occ(A) = Occ(A(γ)) },
that is, the minimum address γ ∈ A such that Occ(A) = Occ(A(γ)). For rootC ,
we define core i(rootC) = −1.

Definition 7 (The parent tree). Let T ∈ C\{rootC} be any non-root closed
tree. Then, the parent of T , denoted by P(T ) ∈ AT , is defined by

P(T ) = Clo(T (core i(T )− 1)).

Lemma 12. For any non-root closed tree T ∈ C\{rootC}, the parent tree P(T )
always exists, is unique, and is also a member of C.
Proof: Since T ∈ C\{rootC}, T is not equivalent to the empty tree ⊥ in its
occurrence set. Thus, its core index γ = core i(T ) must be greater than zero,
and thus the prefix T (γ−1) is defined. For any tree T , its closure Clo(T ) always
exists. Hence, the result follows. �
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Lemma 13. For any non-root closed tree T ∈ C\{rootC}, the following proper-
ties hold:

1. |P(T )| < |T | holds.
2. P(T ) ≺ T holds.

Proof: The proof follows from Lemma 11. �

Let us consider a directed graph T = (C,P , rootC), called a search graph for
C, where each node is a closed tree T and there exists an edge (a reverse edge)
from a tree T to tree S if P(T ) = S. From Lemma 12 and Lemma 13, we have
the following lemma.

Lemma 14 (Existence of tree-shaped search space for C). The search
graph T = (C,P , rootC) for C is a spanning tree over all closed trees in C with
the unique root rootC .

Lemma 14 is also valid for frequent closed trees in Cσ with min-freq threshold
σ since the parent edge satisfies the anti-monotonicity in frequency (Lemma 8).

4.3 Prefix-Preserving Closure Expansion
In this subsection, we give the prefix-preserving closure expansion. Let S, T ∈
AT be trees. T ∈ AT is said to be a prefix-preserving closure expansion (ppc-
expansion) of S if

(i) T = Clo(S ∪ {β}) for some β ∈ Open(S), that is, T is obtained by first
adding a new node to S, and then taking its closure.

(ii) the address β satisfies β > core i(S).
(iii) S(β − 1) = T (β − 1), that is, the strict β-prefix of S is preserved.

In the search, starting from the root tree rootC , we search the search tree T
by growing the present tree by taking its ppc-expansions. The next lemma says
that the core index can be recursively computed.

Lemma 15. Let S be a closed tree and T = Clo(S ∪{β}) be a ppc-expansion of
S. Then, β is the core index of T .

Proof: Since Clo(T (β)) = T by assumption, we at least know that core i(T ) ≤
β. Assume to contradict that core i(T ) < β and that Clo(T (δ)) = T holds for
some δ < β such that δ �∈ S. Then, we can show that Clo(S ∪ {δ}) = T holds.
However, this implies the contradiction that S(β) �= T (β) since δ �∈ S but δ ∈ T .
Thus, we conclude that core i(T ) = β. �

Lemma 16. Let S be a closed tree. Then, all ppc-expansions of S can be gen-
erated in polynomial time per ppc-expansions in |S| and ||D||.

We show that any non-root tree T can be generated from its parent P(T ) by
ppc-expansion. In the following proofs, we assume that A is finite for simplicity.
However, these lemmas also hold for infinite A.
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Lemma 17. Let T be a non-root closed tree, and S = P(T ) be the parent tree
of T . Then, T is a ppc-expansion of S.

Proof: Let γ = core i(T ). We will show that T = Clo(S∪{γ}). By assumption,
S = Clo(T (γ − 1)). Thus, the core index of S is at least strictly smaller than γ
and this satisfies condition (ii) of ppc-expansion. Since T (γ) = T (γ − 1) ∪ {γ}.
By Lemma 11, we have T (γ)  S ∪ {γ}  T . Since Clo(T (γ)) = T for the
core index γ, it follows from Lemma 11 that condition (i) Clo(S ∪ {γ}) = T of
ppc-expansion. Since S = Clo(T (γ − 1)), S(γ − 1) already includes T (γ − 1).
The converse is also true T is a closure of S ∪ {γ}. Thus, we have condition (iii)
S(γ − 1) = T (γ − 1) of ppc-expansion. �

Lemma 18. Let S be a closed tree, and T be a ppc-expansion of S. Then, S is
the parent tree of T , i.e., S = P(T ).

Proof: By assumption, (i) T = Clo(S ∪ {β}) for some β > core i(S). Then, by
condition (iii) of ppc-expansion S(β−1) = T (β−1), we know that γ = core i(T )
is at least larger than β, and thus strictly larger than core i(S). This implies
that γ − 1 is larger than or equal to core i(S). Since γ − 1 ≥ β − 1, we have
S(γ − 1)  T (γ − 1). On the other hand, since γ − 1 ≥ core i(S) as above, we
have Clo(S(γ − 1)) = S. This implies that Clo(T (γ − 1)) is at least as general
as S, and thus equivalent to S. This shows that P(T (core i(T )− 1)) = S. �

Combining Lemma 17 and Lemma 18, we show that the ppc-expansion cor-
rectly generates the children of a closed pattern in the search graph.

Theorem 5. Let S and T be a closed tree such that T �= rootC . Then, S is the
parent tree of T iff T is a ppc-expansion of S.

4.4 Algorithm
In Fig. 4, we show our algorithm Cloatt (Closed Attribute Tree Miner) for
discovering all frequent closed trees in a given database. This algorithm uses
ppc-expansion introduced in the previous section. Starting from the smallest
closed tree rootC , the algorithm performs depth-first search for closed trees by
finding the children of the present closed tree using ppc-expansion.

Theorem 6. Let D ⊆ AT be a database and σ ≥ 1 be a minimum frequency
threshold. Then, the algorithm Cloatt of Fig. 4 finds all frequent closed trees
T ∈ AT appearing in D in O(bm2n) amortized time per tree without duplicates
using O(n) memory space, where b is the maximal branching of each data trees
in D, m = |T | is the size of the tree found, and n = ||D|| is the total size of the
database ||D||.
Proof: From Lemma 14 and Theorem 5, the algorithm Cloatt correctly
searches all closed trees on the spanning tree T for F . Since this search space
forms tree, each closed tree is generated exactly once. For each closed tree T ,
we can compute Occ(T ) in O(mn) time. From Lemma 16, we can also com-
pute all ppc-expansions of T in polynomial time, more exactly in O(bm2n) time
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1 Algorithm Cloatt
2 input: a database D and a min-frequency threshold 1 ≤ σ ≤ ||D||.
3 output: all frequent closed patterns in D with min-freq σ;
4 T0 := Clo(⊥). // Most general closed pattern rootC
5 γ0 := core i(T0). // Core index of T0

6 PPC-Expand(T0, γ0, Occ(T0),D, σ).

7 Proc. PPC-Expand(S, γ, Occ(S),D, σ)
8 If |Occ(S)| < σ then return // Not frequent
9 Else if Clo(S) �= S then return // Not closed
10 Else // Closed pattern
11 Output S.
12 For each address β ∈ Open(S) such that β >lex γ do:

// PPC-Expansion
13 T := Clo(S ∪ {β});
14 If S(γ − 1) �= T (γ − 1) then return.
15 PPC-Expand(T, β, Occ(T ),D, σ).

16 Prefix(γ) := { α ∈ A∗ |α <lex γ }.

Fig. 4. A frequent closed pattern miner using prefix-preserving closure (PPC) expan-
sion. This algorithm runs in output-polynomial time also with a small amount of mem-
ory due to the pure depth-first search.

since there are at most bm ppc-extensions of T . From the recursive computa-
tion scheme of the algorithm, if all ppc-expansions of T are not closed then this
branch of computation is terminated and the algorithm backtracks. Therefore,
the amortized computation time per generated tree is again O(bm2n) time. Since
the recursive call for the subprocedure PPC-Expand can be implemented by us-
ing a stack of length at most m = |T | where each entry contains a pair of an
ancestor tree S of T and its occurrence set Occ(S), the memory space used is
O(�) = O(mn), where � is the sum of |Occ(S)| = O(||D||) for all ancestors of the
current tree T . Furthermore, this can be reduced to O(n) by recording only the
differences of these occurrence lists. This completes the proof. �

Corollary 7. There exists an output-polynomial time algorithm for the frequent
closed pattern problem using the space proportional to the total database size.

5 Experiments

In this section, we present some experimental results on a qualitative assessment
at the utility of closed attribute tree mining. In particular, we examine how much
reduction is possible by closed pattern discovery on a real world dataset.
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Table 1. The size of original and pruned datasets

Dataset # documents # nodes Is AT?

dblp1830.xml 986 37,276 No

dblp1830at.xml 986 33,468 Yes
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Fig. 5. The number of frequent closed trees and all frequent trees against the minimum
frequency thresholds

We first build a pruned dataset consisting of attribute trees derived from a
real world dataset as follows. The orignal dataset is a subset of an XML dataset
dblp1830.xml consisting of 986 XML documents extracted from a bibliographic
database DBLP (dblp.xml).5 Since this dataset contains repeated occurrences
of the same label, such as author and ee in siblings, we prune the dataset by
removing all but first occurrences of the repeated attributes and its subtrees in
siblings. The resulting dataset, called dblp1830at.xml, consists only of attribute
trees. In Table 1, we show statistics of the original and pruned datasets. From
the table, we can see that the dataset retains a large part of the structure in the
original datasets.

Then, we compute the sets of all frequent closed trees and frequent trees in
the pruned dataset dblp1830at.xml. To compute all frequent attribute trees,
we used an implementation of a frequent unordered tree miner Unot [4]. Since

5 http://www.informatik.uni-trier.de/∼ley/db/
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we have not implemented the algorithm Cloatt in the previous section, we
compute all closed patterns by explicitly checking if the condition of Definition 3
holds for each frequent trees computed by Unot. In Figure 5, we show the
number of the frequent closed trees and the number of all frequent trees when
we vary the minimum frequency threshold from 80.0% to 5.0% in document
frequency. From this figure, we can observe that the number of the frequent
closed trees is order of magnitude smaller than the number of all frequent trees
for most minimum frequency threshold values. Some of the discovered closed
trees corresponded to a schema structure inherent to the DBLP database.

6 Conclusion

In this paper, we presented an output-polynomial time algorithm for mining all
frequent closed patterns for the class of attribute trees.

This algorithm computes all frequent closed trees in polynomial time per
closed tree without duplicates in the total size of the input database using a
small amount of memory with depth-first search. For the purpose, we gave a
characterization of closed trees in terms of the least generalization for attribute
trees, and an efficient enumeration method, called pcc-expansion, for realizing
direct enumeration of closed trees only using the depth-first search.

The class AT of attribute trees can be related in several ways to the existing
models of structured and semi-structured data. In particular, AT has a close
relationship to a fragment of description logic with functional roles only. Thus,
it is an interesting future work to generalize the result of this paper to richer
fragment of description logic. This may include the introduction of equivalence
constraints and non-functional roles.

In this paper, we are working only with theoretical framework for efficient
closed tree miners using ppc-extension. The implementation of the proposed
algorithm Cloatt and the estimation of its efficiency on realworld datasets will
be future works.
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Abstract. Reasoning plays a central role in intelligent systems that op-
erate in complex situations that involve time constraints. In this paper,
we present the Adaptive Logic Interpreter, a reasoning system that ac-
quires a controlled inference strategy adapted to the scenario at hand,
using a variation on relational reinforcement learning. Employing this in-
ference mechanism in a reactive agent architecture lets the agent focus its
reasoning on the most rewarding parts of its knowledge base and hence
perform better under time and computational resource constraints. We
present experiments that demonstrate the benefits of this approach to
reasoning in reactive agents, then discuss related work and directions for
future research.

1 Introduction

A fundamental goal of artificial intelligence is to develop systems that demon-
strate intelligent behavior in complex environments. Such systems should be
capable of assessing situations, reasoning about them, and making informed de-
cisions even when confronted with constraints involving time and computational
resources. For example, an embodied agent can benefit greatly by drawing in-
ferences (internal beliefs) about its immediate situation (as perceived through
sensors) using knowledge about the world (inference rules).

Because we are concerned with reactive agents, we focus here on data-driven
bottom-up approaches to inference, rather than query-based top-down ones.
Such agents need a belief state about the world in order to make a decision and
take an action in any situation, so bottom-up inference over relational inference
rules is the natural choice. However, it is clear that a reactive agent operating
under time constraints cannot afford to exhaustively make all possible inferences.
Rather, like humans, it must give priority to drawing more important conclu-
sions and delay others. Such an informed agent may overlook important items
on occasion, but it can still respond rapidly and its performance will degrade
gracefully as complexity increases. This approach differs significantly from most

S. Kramer and B. Pfahringer (Eds.): ILP 2005, LNAI 3625, pp. 20–37, 2005.
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AI research on efficient matching and inference, which has combined exhaustive
methods with clever indexing schemes (Doyle [1], Forgy [2]).

In this paper, we assume that a knowledge-rich reactive agent cannot afford to
make all possible inferences, and thus must focus its attention. We are interested
in an “anytime” inference mechanism that achieves high utility by inferring
the most useful inferences within a given time limit. Moreover, under no time
constraint, it should generate the same belief state as the exhaustive inference
mechanism. As an implication, we prefer not to modify the structure of inference
rules (unlike previous work on speedup learning, such as Zelle and Mooney [3]),
but rather to have an adaptive reasoning system that learns over the relational
structure in order to use it more efficiently.

Our solution, called the Adaptive Logic Interpreter (Adlin), consists of two
components—a value-driven inference process that iteratively selects the im-
plied instantiated inference rule with the highest expected utility, and a learning
mechanism that estimates these utilities based on received rewards. The latter
uses a variation of relational reinforcement learning over the logical structure
of inference rules. It incorporates a generalization mechanism that models the
values estimated for instances of each first-order inference rule using regression
methods. This model is then used to estimate the initial expected utility for new
instances of the corresponding inference rule.

We should mention that, since the problem involves relationally represented
states and actions, it is naturally posed as relational reinforcement learning
(Tadepalli et al. [4]). Nevertheless, our generalization mechanism differs from
the methods employed in earlier works on this topic. For example, Dzeroski et
al. [5] applied inductive logic programming methods to induce first-order regres-
sion trees as generalizers. However, our approach represents the generalization
knowledge as a set of linear regression models over the first-order predicates.
We claim that our approach to relational reinforcement learning uses the prior
knowledge encoded in the relational structure of a given domain effectively, and
that it is capable of generalizing across distinct objects of the same class and
transferring to tasks of different sizes.

Furthermore, in contrast with traditional reinforcement learning over phys-
ical actions, our formulation deals with actions that are internal to the agent.
More specifically, we interpret each inference step as a mental action taken at
some internal state that updates the agent’s belief state but not the physical
world. We hypothesize that the resulting adaptive attention method will let re-
active agents make informed inferences under time constraints, and thus respond
appropriately in complex environments.

We begin by reviewing Icarus, a reactive agent architecture that currently
relies on exhaustive inference to characterize situations and decide on its actions.
After this, we describe Adlin’s method for giving priority to high-utility beliefs
and an associated mechanism for learning their values. Next, we formalize our
hypotheses about the benefits of this method and report experimental studies
that demonstrate them empirically. In closing, we discuss related research on
controlled inference and suggest directions for future work.
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2 Architectural Framework

Our vehicle for studying controlled inference has been Icarus, a reactive ar-
chitecture for physical agents that has been described at length in Choi et al.
[6]. Here we summarize the framework briefly, emphasizing those aspects most
relevant to our current topic. We believe our approach will be applicable to other
knowledge-rich reactive agent architectures that include an inference component.

An Icarus agent lives in an environment composed of a dynamic collection
of objects whose attributes and mutual relations change over time. Like other
agent architectures, Icarus operates in cycles. On each iteration, descriptions
of objects perceivable to the agent (perceptions) are deposited into a perceptual
buffer from which the system bases its inferences and generates a belief state.
The interpreter then finds which skills match against the resulting belief state,
selects the best applicable skill instance, and executes it in the environment.

Skills are Prolog-like rules that let the agent respond to different situations
in the environment. These are organized in a hierarchy, so that each skill calls on
lower-level skills or executable actions. Each skill specifies initiation conditions
that match against descriptions of perceived objects or inferred relations among
those objects. Unlike many reactive frameworks, Icarus bases its decisions not
only on primitive perceptions but also on its inferred beliefs.

In this paper we are mainly concerned with Icarus’ inference mechanism
which, on each cycle, generates the agent’s belief state based on the perceptions
and the domain knowledge. Knowledge about the domain is stored in a long-
term conceptual memory as a set of concept definitions. Concepts are first-order
logical inference rules, each stated in terms of relations that must hold among
objects, relations that must not hold for them, and arithmetic tests. In addi-
tion, associated with each concept is a reward function that specifies its utility
to the agent when an instance of the concept holds. Like skills, concepts are
defined in terms of perceptual entities and lower-level concepts, thus producing
a hierarchical structure.

Table 1 presents three concept definitions from the blocks world. The first
concept determines if the perceived object ?b is a block. The second concept
defines a left-of relation between two blocks. It holds between two perceived
objects ?b1 and ?b2 of type block (specified in :percepts) whenever is-block
predicate holds for both of them and their x positions satisfy the condition
specified in :tests, which simply states that the x position of ?b1 must be less
than that of ?b2. The reward associated with this concept is always zero. The
relation defined by the next concept, between, can be interpreted similarly, but
notice that its reward is a function of the attributes of the perceived objects, in
this example the x positions of the blocks involved.

On each execution cycle, the architecture initiates its inference procedure by
examining the lowest-level concepts at the bottom of the hierarchy and infer-
ring matched instances. Inferring a concept instance means checking whether its
conditions hold based on the current belief state and, if so, adding the instance
to the belief state. Icarus then proceeds up the hierarchy, checking concepts
that include newly inferred elements in their definitions. The process recurses
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Table 1. Three examples of Icarus concept definitions from the blocks world

(is-block (?b) (between (?b1 ?b2 ?b3)

:percepts ((block ?b xpos ?x)) :percepts ((block ?b1 xpos ?x1)

:reward 0.0) (block ?b2 xpos ?x2)

(block ?b3 xpos ?x3))

(left-of (?b1 ?b2) :positives ((left-of ?b1 ?b2)

:percepts ((block ?b1 xpos ?x1) (left-of ?b2 ?b3))

(block ?b2 xpos ?x2)) :reward (* 10 (- 30 ?x3 ?x2 ?x1)))

:positives ((is-block ?b1)

(is-block ?b2))

:tests ((< ?x1 ?x2))

:reward 0.0)

upwards, continuing until the entire hierarchy has been processed or, in the
time-constrained case, until reaching the deadline.

We will refer to this inference method as exhaustive, because it considers
concepts in a bottom-up, breadth-first manner with no control over the reason-
ing strategy. Clearly, this approach will not scale well to complex domains in
which the knowledge base is large. Even worse, when the agent operates under
time constraints, early termination can produce an inaccurate description of the
environment, which in turn can produce undesirable behavior for the agent.

3 A Method for Controlled Inference

In order to overcome the drawbacks of exhaustive inference, a reasoning system
requires some way to focus its cognitive attention on useful candidates. In this
section, we introduce Adlin, our adaptive logic interpreter. We begin by present-
ing a method for value-driven inference that gives priority to beliefs with higher
expected utilities. After this, we describe a learning method that estimates these
utilities from experienced rewards. Finally, we consider Adlin’s generalization
mechanism for compactly modelling the knowledge learned over belief instances.
The resulting system should fare better than an exhaustive version when the
number of possible inferences exceeds the number that can be made in the time
the agent has available.

3.1 Value-Driven Inference

Our approach to value-driven inference assumes that, for each candidate belief,
the agent computes an expected utility, which it then uses to select the next
instance to consider. The technique incorporates an agenda mechanism that
inserts items into a list sorted by their priority levels, selects the topmost item
to process, and iterates. This method is flexible enough to control inference, yet
simple enough to incur little computational overhead.

.
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(is-block A) (is-block B)  (is-block C)  (is-block D)

A                  B                 C                  D

infer (is-block B)

(is-block A)  (is-block B) (is-block C)  (is-block D)

A                   B                 C                  D

(left-of A B)  (left-of B A)

Fig. 1. A simple example of state and fringe update from the blocks world. The literals
in bold belong to the belief state, whereas the others belong to the fringe.

More formally, we can specify a set of real values V : U �→ R that is defined
over U , the set of all concept instances. These values differ from the rewards
associated with concept definitions and may be specified in order to achieve
a desired objective or reasoning strategy. As we will see later, Adlin learns
the values V to capture not only the immediate rewards, but also the future
benefits of inferring different belief instances. Also notice that assigning scalar
values to concept definitions would not be sufficient. The number of instantiated
beliefs derived from one concept definition can be very large, in which case the
inference system should be able to prioritize between them and infer only those
with highest expected utility. This will let the system guide the inference process
in a best-first manner, rather than a depth-first or breadth-first one.

Before describing the inference process, we should introduce a few more tech-
nical terms. We define the mental state, st, as the set of instances inferred to
be true after t inference steps within the current execution cycle. Each inference
step consists of selecting an instance that has not yet been inferred and checking
whether it holds. This involves examining whether its child instances are be-
lieved and whether all its variable constraints and arithmetic tests are satisfied.
At the beginning of each reasoning cycle, s0 is empty. The fringe Fst at any state
st is the set of all inferrable concept instances, that is, those instances not yet
inferred within the current execution cycle whose children are already included
in the state st.

A valid action au is an inference step that infers the instance u ∈ Fst−1

at the current step t. Finally, a value-driven inference mechanism is one that
performs a valid action a(V, Fst−1 ) at each step t. In other words, every inference
step depends entirely on the value assignment V and the contents of the current
fringe. In this paper, we use a special greedy case of this mechanism class that
always selects the highest value instance in the fringe. More precisely, we define
agreedy(V, Fst−1 ) as the action to infer the instance arg maxu∈Fst−1

V (u). This
choice will prove reasonable when we consider the objective of the inference
process shortly.

An example from the blocks world should illustrate the approach more clearly.
Suppose the knowledge base consists of the three concept definitions introduced
in Table 1 and there are four blocks in the environment. Figure 1 shows how
executing an action updates the belief state and the fringe. Once the system
selects inferring (is-block B) as the action, it checks whether this concept
instance holds. Because B is a block, Adlin adds this instance to its belief
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state and, because (is-block A) is already in the state, (left-of B A) and
(left-of A B) become inferrable, so it adds them both to the fringe.

3.2 Value-Learning Mechanism

As mentioned earlier, the nature and computation of expected utilities are con-
tingent upon the objective of the value-driven inference mechanism. Here we
define the objective in terms of reward, ru, produced by an inference action au,
which we define as

ru =
{

Ru(xu), if u is inferred to true;
0, otherwise, (1)

where Ru is the reward function associated with concept u and xu denotes the
attribute vector for perceived objects on which u depends. As we have noted,
this reward function quantifies the desirability to the agent of instances for the
given concept. When an instance does not match, it contributes zero reward.
Therefore, ru provides a reasonable measure for the immediate success of the
corresponding inference action.

We assume the agent aims to maximize the cumulative absolute reward over
each execution cycle, that is WT =

∑
u∈st

|ru|, subject to the constraint that the
t inference steps in this cycle take no more than T units of time. This objective
is equivalent to minimizing W∞ −WT , which represents the error in calculated
utility of the time-constrained system with respect to the utility calculated under
no time constraints. In the terminology of value-driven inference, this objective
translates to finding V values such that the inference strategy (approximately)
maximizes WT under a given time constraint T .

These values should capture not only the immediate expected reward for
each inference action, but also its benefit for later inference steps. To this end,
we adapt an approximate reinforcement learning method based on the account
of states and actions presented earlier. We will let Q(st, a) indicate the expected
value of taking inference action a at state st. Recall that, unlike most work on
reinforcement learning, our states and actions are completely internal to the
agent. Furthermore, as equation (1) suggests, the source of reward is distributed
over the entire knowledge base. This lets the learning element consider only the
relevant parts of reward at each step.

Because the state space S of all possible states st can be intractably large,
the classical tabular representations of Q(st, a) for Q learning or V (st) for value
learning are impractical. Inspired by the MAXQ framework [7], we introduce a
value decomposition that expresses the Q function in terms of V values:

Q(st, a) =
∑
u∈st

V (u) + V (ua) , (2)

where ua denotes the concept instance inferred by action a. While making the
problem tractable, this approximation establishes a relationship between the
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reinforcement learning method and value-driven inference. In fact, equation (2)
lets us rewrite the standard stochastic Q function update rule for V values:

V (u) := αV (u) + α[ru + max
u′∈F u

st

V (u′)] , (3)

where Fu
st

⊆ Fst is the set of instances in the current fringe for which u is a
child. Furthermore, we define α as

α =
1

1 + visits(u)
, (4)

in which visits(u) indicates the number of updates performed on V (u), and α
is given by

α =
{

1, if u ∈ st;
1 − α, if u /∈ st . (5)

We derive the update rule provided in equation (3) from the standard stochastic
Q function update rule [8]:

Q(s, a) := (1 − α)Q(s, a) + α[R(s, a) + γ max
a′

Q(s′, a′)].

We can safely assume γ = 1, since we are dealing with a finite-horizon problem.
Substituting the value decomposition in (2) and the definition of reward in (1)
into this update rule gives∑

u∈st−1

V (u) + V (ua) := (1− α)(
∑

u∈st−1

V (u) + V (ua))

+ α[rua + max
valid a′

(
∑
u∈st

V (u) + V (ua′))]

:= (1 − α)
∑

u∈st−1

V (u) + (1− α)V (ua)

+ α[rua +
∑
u∈st

V (u) + max
ua′∈Fst

V (ua′)] (6)

Observe that ∑
u∈st

V (u) =
∑

u∈st−1

V (u) + V (ua) · 1(ua ∈ st) , (7)

in which

1(ua ∈ st) =
{

1, if ua ∈ st;
0, if ua /∈ st

(8)

As a result, the update rule simplifies to

V (ua) := αV (ua) + α[rua + max
ua′∈Fst

V (ua′)] , (9)

with α being defined by (5). Notice that the only difference between the update
rules in (9) and (3) lies in the argument of max. In fact, we have restricted the
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Cycle 1

Cycle 2

Cycle 3

(between A B C) 
24 (45.6)

(left-of C B) (left-of B C)  (left-of A C)  (left-of A B)  
0 (0)              0 (2.16)                0 (0)                0 (2.16)

(is-block A)  (is-block B)  (is-block C)                                                  
0 (0)                  0 (0)                   0 (0)

(between A B C) 
45.6 (82.53)

(left-of A B)  (left-of A D)  (left-of B C)   
2.16 (6.04)         0.97 (0.87)        2.16 (6.04)

(is-block A)  (is-block B)      (is-block D)   (is-block C)
0 (0.19)              0 (0.19)                      0 (0)       0 (0.19) 

(between A B C) 
0 (24)

(left-of B A) (left-of A B)  (left-of B C) 
0 (0)                    0 (0)                  0 (0)

(is-block A)  (is-block B)              (is-block C)                                                  
0 (0)                  0 (0)                            0 (0)

Fig. 2. An example of value propagation for three successive cycles in the blocks world.
Updated values are shown in parentheses whereas others have been used to guide
inference. The literals in grey have been inferred to be false.

argument in (3) to the set of instances that depend directly on u. This reflects
the intuition that the values of instances which depend on u are more indicative
of the desirability of inferring u than the values of other instances in the fringe.

Figure 2 shows how the values are learned and propagated in our example
from the blocks world. Each diagram illustrates part of the agent’s belief state
at the end of the corresponding inference cycle. For an easier visualization of the
procedure, the instances are ordered from left to right according to the order
in which Adlin infers them, the leftmost being the first. Having no previous
experience in this domain, the system initializes the values to zero. As Table 1
shows, only the highest level concept, between, has nonzero reward and therefor
the values remain zero until an instance of between is inferred as true. Once
the system infers (between A B C), it updates this belief’s value in propor-
tion to its reward. Equation 3 propagates this value to the immediate children,
(left-of B C) and (left-of A B), in the next cycle and consequently to the
grandchildren—(is-block A), (is-block B), and (is-block C)—two cycles
later. Note that the value updates occur after the instances are inferred and, as
a result, the updated values participate in guiding the inference one cycle later.

3.3 Generalization Mechanism

The learning method described so far attempts to guide inference toward the
most rewarding parts of the instance space U and maximize cumulative reward
by propagating the rewards down the concept hierarchy. However, the value
learned for a single instance lives only as long as the instance remains in U . Thus,
the agent would also benefit from a generalization mechanism that summarizes
the learned knowledge about concept instances and stores it as compact models
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for future use. Adlin uses such models to initialize the expected value V for
new candidate beliefs in the instance space. Without a generalization model,
the inference system would need to relearn the value functions for every new
instance, which is certainly undesirable.

Our generalization mechanism learns a linear model hc(x) = θT x for every
concept definition c. More precisely, it applies linear regression methods to incre-
mentally update the linear model hc associated with each concept definition c,
using the training examples Sc = {(V (u), x(u)) | u ∈ Uc ∩ st} at the end of each
execution cycle. Here, x(u) indicates the vector of numeric attributes for the
perceptions that appear in concept instance u and Uc ⊆ U denotes the set of all
instances derived from concept definition c. Later, when a new concept instance
is created, its corresponding linear model is evaluated to initialize the expected
value V for the candidate belief. Given this prior knowledge, the inference mech-
anism can perform more efficiently, as we will demonstrate shortly. Despite their
simplicity, these linear models appear to help significantly in improving Adlin’s
overall performance.1

Figure 2 illustrates how generalization affects the priorities of inferring var-
ious instances. Once the value for (left-of A B) becomes 2.16, the general-
ization module takes advantage of the relational structure of the state space to
update a linear model for the concept definition left-of. Adlin uses the nu-
meric attributes of blocks A and B, namely their x positions, and the value 2.16
to update the model, which it revises further based on other instances. However,
when entirely new instances of the left-of concept become inferrable, the sys-
tem uses this model to initialize their values. For example when (left-of A D)
becomes inferrable after adding (is-block D), it uses the learned model and
the x positions of A and D to generate the initial value 0.97. In this example,
the resulting value is higher than the value of (is-block C) and therefor the
system prefers to infer (left-of A D) first.

Table 2 summarizes the Adlin inference system, including its method for
value-driven inference, its mechanism for reinforcement learning, and its tech-
nique for generalizing over instances of relational concepts.

4 Experimental Evaluation

Our primary goal for designing a value-driven inference mechanism, as stated
earlier, is to make time-limited reasoning more effective by focusing cognitive
attention on relevant parts of the instance space. To collect evidence that our
approach has the desired effects, we carried out experiments within Icarus that
compared Adlin’s value-driven inference with exhaustive reasoning and also
Adlin without its generalization mechanism, all under time constraint and var-

1 Another application of the generalization models, especially in highly dynamic envi-
ronments, lies in updating the V values when the sensory attributes of the instance
change. The update frequency should be increased with the frequency and variance
of the change in sensory values.
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Table 2. An outline of Adlin inference process for one execution cycle

1. Initialization

i. At the beginning of each cycle, start with an empty state s0 = ø and let t = 0.
ii. If a new perceived object is added in this cycle, update U by adding the new

instances and initialize their V values by evaluating their hc functions.
iii. If a perceived object is deleted, update U by removing all instances that depend

on it. Initialize the fringe Fs0 with all primitive concept instances.

2. Value-Driven Inference and Value-Learning
Repeat the following steps run until time runs out:

i. Set t ← t + 1 and infer the instance u = arg maxu′∈Fst−1
V (u′) .

ii. Let st = st−1 and Fst = Fst−1 .
iii. If u is true, add it to st, compute its reward ru, and update the fringe Fst .
iv. Perform the V -value update for u:

V (u) := αV (u) + α[ru + max
u′∈F u

st

V (u′)] ,

where α = 1/[1 + visits(u)] and α is given by (5).

3. Generalization
For each concept definition c:

i. Consider the function hc(x) = θT x .
ii. For every sample point in Sc = {(V (u), x(u)) | u ∈ Uc ∩ st}, perform the

update:
θ ← θ + α(V (u) − hc(x(u))) · x(u) .

ious circumstances. We present experimental evidence in two different domains,
which we describe in detail below.

Naturally, we chose reward accuracy as the performance measure for our
comparisons. Reward accuracy refers to the ratio between the cumulative reward
obtained by the inference system under time constraints on a particular execution
cycle to the total reward that would be accumulated on the same cycle by making
all possible inference under no time constraints. This gives a measure on how
successful our inference system is in guiding inference toward the most rewarding
parts of the current instance space. Using the notation introduced in the previous
section, we can express accuracy on some specific cycle as A = WT /W∞. Recall
that WT denotes the cumulative absolute reward obtained in one cycle under
time limit T . Similarly, we can state the reward error as E = (W∞ −WT )/W∞.

4.1 Blocks-World Domain

Our first experiments used a simple blocks-world environment because it gave us
systematic control over factors of interest. The only objects in the environment
are blocks placed in line, each with a name and a position specified as its distance
from a reference point, which we call the origin. We used the three relational

.
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Fig. 3. Comparison between reward accuracies of three inference systems in the blocks-
world environment over decreasing amounts of available time for each inference cycle

concepts defined in Table 1. Clearly, when a large number of blocks are present,
the number of feasible between relation instances will be enormous. We assume
that the agent is located at the origin and prefers to interact with blocks sitting
close to it. Therefore, we assigned a reward function to the highest level concept
as a linear function that favors relations whose corresponding blocks are closer
to the origin. The other two concept definitions had no assigned reward function.

We expected Adlin to outperform exhaustive inference in terms of reward
accuracy. However, we also anticipated that the degree of dominance would de-
pend on factors such as the time limit for each inference cycle, domain com-
plexity, and the rate of environmental change. First we considered the effect of
time constraints on the behavior of three different inference systems: Adlin,
Adlin without generalization, and exhaustive inference.2 We expected that, as
the available time for inference decreases, all three inference mechanisms would
become less accurate, but we hypothesized that Adlin’s performance would
degrade more gracefully.

We let each system learn for 200 cycles under a fixed time limit of 0.04 seconds
in an initial world state with six blocks. We then tested the system under various
time limits ranging from 0.19 to 0.01 seconds, in a dynamic environment in which
a new block was added every 25 cycles, for a total of 100 cycles. At the end we
measured the average inferred reward during the last 10 cycles and averaged
the results over 20 independent runs. Figure 3 summarizes the results for the
three inference systems considered. The accuracy of the exhaustive inference

2 One might also consider an inference system that uses a greedy policy based on the
immediate rewards of individual belief instances. In our example domains, however,
there is no reward function assigned to low level concepts and hence such an inference
mechanism should perform no better than exhaustive inference.

.
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Fig. 4. Performance comparison between three inference systems over increasingly com-
plex blocks-world environments

method is almost zero for this range of time limits. Clearly, Adlin provides a
superior reward accuracy for most values of the time constraint. Its performance
degrades only for extremely tight time limits (0.03 to 0.01 seconds), which is
mainly caused by the computational overhead of its generalization mechanism.

Next we studied the effects of domain complexity, which refers to the size of
the instance space. We let each system operate in a situation similar to the pre-
vious experiment, but we increased the complexity by abruptly adding objects,
ranging from one to eight blocks, at cycle 200 and then ran the system for 100
more cycles. As before, we measured the average inferred reward over the final
10 cycles for 20 independent runs. Figure 4 depicts the results as a function of
the number of blocks added. As expected, exhaustive inference performs very
poorly. Adlin without generalization gives better performance, but it cannot
handle the excess complexity in the environment and, eventually, when the en-
vironment becomes too complex, it only obtains as much reward as it could in
the initial world state.

In contrast, when equipped with generalization, Adlin demonstrates sub-
stantially better performance, as shown by the dotted line in Figure 4. This
result signifies that the generalization mechanism plays an important role in
dealing with new inference instances. Notice, however, that Adlin’s performance
degrades considerably when more than three blocks are added. This is because
the first three new blocks are close to the origin and hence contribute a signifi-
cant increase to the total reward, whereas the other new blocks are far from the
origin and hence much less important. Nonetheless, these blocks distract Adlin
to some extent and cause the degradation in its performance.

The last factor we considered was the rate of change in the environment. We
set up a similar experiment to the one above but, after the 200-cycle learning
period, instead of introducing an abrupt change, we inserted the new blocks

.



32 N. Asgharbeygi et al.

01020304050
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of cycles between consequent block insertions

A
ve

ra
ge

 r
ew

ar
d 

ac
cu

ra
cy

ADLIN
ADLIN without generalization
Exhaustive inference

Fig. 5. Accuracy of different inference systems over increasing rates of environmental
change in the blocks-world domain

one at a time with a specific number of cycles between consequent insertions.
Thus, we systematically varied the rate of change in the world and measured
the average performance of each inference system over its last 10 cycles. As
Figure 5 illustrates, Adlin is the most robust of the three systems across a wide
range of rates. However, for very rapidly changing environments, even Adlin’s
performance degrades significantly, as seen when we added one block per cycle.
In the closing section, we propose some responses to this issue.

4.2 In-City Driving Domain

As a more realistic, and hence more interesting, domain for evaluating Adlin
we chose an in-city driving environment. This is an appropriate domain both
because of its complexity and its inherent time constraints in collision-like situ-
ations. In this simulated environment [6], all objects take a rectangular form on
a Euclidean plane. The simulator supports static objects such as road segments,
intersections, lane lines, and buildings, as well as dynamic ones like vehicles. One
of the vehicles is controlled by an Icarus agent and all others follow realistic
physical laws but with predetermined behavior.

The vehicle controlled by the agent can perceive objects that are in its field
of view, defined by the radius of a circle centered at its current position. The
objects are described by numeric attributes like distance, angle, relative velocity,
and angular velocity. The Icarus agent also perceives its own properties, includ-
ing distance and angle with respect to lane lines, as well as its speed and the angle
of its steering wheel. The agent must drive the vehicle safely by staying on the
right side of the road, making necessary turns, and avoiding collisions. These con-
straints produce a complex environment which requires reasoning about many
objects with different priorities.

.
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Fig. 6. Comparison between reward accuracies of three inference systems in the in-city
driving environment over decreasing amounts of available time for each inference cycle

In our first experiment in the driving domain, we again considered time con-
straint as the independent variable, while holding complexity and rate of change
fixed. Figure 6 summarizes the results for the three inference systems in our
study, namely Adlin, Adlin without generalization, and exhaustive inference.

In this experiment, we had the agent drive around a block in the simulated
city at a constant speed of 15 miles per hour. We let each system learn under a
fixed time limit of 0.5 seconds while making a complete turn around the block.
Then we measured the average reward inferred by the system when turning
around the same block at the same speed, but under different time constraints
ranging from 0.19 to 0.01 seconds. Figure 6 presents the resulting accuracies
averaged over 20 independent runs for each system. Adlin demonstrates a higher
tolerance of time constraints, especially for time limits between 0.13 to 0.03
seconds. However, we observed a similar sudden degradation of performance for
extremely tight time constraints as seen earlier in the blocks-world study.

In the driving domain, the rate of change and complexity of the environment
are mainly determined by the agent’s speed of driving. Therefore, we cannot
vary these factors separately while keeping the other fixed. In response, our next
experiment evaluated each inference system in the driving domain for differ-
ent driving speeds. As the agent drives faster both complexity and the rate of
change in the environment increase. The complexity increases since the overlap
of the visible areas across the cycles decreases and therefore more of the per-
ceived objects are new. Figure 7 shows the average reward achieved by different
inference systems for different driving speeds, compared to the total reward that
is available in the environment.

We let each system learn under a time constraint of 0.4 seconds while the
agent was driving on a straight street at a speed of 5 miles per hour. Then
we tested the system under a 0.08-second time limit while driving at different

.



34 N. Asgharbeygi et al.

5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Driving speed (miles per hour)

A
ve

ra
ge

 r
ew

ar
d

Total reward in the environment
Inferred by ADLIN
Inferred by ADLIN without generalization
Inferred by exhaustive inference

Fig. 7. Average inferred rewards achieved by different inference systems in the driving
domain for different driving speeds

constant speeds that ranged from 10 to 50 miles per hour. We computed inferred
rewards over the entire test period, again averaged over 20 independent runs. The
curves of Figure 7 show the superior performance of Adlin for speeds under 35
miles per hour, although its reward accuracy decreases at higher speeds. Clearly,
even Adlin has difficulty in dealing with highly dynamic environments, here
represented as driving speeds over 40 miles per hour. Again, we will return to
this issue in Section 6.

5 Related Research on Inference and Learning

The challenge of reasoning under resource constraints is nearly as old as the
field of artificial intelligence, but the problem has typically been neglected in
classical theories of normative behavior. The common approach to mitigating
the problem in practical intelligent systems has been to employ heuristic, and
usually domain-dependent, control strategies to guide reasoning. For example,
the meta-level reasoning system developed by Genesereth and Ginsberg [9] lets
the designer write Prolog-like control clauses that specify how inference rules
should be prioritized.

However, research on the topic of bounded rationality has attempted to deal
with the problem in a domain-independent way. Early work by Simon [10] ex-
amined humans’ reliance on satisficing strategies when confronted with complex
decision-making tasks. More recently, Horvitz [11] has discussed limitations of
traditional normative approaches in dealing with real-world complexity and pro-
posed adapting such methods to reason about the reasoning process itself. Sim-
ilarly, Russell and Wefald [12,13] sought to develop a theoretical framework for
meta-reasoning that was based on probability and decision theory. Our approach

.
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shares the idea of considering computations as mental actions with Russell and
Wefald analysis.

Other work has focused on learning control rules to reduce search or speed up
processing (see for example Minton [14]), some of which has dealt with monotonic
inference. Zelle and Mooney [3] combined explanation-based learning techniques
with inductive logic programming ideas to learn such control conditions over
inference rules. In a different approach, Cohen and Singer [15] used bootstrap-
ping to learn similar rules. These approaches assumed a query-based, top-down
inference mechanism and sought to modify the logic program itself in order to
achieve performance gains. In our work, however, we consider a data-driven,
bottom-up inference process that is more appropriate for reactive agents, for the
reasons discussed earlier. In addition, our approach operates on top of a fixed
logic program and modifies the way it is utilized by the logic interpreter.

Our approach has more in common with research on relational reinforcement
learning, at least in its broad sense defined by Tadepalli et al. [4], and hierarchi-
cal reinforcement learning [7]. However, as mentioned earlier, our variation on
relational reinforcement learning differs from the initial work by Dzeroski et al.
[5] in its use of linear regression models distributed over first-order concepts to
support generalization. Moreover, in contrast to most work on these topics, our
states and actions are cognitive rather than physical and they are completely
internal to the agent.

Our work also shares some of its basic ideas with the recent work by Guestrin
et al. [16], including relational representation of states and actions, distributed
reward over the relational structure of first-order predicates, additive approxi-
mation of value function, and class-based generalization. Nevertheless, there are
significant differences in problem setting and approach. Guestrin et al. consid-
ered a planning problem modeled by a relational Markov decision process with
fixed relations in the world, discrete attributes, and given transition probabili-
ties. They also took a linear programming approach to solving their problem. In
contrast, we have addressed an inference problem modeled as a reinforcement
learning problem over a relational state structure with dynamic relations and
continuous attributes. Our approach holds the promise of rapid learning and the
ability to scale to large state spaces, which makes it closer in spirit to work on
explanation-based reinforcement learning (e.g., Dietterich and Flann [17]).

6 Concluding Remarks

In this paper, we introduced the Adaptive Logic Interpreter (Adlin), which
uses a value-driven inference mechanism combined with reinforcement learning
to deal with the challenge of data-driven inference under time constraint. Our
experiments in dynamic domains showed that Adlin performs well in guiding
the reasoning process toward high-utility parts of the knowledge base and out-
performs exhaustive inference system. This difference was especially large under
short time limits and high rates of environmental change.
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However, when the time constraint is extremely strict or the environment
is changing too rapidly, Adlin does not provide a satisfying performance gain.
This is partly due to the computational overhead involved in the system and
partly because, in the current system, every instance in the agent’s belief state
is inferred on the current execution cycle, regardless of whether it was true or
false on the previous cycle. Although this simplification did not appear to be a
crucial restriction in our experimental studies, it should certainly be addressed
in future extensions.

One basic approach to dealing with this issue is to incorporate the simple
idea behind truth maintenance systems and Rete matchers [2]. These systems
maintain the truth value of each inference instance unless the evidence support-
ing that instance changes, in which case its truth value is updated. It should be
straightforward to extend Adlin to consider only instances with changed evi-
dence as candidates for inference, from which it then selects high value instances
to actually infer. This should let the system concentrate on the belief instances
that need to be reinferred. Nevertheless, a more refined approach would consider
the intensity of change in the environment and its corresponding effect on each
belief instance. More precisely, we propose the idea of probabilistically persistent
belief, in which the agent persists in maintaining a belief instance and only up-
dates it with some probability that depends on its intrinsic variance given the
amount of change in evidence for that instance. Such a probabilistic measure can
be applied either to reduce the number of candidate inferences or to modulate
their expected values to incorporate the effect of their change of evidence into
the value-driven inference process.

Clearly, our design of Adlin assumes that the domain’s reward structure is
additively decomposable over the concepts (first-order predicates). However, this
does not impose any fundamental restriction on generality of our approach, for
two reasons. First, interactions among different concepts in the reward function
can be expressed by their relational structure. For example, imagine a preda-
tor/prey scenario in which proximity of a predator lowers the reward of proximity
of a mate for a prey animal. This effect can be captured by defining a higher
level concept that describes the relational situation (proximity of mate given the
proximity of a predator) and assigning it a low reward function. Second, the
behavior produced by a non-decomposable reward structure can often be well-
approximated by a decomposable one. In the above example, suppose the reward
function assigned to “predator proximity” (or to the concepts built on top of it)
is higher than the reward associated with “mate proximity.” Then Adlin would
pay more attention to the former and, should it hold, to reasoning on top of it,
effectively being less concerned about the latter.

Finally, from the point of view of agent architectures, a complete attention
mechanism must consider not only the concept instances that the agent believes,
but also the skills by which it interacts with its environment. Therefore, in the
longer term, a promising direction is to extend our attention mechanism to cover
skill inference and selection. Such an extension would require considering both
the temporal effects and the top-down nature of skill execution. Despite the
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need for further improvements, Adlin has already revealed its potential for the
effective control of inference, which in turn has taken us closer to a practical
attention mechanism for reactive agents.

References

1. Doyle, J.: A truth maintenance system. Artificial Intelligence 12 (1979) 231–272
2. Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern

match problem. Artificial Intelligence 19 (1982) 17–37
3. Zelle, J.M., Mooney, R.J.: Combining FOIL and EBG to speed-up logic programs.

In: Proceedings of the Thirteenth International Joint Conference on Artificial In-
telligence, Chambery, France, Morgan Kaufmann (1993) 1106–1111

4. Tadepalli, P., Givan, R., Driessens, K.: Relational reinforcement learning: An
overview. In: Proceedings of the ICML-2004 workshop on Relational Reinforce-
ment Learning, Banff, Canada (2004)

5. Dzeroski, S., Raedt, L.D., Driessens, K.: Relational reinforcement learning. Ma-
chine Learning 43 (2001) 7–52

6. Choi, D., Kaufman, M., Langley, P., Nejati, N., Shapiro, D.: An architecture
for persistent reactive behavior. In: Proceedings of the Third International Joint
Conference on Autonomous Agents and Multi Agent Systems, New York, ACM
Press (2004) 988–995

7. Dietterich, T.G.: Hierarchical reinforcement learning with the MAXQ value func-
tion decomposition. Journal of Artificial Intelligence Research 13 (2000) 227–303

8. Mitchell, T.M.: Machine Learning. McGraw Hill, New York (1997)
9. Genesereth, M.R., Ginsberg, M.L.: Logic programming. Communications of the

ACM 28 (1985) 933–941
10. Simon, H.A.: Administrative behavior. 2nd edn. Free Press, New York (1965)
11. Horvitz, E.: Reasoning about beliefs and actions under computational resource

constraints. Journal on Uncertainty in Artificial Intelligence 3 (1989) 301–324
12. Russell, S., Wefald, E.: Principles of metareasoning. In: Proceedings of the First In-

ternational Conference on Principles of Knowledge Representation and Reasoning,
San Mateo, CA, Morgan Kaufmann (1989)

13. Russell, S., Wefald, E.H.: Do the Right Thing: Studies in Limited Rationality. MIT
Press, Cambridge, MA (1991)

14. Minton, S.: Quantitative results concerning the utility of explanation-based learn-
ing. In: Proceedings of the Seventh National Conference on Artificial Intelligence,
Saint Paul, MN, AAAI Press (1988) 564–569

15. Cohen, W.W., Singer, Y.: A simple, fast, and effective rule learner. In: Proceedings
of the Forteenth National Conference on Artificial Intelligence. (1999) 335–342

16. Guestrin, C., Koller, D., Gearhart, C., Kanodia, N.: Generalizing plans to new en-
vironments in relational MDPs. In: Proceedings of International Joint Conference
on Artificial Intelligence, Acapulco, Mexico (2003)

17. Dietterich, T.G., Flann, N.S.: Explanation-based learning and reinforcement learn-
ing: A unified view. Machine Learning 28 (1997) 169–210



 

S. Kramer and B. Pfahringer (Eds.): ILP 2005, LNAI 3625, pp. 38 – 50, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Converting Semantic Meta-knowledge 
into Inductive Bias∗ 

John Cabral, Robert C. Kahlert, Cynthia Matuszek, Michael Witbrock, 
and Brett Summers 

Cycorp, Inc., 3721 Executive Center Drive, Suite 100,  
Austin, TX 78739 

{jcabral, rck, cynthia, witbrock, bsummers}@cyc.com 

Abstract. The Cyc KB has a rich pre-existing ontology for representing 
common sense knowledge. To clarify and enforce its terms’ semantics and to 
improve inferential efficiency, the Cyc ontology contains substantial meta-level 
knowledge that provides definitional information about its terms, such as a type 
hierarchy. This paper introduces a method for converting that meta-knowledge 
into biases for ILP systems. The process has three stages. First, a “focal 
position” for the target predicate is selected, based on the induction goal. 
Second, the system determines type compatibility or conflicts among predicate 
argument positions, and creates a compact, efficient representation that allows 
for syntactic processing. Finally, mode declarations are generated, taking 
advantage of information generated during the first and second phases.  

1   Introduction 

Because of the general complexity of machine learning, the discipline has devoted 
significant attention to the use of inductive bias in improving algorithmic efficiency.  
Inductive logic programming (ILP) is in an interesting position on this topic because 
its declarative representations can be extended to include the representation of the ILP 
system itself, including the biases its algorithms employ. Tausend [1], [2], Nedellec et 
al. [3] have investigated the utility of declaratively representing biases as part of the 
background knowledge for ILP systems. They have noted that such representations 
allow for an explicit and modular representation of bias, such that biases used by 
different systems can be meaningfully compared and the settings of an individual 
system can be easily manipulated. McCreath [4], McCreath and Sharma [5], and 
DiMauro, et. al. [6] have begun the next phase of this work by developing algorithms 
for inducing type and mode biases from data. The implementation of these algorithms 
in pre-processors promises to reduce the burden on the human users of ILP systems.  
An alternative source for inductive biases is the language of the data, when that 
language is part of a larger ontology.  Using the knowledge contained in the Cyc 
knowledge base (KB) – a very large, non-domain-specific ontology of formalized 
knowledge – provides a novel approach to automating the generation of inductive 
biases. 
                                                           
∗ Distribution Statement A: Approved for public release; distribution is unlimited. 
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2   An Overview of the Cyc Project  

The Cyc project is an ambitious, decades-long effort to generate a store of common-
sense knowledge that enables reasoning in a broad array of domains.  Human 
knowledge engineers have so far constructed most of the knowledge base (KB).  
However, one of the underlying premises of the Cyc project is that certain kinds of 
machine learning require the existence of a pre-existing body of knowledge into 
which new knowledge can be integrated (Lenat and Guha [7]).  So, the long-term goal 
of the project is to invest human effort in the creation of a necessary foundation for 
effective, future machine learning.  The goal of the research described in this paper is 
to begin the work of converting the existing knowledge into a basis for more effective 
automated learning.  Since the representational language of Cyc is an extension of 
first-order predicate logic, inductive logic programming is the natural fit for the type 
of machine learning that would eventually drive the growth of the knowledge base. 

The Cyc KB is represented using the language CycL, a LISP-like language that 
includes features like quantification over predicates and complete sentences, modal 
operators, and an extensive meta-language. All expressions are wrapped within 
parentheses and the leftmost entity within the parentheses being the predicate or 
function. Constants of the language are tagged with a prefixed '#$' and variables are 
composed of all capital letters and a prefixed '?'.  All aspects of the language are 
represented within CycL. So, logical connectives follow the same syntactic rules. The 
following Prolog clause (a translation of "For any birth event E in which some M 
plays the role of female parent and some C is the child born during E, then M is C's 
biological mother"): 

 
biologicalMother(C,M) :-                      
birthEvent(E), femaleParentActor(E,M), birthChild(E,C) 
 

would be represented in CycL as: 
 
(#$implies                                          
(#$and                                             
(#$isa ?BIRTH #$BirthEvent)                   
(#$femaleParentActor ?BIRTH ?MOTHER)             
(#$birthChild ?BIRTH ?CHILD))               
(#$biologicalMother ?CHILD ?MOTHER)).1 
 
The above example illustrates a significant feature of the Cyc ontology. First, 

classes are denoted with constant names, not predicates. This choice is based on 
certain requirements of ontological engineering. First, it allows for multiple instance-
to-class relations to be introduced into the vocabulary.  Thus, we can specialize the 
predicate to specific types of collection to more precise relations such as occupations, 
ethnicities, and nationalities. Introducing these more specific relations increases the 
precision of the language and, as a consequence, allows for greater inferential 

                                                           
1 When variables are unbound, the system assumes universal quantifiers with scope over the 

entire sentence. 
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efficiency because problems can be more narrowly defined.  Second, because there is 
a significant inferential cost to reasoning with unbound predicates and it is quite 
common quantify over classes, introducing classes as named entities allows rules to 
be written at the right level of generality without incurring a significant computational 
cost.   

The Cyc KB is structured using a hierarchical arrangement of microtheories.  
Microtheories represent contexts in which sentences are true.  Microtheories inherit 
content from other microtheories to which they are linked.  So, if MT1 is more general 
than MT2 than everything that is true in MT1 is also true in MT2.  This relationship 
among microtheories is transitive and reflexive, but not symmetric. Sentences that 
hold universally are those which are expressed in the "highest," most general 
microtheories, while sentences that are true in very limited contexts (i.e., the content 
of a person's testimony or a work of fiction) are represented in microtheories that are 
much "lower" in the hierarchy.  The great advantage of microtheories is that 
contradictory assertions can be represented within the KB without introducing formal 
contradictions because those assertions can be represented in microtheories that are 
not linked to one another.   

As of March 2005, the Cyc KB contains over 296,000 reified terms, including over 
55,000 classes, 198,000 individuals, and 22,000 relations (predicates and functions).  
These terms are linked by 3.3 million assertions.  The Cyc KB operates in conjunction 
with an inference engine, with deductive and abductive capabilities.  The inference 
engine is composed of more than 800 special-purpose reasoning modules, each of 
which handles a very specific type of query.  These modules range in complexity 
from the very simple (special index-lookup code for a specific predicate) to the 
extremely complex (modules for temporal reasoning).  The modules are interlinked 
via a blackboard system, which allows very general modules to handles cases for 
which more specific support does not exist; the final fall back is a general theorem 
prover.  This architecture allows for the addition of new modules as needed.   

An important aspect in the design of the system comes from the design of the 
ontology.  Specifically, because of the explosive growth of search spaces during 
deductive inferences with transformation, the ontology needs to be designed such that 
it can make inference more efficient. The choice not to represent classes with unary 
predicates is one illustration of this.  Another significant illustration of this point is the 
inclusion of definitional assertions on the elements of the ontology and the 
enforcement of the semantics represented by those assertions at different stages within 
the system.   The definitional assertions for predicates are used to constrain the values 
that the predicate's arguments can take (I will refer to these assertions content as 
"semantic meta-knowledge").  During the knowledge entry process, this enables the 
system to exclude assertions as "semantically ill-formed" and, thus, ensure the 
integrity of the content of the KB.  Thus, if #$biologicalMother can hold only 
between an animal and a female animal and female animal and integer are disjoint 
classes (i.e., they do not and cannot have any common instances), then an attempt to 
enter into the KB that someone's mother is the number 12 would be rejected.   

By preserving the integrity of the knowledge entered into the KB, these semantic 
restrictions maintain the correctness of the answers derived through deductive 
inference and spare inference the cost of checking for the satisfaction of constraints.   
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Another application of this knowledge is with abductive inference. Cyc 
implements abduction through hypothesizing entities or relations such that the 
hypothesized facts satisfy the antecedents of deductive implication rules.  The 
inference engine uses this knowledge about the meaning and proper usage of 
predicates to reject hypotheses that could never be true.  Thus, it will not hypothesize 
that an office building was destroyed because it was a meteor that burned up upon 
entering the atmosphere, because no office building is a meteorite.    

As a first step toward using the knowledge in the Cyc ontology and KB to enhance 
machine learning, we will be investigating the use of semantic meta-knowledge to 
provide inductive biases to ILP systems.  The next two sections of this paper discuss 
the declarative representation of bias used by ALEPH, and McCreath and Sharma’s 
[5] algorithm for learning modes and types from data. The remainder of the paper will 
provide more detail on one form of semantic meta-knowledge for predicates, discuss 
how to convert them into inductive biases, and discuss additional approaches for 
handling more complex cases. 

3   The Declarative Representation of Bias in ALEPH 

ALEPH is an implementation of the inverse entailment algorithm underlying the 
Progol system (Muggleton [8]).  We are interested in this formalism because it 
combines mode and type information and, so, offers a scheme that could be used 
among different ILP systems. The system represents mode and type biases using the 
predicate mode/2.2  The general form of these clauses is: 
 
mode(RecallNumber,pred(ModeType1,…,ModeTypen). 

 
RecallNumber is either the maximum number of successful calls to the predicate 
that appears in the second argument position, or an asterisk, meaning the predicate has 
unbounded indeterminacy. The number of instances of ModeTypei equals the arity 
of the predicate pred. If these mode types are simple, the expressions that will 
replace ModeTypei begin with a symbol designating the mode of the variables that 
will fill that argument position, followed by a name for the type constraint on that 
argument. In ALEPH, input variables are designated with a ‘+’, output variables are 
designated with a ‘-’, and constant arguments are designated with a ‘#.’3 For example, 
if the predicate addition/3 has all of its arguments constrained to integers and an 
expression of the form addition(X,Y,Z) means that Z is the sum of X and Y, 
then the following is an appropriate mode declaration for the predicate: 

mode(*,addition(+integer, +integer,-integer)). 

This clause states that addition/3 has unbounded indeterminacy, that all of its 
arguments take instances of the same type, and that the first two arguments are input 

                                                           
2 This following description of ALEPH is based on the documentation available at: http://web. 

comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph.html 
3 This paper will not discuss the creation of constants, but that is an important piece of future 

research.  



42 J. Cabral et al. 

 

variables while the third argument is an output variable. It is important to note that the 
names given to the types are not used for type reasoning by ALEPH. So, no special 
significance attaches to the names used in the mode/2 statements.  

The mode settings contained in mode/2 clauses are used by ALEPH to constrain 
the set of hypotheses, by shaping the construction of the bottom clause from which 
the algorithm generalizes. The modes constrain the hypotheses’ variables in the 
following ways: 
 
• An input variable of a given type in a body literal must appear as an input variable 

of the same type in the head literal or as an output variable of the same type in an 
earlier body literal of that clause. 

• An output variable of a given type in the head literal must appear as an output 
variable of the same type in some body literal of that clause. 

• Any predicate’s arguments declared to be a constant of a given type, must take a 
ground instance of that type as a value in that argument. 

 
The user need not program the mode and type information. ALEPH includes an 
implementation of McCreath and Sharma’s (1995) algorithm for inferring mode and 
type constraints from the background knowledge and examples. 

4   McCreath and Sharma’s Algorithm: Bias Induction from Data 

4.1   The Algorithm 

McCreath and Sharma's [5] algorithm aims to induce meta-knowledge from only the 
data given to the system.  For determining mode biases, the algorithm initially 
assumes that all possible combinations of modes for a predicates' arguments are valid.  
It then works through the available data to find counter-examples.  When a counter-
example is found, the contradicted modes are eliminated.  Counter-examples are 
based on the assumption that modes represent functional dependencies.  So, a 
counter-example would involve the values for a set of input arguments being matched 
to different values for an associated output argument.   For example, this algorithm 
would originally assign the binary predicate p/2 the set of possible modes: 
p(+,+), p(+,-), p(-,+) and p(-,-).  If p(a,b) and p(a,c) were 
positive examples, then the mode setting p(+,-) would be eliminated from the set 
because the examples contradict the claim that the value of the second argument is a 
function of the first argument. 

For determining types, McCreath and Sharma's algorithm begins with the 
assumption that every argument of every predicate in the language of the learning 
problem is constrained to a different type.  As the algorithm processes the data, if the 
same value appears in two different argument positions, then the algorithm 
redistributes the type constraints and assigns the same type to the argument positions 
that shared that value.  For example, if we have two binary predicates p/2 and r/2, 
then the algorithm would initially assign every argument a different type constraint:  
p(type1,type2) and r(type3,type4).  If p(a,a) and r(a,b) appeared 
within the examples, then the types would be modified to show that the same type can 
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appear in both of p/2's arguments and in the first argument of r/2.  So, the revised 
types would be p(type1,type1) and r(type1,type4).    

4.2   Weaknesses of the Algorithm 

With any form of learning, there is the possibility of error; but there are two types of 
error to which McCreath and Sharma’s original algorithm and a modified version 
implemented within ALEPH are susceptible.  Both relate to type constraints. 
Excluding available type constraints reduces efficiency, while including too many 
type constrains puts too much of a restriction on the search space and, so, causes the 
system to miss legitimate hypotheses.   

McCreath and Sharma’s basic algorithm is susceptible to including too few type 
restrictions.  For instance, consider the following representation of a section of a 
family tree. 

father(abe,bob).                                
mother(abe,carol).                                
father(bob,david).                                 
father(carol,fred). 

In this example, Bob and Carol both appear in the first argument positions of 
father/2 clauses.  This causes the types on the second argument positions of 
mother/2 and father/2 to be merged, even though they should be constrained to 
disjoint types: female and male animals, respectively. So, in this situation, there 
would be only one type for all of the argument positions. 

ALEPH includes an alternative implementation of the algorithm that allows for the 
merging of types between argument positions based on the degree of overlap in the 
values for two different positions, where the degree of overlap is the proportion of 
values of one position that are also values for the second position.   This approach 
faces the problem of not recognizing that argument positions can be merged.  For 
instance, in the above example, because there is only one value that appears in both 
the second argument of mother and the first argument of father, a sufficiently high 
overlap threshold between those arguments would prevent them from being linked.  
Thus hypotheses that link mothers to their fathers could be missed. 

5   Semantic Meta-knowledge in Cyc 

5.1   Basic Meta-knowledge for Predicates 

A first step in the addition of a new predicate to the Cyc ontology is the creation of 
definitional assertions that express the predicate’s meaning by setting constraints on its 
applicability. For example, the predicate #$hasHeadquartersInRegion relates 
an organization to the geographical region where that organization’s headquarters are 
located. If #$BMWInc denotes the Bayerische Motoren Werke corporation and 
#$CityOfMunich denotes the city of Munich, Germany one could assert: 

 (#$hasHeadquartersInRegion #$BMWInc #$CityOfMunich) 
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To enforce the semantics of this predicate, a number of other assertions that constrain 
#$hasHeadquartersInRegion would be used. For example, #$arg1Isa 
and #$arg2Isa are, respectively, used to state that the first and second argument 
positions of a particular predicate must be instances of particular collections.4  In 
order to express that the first argument of #$hasHeadquartersInRegion must 
be an organization and second argument must be a geographical area, the following 
assertions would be made: 

 
(#$arg1Isa #$hasHeadquartersInRegion #$Organization) 

(#$arg2Isa #$hasHeadquartersInRegion 
#$GeographicalRegion) 
 

The effect of these two statements is that if a knowledge engineer tries to enter a new 
assertion using the predicate #$hasHeadquartersInRegion and the value of 
one of its arguments can be proved to not be an instance of the required type, then the 
semantic validation process would reject the assertion. 

Many predicates in the Cyc ontology take collections as values. The predicate 
#$argIsa can be used to state that a value must be a collection.  Additional 
assertions can further specify the collection. First, the predicate #$argGenl can be 
used to state that the value must be a sub-collection of some collection.  Alternatively, 
instead of #$Collection, #$argIsa could refer to a second-order collection – 
a collection whose instances are collections.  #$PersonTypeByPositionInOrg 
is a second-order collection whose instances are types of occupation that refer to 
organizations (e.g., #$PrimeMinister, #$ChiefExecutiveOffice). 
The predicate #$personHasPositionInOrg relates a person to a type of 
occupation and an organization.  The following definitional assertions hold of its 
second argument: 

 
 (#$arg2Isa #$positionOfPersonInOrg
 #$PersonTypeByPositionInOrg) 

 (#$arg2Genl #$positionOfPersonInOrg #$Person) 
 

So, although an instance of the collection #$PrimeMinister (e.g., Tony Blair) 
could fill the first argument of a #$positionOfPersonInOrg assertion, the 
appearance of the same value in the second argument position would not be 
semantically well-formed because the collection of individuals is disjoint with the 
collection of occupation types, #$PersonTypeByPositionInOrg.  

5.2   Representing the Determination 

The first step is the process is the representation of the problem, or determination.  
Specifically, there is the representation of the target predicate (i.e. the predicate for 

                                                           
4 The Web Ontology Language, OWL, based on its inheritance of certain portions of the 

Resource Description Framework, includes similar vocabulary for defining the properties of 
predicates.  The Cyc ontology includes a larger vocabulary with that function, but the 
particular process described here can be applied to OWL ontologies as well. 
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the head of learned clauses) and the set of predicates for the background knowledge 
(i.e., the predicates that could appear in the bodies of learned clauses). The Cyc 
ontology uses the function #$ILPDeterminationFn for denoting determinations.  
It is a binary function whose first argument position is the target predicate and whose 
second argument is the list of background predicates. In order for the target predicate 
to be considered a possible body predicate, it would need to be included in the list of 
predicates as well. 

For example, the following expression represents a determination that targets the 
predicate #$hasHeadquartersInRegion with the possible body predicates: 
#$residesInRegion, #$seniorExecutives, #$importantCompany, 
and #$positionOfPersonInOrg: 

 
(#$ILPDeterminationFn     
 #$hasHeadquartersInRegion    
 (#$TheList #$residesInRegion 
 #$seniorExecutives #$importantCompany
 #$positionOfPersonInOrg)) 

 
For simplicity’s sake, during the remainder of this section the term 
#$Determination01 will be used as a name for the determination denoted by the 
above expression.   

5.3   Deriving Types 

Given a specific determination, Cyc uses its semantic meta-knowledge and its type 
hierarchy to determine a more compact representation of the relevant type constraints. 
This more compact representation allows us to communicate information to ILP 
engines like ALEPH that do not do type reasoning when using inductive biases.  The 
goal is to try to capture all and only the appropriate linkages among arguments, while 
minimizing the size of the representation.  Because of the size of the Cyc ontology 
and the different representational tasks of different predicates, they have type 
constraints at different levels of generality.  The basic strategy implemented here is to 
look for subsumption relations among argument constraints and then to use only the 
most specific types that are used as constraints. 

The first step in the process is to generate the set of collections that constrain the 
argument positions for the predicates in the determination. The set of these collections 
for  #$Determintion01 is: 

 
{#$Animal, #$PersonTypeByPositionInOrg #$Person, 
#$Organization, #$CommercialOrganization, 
#$GeographicalRegion} 

 
The next step is to reduce the set by eliminating any collections that have at least one 
sub-collection that is also element of the set. #$Person is a sub-collection of 
#$Animal and #$CommercialOrganization is a sub-collection of 
#$Organization.  So, #$Organization and #$Animal would be eliminated 
to produce the new set:  
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{#$Person, #$PersonTypeByPositionInOrg 
#$CommercialOrganization, #$GeographicalRegion} 

 
For the remainder of this paper, any reference to a “relativized type” should be taken 
to refer to an element of this reduced set.  Given the original semantic meta-
knowledge about the predicates, knowledge of the subsumption and disjointness of 
collections, a set of rules are invoked that conclude to the predicate 
#$argIsaWRTSpec. (“argument is an instance of type with regard to 
determination”). This predicate is used to represent more focused type constraints for 
a predicate within the context of a given determination. For example, relative to the 
determination above, Cyc would infer 

 
(#$argIsaWRTSpec                
#$hasHeadquartersInRegion 1 #$CommercialOrganization 
#$Determination01) 

 
This statement states that, relative to #$Determination01, the first argument of 
the predicate #$hasHeadquartersInRegion should be treated as if it were 
constrained to #$CommercialOrganization. In cases where the reduced set 
contains several collections that are subsumed by the predicate’s original argument-
constraining collection, they are all represented with #$argIsaWRTSpec 
assertions for that predicate’s argument. 

5.4   Deriving Modes 

For certain predicates, modes are readily definable based on the content of the 
underlying relation.  For example, in the case of a predicate that relates a list to one of 
its members, a mode that requires the list value to be provided (i.e., an input) and the 
member value to be derived (i.e., an output) is more efficient than the inverse would 
be since the member value is a member of an unlimited number of possible lists. For 
the vast majority of predicates in the Cyc ontology, a similar judgment is not as 
readily available.  The issue is magnified by the fact that the choice of mode settings 
can greatly influence the behavior of the ILP system.   

As Cyc is an engineering project, the choice of how to proceed with establishing 
those connections occurs in the context of improving Cyc’s ability to answer 
questions. Specific applications of Cyc will likely focus on a central set of queries that 
share a common set of predicates, most of those predicates will be used to describe a 
small set of types of entities.  Assuming that induction will be geared to improving 
inference with regard to a particular topic, the current strategy for generating modes is 
to focus on one argument of the target predicate. We expect that this focal argument 
will be bound during a query. In practice, this binding would be the entity that is the 
topic of the question.  So, if we wanted to know information about commercial 
organizations, we would ask the following sort of query: 
 
 (#$hasHeadquartersInRegion #$BMWInc ?PLACE) 

 
Given that the focal type for these queries is #$Organization and that the first 
argument of #$hasHeadquartersInRegion is the only one constrained to 
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#$Organization, we would include the following assertion to specify that the 
organization argument is focal for this determination: 

 
(#$focalArgumentOfDeterminationTarget     
#$Determination01 1) 
 
Once a focal argument has been designated, the following rules are used to 

determine the modes for the determination’s predicates:  
 
• The focal argument of the target predicate has an input mode. 
• If the target predicate has an input argument of relativized type T, and a predicate 

(either target or background) also has an argument of relativized type T, then that 
second argument has an input mode. 

• If the target predicate has an input argument of relativized type T1, a predicate 
(either target or body) has an argument of relativized type T1, and T1 and T2 are 
disjoint collections, then that second argument has an output mode. 5   

 
This algorithm utilizes the user-provided information of the focal argument for the 
target predicate in conjunction with semantic knowledge regarding all of the 
predicates in the determination to derive modes for each argument. 

In CycL, the process concludes with the derivation of assertions represent the 
combination of the relativized type for a predicate’s arguments and that argument’s 
mode.  The predicates #$argIsaInputModeForDetermination and 
#$argIsaOutputModeForDetermination are used for this task.  In the case 
of #$Determination01, we have assumed a focal argument that is constrained to 
organizations.  Since organizations are disjoint with geographical regions, the system 
would draw the following conclusions for the predicate #$importantCompany, 
which relates a commercial organization to a geographical region in which it plays a 
significant economic role: 
 
(#$argIsaInputModeForDetermination
 #$importantCompany 
 #$CommercialOrganization 1
 #$Determination01)  

(#$argIsaOutputModeForDetermination 
 #$importantCompany  
 #$GeographicalRegion 2 
 #$Determination01) 

The first argument is an input mode because it shares the same relativized type as the 
focal argument, #$CommercialOrganization.  The second argument is an 
output mode because its relativized type, #$GeographicalRegion, is disjoint 
with the focal argument’s relativized type. 

                                                           
5 This is a rough reconstruction of the general pattern found in the data sets found in the archive at: 

http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/applications.html. The development of 
more sophisticated algorithms is a topic for future research. 
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5.5   More Complex Cases 

The method described above is most efficient in cases where the set of type 
constraints all involve disjointness and subsumption relationships. First, the 
subsumption allows us to minimize the number of collections that need to be 
considered.  So, we can send out a more compact representation to the ILP engine.  
Further, when two collections are disjoint, then there should be no relationship 
between two arguments that are constrained by those collections.  However, for any 
pair of collections that are chosen from the ontology, a significant chance exists that 
they are  neither disjoint nor does one subsume the other.  As of March 2005, the 
probability that two randomly selected collections from the Cyc KB are orthogonal is 
0.35. While such ‘orthogonal collections’ are a minority in the set of collections used 
for semantic constraints on predicates, they do occur.  For example, the second 
argument of #$father is constrained to #$MaleAnimal, while the first argument 
of #$rulerInDynasty is constrained to #$Monarch-HeadOfState.  Neither 
of these collections subsumes the other and they share instances.  Depending on the 
focal argument of the determination, the rules described might not return modes for 
such cases.  There are four solutions that present themselves for handling cases where 
this situation is violated.   

First, one could introduce a framework that allows for type conversions of 
individuals within the rules that govern the use of modes.  Such conversions would be 
made in the case of individuals that are instances of multiple collections.  A second 
strategy is the introduction of more general collections that subsume the orthogonal 
collections to link the different argument.  Third, a more specific collection could be 
introduced that represents the intersection of the various orthogonal collections. 
Finally, temporally created specialized predicates could be introduced when 
communicating the background knowledge to ALEPH.  The new predicates would be 
specialized in the sense that their argument constraints be the intersection of the 
orthogonal collections.   This would establish subsumption relations and make them 
compatible with the simple algorithm described above.    

First, the “Casting” strategy is intended for cases where predicates are constrained 
by orthogonal collections and they have values that are instances of those orthogonal 
classes (e.g. a father who is a ruler in a dynasty).  The strategy focuses on type 
constraints of predicates, but also takes into account the fact that some entities will be 
instances of more than one collection.  So, if an argument is constrained to a 
particular type that is orthogonal to another predicates’ constraining type and the 
value of that argument is also an instance of the orthogonal collection, then that value 
should be used with the other predicate.  The principle cost of this strategy is a 
dramatic increase in the number of predicates in relation to the number of individuals 
that are instances of multiple collections.  In addition, since type conversion has to be 
bi-directional, there is the potential of catching ALEPH in a conceptual loop, as it 
oscillates back and forth between two facets of a term. 

Second, the “Type Generalization” strategy walks up the type hierarchy to find the 
least general collection that subsumes the orthogonal collections. From a strictly 
semantic perspective, the use of the more general types violates the meaning of the 
predicate. This violation translates into a decrease in the utility of type knowledge. 
Since fewer distinctions are being made, there is a weaker partitioning of the search 



 Converting Semantic Meta-knowledge into Inductive Bias 49 

 

space. In the degenerate case, all type knowledge is lost if the least general collection 
remains general enough to subsume all the argument constraints of all the predicates 
in the determination. 

Third, the “Type Specialization” strategy introduces more specific types that allow 
the system to maintain the semantic integrity of the predicates and the benefits that 
follow from the splitting up of the search space.  However, this strategy requires the 
generation of significantly more types and a proportionately larger group of mode 
statements that properly connect them to the predicates.  

Fourth, the “Predicate Specialization” strategy introduces more specific predicates. 
It requires creating more specialized predicates whose argument positions have 
significantly tighter constraints and then distributing the original data to the new 
predicates based on the types of their values.  Here, the problem of having multiple 
linkages to the same argument positions is eliminated because the examples will be 
partitioned based on the new predicates’ tighter semantics.  However, there are two 
problems with the approach.  First, the strategy increases the likelihood of the system 
returning over-fitted rules. If the invented predicate has a very small extent, the 
likelihood increases that it will satisfy some of the positive examples even though the 
more general predicate from which it was derived would not.  Alternatively, if the 
system’s evaluation function has a relatively high threshold for acceptability (e.g., its 
minimum number of positive examples covered), the split might be such that 
hypotheses with the new predicate falls beneath that threshold while a rule formed 
with the original predicate would be above it.     

6   Conclusions and Future Research 

The next and most important stage in this work is the empirical investigation of the 
utility of this strategy for ILP systems.  Existing data sets need to be ontologized such 
that a system like ALEPH can be tested with ontologically derived settings versus 
hand-generated settings and the settings provided by other mode learning algorithms.     

In addition, our presentation has focused on only a subset of the types of semantic 
meta-knowledge that are available within the Cyc. Cyc contains a large amount of 
unexploited meta-knowledge, such as that expressed by #$interArgReln and 
#$interArgIsa. The former predicate is used to say that a particular binary 
relation must hold between the values of some predicate.  The latter predicate dictates 
that when an instance of one collection appears in one argument of a predicate, then 
an instance of a specified collection must appear in some other argument (e.g., a 
human child can only have a human as a parent).   

The content of the Cyc KB itself can also serve as a resource for generating 
inductive biases. It contains a large body of rules expressed as either implications or 
as ground assertions that can be expanded to implications via templates.  These rules 
could be used to divert the search away from known rules or hypotheses that are 
entailed by existing rules. Preliminary work has been done to convert rules into 
formats that use ALEPH’s pruning mechanism toward this end. 

Finally, we have introduced only a simple methodology for generating mode 
settings based on type constraints.  More sophisticated strategies for deriving modes 
from the focal type and the relationships among the type constraints of the 
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determination should become available with further research. Given that the rules for 
generating modes are declaratively represented, representing the modes themselves 
and rules for interpreting them could lead to further rule-learning improvements. 
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Abstract. In this paper, we focus on the problem of learning reactive
skills for use by physical agents. We propose a new representation for
such procedures, teleoreactive logic programs, along with an interpreter
that utilizes them to achieve goals. After this, we describe a learning
method that acquires these structures in a cumulative manner through
problem solving. We report experiments in three domains that involve
multiple levels of skilled behavior. We also review related work and dis-
cuss directions for future research.

1 Introduction

Humans typically acquire complex procedures in a cumulative manner, first mas-
tering simple tasks and then utilizing them to learn higher-level abilities. At each
stage, the learner must have reasonably automatized procedures before he can
incorporate them into more sophisticated structures. The end result is a set of
hierarchically organized skills that can be executed automatically, but at inter-
mediate stages the person must rely at least partly on problem solving, which
may require search to find solutions.

In this paper, we examine the task of learning such complex skills from a
sequence of training problems. We are concerned with acquiring the structure
and organization of skills, rather than tuning their parameters, which we view
as a secondary learning issue. We assume the learner begins with primitive skills
for the domain, including knowledge of their effects, and that training problems
are presented in order of increasing complexity, much as in human instruction.

We focus here on procedures that involve action in the world, but ones that
are more complex than those usually studied in research on reinforcement learn-
ing (Sutton & Barton, 1998) and behavioral cloning (Sammut, 1996). We as-
sume that the agent encodes its knowledge in a formalism – teleoreactive logic
programs – designed specifically for such tasks, and our learning methods take
advantage of this notation to constrain the acquisition process. As we will see,
these are similar in spirit to early techniques for learning macro-operators and
search-control rules, but they also differ in important ways.

In the next section, we specify the formalism used to encode initial and
learned knowledge, along with performance mechanisms that interpret them to

S. Kramer and B. Pfahringer (Eds.): ILP 2005, LNAI 3625, pp. 51–68, 2005.
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Table 1. Examples of concepts from an in-city driving domain

(parked (?self ?lane)

:percepts ((self ?self speed ?speed))

:positives ((in-rightmost-lane ?self ?lane)

(stopped ?self)))

(in-lane (?self ?lane)

:percepts ((self ?self segment ?sg)

(lane-line ?lane segment ?sg dist ?dist))

:tests ((> ?dist -10)

(<= ?dist 0)))

produce behavior. After this, we present an approach to problem solving on novel
tasks and a learning mechanism that transforms the results of this process into
executable logic programs. Next, we report experimental studies of the method
in three domains, including an in-city driving task that we use to illustrate our
ideas. In closing, we review related work on learning and consider directions for
additional research.

2 Teleoreactive Logic Programs

As noted, our approach revolves around a representational formalism, called
teleoreactive logic programs, that are designed to support the execution and ac-
quisition of complex procedures. We refer to these structures as “logic programs”
because their syntax is similar to the Horn clauses used in Prolog and related
languages. We have borrowed the term “teleoreactive” from Nilsson (1994), who
used it to refer to systems that are goal driven but that also react to their cur-
rent environment. His examples incorporated symbolic control rules but were
not cast as logic programs, as we assume here.

A teleoreactive logic program consists of two knowledge bases. One specifies
a set of concepts that recognize classes of situations in the environment and
describe them at higher levels of abstraction. These monotonic inference rules
have the same semantics as traditional Horn clauses and a similar syntax. Each
clause includes a single head, stated as a predicate with zero or more arguments,
along with a body that includes one or more positive literals, negative literals, or
arithmetic tests. The same head can appear in more than one clause, expressing
different ways to satisfy the named concept.

We distinguish between primitive clauses, which refer only to percepts that
the agent can perceive in the environment, and complex conceptual clauses,
which refer to other concepts in their body. Specific percepts play the same role
as ground literals in traditional logic programs, but, because they can change
rapidly, we do not consider them part of the program. Table 1 presents some
concepts from an in-city driving domain. The concept parked is defined in terms
of the concepts in-rightmost-lane and stopped, whereas in-lane is defined in terms
of the percepts self and lane-line, along with arithmetic tests on their attributes.

.
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Table 2. Examples of skills from an in-city driving domain. The complex skill (first) has

typed variables, a start condition, and a set of ordered subskills. The primitive (second)

skill has a set of actions (marked by an asterisk) and effects instead of subskills.

(driving-in-segment (?self ?sg ?lane)

:percepts ((lane-line ?lane) (segment ?sg) (self ?self))

:start ((steering-wheel-straight ?self))

:skills ((in-lane ?self ?lane)

(centered-in-lane ?self ?sg ?lane)

(aligned-with-lane-in-segment ?self ?sg ?lane)

(steering-wheel-straight ?self))

(steering-wheel-straight (?self)

:percepts ((self ?self))

:start ((steering-wheel-not-straight ?self))

:actions ((*straighten))

:effects ((steering-wheel-straight ?self)))

A second knowledge base contains a set of skills that the agent can execute
in the world. Each skill clause includes a single head (a predicate with zero or
more arguments) and a body that specifies a single start condition and one or
more components. Primitive clauses refer to executable actions that affect the
environment. They also specify the effects of their execution, stated as literals
that hold after their completion, and may state requirements that must hold
during their execution. Primitive skill clauses are similar in structure and spirit
to Strips operators, although they may be executed in a durative manner.

In contrast, complex skill clauses specify how to decompose activity into
subskills. Because a skill may refer to itself, either directly or through a subskill,
the formalism supports recursive definitions. For this reason, nonprimitive skills
do not specify effects, which can differ for different levels of recursion, nor do they
state requirements. However, the head of each complex skill corresponds to some
concept that the skill aims to achieve, with its head using the same predicate and
taking the same number of arguments as the concept. This connection between
skills and concepts figures centrally in the learning methods we describe later.
Table 2 presents some skills for the driving domain, including a complex skill,
driving-in-segment, and a component primitive skill, steering-wheel-straight.

Note that every skill S can be expanded into one or more sequence of prim-
itive skills. For each skill S in a teleoreactive logic program, if S has concept C
as its head, then every expansion of S into such a sequence must, if executed
successfully, produce a state in which C holds. This second constraint does not
guarantee that, once initiated, the sequence will achieve C, since other events
may intervene or it may encounter states in which one of the primitive skills may
not apply. However, if the sequence of primitive skills can be run to completion,
then it will achieve the goal literal C. The approach to learning that we report
later is designed to acquire programs with this characteristic, although we do
not yet have a formal proof to that effect.
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3 Inference and Execution Mechanisms

The performance mechanisms of a teleoreactive logic program reflect the fact
that it operates in a physical setting that changes over time. As we have described
elsewhere (Choi et al., 2004), the basic architecture proceeds in discrete cycles, in
each case invoking an inference process that elaborates on the agent’s perceived
state and an execution process that generates behavior in the environment.

The inference module operates in a bottom-up, data-driven manner that
starts from descriptions of perceived objects, such as (segment G1113 street 1
dist −5.0 latdist 15.0 dir WE), and deduces all beliefs that they imply in combi-
nation with the conceptual clauses, such as (in-lane ME G1213). This inference
process augments the agent’s perceptions with higher-level descriptions of the
environment that may be useful for its decision making. Although this mecha-
nism reasons over structures similar to Horn clauses, its operation is closer in
spirit to the bottom-up elaboration process in Soar (Laird et al., 1986) than to
the query-driven reasoning in Prolog.

In contrast, the execution module proceeds in a top-down manner, start-
ing from high-level intentions, such as (delivered-package ME package5), and
finding applicable paths through the skill hierarchy that terminate in primitive
skills with executable actions, such as (∗steer −0.5). A skill path is a chain of
skill instances that starts from the agent’s top-level intention and descends the
skill hierarchy, unifying the arguments of each subskill consistently with those of
its parent. A path is applicable if the concept instance that corresponds to the
intention is not satisfied, if the requirements of the terminal (primitive) skill in-
stance are satisfied, and if, for each skill instance in the path not executed on the
previous cycle, the start conditions are satisfied. This last constraint is necessary
because skills may take many cycles to achieve their desired effects, making it
important to distinguish between their initiation and their continuation.

Both conceptual inference and skill execution play essential roles in complex
domains like in-city driving. On each cycle, the agent perceives nearby objects
and infers instances of conceptual relations that they satisfy. For each intention,
the system then uses these beliefs to check the conditions on skill instances and
to determine which paths are applicable, which in turn constrains which actions
it executes. The environment changes, either in response to these actions or on its
own, and the agent begins another inference-execution cycle. This looping con-
tinues until the concepts associated with each of the agent’s top-level intentions
are satisfied, when it halts.

The interpreter incorporates two preferences that provide a balance between
reactivity and persistence. First, given a choice between two or more subskills, it
selects the first one for which the corresponding concept instance is not satisfied.
This bias supports reactive control, since the agent reconsiders previously com-
pleted subskills and, if unexpected events have undone their effects, reexecutes
them to correct the situation. Second, given a choice between two or more applica-
ble skill paths, it selects the one that overlaps most with the path executed on the
previous cycle. This bias encourages the agent to keep executing a high-level skill
it has started until it achieves the associated goal or becomes inapplicable.
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4 Problem Solving and Learning Mechanisms

Although one can construct teleoreactive logic programs manually, this process
is time consuming and prone to error. In response, we have developed a problem
solver that chains primitive skills to solve novel tasks and an associated learning
method that composes the solutions into executable programs, which we describe
in this section. Both mechanisms are interleaved with the execution process, with
the problem solver being invoked whenever the agent encounters a situation for
which it finds no applicable skill paths. As in Laird et al.’s Soar, problem solving
and learning are driven by impasses, although the details are quite different.

4.1 Means-Ends Problem Solving
As noted, our system resorts to problem solving when there are no applicable
skill paths that would take it toward the current goal. We utilize a variant of
means-ends analysis (Newell et al., 1960) which chains backward from the goal,
pushing the result of each reasoning step onto a goal stack that stores information
about the agent’s efforts toward achieving the goal. As the pseudocode in Table 3
indicates, two distinct forms of chaining play a role in problem solving.

Backward chaining off a skill involves retrieving a skill clause with effects
or a head that indicates its execution would achieve the current goal. If such a
clause exists in skill memory, the system associates an instance of this clause with
the goal.1 If the clause’s start condition is met, the system executes the clause
instance in the environment until it achieves the goal, which is then popped from
the stack. If the condition is not satisfied, the system makes it the current goal
by pushing it onto the stack.

If the problem solver cannot find any skill clause that would achieve the
current goal, it resorts to concept chaining. Here it uses the definition of the goal
concept to decompose the problem into subgoals. Some subgoals may already
be satisfied in the current situation, which the system stores as such with the
current goal. If more than one subgoal is unsatisfied, the problem solver selects
one at random and makes it the current goal by pushing it onto the goal stack.

The system continues along these lines, pushing new goals onto the stack
until it finds one it can achieve with an applicable skill clause. In such cases, it
executes the skill and pops the goal from the stack. If the parent goal involved
skill chaining, then this leads to execution of its associated skill and achievement
of the parent, which is in turn popped. If the parent goal involved concept
chaining, one of the other unsatisfied subconcepts is pushed onto the goal stack
or, if none remain, then the parent is popped. This process continues until the
system achieves the top-level goal.

Of course, the problem-solving procedure must make decisions about which
skills to select during skill chaining and the order in which it should tackle
1 When there are multiple relevant clauses, the problem solver selects the one with

the fewest conditions unsatisfied in the current situation. Because skills always have
a single start condition, this means expanding the concept into its primitive compo-
nents. If the candidates tie on this criterion, then it selects the clause that requires
fewer expected steps, and if ties occur on this dimension, it selects one at random.
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Table 3. Pseudocode for means-ends problem solving and associated learning through

goal-driven composition of component skills

Solve(G)
Push the goal literal G onto the empty goal stack GS.
On each cycle,

If the top goal G of the goal stack GS is satisfied,
Then pop GS and let New be Learn(G).

If G’s parent P involved skill chaining,
Then store New as P’s first subskill.
Else if G’s parent P involved concept chaining,

Then store New as P’s next subskill.
Else if the goal stack GS does not exceed the depth limit,

Let S be the skill instances whose heads unify with G.
If any applicable skill paths start from an instance in S,
Then select one of these paths and execute it.
Else let M be the set of primitive skill instances that

have not already failed in which G is an effect.
If the set M is nonempty,
Then select a skill instance Q from M.

Store Q with goal G as its last subskill.
Push the start condition C of Q onto goal stack GS.
Mark goal G as involving skill chaining.

Else if G is a complex concept with the unsatisfied
subconcepts H and with satisfied subconcepts F,

Then if there is a subconcept I in H that has not yet failed,
Then push I onto the goal stack GS.

Store F with G as its initially true subconcepts.
Mark goal G as involving concept chaining.

Else pop G from the goal stack GS.
Store information about failure with G’s parent.

Else pop G from the goal stack GS.
Store information about failure with G’s parent.

Learn(G)
If the goal G involves skill chaining,
Then let S1 and S2 be G’s first and second subskills.

If subskill S1 is empty,
Then return the literal for clause S2.
Else create a new skill clause N with head G,

with S1 and S2 as ordered subskills, and
with the same start condition as subskill S1.
Return the literal for skill clause N.

Else if the goal G involves concept chaining,
Then let Ck+1, ..., Cn be G’s initially satisfied subconcepts.

Let C1, ..., Ck be G’s stored subskills.
Create a new skill clause N with head G,
with Ck+1, ..., Cn as ordered subskills, and
with the conjunction of C1, ..., Ck as start condition.
Return the literal for skill clause N.

subconcepts during concept chaining. The system may well make the incorrect
choice at any point, which leads it to pop the current goal and backtrack when
the goal goal reaches its maximum depth or when it has no alternatives it has not
already tried. As a result, it carries out depth-first search through the problem
space, which can require considerable time on some tasks.

Figure 1 shows an example of the problem solver’s behavior in our in-city
driving domain. When the system is given the objective driving-in-segment, it
looks for any executable skill with this goal as its head. When this fails, it looks
for a skill that has the objective as one of its effects. Since it has no such skills,

.
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Fig. 1. A trace of successful problem solving in the in-city driving domain. Circled

numbers correspond to the steps explained in the text.

it chains off the concept definition, which involves four subconcepts. The first
three are not satisfied, from which the system chooses in-lane as its subgoal. It
finds skill clauses with this head and selects (in-lane 9), which is applicable and
which it executes to achieve the subgoal.

Later, the problem solver does the same for the subconcepts aligned-with-
lane-in-segment and centered-in-lane, selecting the skills (aligned-with-lane-in-
segment 1) and (centered-in-lane 5), which the system executes in turn to achieve
them. At this point, it notes that the original goal is satisfied. This example
describes a trace of successful problem solving, but we have omitted missteps
that require backtracking and search for the sake of clarity.

4.2 Learning Through Goal-Driven Composition

Fortunately, learning can transform the results of search into a teleoreactive logic
program that can be executed efficiently. Whenever the agent achieves a goal
during problem solving, it stores a new skill clause, unless its solution involves
immediate execution of an existing clause or unless the new clause would be
equivalent to an existing one. The learning mechanism, which we call goal-driven
composition, operates somewhat differently for each form of chaining.

When the agent reaches an objective through skill chaining, say by achieving
a goal G by first applying skill S1 to satisfy the start condition for S2 and exe-
cuting the skill S2, the learning mechanism constructs a new clause2 with head
G and ordered subskills S1 and S2. The start condition for the new clause is
the same as that for S1, since when S1 is applicable, the successful completion
of this skill will ensure the start condition for S2, which in turn will achieve G.
2 If the skill S2 can be executed without invoking another skill to meet its start

condition, the method creates a new clause G with S2 as its only subskill.
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This differs from traditional methods for constructing macro-operators, which
analytically combine the preconditions of the first operator and those precon-
ditions of later operators it does not achieve. However, S1 was either selected
because it achieves S2’s start condition or it was learned during its achievement,
both of which mean that S1’s start condition is sufficient for the composed skill.

In contrast, successful concept chaining leads to the creation of slightly dif-
ferent skill clauses. Suppose the agent achieves a goal concept G by satisfying
the subconcepts G1, . . . , Gk, in that order, while subconcepts Gk+1, . . . , Gn were
true at the outset. In this case, the system constructs a new skill clause with head
G and the ordered subskills G1, . . . , Gk.3 In this case, the start condition for the
new clause is the conjunction of subgoals that were already satisfied beforehand.
This prevents execution of the learned clause when some of Gk+1, . . . , Gn are
not satisfied, in which case the sequence G1, . . . , Gk may not achieve the goal G.

Goal-driven composition operates in a bottom-up fashion, with new skills
being formed whenever a goal on the stack is achieved. The method is fully
incremental, in that it learns from single training cases, and it is interleaved
with problem solving and execution. Unlike most techniques for learning macro-
operators, it can acquire both disjunctive and recursive skills. Moreover, learning
is cumulative in that skill clauses learned from one problem are available for use
on later tasks. However, the system invokes a learned clause only when it is
applicable in the current situation, so the problem solver never chains off its
start condition. Mooney (1989) relied on a similar strategy to avoid the utility
problem (Minton, 1990), in which learned knowledge leads to slower behavior.

Our approach to learning takes advantage of three insights that make it ef-
fective. First, although means-ends analysis is seldom used in the AI planning
community, it has the distinct advantage that, when successful, it produces an
AND tree that decomposes the original problem into subproblems. This deter-
mines the structure of the learned clauses. Second, the problem-solving trace
indicates the goal literal being pursued in each subproblem, which provides the
head for the learned clause. Because the same goal may be achieved in different
ways, this leads naturally to both disjunctive and recursive structures. Finally,
the skill clauses in a teleoreactive logic program are interpreted not in isolation
but as parts of chains through the skill hierarchy. This lets the learning method
store very abstract conditions with new clauses without a danger of overgener-
alization. Taken together, these features make goal-driven composition a simple
yet powerful approach to learning logic programs for reactive control.

5 Experimental Studies of Learning

Preliminary studies in a number of domains suggested that the learning mecha-
nism described above constructs appropriate teleoreactive logic programs. Given
the same or isomorphic problems, the agent retrieves and executes the learned
programs in a reactive manner, without resorting to means-ends problem solv-

3 Each of these subskills was either already known and used to achieve the associated
subgoal or it was learned from the successful solution of one of the subproblems.
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Fig. 2. Portion of the concept hierarchy given to the system that it uses to decompose

the goal instance (parked ME LANE1). Skills that achieve these concepts are learned

through problem solving.

ing. These informal results encouraged us to test the system in a more dynamic
domain that involved in-city driving, which we present below. We also carried
out more systematic experiments with two domains that are less dynamic but
that involve recursive structure, which should let the learned programs scale to
more complex problems.

5.1 In-City Driving

In-city driving is a demanding task that involves the reactive use of complex
skills. To study this problem, we have implemented a simulated environment
that makes simplifications but retains the dynamic nature and complexity of the
real world. Objects in the environment are represented as rectangles of various
sizes on a Euclidean plane. These include static objects like road segments,
intersections, lane lines, and buildings, but they also include moving vehicles.

One vehicle is controlled by the agent, whereas others follow standard driving
customs but make random decisions about whether to drive through intersections
or turn. The agent can invoke actions for accelerating, decelerating, and turning
its steering wheel left or right. These inputs affect the associated control variables
of the vehicle according to realistic physical laws. The agent can perceive objects
around it up to 60 feet away, including other vehicles and buildings, each of
which is described in agent-centered polar coordinates that give its distance,
angle, relative velocity, and angular velocity. The agent also perceives its own
properties, including its current speed and its steering wheel angle.

For this domain, we provided the system with 19 concepts and eight primitive
skills to achieve a goal that we stated as an instance of some defined concept.
The particular task we report in this paper involves achieving the goal (parked
ME LANE1), which has subconcept instances (in-rightmost-lane ME LANE1) and
(stopped ME). The first subconcept can be decomposed further into (driving-in-
segment ME SEGMENT1 LANE1) and (last-lane LANE1), as shown in Figure 2.
As the concepts clarify, this task can be done by first changing to the rightmost
lane (by achieving driving-in-segment and in-rightmost-lane, in that order), if
the vehicle is not already in that lane, and then slowing to a stop.
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Table 4. Skill clauses learned from a run in the in-city driving domain

driving-in-segment (?ME ?G1101 ?G1152)

:percepts ((lane-line ?G1152) (segment ?G1101) (self ?ME))

:start ((steering-wheel-straight ?ME))

:skills ((in-lane ?ME ?G1152)

(centered-in-lane ?ME ?G1101 ?G1152)

(aligned-with-lane-in-segment ?ME ?G1101 ?G1152)

(steering-wheel-straight ?ME))

in-rightmost-lane (?ME ?G1152)

:percepts ((self ?ME) (lane-line ?G1152))

:start ((last-lane ?G1152))

:skills ((driving-in-segment ?ME ?G1101 ?G1152))

parked (?ME ?G1152)

:percepts ((lane-line ?G1152) (self ?ME))

:start ( )

:skills ((in-rightmost-lane ?ME ?G1152)

(stopped ?ME))

Table 4 shows the teleoreactive logic program acquired from one learning run.
All the skill clauses are constructed from concept chaining. During problem solv-
ing, the objective (driving-in-segment ME G1101 G1152) of the first skill clause is
achieved by in-lane, centered-in-lane, aligned-with-lane-in-segment, and steering-
wheel-straight, in that order. When execution of the first subskill was started, the
concept (steering-wheel-straight ME) was true, so it is included in the start con-
dition. Since the goal (in-rightmost-lane ME G1152) was at the next level of the
stack, the system creates the second skill clause, in-rightmost-lane, immediately
after the first clause and used the first learned clause driving-in-segment as its
only subskill. Again, because the concept instance (last-lane G1152) held when
the chaining that led to this skill clause began, it is included in the start condi-
tion. In turn, it uses the skill in-rightmost-lane as the first subskill of the skill
clause parked followed by the primitive clause stopped. Note that these learned
clauses are organized hierarchically, but they all expand into primitive skills with
executable actions. When combined with the original skills, the learned program
shows the desired behavior. Moreover, they generalize correctly to situations
with different numbers of lanes and other starting lanes.

These results are encouraging, but we also desired to answer two questions
that required a more formal experiment. First, we wanted to know whether the
learning method produces teleoreactive logic programs that are more effective
for the task than the primitive skills combined with means-ends problem solving.
To this end, we ran the system on the task of achieving (parked ME LANE1)
both with learning turned on and with it turned off. Second, we wanted to deter-
mine whether cumulative learning on subtasks of increasing complexity produced
more rapid improvement than learning on the goal task. For the former, we first
let the system master the component task of achieving (driving-in-segment ME

.
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Fig. 3. Execution cycles required to achieve the goal (parked ME) in the driving domain

as a function of the number of trials with no learning, non-cumulative learning, and

cumulative learning. Each learning curve shows the mean over 25 runs and 95 percent

confidence intervals.

SEGMENT1 LANE1) and then (in-rightmost-lane ME LANE1) before finally let-
ting it learn how to achieve the top-level goal, (parked ME LANE1).

In each of these three conditions, we ran the system 25 times on the driving
task. We measured the number of decision-making cycles the system took to
solve the task on each trial, which differ due to the randomness of selection
in the chaining process. Based on these data, we computed the mean and 95%
confidence interval as a function of the trial number, which we plot in Figure 3.
With learning disabled, performance on this task does not improve and the agent
continues to take 180 cycles to solve the problem. With learning activated, the
number of cycles dramatically decreases over the first few trials and converges
to about 50 cycles after ten trials, which is the fewest cycles needed for this
particular task. This suggests that learning is effective for the problems that
arise in the in-city driving domain.

We also compared the basic learning condition to the cumulative learning
case, in which we presented the system with subgoals in order of increasing
difficulty. The system begins taking fewer cycles than the non-cumulative case,
mainly because we gave it a relatively simple goal first. Around the fifth trial, it
completes learning on the first simple problem and moves on to the second one.
Since this task is new to the system, it needs more cycles for problem solving,
which produced the peak on the graph. However, this peak is still lower than
the level at which non-cumulative learning began, since the learned skills from
the first task reduced effort. After learning to achieve the second subgoal, the
most difficult task became noticeably easier than without prior learning, and the
graph shows no detectable peak. Even though cumulative learning requires more
trials to complete the learning process, on average it needs fewer cycles per trial.
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Table 5. Recursive skills learned from a Blocks World problem in which C is on B and

B is on A in the initial state and the goal is to make A clear. Some start conditions

have been expanded for the sake of clarity.

unstackable (?C ?B) hand-empty ( )

:percepts ((block ?B)(block ?C)) :percepts ((block ?D)(table ?T1))

:start ((on ?C ?B)(hand-empty)) :start ((putdownable ?D ?T1))

:skills ((clear ?C)(hand-empty)) :skills ((putdown ?D ?T1))

clear (?B) holding (?D)

:percepts ((block ?C)(block ?B)) :percepts ((block ?D)(block ?C))

:start ((on ?C ?B)(hand-empty)) :start ((unstackable ?D ?C))

:skills ((unstackable ?C ?B) :skills ((unstack ?D ?C))

(unstack ?C ?B))

clear (?C)

:percepts ((block ?D)(block ?C))

:start ((unstackable ?D ?C))

:skills ((unstack ?D ?C))

Although in-city driving is a challenging physical domain, its structure does
not take full advantage of our method’s capabilities. We predict that, combined
with a cumulative training regime, it will be especially effective in domains with
recursive structure, since its ability to learn recursive logic programs will let
it train on simple problems and generalize to more complex ones. To test this
prediction, we also carried out experiments with two other domains, the Blocks
World and FreeCell solitaire, that are known to have recursive structure,

5.2 Blocks World

The Blocks World consists of a table with cubical blocks and a gripper. For this
domain, we provided the system with nine concepts and four primitive skills,
along with one concept for each of four distinct goals. These are sufficient, in
principle, to solve all the problems in the domain, but means-ends analysis would
require extensive search when there are more than a few blocks. Instead, we want
a teleoreactive logic program that can solve problems with arbitrary numbers
of blocks without significant search. For this study, we developed a simulated
environment that let the agent perceive the positions of objects and manipulate
blocks by grasping, lifting, carrying, and ungrasping them. Table 5 presents the
recursive skills learned from one training problem that required clearing the
lowest object in a stack of four blocks.

To determine whether the control programs our method constructs are useful
on more complex tasks, we carried out a transfer experiment that involved two
conditions. In one condition, we presented the system with 20 training problems
with three blocks, another 20 problems with four blocks, and a third set of
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Fig. 4. Execution cycles required to solve a 20-block problem in the Blocks World as

a function of the number of training tasks with and without prior training on simpler

problems. Each learning curve shows the mean over 500 different training orders and

95 percent confidence intervals.

the same size with five blocks. Each problem involved one of four conjunctive
goals that referred to configurations of one, two, or three blocks. After this, we
presented the system with 20 new problems that referred to analogous goals
but that each involved 20 blocks. In the second condition, we asked the system
to solve the same 20 tasks, but without the benefit of working on the simpler
problems. Learning was active in both conditions, but the former had the benefit
of prior training when it encountered the transfer set.

Figure 4 shows the number of execution cycles required for both conditions,
averaged over 500 runs using transfer problems with different randomized or-
ders. For each problem, we let the system run a maximum of 50 cycles before
starting over and attempt the task at most ten times before giving up. In both
conditions, the system managed to solve 99 percent of the problems, but there
was considerable difference in the effort required. When the system worked on
simpler problems first, it constructed a recursive logic program that, in nearly
all cases, handled the 20 block tasks without resorting to means-ends analysis.
This condition shows no improvement because the system had learned all there
was to learn in the simpler setting. However, this does not mean they would not
challenge traditional learning methods that cannot acquire recursive structures.

In contrast, without the benefit of this prior experience, the system had
to invoke its problem solver, leading to much longer runs on the initial tasks.
Even in this case, the learning mechanism rapidly acquired a teleoreactive logic
program, with the system reaching apparent asymptotic performance after only
five problems. However, its performance under this condition did not quite reach
the same level as under the transfer condition, suggesting that training on simpler
problems provides an overall advantage. We repeated this study with tasks that
involved 30 blocks and obtained almost identical results.
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5.3 FreeCell Solitaire

FreeCell is a solitaire game that involves stacks of cards on eight columns, all
faced up and visible to the player. There are four free cells, which serve as
temporary holding spots for a single card at a time, and four foundation cells
that correspond to four different suits. The goal is to move all the cards on the
eight columns to the foundation cells in ascending order and grouped by suit. At
any given time, only the cards on the top of the stack on each column and the
ones in free cells are available for movement, and they can shift to a free cell,
to the proper foundation column, or to an empty column. We again provided a
simulated environment that let the agent make legal moves, as well as perceive
card locations and the status of cells.

For this domain, we provided the system with 24 concepts and 12 primitive
skills that are sufficient to handle any initial configurations capable of solution.
But again, means-ends analysis may require an inordinate amount of effort to
handle problems with more than a few cards or convenient configurations. We
hoped our learning mechanism would acquire a teleoreactive logic program that
could solve arbitrary FreeCell tasks in the simulated environment with little or
no need to invoke the problem-solving module. To this end, we carried out a
transfer experiment similar to that we reported for the Blocks World.

In the transfer condition, we trained the system on 20 randomly generated
FreeCell tasks that involved eight cards, another 20 problems with 12 cards, and
a third set of the same size with 16 cards. We then asked the system to tackle
a set of 20 harder tasks that involved configurations of 20 cards. In the control
condition, we presented the system with the similar 20 card problems but we
did not let it work on the simpler ones first. Figure 5 displays the number of
execution cycles needed for each condition, averaged over 300 random sequences
of the harder problems. As for the Blocks World, the system in the transfer
condition shows no improvement beyond what it gained from working on the
simpler tasks. However, in the control condition, the system requires much more
effort at the outset and it continues to require substantially more effort than the
version that trained on easier problems.

In this domain, the system cannot solve all of the more complex problems.
The recursive program learned from simpler problems, in the transfer condition,
handles around 72 percent of the 20 card FreeCell tasks. Prior experience leads
to the creation of useful structures, but the training problems do not produce
any skills for moving from one column to another, which are needed for some
20 card tasks. However, without the benefit of this earlier training, the system
can initially solve only 39 percent of these problems, and its solution probability
remains below that for the other condition through the learning curve.4 When we
used harder problems for the transfer set, this effect was far more pronounced.
This result provides even stronger evidence that our method benefits from a
cumulative approach to learning.

4 With learning turned off, the system could solve none of the 20 card problems.
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Fig. 5. Execution cycles required to solve a 20 card FreeCell problem as a function

of the number of training tasks with and without prior training on simpler problems.

Each learning curve shows the mean over 300 different training orders and 95 percent

confidence intervals.

6 Related Research

The basic framework we have reported in this paper incorporates ideas from a
number of traditions. Our representation and organization of knowledge draws
directly from the paradigm of logic programming, whereas its utilization in a
recognize-act cycle has more in common with production system architectures.
The reliance on heuristic search to resolve goal-driven impasses, coupled with the
caching of generalized solutions, comes closest to the performance and learning
methods used in problem-solving architectures like Soar (Laird, Rosenbloom, &
Newell, 1986) and Prodigy (Minton, 1990). Finally, we have already noted our
debt to Nilsson (1994) for the notion of a teleoreactive system.

However, our approach differs from earlier methods for learning from prob-
lem solving in the nature of the acquired knowledge. In contrast to Soar and
Prodigy, which create flat control rules, our framework constructs hierarchi-
cal logic programs that incorporate nonterminal symbols. Methods for learning
macro-operators (e.g., Iba, 1988; Mooney, 1989) have a similar flavor, in that
they explicitly specify the order in which to apply operators, but they do not
typically support recursive references, nor do they produce reactive skills that
can be used in dynamic domains like driving.

Equally important, our learning method differs substantially from earlier
techniques used for improving efficiency of problem solvers. These have used
either analytical methods that rely on goal regression to collect conditions on
control rules or macro-operators, a relational approach to induction like inductive
logic programming, or some combined method (e.g., Estlin & Mooney, 1997).
Instead, our method transforms traces of successful means-ends search directly
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into teleoreactive logic programs, determining their preconditions by a simple
method that involves neither analysis or induction, as normally defined.

The cumulative nature of our approach further distinguishes it from earlier
efforts. There has been remarkably little work on cumulative learning in problem-
solving domains. Ruby and Kibler’s (1991) SteppingStone learns to solve more
difficult problems based on solutions generalized from simpler ones, which it
obtains through a mixture of problem reduction and forward-chaining search.
A closer relative is Reddy and Tadepalli’s (1997) X-Learn, which acquires goal-
decomposition rules from a sequence of training exercises. Their system does
not include an execution engine, but it generates recursive hierarchical plans in
a cumulative manner using a mixture of analytical and relational learning.

Benson’s (1995) TRAIL acquires teleoreactive control programs for use in
physical environments. However, it utilizes inductive logic programming to de-
termine the conditions on its rules, which focus on individual actions rather than
hierarchical structures. Fern et al. (2004) report another approach to learning
reactive controllers that trains itself on increasingly complex problems, but that
also acquires flat rules for action selection. Stone and Veloso (2000) describe a
system that learns a hierarchical controller for playing robotic soccer, but it ac-
quires quite different types of structure at each level of description. Other work
on cumulative learning deals with tasks other than problem solving and reactive
control. Sammut and Banerji’s (1986) Marvin learns logical concept definitions
that are stated in terms of other concepts, whereas Stracuzzi and Utgoff’s (2002)
STL algorithm incorporates a similar idea but handles many concepts in parallel.

We should also mention another research paradigm that deals with speeding
up the execution of logic programs. For instance, Zelle and Mooney (1993) re-
port one such system that combines ideas from explanation-based learning and
inductive logic programming to infer the conditions under which clauses should
be considered. Work in this area starts and ends with logic programs, whereas
our system transforms a weak problem-solving method into an efficient program
for reactive control. In summary, although our learning technique incorporates
ideas from earlier frameworks, it remains distinct on a number of dimensions.

7 Concluding Remarks

In the preceding pages, we proposed a new representation of knowledge – tele-
oreactive logic programs – and described how they can be executed over time
to control physical agents. In addition, we explained how a means-ends problem
solver can utilize them to solve novel tasks and, more important, transform the
traces of problem solutions into new clauses that can be executed efficiently. The
responsible learning method, goal-driven composition, bears little resemblance to
previous techniques, and it acquires recursive, executable skills. We reported ex-
periments that demonstrated the method’s ability to learn both reactive driving
skills and logic programs for two recursive domains, along with its capacity to
benefit from training on tasks of increasing difficulty.
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Despite the promise of this new approach to representing, utilizing, and learn-
ing knowledge for physical agents, our work remains in its early stages. Future
research should demonstrate the acquisition of more complex skills in the driving
domain. This will require adding the ability to chain backward off the start con-
ditions of learned clauses, which the problem solver currently avoids. In addition,
our method fares well on the domains reported here, but we have observed slight
overgeneralization on the Tower of Hanoi, where it acquires a recursive strategy
that does not distinguish between the goal and other peg. The learned program
has a 50 percent chance of making the wrong choice, which becomes apparent
when it runs to completion without reaching the goal. We can avoid this problem
by adding some lookahead ability, as in work on hierarchical task networks (e.g.,
Erol et al., 1994), which have very similar structure. This will require additional
effort, but still far less than solving the problem with means-ends analysis.

We should note that, although our approach learns recursive logic programs
that generalize to different numbers of objects, its treatment of goals is less flexi-
ble. For example, it can acquire a general program for clearing a block that does
not depend on the number of others involved, but it cannot learn a program
for constructing a tower with arbitrarily specified components. Extending the
method’s ability to learn about recursive goal structures is an important direc-
tion for future research. We should also finds ways to decrease the method’s
reliance on initial concepts, which it uses to index and organize learned clauses.
One approach involves defining a new concept for the start condition of each
created clause, which would then be available to support future learning.

In conclusion, our work on learning teleoreactive logic programs is still in
its early stages, but it appears to provide a novel and quite promising path to
the acquisition of effective control systems that differs significantly from earlier
research in this area. We hope to present reports on our progress in future
conferences on approaches to learning relational knowledge.

Acknowledgements

This research was funded in part by Grant HR0011-04-1-0008 from DARPA
IPTO and by Grant IIS-0335353 from the National Science Foundation. Dis-
cussions with Kirstin Cummings, Glenn Iba, Seth Rogers, and Stephanie Sage
contributed to the ideas we have presented in this paper.

References

Benson, S. (1995). Induction learning of reactive action models. Proceedings of the
Twelfth International Conference on Machine Learning (pp. 47–54). San Francisco:
Morgan Kaufmann.

Choi, D., Kaufman, M., Langley, P., Nejati, N., & Shapiro, D. (2004). An architecture
for persistent reactive behavior. Proceedings of the Third International Joint Con-
ference on Autonomous Agents and Multi Agent Systems (pp. 988–995). New York:
ACM Press.



68 D. Choi and P. Langley

Erol, K., Hendler, J., & Nau, D. S. (1994). HTN planning: Complexity and expressivity.
Proceedings of the Twelfth National Conference on Artificial Intelligence (pp. 1123–
1128). Seattle: MIT Press.

Estlin, T. A., & Mooney, R. J. (1997). Learning to improve both efficiency and quality of
planning. Proceedings of the Fifteenth International Joint Conference on Artificial
Intelligence (pp. 1227–1232). Nagoya, Japan.

Fern, A., Yoon, S. W., & Givan, R. (2004). Learning domain-specific control knowledge
from random walks. Proceedings of the Fourteenth International Conference on
Automated Planning and Scheduling (pp. 191–199). Whistler, BC: AAAI Press.

Iba, G. A. (1989). A heuristic approach to the discovery of macro-operators. Machine
Learning , 3 , 285–317.

Laird, J. E., Rosenbloom, P. S., & Newell, A. (1986). Chunking in Soar: The anatomy
of a general learning mechanism. Machine Learning , 1 , 11–46.

Minton, S. N. (1990). Quantitative results concerning the utility of explanation-based
learning. Artificial Intelligence, 42 , 363–391.

Mooney, R. J. (1989). The effect of rule use on the utility of explanation-based learning.
Proceedings of the Eleventh International Joint Conference on Artificial Intelligence
(pp. 725–730). Detroit: Morgan Kaufmann.

Newell, A., Shaw, J. C., & Simon, H. A. (1960). Report on a general problem-solving
program for a computer. Information Processing: Proceedings of the International
Conference on Information Processing (pp. 256–264). UNESCO House, Paris.

Nilsson, N. (1994). Teleoreactive programs for agent control. Journal of Artificial In-
telligence Research, 1 , 139–158.

Reddy, C., & Tadepalli, P. (1997). Learning goal-decomposition rules using exercises.
Proceedings of the Fourteenth International Conference on Machine Learning (pp.
278–286). San Francisco: Morgan Kaufmann.

Ruby, D., & Kibler, D. (1991). SteppingStone: An empirical and analytical evaluation.
Proceedings of the Tenth National Conference on Artificial Intelligence (pp. 527–
532). Menlo Park, CA: AAAI Press.

Sammut, C. (1996). Automatic construction of reactive control systems using symbolic
machine learning. Knowledge Engineering Review , 11 , 27–42.

Sammut, C., & Banerji, R. B. (1986). Learning concepts by asking questions. In R. S.
Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine learning: An artificial
intelligence approach (Vol. 2). Los Altos, CA: Morgan Kaufmann.

Shavlik, J. W. (1989). Acquiring recursive concepts with explanation-based
learning. Proceedings of the Eleventh International Joint Conference on Artificial
Intelligence (pp. 688–693). Detroit, MI: Morgan Kaufmann.

Stone, P., & Veloso, M. M. (2000). Layered learning. Proceedings of the
Eleventh European Conference on Machine Learning (pp. 369–381). Barcelona.
Springer-Verlag.

Sutton, R. S. & Barto, A. G. (1998). Reinforcement learning . Cambridge, MA: MIT
Press.

Utgoff, P., & Stracuzzi, D. (2002). Many-layered learning. Proceedings of the Second
International Conference on Development and Learning (pp. 141–146).

Zelle, J. M., & Mooney, R. J. (1993). Combining FOIL and EBG to speed up logic pro-
grams. Proceedings of the Thirteenth International Joint Conference on Artificial
Intelligence (pp. 1106–1111). Chambery, France: Morgan Kaufmann.



A Framework for Set-Oriented Computation

in Inductive Logic Programming and Its
Application in Generalizing Inverse Entailment�
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Abstract. We propose a new approach to Inductive Logic Programming
that systematically exploits caching and offers a number of advantages
over current systems. It avoids redundant computation, is more amenable
to the use of set-oriented generation and evaluation of hypotheses, and
allows relational DBMS technology to be more easily applied to ILP
systems. Further, our approach opens up new avenues such as proba-
bilistically scoring rules during search and the generation of probabilistic
rules. As a first example of the benefits of our ILP framework, we pro-
pose a scheme for defining the hypothesis search space through Inverse
Entailment using multiple example seeds.

1 Introduction

The goal of Inductive Logic Programming (ILP) [1] is to autonomously learn
first-order logic programs that model relational data. However, the current ap-
proach to ILP has limitations in its scalability and computational efficiency.
Recent efforts extend ideas from relational database query optimization to this
setting [2,3,4,5,6]. Along the same line, we present a new formulation of ILP that
systematically exploits caching to achieve greater efficiency and flexibility, and
present theoretical results that characterize it.

The fundamental building blocks for our approach are a new data structure
and an extension operation for hypotheses that expose and exploit opportunities
for caching the results of previous computation. This provides an immediate
benefit by avoiding the redundant computation pervasive in the standard ILP
search and score paradigm. Further, the extension operation is formulated as
a set-oriented computational strategy defined in terms of (extended) relational

� Work was supported by Air Force Grant F30602-01-2-0571, DARPA ISTO Grant
HR0011-04-0007 and a Ford Fellowship from the National Academy of Sciences.

S. Kramer and B. Pfahringer (Eds.): ILP 2005, LNAI 3625, pp. 69–86, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



70 H. Corrada Bravo et al.

database operations, facilitating the use of relational query-processing techniques
in ILP systems.

Extensional representations of hypotheses are treated as first-class objects.
Consequently, statistics derived from these objects are easily maintained, and can
be used to define alternatives to guide the search process in ILP. For example,
probabilistic methods for search [7,3,4,8,9] can directly use statistics derived
from our new data structure for representing hypotheses.

Additionally, statistics derived from an extensional representation of hy-
potheses offer new avenues for learning a class of rules richer class than Horn
clauses. For example, rules containing statements about aggregates [10], and
rules containing probabilistic statements, such as statements about missing val-
ues [11], can be generated. While these extensions are beyond the scope of this
paper, we investigate a scheme for restricting the hypothesis search space using
Inverse Entailment based on a set of multiple seed examples. Our algorithm for
Generalized Inverse Entailment offers flexibility and robustness in hypothesis
space restriction, including alternative seed-coverage measures (which we study
in this paper) and cost-based measures that can be readily obtained from our
hypothesis representation.

Our main contributions are as follows:

(1) New data representation and extension-join operation (Section 3), with a
discussion of potential benefits (Section 3.2).

(2) New set-oriented hypothesis generation framework, with proof of soundness
and completeness with respect to inverse entailment under subsumption for
the single-seed case (Section 4).

(3) Generalization of inverse entailment to the multiple-seeds case; extension of
our hypothesis generation framework to this case; and a proof of soundness
and completeness with respect to a generalized coverage measure (Section 5).

2 Mode-Restricted Languages

The ILP task consists of learning a logic program that models a dataset of ground
facts, given as two disjoint sets of positive examples and negative examples.
We are also given “background knowledge” in the form of additional facts or
predicates defined as Horn clauses. The learned program is a set of Horn clauses
that, when added to the background knowledge, entails as many of the positive
example facts as possible while entailing as few of the negative example facts
as possible. Each clause, or hypothesis, in the learned program is built from the
predicates given in the background knowledge, and we assume they are functor-
free Horn clauses. In this section we define the space of hypotheses we seek to
represent.

We borrow the concept of user-specified “modes” that constrain the space of
allowable hypotheses from the Aleph [12] and Progol [13] ILP systems.

Definition 1. A mode is defined by (p/n, B, F) where: p is an n-ary background
predicate, B is the list of arguments of p specified to be bound, F is the list of
arguments of p specified to be free.
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Further restrictions are that B and F are disjoint sets, every argument in the
predicate is specified as either bound or free, and at least one bound argument
is specified. (We do not include the case where modes specify arguments to be
constants, but our results apply to this case as well.)

Definition 2. A moded literal p∗(A, . . . ,N) is the adornment of a literal as
specified by the binding pattern in a mode.

As an example, let q be a background predicate. If q(A, B) is a literal, and
mode (q/2, [1], [2]) is defined, then qbf (A, B) is an allowed moded literal. The
first argument of q is specified as bound, that is, an input argument in the
usual ILP nomenclature, while the second is specified as free, that is, an output
argument. In the rest of this paper, we treat arguments in literals as implicit
when their details are not required, and use p∗ to denote moded literals.

For convenience, we define the following operations on moded literals: let
p∗ be the moded literal specified by mode (p/n, B, F ), then: bound(p∗) = B,
free(p∗) = F , vars(p∗) = B ∪ F , and pred(p∗) = p.

Given a set of modes, we denote the set of allowable moded literals as M.
From now on, we assume every literal in a hypothesis is a moded literal and leave
the adornment implicit when not needed. With this set of allowable moded lit-
erals the mode-restricted set of hypotheses can be defined recursively as follows:

Definition 3. Given a set of allowable moded literals M, and a target predicate
h, the set H(M, h) of hypotheses allowable in the mode-restricted language is
recursively defined as: H(M, h) = {(h ← true.)} ∪ {(h ← r1, . . . , rn, p.) : (h ←
r1, . . . , rn.) ∈ H(M, h), p ∈M, and bound(p) ⊆ Vars(h ← r1, . . . , rn.)}

The set of variables Vars(h ← r1, . . . , rn.) of a hypothesis is the union of the
variable sets of its literals. That is, Vars(h ← r1, . . . rn.) = vars(h)

⋃n
i=1 vars(ri).

The given positive facts we want to model are instances of the target predicate h.
For example, let r and q be background predicates and let there be modes that
specify the adornments rbf and qfb. Then, ĥ = (h(A) ← rbf (A, B), qfb(C, B).) ∈
H(M, h), while ĥ = (h(A) ← rbf (A, B), qfb(B, C).) �∈ H(M, h).

The set H(M, h) in Definition 3 is the set of hypothesis we want to capture
using our representation.

3 The WILD Representation

We seek to represent hypotheses in H(M, h) in such a way that, intuitively, the
result of operating on a hypothesis is reused when operating on an extension
of the hypothesis. For instance, when measuring the coverage of a hypothesis,
the substitution found in proving that a hypothesis covers an example contains
bindings which could potentially make an extension of the hypothesis cover the
same example. Our representation should reuse those bindings when measuring
the coverage of the extended hypothesis.
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Another objective is that useful statistics regarding a hypothesis should be
easy to derive and maintain from the representation of hypotheses. Continuing
with the example, we want the coverage of a hypothesis for a given example
to be easily recoverable from our data structure. However, we are interested in
maintaining statistics that are useful for measures other than coverage. We now
define a data representation and extension operation for hypotheses that meet
these goals.

Definition 4. Hypothesis ĥ ∈ H(M, h) is represented by the pair 〈ĥ, t〉, where t
is a database table. t has schema t[id ,fid , A, . . . , N ], where id is a unique (across
all existing tables) row identifier; fid is the unique identifier of the ‘parent’ row;
and A, . . . ,N are variable names appearing in ĥ.

Each row of t is a binding that makes ĥ cover a fact e in a set of seeds E.
The schema of t serves to share common subsets of bindings between hypotheses
by its use of the id and fid fields. Given a set of seeds, an initial table is built
where fid is null and each seed is represented by one row.

As an example, consider hypothesis ĥ1 = (h(X, Y ) ← qbf (X, Z).), along
with seed table t0 shown in Fig. 1(a), built for the seed set {h(a, b), h(a′, b)}.
Let the facts q(a, c) and q(a′, c′) be in the table for background predicate q.
ĥ1 is represented as the intensional/extensional pair 〈h(X, Y ) ← qbf (X, Z)., t1〉,
where t1 is shown in Fig. 1(b).

(a) id fid X Y
1 null a b
2 null a′ b

(b) id fid Z
3 1 c
4 2 c′

Fig. 1. (a) Initial table t0. (b) Table for pair 〈ĥ1 = (h(X, Y ) ← qbf (X, Z).), t1〉.

Continuing this example, let the facts r(b, d) and r(b, e) be in the base ta-
ble for background predicate r. We represent the hypothesis ĥ2 = (h(X, Y ) ←
qbf (X, Z), rbf (Y, W ).) as pair 〈ĥ2, t2〉, where t2 is shown in Fig. 2(a) along with
its references to t1 for illustration.

We could avoid indirection and store all variable bindings for a corresponding
seed in each row. However, significant savings are obtained by not storing shared
bindings redundantly. For example, given pair 〈ĥ1, t1〉 above, all hypotheses that
are extensions of ĥ1, including ĥ2, share bindings for variables appearing in table
t1. Using chained tables allows these bindings to be stored once, and extensions
then refer to these bindings through indirection. Otherwise, each new table would
store a copy of table t1 along with any new bindings. The use of unique row ids
allows tables to be unambiguously reconstructed from the chained tables when
necessary. For the running example, the reconstructed table for t2 is shown in
Fig. 2(b).
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(a) id fid X Y
1 null a b
2 null a′ b

id fid Z
3 1 c
4 2 c′

id fid W
5 3 d
6 4 d
7 3 e
8 4 e

(b) id X Y Z W
1 a b c d
2 a′ b c′ d
1 a b c e
2 a′ b c′ e

Fig. 2. (a) Table t2 in pair 〈ĥ2, t2〉 with its references to t0 and t1. (b) Reconstructed

version of t2.

3.1 Extension-Join

Using this representation, we formulate hypothesis extension as a stylized join
operation on database tables [14]. This operation takes as input two inten-
sional/extensional pairs as described above. The first 〈ĥn = (h ← r1, . . . , rn), tn〉
is a hypothesis pair as in definition 4. The second, 〈p, pred(p)〉, consists of a
moded literal p and its corresponding base table pred(p). The result of the op-
eration is a new hypothesis pair 〈ĥi+1 = (h ← r1, . . . , rn, p), ti+1〉. Each substi-
tution in ti is extended according to the moded literal and those that make the
new hypothesis hi+1 cover the corresponding seed e ∈ E are retained in the new
table ti+1. We denote this operation as 〈ĥi+1, ti+1〉 = 〈ĥi, ti〉·��〈p, pred(p)〉.

The extension-join operation combines a number of steps, the most significant
of which is an equi-join of the input tables. The remaining steps are for book-
keeping, and set up the equi-join to capture the proper variable bindings of the
extension. Extension-join is defined by Algorithm 1.

Algorithm 1: The Extension-Join operation
Input: Hypothesis pair 〈hi, ti〉 and extension 〈p,pred(p)〉
Output: Extended hypothesis pair 〈hi+1, ti+1〉
X-Join(〈hi, ti〉, 〈p,pred(p)〉)
(1) compute projection of ti

(2) build join constraints and result projection list
(3) execute join and result projection
(4) if result is not empty make new table ti+1

(5) let hi = (h ← r1, . . . , rn.), and set hi+1 = (h ←
r1, . . . , rn, p.)

(6) output 〈hi+1, ti+1〉

We present the details of these steps using the running example. To create
pair 〈ĥ2, t2〉 we calculate 〈ĥ1, t1〉·��〈rbf (Y, W ), pred(r)〉, where t1 is shown in
Fig. 1(b) and the table pred(r) contains the facts r(b, d) and r(b, e).

1. Compute projection of ti. We project the input hypothesis table to only those
columns containing the bound arguments of the extension, following fid fields to
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gather necessary variable bindings. We also keep the id and fid columns required
for chaining rows in the result ti+1 to rows in ti. In our example, t1 is projected
to table t′1 shown in Fig. 3(a). For extension r bf (Y, W ) only column Y is needed
since Y is the only bound argument of rbf (Y, W ).

(a) id fid Y
3 1 b
4 2 b

(b) t.id t.fid pred(r).2
3 1 d
4 2 d
3 1 e
4 2 e

Fig. 3. (a) Table t′1, the projection of t1 to bound arguments of extension. (b) Result

of equi-join of t′1 and pred(r) after projection to identifier and free argument columns.

In principle, several extensions to a given hypothesis require the same bound
variables from the input hypothesis table. The result of extension-joining each
of these extensions and the input hypothesis can be computed simultaneously
using a single projection of the input hypothesis table. This first step in the
extension-join operation permits set-oriented optimizations of this kind.

2. Build join constraints and result projection list . This step finds common
bindings between the input hypothesis and its extension using the input moded
literal. These bindings are expressed as constraints on an equi-join operation,
the result of which is then projected to only those columns required for chaining
and those containing new variables.

For a given pair of operands, a list c of join constraints of the form ti.j = p.k
is constructed, where j is a variable column in ti and k is a column of base table p.
For our current example, c = {t′1.Y = pred(r).1} since the first column of pred(r)
is specified as a bound argument and variable Y is assigned to that column in
rbf (Y, W ). A list of column names l is constructed as {ti.id, ti, f id, p.x1, . . . ,
p.xm} where p.x1, . . . , p.xm are the columns of base table p that do not appear
in the join constraints in list c. In the example l = {t′1.id, t′1.f id, pred(r).2} since
column 2 of pred(r) is not involved in any constraint in list c.

3. Execute join and projection . The result of the previous step is used to ex-
ecute an equi-join on the two input tables. This operation is defined by the
relational algebra [14] expression πl(ti �c p) where �c is an equi-join under
the constraints given in list c, and πl is a projection to the columns listed in
l. This has the effect of extending substitutions in input table ti with bind-
ings from the input base predicate. For our running example, the result of
π{t′1.id,t′1.fid,pred(r).2}(t′1 �t′1.Y =pred(r).1 pred(r)) is shown in Fig. 3(b).

4. If result is not empty, build new table ti+1 . This step transforms the result
of the previous step so it conforms to the hypothesis schema. It also chains the
rows in ti+1 to rows of ti by making the proper entries in the fid column of the
new table. Column names for the new table are derived from the moded literal
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and a unique id is generated for each row in the result. The final result for our
example, t2, was shown in Fig. 2.

By Definition 4 and the extension-join in Algorithm 1, all hypothesis tables
contain a unique identifier for each row, and refer to the unique identifier of
a parent row. Since the seed table t0 contains exactly one row for each seed
example e in seed set E, a row identifier eid can be uniquely associated with
each seed example. Thus, any row in subsequent tables can be associated with a
seed example e ∈ E using the row identifier eid in seed table t0, by following fid
links. We define a selection operation, denoted σe(t), and a projection operation,
denoted E(t), that use these row identifiers:

Definition 5. Let ĥ = (h ← r1, . . . , rn) and

〈ĥ, t〉 = 〈(h ← .), t0〉·��〈r1, pred(r1)〉·�� · · · ·��〈rn, pred(rn)〉

such that seed table t0 is built from a seed example set E, and tx is the recon-
struction of t through fid fields as described above. Then:

1. E(t) def= πid(tx) is the projection of t to its example identifiers, where π is the
relational algebra projection operator.

2. σe(t)
def= σid=eid

(tx) is the selection of t to rows involving seed e, where eid is
the row identifier for seed e ∈ E in the initial table t0, and σ is the relational
algebra selection operator.

A useful property of the extension-join operation is that selection on examples
for a hypothesis table can be pushed to a selection on the original table of seeds
t0. We formalize this with the following lemma:

Lemma 1. Let ĥm = (h ← r1, . . . , rm.) ∈ H(M, h),

〈ĥm, tm〉 = 〈(h ← true.), t0〉·��〈r1, pred(r1)〉·�� · · · ·��〈rm, pred(rm)〉,

such that seed table t0 is built from a seed example set E, and let 〈ĥn, tn〉 =
〈ĥm, tm〉·��〈rn, pred(rn)〉.

For every e ∈ E, if 〈ĥn, te〉
def= 〈ĥm, σe(tm)〉·��〈rn, pred(rn)〉, then te = σe(tn),

where σe is the selection operation of Definition 5.

Proof. Let eid be the unique row identifier for example e in seed table t0.
(σe(tn) ⊆ te). Let te ⊂ σe(tn), then there is a tuple s ∈ σe(tn) such that

s �∈ te. Let s be the result of joining tuples s′ ∈ tm and s′′ ∈ pred(rn) according
to the definition of extension-join. Since s ∈ σe(tn), the s.id = eid, by definition
of extension-join, s′.id = s.id. = eid. However, since s �∈ te, the definition of
extension-join implies s′ �∈ σe(tm). This is a contradiction since we established
s′.id = eid.

(te ⊆ σe(t)). Conversely, let σe(tn) ⊂ te, then there is a tuple s ∈ te such
that s �∈ σe(tn). Let s be the result of joining tuples s′ ∈ σe(tm) and s′′ ∈
pred(rn) according to the definition of extension-join. Since s′ ∈ σe(tm), s′ ∈ tm
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which implies by definition of extension-join that s ∈ tn. Furthermore, since
s′ ∈ σe(tm), we have s′.id = eid, and the definition of extension-join implies
s.id = eid. We have shown that s ∈ tn and s.id = eid, but s �∈ σe(tn). This is a
contradiction. ��

It is worth noting that existing work addresses issues we present here. For
example, data structures used in algorithms for testing θ-subsumption [15,16,17]
store multiple substitutions compactly to avoid backtracking when finding satis-
fying substitutions. However, the compact representation used can make main-
taining statistics of the type we discuss below difficult. On the other hand, the
data structure for storing multiple substitutions used in the LogAn-H system [18]
uses the reconstructed tables we discuss above which store information redun-
dantly.

Techniques that store only coverage lists or some computed answers meet
some, but not all, of our goals. For example, storing coverage lists [19] or a
technique such as tuple-id propagation [20] allows for compact storage and fast
retrieval of statistics used to determine coverage measures of a hypothesis in a
classification setting. However other types statistics, those not involving cover-
age as used in some probabilistic models, for example, are not easily derivable.
We present a formulation that seeks to balance the two goals of caching and
availability of general statistics.

3.2 Benefits of the WILD Representation

We identify two general areas in which our representation offers advantages:

1. Within the current search and score paradigm in ILP, this framework allows
for efficiency, scalability and flexibility.

2. This framework easily adapts to settings where learning theories in languages
other than Horn clauses is desired.

We discuss these benefits below.

Caching Benefits. Each table contains those bindings required to determine the
coverage properties of a hypothesis ĥ with respect to the seed table t0. Once these
bindings are cached by pair 〈ĥ, t〉, they can be reused to determine coverage
properties of extensions to ĥ. This is exploited in the context of search-space
restriction in the next section.

Set-oriented Hypothesis Extension. The extension-join operation can be carried
out efficiently in a relational database system since it is defined in terms of
relational operations. Thus, ILP could potentially be carried out on disk-resident
data.

There are also set-oriented optimizations that can be performed at the tu-
ple level during extension-join. For instance, earlier we described an optimization
where extension-join on a particular hypothesis and a set of its extensions (for ex-
ample, modes that share a base table) is executed in a set-oriented fashion. This
optimization is in the spirit of the query packs presented by Blockeel et al. [5]
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Alternative Search Methods. The cached table for a hypothesis pair can be used
to maintain statistics that help in defining the hypothesis search-space, and in
exploring that space. In this paper we present an application in which statistics
from extensional tables are used to restrict the space of allowable hypotheses.

As another example, stochastic search methods can use prior distributions
over the space to guide search towards probably useful parts of the space [7,8].
A hypothesis space generated and, thus, defined using our representation can
use an informative prior derived from coverage statistics derivable from cached
tables.

Similarly, estimates of a given property of hypotheses can also be used to
guide search. For example, estimates of the coverage of a hypothesis may be
used to specify which parts of the hypothesis space to explore [4,9]. Under our
representation, these estimates are derived from a cached table resulting from
the extension-join of background predicates to some representative set of seeds.
Another method might use our representation to estimate how efficiently a hy-
potheses can be evaluated. For example, Struyf and Blockeel [3] estimate a prior
on the selectivity of literals to decide an efficient literal reordering for a given hy-
pothesis. Statistics derived from our representation can provide good estimates
of the selectivity of a literal.

Language Extensions. This framework permits learning rules in languages other
than sets of Horn clauses. For example, we can use statistics in the cached
table for a hypothesis to train a statistical model that infers missing values in
other instances of similar datasets. This is the formulation for CLP(BN) [11], a
language easily incorporated into our hypothesis framework.

Alternatively, we can use statistics in the cached table to make distributional
statements regarding variables in a hypothesis. For example, we can estimate the
distribution of a column in our target predicate and determine its correlation to
subsets of other columns in the background knowledge using statistics derived
from cached tables. This allows for statements of the type rich people tend to
live in big houses to be made in the learned program.

Extensions to the Datalog language have been proposed that add the ability
to group constants and calculate aggregates on these groups [21]. By having
cached tables available, these groups can be defined and aggregates calculated
on the fly during the learning process. This may allow for statements about
aggregates like those described by Vens et al. [10]. Another Datalog extension
is the use of negated literals in clauses. This is allowed through the requirement
that programs be stratified with respect to negation. Since we assume a set-
oriented, bottom-up evaluation strategy in our system, we can expect to learn
stratified programs with negated literals.

The remainder of this paper presents an initial example of the benefits of the
WILD representation and the avenues it opens when defining the ILP task. We
look at how the space of allowable hypotheses can be defined using background
knowledge about multiple facts in the target predicate.
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4 An Initial Application

The Aleph and Progol systems restrict the set of hypotheses in the search space
through Inverse Entailment [13]. A specific seed example is chosen to generate
a set of literals, known as the bottom clause, by finding facts in the background
knowledge that are relevant to the chosen seed example. The space of hypotheses
is restricted to include only generalizations of this bottom clause, consequently,
all hypotheses generated will cover the seed example. This process seeks to re-
strict search to useful hypotheses. However, a seed defines a space of hypotheses
that are useful only in respect to that seed.

In the presence of noise in data, restricting the search space based on a
single seed is potentially wasteful. For instance, suppose that a few positive
examples are mislabelled, and are in fact negative examples. Using any of these
examples as seeds will restrict the search space to hypotheses that probably
cover many negative examples. Hypothesis evaluation based on coverage will
then try to find a, possibly non-existent, very specific clause that differentiates
between negative examples. While search parameters can be used to alleviate
this, a minimum positive example coverage constraint for example, a principled
method that avoids this phenomenon while defining the search space is best.

If a ‘usefulness’ restriction is imposed on the search space defined in terms
of multiple seeds, then the effect of an unfavorable choice of seed might be
mitigated by true representative seeds in the set. Furthermore, it would be useful
to provide a degree of freedom in how the space restriction is defined in terms
of the multiple seeds. We show how a hypothesis generation strategy using the
WILD representation meets these goals by generalizing Inverse Entailment to
multiple seeds.

First, we describe Inverse Entailment in more detail and then show how the
WILD representation is used to define a hypothesis space. Specifically, how it is
used to define a space using Inverse Entailment in the single-seed case. Finally,
we define a generalization of Inverse Entailment and show it defines a class of
‘usefulness’ restrictions that can be imposed on the hypothesis space.

4.1 Inverse Entailment

Inverse Entailment constructs a set of literals that defines the allowable hypothe-
ses in the search space. In practice, this construction is done using a partitioning
approach: the first partition contains the constants appearing in the seed exam-
ple; at each step of the iteration, instances of the constants in the current par-
tition are found in each background predicate as specified in any of the binding
patterns defined by the given modes; each ground literal containing instances is
added to the bottom clause and new constants appearing in these literals are
added to the next partition if the corresponding argument is specified as free
in some mode. This is repeated until no new constants are added to the next
partition or a user-defined bound on the number of iterations performed is met.
To finalize, the ground literals in the bottom clause are ‘variabilized’ according
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to the given set of modes. Here and below we leave out a bound on hypothesis
length for clarity, but this can be easily implemented.

Allowable hypotheses in the search space are valid ordered subsets of the
literals in the bottom clause. Literals can only be used to extend a hypothesis if
it appears in the bottom clause and variables appearing in its bound arguments
must appear in the hypothesis to be extended. The subset of H(M, h) built from
a given bottom clause can now be defined.

Definition 6. Given a set of allowable moded literals M, target predicate h,
seed example e, depth bound k and background knowledge B, let ⊥e be the bottom
clause built from seed example e. Define the set of hypotheses HA(e) generated
from ⊥e as HA(M, h, e, k,B) = {(h ← true.)}∪{h ← r1, . . . , rn, p. : (h ←
r1, . . . , rn.)∈HA(M, h, e, k,B), p∈⊥e, and bound(p) ⊆ Vars(h ← r1, . . . , rn.).}

Remark 1. We stated previously that all hypotheses in set HA(M, h, e, k,B)
will cover the seed example e. Muggleton proved in [13] that Inverse Entailment
is complete under θ-subsumption, thus if the depth bound is relaxed, that is, if
k = ∞, for a given ĥ ∈ H(M, h), ĥ∧B � e if, and only if, ĥ ∈ HA(M, h, e,∞,B).

4.2 WILD Hypothesis Generation

This process of Inverse Entailment can be generalized to a set-oriented formula-
tion. Instead of a single seed example being used to restrict the search space, a
set of examples is used along with a filter function that determines which candi-
date hypotheses can be included in the search space. This generalized version of
Inverse Entailment, like the original Aleph/Progol version, benefits from bottom-
up computation. Using the representation and the extension-join operation of
Section 3, we propose the following algorithm for generating hypotheses:

Algorithm 2: WILD Hypothesis Generator
Input: Set of allowable moded literals M, target predicate h, seed fact set E, depth
bound k, background knowledge B, filter-function φ
Output: Set of hypotheses
GenerateH(M, h, E, k,B, φ)
(1) openset = {〈(h ← true.), t0〉}, (t0 built from seed set E)
(2) output 〈(h ← true.), t0〉
(3) while openset is not empty
(4) choose and remove 〈ĥi, ti〉 from openset
(5) foreach moded predicate p that is a valid extension to ĥi

(6) compute 〈ĥi+1, ti+1〉 = 〈ĥi, ti〉·
�〈p,pred(p)〉
(7) if φ(ti+1) is true
(8) output 〈ĥi+1, ti+1〉 as an allowable hypothesis
(9) if depth of ĥi+1 ≤ k
(10) add 〈ĥi+1, ti+1〉 to openset

Valid extensions here are as in set H(M, h), that is: bound(p) ⊆ Vars(hi) so
that arguments marked bound are assigned a variable already appearing in the
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hypothesis to be extended. In step 9, the depth of hi+1 as defined by Muggleton
in [13] is easily obtained from ti+1. First, we define ĥ0 = (h ← true) to have
depth 0. If the depth of ĥi is j, and table ti+1 has columns for variables not
appearing in ti, then the depth ĥi+1 is j + 1.

Using the WILD hypothesis generator we formulate a strategy to enumerate
the set of hypotheses generated by Inverse Entailment in the single-seed case.
First, we make the seed set E = {e} a singleton set. We then set the filter
function φ to take a table as input, and return true if the table is not empty.
We’ll denote this emptiness-testing function as φempty. We prove in the following
proposition that with these parameters, we can generate a complete and sound
set of hypotheses that cover the given single seed e.

Proposition 1. Soundness and Completeness of WILD Generation for
a Single Seed. Let HB(e) = GenerateH(M, h, {e},∞,B, φempty). Hypothesis
ĥ ∈ H(M, h) covers e if, and only if, there exists table t such that 〈ĥ, t〉 ∈ HB(e).

Proof. (Only if ). Proceeds by induction on n, the number of literals in ĥ. If
n = 1 we have that ĥ must be of the form (h ← true.). ĥ covers e by a unique
substitution θ that maps variables in h to constants in e such that h[θ] = e.
That is, the result of applying substitution θ to literal h is e. By construction,
in Step 2 of Algorithm 2, we have 〈ĥ, t0〉 ∈ HB(e).

Let the ‘only if’ direction of the Proposition be true for all n ≤ m− 1; thus
we assume that for each ĥm−1 = (h ← r1, . . . , rm−1.) ∈ H that covers e, there
exists a table tm−1 such that 〈ĥm−1, tm−1〉 ∈ HB(e). We show that for each
extension ĥm to ĥm−1 such that ĥm = (h ← r1, . . . , rm−1, rm.) covers e, there is
a pair 〈ĥm, tm〉 ∈ HB(e).

Since ĥm covers e we must have that ĥm−1 also covers e, and thus by the
inductive hypothesis, there is table tm−1 such that 〈ĥm−1, tm−1〉 ∈ HB(e). Also,
since ĥm covers e, there exists a substitution θ such that h[θ] = e and for each
i, 1 ≤ i ≤ m there is a tuple s ∈ pred(ri) such that ri[θ] = si, specifically there
is a tuple sm ∈ pred(rm) such that rm[θ] = sm. Let

〈ĥm, tm〉 = 〈ĥm−1, tm−1〉·��〈rm, pred(rm)〉,

then due to tuple sm ∈ pred(rm) and the definition of extension-join, there is at
least one tuple in tm, that is, φempty(tm) = true. This implies 〈ĥm, tm〉 ∈ HB(e)
as desired.

(If ). Now we prove that if there is a pair 〈ĥ, t〉 ∈ HB(e), then ĥ covers e.
Proceed by induction on n, the number of literals in ĥ. If n = 1 then we have
〈ĥ = (h ← true.), t0〉 ∈ HB(e), and by construction we have that t0 is built
from the constants appearing in e. We build a substitution θ from t0 such that
h[θ] = e which makes ĥ cover e.

Let the ‘if’ direction of the claim be true for all n ≤ m − 1, and assume
that if 〈ĥm−1 = (h ← r1, . . . , rm−1.), tm−1〉 ∈ HB(e) then ĥm−1 covers e. We
show that for each extension 〈ĥm, tm〉 = 〈ĥm−1, tm−1〉·��〈rm, pred(rm)〉 ∈ HB(e),
ĥm = (h ← r1, . . . , rm−1, rm.) covers e.
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Since 〈ĥm, tm〉 ∈ HB(e), we have that 〈ĥm−1, tm−1〉 ∈ HB(e). By the in-
ductive hypothesis, there is a substitution θ′ such that h[θ′] = e and there is
a tuple si ∈ pred(ri) for all i, 1 ≤ i ≤ m − 1, such that ri[θ′] = si. Since
〈ĥm, tm〉 ∈ HB(e) we know that φempty(tm) = true, thus there is at least one
tuple sm ∈ tm. We build a substitution σ with a domain consisting of variables
not appearing in θ′, which corresponds to arguments of rm in free(rm). We bind
the variables in σ to the constants appearing in the corresponding arguments in
tuple sm. Since bound(rm) is a subset of the domain of θ′, we can build the sub-
stitution θ = θ′σ. The result is that h[θ] = e, and there is a tuple si ∈ pred(ri)
for all i, 1 ≤ i ≤ m − 1 such that ri[θ] = si. Finally due to the definition of
equi-join, there is a tuple sm ∈ pred(rm) such that rm[θ] = sm. This implies ĥm

covers e as desired. ��

The following corollary follows from Proposition 1 and Remark 1.

Corollary 1. WILD Generates the Inverse Entailment Space for a
Single Seed. Let HB(e) = GenerateH(M, h, {e},∞,B, φempty), and HA(e)
be as in Definition 6, then for every ĥ ∈ H(M, h), ĥ ∈ HA(e) if, and only if
there exits table t such that 〈ĥ, t〉 ∈ HB(e).

Proof. Follows trivially from Proposition 1 and Remark 1. as both sets contain
exactly the subset of H(M, h) that cover single seed e. ��

5 Generalized Inverse Entailment

We now present a scheme for generalizing Inverse Entailment using multiple
seeds. It uses the parameters in the WILD generation algorithm to restrict the
set of allowable hypotheses. Specifically, the filter function is used to only allow
generation of hypotheses that meet some coverage criteria. Inverse Entailment
is generalized in the sense that while the criterion used for restriction in Inverse
Entailment is that hypotheses cover a single seed, we use a class of measures of
the coverage of a hypotheses over the set of seed examples. This class of measures
is implemented as the filter function φ of the WILD generation algorithm.

Given a set of seed examples we denote the subset of seeds covered by a
hypothesis ĥ ∈ H(M, h) as E(ĥ).

Definition 7. Let ĥ ∈ H(M, h), then: E(ĥ) = {e ∈ E | ĥ ∈ HA(e)}, where
HA(e) is the set of hypotheses generated by Inverse Entailment from the single
seed example e as in Definition 6.

Intuitively, e ∈ E(ĥ) if ĥ is a hypothesis generated from the bottom clause
built from seed e. This is equivalent to stating, due to Remark 1, that e ∈ E(ĥ)
if ĥ covers e.

We define two filter functions we propose and evaluate in this paper. Given
a subset E′ ⊆ E, define:
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1. Intersection: φint(E′) = true if E′ = E. We will claim in Proposition 2 that
the hypotheses generated by the WILD hypothesis generator using this filter
are those hypotheses that would be generated by every bottom clause built,
in turn, by a seed in E. That is, the resulting space is the intersection of the
spaces defined by the set of Aleph bottom clauses.

2. Support: φsup(E′) = true if, for a given threshold η, |E′|/|E| ≥ η. We bor-
row this concept from frequent itemset and relational pattern mining algo-
rithms, [22,23] and use it to generalize the coverage assumptions of Inverse
Entailment. This introduces an extra parameter that can be used to deter-
mine the amount of filtering to apply. We will claim in Proposition 2 that
the hypotheses generated using this filter are those that cover at least η|E|
seed examples. Notice that if η = 1, this is equivalent to φint above.

Notice that these functions are monotonic on the size of seed subset E′ and
that they return true for the entire set E. We formalize this in the following
definition and use these properties when proving our main result in Proposition 2.

Definition 8. Proper Filter Function. Let E be a set of seed examples and
E′ ⊆ E. A filter function φ is proper when (1) if φ(E′) = true then for any
superset E′′ ⊇ E′: E′′ = true; and (2) φ(E) = true.

Below, we take φ(t) where t is a table in an intensional/extensional pair, to
mean φ(E(t)) where E(t) is the projection of t to its example identifiers as in
Definition 5.

We can now present our main result regarding generalized Inverse Entailment
which states that the WILD generator will produce only, and all, hypotheses
in H(M, h) that meet the criteria imposed by the filter function. That is, it
generates those hypotheses we deem as useful with respect to the set of seed
examples.

Proposition 2. Soundness and Completeness of WILD Generation for

Multiple Seeds. Let HW (E) def= GenerateH(M, h, E,∞,B, φ) be the set of
hypotheses generated by the WILD generator for seed set E such that φ is a
proper filter as specified in Definition 8. For all ĥ ∈ H(M, h), φ(E(ĥ)) = true
if, and only if, there exists a table t such that 〈ĥ, t〉 ∈ HW (E).

We use two Lemmas to prove this result. Once these are stated and proven
we present the proof of Proposition 2. Throughout we denote as HB(e) def=
GenerateH(M, h, {e},∞,B, φempty) the set of hypotheses described in Propo-
sition 1, that is, the set of hypotheses generated by the WILD hypothesis gen-
erator for single seed e, using the emptiness-testing function φempty. Also, we
denote as HA(e) the set from Definition 6, that is, the set of hypotheses gener-
ated by Inverse Entailment using single seed e. Recall from Corollary 1 that sets
HA(e) and HB(e) are equal.

First, we use the selection result in Lemma 1 to reason about pairs 〈ĥ, t〉, built
from multiple seeds, in terms of the single-seed space HB(e). We state in the
next Lemma the conditions in which the projection of t to its seed row identifiers
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contains the identifier for a particular example e. We show this occurs if, and
only if, the pair 〈ĥ, σe(t)〉 is in the single-seed space HB(e), or equivalently, due
to Proposition 1, when ĥ covers e. Here σe(t) is the selection of rows in t involving
seed e as defined in Definition 5

Lemma 2. Let ĥn = (h ← r1, . . . , rn.) ∈ H(M, h), and

〈ĥn, tn〉 = 〈(h ← .), t0〉·��〈r1, pred(r1)〉·�� · · · ·��〈rn, pred(rn)〉,

such that seed table t0 is built from a seed example set E as described in Section 3.
Let eid be the unique row identifier associated with seed example e ∈ E in table
t0. For every e ∈ E, eid ∈ E(t) if, and only if, 〈ĥ, σe(t)〉 ∈ HB(e).

Proof. (If). If 〈ĥ, σe(t)〉 ∈ HB(e), by definition of φempty, σe(tn) �= ∅. This
implies eid ∈ E(t).

(Only if). We proceed by induction on n, the number of literals in the body
of ĥ. If n = 1, then by construction 〈ĥ, σe(t)〉 ∈ HB(e).

Let the ‘only if’ direction of the Lemma be true for all n ≤ m−1; we assume
that for every

〈ĥm−1, tm−1〉 = 〈(h ← .), t0〉·��〈r1, pred(r1)〉·�� · · · ·��〈rm−1, pred(rm−1)〉,

such that seed table t0 is built from a seed example set E as described in Sec-
tion 3, and e ∈ E, eid ∈ E(tm−1) implies 〈ĥm−1, σe(tm−1)〉 ∈ HB(e).

Let 〈ĥm, tm〉 = 〈ĥm−1, tm−1〉·��〈rm, pred(rm)〉, and eid ∈ E(tm), we now show
〈ĥ, σe(tm)〉 ∈ HB(e). Since eid ∈ E(tm) the selection σe(tm) �= ∅. By the defi-
nition of extension-join and σe, this implies that σe(tm−1) �= ∅, and thus eid ∈
E(tm−1). By the inductive hypothesis pair 〈ĥm−1, σe(tm−1)〉 ∈ HB(e). There-
fore, since 〈ĥm−1, σe(tm−1)〉 ∈ HB(e), and σe(tm) �= ∅, 〈ĥm, σe(tm)〉 ∈ HB(e) as
desired. ��

The result of E(t) is a set of row identifiers for examples in seed set E.
Given this set of identifiers a subset of examples in seed set E can be uniquely
specified. The next Lemma shows that under some conditions, for a hypothesis
pair 〈ĥ, t〉 the set of example identifiers in t can be mapped to the set of examples
covered by ĥ. We denote this relationship as E(t) = E(ĥ). This mapping will lead
directly to the desired result for Proposition 2, except for the issues presented
by the filter function φ. Addressing those effects will be the bulk of the proof of
Proposition 2.

Lemma 3. Let ĥ = (h ← r1, . . . , rn.) ∈ H(M, h), and

〈ĥ, t〉 = 〈(h ← .), t0〉·��〈r1, pred(r1)〉·�� · · · ·��〈rn, pred(rn)〉,

such that seed table t0 is built from a seed example set E as described in Section 3.
Let eid be the unique row identifier associated with seed example e ∈ E in table
t0. Then for every e ∈ E, eid ∈ E(t), if and only if, e ∈ E(ĥ), where E(t) is the
projection of table t as in Definition 5 and E(ĥ) is the set of examples covered
by hypothesis ĥ as in Definition 7. That is, E(t) = E(ĥ).
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Proof. (If ). By Definition 7, e ∈ E(ĥ) if ĥ ∈ HA(e). By Proposition 1, if ĥ ∈
HA(e) then there exists table te such that 〈ĥ, te〉 ∈ HB(e). This implies by
Lemma 1 that eid ∈ E(t) the projection of t to its seed example identifiers.

(Only if ). By Lemma 1, eid ∈ E(t) implies 〈ĥ, σe(t)〉 ∈ HB(e). By Proposi-
tion 1, 〈ĥ, te〉 ∈ HB(e) implies ĥ ∈ HA(e). Then by definition, e ∈ E(ĥ), that is,
ĥ covers single seed e. ��

We now prove Proposition 2 proceeding by induction on the number of literals
in the hypothesis. We note that if a hypothesis ĥn ∈ H(M, h) is an extension of
hypothesis ĥn−1 ∈ H(M, h), the set of examples covered by ĥn is a subset of the
examples covered by ĥn−1. We use the monotonicity of the proper filter function
φ to reason about the result of applying φ to the set of examples covered by ĥn.
Finally, Lemmas 2 and 3 provide a mapping from the set of examples covered by
a hypothesis to the examples present in a table resulting from a chain of multiple
extension-joins starting from the seed table.

Proof. (If). Let ĥ = (h ← r1, . . . , rn.) ∈ H(M, h). If 〈ĥ, t〉 ∈ HW (E), then

〈ĥ, t〉 = 〈(h ← .), t0〉·��〈r1, pred(r1)〉·�� · · · ·��〈rn, pred(rn)〉,

such that seed table t0 is built from a seed example set E as described in Section 3
and φ(t) def= φ(E(t)) = true. We have by Lemma 3 that E(ĥ) = E(t), and thus,
φ(E(ĥ)) = true since φ(E(t)) = true.

(Only if). We proceed by induction on n, the number of literals in the body
of ĥ. If n = 1, then ĥ = (h ← true.). By construction there is a t0 such that
〈ĥn, t0〉 ∈ HW (E).

Let the ‘only if’ direction of the Proposition be true for all n ≤ m − 1; we
assume that for every ĥm−1 = (h ← r1, . . . , rm−1.) ∈ H(M, h), φ(E(ĥm−1)) =
true implies that there is a table tm−1 such that 〈ĥm−1, tm−1〉 ∈ HW (E). Let
ĥm = (h ← r1, . . . , rm−1, rm) ∈ H(M, h) and φ(E(ĥm)) = true. We show there
is a table tm such that 〈ĥm, tm〉 ∈ HW (E).

By the monotonicity of φ, φ(E(ĥm−1)) = true since E(ĥm) ⊆ E(ĥm−1) and
φ(E(ĥm)) = true. Then, by the inductive hypothesis, there exists 〈ĥm−1, tm−1〉 ∈
HW (E) where

〈ĥm−1, tm−1〉 = 〈(h ← .), t0〉·��〈r1, pred(r1)〉·�� · · · ·��〈rm−1, pred(rm−1)〉,

such that table t0 is built from a seed example set E as described in Section 3 and
φ(tm−1)

def= φ(E(tm−1)) = true. Let 〈ĥm, tm〉 = 〈ĥm−1, tm−1〉·��〈rm, pred(rm)〉.
By Lemma 3, we have E(tm) = E(ĥm) which implies φ(tm) def= φ(E(tm)) = true.
This implies 〈ĥm, tm〉 ∈ HW (E) as desired. ��

In the case of the strict intersection filter function, this Proposition states
that only hypotheses that cover every seed are generated. On the other hand, in
the case of the support filter function, only hypotheses that cover the required
number of seeds are generated.
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In future work we will experimentally evaluate the effect of alternative set-
tings of the parameters exposed for hypothesis space restriction by this frame-
work. In particular, we want to observe their effect on the accuracy of learned
hypothesis found under spaces restricted by Generalized Inverse Entailment. For
example, determining what effect different support thresholds have on accuracy
is important. Determining how robust this approach is to sampling effects as
compared to Inverse Entailment would test the conjecture that the effect caused
by a bad choice of a single seed is in fact mitigated by this proposed framework.
Characterizing the types of datasets that benefit from this approach would be
enlightening.

6 Conclusion

We presented a framework for ILP that exploits caching and avoids redundant
computation. This framework is built upon a data structure and hypothesis ex-
tension operation that makes opportunities for caching explicit. We presented
this structure and defined the extension operation in terms of relational database
operations, suggesting a way to incorporate ILP in a relational database envi-
ronment.

We also discussed how current methods that seek to improve efficiency and
alternative search definition can directly benefit from the framework presented
here. In addition, new variants of search restriction and strategy are direct re-
sults of this framework. We discussed one such variant, which generalizes Inverse
Entailment to multiple seeds, and presented theoretical results that offer a foun-
dation for this generalization.

Finally, this framework enables us to learn theories in languages other than
sets of Horn clauses, including theories that make probabilistic statements, state-
ments about aggregates, and that contain negation.

Each of the directions mentioned above holds the potential for significant
improvement in some aspect of ILP, and we believe that the work in this paper
is a first step that opens many promising avenues for future research.
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Abstract. Many distance-based methods in machine learning are able
to identify similar cases or prototypes from which decisions can be made.
The explanation given is usually based on expressions such as “because
case a is similar to case b”. However, a more general or meaningful pat-
tern, such as “because case a has properties x and y (as b has)” is usually
more difficult to find. Even in this case, the connection of this pattern
with the original distance-based method is generally unclear, or even in-
consistent. In this paper, we study the connection between the concept of
distance (or similarity) and the concept of generalisation. More precisely,
we define several conditions which, in our view, a sensible distance-based
generalisation must have. From that, we are able to tell whether a gen-
eralisation operator for a pattern representation language is consistent
with the metric space defined by the underlying distance. We show that
there are pattern languages and generalisation operators which comply
with these properties for typical data types: nominal, numerical, sets and
lists. We also show the relationship between the well-known concepts of
lgg and distances between terms, and the definition of generalisation pre-
sented in this paper.

Keywords: Distance-based methods, generalisation operators, lgg, met-
ric space.

1 Introduction

The concept of distance is key in many areas such as case-based reasoning [1],
machine learning [6], diagnosis, information retrieval [2], etc. Distance, as the
mathematical concept of dissimilarity, allows many learning techniques to be
applied to quite different kinds of data and situations, provided we are able to
define a distance for the instances or cases at hand. Distance-based methods,
then, are easily adaptable to any kind of applications. However, the problem of
converting the similarity traits into a numerical value (the distance) is that the
information on the matches or coincidences is lost. Consequently, many distance-
based methods cannot give an explanation of their answers. For instance, a
distance-based method [5] such as k-nearest neighbours can output that the film
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X is likely to be appropriate for a customer because the k-nearest neighbours of
X were appropriate for the customer, but are not able to give a general pattern of
why it is the case, such as the film X is likely to be appropriate for the customer
because X is an action movie where the good guys win, and the customer liked
all the films with these traits s/he hired before.

The connection of distance and pattern, or more precisely, the connection of
distance and generalisation is not new. Many learning techniques (e.g. cluster-
ing or classification) generate a prototype (or centroid) and the generalisation
area is based on a certain distance ball from the prototype. However, a good
distance-based generalisation can have no meaningful pattern which is able to
express the generalisation or, in other words, a generalisation can have no good
representation. For instance, the generalisation “all the films with more than
4 traits in common with film X” is a well-defined general region according to
a distance based on the number of common traits, but it lacks a meaningful
pattern. Vice versa, a meaningful pattern can lead to very bad or unintuitive
generalisations. For instance, the pattern “all the documents that contain the
string inductive logic programming” is a meaningful pattern but is not a good
generalisation if edit distances are taken into account, since two very similar
documents can just differ on this string or two very different documents can just
match on this sequence.

Consequently, if we are using a distance-based method to determine similar
objects or to establish centroids or prototypes, we need a representation pattern
that is consistent with the metric space defined by the underlying distance.
In order to do this, we have to identify a series of conditions that a pattern
representation language and a generalisation operator must fulfil.

Let us illustrate this idea with a more detailed example. Consider an intruder-
detection problem where we want to detect whether a user might be an intruder.
For each user, we record the machines (1, 2, 3) where they have made a ‘ping’
(p), have connected (c) or have failed to connect (f). For each user we record
a ‘sequence’ of actions. For instance, “p1f2c2” means a user that first pinged
to machine 1, then failed to connect to machine 2 and finally connected to
machine 2. With this data we apply case-based reasoning to determine for a
new user whether s/he is an intruder or not. More specifically, we compute edit
distances between the sequences of actions and then use a k-nearest neighbour
(k-nn) to determine the class of each new case. Figure 1 shows the case of
determining whether “p1f1f2f3” is an intruder when we use 7-nn and the seven
nearest examples (with distances 2, 4, 4, 3, 3 for the positives and 3, 5 for
the negatives). Since among the 7-nearest neighbours there are five positive
cases and two negative cases, the sequence “p1f1f2f3” is labelled as a possible
‘intruder’.

A different thing is when we want to extract a pattern to explain the 7-nn
classification. The pattern can be determined taking into account the five positive
examples and trying to ascertain what they have in common. A possible pattern
for the 5 positive cases could be {∗f1f1∗, ∗f3f3∗}, meaning that any instance
containing two consecutive f1 or two consecutive f3 is an intruder. Apparently,
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Fig. 1. 7-nn with 5 positive (solid line) and 2 negative (dotted line) cases for classifying
the new case “p1f1f2f3”

this is a good pattern, since it covers all the five positive examples, and none of
the two negative examples. Additionally, it is not too specific and it is not too
general, and it is meaningful. Despite this idealistic picture, the pattern conceals
a surprise: it does not cover the centre point “p1f1f2f3”! Even worse, the point
“p1f1f2f3” has a distance 2 to “p1f1f1f3” and has distance 3 to “p3f1f2f3f3”,
where these two latter examples have distance 5. That is, two examples are
in the pattern, but a middle point is not in it. These two observations show
that any meaningful pattern in a general situation may be inconsistent w.r.t.
the underlying distance. The pattern is then useless to explain or represent the
behaviour of the distance-based technique.

Consequently, if we use a pattern representation language for explaining some
distance-based generalisation we have to check first whether the language and
the generalisation operator meet some properties.

In this paper, we study the connection between the concept of distance (or
similarity) and the concept of generalisation, and the pattern representation
languages that are able to express sensible generalisations. This is the first step
in order to make the idea of obtaining meaningful explanations of the answers
given by a distance-based learning method applicable to the broadest kind of
distance-based techniques as possible. In the following section, we analyse which
generalisations are considered unintuitive in a metric space, and we define two
properties a generalisation operator must satisfy. In Section 3 we show sensible
pattern languages and binary generalisation operators for the typical data types:
nominal, numerical, sets and lists. Next, we analyse the relationship between
our generalisation concept and the lgg operator defined by Plotkin. We show
that, using the metric defined in [9] which is based on the lgg concept, this
operator satisfies the conditions of a good generalisation operator to be used as
a pattern constructor for first-order logic language. This puts some (but not all)
some generalisation operators (such as lgg) and some (but not all) metric spaces
used in ILP as special cases of metric-based generalisations. This suggests the
applicability of other distance-based methods in ILP as well as the applicability
of ILP methods (top-down/ bottom-up) to other areas outside ILP.
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Finally, in the conclusions, we discuss on the application of this integrated
view to distance-based methods such as k-nearest neighbours, clustering,
distance-based decision trees and other case-based reasoning techniques. We also
propose some ideas for the future work.

2 Generalisation in Metric Spaces

In this section, we propose a notion of generalisation for metric spaces. From
now, we will work with metric spaces1.

Definition 1. Given Δ : X × X → 2X , Δ is a k-generalisation (k ≥ 1) if
∀a, b ∈ X these two conditions hold:
1 (No Isolation)

∀x ∈ Δ(a, b) and ∀ε > 0, if {x} � B(x, ε) then B(x, ε) ∩ Δ(a, b) �= {x}

where B(x, ε) = {x′ ∈ X : d(x, x′) < ε}.
2 (Scope)

∀x ∈ X, if d(a, x) + d(x, b) ≤ k · d(a, b) then x ∈ Δ(a, b)

Note that Condition 2 implies that a, b ∈ Δ(a, b). We employ the term k-
generalisation instead of generalisation, because in this way we have a more
flexible definition. The value of k establishes the level of generality, i.e. for greater
values of k more instances are allowed inside the generalisation. The underlying
idea to the parameter k consists of introducing a least generalisation notion in
a similar way ILP and the lgg operator do. Note that a k-generalisation is also
a (k − 1)-generalisation and so on.

Both conditions are important when considering generalisations. The first
one (No isolation) restricts the definition in the following way; if there is an
example that belongs to the generalisation, for any ball centered in this example
if there are other examples in this ball, at least one must belong to the general-
isation. This condition rejects the generalisations that have isolated points. The
following example shows how this condition is useful to reject some unintuitive
generalisations.

Example 1. Let us consider a metric space formed by three elements a, b and c
where d(a, b) = 1, d(b, c) = 2, d(a, c) = 2. If we define a generalisation Δ(a, c) =
{a, c}, we can see that it trivially verifies Condition 2 (d(a, b)+d(b, c) > d(a, c)).
However this generalisation does not satisfy condition 1 (consider a ball of radius
2 centered in a, then B(a, 2) = {a, b} but b �∈ Δ(a, c)).

1 A metric space (X, d) is a set of points with an associated distance function (also
called a metric) d : X × X → � which satisfies the following conditions: ∀x, y ∈
�, d(x, y) ≥ 0, d(x, y) = 0 if and only if x = y (identity of indiscernibles), d(x, y) =
d(y, x) (symmetry), d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).



Distance Based Generalisation 91

The second condition (Scope) rejects the generalisations that are much too spe-
cific in the sense that do not consider all the points between two generalised
points. The following example illustrates this:

Example 2. Let us consider the metric space � where the metric is defined as
the absolute difference. If we define Δ(4, 5) formed by [3.8, 4.2]∪ [4.8, 5.2] we can
see that this is not a valid 1-generalisation since it is much too restricted. Δ(4, 5)
satisfies Condition 1, but not Condition 2 because d(4.5, 5) + d(4.5, 4) = d(4, 5),
and 4.5 is not inside the generalisation.

3 Suitable Generalisation for Several Data Types

In this section we study some generalisation operators for several well-known
data types: nominal, numerical, sets and lists. First, we define a distance function
d over each data type T such that the pair (T, d) is a metric space. Then, we
define a binary operator which generalises a pair of elements of T and we show
that this function verifies the conditions defined in Section 2. Obviously, the
scope condition establishes the dependency between a generalisation and the
underlying distance function. In fact, in some cases, it is possible to define a
function over a data type which is a generalisation operator if we use a certain
metric, but it does not verify the definition using a different metric. We illustrate
this point by means of an example over lists.

3.1 Nominal Data Types

A nominal or discrete data type T is a finite collection of values {a1, . . . , an}
such that ai �= aj for all i �= j. For instance, {red, yellow, blue} is a nominal data
type. Let d be the discrete metric defined as d(a, b) = 0 if a = b and d(a, b) = 1
if a �= b, where a, b ∈ T . Then, (T, d) is a metric space. The next proposition
shows that the set of two discrete values is an admissible generalisation for this
data type.

Proposition 1. Given T = {a1, . . . , an} a discrete data type and d the dis-
crete distance, then the operator Δ defined as Δ(ai, aj) = {ai, aj} is a 1-
generalisation.

Proof. We first prove the no isolation condition. Any ball centered in ai (equiv-
alently in aj) which verifies the premise of this condition contains, at least, aj

(equivalently ai), by the definition of d. But aj (equivalently ai) also belongs to
Δ(ai, aj) (by definition of Δ(ai, aj)). Therefore, aj ∈ B(ai, ε) ∩Δ(ai, aj), which
verifies condition 1.

Also, Δ(ai, aj) trivially satisfies condition 2 since there does not exist any
x ∈ T (different from ai and aj) which verifies d(ai, x) + d(x, aj) = d(ai, aj)
because of the definition of the distance.

The generalisation derived from this operator resembles the “explanation” com-
puted by decision tree learning algorithms such as ID3 or C4.5 [8] for nominal
splits.
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3.2 Numerical Data Types

The next data type we consider is the real number set �. The usual distance
function over � is defined as d(a, b) =| a− b |. In this case, the pair (�, d) is also
a metric space.

There are many ways of generalising a pair of real numbers, but not all
of them are sensible generalisations in the sense of Definition 1. The following
proposition shows that given a pair of real numbers a and b, a ≤ b, the interval
[a, b] is a good generalisation.

Proposition 2. Let � be the real number set with the usual metric and let
a, b ∈ � such that a ≤ b. Then Δ(a, b) = [a, b] is a 1-generalisation.

Proof. Any ball centered in any of the interval limits contains real numbers
which belong to the interval. Obviously, this is the worst case and the rest of
values in ]a, b[ also verifiy condition 1. Hence, Δ(a, b) verifies condition 1. On
the other hand, any x ∈ � that verifies d(a, x) + d(x, b) = d(a, b) (premise of
condition 2) also belongs to the interval [a, b], which proves that condition 2 is
satisfied.

Other possible generalisations also based on the interval concept are, for
instance, Δ′(a, b) = [a− | a − b |, b] or Δ′′(a, b) = [a − δ, b + δ], δ ≥ 0 . In this
last case, if δ = (k− 1) | a− b | /2, then it is a k-generalisation. Note that if c is
the upper bound of this interval, then d(a, c) + d(c, b) ≤ k · d(a, b). However, a
generalisation based on two disjoint balls centred in a and b respectively, is not
a proper one since there will always exist a point placed between a and b which
will not be covered by any of the two balls.

3.3 The Set Data Type

Let Σ = {a1, a2, . . .} be a set of items (not necessarily finite). Let us consider the
set of all finite sets over Σ, denoted by SΣ, and define the function d : SΣ×SΣ →
� as the cardinality of the symmetric set difference between two sets belonging
to SΣ . Then, the pair (SΣ , d) is a metric space. Now, given A, B ∈ SΣ we define
Δ(A, B) as,

Δ(A, B) = {C ∈ SΣ : A ∩ B ⊆ C}

Note that, as follows from the definition of Δ(A, B), if A and B are two disjoint
sets, then Δ(A, B) = SΣ .

Proposition 3. The above operator Δ defined over sets is a 1-generalisation.

Proof. According to the introduced metric, the minimum permitted distance
between two different sets is equal to 1. Hence, it is sufficient to prove that
condition 1 holds for balls that contain sets which are at the minimum distance.
In this case, for any V in Δ(A, B), it is possible to build a set W which keeps at
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distance 1 and belongs to Δ(A, B), by only inserting a new item into V . Then,
the first condition of the generalisation definition holds.

Let us glance at the second one. We prove it by contradiction. Suppose that
there exists a set C which verifies d(A, C)+d(C, B) = d(A, B), but C /∈ Δ(A, B).
Then, the following relations hold:

d(A, C) + d(C, B) = d(A, B)
⇓ (by the definition of d)

(| A | + | C | −2 | A ∩ C |) + (| B | + | C | −2 | B ∩ C |) =
| A | + | B | −2 | A ∩ B |
� (by simplification)

| C |=| A ∩ C | + | B ∩ C | − | A ∩B | (1)

On the other hand, if C verifies d(A, C) + d(C, B) = d(A, B) it is possible to
transform A into B going through C. Then, C contains at least some elements
that also belong to A and some elements that also belong to B. Hence,

| C |≥| A ∩ C | + | B ∩C | − | A ∩ B ∩C |

where | A∩B ∩C | is the number of elements in C belonging to both A and B.
By replacing this expression in (1), we obtain

| A ∩ C | + | B ∩ C | − | A ∩ B |≥| A ∩C | + | B ∩ C | − | A ∩ B ∩ C |
� (by simplification)

| A ∩ B |≤| A ∩ B ∩C | (2)

By hypothesis, C �⊆ Δ(A, B). Then A∩B is not included in C and | A∩B∩C |= 0.
But then, | A ∩ B |= 0 by (2) which implies that Δ(A, B) = SΣ . Therefore,
C ⊆ Δ(A, B), which contradicts the hypothesis.

To conclude this subsection, we sketch an example of a bad-generalisation
for sets. Just consider Δ(A, B) = {C ∈ SΣ : A ∪ B ⊆ C}. Setting A = {a, x}
and B = {b, x}, then the set D = {x} verifies d(A, B) = d(A, D) + d(D, B) but
it does not belong to Δ(A, B).

3.4 The List Data Type

The last data type we deal with is the list or sequence data type, i.e. words
constructed from symbols of a finite alphabet Σ = {a1, . . . , an}. Before defin-
ing a generalisation operator for this data type, we introduce some preliminary
concepts.

Definition 2. The alignment of two words s, t ∈ Σ∗ is the process of juxtaposing
them such that there exist matched symbols.

For instance, if s = abc and t = bca, there are two alignments of s and t.

(i) a b c (ii) a b c
b c a b c a
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Definition 3. Given two words s and t, the edit distance d between s and t is
defined as the minimum number of deletions or insertions required to transform
s into t.

For instance, in the above example, d(s, t) = 2. The edit distance is obtained
when the number of symbols matched in an alignment is maximal. If it is the
case, we say that the alignment is maximal. Note that, in general, it is possible
to have more than one maximal alignment. For instance, if s = cbc and t = abcbd
then we have two maximal alignments giving d(s, t) = 4:

(i) c b c (ii) c b c
a b c b d a b c b d

By Ms,t we denote the number of matched symbols in the maximal alignments
of s and t.

If there is an alignment of s and t, then it is possible to find a more general
expression which includes s and t as special cases. We call this expression pattern
of s and t. More formally,

Definition 4. Given s, t ∈ Σ∗, a pattern p of s and t is an expression con-
structed from an alignment of s and t by keeping the matched symbols and re-
placing the sequences of un-matched symbols by ∗.

For instance, following with the above example, there are two patterns, ∗bc∗ and
∗cb∗.

Definition 5. A pattern p covers a word w, if w can be obtained from p by
replacing any ocurrence of ∗ by a (possibly empty) sequence of alphabet symbols.
In this case, we say that w is an instance of p.

Note that, it follows from this definition that a pattern represents the set of its
instances.

Definition 6. Given the metric space (Σ∗, d), where d is the edit distance, and
x, y ∈ Σ∗, we define the operator Δ(x, y) as the set of words covered by the
patterns obtained when the edit distance between x and y is calculated.

For instance, in our example, Δ(cbc, abcbd) = {bc, abc, cbca, . . . , cb, cba, acb, . . .}
and can be represented by the set of patterns {∗bc∗, ∗cb∗}. In order to show
that this operator is a k-generalisation, the first question to rise is whether it
is necessary that Δ(x, y) contains instances of the patterns of x and y obtained
from all maximal alignments or if it is sufficient only to consider one of them.
We clarify this point with our example (see the left hand side of Figure 2). Given
s and t, the word w = cbd verifies d(s, w) + d(w, t) = d(s, t) and, however, it is
not an instance of the pattern ∗bc∗. But ∗cb∗ is also a pattern for s and t and
w is an instance of it. Hence, we need to take the patterns obtained from all the
maximal alignments into account.
As we have said at the begining of this section, it is possible to define an operator
which is not a generalisation w.r.t. a distance function, but indeed verifies the
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Fig. 2. (Left picture) All the maximal patterns must be considered in the generali-
sation.(Right picture) Edit distance with substitution does not work.

definition w.r.t. another distance metric. We show this fact with an example
using the edit distance with substitution (right hand side of Figure 2). Let w1 =
cbc and w2 = aaaab be two words. In this case, there is only one maximal
alignment giving the pattern ∗b∗, but w3 = aaa verifies d(w1, w3) + d(w3, w2) =
d(w1, w2) and, however, it is not an instance of this pattern.

Proposition 4. Let (Σ∗, d) be a metric space, and let x, y ∈ Σ∗. Then, the
operator Δ(x, y) in Definition 6 is a 1-generalisation.

Proof. The proof is quite similar to that of proposition 3. The minimum distance
between two words is 1. Then, if we extract any word, namely u, from Δ(x, y),
we can find a different expression, namely v, which is at a distance 1 from u and
belongs to Δ(x, y). For this purpose, it is enough to add or delete one symbol
from u which does not match with the explicit symbols in v. This proves that
condition 1 holds.

Now, we prove condition 2 by contradiction. Suppose that there exists a word
z such that d(x, z) + d(z, y) = d(x, y) and z �∈ Δ(x, y). By the definition of the
edit distance, given two words s and t, d(s, t) =| s | + | t | −2 ·Ms,t, where | w |
denotes the length of s. Hence

d(x, z) + d(z, y) = d(x, y) ⇔

| x | + | z | −2 ·Mx,z+ | z | + | y | −2 ·Mz,y =| x | + | y | −2 · Mx,y ⇔

| z |= Mx,z + Mz,y −Mx,y (3)

On the other hand, we know that

| z |≥ Mx,z + Mz,y −Agree<x,z>,<y,z>

where Agree<x,z>,<y,z> is the number of coincidental symbols in the alignment
of x with z, and y with z. By replacing this expression in (3), we obtain

Mx,y < Agree<x,z>,<y,z>

But if z �∈ Δ(x, y) then Agree<x,z>,<y,z> < Mx,y which is a contradiction. Thus,
we conclude that condition 2 holds.

With this we show that there are metric spaces which can be associated
generalisation patterns such that the team works in an appropiate way. We have
shown this for nominal, numeric, set and lists. The next case, and most usual in
ILP, is the term and the atom data type.
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4 The Lgg Operator in Metric Spaces of Atoms

One of the most popular generalisation operators in ILP is the least general
generalisation, lgg, introduced by Plotkin in [7]. In this section we study the
relationship between this operator and Definition 1, in the framework of a first-
order logic language. We will show that using a metric defined over this language
and based on the lgg, the Δ function and the lgg are connected so that we could
use the lgg as a pattern constructor over the first-order language. In order to do
this, we first establish a distance over the set of atoms and then we provide a Δ
definition which is also based on the lgg operator.

In what follows L denotes a first order language defined over the signature
〈F , Π,X〉 where F (respectively Π) is a family indexed on N (non negative
integers) being Fn(Πn) a set of n−adic function (predicate) symbols and X is
a (infinite) denumerable set of variable symbols. In case of no ambiguity, both
predicate and function symbols will be referred as symbols, and variable symbols
as variables. Also HX and BX denote the non-ground Herbrand Universe and
the non-ground Herbrand base respectively as is introduced in [3].

4.1 A Distance Based on Lgg

In [9] is presented a distance between non-ground atoms such that the set of
atoms in L along with this distance is a metric space. Basically, the mentioned
distance between two atoms is expressed as a pair of integer values (F, V ) reflect-
ing the differences of them w.r.t. their lgg. The distance defintion is based on
an auxiliary function size(a) = (F, V ) which reflects the structure of the atom
a. Roughly speaking, F is a function which counts the number of ocurrences of
predicate and function symbols occurring in a, and the function V returns the
sum of the squared frequency of appearance of each variable in a. More formally,

Definition 7. Given a1 and a2 be two atoms, then

d(a1, a2) = [size(a1) − size(lgg(a1, a2))] + [size(a2) − size(lgg(a1, a2))]

Example 3. Consider the atoms a1 = p(a, b) and a2 = p(b, b). The distance
d(a1, a2) is calculated as follows. First, we compute the lgg of both atoms, that
is, lgg(a1, a2) = p(X, b) and then, we measure each atom structure by means of
the function size: size(a1) = size(a2) = (3, 0) and size(lgg(a1, a2)) = (2, 12).
Finally, the distance between a1 and a2 is

d(a1, a2) = [(3, 0)− (2, 1)] + [(3, 0)− (2, 1)] = (1,−1) + (1,−1) = (2,−2)

Note that with this definition of distance the proximity relation (how near two
atoms are) is not as intuitive as in a conventional metric space where its associ-
ated distance returns only a positive real number (and not a pair of values). For
this reason, the authors introduce a total order relation over the pair of values
which allows to specify a proximity notion. Given two ordered pairs A = (F1, V1)
and B = (F2, V2), A < B iff F1 < F2 or F1 = F2 and V1 < V2 (lexicographic
order). Let us illustrate how this order relation can be used to determine the
proximity among atoms.
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Example 4. Let a1 = p(a, b), a2 = p(a, a) and a3 = p(b, b) be three atoms. Since
d(a1, a3) = (2,−2) and d(a2, a3) = (4,−8) we can conclude according to the
order relation that a3 is closer to a1 than to a2.

4.2 Defining Δ

Now we are ready to define a generalisation Δ over the metric space of atoms.

Definition 8. Given two atoms from BX a1 and a2, the Δ function is defined
as follows:

Δ(a1, a2) = {a ∈ BX : ∃σ, a = lgg(a1, a2)σ}

where σ is a substitution and eσ denotes the instance of an expression e by σ.

Note that with this defintion, lgg(a1, a2) is an atom that also belongs to Δ(a1,
a2). Additionally, it is the most general atom in Δ(a1, a2). For these reasons
we use the lgg as the canonical representant of the set Δ, or in other words,
lgg(a1, a2) would be used as the pattern representing Δ(a1, a2).

In the following 4 pages, we will prove that this Δ function verifies the con-
ditions of the Definition 1.

In order to prove the Scope condition a formal problem arises. Note that
this one is formulated thinking of standard metric functions, which return a
positive real value. In principle, the concept of ball, B(x, ε), would not make
sense in the current metric space. But we can address this proof thanks to the
following observation. This condition restricted to discrete spaces is equivalent
to consider that given any a3 belonging to Δ(a1, a2) then, at least, one of the
nearest atoms to a3 must belong to Δ(a1, a2). This alternative definition can
already be managed for the current metric space using the established order
relation over the set of pairs (F, V ).

Before tackling the proof, some preliminary definitions and propositions are
introduced. We consider the usual representation of a term as a labelled tree.
Then, a position p in a term t is represented by a sequence of natural numbers.
p · q denotes the concatenation of positions p and q.

Definition 9. Let a be an atom, and let t1 and t2 be two (sub)-terms in a at
positions p = p1 ·p2 · . . . ·pn and q = q1 ·q2 · . . . ·qm, respectively. We will say that
p is deeper than q if n > m. Additionally, by saying that a (sub)-term t is placed
at p · ∗ in a, we mean that the exact position of t has the sequence p as a prefix.

Example 5. Given the atom a = p(b, f(g(c))), the position of b in a is 1 and the
position of g(c) in a is 2 · 1. Thus, g(c) is placed at a deeper position in a than
b is. We can also say that c is placed at 2 · ∗ since its position is 2 · 1 · 1.

Definition 10. Let a be an atom, the skeleton of a (denoted by sk(a)) is just
the term obtained from a by replacing any variable by a dot.

Example 6. Given the atom a = p(a, f(X), g(h(X))) then, sk(a) = p(a, f(·),
g(h(·))).
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Note that the dot symbol simply informs about an unknown subterm at that po-
sition, just like an anonymous variable. Thus, the skeleton would be interpreted
as an atom with all its variables different from each other.

Definition 11. Let sk1 and sk2 two skeletons, we will say that sk1 and sk2

overlap, if there exists a subset of symbols in sk1 such that each symbol of this
set occurs at same position in sk2. The common skeleton between sk1 and sk2

will de denoted by sk1 ∩ sk2.

Example 7. Given sk1 = p(a, ·, g(b)) and sk2 = p(b, ·, g(b)) then, sk1 and sk2

overlap and sk1 ∩ sk2 = p(·, ·, g(b)).

Definition 12. Let a1 and a2 two atoms. Then, we will say that the sk(a2)
is a sub-skeleton of sk(a1) (denoted by sk(a2) ⊂ sk(a1)), if for each symbol in
sk(a2), the same symbol occurs at the same position in sk(a1).

Example 8. Given the atoms a1 = p(a, f(X), g(h(X))) and a2 = p(a, X, g(Y ))
then, sk(a2) = p(a, ·, g(·)) is a sub-skeleton of sk(a1) = p(a, f(·), g(h(·))).

Definition 13. Let sk1 and sk2 be two skeletons, we will say that both are equal
(sk1 = sk2) if sk1 ⊂ sk2 and sk2 ⊂ sk1.

Given three atoms a1, a2 and a3 such that d(a1, a2) = d(a1, a3) + d(a3, a2),
the following proposition establishes that a3 overlaps a1 and a2 at the same
positions as a1 and a2 overlap, and a3 overlaps at the rest of positions either
with a1 or a2.

Proposition 5. Let a1, a2 and a3 be three atoms. If the equation d(a1, a2) =
d(a1, a3)+d(a3, a2) is verified, then the sk(lgg(a1, a2)) ⊂ sk(a3) and those (sub)-
terms in a3 which are not covered by the sk(lgg(a1, a2)) will be the same as those
(sub)-terms placed at the same position in a1 or in a2.

Proof. Let d(a1, a2) = (F1, V1), d(a2, a3) = (F2, V2) and d(a1, a3) = (F3, V3) be
the distances among a1, a2 and a3 (for convenience the function F (·) will be
applied over skeletons as well). Then, using the distance definition, F1 can be
written as F1 = F (a1)+F (a2)−2F (lgg(a1, a2)), and the same thing for the rest
of Fi values.

Now, by the well-known equality between tuples, we have that F1 = F2 + F3

and operating in both sides of the equation we obtain,

F (a3)− F (lgg(a1, a3)) − F (lgg(a2, a3)) = −F (lgg(a1, a2))

Note that the atom lgg(ai, aj) contains less or equal number of symbols than ai

and aj . So, if the skeletons of lgg(a1, a3) (for simplicity, denoted by sk1,3) and
lgg(a2, a3) (denoted by sk2,3) did not have some parts in common then, the left
hand side of the identity above could not be negative. Thus, both skeletons must
overlap. This overlapping will be expressed by sk1,3∩sk2,3. Clearly, the symbols
in a3 belonging to sk1,3∩sk2,3 are counted twice. Note that sk1,3∩sk2,3 is equal
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to sk(lgg(lgg(a1, a3), lgg(a2, a3))) and that it is a sub-skeleton of lgg(a1, a2).
Hence, we can write the equation above as,

F (a3)− F (sk∗
1,3) − F (sk∗

2,3) − 2F (sk1,3 ∩ sk2,3) =

= −F (lgg(a1, a2))

where sk∗
1,3 (equivalently sk∗

2,3) stands for that part of the skeleton of lgg(a1, a3)
(equivalently lgg(a2, a3)) which does not take part of sk1,3 ∩ sk2,3. Setting A =
F (a3)−F (sk∗

1,3)−F (sk∗
2,3)−F (sk1,3 ∩ sk2,3), then A ≥ 0 since sk∗ expressions

and sk1,3 ∩ sk2,3 do not overlap and F (sk1,3 ∩ sk2,3) ≤ F (lgg(a1, a2)). The only
way A−F (sk1,3∩sk2,3) = −F (lgg(a1, a2)) holds, is that sk(a3) can be perfectly
ensambled from the skeletons of sk∗

1,3, sk∗
2,3 and sk1,3 ∩ sk2,3 (this fact implies

that A = 0) and finally, that F (sk1,3 ∩ sk2,3) = F (lgg(a1, a2)), from which it
can be deduced that sk1,3 ∩ sk2,3 = sk(lgg(a1, a2)) and that those subterms in
a3 not covered by the sk(lgg(a1, a2)) coincide with those subterms placed at the
same position in a1 or a2. Summing up, a3 is built from the (sub)-terms in a1

or in a2.

Before presenting the next proposition, a preliminary concept must be intro-
duced.

Definition 14. Let a1, a2 and a3 be three atoms such that d(a1, a2) = d(a1, a3)
+ d(a3, a2). Then, we will say that a variable occurring in lgg(a1, a2) at position
p is reflected in lgg(a1, a3) or in lgg(a2, a3), if there exists a variable (modulo
renaming) at position p · ∗ in lgg(a1, a3) or in lgg(a2, a3).

Example 9. In Figure 3, the variable X in lgg(a1, a2) is reflected in lgg(a2, a3),
whereas the variable Y in lgg(a1, a2) is reflected in lgg(a1, a3). Note that the
reflection is not a one-to-one association. A variable in lgg(a1, a2) could be re-
flected in lgg(a1, a3) or lgg(a2, a3) several times. For example imagine that a
variable X occurs in lgg(a1, a2) at position 2 · 1, and two variables Y and Z
are placed at position 2 · 1 · 1 and 2 · 1 · 2 respectively in lgg(a1, a3), then X is
reflected twice in lgg(a1, a3).

The next proposition shows the relationship between the variables in the
lgg’s of three atoms a1, a2 and a3 which satisfy d(a1, a2) = d(a1, a3) + d(a3, a2).

a2=P(f(a),b)

lgg(a1,a2)=P(f(X),Y)

a1=P(f(b),a) a1=P(f(b),a) a3=P(f(b),b)

lgg(a1,a3)=P(f(b),X)

a2=P(f(a),b) a3=P(f(b),b)

lgg(a2,a3)=P(f(X),b)

d(a1,a2)=(4,−4) d(a1,a3)=(2,−2) d(a2,a3)=(2,−2)

Fig. 3. An illustrative example
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Proposition 6. Let a1, a2 and a3 be three atoms such that d(a1, a2) =
d(a1, a3) + d(a3, a2). Then, each variable appearing in lgg(a1, a2) will be re-
flected either in lgg(a1, a3) or in lgg(a2, a3) only once. If a variable in lgg(a1, a2)
has multiple occurrences and one of these occurrences is reflected in lgg(a1, a3)
(equivalently lgg(a2, a3)) then, the rest of occurrences of the same variable will be
also reflected in lgg(a1, a3) (equivalently lgg(a2, a3)). Hence, lgg(a1, a3) (equiv-
alently lgg(a2, a3)) is a more specific atom than lgg(a1, a2).

Proof. The first part of the proposition is a derived consequence from Proposi-
tion 5. Recall that if sk(lgg(a1, a2) ⊂ sk(a3) then, for each variable in position
p · ∗ in lgg(a1, a3) or in lgg(a2, a3) there exists a variable (modulo renaming)
which occur in lgg(a1, a2) at position p · ∗. Additionally, those terms in a3 which
are not covered by the sk(lgg(a1, a2)) coincide with those terms placed at the
same position either in a1 or in a2. Thus, all the variables in lgg(a1, a2) will be
reflected either in lgg(a1, a3) or in lgg(a2, a3) only once. An immediate effect
of this part of the proposition is that the number of variables in lgg(a1, a2) is
equal to the number of variables in lgg(a1, a3) plus the number of variables in
lgg(a1, a2).

Now let us prove the second part of the proposition (we use the function
V (a, X) employed in [9] which values the occurrences of variable X in the atom
a.). Imagine that a variable X occurs n times in lgg(a1, a2) then, V (lgg(a1, a2),
X) = n2. Now, let us suppose that n1 occurrences of X are reflected in lgg(a1, a3)
and the rest of them, n2, in lgg(a2, a3) then, we would have V (lgg(a1, a3), X) +
V (lgg(a2, a3), X) = n2

1 + n2
2. As n = n1 + n2 trivially we have n2 < n2

1 + n2
2. So

the only possibility for V (lgg(a1, a2), X) = V (lgg(a1, a3), X)+V (lgg(a2, a3), X)
to be hold is that the occurrences of any variable, namely Y , in lgg(a1, a3) or in
lgg(a2, a3) increase. But it cannot happen because a3 is built from (sub)-terms
in a1 and in a2. Therefore, all the occurrences of one variable X in lgg(a1, a2)
are reflected either in lgg(a1, a3) or in lgg(a2, a3). This fact implies that the
lgg(a1, a3) and the lgg(a2, a3) are more specific atoms than lgg(a1, a2).

Now, we are ready to proof the feasibility of Δ for the current metric space.

Theorem 1. The Δ function defined in Definition 8 is a 1-generalisation.

Proof. – (No Isolation). Given an atom a, its nearest atoms are obtained by
changing one of its constant (sub)-term by a variable. Calling a′ to this new
atom, it is trivial to see that the lgg(a, a′) = a′ and, as we know, the number
of symbols in a′ is one less than the number of symbols in a whereas the
number of variable occurrences in a′ is one more than in a. Thus, the distance
between a and a′ is

d(a, a′) = [size(a)− size(a′)] + [size(a′) − size(a′)]
= (1,−1) + (0, 0) = (1,−1)

Therefore, given an atom a all its nearest atoms are (1,−1) away. As the
symbols are counted, the distance is not affected by the relative position of
those different sub-terms between two atoms. Hence, it does not matter if
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the substituted (sub)-term constant symbol in a is placed at a higher or at
a deeper position, the distance between a and a′ will be the same. Thus,
given two atoms a1 and a2, their generalisation Δ(a1, a2) and a new atom
a3 belonging to Δ(a1, a2), from the Definition 8 we know that there exists a
substitution σ such that a3 = lgg(a1, a2)σ. If we change any of the constant
symbols appearing in σ by a variable (denoting this new substitution by σ′),
we will obtain a new atom a′

3 = lgg(a1, a2)σ′ such that d(a3, a
′
3) = (1,−1).

Obviously, a′
3 belongs to Δ(a1, a2) and a′

3 is one of the nearest possible atoms
to a3.

– (Scope). The aim of this proof will consist of showing that if this identity
d(a1, a2) = d(a1, a3) + d(a3, a2) is preserved, where ai are atoms, then a3

is an instance of the lgg(a1, a2) and consequently, a3 belongs to Δ(a1, a2).
By Proposition 6 it is followed that there exists a substitution σ1 such that
lgg(a1, a3) = lgg(a1, a2)σ1. Then, by lgg definition, we know that there
also exists a substitution σ2 such that a3 = lgg(a1, a3)σ2. Hence, a3 =
lgg(a1, a2)σ1σ2 and a3 belongs to Δ(a1, a2).

After the previous results on a generalisation operator (lgg), a pattern language
(first-order logic) and a metric ([9]), it may see a little bit arduous to get positive
results for another combination of generalisation, pattern language and metric.
Nonetheless, this is important, because when we prove the properties we are
more confident that the contribution can work better for extracting meaningful
patterns from generalisation methods.

5 Conclusions

In this paper we have analysed the connection of three different, but highly
related, notions: distance, pattern and generalisation. Although these notions
are extremely related, there have not been many theoretical works that have
studied the relationships among these three topics at the same time. This work
intends to be a first step for this purpose. We have introduced a generalisation
definition to identify the representation patterns which can behave as proper
generalisations in the context of an underlying metric space. We have shown that
given a metric, not every general pattern is a good generalisation. On the other
hand, we have shown that we can have suitable generalisation patterns for the
most usual metrics defined for well-known data types. One of the combinations
we have analysed is lgg as a generalisation operator, first-order logic atoms
as patterns and data language, and the [9] metric. We have shown that this
metric could be used for many distance-based methods (as the authors claimed)
and that the classification can be accompanied by a proper and well-behaving
pattern for this metric: in this case the lgg. Other ILP generalisation operators
and metrics could be studied as well, but maybe this combination is “natural”
in many ways, since lgg is at the core of first-order logic.

As an immediate future work, we are studying the extension of the notion to
generalisation operators applied to pairs of a set and an element, thus allowing
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the generalisation to be applied incrementally, and the extension of the definition
to the Cartesian product of different types. All this could constitute an integrated
framework that can be applied to many distance-based methods. For instance,
in k-nearest neighbours, we could use an incremental generalisation operator to
generate patterns which would be consistent with the clustering or classification
performed by the k-nearest neighbour based on the underlying distance, starting
from the closest elements to the farthest. Other case-based reasoning techniques
based on distances can benefit from this as well. In a similar way, we could be
able to give explanations to other methods that use distances. For instance, in a
previous work, we have defined a distance-based decision tree, where the splits
are determined by metric conditions, as the centre-splitting technique does. The
generalisation operators introduced in section 3 can be used to give a compre-
hensible representation to the partitions, and hence to the overall decision tree,
even if the problem contains non-standard data types such as lists or sets. In
some way, this is a general approach to obtaining comprehensible patterns when
distances are computed from structured data types. For instance, in [4], they
compute kernels, and hence distances, for structured data types.

Finally, we would also like to study the “nested composability” of the gen-
eralisation conditions, i.e., lists of lists, or sets of lists of trees, that could deal
with deeply complex structures. Other topics of research would be to analyse
the associativity of the incremental generalisation operator (which we consider
a minor issue for the applications considered), or the definition of a restricted
generalisation if we use negative cases into account.

Acknowledgements. We gratefully acknowledge the referees for their many
useful and helpful comments.
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Abstract. Traditional Machine Learning approaches are based on sin-
gle inference mechanisms. A step forward concerned the integration of
multiple inference strategies within a first-order logic learning frame-
work, taking advantage of the benefits that each approach can bring.
Specifically, abduction is exploited to complete the incoming informa-
tion in order to handle cases of missing knowledge, and abstraction is
exploited to eliminate superfluous details that can affect the performance
of a learning system. However, these methods require some background
information to exploit the specific inference strategy, that must be pro-
vided by a domain expert.

This work proposes algorithms to automatically discover such an in-
formation in order to make the learning task completely autonomous.
The proposed methods have been tested on the system INTHELEX,
and their effectiveness has been proven by experiments in a real-world
domain.

1 Introduction

In real-life domains, learning systems often have to deal with various kinds of
imperfections in data: presence of random errors in both training examples and
background knowledge (noise); too sparse training examples from which it is
difficult to reliably detect correlations (incompleteness); inappropriateness of the
description language which does not contain/facilitate an exact representation
of the target concept (inexact data). Another kind of imperfection, more difficult
to be dealt with, is represented by missing values in the training examples. As
a solution, various noise-handling mechanisms have been exploited.

In dealing with such situations, most traditional Machine Learning appro-
aches that exploit simple or constrained knowledge representations for the sake
of efficiency, and are based on single (often simple or simplified) inference mech-
anisms, have reached their limits [16]. In order to investigate how to broaden
the applicability of machine learning schemes, it is necessary to make different
inference strategies work together, taking advantage of the benefits that each
approach can bring. Many studies presented in the literature aimed at enforc-
ing the integration of multiple inference strategies within a logic programming
framework for first-order logic learning.
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The general schema of the inductive concept-learning paradigm (BK ∪ T |=
O) involves four variables, namely: the language L, for which in this work the
single representation trick [1] will be assumed, the background knowledge BK
and the theory T that contains concept definitions explaining the occurrence of
some observations O. Observations O stand for the extensional representation
of concepts, and the aim is building an intensional description T , expressed in
the language L, that explains such concepts, supposed that BK is insufficient
to give such an explanation. Most approaches focus on inductive mechanisms to
fine-tune T in order to achieve the learning goal.

Two problems of the traditional approach to concept-learning can be singled
out: the partial relevance of the available evidence O and the insolvability of
a learning problem when the language L is not enough powerful to express a
proper predicate definition in T . Abduction and abstraction can be exploited,
respectively, to overcome such limitations: the former could bridge the gap be-
tween the observations and the definitions in the theory. The latter could shift to
a higher language bias when the current one does not allow to capture the target
predicate definition. From an operational viewpoint, abduction should somehow
complete the observations with unknown facts that are likely to take place in the
given situation and that can help in solving the learning problem at hand; it can
be carried out by an abductive proof procedure, that shares the falsity-preserving
nature with the inductive refinement operators [14]. As regards abstraction, it
should deal with cases when learning can be more effective if it can take place
at multiple (different) levels of complexity, which can be compared to the lan-
guage bias shift considered in [2]; a useful perspective for the integration of this
inference operator in an inductive learning framework was given in [23].

According to such a perspective, the incremental ILP system INTHELEX
was extended in previous works to exploit abduction and abstraction to sup-
port the learning process [5]. However, it assumes that the information needed
to apply the additional inference strategies is provided by the user. The objec-
tive of this work is investigating solutions for the automatic inference of such
information from the same observations that are input to the inductive process,
assuming that they are sufficiently significant. Abstraction should simplify the
description language by grouping or eliminating correspondences that hold often
or seldom, respectively, among the given observations. Abduction should con-
sider as integrity constraints combinations of properties and relations that do
not hold in the available observations. In the former case, the method focuses on
the discovery of sets of common features in the observations; in the latter, sets
of mutually exclusive features have to be singled out.

2 The General Framework

2.1 Handling Incomplete Information: Abduction

The problem of abduction, defined as inference to the best explanation according
to a given domain theory, can be formalized as follows [4]: Given a theory T 1,
1 Here, the theory T is assumed to include also the background knowledge.
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some observations O and some constraints I, Find an explanation H such that:
T∪H is consistent and satisfies I, T∪H |= O. Candidate explanations H should
be described in terms of domain-specific predicates, referred to as abducibles,
that are not (completely) defined in T , but contribute to the definition of other
predicates. They carry all the incompleteness of theory T : if it was possible to
complete these predicates then the theory would be correctly described. The
integrity constraints I should provide indirect information about them [10].

Since abduction is able to capture default reasoning (a form of reasoning
which deals with incomplete information [10]), it can be exploited to face the
problem of relevance and incompleteness. Indeed, when partial relevance is as-
sumed, it could be the case that not only the set of all observations is partially
known, but also any single observation may turn out to be incomplete. The
usual Abductive Logic Programming framework [14, 6] can be adapted to con-
cept learning theory revision problem as follows:

Definition 1. An abductive logic theory is a triple AT = (T,A, I) where T is
a (hierarchical) normal logic program; A is the set of abducible predicates; I is
a set of integrity constraints represented as program clauses.

In the original ALP framework, the theories are full normal logic programs in-
terpreted according to the Stable Model semantics [11]. We restrict to hierar-
chical theories in order to exploit the Least Herbrand Models semantics, where
if T |= P1, . . . , T |= Pn then it also holds that T |= P1 ∧ · · · ∧ Pn, which is
fundamental in an incremental setting, where examples are provided over time,
to check correctness of the refined hypotheses with respect to older examples by
testing them separately. This cannot be done when stable models semantics is
adopted (cf. [6] for an example). Additionally, Least Herbrand Models semantics
allows to cope with negation by means of the Negation as Failure rule, without
transforming the theory and goals into their positive version, as required by the
original framework. The integrity constraints I can be represented in principle
as any first order formulæ. Some restrictions are to be applied: in the integrated
framework described in [3], they are represented as range-restricted Horn clauses.

An abductive proof procedure can find explanations that make hypotheses
(abductive assumptions) on the state of the world, possibly involving new ab-
ducible concepts, and is generally goal-driven by the observations that it tries
to explain. The abductive proof procedure proposed in [12] works just like a
standard SLD derivation [15], only when a literal cannot be proved the proce-
dure does not fail immediately but first checks if it can be (or has already been)
abductively hypothesized. In such a case, a consistency-check subroutine must
ensure that no integrity constraints I is violated, by inductively or abductively
deriving the falsity of at least one literal in each of them. Thus, the two pro-
cedures may call each other both when a new abductive assumption requires
further consistency checks against the constraints and vice-versa.

2.2 Shifting Representation Language: Abstraction

Abstraction is defined as a mapping between representations that are related
to the same reference set but contain less detail (typically, only the information
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that is relevant to the achievement of the goal is maintained). It is useful in
inductive learning when the current language bias proves not to be expressive
enough for representing concept descriptions that can explain the examples.

Definition 2. Given two clausal theories T (ground theory) and T ′ (abstract
theory) built upon different languages L and L′ (and derivation rules), an ab-
straction is a triple (T, T ′, f), where f is a computable total mapping between
clauses in L and those in L′.

An Abstraction Theory (an operational representation of f) is used to perform
such a shift of language bias [22, 2] to a higher level representation:

Definition 3. An abstraction theory from L to L′ is a consistent set of clauses
c : −d1, . . . , dm where c is a literal built on predicates in L′, and dj , j = 1, . . . , m
are literals built on predicates of L.

i.e., it is a collection of intermediate concepts represented as a disjunction of al-
ternative definitions. Inverse resolution operators [17] (inter-construction, intra-
construction and absorption) can be a valuable mechanism to build and exploit
abstraction theories, as introduced in [9]. This work is interested in the case of
Datalog programs, as in [19], where clauses are flattened, hence function-free.

Definition 4 (absorption). Let C and D be two Datalog clauses. If ∃θ unifier
such that S = body(D)θ ⊂ body(C), then applying the absorption operator yields
the new clause C′ such that head(C′) = head(C) and body(C′) = (body(C) \
S) ∪ {head(D)θ}.

i.e., if all conditions in D are verified in the body of C, the corresponding literals
are eliminated and replaced by head(D).

According to the framework proposed in [23], abstraction takes place by
means of a set of operators, that generally includes operators for grouping indis-
tinguishable objects into equivalence classes; grouping ground objects to form
a compound object (that replaces them in the abstract world); ignoring terms
(that disappear in the abstract world); merging values that are considered indis-
tinguishable; reducing the arity of a function or relation (even up to elimination
of all arguments). Modifications are performed by mappings.

2.3 Learning Background Knowledge for Multi-inference Strategies

As already pointed out, the exploitation of the two strategies reported above
and their integration in an inductive concept learning framework is based on the
assumption that the knowledge needed to use them is provided by an expert
of the application domain. Here we propose an approach to automatically learn
such knowledge to be exploited by the abduction/abstraction operators. It is
worth recalling that the feasibility of reaching the target solution requires that
the number of values for the domains to be identified and the amount of available
knowledge about observations to be strictly proportional. Indeed, the more the
values, the more the possible interrelations that can take place between them. If
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the available observations are not sufficiently significant, i.e. too many existing
interrelations are not recognizable in them, then knowledge about the actual
biases in the given domain would be too loose for the algorithm to properly infer
significant and correct information.

3 Learning Abduction Theories

The exploitation of the abductive proof procedure presented in Section 2.1 re-
quires the specification of an abductive theory for the specific application do-
main. Usually, it is provided by a domain expert; in the following we propose a
methodology for automatically inferring it starting from the available observa-
tions, in order to make the learning system completely autonomous.

3.1 Abducibles

In setting up an abductive logic programming task, the logic program is typically
to be learnt, while abducibles and integrity constraints have to be provided
by the domain expert. Thus, a first problem is deciding on which properties
and/or relations abduction can be carried out, i.e. listing the abducibles. Indeed,
abductive reasoning needs to know them in order to assess on which concepts
abductions (i.e., guesses about unknown facts) can be made. We assume that all
predicates that make up the description language, and have no definition in the
theory (in order to fulfil the requirements for abducibles [4]), are considered as
abducibles since by hypothesis some of their instances could be missing in the
available dataset. Indeed, in the absence of further information, any fact that
can help in solving the problem at hand is useful, and the automatic system
should be allowed to hypothesize it, in order to provide the abductive reasoner
with all the freedom it needs for hypothesizing information.

3.2 Integrity Constraints

The other issue, far more complex, concerns the definition of the integrity con-
straints. It is, at the same time, a fundamental and difficult task, whose quality
can determine the very feasibility of the learning process. Hence, the motiva-
tion for automatically inferring such constraints, this way overcoming possi-
ble problems related to omissions and/or wrong formalization of the human
expert.

Learning denials (the form in which integrity constraints are coded in an ab-
ductive theory) cannot be simply cast as a supervised learning task, since it aims
at inducing rules whose head is empty. Rather, it can be seen as a specific case
of unsupervised learning aimed at finding regularities (specifically, conditions
that are never verified) in a first-order logic database. Thus, the data mining
approaches are better suited to carry out this task. Some systems are present
in the literature that can learn denials. One of them is Claudien [18], that ac-
tually implements a more general algorithm for finding regularities that occur
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in a set of unlabelled observations represented as facts. It requires a template of
the clauses to be induced, and can limit the corresponding search space using
heuristics and resource bounds. By properly setting its parameters, it can be
applied for learning classification rules, association rules, (non necessarily def-
inite) clauses and also denials. Such a system inspired a number of successive
works, among which the development of the systems Primus and its successor
Tertius [8]. They are based on the generation of possible (H, B) couples, where
H and B are sets of literals in the given description language to be interpreted,
possibly negated, as candidate head and body, respectively, of a clause to be
generated. The frequency with which each candidate rule is (or is not) verified
in the dataset is computed, and statistical approaches are exploited to decide
if such frequencies are significant, in which case a corresponding rule is gen-
erated. Background knowledge (i.e., derived predicates such as ancestor in a
family environment) can be used, but increasing the number of literals in H and
B causes high computational costs, thus sampling and non-redundant operators
are exploited. Another widely known learning system that can induce integrity
constraints is Aleph [21], that works in a similar way as Claudien. All of these
systems can actually learn denials, but this is just a specific setting or a side-
effect of a wider range of possibilities that the implemented algorithms provide.
Thus, the aim of this paper is devising simpler procedures, purposely devoted
to the generation of integrity constraints for an abductive theory, that being
limited to this specific task can carry out it in a more focused and effective way.

The starting point in doing this is the fact that integrity constraints rep-
resent situations that cannot occur in the described world. Thus, the available
observations cannot actively help in defining them. Rather, the aim is identify-
ing combinations of descriptors and of the related arguments that cannot hold.
In doing so, one possible strategy is generating a number of such combinations,
according to a given strategy, and then exploiting the available observations pas-
sively to check if the generated combination occur in at least one case or not.
In the former case, it cannot be a constraint, according to the assumption that
observations are correct and report only true information. In the latter case, this
can be taken as a suggestion, but not of course as a guarantee (since its absence
could be due to just the fact that by chance that situation did not ever occur in
the specific observations at hand), that the combination does not occur because
it in fact makes no sense in the considered world2. This, of course, raises the
problem of having a set of observations that is significant not only numerically,
but also in the sense that they depict a significant amount of different cases. Nev-
ertheless, such a significance should be assumed, because otherwise the learning
task itself, to be carried out on such observations, would hardly make sense.

Now, the point is how to proceed in generating the literals (and variables)
combinations to be tested. Indeed, it is clear that generating and testing all pos-
sible combinations becomes soon impossible even for relatively small datasets.
Bounding the cardinality of the combinations to be generated to a given l, al-

2 In any case, this makes useless counting the frequencies as in Tertius, since every
combination that is verified is not a constraint, no matter how many times it happens.
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though useful, is not sufficient to avoid the combinatorial explosion. Thus, it is
necessary to identify specific classes of constraints that can be considered mean-
ingful in general (i.e., without reference to specific datasets or environments)
and thus are worth checking. A first important class is that of object properties,
represented by unary predicates. Indeed, it is undoubtedly interesting to know
which combinations of attributes are (im-)possible for a given object, in order
for the abductive proof procedure to avoid them (e.g., it generally holds that a
line is either tall or wide, but cannot be both at the same time). In this case, the
problem can be significantly simplified since the presence of just one variable
in the predicates allows to focus on just the predicates combinations, exclud-
ing the generation of duplicate literals and the presence of unrelated variables.
The procedure is detailed in Algorithm 1.. NotConstraints and Constraints are
two (initially empty) lists, containing the currently identified non-constraints
and constraints, respectively. The presence of each potential constraint in the
observations is checked: in case of success, it is added to the list of constraints,
provided that the not trivial function succeeds. A constraint is considered trivial
if it is a superset of some other (shorter) constraint that is already present in
the Constraints list, so the not trivial function avoids generating (and learning)
redundant constraints, just like in related work. In the first step, all possible
n-tuples (with 2 ≤ n ≤ N for a fixed N) of unary predicates, all applied to
the same variable, are generated and checked for occurrence in the available ob-
servations. The generation proceeds from lower to higher values of n. First, all
pairs of unary predicates are generated and checked for occurrence: those that
are not satisfied by the observations are considered constraints and added to
the Constraints list; conversely, those that happen at least once are added to
the NotConstraints list. Then, all non-constraints of cardinality 2 are extracted
from NotConstraints and extended with one more unary predicate, checked for
occurrence and added to NotConstraints or Constraints accordingly. Then, all
newly found non-constraints of cardinality 3 are extended and checked, and so
on until the fixed N is reached.

However, although very useful, constraints on properties are not sufficient.
It is often important, for the purpose of learning a significant abduction theory,
to consider also constraints built on n-ary predicates. Without loss of gener-
ality, in this work we restrict to binary predicates, and propose a set of typi-
cal relationships among the arguments that appear in pairs of such predicates
that are deemed as significant to be exploited as constraints. Specifically, given
two predicate variables P and Q (not necessarily distinct) ranging on binary
predicates of the representation language L, and three variables X , Y , Z, the
rules schemas [13] (denials) that we propose to check are ← P (X, X). (reflex-
ivity), ← P (X, Y ), Q(Y, X). (symmetry), ← P (X, Y ), Q(Y, Z). (transitivity),
← P (X, Y ), Q(Z, Y ). (convergence), and ← P (X, Y ), Q(X, Z). (divergence).

In the next step, all binary predicates are considered, and checked for occur-
rence of the reflexive, symmetric, transitive, converging and diverging relation-
ships. Again, when a relationship has no counterpart in the available observa-
tions, it is added to the Constraints, otherwise it is added to the NotConstraints.
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Algorithm 1. Induction of Integrity Constraints made up of unary predicates
Create Constraints(N ; E ; UnaryPreds; NotConstraints; Constraints);
{ N : Maximal cardinality of constraints to generate; E : Set of observations;
UnaryPreds: Set of Unary Predicates; NotConstraints: Set of non-Constraints;
Constraints: Set of Integrity Constraints }
NotConstraints := ∅; Constraints := ∅
for all a, b ∈ UnaryPreds, a �= b do

if E � {a(X), b(X)} then
NotConstraints := NotConstraints ∪ {{a(X), b(X)}}

else
Constraints := Constraints ∪ {{a(X), b(X)}}

for n := 3..N do
for all NC ∈ NotConstraints, |NC| = n − 1 do

for all a(X) ∈ UnaryPreds do
if not trivial(Constraints,{a(X)} ∪ NC) then

if E � {{a(X)} ∪ NC} then
NotConstraints := NotConstraints ∪ {{a(X)} ∪ NC}

else
Constraints := Constraints ∪ {{a(X)} ∪ NC}

Lastly, all possible combinations of non-constraints on binary predicates re-
lationships and on unary predicates (applied to any of the variables appearing
in the former), whose cardinality does not exceed the fixed N , are checked for
occurrence and added to the Constraints, if it is the case, according to Algorithm
2.. It starts the process taking as input the list of non-constraints, both unary
and binary, built so far. UnaryNotConstrs and BinaryNotConstrs are the sets
of non-constraints found in the previous steps. Since all constraints on unary
predicates have at least cardinality 2, a preliminary step in which all possible
combinations of constraints on binary predicates with a single unary predicate
must be separately checked. Note that, in this step, no candidate constraint can
be trivial, since its binary component is not a constraint by itelf and its unary
component is just a singleton. Conversely, in the loop that combinates unary and
binary constraints, the only way a constraint can be trivial is being a superset
of a constraint obtained in the previous loop, since none of its components is a
constraint by itself.

Example 1. Consider the description language made up of the predicates:
{ block/1, line/1, low/1, medium/1, high/1, narrow/1, wide/1, part of/2,
on top/2, to right/2 }. Let the available observations be:
{ part of(a,b), part of(a,c), part of(a,d), part of(a,e), part of(a,f), line(b),
medium(b), narrow(b), block(c), high(c), wide(c), line(d), low(d), wide(d),
block(e), medium(e), wide(e), block(f), medium(f), wide(f), on top(d,b),
on top(d,e), on top(d,f), on top(b,c), on top(e,c), on top(f,c),to right(b,e),
to right(f,b) } (representing the block world in Figure 1) and N be fixed to 4.

– Step 1:
• Pairs of unary predicates: Constraints = { {block(X), line(X)},

{block(X), low(X)}, {block(X), narrow(X)}, {line(X), high(X)},
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Algorithm 2. Integrity Constraints made up of unary/binary predicates
Create constraints with binary and unary literals(N ; Unary; Constrs;
UnaryNotConstrs; BinaryNotConstrs);
{N : Maximal cardinality of constraints to generate; E : Set of observations; Unary:
Set of Unary Predicates; Constrs: Set of Integrity Constraints made up of unary or
binary predicates; UnaryNotConstrs: Set of non-constraints made up of unary pred-
icates; BinaryNotConstrs: Set of non-constraints made up of binary predicates.}
for all NC ∈ BinaryNotConstrs, X ∈ vars(NC), p ∈ Unary do

if |NC| < N ∧ E �� NC ∪ {p(X)} then Constrs := Constrs ∪ {{p(X)} ∪ NC}
for all BNC ∈ BinaryNotConstrs do

V := vars(BNC); TentativeConstr := BNC;
for all S ⊆ V do

apply a UNC ∈ BinaryNotConstrs to each X ∈ S, add it to TentativeConstr
if |TentativeConstr| ≤ N ∧ not trivial(Constrs, T entativeConstr)∧
E �� TentativeConstr then

Constrs := Constrs ∪ {TentativeConstr}

Fig. 1. Sample block world

{low(X), medium(X)}, {low(X), high(X)}, {low(X), narrow(X)},
{medium(X), high(X)}, {high(X), narrow(X)}, {narrow(X), wide(X)} }
NotConstraints = { {block(X), medium(X)}, {block(X), high(X)},
{block(X), wide(X)}, {line(X), low(X)}, {line(X), medium(X)},
{line(X), narrow(X)}, {line(X), wide(X)}, {low(X), wide(X)},
{medium(X), narrow(X)}, {medium(X), wide(X)}, {high(X), wide(X)} }

• Triplets of unary predicates (extending couples of NotConstraints):
Constraints={{line(X), medium(X), wide(X)},{line(X),high(X), wide(X)}}
NotConstraints = { {block(X), medium(X), wide(X)},
{block(X), high(X), wide(X)}, {line(X), low(X), wide(X)},
{line(X), medium(X), narrow(X)} }
All other possible extensions of binary non-constraints are trivial.

• 4-tuples of unary predicates: all 4-tuples obtained extending ternary non-
constraints are trivial, thus in this step both Constraints and NotConstraints
are empty. As a side effect, there are no non-constraints of cardinality 4 to be
extended, and hence no constraints of cardinality larger than 4 can be found.

– Step 2:

• Reflexivity: NotConstraints = ∅
Constraints = { {part of(X, X)}, {on top(X,X)}, {to right(X,X)} }
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• Symmetry: NotConstraints = ∅
Constraints={{part of(X, Y ), part of(Y, X)}, {on top(X,Y ), on top(Y,X)},
{to right(X,Y ), to right(Y,X)}, {part of(X, Y ), on top(Y,X)},
{part of(X, Y ), to right(Y,X)}, {on top(X, Y ), to right(Y,X)} }

• Transitivity: NotConstraints = { {on top(X,Y ), on top(Y,Z)},
{to right(X,Y ), to right(Y,Z)}, {part of(X, Y ), on top(Y,Z)},
{part of(X, Y ), to right(Y,Z)}, {to right(X,Y ), on top(Y,Z)} }
Constraints={{part of(X, Y ), part of(Y, Z)}, {on top(X,Y ), part of(Y, Z)},
{to right(X,Y ), part of(Y, Z)}, {on top(X, Y ), to right(Y,X)}}

• Convergence: NotConstraints = { {on top(X, Y ), on top(Z, Y )},
{on top(X,Y ), part of(Z, Y )}, {to right(X,Y ), part of(Z, Y )},
{on top(X,Y ), to right(Z, Y )} }
Constraints = { {part of(X, Y ), part of(Z, Y )},
{to right(X,Y ), to right(Z,Y )} }

• Divergence: NotConstraints = { {part of(X, Y ), part of(X, Z)},
{on top(X,Y ), on top(X,Z)}, {on top(X,Y ), to right(X,Z)} }
Constraints = { {to right(X, Y ), to right(X,Z)},
{on top(X,Y ), part of(X, Z)}, {to right(X,Y ), part of(X, Z)} };

– Step 3 (omitted due to lack of space)

3.3 Descriptors Type Domains and Abducibles

At the end of the procedure reported in Algorithm 1., the set of constraints of
cardinality 2 can be input to the type induction procedure presented in [7] in
order to infer type domains. Then, all pairs of unary predicates belonging to
the same domain can be eliminated from the set Constraints, thus reducing the
complexity of the abductive proof procedure, and a new kind of constraint will
be introduced to represent types, such that no two values from the same type
domain will be allowed applied to the same object. For example, if the descriptor
type domain for the color property is {blue, red, yellow, black, green}, and the
object X is part of an observation, it will be impossible to abduce two different
color descriptors from the above set applied to X.

4 Learning Abstraction Theories

As pointed out in Section 2.2, abstraction aims at discarding or hiding the infor-
mation that is irrelevant to achieve the goal. To be able to perform abstraction
during the learning task, the system must be provided with an abstraction the-
ory for the specific application domain, that (according to Definitions 2 and 3)
contains the operators encoding the abstraction mapping f between languages
L and L′ represented as a set of clauses, i.e. domain rules.

Usually, such domain rules are hand-coded by the domain expert; this section
proposes a methodology aimed at automatically learning them. The main idea
underlying the proposed strategy consists in searching for correspondences that
often or seldom hold among the available set of observations. These correspon-
dences are then exploited to simplify the description language in two different
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Algorithm 3. Identification of shifting/neglecting rules
Require: E+: set of positive observations; E−: set of negative observations; e: seed;

Provide: AT : set of domain rules that make up an abstraction theory;
if ∃ unary predicates in e then

S := ∅, UnaryPreds := set of unary predicates in e
C := {c1, c2, . . . , cn} set of constants in the description of e
for all ci ∈ C do

Si := {li ∈ UnaryPreds s.t. ci is argument of li}
if | Si |�= 0 and | Si |�= 1 then S := S

⋃
Si

for i=1..n do
for all Sj ∈ S do

find all the subsets sjm of Sj s.t.
(0 − α ≤ Score(sjm) ≤ 0 + α) OR (Max − α ≤ Score(sjm) ≤ Max + α)

create the rule: rulesjm (ci) ← sjm

replace in E+, in E− and in e, sjm with rulesjm (ci)
while F (:= set of all leaf predicates of e) �= ∅ do

for all li ∈ F do
if li has only one parent (let gi(ai, . . . , an) be the li’s parent) then

create the rule: ruleli(ai, ...an) ← gi, li; H := true
replace in E+, in E− and in e, gi, li with ruleli(ai, ...an))

for all rulei ← li1 , . . . , lin generated do
if {li1 , . . . , lin} occurs in some rule rulej then

replace li1 , . . . , lin in rulej by rulei

eliminate rulei form the set of rules generated
Evaluate the set of generated rules

ways: by generating shifting rules that replace significant, characteristic or dis-
criminant groups of literals by one single literal representing their conjunction,
or by generating neglecting rules that eliminate groups of literals that are not
significant3. Both kinds of rules will be applied in order to perform the shift of
language bias according to the absorption operator presented in Definition 4.

Algorithm 3. sketches the overall procedure conceived to discover common
paths in the application domain that potentially could make up the Abstraction
Theory. It firstly generates domain rules involving unary predicates only, that
represent the characteristics of an object in the description, and then the rules
involving predicates whose arity is greater than 1, that represent the relationships
between two or more objects contained in the descriptions. Crucial point of the
algorithm is the choice of the observation (referred to in the following as the
seed) that will act as the representative of the concept that one would abstract.
It is currently selected as the first encountered observation.

Once the seed is identified, for each constant ci in its description, the algo-
rithm finds the set of all the unary predicates having that constant as an ar-
gument, and computes all its possible subsets (except the empty set, that does

3 The loss in detail is evident in the latter, while in the former derives from the
impossibility to handle independently subsets of the grouped literals.
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not give information about the object, or the singleton subsets, that express just
single properties of the objects). Each subset identified in this way is a potential
candidate to become the body of a rule, in the Abstraction Theory, made up of
unary predicates. The selection among these subsets is done considering those
that are the best representative for the class of the concept to be abstracted
according to the seed e. Specifically, each subset is assigned a score based on
the number of times that it occurs in the descriptions of positive and negative
examples in the whole training set. Such a value represents the coverage rate
of the subset with respect to the observations and indicates the quality of the
subset. The selection aims at choosing those subsets that are neither too spe-
cific, because they are present in few observations, nor too general, because they
are encountered in almost all the observations. Each selected subset sj , inter-
preted as a conjunction of literals, becomes the body of a rule in the Abstraction
Theory, formulated in the following way:

abstract predicate(ci) ← sj iff score(sj) ≥ P (shifting rule)
← sj iff score(sj) ≤ P (neglecting rule)

where P is a threshold that depends on the application domain at hand4. In the
former case sj is present in almost all the observations, hence it is considered
significant as a whole for the learning process and thus it is taken as the body of a
shifting rule, to be replaced by a single abstract predicate. In the latter case sj is
assumed to indicate a detail in the description that is not very significant for the
learning process and thus it is eliminated (replaced by an empty head). In both
cases, the abstraction operators will replace each occurrence in the description
of the observations of the rule’s body with the corresponding head, this way
reducing the description length of observations and hence making the learning
process more efficient.

The algorithm continues with the identification of rules made up of predicates
whose arity is greater than 1 representing the relationships between two or more
objects. Thus, once the abstraction rules, that are identified in the previous step,
are replaced in all the observations, they don’t contain any unary predicates. At
this point, an iteration that groups together the n-ary predicates is performed
until one of the following conditions succeeds: 1) the description of the seed e
does not contain leaf predicates (predicates that share arguments with at least
another predicate); 2) the step n generates exactly the same rules already built
in the step n − 1. The search of the leaf predicates is particularly complex due
to the large number of relationships that could hold between the objects in the
descriptions. The identification of such predicates is done by representing the
observation with a tree in which each level is determined by the propagation of
the variables: the root is the head of the observation and its direct descendants
are all the predicates that share with it at least one argument. This procedure is
iterated until all the predicates in the description have been inserted in the tree
(a considered predicate does not participate anymore to the tree construction).

4 In order to make P independent on the specific domain, the score can be normalized
as a percentage of the maximum score actually computed in the given dataset.
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After the tree is constructed, we select the set of leaf nodes (predicates) that
have only one parent, let it be L = l1, l2, . . . , ln. Successively, for each element
l ∈ L its parent, let be it the literal g(a1, . . . , am), is extracted from the tree and
the following rule is generated:

rule(a1, . . . , am) ← g(a1, . . . , am), l

Finally, for each rule rulei ← li1 , . . . , lin if the body of rulei, i.e. li1 , . . . , lin ,
appears in some rule rulej then li1 , . . . , lin is replaced in rulej by rulei and
rulei is eliminated by the set of rules that are being generated. At the end
of this step again the evaluation phase of the potential rules to make up the
Abstraction Theory is performed according to the procedure above mentioned.

As to the score function, we need a statistical model able to take into ac-
count the significance of the subset for (i.e., its frequency in) the descriptions.
Specifically, a significant subset should be able to characterize a concept, or to
discriminate it from the others, better than other subsets. Conversely, a subset
that is not characterizing or discriminant could be assumed as non-significant.
An indication for such a setting could come from the distribution of the subset
in the whole set of observations: in this perspective, an high significance value
is associated to subsets that appear frequently in instances of one concept but
rarely in instances of others (and hence help to distinguish a concept from the
others), while a low significance value is associated to subsets that appear uni-
formly throughout different concepts (and hence are superfluous for the learning
process). A statistical model that reflects such considerations is represented by
the Term Frequency - Inverse Document Frequency (TF-IDF) [20]. Here, it must
be adapted to a work context facing with positive and negative observations. In
the following a brief description of the adapted method is provided.

Each subset si is associated with a vector Vi = (Vi1, Vi2, . . . , ViN ) where N
is the number of available observations and Vij is the weight of the i-th subset
in the j-th observation, computed as:

Vij = FREQij ∗ (lg N
IFREQi

+ 1)

The term (lg N
IFREQi

+ 1) represents the inverse of the frequency of subset
si in the whole set of observations. Notice that the result of this computation
will be positive if the j-th observation is positive, negative otherwise, thus the
resulting vector will be of the form Vi = (+,−, +, +,−, +, . . .). This will allow
to distinguish the significance of the subset according to its presence in the
positive and negative observations. Now, having for each subset si the vector of
its weights in the various observations, its score can be computed as follows:

score(si) = |
∑

j=1,...,N Vij |
It is worth noting that this score will be around zero if the subset equally

occurs in both positive and negative observations, in which case it is considered
insignificant and could be exploited as a neglecting rule in the abstraction phase.
Conversely, an high absolute value indicates a strong correlation of the subset
with the positive or the negative observations. Specifically, highly positive (resp.,
negative) scores indicate that the subset is very frequent in the positive (resp.,
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negative) observations. In both cases, it is considered significant and hence it
could be exploited to build shifting rules for the abstraction phase.

Example 2. Let h(1) : −p(1, 2), p(1, 4), p(1, 5), c(2, 3), f(5, 6), d(4), s(6) the seed
chosen in the observations (in this case it represents the set of observations too).

• Step 1:

– Grouping unary predicates: S = ∅ (no groups of unary predicates, referred to
the same constant, with cardinality strictly greater than 1 can be recognized);

• Step 2:

– Recognize Leaf Nodes: F = {c(2, 3), d(4), s(6)}, indeed c(2, 3) has only one
parent p(1, 2); d(4) has only one parent p(1, 4); s(6) has only one parent f(5, 6).

– Create the rules - ruleli(ai, ...an) ← gi, li:
c(2, 3) with parent p(1, 2) → rule1(X, Y ) : −p(X,Y ), c(Y, Z).
d(4) with parent p(1, 4) → rule2(X, Y ) : −p(X,Y ), d(Y ).
s(6) with parent f(5, 6) → rule3(X, Y ) : −f(X, Y ), s(Y ).

– Replace the rule in the set of the observations:
h(1) : −p(1, 2), p(1, 4), p(1, 5), c(2, 3), f(5, 6), d(4), s(6). →
h(1) : −rule1(1, 2), rule2(1, 4), p(1, 5), rule3(5, 6).

• Step 3:

– Recognize Leaf Nodes:
F = {rule3(5, 6)}, indeed rule3(5, 6) has only one parent p(1, 5).

– Create the rules - ruleli(ai, ...an) ← gi, li:
rule3(5, 6) with parent p(1, 5) → rule4(X, Y ) : −p(X,Y ), rule3(Y, Z).

– Replace the rule in the set of the observations:
h(1) : −rule1(1, 2), rule2(1, 4), p(1, 5), rule3(5, 6). →
h(1) : −rule1(1, 2), rule2(1, 4), rule4(5, 6).

• Step 4: END - No more Leaf Nodes can be recognized

The procedure continues with the evaluation of the generated rules, that are:
rule1(X, Y ) : −p(X, Y ), c(Y, Z). rule2(X, Y ) : −p(X, Y ), d(Y ).
rule3(X, Y ) : −f(X, Y ), s(Y ). rule4(X, Y ) : −p(X, Y ), rule3(Y, Z).
Now, supposing that P = 95% and that the scores of the rules are:
Score1 = 95%; Score2 = 99%; Score3 = 75%; Score4 = 86%,
rule1 and rule2 will be shifting rules, while rule3 and rule4 will be neglecting
rules:
rule1(X, Y ) : −p(X, Y ), c(Y, Z). rule2(X, Y ) : −p(X, Y ), d(Y ).
: −f(X, Y ), s(Y ). : −p(X, Y ), rule3(Y, Z).

5 Experiments

The proposed methods were implemented in SICStus Prolog, and tested on the
learning system INTHELEX with various experiments, whose results are re-
ported in the following. 33 repetitions of each learning task were carried out,
in each of which the dataset was randomly split into a training set (including
70% of the observations), exploited also to induce the rules for the abstraction
operators) and a test set (made up of the remaining 30%).
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Table 1. System performance with the exploitation of the discovered abductive theories

Without abduction With abduction With abduction
Without type domains With type domains

Min - Max
Lgg Med - StDev

3 - 13
7.72 - 2.08

2 - 8
5.48 - 1.5

0 - 2
1 - 0.66

Min - Max
Claus. Med - StDev

2 - 6
4.09 - 1.12

2 - 5
3.18 - 0.95

1 - 3
1.72 - 0.72

Min - Max
Accur. Med - StDev

89% - 100%
96.24% - 2.27

94% - 100%
99.32% - 1.61

91% - 100%
98.75% - 3.02

Min - Max
Runtime Med

3.20 - 13.36
5.16

4.98 - 170.36
40.05

3.06 - 84.40
24.29

5.1 Exploitation of the Learned Abductive Theories

The first experiment aimed at checking whether the abducibles and the integrity
constraints automatically learned according to the proposed algorithms are ef-
fective to allow the abductive procedure implemented in INTHELEX to handle
cases of missing information in the observations. The experiments concern the
induction of layout-based classification rules for scientific papers belonging to
ICML series. The available dataset was corrupted by eliminating the 8% of the
descriptors for each observation contained in the tuning set. The learning system
was applied on this dataset firstly without exploiting the abductive procedure.
Successively, the learning process was repeated, allowing the system to exploit
its abductive capability and the abduction theory automatically learned. We
focused our attention on binary constraints made up of unary and binary pred-
icates. One more experiment was run to test the usefulness of replacing groups
of simple integrity constraints belonging to the same type by means of type
constraints automatically inferred.

Table 1 reports the system performance in the various cases as regards the
amount of performed refinements, lgg’s and added clauses, predictive accuracy
and runtime (sec). As we can note, the system performance improved with the
exploitation of abduction with respect to all parameters except runtime. Actu-
ally, runtime increases because of the additional reasoning carried out by the
abductive procedure; however, as expected, exploiting the type domains signifi-
cantly reduces runtime because of the fewer constraints to be taken into account.
According to a paired t-test, all differences are statistically significant except the
predictive accuracy between the second and third rows. Thus, exploiting the au-
tomatically learned abduction theory allows the system to significantly improve
its performance in the presence of missing data. The number of theory refine-
ments and learned clauses decreases both using abduction and, even more, when
type domains are exploited, indicating that the system was able to correctly
complete the corrupted observations without applying the refinement procedure.
Noticeably, except for accuracy, also the standard deviation constantly decreases,
revealing more stability in the system behavior.



118 S. Ferilli et al.

Table 2. System performance exploiting the discovered abstraction theories

ICML SVLN IEEET
With Abs No Abs With Abs No Abs With Abs No Abs

Lgg 5.81 5.54 7.36 8.12 8.03 8.30
Cl 1.21 1.27 2.75 2.69 2.03 2.27

Accuracy 96.93% 96.75% 86.54% 87.36% 90.69% 90.57%
Runtime 2.00 3.16 11.34 19.46 7.64 27.55

Table 3. Abstraction on ICML logic type components

Author Page Number Title
With Abs No Abs With Abs No Abs With Abs No Abs

Lgg 8.9 8.96 8.15 8.12 8.81 9.09
Cl 2.33 2.06 2.39 2.45 2.42 2.54

Accuracy 97.18% 97.12% 97.81% 97.54% 98.12% 97.87%
Runtime 14.44 29.07 34.06 76.22 27.70 51.67

5.2 Exploitation of the Abstraction Theories

The second experiment aimed at checking the effectiveness of the abstraction
theories learned according to the proposed algorithms. Such rules were provided
to INTHELEX, that was allowed to exploit the abstraction operators. The learn-
ing tasks involved the induction of classification rules for three classes of scientific
papers (96 documents of which 28 for ICML, 32 for SVLN, 36 for IEEET), and of
rules for identifying the logical components Author [36+, 332-], Page Number
[27+, 341-] and Title [28+, 340-] in the ICML papers (in square brackets the
number of positive and negative instances for each label are reported). To build
neglecting rules, the threshold for considering low significance (i.e. the score near
to zero) was empirically set to P = 5%. To build shifting rules that have high
significance (i.e. very frequent in positive observations and rarely present in neg-
ative observations and vice versa) the threshold was empirically set to P = 95%
for the classification task and to P = 75% for the understanding task.

The average results on the 33 folds, along with the number of refinements and
of clauses learned, the predictive accuracy of the learned theories and the runtime
(sec), are reported in Tables 2 and 3. According to a paired t-test, there is no
statistical difference between the results with and without abstraction, except
for runtime. Having the same performance (predictive accuracy) and behavior
(no. of clauses and refinements) both with and without abstraction means that
the proposed technique was actually able to eliminate superfluous details only,
leaving all the information that was necessary for the learning task, which was a
fundamental requirement for abstraction. Conversely, runtime was dramatically
reduced when using abstraction thanks to the shorter descriptions obtained by
eliminating the details, which was exactly the objective of using abstraction.

An example of neglecting rule identified with the proposed strategy is:

:- type_graphic(A), pos_lower(A).
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by which we understand that a graphics being placed in lower position is not
discriminant between positive and negative examples. As expected, exploiting
the abstraction operators the system learns shorter clauses. For instance, the
theory learned for author contains two clauses made up of 18 and 15 literals
(against the 19 and 37 without using abstraction):

logic_type_author(A) :- height_medium_small(A), pos_upper_type_text(A),

part_of(B, A), part_of(B, C), height_very_small_type_text(C),

pos_upper_type_text(C), part_of(B, D), width_very_large(D),

height_smallest(D), type_hor_line(D), pos_center_pos_upper(D),

alignment_left_col(D, E), on_top(F, E), part_of(B, E), part_of(B, F),

part_of(B, G), type_text_width_medium_large(G), pos_left_type_text(G).

logic_type_author(A) :- part_of(B, A), part_of(B, C),

pos_upper_type_text(A), pos_center_pos_upper(A),

pos_upper_type_text(C), pos_left_type_text(C),

height_very_very_small_type_text(C), on_top(C, D),

part_of(B, D), on_top(E, A), width_very_large(E), height_smallest(E),

pos_center_pos_upper(E), on_top(F, E), alignment_center_col(F, E).

where the presence of several abstract predicates confirms that the automatically
generated abstraction theory was able to identify discriminative intermediate
concepts. An example of shifting rule learned (and exploited above) is:

pos_upper_type_text(A) :- type_text(A), pos_upper(A).

6 Conclusion and Future Works

This paper presented a technique for automatically inferring meta-information
needed to apply abduction and abstraction operators in and inductive learning
framework, exploiting the same observations that are input to the inductive al-
gorithm. Application of the proposed technique in a real learning system proved
their viability for learning from incomplete observations without loosing predic-
tive accuracy and for significantly improving learning time in complex real-world
domains. Future work will concern a deeper investigations of which properties
can be considered significant to infer integrity constraints for abduction, devel-
opment of strategies to improve the generation of abductive theories, and design
of techniques that can provide information for further abductive operators.
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Abstract. Logical Bayesian Networks (LBNs) have recently been in-
troduced as another language for knowledge based model construction
of Bayesian networks, besides existing languages such as Probabilistic
Relational Models (PRMs) and Bayesian Logic Programs (BLPs). The
original description of LBNs introduces them as a variant of BLPs and
discusses the differences with BLPs but still leaves room for a deeper
discussion of the relationship between LBNs and BLPs. Also the rela-
tionship to PRMs was not treated in much detail.

In this paper, we first give a more compact and clear definition of
LBNs. Next, we describe in more detail how PRMs and BLPs relate to
LBNs. Like this we not only see what the advantages and disadvantages
of LBNs are with respect to PRMs and BLPs, we also gain more insight
into the relationships between PRMs and BLPs.

Keywords: Probabilistic-logical models, Bayesian networks, knowl-
edge representation, Bayesian Logic Programs, Probabilistic Relational
Models.

1 Introduction

Probabilistic logical models are models combining aspects of probability theory
with aspects of Logic Programming, first-order logic, or relational languages.
In recent years a variety of such models has been introduced in the literature
(see the overview by Kersting and De Raedt [26]). An important class of such
models are those based on the principle of Knowledge Based Model Construction
(KBMC) [2]. The idea of KBMC is that a general probabilistic logical knowledge
base can be used to generate a specific propositional probabilistic model (when
given a specific problem). We focus on the case where the propositional model
is a Bayesian network [32]. The most developed and best known models of this
kind are Probabilistic Relational Models by Getoor et al. [14] and Bayesian Logic
Programs by Kersting and De Raedt [23, 24].

We recently introduced Logical Bayesian Networks (LBNs) as yet another
model for knowledge based model construction of Bayesian networks [12]. In
the original description, we introduced LBNs as a variant of BLPs. In designing
LBNs, focus was specifically on introducing all necessary language components
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to make knowledge representation with LBNs as simple as possible. First, LBNs
cleanly separate deterministic, logical knowledge and probabilistic knowledge.
Second, LBNs have different language components to determine different parts
of a Bayesian network (the nodes in the graph, the directed edges and the con-
ditional probability distributions).

In this paper, we first give a new, more compact and clear but essentially
equivalent definition of LBNs. Next, we compare LBNs with PRMs, which was
done only very briefly in [12]. Then we compare LBNs to BLPs. We approach
this comparison differently than in [12] by explicitly using LBNs as a reference
point and go more into detail. Such a comparison not only teaches us more about
LBNs, but also about the mutual relations between PRMs and BLPs.

For several probabilistic logical models techniques for learning from data have
been developed. At recent ILP conferences a substantial number of papers (and
invited lectures) have been presented on this topic (e.g. [24, 22, 37, 11]). Our
paper complements this work in that we do not discuss learning directly, but
focus on the knowledge representation used by the different learning systems.

We proceed as follows. In Section 2 we review LBNs, give a new, more com-
pact definition of LBNs and discuss the methodology behind their design. In
Section 3 we compare LBNs with Probabilistic Relational Models and Bayesian
Logic Programs. In Section 4 we conclude. We assume familiarity with the basic
concepts of Bayesian networks [32] and Logic Programming [29].

2 Logical Bayesian Networks

We review Logical Bayesian Networks (LBNs) [12] by means of an example.
Then we formally define the syntax and declarative semantics of LBNs. Finally,
we discuss the methodology behind the design of LBNs.

2.1 Logical Bayesian Networks by Example

Consider the following running example (based on the ‘university’-example by
Getoor et al. [14]).

There are students and courses. We know which students take which
courses. Each student has an IQ and a final ranking and each course has
a difficulty level. A student taking a certain course, gets a grade for that
course. The grade of a student for a course depends on the IQ of the
student and the difficulty of the course. The final ranking of a student
depends on his grades for all the courses he’s taking.

LBNs explicitly distinguish deterministic, logical knowledge and probabilistic
knowledge. To do so, LBNs use two disjoint sets of predicates: the set of logical
predicates and the set of probabilistic predicates (an idea introduced by Ngo
and Haddawy [33]). Logical predicates are used to specify logical background
knowledge describing the domain of discourse for the world considered (this is
supposed to be deterministic information). Probabilistic predicates in LBNs (like
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predicates in Bayesian Logic Programs [23]) have an associated range and are
used to represent random variables. Precisely, a random variable is represented
as a ground atom built from a probabilistic predicate and has a range equal to
the range of that predicate. Note that it is debatable whether ‘predicates’ is the
right name since these ‘predicates’ behave more like (typed) functors than like
ordinary predicates (similarly logical atoms behave more like terms than like
ordinary atoms). The main reason for calling them predicates is because like
this we stay in line with the terminology of Bayesian Logic Programs (since we
introduced LBNs as a variant of Bayesian Logic Programs we believe this to be
important).

LBNs have four components. The first one is a set of clauses called the random
variable declarations. The second one is a set of clauses called the conditional
dependency clauses. The third one is a set of logical Conditional Probability Dis-
tributions (logical CPDs), quantifying the conditional dependencies determined
by the conditional dependency clauses. The fourth one is a set of normal logic
clauses for the logical predicates used to specify deterministic background infor-
mation.

We now illustrate some of these notions on our running example. The logical
predicates are student/1, course/1 and takes/2, the probabilistic predicates are
iq/1, diff /1, ranking/1 and grade/2 (having as associated range for example
respectively {low,high}, {low,middle,high}, {A,B,C} and {A,B,C}). The random
variable declarations are:

random(iq(S)) <- student(S).
random(ranking(S)) <- student(S).
random(diff(C)) <- course(C).
random(grade(S,C)) <- takes(S,C).

Here random/1 is a special-purpose logical predicate. The first clause, for in-
stance, should be read as: “iq(S) is a random variable if S is a student”. The
conditional dependency clauses are:

ranking(S) | grade(S,C) <- takes(S,C).
grade(S,C) | iq(S), diff(C).

The first clause should be read as: “the ranking of S depends on the grade of S
for C if S takes C” and the second “the grade of S for C depends on the iq of
S and the difficulty of C”. We do not mention anything about the logical CPDs
here, leaving this issue for the next section.

The semantics of a LBN is that it defines a mapping from specific problems
(or worlds) to Bayesian networks. We use a normal logic program [29] to describe
the specific problem. For our running example this could look as follows (the
meaning is obvious):

student(john). student(pete).
course(ai). course(db).
takes(john,ai). takes(john,db). takes(pete,ai).
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iq(pete)iq(john) diff(ai)diff(db)

grade(pete,ai)grade(john,db) grade(john,ai)

ranking(john) ranking(pete)

Fig. 1. The structure of the Bayesian network induced for our running example

The structure of the Bayesian network induced by the above LBN given this
logic program is shown in Figure 1.

2.2 Syntax of Logical Bayesian Networks

We now define the syntax of LBNs. In the next section we define the semantics.
Remember that LBNs use two disjoint sets of predicates: the logical predi-

cates and the probabilistic predicates having an associated range (we use these
sets implicitly in our definitions). We call an atom built from a probabilistic
predicate a probabilistic atom (it has the same range as the predicate). Simi-
larly we talk about logical atoms and logical literals. Remember that a random
variable is represented as a ground probabilistic atom.

Definition 1 (random variable declaration). A random variable declara-
tion is a range-restricted clause of the form

random(pAtom) ← lit1, . . . , litn.

where n ≥ 0, pAtom is a probabilistic atom and lit1, . . . , litn are logical literals.

A clause is range-restricted iff all free variables that occur in the head also
occur in a positive literal in the body.

Definition 2 (conditional dependency clause). A conditional dependency
clause is a clause of the form

pAtom | pAtom1, . . . , pAtomn ← lit1, . . . , litm.

where n, m ≥ 0, pAtom, pAtom1, . . . , pAtomn are probabilistic atoms and lit1,
. . . , litm are logical literals.

As will become clear in the next section, these clauses need not be range-
restricted. If m = 0, we write the clause as pAtom | pAtom1, ..., pAtomn.

Definition 3 (logical CPD). A logical CPD for a probabilistic predicate p is a
function mapping a set of ground probabilistic atoms to a conditional probability
distribution on the range of p.
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When referring to the logical CPD for a ground probabilistic atom, we mean
the logical CPD for the predicate that atom is built from.

Logical CPDs in LBNs play the same role as combining rules in Bayesian
Logic Programs [23]. This means that a logical CPD not only quantifies a de-
pendency indicated by a single conditional dependency clause but also combines
the influences of multiple conditional dependency clauses with the same head.

In [12] we argued that one way to specify a logical CPD is as a logical decision
tree [5, 43]. Working this out in detail is beyond the scope of this paper.

Definition 4 (Logical Bayesian Network). A Logical Bayesian Network is
a tuple (V ,D,B,L) with V a set of random variable declarations, D a set of
conditional dependency clauses, B a set of normal logic clauses for the logical
predicates and L a set of logical CPDs, one for each probabilistic predicate.

The above definitions differ slightly from the original definitions in [12].
First, we use a slightly different notation for the random variable declarations
(using random/1). Second, we explicitly introduced in our definitions the nor-
mal clauses B describing deterministic background knowledge (in [12] this was
left implicit). Third, we tried to make the definition of logical CPD easier.

2.3 Declarative Semantics of Logical Bayesian Networks

The semantics of a LBN is that it defines a mapping from specific problems or
worlds (described by a normal logic program Pl defining the logical predicates) to
Bayesian networks. In other words, a LBN induces a ground Bayesian network.
We use the well-founded semantics [41]: every normal logic program Pl has a
unique well-founded model WFM(Pl) (for a program without negation, this
semantics is equivalent to the least Herbrand semantics).

Definition 5 (Induced Bayesian Network). The Bayesian Network induced
by a LBN (V ,D,B,L) given a normal logic program Pl is the Bayesian network
determined by the directed graph containing

– a node (random variable) V iff V is a ground probabilistic atom and random
(V ) is true in WFM(Pl ∪ B ∪ V),

– an edge from a node Vparent in the graph to a node Vchild in the graph iff
there is a ground instance Vchild | body ← context. of a clause in D such
that Vparent ∈ body and context is true in WFM(Pl ∪ B),

and where the CPD for a node V is obtained by applying the logical CPD for V
in L to the set of ground probabilistic atoms that are parents of V in the graph.

Obviously the Bayesian network induced by a LBN given a logic program Pl

is only well-defined (i.e. specifies a unique probability measure) under certain
conditions1.
1 These conditions are similar to the conditions for a Bayesian Logic Program to be

well-defined, see [23].
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Proposition 1. The Bayesian network induced by a LBN given Pl is well-
defined iff the directed graph induced is non-empty and acyclic, each node in
the graph has a finite number of ancestors and the CPD associated to each node
is conditioned only on the parents of that node.

2.4 Discussion

The language of LBNs was designed from the point of view of knowledge repre-
sentation. We explicitly tried to unravel the different types of knowledge that one
might want to represent and tried to reflect these different types of knowledge
in the different components of LBNs. This can be seen on two levels.

First, as LBNs define a mapping from specific worlds to Bayesian networks
and a Bayesian network is determined by its nodes, directed edges and CPDs,
LBNs have a first component to determine the nodes, a another one to project a
set of directed edges on these nodes and yet another one to determine the CPDs.

Second and more general, LBNs explicitly distinguish deterministic and pro-
babilistic knowledge (under the form of two sets of predicates). In Section 3.2 we
go into detail about the problems that arise when this distinction is not made.

LBNs have a number of advantages as compared to models offering a language
as ‘uniform’ as possible (i.e. with as few language components as possible, as was
for instance the original motivation behind Bayesian Logic Programs [27, 21]).
First, LBNs are very easy to understand. Second, as argued in [12] knowledge
representation with LBNs is very easy. Third, LBNs can be used to gain insight
into other probabilistic logical models by investigating how the language com-
ponents of these models map to the components of LBNs. We illustrate this last
point in the next section.

3 Comparing Logical Bayesian Networks to Other
Probabilistic Logical Models

We now compare LBNs to Probabilistic Relational Models (Section 3.1) and
Bayesian Logic Programs (Section 3.2). We also briefly review other related
models (Section 3.3).

3.1 Probabilistic Relational Models

Introduction. Probabilistic Relational Models (PRMs) [13, 15, 14, 16] are
based on the entity-relationship model and consist of three components. The
relational schema describes the set of classes and their attributes. The depen-
dency structure defines the set of parents that an attribute conditionally depends
on. Associated to the dependency structure is a quantitative component: a set
of aggregate functions and CPDs. The semantics of a PRM is that it induces
a Bayesian network on the so-called relational skeleton. The latter specifies all
the objects for all the classes and the values of the (primary and foreign) key-
attributes for all objects but leaves the values of all other attributes (‘descriptive’
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attributes) unspecified. The Bayesian network then specifies a probability dis-
tribution on these unspecified values. Algorithms for learning the dependency
structure and the CPDs have been developed [13, 15, 14, 16].

The graphical representation of the dependency structure for our running
example is shown in Figure 2 (it is similar to the example in [14]).

Student

Takes

Course

student course

iq

ranking

grade

difficulty

Fig. 2. The dependency structure of the PRM for our running example. Rectangles
represent classes, ovals represent descriptive attributes, lines represent relationships
through foreign keys and arrows represent conditional dependencies.

Discussion. LBNs can be seen as the counterpart of PRMs in a Logic Program-
ming based language. First, the distinction logical vs. probabilistic predicates in
LBNs corresponds to the distinction key-attributes vs. descriptive attributes in
PRMs (as key-attributes in PRMs are supposed to be deterministic and are used
to specify the objects in the domain of discourse and their relations)2. Second,
there is a one-to-one correspondence as to functionality between the components
of PRMs and those of LBNs. In LBNs we use the random variable declarations
to determine the nodes in the Bayesian network, where PRMs use the relational
schema. In LBNs we use the conditional dependency clauses to determine the
directed edges, where PRMs use dependency structure. In LBNs we use logi-
cal CPDs to determine the CPDs in the Bayesian network, where PRMs use a
combination of aggregate functions with ordinary CPDs.

Due to this correspondence between the components of LBNs and PRMs, it is
trivial to translate any PRM to an equivalent LBN. As a consequence, LBNs can
help to clarify the relationships between PRMs and probabilistic logical models
based on concepts of Logic Programming [23, 10, 38, 33, 42, 34, 35].

The main advantage of LBNs over PRMs is that LBNs are more flexible
and more expressive. This is the result from the transition from the entity-
relationship language of PRMs to the full Logic Programming language of LBNs.

LBNs are more flexible than PRMs. First, in LBNs the knowledge that de-
termines the random variables and the dependencies (i.e. the knowledge spec-
ified by the logical predicates) can be anything. In PRMs this knowledge can
only be knowledge about class-membership and relations (i.e. knowledge con-
tained in the relational skeleton). For example, suppose that we want to specify
that only undergraduate students get a final ranking. In LBNs we simply write
2 Extensions of PRMs exist where key-attributes do not have to be deterministic:

PRMs with ‘structural uncertainty’ [15, 14, 16].
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random(ranking(S)) <- undergrad(S). In PRMs we can only specify this if
we adapt the relational schema of our running example by explicitly making a
new (sub)class for undergraduate students [14]. As the conditions we want to
specify get more complex, this process of adapting the relational schema of the
PRM becomes more and more cumbersome. In LBNs, this can be handled in a
much more uniform way. Second, in the same way it is easier to specify deter-
ministic background knowledge in LBNs than in PRMs (in LBNs we can simply
use the normal clauses in B).

LBNs are also more expressive than PRMs. PRMs do not have functor sym-
bols. Functor symbols are needed to elegantly represent temporal processes such
as Hidden Markov Models, or more generally, to represent recursive concepts.
For a further discussion we refer to the remarks on recursion and PRMs in [38].
Also, PRMs have no concept of negation. One application of negation is dealing
with exceptions, e.g. expressing that a student has a grade for a course if he was
taking that course unless he was absent on the exam. This cannot be expressed
directly in PRMs. We further discuss negation in Section 3.2.

3.2 Bayesian Logic Programs

Introduction. Bayesian Logic Programs (BLPs) combine Bayesian networks
with definite Logic Programming. BLPs were defined in [23, 24, 22, 25]. Recently,
a modified definition has been given in [10, 28]. We now discuss the original (and
probably best known) definition. We come to the new definition later on in this
section.

The core of a BLP is a set of Bayesian clauses. An example of such a clause is:

grade(S,C) | iq(S), diff(C), takes(S,C).

All predicates in BLPs are ‘Bayesian’ predicates having an associated range (like
probabilistic predicates in LBNs). Ground atoms represent random variables.
The semantics of a BLP is that it induces a Bayesian network. The random
variables are the ground atoms in the least Herbrand model LH of the set of
Bayesian clauses (treating these clauses as pure logical clauses). The ground
instances of the Bayesian clauses encode directed edges: there is an edge from
Vparent ∈ LH to Vchild ∈ LH iff Vparent is in the body of a ground instance with
Vchild in the head. As a quantitative component BLPs use CPDs and combining
rules. Algorithms for learning the Bayesian clauses and the CPDs have been
developed [24, 22, 25].

To model our running example with a BLP, we need the following Bayesian
clauses (student/1, course/1, takes/2, iq/1, ranking/1, diff /1 and grade/2 are
all Bayesian predicates):

iq(S) | student(S).
ranking(S) | student(S).
diff(C) | course(C).
grade(S,C) | takes(S,C).
grade(S,C) | iq(S), diff(C), takes(S,C).
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ranking(S) | grade(S,C), takes(S,C).
student(john). student(pete).
course(ai). course(db).
takes(john,ai). takes(john,db). takes(pete,ai).

The first four clauses are essentially needed to specify the random variables, the
fifth and the sixth clause to specify the dependencies3 and the Bayesian ground
facts to specify the domain of discourse.

Discussion. The most important difference between BLPs as defined above and
LBNs is that BLPs do not have standard logical predicates. In the philosophy
of BLPs logical predicates are a special kind of Bayesian predicates with range
{true,false}. This leads to a number of problems from a knowledge representation
point of view:

1. Compared to the Bayesian network induced by a LBN or PRM, the network
induced by a BLP typically contains more nodes and, as a consequence, has
CPDs that cannot be filled in meaningfully. The reason is that for instance
student(john). in the above BLP is not a logical fact stating that john is a
student, but a Bayesian fact stating that student(john) is a random variable
(with an associated CPD which we do not show here). The Bayesian network
induced by the above BLP is shown in Figure 3a (only partially because of
space restrictions). As a reference, Figure 3b shows the corresponding part
of the Bayesian network induced by a LBN (this is a fragment of Figure 1).
Note that network induced by the LBN does not contain e.g. student(john)
as a random variable.

a) student(john)

iq(john)

takes(john,ai)

grade(john,ai)

course(ai)

diff(ai)

b) iq(john) grade(john,ai) diff(ai)

Fig. 3. Part of the structure of the Bayesian network induced for the running example
a) by a BLP, b) by a LBN. The former typically contains more nodes than the latter.

In the network of Figure 3b (for LBNs), the node iq(john) needs a CPD
that is unconditioned, for example the following table:

p(iq(john))
low: 0.4 high: 0.6

3 In the clause grade(S,C) | iq(S), diff(C), takes(S,C)., the atom takes(S,C)

is needed to ensure that grade(S,C) is a random variable only if S takes C.
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In the network of Figure 3a (for BLPs), the node iq(john) needs a CPD that
is conditioned on student(john), for example the following table:

student(john) p(iq(john)|student(john))
true low: 0.4 high: 0.6
false ?

The problem here is that no meaningful probability distribution can be filled
in for the case where student(john) is false (the question mark). The rea-
son is that in our example we wanted to model that something has an iq
only if it is a student. So if student(john) is false, the random variable
iq(john) is meaningless and should not even exist. The same problem ap-
pears when trying to specify a CPD for the dependence of diff(ai) conditioned
on course(ai) and also for grade(john, ai) conditioned on takes(john, ai).
To summarize, the Bayesian networks induced by BLPs contain CPDs that
cannot be filled in meaningfully while for LBNs (or PRMs) this problem
does not exist.
One might think that the approach taken by BLPs is ‘more general’ than the
approach taken by LBNs in that BLPs allow knowledge about the student/1
predicate to be non-deterministic and LBNs do not. This is wrong, however.
LBNs leave the user the freedom to decide for each application which pre-
dicates should be logical and which probabilistic. As such the user could
for instance decide to make student/1 a probabilistic predicate if needed,
accepting the above problems with meaningless entries in CPDs (essentially,
the same approach is taken by PRMs with structural uncertainty [15, 14,
16]). Our point, however, is that if student/1 is deterministic we can make
it a logical predicate in LBNs, avoiding the above problems. In BLPs, this is
not possible since it has been decided by design that all predicates are pro-
babilistic. In other words, in BLPs we cannot express the fact that certain
knowledge is deterministic, while in LBNs we can.
As a more practical side-remark, note that larger CPDs typically result in
slower inference [7]. As such, inference in networks induced by BLPs is ex-
pected to be slower than for LBNs or PRMs.

2. Since BLPs do not have logical atoms, no negated atoms are allowed. One
of the possible applications of negation is default reasoning (dealing with
exceptions [6]). For instance, suppose we want to express that a student has
a grade for a course if he was taking that course unless he was absent on
the exam (being absent is considered as an exception). In LBNs, we would
simply write:

random(grade(S,C)) <- takes(S,C), not(absent(S,C)).

In BLPs, however, we cannot express this since no negated atoms are allowed.
Note that the above form of negation, which cannot be captured by BLPs,
is non-monotonic negation [1]. Classical negation, in contrast, can be sim-
ulated by BLPs inside the CPDs [23]. For instance, to model that some-
one is male if and only if he is not female, we can write a Bayesian clause
male(X) | female(X) with the following CPD:
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female(X) p(male(X)|female(X))
true true: 0.0 false: 1.0
false true: 1.0 false: 0.0

3. In addition to the previous remarks (but less important because somewhat
subjective), it is more difficult to read and write clauses in a BLP than
clauses in a LBN. This is because clauses in a BLP have a double meaning:
– They should be seen as a definite logic program to find the random

variables in the Bayesian network (through the least Herbrand model).
In this reading, each atom in each clause should be seen as a standard
logical atom.

– At the same time they should be seen as statements about conditional de-
pendencies between random variables. In this reading, each atom should
be seen as a random variable (or set of random variables).

This is not the case in LBNs. First, each clause is either a random variable
declaration or a conditional dependency clause. Second, each atom in each
clause is either a standard logical atom or a random variable. Moreover, both
distinctions are clearly visible in the syntax of LBNs.

BLPs Redefined. The above problems are all caused by the fact that BLPs
as defined originally [23, 24, 22, 25] do not have standard logical predicates.
BLPs have recently been redefined [10, 28] and now indeed distinguish logical
predicates and Bayesian predicates. In the new definition only ground Bayesian
atoms (in the least Herbrand model of the BLP) become random variables in the
induced Bayesian network. Ground logical atoms are kept out of the network.
This is also the way BLPs are implemented [28].

Note, that at the time LBNs were first published [12], all literature about
BLPs [23, 24, 22, 25] still used the original definition, i.e. the one without this
distinction. Also, the ‘new’ literature about BLPs [10, 28] does not give any
reasons why this redefinition is needed (in fact, it does not even mention that it
is different from the original definition). In our discussion above we tried to show
these reasons by explicitly pointing out the problems with the original definition.
As such this paper can contribute to the understanding of BLPs.

This redefinition obviously brings BLPs closer to LBNs. The main remaining
difference is that LBNs use one set of clauses to specify the random variables in
the Bayesian network and a separate set of clauses to specify the directed edges,
whereas BLPs use the same set of clauses for both purposes. While this might
make LBNs slightly easier to read than BLPs (especially for people acquainted
with PRMs), it is not an essential difference.

3.3 Other Probabilistic Logical Models

A variety of probabilistic logical models has been described in the literature (see
the overview by Kersting and De Raedt [26]). On a high level, these models can
be divided into two classes.
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Models of the first class combine Bayesian networks with logic and mainly
follow the knowledge based model construction approach. We already discussed
LBNs, Probabilistic Relational Models and Bayesian Logic Programs. Some
others models of this class are Relational Bayesian Networks [19], Probabilis-
tic Logic Programs (also known as Context-Sensitive Probabilistic Knowledge
Bases) [33], MIA (the ‘meta-interpreter approach’, which is the origin of some
ideas incorporated in LBNs) [4], CLP(BN ) [38], Hierarchical Bayesian Net-
works [17] and Markov Logic Networks [11, 36] (the latter are based on Markov
networks). Learning algorithms exist for Probabilistic Relational Models [13,
15, 14, 16], Bayesian Logic Programs [24, 22, 25], CLP(BN ) [38], Hierarchical
Bayesian Networks [17] and Markov Logic Networks [36].

Models of the second class integrate probabilities into Logic Programming,
staying as close as possible to pure Logic Programming. The most important
of these models are Probabilistic Horn Abduction [34], Independent Choice
Logic [35], PRISM [39, 40], Stochastic Logic Programs [8, 9, 30, 31] and Logic
Programs with Annotated Disjunctions [42]. Learning algorithms exist for the
last three models [20, 40, 9, 31, 37].

4 Conclusions

We reviewed Logical Bayesian Networks introduced in [12]. We have given more
compact and clear but essentially equivalent definitions of syntax and semantics
of LBNs than in [12]. We carried out a more detailed comparison of LBNs with
Probabilistic Relational Models and Bayesian Logic Programs, hereby clarifying
and motivating the difference between the original definition of Bayesian Logic
Programs [23, 24, 22, 25] and their recent redefinition [10, 28].

A lot of future work remains. As for knowledge representation, comparing
LBNs to other probabilistic logical models is promising given the wide variety of
such models. As for learning, we are currently working on learning logical CPDs
in LBNs under the form of first order logical probability trees (Tilde [5, 43]). In
a next step, algorithms for learning the conditional dependency clauses of LBNs
can be developed.

The methodology behind the design of LBNs can also be followed for other
graphical models than Bayesian networks. Languages for knowledge based model
construction of dependency networks [18], Markov networks [36] or neural net-
works [3] can all be defined having the same components as LBNs: a component
for determining the nodes in the graph, one for the edges and one for the quan-
titative local models (CPDs for dependency networks, potential functions for
Markov networks, activation functions for neural networks).
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Abstract. It is well known by Inductive Logic Programming (ILP) prac-
tioners that ILP systems usually take a long time to find valuable models
(theories). The problem is specially critical for large datasets, preventing
ILP systems to scale up to larger applications. One approach to reduce
the execution time has been the parallelization of ILP systems. In this
paper we overview the state-of-the-art on parallel ILP implementations
and present work on the evaluation of some major parallelization strate-
gies for ILP. Conclusions about the applicability of each strategy are
presented.

Keywords: Parallelism, Scaling-up.

1 Introduction

There are two major motivations for using ILP. First, ILP provides an excellent
framework for learning in multi-relational domains. Second, the theories learned
by general purpose ILP systems are in a high-level formalism often understand-
able and meaningful for the domain experts. We believe that these two reasons
mostly explain the success of ILP systems in several well known industrial and
scientific relevant problems [1,2,3,4]. The success usually comes at a price, and
in the case of ILP systems the price is long execution times. For complex appli-
cations, ILP systems can take several hours, even days, to return a theory.

Research on reducing the execution time of ILP systems has deserved plenty
attention in the last years. The proposed approaches are very diverse, rang-
ing from new algorithms (see e.g., [5,6,7]), reducing the number of hypothe-
ses generated (see e.g., [8,9,10]), to efficiently testing candidate hypotheses (see
e.g., [11,12]), just to mention a few. A quite different line of research to re-
duce the execution time of ILP systems is through parallelization. This has
been pointed out as a promising approach to improve efficiency by several re-
searchers [13,14,15].

In this paper we survey the current state-of-the-art research on parallel ILP.
The many implementations described in the literature are succinctly presented
together with reported results. A comparison of the algorithms based only on

S. Kramer and B. Pfahringer (Eds.): ILP 2005, LNAI 3625, pp. 136–153, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Strategies to Parallelize ILP Systems 137

their reported results is hard since they were observed on different systems,
datasets, and platforms. We thus implemented three parallel algorithms, that
accomplish the main parallelization strategies that we have identified, and stud-
ied their performance using three well known applications and the same test
environment (i.e., the same underlying ILP system and the same parallel ar-
chitecture). The three parallel implementations were evaluated on a distributed
memory architecture.

The remainder of this paper is organized as follows. Section 2 provides some
background on parallelism and describes a generic ILP algorithm. Section 3
describes the main strategies to parallelize ILP systems and in Section 4 a survey
of the parallel ILP implementation is made. In Section 5 is made an evaluation
of three parallel algorithms. In Section 6 we present the conclusions.

2 Background

In this section we start by providing a small introduction to parallelism and then
describe a generic sequential covering algorithm.

2.1 Parallelism

By expressing parallelism in an algorithm one aims to improve its performance.
However, designing efficient parallel algorithms is still a difficult task as there are
many factors that can influence efficient parallel execution, for example balancing
the work among the available processors and controlling communication costs in
a distributed parallel architecture.

In order to clarify the discussion about parallel algorithms in ILP, we shall
first briefly define common terms. A task is typically a program (or set of in-
structions) that is executed by a processor. Parallel tasks are tasks whose com-
putations are independent of each other, so that all such tasks can be performed
simultaneously with correct results. The maximum number of tasks that can be
executed simultaneously at any time in a parallel algorithm, determines the de-
gree of parallelism of the application program. The granularity of a task measures
the ratio between the time a task takes to be executed and the corresponding
overhead time required to schedule that task. The higher the ratio (coarse-grain
parallelism) the better to scale up parallel execution.

A sequential algorithm is usually evaluated in terms of its execution time
(sometimes expressed as a function of the size of its input data). The execu-
tion time of a parallel algorithm depends on the number of processors used,
interprocess communication speed, and size of the input data.

One would expect that increasing the number of processors results in a pro-
portional decrease of the execution time of a program, but this is rarely observed
due to overheads associated with parallelism. There are three major sources of
overheads: interprocess communication, idling, and extra computation.

A number of performance metrics have been devised to be used in the study
of parallel algorithms performance [16]. The serial runtime (TS) of a program
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is the time elapsed between the beginning and the end of its execution on a
sequential computer. The parallel runtime (TP ) is the elapsed time from the
beginning of the parallel computation until it ends. Speedup (S) is the most
often used measure when studying the performance of parallel algorithms. It
captures the relative benefit of solving a problem in parallel and is defined as
the ratio between the time taken to solve a problem on a single processor and the
time required to solve the same problem on a parallel computer with p identical
processors.

S =
TS

TP

Theoretically, the speedup can never exceed the number of processors p. In
practice, a speedup greater than p, called super-linear speedup, is sometimes
observed. This happens when the work performed by a sequential algorithm is
greater than its parallel version or due to hardware features that slowdown the
sequential algorithm (for instance, as a result of using slower memory, i.e., disk).

2.2 Generic ILP Algorithm

A plethora of rule learning algorithms [17], ILP algorithms included, use a vari-
ant of the generic covering algorithm (also called separate-and-conquer). An
example of a generic covering algorithm is presented in Figure 1. This algorithm
learns one rule at a time using some generalization procedure that performs a
search through an ordered space of legal rules. After finding a rule, all covered
positive examples are separated (removed) from the training set and the next
rule is learned from the remaining examples. Rules are learned until no positive
examples are left or some other stopping criteria is met.

covering(E+,E−,B)
Input: set of positive (E+) and negative (E−) examples, and background knowledge
(B)
Output: A set of rules (RulesLearned)
1. Rules Learned = ∅
2. while E+ �= ∅ do

3. R = learn rule(E+, E−, B)
4. Rules Learned = Rules Learned ∪ {R}
5. B = B ∪ {R}
6. E+ = E+ \ {Examples Covered by R}
7. end while

8. return Rules Learned

Fig. 1. A generic covering algorithm. learn rule() should return a (the best) rule that
explains a subset of the positive examples(E+).
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Most ILP systems use some variant of the generic covering algorithm. The
main difference between the existing ILP systems and algorithms that use a
variant of this covering algorithm (e.g., [18,19,20]) concerns the learn rule()
procedure (step 3). Given a set of examples and prior knowledge, the procedure
returns a consistent rule (clause) that explains some or all positive examples.
This procedure is the most time consuming and will be described next in more
detail.

learn rule(E+,E−,B)
Input: set of positive (E+) and negative (E−) examples, and background knowledge
(B)
Output: The “best” rule
1. Good = ∅
2. S = START RULE
3. Pick = pickRule(S)
4. NewRule = genNewRule(Pick)
5. V al = evalOnExamples(NewRule)
6. if is good(NewRule, V al) then Good = NewRuleendif
7. S = S \ {Pick}
8. if stop criterium satisfied then return bestOf(Good) endif

9. goto 3

Fig. 2. An example of a generic learn rule() procedure

The learn rule() procedure, as described in Figure 2, searches the (poten-
tially infinite) hypothesis space for a rule that optimizes some quality criteria.
At each node of the search one rule is generated and evaluated. The evaluation
of a rule usually requires the computation of its coverage, i.e., computing how
many examples the rule explains. The time taken to compute the coverage of
a rule depends, primarily, on the number of examples. Thus, scalability prob-
lems may arise when dealing with a large number of examples or/and when the
computational cost of evaluating a rule is high.

3 Strategies for Parallelizing ILP Systems

Parallel algorithms aim to divide the work among the available processors so
that a solution is achieved as fast as possible. The main difficulty faced by
implementors is how to efficiently divide the work. Ideally, one would want to
divide the computation and data evenly, and, at the same time, minimize the
communication among processors, striving for a coarse-grained parallelism.

We classify the strategies to parallelize ILP systems described in the liter-
ature into four main approaches: parallel exploration of independent hypothe-
ses [21]; parallel exploration of the search space [22,21,23,24]; parallel cover-
age test [21,25,26]; parallel execution of an ILP system over a partition of the
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data [27,22,25]. Surely, one could consider other views, however, we consider
that these cover the main approaches to parallelize an ILP system. A parallel
algorithm may not fit solely in a single strategy, but may combine several. Each
strategy is next described in detail.

3.1 Parallel Exploration of Independent Hypotheses

Parallel exploration of independent hypotheses is performed as follows. Let n be
the number of classes of the target predicate. Learning each class value is an
independent task and can be done in parallel. This procedure requires that each
processor owns a replica of the whole data.

Parallel exploration of independent hypotheses has a major drawback: it is
not a general approach. It is adequate only for applications where the target
predicate is composed by several independent predicates. Learning a definition
of the target predicate can be seen as learning several sub-concepts, correspond-
ing each subconcept to a class value. Since the induction of sub-concepts is
inherently independent, it can be easily performed in parallel, For instance,
consider the task of learning a predicate that classifies emails into categories
such as priority(+Email,-Priority), where Priority ∈ {low, medium, high}.
The task of learning can thus be divided into 3 subtasks, one learning task for
priority(+Email,low), other for priority(+Email,medium), and priority
(+Email, high).

The degree of parallelism of this strategy corresponds to the number of sub-
concepts. The granularity is very high, since the learning of each subconcept
corresponds to calling an ILP system to learn n sub-concepts independently.

3.2 Parallel Exploration of the Search Space

The search for a hypothesis involves traversing the generalization lattice in some
way (e.g., top-down, bottom-up, bidirectional). The search space can be divided
and explored in parallel by each processor to find a hypothesis.

The degree of parallelism and granularity of this strategy depends on the
approach adopted to divide the search space.

3.3 Data Parallelism

Data parallelism consists in partitioning the data in subsets, assigning each sub-
set of data to a processor. Each processor applies an algorithm (or part of an
algorithm, e.g., coverage test) or the whole sequential ILP algorithm, on its local
data. Generally, data partitioning is usually performed in the beginning of the
execution. This happens because it is expensive to reassign the examples during
execution, i.e., perform load-rebalancing.

A problem arises when a sequential ILP algorithm is applied to a subset of the
training data: the hypotheses may be locally consistent and complete, but they
may not be globally consistent. A solution to this problem may involve sharing
the locally good hypotheses among all processors to obtain a global view.
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Another problem, that results from partitioning the set of positive examples,
is the impossibility of learning recursive rules. The only solution to this problem
is the replication of the set of positive examples through all processors while
dividing the set of negative examples.

The degree of parallelism of this strategy depends on the size of the data.
The granularity depends on the algorithm applied to the dataset and size of the
data.

3.4 Parallel Coverage Tests

The time to compute a hypothesis coverage depends on the cardinality of E+

and E−. Each example can be independently tested to determine if it is entailed
by a rule h and the background knowledge B. The parallel coverage test strategy
consists in performing the coverage test in parallel, i.e., for each example e ∈ E
the coverage test (B ∧ h � e) is performed in parallel.

The degree of parallelism depends on the number of examples evaluated in
parallel by each processor. The granularity in this strategy is, relatively, low.
However, the granularity can be enlarged either by increasing the number of
examples of each processor or/and by evaluating several rules in parallel instead
of a single one.

4 Parallel ILP Systems

We next survey the parallel ILP implementations, focusing on the strategy used
and results reported.

The first parallel ILP system we are aware of is Claudien [27]. The algorithm
followed a strategy based on parallel exploration of the search space where each
processor keeps a pool of clauses to specialize, and shares part of them to idle
processors (processors with an empty pool). In the end, the p set of clauses found
are combined and returned as the solution. One should note that Claudien follows
a non-monotonic setting of ILP instead of the usual normal ILP setting. The
parallel system was evaluated on a shared-memory computer with two datasets
and exhibited a linear speedup up to 16 processors.

Matsui et al. [22] evaluated and compared data parallelism (background
knowledge and the set of examples) and, what they called, parallel exploration
of the search space. The later approach consisted in evaluating, in parallel, the
refinements of a clause, therefore, corresponding to a strategy based on parallel
coverage tests. The two strategies were implemented in the FOIL [19] system and
were evaluated on a distributed memory computer using the trains dataset [28].
The results of the search space parallel approach showed very low speedups.
The reason pointed out by the authors for the poor results was that the size of
the divided tasks may not be all the same, hence reducing the efficiency. The
other two approaches based on data parallelism (background knowledge and the
set of examples) showed a linear speedup up to 4 processors. The speedup de-
creased above 4 processors as a result of an increase in communication due to
the exchange of the training set.
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Ohwada and Mizoguchi [21] implemented an algorithm (based on Inverse
Entailment) using a logic programming parallel language that explored three
types of parallelism: parallel coverage tests; parallel exploration of independent
hypotheses; and parallel exploration of the search space (each processor followed
a branch of the search space). The parallel system was applied to three variants
of an email classification dataset and the experiments performed evaluated each
strategy. The results on a shared-memory parallel computer showed a non linear
speedup in all strategies. The strategy that appears to show better results, on
average, was the parallel coverage tests.

Ohwada et. al [23] implemented an algorithm that explores the search space
in parallel. The job allocation (set of nodes to be explored) was dynamic and
was implemented using contract-net [29] communication. The parallel system
was evaluated on two datasets and showed an almost linear speedup on a ten-
processor parallel machine.

Wang and Skillicorn [25] parallelized the Progol [30] system by partition-
ing the data and applying a sequential algorithm to each partition. The data
partitioning consisted in dividing the positive examples among all processors
and by replicating the negative examples. Each processor applies the sequential
algorithm on its local data to find a locally good clause. Such clause is then
shared among all processors to evaluate its quality on the whole training set.
If a processor considers that a clause is globally good then it exchanges this
information with all processors, so that all processors may add the clause to the
local theory and remove the examples explained by the clause. It is important
to point out that this algorithm is not complete in relation to the sequential
algorithm, i.e., the theory found by the parallel algorithm may be different to
the one found with the sequential algorithm. The evaluation of the algorithm
focused on speedup and did not allow the assessment of the impact on accu-
racy. They reported double and linear speedups in their experiments with three
datasets. The experiments were performed on shared-memory machines (with 4
and 6 processors).

Graham et al. [26] implemented a parallel ILP system, using the PVM [31]
message passing library. They employ data partition and parallel coverage tests
of parts of the search space on each processor. They reported an almost linear
speedup up to 16 processors on a shared memory machine.

Konstantopoulos [32] implemented a data parallel version of the Aleph [20]
system using MPICH [33] MPI [34] library. His algorithm performs the coverage
tests evaluation in parallel. This approach, although very similar to the one of
Graham et al., it only evaluates in parallel a single clause at a time while Graham
et al. evaluates a set of clauses. The smaller granularity of the parallel tasks, in
Konstantopoulos’ approach, is, probably, the main reason for the poor results
presented.

Wielemaker [24] implemented a parallel version of Aleph for shared memory
machines. The strategy adopted was parallel exploration of the search space.
The algorithm exploits parallelism by executing concurrently several random-
ized local searches [6] and was implemented on top of the Aleph system. The
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implementation was evaluated on the Carcinogenesis [4] dataset. The Aleph sys-
tem was configured to perform 16 random restarts, and made 10 moves per
restart, on each processor. The reported speedups (e.g., 7 on 16 processors) can
be considered low when compared to other shared memory implementations. In
spite of the results, this is an interesting proposal that could accomplish better
results if the granularity of the tasks is enlarged. This can be easily accomplished
by increasing the number of moves or the number of restarts done by each thread.

PolyFarm [35] is a parallel ILP system for the discovery of association rules
targeted to distributed memory architectures. The system follows a master-
worker scheme. The master generates the rules and reports the results. The
workers perform the coverage tests of the set of rules received from the mas-
ter on the local data. The counts are aggregated by a special type of worker
(Merger) that reports the final counts to the master. No empirical evaluation of
the system was presented in [35].

Table 1. Summary of the parallel ILP implementations and reported results

Strategy Arch. Speedup/#procs. Work

Parallel
exploration of

the search space

Shared
Memory

linear/16 [27]
3/6 [21]
7/16 [24]
8/10 [23]

Parallel
exploration of
independent
hypotheses

Shared
Memory

2/6 [21]

Parallel coverage
tests

Distributed
Memory

1/15 [22]
no [32]

Shared
Memory

4/6 [21]
5/8 [26]

Data Parallelism

Distributed
Memory

4/15 (linear upto 5) [22]

not reported [35]
Shared
Memory

linear and super-linear/6 [25]
5/8 [26]

Table 1 summarizes the survey by presenting for each parallelization strat-
egy the implementations made, targeted computer architecture, and reported
results. The first observation concerns the fact that the majority of the parallel
implementations were made for shared memory architectures, where the cost
of data transmission is very low when compared to distributed memory archi-
tectures. In spite of the high cost of the communication, parallel ILP systems
targeted for distributed memory computers may still achieve good speedups (see
e.g., [22]). The results reported are generally good on all strategies except the
parallel coverage test. The results reported with this strategy differ considerably
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if the target architecture is shared memory or distributed memory. The poor re-
sults of the latter can be explained by the higher communication cost not being
compensated by the granularity of the tasks.

Even though most implementations just described were for shared memory
machines, we share the view of the recent work reported [32,26], that is, to tar-
get distributed memory architectures when parallelizing ILP systems, therefore
favoring coarse grain approaches.

5 An Evaluation of Parallelization Strategies

In the previous section we summarized current state-of-the-art research on par-
allel ILP algorithms. It is hard to compare the results of the referred implemen-
tations since they were observed on different systems, platforms, and datasets.
We implemented on a distributed memory architecture three parallel algorithms
based on the most general strategies, namely parallel exploration of the search
space, parallel coverage tests, and data parallelism. No algorithm was imple-
mented based on parallel exploration of independent hypotheses because, as
discussed before, this strategy is not applicable to all applications. By imple-
menting these strategies on the same platform, using the same techniques to
distribute work among the processing units, and the same applications, we were
able to make a fair comparison.

5.1 Parallel Algorithms

We started with a sequential implementation of the April [36] ILP system. The
main loop of April’s algorithm is similar to the covering algorithm presented in
Section 2.2. For simplicity of presentation, all algorithms follow a master-worker
scheme. In the beginning of the execution the worker enters a loop and waits for
requests from the master. The master shares one processing unit with one of the
workers.

The parallel algorithms were implemented using the Prolog language. For the
communication layer we used LAM [37] MPI. LAM is a high-quality open-source
implementation of the Message Passing Interface (MPI) specification, that can
be used for applications running in heterogeneous clusters or in grids. Since the
development was made in Prolog and LAM does not provide a native YAP Prolog
interface, we had to develop a Prolog module for YAP, using the C language, to
act as an interface between Prolog and LAM/MPI libraries.

The implemented algorithms are next described. For each algorithm, we refer
the reader to Figure 3 for a schema of the messages exchanged between the
master and the workers.

Parallel Coverage Tests (pct). A clause is dispatched for a processor to be
evaluated on the local subset of examples. The master algorithm is similar to
the covering algorithm of Section 2.2 with two main changes: first, the examples
are divided evenly among the processors in the beginning of the execution (this
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could be done in the first line of the covering algorithm) and are then loaded
by each worker; secondly, line 5 of the learn rule is changed to

broadcast(evalOnExamples(NewRule))
Val = collectAndCombine()

where broadcast() is a procedure that sends a command to all processors to
be executed, each processor executes the command and returns the result to
the master. This corresponds to each slave evaluating a rule against its local
set of examples and then returning the coverage value. The master collects and
combines the coverage information using the collectAndCombine() procedure.
This algorithm is basically the algorithm implemented by Konstantopoulos [32].
However, there are two main differences at the implementation level: i) we used
asynchronous message passing communication for all operations involving the
sending of a message, while Konstantopoulos only used synchronous message
passing operations; ii) our implementation was done with LAM as opposed to
the MPICH platform used by Konstantopoulos.

Data Parallel Learn Rule (dplr). This algorithm is based on the Wang et
al. [25] algorithm mentioned in the previous section but it is next described in
more detail.

Rules Learned = ∅
< (E+

1 , E−), . . . , (E+
p , E−) >=partition E+ into p subsets

broadcast(load files)
while ∪p

k=1E
+
k �= ∅ do

RulesBag=collect(broadcast(learn rule()))
while RulesBag �= ∅ do

Results=collect(broadcast(eval(RulesBag)))
R=pickBest(RulesBag)
RulesBag=RulesBag \ {R}
Rules Learned=Rules Learned ∪ {R}
collect(broadcast(addRule2Theory(R)))

end while
end while
return Rules Learned

The algorithm consists of 1) dividing the set of positive examples among all
processors and replicating the negative examples; 2) learning p rules in paral-
lel (line 3 of the covering algorithm) starting at different points of the search
space (using different seeds), where p is the number of processors available; 3)
exchanging rules found among all processors to obtain their coverage values on
the whole training set; 4) selecting a rule and mark examples covered on all
subsets.
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Fig. 3. Simplified schemes of the messages exchanges by the parallel algorithms. Solid
lines represent the execution flow, horizontal dashed lines message passing between
the processes, and vertical dashed lines idleness. The algorithms are ordered by the
granularity of their parallel tasks, from the finest-grained to the most coarse-grained.
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The AddRule2theory(R) performs steps 5 and 6 of the covering algorithm of
Section 2.2, i.e., adds the rule to the background knowledge, marks the examples
locally covered, and returns the number of examples locally covered.

Note that the first algorithm described in this section returns the same so-
lution as the sequential algorithm, whereas this algorithm may not return the
same solution due mainly to the order by which the rules are found and added
to the theory.

Data Parallel ILP (dpilp). This algorithm starts by dividing the set of exam-
ples (positive and negatives) among all processors. It then induces p theories in
parallel, using the covering algorithm on each subset, and then combines the p
theories found using the whole training set. The combination of the theories (i.e.,
rules that compose the theories) can be made using several strategies (e.g., [38]).
In order to make the comparison with the sequential algorithm more clear, we
chose a simple strategy, very similar to the one used by the sequential algo-
rithm. The rules are ordered using a metric (coverage in our implementation).
The best rule is added to the theory and the remaining rules are reevaluated
and reordered. The process is repeated while there are good rules to add to the
theory. Like the previous algorithm, the solution returned by this algorithm may
not be the same as the sequential version. It is obvious that this algorithm has
the largest granularity of the three algorithms.

5.2 Materials

We used 3 ILP applications in the experiments. Table 2 characterizes the datasets
used, in terms of number of examples (positive and negative) as well as back-
ground knowledge size (i.e., number of relations used in the learning task). AET
is the average time required to test if an example is explained by a rule. This
value is presented in microseconds and was estimated by dividing the sequen-
tial execution time by the number of examples evaluated during execution. This
estimative of the cost of evaluating an example is a useful indicator when one
considers the use of a parallelization strategy based on parallel coverage tests.

Table 2. Datasets Characterization

Dataset | E+ | | E− | | B | AET (μs)

Carcinogenesis [4] 162 136 38 305
Mesh [2] 2272 223 29 46
Mutagenesis [1] 114 57 21 20846

The experiments were performed on a Beowulf Cluster composed by 8 nodes.
Each node is a dual processor computer with 2GB of memory, and running
the Linux Fedora OS. We used the YAP Prolog system version 4.5. The ILP
system was configured to perform breadth-first search to find a rule. The search
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was guided using a heuristic that relies on the number of positive and negative
examples.

We used 3-fold cross validation. The evaluation was focused on training time
speedup and accuracy. We measured the accuracy because two of the imple-
mented parallel algorithms may produce theories different from the ones ob-
tained with the sequential version. The accuracy variation is the ratio between
the predictive accuracy observed when using P processors and the predictive
accuracy observed when using a single processor.

Table 3. Settings

Dataset i-depth Nodes Noise Minacc CL

Carc 4 20000 5% - 10
Mesh 4 10000 10% 85% 8
Mut 2 500 25% 70% 4

We tuned the settings so that the sequential runs would not take more than
one hour to complete (except for the Mut dataset). Table 3 shows the main
settings used for each dataset. The parameter nodes specifies an upper bound
on the number of rules generated during a search for a rule. The i-depth [39]
corresponds to the maximum depth of a literal with respect to the head literal of
the rule. MinAcc specifies the minimum accuracy that a rule must have in order
to be considered good. The parameter CL defines the maximum length that a
rule may have. Finally, the noise parameter defines the percentage of negative
examples that a rule may cover in order to be accepted.

5.3 Results

Table 4 presents the execution time (in seconds) and speedups observed, on
each dataset and algorithm, for 1, 2, 4, 6, 8 and 16 processors. Some runs were
not performed for one of two reasons: i) no speedup would be achieved; ii) the
subset of data associated to each processor becomes too small (for the dplr or
dpilp algorithms).

The effects on execution time of the parallel coverage tests approach (pct)
show quite different behaviors. In the Carc and Mesh datasets the parallel
version is slower than the sequential one, while in the Mut dataset a considerable
speedup is observed. Since the Mut dataset has less examples than the other two,
we can only deduct that the higher cost of evaluating an example (see Table 2) is
the main reason for the speedups. However, when the subset becomes too small,
as is the case for 16 processors, we stop obtaining gains.

The poor results with the Carc and Mesh suggest that the distribution of
the work, and consequent parallel evaluation of the examples, is not compensated
by the cost of message passing. Clearly, this fine-grain approach to parallelize ILP
system seems only suited for datasets with a complex background knowledge,
where the cost of evaluating an example is high, or for very large datasets (as the
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Table 4. Execution time (T) and speedup (S)

Dataset 1 2 4 8

Carc T 416 554 999 -
S 0.75 0.42 -

Mesh T 717 948 912 901
S 0.76 0.79 0.80

Mut T 8,022 4,565 2,502 -
S 1.75 3.20 -

a) pct

Dataset 1 2 4 8 16

Carc T 416 311 180 530 -
S 1.34 2.31 0.79 -

Mesh T 717 1,904 1,347 608 592
S 0.38 0.53 1.18 1.21

Mut T 8,022 6,339 3756 - -
S 1.26 2.13 - -

Dataset 1 2 4 8 16

Carc T 416 347 129 81 -
S 1.20 3.23 5.17 -

Mesh T 717 260 207 165 164
S 2.75 3.46 4.35 4.37

Mut T 5,865 6,339 3,756
S 1.26 2.13 - -

b) dplr c) dpilp

number of examples is concerned) where the parallel evaluation of the examples
on a subset outweighs the parallel overhead. A way of increasing the granularity
of the parallel task is to evaluate in parallel a set of rules, as proposed in [35],
instead of evaluating a single rule.

The impact of the dplr algorithm on the execution time is variable. In the
Carc dataset a speedup is observed up to four processors and is nonexistent for
eight processors. Interestingly, in the Mesh dataset, although we do not get a
speedup for two and four processors, we observe a decrease in the execution time
as the number of processors increases. A small speedup is observed with 8 and
16 processors.

One should note that the order by which the rules are found and added to
the theory is a crucial factor to the execution time since it conditions the amount
of the hypotheses space traversed. Recall that each worker gets a subset of E+

but all E−. If one of the workers does not find a globally “good” rule using its
local subset, it will have to do a more extensive search. This may happen when
a rule has an accuracy bellow the threshold, in the subset of the data where is
being generated (thus not being considered good), and is above the threshold if
the whole dataset is considered We observed that the final set of rules found by
the dplr algorithm is far bigger than the set found by the sequential algorithm
and that the rules are also lengthier. This suggests that the algorithm is unable
to find a small number of simple rules.

The dplr is a master-worker implementation of the algorithm described by
Wang et al. [25]. The results reported here are quite different from the ones pre-
viously reported. In [25] super-linear speedups (up to 6 processors) were reported
while the speedups we found are not even linear or, in some cases, inexistent.
The reason for this is two-fold. First, Wang et al. run the experiments in a shared
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Table 5. Variation on predictive accuracy

Dataset Alg. 2 4 8 16

Carc
(56%)

dplr +5% +14% -1% -
dpilp +4% -5% +10% -

Mesh
(72%)

dplr -25% -25% - -
dpilp +17% +21% +23% +25%

Mut
(86%)

dplr -2% -13% - -
dpilp -1% -12% - -

memory machine while we run on a distributed memory machine (a cluster, in
fact). Second, in the experiments performed by Wang et al. no good rules were
lost while learning because they did not define parameters, such as minimum
accuracy or minimum coverage. These parameters are used when considering if
a rule is good or not. However, when dealing with real world applications, these
parameters are often used to make the learning process more tractable and to
discard rules with very low coverage that may represent “overfitting”.

Since the dplr is not complete, when compared to the sequential algorithm,
the predictive accuracy of the theory found may vary. In Table 5 we can see
that predictive accuracy is affected negatively by the use of this algorithm. The
reason for this is also related to loosing “good” rules while looking for a rule in
the subsets. The theories found by the algorithm are composed by much more
specific and lengthier rules than the ones found by the sequential version.

The results obtained with the dpilp algorithm are clearly the best ones. This
algorithm not only provides a consistent speedup but can also improve the theory
predictive accuracy. dpilp differs from dplr in the amount of negative examples.
In dpilp a worker gets a percentage of the total negatives whereas in dplr each
worker gets a percentage of the positives but all of the negatives. dpilp also needs
much less communication among the processors. This confirms the theory that
greater task granularity results in bigger speedups.

6 Final Remarks

This paper has two main contributions: first, it surveys the state-of-the-art on
parallel ILP implementations; secondly, the performance impact of three par-
allel algorithms on a distributed memory computer is studied using real world
applications.

The parallel ILP algorithms described in the literature were grouped into
four main approaches: parallel exploration of independent hypotheses; parallel
exploration of the search space; parallel coverage test; parallel execution of an
ILP system over a partition of the data. Parallel exploration of independent
hypotheses is not a general approach since it is only adequate for applications
where the target concept is composed by several independent subconcepts. How-
ever, when this approach is applicable it can be combined with other approaches
to learn the subconcepts.
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Three algorithms were implemented based on the three more generic strate-
gies: parallel exploration of the search space; parallel coverage test; parallel ex-
ecution of an ILP system over a partition of the data. The results show that a
good approach to parallelize ILP systems in a shared-memory computer is one of
the simplest to implement: divide the set of examples into p subsets; run the ILP
system in parallel on each subset; combine the theories found. This approach not
only reduces the execution time but can also improve predictive accuracy.

We have also noticed a significant difference between shared and distributed
memory machines. In shared memory machines the communication overhead is
significantly reduced and strategies, like dlpr, may give super-linear speedups.
However, in distributed memory machines, where the communication costs are
higher, fine-grained strategies are severely penalized.

A natural extension of this work is to perform a larger experimental eval-
uation over a greater number of datasets. This could provide us more insights
about the applicability of each strategy. It would also be interesting to extend
the evaluation of the strategies to shared memory architectures.

Acknowledgments. We are thankful to the anonymous referees for their valuable

comments. The work presented in this paper has been partially supported by project

APRIL (Project POSI/SRI/40749/2001) and funds granted to LIACC through the

Programa de Financiamento Plurianual, Fundação para a Ciência e Tecnologia and

Programa POSI. Nuno Fonseca is funded by the FCT grant SFRH/BD/7045/2001.

References

1. A. Srinivasan, S. Muggleton, R.D. King, and M.J.E. Sternberg. Mutagenesis: Ilp
experiments in a non-determinate biological domain. In S. Wrobel, editor, Proceed-
ings of the 4th International Workshop on Inductive Logic Programming, volume
237 of GMD-Studien, pages 217–232, 1994.

2. B. Dolsak, I. Bratko, and A. Jezernik. Machine Learning, Data Mining and Knowl-
edge Discovery: Methods and Applications, chapter Application of machine learning
in finite element computation. John Wiley and Sons, 1997.

3. Muggleton S., King R.D., and Sternberg M.J.E. Predicting protein secondary
structure using inductive logic programming. Protein Engineering, (5):647–657,
1992.

4. A. Srinivasan, R. D. King, S. Muggleton, and M. J. E. Sternberg. Carcinogenesis
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Abstract. Recent work on representing action and change has intro-
duced high-level action languages which describe the effects of actions as
causal laws in a declarative way. In this paper, we propose an algorithm
to induce the effects of actions from an incomplete domain description
and observations after executing action sequences, all of which are repre-
sented in the action language A. Our induction algorithm generates effect
propositions in A based on regular inference, i.e., an algorithm to learn
finite automata. As opposed to previous work on learning automata from
scratch, we are concerned with explanatory induction which accounts for
observations from background knowledge together with induced hypothe-
ses. Compared with previous approaches in ILP, an observation input to
our induction algorithm is not restricted to a narrative but can be any
fact observed after executing a sequence of actions. As a result, induction
of causal laws can be formally characterized within action languages.

1 Introduction

In a dynamic domain, an agent needs the ability to react against environment
changes to generate a robust plan for a long-term goal. In planning, one should
prepare knowledge about actions, i.e., the precondition and the effects of each
action in the form of causal laws. In the real world, however, it is difficult or
impossible to describe the complete causal laws for a domain. Then, it is easier
to get observations after executing several actions. Such observations include
fluents which hold in a narrative as well as information obtained by contacting
with environments through some actions. Hence, we have the problem of inducing
causal laws : given an incomplete description of a domain and observations after
executing action sequences, find missing causal laws which enable to make the
action sequences actually perform planning.

Induction of causal laws has recently become important for agents to rea-
son about actions in dynamic worlds. Moreover, emergent applications such as
robotics, bioinformatics and environmental problems involve temporal aspects
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and state changes. However, although there have been many tools to discover
association rules, their applications would merely discover fluents that change to-
gether, which mostly fail to find causal relationships. Hence, induction of causal
laws requires taking temporal aspects into account. In ILP, some previous at-
tempts contribute to this problem [12,11,10,9,15,16]. Unfortunately, they are
not sufficiently powerful to induce causal laws in a general setting. In particular,
previous methods often assume the existence of (complete) narratives.

On the other hand, recent work on representing action and change has in-
troduced high-level action languages [6] to describe the effects of actions in a
systematic and theoretically sound way. Gelfond and Lifschitz [5] firstly used
this approach by introducing the action language A, which is a simple action
language allowing only deterministic actions without state constraints. The lan-
guage A enables us to encode causal laws1 in a domain, and is adequate to
capture commonsense reasoning with the law of inertia, whose implementation
can be realized in extended logic programs with two kinds of negation [5]. The
formal semantics of A is mathematically of interest since each model represents
a state transition system, which is a directed graph whose vertices represent the
states of the world, and whose edges correspond to the execution of actions.
Various extensions of A have been proposed in the literature, e.g., [2,7,17], yet
all languages have the semantics similar to that of A in principle [6]. Recent
work on causal theories [8] has also strong relationships with action languages
[7]. In [14], it is shown that the expressive power of A is exactly the same as that
of finite automata (FAs) in the sense that each language can precisely simulate
the other. The equivalence result between A and FAs enables us to characterize
the set of all possible solutions of a planning problem by a regular expression.

Although the language A is very simple, it has two unique features that
cannot be seen in other extended action languages: (1) A can be used as both
action description language and action query language [2], and (2) A can be
used not only for temporal projection, i.e., reasoning from the initial state to the
goal state, but for temporal explanation, i.e., reasoning about the past. These
features enable us to use the language A for inducing causal laws from an in-
complete domain description and observations. In this paper, we propose an
algorithm to induce causal laws from incomplete domain description and obser-
vations after executing action sequences, in which all knowledge are represented
in A. By equivalence between A and FAs, we adopt an algorithm for regular
inference, i.e., an algorithm to learn FAs [1,3], and call it in finding a missing
part of a state transition system. As a regular inference algorithm, we use one
by Dupont et al. [3] which infers the canonical FAs accepting all strings in the
given sample. Our induction algorithm takes action sequences deriving some goal
fluents as the positive sample and action sequences deriving states that contra-
dict goals as the negative sample. Then, we infer automata which agree with the
state transition by those input action sequences, and then generate causal laws

1 When A was proposed in [5], the notion of causality has not been fully identified
yet. Now a “causal law” is reserved for a different kind of law in action theories [8],
but we adopt this term since it is in common use to denote cause and effect.
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from the induced automata. However, as opposed to previous work on learn-
ing automata from scratch, we are concerned with explanatory induction which
accounts for observations from background knowledge together with induced hy-
potheses. Moreover, compared with previous approaches in ILP, an observation
input to our induction algorithm is not restricted to a narrative with complete
information of intermediate states, but can be any fact observed after executing
a sequence of actions.

The rest of this paper is organized as follows. Section 2 reviews the language
A and shows equivalence between A and FAs, and Section 3 reviews regular
inference. Section 4 presents an algorithm to induce causal laws in A, and proves
the correctness of the algorithm, then applies it to infer the models of a causal
theory. Section 5 discusses related work, and Section 6 concludes the paper.

2 Action Language A
The action language A consists of two sets of symbols, action names and fluent
names, and two sets of propositions, value propositions and effect propositions.
In this paper, we assume that the numbers of symbols and propositions in a
domain description are finite.

A fluent is an attribute that may depend on states. For a fluent name f , ¬f
is a negative fluent, and f is a positive fluent. When we say a fluent f , it means
either a positive fluent or a negative fluent. For a set of fluents F = {f1, . . . , fn},
|F |± denotes the set of positive and negative fluents constructed with the fluent
names appearing in F , that is, |F |± = {f1, . . . , fn} ∪ {¬f1, . . . ,¬fn}.

A value proposition is an expression of the form:

f after a1; · · · ; am (m ≥ 0) (1)

where f is a fluent, a1, . . . , am are action names, and a1; · · · ; am denotes the
sequence of actions starting from a1 until am. The expression of the form (1) is
also called a value proposition with respect to f . Each value proposition repre-
sents an observation that f holds after executing an action sequence a1; · · · ; am

at the initial state. If m = 0, we write (1) simply as

initially f. (2)

An effect proposition is an expression of the form:

a causes f if p1, . . . , pm (m ≥ 0) (3)

where a is an action name, and f and pi (i = 1, . . . , m) are fluents. Each effect
proposition represents a causal law specifying the precondition p1∧ · · · ∧pm and
the effect f for each action a. If m = 0, we will write (3) simply as

a causes f.

For an effect proposition P = (a causes f if p1, . . . , pm), the fluents in the
precondition and the effect of P are denoted as cond(P ) = {p1, . . . , pm} and
effect(P ) = f , respectively.
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A domain description is a set of value and effect propositions. For a domain
description D, action(D) is the set of all action names appearing in D, and
fluent(D) is the set of all fluent names included in D. Also, the set of value
propositions in D is denoted as V (D), and the set of effect propositions in D is
denoted as E(D). Note that D = V (D) ∪ E(D) and V (D) ∩E(D) = ∅.

A state q is defined as:2

q = S ∪ {¬f | f ∈ fluent(D) \ S}, where S ⊆ fluent(D). (4)

The set of states constructed from a domain description D is written as state(D).
A transition function Φ is a mapping state(D) × action(D) → state(D). A
structure I is a pair (Φ, q0), where Φ is a transition function and q0 is the initial
state. For any structure I = (Φ, q0) and any action sequence a1; · · · ; am, we define

Ia1;···;am = Φ(Φ(· · ·Φ(Φ(q0, a1), a2), . . . , am−1), am).

A value proposition of the form (1) is true in a structure I if f ∈ Ia1;···;am ;
otherwise, it is false.

A structure I is a model of a domain description D if (i) every value propo-
sition in D is true in I, and (ii) for any action name a and any state q, the
transition function Φ satisfies that

Φ(q, a) = (q \ |F|±) ∪ F , (5)
where F = {effect(P ) | P ∈ E(D), cond(P ) ⊆ q}.

The equation (5) represents that any fluent which is not influenced by execution
of an action keeps its truth value at the state resulting by the execution of the
action. This condition represents the law of inertia, which is how the semantics
of A solves the frame problem. Since there exists at most one transition function
Φ satisfying (5), different models of the same domain description differ only by
their initial states. A domain description is consistent if it has a model, and is
categorical if it has exactly one model. A value proposition (1) is entailed by a
domain description D if it is true in every model of D, and is denoted as:

D |= (f after a1; · · · ; am).

Example 2.1. Here is the Yale Shooting domain represented in A [5].

initially ¬loaded .
initially alive .
load causes loaded .
shoot causes ¬loaded .
shoot causes ¬alive if loaded .

Let D be this domain description. Then, action(D) = {load , shoot} and fluent
(D) = {loaded , alive}. The initial state is q0 = {¬loaded , alive}. Moreover, it
holds that

D |= (¬alive after load ; shoot).
2 In [5], a state is defined as a set of fluent names, where the absence of f denotes the

negative fluent ¬f . This definition is essentially equivalent to ours.
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A (finite) automaton (FA) is a quintuple (Q, Σ, δ, q0, G), where Q is a finite
set of states, Σ is a alphabet, q0 ∈ Q is the initial state, G ⊆ Q is the set of
final states, and δ : Γ → Q such that Γ ⊆ Q × Σ is the transition function.
If a FA has the transition function δ : Q × Σ → Q, i.e., Γ = Q × Σ, it is a
(completely) deterministic FA (DFA); otherwise, it is incomplete. Now, suppose
a domain description D in A. For each model M = (Φ, q0) of D and a given
G ⊆ state(D), we can associate the DFA (state(D), action(D), Φ, q0, G). Then,
it is shown in [14] that the class of domain descriptions represented in A and
the class of FAs are equivalent. The equivalence result is proved by defining the
following algorithms:

– Init(D): computes the initial states of DFAs from a domain description D
(Fig. 1).

– Trans(D): computes every transition function Φ of every DFA from a do-
main description D (Fig. 2).

– RevTrans(M): computes (the effect propositions of) the domain description
D from a FA M (Fig. 4).

– Compress(D): removes redundant effect propositions from a domain de-
scription D (Fig. 5).

The algorithm Init computes initial states efficiently using the concept of sub-
states by representing multiple states together after executing some action. A
substate q is an incomplete description of a state:

q = S1 ∪ {¬f | f ∈ S2}, where S1, S2 ⊆ fluent(D) and S1 ∩ S2 = ∅.

For example, if fluent(D) = {loaded , alive}, the substate {loaded} expresses two
states: {loaded , alive} and {loaded ,¬alive}. The empty substate ∅ expresses all
states. For any fluent name f , the absolute value of f is defined as |f | = f ,
|¬f | = f . Similarly, for a substate q, we define |q| = {|f | | f ∈ q}. The relevant
fluents of an action a is defined as

rel(a) = { |f | | P ∈ E(D), f ∈ cond(P ) ∪ {effect(P )} }.

For any set Q of substates and a fluent f , the function div (Q, f) divides every
substate q ∈ Q into the two substates, q ∪ {f} and q ∪ {¬f}, as:

div (Q, f) =

⎧⎨
⎩
⋃
q∈Q

{ q ∪ {f}, q ∪ {¬f} } if |f | �∈ |q| for any q ∈ Q

Q otherwise.

Similarly, for a set of fluents, we define:

div (Q, {f1, . . . , fn}) = div (· · · div (div (Q, f1), f2), . . . , fn).

Proposition 2.1. [14] Let D be a consistent domain description in A, and I the
set of models of D. Suppose that the set M of DFAs is translated from D, i.e.,
M = Trans(D, Init(D)). Then, there is a one-to-one correspondence between I
and M. Moreover, there is a model (Φ, q0) in I iff there is a DFA in M whose
initial state is q0 and transition function is Φ.
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Init(D) Input: a consistent domain description D in A
Output: the set Q0 of initial states of D.

begin
Q0 := {∅};
for j := 1 to |V (D)| do

j-th value proposition: (f after a1; · · · ; am) ∈ V (D);

T j
0 := div(Qj−1, f);

for i := 1 to m do

T j
0 := div(T j

0 , rel(ai)); T j
i−1 := div(T j

i−1, rel(ai));

T j
i := {NextState(ai, q, D) | q ∈ T j

i−1};
Qj := {q0∈ T j

0 | f ∈ qm, qm ∈ T j
m, NextState∗(a1; · · · ; am, q0, D) = qm};

Q0 := div(Qk,fluent(D))
end.

NextState(a, q, D) Input: an action a, a state q, a domain description D in A.
Output: the state q1 after executing a at q.

begin
q′ := {effect(P ) | P ∈ E(D) and cond(P ) ⊆ q};
q1 := q′ ∪ {f ∈ q | |f | �∈ |q′|}

end.

NextState∗(a1; · · · ; am, q, D) extends NextState to an action sequence a1; · · · ; am.

Fig. 1. Algorithm to compute the set of initial states

Trans(D,Q0) Input: a domain description D in A, a set Q0 of initial states.
Output: the set M of DFAs corresponding to D and Q0.

begin
Q := div({∅}, fluent(D));
for all q ∈ Q and all a ∈ action(D) do

δ(a, q) := NextState(a, q, D);
M := {(Q, action(D), δ, q0, Q) | q0 ∈ Q0}

end.

Fig. 2. Algorithm to compute the transition function

Fig. 3. DFA for the Yale Shooting domain
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Example 2.2. Fig. 3 shows the result of translation of the domain description
D in Example 2.1. Since this domain is categorical, it is translated into a single
DFA. Note that we do not distinguish the final states G here. If we set G as the
two states containing ¬alive , then the unique minimal solution for planning to
realize ¬alive is represented by the regular expression load ; shoot , which is the
minimal string accepted by the FA.

The reverse translation algorithm translates a (possibly incomplete) FA into
a domain description in A. To deal with each state of a FA in the same way as
A, any state of a FA must be represented as a set of fluents in the form (4).
Here, when a FA has n states, !log2 |n|" fluents have to be prepared. To remove
redundant effect propositions from a domain description, the Compress algo-
rithm can be used not only in the translation of FAs to A but in any situation
for simplifying domain descriptions in A.

RevTrans(M) Input: a FA M = (Q, Σ, δ, q0, G).
Output: a domain description D.

begin
D := {(initially f) | f ∈ q0};
D := D ∪{(a causes f if p1, . . . , pn) | a ∈ Σ, q = {p1, . . . , pn} ∈ Q, f ∈ δ(a, q)}

end.

Fig. 4. Algorithm to generate a domain description in A

Compress(D) Input: a domain description D.
Output: a simplified domain description.

begin
while ( it is possible to remove redundant effect propositions from D ) do
1)E = (a causes f if p1, . . . , pn) ∈ D (n ≥ 1);

if f ∈ {p1, . . . , pn} then D := D \ {E};
2)E = (a causes f if p1, . . . , pn) ∈ D (n ≥ 0);

F = (a causes f if q1, . . . , qm) ∈ D (m ≥ n);
if {p1, . . . , pn} ⊆ {q1, . . . , qm} then D := D \ {F};

3)E = (a causes f if p1, . . . , pn) ∈ D (n ≥ 0);
F = (a causes f if q1, . . . , qn) ∈ D;
if ¬pi = qj and {p1, . . . , pi−1, pi+1, . . . , pn} = {q1, . . . , qj−1, qj+1, . . . , qn}

then D := (D\ {E, F}) ∪ {(a causes f if p1, . . . , pi−1, pi+1, . . . , pn)};
4)E = (a causes f if p1, . . . , pn) ∈ D (n ≥ m ≥ 1);

if ¬f = pi (1 ≤ i ≤ n) and
there is no (a causes ¬f if q1, . . . , qm) such that

f ∈ {q1, . . . , qm} and ({q1, . . . , qm} \ {f}) ⊂ ({p1, . . . , pn} \ {¬f})
then D := (D \ {E}) ∪ {(a causes f if p1, . . . , pi−1, pi+1, . . . , pn)}

end.

Fig. 5. Algorithm to simplify domain descriptions
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Proposition 2.2. [14] Let M be any FA, and D = RevTrans(M). Then, D
is categorical, and its unique model has the same initial state and the same
transition function as M .

Proposition 2.3. [14] Let D be a domain description in A. Then, Compress
(D) and D have the same set of models.

3 Regular Inference

By regular inference [1,3], we mean induction of FAs which accept the positive
sample of strings but do not accept the negative sample of strings. An acceptance
of a string a1; · · · ; am by a FA M = (Q, Σ, δ, q0, G) defines a sequence of m + 1
states (q0, . . . , qm) such that qm ∈ G and qi+1 = δ(qi, ai+1) for i = 1, . . . , m− 1.
In this case, the m transitions are said to be exercised by this acceptance, and qm

is called an acceptance state. A set R of strings over Σ is said to be structurally
complete with respect to M if there exists an acceptance of the strings in R by
M such that (1) every transition of M is exercised and (2) every final state of
M is used as an acceptance state.

Given a positive sample R = {ω1, . . . , ωn}, where ωi (i = 1, . . . , n) is a string
over Σ, the prefix tree acceptor (PTA) of R [1], PTA(R) = (Q, Σ, δ, q0, G), is an
automaton accepting R such that

Q = {(a1; · · · ; ai) | (a1; · · · ; am) ∈ R, 1 ≤ i ≤ m} ∪ {ε},
δ(v, a) = (v; a) for v ∈ Q, a ∈ Σ, (v; a) ∈ Q,
q0 = ε,
G = R,

where ε is the empty string. For example, when R = {(a; b; c), (c; d)}, the state
set of PTA(R) is Q = {ε, a, (a; b), (a; b; c), c, (c; d)}, and the transition function
δ satisfies δ(a, b) = (a; b) but δ(a, c) is not defined because (a; c) �∈ Q.

For any FA M = (Q, Σ, δ, q0, G) and a partition π, the quotient automaton
M/π = (Q′, Σ, δ′, q′0, G

′) is defined as:

Q′ = Q/π = {[q] | q ∈ Q},
δ′([q], a) = [r] for δ(q, a) = r,
q′0 = [q0],
G′ = {q ∈ Q′ | q ∩ G �= ∅},

where [s] denotes the unique element of π containing s ∈ Q.
Let π1 = {B1, . . . , Bn} and π2 be two partitions of the state set Q of a FA

M . If π2 = {Bj ∪ Bk} ∪ (π1 \ {Bj, Bk}) holds for some 1 ≤ j, k ≤ n (j �= k), we
define that π1  π2. Let # be the transitive closure of the relation . Then, it
holds that π1 # π2 implies L(M/π1) ⊆ L(M/π2), where L(M) represents the
language accepted by an automaton M . The set of automata partially ordered by
the relation constitutes a Boolean lattice, which is denoted as Lat(M), of which
the bottom and top elements are M and the universal automaton that accepts
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every string, respectively. Let L be a regular language, M(L) the canonical (i.e.,
minimal) FA accepting L, and R a positive sample of L. It is known that, if R is
structurally complete with respect to M(L), then M(L) belongs to Lat(PTA(R))
[3]. Hence, given the positive sample R and the negative sample N , the algorithm
LearnFA(R, N) induces the FAs P by (1) generating PTA(R), (2) constructing
Lat(PTA(R)), and (3) selecting P which do not accept N from Lat(PTA(R)).

4 Induction of Causal Laws

4.1 Problem Definition

We consider the problem of inducing causal laws in the action language A,
which is formally defined as follows. We are given a domain description D in A
as input. Recall that D consists of the two subsets E(D) and V (D), which are
the effect propositions and the value propositions in D, respectively. Here, we
regard E(D) as background knowledge B, and regard V (D) as an observation O
in the induction problem. Note that D = B∪O and B∩O = ∅, where B = E(D)
and O = V (D). Then, suppose that the given description D is inconsistent, that
is, there is no model of D that makes O true. The purpose of induction is to
compute a set γ of effect propositions in A, called a hypothesis, such that D ∪ γ
is consistent. If such a hypothesis γ is found, then for every model I = (Φ, q0) of
D ∪ γ, every value proposition in O is true in I, and the transition function Φ
agrees with the state transition determined by the effect propositions in B ∪ γ.

In the above problem setting, it should not be surprising that D∪γ is consis-
tent although D is inconsistent. When D = B ∪O is inconsistent, there are two
possible cases. First, if B is inconsistent, there is no transition function which
agree with every effect proposition in B, so that addition of any set γ of new
effect propositions cannot make B∪γ consistent. In this case, we cannot get any
hypothesis for the induction problem. Second, if B is consistent but B ∪O is in-
consistent, the inconsistency of B∪O is due to the fact that O cannot be verified
within D because some effect propositions are missing. In this case, there is a
possibility to make O entailed from the augmented consistent description D∪γ.
In this sense, the inconsistency of B ∪ O here is caused by the incompleteness
of B. By this reason, we often say that a domain description D (or background
knowledge B) is incomplete, instead of saying that D is inconsistent.

In the following, we assume that every fluent change is observable. This
means that, for any fluent g, if (1) g is true at the initial state, (2) the truth
value of g changes after executing some action sequence a1; · · · ; am (m ≥ 1), and
(3) the change is caused as the effect of some action ai (1 ≤ i ≤ m) by a missing
effect proposition P �∈ B, then the input observation O is assumed to contain
the following value propositions with respect to g and ¬g:

(initially g) and (¬g after a1; · · · ; am).

When a fluent g satisfies the above three condition, we call the fluent ¬g a goal
fluent. This assumption implies that, to induce an effect proposition P �∈ B,
there must be a value proposition with respect to the goal fluent effect(P ) in O.
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4.2 Induction Algorithm

Now, we propose the induction algorithm InduceCL(B, O), which takes back-
ground knowledge B and an observation O as input, and outputs a set of hy-
potheses H. An outline of InduceCL consists of the following three steps:

1. Induce a set of FAs P by calling LearnFA with the positive and negative
samples constructed from O;

2. Construct an automaton T by subdividing each FA in P such that the tran-
sition function of T agrees with the effect propositions in B and that every
value proposition in O is true in T ;

3. Compute a set of effect propositions γ from the transition function of each
automaton T by calling RevTrans.

In Algorithm InduceCL, the given observation O is first divided into three
sets, the initial value propositions valI , the positive observations valR, and the
negative observations valN . That is,

O = valI ∪ valR ∪ valN where valI ∩ valR ∩ valN = ∅,

valI is the set of value propositions with respect to any fluent of the form (2),
valR (valN ) is the set of value propositions with respect to goal fluents (negations
of goal fluents) of the form (1) such that m ≥ 1. Then, the positive sample R is
set to the action sequences appearing in valR, and the negative sample N is set
to the action sequences appearing in valN .

Next, LearnFA(R, N) constructs a set P of FAs which accepts R and do not
accept N . Here, each state of an automaton π ∈ P is defined as a set of prefixes
of a string in R. Then, InduceCL converts each prefix set s into a fluent set s′

according to the following rules. For each goal fluent ¬g,

g ∈ s′ if ε ∈ s,
¬g ∈ s′ if ω ∈ s and ω ∈ R(¬g),
g ∈ s′ if ω ∈ s and ω ∈ N(¬g),

g ∈ s′ or ¬g ∈ s′ otherwise,

(6)

where R(¬g) ⊆ R (N(¬g) ⊆ N) is the set of action sequences appearing in the
value propositions with respect to ¬g (g). By (6), each state s is replaced with
s′ at Fig. 6 (i). Note that the resulting state set S in π is not defined as a set
but as a multiset because different states can be converted to states named with
the same set of fluents. The first case in (6) is the rule for the initial state, the
second is for the final states accepting the positive sample R, and the third is for
the states accepting the negative sample N . By definition of the positive sample
R, R never contains ε, and hence the first and second cases cannot occur at the
same time. The fourth rule in (6) is for the case that the truth value of g cannot
be determined in a state s. This case happens when the truth value of g in an
intermediate state is not explicitly given in the input observation O. Hence, we
are dealing with the case that narratives are not completely specified as input.
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InduceCL(B, O) Input: background knowledge B, observation O.
Output: the set H of hypotheses.

begin
Divide O into valI , valR, and valN ;
P := LearnFA(R,N) ;
for all π ∈ P do

Convert every state in π into a fluent by (6) ; /* (i) */
H := ∅ ; Σ := action(B ∪ O) ;
initF := {f | (initially f) ∈ valI } ;
Q0 := div({initF}, fluent(B ∪ O)) ; /* (ii) */
Q := div(∅,fluent(B ∪ O)) ; /* (iii) */
for all π := (S, Σ, δ, s0, G) ∈ P do

begin
for all q0 ∈ Q0 do

for all ωi ∈ R do
ωi = a1; · · · ; am where m = |ωi| ;
for j := 1 to m do

begin
sj := δ(sj−1, aj) ;
qj := trans(qj−1, aj , sj) ; /* (iv) */
if trans(qj−1, aj , sj) is undefined, or Φ(qj−1, aj) = q

has already been defined and q �= qj then goto L1 ;
Φ(qj−1, aj) := qj

end ; /* (v) */
for all (q, a) ∈ Q × Σ do

if Φ(q, a) is not defined then Φ(q, a) := trans(q, a, ∅) ; /* (vi) */
T := (Q, Σ, Φ) ;
γ := Compress(RevTrans(T )) \ B ;
H := H ∪ {γ}

L1:

end ;
return H

end.

Fig. 6. Algorithm to induce causal laws

The rules (6) replaces the FAs P with the FAs whose initial and final states
contain g and ¬g, respectively. Then, for each π = (S, Σ, δ, s0, G) ∈ P ,
InduceCL executes several operations and finally outputs an automaton T =
(Q, Σ, Φ). This T has the property that δ(sj−1, aj) = sj implies Φ(qj−1, aj) = qj

such that sj−1 ⊆ qj−1 and sj ⊆ qj . This makes every value proposition in O true
in this automaton. Here, each target automaton T generated in InduceCL is
defined as a triple (Q, Σ, Φ), where Q is a finite set of states of the form (4) in
A, the alphabet is Σ = action(B∪O), and Φ is a mapping Q×Σ → Q. Because
the initial state and the final states are not used to produce effect propositions
in the algorithm RevTrans, they need not explicitly appear in each automaton.

At the point (i), each state in π ∈ P contains either g or ¬g for each goal
fluent ¬g, and does not fully represent a state in a domain description of A.
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To get states in A, the dividing operations (ii) and (iii) in Fig. 6 are applied.
At (ii), the state set Q0 is defined as the set of all possible initial states in A.
Then, the initial state of the resulting model of A must be in Q0. From each
state q0 ∈ Q0, the transition function Φ of the target automaton T is computed
using the function trans, and then Φ is transitively determined at Fig. 6 (iv).
Here, trans(q, a, s) returns a state q′ after executing an action a at a state q such
that q′ includes a substate s:

trans(q, a, s) = (q \ (|E|± ∪ |s|±)) ∪ E ∪ s

where E = {effect(P ) | P ∈ E(D), cond(P ) ⊆ q}.

Note that if E ∪s is inconsistent, that is, contains both the positive and negative
fluents f,¬f for some fluent name f , then trans(q, a, s) is undefined. In such a
case, we cannot get a corresponding hypothesis for this FA π (hence go to L1). If
Φ is well-defined at Fig. 6 (v), then state transition is completed by computing
trans(q, a, ∅) for every missing pair of a state q and an action a at Fig. 6 (vi).

Finally, each automaton T is converted to a set γ of new effect propositions
in A by computing Compress(RevTrans(T )) \ B. This computation is done
for every FA π ∈ P , and the hypotheses H are output by InduceCL.

4.3 Examples

Example 4.1. Suppose the following domain description D:

load causes loaded , (7)
shoot causes ¬loaded , (8)
initially alive, (9)
¬alive after load ; shoot . (10)

Here, D = B ∪ O, where background knowledge is B = {(7), (8)} and the
observation is O = {(9), (10)}. We first observe that D is inconsistent. To see
this, alive must be in the initial state q0 by (9) in O, and ¬alive must be true
after executing load; shoot by (10) in O. However, both actions load and shoot
have effects only on the fluent (¬)loaded by (7) and (8) in B, and thus never
influence the truth value of alive. Hence, the sequence load; shoot keeps alive
by law of inertia, which contradicts (10).

Now, ¬alive is the goal fluent. Algorithm InduceCL first divides O into
valI , valR and valN . In this case, valI = {(9)}. The value propositions which
changed the truth value of alive into ¬alive is valR = {(10)}, and its action
sequence is set to the positive sample R = {load ; shoot}. Because there is no
value proposition with respect to alive in the form of (1) in O, valN = N = ∅.

Next, LearnFA(R, N) infers the set of FAs in Fig. 7. Then, by the rules (6),
they are converted into the FAs P in Fig. 8. Here, π31 and π32 in Fig. 8 are two
automata converted from π3 in Fig. 7. Note that the intermediate state {load}
is converted into either {alive} or {¬alive} here, which indicates that we cannot
determine at which point the fluent alive has changed its truth value.
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Fig. 7. FAs P obtained by LearnFA(R,N)

Fig. 8. FAs P after applying the rules (6)

Fig. 9. Learning process for FA π′
1
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The rest of learning process is shown in Fig. 9. For π1, InduceCL first
divides the initial state by div (Fig. 6 (ii) and Fig. 9-2). Then, those states after
executing the action load at {loaded , alive} and {¬loaded , alive} are constructed
by trans (Fig. 6 (iv) and Fig. 9-3). After all other states are added, the transition
function Φ is completed (Fig. 6 (vi) and Fig. 9-4).

Finally, from the resulting automaton T from π1, the domain description in
A is obtained by computing Compress(RevTrans(T ) as:

load causes loaded ,
shoot causes ¬loaded ,
shoot causes ¬alive if loaded .

Here, the first and second rules are already in B, and hence the new causal rules
are obtained from π1 as

γ1 = {(shoot causes ¬alive if loaded)}.

Similarly, from π2 and π32, we obtain the common hypothesis

γ2 = {(load causes ¬alive)},

and from π31, we obtain γ3 = γ1 = {(shoot causes ¬alive if loaded)}. Therefore,
we get the final result H = {γ1, γ2}. As expected, both B∪γ1∪O and B∪γ2∪O
are consistent. Note here that there is no reason to reject the hypothesis γ2.

Example 4.2. Suppose that the following new observation O′ is additionally
given to background knowledge B and the old observation O in Example 4.1:

alive after load ,
alive after shoot .

Then, valR and R are the same as those in Example 4.1, but now valN and N
become valN = O′ and N = {load , shoot}, respectively. In this case, LearnFA
(R, N) produces π31 in Fig. 8 as the unique FA in P . Hence, we have the unique
hypothesis: {(shoot causes ¬alive if loaded)}. This result shows that, the more
observations we have, the more accurate hypotheses we get by InduceCL.

4.4 Correctness

The soundness of InduceCL is given as follows.

Theorem 4.1. Let B be consistent background knowledge, and O an observa-
tion. Suppose H is the output of InduceCL(B, O). Then, B∪γ∪O is consistent
for any γ ∈ H.

Proof. Suppose that a hypothesis γ is obtained from an automaton T which is
constructed in InduceCL(B, O). We prove the following two statements.

1. The transition function determined by the effect propositions B∪γ coincides
with the transition function Φ in T .
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2. Each value proposition in O is true in any structure I = (Φ, q0), where q0 is
a state in the set Q0 constructed in InduceCL.

If these two claims are proved, then any structure I satisfying the above condition
is a model of B ∪ γ ∪ O by definition.

For the first claim, Φ is obtained by the function trans/3 in InduceCL, which
is equivalent to the function trans/2 in the definition of models in A except that
the latter is constrained by the extra third argument s. The condition s puts
the result to the state containing s, but never changes the transition for the
effect propositions from E(B) because in that case s = ∅ is given. Hence, state
transition determined by B ∪ γ is the same as that by Φ.

For the second claim, we will prove that, given a structure I = (Φ, q0), it
holds for any value proposition (f after a1; · · · ; am) ∈ O that

f ∈ Φ(Φ(· · ·Φ(q0, a1), . . . , am−1), am). (11)

By definition of InduceCL, O is divided into valI , valR and valN , from which
the positive sample R and the negative sample N are extracted. Because the
initial state q0 in I contains all fluents appearing in the value proposition in
valI , every value proposition in valI is immediately true in I.

Now suppose that the automaton T is constructed from a FA π in Learn
(R, N), which is converted into a FA (S, Σ, δ, s0, G) such that the state set S
is defined by (6) and f ∈ G ⊆ S. Then, for any value proposition in valR and
valN , we have

f = δ(δ(· · · δ(s0, a1), . . . , am−1), am). (12)

Next, InduceCL generates the set Q0 of all initial states that make every
value proposition in valI true. Then, the transition function Φ satisfies that,
δ(sj−1, a) = sj (sj−1, sj ∈ S) implies Φ(qj−1, a) = qj (qj−1, qj ∈ Q) such that
sj ⊆ qj and sj−1 ⊆ qj−1. Hence, si ⊆ qi holds for all i. Therefore, the equa-
tion (12) implies (11). This means that every value proposition in valR and valN
is true in I. �

The completeness of InduceCL is partially guaranteed in the sense that
the algorithm can generate the subsumption-minimal hypotheses. For two effect
propositions E and F , we say that E subsumes F if effect(E) = effect(F ) and
cond(E) ⊆ cond(F ). For two sets of effect propositions α and β, we define that
α � β iff for any F ∈ β there is E ∈ α such that E subsumes F .

Theorem 4.2. Let B be consistent background knowledge, O an observation,
and λ a set of effect propositions. If B ∪ O is inconsistent and B ∪ λ ∪ O is
consistent, then there is a hypothesis γ ∈ InduceCL(B, O) such that γ � λ.

Proof. The completeness proof can be constructively shown according to the
steps in InduceCL as follows.

1. The FAs P = LearnFA(R, N) cover all possible transition systems with
respect to change of the goal fluent g.
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2. The state set Q0 covers all possible initial states by definition of div .
3. The transition function Φ achieves the indispensable transition by definition

of trans/3.

Hence, InduceCL computes the automata with the requisite transition from
all possible initial states by taking every possible change of g into account. The
minimal requisites in this case corresponds to the subsumption minimality. �

4.5 Model Inference

Algorithm InduceCL can be combined with the algorithm to translate domain
descriptions in A into DFAs [14] (Section 2) for reasoning about action. Here,
we consider the problem to predict the initial states of an incomplete domain
description. Since any model in A is defined as a pair (Φ, q0) of the transition
function Φ and the initial state q0, this problem is also called model inference.

Model inference of a domain description in A can be computed as follows.
Suppose a domain description D = B∪O, where B is a set of effect propositions
and O is a set of value propositions. If D is consistent, then Init(D) gives
the set of all initial states of D by Proposition 2.1. Otherwise, compute H =
InduceCL(B, O). Then, Iγ = Init(D ∪ γ) gives the initial states of D ∪ γ for
any γ ∈ H. Note here that the Init algorithm can estimate the initial states of
a (possibly non-categorical) domain description as long as it is consistent, but
Init cannot be used for an incomplete domain description.

Example 4.3. Consider the domain description D in Example 4.1. Recall that
D is not consistent. By augmenting B with either γ1 or γ2, the initial states of D∪
γi (i = 1, 2) are obtained as Init(D ∪ γi) = {{alive,¬loaded}, {alive , loaded}}.
Hence, the domain D ∪ γi is not categorical. In fact, there is no information
about loaded in the initial state.

Model inference is important for reasoning about action and change in in-
complete domain descriptions. In particular, it is necessary to completely specify
the initial and goal states for planning. Similarly, computation of the transition
function is important to fill the gap between background knowledge and obser-
vations. Our induction algorithm constructs such a missing hypothesis and thus
makes the given incomplete domain description complete.

5 Related Work

Moyle and Muggleton [12] first studied induction of logic programs in the event
calculus, and Moyle [11] extends it to incorporate abduction as well as induction
in theory completion [13]. These methods require the complete initial state as
input and need to compute a complete set of narrative facts in advance, and
thus cannot account for observations handled in this paper.

Lorenzo and Otero [10] propose an algorithm to learn causal relations in
the situation calculus under a framework of descriptive induction. Lorenzo [9]
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extends it and discusses learning action theories with ramification, which has
indirect effects on fluents through constraints. These methods also need complete
narratives as input. On the other hand, we need neither a complete narrative
nor a complete initial state. Otero [15,16] also considers the case of incomplete
narratives. Given that the fluent g is true at a situation si but is false at a
situation si+k and is unknown at sj for every j = i + 1, . . . , i + k− 1, his setting
assumes that the truth value of g has changed only once. Our algorithm, on the
other hand, can induce any case in which the fluent value has changed more
than once in intermediate situations. Another difference appears in the output
hypotheses. While causal laws are represented using new situation constants that
represent missing situations in Otero’s framework, we do not introduce any such
new constants but consider every possible state transition in our framework.

All the above mentioned previous work in ILP do not use action languages.
Then, representation needs either frame axioms or inertia rules in logic pro-
grams. The former causes the frame problem and the latter requires induction
in nonmonotonic logic programs, both of which ought to be avoided [15]. Otero
[16] tackles this problem by introducing the causality predicate for the goal fluent,
thereby enables us to use a monotonic ILP method. In contrast, the language A
we use in this work has the semantics that solves the frame problem inherently —
any state change is represented as a set difference of fluents changed as effects
of actions by keeping the status of other fluents unchanged. Moreover, the use
of A enables us to represent observations concisely within the action language.

6 Concluding Remarks

This paper has considered a problem to induce causal laws in the action language
A. The proposed induction algorithm calls regular inference, and can be applied
to a general form of observations in A, which needs no restriction on the form
of action sequences and observed fluents, as opposed to previous approaches.

It has been argued that regular inference is computationally hard in general
because we need to search the Boolean lattice of a PTA. For this problem, an
application of a genetic algorithm is proposed to partition the state set in an
optimal way [4]. However, here we should claim that regular inference is only
used as local calls in our induction algorithm so that only part of structures is
induced by regular inference. This claim is important because the main difference
from the previous approaches to learning automata from scratch also appears
at this point. We utilize much information from background knowledge, and fill
the gap between background knowledge and observations. Hence, our induction
algorithm perfectly fits in the spirit of ILP. In this paper, we have established a
theory of induction of causal laws based on the semantics of an action language,
i.e., the state transition system. The next target will be to develop more efficient
algorithms. Then, replacing regular inference of LearnFA with other popular
ILP algorithms is of course promising in optimization of InduceCL.

Still, there are a lot of ways to improve the induction algorithm not by
implementation techniques but in a semantic level. For example, information or
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heuristic that the last action has actually caused the change of the truth value of
the goal fluent and information on how many times the truth value has changed
in an action sequence should be used as great hints to prune the search space.
It is also important to empirically verify the theoretical results in this paper on
experiments with real data. Another important future work includes induction
of causal laws involving concurrency and non-determinism as well as constraints
within action languages that are more expressive than A.
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161, rue Ada 34392 Montpellier Cedex 5, France

koriche@lirmm.fr

Abstract. Online learning algorithms such as Winnow have received
much attention in Machine Learning. Their performance degrades only
logarithmically with the input dimension, making them useful in large
spaces such as relational theories. However, online first-order learners
are intrinsically limited by a computational barrier: even in the finite,
function-free case, the number of possible features grows exponentially
with the number of first-order atoms generated from the vocabulary. To
circumvent this issue, we exploit the paradigm of closure-based learning
which allows the learner to focus on the features that lie in the closure
space generated from the examples which have lead to a mistake. Based
on this idea, we develop an online algorithm for learning theories formed
by disjunctions of existentially quantified conjunctions of atoms. In this
setting, we show that the number of mistakes depends only logarithmi-
cally on the number of features. Furthermore, the computational cost is
essentially bounded by the size of the closure lattice.

1 Introduction

A recurrent theme in machine learning is the development of efficient online
learning algorithms, capable of producing better and better predictions in an
incremental way [4]. Such algorithms are “anytime learners” that can be inter-
rupted at each instant to provide a prediction whose correctness is related to
the number of mistakes that have been made so far. The underlying model takes
place in a sequence of trials. At any stage, the learner is first presented a new ex-
ample, next it is asked to predict its associated class, and then it is told whether
its prediction was correct or not. In case of mistake, an update procedure is
activated and the current hypothesis is refined accordingly.

In a landmark paper [16], Littlestone introduced an elegant algorithm for
learning k out of n variable disjunctions which he called Winnow. It resembles
the perceptron algorithm in its simplicity, but employs multiplicative, rather
than additive, weight updates on input variables. Consequently, the number of
mistakes grows essentially as k log n instead of kn. The fact that the dependence
on n is reduced to logarithmic, rather than linear, makes this algorithm poten-
tially applicable even if the number of variables is enormous. For example, the
SNoW algorithm, a variant of Winnow, has been shown to be effective in natural
language settings with ten of thousands of features [10].
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This remarkable property has lead researchers to examine the possibility of
applying multiplicative update algorithms to large concept classes where the
number of patterns is exponential in the input dimension. In this setting, the
key question is: just how can we preserve attribute-efficiency in order to learn,
in a reasonable amount of time and space, a function of k relevant features in
presence of a possibly exponential number N − k of irrelevant features ?

Computational learning theory has supplied mixed results. On the one hand,
it has been shown that several geometrical classes are indeed attribute-efficient
learnable, using appropriate data structures [11, 17]. The basic idea is to exploit
commonalities among features, partitioning them into a polynomial number of
equivalence classes that are used for prediction. The number of mistakes still
depends only logarithmically on the number of patterns and the computational
cost remains essentially polynomial on the input dimension. On the other hand,
for logical theories such as monotone DNF formulas, Khardon et al. [14] have
recently shown that, unless P = #P , there is no polynomial time algorithm
capable of simulating Winnow over exponentially many conjunctive features.

Such a computational barrier does not necessarily imply that a brutal force
implementation of Winnow is the sole option to obtain complete correctness. In
fact, even if the resulting partition is not always guaranteed to be polynomial,
the idea of “compiling” a large space can be more efficient than systematically
exploring the set of N features. Furthermore, Blum [3] observed that, in many
situations the problem at hand exhibits a three-stage hierarchy: a small number
of relevant features in the target function, a larger number of features that
appear in each example, and an enormous number of possible features. In such
circumstances, the combined strategies of “focusing” on a limited fragment of
the space and “compiling” this fragment into a compact data structure seem to
provide a useful approach to circumvent the counting problem.

Following this research avenue, we investigate the paradigm of closure-based
learning which allows a learner to focus on the closure space generated by the
closure of the examples which have lead to a mistake. Based on a well-known
property of closure operators, the data structure maintained by the learner is a
complete lattice of features. During each trial, the learner first receives an unla-
beled example, next predicts its class according to its lattice, and then receives
the correct label. In case of mistake, the lattice is refined by taking the closure
of the data structure with the current observation.

This paradigm is applied to the problem of learning relational theories formed
by disjunctions of existentially quantified conjunctions of atoms. This class of
formulas have the same expressive power as select-project-join-union database
queries, which are the queries that occur most often in practice [1]. Furthermore,
relational theories provide a substrate for many ILP systems that operate in a
concept learning framework [18]. Namely, any existentially quantified conjunc-
tion of atoms can be regarded as a decision rule predicting the target concept.
If any of the conjunctions in some theory “fires” for a given example, then the
example is classified as positive. If none of them fires, the example is classified
as negative.
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In the relational setting, each candidate “feature” is an existentially quan-
tified conjunction of atoms. Consequently, the number of possible features is
exponential in the number of first-order atoms. The central aim of closure-based
learning is to alleviate this combinatorial barrier by allowing the learner to limit
exploration in the space of first-order conjunctions. Based on this paradigm,
we develop an online algorithm that extends Winnow to relational theories. We
show that the number of mistakes still depends only logarithmically on the num-
ber of possible features. Furthermore, the computational cost is polynomial in
the size of the closure lattice. In the worst case, this structure can be exponen-
tial in the number of its maximal elements. Yet, experiments in formal concept
analysis reveal that this case rarely occurs in practice; on average, the size of
closure lattices increases polynomially with the number of atoms [5, 9]. These
encouraging results corroborate the practical applicability of our approach.

Outline. Section 2 introduces the necessary background about online relational
learning. Section 3 presents an algebraic setting for closure-based induction.
Section 4 is devoted to the development and the analysis of the closure-based
Winnow algorithm. Notably, a mistake bound and a computational bound for
this algorithm are reported in this section. Finally, section 5 compares the present
approach with other results in online relational learning, and concludes with
some perspectives of further research.

2 Preliminaries

In this section, we begin to introduce a logical setting for relational theories
and next, we present the “standard” Winnow algorithm applied to relational
theories. We conclude this section by bringing to the fore the main computational
bottleneck of online relational learning.

2.1 Relational Logic

The linguistic component of this study is an existential positive fragment of
first-order logic defined from a finite and pre-fixed vocabulary. Function symbols
including constants, are not allowed. The vocabulary consists in a finite set of
predicate symbols {p1, · · · , pp} and a finite set of variables {x1, · · · , xk}. Each
predicate symbol has a finite arity, which is the number of its arguments. We
consider that the maximum arity over all predicate symbols is bounded by a
constant a. Such an assumption is commonly advocated in the relational learning
literature [12, 22]. An atom p(x1, · · · , xt) is a t-ary predicate symbol followed by
a bracketed t-tuple of variables. The set of all distinct atoms generated from
the vocabulary is denoted A. Using the above notations, we remark that the
cardinality of A is upper bounded by pka, which is polynomial in the number of
predicate symbols and the number of variables.

A relational conjunction (henceforth called feature) is a closed formula in
prenex normal form, containing only existential quantifiers, and whose matrix
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is a conjunction of atoms. A relational theory (or theory) is a disjunction of
relational conjunctions. For convenience, we shall sometimes represent theories
as sets of features and features as sets of atoms. The size of a feature F , denoted
|F |, is the number of all atoms occurring in it. Note that the restriction on the
number of variables does not limit the size of features to be constant. Indeed,
long conjunctions of size O(pka) can be constructed since variables can appear in
more than one atom. The space of all features constructed from the vocabulary
is denoted F. The cardinality of this space is denoted N . Notably, we observe
that N is upper bounded by 2pka

.

Example 1. Our running example is a variant of the so-called Bongard problem
(see e.g. [13]). In this problem, the learner is presented some scenes involving
objects and geometrical relationships among them. The underlying task is to
distinguish positive scenes from negative ones. We consider here the vocabulary
composed by the unary predicate symbols circle, square and triangle, the binary
predicate symbols left, in and larger, and the variables x1 and x2. The theory T
below involves three relational conjunctions.

∃x1∃x2(circle(x1) ∧ square(x2) ∧ in(x1, x2)),
∃x1∃x2(circle(x1) ∧ square(x2) ∧ larger(x2, x1)),
∃x1∃x2(circle(x1) ∧ circle(x2) ∧ in(x1, x2))

Examples are interpretations that involve objects and relationships among
them. A domain is a finite set of objects. A ground atom over a domain D is an
expression p(o1, · · · , ot), where p is a t-ary predicate symbol and o1, . . . , ot are
objects in the domain D. An interpretation is a pair I = (DI , P I) where DI is a
domain and P I is a set of ground atoms over DI . An interpretation I is a model
of a relational conjunction F if there is a substitution θ mapping variables in
the feature F to objects in DI and such that Aθ ∈ P I for each atom A in F .
By extension, an interpretation I is a model of a relational theory T if there is
a relational conjunction F in T such that I is a model of F .

Example 2. Consider the following interpretation I involving three objects. We
can observe that I is a model of the theory T examined in example 1. Indeed,
we notice that I is a model of the first two conjunctions described in T .

I = ({1, 2, 3}, {circle(1), circle(2), square(3), in(1, 3), larger(1, 3)})

Given an interpretation I, the feature space of I, denoted F(I), is the set
of all features F in F such that I is a model of F . An element F of F(I) is
called a maximal feature if there is no proper superset F ′ of F in F(I). The
set of all maximal features of I is called the basis of I and denoted B(I). The
following property states that the problem of checking whether I is a model of
some feature F can be reduced to a covering test of F in the basis of I.

Proposition 1. Let I be an interpretation and F a relational conjunction. Then
I is a model of F if and only if there is a feature F ′ in B(I) such that F ⊆ F ′.
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Proof. First, suppose that I is a model of F . Then F is an element of F(I) and
hence, F is covered by at least one maximal feature in B(I). Now, suppose that
I is a model of a maximal feature F ′ in B(I) such that F ⊆ F ′. Then, there is a
substitution θ mapping variables in F ′ to objects in DI and such that F ′θ ⊆ P I .
It follows that Fθ ⊆ P I and hence, I is a model of F . ��

Interestingly, we remark that the cardinality of the basis of I is bounded by
dk, which is the number of possible substitutions over DI . The basis of I can
be found time quadratic in dk. Namely, for each substitution θ over DI , we first
generate the saturated feature F formed by all atoms A in the language such
that Aθ ∈ I. Next, we check whether a proper superset of F is present in the
current basis of I. If this is not the case, we add F to the basis and we eliminate
from it all proper subsets of F .

Example 3. The basis of the interpretation I specified in example 2 is given by
the four following features.

∃x1∃x2(circle(x1) ∧ circle(x2))
∃x1∃x2(square(x1) ∧ square(x2))

∃x1∃x2(circle(x1) ∧ square(x2) ∧ in(x1, x2) ∧ larger(x1, x2))
∃x1∃x2(circle(x2) ∧ square(x1) ∧ in(x2, x1) ∧ larger(x2, x1))

2.2 Online Relational Learning

The online learning model can be regarded as a game between two players, the
learner and the environment. A target relational theory T ∗ containing r features,
is fixed by the environment and hidden from the learner. During each trial, the
learner first receives an interpretation from the environment, next it makes a
prediction based on its current hypothesis and then the learner receives the
correct response. In the setting of online relational learning, the quantities that
the learner would like to minimize are the number of mistakes it makes and
the computational resources it spends along the process. Notice that learner is
merely passive and cannot ask membership queries or statistical queries.

Before presenting the algorithm, we need additional definitions. Given a fea-
ture F , the classifier of F is a map that assigns to each interpretation I a boolean
value given by: F (I) = 1 if I is a model of F , and F (I) = 0 otherwise. Similarly,
given a theory T , the classifier of T is a map that assigns to each interpretation
I the value T (I) = 1 if I is a model of T , and the value T (I) = 0 otherwise. A
linear threshold function of F is a function Φ that associates to each feature F
in F a weight in R+. Intuitively, Φ(F ) captures the degree of relevance of the
feature F in the learning process. The classifier of Φ is a map that assigns to
each interpretation I a boolean value defined as follows:

Φ(I) =

{
1 if

(∑
F∈F Φ(F ) · F (I)

)
≥ N, and

0 otherwise
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Initialization

0 Set Φ(F ) ← 2 for each relational conjunction F ∈ F

Trials

1 Receive an interpretation I

2 If
(∑

F∈F Φ(F ) · F (I)
)
≥ N then

predict Φ(I) ← 1

else

predict Φ(I) ← 0

3 Receive T ∗(I). If T ∗(I) �= Φ(I) then for each F such that F (I) = 1 do

Demotion: if Φ(I) = 1 then set Φ(F ) ← 1
2 Φ(F )

Promotion: if Φ(I) = 0 then set Φ(F ) ← 2 Φ(F )

Fig. 1. Standard Relational Winnow

We have now all notions in hand to present the standard Winnow algorithm.
The key idea is to maintain a linear threshold function that approximates the
target theory. The algorithm is presented in figure 1. Initially, Φ(F ) = 2 for each
feature in F. On each received interpretation I, if Φ(I) predicts the correct class
of I then no change is made. If Φ(I) = 1 and I is a negative example, then
a demotion occurs: the weights of each feature involved in the prediction are
divided by 2. Dually, if Φ(I) = 0 and I is a positive example, then a promotion
occurs: the weights of each feature that predicted correctly are multiplied by 2.
By an adaptation of Littlestone’s analysis, the number of mistakes made by the
learner depends on N only logarithmically and on r polynomially.

Although “feature-efficient”, the standard Winnow algorithm is confronted
with an important computational barrier. Namely, an explicit representation
of a linear threshold function of F takes Ω(2pka

) size. The complexity issue is
exacerbated still further by the fact that for any received interpretation I, a
covering test must be done for each candidate feature F in the space F. This
test can be performed by enumeration in O(|F |dk) time, where d is the number
of objects in the domain DI . A similar result is obtained if the test is performed
by computing the basis of I. Based on these considerations, the prediction step
takes O(dk2pka

) time. Consequently, even for constant values of a and k, a brutal
force implementation of relational Winnow is clearly infeasible.

Example 4. Let us consider the vocabulary presented in example 1. Given 2
variables, 3 unary predicate symbols and 3 binary predicate symbols, the number
of atoms is 18. If 64 bits are needed to encode each weight, then an explicit
representation of a linear relational threshold function would require 224 bits.
For 3 and 4 variables, we would need 244 bits and 266 bits. The last requirement is
well beyond the capacity of computational machinery into the foreseeable future.
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3 Closure-Based Induction

As observed in the previous section, the main computational bottleneck of online
relational learning lies in the cardinality of the feature space. To alleviate this
barrier, we advocate the paradigm of closure-based induction that allows the
learner to “focus” on a limited portion of its feature space and to “compile”
this portion into a semantically equivalent data structure. In this section, we
introduce a formal setting for closure-based induction. We begin to examine
the notion of relational closure space, next we define a projection operator over
closure spaces, and then we concentrate on linear functions of closure spaces.

3.1 Relational Closure Spaces

Let T be a relational theory. Then we say that T is closed if for any nonempty
subset S of T , the feature

⋂
S is an element of T . Furthermore, we say that T is

a closure space if T is closed and contains the maximal feature A. Interestingly,
we remark that any relational closure space is a Moore family of subsets of A.
Consequently, by an application of a well-known theorem about Moore families
of subsets (see e.g. [2, 8]), any relational closure space forms a complete lattice
under set-inclusion.

Given a relational theory T , the feature space of T , denoted F(T ), is the set
of all features F in F such that F is included in some element F ′ of T . We can
see that if T is a closure space, then its feature space covers all elements in F.
Now, given a feature F in F(T ), the closure of F with respect to T , denoted
CT (F ), is the feature formed by the intersection of all supersets of F in T :

CT (F ) =
⋂
{F ′ ∈ T : F ⊆ F ′}

The closure of T , denoted C(T ) is given by the set {CT (F ) : F ∈ F(T )}. The
following property states that the “closure” of a relational theory is necessarily
“closed” under intersection.

Proposition 2. Let T be a relational theory. Then T is closed iff T = C(T ).

Proof. Let T ′ = C(T ) and T ′′ = {
⋂

S : S ⊆ T }. We must show that T ′ = T ′′.
Let F be an element of T ′. By construction of T ′, there exists a feature F ′ in
F such that F = CT (F ′). Let S be the set of all supersets of F ′ in T . Since
CT (F ′) =

⋂
S, it follows that F =

⋂
S. Therefore, F ∈ T ′′. Now, let F be an

element of T ′′ and V be the set of all supersets of F in T . By construction of
T ′′, there exists a subset S of T such that F =

⋂
S. Since S ⊆ V and S �= ∅ it

follows that
⋂

V ⊆
⋂

S. Hence, CT (F ) ⊆ F . Furthermore, for every element F ′

in V , we have F ⊆ F ′. It follows that F ⊆
⋂

V . Thus F ⊆ CT (F ). By combining
the two results, we obtain F = CT (F ), and hence F ∈ T ′. ��

Given two closed relational theories T and T ′, the intersection product of T
and T ′, denoted T ◦ T ′, is defined by the set {F ∩ F ′ : F ∈ T and F ′ ∈ T }.
The intersection product provides a natural operator for constructing composite



Online Closure-Based Learning of Relational Theories 179

closed theories from basic building blocks. The following proposition states that
the intersection product of two closed theories is necessarily a closed theory.

Proposition 3. Let T and T ′ be two closed theories. Then T ◦ T ′ is closed.

Proof. Let T ′′ denote T ◦ T ′. By proposition 2, T ′′ is closed if and only if for
every nonempty subset S of T ′′, the feature

⋂
S is an element of T ′′. Since

the relational vocabulary is finite, we consider without loss of generality that
S = {F ′′

1 , · · · , F ′′
n }. By construction, F ′′

i = Fi ∩ F ′
i for some Fi in T and F ′

i in
T ′. It follows that

⋂
S = (

⋂n
i=1 Fi)∩ (

⋂n
i=1 F ′

i ). Since T and T ′ are closed, then
the feature

⋂n
i=1 Fi is an element of T and the feature

⋂n
i=1 F ′

i is an element of
T ′. Therefore

⋂
S is an element of T ′′. ��

The congruence relation of a theory T , denoted ∼T , is the binary relation on
F(T ) defined by following condition: F ∼T F ′ if and only if CT (F ) = CT (F ′).
Based on the axioms of equality, ∼T is an equivalence relation on F(T ). The
congruence class of a feature F with respect to T , denoted [F ]T , is the set of
all features F ′ in F(T ) such that F ∼T F ′. In the following, the cardinality of
[F ]T is denoted ‖F‖T . The following property states that congruence relations
can be refined using the product operation.

Proposition 4. Let T and T ′ be two closed theories. Then ∼T◦T ′=∼T ∩ ∼T ′ .

Proof. Let T ′′ be T ◦ T ′ and F be a feature in F(T ′′). We must prove that
CT ′′(F ) = CT (F ) ∩ CT ′(F ). Let S′′ be the set of all supersets of F in T ′′.
By construction, there exists a subset S of T and a subset S′ of T ′ such that⋂

S′′ =
⋂

S ∩
⋂

S′. Let us show that CT (F ) =
⋂

S. Let V be the set of all
supersets of F in T . Obviously, S ⊆ V . Let G be an element of V . We know
that F ⊆ G. Furthermore, F ⊆ F ′ for at least one element F ′ in S′. Therefore,
F ⊆ G ∩ F ′ and hence, G must be an element of S. It follows that V ⊆ S.
Therefore, S = V and hence, CT (F ) =

⋂
S. Based on an analogue strategy, we

can show that CT ′(F ) =
⋂

S′. Since CT ′′ (F ) =
⋂

S′′, the result follows. ��
We conclude this part by an important topological property of the closure

operation. The following result states that the closure of a theory generates a
complete partitioning of its feature space; the number of equivalence classes is
determined by the size of the closure of the theory.

Proposition 5. Let T be a relational theory. Then the congruence relation of
T induces a complete partitioning of F(T ) into |C(T )| congruence classes.

Proof. We know that the relation ∼T is an equivalence relation on the space
F(T ). Therefore, ∼T induce a complete partitioning of F(T ). Now, let T ′ = C(T )
and T ′′ = {[F ]T : F ∈ F}. We must show that |T ′| = |T ′′|. Let f be the function
that maps to each feature F in T ′ the congruence class f(F ) = [F ]T in T ′′. Let
F and F ′ be two distinct elements of T ′. Since CT (F ) �= CT (F ′) it follows that
f(F ) �= f(F ′). Thus, f is injective and hence, |T ′| ≤ |T ′′|. Dually, let g be a
function that associates to each class [F ]T of T ′′ the feature g([F ]T ) in T ′ such
that g([F ]T ) = CT (F ). Let [F ]T and [F ′]T be two distinct congruence classes
of T ′′. Since CT (F ) �= CT (F ′), it follows that g([F ]T ) �= g([F ′]T ). Thus g is
injective and hence, |T ′′| ≤ |T ′|. ��
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3.2 The Projection Operation

The key idea of closure-based induction is to enable the learner to focus on
limited regions of its feature space and to compile these regions into compact
structures. This idea is captured by a projection operator that takes as input
a closure space maintained by the learner and an interpretation sent by the
environment, and that returns as output a closed theory which partitions the
feature space of the interpretation into a set of congruence classes.

Let T be a closure space and I be an interpretation. Then, the projection
of T onto I, denoted P (T, I), is given by the intersection product of T and the
closure of B(I). In formal terms: P (T, I) = T ◦C(B(I)). The update of T by I,
denoted U(T, I), is given by the set T ∪ P (T, I). The next property states that
the theories generated from projection and update are closed.

Proposition 6. Let T be a closure space and I be an interpretation. Then
P (T, I) is closed and U(T, I) is a closure space.

Proof. By application of proposition 3, we know that P (T, I) is closed. Let us
examine U(T, I). By definition:

U(T, I) = T ∪
(
T ◦ C(B(I))

)
We remark that T = T ◦ {A}. By reporting this observation in the equation:

U(T, I) = (T ◦ {A}) ∪
(
T ◦ C(B(I))

)
By factorizing, we obtain:

U(T, I) = T ◦
(
C(B(I)) ∪ {A}

)
Since

⋂
S =

⋂
(S ∪ {A}) for any nonempty subset S of features, it follows that:

U(T, I) = T ◦
(
C(B(I) ∪ {A})

)
The two terms in the right hand side of the equation are closed theories contain-
ing the element A. Hence, by proposition 3, U(T, I) is a closure space. ��

The salient characteristic of the projection operator is to compile the feature
space F(I) of an interpretation I into a structure that exploits the commonalities
between features. This is formalized in the next property.

Proposition 7. Let T be a closure space and I be an interpretation. Then
the congruence relation of P (T, I) induces a complete partitioning of F(I) into
|P (T, I)| congruence classes.

Proof. By proposition 6, P (T, I) is closed. Thus, by proposition 5, it follows that
the congruence relation of P (T, I) induces a complete partitioning of the feature
space of P (T, I) into |P (T, I)| congruence classes. So, we simply need to show
that F(P (T, I)) = F(I). Let F be an element of F(P (T, I)). By construction,
F ⊆ F ′ for some element in F ′ in P (T, I), and F ′ ⊆ F ′′ for some element F ′′

in C(B(I)). Thus, F is covered by some maximal element in the basis of I and
hence, by proposition 1, F ∈ F(I). Conversely, let F be an element of F(I).
Then, by proposition 1, F ⊆ F ′ for some element F ′ in B(I). Since F ′∩A = F ′,
it follows that F ′ ∈ P (T, I). Hence, F ∈ F(P (T, I)). ��
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Fig. 2. Update of T by I

Example 5. Let T = {A} and consider the interpretation I given in example 2.
The update of T by I is represented by the lattice in figure 2. The projection
of T by I is formed by the set of all “•” nodes. Based on the above result,
P (T, I) induces a complete partitioning of F(I) into 9 congruence classes. By
comparison, F(I) contains 33 features.

3.3 Linear Functions of Closed Theories

We have now all elements in hand to define online relational predictors in the
setting of closure-based induction. Let T be a closure space. A linear threshold
function of T is a map H that associates to each feature F in T a weight in
R+. Intuitively, T can be regarded as a complied representation of F that is
iteratively constructed during the mistakes made by the learner. The function
H simply labels each closed feature F in T according to its degree of relevance.
The classifier of H is a map that assigns to each interpretation I the boolean
value H(I) defined according to the following condition:

H(I) =

{
1 if

(∑
F∈P (T,I) H(CT (F )) · ‖F‖P (T,I)

)
≥ N, and

0 otherwise

The prediction obtained from the classifier H can be explained as follows.
Initially, the learner has at its disposal a closure space T and a linear threshold
function H of T . Given an observation I, the learner first computes the projection
of T onto I. Then, for each feature F in the projected set, the learner evaluates
the degree of relevance of the congruence class of F . In doing so, the learner
considers that each element in the class has the same weight, which is given by
the feature CT (F ) in T . Thus, the learner only needs to multiply this weight by
the number of features in the congruence class. This strategy is applied for all
congruence classes and the overall sum is compared with the threshold N .
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We conclude this section by establishing a one-to-one correspondence between
the two forms of linear functions investigated in this study. Let Φ be a linear
threshold function of F and H be a linear threshold function of some given
closure space T . Then, we say that H is a closure-based representation of Φ if
Φ(F ) = H(CT (F )) for every feature F in the space F.

Proposition 8. Let T be a closure space. Let Φ and H be linear threshold func-
tions of F and T , respectively. If H is a closure-based representation of Φ, then
for each interpretation I, Φ(I) = H(I).

Proof. Suppose that H is a closure-based representation of Φ. Let F be an
element of P (T, I). By proposition 4, we know that [F ]P (T,I) ⊆ [F ]T . Since
Φ(F ) = H(CT (F )), then for each feature F ′ in the congruence class [F ]P (T,I)

we have Φ(F ′) = H(CT (F ′)) = H(CT (F )). By adding up all weights:∑
{Φ(F ′) : F ′ ∈ [F ]P (T,I)} = H(CT (F )) · ‖F‖P (T,I)

Furthermore, by proposition 7, we know that the congruence relation of P (T, I)
induces a complete partitioning of F(I). It follows that:∑

F∈F(I)

Φ(F ) =
∑

F∈P (T,I)

H(CT (F )) · ‖F‖P (T,I)

Using the definition of Φ, we therefore obtain:∑
F∈F

Φ(F ) · F (I) =
∑

F∈P (T,I)

H(CT (F )) · ‖F‖P (T,I)

Finally, since the classifiers Φ and H are defined on the same threshold N , we
must have Φ(I) = H(I). ��
Example 6. Consider the following scenario. The learner starts from the theory
T = {A} and the linear function H such that H(A) = 2. After receiving the
interpretation I given in example 2, the projection of T onto I forms the theory
represented in figure 2. We remark that:

∑
F∈P (T,I) H(CT (F )) · ‖F‖P (T,I) = 66.

Since N = 218, the example I is classified as negative. Suppose that I is, in
fact, a positive example of the target concept. In this case, we consider that the
new closure space T is obtained from the update of the initial theory {A} by I.
Furthermore, we consider that the new linear function H is obtained from the
original function by multiplying by 2 the weight of each feature F in P (T, I).
Now suppose that the learner receives a new interpretation J given by:

J = ({1, 2}, {triangle(1), triangle(2), larger(1, 2), left(1, 2)})
The projection of T onto J is represented by the set of all “•” nodes in figure 3.
We remark that:

∑
F∈P (T,J) H(CT (F )) · ‖F‖P (T,J) = 62. Again, the example is

classified as negative. Suppose that J is, in fact, positive. Then, the new closure
space T is obtained from the update of the original theory by J . This theory
is represented by the complete lattice in figure 3. We notably remark that T
partitions the feature space F into 15 congruences classes. By comparison, F
contains 262, 144 features.
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Fig. 3. Update of T by J

4 Online Closure-Based Learning

After an excursion into the algebraic aspects of our framework, we now focus on
closure-based relational learning. In this section, we begin to present an online
learning algorithm for relational committees, next we provide a mistake bound
for this algorithm, and then we examine its computational cost.

The algorithm is specified in figure 4. The learner starts with the closure space
{A}, where H({A}) is set to 2. The order of the events in any trial is organized
as follows. First, the learner receives an interpretation I from its environment.
Next it predicts a class label for I by projecting its closure space T onto I and by
computing the value H(I) of its corresponding classifier. In doing so, the learner
exploits the topological structure of its closure space T in order to determine the
overall weight of the feature space F(I). Finally, the learner receives the correct
label. If the algorithm has made a mistake, then it updates its linear threshold
function H and its theory T . The learner starts by expanding the domain of H
to P (T, I). The weights of the features are increased or decreased, according to
the type of mistake that has been made. Then, the learner updates its closure
space T by I, and waits for a new example.
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Initialization

0 Set T ← {A} and H(A) ← 2

Trials

1 Receive an interpretation I

2 If
(∑

F∈P (T,I) H(CT (F )) · ‖F‖P (T,I)

)
≥ N, then

predict H(I) ← 1

else

predict H(I) ← 0

3 Receive T ∗(I). If T ∗(I) �= H(I) then

Demotion: if H(I) = 1 then ∀F ∈ P (T, I), set H(F ) ← 1
2 H(CT (F ))

Promotion: if H(I) = 0 then ∀F ∈ P (T, I), set H(F ) ← 2 H(CT (F ))

Set T ← T ∪ P (T, I)

Fig. 4. Closure-Based Relational Winnow

4.1 Mistake Bound

We have now all elements in hand to provide the first main result of this study. In
the next theorem, we consider that the target expression T ∗ is a relational theory
containing r relational conjunctions. The goal for the learner is to identify these
r relevant features in a feature space F containing an exponential number N − r
of irrelevant features. Based on a natural correspondence between the standard
algorithm and the closure-based algorithm, we can state that the number of
mistakes depends only logarithmically on N and linearly on r.

Theorem 1. For the class of relational theories containing r existentially quan-
tified conjunctions of atoms defined over p predicate symbols and k variables,
online closure-based Winnow has a mistake bound of:

2(rpka + 1)

Proof. Let Φ and H be the linear threshold functions maintained by the standard
algorithm (fig. 2) and the closure-based algorithm (fig. 4). We show that, if both
algorithms have received the same sequence I of examples, then for any new
received example J , we have Φ(J) = H(J). Based on proposition 8, a sufficient
condition for this is to prove that H is a closure-based representation of Φ. This
is demonstrated by induction on the size of the sequence I.

First, suppose that the sequence I is empty. We remark that for each fea-
ture F in F, Φ(F ) = H(A) = 2. Since C{A}(F ) = A, it follows that Φ(F ) =
H(CT (F )). Hence, H is a closure-based representation of Φ.

Now, suppose that I is not empty. We focus on the last trial in the se-
quence. Let I be the example observed during this trial. Let Ebef and Eaft
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denote the expression E at the beginning of the trial and at the end of the
trial. Finally, let F be a feature in F. By induction hypothesis, we assume that
Φbef(F ) = Hbef(CTbef (F )) at the beginning of the trial. We must show that
Φaft(F ) = Haft(CTaft(F )). If this condition holds, then H is still a closure-based
representation of Φ at the end of the last trial of the sequence. Consequently,
Φ(J) = H(J) during any new trial involving J . Suppose that no mistake oc-
curred. In this case, Φaft = Φbef . Similarly, Haft = Hbef and Taft = Tbef . Hence,
we have Φaft(F ) = Haft(CTaft(F )). Suppose that a mistake occurred. Then both
classifiers are either “demoted” or “promoted”. We only examine the demotion
case, since an analogue strategy applies to the promotion case.

We know that Taft = Tbef ∪ P (Tbef , I). First, consider that F �∈ F(I). In
this case, Φaft(F ) = Φbef(F ). Furthermore, F must be an element of some con-
gruence class in Tbef . Therefore, CTaft(F ) = CTbef (F ). Since Haft(CTbef (F )) =
Hbef(CTbef (F )), we have Haft(CTaft(F )) = Hbef(CTbef (F )). Hence, Φaft(F ) =
Haft(CTaft(F )). Now, consider that F ∈ F(I). In this case, we must have Φaft(F )
= 1

2Φbef(F ). Furthermore, F is an element of some congruence class in P (Tbef, I).
It follows that, CTaft(F ) = CP (Tbef ,I)(F ). Since Haft(CP (Tbef ,I)(F )) = 1

2

Hbef(CTbef (F )), we have Haft(CTaft(F )) = 1
2Hbef(CTbef (F )). Therefore, Φaft(F )

= Haft(CTaft(F )).
We thus have shown that closure-based Winnow is a simulation of standard

Winnow. Consequently, if the later algorithm has a mistake-bound of m, then
the former algorithm must have a mistake bound of m. By an adaptation of
Littlestone’s analysis (see also [21]), standard Winnow has a mistake bound of
2(r log2 N + 1). Since N is upper bounded by 2pka

, the result follows. ��

4.2 Computational Complexity

Obviously, the main source of complexity in closure-based Winnow resides in
the prediction phase. This phase can be divided into two steps. Namely, given a
closure space T and an interpretation I, the learner computes first the projec-
tion of T onto I. Then, for each closed feature F in the projection, the learner
evaluates the weight of F and the cardinality of the congruence class of F . The
following property suggests a simple incremental procedure to build projections.

Proposition 9. Let T be a closure space and I be an interpretation. Suppose
that the basis of I is given by the set {F1, · · · , Fn} and let (P0, · · · , Pn) be the
sequence of sets of features recursively defined as follows:

(1) P0 = ∅,
(2) Pn = Pn−1 ∪ {F ∩ Fi : F ∈ T ∪ Pi−1}.

Then Pn is the projection of T onto I.

Proof. Let Bn denote the set {F1, · · · , Fn}. The proof is done by induction on
n. First, suppose that n = 1. In this case, we know that C(B1) = B1 = {F1}.
Since P1 = {F ∩ F1 : F ∈ T }, it follows that T ◦ C(B1) = P1, as desired.
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Now, consider that n > 1 and, by induction hypothesis, assume that Pn−1 is
given by T ◦ C(Bn−1(I)). We first prove that

C(Bn) = C(Bn−1) ∪ (C(Bn−1) ◦ {Fn}) ∪ {Fn}

We know that C(Bn) is closed under intersection. Let Cn denote the set of
all intersections of nonempty subsets of Bn containing Fn. By construction,
Cn is given by {Fn} ∪ {

⋂
S ∩ Fn : ∅ ⊂ S ⊆ Bn−1}. Since C(Bn−1) is the set

{
⋂

S : ∅ ⊂ S ⊆ Bn−1}, it follows that: Cn = {Fn} ∪ {Fn ∩ F : F ∈ C(Bn−1)}.
Finally, since the second term corresponds to C(Bn−1)◦{Fn}, the result follows.
Now, we examine the main property. By construction, we have:

T ◦ C(Bn) = (T ◦ C(Bn−1)) ∪ (T ◦ {Fn}) ∪ (T ◦ C(Bn−1) ◦ {Fn})

By induction hypothesis, we know that T ◦ C(Bn) = Pn−1. By reporting this
result, T ◦C(Bn) is Pn−1∪ (T ◦ {Fn})∪ (Pn−1 ◦ {Fn}) . By factorizing, it follows
that T ◦ C(Bn) = Pn−1 ∪ ((T ∪ Pn−1) ◦ {Fn}) . Since the second term is the set
{F ∩ Fn : F ∈ T ∪ Pi−1}, the result follows. ��

The following property suggests a simple method to evaluate the cardinality
of any congruence class of a closed set.

Proposition 10. Let T be a closed theory and {F1, · · · , Fn} be a linear ordering
of T where Fi ⊂ Fj implies i ≤ j for any pair of indexes i and j. Then the
cardinality of each congruence class in T is recursively determined as follows:

(1) ‖F1‖ = 2|F1|,
(2) ‖Fn‖ = 2|Fn| −

∑
{‖Fi‖ : 1 ≤ i < n and Fi ⊆ Fn}.

Proof. Let Tn and Fn denote the sets of every subset of Fn in T and F(T ),
respectively. By proposition 5, we know that the congruence relation of T induces
a complete partitioning of F(T ). Since each element in Fn must be covered by
some congruence class in Tn, it follows that the congruence relation of Tn induces
a complete partitioning of Fn. We thus have,

Fn =
⋃
{[Fi] : 1 ≤ i ≤ n and Fi ⊆ Fn}

We now examine the main property. First, consider that n = 1. In this case,
|F1| = ‖F1‖. Since |F1| = 2|F1|, the result follows. Now, consider that n > 1.
From the previous equation, we have:

[Fn] = Fn −
⋃
{[Fi] : 1 ≤ i < n and Fi ⊆ Fn}

Since |Fn| = 2|Fn| and congruence classes are mutually disjoint, we obtain:

‖Fn‖ = 2|Fn| −
∑

{‖Fi‖ : 1 ≤ i < n and Fi ⊆ Fn}

Based on these considerations, we are now in position to present the second
key result of this paper. The next theorem states that the computational cost is
polynomial in the size of the closure lattice.
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Theorem 2. Let s be the size of the closure space maintained by the learner
at the beginning of some trial. Let d and b denote the number of objects and
the size of the closure of the basis of the received interpretation. Then, the time
complexity of the trial is in O(b2s2 + d2k).

Proof. Let T be the closure space maintained by the learner and I be the received
interpretation at the beginning of the trial (line 1). We assume that elements in
T are sorted. We first examine the complexity of the prediction step (line 2). As
observed earlier, the construction of the basis takes O(d2k) time. Based on the
method suggested by proposition 9, the projection of T onto I takes O(bs) time.
Furthermore, the resulting theory is sorted and contains at most bs features. For
each feature F in P (T, I), the weight H(CT (F )) can be evaluated in O(s) time.
Furthermore, using the method suggested in proposition 10, the value ‖F‖P (T,I)

can be obtained in O(bs) time. Since there are at most bs features in P (T, I),
the counting task takes O(bs(s + bs)) time, which is in O(b2s2). We now turn
to the complexity of the update step (line 3). Updating the linear function H
requires O(bs) time since the weights were already computed in the prediction
step. The update of T by I requires O(bs log2(s)) time. ��

If we consider constant values of the maximum arity a and the number of
variables k, then the computational cost is essentially dependent on the size of
the closure space T . This space T is isomorphic to a concept lattice [8] formed
by the context (G, M, I) where the set of “objects” G is given by the set B(T ) of
all maximal elements of T with respect to set-inclusion, the set of “attributes”
M is given by A and the “incidence relation” I is given by the membership
relation between A and B(T ). Following [15], this lattice can be exponential
in the number of its maximal elements. Yet, as stressed in introduction to this
paper, experiments in formal concept analysis suggest that such an exponential
bound is rarely observed in practice. On average, the size of a closure lattice
tends to be quadratic in the number of the attributes (or atoms) [5, 9].

5 Conclusions

Online relational learning is intrinsically characterized by a dilemma between
effectiveness and computational complexity. On the one hand, the mistake bound
of multiplicative weight algorithms is only logarithmic in the input dimension,
making them useful to handle large spaces such as relational theories. On the
other hand, standard online relational learners are fundamentally limited by the
counting problem that requires a systematic exploration of these spaces. The
key contribution of this study is to provide a model of closure-based learning
that allows a learner to focus on limited regions of its hypothesis space and to
compile these regions into a closure lattice. This paradigm was applied to the
development of an online algorithm for learning relational theory. The number
of mistakes depends only logarithmically on the number of features and the
computational cost is polynomially bounded by the size of the closure lattice.
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Related Work. In the past few years, there have been an increased an significant
interest in the development of online learning algorithms for relational domains.
In a seminal work, Golding and Roth [10] developed a relational architecture,
the SNoW system, that learns linear threshold functions with quantified proposi-
tions. This architecture has been applied to several structured domains, including
visual recognition [19] and information extraction [20]. The basic idea underlying
the notion of quantified proposition is to limit the scope of each quantifier to a
single predicate. In other words, only atoms are quantified and thus, any formula
can be treated essentially as a logical combination of boolean variables [7]. Based
on this representation, the number of mistakes still depends only logarithmically
on the number of quantified atoms. Soon afterwards, Valiant [21, 22] extended
this approach by addressing the class of quantified projections, an intermediate
class between quantified disjunctions and quantified DNF formulas. Based on
a combination of Winnow algorithms, the method preserves attribute-efficiency
by exhibiting a logarithmic dependence on the number of quantified atoms.

The main interest of these approaches is to extend the expressiveness of pure
propositional systems while maintaining a polynomial cost during the learning
phase. By comparison, our paradigm is orthogonal to these approaches. Namely,
the use of multi-class, first-order decision rules provides a far more expressive
language. In particular, existentially quantified conjunctions of atoms are able to
capture both relations among objects and dependencies between relations. Yet,
despite the use of closure-based operations, the dependence of the computational
cost on the input dimension is not guaranteed to be polynomial.

Finally, the recent work by Chawla et. al. [6] is also concerned with gen-
eralizing Winnow algorithms to large spaces. But their approach is essentially
propositional and uses a randomized approximation technique that does not
always guarantee complete correctness of the learning system.

Perspectives. Several directions of future research are possible. First and top-
most, the practical issue of online closure-based learning needs to be explored.
In particular, the development of a competence map for our algorithm is the
subject of ongoing research. A second interesting research avenue is to develop
pruning techniques for closure spaces. A potential strategy is to merge congru-
ence classes that have the same weight vectors. An other approach is to use
lower and upper bounds on the possible weights in order to limit the number
of distributions. Third and finally, the framework described suggests a broader
variety of relational classes that might be handled using the paradigm of closure-
based learning. In particular, the extension of this approach to first-order Horn
theories looks promising.
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Chemical Applications
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Moscow, Russia

Abstract. Similarity of graphs with labeled vertices and edges is natu-
rally defined in terms of maximal common subgraphs. To avoid compu-
tation overload, a parameterized technique for approximation of graphs
and their similarity is used. A lattice-based method of binarizing la-
beled graphs that respects the similarity operation on graph sets is pro-
posed. This method allows one to compute graph similarity by means
of algorithms for computing closed sets. Results of several computer ex-
periments in predicting biological activity of chemical compounds that
employ the proposed technique testify in favour of graph approximations
as compared to complete graph representations: gaining in efficiency one
(almost) does not lose in accuracy.

1 Introduction

In last years the problem of learning from data given by labeled graphs at-
tracted much attention in Machine Learning and Data Mining communities
[1,2,3,4,5,6,7,8,9]. In our paper we address this issue using an approach based on
generation of closed sets of labeled graphs and their approximations. On the one
hand, this approach is related to computation of most specific (or least general)
generalizations of positive (or negative) examples, which proved to be successful
in real-life applications, including predictive toxicology [10]. On the other hand,
generation of (frequent) closed itemsets turned out to be useful for computing
the set of all well-supported association rules [11]. This explains recent attention
to computing closed graphs in data mining [8]. As reported in [8], CloseGraph
algorithm computes frequent graphs much faster than its forerunner gSpan [7],
and WARMR [1], an ILP program.

An important application for learning with labeled graphs is the analysis of
properties of chemical substances. Fragmentary Code of Substructure Superpo-
sition (FCSS) [12,10] has been designed and permanently refined for this purpose
and proved to be a very efficient tool. For example, it was successfully applied
(as estimated by ROC diagrams) in the open PTC competition [13,10,14]. As
reported in [14], FCSS produced the largest number of useful attributes in com-
parison with other representations used in PTC. The drawbacks of FCSS are
related to the loss of information about connection between molecular parts and
the lack of flexibility w.r.t. different problems. To compensate for this, a similar-
ity operation � on sets of labeled graphs, representing molecules, was proposed

S. Kramer and B. Pfahringer (Eds.): ILP 2005, LNAI 3625, pp. 190–208, 2005.
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in [15,16,3]. This operation, defining similarity of sets of labeled (hyper)graphs,
has the property of a semilattice: it is idempotent (X � X = X), commutative
(X � Y = Y � X), and associative (X � (Y � Z) = (X � Y ) � Z). This allows
one to compute similarity of graph sets by means of algorithms for computing
closed sets (see review [17]) well-known in Formal Concept Analysis [18].

The main problem with practical implementation of this operation is that
of computational complexity: to compute similarity of two graphs one needs to
make several tests of subgraph isomorphism (which is in general NP-complete),
and make tests for graph isomorphism.

A theoretical means for approximate computation in semilattices, called pro-
jections, was proposed in [19] and the first computer implementation was de-
scribed in [20]. In this paper we study projections for semilattices on graph sets
and their use in learning models. Here we consider a realization of similarity
operation on graph sets and their projections realized by means of certain order-
theoretic and lattice-theoretic techniques. We consider several applied problems
in the analysis of biological activity of chemical compounds. To predict target
attribute values (biological activities) we employ and compare several learning
models: induction of decision trees, Naive Bayes classifier (see, e.g., [21]) and
JSM-method or concept-based learning [22,3,19]. In this paper the issues of pro-
gram realization and efficiency are not considered in details, since our programs
are Java prototypes. We concentrate mostly on combinations of learning models
with representation languages, and evaluations of their predictive accuracy. Re-
sults obtained for learning with graph projections for various values of projection
parameter are compared with those obtained with FCCS representation.

The paper is organized as follows. In the second section we describe the gen-
eral theoretical framework for computing similarity (meet) of graph sets together
with a means for its approximate computations. In the third section we discuss
the learning models used in this work. In the fourth section we describe com-
puter experiments in the analysis of molecular graphs (of chemical compounds
from the PTC dataset [13], halogen-substituted aliphatic hydrocarbons, alco-
hols, etc.) where the above representations and learning models are used. In the
fifth section the results are discussed and some conclusions are made.

2 Closed Sets of Labeled Graphs and Their Projections

In [15,16,3] a semilattice on sets of graphs with labeled vertices and edges was
proposed. This lattice is based on a natural domination relation between graphs
with labeled vertices and edges. Consider an ordered set P of connected graphs1

with vertex and edge labels from the set L with partial order . Each labeled
graph Γ from P is a quadruple of the form ((V, l), (E, b)), where V is a set of
vertices, E is a set of edges, l: V → L is a function assigning labels to vertices,
and b: E → L is a function assigning labels to edges.

1 Omitting the condition of connectedness, one obtains a (computationally harder)
model that accounts for multiple occurrences of subgraphs.
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For two graphs Γ1 := ((V1, l1), (E1, b1)) and Γ2 := ((V2, l2), (E2, b2)) from P we
say that Γ1 dominates Γ2 or Γ2 ≤ Γ1 (or Γ2 is a subgraph of Γ1) if there
exists an injection ϕ: V2 → V1 such that it

– respects edges: (v, w) ∈ E2 ⇒ (ϕ(v), ϕ(w)) ∈ E1,
– fits under labels: l2(v)  l1(ϕ(v)), if (v, w) ∈ E2 then b2(v, w)  b1(ϕ(v),

ϕ(w)).

Obviously, (P,≤) is a partially ordered set.
Example 1. Let L = {C, NH2, CH3, OH, x} then we have the following rela-
tions:

C CH3

C

Cl

≤
CH3 C OH

C

Cl CH3

x C x

C

NH2 OH

≤
NH2 C OH

C

Cl CH3

vertex labels are unordered x 	 A for any vertex label A ∈ L

Now a similarity operation � on graph sets can be defined as follows: For two
graphs X and Y from P

{X} � {Y } := {Z | Z ≤ X, Y, ∀Z∗ ≤ X, Y Z∗ �≥ Z},

i.e., {X} � {Y } is the set of all maximal common subgraphs of graphs X and
Y . Similarity of non-singleton sets of graphs {X1, . . . , Xk} and {Y1, . . . , Ym} is
defined as

{X1, . . . , Xk} � {Y1, . . . , Ym} := MAX≤(∪i,j({Xi} � {Yj})),

where MAX≤(X) returns maximal (w.r.t. ≤) elements of X . Here is an example
of applying �:

CH3 C OH

C

NH2
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⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
�

CH3 C Cl

C

OH

,

C CH3

C

Cl

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
=

C

C

OH

,

C CH3

C

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

The similarity operation � on graph sets is commutative: X � Y = Y � X
and associative: (X � Y ) � Z = X � (Y � Z).

A set X of labeled graphs from P for which � is idempotent, i.e., X�X = X
holds, is called a pattern. For patterns we have MAX≤(X) = X . For example,
for each graph g ∈ P the set {g} is a pattern. On the contrary, for Γ1, Γ2 ∈ P
such that Γ1 ≤ Γ2 the set {Γ1, Γ2} is not a pattern. Denote by D the set of
all patterns, then (D,�) is a semilattice with infimum (meet) operator �. The
natural subsumption order on patterns is given by

c � d : ⇐⇒ c � d = c.
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Let E be a set of example names, and let δ : E → D be a mapping, taking
each example name to {g} for some labeled graph g ∈ P (thus, g is “graph de-
scription” of example e). The triple (E, (D,�), δ) is a particular case of a pattern
structure [19]. Another example of an operation � may be the following semi-
lattice on closed intervals from [16]: for a, b, c, d ∈ R, [a, b]� [c, d] = [max {a, c},
min {b, d}] if [a, b] and [c, d] overlap, otherwise [a, b] � [c, d] = ∅. This semilat-
tice, where numbers are values of activation energy (computed for molecules by
a standard procedure, e.g. see [23]) was used in predicting toxicity of alcohols
and halogen-substituted hydrocarbons (see Section 4). The resulting similarity
semilattice in this application is that on pairs, where the first element is a graph
set and the second element is a numerical interval.

Derivation operators are defined as

A� := �e∈A δ(e) for A ⊆ E

and

d� := {e ∈ E | d � δ(e)} for d ∈ D.

For a, b ∈ D the pattern implication a → b holds if a� � b�. Implications are
exact association rules (with confidence = 1). Operator (·)�� is an algebraical
closure operator [24,18] on patterns, since it is

idempotent: d���� = d��,
extensive: d � d��,
monotone: d�� � (d ∪ c)��.

For a set X the set X�� is called closure of X . A set of labeled graphs X
is called closed if X�� = X . This definition is related to the notion of a closed
graph [8], which is important for computing association rules between graphs.
Closed graphs are defined in [8] in terms of “counting inference” as follows.

Given a labeled graph dataset D, support of a graph g or support(g) is a set
(or number) of graphs in D, in which g is a subgraph. A graph g is called closed
if no supergraph f of g (i.e., a graph such that g is isomorphic to its subgraph)
has the same support.

Note that the definitions distinguish between a closed graph g and the closed
set {g} consisting of one graph g. Closed sets of graphs form a meet semilatice
w.r.t. infimum or meet operator. A finite meet semilattice is completed to a
lattice by introducing a unit (maximal) element. Closed graphs do not have this
property, since in general, there can be nonunique supremums and infimums of
two closed graphs.

Proposition. Let a dataset described by a pattern structure (E, (D,�), δ) be
given. Then the following two properties hold:

1. For a closed graph g there is a closed set of graphs G such that g ∈ G.
2. For a closed set of graphs G and an arbitrary g ∈ G, graph g is closed.

Proof. 1. Consider the closed set of graphs G = {g}��. Since G consists of all
maximal common subgraphs of graphs that have g as a subgraph, G contains as
an element either g or a supergraph f of g. In the first case, property 1 holds. In
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the second case, we have that each graph in G that has g as a subgraph also has
f as a subgraph, so f has the same support as g, which contradicts with the fact
that g is closed. Thus, G = {g}�� is a closed set of graphs satisfying property 1.
2. Consider a closed set of graphs G and g ∈ G. If g is not a closed graph, then
there is a supergraph f of it with the same support as g has and hence, with the
same support as G has. Since G is the set of all maximal common subgraphs of
the graphs describing examples from the set G� (i.e, its support), f ∈ G should
hold. This contradicts the fact that g ∈ G, since a closed set of graphs cannot
contain as elements a graph and a supergraph of it (otherwise, its closure does
not coincide with itself). �

Therefore, one can use algorithms for computing closed sets of graphs, e.g.,
the algorithm in [3], to compute closed graphs. With this algorithm one can
also compute all frequent closed sets of graphs, i.e., closed sets of graphs with
support above a fixed minsup threshold (by introducing a minor variation of the
condition that terminates computation branches).

Computing � may require considerable computation resources: even testing
� is NP-complete. To approximate graph sets we consider projection (kernel)
operators [19], i.e. mappings of the form ψ: D → D that are

monotone: if x � y, then ψ(x) � ψ(y),
contractive: ψ(x) � x, and
idempotent: ψ(ψ(x)) = ψ(x).

Any projection of the semilattice (D,�) is �-preserving, i.e., for any X, Y ∈ D

ψ(X � Y ) = ψ(X) � ψ(Y ),

which helps us to relate learning results in projections to those with initial
representation (see Section 3).

As for practical complexity of computing � we can say the following. Using
a Pentium PIII-1 GHz, 512 MB RAM, testing subgraph isomorphism for an
average graph with 30-40 vertices and 30-40 edges took up to 5 seconds, but
usually, less than a second.

In our computer experiments we used several types of projections of sets of
labeled graphs that are natural in chemical applications:

– k-chain projection: a set of graphs X is taken to the set of all chains with k
vertices that are subgraphs of at least one graph of the set X ;

– k-vertex projection: a set of graphs X is taken to the set of all subgraphs
with k vertices that are subgraphs of at least one graph of the set X ;

– k-cycles projection: a set of graphs X is taken to the set of all subgraphs
consisting of k adjacent cycles of a minimal cyclic basis of at least one graph
of the set X .



Learning Closed Sets of Labeled Graphs for Chemical Applications 195
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Fig. 1.

3 Learning Models

In this work we used several learning models realized within QuDA data miners’
discovery environment [25]2: concept-based learning (JSM-method) [22,3,26] and
several machine learning algorithms from the Weka workbench [27]: C4.5 algo-
rithm for induction of decision trees, Naive Bayes classifier, and JRip (induction
of ripple-down rules).

JSM-hypotheses were defined in [22] for standard object-attribute represen-
tation in a special logical language. These hypotheses were redefined as JSM-
or concept-based hypotheses in [16,3,26,19] in terms of Formal Concept Analysis
(FCA). For graph sets hypotheses can be defined as follows. Suppose we have a
set of positive examples E+ and a set of negative examples E− w.r.t. a target
attribute.
2 Free download: http://www.intellektik.informatik.tu-darmstadt.de/∼peter/

6
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A graph set h ∈ D is a positive hypothesis iff

h� ∩ E− = ∅ and ∃A ⊆ E+ : A� = h.

Informally, a positive hypothesis is a similarity of positive examples, which does
not cover any negative example. A negative hypothesis is defined analogously, by
interchanging + and −.

The meet-preserving property of projections implies that a hypothesis Hp in
data under projection ψ corresponds to a hypothesis H in the initial represen-
tation for which the image under projection is equal to Hp, i.e., ψ(H) = Hp.

Hypotheses are used for classification of undetermined examples along the
lines of [22] in the following way. If e is an undetermined example (example
with the unknown target value), then a hypothesis h with h � δ(e) is for the
positive classification of g if h is a positive hypothesis and h is for the negative
classification of e if h is a negative hypothesis.

An undetermined example e is classified positively if there is a hypothesis
for its positive classification and no hypothesis for its negative classification.
Example e is classified negatively in the opposite case. If there are hypotheses for
both positive and negative classification, then some other methods (e.g., based
on standard statistical techniques) may be applied. Obviously, for classification
purposes it suffices to use only hypotheses minimal w.r.t. subsumption �.

The definition of classification suggests that hypotheses can be considered
as disjunctions of lggs of positive and of negative examples. Notwithstanding its
simplicity, the model of learning and classification with concept-based hypotheses
proved to be efficient in numerous computer experiments, including PTC com-
petition [13,10]. This learning/classification model, together with FCSS repre-
sentation, produced Pareto-optimal classifications in each of the four sex/species
groups (from {mice, rats}×{male, female}): in three groups the results were on
the ROC curve and in the fourth group (male rats, MR) the result was slightly
below the curve with no other strictly better classification result.

An algorithm for computing hypotheses on closed graph sets was described
in [3]. Here we realize it by simulating � operation with usual set-theoretic
intersection ∩ in the following way. For each example e described by a labeled
graph δ(e) first a set of all subgraphs of δ(e) is computed up to the projection
level k = N . Each such subgraph is declared to be a binary attribute and example
e is represented by the set S(e) of binary attributes that correspond to subgraphs
of δ(e). For two examples e1 and e2 intersection S(e1) ∩ S(e2) is equivalent to
finding similarity ψ(δ(e1)) � ψ(δ(e2)).
Example 2. In Figure 1 consider JSM-hypotheses for the dataset with posi-
tive examples described by graphs Γ1,..,Γ4 and negative examples described by
graphs Γ5 and Γ6. Here Γ1 � Γ2 � Γ3 and Γ2 � Γ3 � Γ4 are minimal positive
hypotheses, whereas Γ1 � Γ2 � Γ3 � Γ4 is not a positive hypothesis.

Then standard Weka procedures for C4.5, Naive Bayes and JRip are run in
QuDA environment. Computing concept-based hypotheses in QuDA is realized
by means of algorithms for computing lattices of closed sets (or concept lattices),
see review [17].
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After that we perform reduction of attributes [18]: each column of the ex-
ample/attribute binary table that is equal to the (component-wise) product
(conjunction) of some other columns, is removed.

Reduction is realized by an efficient algorithm based on results from FCA [18].
Lattice-theoretical properties guarantee [18] that thus reduced set of columns
gives rise to the isomorphic lattice of closed sets of attributes and thus, to the
same set of concept-based hypotheses as defined above.

Since in practice reduction often results in diminishing sets of attributes
in several times (see experimental results in Section 4), in our experiments we
wanted to find out how reduction affects performance of other learning methods,
such as C4.5, Naive Bayes and JRip. Upon reduction, every learning method was
executed for data tables again. Results for reduced and nonreduced tables were
compared.

The general PBRL (project-binarize-reduce-learn) procedure looks as fol-
lows:

1. For each example e and for k compute i-projections of δ(e) for 1 ≤ i ≤ k.
The subgraphs from this projections are declared to be binary attributes;

2. Compose example/attribute binary table;
3. For each learning method LM run LM, classify examples from test sets,

compute cross validation;
4. Reduce the binary (example/attribute) table;
5. For reduced table and for each learning method LM run LM, classify exam-

ples from test sets, compute cross-validation.

General procedure for computing with FCSS looks similar with first two lines
replaced by the following ones:

1∗. For each example e compute FCSS code (set of FCSS descriptors) of its
molecular graph;

2∗. Compose example/attribute binary table, where each attribute stays for an
FCSS descriptor;

Another approach that uses learning with graph sets was realized by means
of Subdue and SubdueCL [28,9] systems. Subdue finds subgraphs that appear
repetitively in graph databases. SubdueCL can learn from positive and negative
examples. It generates graphs common to many positive examples that are com-
mon to a small amount of negative examples (the corresponding values are cap-
tured exactly within the error estimate). As reported in [9], SubdueCL slightly
outperformed ILP systems FOIL [29] and Progol [30] on the PTC dataset.

SubdueCL pursues the covering strategy: having found a subgraph with the
best error estimate, SubdueCL excludes positive examples covered by this sub-
graph (i.e., example descriptions that contain it as a subgraph) and iterates on
the remaining set of positive examples. Thus, skipping certain generalizations
of positive examples, Subdue performs efficiently, however may lose in learning
accuracy. The latter is much more important in such domains as Predictive Toxi-
cology, where SubdueCL [31], as estimated by ROC diagrams, was outperformed
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by the concept-based learning model [10] (classifications of SubdueCL were op-
timal only in one group (male rats) and were strictly worse than concept-based
hypotheses [10] for male and female mice.

4 Experiments with Projections of Labeled Graphs

In this section we analyse results of applying the introduced data representa-
tion and learning models to the analysis of several chemical datasets 3. For each
dataset we computed graph projections (mostly, k-vertex projections, except for
the 25PAH dataset (Section 4.5), where we computed k-cycles projections). Ev-
ery subgraph of each graph in the projection (up to isomorphism) was declared
to be a binary attribute, so each graph dataset was turned into a binary object-
attribute table, which was then reduced. We also computed FCSS codes for each
dataset. After that for each dataset we ran several learning methods realized
within QuDA environment (JSM or concept-based hypotheses, induction of de-
cision trees by C4.5, Naive Bayes, JRip). We computed 10-fold cross-validation
and in several cases (PTC, halogen substituted hydrocarbons, alcohols, poly-
cyclic aromatic hydrocarbons), where a known test set was available, we per-
formed classifications for the test set. We compared cross-validation and results
on the test set for each chemical dataset. Results of the analysis are presented
in similar tables. For PTC datasets we plotted results of our experiments on the
ROC curves of the PTC workshop [13].

4.1 Experiments with PTC Dataset

Participants of the workshop on Predictive Toxicology Challenge (PTC) [13]
discussed results of competition of machine learning programs that generated
hypothetical causes of toxicity from positive and negative examples.

The training dataset consisted of descriptions of 409 molecular graphs of
chemical compounds with indication of whether a compound is toxic or not for
a particular sex/species group out of four possible groups: {mice, rats}× {male,
female}. For each group there were about 120 to 150 positive examples and 190
to 230 negative examples of toxicity. The test dataset consisted of 185 substances
for which forecasts of toxicity should be made.

The average size of the initial graphs was 25 vertices and 26 edges in the
training set, and 45 vertices and 46 edges in the test set. We generated graph
k-vertex projections for k from 1 to 8, thus producing 8 binary object-attribute
tables. For k = 9 we computed projections in 30 hours, but had to stop generation
of the binary object-attribute matrix (which involves testing graph isomorphism)
after 70 hours, having obtained 561921 attributes. With the growth of k, the
number of attributes in the resulting tables becomes large, but reduction of
attributes diminishes the size of tables in several times. Compared to computing
projections of initial graphs (which comprises the major part of computation)
and hypothesis generation, the reduction is relatively fast, see Table 1.
3 These datasets can be downloaded from http://ilp05-viniti.narod.ru
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Table 1. PTC dataset: number of attributes in representation tables before and after
attribute reduction

projection size 1 2 3 4 5 6 7 8

# attributes in full table 22 95 329 1066 3275 9814 28025 76358
# attributes in reduced table 22 72 153 373 812 1548 2637 3981
reducing time (in sec.) 1 1 2 5 16 57 219 883

To estimate different classification strategies in combination with k-
projections (1 ≤ k ≤ 13) the 10-fold cross-validation procedure was used for
the given training dataset. Table 2 shows the best results w.r.t. predictive ac-
curacy and total number of predictions. The best strategy for MR group w.r.t.
predictive accuracy is the one based on JSM-hypotheses. This strategy attains
predictive accuracy of 58% with k-projection representation. For FR group the
best result (predictive accuracy of 66%) was obtained by JRip rules in combina-
tion with k-projections. The use of FCSS representation leads to the following
results. For MR group the best strategies w.r.t. predictive accuracy are JSM-
hypotheses and C4.5 algorithm, the both strategies attain predictive accuracy of
52%. For FR group JSM-hypotheses with FCSS codes also is the best strategy
w.r.t. predictive accuracy. It attains predictive accuracy of 56%.

If we consider both precision and number of predictions then the best result
for k-projections representation for MR group is obtained by Naive Bayes (it
attains predictive accuracy of 56% and 64% of total number of predictions).
For FR group JRip results in 66% of predictive accuracy with 40% of total
number of predictions. Naive Bayes also turns out to be the best strategy in
combination with FCSS representation for both groups (predictive accuracy of
51% and 49% of total number of predictions for MR group; corresponding values
for FR group are 50% and 25%). The results of 10-fold cross-validation suggest
that the performance of learning methods stabilizes with the growth of k.

Table 2. The results of 10-fold cross-validation procedure for PTC dataset obtained
with JSM-hypotheses (J), C4.5 (C), Naive Bayes classifier (N), and JRip rules (R)
with FCSS-encoding (F) and 3, . . . , 14− projections (PR); A – predictive accuracy,
TP – total number of predictions

MR (male rats) FR (female rats)

J-F C-F N-F R-F J-PR C-PR N-PR R-PR J-F C-F N-F R-F J-PR C-PR N-PR R-PR

A 0.523 0.527 0.511 0.475 0.586 0.556 0.552 0.556 0.560 0.462 0.500 0.385 0.464 0.571 0.468 0.662
TP 0.164 0.397 0.493 0.199 0.266 0.643 0.552 0.448 0.123 0.263 0.246 0.044 0.109 0.403 0.429 0.395

4.2 Classification in Projections Estimated by ROC Curves

The results are shown in Figure 2, where the following abbreviations are used:

– J-PR1, J-PR2, ..., J-PR8 – the results obtained using 1- to 8-projection
representations, respectively, in combination with JSM-hypotheses; similarly, for
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other methods (C4.5, Naive Bayes, JRip), the results marked as C45-PRi, NB-
PRi and R-PRi (where 1 ≤ i ≤ 8);

– WAI1, GONZ, KWAI, LEU3 are other Pareto-optimal models submitted
to the Predictive Toxicology Challenge for this animal group.

Note that the Figure 2 shows both the “old” ROC-curve (composed by LEU3,
KWAI, GONZ, and WAI1 models) and the “new” one (composed by LEU3, J-
PR5, C45-PR3, NB-PR3, and R-PR7 models).
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Fig. 2. Projected pattern structures “On the ROC” for groups MR (male rats) and
FR (female rats)

For the MR group (male rats; see Figure 2) the following results were ob-
tained. The use of k-projections (with k ≤ 3) together with JSM-hypotheses
does not lead to any good classifications. However, the C4.5 algorithm and Naive
Bayes classifier appears on the “new” ROC-curve. The use of 4-projections in
combination with JSM-hypotheses and C4.5 results in better classifications: the
corresponding points are above the “old” ROC-curve. The 5-projections repre-
sentation in combination with JSM-hypotheses happens to be one of the five
“new” best strategies: it results in making 8 true positive predictions with only
2 false positive ones. As in the case with JSM-hypotheses the use of decision tree
induction strategy leads to the classification that is also better than those on
the “old” ROC-curve. The use of 6-projections with JSM-hypotheses, however,
does not result in better classification: the number of true positives decreases
to 6; the number of false positives remains the same. At the same time new
classifications of the C4.5 are among the best ones. The corresponding point lies
on the “new” ROC-curve. The use of 7-projections and JSM-hypotheses, with
4 true positives and 1 false positives again appears on the “new” ROC-curve.
The classification based on the 8-projections representation and JSM-hypotheses
increases the number of true positives to 6 but also increases the number of false
positives to 2; this strategy is thus strictly worse than using 5-projections (as-
suming positive cost of making a true positive classification).
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For the FR group (female rats; see Figure 2) the points corresponding to
the results for 4-, 5-, 6-, and 8-projections in combination with JSM-hypotheses,
also lie above the “old” PTC ROC-curve, where concept-based hypotheses were
computed for FCSS representation. However, other methods do not lead to any
good classifications. None of them in combination with k-projections appears
above the “old” ROC-curve. There was only one exception: ripple-down rules
(JRip) using 6-projections representation show the same result as LEU3.

Computer experiments with PTC data in comparison of FCSS, k-projections
and reduced/nonreduced tables showed that the use of reduced tables, as com-
pared with nonreduced ones, does not make any difference for concept-based
hypotheses, makes a very slight difference (no more than 5%) for induction of
decision trees and small difference (about 10-15%) for other methods such as
Naive Bayes and JRip. As for comparison of projections of different type, first
there is an obvious improvement with the growth of the projection parameter k.
Starting from a certain value of k there is no further improvement.

4.3 Toxicity of Alcohols

In [32] the results of studies on the relationships between structures of miscella-
neous alcohols (from [33]) and their acute toxicity for rats and mice using JSM-
(concept-based) hypotheses with FCSS representation are described.

The training set contains descriptions of 89 molecular graphs of chemical
compounds with indication of acute toxicity degree (high, moderate, and low).
Separate computations were made for two target values: high and moderate. In
the first case moderate and low toxic substances were considered as negative
examples. In the second case only low toxic substances were considered as neg-
atives. The test set consisted of 22 substances. The average size of a molecular
graph was 24 vertices and 23 edges.

Tables 3 and 4 report on the results obtained with FCSS and k-projections
(4 ≤ k ≤ 13) in combination with various learning models.

Table 3. Toxicity of alcohols: results obtained with JSM-hypotheses, FCSS-encoding
(F) and 4−, . . . , 13−projections

F 4 5 6 7 8 9 10 11 12 13
# correct predictions 8 9 10 10 14 14 13 12 11 11 11
# incorrect predictions 2 0 3 1 1 2 3 3 3 3 3
# unclassified substances 12 13 9 11 7 6 6 7 8 8 8

Table 4. Predicting toxic potential of alcohols: the best results obtained with JSM-
hypotheses (J), C4.5 (C), Naive Bayes classifier (N), and JRip rules (R) in combination
with FCSS-encoding (F) and 3, . . . , 14− projections (PR)

J-F C-F N-F R-F J-PR C-PR N-PR R-PR
# correct predictions 8 19 16 19 14 19 12 17
# incorrect predictions 2 3 6 3 1 3 10 5
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For k-projections with 1 ≤ k ≤ 3 there was no classification with JSM-
hypotheses whatsoever. For k = 4 with JSM-hypotheses a result is better than
that for FCSS was obtained. For k = 5 and k = 6 results are not comparable
with those for k = 4: the number of correct classifications is 10, but the numbers
of incorrect predictions are equal to 3 and 1, respectively. The result obtained
with JSM-hypotheses for 7-projections is among the best results for 1 ≤ k ≤ 13:
14 correct predictions with only 1 mistake. Starting with k = 8 the growth of k
results in the decrease of predictive accuracy for JSM-hypotheses. The predictive
accuracy of other methods also decreases with the growth of k. For example,
the use of C4.5 algorithm and 8-projections leads to the classification with 19
correct predictions and 3 incorrect predictions, but the use of 11-projections
representation in combination with the same learning model results in 18 correct
predictions with 4 mistakes.

In general, we observe that the use of reduced vs. nonreduced tables does
not affect results obtained with the JSM-hypotheses and slightly affects results
of other methods. The best classifications were obtained for average projection
values (4 ≤ k ≤ 8). Experimental complexity of computing projections for this
dataset, is given in Table 5

Table 5. Alcohol dataset: time of computing projections

size of projection 4 5 6 7 8 9 10 11 12 13
time elapsed, sec. 12 21 44 109 317 937 3163 12402 45822 156297

4.4 Predicting Carcinogenic Potential in Halogen-Substituted
Aliphatic Hydrocarbons

The training set [34] contained descriptions of 57 molecular graphs with values
of carcinogenic potential. The unique target property here was “to be carcino-
genic”. The test set consisted of 13 molecular graphs. The results for different
k-projections and FCSS in combination with different learning models are shown
in Table 6.

Table 6. Predicting carcinogenic potential in hydrocarbons: the results obtained with
JSM-hypotheses and FCSS-encoding (F) and 3, . . . , 14− projections

F 3 4 5 6 7 8 9 10 11 12 13 14
# correct predictions 2 6 6 6 7 7 7 7 7 7 7 7 7
# incorrect predictions 0 0 0 0 0 0 0 1 1 1 1 1 1
# unclassified substances 11 7 7 7 6 6 6 5 5 5 5 5 5

The average size of the initial graphs was 8 vertices and 7 edges in the training
set and 13 vertices and 12 edges in the test set. As the projection size increases
the classification accuracy first grows and then (for k ≥ 9) starts to decrease
(Table 6).



Learning Closed Sets of Labeled Graphs for Chemical Applications 203

For another dataset with 25 molecular graphs in the training set, 17 graphs
in the test set, and the same sizes of molecules as above a numerical value
(characteristic of a specific activation energy of a molecule) [35] was supplied for
each substance. This value was treated by means of the semilattice on intervals
as described in Section 2. The resulting similarity semilattice is that on pairs of
the form (graph set, numerical interval). The computation results are shown in
Table 7.

Table 7. Predicting indirect carcinogenic potential in hydrocarbons with JSM-
hypotheses, FCSS-encoding (F), and 3, . . . , 14− projections

F 3 4 5 6 7 8 9 10 11 12 13 14
# correct predictions 6 8 9 11 11 11 11 11 11 11 11 11 11
# incorrect predictions 5 2 2 1 1 1 1 1 1 1 1 1 1
# unclassified substances 6 7 6 5 5 5 5 5 5 5 5 5 5

Again, we computed k-projections of the initial molecular graphs for 1 ≤
k ≤ 13. The stratified 10-fold cross-validation procedure was used to estimate
different classification strategies in combination with k-projections (1 ≤ k ≤ 13).
Table 8 shows the best results w.r.t. predictive accuracy and total number of
predictions. On the one hand the best strategies w.r.t. predictive accuracy are
C4.5 algorithm, the one based on JSM-hypotheses, and JRip rules. C4.5 attains
predictive accuracy of 83% with FCSS representation, JSM and JRip attained
predictive accuracy of 78% with k-projections. On the other hand, if we consider
both precision and number of predictions, then the best result is obtained with
JRip rules (78% of predictive accuracy and 93% of total number of predictions
with k-projections). 66% of total number of predictions was attained with the
use of C4.5 and FCSS representation. Table 8 also shows the results of 10-fold
cross-validation for reduced tables. The use of reduced tables, as compared with
nonreduced ones, does not make any difference for concept-based hypotheses,
makes a very slight difference (no more than 5%) for C4.5 and small difference
(about 10-15%) for other methods such as Naive Bayes and JRip.

Table 8. The results of 10-fold cross-validation for hydrocarbons dataset obtained
with JSM-hypotheses (J), C4.5 (C), Naive Bayes classifier (N), and JRip rules (R) in
combination with FCSS-encoding (F) and 3, . . . , 14− projections (PR); A – predictive
accuracy, TP – total number of predictions

nonreduced table reduced table

J-F C-F N-F R-F J-PR C-PR N-PR R-PR J-F C-F N-F R-F J-PR C-PR N-PR R-PR

A 0.800 0.833 0.722 0.765 0.778 0.750 0.765 0.778 0.800 0.833 0.722 0.765 0.778 0.812 0.750 0.765
TP 0.533 0.667 0.867 0.867 0.467 0.800 0.867 0.933 0.533 0.667 0.867 0.867 0.467 0.867 0.800 0.867

The predictions made by different strategies were compared with known ex-
perimental results from [34] the following evaluations were obtained. As in the
previous experiment with the k-projections and JSM-hypotheses where 1 ≤ k ≤
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2 no classification was made at all. The strategies based on 3-, 4-projections and
JSM-hypotheses result in better classifications than those with FCSS-encoding.
The same result was attained by the strategy based on induction of decision trees
(C4.5 algorithm). It results in 12 correct predictions and 5 incorrect predictions.
For k ≥ 5 in combination with JSM-hypotheses the best result was obtained
w.r.t. predictive accuracy. Other methods with k-projections (k ≥ 5) made ap-
proximately the same number of correct predictions as the strategy based on
JSM-hypotheses. However, the number of incorrect predictions is also a little
bit larger. Starting from a certain value of k the results stabilize and no further
improvement is made. For example, with JSM-hypotheses and Naive Bayes, k is
equal to 5, while for C4.5, k = 11. Table 9 shows the best results obtained with
different methods.

Table 9. Predicting of indirect carcinogenic potential in hydrocarbons: the best results
obtained with JSM-hypotheses (J), C4.5 (C), Naive Bayes classifier (N), and JRip rules
(R) in combination with FCSS-encoding (F) and 3, . . . , 14− projections (PR)

J-F C-F N-F R-F J-PR C-PR N-PR R-PR
# correct predictions 6 12 8 8 11 15 13 12
# incorrect predictions 5 5 9 9 1 2 4 5

Thus, as for other datasets the best results were obtained for average projec-
tion values and were almost similar for reduced/nonreduced tables.

4.5 Analysis of Carcinogenicity of Polycyclic Aromatic
Hydrocarbons

In the following experiment we considered data from [36]. The training dataset
contains the descriptions of 25 molecular graphs of polycyclic aromatic hydro-
carbons with indication of carcinogenic degree. As in Section 4.3 two separate
computations were made for 2 target properties. To compare different classi-
fication methods in combination with k-cycles projections representation, we
computed leave-one-out cross-validation. The best results w.r.t. predictive ac-
curacy for the first target property are shown in Table 10. Learning with JSM-
hypotheses attains the best results in most of the cases. However, other methods
(e.g., C4.5) make more total predictions, see Table 10. Computer experiments
with 25PAH data in comparison of FCSS, k-projections and reduced/nonreduced
tables showed that the use of reduced tables, as compared with nonreduced ones,
does not make any difference for any method.

To test the strength of methods we considered the test dataset from [37,38]
and applied the hypotheses computed for k-cycles projections representation
(with 1 ≤ k ≤ 7) to classification of substances from the test set. There were 19
substances in the test dataset and Table 11 shows the best results obtained by
different methods. From Table 11 we can conclude that among all methods w.r.t.
predictive accuracy and completeness, the strategy based on JSM-hypotheses is
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Table 10. The values of Leave-One-Out on 25PAH for the first target property, dif-
ferent methods, FCSS-encoding (F), and 3−, . . . , 7−cycles projections

J-F C-F N-F R-F J-PR C-PR N-PR R-PR
predictive accuracy 0.818 0.688 1.000 0.846 0.909 0.818 1.000 0.846
total number of predictions 0.643 0.786 0.500 0.786 0.714 0.643 0.500 0.786

Table 11. Predicting indirect carcinogenic potential in PAH: different learning meth-
ods, FCSS-encoding (F) and 3−, . . . , 7− cycles projections

J-F C-F N-F R-F J-PR C-PR N-PR R-PR
# correct predictions 6 5 13 1 7 7 11 7
# incorrect predictions 5 14 6 18 6 12 8 12

the best one for the second target property in combination with k-cycles projec-
tions representation (for all values 1 ≤ k ≤ 7). For the first target property the
best result was obtained by Naive Bayes, next comes the JSM-method. At the
same time we consider the combination of two target properties to predict the
carcinogenic degree of a substance from the test dataset. Thus the comparison
between different methods was drawn w.r.t. both target properties. From Ta-
ble 11 we can conclude that best results w.r.t. predictive accuracy were obtained
with JSM-hypotheses for both FCSS codes and k-cycles projections.

As for practical complexity, cyclic projections were generated in less than
0.5 second for all values of k, parameter of projection, since each graph in this
dataset contains no more than 7 cycles in the minimal cyclic base.

5 Conclusions

Definitions of graph similarity operations and its approximations (projections),
based on order- and lattice-theoretic ideas, were considered and studied exper-
imentally on several chemical datasets with several learning models. In many
cases the proposed graph representation results in better predictive accuracy
as compared to that with standard FCSS language for the analysis of biological
activity of chemicals. We experimentally studied a technique for lowering dimen-
sionality of datasets, called reduction of attributes. For JSM or concept-based
learning the reduction of attributes is strictly information lossless. The reduction
proved to be useful for decision tree induction, Naive Bayes classifiers, and JRip:
while lowering the number of attributes in several times, it results in almost no
loss of accuracy in case of decision tree induction and results in minor loss of
accuracy in case of Naive Bayes and JRip classifiers. On the other hand, we
studied the performance of learning methods with respect to precision of graph
approximation controlled by projection level. With the increase of representa-
tion accuracy (k, parameter of projection), the performance of learning methods
first improves, then stabilizes and in some cases becomes worse after a certain
threshold, seemingly due to overfitting effects. This picture, standard for the
role of dimensionality in machine learning, suggests the use of molecular graph
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approximations instead of complete graphs: keeping dimensionality in a certain
range, we can even gain in predictive accuracy. Further work on improving the
representation model with labeled graphs will be related to accounting for 3D
information, e.g. various types of isomerisms.
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Abstract. The use of background knowledge is one of the distinguishing
features of ILP with respect to other approaches to machine learning. Yet
the representation formalisms traditionally chosen for the background
knowledge in ILP seem to ignore the latest developments in Knowledge
Engineering such as standard languages for ontologies. In this paper we
present a case study that shows how current ILP systems can be made
compliant with these standards in order to fulfill the expressive require-
ments of emerging application areas like the Semantic Web.

1 Introduction

ILP has been historically concerned with concept learning from examples and
background knowledge within the representation framework of Horn clausal logic
and with the aim of prediction. Though the use of background knowledge has
been widely recognized as one of the strongest points of ILP when compared to
other forms of inductive learning [22,24,16] and has been empirically studied in
several application domains [17,29,27], the background knowledge in ILP systems
is often not organized around a well-formed conceptual model. This practice
seems to ignore latest developments in Knowledge Engineering (KE).

During the last decade increasing attention has been paid on ontologies and
their role in Knowledge Engineering and (Intelligent) Information Systems [5,28].
In the philosophical sense, we may refer to an ontology as a particular system of
categories accounting for a certain vision of the world. As such, this system does
not depend on a particular language: Aristotle’s ontology is always the same,
independently of the language used to describe it. On the other hand, in its
most prevalent use in Artificial Intelligence, an ontology refers to an engineer-
ing artifact (more precisely, produced according to the principles of Ontological
Engineering [8]), constituted by a specific vocabulary used to describe a certain
reality, plus a set of explicit assumptions regarding the intended meaning of the
vocabulary words. This set of assumptions has usually the form of a first-order
logical theory, where vocabulary words appear as unary or binary predicate
names, respectively called concepts and relations. In the simplest case, an on-
tology describes a hierarchy of concepts related by subsumption relationships;
in more sophisticated cases, suitable axioms are added in order to express other
relationships between concepts and to constrain their intended interpretation.

S. Kramer and B. Pfahringer (Eds.): ILP 2005, LNAI 3625, pp. 209–226, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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The two readings of ontology described above are indeed related each other, but
in order to solve the terminological impasse the word conceptualization is used
to refer to the philosophical reading as appear in the following definition, based
on [9]: An ontology is a formal explicit specification of a shared conceptualization
for a domain of interest. Among the other things, this definition emphasizes the
fact that an ontology has to be specified in a language that comes with a formal
semantics. Only by using such a formal approach ontologies provide the machine
interpretable meaning of concepts and relations that is expected when using an
ontology-based approach. Among the formalisms proposed by Ontological En-
gineering, the most currently used are Description Logics (DLs) [1]. DLs are
fragments of first-order logic that are incomparable with Horn clausal logic as
regards the expressive power [3].

Fig. 1. Architecture of the Semantic Web

Ontology Engineering, notably its DL-based approach, is playing a relevant
role in the definition of the Semantic Web. The Semantic Web is the vision of the
World Wide Web enriched by machine-processable information which supports
the user in his tasks [2]. The architecture of the Semantic Web is shown in Figure
1. It consists of several layers, each of which is equipped with an ad-hoc mark-up
language. In particular, the design of the mark-up language for the ontological
layer, OWL [12], has been based on the very expressive DL SHIQ [13].

In a very recent position paper, Page and Srinivasan have pointed out that
the use of special-purpose reasoners in ILP is among the pressing issues that
have arisen from the most challenging ILP applications of today [21]. In this
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paper we present a case study that shows how current ILP systems can meet
the KE requirements and take benefit from the services offered by current KE
tools in anticipation of an ILP application to the Semantic Web. In particu-
lar, we choose AL-QuIn [19,18] as the ILP system and Protégé-2000 [20] as
the KE tool. AL-QuIn learns in AL-log within the setting of characteristic in-
duction from interpretations. AL-log [6] is a hybrid language that integrates
the DL ALC [25] and Datalog [4] by using ALC concept assertions essen-
tially as type constraints on variables. Therefore AL-QuIn can learn from rela-
tions and ontologies. Protégé-2000 is the most popular KE tool that supports
OWL editing and reasoning. It has an extensible architecture, thus allowing for
customization.

The paper is structured as follows. Section 2 describes AL-QuIn. Section
3 describes Protégé-2000. Section 4 presents a data pre-processing module -
implemented as an extension of Protégé-2000 - that allows AL-QuIn to deal
with OWL ontologies. Section 5 draws conclusions and outlines directions of
future work. Appendix A and B briefly introduce AL-log and OWL respectively.

2 The ILP System AL-QuIn

The ILP system AL-QuIn (AL-log Query Induction) [19,18] solves a variant
of the frequent pattern discovery problem which takes concept hierarchies into
account during the discovery process, thus yielding descriptions of a data set r
at multiple granularity levels. More formally, given

– a data set r including a taxonomy T where a reference concept Cref and
task-relevant concepts are designated,

– a set {Ll}1≤l≤maxG of languages
– a set {minsupl}1≤l≤maxG of support thresholds

the problem of frequent pattern discovery at l levels of description granularity,
1 ≤ l ≤ maxG, is to find the set F of all the patterns P ∈ Ll frequent in r,
namely P ’s with support s such that (i) s ≥ minsupl and (ii) all ancestors of P
w.r.t. T are frequent.

In AL-QuIn the data set r is represented as an AL-log knowledge base B.

Example 1. As a running example, we consider an AL-log knowledge base BCIA

that adds ALC ontologies to Datalog facts1 extracted from the on-line 1996
CIA World Fact Book2. These ontologies contain concepts such as Country,
EthnicGroup and Religion.

The language L = {Ll}1≤l≤maxG of patterns allows for the generation of
unary conjunctive queries, called O-queries. Given a reference concept Cref , an
O-query Q to an AL-log knowledge base B is a (linked and connected) con-
strained Datalog clause of the form
1 http://www.dbis.informatik.uni-goettingen.de/Mondial/mondial-rel-facts.flp
2 http://www.odci.gov/cia/publications/factbook/
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Q = q(X) ← α1, . . . , αm&X : Cref , γ2, . . . , γn

where X is the distinguished variable and the remaining variables occurring in
the body of Q are the existential variables. An O-query q(X) ← &X : Cref is
called trivial. The language L of patterns for a given frequent pattern discovery
problem is implicitly defined by a declarative bias specification. The support of
an O-query Q ∈ Ll w.r.t an AL-log knowledge base B is defined as

supp(Q,B) =| answerset(Q,B) | / | answerset(Qt,B) |

where Qt is the trivial O-query for L.

Example 2. Following Example 1, suppose that we are interested in finding hy-
potheses that characterize Middle East countries w.r.t. the religions believed and
the languages spoken. An ad-hoc language L of patterns has been defined. Here
MiddleEastCountry is the reference concept, and Religion and Language are
task-relevant concepts. Examples of O-queries belonging to L are:

Qt= q(X) ← & X:MiddleEastCountry
Q= q(X) ← believes(X,Y), believes(X,Z)

& X:MiddleEastCountry, Y:MonotheisticReligion

In particular, Qt is the trivial O-query for L.

2.1 The Knowledge Base B
In AL-QuIn the knowledge base B is structured as illustrated in Figure 2.

The background knowledge is the portion K of B which encompasses the
whole structural subsystem Σ and the intensional part of Π .

Example 3. The background knowledge KCIA of BCIA contains axioms such as

AsianCountry � Country.
MiddleEastEthnicGroup� EthnicGroup.
MiddleEastCountry≡ AsianCountry� ∃Hosts.MiddleEastEthnicGroup.
MonotheisticReligion� Religion.
ChristianReligion� MonotheisticReligion.
MuslimReligion� MonotheisticReligion.

and membership assertions such as

’ARM’:AsianCountry.
’IR’:AsianCountry.
’Arab’:MiddleEastEthnicGroup.
’Armenian’:MiddleEastEthnicGroup.
<’ARM’,’Armenian’>:Hosts.
<’IR’,’Arab’>:Hosts.
’Armenian Orthodox’:ChristianReligion.
’Shia’:MuslimReligion.
’Sunni’:MuslimReligion.
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Fig. 2. The hybrid knowledge base of AL-QuIn

that define taxonomies for the concepts Country, EthnicGroup and Religion re-
spectively. Note that Middle East countries (concept MiddleEastCountry) have
been defined as Asian countries that host at least one Middle Eastern ethnic
group. In particular, Armenia (’ARM’) and Iran (’IR’) are classified as Middle
East countries. Also KCIA includes constrained Datalog clauses such as:

believes(CountryID, ReligionName)←
religion(CountryID,ReligionName,Percent)

that defines a view on the relation religion.

Observations are in the form of (q(ai),Ai) where ai is an individual of Cref

and Ai are portions of B \ K, therefore portions of the extensional part of Π .

Example 4. By assuming MiddleEastCountry as reference concept, the obser-
vation AIR contains Datalog facts such as

language(’IR’,’Persian’,58).
religion(’IR’,’Shia’,89).
religion(’IR’,’Sunni’,10).

concerning the individual ’IR’ whereas the observation AARM consists of facts
like

language(’ARM’,’Armenian’,96).
religion(’ARM’,’Armenian Orthodox’,94).

related to the individual ’ARM’.
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In AL-QuIn the coverage problem reduces to a query answering problem. In-
deed, an answer to an O-query Q is a ground substitution θ for the distinguished
variable of Q. An answer θ to an O-query Q is a correct (resp. computed) an-
swer w.r.t. an AL-log knowledge base B if there exists at least one correct (resp.
computed) answer to body(Q)θ w.r.t. B. Therefore proving that an O-query Q
covers an observation (q(ai),Ai) w.r.t. K equals to proving that θi = {X/ai} is
a correct answer to Q w.r.t. Bi = K ∪Ai.

Example 5. Following Example 2 and Example 4, we want to check whether the
O-query Q covers the observation (q(’IR’),AIR) w.r.t. KCIA. This is equivalent
to answering the query

Q(0) = ← q(’IR’)

w.r.t. KCIA ∪ AIR ∪ Q.

2.2 Saturation of the Observations w.r.t. the Background
Knowledge

The internal representation language in AL-QuIn is a kind of DatalogOI

[18]. We would like to remind the reader that DatalogOI [26] is a subset of
Datalog�=. In it the equational theory consists of the axioms of Clark’s Equal-
ity Theory augmented with one rewriting rule that adds inequality atoms s �= t
to any P ∈ L for each pair (s, t) of distinct terms occurring in P . Note that
ALC constraints are rendered as membership atoms, e.g. X:MiddleEastCountry
becomes c MiddleEastCountry(X). Thus, when implementing the coverage test
in AL-QuIn, the goal has been to reduce constrained SLD-resolution in AL-log
to SLD-resolution on DatalogOI .

A crucial issue in this mapping is to deal with the satisfiability tests of ALC
constraints w.r.t. Σ which are required by constrained SLD-resolution because
they are performed by applying the tableau calculus for ALC. The reasoning on
the constraint part of O-queries has been replaced by preliminary saturation
steps of the observations w.r.t. the background knowledge K. Saturation is a
reformulation operator that enables ILP systems to take background knowledge
into account during the generalization process [23]. It was originally proposed for
the setting of learning from implications in Horn clausal logic where observations
are represented as definite clauses. But it can be extended to the setting of learn-
ing from interpretations in AL-log as follows: The observations are completed
with concept assertions that can be derived from Σ.

Retrieving all the individuals of a concept C is known in DLs as the retrieval
problem [1]. In AL-QuIn, the retrieval for the reference concept is made only
once at the beginning of the whole discovery process because it makes explicit
knowledge of interest to all the levels of granularity. Conversely, retrieval for the
task-relevant concepts follows the layering of T : individuals of concepts belonging
to the l-th layer T l of T are retrieved before searching the space Ll. This makes
SLD-refutations of queries in Ll work only on extensional structural knowledge
at the level l of description granularity (levelwise saturation).
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Example 6. The concept assertions

’ARM’:MiddleEastCountry.
’IR’:MiddleEastCountry.

for the reference concept MiddleEastCountry are made explicit before the dis-
covery process starts. Conversely the concept assertions

’Armenian Orthodox’:MonotheisticReligion.
’Shia’:MonotheisticReligion.
’Sunni’:MonotheisticReligion.

for the task-relevant concept MonotheisticReligion (belonging to T 2) are de-
rived at the beginning of the search in L2.

The concept assertions returned by the retrieval tasks are then translated
to DatalogOI and added to the facts derived from the intensional relational
knowledge at the loading of each observation. The coverage test therefore con-
cerns DatalogOI rewritings of both O-queries and saturated observations.

Example 7. The DatalogOI rewriting

q(X) ← c MiddleEastCountry(X), believes(X,Y), c MonotheisticReligion(Y),
believes(X,Z), Y�=Z

of Q covers the DatalogOI rewriting of the saturated observation ÂIR:

c MiddleEastCountry(’IR’)
believes(’IR’,’Shia’)
believes(’IR’,’Sunni’)
c MonotheisticReligion(’Shia’)
c MonotheisticReligion(’Sunni’)
. . .

Note that the translation from ALC to DatalogOI is possible because in
AL-QuIn all the concepts are named. This means that an equivalence axiom
is required for each complex concept in the knowledge base. Equivalence ax-
ioms help keeping concept names (used within constrained Datalog clauses)
independent from concept definitions.

3 The KE Tool Protégé-2000

Protégé-20003 [7] is the latest version of the Protégé line of tools, created by
the Stanford Medical Informatics (SMI) group at Stanford University, USA. It
has a community of thousands of users. Although the development of Protégé
has historically been mainly driven by biomedical applications, the system is
domain-independent and has been successfully used for many other application
areas as well.
3 The current distribution is 3.0 (February 2005), freely available at

http://protege.stanford.edu/ under the Mozilla open-source license.
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3.1 The Architecture

Protégé-2000 is a Java-based standalone application to be installed and run in
a local computer. The core of this application is the ontology editor. Like most
other modeling tools, the architecture of Protégé-2000 is cleanly separated into a
model part and a view part. Protégé-2000’s model is the internal representation
mechanism for ontologies and knowledge bases. Protégé-2000’s view components
provide a Graphical User Interface (GUI) to display and manipulate the under-
lying model.

Protégé-2000’s model is based on a simple yet flexible metamodel [20], which
is comparable to object-oriented and frame-based systems. It basically can rep-
resent ontologies consisting of classes, properties (slots), property characteristics
(facets and constraints), and instances. Protégé-2000 provides an open Java API
to query and manipulate models. An important strength of Protégé-2000 is that
the Protégé-2000 metamodel itself is a Protégé-2000 ontology, with classes that
represent classes, properties, and so on. For example, the default class in the
Protege base system is called :STANDARD-CLASS, and has properties such
as :NAME and :DIRECT-SUPERCLASSES. This structure of the metamodel
enables easy extension and adaption to other representations.

Using the views of Protégé-2000’s GUI, ontology designers basically create
classes, assign properties to the classes, and then restrict the properties facets at
certain classes. Using the resulting ontologies, Protégé-2000 is able to automati-
cally generate user interfaces that support the creation of individuals (instances).
For each class in the ontology, the system creates one form with editing compo-
nents (widgets) for each property of the class. For example, for properties that
can take single string values, the system would by default provide a text field
widget. The generated forms can be further customized with Protégé-2000’s form
editor, where users can select alternative user interface widgets for their project.
The user interface consists of panels (tabs) for editing classes, properties, forms
and instances.

Protégé-2000 has an extensible architecture, i.e. an architecture that al-
lows special-purpose extensions (aka plug-ins) to be easily integrated. These
extensions usually perform functions not provided by the Protégé-2000 standard
distribution (other types of visualization, new import and export formats, etc.),
implement applications that use Protégé-2000 ontologies, or allow configuring
the ontology editor. Most of these plug-ins are available in the Protégé-2000
Plug-in Library, where contributions from many different research groups can
be found. Three kinds of plug-ins can be developed for Protégé-2000:

– Tab plug-ins. These are the most common types in Protégé-2000, and provide
functions that are not covered by the standard distribution of the ontology
editor. To perform their task, tab plug-ins extend the ontology editor with
an additional tab so that users can access its functions from it.

– Slot widget plug-ins. These are used to display and edit slot values without
the default display and edit facilities. There are also slot widgets for dis-
playing images, video and audio, and for managing dates, for measurement
units, for swapping values between slots, etc.
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Fig. 3. Architecture of the OWL Plugin for Protégé-2000

– Backend plug-ins. These enable users to export and import ontologies in
different formats. E.g., there is a backend for storing and retrieving ontologies
from databases so that not only ontologies can be stored as CLIPS files (the
default storage format used by Protégé-2000) but they can also be stored in
any database JDBC compatible.

3.2 The OWL Plugin

As illustrated in Figure 3, the OWL Plugin [15] extends the Protégé-2000 model
and its API with classes to represent the OWL specification. In particular it
supports RDF(S), OWL Lite, OWL DL (except for anonymous global class ax-
ioms, which need to be given a name by the user) and significant parts of OWL
Full (including metaclasses). The OWL API basically encapsulates the internal
mapping and thus shields the user from error-prone low-level access. Furthermore
the OWL Plugin provides a comprehensive mapping between its extended API
and the standard OWL parsing library Jena4. The presence of a secondary rep-
resentation of an OWL ontology in terms of Jena objects means that the user
is able to invoke arbitrary Jena-based services such as interfaces to classifiers,
query languages, or visualization tools permanently.

Based on the above mentioned metamodel and API extensions, the OWL
Plugin provides several custom-tailored GUI components for OWL. When
started, the system displays the five tabs shown in Figure 4. Most ontology
designers will focus on the OWL classes and Properties tabs. The Forms and
Individuals tabs are mostly geared for the acquisition of Semantic Web contents,
4 http://jena.sourceforge.net
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Fig. 4. Interface of the OWL Plugin for Protégé-2000

while the Metadata tab allows users to specify global ontology settings such
as imports and namespaces. With reference to the OWL ontology displayed in
Figure 4, conditions widget in the OWL classes tab shows the definition of the
concept MiddleEastCountry in the form of an equivalence axiom. It has been
composed with the Expression Editor. The stored OWL file for this ontology is
reported in Figure 5.

The OWL Plugin provides direct access to DL reasoners such as RACER
[10]. The current user interface supports two types of DL reasoning:

Consistency checking (i.e., the test whether a class could have instances)
can be invoked either for all classes with a single mouse click, or for selected
classes only. Inconsistent classes are marked with a red bordered icon.

Classification (i.e., inferring a new subsumption tree from the asserted def-
initions) can be invoked either for the whole ontology, or for selected sub-
trees only. When the classify button is pressed, the system determines the
OWL species, because some reasoners are unable to handle OWL Full on-
tologies. This is done using the validation service from the Jena library. If
the ontology is in OWL Full, the system attempts to convert the ontology
temporarily into OWL DL. Once the ontology has been converted into OWL
DL, a full consistency check is performed, because inconsistent classes can-
not be classified correctly. Finally, the classification results are stored until
the next invocation of the classifier, and can be browsed separately (see, e.g.,
the panel Inferred Hierarchy in Figure 4). Note that OWL files store only
the subsumptions that have been asserted by the user. However, experience
has shown that, in order to edit and correct their ontologies, users need to
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Fig. 5. An example of OWL file generated by the OWL Plugin for Protégé-2000

distinguish between what they have asserted and what the classifier has in-
ferred. The OWL Plugin addresses this need by displaying both hierarchies
and making available extensive information on the inferences made during
classification.

The OWL Plugin can be further extended, e.g. to support OWL-based lan-
guages like the Semantic Web Rule Language (SWRL) [11] or to implement DL
reasoners directly on top of the OWL API or Jena.

4 From OWL to Datalog: A Data Pre-processing Module
for AL-QuIn

A module has been developed to support the saturation of observations w.r.t. a
OWL background knowledge Σ in AL-QuIn. To achieve this goal according to
the requirements specified in Section 2.2, it supplies the following functionalities:
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Fig. 6. Interface of the OWL2Datalog Plugin for Protégé-2000

– levelwise retrieval w.r.t. Σ

– transformation of concept assertions of Σ to Datalog facts

The latter relies on the former, meaning that the results of the levelwise retrieval
are exported to Datalog.

The module, called OWL2Datalog, is implemented as an extension of
Protégé-2000, more precisely on top of the OWL Plugin described in Section
3.2. Indeed, as shown in Figure 6, it adds a new tab to the standard interface
of the OWL Plugin for Protégé-2000. The tab consists of two panels: a Class
Browser and a LevelWise Instance Browser. The former shows the OWL classes
of Σ and their hierarchical arrangement. The latter shows the instances and
their membership, both the asserted one and the inferred one, to the classes of
Σ in a levelwise manner. E.g., the individual Arabic has been asserted as in-
stance of the concept AfroAsiaticLanguage (put in rounded brackets just after
the instance name in the LevelWise Instance Browser panel). As an effect of
the levelwise retrieval it appears among the instances of concepts belonging to
the level l = 1 in the subsumption hierarchy. A button Export Assertions to
Datalog is available on the LevelWise Instance Browser panel for the export
of the extensional part of Σ to Datalog.

In Table 1 we have reported the results of a performance evaluation of the
OWL2Datalog Plugin on the OWL ontology, shown in Figure 6, concerning
languages spoken and religions believed all over the world. For each of the three
hierarchical levels of the ontology, Table 1 specifies the number of concepts, the
number of asserted instances, the number of instances that have been inferred
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Table 1. Performance of OWL2Datalog on the OWL ontology shown in Figure 6

l # concepts # asserted instances # inferred instances retrieval (secs) export (secs)

1 2 9 121 1.12 1.47
2 5 47 74 0.36 0.93
3 6 74 0 0.00 0.05

by retrieval, retrieval time and export time. Note that fast execution times of
OWL2Datalog are due to the underlying OWL reasoner.

5 Conclusions and Future Work

In this paper we have made AL-QuIn, an existing ILP system, compliant with
the latest developments in Knowledge Engineering. The solution proposed fol-
lows engineering principles because it promotes:

– the reuse of existing systems (AL-QuIn and Protégé-2000)
– the adherence to standards (either normative - see OWL for KE - or de facto

- see Prolog for ILP)

Furthermore the resulting artifact overcomes the capabilities of the two systems
when considered stand-alone. In particular, AL-QuIn was originally conceived
to deal with ALC ontologies. Since OWL is equivalent to SHIQ and ALC is a
fragment of SHIQ, the Protégé-2000 plugin OWL2Datalog allows AL-QuIn
to deal with more expressive ontological background knowlege.

The OWL2Datalog Plugin supplies a saturation service to AL-QuIn. In
[18] saturation has been mentioned as a way of speeding-up the evaluation of
candidate hypotheses in ILP systems. In this paper it is intended as a way of
compiling DL-based background knowledge down to the usual Datalog-like
formalisms of ILP systems. A related work to ours is the pre-processing method
proposed by Kietz [14] to enable legacy ILP systems to learn in the hybrid
language CARIN-ALN .

The OWL2Datalog Plugin is just a preliminary ’real’ step towards the
application of AL-QuIn to Semantic Web Mining. For the future we plan to
make AL-QuIn tighter-coupled with Protégé-2000 by developing a middleware
component. Also we intend to implement a plugin for translating hypotheses
generated by AL-QuIn from AL-log to SWRL.

Acknowledgement. We are grateful to Michèle Sebag and Peter Flach for the
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Table 2. Syntax and semantics of ALC

bottom (resp. top) concept ⊥ (resp. �) ∅ (resp. ΔI)
atomic concept A AI ⊆ ΔI

role R RI ⊆ ΔI × ΔI

individual a aI ∈ ΔI

concept negation ¬C ΔI \ CI

concept conjunction C � D CI ∩ DI

concept disjunction C � D CI ∪ DI

value restriction ∀R.C {x ∈ ΔI | ∀y (x, y) ∈ RI → y ∈ CI}
existential restriction ∃R.C {x ∈ ΔI | ∃y (x, y) ∈ RI ∧ y ∈ CI}

equivalence axiom C ≡ D CI = DI

subsumption axiom C � D CI ⊆ DI

concept assertion a : C aI ∈ CI

role assertion 〈a, b〉 : R (aI , bI) ∈ RI

A The KR&R System AL-Log

The system AL-log [6] integrates two KR&R systems: Structural and relational.
The structural subsystem Σ is based on ALC [25] and allows for the spec-

ification of knowledge in terms of classes (concepts), binary relations between
classes (roles), and instances (individuals). Complex concepts can be defined
from atomic concepts and roles by means of constructors (see Table 2). Also
Σ can state both is-a relations between concepts (axioms) and instance-of re-
lations between individuals (resp. couples of individuals) and concepts (resp.
roles) (assertions). An interpretation I = (ΔI , ·I) for Σ consists of a domain
ΔI and a mapping function ·I . In particular, individuals are mapped to elements
of ΔI such that aI �= bI if a �= b (unique names assumption). If O ⊆ ΔI and
∀a ∈ O : aI = a, I is called O-interpretation. The main reasoning task for Σ is
the consistency check. This test is performed with a tableau calculus that starts
with the tableau branch S = Σ and adds assertions to S by means of propagation
rules until either a contradiction is generated or an interpretation satisfying S
can be easily obtained from it.

The relational subsystem Π extends Datalog [4] by using the so-called
constrained Datalog clause, i.e. clauses of the form

α0 ← α1, . . . , αm&γ1, . . . , γn

where m ≥ 0, n ≥ 0, αi are Datalog atoms and γj are constraints of the
form s : C where s is either a constant or a variable already appearing in
the clause, and C is an ALC concept. A constrained Datalog clause of the
form ← β1, . . . , βm&γ1, . . . , γn is called constrained Datalog query. For an AL-
log knowledge base B = 〈Σ, Π〉 to be acceptable, it must satisfy the following
conditions: (i) The set of predicate symbols appearing in Π is disjoint from the
set of concept and role symbols appearing in Σ; (ii) The alphabet of constants
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used in Π coincides with O; (iii) For each clause in Π , each variable occurring in
the constraint part occurs also in the Datalog part. The interaction between Σ
and Π allows the notion of substitution to be straightforwardly extended from
Datalog to AL-log. It is also at the basis of a model-theoretic semantics for
AL-log. An interpretation J for B is the union of an O-interpretation IO for
Σ and an Herbrand interpretation IH for ΠD (i.e. the set of Datalog clauses
obtained from the clauses of Π by deleting their constraints). The notion of
logical consequence paves the way to the definition of correct answer and answer
set similarly to Datalog. Reasoning for an AL-log knowledge base B is based on
constrained SLD-resolution, i.e. an extension of SLD-resolution with the tableau
calculus to deal with constraints. Constrained SLD-refutation is a complete and
sound method for answering queries, being the definition of computed answer
and success set analogous to Datalog. A big difference from Datalog is that
the derivation of a constrained empty clause does not represent a refutation
but actually infers that the query is true in those models of B that satisfy its
constraints. Therefore in order to answer a query it is necessary to collect enough
derivations ending with a constrained empty clause such that every model of B
satisfies the constraints associated with the final query of at least one derivation.

B The Semantic Mark-Up Language OWL

The Web Ontology Language OWL [12] is a semantic mark-up language for
publishing and sharing ontologies on the World Wide Web. An OWL ontology is
an RDF graph, which is in turn a set of RDF triples. As with any RDF graph, an
OWL ontology graph can be written in many different syntactic forms. However,
the meaning of an OWL ontology is solely determined by the RDF graph. Thus,
it is allowable to use other syntactic RDF/XML forms, as long as these result
in the same underlying set of RDF triples.

OWL provides three increasingly expressive sublanguages designed for use
by specific communities of implementers and users.

– OWL Lite supports those users primarily needing a classification hierarchy
and simple constraints. E.g., while it supports cardinality constraints, it
only permits cardinality values of 0 or 1. It should be simpler to provide
tool support for OWL Lite than its more expressive relatives, and OWL Lite
provides a quick migration path for thesauri and other taxonomies. OWL
Lite also has a lower formal complexity than OWL DL.

– OWL DL supports those users who want the maximum expressiveness while
retaining computational completeness and decidability. OWL DL includes all
OWL language constructs, but they can be used only under certain restric-
tions (e.g., while a class may be a subclass of many classes, a class cannot
be an instance of another class). OWL DL is so named due to its correspon-
dence with the very expressive DL SHIQ [13] which thus provides a logical
foundation to OWL.

– OWL Full is meant for users who want maximum expressiveness and the
syntactic freedom of RDF with no computational guarantees. For example,
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in OWL Full a class can be treated simultaneously as a collection of individ-
uals and as an individual in its own right. OWL Full allows an ontology to
augment the meaning of the pre-defined (RDF or OWL) vocabulary. It is un-
likely that any reasoning software will be able to support complete reasoning
for every feature of OWL Full.

Each of these sublanguages is an extension of its simpler predecessor, both in
what can be legally expressed and in what can be validly concluded.

The mapping from ALC to OWL is reported in Table 3.

Table 3. Mapping from ALC to OWL

¬C <owl:Class>

<owl:complementOf><owl:Class rdf:ID="C" /></owl:complementOf>

</owl:Class>

C � D <owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:ID="C" /><owl:Class rdf:ID="D" />

</owl:intersectionOf>

</owl:Class>

C � D <owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:ID="C" /><owl:Class rdf:ID="D" />

</owl:unionOf>

</owl:Class>

∃R.C <owl:Restriction>

<owl:onProperty rdf:resource="#R" />

<owl:someValuesFrom rdf:resource="#C" />

</owl:Restriction>

∀R.C <owl:Restriction>

<owl:onProperty rdf:resource="#R" />

<owl:allValuesFrom rdf:resource="#C" />

</owl:Restriction>

C ≡ D <owl:Class rdf:ID="C">

<owl:sameAs rdf:resource="#D" />

</owl:Class>

C � D <owl:Class rdf:ID="C">

<rdfs:subClassOf rdf:resource="#D" />

</owl:Class>

a : C <C rdf:ID="a" />

〈a, b〉 : R <C rdf:ID="a"><R rdf:resource="#b" />
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Abstract. Clustering is a fundamental task in Spatial Data Mining
where data consists of observations for a site (e.g. areal units) descrip-
tive of one or more (spatial) primary units, possibly of different type,
collected within the same site boundary. The goal is to group structured
objects, i.e. data collected at different sites, such that data inside each
cluster models the continuity of socio-economic or geographic environ-
ment, while separate clusters model variation over the space. Continuity
is evaluated according to the spatial organization arising in data, namely
discrete spatial structure, expressing the (spatial) relations between sep-
arate sites implicitly defined by their geometrical representation and po-
sitioning. Data collected within sites that are (transitively) connected in
the discrete spatial structure are clustered together according to the sim-
ilarity on multi-relational descriptions representing their internal struc-
ture. CORSO is a novel spatial data mining method that resorts to a
multi-relational approach to learn relational spatial data and exploits
the concept of neighborhood to capture relational constraints embedded
in the discrete spatial structure. Relational data are expressed in a first-
order formalism and similarity among structured objects is computed
as degree of matching with respect to a common generalization. The
application to real-world spatial data is reported.

1 Introduction

Within both social and environmental sciences much of data is collected in a
spatial framework, where data consists of measurements or observations of one or
more attributes taken at specific sites which are spatially-referenced. This means
that geometrical representation and relative positioning of sites are recorded to
express the spatial organization arising in social and environmental data. A
simple form of spatially referenced data is point data where observations are
taken at fixed point sites of space and represented as triple {(xi, yi), zi}, such
that (xi, yi) references the location of a point i with respect to some coordinate
system, while zi is the vector of measured attributes observed at site i. However,
operations and activities of private and public institutions generally deal with
space in terms of areas (irregular partitions or regular grid) and not points.

Areal data can be represented as point data by identifying each area with its
centroid [24], but this is restrictive when observations for an area are descrip-
tive of one or more (spatial) primary units, possibly of different type, collected
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within the same area boundary. In this case, data includes both attributes that
relate to primary units or areas and attributes that refer to relations between
primary units (e.g., contact frequencies between households) and between areal
units (e.g., migration rates). Moreover, spatial-referencing poses a further degree
of complexity due to the fact that the geometrical representation (point, line or
polygon) and the relative positioning of primary units or areal units implic-
itly define spatial features (properties and relations) of different nature, that is,
geometrical (e.g. area, distance), directional (e.g. north, south) and topological
(e.g. crosses, on top) features. This relational information may be responsible for
the spatial variation among areal units and it is extremely useful in descriptive
modeling of different distributions holding for spatial subsets of data. An extra
consequence is that observations across space cannot be considered independent
due to the spatial continuity of events occurring in the space. Continuity of
events over neighbor areas is a consequence of social patterns and environmental
constraints that deal with space in terms of regions and allow to identify a mosaic
of nearly homogeneous areas in which each patch of the mosaic is demarcated
from its neighbors in terms of attributes levels. For instance, the spatial conti-
nuity of an environmental phenomenon such as air pollution may depend on the
geographical arrangements of pollution sources. As a model for this spatial con-
tinuity, the regional concept encourages the analyst to exploit spatial correlation
following from the first Law of Geography [22], according to which everything is
related to everything else, but near things are more related than distant things.
This means that primary units forming areal units of analysis will tend to be
essentially identical members of same populations in nearby locations. In this
spatial framework, relations among areal units of analysis are expressed in form
of relational constraints that represent a discrete spatial structure arising in spa-
tial data, while relations among primary units within an area model the spatial
structure of each single areal unit of analysis.

Grouping connected areas to form clusters of homogeneous regions, i.e., spa-
tial clustering, is a fundamental task of Spatial Data Mining. In this paper,
we propose to represent the discrete spatial structure as a graph, where nodes
are associated with relational descriptions of areal units to be clustered, while
links express relational constraints which typically reflect spatial relations such
as adjacency. In this way, discontinuity in the graph represents some obstacles
in the space. Exploiting this graph-based representation, we present a cluster-
ing method, named CORSO (Clustering Of Related Structured Objects), that
resorts to a multi-relational approach [2] to model homogeneity over relational
structure embedded in spatial data and exploits the concept of graph neigh-
borhood to capture relational constraints embedded in the graph edges. Units
associated with (transitively) graph connected nodes are clustered together ac-
cording to the similarity of their relational descriptions.

The paper is organized as follows. In the next section we discuss some related
works. The method is presented in Section 3. Two applications of spatial cluster-
ing for topographic map interpretation and geo-referenced census data analysis
are reported in Section 4, while conclusions are drawn in Section 5.
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2 Background and Motivation

The problem of clustering spatial data has been investigated by some researchers,
but while a lot of research has been conducted on detecting spatial clusters from
point data, only few works deal with areal data. For instance, Ng and Han
[18] have proposed to extend the k -medoid partitioning algorithm [12] to group
point data in a set of k clusters. However, the k -medoid partitioning appears
well suited only when spatial clusters are of convex shape and similar size, and
the number k is reasonably a-priori estimated. Moreover, the method suffers
from severe limitations when clustering large spatial dataset [5] due to the com-
plexity of computing distance between medoid points representing each pair of
clusters. These efficiency drawbacks are partially alleviated when adopting both
proximity and density information to achieve high quality spatial clusters in a
sub-quadratic time without requiring the user to a-priori specify the number of
clusters [7]. Similarly, DBSCAN [6] exploits density information to efficiently de-
tect clusters of arbitrary shape from point spatial data with noise. The key idea
of density-based clustering is that for each point of a cluster, a neighborhood of
a given radius has to contain a minimum number (cardinality) of data points.
Neighborhood is determined according to the Euclidean distance. However, when
observations concern areal units, Euclidean distance may not be appropriate to
neighborhood determination. To this purpose, Sander et al. [21] have proposed
GDBSCAN that generalizes DBSCAN in order to cluster not only point data but
also spatially extended objects (lines or areas) taking into account both spatial
and non spatial attributes when defining cardinality. Indeed, GDBSCAN ex-
tends the notion of neighborhood to any binary predicate that is symmetric and
reflexive (e.g. distance, meet) and imposes a discrete spatial structure on data
that guides the clustering detection. This discrete spatial structure can be equiv-
alently modeled as links of a graph, namely neighborhood or proximity graph
[23], whose nodes represent the units to be clustered. The graph-based represen-
tation of data, that is extensively used in pattern recognition [9], perfectly fits
the spatial need of representing the relational constraints among spatial units
to be clustered. In this perspective, it is clear that hybrid methods [17] which
combine data clustering with graph-partitioning technique have some interesting
applications properly in spatial clustering [8].

However even when clustering takes into account relational constraints form-
ing discrete spatial structure, all methods reported above suffer from severe
limitations due to the single-table representation [2]. Data to be clustered is rep-
resented in a single table (or relation) of a relational database, such that each row
(or tuple) corresponds to a single unit of the sample population and the columns
correspond to both spatial and a-spatial properties of these units. This repre-
sentation is clearly inadequate when describing observations concerning several
(spatial) primary units, eventually of different types, which are naturally mod-
eled as many data tables as the number of object types and interactions. Some
methods for mining clusters on (multi-)relational data have been investigated by
resorting to the field of relational data mining. For instance, RDBC [13] forms
clusters bottom-up in an agglomerative fashion that uses the distance metric
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introduced in [11] and handles relational representations with lists and other
functional terms as well. In contrast, C0.5 [1] adopts logical decision trees for
clustering purposes by choosing split literals that maximize the distance between
two resulting subsets (clusters) of examples. However, differently from RDBC,
distance in literal choice is in this case estimated according to a user-provided
propositional distance.

Although these relational clustering methods present several interesting as-
pects, detecting spatial clusters is a more complex task. Indeed, relational clus-
tering methods generally work in the learning from interpretation setting [20]
that allows to mine examples and background knowledge stored as Prolog pro-
grams exploiting expressiveness of first-order representation during clustering
detection. The interpretation corresponding to each example e given the back-
ground knowledge BK is here intended as the minimal Herbrand model of e∧BK
and the implicit assumption is that separate interpretations are independent.
This leads to ignore relational constraints eventually relating separate interpre-
tations (e.g. geographic contiguity of areal units). This problem also occurs in
graph-based relational learning methods [10] where graphs appear as a flexible
representation for relational domains. However, these methods generally con-
tinue to work in learning from interpretation settings and thus ignore relations
among graphs representing separate examples. In contrast, we propose to com-
bine a graph-based partitioning algorithm with a relational clustering method
to mine both relational constraints imposing the discrete spatial structure and
relational data representing structured objects (spatial unit) to be clustered.

3 The Method

In a quite general formulation, the problem of clustering structured objects (e.g.,
complex areal units), which are related by links representing persistent relations
between objects (e.g., spatial correlation), can be defined as follows: Given: (i) a
set of structured objects O, (ii) a background knowledge BK and (iii) a binary
relation R expressing links among objects in O; Find a set of homogeneous
clusters C ⊆ ℘(O) that is feasible with R.

Each structured object oi ∈ O can be described by means of a conjunctive
ground formula (conjunction of ground selectors) in a first-order formalism, while
background knowledge BK is expressed with first-order clauses that support
some qualitative reasoning on O. In both cases, each basic component (i.e.,
selector) is a relational statement in the form f(t1, . . . , tn) = v, where f is a
function symbol or descriptor, ti are terms (constant or variables) and v is a
value taken from the categorical or numerical range of f .

Structured objects are then related by R that is a binary relation R ⊆ O×O
imposing a discrete structure on O. In spatial domains, this relation may be
either purely spatial, such as topological relations (e.g. adjacency of regions),
distance relations (e.g. two regions are within a given distance), and directional
relations (e.g. a region is on south of an other region), or hybrid, which mixes
both spatial and non spatial properties (e.g. two regions are connected by a
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road). The relation R can be described by the graph G = (NO, AR) where NO

is the set of nodes ni representing each structured object oi and AR is the set
of arcs ai,j describing links between each pair of nodes 〈ni, nj〉 according to
the discrete structure imposed by R. This means that there is an arc from ni

to nj only if oiRoj . Let NR(ni) be the R-neighborhood of a node ni such that
NR(ni) = {nj | there is an arc linking ni to nj in G}, a node nj is R-reachable
from ni if nj ∈ NR(ni), or ∃nh ∈ NR(ni) such that nj is R-reachable from nh.

According to this graph-based formalization, a clustering C ⊆ ℘(O) is fea-
sible with the discrete structure imposed by R when each cluster C ∈ C is a
subgraph GC of the graph G(NO, AR) such that for each pair of nodes 〈ni, nj〉
of GC , ni is R-reachable from nj, or vice-versa. Moreover, the cluster C is ho-
mogeneous when it groups structured objects of O sharing a similar relational
description according to some similarity criterion.

CORSO integrates a neighborhood-based graph partitioning to obtain clus-
ters which are feasible with R discrete structure and resorts to a multi-relational
approach to evaluate similarity among structured objects and form homogeneous
clusters. This faces with the spatial issue of modeling spatial continuity of a phe-
nomenon over the space. The top-level description of the method is presented in
Algorithm 1. CORSO embeds a saturation step (function saturate) to make ex-
plicit information that is implicit in data according to the given BK. The key idea

Algorithm 1. Top-level description of CORSO algorithm
1: function CORSO(O, BK, R,h − threshold) → CList;
2: CList ← �; OBK ←saturate(O,BK); C ← newCluster( );
3: for each seed ∈ OBK do
4: if seed is UNCLASSIFIED then
5: Nseed ← neighborhood(seed,OBK ,R);
6: for each o ∈ Nseed do
7: if o is assigned to a cluster different from C then
8: Nseed = Nseed/o;
9: end if

10: end for
11: Tseed ← neighborhoodModel(Nseed);
12: if homogeneity(Nseed, Tseed) ≥ h − threshold then
13: C.add(seed); seedList ← �;
14: for each o ∈ Nseed do
15: C.add(o); seedList.add(o);
16: end for
17: 〈C, TC〉 ←expandCluster(C,seedList,OBK ,R,Tseed,h − threshold);
18: CLabel=clusterLabel(TC); CList.add(〈C, CLabel〉); C ← newCluster( );
19: else
20: seed ← NOISE;
21: end if
22: end if
23: end for
24: return CList;
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is to exploit the R-neighborhood construction and build clusters feasible with R-
discrete structure by merging partially overlapping homogeneous neighborhood
units. Cluster construction starts with an empty cluster (C ← newCluster())
and chooses an arbitrary node seed from G. The R-neighborhood Nseed of the
node seed is then built according to G discrete structure (function neighborhood)
and the first-order theory Tseed is associated to it. Tseed is built as a general-
ization of the objects falling in Nseed (function neighborhoodModel). When the
neighborhood is estimated to be an homogeneous set (function homogeneity),
cluster C is grown with the structured objects enclosed in Nseed whcih are not
yet assigned to any cluster. The cluster C is then iteratively expanded by merg-
ing the R-neighborhoods of each node of C (neighborhood expansion) when
these neighborhoods result in homogeneous sets with respect to current cluster
model TC (see Algorithm 2.). TC is obtained as the set of first-order theories
generalizing the neighborhoods merged in C. It is noteworthy that when a new
R-neighborhood is built to be merged in C, all the objects which are already
classified into a cluster different from C are removed from the neighborhood.
When the current cluster cannot be further expanded it is labeled with CLabel
and an unclassified seed node for a new cluster is chosen from G until all objects
are classified. CLabel is obtained by TC (function labelCluster) to compactly
describe C.

Algorithm 2. Expand current cluster by merging homogeneous neighborhood
function expandCluster(C, seedList,OBK , R, TC , h − threshold) → 〈C, TC〉;

2: while (seedList is not empty) do
seed ← seedList.first(); Nseed ← neighborhood(seed,OBK ,R);

4: for each o ∈ Nseed do
if o is assigned to a cluster different from C then

6: Nseed = Nseed/o;
end if

8: end for
Tseed ← neighborhoodModel(Nseed);

10: if homogeneity(Nseed, {TC , Tseed})≥ h − threshold then
for each o ∈ Nseed do

12: C.add(o); seedList.add(o);
end for

14: seedList.remove(seed); TC ← TC ∪ Tseed;
end if

16: end while
return 〈C, TC〉;

This is different from spatial clustering performed by GDBSCAN, although
both methods share the neighborhood-based cluster construction. Indeed, GDB-
SCAN retrieves all objects density-reachable from an arbitrary core object by
building successive neighborhoods and checks density within a neighborhood
by ignoring the cluster. This yields a density-connected set, where density is
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efficiently estimated independently from the neighborhoods already merged in
forming the current cluster. However, this approach may lead to merge con-
nected neighborhoods sharing some objects but modeling different phenomena.
Moreover, GDBSCAN computes density within each neighborhood according to
a weighted cardinality function (e.g. aggregation of non spatial values) that as-
sumes single table data representation. CORSO overcomes these limitations by
computing density within a neighborhood in terms of degree of similarity among
all relationally structured objects falling in the neighborhood with respect to
the model of the entire cluster currently built. In particular, following the sug-
gestion given in [16], we evaluate homogeneity within a neighborhood Nseed to
be added to the cluster C as the average degree of matching between objects of
Nseed and the cluster model {TC , Tseed}. Details on cluster model determination,
neighborhood homogeneity estimation and cluster labeling are reported below.

3.1 Cluster Model Generation

Let C be the cluster currently built by merging w neighborhood sets N1, . . . , Nw,
we assume that the cluster model TC is a set of first-order theories {T1, . . . , Tw}
for the concept C where Ti is a model for the neighborhood set Ni. More precisely,
Ti is a set of first-order clauses: Ti : {cluster(X) = c ← Hi1, . . . , cluster(X) =
c ← Hiz}, where each Hij is a conjunctive formula describing a sub-structure
shared by one or more objects in Ni and ∀oi ∈ Ni, BK∪Ti |= oi. Such model can
be learned by resorting to the ILP system ATRE [14] that adopts a separate-and-
conquer search strategy to learn a model of structured objects from a set of train-
ing examples and eventually counter-examples. In this context, ATRE learns a
model for each neighborhood set without considering any counter-examples. The
search of a model starts with the most general clause, that is,cluster(X) = c ←,
and proceeds top-down by adding selectors (literals) to the body according to
some preference criteria (e.g. number of objects covered or number of literals).

Selectors involving both numerical and categorical descriptors are handled in
the same way, that is, they have to comply with the property of linkedness and
are sorted according to preference criteria. The only difference is that selectors
involving numerical descriptors are generalized by computing the closed interval
that best covers positive examples and eventually discriminates from contour-
examples, while selectors involving categorical descriptors with same function
value are generalized by simply turning all ground arguments into corresponding
variables without changing the corresponding function value.

3.2 Neighborhood Homogeneity Estimation

The homogeneity of a neighborhood set N to be added to the cluster C is
computed as follows:

h(N, TC∪N) =
1

#N

∑
i

h(oi, TC∪N) =
1

#N

∑
i

1
w + 1

∑
j

h(oi, Tj), (1)
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where #N is the cardinality of the neighborhood set N and TC∪N is the cluster
model of C ∪ N formed by both {T1, . . . , Tw}, i.e., the model of C and Tw+1,
i.e., the model of N built as explained above. Since Tj = H1j , . . . , Hzj (z ≥ 1)
with each Hij a conjunctive formula in first-order formalism, we assume that:

h(oi, Tj) =
1
z

∑
i

fm(oi, Hij), (2)

where fm is a function returning the degree of matching of an object oi ∈ N
against the conjunctive formula Hij . In this way, the definition of homogeneity of
a neighborhood set N = {o1, . . . , on} with respect to some logical theory TC∪N is
closely related to the problem of comparing (matching) the conjunctive formula
fi representing an object oi ∈ N1 with a conjunctive formula Hij forming the
model Tj in order to discover likenesses or differences [19]. This is a directional
similarity judgment involving a referent R, that is the description or prototype of
a class (cluster model) and a subject S that is the description of an instance of a
class (object to be clustered). In the classical matching paradigm, the matching of
S against R corresponds to compare them just for equality. In particular, when
both S and R are conjunctive formulas in first-order formalism, matching S
against R corresponds to check the existence of a substitution θ for the variables
in R such that S = θ(R). This last condition is generally weakened by requiring
that S ⇒ θ(R), where ⇒ is the logical implication. However, the requirement of
equality, even in terms of logical implication, is restrictive in presence of noise or
variability of the phenomenon described by the referent of matching. This makes
necessary to rely on a flexible definition of matching that aims at comparing two
descriptions and identifying their similarities rather than equalities. The result
of such a flexible matching is a number in the interval [0, 1] that is the probability
of precisely matching S against R, provided that some change described by θ is
possibly made in the description R.

The problem of computing flexible matching to compare structures is not
novel. Esposito et al. [4] have formalized a computation schema for flexible
matching on formulas in first-order formalism whose basic components (selec-
tors) are the relational statements, that is, fi(t1, . . . , tn) = v, which are combined
by applying different operators such as conjunction (∧) or disjunction (∨) oper-
ator. In this work, we focus on the computation of flexible matching fm(S, R)
when both S and R are described by conjunctive formulas and fm(S, R) looks
for the substitution θ returning the best matching of S against R, as:

fm(S, R) = max
θ

∏
i=1,...,k

fmθ(S, ri). (3)

The optimal θ that maximizes the above conditional probability is here searched
by adopting the branch and bound algorithm that expands the least cost partial
path by performing quickly on average [4]. According to this formulation, fmθ

1 The conjunctive formula fi is here intended as the description of oi ∈ N saturated
according to the BK.
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denotes the flexible matching with the tie of the substitution fixed by θ computed
on each single selector ri ≡ fri(tr1 , . . . , trn) = vri of the referent R where fri is
a function descriptor with either numerical (e.g. area or distance) or categorical
(e.g. intersect) range. In the former case the function value vri is an interval
value (vri ≡ [a, b]), while in the latter case vri is a subset of values (vri ≡
{v1, . . . , vM}) from the range of fri . This faces with a referent R that is obtained
by generalizing a neighborhood of objects in O. Conversely for the subject S,
that is, the description of a single object o ∈ O, the function value wsj assigned
to each selector sj ≡ fsj (ts1 , . . . , tsn) = wsj is an exactly known single value from
the range of fsj . In this context, the flexible matching fmθ(S, ri) evaluates the
degree of similarity fm(sj , θ(ri)) between θ(ri) and the corresponding selector
sj in the subject S such that both ri and sj have the same function descriptor
fr = fs and for each pair of terms 〈tri , tsi〉, θ(tri) = tsi . More precisely,

fm(sj, θ(ri)) = fm(wsj , vri) = max
v∈vri

P (equal(wsj , v)). (4)

The probability of the event equal(wsj , v) is then defined as the probability that
an observed wsj is a distortion of v, that is:

P (equal(wsj , v)) = P (δ(X, v) ≥ δ(wsj , v)) (5)

where X is a random variable assuming value in the domain D represent-
ing the range of fr while delta is a distance measure. The computation of
P (equal(wsj , v)) clearly depends on the probability density function of X . For
categorical descriptors, that is, D is a discrete set with cardinality #D, it has
be proved [4] that:

P (equal(w, v)) =
{

1 if wsj = v
#D − 1/#D otherwise (6)

when X is assumed to have a uniform probability distribution on D and δ(x, y) =
0 if x = y, 1 otherwise. Although similar results have been reported for both lin-
ear non numerical and tree-structured domains, no result appears for numerical
domains. Therefore, we have extended definitions reported in [4] to make flexible
matching able to deal with numerical descriptors and we have proved that:

fm(c, [a, b]) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if a ≤ c ≤ b
1 − 2(a− c)/(β − α) if c < a ∧ 2a− c ≤ β
(c− α)/(β − α) if c < a ∧ 2a− c > β
(β − c)/(β − α) if c > b ∧ 2b− c < α
1 − 2(c− b)/(β − α) if c > b ∧ 2b− c ≥ α

(7)

by assuming that X has uniform distribution on D and δ(x, y) = |x−y|. A proof
of formula 7 is reported in the Appendix A of this paper.

3.3 Cluster Labeling

A cluster C can be naturally labeled with TC that is the set of first-order clauses
obtained from the generalization of neighborhoods merged in C. Each first-order



236 D. Malerba et al.

clause is in the form C ← s1, . . . , sn, where C represents the cluster label and
each si denotes a selector in the form fi(ti1 , . . . , til

) = vi. In this formaliza-
tion, two selectors s1 : f1(t11 , . . . , t1l

) = v1 and s2 : f2(t21 , . . . , t2l
) = v2

are comparable according to some substitution θ when they involve the same
descriptor (f1 = f2 = f) and each pair of terms 〈t1i , t2i〉 is unifiable ac-
cording to θ, i.e., t1iθ = t2iθ = ti (∀i = 1 . . . l). In this case, the selector
s : f(t1, . . . , tl) = {v1} ∪ {v2} is intended as a generalization for both s1 and
s2. In particular, the selectors s1 and s2 are equal when they are compara-
ble and v1 = v2 = v such that the generalization of s1 and s2 is built as
s : f(t1, . . . , tl) = v. Similarly, the selector s1 (s2) is contained in the selector
s2 (s1) when they are comparable and v1 ⊆ v2 (v2 ⊆ v1), while the general-
ization s is f(t1, . . . , tl) = v2 (f(t1, . . . , tl) = v1). Note that equality of selec-
tors implies containment, but not vice-versa. Similarly, the first-order clauses
H1 : C ← s11 , . . . , s1n and H2 : C ← s21 , . . . , s2n are comparable according to
some substitution θ when each pair of selectors 〈s1i , s2i〉 is comparable accord-
ing to θ. Hence, H1 is equal (contained) to H2 when s1i is equal (contained)
to s2i for each i = 1, . . . , n. In both these cases (equality and containment con-
dition), the pair of first-order clauses H1, H2 can be replaced without lost of
information with the first-order clause H that is the generalization of H1, H2

built by substituting each pair of comparable selectors 〈s1i , s2i〉 ∈ 〈H1, H2〉 with
the generalization obtained as stated above. This suggests the idea of merging
a pair of comparable first-order clauses H1, H2 in a single clause H by preserv-
ing the equivalence of coverage, that is: (i) for each structured object o with
H1, H2, BK |= o then H, BK |= o and vice-versa, (ii) for each structured object
o with H1, H2, BK �|= o then H, BK �|= o and vice-versa, where BK is a set
of first-order clauses. The equivalence of coverage between {H1, H2} and H is
obviously guaranteed when H1 is either equal or contained in H2 or vice-versa,
but this equivalence cannot be guaranteed when H1 and H2 are comparable
first-order clauses but neither equality condition nor containment condition are
satisfied.

Example 1: Let us consider the pair of comparable first-order clauses:
H1 : cluster(X1) = c ← distance(X1, X2) = [5..10], type(X2) = street
H2 : cluster(X1) = c ← distance(X1, X2) = [3..7], type(X2) = river

where neither H1 is equal to H2 nor H1(H2) is contained in H2(H1). The first-
order clause obtained by generalizing pairs of comparable selectors in both H1

and H2, is H : cluster(X1) = c ← distance(X1, X2) = [3..10], type(X2) =
{street, river}, where H |= o with o : distance(X1, X2) = 3∧type(X2) = street,
but neither H1 |= o nor H2 |= o.
The requirement of equality between H1 and H2 can be relaxed while preserving
equivalence of coverage with respect to the generalization H . Indeed, when

H1 : C ← s1( ) = v1, . . . sk( ) = vk, . . . , sn( ) = vn

H2 : C ← s1( ) = v1, . . . sk( ) = wk, . . . , sn( ) = vn

are comparable first-order clauses differing only in the function value of a single
selector (i.e. sk), the first-order clause:
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H : C ← s1( ) = v1, . . . sk( ) = {vk} ∪ {wk}, . . . , sn( ) = vn

continues to preserve the equivalence of coverage with {H1, H2}.

Example 2: Let us consider the pair of comparable first-order clauses:
H1 : cluster(X1) = c ← distance(X1, X2) = [3..7], type(X2) = street,

length(X2) = [3, 5]
H2 : cluster(X1) = c ← distance(X1, X2) = [3..7], type(X2) = street,

length(X2) = [7, 10]
which differ only in the value of a single selector (length), the first-order clause
obtained by generalizing the pairs of comparable selectors in both H1 and H2 is:

H : cluster(X1) = c ← distance(X1, X2) = [3..7], type(X2) = street,
length(X2) = [3, 5] ∪ [7, 10]

that is equivalent in coverage to the pair {H1, H2}.
Following this idea, it is possible to compactly describe the cluster theory

TC finally associated to a cluster C by iteratively replacing pairs of comparable
first-order clauses H1, H2 with the generalization H , when H results equivalent
in coverage to {H1, H2} (see Algorithm 3.).

Algorithm 3. Build a compact theory to describe a cluster C

1: function clusterLabel(TC) → T ′
C ;

2: T ′
C ← �

3: merge ← false;
4: while TC is not empty do
5: H is a first-order clause in TC ;
6: TC = TC/H ;
7: for each H ′ ∈ TC do
8: if H and H ′ are generalizable without lost of information then
9: H = generalize(H ,H ′); TC = TC/H ′; merge = true;

10: end if
11: end for
12: T ′

C = T ′
C ∪ H ;

13: end while
14: if merge is true then
15: T ′

C ←clusterLabel(T ′
C);

16: end if
17: return T ′

C ;

Example 3: Let us consider TC that is the set of first-order clauses including:
H1 : cluster(X1) = c ← distance(X1, X2) = [5..10], color(X2) = red
H2 : cluster(X1) = c ← distance(X1, X2) = [5..6], color(X2) = blue
H3 : cluster(X1) = c ← distance(X1, X2) = [5..10], color(X2) = blue
H4 : cluster(X1) = c ← distance(X1, X2) = [6..10], area(X2)in[30..40]

TC can be transformed in the set of first-order clauses:
H ′

1 : cluster(X1) = c ← distance(X1, X2) = [5..10], color(X2) = {red, blue}
H ′

2 : cluster(X1) = c ← distance(X1, X2) = [6..10], area(X2)in[30..40]
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where H ′
1 results by firstly merging H1 and H3, which are comparable and differ

only in the function value of a selector (color(X2) = red vs color(X2) = blue),
and obtaining H13 : cluster(X1) = c ← distance(X1, X2) = [5..10], color(X2) =
{red, blue} and then merging H13 and H2 since H2 is contained in H13.

4 The Application: Two Case Studies

In this section, we describe the application of CORSO to two distinct real-world
problems, namely topographic map interpretation and geo-referenced census
data analysis. In the former problem, a topographic map is treated as a grid
of square cells of same size, according to a hybrid tessellation-topological model
such that adjacency among cells allows map-reading from a cell to one of its
neighbors in the map. For each cell, geographical data is represented as hu-
mans perceive it in reality, that is, geometric (or physical) representation and
thematic (or logical) representation. Geometric representation describes the ge-
ographical objects by means of the most appropriate physical entity (point, line
or region), while thematic representation expresses the semantics of geographical
objects (e.g., hydrography, vegetation, transportation network and so on), inde-
pendently of their physical representation. Spatial clustering aims at identifying
a mosaic of nearly homogeneous clusters (areas) including adjacent cells in the
map such that geographical data inside each cluster properly models the spatial
continuity of some morphological environment within the cluster region, while
separate clusters model spatial variation over the entire space. In the second
problem, the goal is to perform a joint analysis of both socio-economic factors
represented in census data and geographical factors represented in topographic
maps to support a good public policy. In this case, spatial objects are territorial
units for which census data are collected as well as entities of geographical layers
such as urban and wood areas. Spatial partitioning of CORSO is compared with
the first-order clustering performed with logical decision trees [1], which are able
to manage relational structure of spatial objects but ignore relations imposed
with discrete spatial structure. The empirical comparison with GDBSCAN was
not possible since the system is not publicly available. However, CORSO clearly
improves GDBSAN clustering that is not able to manage complex structure of
spatial data. In both applications, running time of CORSO refers to execution
performed on a 2 Ghz IBM notebook with 256 Mb of RAM.

4.1 Topographic Map Interpretation

In this study we discuss two real-world applications of spatial clustering to char-
acterize spatial continuity of some morphological elements over the topographic
map of the Apulia region in Italy. The territory considered in this application
covers 45 km2 from the zone of Canosa in Apulia. The examined area is seg-
mented into square areal units of 1 Km2 each. Thus, the problem of recognizing
spatial continuity of some morphological elements in the map is reformulated
as the problem of grouping adjacent cells resulting in a morphologically homo-
geneous area, that is, a problem of clustering spatial objects according to the
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contain(c, f2) = true, …,

contain(f, f70) = true,

type_of(c) = cell, …,

type_of(f4) = vegetation,…,

subtype_of(f2) = grapewine,…,

subtype_of(f7) = cart_track_road,…,

part_of(f4, x4),

part_of(f7, x5), part_of(f7_x6),…,

extension(x7) = 111.018,…,

extension(x33) = 1104.74,

line_to_line(x7, x68) = almost_parallel, …,

point_to_region(x4, x21) = inside,

point_to_region(x4, x18) = outside,…,

line_to_region(x8, x27) = adjacent, …

Fig. 1. First-order description of a cell extracted from topographic chart of Apulia

discrete spatial structure imposed by the relation of “adjacency” among cells.
Since several geographical objects, eventually belonging to different layers (e.g.,
almond tree, olive tree, font, street, etc) are collected within each cell, we ap-
ply algorithms derived from geometrical and topological reasoning [15] to obtain
cell descriptions in first-order formalism (see Figure 1). For this task, we con-
sider descriptions including spatial descriptors encompassing geometrical proper-
ties (area, extension) and topological relations (regionToRegion, lineToLine,
pointT oRegion) as well as non spatial descriptors (typeOf , subtypeOf). The
descriptor partOf is used to define the physical structure of a logical object. An
example is: typeOf(f1) = font∧partOf(f1, x1) = true, where f1 denotes a font
which is physically represented by a point referred with the constant x1. Each
cell is here described by a conjunction of 946,866 ground selectors in average.
To support some qualitative reasoning, a spatial background knowledge (BK) is
expressed in form of clauses. An example of BK we use in this task is:
fontToParcel(Font, Culture) = Relation ← typeOf(Font) = font,

partOf(Font, Point) = true, typeOf(Parcel) = parcel,
partOf(Parcel, Region) = true, pointT oRegion(Point, Region) = Relation

that allows to move from a physical to a logical level in describing the topological
relation between the point that physically represents the font and the region that
physically represents the culture and that are, respectively, referred to as the
variables Font and Culture. The specific goal of this study is to model the spatial
continuity of some morphological environment (e.g. cultivation setting) within
adjacent cells over the map. This means that each cluster covers a contiguous
area over the map where it is possible to observe some specific environment that
does not occur in adjacent cells not yet assigned to any cluster. It is noteworthy
that granularity of partitioning changes by varying homogeneity threshold (see
Figure 2). In particular, when h − threshold = 0.95, CORSO clusters adjacent
cells in five regions in 1821 secs. Each cluster is compactly labeled as follows:
C1 : cluster(X1) = c1 ← containAlmondTree(X1, X2) = {true},

cultivationToCulture(X2, X3) = {outside},
areaCulture(X3) = [328..420112], fontT oCulture(X4, X3) = {outside}.
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Fig. 2. Spatial clusters detected on map data from the zone of Canosa by varying
h − threshold value in {0.8,0.85,0.9,0.95}

C2 : cluster(X1) = c2 ← containAlmondTree(X1, X2) = {true},
cultivationToCulture(X2, X3) = {inside}, areaCulture(X3) = [13550..
187525], areaCulture(X3) = [13550..187525],
cultivationToCulture(X2, X4) ∈ {outside}.

C3 : cluster(X1) = c3 ← containGrapevine(X1, X2) = {true},
cultivationToCulture(X2, X3) = {inside}, areaCulture(X3) = [13550..
212675], cultivationToCulture(X2, X4) = {outside}.

cluster(X1) = c3 ← containGrapevine(X1, X2) = {true},
cultivationToCulture(X2, X3) = {outside}, areaCulture(X3) = [150..
212675], cultivationToCulture(X2, X4) = {outside, inside}.

C4 : cluster(X1) = c4 ← containStreet(X1, X2) = {true}
streetT oCulture(X2, X3) = {adjacent}, areaCulture(X3) = [620..
230326], cultureToCulture(X3, X4) = {outside, inside}.

C5 : cluster(X1) = c5 ← containOliveT ree(X1, X2) = true,
cultivationToCulture(X2, X3) ∈ {outside}, areaCulture(X3) ∈ [620..
144787], oliviT oParcel(X2, X4) = {outside}.

Notice that each detected cluster effectively includes adjacent cells sharing a
similar morphological environment, while separate clusters describe quite differ-
ent environments. Conversely, the logical decision tree mined on the same data
divides the territory under analysis in twenty different partitions where it is
difficult to recognize the continuity of any morphology phenomenon.

4.2 Geo-referenced Census Data Analysis

In this application, we consider both census and digital map data concerning
North West England (NWE) area that is decomposed into censual sections or
wards for a total of 1011 wards. Census data is available at ward level and pro-
vides some measures of deprivation level in the ward according to index scores
that combine information provided by 1998 Census. We consider Jarman Un-
derprivileged Area Score that is designed to measure the need for primary care,
the indices developed by Townsend and Carstairs that is used in health-related
analysis, and the Department of the Environment’s Index (DoE) that is used
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in targeting urban regeneration funds. The higher the index value the more
deprived a ward is. Spatial analysis of deprivation distribution is enabled by
the availability of vectorized boundaries of the 1010 census wards as well as
by other Ordnance Survey digital maps of NWE, where several interesting lay-
ers are found, namely urban zones (including 384 large urban areas and 2232
small urban areas) and wood zones (including 859 woods). In particular, we fo-
cus attention on investigating continuity of socio-economic deprivation joined to
geographical factors represented in linked topographic maps.

Both ward-referenced census data and map data are stored in an Object-
Relational spatial database, i.e., Oracle Spatial 9i database, as a set of spatial
tables, one for each layer. Each spatial table includes a geometry attribute that
allows storing the geometrical representation (i.e. urban and wood zones are de-
scribed by lines while wards are described by polygons) and the positioning of
a spatial object with respect to some reference system. We adopt a topological
algorithm based on the 9-intersection model [3] to detect both adjacency relation
between NWE wards (i.e. wards which share some boundary) and overlapping
relation between wards and urban areas (or woods). The former imposes a dis-
crete spatial structure over NWE wards such that only adjacent wards may be
grouped in the same cluster while the latter contributes to define the spatial
structure embedded in each ward not only in terms of observed values of depri-
vation scores but also extension of urban areas and/or woods overlapping each
ward. No BK is defined for this problem.

Granularity of partitioning changes when varying the value of h− threshold,
that is, CORSO detects 79 clusters with h − threshold = 0.80, 89 clusters with
h − threshold = 0.85, 122 clusters with h − threshold = 0.90 and 163 clusters
with h − threshold = 0.95. In particular, when h − threshold = 0.95, CORSO
clusters NWE area in 2160 secs and identifies adjacent regions modeling dif-
ferently relational patterns involving deprivation and geographical environment.
For instance, by analyzing these spatial clusters, we discover three adjacent ar-
eas, namely C1, C2 and C3 compactly labeled as follows:
C1 : cluster(X1) = c1 ← townsend(X1) = [−4.7..− 0.6],

doe(X1) = [−12.4..2.7], carstairs(X1) = [−4.5..− 0.9],
jarman(X1) = [−32.7..7.5], overlapped by wood(X1, X2) = true.

cluster(X1) = c1 ← townsend(X1) = [−5.4..− 2.3],
doe(X1) = [−10.9..− 0.5], carstairs(X1) = [−4.2..− 1.6],
jarman(X1) = [−22.8..0.6], overlapped by wood(X1, X2) = true.

cluster(X1) = c1 ← townsend(X1) = [−5.4..− 3.2],
doe(X1) = [−8.8..− 2.1], carstairs(X1) = [−4.4..− 2.5],
jarman(X1) = [−22.8..− 2.4], overlapped by wood(X1, X2) = true.

C2 : cluster(X1) = c1 ← townsend(X1) = [−2.0..0.6],
doe(X1) = [−4.2..1.6], carstairs(X1) = [−2.6..2.1],
jarman(X1)=[−9.7..8.8], overlapped by largeUrbArea(X1, X2)= true.

cluster(X1) = c1 ← townsend(X1) = [−2.7..2.8],
doe(X1) = [−4.2..4.0], carstairs(X1) = [−2.2..2.7],
jarman(X1)=[−8.8..21.3], overlapped by largeUrbArea(X1, X2)= true
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Fig. 3. Spatial clusters detected on NWE with h − threshold = 0.95

C3 : cluster(X1) = c1 ← townsend(X1) = [−3.4..0.4],
doe(X1) = [−8.2..− 0.2], carstairs(X1) = [−3.7..0.6],
jarman(X1) = [−27.7..− 1.5],
overlapped by smallUrbArea(X1, X2) = true.

C1, C2 and C3 cover adjacent areas with quite similar range value for deprivation
indexes but C1 models the presence of woods while C2 and C3 model the pres-
ence of small urban areas and large urban areas, respectively. Discontinuity of
geographical environments modeled by these clusters is confirmed by visualizing
map data about the area (see Figure 3).

The logical decision tree mined on the same data discovers 58 different clus-
ters. Clusters are built by minimizing the distance among relational descriptions
of wards. However, the discrete structure imposed by the adjacency relation is
ignored. Hence, wards which are not connected in the graph imposed by the
adjacency relation are clustered together.

5 Conclusions

This paper presents a novel approach to discover clusters from structured spatial
data taking into account relational constraints (e.g. spatial correlation) forming
the discrete spatial structure. We represent this discrete spatial structure as
a graph such that the concept of graph neighborhood is exploited to capture
relational constraints embedded in the graph edges. Moreover, we resort to a
relational approach to mine data scattered in multiple relations describing the
structure that is naturally embedded in spatial data. As a consequence, only spa-
tial units associated with (transitively) graph connected nodes can be clustered
together according to judgment of similarity on relational descriptions repre-
senting their internal (spatial) structure. As future work, we intend to integrate
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CORSO in a spatial data mining system that is able to extract both the spatial
structure and the structure of spatial objects from a spatial database, cluster
these spatial objects coherently with the extracted spatial structure and visualize
discovered clusters. We also plan to employ CORSO for air pollution analysis.
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A Appendix

Let us recall definitions (4) and (5) and apply them to numerical case. We have:

fm(c, [a, b]) = max
v∈[a,b]

P (equal(c, v)) = max
v∈[a,b]

P (δ(X, v) ≥ δ(c, v))

By assuming that X has a uniform distribution on domain D = [α, β] with
density function fD(x) = 1/(β − α), ∀x ∈ D and fixing δ(x, y) = |x − y|,
P (δ(X, v) ≥ δ(c, v)) can be rewritten as P (|X − v| ≥ |c− v|) that is maximized
when minimizing |c− v|.
If a ≤ c ≤ b then max

v∈[a,b]
P (|X − v| ≥ |c− v|) = P (|X − v| ≥ |c − c|) = 1.

If c < a then max
v∈[a,b]

P (|X − v| ≥ |c− v|) is written as max
v∈[a,b]

P (|X − v| ≥ v − c).

Since the maximum of P (|X − v| ≥ v − c) is obtained for v = a, we have that
max

v∈[a,b]
P (|X − v| ≥ v− c) = P (|X − a| ≥ a− c) = P (X − a ≥ a− c)+P (X − a ≤

c− a) = P (X ≥ 2a− c) + P (X ≤ c) where:

1. P (X ≥ 2a− c) =
∫ 2a−c

β 1/(β − α)dx = (β − 2a + c)/(β − α) if 2a− c ≤ β, 0
otherwise;

2. P (X ≤ c) = (c − α)/(β − α).
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Hence, we obtain that:

max
v∈[a,b]

P (|X − v| ≥ v − c) =
{

1 − 2(a− c)/(β − α) if c < a ∧ 2a− c ≤ β
(c− α)/(β − α) if c < a ∧ 2a− c > β

If c > b then max
v∈[a,b]

P (|X−v| ≥ |c−v|) can be equivalently written as max
v∈[a,b]

P (|X

− v| ≥ c − v) that is obtained for v = b. Therefore, max
v∈[a,b]

P (|X − v| ≥ c − v) =

P (|X − b| ≥ c− b) = P (X − b ≥ c− b)+ P (X− b ≤ b− c) = P (X ≥ c)+ P (X ≤
2b− c). We have that:

max
v∈[a,b]

P (|X − v| ≥ c − v) =
{

(β − c)/(β − α) if c > b ∧ 2b− c < α
1 − 2(c− b)/(β − α) if c > b ∧ 2b− c ≥ α
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Abstract. This paper is concerned with generalization issues for a deci-
sion tree learner for structured data called Alkemy. Motivated by error
bounds established in statistical learning theory, we study the VC di-
mensions of some predicate classes defined on sets and multisets – two
data-modelling constructs used intensively in the knowledge represen-
tation formalism of Alkemy – and from that obtain insights into the
(worst-case) generalization behaviour of the learner. The VC dimension
results and the techniques used to derive them may be of wider indepen-
dent interest.

1 Introduction

This paper is concerned with gaining some understanding of the generalization
behaviour of Alkemy, a logical decision-tree learner for structured data intro-
duced under the higher-order logic learning framework of [17]. A brief (early)
description of the learner appears in [6].

To get started on our goal, we turn to the rich body of literature on gen-
eralization issues. Inspection of error bounds established in statistical learning
theory for general decision trees with arbitrary input domains and arbitrary node
functions reveals that an important parameter governing the generalization be-
haviour of Alkemic decision trees is the VC dimension of node functions, and
this is what we study in this paper. Specifically, we concentrate on some natural
predicate classes defined on sets and multisets – two data-modelling constructs
used intensively in the knowledge representation framework of [17] – and give
bounds on their VC dimensions. The results turn out to have wider application
beyond sets and multisets. Some indications of how they can be used to analyse
common predicate classes defined on more complex data types like lists, trees,
graphs, etc are given.

To the author’s best knowledge, this is the first time that the VC dimensions
of different predicate classes defined on sets and multisets have been analyzed
directly. The only other relevant work I’m aware of is in [8], where the VC
dimension of a class of predicates defined on sets is analyzed indirectly through
a mapping to Blum’s infinite attribute space model [5].
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The paper is organized as follows. Section 2 provides background informa-
tion on Alkemy. Error bounds suitable for use with it are stated in Section 3.
Sections 4 and 5 present the new VC dimension results. A discussion of the main
findings is given in Section 6. We conclude in Section 7.

2 Alkemy

We assume some familiarity with a functional programming language like Haskell
[26] in the following.

Figure 1 gives a high-level view of the Alkemy classification learning system.
It accepts as inputs (1) a set of training examples and (2) a hypothesis space,
and produces as output a logical decision tree. A variant of the standard TDIDT
algorithm is used to construct the output tree.

ALKEMY

 p               ~p

q             ~q

r              ~r

 1

0   1

 0

Training Data
{(xi, yi)}0≤i≤N

xi ∈ Bα, yi ∈ {0, 1}

A predicate rewrite system �
defining a search space S� .

A Logical Decision Tree

p, q, r ∈ S�

Fig. 1. A schematic diagram of Alkemy

Individuals (also known as instances) in the training set are represented using
basic terms in the set Bα for some type α chosen appropriately according to the
application. The formal basis for basic terms is provided in [17]; syntactically,
they read like Haskell data constructs. A rich catalogue of data types is provided
for data modelling via basic terms, and these include integers, floating-point
numbers, characters, strings, booleans, data constructors, tuples, sets, multisets,
lists, trees, graphs and composite types that can be built up from these.

Node functions are specified using predicate rewrite systems in Alkemy. A
detailed description of the mechanism is beyond the scope of this paper. Here
we only provide sufficient detail in order to understand its use in Section 5.

Predicates are constructed incrementally by composing more basic functions
called transformations. Composition is handled by the (reverse) composition
function

◦ : (a → b) → (b → c) → (a → c)

defined by ((f ◦ g) x) = (g (f x)).

Definition 1. A transformation f is a function having a signature of the form

f : (�1 → Ω) → · · · → (�k → Ω) → μ → σ,
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where any type variables in �1, . . . , �k and σ appear in μ, and k ≥ 0. (Here Ω is
the type of the booleans.) The type μ is called the source of the transformation,
while the type σ is called the target of the transformation. The number k is called
the rank of the transformation.

The two constants 1 and 0 have type Ω. We now look at some examples of
transformations.

Example 2. The transformation ∧n : (a → Ω) → · · · → (a → Ω) → a → Ω
defined by

∧n p1 . . . pn = λx.((p1 x) ∧ · · · ∧ (pn x)),

provides a conjunction of n predicates.

Example 3. Each projection proji : a1 × · · · × an → ai defined by

proji (t1, . . . , tn) = ti,

for i = 1, . . . , n, is a transformation of rank 0.

Example 4. There are two fundamental transformations top : a → Ω and bottom :
a → Ω defined by (top x) = 1 and (bottom x) = 0, for each x. The transformation
top is the weakest predicate on the type a and bottom, the strongest.

Example 5. Let μ be a type and suppose A, B, C : μ are constants of type μ.
Then, corresponding to A, one can define a transformation (= A) : μ → Ω by

((= A) x) = x = A,

with analogous definitions for (= B) and (= C). Similarly, one can define the
transformations (�= A), (�= B) and (�= C).

Example 6. Consider a type such as Nat (the type of the natural numbers) which
has various order relations defined on it. Then, for any natural number N , one
can define the transformation (< N) : Nat → Ω by

((< N) m) = m < N.

In a similar way, one can define the transformations (> N), (≥ N), and (≤ N).

Example 7. Consider the transformation domCard : (μ → Ω) → {μ} → Nat
defined by

domCard b t = card {x | (b x) ∧ x ∈ t},

where card computes the cardinality of a set. Given a predicate b on type μ
and a transformation on Nat such as (> 42), one can construct a predicate
(domCard b) ◦ (> 42) on sets of type {μ} which selects the subset of elements
that satisfy the predicate b and then checks that the cardinality of this subset is
greater than 42.

One can similarly define domMcard for multisets.

Example 8. Consider the transformation setExists1 : (a → Ω) → {a} → Ω
defined by
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setExists1 b t = ∃x.((b x) ∧ (x ∈ t)).

The predicate (setExists1 b) checks whether a set has an element that satisfies b.

Transformations are used to define a particular class of predicates, called
standard predicates.

Definition 9. A standard predicate is a term of the form

(f1 p1,1 . . . p1,k1) ◦ · · · ◦ (fn pn,1 . . . pn,kn),

where fi is a transformation of rank ki (i = 1, . . . , n), the target of fn is Ω, pi,ji

is a standard predicate (i = 1, . . . , n, ji = 1, . . . , ki), ki ≥ 0 (i = 1, . . . , n) and
n ≥ 1.

Example 10. If p, q, and r are standard predicates (having appropriate type)
and ¬ : Ω → Ω is negation, then (∧3 p q r) ◦¬ is a standard predicate.

Now we can very informally define a predicate rewrite system. A predicate
rewrite is an expression of the form

p � q,

where p and q are standard predicates. The predicate p is called the head and q
is the body of the rewrite. A predicate rewrite system is a finite set of predicate
rewrites. One should think of a predicate rewrite system as a kind of grammar
for generating a particular class of predicates. Roughly speaking, this works
as follows. Starting from the weakest predicate top, all predicate rewrites that
have top (of the appropriate type) in the head are selected to make up child
predicates that consist of the bodies of these predicate rewrites. Then, for each
child predicate and each redex in that predicate, all child predicates are generated
by replacing each redex by the body of the predicate rewrite whose head is
identical to the redex. This generation of predicates continues to produce the
predicate class. The space of predicates defined this way using a predicate rewrite
system � is denoted S�.

Example 11. Consider the predicate rewrite system � given for the Musk prob-
lem in §5.1. The following is a path in the predicate space defined by �.

top
setExists1 (∧3 top top top)
setExists1 (∧3 (proj 1 ◦ (= −6)) top top)
setExists1 (∧3 (proj 1 ◦ (= −6)) (proj 2 ◦ (= 5)) top)
setExists1 (∧3 (proj 1 ◦ (= −6)) (proj 2 ◦ (= 5)) (proj 120 ◦ (= 0)))

3 Error Bounds

We now state a few error bounds for general decision trees. The purpose is to
determine what are important parameters that one should look at in analysing
the generalization behaviour of Alkemic decision trees.
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We start with a reminder of some basic concepts. In what follows, log de-
notes logarithm to base 2, ln denotes the natural logarithm, and !·" and +·,
denote, respectively, the ceiling and floor functions. The set of natural numbers
{1, 2, 3, . . .} is denoted N.

Let X be an arbitrary set and F a class of predicates over X . The growth
function of F , ΠF : N → N, is defined by ΠF(n) = max{|F|x| : x ∈ Xn}, where

F|x = {(f(x1), . . . , f(xn)) : f ∈ F}.

Given x ∈ Xn, if |F|x| = 2n, then we say x is shattered by F . (Equivalently, we
say a subset Y of X is shattered by F if each subset Z of Y can be picked out
by a predicate in F , i.e., there exists f ∈ F such that ∀z ∈ Z. f(z) = 1 and
∀z ∈ Y \Z. f(z) = 0.) The Vapnik-Chervonenkis (VC) dimension of F is defined
by

VCD(F) = max{n : ΠF(n) = 2n}

or ∞ if no such maximum exists.
The following is a standard result we will need. More facts about VC dimen-

sion can be found in standard texts like [1].

Proposition 12. Let F be a finite predicate class. Then VCD(F) ≤ +log |F|,.

Proof. We need at least 2d predicates to shatter a set of d elements. ��

Error bounds for decision trees obtained from classical VC theory suggest
that the amount of training data needed for learning should grow at least linearly
with the size of the tree and the VC dimension of the node functions. See, for
example, [1], [12] and [13]. More recent results give data-dependent bounds that
are qualitatively different from those earlier results. For example, in [14], the
authors show how decision trees with node functions in U can be represented as
thresholded convex combinations of functions in U , and from that establish error
bounds for decision trees using margin-based error bounds for two-layer neural
networks (see [1] and [23]). We state the main theorem here. For more details,
the reader is referred to [14] and [19].

Theorem 13 ([14]). For a fixed δ > 0, there is a constant c that satisfies the
following. Let D be a distribution on X × {0, 1}. Consider the class of decision
trees of depth up to k, with node functions in U . With probability at least 1 − δ
over the training set S of size m, every decision tree T satisfies

P(x,y)∼D[T (x) �= y] ≤ P(x,y)∼S [T (x) �= y]+ c

(
Neff VCD(U) log2 m log k

m

)1/3

.

Here Neff is a data-dependent quantity that measures the effective number of
leave nodes in T , a number that can be significantly smaller than the actual
number of leave nodes in T . See, for the exact definition, [14].

The classical theorems are suitable for use with small trees; Theorem 13
works better for large trees.
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4 Tools for Calculating VC Dimensions

As shown in the last section, the VC dimension of node functions is an impor-
tant parameter in the generalization behaviour of Alkemic decision trees. To
understand the nature of learning with Alkemy, we thus need to develop meth-
ods to calculate the VC dimensions of (more-or-less arbitrary) predicate classes
definable using predicate rewrite systems. The problem seems difficult at first
sight; in fact, it was listed as an open research question in [17, Exercise 6.6].
But recent progress has shown that solutions to some important aspects of the
general problem are actually rather straightforward. These results are reported
here.

We will first outline the development of some useful tools for analysing pred-
icate classes defined on sets and multisets in this section. Armed with these, we
will then proceed in Section 5 to calculate the VC dimensions of three illustrative
predicate rewrite systems selected from [17]. We remark that the tools developed
here have applications beyond Alkemy, for example in the analysis of systems
that learn from set-valued objects like [8].

In this section, for the most part, we will abstract away from predicate rewrite
systems and just work on predicate classes defined on ‘collections’ of natural
numbers. As we shall see, this is a useful simplification since there is a simple
mapping between natural numbers and arbitrary finite sets that we can exploit.

4.1 Sets

We will start with the following basic observation.

Proposition 14. Let F∃ be the class of predicates F∃ = {fi,j : i, j ∈ N, j ≥ i}
where each fi,j : 2N → {0, 1} is defined by

fi,j(t) =

{
1 if ∃x ∈ t. i ≤ x ≤ j

0 otherwise.

Then VCD(F∃) = ∞.

Proof. It suffices to show that the subset F ′
∃ = {fi,i : i ∈ N} of F∃ has infinite

VC dimension. For each n ∈ N, we can construct a set {X1, X2, . . . , Xn} that
is shattered by F ′

∃ as follows. Enumerate all the subsets of N = {1, 2, . . . , n},
assigning them numbers from 1 to 2n. For instance, when n = 3 we get

1 2 3 4 5 6 7 8 .

∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

Now define Xi to be the set of all numbers assigned to a subset of N having i
as a member. Continuing with our example for n = 3, we obtain the set

{X1 = {2, 5, 6, 8}, X2 = {3, 5, 7, 8}, X3 = {4, 6, 7, 8}}.

It is clear that {X1, X2, . . . , Xn} constructed this way is shattered by F ′
∃. ��
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We next give a useful generalization of Proposition 14. First, a definition.

Definition 15. Let X be a set and F a class of predicates over X. We say a
set S ⊆ X is disintegrated by F if for every x ∈ S, there exists an f ∈ F such
that f(x) = 1 and f(y) = 0 for all y ∈ S \ {x}.

Lemma 16. Let X be a set and suppose F is a class of predicates over X. Let
G = {gf : f ∈ F} be the class of predicates where each gf : 2X → {0, 1} is
defined by

gf (t) =

{
1 if ∃x ∈ t. f(x) = 1
0 otherwise.

If there exists a finite S ⊆ X such that |S| � 2 and S is disintegrated by F , then
VCD(G) ≥ +log |S|,.

Proof. Proceeding as in Proposition 14, we can assign a different element of S to
each subset of N = {1, 2, . . . , +log |S|,}. Defining Xi to be the set of all elements
assigned to a subset of N in which i occurs gives us a subset of 2X that is
shattered by G. ��

As a simple application of Lemma 16, we give this next result for sets of
tuples of constants.

Theorem 17. Let N be a finite subset of N satisfying |N | � 2. Suppose m ≥
n > 0 and let Gm,n be the class of predicates

Gm,n = {g{(il,jl)}1≤l≤k
: k ∈ {1, . . . , n}, il ∈ {1, . . . , m}, jl ∈ N}

where each g{(il,jl)}1≤l≤k
: 2Nm → {0, 1} is defined by

g{(il,jl)}1≤l≤k
(t) =

{
1 if ∃(x1, . . . , xm) ∈ t.(xi1 = j1) ∧ · · · ∧ (xik

= jk)
0 otherwise.

Then

VCD(Gm,n) ≥
{
+m log |N |, if n = m;
+log(

∑n
k=1

(
m
k

)
(|N | − 1)k), otherwise.

Proof. Let

Fm,n = {f{(il,jl)}1≤l≤k
: k ∈ {1, . . . , n}, il ∈ {1, . . . , m}, jl ∈ N, i1 < · · · < ik}

where each f{(il,jl)}1≤l≤k
: Nm → {0, 1} is defined by

f{(il,jl)}1≤l≤k
(x1, . . . , xm) =

{
1 if (xi1 = j1) ∧ · · · ∧ (xik

= jk)
0 otherwise.
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We use Lemma 16 to get the lower bounds here. When n = m, we can use for
S the whole set Nm, which is clearly disintegrated by Fm,m. When n < m, we
construct S as follows. Pick an x ∈ N at random and consider the following
subset of Fm,n:

Fm,n,x = {f{il,jl}1≤l≤k
: k ∈ {1, . . . , n},

il ∈ {1, . . . , m}, jl ∈ N \ {x}, i1 < · · · < ik}.

For each predicate f{(il,jl)}1≤l≤k
∈ Fm,n,x add to S the tuple that has value jl

at the il-th component, and x everywhere else. (For instance, when m = 5, k =
2, N = {1, 2, 3} and x = 3, given f{(1,2),(3,1)}, we add (3, 3, 1, 3, 2) to S.) It is
not hard to see that each element in S can be picked out by the predicate that
generated it. Further,

|S| = |Fm,n,x| =
n∑

k=1

(
m

k

)
(|N | − 1)k.

The condition |N | � 2 ensures that |S| � 2 in both cases. ��

It is perhaps of (independent) interest to note that the dual F∀ (defined
below) of F∃ defined in Proposition 14 has finite VC dimension.

Proposition 18. Let F∀ be the class of predicates F∀ = {fi,j : i, j ∈ N, j ≥ i}
where each fi,j : 2N → {0, 1} is defined by

fi,j(t) =

{
1 if ∀x ∈ t. i ≤ x ≤ j;
0 otherwise.

Then VCD(F∀) = 2.

Proof. It is easy to show that VCD(F∀) � 2. Assume there exists a set S =
{X, Y, Z} that is shattered by F∀. Clearly, none of the elements in S can be the
empty set, which evaluates to 1 for each f ∈ F∀. Further, each element in S must
be finite. (Shattering is impossible otherwise.) Denote by max(A) and min(A)
the biggest and smallest numbers in a (finite) set A of numbers and define the
range of A by range(A) = {min(A), . . . , max(A)}. We have

∀A, B ∈ S, A �= B ⇒ range(A) � range(B)

since if range(A) ⊆ range(B), there is no way to make B true without also
making A true. Without loss of generality, assume min(X) < min(Y ) < min(Z).
This implies max(X) < max(Y ) < max(Z). Now, there is no fi,j ∈ F∀ such
that fi,j(X) = 1, fi,j(Z) = 1, and fi,j(Y ) = 0 since any (i, j)-interval that
covers both min(X) and max(Z) must also cover every number in the range
{min(Y ), . . . , max(Y )} ⊇ Y . ��



254 K.S. Ng

4.2 Multisets

We next look at multisets. The difference between a set and a multiset is that an
element can occur multiple times in a multiset. Some of the results given for sets
clearly carry over to multisets with little change. The multiplicity of elements
allowed in multisets can sometimes be exploited, as done in our next result. First
some notation.

Let A be a multiset of elements from some set X . In the following, we denote
by #(A, x) the multiplicity of x ∈ X in A. Further, we denote by N0 the set
{0} ∪ N.

Definition 19. Let A and B be multisets of elements from some set X. We
define the pairwise maximum between A and B, denoted A�B, as follows: A�B
is the multiset that contains, for all x ∈ X, max{#(A, x), #(B, x)} occurrences
of x. For example, {1, 1, 2, 2, 2} � {1, 2, 2, 2, 2, 3, 3, 3} = {1, 1, 2, 2, 2, 2, 3, 3, 3}.

Theorem 20. Suppose X and Y are non-empty finite subsets of N. Let F be
the class of predicates F = {fi,j : i ∈ X, j ∈ Y } where each fi,j : N0

N → {0, 1}
is defined by

fi,j(t) =

{
1 if #(t, i) � j;
0 otherwise.

Let d ∈ N. If |Y | � d+1 and |X | �
(
d
i

)
for all i ∈ {1, . . . , d}, then VCD(F) � d.

Proof. The proof is in two stages. In the first stage, we show that given a function
ψ from the powerset of D = {1, . . . , d} to N0

N satisfying a certain property, we
can construct a set Z = {Z1, . . . , Zd} that is shattered by F . In the second stage,
we show that ψ exists and give a simple algorithm for constructing it.

Stage 1 We denote by (x, y) the multiset that contains y occurrences of x and
nothing else. Assume ψ satisfies the following property: For all S ⊆ D, we have

1. ψ(S) = (x, y) for some x, y ∈ N, and
2. for all A ⊆ D not equal to S, if ψ(A) = (x, z) for some z ∈ N and |A| ≥ |S|,

then S ⊂ A and y > z.

Given such a function ψ, define Zi =
⊔

{ψ(S) : S ⊆ D, i ∈ S} for each i ∈ D.
(Example 23 below gives an example of a function ψ defined on the subsets of
D = {1, 2, 3, 4} that satisfy the property stated above. References there to the
Label algorithm should be ignored for now. Each pair A (B, C) in the example
should be interpreted as ψ(A) = (B, C). For example, ψ(∅) = (1, 5). Note also
the way each Zi is defined using ψ.) We now argue that the set Z = {Z1, . . . , Zd}
so-constructed is shattered by F . Specifically, we show that for all S ⊆ D,
fx,y(Zi) = 1 if i ∈ S and fx,y(Zi) = 0 otherwise, given that ψ(S) = (x, y).

Consider an arbitrary S ⊆ D with ψ(S) = (x, y). If i ∈ S, by construction,
Zi contains at least y occurrences of x and fx,y(Zi) = 1. Consider now the case
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when i /∈ S. If #(Zi, x) = 0, then fx,y(Zi) = 0 as desired. If #(Zi, x) > 0, then
there exists A ⊆ D such that i ∈ A and ψ(A) = (x, z) for some z ∈ N. We
can assume without loss of generality that A is the set with the largest z. If
|A| ≥ |S|, then by the property of ψ, we have y > z and S ⊂ A, which implies
fx,y(Zi) = 0. If |A| < |S|, then by the property of ψ, we have z > y and A ⊂ S.
(Simply substitute the set A for the variable S and the set S for the variable A
in the statement of the property of ψ.) This case can’t arise since A ⊂ S and
i ∈ A together imply i ∈ S, contradicting i /∈ S.

Stage 2 It suffices to show that one such ψ exists. We will give a more general
result that shows that not only does ψ exists, we can actually find many instances
of it efficiently using well-studied algorithms in graph theory.

Given X and Y both non-empty finite subsets of N, we first use the Label
algorithm given below to label the subsets of D. For each S ⊆ D, we then de-
fine ψ(S) to be the label assigned to S. To get some intuition, we first give a
high-level description of the labelling algorithm. Conceptually, we first lay out
in a sequence the subsets of D in groups, starting from the empty set (group
0), followed by the 1-subsets (group 1), the 2-subsets (group 2), . . . , and fi-
nally finishing at D (group |D|). (A subset with k elements in it is called a
k-subset here.) The algorithm starts by labelling the largest group and then iter-
atively label the next two largest unlabelled groups until every subset of D has a
label.

We now give the algorithm. The variables l, u and m are integers. In the
algorithm, we denote by Y [i] and X [i] the i-th largest elements in Y and X .
The condition |X | ≥

(
d
i

)
for all i comes about because of Step 2. The condition

|Y | ≥ d + 1 comes from the fact that there are d + 1 groups of subsets of D.
Example 23 below gives a concrete example of the labelling. It is instructive to
work through the example at this stage.

Alg. Label

1. l ← 1; u ← 1; m ← min{i : ∀j.
(
d
j

)
�
(
d
i

)
};

2. Label the m-subsets of D with (X [i], Y [!d/2 + 1"]) in increasing order of
i.

3. If m− l < 0, goto Step 6;
4. C ← the (m − l + 1)-subsets of D;
5. For each (m− l)-subset S of D

(a) Pick an L ∈ C with label (x, Y [m]) such that S ⊂ L and label S with
(x, Y [m + 1]);

(b) C ← C \ L;
6. If m + u > d, terminate;
7. C ← the (m + u − 1)-subsets of D;
8. For each (m + u)-subset S of D

(a) Pick an L ∈ C with label (x, Y [m]) such that L ⊂ S and label S with
(x, Y [m − 1]);
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(b) C ← C \ L;
9. l ← l + 1; u ← u + 1; Goto Step 3;

By design, the function ψ constructed from a labelling obtained by Label,
assuming it terminates, satisfies the condition stated earlier. We now show that
the Label algorithm always terminate successfully. For that, we need to show
that Steps 5(a) and 8(a) can always be performed for each S. We will show this
for Step 5(a); the argument for Step 8(a) is similar. What we are trying to do is
in fact to find a matching in a bipartite graph. The vertices of the graph consists
of the (m − l) and (m − l + 1)-subsets of D, with the (m − l)-subsets forming
the first partition, and the (m− l +1)-subsets the second. There is an edge from
an (m − l)-subset A to an (m − l + 1)-subset B iff A ⊂ B. By the choice of m,
we have

no. of (m − l)-subsets =
(

d

m− l

)
�
(

d

m− l + 1

)
= no. of (m − l + 1)-subsets.

Thus we seek a matching of cardinality
(

d
m−l

)
.

To show that such a matching exists and can be found efficiently, we intro-
duce a concept from graph theory.

Definition 21. A vertex cover of a graph G = (V, E) is a set U ⊆ V
such that every edge of G is incident with a vertex in U .

We make use of the following known result. For a proof, see, for example, [9].

Theorem 22 (König 1931). The maximum cardinality of a matching
in a bipartite graph G is equal to the minimum cardinality of a vertex
cover of G.

The set of (m − l)-subsets with cardinality
(

d
m−l

)
is clearly a vertex cover. A

straightforward indirect argument shows that there is no smaller vertex cover.
The existence of our desired matching then follows from Theorem 22. There
are efficient network flow algorithms for finding (all) such matchings; see, for
instance, [21, Chap. 10].

Finally, the labelling algorithm will always terminate at Step 6 by the choice
of m in Step 1. �

Example 23. Suppose X = {1, . . . , 6} and Y = {1, . . . , 5}. Let F be as defined
in Theorem 20. To construct a set Z = {Z1, Z2, Z3, Z4} that is shattered by F ,
we first label the subsets of D = {1, 2, 3, 4} according to the Label algorithm.
One acceptable labelling is the following.

∅ (1, 5)
{1} (1, 4), {2} (4, 4), {3} (2, 4), {4} (3, 4)

{1, 2} (1, 3), {1, 3} (2, 3), {1, 4} (3, 3), {2, 3} (4, 3), {2, 4} (5, 3), {3, 4} (6, 3)
{1, 2, 3} (1, 2), {1, 2, 4} (5, 2), {1, 3, 4} (2, 2), {2, 3, 4} (6, 2)

{1, 2, 3, 4} (1, 1)
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Based on the function ψ obtained from the labelling, we construct

Z = { Z1 = {1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 5, 5},
Z2 = {4, 4, 4, 4, 1, 1, 1, 5, 5, 5, 6, 6},
Z3 = {2, 2, 2, 2, 4, 4, 4, 6, 6, 6, 1, 1},
Z4 = {3, 3, 3, 3, 5, 5, 5, 6, 6, 6, 2, 2, 1} }.

It can be easily verified that Z is shattered by F . �

Observation 24. It is possible to weaken the condition on |Y | in Theorem 20
using a more scrupulous grouping of the subsets, especially for large values of d.
We note here a simple way to weaken that to |Y | � d − 1 by treating the empty
set as part of the 1-subsets, and the whole set D as part of the (d − 1)-subsets
during labelling. Labelling is possible because the empty set, being a subset of
every other set, is connected to all the 2-subsets; and the set D, being a superset
of every other set, is connected to all the (d − 2)-subsets.

5 Some Illustrations

Building on results presented in the previous section, we now analyse three
instructive examples of predicate rewrite systems taken from [17, Chap. 6]. For
each illustration, we briefly introduce the problem and give details on (1) the way
individuals are represented; and (2) the predicate rewrite system used. Readers
can consult [17] for more information.

5.1 Musk

This first illustration is the Musk problem described in [10]. Briefly, the problem
is to determine whether or not a molecule has a musk odour. Molecules generally
have many different conformations and, presumably, only one conformation is
responsible for the activity. Each conformation is a tuple of 166 floating-point
numbers, where 162 of these represent the distance in angstroms from some origin
in the conformation out along a radial line to the surface of the conformation
and the other four numbers represent the position of a specific oxygen atom.
For convenience, the floating-point numbers are discretized into 13 intervals,
resulting in the following.

Representation of Individuals

−6,−5, . . . , 5, 6 : Distance
Conformation = Distance × · · · ×Distance
Molecule = {Conformation}

Here the product type Distance × · · · ×Distance contains 166 components. The
function musk to be learned has signature musk : Molecule → Ω.
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Predicate Rewrite System

top � setExists1 (∧3 top top top)
top � proj i ◦ (= j) where i ∈ {1, 2, . . . , 166}, j ∈ {−6,−5, . . . , 6}

Proposition 25. VCD(S�) = 30.

Proof. By Proposition 12, VCD(S�) ≤ +log |S�|, = +log 1, 679, 615, 641,= 30.
We have the lower bound

VCD(S�) ≥ +log(
3∑

k=1

(
166
k

)
(12)k), = +log 1, 295, 658, 552,= 30

by Theorem 17. ��

5.2 Climate

Consider next the problem of deciding whether a climate in some country is
pleasant or not. The climate is modelled by a multiset. Each item in a multiset
is a term characterizing the main features of the weather during a day and the
multiplicity of the item is the number of times during a year a day with those
particular weather features occurs.

Representation of Individuals

Sunny,Overcast ,Rain : Outlook
Hot ,Mild ,Cool : Temp
High,Normal ,Low : Humidity
Strong,Medium,Weak : Wind
Weather = Outlook × Temp ×Humidity ×Wind

A climate is modelled as a multiset Climate = Weather → Nat and the function
pleasant to be learned has signature pleasant : Climate → Ω.

Predicate Rewrite System

top � (domMcard top) ◦ (> 0);
top � ∧4 (projOutlook ◦ top) (projTemp ◦ top)

(projHumidity ◦ top) (projWind ◦ top);
top � (= Sunny); top � (= Overcast); top � (= Rain);
top � (= Hot); top � (= Mild); top � (= Cool );
top � (= High); top � (= Low ); top � (= Normal);
top � (= Strong); top � (= Medium); top � (= Weak );
(> i) � (> i + 50) where i ∈ {0, 50, . . . , 300}.
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Proposition 26. 8 ≤ VCD(S�) ≤ 11.

Proof. By Proposition 12, VCD(S�) ≤ +log |S�|, = +log 2057, = 11. We use
Theorem 20 to establish the lower bound. All the tuples of type Weather can be
numbered and form the set X , with |X | = 81. Each predicate in S� of the form

(domMcard (∧4 (projOutlook ◦ (= A))
(projTemp ◦ (= B)) (projHumidity ◦ (= C)) (projWind ◦ (= D)))) ◦ (> j)

is equivalent to some fi,j+1 as defined in Theorem 20, where i is the labelling
number of (A, B, C, D). There are 81 ways to instantiate the variables A, B, C
and D. The variable j can take on values in the set

Y = {1, 51, 101, 151, 201, 251, 301, 351}.

The largest d satisfying |Y | ≥ d − 1 and |X | ≥
(
d
i

)
for all i is d = 8. ��

5.3 Beyond Sets and Multisets

Results like Theorem 17 and Theorem 20 are actually more useful than they
appear. A natural thing to do when learning from structured data is to check for
existence of substructures common to individuals of the same class. For exam-
ple, given a graph, it is common to pull out the set of all subgraphs of a certain
size and check whether there exists one satisfying a certain property. Similarly
for lists, trees and other complex data types. This means that transformations
involving sets and multisets actually appear very often in predicate rewrite sys-
tems defined over a wide range of structured data, and these can be analysed
using results presented in this paper. We remark that, in fact, all but one il-
lustrations described in [17, Chap. 6], which cover many different data types in
common use, can be analysed this way.

To illustrate the kind of reasoning involved, we give one final example, again
taken from [17], involving lists. We consider the East-West challenge proposed
by Michalski. Given trains and the directions they are traveling in, the task is to
learn a rule that can differentiate between those heading east and those heading
west.

The most natural type to model a train is a list. We first introduce the types
Direction, Shape, Length, Kind , Roof , and Object .

East ,West : Direction
Rectangular ,DoubleRectangular ,UShaped ,BucketShaped ,

Hexagonal ,Ellipsoidal : Shape
Long,Short : Length
Closed ,Open : Kind
Flat , Jagged ,Peaked ,Curved ,None : Roof
Circle,Hexagon ,Square,Rectangle,LongRectangle,Triangle,

InvertedTriangle,Diamond ,Null : Object .
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We also introduce the following type synonyms for convenience.

NumWheels = Nat
NumObjects = Nat
Load = Object ×NumObjects
Car = Shape × Length ×NumWheels ×Kind × Roof × Load
Train = List Car .

The function direction to be learned has signature direction : Train → Direction .
Before giving the predicate rewrite system, we first introduce a few transfor-

mations for lists. The transformation listToSet : Train → {Car} converts a list
of carriages into a set of carriages. The transformation (sublists N) : Train →
{Train} takes a list of carriages and returns the set of all sublists of size N . The
transformation (!!N) : Train → Car takes a train and returns the N -th carriage
in the train. The predicate rewrite system is as follows.

top � listToSet ◦ (setExists1 (∧2 top top));
top � (sublists 2) ◦ (setExists1 (∧2 ((!!0) ◦ top) ((!!1) ◦ top)));
top � projShape ◦ top; top � projLength ◦ top; top � projNumWheels ◦ top;
top � projKind ◦ top; top � projRoof ◦ top; top � projLoad ◦ top
top � projObject ◦ top; top � projNumObjects ◦ top;
top � (= A) where A a constant of type Shape;
top � (= B) where B a constant of type Length;
top � (= C) where C a constant of type Kind ;
top � (= D) where D a constant of type Roof ;
top � (= E) where E a constant of type Object ;
top � (= 1); top � (= 2); top � (= 3).

Proposition 27. 7 ≤ VCD(S�) ≤ 11.

Proof. Given |S�| = 2073, we have VCD(S�) ≤ +log |S�|, = 11 by Proposition
12. The lower bound can be established by analysing the predicates generated
by the first rewrite. The reasoning proceeds in a similar fashion as in Theorem
17, but taking into account the fact that the components of Car have different
ranges. An element from each component is reserved as a default value, in the
same way an x ∈ N is used in Theorem 17. From that, we get a set X of Car
objects that can be used to construct a shatterable set D of sets of Car objects,
where |D| = +log |X |, by Lemma 16. Clearly, one can recover a Train object
from each element in D. A straightforward counting exercise yields |X | = 230,
giving us the lower bound +log |X |, = 7. ��

6 Discussion

In the three examples presented in the previous section, an upper bound on the
VC dimension is established by counting the size of the predicate class. A lower
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bound is then given via an explicit construction of a set of individuals that is
shattered by the predicate class, making use of the rich structures available.
Interestingly, the upper and lower bounds are never too far apart, and this holds
true for all the other illustrations in [17] we analysed. Now one would expect
that it is possible to do a lot better than a näıve counting of the predicate class;
apparently not. What are we to make of these results?

It was shown in [25] (see also [1, Chap. 5]) that for a predicate class with
high VC dimension, there exist distributions that will force the learning algo-
rithm to require a large number of examples to obtain good generalization. This,
together with the results presented in this paper, implies that, in general, the
true errors of hypotheses in the rich predicate classes used by Alkemy cannot
be easily estimated from empirical data, and that, in the worst case, the number
of training examples needed grows rather quickly with the size and complexity
of the hypothesis language used. The problem is that if we do not make any
assumption about the underlying distribution, then we must be prepared to ac-
cept the possibility that everything can conspire against the learner – the more
structures we introduce into the representation of individuals and the hypothesis
language, the more structures there are to be exploited for producing bad cases.

7 Conclusion

We have looked at some generalization issues in relation to Alkemy in this
paper. In particular, we investigated the VC dimensions of some predicate classes
defined on sets and multisets and studied their applications in the context of
Alkemy. The results provide valuable information on the nature of learning
with sets and multisets, thus filling a gap in our understanding of the process
of learning from structured data. On the practical side, the tools developed in
this paper can be used to calculate the complexity of different predicate classes.
In real applications, such calculations can be used to guide the selection and
crafting of hypothesis languages.

Future Work. We have shown in this paper that some fairly natural predicate
classes defined on sets and multisets have high VC dimension. This implies that
these classes are hard to learn in the distribution-free setting. However, learning
with predicate classes that have high VC dimensions is possible if the underlying
distribution is benign, and this information can be obtained from the training
data. For instance, [24] shows that the VC dimension of a predicate class on
the training sample can be used as a measure of how helpful the distribution
is in identifying the target concept, and gives error bounds in terms of that.
More recently, [4] gives error bounds in terms of the Rademacher and Gaussian
complexities of predicate classes, and these can be estimated easily from the
training data. PAC-Bayes and PAC-MDL bounds, which are also data-dependent
results, can also help us obtain tighter bounds. Some relevant work along this
line of research include [18] and [22]. Investigation into such data-dependent
analysis is our future work.
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Related Work. A body of work in ILP has provided both upper and lower
bounds on the number of examples required for learnability, mostly in the PAC
setting. Upper bounds are usually obtained by analyzing concrete algorithms
for learning restricted first-order classes; see, for example, [20], [11], [7] and [16].
Issues of computation and estimation, in the sense expounded in [1, §1.1], are
usually tightly integrated in this kind of analyses, and this failure to separate
concerns is slightly unsatisfactory.

Lower bounds, however, are usually obtained, independently of computation
issues, using purely information-theoretic concepts like Vapnik-Chervonenkis di-
mensions. Examples of such work include [3], [15] and [2], and this paper is
related to these. The fact that the same general conclusion was obtained from
the analyses of two very different knowledge representation formalisms tells us
something about the sample complexity of learning with rich expressive lan-
guages in general.
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Abstract. We study predicate selection functions (also known as split-
ting rules) for structural decision trees and propose two improvements
to existing schemes. The first is in classification learning, where we re-
consider the use of accuracy as a predicate selection function and show
that, on practical grounds, it is a better alternative to other commonly
used functions. The second is in regression learning, where we consider
the standard mean squared error measure and give a predicate pruning
result for it.

1 Introduction

In this paper, we study predicate selection functions (also known as splitting
rules in the literature) for structural decision trees and suggest two ways to
improve existing schemes.

The first is in classification-tree learning, where we reconsider the use of
accuracy as a predicate selection function and show that, on practical grounds,
it is a better alternative to other commonly used functions in the context of
structural trees, its primary advantage being the admission of a simple predicate
pruning mechanism. With a small modification, we also show that two recognized
problems associated with its use can be resolved easily. All these are discussed
in Section 3.

The second, presented in Section 4, is in regression-tree learning. In that
section, we consider the standard mean-squared error measure and give an effi-
ciently computable predicate pruning result for it.

To avoid confusion, it’s worth stressing that the two pruning mechanisms
alluded to above happen not in the space of trees, but in the space of predicates
we search to split a decision node. This form of pruning, called predicate pruning
in this paper, is largely a search efficiency issue; in contrast, tree pruning deals
with the more difficult problem of handling overfitting. This point should become
clearer in Section 2.

We next give a high-level specification of a family of structural-tree induction
systems. Every learner that fits the description can potentially benefit from the
proposals of this paper.
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2 Induction of Structural Trees

We consider the family of decision-tree learners for structured data that uses
(variants of) the top-down induction algorithm for learning. A high-level schema
of such systems is shown in Figure 1.

LEARNER

Training Data
{(xi, yi)}0�i�N

xi ∈ X , yi ∈ Y

Background
Knowledge B

A predicate search
space S

A Structural Tree

p, q, r ∈ S

p ¬p

q ¬q

r ¬r

y1

y2 y3

y4

Fig. 1. Structural-tree learning systems

A learning algorithm of this kind takes three inputs:

1. a (finite) set of training examples z ⊆ X × Y;
2. some background knowledge B; and
3. a collection S of predicates over X ,

and produces as output a structural decision tree T with node functions in S.
The terminal nodes of T are labelled with elements from Y. For classification,
Y is a small finite set; for regression, Y is (usually a bounded interval of) R.
The input space X can be any arbitrary set. We assume S has the following
structure:

1. S is a directed acyclic graph where each vertex is a predicate over X and
there is an edge from a predicate p to a predicate q iff q can be obtained (in
some way depending on the setting) from p.

2. Suppose p and q are both predicates in S. If q is a descendant of p, then
∀x ∈ X , q(x) =⇒ p(x).

We permit the predicate search space to change from node to node in the decision
tree.

The top-down induction algorithm makes binary splits at each node in the
tree. If E is the set of examples at the current node, then a predicate p ∈ S
induces a partition P = (E1, E2) of E , where E1 ⊆ E is the set of examples that
satisfy p and E2 ⊆ E is the set of examples that do not satisfy p. The quality of
the partition P is determined by a real-valued predicate selection function f(P).
Given S and a set E of examples, we seek a predicate p∗ ∈ S such that f(P∗),
where P∗ is the partition of E induced by p∗, is optimized.

The search space S can be huge, in which case some form of pruning is needed
to explore the space efficiently. It is the form of the predicate selection function,
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together with the two properties of S stated earlier, that we will exploit in the
design of our predicate pruning mechanisms.

Three learning systems that fit the description given here are Tilde [3], [2],
S-CART [9], [10] and Alkemy [4], [11].

The underlying language for Tilde and S-CART is a subset of first-order
logic. For both systems, X are Prolog programs, B is a Prolog program, and
S = {fc | c ∈ C} where C is a set of program clauses. Given x ∈ X , fc(x)
evaluates to true iff the query ← c succeeds in the program x ∧ B. In trees
induced by both Tilde and S-CART, variables are shared across decision nodes
down true branches. For that reason, the predicate search space can be different
from node to node.

For both systems, if we only consider the addition of a single literal at each
node t in the process of growing a tree, the predicate search space St at t would
be a one-level-deep tree that will not actually benefit from the proposals of this
paper. In fact, existing predicate selection functions work rather well in this
setting. However, if conjunctions of literals are considered, as can be done using
the lookahead mechanism in Tilde and schemata declarations in S-CART (see,
for details, [10, §6.4] and [2, §6.3]), then the pruning results presented here can
exploit the richer structure of St to alleviate the usual computational problems
associated with the use of such rich search spaces, thus solving an important,
thorny problem for both learners.

The underlying language of Alkemy is a typed higher-order logic. In this case,
X are basic terms of a certain type, B takes the form of transformations (and
their definitions), and S consists of standard predicates over X defined using a
predicate rewrite system. The predicate search space is the same for every node
in the tree. See, for more details, [11].

We move on now to the discussion of a new accuracy-based predicate selection
function for classification trees.

3 An Accuracy Heuristic for Classification-Tree Learning

The use of accuracy as a heuristic was called into question early on in classifi-
cation-tree research. Two standard criticisms, stated in [6, §4.1], are as follows.

Criticism 1. The use of accuracy can result in premature termination of tree
growth. This is because tree nodes that are relatively pure, with examples com-
ing from one predominant class, often cannot be split with a strict increase in
accuracy.

Criticism 2. The accuracy heuristic does not take future growth into account in
choosing the current best split. We use the example in [6, §4.1] to illustrate this
point. Consider a set E = (400, 400) of 800 examples. (Here and in the following,
(n1, . . . , nc) denotes a set of examples with ni examples in the ith class.) Which
of the following two is the better partition of E?

P1 = ((300, 100), (100, 300)); or
P2 = ((200, 400), (200, 0)).
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P2 is intuitively the more appealing partition of the two, with potential to result
in a smaller overall tree. But accuracy can’t differentiate between them.

Criticisms 1 and 2 notwithstanding, in the context of structural decision trees,
as pointed out in [4], the use of accuracy offers one important advantage that
warrants reconsideration: its use admits a particularly simple predicate pruning
mechanism. For completeness, we now review this result from [4].

Suppose there are c classes in all. Let E be a (non-empty) set of examples, N
the number of examples in E , ni the number of examples in E in the ith class,
and pi = ni/N , for i = 1, . . . , c.

Definition 3. The majority class of E is defined to be the class to which the
greatest number of examples in E belong. (Ties are broken arbitrarily.)

Definition 4. The accuracy, AE , of a set E of examples is defined by

AE = pM ,

where M is the index of the majority class of E.

The accuracy is the fraction of examples which are correctly classified on the
basis that the majority class gives the classification.

Definition 5. Let P = (E1, E2) be a partition of a set E of examples. We define
the accuracy, AP , of the partition P by

AP =
|E1|
|E| AE1 +

|E2|
|E| AE2 .

In the predicate search space, if p′ is a descendant of p, then p′ implies p
and the partition (E ′

1, E ′
2) of E induced by p′ has the property that E ′

1 ⊆ E1,
where (E1, E2) is the partition of E induced by p. These considerations lead to
the following definition.

Definition 6. Let E be a set of examples and (E1, E2) a partition of E. We say
a partition (E ′

1, E ′
2) of E is a refinement of (E1, E2) if E ′

1 ⊆ E1.

We now introduce the important measure of classification refinement bound.

Definition 7. Let P = (E1, E2) be a partition of a set E of N examples, where
ni is the number of examples in E in the ith class and nj,i is the number of
examples in Ej in the ith class, for j = 1, 2 and i = 1, . . . , c. We define the
classification refinement bound, BP , of the partition P by

BP =
1
N

(max
i

{ni + max
k �=i

n1,k}).

The intuitive idea behind the definition of BP is that the refinement of P having
the greatest accuracy can be obtained by moving all examples in one class from
E1 across to E2. Here is an example to illustrate the concept of classification
refinement bound.



268 K.S. Ng and J.W. Lloyd

Example 8. Let E = (6, 9, 3, 2) and suppose P = ((2, 1, 0, 2), (4, 8, 3, 0)). Then
AP = 10/20 and BP = 11/20. If Q = ((0, 9, 0, 0), (6, 0, 3, 2)), then AQ = BQ =
15/20. �

The next result shows that BP is an upper bound for the accuracy of any
refinement of a partition P of a set of examples.

Proposition 9 ([11]). Let E be a set of examples and P a partition of E. If P ′

is a refinement of P, then AP′ ≤ BP . In particular, AP ≤ BP .

Proposition 9 can be used to prune the search space when searching for a predi-
cate to split a node. During this search, we record the best partition P found so
far and its associated accuracy AP . When investigating a new partition Q, the
quantity BQ is calculated. According to the proposition, if BQ < AP , then the
partition Q and all its refinements can be safely pruned. Here is an example to
illustrate how this works.

Example 10. Let the set of examples be (6, 9, 3, 2). Suppose the best partition
found so far is P = ((6, 3, 0, 2), (0, 6, 3, 0)), which has accuracy 12/20. Suppose
that later on in the search the partition Q = ((2, 4, 0, 1), (4, 5, 3, 1)) is being
investigated. Note that BQ = 11/20. Since BQ < AP , Proposition 9 shows that
Q and its refinements can be pruned.

On the other hand, consider the partition R = ((6, 5, 3, 2), (0, 4, 0, 0)), for
which BR = 15/20. Thus R has refinements, which could be found by the
system, whose accuracies exceed that of P . Thus R should not be pruned. �

The pruning mechanism just described has been shown to work well in many
different applications. Table 1 gives an indication of its effectiveness. In it, we list
six problems taken from [11, §6.2] and [5]. For each problem, we give (1) the size
of the predicate search space |S| as defined in [11] and [5]; and (2) the number of
predicates actually tested in a complete search of the predicate space aided by
pruning. The percentage of the predicate space actually searched is also given. As
shown, significant reduction in search can be achieved. It is worth pointing out
that the effectiveness of the pruning mechanism is not a function of the size of
the search space but a function of the structure of the search space and the way
the training examples are actually labelled. In general, predicate search spaces
that are formed by combining basic conditions in different ways, for example
using conjunctions, stand to gain the most from the pruning mechanism. The
predicate spaces defined for the last three datasets in Table 1 are of this kind.

It is not clear to the authors whether more commonly used functions like
entropy admit similar (efficiently computable) pruning mechanisms. After several
failed attempts to find such a result, it seems unlikely to us that there is one.
Assuming there is no such result, then in the context of structural decision trees
we can expect accuracy to be a better predicate selection function compared to
other commonly used functions. To back up this claim, we examine two cases
under the assumption that there is enough structure in the predicate space for
predicate pruning to take effect. The first of these corresponds to the case when
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Table 1. Efficiency of the predicate pruning mechanism

Dataset |S| Searched

Int Trees 396 120 (30.30%)
Mutagenesis 535 108 (20.19%)
East West 2073 892 (43.03%)
Headline 2850 190 (6.66%)
Protein 9262 581 (6.27%)
Musk-1 1,679,615,641 2,914,727 (0.17%)

an exhaustive search of the predicate space is computationally feasible, and the
second when it is not.

In the first case, with the aid of pruning, computing the most accurate predi-
cate can be expected to be cheaper than computing the one with, say, the lowest
entropy. Assuming accuracy and entropy both yield reasonably accurate decision
trees and that their relative performances are not too far apart – we will come
back to look at this shortly – then adopting accuracy as the predicate selection
function is a good strategy, especially if time efficiency is an issue.

In the second case, we must resort to incomplete searches. Given the same
amount of time, we can expect the predicate chosen using, say, entropy in the
absence of a pruning mechanism to be, in all likelihood, worse than the predi-
cate chosen using accuracy in the presence of pruning simply because a smaller
percentage of the predicate space is actually searched.

To advocate the use of accuracy as a viable predicate selection function, we
need to address the two criticisms stated in the beginning of this section. Both
criticisms are valid arguments. Criticism 1 has a theoretical basis, as shown in
[8]. Criticism 2, being an intuitive argument, is weaker but persuasive nonethe-
less. Interestingly, both problems can be addressed with an easy solution: one
can adopt accuracy as the main predicate selection function and use a concave
function like entropy to break ties between equally-accurate predicates. We will
call this the Acc∗ function.

This scheme addresses Criticism 1 because in the case where no predicate
in the search space can achieve a strict increase in accuracy, splits can still be
made in accordance with the tie-breaker function, which we know behaves well.

Criticism 2 can also be resolved this way. In the example given, Acc∗ will
pick P2 over P1, as desired.

One final question remains: Is a concave function like entropy, as a predicate
selection function, always going to outperform Acc∗? We investigate this empir-
ically. Two tree-growing algorithms are compared, the first uses Acc∗, and the
second, entropy. Twelve datasets were used for this purpose. They consists of the
first five datasets in Table 1 and seven other datasets chosen randomly from the
UCI repository. (Musk-1 in Table 1 was excluded because an exhaustive search
through the predicate space as required by the entropy-based algorithm is sim-
ply not feasible. It can, however, be handled using Acc∗.) The Alkemy learning
system was used to perform the experiment. The results are shown in Tables 2
and 3. Table 2 gives the accuracies of the induced classifiers in the absence of tree
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Table 2. Accuracy vs Entropy (w/o tree post-pruning)

Accuracy Time

Dataset Acc∗ Ent Ent > Acc∗ Acc∗ Ent

Int Trees 0.400 0.400 0.26 0.82
Mutagenesis 0.820 0.840 186.370 232.63
East West 0.900 0.900 0.68 1.67
Headline 0.950 0.950 0.97 4.86
Protein 0.800 0.800 0.98 20.60

Audiology 0.735 0.765 � – –
Lenses 0.833 0.833 – –

Mushroom 1.000 1.000 – –
Votes 0.947 0.942 – –

Monks-1 0.894 0.886 – –
Monks-2 0.692 0.692 – –
Monks-3 0.884 0.876 – –

Table 3. Accuracy vs Entropy (with tree post-pruning)

Accuracy

Dataset Acc∗ Ent Ent > Acc∗

Int Trees 0.700 0.700
Mutagenesis 0.820 0.809
East West 0.800 0.800
Headline 0.900 0.900
Protein 0.700 0.700

Audiology 0.710 0.755 �
Lenses 0.850 0.850

Mushroom 0.999 0.999
Votes 0.959 0.956

Monks-1 0.920 0.887 ×
Monks-2 0.634 0.638
Monks-3 0.935 0.935

post-pruning. The effects of post-pruning are shown in Table 3. In both tables,
a � is shown if the entropy-based algorithm is significantly more accurate; a ×
is shown if the Acc∗-based algorithm is better. Tree post-pruning is done using
the cost-complexity pruning method of CART [6]. The accuracies reported are
estimated using 10-fold cross validations.

It seems safe to conclude that the performance of Acc∗ is comparable to most
other predicate selection functions for the following reasons. The experiment
above certainly suggests that Acc∗ is comparable to entropy. We know from
experience that entropy and the Gini index have similar behaviour. To top it
off, it is shown in [12] and [7] that the Gini index is as good as any other
known predicate selection function for the purpose of tree induction. In fact,
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the general agreement from [12] and [7] is that the exact predicate selection
function used doesn’t really matter all that much as long as the tree is allowed
to grow sufficiently large, in which case tree post-pruning holds the key to the
final performance. In that sense, the main problem with (plain) accuracy is that
it results in premature termination of tree growth. With Acc∗, this is no longer
an issue.

In a separate experiment, we also pitted Acc∗ against (plain) accuracy on
the twelve datasets. The experiment shows that Acc∗ performs at least as well
as, and usually better than, accuracy in all except one dataset (Audiology) after
tree post-pruning.

Table 2 also records the time (measured in seconds) taken by the two algo-
rithms on the first five datasets on a 1.2 GHz iBook. The results clearly show
that non-trivial savings in learning time can be achieved. (The usual tests con-
sidered by C4.5 [14] are used for the UCI datasets. Such predicate spaces have
no structure that can be exploited by the pruning mechanism, and naturally
no reduction in computation time can be obtained – both algorithms need to
evaluate every predicate in the search space.) When there is enough structure in
the classification problem for predicate pruning to take effect, the only situation
where the Acc∗-based algorithm would take longer time than the entropy-based
algorithm is when a significantly larger tree is grown using the Acc∗-based algo-
rithm. This scenario can probably occur, but it would be very rare.

In summary, we have proposed and shown the viability of a new accuracy-
based predicate selection function for top-down induction of classification trees.
In the context of structural decision trees, the pruning advantages it offers makes
it, on practical grounds, the predicate selection function of choice. The pruning
theorem was previously given in [4]; the contribution here is in the design of
Acc∗, which overcomes some of the weaknesses of accuracy.

We end with a caveat. The working assumption throughout this section is
that an efficiently computable pruning mechanism for some standard predicate
selection function cannot be found. If one can be obtained, then the issues in-
vestigated here need to be revisited.

4 A Pruning Result for Regression-Tree Learning

We now present a predicate pruning result for structural regression-tree learning.
We begin by stating the quadratic loss function commonly used in regression-tree
learning. This is followed by the presentation of an efficient predicate pruning
algorithm for this predicate selection function. The section ends with a discussion
of some implementation issues.

Definition 11. Given a set E of examples, we define the mean squared error
EE of E by

EE = min
c

∑
(x,y)∈E

(y − c)2.
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The unique minimizing c here is the empirical mean of the regression values in
E , and that is what we use to label the leaf nodes in a regression tree.

Definition 12. Let E be a set of examples and P = (E1, E2) a partition of E.
We define the mean squared error, QP , of P by

QP = EE1 + EE2 .

Given a predicate search space S and a set E of examples, the goal is thus to
find a predicate in S that minimizes Q. As pointed in [1, §16.1], this formulation
is well-founded since one can show that

E(f(x) − y)2 = E(E(y|x) − f(x))2 + E(E(y|x) − y)2,

which implies that choosing a function f to minimize Q is equivalent to finding
the best approximation of the conditional expectation of y given x. See, for more
details, [6, §8.3].

Proposition 13. Let E1 and E2 be sets of examples. If E1 ⊆ E2, then EE1 � EE2 .

Proof. Straightforward. ��

To search through the space of predicates efficiently by means of predicate
pruning, we need a way to predict the smallest error that can be obtained from
the descendants of a predicate. This motivates the next definition.

Definition 14. Let E be a set of examples and P = (E1, E2) a partition of E.
We define the regression refinement bound of P by

CP = min
P′

QP′

where P ′ is a refinement of P. A refinement P∗ of P that satisfies QP∗ = CP
is called a minimizing refinement of P.

Proposition 15. Let E be a set of examples and P a partition of E. If P ′ is a
refinement of P, then QP′ ≥ CP . In particular, QP ≥ CP .

Proof. By the definition of CP . ��

The refinement bound CP has the obvious definition, but can it be com-
puted efficiently? Clearly, an exhaustive search through all possible refinements
of P is impractical; a more efficient algorithm is needed. We next study this
minimization problem.

A lower bound for CP can be easily obtained.

Proposition 16. Let E be a set of examples and P = (E1, E2) a partition of E.
Then EE2 ≤ CP . In particular, when E1 = ∅, EE2 = CP .
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Proof. Let P∗ = (E∗
1 , E∗

2 ) be a minimizing refinement of P . By Proposition 13,
we have EE2 ≤ EE∗

2
since E2 ⊆ E∗

2 . From that, we have

QP∗ = EE∗
1

+ EE∗
2
≥ EE∗

2
≥ EE2 .

Clearly, when E1 = ∅, E∗
1 = ∅ and E∗

2 = E2. ��
It turns out that to compute CP for a partition P = (E1, E2), we can restrict

our attention to just those refinements that can be obtained by cutting a sorted
version of E1 into two halves, and assigning one or the other to the new E2.
Figure 2 gives an algorithm for computing CP . In the algorithm, E [i, j] denotes
the subset of E formed from taking the i-th to j-th element(s). If i > j, we define
E [i, j] to be ∅.

function RegRefinementBound (P) returns CP ;

input: P = (E1, E2), a partition;

if E1 = ∅ return EE2 ;

sort(E1 );

minerr := QP ;

for each i from 1 to |E1| do

E11 := E1[1, i];

E12 := E1[i + 1, |E1|];
P1 := (E11, E12 ∪ E2);

P2 := (E12, E11 ∪ E2);

minerr := min{minerr , QP1 , QP2}

return minerr ;

Fig. 2. Algorithm for calculating CP

The sort function in line 4 in Figure 2 is with respect to the following to-
tal order 	 on the examples. Examples are first ordered increasingly by their
regression values. Examples with the same regression values are then ordered
according to a lexicographic order on the individuals. We denote by max�(E)
and min�(E) the largest and smallest examples in E as ordered by 	.

We now show the value returned by the algorithm RegRefinementBound on
input P is CP . First, a technical lemma.

Proposition 17. Let E be a set of examples and P = (E1, E2), E1 �= ∅, a parti-
tion of E. Suppose Pmin = (E11, E12∪E2) is a minimizing refinement of P, where
E11 ∪ E12 = E1. Then Pmin must satisfy the following property:

1. ∀(x1, y1) ∈ E11, ∀(x2, y2) ∈ E12, y1 � y2; or
2. ∀(x1, y1) ∈ E12, ∀(x2, y2) ∈ E11, y1 � y2.
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Proof. If either E11 or E12 is empty, then the property holds trivially. Now con-
sider the case when both E11 and E12 are non-empty. Suppose the property does
not hold. Then there exist (x1, y1) in E11 and (x2, y2) in E12 such that y1 > y2,
and (x3, y3) in E12 and (x4, y4) in E11 such that y3 > y4. We have

max
y

(E11) � y1 > y2 � min
y

(E12); and (1)

max
y

(E12) � y3 > y4 � min
y

(E11). (2)

We now show that we can always pick (x′, e′) from E11 and (x′′, e′′) from E12 and
interchange them to produce another refinement of P with a lower error, thus
contradicting the minimality of Pmin .

Let ȳ1 and ȳ2 denote, respectively, the empirical means of the regression
values in E11 and E12 ∪ E2. There are two cases to consider, and we state the
elements we choose in each case.

1. If ȳ1 � ȳ2, pick (x′, e′) to be max�(E11), and (x′′, e′′) to be min�(E12). We
have e′ > e′′ from (1).

2. If ȳ1 > ȳ2, pick (x′, e′) to be min�(E11), and (x′′, e′′) to be max�(E12). We
have e′′ > e′ from (2).

Let E ′
1 = E11 ∪ {e′′} \ {e′} and E ′

2 = E2 ∪ E12 ∪ {e′} \ {e′′}. Clearly, P ′ = (E ′
1, E ′

2)
is a refinement of P . We have

QPmin =
∑

(x,y)∈E11

(y − ȳ1)2 +
∑

(x,y)∈E2∪E12

(y − ȳ2)2

= (e′ − ȳ1)2 +
∑

(x,y)∈E11\{e′}
(y − ȳ1)2 + (e′′ − ȳ2)2 +

∑
(x,y)∈E2∪E12\{e′′}

(y − ȳ2)2

� (e′′ − ȳ1)2 +
∑

(x,y)∈E11\{e′}
(y − ȳ1)2 + (e′ − ȳ2)2 +

∑
(x,y)∈E2∪E12\{e′′}

(y − ȳ2)2

> QP′ .

We can make the third step because

(e′ − ȳ1)2 + (e′′ − ȳ2)2 − [(e′′ − ȳ1)2 + (e′ − ȳ2)2] = 2(e′′ − e′)(ȳ1 − ȳ2) ≥ 0

in both cases. The fourth step follows because e′ �= e′′. (Recall Definition 11 and
the remark following it.) ��

Proposition 18. Given a partition P, RegRefinementBound correctly finds CP .

Proof. Let P be (E1, E2). There are two cases. If E1 = ∅, the algorithm returns
EE2 , which is equal to CP by Proposition 16. If E1 is non-empty, then one of
the minimizing refinements must satisfy the property stated in Proposition 17.
The algorithm conducts an exhaustive search of all such partitions and must
therefore find CP . ��
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The RegRefinementBound algorithm, when implemented näıvely, has time
complexity O(|E|2), since there are O(|E|) iterations, and the computation of QP1

and QP2 in each iteration takes O(|E|) time. This can be significantly improved.
We now give an implementation of RegRefinementBound that runs in time linear
in the size of E .

Proposition 19. Given a set E of examples and a partition P = (E1, E2) of E,
assuming E1 is sorted according to 	, CP can be computed in time O(|E|).

Proof. Let ȳ, ȳ1, ȳ2 denote the empirical means of the regression values in E , E1

and E2. We can rewrite the error function as follows.

QP =
∑

(x,y)∈E1

(y − ȳ1)2 +
∑

(x,y)∈E2

(y − ȳ2)2

=
∑

(x,y)∈E1

[(y − ȳ)− (ȳ1 − ȳ)]2 +
∑

(x,y)∈E2

[(y − ȳ) − (ȳ2 − ȳ)]2

=
∑

(x,y)∈E1

[(y − ȳ)2 − (ȳ1 − ȳ)2] +
∑

(x,y)∈E2

[(y − ȳ)2 − (ȳ2 − ȳ)2]

=
∑

(x,y)∈E1

(y − ȳ)2 − |E1|(ȳ1 − ȳ)2 +
∑

(x,y)∈E2

(y − ȳ)2 − |E2|(ȳ2 − ȳ)2

=
∑

(x,y)∈E
(y − ȳ)2 − (|E1|ȳ2

1 + |E1|ȳ2 − |E1|2ȳ1ȳ + |E2|ȳ2
2 + |E2|ȳ2 − |E2|2ȳ2ȳ)

=
∑

(x,y)∈E
(y − ȳ)2 − (|E1 + E2|ȳ2 − 2ȳ(|E1|ȳ1 + |E2|ȳ2) + |E1|ȳ2

1 + |E2|ȳ2
2)

=
∑

(x,y)∈E
(y − ȳ)2 + ȳ|E|ȳ − (|E1|ȳ2

1 + |E2|ȳ2
2)

=
∑

(x,y)∈E
(y−ȳ)2+

1
|E| (

∑
(x,y)E

y)2−

⎛
⎝ 1
|E1|

(
∑

(x,y)∈E1

y)2 +
1
|E2|

(
∑

(x,y)∈E2

y)2

⎞
⎠ .

(3)

From that, we can reformulate the optimization problem as

CP = min
P′

QP′

=
∑

(x,y)∈E
(y− ȳ)2+

1
|E|

(∑
E

y

)2

−max
P′

⎛
⎝ 1
|E ′

1|
(
∑
E′
1

y)2 +
1
|E ′

2|
(
∑
E′
2

y)2

⎞
⎠
(4)

where P ′ = (E ′
1, E ′

2) is a refinement of P . Thus we are left with a maximization
problem that can be computed in time linear in the size of E . All that is required
are a few preprocessing steps to compute the sum of all the regression values in
E2 and the prefix sums (S[i] =

∑
1�j�i E1[j]) of each element in the sorted E1.
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Here, E [j] denotes the regression value of the j-th element in E . The details are
given in Figure 3. In the algorithm, the function div (x, y) is defined to be x/y
if y �= 0, and 0 otherwise. Note that the formula for QP1 and QP2 has the same
general form as the last step in (3).

function RegRefinementBound2 (P) returns CP ;

input: P = (E1, E2), a partition, E1 sorted;

if E1 = ∅ return EE2 ;

K :=
∑

(x,y)∈E(y − ȳ)2 + 1
|E|

(∑
(x,y)∈E y

)2

;

sum2 :=
∑

(x,y)∈E2
y;

S := prefixSum(E1);

minerr := QP ;

for each i from 1 to |E1| do

QP1 := K − (
1

i
(S[i])2 + div(1, |E2| + |E1| − i)(sum2 + S[|E1|] − S[i])2);

QP2 := K − (div(1, |E1| − i)(S[|E1|] − S[i])2 +
1

|E2| + i
(sum2 + S[i])2);

minerr := min{minerr , QP1 , QP2}

return minerr ;

Fig. 3. An implementation of RegRefinementBound

Each of the preprocessing steps can be done in O(|E|) time. There are O(|E|)
iterations in the for loop, and each iteration takes O(1) time. The overall com-
plexity of the algorithm is thus O(|E|). ��

Can we avoid conducting an exhaustive search of the solution set? Given the
form of the minimizing refinement, one might conjecture that given a partition
P = (E1, E2), if ȳ1 < ȳ2, where ȳ1 and ȳ2 denote, respectively, the empirical
means of the regression values in E1 and E2, then the minimizing refinement
must be in the set

S1 = {(E ′
1, E ′

2) : E ′
1 = E1[1, i], E ′

2 = E1[i + 1, |E1|] ∪ E2, 1 � i � |E1|}

where E1 here is assumed sorted. Similarly when ȳ1 > ȳ2. This is not true, as
shown in the next example.

Example 20. Consider the partition

P = ({(x1, 0.3), (x2, 0.5), (x3, 0.98)}, {(x4, 0.41), (x5, 0.53), (x6, 0.77), (x7, 0.9)})

with ȳ1 = 0.59 and ȳ2 = 0.65. The best refinement in the set S1, with error
0.255, is

({(x1, 0.3), (x2, 0.5)}, {(x3, 0.98), (x4, 0.41), (x5, 0.53), (x6, 0.77), (x7, 0.9)}).
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Table 4. Efficiency of the predicate pruning mechanism for regression

Dataset |S| Searched

Int Trees 396 120 (30.30%)
Mutagenesis 535 124 (23.18%)
East West 2073 633 (30.54%)
Headline 2850 148 (5.19%)
Protein 9262 581 (6.27%)
Musk-1 1,679,615,641 3,814,746 (0.23%)

The actual minimizing refinement is

({(x3, 0.98)}, {(x1, 0.3), (x2, 0.5), (x4, 0.41), (x5, 0.53), (x6, 0.77), (x7, 0.9)})

with error 0.254. �
Another conjecture is that the errors obtained by increasing the index i in

both S1 and S2 (defined similarly to S1, see below) traces a quadratic curve
with a single (local) minimum. This also turns out to be false, as shown in the
next example.

Example 21. Consider the partition

P = ({(x1, 0.29), (x2, 0.36), (x3, 0.81), (x4, 0.92)}, {(x5, 0.95)}).

The refinements in the set

S2 = {(E ′
1, E ′

2) : E ′
1 = E1[i + 1, |E1|], E ′

2 = E1[1, i] ∪ E2, 0 � i � |E1|}

where E1 is assumed sorted produces the following sequence of errors with in-
creasing values of i: [0.3001, 0.3938, 0.2689, 0.3202, 0.4009]. �

To get an indication of the effectiveness of the pruning mechanism, we con-
ducted a small experiment using the same six datasets given in Table 1. Each of
these was converted into a regression problem by appropriate relabellings of the
individuals, with individuals coming from the same class relabelled with random
numbers chosen from the same subinterval of the real line. A complete search
through the predicate space was then performed for each. The results are shown
in Table 4. It is clear from the table that significant reduction in computation
time can be achieved in practice.

5 Related Work and Conclusion

The idea of predicate pruning is, of course, not new in ILP. For example, both
Progol and Aleph have such mechanisms for some standard rule-evaluation func-
tions; see [13, §7.4.7] and [15, §3.2.3]. This paper extend such techniques to
top-down induction of structural trees, in both the classification and regression
settings. The pruning theorem for classification has been established in [4] be-
fore; the contribution here is in the design of Acc∗. The pruning theorem for
regression is new and it is the main contribution of this paper.

s
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Abstract. In [1] a method for inducing the effects of actions was in-
troduced which provides a solution to the frame problem in induction.
The method relied on well-known monotonic methods of ILP making it
as efficient as induction of Horn Logic Programs. That proposal is not
intended for the induction of the ramifications of the effects of actions
(indirect effects) thus providing domain descriptions with the so-called
ramification problem. In this work we introduce the induction of such
ramification rules describing effects directly from other effects without
mentioning the action. A framework based on causality in action for-
malisms is used to induce causal ramification rules. The method is shown
sound and complete while efficient as the induction of action rules.

1 Introduction

Action descriptions of dynamic systems can be represented in Logic Program-
ming (LP). The set of actions and fluents of the domain are represented by pred-
icates with a situation argument a(s), f(s) denoting the time point the action a
is performed and the time point the property f holds in the domain. In action
descriptions the rules that model the dynamics of the domain are restricted to
have a particular form. The behavior of the dynamic system is described with
action laws and, sometimes, with ramification laws. Action laws are rules in the
form

e(S) ← a(S), prev(S, P ), e′1(P ), . . . , e′n(P ).

where e(S), e′i(P ) are fluent predicates, a(S) is an action predicate, and
prev(S, P ) is the successor predicate predefined to hold on consecutive situa-
tions. Note that the rule mentions just two consecutive situations, P and S,
and that the rule holds for every such situations S, P . Action rules describe
the model of the dynamic domain by describing the effect the execution of ac-
tions have on the properties —fluents— under some condition on other fluents,
e′1(P ), . . . , e′n(P ), at the previous situation. A logic program with a collection of
action rules for the different effects in the domain can then be used to predict the
effects of a sequence of actions from a given initial situation, called the temporal
prediction problem. But the same description can be also used, e.g., for planning

S. Kramer and B. Pfahringer (Eds.): ILP 2005, LNAI 3625, pp. 279–294, 2005.
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problems, namely, given an initial state of the domain and a goal state —both
described as a collection of ground fluent instances at two given situations—
infer the sequences of actions that lead from one state to the other. Planning
problems can be solved when these actions descriptions are executed on suit-
able Logic Programming frameworks, for instance in Answer Set Programming
(ASP) [2] [3].

Sometimes ramification laws are also allowed in the description. Ramification
laws are rules in the form

e(S) ← e′1(S), . . . , e′n(S).

where e(S), e′i(S) are fluent predicates. This rule mentions just one situation
S, and the rule holds at any situation. Ramification rules describe the effect on
some fluent e(S) as an indirect effect of other effects in the domain at the same
situation. Some effects are better described by ramification rules instead of using
action rules for them.

Consider the following motivating example (Lin’s suitcase scenario [4]). There
is a suitcase with two locks and a spring-loaded mechanism such that when the
two locks are open the suitcase opens. In a description of this domain we have an
action to toggle each one of the two locks, t1 and t2, and fluents stating whether
each lock is open, l1 and l2, and whether the suitcase is open, o. An example
narrative in this domain is the following: initially l2 is open (l2 true), l1 is not
open and the suitcase is not open, then action t1 toggles lock l1 and as (indirect
effect) the suitcase opens, o.

time action fluents
0 l2(0)
1 t1(1) l1(1), l2(1), o(1)

With induction of the (direct) effects of actions we would arrive to a description
of the domain like the following

l1(S) ← t1(S), prev(S, P ), nl1(P ).

where S,P are situation variables representing time points, and nl1 is the com-
plementary fluent to l1 (we do not want negation as failure for representing
fluents in Logic Programming, see later.) This rule is an action law with action
t1 as condition in the body and some other condition literals on fluents in the
previous situation P . A similar rule would be induced for l2. For the case of
fluent o the rule induced could be the following

o(S) ← t1(S), prev(S, P ), nl1(P ), l2(P ).

which can be read as the suitcase opens, o(S), when we toggle lock1, t1(S), and it
was not open before, nl1(P ), while lock2 was open, l2(P ). Another rule is needed
for the symmetrical case of toggling lock2 when lock1 was open (or its general-
ization with variables for locks.) Nevertheless there is a simpler description of
fluent o(S)

o(S) ← l1(S), l2(S).
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which together with the action rules for the direct effects l1 and l2 would com-
plete the description. This rule does not mention actions in its body, but just
other fluents, it is a ramification rule describing that some effects (l1, l2 in this
case) have other effects as consequence (o).

When an action description does not allow for ramification rules every fluent
of the domain is represented as a direct effect of the actions with an action rule.
Representing everything with action rules makes the description longer, action
rules are longer than ramification rules and more rules are needed. (Consider two
different actions that lead to the same (direct) effect under some conditions, then
the effect has in its turn other (indirect) effects, a different action rule is needed
for each action on the indirect effect, while just a single ramification from the
direct effect would be enough.) Furthermore ramification rules is an extension
on the language which provides for descriptions which are easier to understand.

In this work we introduce the induction of ramification rules with a method
that is sound and complete while efficient. The task could seem as simple as
allowing these rules for induction in the language bias, but induction of action
descriptions is not induction in Horn logic programs. In action descriptions,
fluents persist from a situation to the next situation when there is no conse-
quence on the contrary, even when none of the action rules, which have it as a
consequence, is applicable. Representing this persistence without a suitable non-
monotonic mechanism like negation as failure in Logic Programming, leads to
the frame problem. Finding a suitable representation of persistence when ram-
ification rules are allowed is solving the ramification problem. Utilizing Logic
Programming solutions of these problems, e.g., as stated in Answer Set Program-
ming [2] [3] (Logic Programming with stable models semantics), persistence can
be represented with an inertia rule, like the following for fluent o,

o(S) ← prev(S, P ), o(P ), not no(S).

where S,P are situation variables representing consecutive time points, and no
is the complementary fluent to o. Doing induction with such inertia rules in the
background would provide for a solution of the ramification problem in induction.
We will show an alternative method, following that of [1], which identifies a Horn
induction problem. The solutions of the Horn problem correspond to solutions
of the original problem, thus allowing for the application of efficient induction
methods.

2 The Problem of Inducing Ramifications

We will follow the definition of induction in action given in [1], so e.g., the current
results will provide enhanced descriptions of the domains with ramification rules
from the same evidence.

2.1 Narratives as Evidence

Evidence on the behavior of the dynamic domain is assumed in the form of narra-
tives representing facts true in the domain at different time points. Given fluents
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F and actions A, a narrative is a pair of two sets, one for action instances and
another for effect instances, both given as ground unit clauses of corresponding
predicates, and verifying consistency, e.g.

F ⊆ {f(si),¬f(si) | f ∈ F , 0 ≤ si ≤ n}

A ⊆ {a(si) | a ∈ A, 1 ≤ si ≤ n}

where f(si) and ¬f(si) are literals on fluent f , complementary to each other.
The natural number si is the situation constant and 0 names the initial situation.

Using the example in Section 1 the narrative would be

(F, A) = ({l2(0), nl1(0), no(0), l1(1), l2(1), o(1)}, {t1(1)})

Evidence will usually contain a collection of different narratives for different
sequences of actions and for different initial states of the domain (fluents at
time 0).

2.2 Examples and Background

A single narrative (or a collection of them) is enough for the induction of the
different effects involved in the domain. For each problem of inducing one of the
effects the narrative would be split in two sets, the predicates corresponding to
the target effect are extracted to form the positive and negative examples for
induction, while the remaining fluent instances and the action instances would
be background knowledge for induction. Given a narrative (F, A) and some effect
literal e of a fluent in F , the sets of positive examples E+ and negative examples
E− on e are

E+ = {e(si) | e(si) ∈ F, 1 ≤ si}

E− = {e(si) | e(si) ∈ F, 1 ≤ si}

where e(si) is the literal complementary to e(si). With the notation we are fol-
lowing, e(si) is ne(si) when learning e(si), but e(si) is e(si) when learning ne(si).
Note that the negation of a fluent is explicitly represented with another predi-
cate in Logic Programming to reserve negation as failure for the representation
of inertia. So we will get rules for the fluent and rules for its complementary,
we are calling both, effects. Indeed a constraint ← e(S), ne(S). is needed in the
description to avoid inconsistent models.

Background knowledge for induction would be, given a narrative (F, A) and
the sets of examples E+ and E− for target effect e the set

B = F ′ ∪ A = (F \ E+) ∪ A

Note that negative examples in the form of instances on the complementary
effect belong to B, and that target instances at time 0, part of the initial state,
are not considered examples but background. Action descriptions usually do not
contain rules for the initial state, e.g. note that action rules by their form do
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not apply to the initial state. Sometimes the possible initial states of the domain
are described with rules for time point 0, these rules can be induced with basic
methods as they are static rules and inertia does not apply at the initial state.
(Ramifications—at least some types of them, as we will see later—can be made
applicable at initial state too).

2.3 Non-monotonic Background for Persistence

If induction is made without further background knowledge, we will get the
frame problem in induction. Consider the example in Section 1, for target l2
we have l2(0) and l2(1), it is likely that the following rule would be induced,
l2(S) ← t1(S), prev(S, P ), l2(P ). As more actions are defined in the domain,
as it would be the case for not so simple domains, we will induce one such rule
for l2 on any other action that, like t1, does not affect fluent l2. This way of
describing the persistence of the effects present in dynamic domains has several
drawbacks, mainly the length of the description and the difficulty on elaborating
on it (introduce more features in the description). To solve the frame problem,
the usual persistence of the effects in dynamic domains is represented with a
non-monotonic mechanism. In Logic Programming, negation as failure can be
used, thus for every fluent an inertia rule is added to the program. An inertia
rule on an effect e is a clause I

e(S) ← prev(S, P ), e(P ), not e(S)

where S, P are situation variables (universally quantified), e(S) is the literal
complementary to e(S). Intuitively the inertia rule says that e(S) will be true
at a situation S if it was previously true and the complementary fluent cannot
be proved true at the same situation S. Just one of these rules is needed for
each effect vs. one frame rule for each effect and action combination. And as
far as induction, this rule is known in advance and will cover target instances
when the effect persists, thus no need to induce rules for these cases. Then
background knowledge will include inertia rules for the fluents. In brief, to induce
descriptions free from the frame problem we need background knowledge which
includes negation as failure in recursive rules on the target predicate.

2.4 Hypotheses Language for Ramifications

To complete the definition of the induction problem, we define the hypotheses
language. Action descriptions in Logic Programming already establish the al-
lowed form of action rules and ramification rules, thus defining the hypotheses
language. On introducing ramification rules in induction we have two choices for
each target effect, either inducing an action rule for it or a ramification rule. In
this work we assume the target effect is described by a ramification rule, see [1]
for the action rule case. Although note that domains cannot usually be described
by only ramification rules for all the effects, while action rules for all the effects
are able to describe it. On the other hand, once ramification rules are allowed,
most of the effects are usually better described by them.
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Definition 1. (Hypotheses) A ramification rule on an effect e (target effect) is
a clause H

e(S) ← e′1(S), . . . , e′n(S)

where e(S) is f(S) or ¬f(S) for some fluent f ∈ F ; S is a situation variable
(universally quantified); e′1(S), . . . , e′n(S) may be missing and each e′i(S) is an
effect literal f ′(S) or ¬f ′(S), with f ′ ∈ F .

Ramification rules describe an effect from other effects at the same situation
without mentioning the action.

2.5 Types of Ramification Rules

On describing effects from other effects several types of dependence can be iden-
tified that are relevant for learning. We will consider three types of dependence
present in domains, called definitions, regular and causal. We present these three
types of dependencies in the order of their inductive computational complexity.
Domains with causal dependencies are the more complex and also the most
general case.

1) (Definitions) Fluents that do not need inertia. Some (indirect) effects when
represented with ramifications do not need inertia, the case arises when the
rules (completely) define the effect and its complementary. So given the
fluents the effect depend on, and their persistence, it is always the case that
at least one of the rules on the indirect effect is applicable.
In the example of Section 1 consider that the suitcase is open when (and
only when) the two locks are open, the rules o(S) ← l1(S), l2(S) and for the
complementary ”not open” effect no(S) ← nl1(S)., and no(S) ← nl2(S).,
completely define the fluent. Thanks to the persistence of l1 and l2, either o
or no will be deduced at any situation, thus its persistence does not need to
be represented. Nevertheless, if an inertia rule is present for fluent o, though
useless in this case, it does not prevent the mentioned behavior.
Note that these fluents when represented with action rules do need inertia,
otherwise when the action is no longer present at the next situation, the
fluent cannot be proved.

2) (Regular) Fluents that do need inertia. The ramification rules do not define
the fluent at any possible situation. Thus persistence (as usual) is assumed
from the previous situation. This is the general case of regular ramifications.
In the example we are following, consider a different behavior for the suitcase,
it opens when the two locks are open (because of the spring mechanism),
but we can later close the locks while the suitcase is open, without actually
closing it (assume an additional action c is needed to close the suitcase.)
The ramification rule will be o(S) ← l1(S), l2(S), but there are situations
at which one lock is not true while the suitcase is open, as it was previously.

3) (Causal) The (indirect) effect not only depends on conditions on the truth
of other effects, but also on the fact of other effects becoming true.
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Let start with an example, consider the suitcase opens only when their locks
are opened in some order, assume the order open l2 then l1 does not work,
but the other do work. The regular ramification o(S) ← l1(S), l2(S) is
not valid, as would make open true when the order is not correct. The key
observation is that the rule needs something more than the truth of fluents
in its condition. Note that in action representations, an effect e(S) may be
true at a situation because it has been made true by the current action or
because of persistence. Simply considering its truth does not tell us in which
of these two cases the effect is. In the example, assume we have a predicate
pl2(S) for effect l2(S) that is true only when l2(S) is an effect of the current
action. Then the rule o(S) ← l1(S), pl2(S) would be valid for the mentioned
behavior of the domain.
For including causal ramifications under Logic Programming representations
of actions, we define the following,
i) For each effect e(S) (intended to be used on causal rules) we define a

causal predicate pe(S).
ii) Action or ramification rules with head e(S) are changed to head pe(S).

Inertia rule remains on head e(S).
iii) A small rule e(S) ← pe(S) is added to the description for every effect.
Note that no inertia rule is defined for pe(S), it will not persist. Predicate
pe(S) will tell us whether the effect e(S) is caused at the situation S. (Intu-
itively you may consider ”caused” as ”directly or indirectly affected by the
current action”.)
We are following the kind of causality in action from [5], see e.g. [4] for
another alternative. To follow more accurately that proposal a further re-
quirement is needed for causal ramifications, namely,

iv) Every ramification rule with head pe(S) must include at least one con-
dition literal on some pe′(S) causal predicate.

The evidence narratives on a domain available for induction implicitly contain
the type of the ramification rules needed for the domain. If induction is restricted
to ramifications in the form of definitions, i.e., inertia of the (indirect) effects
is not considered during learning, then domains which demand other types of
ramifications —as the example in 2) above— may not have solution in the form of
definitions. Similarly, if induction is restricted to regular ramifications, domains
which demand causal ramifications will not have solution.

2.6 The Problem of Inducing Causal Ramifications

Causal ramifications extend the framework we are using, so we review the defi-
nitions made for the general problem of inducing ramifications.

Initially there is no evidence in the narratives about the causal predicates
pe(S) introduced for causality.

In the example we are using if we want to induce a causal ramification for
effect o there are no instances on causal predicates at all in the evidence.
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Given a narrative (F, A) its extension for causality (FC , A) is as follows, i)
F ⊂ FC ; and ii) for each effect e a causality predicate pe is defined such that for
each instance e(si) ∈ F the instance pe(si) ∈ FC iff e(si) ∈ F and e(si−1) ∈ F .

We can define as many causal predicates as we like up to one for each effect
in the domain.

The remaining update on the definition of the induction problem to include
causality is on the hypotheses language. The condition of the ramification rules
will allow literals on causal predicates pe(S), at the same situation, just like any
other regular effect predicate.

2.7 Solutions to Induction of Ramifications

Solutions to the induction of ramification rules for the indirect effects of action,
without the frame problem can be defined as follows.

Definition 2. (Induction of the indirect effects of actions) Given some evidence
(F, A) on a narrative of a domain and a target effect literal e on a fluent in F ,
a solution to induction of the indirect effect e is a set of ramification rules HI

on it, verifying

(I ∪ F ′ ∪ A ∪ HI) |= e+(si) for every e+(si) ∈ E+

(I ∪ F ′ ∪ A ∪ HI) �|= e−(si) for every e−(si) ∈ E−

(I ∪ F ′ ∪ A ∪ HI) �|= ⊥

where F ′ = (F \E+), E+ and E− are the set of positive and negative examples
on e, and I is the inertia rule on e.

This induction problem is a case of (explanatory) induction in ILP, with
background B = (I ∪ F ′ ∪ A). However, B is a normal logic program using
negation as failure, the not operator, in the inertia rule. Unfortunately, it is not
known how to efficiently solve an induction problem under normal background
knowledge. But see [6] for a characterization of induction in normal logic pro-
grams. As an indication of the nonmonotonic behavior note that it will usually
be the case that B |= e−(si) for some e−(si) ∈ E−, while this will not imply
that there is no solution. For this reason this condition was omitted from this
definition, even though it is a usual and common condition in standard ILP.

3 Efficient Method for Inducing Ramifications

The background knowledge needed to induce ramifications is a normal logic
program which compromises efficiency as the induction methods of ILP for Horn
logic programs cannot be applied.

In [1] a method has been presented to circumvent a related difficulty for the
case of inducing action rules. In this work we will show a similar approach for
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inducing ramifications that extends that result providing a method to induce
action descriptions with both action and ramification rules.

The method is based on identifying a Horn induction problem whose solutions
correspond one-to-one to those of the original problem (Def. 2.) The identifica-
tion of the corresponding problem begins by considering a subset of the positive
examples of Def. 2. As in [1] we will present the method in two steps, first for
a restricted case requiring no missing instances of the target fluent in the nar-
ratives, then for the general case. A narrative (F, A) is complete on fluent f iff
for every situation si, 0 ≤ si ≤ n there is either f(si) ∈ F or ¬f(si) ∈ F , where
(n + 1) is the length of the narrative.

Given a narrative (F, A) and some target effect e, the set of positive examples
on change to e is

PE+ = {e(si) | e(si) ∈ F and e(si−1) ∈ F}

where e(si) is the literal complementary to e(si).

Definition 3. (Monotonic induction of the indirect effects of actions) Given
some evidence (F, A) on a narrative of a domain and a target effect literal e on
a fluent in F , a solution to monotonic induction of the indirect effect e is a set
of ramification rules HM on it, verifying

(F ′ ∪A ∪ HM ) |= e+(si) for every e+(si) ∈ PE+

(F ′ ∪A ∪ HM ) �|= e−(si) for every e−(si) ∈ E−

(F ′ ∪ A ∪ HM ) �|= ⊥
where F ′ = (F \ E+), PE+ is the set of positive examples on change to e, E+

and E− are the sets of positive and negative examples on e.

The background knowledge in Def. 3. does not contain inertia rules, further-
more B, HM , PE+, and E− are sets of Horn clauses, thus most efficient methods
of ILP can be applied to this problem.

3.1 Correspondence Between the Two Induction Problems

Proposition 1. (Correspondence) From evidence on narratives complete on the
target fluent, HI is a solution of nonmonotonic induction with inertia (Defini-
tion 2) if and only if it is a solution of monotonic induction (Definition 3).

Proof. Consider the proof of [1] Prop. 2. (correspondence), though that proof
was devised for the induction of action rules, we will work on it showing its
applicability to the current case, instead of repeating the proof that is relatively
long.

The form of H solutions that is the main difference wrt ramification rules is
not directly mentioned in the proof though indirectly used. But actually most of
the proof is valid as presented there for H different from action rules. The proof
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strongly relies on the form of the inertia rule used (parts 1.a. (persistent instances
case), 1.b, 1.c, and 2.a), we use here the same representation of inertia —that is
the standard one for Logic Programming representations of action formalisms, in
particular in Answer Set Programming— thus these parts of the proof are valid
to show that H in the form of ramification rules obtained with the monotonic
method on change makes it sound and complete wrt the nonmonotonic induction
with inertia.

The form of H is used in the proof (indirectly) only in parts 1.a (change
instances), 2.b, and 2.c. The fact used is that H together with the background
(but without inertia rules) is a Horn program. The ramification rules we use here
are positive rules thus, these parts of the proof are applicable to our case, when
H in the form of ramification rules is considered instead of action rules.

Finally when narratives extended for causality are considered, the proof is
also valid as the fluents available for condition literals in H are not used in the
proof. 


3.2 General Efficient Method for Inducing Ramifications: Missing
Target Instances

The general method for inducing ramifications works on any narrative including
those with missing target instances (the restriction previously made). In this
case, circumventing the nonmonotonic nature of induction in action is more
difficult. But as in the case for the induction of action rules in [1], a corresponding
Horn induction problem can be identified.

For the general case the subset of the positive examples considered in Def.
3 is not complete for the problem. Note that the selection of the examples on
change relied on target instances at two consecutive situations; in general, the
change in the effect may show on two non-consecutive complementary targets,
because of some missing instances in-between.

We start by defining a new predicate me(s′, s) on situations. The predicate
me(s′, s) will characterize the missing segments on the narrative for the target
predicate. A (new) name is given to each segment (first argument, s′) and the
situation instances s that fall inside the segment are described in the second
argument.

Given a narrative (F, A) and some target effect e, the set of instances of
missing segments ME is

ME = {me(s′i, sj) | e(si) ∈ F , e(si−1) �∈ F , e(si−1) �∈ F and
e(si−k) ∈ F such for all sl, si−k < sl < si, e(sl) �∈ F and e(sl) �∈ F
and si−k < sj ≤ si, s′i new }

where e(si) is the literal complementary to e(si) and corresponding to each e(si)
instance in the condition, the constant s′i is a new situation constant not present
elsewhere in the description.

There is an instance me(s′i, sj) whenever there is at least one missing target
instance—thus instance at si−1 is missing in F— between two complementary
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instances of target (e(si) and e(si−k)); then the extension of predicate me(s′i, sj)
would be given as one new constant s′i for this missing segment and one instance
for each situation sj from situation si back to si−k+1 (one after the situation of
the complementary). For example, consider

F = {ne(0), ne(1), ne(2), e(5), e(6), ne(8), ne(9), e(11), ne(12), e(13)}

recall notation, ne and e are complementary effects; then

ME = {me(m25, 3), me(m25, 4), me(m25, 5), me(m911, 10), me(m911, 11)}

for target e, and ME = {me(m68, 7), me(m68, 8)} for target ne. We used the
edge situation numbers to build the new constant naming each missing segment.

Then the general definition of positive examples is a follows. Given a narrative
(F, A) and some target effect e, the set of positive examples on change to e is

PME+ = {e(si) | e(si) ∈ F and e(si−1) ∈ F} ∪
{e(s′i) | me(s′i, sj) ∈ ME}

where e(si) is the literal complementary to e(si) and ME is the set of missing
segments in F for target e.

In the previous example, PME+ = {e(m25), e(m911), e(13)} for target e,
and PME+ = {ne(m68), ne(12)} for target ne.

As the reader may have realized, the general method we propose demands
the use of the multiple instance framework for induction. Intuitively, a missing
segment from si back to si−k has a collection of k target instances e(si), . . . ,
e(si−k+1) for which one of them is a positive example but it is not known which
one. The multiple instance framework needs a redefinition of the hypotheses
language for the problem.

Definition 4. (Multiple instance hypotheses) A multiple instance ramification
rule on an effect e (target effect) is a clause HMI

e(S′) ← me(S′, S), e′1(S), . . . , e′n(S)

where e(S′) is f(S′) or ¬f(S′) for some fluent f ∈ F ; S, S′ are situation vari-
ables (universally quantified); e′1(S), . . . , e′n(S) may be missing and each e′i(S)
is an effect literal f ′(S) or ¬f ′(S), with f ′ ∈ F ; me(S′, S) is a literal of the
predicate for missing segments, it may be missing in which case e(S′) is e(S).

When me(S′, S) is missing, we are in the basic definition of hypotheses given
before. Note that only one literal me(S′, S) is allowed at most in HMI .

Definition 5. (General monotonic induction of the indirect effects of actions)
Given some evidence (F, A) on a narrative of a domain and a target effect literal
e on a fluent in F , a solution to monotonic induction of the indirect effect e is
a set of multiple instance ramification rules HMI on it, verifying

(F ′ ∪ A ∪ ME ∪ HMI) |= e+(si) for every e+(si) ∈ PME+
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(F ′ ∪A ∪ ME ∪ HMI) �|= e−(si) for every e−(si) ∈ E−

(F ′ ∪ A ∪ ME ∪ HMI) �|= ⊥
where F ′ = (F \E+), PME+ is the set of positive examples on change to e, ME
is the set of missing segments, E+ and E− are the sets of positive and negative
examples on e.

The background knowledge in Def. 5. does not contain inertia rules, F ′, A,
ME, HMI , PME+, and E− are sets of Horn clauses, thus efficient methods of
ILP can be applied to this problem.

With respect to [1], that also solves in general the induction problem in-
cluding missing instances, the multiple instance method there for action rules
is not applicable for ramification rules. The reason is that the multiple instance
representation for action rules takes advantage of the use of action predicates in
the action rules, there is always one such predicate in the condition.

The proposal made here is more general and applies to ramification rules,
but can be used also for action rules (or in general for other kind of hypotheses
in dynamic domains), being [1] a particular case.

3.3 Correspondence Between the Two Induction Problems

The multiple instance hypotheses are syntactically different to the regular ram-
ifications intended as solution to the problem. A transformation can be defined
to regular ramification rules.

Given a multiple instance ramification rule on an effect e, HMI = e(S′) ←
me(S′, S), e′1(S), . . . , e′n(S) its transformation to regular ramification is HT

MI =
e(S) ← e′1(S), . . . , e′n(S). The missing segments literal is deleted and the situ-
ation variable of the head effect is moved to S. Note that an hypothesis that
does not mention the predicate me transforms to itself, and that the inverse
transformation is defined.

Proposition 2. (Correspondence general) From evidence on narratives, HI is
a solution of nonmonotonic induction with inertia (Definition 2) if and only
if HMI is a solution of general monotonic induction (Definition 5) and HMI

transforms to HI .

Proof. We only show the part of the proof that differs from the restricted case in
Prop. 1, mainly related to the different positive examples PME+ instead of PE+.

1. (HI ⇐ HMI) Consider a monotonic solution HMI , transformed to the reg-
ular form HT

MI , is not a solution of the nonmonotonic induction problem with
inertia.

The relevant case (different from Prop. 1) occurs when there is some e(si) ∈
E+ such that (I∪F ′∪A∪HT

MI ) �|= e(si) and, in particular, e(si) belongs to a miss-
ing segment. Then the segment is from si back to si−k, by definition of general
monotonic induction, there is some e(s′i) ∈ PME+ such that (F ′ ∪ A ∪ ME ∪
HMI) |= e(s′i). The instance at e(s′i) of HMI , e(s′i) ← me(s′i, sj), e′1(sj), . . . ,
e′n(sj) verifies that there is some sj, si−k < sj ≤ si such that e′1(sj), . . . , e′n(sj)
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is true under the background (F ′∪A∪ME) thus also under background (F ′∪A).
Then in its transformed form HT

MI = e(S) ← e′1(S), . . . , e′n(S), the instance at
that sj would entail e(sj), namely, (F ′ ∪ A ∪HT

MI) |= e(sj).
If it is the case sj = si then we proved (I ∪ F ′ ∪ A ∪ HT

MI) |= e(si) (be-
cause e(si) is monotonically entailed without inertia) which contradicts the as-
sumption. In any other case sj < si and e(sl) �∈ F ′ for sj ≤ sl < si because
there is a missing segment at those situations. Thus inertia rule e(sj+1) ←
prev(sj+1, sj), e(sj), not e(sj+1) applies as its condition is true, this happens
”starting” from the entailed instance e(sj) up to e(si). Thus (I∪F ′∪A∪HT

MI ) |=
e(si) which contradicts the assumption.

2. (HI ⇒ HM ) Consider a nonmonotonic solution HI is not a solution of
the monotonic induction problem.

The interesting case (different from Prop. 1) occurs when there is some
e(s′i) ∈ PME+ such that (F ′ ∪A ∪ME ∪HMI) �|= e(s′i) where HT

MI = HI and,
in particular, e(s′i) corresponds to a missing segment. Consider the missing seg-
ment named s′i extends from si back to si−k, thus e(si) ∈ E+ and e(si−k) ∈ F ′.
Then (I ∪ F ′ ∪ A ∪ HI) |= e(si) and (I ∪ F ′ ∪ A ∪ HI) �|= e(si−k) as it is so-
lution. As the complementary effect holds at the start of the missing segment,
and the effect holds at the end, it must be some situation in between, say sj

at which (I ∪ F ′ ∪ A ∪ HI) |= e(sj) and (I ∪ F ′ ∪ A ∪ HI) �|= e(sj−1). At
that situation sj the inertia rule is not applicable as previously the effect is not
entailed, thus (F ′ ∪ A ∪ HI) |= e(sj). Now extend the rule HI to HMI form
such that HT

MI = HI , its instance e(s′i) ← me(s′i, sj), e′1(sj), . . . , e′n(sj) makes
(F ′ ∪ A ∪ ME ∪ HMI) |= e(s′i), which contradicts the assumption. 


3.4 Monotonic Induction of Causal Ramification Rules

Recall from Sections 2.5, 2.6, that the behavior of some dynamic domains have
to be described with causal ramification rules, in order to cover the observed
evidence. The causal ramification problem introduces a new causal predicate
pe(S) for each effect e(S) that is made available at the narrative F for induction.
Thus the hypotheses can use those predicates as condition literals.

The method described here includes the induction of causal ramifications,
as the results do not depend on the kind of condition literals available in the
background for the hypotheses.

3.5 Efficiency of the Method

From the point of view of efficiency of the method, Prop. 2 and Prop. 1 reduce
the effort of learning ramifications rules, including causal ramifications, to that
of the Horn induction problem of Def. 5 (resp. Def. 3.)

In Figure 1 an algorithm is outlined to induce action descriptions includ-
ing ramification and action rules. A suitable Horn induction solver is used; the
definitions stated in this work were intentionally made simple, wrt the back-
ground knowledge, to avoid unnecessary complication for the presentation of
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Induction of actions (N, HP )
input collection of narratives N = {(F, A)}
output action description in Logic Programming HP

HP = empty set
(if some narrative F is inconsistent then exit)

define causal predicates for each e ∈ F
and add them to F .

for each effect e ∈ F do
select e as target predicate
extract the positive and negative examples E+, E− for e from F
extract the positive examples on change PE+, for e from F
identify the missing segments ME for e on F
extract the positive missing examples on change PME+, for e from F
decide whether to induce H action rule or ramification rule form
call Horn induction method with

background B = (F \ E+) ∪ A ∪ ME and
positive examples PME+, negative examples E− and
H bias, (multiple instance) ramification or action rule on target e

endcall
transform H output from multiple instance form to regular.
add H effect instances e to F

or H itself to next B
add H to HP

end for
output HP

Fig. 1. Algorithm for monotonic induction of action descriptions, outlined

the method, but also to allow a wide range of available Horn induction systems
of ILP suitable to the method. Note e.g. that background knowledge and exam-
ples are sets of ground facts, and the hypotheses are function-free positive rules.
Under these conditions most of the solvers are able to work, and what is more
important some are sound and complete, i.e. if there is a solution to induction
they find it and it is correct. Thus the monotonic method provides a sound and
complete induction of the effects of actions without the frame problem from the
most basic evidence on its narratives.

Indeed, the efficiency of the Horn induction method applied determines the
efficiency of our method. For example, the ij-determinacy of hypotheses [7], guar-
antees that the Horn problem is tractable. The restricted method without miss-
ing target instances verifies this condition. Unfortunately, the general method, as
a multiple instance induction requires the induction of nondeterminate clauses—
the missing segments literal is nondeterminate with respect to the background
and examples. This compromises efficiency, as induction of 12-nondeterminate
clauses is not PAC-learnable [8].
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Finally note that other issues have to be considered for the whole problem,
for instance, the algorithm of Figure 1 describes the induction of rules for all the
effects which involves a multiple predicate learning problem that is not consid-
ered there. Also, e.g., the for loop and the call to Horn induction solver has to
be repeated for alternative solutions to the input problem. An implementation
based on an extension of that algorithm will be available soon.

4 Discussion

The main contribution of this work is a method to induce action descriptions
in Logic Programming —also valid for Answer Set Programming [2] [3]— from
evidence in the simplest form of narratives observed in the dynamic domain.

The method generalizes a previous result in [1] that is applicable to action
rules, inducing also ramification rules, including causal ramifications. This com-
pletes the induction of action descriptions providing a sound and complete method
that makes it as efficient as basic induction in Horn logic programs. Recall that a
direct induction of action requires normal programs as background for the repre-
sentation of persistence present in any dynamic domain, without having the frame
problem. As there are no efficient methods for induction under normal programs,
the result of this work is a bit surprising and indeed suggests investigating other
cases of induction in normal programs which might also be solvable efficiently.

For induction in dynamic domains in general, the results of this work solve
one of the main problems, discovering the knowledge model of the dynamic do-
main. The problem is solved in its general form, without restrictions —the com-
plete narrative restriction is usually found in other works—, or without prior
knowledge on the domain, etc. Induction in dynamic domains has other general
problems the method is not directly intended, e.g. induction of alternative mod-
els of the domain, for instance, reactive models. In this case hypotheses have
action literals on its head, which is never the case in action description rules.
This kind of model provides for efficient inference of plans (sequences of actions)
to achieve goals (sets of fluent instances). But the descriptions induced in this
work can be also used for that task, this is the case of planning with action
formalisms. Just to mention another important area of learning in dynamic do-
mains, relational reinforcement learning (RRL) framework is able to work on
evidence on the domain that is a subset of the evidence used here for action
induction, namely, the set of relevant fluent instances of the domain does not
need to be known/observed. Unfortunately the induced descriptions from this
method does not have as good symbolic features as action descriptions.

Finally this work opens a wide set of tasks to be done on induction of dy-
namics domains with action descriptions. It can be viewed as a foundational
initial step on which extensions can rely. To mention one, being able to work
with reduced evidence as in RRL.
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Abstract. Recently, there has been significant work in the integration
of probabilistic reasoning with first order logic representations. Learning
algorithms for these models have been developed and they all consid-
ered modifications in the entire structure. In a previous work we argued
that when the theory is approximately correct the use of techniques from
theory revision to just modify the structure in places that failed in classi-
fication can be a more adequate choice. To score these modifications and
choose the best one the log likelihood was used. However, this function
was shown not to be well-suited in the propositional Bayesian classifica-
tion task and instead the conditional log likelihood should be used. In
the present paper, we extend this revision system showing the necessity
of using specialization operators even when there are no negative exam-
ples. Moreover, the results of a theory modified only in places that are
responsible for the misclassification of some examples are compared with
the one that was modified in the entire structure using three databases
and considering four probabilistic score functions, including conditional
log likelihood.

1 Introduction

The ability of representation of individuals, their properties and their rela-
tionships, makes first-order logic (FOL) a very expressive knowledge represen-
tation system. On the other hand FOL is limited by its inability to repre-
sent uncertainty. Recently, there has been a great interest in integrating FOL
based formalism with mechanisms for probabilistic reasoning, thus defining first-
order probabilistic theories. Examples include: Probabilistic Relational Models
(PRM) [Koller, 1999] [Friedman et al., 1999], Independent Choice Logic (ICL)
[Poole, 1993], Bayesian Logic Programs (BLP) [Kersting and De Raedt, 2001],
Constraint Logic Programming (CLP(BN)) [Costa et al., 2003] and Stochastic
Logic Program (SLP) [Muggleton, 2002], among others.

Consider that one is supplied with a probabilistic first-order theory. The the-
ory is known to be approximately correct, i.e., only some points of its structure
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prevent it from reflecting the database correctly. It is much more efficient to
identify these points through using the database and then propose modifica-
tions only to these points than to use an algorithm that considers modifications
over the entire structure. Therefore [Revoredo and Zaverucha, 2002] proposed
a Bayesian Logic Programs Revision system (RBLP), which receives an initial
BLP and through the examples discovers points that fail in covering some of
them. RBLP then considers modifications only for those points choosing the
best one through a probabilistic evaluation function. The returned BLP will be
consistent with the database.

RBLPs introduce new questions over first-order theory revision. When lear-
ning or revising probabilistic first-order theories negative examples are incorpo-
rated into the set of positive examples, since the distributions of probabilities
will reflect this difference in accordance with the domain of the predicates. At
first, this would suggest only using generalization operators to revise the theory.
The question arises of whether using specialization operators can improve the
result of the probabilistic evaluation function.

A secondquestion considers how to evaluate the proposedmodifications. Previ-
ous RBLP work used the log likelihood function [Revoredo and Zaverucha, 2002].
However, [Grossman and Domingos, 2004] showed that this function was not well-
suited on domains such as the propositional Bayesian classification task; instead,
the conditional log likelihood should be used.

In the present paper, we extend RBLP by showing the necessity of using
specialization operators even when there are no negative examples. Moreover,
we compare the results of a theory modified only in places that are responsible for
the misclassification of some examples versus modifying the entire structure. Our
evaluation uses three datasets and considers four probabilistic scoring functions:
conditional log likelihood, log likelihood, Minimum Description Length (MDL)
and Akaike’s Information Criterion (AIC).

This paper is organized as follows: in section 2 we review some background
knowledge; in section 3 the extended probabilistic first-order theory revision
system is presented; the probabilistic evaluation functions used are described in
section 4; the experimental results are described in section 5; and finally some
conclusions and future works are presented in section 6.

2 Background Knowledge

In this section, first-order theory refinement, revision points, revision operators
and BLP are briefly reviewed.

2.1 Theory Refinement

The acquisition of knowledge is a difficult task, time consuming and with the
possibility of error. The process of improving automatically an knowledge base
using learning methods can be achieved through theory refinement systems
[Wrobel, 1996].
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Theory refinements can be divided into two classes: theory revision and the-
ory restructuring. Both aim at improving the quality of the theory. The revision
task involves changing the answer set of the given theory, i.e., improving its
inferential capabilities by adding previously missing answers (generalization) or
by removing incorrect answers (specialization). On the other hand, the task of
restructuring does not change the answer set of the given theory; its objective is
to improve performance and/or user understandability of the theory. The focus
of this paper is on theory revision.

A theory revision system starts from an initial theory which will be minimally
modified to become consistent with the set of examples. This initial theory can
be divided in two parts: background knowledge, which is assumed to be correct,
and another that can be modified by the revision. Learning in Inductive Logic
Programming (ILP), can be seen as a theory revision where the initial theory
consists of the background knowledge. Revision occurs only through the addition
of new clauses.

The theory revision problem can be defined in the following way,
[Wrobel, 1996]:

Definition 1. Given:

– a initial theory T
– a set of positive (C+) and negative (C−) examples.

Find:

– a revised theory T´
– that logically implies all the positive examples (completeness), T´ � C+

– and none of the negative examples (consistency), ∀c− ∈ C− : T´ � c−

– and satisfies a minimality criteria.

Several authors have shown that both propositional [Towell and Shavlik,
1994], [Garcez and Zaverucha, 1999], [Buntine, 1991], [Ramachandran and
Mooney, 1998] and first-order theory revision systems [Wogulis and Pazzani,
1993], [Wrobel, 1996], [Richards and Mooney, 1995] can learn more precisely the-
ories with less data than purely inductive systems.

2.2 Revision Points

When the theory to be revised has only one predicate the selected example,
positive or negative, determines the type of operator that must be used, a gene-
ralization or a specialization operator.

In the case of a theory with multiple-predicate definitions many clauses can
be involved in the proof of a negative example or in no proof of a positive
example. Therefore, the indication of which type of operator that must be used
is not immediate. It thus becomes necessary to find the theory´s points that
need to be correct. Depending on the type of example that is being considered
we can define two types of revision points:
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– Generalization - if the literal in a clause is responsible for the failure of
proving positive examples (failure point) and other antecedents (contributing
points) that may have contributed to this failure;

– Specialization - clauses used in successful proofs of negative examples.

The specification of the revision point determines the type of revision opera-
tor that will be applied to make the theory consistent with the dataset.

2.3 Revision Operators

Theory revision relies on operators that propose modifications at each revision
point. Any operator used in machine learning (first-order) can be used in a
theory revision system. Below we describe the main operators, originally defined
in [Richards and Mooney, 1995].

The operators for specialization are:

– delete-rule - there are two restrictions for this operator. It cannot delete a
clause that is neither the only base case of a recursive predicate nor the only
clause for a top-level concept. In the latter replace the clause to be deleted
with the rule: concept :- fail.

– add-antecedent - add antecedents to a clause in an attempt to make all
negative examples unprovable. If adding these antecedents also makes some
positive examples unprovable, this specialized clause is added to the the-
ory and the specialization begins again with the original clause, looking for
alternative specializations that retain the proofs of the other positive exam-
ples while still eliminating the negatives. There are two algorithms to add
antecedents to a clause: the first one is hill-climbing antecedent addition:
it adds one antecedent at a time to find which one increases the accuracy
of the theory. Sometimes none of the antecedents decreases accuracy, but
in order to actually increase it, several antecedents must be added at once.
To do so one can use relational pathfinding, which tries to find the related
antecedents [Richards and Mooney, 1995]). Alternatively, one can use the
literals from the bottom clause [Muggleton, 1995].

The operators for generalization are:

– delete-antecedent - we have two methods: a) the first one is hill-climbing
antecedent deletion. This method tries to delete each antecedent in the spe-
cified clause at a time, and deletes the one increasing the accuracy while
not allowing any negatives to be proven. This process is repeated until the
theory’s accuracy cannot be improved. The method b) is to delete multiple
antecedents - sometimes the provability of an example is just affected by
deleting many antecedents at once. First, it collects all antecedents whose
deletion does not allow any negative examples to be proven, and then it
generates combinations of these antecedents, looking for the one whose dele-
tion allows proofs of one or more positives but no negatives. It does not
stop when positives have became provable, it delete as many antecedents as



Probabilistic First-Order Theory Revision from Examples 299

possible. This algorithm is computationally expensive; therefore, it is only
called when hill-climbing does not improve any revision.

– add-rule - it is a clause-based revision. It leaves the original clause in the the-
ory and generates new ones based on the original. The process is made in two
ways. First it copies the original clause and, using hill-climbing antecedent
deletion, deletes antecedents without allowing any negatives to be proven,
and also those that allows one or more previously unprovable positives to be
proven (even if doing so allows proofs of negatives). Then it creates one or
more specializations of this core rule using the add-antecedents operator, to
allow proofs of the desired positives while eliminating the negatives.

– identification - it constructs a new clause to generalize the definition of
an antecedent that failed in the proof of a positive example. Rather than
developing the clause from scratch, it performs an inverse resolution step
[Muggleton, 1992] using two existing rules in the domain theory.

– absorption - it looks for an existing clause c whose antecedents subsume
the failing antecedent (and possibly other antecedents in the clause), and
which has alternate clauses that will allow the failing positive examples to
be proven; then it replaces the failure antecedents by c’s head.

2.4 Bayesian Logic Program

In a BLP [Kersting and De Raedt, 2001] each ground atom represents a random
variable. Each random variable can take on various possible values from the
(finite) domain Dq of the corresponding Bayesian predicate q. In any state of
the world a random variable takes exactly one value. Thus, the main difference
between Bayesian and classical clauses is that Bayesian atoms represent classes
of similar random variables.

A Bayesian definite clause is of the form: A|A1, ..., An where A is a Bayesian
atom and A1, ..., An are Bayesian and logic atoms and all variables are implicitly
universally quantified (similarly to Prolog). As an example:

1. class(A) | obj(A,B),in(A,B,C),obj(A,C).
2. obj(A,B) | dom(A,B).

where the domain (D) of all the predicates is binary (Ddom = Dobj = {triangle,
circle}, Din = {true, false}, Dclass = {positive, negative}). Roughly speak-
ing a Bayesian definite clause A|A1, ..., An specifies that for each substitution
β [Lloyd, 1989] that grounds the clause, the random variable Aβ depends on
A1β, ..., Anβ.

Similarly to Bayesian networks, for each Bayesian definite clause there is a
CPD associated with it (see table 1).

Since a Bayesian predicate is defined by a set of definite Bayesian clauses, so-
called combining rules (as noisy-or) are used to obtain the combining probability
distribution of those clauses from the CPDs of each one (they are decomposable).



300 A. Paes et al.

Table 1. CPDs of the clauses

P(dom(A,B))

< 0.40, 0.60 >

P(in(A,B,C))

< 0.20, 0.80 >

dom(A,B) P(obj(A,B))

triangle 0.99

circle 0.01

obj(A,B) in(A,B,C) obj(A,C) P(class(A))

triangle false triangle 0.70

circle false triangle 0.70

triangle true triangle 0.005

circle true triangle 0.001

triangle false circle 0.06

circle false circle 0.8

triangle true circle 0.999

circle true circle 0.001

3 Probabilistic First-Order Theory Revision

The Probabilistic First-Order Theory (PFOT) revision problem can be defined
as follows:

Definition 2. Given:

– an initial probabilistic first-order theory T.
– a set of examples C.
– a probabilistic evaluation function F

Find:

– a revised probabilistic first-order theory T´
– that logically implies all the examples T´ � C+

– maximizes the probabilistic evaluation function
– and satisfies a minimality criteria

The (PFOT) considered in the present paper is a BLP.
When we use PFOT the examples which were considered as negatives in

the logical approach (see definition 1) will become positive examples, since the
probability distribution will reflect this difference according to the predicate’s
domain.

The dataset C is a set of ground atoms. For each proven ground atom a
Bayesian network is constructed using the notion of Knowledge-based Model
Construction (KBMC)[Haddawy, 1999]. Each node of these Bayesian Networks
is a random variable where its domain is from its corresponding predicate’s
domain. At the end, a new dataset B is formed, composed of the resultant
Bayesian networks. This dataset will be used for learning the parameters and
to apply the probabilistic evaluation function. Any Bayesian network inference
algorithm can be applied in order to find the example´s probability.
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Therefore, the revision can be divided in two parts: the PFOT´s logical
revision (structure revision) and the PFOT´s probabilistic revision (parameters
revision).

When revising the PFOT´s parameters the current structure is retained and
the probability distributions, which maximize a given probabilistic evaluation
function, are searched. The algorithms considered in the literature, such as EM
[Kersting and De Raedt, 2002] [Koller and Pfeffer, 1997] and the gradient ascent
[Kersting and De Raedt, 2002], can be used for learning the parameters.

Let C be the dataset;
Let H’ be the initial PFOT;
Best revision := H’;
if there are examples not covered by H’ then

repeat
initialize SMR;
for each logical revision point do

generate revisions (H);
for each H” ∈ H do

if H” logically improves the PFOT then
SH′′ := score(H”);
if SH′′ > SMR then

Best revision := H”;
SMR := SH′′ ;

end if
end if

end
end

until there is no revision that logically improves the PFOT
end if
if there are examples covered by Best revision, but misclassified then

repeat
for each probabilistic revision point

generate revisions (H);
for each H” ∈ H do

SH′′ := score(H”);
if SH′′ > SMR then

Best revision := H”;
SMR := SH′′ ;

end if
end

end
until there is no revision that probabilistically improves the PFOT

end if
returns Best revision;

Fig. 1. Algorithm for PFOT revision
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3.1 Structure Revision

Similarly to first-order theory revision, in PFOT revision it is also necessary to
identify the revision points. The points that failed in covering (proof) some exam-
ple are considered as logical revision points and the points that covered the exam-
ples, but did not classify them correctly i.e. the value with the highest probability
was not the same value given by the example, are considered as probabilistic revi-
sion points. Generalization and specialization operators are respectively applied.

One might argue that since there are no negative examples, specialization
operators would not be necessary. However, they still must be applied, because
we may want to improve the value of the probabilistic evaluation function. These
operators are as described in the section 2.1, except for the add-antecedents ope-
rator, which is modified to specialize the rules while improving the probabilistic
evaluation function. Example covering must be kept for both the specialization
operators.

Generalization operators are also the same described in section 2.1, except
for the add-rule operator, since it uses the add-antecedent operator, which was
modified as aforementioned.

When an operator is applied to a revision point the probabilistic parameters
are learned and the revision is evaluated by the probabilistic evaluation func-
tion (score). We define the function score(PFOT) as being responsible for the
construction of the Bayesian networks (B), the CPDs learning and the determi-
nation of the probabilistic evaluation function value. The algorithm is shown in
figure 1.

4 Probabilistic Evaluation Functions

As it was previously mentioned, four probabilistic evaluation functions are con-
sidered:

1. Likelihood - the Likelihood function is defined as:

L(H : B) = P(B|H,Θ) (1)

where H is the current PFOT, B is the dataset and Θ are the conditional
probability distributions. Considering that the examples are independent,
we have:

P (B|Θ, H) =
m∏

i=1

P (Bi|Θ, H) (2)

where m is the number of examples in the dataset. Since the logarithm is
monotone and easier to manipulate then log L(H : B) (LL) can be used.

LL(H : B) =
m∑

i=1

log P (Bi|Θ, H) (3)

The negative log-likelihood (NLL) is a standard measure of training error
and is defined as NLL(H |B) = −LL(H |B).
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2. Conditional likelihood - in a classification task, the ideal would be to find
a theory with the smallest classification error. In [Friedman et al., 1997] it
was shown that maximizing the conditional likelihood (see formula 4) of the
class is equivalent to minimizing classification error. This occurs because
for classification purposes only the conditional log likelihood of the class
given the attributes is relevant. Therefore this function is preferable over the
likelihood in classification problems.

CLL(H |B) =
m∑

i=1

log P (yi|xi,1, ..., xi,v−1) (4)

where Bi = {yi, xi,1, ..., xi,v−1} and yi represents the class in the example i.
Similarly the negative conditional log-likelihood can be defined as
NCLL(H |B) = −CLL(H |B).

3. Minimum Description Length (MDL) - both the likelihood and the condi-
tional likelihood are monotonic functions when an antecedent is added in a
rule and therefore will favour more complex theories. To resolve this problem,
a complexity penalty can be added to the likelihood (or to the conditional
likelihood), as MDL [Lam and Bacchus, 1994]:

MDL LL(H |B) =
1
2
n logm + NLL(H |B) (5)

where n is the number of probabilistic parameters. If so desired one can
change the log-likelihood to conditional log-likelihood.

MDL CLL(H |B) =
1
2
n logm + NCLL(H |B) (6)

4. Akaike Information Criterion (AIC) - the probabilistic evaluation function
AIC [Stone, 1977] adds a smaller complexity penalty to the likelihood than
the MDL, in an attempt to prevent underfitting problems that can appear
with the later.

AIC LL(H |B) = n log e + NLL(H |B) (7)

Similarly to MDL, conditional log-likelihood can be used instead of log-
likelihood.

AIC CLL(H |B) = n log e + NCLL(H |B) (8)

5 Experimental Results

We apply four probabilistic evaluation functions to the extended revision system
and compare the results experimentally in three domains. The first one is the Bon-
gard domain 1. The dataset is composed of 60 examples where the concept we try
1 The Bongard problems, due to the Russian scientist M. Bongard, are well-known

within inductive logic programming.
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to learn is the one mentioned in [Kersting and De Raedt, 2002]: ”there is a trian-
gle in a circle”. We consider that 30% of the random variables are hidden. The
others domains considered are the Family domain [Quinlan, 1990] and the School
domain [Costa et al., 2003]. Both datasets are completely observed and have 353
and 554 examples, respectively. Table 2 shows the original theories (PFOT1). For
the Bongard domain this PFOT1 was the one used to generate the examples.

Table 2. Original PFOT

Domain PFOT1

bongard class(A)|obj(A,B),in(A,B,C),obj(A,C)
obj(A,B)|dom(A,B)

Family wife(A, B) | gender(A), married(A,B).
husband(A,B) | gender(A), married(A, B).
mother(A, B) | gender(A),parent(A, B).
father(A, B) | gender(A), parent(A, B).
daughter(A, B) | gender(A), parent(B, A).
son(A, B) | gender(A), parent(B, A).
sister(A, B) | gender(A), sibling(A,B).
brother(A, B) | gender(A), sibling(A, B).
sibling(A,B) | parent(C, A), parent(C, B), A \ = B.

School student ranking(S) | registration grade(R), registration(R, C, S).
course rating(C) | registration satisfaction(R), registration(R, C, S).
registration satisfaction(R) | registration grade(R),professor ability(P),

course(C, P), registration(R, C, S).
registration grade(R) | course difficulty(C),student intelligence(S),

registration(R, C, S).
professor popularity(P) | professor ability(P).

Table 3. PFOT provided to the Revision System

Domain PFOT2

bongard obj(A,B)|dom(A,B)

Family wife(A, B) | married(A,B).
husband(A, B) | gender(A), married(A, B).
father(A, B) | gender(A), parent(A,B).
daughter(A, B) | gender(A), parent(A, B).
son(A, B)| gender(A), parent(B, A), sibling(C,A).
sister(A, B) | gender(A), sibling(A, B).
brother(A, B) | gender(A),sibling(A, B).
sibling(A, B) | parent(C, A), parent(C, B), A= B.

School professor popularity(A)| course difficulty(A), course(B,A).
registration grade(A)|course difficulty(B),student intelligence(C),

registration(A,B,C).
registration satisfaction(A)| professor ability(A), course(B,C).
course rating(A)|registration satisfaction(B), registration(B,A,C).
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We introduced some errors in the PFOT1s such as delete rule, delete an-
tecedent, add antecedent, change antecedent and change variable. The corrupted
PFOTs (PFOT2) are exhibited in table 3.

As in [Baião et al., 2003], to overcome the overfitting problem during trai-
ning, we applied k-fold cross validation approach to split the input data into dis-
joint training and test sets and, within that, a t-fold cross-validation approach to
split training data into disjoint training and tuning sets [Kohavi, 1995, Mitchell,
1997]. We considered k=4 and t=3. In each k-fold the best PFOT (in accordance
with the probabilistic evaluation function) is kept and applied to the test set.

The revised PFOTs (PFOT3) for each domain are shown in tables 4, 5 and 7.
For each PFOT3 we exhibit in tables 6, 8 and 9 the probabilistic evaluation func-
tion’s value (PEFV), the logic accuracy (LA) (percentage of covering examples)

Table 4. PFOT revised for the Family domain

Function PFOT3
NLL mother(A,B)|parent(A,B). sibling(A,B)|A\ =B,gender(A).

son(A,B)|parent(A,B). sister(A,B)|gender(A),sibling(A,B).
daughter(A,B)|parent(B,A). brother(A,B)|gender(A),sibling(A,B).
wife(A,B)|married(A,B). father(A,B)|gender(A),parent(A,B).
husband(A,B)|gender(A),married(A,B).

NCLL son(A,B)|parent(A,B). mother(A,B)|parent(A,B),gender(A).
daughter(A,B)|parent(B,A). brother(A,B)|gender(A),sibling(A,B).
wife(A,B)|married(A,B). sister(A,B)|gender(A),sibling(A,B).
father(A,B)|gender(A),parent(A,B).
husband(A,B)|gender(A),married(A,B).
sibling(A,B)|parent(C,A),parent(C,B),

A\ =B.
MDL LL mother(A,B)|parent(A,B). sibling(A,B)|A\ =B,gender(A).

son(A,B)|parent(A,B). sister(A,B)|gender(A),sibling(A,B).
daughter(A,B)|parent(B,A). brother(A,B)|gender(A),sibling(A,B).
wife(A,B)|married(A,B). father(A,B)|gender(A),parent(A,B).
husband(A,B)|gender(A),married(A,B).

MDL CLL son(A,B)|parent(A,B). mother(A,B)|parent(A,B),gender(A).
daughter(A,B)|parent(B,A). brother(A,B)|gender(A),sibling(A,B).
wife(A,B)|married(A,B). sister(A,B)|gender(A),sibling(A,B).
father(A,B)|gender(A),parent(A,B).
husband(A,B)|gender(A),married(A,B).
sibling(A,B)|parent(C,A),parent(C,B),

A\ =B.
AIC LL mother(A,B)|parent(A,B). sibling(A,B)|A\ =B,gender(A).

son(A,B)|parent(A,B). sister(A,B)|gender(A),sibling(A,B).
daughter(A,B)|parent(B,A). brother(A,B)|gender(A),sibling(A,B).
wife(A,B)|married(A,B). father(A,B)|gender(A),parent(A,B).
husband(A,B)|gender(A),married(A,B).

AIC CLL son(A,B)|parent(A,B). mother(A,B)|parent(A,B),gender(A).
daughter(A,B)|parent(B,A). brother(A,B)|gender(A),sibling(A,B).
wife(A,B)|married(A,B). sister(A,B)|gender(A),sibling(A,B).
father(A,B)|gender(A),parent(A,B).
husband(A,B)|gender(A),married(A,B).
sibling(A,B)|parent(C,A),parent(C,B),

A\ =B.
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Table 5. PFOT revised for the Bongard domain

Function PFOT3

NLL class(A)|in(A,B,C)
obj(A,B)|dom(A,B)

NCLL class(A)|obj(A,B),in(A,B,C),obj(A,C)
obj(A,B)|dom(A,B)

MDL LL class(A)|in(A,B,C)
obj(A,B)|dom(A,B)

MDL CLL class(A)|obj(A,B),in(A,B,C),dom(A,C)
obj(A,B)|dom(A,B)

AIC LL class(A)|in(A,B,C)
obj(A,B)|dom(A,B)

AIC CLL class(A)|obj(A,B),in(A,B,C),dom(A,C)
obj(A,B)|fdt:dom(A,B)

Table 6. Experimental Results for the Family domain, where PEFV is the probabilistic
evaluation function’s value, LA the logic accuracy and PA the probabilistic accuracy

Function Theory PEFV LA(%) PA(%)

NLL PFOT2 3.55 38 18
PFOT3 2.47 100 71

NCLL PFOT2 3.17 36 16
PFOT3 1.32 100 73

MDL LL PFOT2 5.64 38 16
PFOT3 3.27 100 72

MDL CLL PFOT2 5.24 39 19
PFOT3 2.59 100 76

AIC LL PFOT2 4.38 35 16
PFOT3 2.49 100 73

AIC CLL PFOT2 4.20 36 15
PFOT3 2.02 100 76

and the probabilistic accuracy (PA) (percentage of correctly classified examples)
found by the revision system.

When the probabilistic evaluation function used was the log likelihood or
the conditional log likelihood we limited the number of antecedents in three
for Bongard and Family domains and in four for School domain similar to
[Grossman and Domingos, 2004].

Since we are considering the negative (conditional) log-likelihood, the best
PFOT is the one that minimizes the probabilistic evaluation function.

The logical accuracy for all PFOT3 is 100% showing that the revised theories
are consistent with the datasets. Moreover, the probabilistic accuracy is improved
and the probabilistic evaluation is minimized in most of the PFOTs, which is a
good result since the main task is classification.
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Table 7. PFOT revised for the School domain
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Table 8. Experimental Results for the Bongard domain, where PEFV is the proba-
bilistic evaluation function’s value, LA the logic accuracy and PA the probabilistic
accuracy

Table 9. Experimental Results for the School domain, where PEFV is the probabilistic
evaluation function’s value, LA the logic accuracy and PA the probabilistic accuracy

As the result shows, the probabilistic evaluation functions that use the con-
ditional log likelihood return the best probabilistic accuracy; additionally, the
NCLL was the best choice in Bongard and School domains. These results con-
firm that in a classification task the use of conditional log-likelihood is a more
appropriate choice, even in a first-order approach.

For comparison purpose, we consider a maximization procedure that looks for
a PFOT with higher probabilistic evaluation in the entire search space (restrict
to PFOTs consistent with the dataset) [Revoredo and Zaverucha, 2002]. The
resultant PFOT was the same, showing that the revision system could find the
best PFOT.
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6 Conclusion

In this paper, we extended the probabilistic first-order theory revision system
proposed in [Revoredo and Zaverucha, 2002] showing the necessity of using spe-
cialization operators, even when there are no negative examples. We compared
experimentally a theory revised only in points responsible for the misclassifi-
cation, with the one that was modified in the entire structure. The resultant
probabilistic theory was the same, showing that the use of theory revision can
be a more adequate choice.

In [Grossman and Domingos, 2004] has shown that the log likelihood func-
tion was not adequate for the propositional Bayesian classification task and that
conditional log likelihood should be used instead. In this work, we compared ex-
perimentally the results when using different probabilistic evaluation functions,
including conditional log likelihood, in a probabilistic first order theory revision.
Our results also point to an improvement in probabilistic accuracy when using
the conditional log likelihood function.

As future work, we intend to extend these results for other datasets, in par-
ticular [Baião et al., 2003].
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Abstract. This paper studies equivalence issues in inductive logic pro-
gramming. A background theory B1 is inductively equivalent to another
background theory B2 if B1 and B2 induce the same hypotheses for
any given set of examples. Inductive equivalence is useful to compare
inductive capabilities among agents having different background theo-
ries. Moreover, it provides conditions for optimizing background theories
through appropriate program transformations. In this paper, we consider
three different classes of background theories: clausal theories, Horn logic
programs, and nonmonotonic extended logic programs. We show that
logical equivalence is the necessary and sufficient condition for inductive
equivalence in clausal theories and Horn logic programs. In nonmonotonic
extended logic programs, on the other hand, strong equivalence is nec-
essary and sufficient for inductive equivalence in general. Interestingly,
however, we observe that several existing induction algorithms require
weaker conditions of equivalence under restricted problem settings. We
also discuss connection to equivalence in abductive logic and conclude
that the notion of strong equivalence is useful to characterize equivalence
of non-deductive reasoning.

1 Introduction

The issue of equivalence between logic programs is receiving increasing attention.
In knowledge representation, a logic program is used for representing knowledge
of a problem domain. The same problem may be encoded in different manners by
different experts. Equivalence of two programs is then useful to identify different
knowledge bases. In program development, one program may give a declara-
tive specification of some problem and another program may give an efficient
coding of it. In this case, equivalence of two programs guarantees a correct im-
plementation of the given specification. Various criteria for program equivalence
are proposed in the literature [5,10,13,14,15,25]. Of these, weak equivalence and
strong equivalence of two programs are widely studied. Two logic programs P1

and P2 are weakly equivalent if they have the same declarative meaning. On
the other hand, P1 and P2 are strongly equivalent if for any logic program R,
P1 ∪R and P2 ∪R have the same declarative meaning. By the definition, strong
equivalence implies weak equivalence.

S. Kramer and B. Pfahringer (Eds.): ILP 2005, LNAI 3625, pp. 312–329, 2005.
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Equivalence relations presented above are intended to compare capabilities
of deductive reasoning between programs. When we consider realizing intelligent
agents that can perform commonsense reasoning, however, comparing capabili-
ties of non-deductive reasoning between programs is also necessary and impor-
tant. Recently, Inoue and Sakama argue equivalence in abductive logic [11]. They
introduce two different types of abductive equivalence: explainable equivalence
and explanatory equivalence. The former considers whether two theories have
the same explainability for any observation, while the latter considers whether
two theories have the same explanations for any observation. These two notions
compare capabilities of abductive reasoning among agents, and [11] provides nec-
essary and sufficient conditions for abductive equivalence in first-order logic and
abductive logic programming [4]. Induction is also known as non-deductive rea-
soning, which is often distinguished from abduction [6]. In computational logic,
induction is realized by inductive logic programming (ILP) [19,21]. A typical ILP
problem is to induce new rules which explain given examples together with a
background theory. There are several parameters which should be considered in
defining equivalence notions in ILP. Several questions then arise, for instance:
When can we say that induction with a background theory is equivalent to
induction with another background theory? When can we say that induction
from a set of examples is equivalent to induction from another set of examples?
When can we say that induced hypotheses are equivalent to another induced
hypotheses? Do conditions for these equivalence depend on underlying logics?
These equivalence issues are important and meaningful for comparing different
induction tasks, but no study answers these questions as far as the authors know.

This paper focuses on the first question presented above. A background the-
ory B1 is said inductively equivalent to another background theory B2 if B1 and
B2 induce the same hypothesis H (under the same hypothesis language) in face
of an arbitrary set E of examples. Intuitively, if an agent has a background theory
B1 that is inductively equivalent to another background theory B2 of another
agent, then these two agents are considered equivalent with respect to inductive
capability. In this case, we can identify those two agents as far as induction is
concerned. On the other hand, if a theory B1 is transformed to another syntacti-
cally different B2, inductive equivalence of two theories guarantees identification
of results of induction from each theory. This provides guidelines for optimiz-
ing background theories in ILP. The problem of interest is syntactic/semantic
conditions for inductive equivalence in ILP. Conditions for inductive equivalence
are arguable in different logics of background theories. In this paper, we con-
sider three different classes of background theories – clausal theories, Horn logic
programs, and nonmonotonic extended logic programs. We show that logical
equivalence is the necessary and sufficient condition for inductive equivalence
in clausal theories and Horn logic programs. In nonmonotonic extended logic
programs, on the other hand, strong equivalence is necessary and sufficient for
inductive equivalence in general. Interestingly, however, we observe that several
induction algorithms require weaker conditions of equivalence between programs
under restricted problem settings. We also discuss connection to equivalence in
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abductive logic, and conclude that the notion of strong equivalence is useful to
characterize equivalence of non-deductive reasoning.

The rest of this paper is organized as follows. Section 2 introduces the notion
of inductive equivalence. Section 3 and Section 4 present inductive equivalence in
clausal theories and Horn logic programs, respectively. Section 5 provides results
in nonmonotonic extended logic programs. Section 6 discusses related issues and
Section 7 summarizes the paper.

2 Inductive Equivalence

In this paper, we consider logical theories whose domain is given as the Herbrand
universe and interpretations/models are defined as subsets of the Herbrand base
HB. Given a logical theory B, let Mod(B) be the set of all (Herbrand) models
of B, and SEM(B) the set of all canonical models of B. Canonical models are
models that are selected from Mod(B) based on some preference criterion, and
the relation SEM(B) ⊆ Mod(B) holds. Let L be a logic of a theory B whose
semantics is given by SEM(B). Then, a theory B entails a formula F under
L (written as B |=L F ) if F is true in any I ∈ SEM(B). B entails a set G of
formulas under L (written as B |=L G) if B entails every formula in G under L.

Remark: The meaning of the entailment relation |=L depends on underlying
logic L. In this paper, different entailment relations are considered based on
different logic L. As a special case, we use the reserved symbol |= for logical
entailment in first-order logic.

The induction problem considered in this paper is described as follows:1

Given: a background theory B, and a set E of examples;
Find: a hypothesis H such that B ∪H is consistent and

B ∪ H |=L E . (1)

When H satisfies the relation (1), we say that a hypothesis H explains E with
respect to B (under L). Throughout the paper, a background theory B is as-
sumed to be consistent. The examples E are positive examples and we do not
consider negative examples in this paper.

When two different theories B1 and B2 are compared, they are assumed to
have the common underlying (hypothesis) language. In logic programming, there
are different notions of equivalence between theories. In this paper, we consider
three different types of equivalence relations. Two theories B1 and B2 are:

– logically equivalent (written as B1 ≡ B2) if Mod(B1) = Mod(B2).
– weakly equivalent (written as B1 ≡w B2) if SEM(B1) = SEM(B2).

1 This type of induction is called explanatory induction. An alternative type is con-
sidered in Section 3.2.
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– strongly equivalent (written as B1 ≡s B2) if B1∪Q ≡w B2∪Q for any theory
Q under the same language.

By the definition, B1 ≡s B2 implies B1 ≡w B2. In particular, when SEM(B) =
Mod(B) holds in first-order logic, three equivalence relations coincide [5]. As
canonical models, minimal models are often considered. The set of all minimal
models of B (denoted by MM(B)) is defined as MM(B) = {M ∈ Mod(B) |
¬∃N ∈ Mod(B) s.t. N ⊂ M }. We first show that logical equivalence coincides
with strong equivalence when SEM(B) = MM(B) in first-order logic. In what
follows, M∗ = M ∪ {¬A | A ∈ HB \ M }. Then, any M(⊆ HB) is a model of
B if B ∪ M∗ is satisfiable.

Proposition 2.1. For any first-order theories B1 and B2, B1 ≡ B2 iff MM(B1

∪ Q) = MM(B2 ∪ Q) for any first-order theory Q.

Proof. The only-if part is obvious. Let MM(B1 ∪ Q) = MM(B2 ∪ Q) for any
Q. If B1 �≡ B2, there is M ∈ Mod(B1) \ Mod(B2). Since M is not a model of
B2, B2 ∪ M∗ is unsatisfiable. Thus, MM(B2 ∪ M∗) = ∅. On the other hand,
M ∈ Mod(B1 ∪ M∗), so MM(B1 ∪ M∗) �= ∅. This contradicts the assumption.
Hence, B1 ≡ B2. ��

By contrast, logical equivalence does not coincide with weak equivalence when
SEM(B) = MM(B).

Example 2.1. Consider two propositional theories:

B1 : a ∨ b, c ∨ ¬a, c ∨ ¬b,

B2 : a ∨ b, c.

If we set SEM(Bi) = Mod(Bi) for i = 1, 2, then Mod(B1) = Mod(B2) =
{{a, c}, {b, c}, {a, b, c}}. Hence, B1 ≡ B2 and B1 ≡s B2. On the other hand,
consider

B3 : a ∨ b, ¬a ∨ ¬b, c.

Then, B1 �≡ B3 and B2 �≡ B3. If we set SEM(Bi) = MM(Bi) for i = 1, 2, 3,
then MM(B1) = MM(B3) and MM(B2) = MM(B3). Hence, B1 ≡w B3 and
B2 ≡w B3. By contrast, B1 �≡s B3 nor B2 �≡s B3 because the addition of
Q = {a, b} makes B3 inconsistent.

The next definition provides a general framework of inductive equivalence
between two theories.

Definition 2.1. Two theories B1 and B2 are inductively equivalent under a
logic L if it holds that B1 ∪H |=L E iff B2 ∪H |=L E for any set E of examples
and for any hypothesis H such that B1 ∪H and B2 ∪ H are consistent.

By the definition, inductive equivalence presents that two background theo-
ries have the same explanation power for any example. Background theories can
be represented by different logics, so that conditions of inductive equivalence
are argued in respective logic L. In the following sections, we provide general
conditions for inductive equivalence in different logics, and argue the issue in
specific ILP algorithms.
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3 Clausal Theories

We start with clausal theories in general. A clausal theory B is a set of clauses
of the form:

A1 ∨ · · · ∨ Am ∨ ¬Am+1 ∨ · · · ∨ ¬An

where Ai (1 ≤ i ≤ n) are atoms. In the context of logic programming, it is also
written as

A1 ∨ · · · ∨ Am ← Am+1, . . . , An . (2)

If m ≤ 1 for every clause (2) in B, B is a Horn logic program. A Horn logic
program B is definite if m = 1 for every clause (2) in B. Horn logic programs
are handled in detail in Section 4. A theory, a clause or an atom is ground if it
contains no variable. A theory or a clause with variables stands for the set of its
ground instances. A propositional theory is a finite set of ground clauses.

Given a background theory B as a clausal theory and a set E of clauses as
examples, induction produces a set H of clauses as hypothesis. As usual, a set
of clauses is identified with the conjunction of clauses included in the set. We
first set SEM(B) = Mod(B). In this case, logical equivalence of background
programs is necessary and sufficient.2

Theorem 3.1. Two clausal theories B1 and B2 are inductively equivalent under
clausal logic iff B1 ≡ B2.

Proof. B1 and B2 are inductively equivalent under clausal logic
iff B1 ∪ H |= E ⇔ B2 ∪ H |= E for any set E of clauses and for any set H of
clauses such that B1 ∪ H and B2 ∪H are consistent
iff B1 |= H → E ⇔ B2 |= H → E for any H and E such that B1 ∪ H and
B2 ∪H are consistent
iff B1 ≡ B2. ��

Since logical equivalence coincides with strong/weak equivalence under the
setting SEM(B) = Mod(B) in clausal logic, the above result implies that
strong/weak equivalence of two theories is also necessary and sufficient.

Next, we set SEM(B) = MM(B) for the semantics of a clausal theory B.
Such a setting is considered as the minimal model semantics of disjunctive logic
programs [17] or circumscription [16]. Then, we write B |=MM C if a clause C
is satisfied in any I ∈ MM(B). For any set D of clauses, we write B |=MM D if
B |=MM C for every clause C in D. Under the setting, the notion of inductive
equivalence under the minimal model semantics is defined in the same manner
as Definition 2.1 with the only difference that the entailment relation |=L is
replaced by |=MM . In this case, we have the next result.

Theorem 3.2. Two clausal theories B1 and B2 are inductively equivalent under
the minimal model semantics iff B1 ≡ B2.

2 This result is also obtained as a special case of explanatory equivalence of abductive
frameworks by allowing any clause as a candidate hypothesis in [11, Theorem 3.6].
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Proof. Suppose that B1 and B2 are inductively equivalent under the minimal
model semantics. Then, B1 ∪ H |=MM E iff B2 ∪ H |=MM E for any set H
and for any set E of clauses such that B1 ∪ H and B2 ∪ H are consistent. By
putting E = B1 ∪ H , it holds that B1 ∪ H |=MM B1 ∪ H iff B2 ∪ H |=MM

B1 ∪ H . By putting E = B2 ∪ H , it holds that B1 ∪ H |=MM B2 ∪ H iff
B2 ∪ H |=MM B2 ∪ H . As B1 ∪ H |=MM B1 ∪ H and B2 ∪ H |=MM B2 ∪ H
always hold, B1 ∪ H |=MM B2 ∪ H and B2 ∪ H |=MM B1 ∪ H also hold. By
B1 ∪ H |=MM B2 ∪ H , any minimal model M of B1 ∪ H satisfies every clause
in B2 ∪ H . If M �∈ MM(B2 ∪ H), there is a minimal model N ∈ MM(B2 ∪ H)
such that N ⊂ M and N satisfies B2 ∪H . By B2 ∪H |=MM B1 ∪H , N satisfies
every clause in B1 ∪ H . But this is impossible because M is a minimal model
of B1 ∪ H . Hence, M ∈ MM(B2 ∪ H). Likewise, M ∈ MM(B2 ∪ H) implies
M ∈ MM(B1∪H). Therefore, MM(B1∪H) = MM(B2∪H), so that B1 ≡ B2

by Proposition 2.1.
Conversely, if B1 ≡ B2, MM(B1 ∪ H) = MM(B2 ∪ H) holds for any set H

of clauses (Proposition 2.1). Then, B1 ∪ H |=MM E iff B2 ∪H |=MM E for any
set E of clauses and B1 ∪H is consistent iff B2 ∪H is consistent. Hence, B1 and
B2 are inductively equivalent. ��

Theorem 3.2 and Proposition 2.1 imply that strong equivalence of two theo-
ries is also necessary and sufficient for inductive equivalence under the minimal
model semantics. Note that weak equivalence of two theories is not sufficient for
inductive equivalence.

Example 3.1. Two theories B1 = { p(x) ∨ ¬q(x), r(a) } and B2 = { r(a) }
have the same minimal model {r(a)}, thereby weakly equivalent. However, they
are not inductively equivalent. In fact, for the example E = {p(a)}, the clause
H = (q(x) ∨ ¬r(x)) explains p(a) in B1, but not in B2.

Theorems 3.1 and 3.2 imply that in full clausal theories the notion of in-
ductive equivalence under SEM(B) = Mod(B) and the one under SEM(B) =
MM(B) coincide.

Corollary 3.3. Two clausal theories are inductively equivalent under clausal
logic iff they are inductively equivalent under the minimal model semantics.

Given two propositional clausal theories B1 and B2, the problem of testing
B1 ≡ B2 is equivalent to the problem of testing unsatisfiability of B1 ∧ ¬B2,
which is coNP-complete. Then, the next result follows by Theorems 3.1 and 3.2.

Corollary 3.4. Deciding inductive equivalence of two propositional clausal the-
ories is coNP-complete.

In what follows, we pick up two induction methods for full clausal theories
and investigate conditions for inductive equivalence.

3.1 CF-Induction

Inoue [9] provides a method for induction from full clausal theories. It is based
on the technique of consequence finding (CF). Given a background theory B as



318 C. Sakama and K. Inoue

a clausal theory and a set E of examples as clauses, CF-induction computes a
hypothesis H as follows: First, the condition B ∪ H |= E of (1) is converted to

B ∪ {¬E} |= ¬H

where ¬E is a formula in a disjunctive normal form. The above relation is in-
terpreted as B ∪ {¬E} |= CC(B, E) and CC(B, E) |= ¬H with some clausal
theory CC(B, E). The relation CC(B, E) |= ¬H is then rewritten as

H |= ¬CC(B, E) .

Then, a hypothesis H is constructed as a clausal theory which entails
¬CC(B, E).3 CC(B, E) is a set of clauses that are computed by the charac-
teristic clauses of B ∪ {¬E}. The characteristic clauses of a set Σ of clauses are
defined as follows. A clause C subsumes a clause D if Cθ ⊆ D for some substi-
tution θ. C properly subsumes D if C subsumes D but D does not subsume C.
Then,

Carc(Σ) = {C ∈ Th(Σ) | ¬∃ D ∈ Th(Σ) s.t. D properly subsumes C }.
That is, each characteristic clause is a theorem of Σ that is not properly sub-
sumed by any clause in the set of theorems. Then, it holds that

Carc(B ∪ {¬E}) |= CC(B, E).

Inductive equivalence under CF-induction is then defined as follows.
Definition 3.1. Let B1 and B2 are two clausal theories. Then, B1 and B2 are
inductively equivalent under CF-induction if Carc(B1 ∪ {¬E}) = Carc(B2 ∪
{¬E}) for any set E of clauses.

Then, we have the next result.
Theorem 3.5. Let B1 and B2 be two clausal theories. Then, B1 and B2 are
inductively equivalent under CF-induction iff B1 ≡ B2.

Proof. If Carc(B1∪{¬E}) = Carc(B2∪{¬E}) for any set E of clauses, Carc(B1)
= Carc(B2) by putting E = ∅. This implies B1 ≡ B2. The converse is straight-
forward. ��

The above result, together with Theorem 3.1, implies that B1 and B2 are in-
ductively equivalent under clausal logic iff they are inductively equivalent under
CF-induction.

3.2 Confirmatory Induction

Confirmatory induction (or descriptive induction) is an alternative framework
of induction [2]. In this framework, a hypothesis H explains an example E with
respect to a background theory B iff H is satisfied by every I ∈ SEM(B ∪ E).
3 This extends Muggleton’s inverse entailment in Horn theories. Muggleton’s method

is explained in Section 4.2.
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The system CLAUDIEN [3] realizes this type of induction under the minimal
model semantics SEM = MM .

The notion of inductive equivalence in this context is distinguished as con-
firmatorily inductive equivalence (c-inductive equivalence, for short). The notion
of c-inductive equivalence is defined as follows.

Definition 3.2. Two theories B1 and B2 are c-inductively equivalent under a
logic L if it holds that B1 ∪E |=L H iff B2 ∪E |=L H for any set E of examples
and for any hypothesis H such that B1 ∪H and B2 ∪ H are consistent.

When a background theory is given as a clausal theory, c-inductive equiva-
lence under the minimal model semantics is characterized as follows.

Theorem 3.6. Two clausal theories B1 and B2 are c-inductively equivalent un-
der the minimal model semantics iff B1 ≡ B2.

Proof. Suppose that B1 and B2 are c-inductively equivalent under the minimal
model semantics. Then, B1∪E |=MM H iff B2∪E |=MM H for any set E and for
any set H of clauses such that B1∪H and B2∪H are consistent. Then, B1 ≡ B2

holds by Theorem 3.2. The converse is shown in a straightforward manner. ��

The above theorem presents that in clausal theories two notions of inductive
equivalence coincide (under the minimal model semantics). That is, B1 and
B2 are inductively equivalent in explanatory induction iff they are inductively
equivalent in confirmatory induction.

4 Induction in Horn Logic Programs

Next we consider the case where a background theory, examples, and hypotheses
are all Horn logic programs. A lot of ILP systems handle Horn logic programs
and some algorithms are known for Horn ILP. So we discuss here inductive
equivalence in Horn logic programs apart from Section 3.

The declarative semantics of a Horn logic program is given by the unique
minimal model, called the least model. Thus, for any Horn logic program B,
SEM(B) = MM(B) and we write MM(B) as LM(B). We write B |=LM C if
a Horn clause C is satisfied in LM(B). For a set D of Horn clauses, we write
B |=LM D if B |=LM C for every Horn clause C in D. Notice that |=LM does
not coincide with |=. For instance, given B = {p ← q}, B |=LM ¬p but B �|= ¬p.
Thus, |=LM has the effect of the closed world assumption.

Definition 4.1. Two Horn logic programs B1 and B2 are inductively equivalent
(under the least model semantics) if it holds that B1∪H |=LM E iff B2∪H |=LM

E for any set E of examples and for any hypothesis H such that B1 ∪ H and
B2 ∪H are consistent.

For inductive equivalence in Horn logic programs, the next result follows by
Theorem 3.2.
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Theorem 4.1. Let B1 and B2 be two Horn logic programs. Then, B1 and B2

are inductively equivalent iff B1 ≡ B2.

Logical equivalence of two propositional Horn logic programs is tested in
polynomial-time, so that:

Proposition 4.2. Deciding inductive equivalence of two propositional Horn
logic programs is done in polynomial-time.

Several algorithms are known for induction in Horn logic programs. We in-
vestigate conditions for inductive equivalence in two popular algorithms.

4.1 Relative Least General Generalization

Plotkin’s relative least general generalization [24] is a well-known algorithm for
induction, which is used in the Horn ILP system GOLEM [18]. We first remind
terms and basic results. A clause C1 subsumes another clause C2 relative to
a program B, denoted by C1 -B C2, if there is a substitution θ such that
B |= C1θ → C2. A clause D is a relative least general generalization (RLGG) of
C1 and C2 with respect to B if D is the least upper bound of C1 and C2 under
the ordering -B over the clausal language. The RLGG does not always exist but
exists when B is a ground program.

Inductive equivalence under RLGG is defined as follows. Given a ground
Horn logic program B and a set E of ground Horn clauses, let RLGG(B, E) be
the set of clauses which are the RLGG of clauses in E with respect to B.

Definition 4.2. Let B1 and B2 be two ground Horn logic programs. Then,
B1 and B2 are inductively equivalent under RLGG if RLGG(B1, E) = RLGG
(B2, E) for any set E of ground Horn clauses.

Given a ground Horn logic program B and examples E as a set of ground
Horn clauses, GOLEM constructs inductive hypothesis H as follows:

B ∪ H |= E

⇔ H |= B → E

⇔ |= H → (¬B ∨E).

At this point, GOLEM replaces B with the conjunction of ground atoms in-
cluded in a finite subset of LM(B). Here we suppose that the LM(B) is finite.
Then, we replace B with LM(B) as GOLEM does. Let E = {C1, . . . , Ck}.
Then, the RLGG of E with respect to B is computed as the least general
generalization (LGG) of clauses (C1 ∨ ¬LM(B)), . . . , (Ck ∨ ¬LM(B)), where
¬LM(B) =

∨
Ai∈LM(B) ¬Ai, which becomes a solution H . Then, we have the

following result.4

Theorem 4.3. Let B1 and B2 be two ground Horn logic programs. Then, B1

and B2 are inductively equivalent under RLGG iff B1 ≡w B2.
4 We assume the result in the context of GOLEM.
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Proof. Suppose that B1 and B2 are inductively equivalent under RLGG. Then,
for any set E = {C1, . . . , Ck } of ground clauses, RLGG(B1, E) = RLGG(B2, E)
implies LGG(C1 ∨ ¬LM(B1), . . . , Ck ∨ ¬LM(B1)) = LGG(C1 ∨ ¬LM(B2), . . . ,
Ck ∨ ¬LM(B2)). Put E = {A} for any ground atom A. Then, LGG(A ∨
¬LM(B1)) = A ∨ ¬LM(B1) and LGG(A ∨ ¬LM(B2)) = A ∨ ¬LM(B2), so
LGG(A ∨ ¬LM(B1)) = LGG(A ∨ ¬LM(B2)) implies LM(B1) = LM(B2).
Hence, B1 ≡w B2.

Conversely, if B1 ≡w B2, LM(B1) = LM(B2). Then, for any set E =
{C1, . . . , Ck } of ground clauses, LGG(C1 ∨ ¬LM(B1), . . . , Ck ∨ ¬LM(B1)) =
LGG(C1 ∨ ¬LM(B2), . . . , Ck ∨ ¬LM(B2)), so RLGG(B1, E) = RLGG(B2, E).
Hence, the result holds. ��

Example 4.1. Consider two programs:

B1 : has wings(joe) ← bird(joe),
bird(tweety) ←,

bird(polly) ← .

B2 : bird(tweety) ←,

bird(polly) ← .

Given the example E = { flies(tweety), f lies(polly) }, both the RLGG of E
wrt B1 and the RLGG of E wrt B2 become

flies(x) ← bird(x) .

This means that the first clause in B1 is of no use for induction under RLGG.
Note that B1 and B2 are not strongly equivalent.

4.2 Inverse Entailment

Next, we consider Muggleton’s inverse entailment (IE) algorithm which is used
in the Horn ILP system PROGOL [20]. Given a Horn logic program B and a
ground Horn clause E as an example, suppose a Horn clause H satisfying

B ∪ {H} |= E.

By inverting the entailment relation it becomes

B ∪ {¬E} |= ¬H.

Put ¬Bot(B, E) as the conjunction of ground literals which are true in every
model of B ∪ {¬E}. Then, a clause H is induced by inverse entailment (IE) if
H |= Bot(B, E).

Remark: The process of inverting entailment is similar to CF-induction in
clausal theories [9], but IE supposes a Horn logic program B, and a single Horn
clause H and E. Another difference is that CF-induction is sound and complete
for finding hypotheses, but IE is sound but not complete in general [27].



322 C. Sakama and K. Inoue

Given a Horn logic program B and a ground Horn clause E, let IE(B, E)
be the set of clauses which is induced by IE from E with respect to B. Then,
inductive equivalence under IE is defined as follows.

Definition 4.3. Two Horn logic programs B1 and B2 are inductively equivalent
under IE if IE(B1, E) = IE(B2, E) for any ground Horn clause E.

Then, we have the following result.

Theorem 4.4. Two Horn logic programs B1 and B2 are inductively equivalent
under IE iff B1 ≡ B2.

Proof. B1 and B2 are inductively equivalent under IE iff Bot(B1, E) = Bot
(B2, E) for any E. Then, B1 ∪ {¬E} |= L iff B2 ∪ {¬E} |= L for any ground
Horn clause E and for any literal L. Put E = A0 ← A1, . . . , An. Then, B1 ∪
{¬A0, A1, . . . , An} |= L iff B2 ∪ {¬A0, A1, . . . , An} |= L for any {¬A0, A1, . . . ,
An }. Thus, for any set F of ground atoms B1∪F and B2∪F have the same least
model. Hence, B1 ≡s B2, thereby B1 ≡ B2 (by Proposition 2.1). The converse
is straightforward. ��

The results of Sections 4.1 and 4.2 show that inductive equivalence under
RLGG requires a weaker condition of equivalence than IE.

5 Induction in Nonmonotonic Logic Programs

Nonmonotonic logic programs are logic programs with negation as failure [1].
We consider the class of extended logic programs [8] in this paper. An extended
logic program (ELP) is a set of rules of the form:

L0 ← L1, . . . , Lm, not Lm+1, . . . , not Ln (n ≥ m) (3)

where each Li is a literal and not represents negation as failure (NAF). The
literal L0 is the head and the conjunction L1, . . . , Lm, not Lm+1, . . . , not Ln is
the body. A rule with the empty head of the form:

← L1, . . . , Lm, not Lm+1, . . . , not Ln (n ≥ 1) (4)

is an integrity constraint. A rule with the empty body L ← is a fact and
identified with the literal L. An ELP is called a normal logic program (NLP) if
every literal appearing in the program is an atom. Let Lit be the set of all ground
literals in the language of a program. Any element in Lit+ = Lit ∪ {not L |
L ∈ Lit } is called an LP-literal and an LP-literal not L is called an NAF-literal.
A rule is NAF-free if it contains no NAF-literal. A program is NAF-free if it
consists of NAF-free rules. A program, a rule or an LP-literal is ground if it
contains no variable. A program or a rule with variables stands for the set of its
ground instances. A propositional program is a finite set of ground rules.

Remark: A primary difference between nonmonotonic logic programs and
clausal theories is that a rule (3) is not a clause even if it is NAF-free. For
instance, a rule L1 ← L2 has meaning different from ¬L2 ← ¬L1 or L1 ∨ ¬L2.
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A set S(⊂ Lit) satisfies a ground rule R of the form (3) if {L1, . . . , Lm} ⊆ S
and {Lm+1, . . . , Ln } ∩ S = ∅ imply L0 ∈ S. In particular, S satisfies a ground
integrity constraint of the form (4) if {L1, . . . , Lm} �⊆ S or {Lm+1, . . . , Ln } ∩
S �= ∅. When a rule R contains variables, S satisfies R if S satisfies every ground
instance of R. The semantics of ELPs is given by the answer set semantics [8].
First, let B be an NAF-free program and S ⊂ Lit. Then, S is an answer set
of B if (i) S is a minimal set which satisfies every ground rule in the ground
instantiation of B, and (ii) S does not contain both L and ¬L for any L ∈ Lit.
Next, let B be any ELP and S ⊂ Lit. Then, define the NAF-free program
BS as follows: a rule L0 ← L1, . . . , Lm is in BS iff there is a ground rule
L0 ← L1, . . . , Lm, not Lm+1, . . . , not Ln in the ground instantiation of B such
that {Lm+1, . . . , Ln }∩S = ∅. Here, L0 is possibly empty. Then, S is an answer
set of B if S is an answer set of BS . In NLPs, answer sets coincide with stable
models [7]. An ELP may have none, one, or multiple answer sets. The set of
all answer sets of B is denoted by AS(B). An ELP B is consistent if it has an
answer set; otherwise B is inconsistent. An ELP B is called categorical if it has
the unique answer set [1]. If a ground rule R is satisfied in every answer set of
B, it is written as B |=AS R. In particular, B |=AS L if a ground literal L is
included in every answer set of B. For a set E of ground rules/literals, we write
B |=AS E if B |=AS R for any R ∈ E.

An induction problem considered in this section is stated as follows. Given a
consistent ELP B as a background theory and a set E of rules as examples, find
a set H of rules such that B ∪ H is consistent and

B ∪ H |=AS E. (5)

We put SEM(B) = AS(B) in this section.

Definition 5.1. Two ELPs B1 and B2 are inductively equivalent (under the
answer set semantics) if it holds that B1 ∪H |=AS E iff B2 ∪H |=AS E for any
set E of examples and for any hypothesis H such that B1 ∪ H and B2 ∪ H are
consistent.

We proceed to build conditions for inductive equivalence in ELPs. In what
follows, we assume the underlying language of programs is function-free and Lit
is finite. In this setting, every answer set is a finite set of ground literals.

Theorem 5.1. Let B1 and B2 be two ELPs. Then, B1 and B2 are inductively
equivalent iff B1 ≡s B2.

Proof. When B1 and B2 are inductively equivalent, it holds that B1∪H |=AS E
iff B2 ∪ H |=AS E for any set E of rules and any set H of rules such that
B1 ∪ H and B2 ∪ H are consistent. Suppose that there is a set S such that
S ∈ AS(B1 ∪H) \AS(B2∪H) for some H . Let S = {L1, . . . , Lm} and Lit \S =
{Lm+1, . . . , Ln}. Put E = {← L1, . . . , Lm, not Lm+1, . . . , not Ln }. Then, every
answer set of B2 ∪H satisfies E, but S does not satisfy E. This contradicts the
assumption. Thus, no such S exists for any H and AS(B1 ∪H) = AS(B2 ∪H).
Hence, B1 ≡s B2. The converse is proved in a straightforward manner. ��
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The complexity of testing strong equivalence of two propositional ELPs is
coNP-complete [14]. This implies the next result.

Proposition 5.2. Deciding inductive equivalence of two propositional ELPs is
coNP-complete.

5.1 Induction from Answer Sets

Sakama [26] introduces an algorithm called induction from answer sets (IAS).
He provides procedures for handling positive/negative examples, and we review
the procedure for positive examples here.

Some notions are defined. For any LP-literal L, pred(L) denotes the predicate
of L and const(L) denotes the set of constants appearing in L. A rule (3) is
negative-cycle-free if pred(L0) �= pred(Li) for any i = m + 1, . . . , n. Let L be a
ground LP-literal and S a set of ground LP-literals. Then, L1 in S is relevant
to L if either (i) pred(L1) = pred(L) and const(L1) = const(L), or (ii) for some
LP-literal L2 in S, const(L1)∩ const(L2) �= ∅ and L2 is relevant to L. A ground
NAF-literal not L is involved in B if L appears in the ground instance of B.
For simplicity reasons, the following conditions are assumed; a function-free and
categorical ELP B as a background program; and a positive example as a ground
literal L such that B �|=AS L and pred(L) appears nowhere in B.

Suppose that B has the answer set S. Then, construct a rule L ← Γ where
Γ ⊆ S ∪ {not L | L ∈ Lit \ S} and every element in Γ is relevant to L and is
involved in B. Next, the rule L ← Γ is generalized to R as Rθ = (L ← Γ ) with
some substitution θ.

Example 5.1. ([26]) Suppose the background program B

B : bird(x) ← penguin(x),
bird(tweety) ←,

penguin(polly) ← .

E : flies(tweety),

which has the answer set

S = { bird(tweety), bird(polly), penguin(polly)}.

Given the example L = flies(tweety), the rule L ← Γ becomes

flies(tweety) ← bird(tweety), not penguin(tweety) .

Replacing tweety by a variable x, the rule

R : flies(x) ← bird(x), not penguin(x)

becomes a solution.
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It is shown in [26] that the rule H = {R} satisfies the condition (5) for
E = {L} if R is negative-cycle-free.

Let IAS(B, L) be the set of rules which is computed by the above procedure
using B and L. Then, inductive equivalence under IAS is defined as follows.

Definition 5.2. Two function-free categorical ELPs B1 and B2 are inductively
equivalent under IAS if IAS(B1, L) = IAS(B2, L) for any ground literal L.

The necessary and sufficient condition for inductive equivalence under IAS
is as follows.

Theorem 5.3. Two function-free categorical ELPs B1 and B2 are inductively
equivalent under IAS iff B1 ≡w B2.

Proof. Since the rule R is constructed by the answer set of a program, the result
immediately follows. ��

5.2 Induction of Stable Models

Otero [22] characterizes induction problems in normal logic programs (NLPs)
under the stable model semantics. He introduces different types of induction for
positive/negative examples, but here we consider the so-called induction from
non-complete sets which is the usual ILP setting for positive examples.

Suppose a background program B as an NLP, and a set E of ground atoms
as positive examples such that B �|=AS E.5 The goal is to find a set H of rules
satisfying the relation (5). An interpretation M is a monotonic model of an NLP
if M satisfies every rule in B. Given a set E of examples, an interpretation M
(of B ∪E) is an extension of E iff E ⊆ M . He then captures H satisfying (5) as
an extension M of E that becomes a stable model of B ∪ M . Note that in this
definition a hypothesis H is given as a set of ground atoms.

Let ISM(B, E) be the collection of H defined as above. Then, inductive
equivalence under ISM is defined as follows.

Definition 5.3. Two NLPs B1 and B2 are inductively equivalent under ISM if
ISM(B1, E) = ISM(B2, E) for any set E of ground atoms.

Lemma 5.4. [22] Given an NLP B, M is a monotonic model of B iff M is a
stable model of B ∪ M .

Let MonMod(B) be the set of monotonic models of B. Then, we have the
following result.

Theorem 5.5. Two NLPs B1 and B2 are inductively equivalent under ISM iff
MonMod(B1) = MonMod(B2).

Proof. Suppose that B1 and B2 are inductively equivalent under ISM . For any
M ∈ ISM(B1, E), M is a stable model of B1 ∪ M and a monotonic model of
B1 (Lemma 5.4). Then, ISM(B1, E) = ISM(B2, E) implies MonMod(B1) =
MonMod(B2). The converse is proved in a similar manner. ��
5 Recall that answer sets coincide with stable models in NLPs.
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Example 5.2. Let B1 = { p ← not q } and B2 = { q ← not p }. For E = {p},
put its extension as M = {p}. Then, H = { p ←} becomes a solution in both
B1 and B2. Note that B1 �≡w B2 but MonMod(B1) = MonMod(B2).

6 Discussion

Equivalence of logic programs has been studied in various aspects, but to our best
knowledge, equivalence issue in inductive logic programming has never been dis-
cussed. Recently, Inoue and Sakama study equivalence of abductive frameworks
[11]. They introduce two different types of abductive equivalence: explainable
equivalence and explanatory equivalence. Given a background theory B and a
set H of candidate hypotheses (called abducibles), an abductive framework is
defined as a tuple 〈B, H〉. Two abductive frameworks 〈B1, H1〉 and 〈B2, H2〉 are
called explainable equivalent if, for any observation O, there is an explanation of
O in 〈B1, H1〉 iff there is an explanation of O in 〈B2, H2〉. On the other hand,
two programs are called explanatorily equivalent if, for any observation O, E is
an explanation of O in 〈B1, H1〉 iff E is an explanation of O in 〈B2, H2〉. Ex-
planatory equivalence is stronger than explainable equivalence, and the former
implies the latter.

Comparing [11] with our present work, some interesting connections are ob-
served. When underlying logic is first-order logic, logical equivalence of two the-
ories is a necessary and sufficient condition for explanatory equivalence. When
a background theory is represented by a (nonmonotonic) logic program, on the
other hand, 〈B1, H〉 and 〈B2, H〉 are explanatorily equivalent iff B1 and B2

are strongly equivalent. Those results have connection to the results of Theo-
rems 3.1, 3.2, 4.1 and 5.1 of this paper. In particular, in clausal logic the notion
of inductive equivalence coincides with the notion of explanatory equivalence if
one permits arbitrary clauses as abducibles. However, there is an important dif-
ference between explanatory equivalence in abductive frameworks and inductive
equivalence in this paper, which stems from the difference between abduction
and induction. In an abductive framework, a hypothesis space is prespecified
as H and possible explanations for a given observation are constructed as a
subset of abducibles. The existence of H in abductive logic programs results in
characterization by relative strong equivalence, i.e., B1 and B2 are explanatory
equivalent iff they are strongly equivalent with respect to H. Moreover, in ab-
ductive logic programming, abducibles and observations are usually restricted
to (ground) literals. In ILP, on the other hand, hypotheses and examples are
general rules rather than facts. Besides these differences, both abduction and
induction require strong equivalence of two (nonmonotonic) logic programs to
identify the results of abductive/inductive inference. The essence of this lies in
the fact that abduction and induction are both ampliative reasoning and extend
theories. Strong equivalence takes the influence of addition of a rule set to each
program into account, so that it succeeds in characterizing the effect of abduc-
tion/induction that are not captured by weak equivalence of programs. In [13], it
is argued that strong equivalence is useful to simplify a part of a program with-
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out looking at the other parts. On the other hand, the study [11] and the result
of this paper reveal that strong equivalence has another important applications
for testing equivalence in abductive and inductive logic programming.

From the computational viewpoint, testing strong equivalence of proposi-
tional nonmonotonic logic programs is converted to the problem of propositional
entailment in classical logic [14]. The problem of testing strong equivalence is
then solved using existing SAT solvers. For predicate programs without function
symbols, strong equivalence testing is also possible by instantiating a program
into a finite propositional one. There is a system for testing strong equivalence of
function-free nonmonotonic logic programs, e.g., [12]. Existence of no procedure
for testing strong equivalence of logic programs with functions would restrict
practical application of inductive equivalence in ILP. Nevertheless, inductive
equivalence is useful when background knowledge is given as a function-free
Datalog or a database that is a collection of propositional sentences.

Apart from the general ILP setting, we have shown that several existing ILP
algorithms require weaker conditions of equivalence between programs. Each
algorithm is designed to work in some restricted problem setting for theoreti-
cal/practical reasons, and such restriction has the effect of relaxing conditions of
inductive equivalence. Note that it may happen that some algorithm may pro-
duce different hypotheses from two background theories due to its incomplete-
ness. Thus, if two strongly equivalent programs produce different hypotheses
in face of some common examples, it indicates that the algorithm is incom-
plete or incorrect. Thus, inductive equivalence would be used for testing correct-
ness/completeness of an algorithm. In this respect, inverse entailment in Horn
logic programs is incomplete, but Theorem 4.4 guarantees that under the re-
stricted problem setting the algorithm correctly judges inductive equivalence of
two Horn logic programs. For another application, inductive equivalence would
be used for comparing different induction algorithms under the common prob-
lem setting. Let α(B, E) be the set of hypotheses induced by an algorithm α
using a background theory B and examples E. For two different algorithms α1

and α2 in the common problem setting, suppose that α1(B1, E) = α1(B2, E)
implies α2(B1, E) = α2(B2, E), but not vice versa. In this case, α1 is considered
inductively more sensitive than α2 in the sense that α1 may distinguish different
background theories that are not distinguished by α2. For instance, suppose any
ground Horn logic program B and any ground Horn clause E. In this problem
setting, we can say that IE is inductively more sensitive than RLGG by the
result of Section 4. Thus, the notion of inductive equivalence is also useful to
compare capabilities of different induction algorithms.

From the viewpoint of program development, it is known that some basic
transformations including unfolding/folding do not preserve strong equivalence
of logic programs [23]. This fact, together with the result of this paper, implies
that such basic program transformations are not applicable to optimize back-
ground theories in ILP. If applied, the result of induction may change in general.
Those transformations are still effective as far as one uses induction algorithms
that require the condition of weak equivalence.
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7 Conclusion

This paper has studied equivalence issues in inductive logic programming. We
introduced the notion of inductive equivalence which compares inductive capabil-
ities between different background theories. Three different logics are considered
– clausal theories, Horn logic programs, and nonmonotonic extended logic pro-
grams. Logical equivalence is necessary and sufficient for inductive equivalence
in clausal theories and Horn logic programs, while strong equivalence is neces-
sary and sufficient in nonmonotonic extended logic programs. Under restricted
problem settings, on the other hand, we also observed that several existing ILP
algorithms require weaker conditions of equivalence. The results of this paper,
together with those of [11], reveal that the notion of strong equivalence is useful
to characterize equivalence in non-deductive reasoning.

In the introduction, we posed several questions on equivalence issues which
may arise in ILP. This paper has answered one question regarding equivalence
of background theories. Answering other questions is left for future study.
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Abstract. Recursive loops in a logic program present a challenging
problem to the PLP framework. On the one hand, they loop forever
so that the PLP backward-chaining inferences would never stop. On
the other hand, they generate cyclic influences, which are disallowed
in Bayesian networks. Therefore, in existing PLP approaches logic pro-
grams with recursive loops are considered to be problematic and thus
are excluded. In this paper, we propose an approach that makes use of
recursive loops to build a stationary dynamic Bayesian network. Our
work stems from an observation that recursive loops in a logic pro-
gram imply a time sequence and thus can be used to model a sta-
tionary dynamic Bayesian network without using explicit time parame-
ters. We introduce a Bayesian knowledge base with logic clauses of the
form A ← A1, ..., Al, true, Context, T ypes, which naturally represents
the knowledge that the Ais have direct influences on A in the context
Context under the type constraints Types. We then use the well-founded
model of a logic program to define the direct influence relation and ap-
ply SLG-resolution to compute the space of random variables together
with their parental connections. We introduce a novel notion of influence
clauses, based on which a declarative semantics for a Bayesian knowl-
edge base is established and algorithms for building a two-slice dynamic
Bayesian network from a logic program are developed.

Keywords: Probabilistic logic programming (PLP), the well-founded
semantics, SLG-resolution, stationary dynamic Bayesian networks.

1 Introduction

Probabilistic logic programming (PLP) is a framework that extends the expres-
sive power of Bayesian networks with first-order logic [18,21]. The core of the
PLP framework is a backward-chaining procedure, which generates a Bayesian
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network graphic structure from a logic program in a way quite like query eval-
uation in logic programming. Therefore, existing PLP methods use a slightly
adapted SLD- or SLDNF-resolution [16] as the backward-chaining procedure.

Recursive loops in a logic program is of the form

A1 ← ...A2 ← ...A3 ← ...A4 ← ... (1)

where for any i ≥ 1, Ai is the same as Ai+1 up to variable renaming. Such
loops present a challenging problem to the PLP framework. On the one hand,
they loop forever so that the PLP backward-chaining inferences would never
stop. On the other hand, they generate cyclic influences, which are disallowed
in Bayesian networks. Two representative approaches have been proposed to
avoid recursive loops. The first one is by Ngo and Haddawy [18] and Kersting
and De Raedt [15], who restrict to considering only acyclic logic programs [1].
The second approach, proposed by Glesner and Koller [11], uses explicit time
parameters to avoid occurrence of recursive loops. It enforces acyclicity using
time parameters in the way that every predicate has a time argument such that
the time argument in the rule head is at least one time step later than the
time arguments of the predicates in the rule body. In this way, each predicate
p(X) is changed to p(X, T ) and each clause like p(X) ← q(X) is rewritten into
p(X, T 1) ← q(X, T 2), T 2 = T 1− 1, where T , T 1 and T 2 are time parameters.

In this paper, we propose a solution to the problem of recursive loops under
the PLP framework. Our method is not restricted to acyclic programs, nor does
it rely on explicit time parameters. Instead, it makes use of recursive loops to
derive a stationary dynamic Bayesian network. We will make two novel contri-
butions. First, we introduce the well-founded semantics [29] of logic programs
to the PLP framework; in particular, we use the well-founded model of a logic
program to define the direct influence relation and apply SLG-resolution [4] (or
SLTNF-resolution [25]) to make the backward-chaining inferences. As a result,
termination of the PLP backward-chaining process is guaranteed. Second, we
observe that under the PLP framework recursive loops (cyclic influences) define
feedbacks, thus implying a time sequence. For instance, the following two clauses

aids(X) ← aids(X),
aids(X) ← aids(Y ), contact(X, Y )

model that the direct influences on aids(X) (in the current time slice t) come
from whether X was already infected with aids earlier (in the last time slice
t−1) or whether X had contact with someone Y who was infected (in time slice
t− 1). As a result, recursive loops of form (1) imply a time sequence

A1 ← ...︸ ︷︷ ︸
t

A2 ← ...︸ ︷︷ ︸
t−1

A3 ← ...︸ ︷︷ ︸
t−2

A4 ← ... (2)

It is this observation that leads us to viewing a logic program with recursive
loops as a special temporal model. Such a temporal model corresponds to a
stationary dynamic Bayesian network and thus can be compactly represented as
a two-slice dynamic Bayesian network.
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1.1 Preliminaries and Notation

We assume the reader is familiar with basic ideas of Bayesian networks [19]
and logic programming [16]. In particular, we assume the reader is familiar with
the well-founded semantics [29] as well as SLG-resolution [4]. Here we review
some basic concepts concerning dynamic Bayesian networks (DBNs). DBNs are
introduced to model the evolution of the state of the environment over time
[14]. Briefly, a DBN is a Bayesian network whose random variables are sub-
scripted with time slices (or intervals). For instance, Weathert−1, Weathert

and Weathert+1 are random variables representing the weather situations in
time slices t− 1, t and t+1, respectively. We can then use a DBN to depict how
Weathert−1 influences Weathert.

A DBN is represented by describing the intra-probabilistic relations between
random variables in each individual time slice t and the inter-probabilistic rela-
tions between the random variables of each two consecutive time slices t− 1 and
t. If both the intra- and inter-probabilistic relations are the same for all time
slices (in this case, the DBN is a repetition of a Bayesian network over time;
see Figure 1), the DBN is called a stationary DBN [22]; otherwise it is called a
flexible DBN [11]. As far as we know, most existing DBN systems reported in
the literature are stationary DBNs.

Bt−1Ct−1 At−1

Dt−1

BtCt At

Dt

� �� .............. �� � �

Fig. 1. A stationary DBN structure

In a stationary DBN as shown in Figure 1, the state evolution is determined
by random variables like C, B and A, as they appear periodically and influence
one another over time. Such variables are called state variables. Note that D is
not a state variable. Due to the characteristic of stationarity, a stationary DBN
is often compactly represented as a two-slice DBN.

Definition 1. A two-slice DBN for a stationary DBN consists of two consecu-
tive time slices, t− 1 and t, which describes (1) the intra-probabilistic relations
between the random variables in slice t and (2) the inter-probabilistic relations
between the random variables in slice t− 1 and the random variables in slice t.

A two-slice DBN models a feedback system. For convenience, we depict feed-
back connections with dashed edges. Moreover, we refer to nodes coming from
slice t − 1 as state input nodes.

Example 1. The stationary DBN of Figure 1 can be represented by a two-slice
DBN as shown in Figure 2. It can also be represented by a two-slice DBN starting
from a different state input node (Ct−1 or Bt−1). These two-slice DBN structures
are equivalent in the sense that they can be unrolled into the same stationary
DBN (Figure 1).
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At

At−1

Dt

Ct Bt

Fig. 2. A two-slice DBN structure (a feed-
back system)

� �� �
�

A
At−1

D

C B

Fig. 3. A simplified two-slice DBN struc-
ture

Observe that in a two-slice DBN, all random variables except state input
nodes have the same subscript t. In the sequel, the subscript t is omitted for
simplification of the structure. For instance, the two-slice DBN of Figure 2 is
simplified to Figure 3.

In the rest of this section, we introduce some necessary notation for logic
programs. We use p(.) to refer to any atom/predicate whose predicate symbol is
p and use p(−→X ) to refer to p(X1, ..., Xn) where all Xis are variables. There is one
special atom, true, which is always logically true. A predicate p(−→X ) is typed if its
arguments −→X are typed so that each argument takes on values in a well-defined
finite domain. A (general) logic program P is a finite set of clauses of the form

A ← B1, ..., Bm,¬C1, ...,¬Cn (3)

where A, the Bis and Cjs are atoms. We use HU(P ) and HB(P ) to denote
the Herbrand universe and Herbrand base of P , respectively, and use WF (P ) =
<It, If> to denote the well-founded model of P , where It, If ⊆ HB(P ), and
every A in It is true and every A in If is false in WF (P ). By a (Herbrand)
ground instance of a clause C we refer to a ground instance of C that is obtained
by replacing all variables in C with some terms in HU(P ).

A logic program P is a positive logic program if no negative literal occurs
in the body of any clause. P is a Datalog program if no clause in P contains
function symbols. P is an acyclic logic program if there is a mapping map from
the set of ground instances of atoms in P into the set of natural numbers such
that for any ground instance A ← B1, ..., Bk,¬Bk+1, ...,¬Bn of any clause in P ,
map(A) > map(Bi) (1 ≤ i ≤ n) [1]. P is said to have the bounded-term-size
property w.r.t. a set of predicates {p1(.), ..., pt(.)} if there is a function f(n) such
that for any 1 ≤ i ≤ t whenever a top goal G0 =← pi(.) has no argument
whose term size exceeds n, no atoms in any backward derivations for G0 have
an argument whose term size exceeds f(n) [28].

2 Bayesian Knowledge Bases

Definition 2. A Bayesian knowledge base is a triple <PB ∪ CB, Tx, CR>,
where

– PB ∪ CB is a logic program, each clause in PB being of the form

p(.) ← p1(.), ..., pl(.)︸ ︷︷ ︸
direct influences

, true, B1, ..., Bm,¬C1, ...,¬Cn︸ ︷︷ ︸
context

,
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member(X1, DOM1), ..., member(Xs, DOMs)︸ ︷︷ ︸
type constraints

(4)

where (i) the predicate symbols p, p1, ..., pl only occur in PB and (ii) p(.) is
typed so that for each variable Xi in it with a finite domain DOMi (a list
of constants) there is an atom member(Xi, DOMi) in the clause body.

– Tx is a set of conditional probability tables (CPTs) of the form P(p(.)|p1(.),
..., pl(.)), each being attached to a clause (4) in PB.

– CR is a combination rule such as noisy-or, min or max [15,18,22].

A Bayesian knowledge base contains a logic program that can be divided into
two parts, PB and CB. PB defines a direct influence relation, each clause (4)
saying that the atoms p1(.), ..., pl(.) have direct influences on p(.) in the context
that B1, ..., Bm,¬C1, ...,¬Cn, member(X1, DOM1), ..., member(Xs, DOMs) is
true in PB ∪CB under the well-founded semantics. Note that the special literal
true is used in clause (4) to mark the beginning of the context; it is always true
in the well-founded model WF (PB ∪ CB). For each variable Xi in the head
p(.), member(Xi, DOMi) is used to enforce the type constraint on Xi, i.e. the
value of Xi comes from its domain DOMi. CB assists PB in defining the direct
influence relation by introducing some auxiliary predicates (such as member(.))
to describe contexts. Clauses in CB do not describe direct influences. Note that
recursive loops are allowed in PB and CB.

In this paper, we focus on Datalog programs, although the proposed approach
applies to logic programs with the bounded-term-size property (w.r.t. the set of
predicates appearing in the heads of PB) as well. Datalog programs are widely
used in database and knowledge base systems [27] and have a polynomial time
complexity in computing their well-founded models [29]. In the sequel, we assume
that except for the predicate member(.), PB ∪CB is a Datalog program.

For each clause (4) in PB, there is a unique CPT, P(p(.)|p1(.), ..., pl(.)), in
Tx specifying the degree of the direct influences. Such a CPT is shared by all
instances of clause (4).

A Bayesian knowledge base has the following important property.

Theorem 1. (1) All unit clauses in PB are ground. (2) Let G0 =← p(.) be a
goal with p being a predicate symbol occurring in the head of a clause in PB.
Then all answers of G0 derived from PB∪CB∪{G0} by applying SLG-resolution
are ground.

For simplicity of presentation, in the sequel for each clause (4) in PB, we
omit all of its type constraints member(Xi, DOMi) (1 ≤ i ≤ s). Therefore,
when we say that the context B1, ..., Bm, ¬C1, ...,¬Cn is true, we assume that
the related type constraints are true as well.

3 Declarative Semantics

In this section, we formally describe the space of random variables and the
direct influence relation defined by a Bayesian knowledge base KB. We then
derive formulas for computing probability distributions induced by KB.
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3.1 Space of Random Variables and Influence Clauses

A Bayesian knowledge base KB defines a direct influence relation over a subset
of HB(PB). Recall that any random variable in a Bayesian network is either
an input node or a node on which some other nodes (i.e. its parent nodes) in
the network have direct influences. Since an input node can be viewed as a node
whose direct influences come from an empty set of parent nodes, we can define
a space of random variables from a Bayesian knowledge base KB by taking all
unit clauses in PB as input nodes and deriving the other nodes iteratively based
on the direct influence relation defined by PB. Formally, we have

Definition 3. The space of random variables of KB, denoted S(KB), is recur-
sively defined as follows:

1. All unit clauses in PB are random variables in S(KB).
2. Let A ← A1, ..., Al, true, B1, ..., Bm,¬C1, ...,¬Cn be a ground instance of

a clause in PB. If the context B1, ..., Bm,¬C1, ...,¬Cn is true in the well-
founded model WF (PB ∪ CB) and {A1, ..., Al} ⊆ S(KB), then A is a
random variable in S(KB). In this case, each Ai is said to have a direct
influence on A.

3. S(KB) contains only those ground atoms satisfying the above two condi-
tions.

Definition 4. For any random variables A, B in S(KB), we say A is influenced
by B if B has a direct influence on A, or for some C in S(KB) A is influenced
by C and C is influenced by B. A cyclic influence occurs if A is influenced by
itself.

Let WF (PB ∪ CB) =<It, If> be the well-founded model of PB ∪ CB and
let IPB = {p(.) ∈ It|p occurs in the head of some clause in PB}. The following
result shows that the space of random variables is uniquely determined by the
well-founded model.

Theorem 2. S(KB) = IPB .

Theorem 2 suggests that the space of random variables can be computed
by applying an existing procedure for the well-founded model such as SLG-
resolution or SLTNF-resolution. Since SLG-resolution has been implemented
as the well-known XSB system [23], in this paper we apply it for the PLP
backward-chaining inferences. Let {p1, ..., pt} be the set of predicate symbols
occurring in the heads of clauses in PB, and let G0 =← p1(

−→
X1), ..., pt(

−→
Xt) be

a top goal where −→
Xi and −→

Xj are disjoint for any i �= j. During the process of
evaluating G0, SLG-resolution stores answers of each pi(

−→
Xi) in a space called

table, denoted T
pi(
−→
Xi)

.
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Algorithm 1: Computing random variables.

1. Compute all answers of G0 by applying SLG-resolution to PB∪CB ∪{G0}.
2. Return S′(KB) =

⋃t
i=1 Tpi(

−→
Xi)

.

Theorem 3. Algorithm 1 terminates, yielding a finite set S′(KB) = S(KB).

When evaluating G0, SLG-resolution will construct a proof tree, rooted at
← pi(

−→
Xi), for each subgoal pi(

−→
Xi) (1 ≤ i ≤ t) [4]. For each answer A′ of pi(

−→
Xi)

in S′(KB) there must be a success branch (i.e. a branch starting at the root
node and ending at a node marked with success) in the tree that generates the
answer. Let

pi(.) ← A1, ..., Al, true, B1, ..., Bm,¬C1, ...,¬Cn

be the k-th clause in PB that was applied to expand the root goal ← pi(
−→
Xi) in

the success branch and let θ be the composition of all the mgus (most general uni-
fiers) along the branch. Then A′ = pi(.)θ and (A1, ..., Al, true, B1, ..., Bm,¬C1,
..., ¬Cn)θ is true in WF (PB ∪ CB). In this case, we refer to

k. pi(.)θ ← A1θ, ..., Alθ (5)

as an influence clause (the prefix “k.” would be omitted sometimes for sim-
plicity of presentation). Obviously, every success branch in the proof tree for
← pi(

−→
Xi) produces an influence clause. All influence clauses from the proof trees

for ← pi(
−→
Xi) (1 ≤ i ≤ t) constitute the set of influence clauses of KB, denoted

Iclause(KB).
Let G0 =← p1(

−→
X1), ..., pt(

−→
Xt) be a top goal as in Algorithm 1. The above

process of generating influence clauses can be described more formally as follows.

Algorithm 2: Computing influence clauses.

1. Compute all answers of G0 by applying SLG-resolution to PB∪CB ∪{G0},
while for each success branch starting at a root goal ← pi(

−→
Xi) (1 ≤ i ≤ t),

we collect an influence clause from the branch into Iclause(KB).
2. Return Iclause(KB).

Influence clauses have two principal properties.

Theorem 4. Let A ← A1, ..., Al be an influence clause. Then A and all the Ais
are ground atoms.

Theorem 5. For any A, Ai ∈ HB(PB), Ai has a direct influence on A, which
is derived from the k-th clause in PB, if and only if there is an influence clause
in Iclause(KB) of the form k. A ← A1, ..., Ai, ..., Al.

Corollary 1. For any A ∈ HB(PB), A is in S(KB) if and only if there is an
influence clause in Iclause(KB) whose head is A.
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Example 2. Let us consider the AIDS program, adapted from [11]. Let KB1 be
a Bayesian knowledge base with CB1 = ∅ and PB1 containing the following
eleven clauses:

1-3. aids(pi). (i = 1, 2, 3)
4. aids(X) ← aids(X).
5. aids(X) ← aids(Y ), contact(X, Y ).

6-11. contact(pi, pj). (i, j = 1, 2, 3 and i �= j)

Let G0 =← aids(X), contact(Y, Z). Algorithm 2 will generate two proof trees
rooted at ← aids(X) and ← contact(Y, Z), respectively, and produce the set
Iclause(KB1) with the following eighteen influence clauses:

1-3. aids(pi). (i = 1, 2, 3)
4. aids(pi) ← aids(pi). (i = 1, 2, 3)
5. aids(pi) ← aids(pj), contact(pi, pj). (i, j = 1, 2, 3 and i �= j)

6-11. contact(pi, pj). (i, j = 1, 2, 3 and i �= j)

For example, the third line above represents six influence clauses that are derived
by applying the 5-th clause in PB1 to the root goal ← aids(X).

3.2 Probability Distributions Induced by KB

For any random variable A in S(KB), we use pa(A) to denote the set of random
variables that have direct influences on A; namely pa(A) consists of random
variables in the body of all influence clauses whose head is A. Assume that the
probability distribution P(A|pa(A)) is available (see Section 4.2). Furthermore,
we make the following independence assumption.

Assumption 1. For any random variable A in S(KB), we assume that given
pa(A), A is probabilistically independent of all random variables in S(KB) that
are not influenced by A.

Theorem 6. When no cyclic influence occurs, the probability distribution in-
duced by KB is P(S(KB)) =

∏
Ai∈S(KB) P(Ai|pa(Ai)) under the independence

assumption.

When there are cyclic influences, we cannot have a partial order on S(KB).
By Definition 4 and Theorem 5, any cyclic influence, say “A1 is influenced by
itself,” must be resulted from a set of influence clauses in Iclause(KB) of the
form

A1 ← ..., A2, ...

A2 ← ..., A3, ...

...... (6)
An ← ..., A1, ...
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Observe that these clauses generate a chain of direct influences

A1 ← A2 ← A3 ← ... ← An ← A1

which defines a feedback connection. Since a feedback system can be modeled
by a two-slice DBN (see Section 1.1), the above clauses represent the same
knowledge as the following ones

A1 ← ..., A2, ...

A2 ← ..., A3, ...

...... (7)
An ← ..., A1t−1 , ...

Here the Ais are state variables and A1t−1 is a state input variable. That is, A1

being influenced by itself becomes A1 being influenced by A1t−1 . By applying this
transformation (from clauses (6) to (7)), we can get rid of all cyclic influences and
obtain a generalized set Iclause(KB)g of influence clauses from Iclause(KB).1

Let Vinput(KB) be the set of state input variables introduced in Iclause(KB)g

and let S(KB)g = S(KB) ∪ Vinput(KB). By extending the independence as-
sumption from S(KB) to S(KB)g and defining pa(Ai) over Iclause(KB)g, we
obtain the following result.

Theorem 7. When Iclause(KB) produces cyclic influences, the probability dis-
tribution induced by KB is P(S(KB)g) =

∏
Ai∈S(KB)g

P(Ai|pa(Ai)) under the
independence assumption.

4 Building a Bayesian Network from a Bayesian
Knowledge Base

4.1 Building a Two-Slice DBN Structure

From a Bayesian knowledge base KB, we can derive a set of influence clauses
Iclause(KB), which defines the same direct influence relation over the same space
S(KB) of random variables as PB∪CB does (see Theorem 5). For any influence
clause A ← A1, ..., Al, its head A and the body atoms Ajs are all ground and
true in the well-founded model. Therefore, given a probabilistic query together
with some evidences, we can depict a network structure from Iclause(KB), which
covers the random variables in the query and evidences, by backward-chaining
the related random variables via the direct influence relation.

Let Q be a probabilistic query and E a set of evidences, where all random
variables (with time subscripts removed, if any) come from S(KB) (i.e., they

1 Depending on starting from which influence clause to generate an influence cycle, a
different generalized set containing different state input variables would be obtained.
All of them are equivalent in the sense that they define the same feedback connections
and can be unrolled into the same stationary DBN.
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are heads of some influence clauses in Iclause(KB)). Let TOP consist of these
random variables. An influence network of Q and E, denoted Inet(KB)Q,E , is
constructed from Iclause(KB) using the following algorithm.

Algorithm 3: Building an influence network.

1. Initially, Inet(KB)Q,E has all random variables in TOP as nodes.
2. Remove the first random variable A from TOP . For each influence clause in

Iclause(KB) of the form k. B ← ..., A, ..., if B is not in Inet(KB)Q,E then
add B to Inet(KB)Q,E as a new node and to the end of TOP . For each
influence clause in Iclause(KB) of the form k. A ← A1, ..., Al, if l = 0 then
add to Inet(KB)Q,E an edge A

k←. Otherwise, for each Ai in the body:
(a) If Ai is not in Inet(KB)Q,E then add Ai to Inet(KB)Q,E as a new node

and to the end of TOP .
(b) Add to Inet(KB)Q,E an edge A

k← Ai.
3. Repeat step 2 until TOP becomes empty.

Inet(KB)Q,E covers all random variables in TOP . Moreover, for any node
A in Inet(KB)Q,E , its parent nodes come from the body atoms of all influence
clauses of the form k. A ← A1, ..., Al. Each parent node Ai is connected to A via
an edge A

k← Ai, indicating that the parental relationship comes from applying
an influence clause that is derived from the k-th clause in PB. We see that an
influence network is a Bayesian network structure unless it contains loops (cyclic
influences).

Let Inet(KB)S(KB) denote an influence network that covers all random vari-
ables in S(KB). It is easy to show the following. First, for any node Ai in
Inet(KB)S(KB), the set parents(Ai) of its parent nodes is pa(Ai), as defined in
Theorem 6. Second, Ai is a descendant node of Aj if and only if Ai is influenced
by Aj . This means that the independence assumption (Assumption 1) applies
to Inet(KB)S(KB) as well, and that Iclause(KB) produces a cycle of direct in-
fluences if and only if Inet(KB)S(KB) contains the same loop. Combining these
facts leads to the following immediate result.

Theorem 8. When no cyclic influence occurs, the probability distribution in-
duced by KB can be computed over Inet(KB)S(KB). That is, P(S(KB)) =∏

Ai∈S(KB) P(Ai|pa(Ai)) =
∏

Ai∈S(KB) P(Ai|parents(Ai)) under the indepen-
dence assumption.

Let us consider influence networks with loops. Loops in an influence network
are generated from recursive influence clauses of form (6). They establish feed-
back connections like that in Figure 3, which can be unrolled into a stationary
DBN as in Figure 1. This means that an influence network with loops can be
converted into a two-slice DBN, simply by converting each loop of the form

�
��

� �� ...... AnA1 A2
k1 k2 kn−1

kn
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into a two-slice DBN path

A1
k1← A2

k2← ...
kn−1← An

kn← A1t−1

by introducing a state input node A1t−1 .
As illustrated in Section 1.1, a two-slice DBN is a snapshot of a stationary

DBN across any two time slices, which can be obtained by traversing the sta-
tionary DBN from a set of state variables backward to the same set of state
variables (i.e., state input nodes). This process corresponds to generating an
influence network Inet(KB)Q,E from Iclause(KB) incrementally (adding nodes
and edges one by one) while wrapping up loop nodes with state input nodes
(like At−1). This leads to the following algorithm for building a two-slice DBN
structure, 2Snet(KB)Q,E , directly from Iclause(KB), where Q, E and TOP are
as defined in Algorithm 3.

Algorithm 4: Building a two-slice DBN structure.

1. Initially, 2Snet(KB)Q,E has all random variables in TOP as nodes.
2. Remove the first random variable A from TOP . For each influence clause in

Iclause(KB) of the form k. B ← ..., A, ..., if B is not in Inet(KB)Q,E then
add B to Inet(KB)Q,E as a new node and to the end of TOP . For each
influence clause in Iclause(KB) of the form k. A ← A1, ..., Al, if l = 0 then
add to 2Snet(KB)Q,E an edge A

k←. Otherwise, for each Ai in the body:
(a) If Ai is not in 2Snet(KB)Q,E then add Ai to 2Snet(KB)Q,E as a new

node and to the end of TOP .
(b) If adding A

k← Ai to 2Snet(KB)Q,E produces a loop, then add to

2Snet(KB)Q,E a node Ait−1 and an edge A
k← Ait−1 , else add an edge

A
k← Ai to 2Snet(KB)Q,E .

3. Repeat step 2 until TOP becomes empty.

Algorithm 4 is Algorithm 3 enhanced with a mechanism for cutting loops
(item 2b), i.e. when adding the current edge A

k← Ai to the network forms a loop,
we replace it with an edge A

k← Ait−1 , where Ait−1 is a state input node. This is
a process of transforming influence clauses (6) to (7). Therefore, 2Snet(KB)Q,E

is essentially built from a generalized set Iclause(KB)g of influence clauses.
Let S(KB)g be the set of random variables in Iclause(KB)g, as defined in

Theorem 7. Let 2Snet(KB)S(KB) denote a two-slice DBN structure (produced
by applying Algorithm 4) that covers all random variables in S(KB)g. We have
the following result.

Theorem 9. When Iclause(KB) produces cyclic influences, the probability
distribution induced by KB can be computed over 2Snet(KB)S(KB). That is,
P(S(KB)g) =

∏
Ai∈S(KB)g

P(Ai|pa(Ai)) =
∏

Ai∈S(KB)g
P(Ai|parents(Ai)) un-

der the independence assumption.

Remark 1. Note that Algorithm 4 does not use any time parameters. It only
requires the user to specify, via the query and evidences, what random variables
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are necessarily included in the network. Algorithm 4 builds a two-slice DBN
structure for any given query and evidences whose random variables are heads
of some influence clauses in Iclause(KB). When no query and evidences are
provided, we may apply Algorithm 4 to build a complete two-slice DBN structure,
2Snet(KB)S(KB), which covers the space S(KB) of random variables, by letting
TOP consist of all heads of influence clauses in Iclause(KB). This is a very
useful feature, as in many situations the user may not be able to present the
right queries unless a Bayesian network structure is shown.

Example 3 (Example 2 continued). Suppose that we want to build a Bayesian
network from KB1 that covers aids(p1), aids(p2) and aids(p3). We may present
a query ?−P(aids(p1)) along with the evidences aids(p2) = yes and aids(p3) =
no. Thus TOP = {aids(p1), aids(p2), aids(p3)}. Algorithm 4 builds from Iclause

( KB1) a two-slice DBN structure 2Snet(KB1)Q,E as shown in Figure 4 where

for simplicity, edges of the form A
k← are omitted. Note that loops are cut by

introducing three state input nodes aids(p1)t−1, aids(p2)t−1 and aids(p3)t−1.
We see that the two-slice DBN structure 2Snet(KB1)Q,E concisely depicts a
feedback system where the feedback connections are as shown in Figure 5.

aids(p3) contact(p1, p3)

contact(p2, p3) aids(p3)
t−1

contact(p3, p1) contact(p3, p2)

4 5
5

5
5

4

5

5

5 4 555
5

5t−1
aids(p2)

aids(p1)

aids(p2)
t−1

contact(p2, p1)

contact(p1, p2) aids(p1)

Fig. 4. A two-slice DBN structure built from the AIDS program KB1

aids(p2)t−1

aids(p1)t−1

aids(p3)t−1
aids(p1)aids(p2)aids(p3)

�

� ��� ��

�

�� �

�

Fig. 5. The feedback connections created by the AIDS program KB1

4.2 Building CPTs

After a Bayesian network structure 2Snet(KB)Q,E has been constructed from
a Bayesian knowledge base KB, we associate each (non-state-input) node A in
the network with a CPT. There are three cases. (1) If A only has unit clauses in
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Iclause(KB), we build from the unit clauses a prior CPT for A as its prior prob-
ability distribution. (2) If A only has non-unit clauses in Iclause(KB), we build
from the clauses a posterior CPT for A as its posterior probability distribution.
(3) Otherwise, we prepare for A both a prior CPT (from the unit clauses) and a
posterior CPT (from the non-unit clauses). In this case, A is attached with the
posterior CPT; the prior CPT for A would be used, if A is a state variable, as
the probability distribution of A in time slice 0 (only in the case that a two-slice
DBN is unrolled into a stationary DBN starting with time slice 0; see Section
1.1).

Assume that the parent nodes of A are derived from n (n ≥ 1) different
influence clauses in Iclause(KB). Suppose these clauses share the following CPTs
in Tx: P(A1|B1

1 , ..., B1
m1

), ..., and P(An|Bn
1 , ..., Bn

mn
). (Recall that an influence

clause prefixed with a number k shares the CPT attached to the k-th clause in
PB.) Then the CPT of A is computed by combining the n CPTs in terms of the
combination rule CR.

5 Related Work

A recent overview of existing representational frameworks that combine prob-
abilistic reasoning with logic (i.e. logic-based approaches) or relational repre-
sentations (i.e. non-logic-based approaches) is given by De Raedt and Ker-
sting [6]. Typical non-logic-based approaches include probabilistic relational
models (PRM), which are based on the entity-relationship (or object-oriented)
model [10,13,20], and relational Markov networks, which combine Markov net-
works and SQL-like queries [26]. Representative logic-based approaches include
frameworks based on the KBMC (Knowledge-Based Model Construction)idea
[2,3,8,11,12,15,18,21], stochastic logic programs (SLP) based on stochastic
context-free grammers [5,17], parameterized logic programs based on distribu-
tion semantics (PRISM) [24], and more. Most recently, a unifying framework,
called Markov logic, has been proposed by Domingos and Richardson [7]. Markov
logic subsumes first-order logic and Markov networks. Since our work follows the
KBMC idea focusing on how to build a Bayesian network directly from a logic
program, it is closely related to three representative existing PLP approaches:
the context-sensitive PLP developed by Haddawy and Ngo [18], Bayesian logic
programming proposed by Kersting and Raedt [15], and the time parameter-
based approach presented by Glesner and Koller [11].

5.1 Comparison with the Context-Sensitive PLP Approach

The core of the context-sensitive PLP is a probabilistic knowledge base (PKB).
In order to see the main differences from our Bayesian knowledge base (BKB),
we reformulate its definition here.

Definition 5. A probabilistic knowledge base is a four tuple <PD, PB, CB,
CR>, where
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– PD defines a set of probabilistic predicates (p-predicates) of the form p(T1, ...,
Tm, V ) where all arguments Tis are typed with a finite domain and the last
argument V takes on values from a probabilistic domain DOMp.

– PB consists of probabilistic rules of the form

P (A0|A1, ..., Al) = α ← B1, ..., Bm,¬C1, ...,¬Cn (8)

where 0 ≤ α ≤ 1, the Ais are p-predicates, and the Bjs and Cks are context
predicates (c-predicates) defined in CB.

– CB is a logic program, and both PB and CB are acyclic.
– CR is a combination rule.

In a probabilistic rule (8), each p-predicate Ai is of the form q(t1, ..., tm, v),
which simulates an equation q(t1, ..., tm) = v with v being a value from the prob-
abilistic domain of q(t1, ..., tm). For instance, let DOMnbrhd = {average, good,
bad} be the probabilistic domain of nbrhd(X), then the p-predicate nbrhd(X,
good) simulates nbrhd(X) = good, meaning that the neighborhood of X is good.
The left-hand side P (A0|A1, ..., Al) = α expresses that the probability of A0 con-
ditioned on A1, ..., Al is α. The right-hand side B1, ..., Bm,¬C1, ...,¬Cn is the
context of the rule where the Bjs and Cks are c-predicates. Note that the sets
of p-predicate and c-predicate symbols are disjoint. A separate logic program
CB is used to evaluate the context of a probabilistic rule. As a whole, the above
probabilistic rule states that for each of its (Herbrand) ground instances

P (A′
0|A′

1, ..., A
′
l) = α ← B′

1, ..., B
′
m,¬C′

1, ...,¬C′
n

if the context B′
1, ..., B

′
m,¬C′

1, ...,¬C′
n is true in CB under the program comple-

tion semantics, the probability of A′
0 conditioned on A′

1, ..., A
′
l is α.

PKB and BKB have the following important differences.
First, probabilistic rules of form (8) in PKB contain both logic representation

(right-hand side) and probabilistic representation (left-hand side) and thus are
not logic clauses. The logic part and the probabilistic part of a rule are separately
computed against CB and PB, respectively. In contrast, our BKB uses logic
clauses of form (4), which naturally integrate the direct influence information,
the context and the type constraints. These logic clauses are evaluated against
a single logic program PB ∪CB, while the probabilistic information is collected
separately in Tx.

Second, logic reasoning in PKB relies on the program completion semantics
and is carried out by applying SLDNF-resolution. But in BKB, logic inferences
are based on the well-founded semantics and are performed by applying SLG-
resolution. The well-founded semantics resolves the problem of inconsistency
with the program completion semantics, while SLG-resolution eliminates the
problem of infinite loops with SLDNF-resolution. Note that the key significance
of BKB using the well-founded semantics lies in the fact that a unique set of
influence clauses can be derived, which lays a basis on which both the declarative
and procedural semantics for BKB are developed.

Third, most importantly PKB has no mechanism for handling cyclic influ-
ences. In PKB, cyclic influences are defined to be inconsistent (see Definition
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9 of the paper [18]) and thus are excluded (PKB excludes cyclic influences by
requiring its programs be acyclic). In BKB, however, cyclic influences are inter-
preted as feedbacks, thus implying a time sequence. This allows us to derive a
stationary DBN from a logic program with recursive loops.

Recently, Fierens, Blockeel, Ramon and Bruynooghe [9] introduced logical
Bayesian networks (LBN). LBN is similar to PKB except that it separates logical
and probabilistic information. That is, LBN converts rules of form (8) into the
form

A0|A1, ..., Al ← B1, ..., Bm,¬C1, ...,¬Cn

where the Ais are p-predicates with the last argument V removed, and the Bjs
and Cks are c-predicates defined in CB. This is not a standard clause of form
(3) as defined in logic programming [16]. Like PKB, LBN differs from BKB in
the following: (1) it has no mechanism for handling cyclic influences (see Section
3.2 of the paper [9]), and (2) although the well-founded semantics is also used
for the logic contexts, neither declarative nor procedural semantics for LBN has
been formally developed.

5.2 Comparison with Bayesian Logic Programming

Building on Ngo and Haddawy’s work, Kersting and De Raedt [15] introduce
the framework of Bayesian logic programs. A Bayesian logic program (BLP) is a
triple <P, Tx, CR> where P is a well-defined logic program, Tx consists of CPTs
associated with each clause in P , and CR is a combination rule. According to
[15], we understand that a well-defined logic program is an acyclic positive logic
program satisfying the range restriction.2 For instance, a logic program contain-
ing clauses like r(X) ← r(X) (cyclic) or r(X) ← s(Y ) (not range-restricted) is
not well-defined. BLP relies on the least Herbrand model semantics and applies
SLD-resolution to make backward-chaining inferences.

BLP has two important differences from our BKB framework. First, it applies
only to positive logic programs. Due to this, it cannot handle contexts with
negated atoms. (In fact, no contexts are considered in BLP.) Second, it does
not allow cyclic influences. BKB can be viewed as an extension of BLP with
mechanisms for handling contexts and cyclic influences in terms of the well-
founded semantics. Such extension is clearly non-trivial.

5.3 Comparison with the Time Parameter-Based Approach

The time parameter-based framework proposed by Glesner and Koller [11] is also
a triple <P, Tx, CR>, where CR is a combination rule, Tx is a set of CPTs that
are represented as decision trees, and P is a logic program with the property that
each predicate contains a time parameter and that in each clause the time argu-
ment in the head is at least one time step (unit) later than the time arguments in

2 A logic program is said to be range-restricted if all variables appearing in the head
of a clause appear in the body of the clause.
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the body. This framework is implemented in Prolog, i.e. clauses are represented
as Prolog rules and goals are evaluated applying SLDNF-resolution. Glesner and
Koller [11] state: “... In principle, this free variable Y can be instantiated with
every domain element. (This is the approach taken in our implementation.)” By
this we understand that they consider typed logic programs with finite domains.

An obvious difference is that our BKB framework is devoted to modeling
stationary DBNs, whereas the time parameter-based framework targets flexible
DBNs. One may say that stationary DBNs can also be modeled with the time
parameter-based framework, as they are special cases of flexible DBNs. This
appears not the case. We observe two major limitations of the time parameter-
based framework. First, it uses time steps as time slices, thus for any A and B
such that A is influenced by B, A and B will not be allowed to occur in the same
time slice. Due to this, we are unable to use the time parameter-based framework
to model intra-probabilistic relations between the random variables within a time
slice t (like those in Figure 1). Second, introducing time parameters to enforce
acyclicity may lose answers to some queries. Let P be a logic program and Pt

be P with additional time parameters. It is easy to prove that Pt is acyclic.
Let p(.) be a query and p(., N) be p(.) with a ground time argument N added.
Then evaluating p(., N) over Pt (applying SLDNF-resolution) achieves the same
effect as evaluating p(.) over P with some depth-bound M (i.e. derivations are
cut at depth M). Since the loop problem in logic programming is undecidable in
general, it is impossible to determine an appropriate depth-bound (rep. a ground
time argument) for an arbitrary query without losing answers.

6 Conclusions and Discussion

We have developed an approach to deriving a stationary DBN from a logic pro-
gram with recursive loops. We observed that recursive loops in a logic program
imply a time sequence and thus can be used to model a stationary DBN with-
out using explicit time parameters. We introduced a Bayesian knowledge base
with logic clauses of form (4). These logic clauses naturally integrate the direct
influence information, the context and the type constraints, and are evaluated
against a single logic program PB ∪ CB under the well-founded semantics. We
established a declarative semantics for a Bayesian knowledge base and developed
algorithms that build a two-slice DBN from a Bayesian knowledge base.

We emphasize the following two points. First, recursive loops (cyclic influ-
ences) and recursion through negation are unavoidable in modeling real-world
domains, thus the well-founded semantics together with its top-down inference
procedures is well suitable for the PLP application. Second, recursive loops de-
fine feedbacks, thus implying a time sequence. This allows us to derive a two-slice
DBN from a logic program containing no time parameters. We point out, how-
ever, that the user is never required to provide any time parameters during the
process of constructing such a two-slice DBN. A Bayesian knowledge base de-
fines a unique space of random variables and a unique set of influence clauses,
whether it contains recursive loops or not. From the viewpoint of logic, these
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random variables are ground atoms in the Herbrand base; their truth values are
determined by the well-founded model and will never change over time.3 There-
fore, a Bayesian network is built over these random variables, independently of
any time factors (if any). Once a two-slice DBN has been built, the time inter-
vals over it would become clearly specified, thus the user can present queries and
evidences over the DBN using time parameters at his/her convenience.
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Abstract. Given sample data and background knowledge encoded in
the form of logic programs, a predictive Inductive Logic Programming
(ILP) system attempts to find a set of rules (or clauses) for predict-
ing classification labels in the data. Most present-day systems for this
purpose rely on some variant of a generate-and-test procedure that re-
peatedly examines a set of potential candidates (termed here as the “hy-
pothesis space”). On each iteration a search procedure is employed to
find the “best” clause. The worst-case time-complexity of such systems
depends critically on: (1) the size of the hypothesis spaces examined; and
(2) the cost of estimating the goodness of a clause. To date, attempts
to improve the efficiency of such ILP systems have concentrated either
on examining fewer clauses within a given hypothesis space, or on effi-
cient means of estimating the goodness of clauses. The principal means
of restricting the size of the hypothesis space itself has been through the
use of language and search constraints. Given such constraints, this pa-
per is concerned with investigating the use of a dimensionality reduction
method to reduce further the size of the hypothesis space. Specifically,
for a particular kind of ILP system, clauses in the search space are repre-
sented as points in a high-dimension space. Using a sample of points from
this geometric space, feature selection is used to discard dimensions of
little or no (statistical) relevance. The resulting lower dimensional space
translates directly, in the worst-case, to a smaller hypothesis space. We
evaluate this approach on one controlled domain (graphs) and two real-
life datasets concerning problems from biochemistry (mutagenesis and
carcinogenesis). In each case, we obtain unbiased estimates of the size of
the hypothesis space before and after feature selection; and compare the
the results obtained using a complete search of the two spaces.

1 Introduction

Given sample data and background knowledge encoded in the form of logic pro-
grams, a category of Inductive Logic Programming (ILP) systems attempt to find
a set of rules (or clauses) for predicting classification labels in new data. Many
present-day systems for this purpose rely on some variant of a generate-and-test
procedure that repeatedly examines a set of potential candidates (termed here
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as the “hypothesis space”, or sometimes, the search space). On each iteration a
search procedure is employed to find the “best” clause. A straightforward analy-
sis (see Section 2) shows that under fairly general considerations, the worst-case
time-complexity depends on: (1) the size of the hypothesis spaces examined;
and (2) the cost of estimating the goodness of a clause. To date, attempts to im-
prove the efficiency of such ILP systems have concentrated either on examining
fewer clauses within a given hypothesis space (for example, using a greedy search
[20,17], restricting the number of clauses examined in a branch-and-bound search
[16], or employing randomized restarted methods [29,30]); or on efficient means
of estimating the goodness of clauses (for example, using stochastic matching
[24], sampling [25], clause optimization techniques [3], neural-network models
for clause utility [4]).

Practical problems and the flexibility of using first-order logic as a represen-
tation language can often engender intractably large hypothesis spaces. Under
such conditions, it is clearly infeasible to perform any kind of exhaustive search.
Indeed, there appears to be some evidence that even if feasible, such an ex-
tended search may be undesirable. Experiments with feature-based rule learning
[21] suggests that as the number of candidates examined increases, so does the
probability of obtaining a “fluke” – a clause that scores well on the sample data
simply due to chance effects. This can be seen as a procedural analogue of over-
fitting and Fig. 1 shows a manifestation of this phenomenon in two prominent
problems addressed by ILP. Related theoretical developments in the field of com-
putational learning theory have also shown the need to restrict the hypothesis
space in order to arrive at learnability results [2].

The principal means of restricting the size of the hypothesis space has been
through the use of language and search constraints (mode declarations, restric-
tions on the maximum length of clauses, “prune” statements and so on). These
are provided by the user, usually with some knowledge of the problem being
studied. In this paper, we investigate whether it is possible to restrict the size a
hypothesis space further by using the sample data provided to the ILP system
and statistical techniques for dimensionality reduction (or feature selection, as
they are sometimes called in the literature). Specifically, the investigation is an
empirical study in which clauses in the hypothesis space examined by an ILP
system are represented as points in a high-dimension (Boolean) space. Using a
sample of points from this geometric space, feature selection is used to discard
dimensions of little or no statistical (as opposed to logical) relevance. The result-
ing lower dimensional space translates directly, in the worst-case, to a smaller
hypothesis space. We evaluate this approach on one controlled domain (graphs)
and two real-life datasets concerning problems from biochemistry (mutagenesis
and carcinogenesis). In each case, we obtain unbiased estimates of the size of
the hypothesis space before and after feature selection; and compare the results
obtained using a complete search of the two spaces.

This paper is organized as follows. Section 2 summarizes the features of an
ILP algorithm to the extent that is relevant to the paper. Section 3 describes the
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Fig. 1. Search space size and “fluke” percentages for two applications of ILP. The
top row of graphs shows the size of the space searched for each clause-length (up to
a maximum of 5000 clauses at any length). Our interest here is in flukes – clauses
that appear “good” when evaluated on the sample (“training”) data provided, but are
revealed to be “bad” when evaluated on new (“test”) data. For the illustration here, a
clause is classified “good” on either data set if it is in the top 5 percent of the clause-
ranking obtained by scores on that data set. A fluke is thus in the top 5 percent when
evaluated on training data, but outside it when evaluated on the test data. The fluke
percentage is then simply the ratio of flukes to the total number of clauses examined.
The lower row of graphs shows this percentage when using the evaluation function
described in [16].

use of dimensionality reduction for restricting the size of the hypothesis space.
An empirical evaluation is in Section 4. Section 5 concludes the paper.

2 “Predictive” ILP

The term “predictive ILP” has been used to describe the function of a class
of programs that construct theories for discriminating accurately amongst two
sets of examples (“positive” and “negative”). The partial specifications provided
by [15] have been adopted as the basis for deriving programs in this class. With
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some minor changes to the formulation in [15], an ILP algorithm for constructing
predictive theories is taken to be one that conforms to at least the following:

Given:
B: background knowledge consisting of a set of definite clauses.
I: a set of constraints.
L: a language describing acceptable hypotheses.
E: a finite set of examples = E+ ∪E− where:

E+ = {e1, e2, . . .} is a set of definite clauses (these are “positive
examples”);
E− = {f1, f2 . . .} is an optional set of Horn clauses (these are “neg-
ative examples”); and
B �|= E+

Find: H ∈ L, H = {D1, D2, . . .}, such that the following conditions are met:
Weak Sufficiency (WS). ∀Di ∈ H ∃e ∈ E+ s.t. B ∪ {Di} |= e
Strong Sufficiency (SS). B ∪ H |= E+;
Weak Consistency (WC). B ∪ H �|= �;
Strong Consistency 1 (SC1). B ∪ H ∪ E− �|= �; and
Strong Consistency 2 (SC2). B ∪ H is consistent with the I

The first requirement under Strong Consistency ensures that H does not con-
tain any “over-general” clauses. Often, implementations do not require clauses
to meet this requirement, as some members of E− are taken to be “noisy”.
This specification is then refined to allow theories to be inconsistent with some
negative examples. We have deliberately left SC2 imprecise to allow a flexible
interpretation of the I; and will use the phrase “H explains E” to denote that
at least WS, SS, WC, and SC2 are met.

The reader would have noted that this specification does not state how the
Di are to be constructed. This is an implementation-dependent detail and some
variant of the greedy cover set procedure in Fig. 2 is the most popular (repro-
duced, with minor changes, from [25]).

At the heart of each iteration i is a search through a set of candidate clauses
in L. This set is called the “hypothesis space” for iteration i and denoted Hi.
For each iteration i we will assume:

A1. Hi will only contain definite clauses composed of at most c+1 literals drawn
without replacement from a “most specific” definite clause ⊥i ∈ L. The value
of c is pre-specified.1

1 The notion of a most specific clause is described in [16] and ensures clauses in the
hypothesis space satisfy the requirement of Weak Sufficiency. For our purpose, ⊥i

will be a definite clause. Typically this would consist of 10s-100s of literals. Each
clause that consists of literals drawn from ⊥i θ-subsumes it as defined in [18] and
in some sense, can be taken to be “more general” than it. The reader should be
aware that such clauses are only a subset of all clauses that θ-subsume ⊥i. We have
assumed that the ordering of literals in the clause can affect its coverage – this is
the case with the computation rule used by standard Prolog. For simplicity, we do
not include any tests in the search for equivalences arising from literal re-orderings.
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generalise(B,I,L, E) : Given background knowledge B, hypothesis constraints I , a
finite training set E = E+∪E−, returns a hypothesis H in L such that H explains
the E.
1. i = 0
2. E+

i = E+, Hi = ∅
3. if E+

i = ∅ return Hi otherwise continue
4. increment i
5. Traini = E+

i−1 ∪ E−

6. Di = search(B,Hi−1, I,L, T raini)
7. Hi = Hi−1 ∪ {Di}
8. Ep = {ep : ep ∈ E+

i−1 s.t. B ∪ Hi |= {ep}}.
9. E+

i = E+
i−1\Ep

10. Go to Step 3

Fig. 2. An ILP implmentation. The function search(. . .) in Step 6 is some search
procedure that returns the “best” clause from all candidates in L (using some estimate
of clause utility). The requirement SC1 that Di be consistent with all the negative
examples may be weakened by allowing the Di to be inconsistent with some number
of negative examples. This number would then have to be provided as an additional
parameter to the search procedure.

A2. The evaluation function induces a partial ordering on the set of clauses in
Hi.

Remark 1. Time complexity. Hi consists of definite clauses that are obtained
by selecting literals from ⊥i. Since ⊥i is definite, there is only 1 definite clause
with a single literal. On the other hand, there can be at most 1 × (|⊥i| − 1)
two-literal definite clauses, 1× (|⊥i|−1)× (|⊥i|−2) three-literal definite clauses
and so on. |Hi| is therefore at most 1+(|⊥i|−1)+ . . .+(|⊥i|−1)× . . . (|⊥i|− c)
≤ 1 + |⊥i|+ . . . + |⊥i|c = |⊥i|(c+1)−1

|⊥i|−1 . If |⊥| is an upper bound on the size of the
most specific clause then the number of clauses in the hypothesis space on any
iteration is O(|⊥|c). As a first approximation, for a given B, we take the cost
of estimating the utility of any clause as being some monotonically increasing
function of Traini, say f(|Traini|). The time complexity of the search on any
one iteration of Fig. 2 is then O(f(|E|) × |⊥|c) (since |E| is an upper bound
on Traini). It is evident that the procedure in Fig. 2 iterates no more than
|E+| times. The time complexity of the entire procedure in Fig. 2 is therefore
O(f(|E|) × |⊥|c × |E|).

We can therefore envisage a naive (exhaustive) search that does the following
on each iteration i: (1) Obtain the set of all clauses {Ci,1, Ci,2, . . . , Ci,Ni} in
Hi. From the remark above, Ni ≤ |⊥|c; (2) Obtain a total order on the Ci,j

based on the evaluation function used. This follows from A2 above and the fact
that there is a consistent enumeration for any partially ordered set; and (3)
Return the clause that has the highest utility in this order (the “best” clause).
A complete, but not necessarily exhaustive, search can be achieved by a branch-
and-bound technique [19], but the worst-case time-complexity of the procedure
would remain remains unaltered.
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From Remark 1, it is clear that the size of the hypothesis space on any given
iteration i of the procedure in Fig. 2 is at most |⊥i|c. We now examine obtaining
an unbiased estimate for the true size of the hypothesis space.

Remark 2. Unbiased estimation of |Hi| Let the number of definite clauses
in L obtained by selecting exactly l literals from ⊥i be nl, the total number
of definite clauses obtained by selecting exactly l literals from ⊥i be Nl and
pl = nl/Nl. Then |Hi| = n1+n2+ · · ·+nc+1 = p1N1+p2N2+ · · ·+pc+1Nc+1. Let
p̂1, p̂2, . . . , ˆpc+1 be sample proportion estimates of p1, p2, . . . , pc+1 respectively.
It is known that these estimates are unbiased [28] (that is, with some abuse of
notation, E(p̂i) = pi). An unbiased estimate of |Hi| is then p̂1N1 + p̂2N2 + · · ·+

ˆpc+1Nc+1.

Fig. 3 shows the steps for obtaining this estimate using a modified version of the
procedure described in [26].

hsize(⊥,L, n, s) : Given a definite clause ⊥ and a natural number n > 0, returns an
estimate, using a sample of size s, of the number of definite clauses in L with at
most n literals drawn from ⊥i.
1. Ĥ1 = 1
2. l = 2
3. while l ≤ n do

(a) Sample s clauses of length l from ⊥. Each such clause consists of the
positive (“head”) literal in ⊥ and a random selection, without replacement,
of l − 1 literals from the negative (“body”) literals in ⊥.

(b) Let p̂l be the proportion of the s clauses that are in L.
(c) n̂l = p̂l × (|⊥| − 1) × . . . × (|⊥| − l + 1)
(d) Ĥl = Ĥl−1 + n̂l

4. return Ĥn

Fig. 3. A procedure for estimating the number of “legal” clauses of length at most
n drawn from ⊥. The number is computed using estimates of the proportion of legal
clauses pl for l = 1 . . . n. These estimates are proportions of legal clauses in samples
of size s. Randomly sampling clauses of a particular length is done using a procedure
described in [26]. The size of s needs to be specified in advance: one option is to be
guided by statistical estimation theory. This states that if values of the pl are not too
close to 0 or 1, then we can be at least 100× (1− α)% confident that the error will be
less than a specified amount e when s = z2

α/2/(4e2) [28]. Here z represents the standard
normal variable as usual.

Remark 3. Vector representation of a clause. Any clause Ci,j ∈ Hi is com-
posed of literals drawn without replacement from ⊥i. Let n = |⊥i|, and assume
a total ordering over literals in ⊥i. Ci,j can be seen as a point in {0, 1}n, rep-
resented by the vector Ci,j = (x1, x2, . . . , xn) where xk = 1 iff the kth literal
from ⊥i is in Ci,j . Actually, since we are only concerned with definite clauses, we
can represent Ci,j as a point in {0, 1}n−1 (instead of {0, 1}n) since the positive
literal in ⊥i will always be in Ci,j .)
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Figure 4 shows an example of representing clauses in this manner. The example is
from the “trains” problem, originally proposed in [14]. As a result of the language
restrictions in L, not all vectors may represent legal clauses in the hypothesis
space (see Fig. 4(c) and associated text).

eastbound(A):−  short(B), closed(B).

1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

(c)

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1  

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1  

1 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 +1  

1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 +2  

:
:
:

1       eastbound(A) :−

      

 

   

  

(a)

2                has_car(A,B),

3                has_car(A,C),

4                has_car(A,D),

5                has_car(A,E),

6                short(E),

7                short(C),

8                closed(C),

9                long(D),

10              long(B),

11              open_car(E),

12              open_car(D),

13              open_car(B),

14              shape(E,rectangle),

15              shape(D,rectangle),

16              shape(C,rectangle),

17              shape(B,rectangle),

18              wheels(E,2),

19              wheels(D,3),

20              wheels(C,2),

21              wheels(B,2),

22               load(E,circle,1),

23               load(D,hexagon,1),

24               load(C,triangle,1),

25               load(B,rectangle,3).

eastbound(A):− has_car(A,B), short(B), closed(B).

1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

(b)

(d)

Fig. 4. The trains problem. (a) The most specific clause within some L for an “east-
bound” train (with an ordering on its literals); (b) A clause and its vector represen-
tation; (c) A vector representing a clause outside an L that stipulates that “short”
literals require to be preceded by “has car” literals. Such a clause would not be in the
hypothesis space; and (d) A sample of clauses from the hypothesis space, along with
their utility values.

3 Dimensionality Reduction

Our goal in using dimensionality reduction is this: clauses represented by n-
dimensional vectors are to be represented instead by m-dimensional ones, where
m < n. Further, we will seek to achieve this by discarding those dimensions that
appear to contain little or no information. It is evident that removing dimensions
in this manner corresponds directly to removing literals from the most specific
clause used to construct the clauses. From Remark 1, the upper bound on the
size of the hypothesis space is, in turn, lowered.2

2 It does not, of course, follow that the actual size is also smaller. This is the subject
of the empirical investigation in Section 4.
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Given a set of vectors of the form shown in Fig 4(d): {(x(i), t(i))}N
i=1, where

x(i) is some n-dimensional vector and t(i) is the target value (this is not al-
ways needed), the goal of dimensionality reduction is to represent the x(i) in
some m-dimensional space (m < n), by discarding those dimensions that are
found to be statistically irrelevant or redundant (usually obtained using some
correlation measure). To achieve this, techniques for dimensionality reduction
either require that a target value be supplied with each vector (the resulting
techniques are called “supervised” methods) or they do not (resulting in “un-
supervised” methods). With this broad distinction, a large number of methods
have been proposed: the reader is referred to [7] for a good introduction to the
area and to [8,9] for some additional approaches. In this paper, we are simply
concerned with their application to reducing the number of dimensions in the
vector representation of clauses.

3.1 Using Dimensionality Reduction to Restrict the Hypothesis
Space

We return here to the search(. . .) procedure in Fig. 2. Recall that it was assumed
there that this procedure would return the “best” clause in a set containing
definite clauses constructed from a most specific clause. The main conceptual
steps are shown in Fig. 5.

search(B,H, I,L, E) : Given background knowledge B, hypothesised clauses H , hy-
pothesis constraints I , a finite training set E = E+ ∪E−, returns a clause D in L
such that B ∪H ∪D |= Ep, where: Ep ⊆ E+, Ep �= ∅; and B ∪H ∪D is consistent
with the I .
1. If E+ = ∅ then return ∅
2. Let e be a randomly selected example in E+

3. Construct ⊥ s.t. ⊥ |= B ∪ H ∪ {e}
4. Let S = {C : � � [C] � [⊥] and C ∈ L}
5. Let D be the best clause in S consistent with B, H, I .
6. return D

Fig. 5. The conceptual steps of the search procedure in Fig. 2. Here � denotes a gen-
erality ordering (like θ−subsumption) and [·] denotes an equivalence class. In practice,
the set S would not actually be constructed in Step 4.

We intend to modify the steps in Fig. 5 along the lines shown in Fig. 6. A
complication arises in Step 7: some literals may necessarily have to be included
to ensure a “high ranking” literal is retained in ⊥′. For example, in Fig. 4, literal
7 may be ranked highest, but L may require that it can appear in ⊥′ only if
literal 3 is present. This means that ⊥′ may not necessarily contain all the top
p-percentile of literals. Some may have to be left out to ensure other necessary
literals are included.
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rsearch(B,H, I,L, E, s, p) : Given background knowledge B, hypothesised clauses H ,
hypothesis constraints I , a finite training set E = E+ ∪ E−, numbers s and p
(0 < s, p ≤ 100), returns a clause D in L such that B ∪ H ∪ D |= Ep, where:
Ep ⊆ E+, Ep �= ∅; and B ∪ H ∪ D is consistent with the I .
1. If E+ = ∅ then return ∅
2. Let e be a randomly selected example in E+

3. Construct ⊥ s.t. ⊥ |= B ∪ H ∪ {e}
4. Let S = {C : � � [C] � [⊥] and C ∈ L}
5. Randomly draw s

100
|S| clauses from S and construct a table T of feature

vectors representing the clauses
6. Use a dimensionality reduction method on T to rank the binary features in

decreasing order of relevance
7. Use the ranking to retain at most p

100
|⊥| literals. Let the resulting clause be

called ⊥′.
8. Let S′ = {C : � � [C] � [⊥′] and C ∈ L}
9. Let D be the best clause in S′ consistent with B, H, I .

10. return D

Fig. 6. The conceptual steps of the search procedure which uses dimensionality reduc-
tion to remove literals from ⊥. As before, in practice, neither S or S′ would actually
be constructed. If |⊥| = n then the table T will consist either of n columns or n + 1
columns (depending on whether the dimensionality reduction method is unsupervised
or supervised).

4 Empirical Evaluation

In this section we evaluate empirically the use of dimensionality reduction to re-
strict the size of a hypothesis space. Using well-known statistical methods on some
standard ILP datasets, we attempt to find answers to the following questions:

1. Does the use of dimensionality reduction actually reduce the size of the
hypothesis space? and

2. Does the resulting search space after dimensionality reduction still contain
as good a clause as the original space?

4.1 Materials

Problem Domains. We examine the use of dimensionality reduction on three
ILP tasks considered in the literature. These are: a synthetic problem concerned
with finding clauses in randomly constructed directed graphs [30]; and the stan-
dard problems of mutagenesis (the subset containing 188 examples: see [10]) and
carcinogenesis [11]. Of these, the last two problems have been well studied and
we refer the reader to the literature cited for specific details. The graphs problem
is less well known. The data here consist of 5,000 directed graphs (containing in
total 16,000 edges). Every node in a graph is coloured to red or black. In [30],
examples were generated using a target clause consisting of 11 literals. Here we
consider two problems: an “easy” one in which there is a clause that precisely
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separates the positive examples from the negatives, given the language restric-
tions3; and a “hard” one in which no such clause exists4. Clearly, if no good
clause exists, then the answer to the second question above is trivially “yes”.
The answer to the first question remains to be determined. Figure 7 tabulates
the data characteristics of the different problems considered here (all datasets
can be obtained from the first author).

Property Easy Graphs Hard Graphs Mutagenesis Carcinogenesis

Origin Artificially Artificially Biochemical Biochemical
generated generated literature literature

Noise No No Yes Yes

‘Target’ theory 1 short clause No No No

# pos/neg examples 2480/2420 20/20 125/63 182/148

Fig. 7. Data characteristics of the problem domains

Algorithms and Machines. All experiments use the ILP program Aleph (Ver-
sion 5). Aleph is available at: http://www.comlab.ox.ac.uk/oucl/research/
areas/machlearn/Aleph/aleph.pl. We consider two dimensionality reduction
methods: Principal Component Analysis (PCA, which is unsupervised); and
RReliefF, a supervised feature selection method proposed in [22] as an extension
to Relief [12] enabling it to problems in which the response variable is numer-
ical (more correctly, RReliefF is an extension to ReliefF [13]). PCA by itself
does not produce a ranking over the original set of features. We extract this
ordering from the eigenvectors. More specifically, we start by choosing the dom-
inant eigenvector (the one with the largest eigenvalue) and choose the variable
with the largest absolute value of the coefficient. This variable is the most rel-
evant. We then move to the next eigenvector and repeat the process leaving
out the variables previously chosen to obtain the second most relevant vari-
able. In this way we obtain an ordering of all the variables [23]. We use Matlab
for performing PCA (the program is available from the authors), and the im-
plementation within the WEKA program of RReliefF (WEKA is available at:
http://www.cs.waikato.ac.nz/ ml/weka/). All experiments were conducted
on a machine equipped with an two Intel Pentium IV 1.2GHz processors and
512 megabytes of random access memory.

4.2 Method

We are primarily concerned with assessing the utility of using rsearch(. . .) as
a search procedure instead of search(. . .) (see Figs. 5,6). The principal parame-
3 We have elected to restrict clauses to at most 4 literals. This is in line with the

original published work on mutagenesis and carcinogenesis.
4 That is, no 4-literal clause exists that can discriminate amongst the examples pro-

vided (the target theory is a 10-literal clause).
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ters of interest are s (the percentage of the hypothesis space to be provided as
“training” data for dimensionality reduction); and p (the percentage of the most
specific clause to be retained). We adopt the following method in investigating
the use of rsearch(. . .):

For each task (Graphs, Mutagenesis and Carcinogenesis) and dimensionality
reduction method (PCA and RReliefF):

– For s ∈ {s1, s2, . . .} and p ∈ {p1, p2, . . .}
– Repeat R times

1. Randomly select an example and construct a most specific clause
⊥

2. Let Ĥ be the estimated size of the hypothesis space with ⊥
(obtained using the procedure in Fig. 3)

3. Let F be the utility of the best clause found by conducting a com-
plete search over Ĥ nodes (using ⊥ as the most specific clause).

4. Generate a sample T of s
100Ĥ clauses and represent them in

the vector form appropriate for the dimensionality reduction
method.

5. Obtain a ranking over the literals in ⊥ using T and the dimen-
sionality reduction method and use this ranking to construct a
new clause ⊥′ that retains at most p

100 |⊥| literals from ⊥
6. Let Ĥ ′ be the estimated size of the hypothesis space with ⊥′.
7. Let F ′ be the utility of the best clause found by conducting a

complete search over Ĥ ′ nodes (using ⊥′ as the most specific
clause).

8. Record Ĥ , Ĥ ′, F , F ′

– Compute the average values Ĥav, Ĥ ′
av, Fav, F ′

av over the R trials.
– Compare the differences between Ĥav, Ĥ ′

av; and Fav, F ′
av.

The following details are relevant: (1) For the purposes of this study, we will
consider s values of 5% and 10%, and p values of 25%, 50% and 75%; (2) We will
average over R = 3 trials. This is lower than what we would have liked, but was
forced by the relatively long time to conduct complete searches in the biochemical
problems. It is not the dimensionality reduction step that takes up the time here,
but the complete search of the hypothesis space both before and after selecting
literals (we use a branch-and-bound algorithm for the complete search); (3)
Estimating the sizes Ĥ and Ĥ ′ require drawing samples from the hypothesis
space. We use samples of size 400 to estimate the proportions required by the
procedure in Fig. 3; (4) We compute clause utilities F and F ′ by the difference
in the positive and negative coverage of the clause. This is consistent with the
original applications; (5) The use of RReliefF requires the user to provide values
of two parameters: m (the number of instances sampled) and k (the number of
neighbors examined). We have used a m value of 250 and a k value of 10. The
m value is as recommended in the original RReliefF paper. The value for k is
less evident: a value of 10 is common in the literature for problems with discrete
response variables. Problems with numeric response variables usually employ a
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k value of 100. Although our response variable (clause utility) is numeric, we
have elected to use the lower value since typically, only a few different values for
the response variable appear in the data (a lot of clauses have the same positive
and negative coverages); (6) We present the comparisons of Ĥav, Ĥ ′

av; and Fav,
F ′

av after normalizing against Ĥav and Fav respectively. For example, if Ĥav is
100,000 and Ĥ ′

av is 6,000, then these numbers will be presented as 100 percent
and 6 percent respectively. This is done for two reasons: the actual values of
the quantities are of less interest here than the ratio of their values; and the
quantities are on different scales.

4.3 Results and Discussion

Figures 8 and 9 tabulate the normalized values of the sizes of the hypothesis
spaces before and after dimensionality reduction; and normalized values of the
best clause in the different hypothesis spaces. If dimensionality reduction plays a
useful role, we would expect to see the size of the hypothesis space to be reduced
(that is, Ĥ ′

av should be substantially lower than 100 percent) without much
change in the clause utility (that is, F ′

av should be fairly close to 100 percent).
The results tabulated clearly show that for the problems considered, there

is no compelling evidence for the usefulness of unsupervised dimensionality re-
duction (at least in the form of Principal Components Analysis). Although the
size of the hypothesis space is reduced, the best clause in the resulting space
is always substantially worse. This is not surprising, since there is no a priori
reason to expect that the relevance of features obtained from the eigenvectors
should be correlated with clause utility. In general, we would also expect that
as s is increased—a larger data sample is provided to the dimensionality reduc-
tion technique—the ranking of features produced would improve. This is not
observed with PCA (using F ′

av values as a guide, in many cases it gets worse),
suggesting that it is not being able to extract a reliable ranking from the data.

The PCA based method we have used for ranking the variables usually iden-
tifies very good subsets. Further, if there are groups of correlated variables,
then it selects just one variable from the group since there is exactly one high
variance principal component associated with each group. However, the method
occasionally also identifies bad or moderate subsets. In part, this is a drawback
of unsupervised dimensionality reduction methods in general. By not using the
class information, the most appropriate subspace (where a certain optimality
criteria is maximized) cannot be identified and one has to resort to using an
optimality criteria that does not necessarily align with the task at hand. In the
case of PCA, the optimality criteria is the preservation of the variance i.e., the
subspace should retain as much of the variance in the data as possible. This is
not usually related to notions such as separability of the classes.

In contrast, supervised dimensionality reduction appears to hold more
promise. Setting aside the “Easy Graphs” problem for the moment, it is possible
to restrict the hypothesis space to nearly half its original size, without loss on the
utility front. Performance is also as expected when s is increased (the few cases
where F ′

av values are lower are artifacts, either of sampling or small numbers).
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s
p 5% 10%

Ĥav Ĥ ′
av Fav F ′

av Ĥav Ĥ ′
av Fav F ′

av

25% 100 1 100 0 100 1 100 0

50% 100 10 100 39 100 10 100 28

75% 100 39 100 64 100 38 100 28

(a) Easy Graphs

s
p 5% 10%

Ĥav Ĥ ′
av Fav F ′

av Ĥav Ĥ ′
av Fav F ′

av

25% 100 8 100 100 100 8 100 100

50% 100 11 100 100 100 10 100 100

75% 100 39 100 100 100 37 100 100

(b) Hard Graphs

s
p 5% 10%

Ĥav Ĥ ′
av Fav F ′

av Ĥav Ĥ ′
av Fav F ′

av

25% 100 3 100 30 100 6 100 23

50% 100 28 100 63 100 22 100 58

75% 100 44 100 79 100 44 100 71

(c) Mutagenesis

s
p 5% 10%

Ĥav Ĥ ′
av Fav F ′

av Ĥav Ĥ ′
av Fav F ′

av

25% 100 3 100 4 100 4 100 20

50% 100 28 100 30 100 37 100 14

75% 100 77 100 54 100 75 100 60

(d) Carcinogenesis

Fig. 8. Results of using PCA. s represents the percentage of the hypothesis space pro-
vided as a sample to PCA and p represents the percentage of the most specific clause
retained using the ranking of literals produced by dimensionality reduction. Ĥav and
Fav are the size of the hypothesis space and the utility of the best clause before dimen-
sionality reduction. Ĥ ′

av and F ′
av are the corresponding values after dimensionality

reduction. All entries are normalized against Ĥav and Fav values and the result ex-
pressed as a percentage. As a matter of interest, the actual Ĥav values are in the tens
of thousands (Graphs) or hundreds of thousands (Mutagenesis and Carcinogenesis).
The actual Fav values are 2480 (Simple Graphs), 1 (Hard Graphs), between 7 and 60
(Mutagenesis), and between 1 and 6 (Carcinogenesis). The absence of any good clause
within the search space in “Hard Graphs” results in F ′

av being always equal to Fav.
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s
p 5% 10%

Ĥav Ĥ ′
av Fav F ′

av Ĥav Ĥ ′
av Fav F ′

av

25% 100 1 100 56 100 1 100 31

50% 100 9 100 61 100 10 100 59

75% 100 38 100 100 100 38 100 67

(a) Easy Graphs

s
p 5% 10%

Ĥav Ĥ ′
av Fav F ′

av Ĥav Ĥ ′
av Fav F ′

av

25% 100 1 100 100 100 1 100 100

50% 100 10 100 100 100 10 100 100

75% 100 40 100 100 100 37 100 100

(b) Hard Graphs

s
p 5% 10%

Ĥav Ĥ ′
av Fav F ′

av Ĥav Ĥ ′
av Fav F ′

av

25% 100 7 100 44 100 9 100 48

50% 100 25 100 99 100 37 100 98

75% 100 28 100 96 100 47 100 100

(c) Mutagenesis

s
p 5% 10%

Ĥav Ĥ ′
av Fav F ′

av Ĥav Ĥ ′
av Fav F ′

av

25% 100 8 100 40 100 17 100 50

50% 100 41 100 67 100 49 100 100

75% 100 53 100 100 100 63 100 83

(d) Carcinogenesis

Fig. 9. Results of using RReliefF. s, k, Ĥav, Fav Ĥ ′
av and F ′

av are as in Fig. 8. As
before, the entries are normalised against Ĥav and Fav values and the result expressed
as a percentage.

The results also suggest that an s value of 10 percent and a p value of 50 percent
yield the best results. For reference, Fig. 10, shows the values obtained by using
the same method, but with a random assignment of relevance to features in the
Mutagenesis and Carcinogenesis domains.
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Method
Problem RReliefF Random

Ĥav Ĥ ′
av Fav F ′

av Ĥav Ĥ ′
av Fav F ′

av

Mutagenesis 100 37 100 98 100 30 100 41

Carcinogenesis 100 49 100 100 100 28 100 67

Fig. 10. Comparison of supervised dimensionality reduction against a method that
randomly assigns relevance to features. We have shown values for s = 10% and p = 50%
only.

Turning now to the performance on “Easy Graphs”: it is evident that the
performance of supervised dimensionality reduction is not as stable. A conser-
vative approach seems to suggest that for problems with relatively easy target
concepts (here, a single short clause that can perfectly discriminate amongst
the examples), it is best not to perform any form of statistical dimensionality
reduction. It is a moot point whether we could know in advance that such a
target concept exists. To some extent the issue is not of immediate relevance:
we expect the methods here to be used when we know that easy target concepts
do not exist.

Of course, the use of a supervised method has the additional overhead of
having to obtain clause utility values for s percent of the hypothesis space; mak-
ing the whole procedure only worthwhile for problems that require substantial
search to find the best clause.

5 Concluding Remarks

This paper has been a study of using general-purpose statistical dimensional-
ity reduction methods to restrict the size of a hypothesis space. The test-beds
used in experiments here have involved search spaces of the order of 10s–100s of
thousands of clauses. By combinatorial standards, these are of very modest size.
Nevertheless they have been sufficient to investigate the use of both unsuper-
vised and supervised methods for dimensionality reduction. Our results suggest
that when “easy” target concepts do not exist, supervised dimensionality reduc-
tion schemes may be able to play an important role in restricting the size of
a hypothesis space. Specifically, we have been able to show that an ILP pro-
gram, equipped with a supervised dimensionality reduction scheme, can detect
and discard substantial portions of the hypothesis space that is not relevant to
identifying good clauses.

The study can be seen as part of an on-going effort to improve the efficiency
of ILP systems by concentrating on ways to improve search performance. So far,
this effort has concentrated on either changing the time-complexity of clause
evaluation, or simply exploring fewer clauses within a given hypothesis space.
The task of circumscribing the space itself has been left to the user, using tools of
language and search restrictions. The approach here can be seen as augmenting
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this by attempting to discover statistical relevancies in the search space using
sample data. In a sense, this is related to, but not the same as the work in [4],
where sample data about clause properties are used to learn an efficient approx-
imation to the clause utility function. The point that statistical techniques for
dimensionality reduction could be useful in ILP was noted some time ago [6], and
the techniques themselves have been used in an indirect manner more recently
in [1] (by transforming the relational problem to an approximate attribute-value
one). Here we have demonstrated how feature selection methods could be used
directly by an ILP system that constructs rules using most-specific clauses. A
different approach to restricting the size of the hypothesis space by dynamic
construction of the most-specific clause during the search has been investigated
in [27]. This is not based on detecting statistical redundancies in the manner we
suggest.

The paper itself has a number of limitations: (1) Results from three domains,
however realistic, clearly can only be suggestive. The variance in estimates of
gains that we have obtained is also high, given the small number of trials we have
been able to perform; (2) The dimensionality reduction methods we have used are
standard, but by no means the best available. For example, an extensive series
of experiments in [5] show that a form of classifiability-based feature selection
may perform much better (although it would have to be altered to account
for numeric response variables); (3) The techniques described here are for rule-
learning using a most-specific clause as described in [16]. This is by no means the
only kind of ILP system possible; (4) The use of the earlier work on improving
clause evaluation and reduced search are outside the scope here.

These issues suggest several directions for future work, namely: (1) Further
testing: on new domains, and using better statistical methods; (2) A study of
the role for statistical relevance discovery in other ILP settings: it is conceivable,
for example, that unsupervised dimensionality reduction may be better suited to
the “explanatory” ILP setting which only seeks descriptive patterns; (3) The de-
velopment and application of ILP engines that contain techniques that combine
all three techniques of improving search performance (efficient clause evaluation,
hypothesis space reduction and reduced search).
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Abstract. Two-Terminal Series Parallel (TTSP, for short) graphs are
used as data models in applications for electric networks and scheduling
problems. We propose a TTSP term graph which is a TTSP graph having
structured variables, that is, a graph pattern over a TTSP graph. Let
T GT T SP be the set of all TTSP term graphs whose variable labels are
mutually distinct. For a TTSP term graph g, the TTSP graph language
of g, denoted by L(g), is the set of all TTSP graphs obtained from g by
substituting arbitrary TTSP graphs for all variables in g.

Firstly, when a TTSP graph G and a TTSP term graph g are given as
inputs, we present a polynomial time matching algorithm which decides
whether or not L(g) contains G. The minimal language problem for the
class LT T SP = {L(g) | g ∈ T GT T SP} is, given a set S of TTSP graphs,
to find a TTSP term graph g in T GT T SP such that L(g) is minimal
among all TTSP graph languages which contain all TTSP graphs in S.
Secondly, we give a polynomial time algorithm for solving the minimal
language problem for LT T SP . Finally, we show that LT T SP is polynomial
time inductively inferable from positive data.

1 Introduction

We consider the learnability of Two-Terminal Series Parallel (TTSP, for short)
graph languages from positive data. A TTSP graph is a graph constructed by
recursively applying “series” and “parallel” operations. A TTSP graph is a pla-
nar graph and used as a data model in applications for problems on electrical
networks and scheduling problems. The purpose of this paper is to show that
the class of languages on TTSP graphs is polynomial time inductively inferable
from positive data.

Uchida et al. [11] proposed the concepts of a graph pattern having graph
structures and structured variables, called a term graph, and a graph pattern
language, called a graph language. Based on the concept of a term graph and a
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Fig. 1. TTSP graphs G1, G2, G3, G4, G5 and a TTSP term graph g. A variable is
drawn by a box with lines to its elements. The numbers at these lines indicates the
order of the vertices which a variable consists of. The symbol inside a box shows the
label of the variable.

graph language given in [11], we define a TTSP term graph as a graph pattern
having a TTSP graph structure and structured variables. A variable in a TTSP
term graph is a pair of its distinct vertices. For a TTSP term graph g, we also
define a TTSP graph language of g as the set of all TTSP graphs obtained from g
by substituting arbitrary TTSP graphs for all variables in g. T T SP denotes the
set of all TTSP graphs. T GT T SP denotes the set of all TTSP term graphs whose
variable labels are mutually distinct. For a TTSP term graph g ∈ T GT T SP , the
TTSP graph language of g is denoted by L(g). In Fig. 1, we give TTSP graphs
G1, G2, G3, G4, G5 in T T SP and a TTSP term graph g in T GT T SP as
examples. And the TTSP graph G1 in Fig. 1 is obtained from the TTSP term
graph g by replacing variables having label x and y with TTSP graphs G4 and
G5 so that u1, u2, v1, v2 of g are identified with w4

1 , w4
2 , w5

1 , w5
2 of TTSP

graphs G4 and G5, respectively.
Angluin [2] and Shinohara [7] gave the framework of inductive inference from

positive data and showed that if a class C has finite thickness, and the member-
ship problem and the minimal language (MINL) problem for C are computable
in polynomial time then C is polynomial time inductively inferable from positive
data. Based on this framework, in this paper, we consider the polynomial time
learnability of LT T SP = {L(g) | g ∈ T GT T SP} from positive data.

Firstly, we show that, for any nonempty set S of TTSP graphs, the car-
dinality of the set {L ∈ LT T SP | S ⊆ L} is finite, that is, LT T SP is finite
thickness. Secondly, we consider the membership problem for LT T SP which is,
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Fig. 2. Trees T, T1, T2 and a term tree t

given a TTSP term graph g ∈ T GT T SP and a TTSP graph G ∈ T T SP , to
decide whether or not L(g) contains G. In [6,8,9], we presented a term tree all
of whose internal vertices are ordered, called an ordered term tree, and a term
tree all of whose internal vertices are unordered, called an unordered term tree.
In order to show that the membership problem for LT T SP is solvable in poly-
nomial time, we present a polynomial time matching algorithm for solving the
membership problem for the set of languages of term trees each of whose inter-
nal vertices has ordered or unordered children, by modifying polynomial time
matching algorithms for ordered term trees and unordered term trees in [6,9].
In Fig. 2, we give a term tree t as an example. A tree T in Fig. 2 is obtained
from t by replacing two variables having labels x and y with trees T1 and T2 in
Fig. 2, respectively. Thirdly, we consider the minimal language problem, MINL
problem for short, for LT T SP which is, given a set S of TTSP graphs, to find a
TTSP term graph g ∈ T GT T SP such that S ⊆ L(g) and there exists no TTSP
term graph g′ ∈ T GT T SP with S ⊆ L(g′) ⊆

/
L(g), that is, L(g) is minimal in

the set {L ∈ LT T SP | S ⊆ L}. g is called a minimally generalized TTSP term
graph explaining S. For example, the TTSP graph g in Fig. 1 is a minimally gen-
eralized TTSP term graph such that {G1, G2, G3} ⊆ L(g), where G1, G2, G3

are TTSP graphs in Fig. 1. Finally, we show that the class LT T SP is polynomial
time inductively inferable from positive data.

There are many studies [10,12,13] for many graph theoretical problems on
TTSP graphs such as Recognition, Decomposition, Maximum independent set,
Minimum dominating set, Maximum matching. We considered the polynomial
time learnabilities of ordered term tree languages and unordered term tree lan-
guages from positive data in [6,8,9]. In other learning models such as query
learning, the learnability of the class of finite unions of ordered term tree lan-
guages was considered in [4,5].

2 Preliminaries

In this section, we introduce a two-terminal series parallel (TTSP, for short)
graph and present a TTSP term graph having structured variables and its TTSP



Polynomial Time Inductive Inference of TTSP Graph Languages 369

graph language by restricting the notion of a term graph given in [11]. Then,
we formally define a membership problem and a minimal language problem for
TTSP graph languages. For a set S, |S| denotes the cardinality of S, that is the
number of elements of S.

A multidag is a directed connected graph which allows multiple edges and
does not contain any cycle. Let g be a multidag. For a vertex v in g, the number
of edges entering v, called the indegree of v, is denoted by indeg(v), and the
number of edges leaving v, called the outdegree of v, is denoted by outdeg(v).
A vertex v with indeg(v) = 0 (resp., outdeg(v) = 0) is called a source (resp., a
sink) of g. A multidag is said to be two-terminal if it has exactly one source and
one sink. Let Λ be a finite alphabet.

Definition 1 (TTSP graphs). A TTSP graph is a two-terminal multidag de-
fined as follows.

(1) A directed connected graph consisting of two vertices u and v, and a single
edge from u to v labeled with an element in Λ is a TTSP graph. The vertices
u and v are its source and its sink, respectively.

(2) For i = 1, 2, let Gi be a TTSP graph which has ui as its source and vi as its
sink. Then the graph obtained by either of the following two operations is a
TTSP graph.
(a) Parallel operation: Identify u1 with u2, and identify v1 with v2. The

resulting graph, denoted by G1//G2, has u1(= u2) as its source and
v1(= v2) as its sink.

(b) Series operation: Identify u2 with v1. The source and the sink of the
resulting graph, denoted by G1 ∗ G2, are u1 and v2, respectively.

The set of all TTSP graphs is denoted by T T SP .

For example, for each i (1 ≤ i ≤ 5), Gi given in Fig. 1 is a TTSP graph having
wi

1 as the source and wi
2 as the sink, respectively. For two TTSP graphs G4 and

G5 given in Fig. 1, we give an example of a TTSP graph G4//G5 (resp., G4 ∗G5)
in Fig. 3 which is obtained by applying the Parallel operation (resp., the Series
operation) to G4 and G5.

Let X be an infinite alphabet such that Λ ∩ X = ∅.

Definition 2 (TTSP Term Graphs). Let G = (VG, EG) be a TTSP graph,
where VG and EG are sets of vertices and edges, respectively. Let Eg and Hg be
a partition of EG, i.e., Eg ∪Hg = EG and Eg ∩Hg = ∅. And let Vg = VG. Then,
a triplet g = (Vg, Eg, Hg) is called a TTSP term graph. We call an element in
Vg, Eg and Hg a vertex, an edge and a variable, respectively. A variable has an
element in X as a label. If Hg = ∅, a TTSP term graph g = (Vg, Eg, Hg) is said
to be ground and is identified with the TTSP graph G = (Vg, Eg).

From the definitions of a TTSP graph and a TTSP term graph, we note that
every edge and every variable of a TTSP term graph have elements in Λ and
X as labels, respectively, but every vertex has no label. Labels of an edge and
a variable are called an edge label and a variable label, respectively. Let g =
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Fig. 3. TTSP graphs G4//G5 and G4 ∗ G5, where G4 and G5 are given in Fig. 1

(Vg, Eg, Hg) be a TTSP term graph. An edge in Eg from a vertex u to v with a
label a in Λ is denoted by a triplet (u, a, v). For an edge (u, a, v) ∈ Eg, u is said to
be the parent of v and v is a child of u. In the same way, a variable in Hg, which
consists of two vertices u and v and has an element x in X as a variable label,
is denoted by a triplet [u, x, v]. For a variable [u, x, v] ∈ Hg, we call u the parent
port of [u, x, v] and v the child port of [u, x, v]. We call a sequence v1, v2, . . . , vi of
distinct vertices of g a path from v1 to vi if for any j with 1 ≤ j < i, there exists
an edge or a variable which consists of vj and vj+1. In the same way as a TTSP
graph, for a vertex v in a TTSP term graph g, indeg(v) denotes the sum of all
edges entering v and all variables whose child port is v, and outdeg(v) denotes
the sum of all edges leaving v and all variables whose parent port is v. A vertex
v with indeg(v) = 0 (resp., outdeg(v) = 0) is called a source (resp., a sink) of
g. It is easy to see that that a TTSP term graph has exactly one source and
one sink. For example, g in Fig. 1 is a TTSP term graph having two variables
[u1, x, u2] and [v1, y, v2], the source u1 and the sink u2.

Definition 3 (Linear TTSP term graph). A TTSP term graph g is linear
if all variables in g have mutually distinct variable labels in X .

The set of all linear TTSP term graphs is denoted by T GT T SP . Since a ground
TTSP term graph is regarded as a TTSP graph, the set of all ground TTSP
term graphs is equal to T T SP , that is, T T SP ⊂ T GT T SP . In this paper, we
deal with linear TTSP term graphs only. Hence, unless otherwise indicated, we
call a linear TTSP term graph a TTSP term graph simply.

Definition 4. For two TTSP term graphs g=(Vg, Eg, Hg) and f =(Vf , Ef , Hf ),
g and f are isomorphic, denoted by g ≡ f , if there exists a bijection π : Vg → Vf

satisfying the following conditions.

(1) The vertices u and v are the source and the sink of g, respectively, if and only
if the vertices π(u) and π(v) are the source and the sink of f , respectively.
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(2) (u, a, v) ∈ Eg if and only if (π(u), a, π(v)) ∈ Ef .
(3) [u, x, v] ∈ Hg if and only if [π(u), y, π(v)] ∈ Hf for some x and y in X .

Definition 5 (Bindings and substitutions). Let g be a TTSP term graph
with at least two vertices and x a variable label in X . Let σ = [u, u′] be a list
of two vertices in g where u is the source of g and u′ is the sink of g. The
form x := [g, σ] is called a binding for x. A substitution is a finite collection
of bindings {x1 := [g1, σ1], · · · , xn := [gn, σn]}, where xi’s are mutually distinct
variable labels in X and gi’s are ground TTSP term graphs.

Let f = (Vf , Ef , Hf ) and g = (Vg , Eg, Hg) be two TTSP term graphs. A new
TTSP term graph f{x := [g, [u, u′]]} is obtained by applying the binding x :=
[g, [u, u′]] to f in the following way. Let e = [v, x, v′] be a variable in f . Let g′ be
one copy of g and w, w′ the vertices of g′ corresponding to u, u′ of g, respectively.
For the variable e = [v, x, v′], we attach g′ to f by removing the variable e from
Hf and by identifying the vertices v, v′ with the vertices w, w′ of g′, respectively.
Let θ = {x1 := [g1, σ1], · · · , xn := [gn, σn]} be a substitution. The TTSP term
graph fθ, called the instance of f by θ, is obtained by applying all the bindings
xi := [gi, σi] to f simultaneously. We remark that the source and the sink of f are
the source and the sink of fθ, respectively. For example, let g be a TTSP term
graph in Fig. 1 and θ = {x := [G4, [w4

1 , w
4
2 ]], y := [G5, [w5

1 , w
5
2 ]]} a substitution,

where G4 and G5 are TTSP graphs in Fig. 1. Then the instance gθ of the term
tree g by θ is the TTSP graph G1 in Fig. 1.

Definition 6 (TTSP graph languages). For a TTSP term graph g ∈
T GT T SP , the TTSP graph language of g, denoted by L(g), is defined as {G ∈
T T SP | G ≡ gθ for a substitution θ}.

For a class C, Angluin [1] and Shinohara [7] showed that if C has finite thickness,
and the membership problem and the minimal language problem for C are solv-
able in polynomial time then C is polynomial time inductively inferable from pos-
itive data. In this paper, we consider the class LT T SP = {L(g) | g ∈ T GT T SP}
as a target of inductive inference.

It is easy to see that the following lemma holds, that is, for any nonempty
finite set S ⊆ T T SP , the cardinality of the set {L ∈ LT T SP | S ⊆ L} is finite.

Lemma 1. The class LT T SP has finite thickness.

Proof. (Sketch) Let S be a nonempty finite subset of T T SP and G = (VG, EG)
a TTSP graph in S. If g = (Vg, Eg, Hg) is a TTSP term graph in T GT T SP such
that L(g) includes G, then |Vg| ≤ |VG| and |Eg| + |Hg| ≤ |EG|. Moreover, the
number of all edge labels in G is finite. Therefore LT T SP has finite thickness. �

Next, the membership problem for LT T SP is defined as follows.

Membership Problem for LT T SP .
Instance: A TTSP term graph g ∈ T GT T SP and a TTSP graph G ∈
T T SP .
Question: Does L(g) contain G?
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In Section 3, by presenting a polynomial time matching algorithm for solving
the membership problem for the set of languages of term trees each of whose
internal vertices has ordered or unordered children, we show that the membership
problem for LT T SP is solvable in polynomial time. A minimally generalized
TTSP term graph explaining a given set of TTSP graphs S ⊆ T T SP is a TTSP
term graph g such that S ⊆ L(g) and there is no TTSP term graph g′ satisfying
that S ⊆ L(g′) ⊆

/
L(g). Then, The Minimal Language Problem (MINL Problem,

for short) for LT T SP is defined as follows.

Minimal Language (MINL) Problem for LT T SP .
Instance: A nonempty set of TTSP graphs S ⊆ T T SP .
Question: Find a minimally generalized TTSP term graph g ∈ T GT T SP
explaining S.

In Section 4, by presenting a polynomial time algorithm for the MINL problem
for LT T SP , we show that the MINL problem for LT T SP is solvable in polynomial
time. Therefore, we show the following main result.

Theorem 1. The class LT T SP is polynomial time inductively inferable from
positive data.

3 An Efficient Matching Algorithm for TTSP Term
Graphs

In this section, we give a polynomial time matching algorithm for the member-
ship problem for LT T SP by presenting a matching algorithm for the membership
problem for the set of languages of term trees each of whose internal vertices
has ordered or unordered children. Firstly, based on notions of an ordered term
tree and unordered term tree presented in [6,9], we formally define a term tree
each of whose internal vertices has ordered or unordered children and call such a
term tree a partially-ordered term tree. Moreover, we define a membership prob-
lem for the set of the languages of partially-ordered term trees. Next, we give
a polynomial time matching algorithm for the membership problem for the set
of the languages of partially-ordered term trees. Finally, we give a polynomial
time algorithm for the membership problem for LT T SP by reducing this prob-
lem to the membership problem for the set of the languages of a special kind of
partially-ordered term trees.

3.1 Partially-Ordered Term Trees and Partially-Ordered Term Tree
Languages

In this paper, unless otherwise indicated, we call a rooted tree each of whose
internal vertices has ordered or unordered children a tree simply. We call an
internal vertex having ordered children (resp., unordered children) an o-vertex
(resp., a u-vertex) simply.
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Definition 7 (Linear partially-ordered term trees). Let T = (VT , ET ) be
a tree where VT and ET are sets of vertices and edges, respectively. Let Et and
Ht be a partition of ET , i.e., Et ∪Ht = ET and Et∩Ht = ∅. And let Vt = VT . A
triplet t = (Vt, Et, Ht) is called a partially-ordered term tree. A partially-ordered
term tree t = (Vt, Et, Ht) is linear if all variables in Ht have mutually distinct
variable labels in X .

In this paper, we deal with only linear partially-ordered term trees. Hence, un-
less otherwise indicated, we call a linear partially-ordered term tree a term tree
simply. T T denotes the set of all term trees. A term tree with no variable is
called a ground term tree, which is a tree. T denotes the set of all ground term
trees. In the same way as a TTSP term graph, we assume that every edge and
every variable have elements in Λ and X as labels, respectively, but every vertex
has no label. Hence, we use the same notations of an edge and a variable as
those of a TTSP term graph. For a term tree t and two vertices u, v of t, u is an
ancestor of v and v is a descendant of u if there exists a path from u to v. For a
tree or a term tree T , we call the height of T the maximum length of paths from
the root of T to leaves.

For a term tree t and every internal vertex u in t having ordered children,
all children of u have a total ordering on all children of u. The ordering on the
children of u is denoted by <t

u. Let s = (Vs, Es, Hs) and t = (Vt, Et, Ht) be two
term trees. We say that s and t are isomorphic, denoted by s ≡ t, if there is a
bijection ϕ from Vs to Vt such that

(1) the root of s is mapped to the root of t by ϕ,
(2) u is an o-vertex of s if and only if ϕ(u) is an o-vertex in t,
(3) (u, a, v) ∈ Es if and only if (ϕ(u), a, ϕ(v)) ∈ Et,
(4) [u, x, v] ∈ Hs if and only if [ϕ(u), y, ϕ(v)] ∈ Ht, for some x and y in X , and
(5) for any o-vertex u in s which has more than one child, and for any two

children u′ and u′′ of u, u′ <s
u u′′ if and only if ϕ(u′) <t

ϕ(u) ϕ(u′′).

Definition 8 (Bindings and Substitutions of term trees). Let t be a term
tree with at least two vertices and x a variable label in X . Let σ = [u, u′] be
a list of two vertices in t where u is the root of t and u′ is a leaf of t. The
form x := [t, σ] is called a binding for x. A substitution is a finite collection
of bindings {x1 := [t1, σ1], · · · , xn := [tn, σn]}, where xi’s are mutually distinct
variable labels in X and ti’s are ground term trees.

In the same way as a TTSP term graph, for a term tree t and a substitution θ,
we define an instance of t by θ, denoted by tθ, as a term tree obtained from t by
applying θ to t. We define the root of the instance tθ of t by θ as the root of t.
Further we have to give a new total ordering <fθ

v on every vertex v of fθ. These
orderings are defined in a natural way.

Definition 9 (Child orderings on an instance of a term tree). Let s =
(Vs, Es, Hs) be a term tree and θ = {x1 := [t1, σ1], · · · , xn := [tn, σn]} a sub-
stitution. Suppose that v is an o-vertex in sθ which has more than one child
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and let u′ and u′′ be two children of v of sθ. If v is the parent port of variables
[v, x1, v1], . . . , [v, xk, vk] of s with v1 <s

v · · · <s
v vk, we have the following four

cases. Let ti be a term tree which is substituted for [v, xi, vi] for i = 1, . . . , k.
Case 1 : If u′, u′′ ∈ Vs and u′ <s

v u′′, then u′ <sθ
v u′′. Case 2 : If u′, u′′ are vertices

of ti and u′ <ti
v u′′ for some i, then u′ <sθ

v u′′. Case 3 : If u′ is a vertex of Vti , u′′

is a vertex of s, and vi <s
v u′′ (resp. u′′ <s

v vi), then u′ <sθ
v u′′ (resp. u′′ <sθ

v u′).
Case 4 : If u′ is a vertex of ti, u′′ is a vertex of tj (i �= j), and vi <s

v vj , then
u′ <sθ

v u′′. If v is not the parent port of any variable, then u′, u′′ are vertices of
s, therefore we have u′ <sθ

v u′′ if u′ <s
v u′′.

For example, let t be a term tree in Fig. 2 and θ = {x := [T1, [w1
1, w

1
2 ]], y :=

[T2, [w2
1 , w

2
2]]} a substitution, where T1 and T2 are trees in Fig. 2. Then the

instance tθ of the term tree t by θ is the tree T in Fig. 2.

Definition 10 (Term tree languages). For a term tree t ∈ T T , the term tree
language of t, denoted by L(t), is defined as {s ∈ T | s ≡ tθ for a substitution θ}.

3.2 A Polynomial Time Algorithm for Solving the Membership
Problem for Term Trees

In this section, by extending the polynomial time matching algorithm in [6,9], we
give a polynomial time matching algorithm for solving the membership problem
for the class LT T = {L(t) ⊆ T | t ∈ T T } defined as follows.

Membership Problem for LT T .
Instance: A term tree t ∈ T T and a tree in T ∈ T .
Question: Does L(t) contain T ?

For a tree or a term tree t and its vertex v, t[v] denotes the subtree consisting
of v and all descendants of v in t. We note that v is the root of t[v]. Let t =
(Vt, Et, Ht) be a term tree and T a tree. We assume that all vertices of a term
tree t are associated with mutually distinct numbers, called vertex identifiers.
We denote by I(u) the vertex identifier of u ∈ Vt. A correspondence set , C-set
for short, is a set of vertex identifiers which are with or without parentheses.

We employ a dynamic programming method. Our matching algorithm pro-
ceeds by constructing C-sets for each vertex of a given tree T in the bottom-up
manner, that is, from the leaves to the root of T . Let u be a vertex of t and
c1, · · · , cm all ordered (or unordered) children of u. The C-set-attaching rule of
u is of the form I(u) ← ξ(c1), . . . , ξ(cm), where ξ(ci) = (I(ci)) if ci is the child
port of a variable, ξ(ci) = I(ci) otherwise. The C-set-attaching rule of t, denoted
by Rule(t), is defined as follows.

Rule(t) =
⋃

u∈Vt
({I(u) o←− ξ(c1), . . . , ξ(cm) | u is an o-vertex of t}
∪ {I(u) u←− ξ(c1), . . . , ξ(cm) | u is a u-vertex of t}
∪ {(I(u)) ←− (I(u)) | u is the child port of a variable}).

For example, for a TTSP term tree t given in Fig. 4, we give the C-set-attaching
rule Rule(t) of t in Fig. 4.
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t T

{ 1
u←− 2,

2
u←− 3, 4,

3
o←− 5, (6), 7,

4
u←− (8),

6
u←− 9, 10,

(6) ←− (6),
(8) ←− (8) }

E,G, I,K, L, M, N : {5, 7, 8, 9, 10}
F, J, D : {4, (8)}

H : {6, (8)}
C : {3, 4, (6), (8)}
B : {2, 4, (6), (8)}
A : {1, 4, (6), (8)}

Rule(t) C-sets

Fig. 4. A term tree t, the C-set-attaching rule Rule(t) of t, a tree T and C-sets which
are attached for vertices in T

In Fig.5, we present an efficient algorithm TT-Matching for solving the
membership problem for LT T . In TT-Matching, by using CS-Attaching
given in Fig.5, we repeatedly attach a C-set to each vertex of a given tree T
in the bottom-up manner, that is, from the leaves to the root of T . When we can
not apply this procedure to any more vertex, if the C-set of the root of T has
the vertex identifier of the root of t, then we conclude that L(t) contains T . For
example, given a term tree t and a tree T in Fig. 4, TT-Matching constructs
the C-set-attaching rule Rule(t) of t in Fig. 4 and attaches the C-set in Fig. 4
to each vertex of T . In this example, TT-Matching returns “yes”, because the
C-set of the root A of T includes the vertex identifier 1 of the root of t.

Theorem 2. The membership problem for LT T is solvable in polynomial time.

Proof. (Sketch) First of all, it is easy to see that TT-Matching certainly ter-
minates. Because the number of vertices not attached C-sets always decreases
after executing the procedure CS-Attaching.

Secondly, we can prove that for a tree T and a term tree t, L(t) contains T
if and only if TT-Matching returns “yes”, by showing the following claims.

(1) For a vertex u of T and a vertex v of t, L(t[v]) contains T [u] if and only if
I(v) ∈ CS(u).

(2) Let u′ be a descendant of u in T and v′ the child port of a variable of t.
L(t[v′]) contains T [u′] if and only if (I(v′)) ∈ CS(u).
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Algorithm TT-Matching(T, t);
input T : a tree, t: a term tree;

/* Let rT and rt be the roots of T and t, respectively; */
output “yes” or “no”;
begin

Construct the C-set-attaching rule Rule(t) of t;
For each leaf v of T , attach CS(v) = {I(�) | � is a leaf of t} to v;
while there exists a vertex v of T which is not attached any C-set but all of

whose children are attached C-sets, respectively
do CS-Attaching(v, Rule(t));
if CS(rT ) contains I(rt) then output “yes” else output “no”

end.

Procedure CS-Attaching(v, Rule(t));
begin
1. CS := ∅;
2. Let CS(c1), · · · , CS(cm) be C-Sets of all children c1, . . . , cm of v in T , respectively;
3. if v is an o-vertex then

4. foreach I(u′)
o←− ξ(c′1), · · · , ξ(c′m′ ) in Rule(t) do begin

5. if for the list ρ = [1, 2, . . . , m], there is a partition [�1, . . . , �2 − 1], . . . ,
[�m′ , . . . , �m′+1 − 1] of ρ satisfying the following condition, where 1 = �1 ≤
�2 ≤ · · · ≤ �m′ ≤ �m′+1 − 1 = m:

For each i (1 ≤ i ≤ m′),
1. if ξ(c′i) = I(c′i) then �i = �i+1 − 1 and I(c′i) ∈ CS(c�i),
2. if ξ(c′i) = (I(c′i)) then CS(cki) has I(c′i) or (I(c′i))

for some k(i) (�i ≤ k(i) ≤ �i+1 − 1).
6. then CS := CS ∪ {(I(u′)}
7. end;
8. if v is a u-vertex then

9. foreach I(u′)
u←− ξ(c′1), · · · , ξ(c′m′ ) in Rule(t) do begin

10. Construct a bipartite graph G = ({I(c′1), . . . , I(c′m′)}, {CS(c1), . . . , CS(cm)}, E)
where E is the set {{I(c′i), CS(cj)} | 1 ≤ i ≤ m′, 1 ≤ j ≤ m, I(c′i) ∈ CS(cj)}
∪{{I(c′i), CS(cj)} | 1 ≤ i ≤ m′, 1 ≤ j ≤ m, (I(c′i)) ∈ CS(cj) and ξ(c′i) = (I(c′i))};

11. if for any i (1 ≤ i ≤ m′), ξ(c′i) = I(c′i) then
12. if there exists a perfect matching on G then CS := CS ∪ {I(u′)};
13. else if there exists a matching of size m′ then CS := CS ∪ {I(u′)}
14. end;
15. foreach (I(u′)) ←− (I(u′)) in Rule(t) do
16. if there is a set in CS(c1), · · · , CS(cm) which has I(u′) or (I(u′)) then
17. CS := CS ∪ {(I(u′)};
18. Attach CS to v
end;

Fig. 5. Algorithm TT-Matching and Procedure CS-Attaching
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We can prove the above two claims by using an induction on the height of
T [u]. Due to the lack of space, we omit proofs of the above claims.

Finally, we show that TT-Matching can solve the membership problem
for LT T in polynomial time as follows. Given a tree T and a term tree t, we
consider the time complexity of TT-Matching. Let N and n be the numbers of
vertices of T and t, respectively. We can show that the time complexity of TT-
Matching is O(

∑
v∈QT

Φ(v, Rule(t))), where QT is the set of internal vertices
in T and Φ(v, Rule(t)) is the time complexity of the procedure CS-Attaching
for v and Rule(t).

In [3], Hopcroft and Karp presented an O(
√
|V ||E|) time algorithm for find-

ing a maximum cardinality matching for a given bipartite graph G = (V, E).
By using the algorithm Rule Matching given in [9] and Hopcroft and Karp’s
algorithm for the line 5 and lines 11-13 of CS-Attaching, respectively, the time
complexity Φ(v, Rule(t)) of CS-Attaching is

∑
r∈Rule(t)(

√
Dv + dr×Dv ×dr),

where Dv is the number of children of v and dr is the number of elements
in the righthand side of the rule r. Since dr < Dv,

∑
r∈Rule(t) dr = n − 1,∑

v∈QT
Dv = N − 1 and for each v ∈ QT , Dv ≤ Dmax,

O(
∑

v∈QT

∑
r∈Rule(t)

(
√

Dv + dr ×Dv × dr) = O(
√

Dmax ×N × n),

where Dmax = maxv∈QT Dv. Hence, this theorem holds. �

3.3 A Polynomial Time Algorithm for Solving the Membership
Problem for LT T SP

In this section, we present a polynomial time algorithm for solving the member-
ship problem for LT T SP by reducing this problem to the membership problem
for LT T . A tree whose vertices have labels is called by a colored-tree.

Definition 11. A decomposition tree of a TTSP term graph is recursively de-
fined as follows.

(1) A colored-tree consisting of only one vertex having a label a in Λ is a de-
composition tree of a TTSP term graph consisting of two vertices u, v and
an edge (u, a, v).

(2) A colored-tree consisting of only one vertex having a label x in X is a de-
composition tree of a TTSP term graph consisting of two vertices u, v and
an variable [u, x, v].

(3) Let T1 = (V1, E1) and T2 = (V2, E2) be decomposition trees of TTSP term
graphs g1 and g2, respectively, and r1 and r2 roots of T1 and T2, respectively.
Let a be a label in Λ. Then, the following two colored-trees are decomposition
trees.
(a) A colored-tree T = (VT , ET ) having a u-vertex ru as the root and having

T1 and T2 as children of r is a decomposition tree of the TTSP term
graph g1//g2. Namely, VT = V1 ∪ V2 ∪ {ru}, and ET = E1 ∪ E2 ∪
{(ru, a, r1), (ru, a, r2)}.
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Fig. 6. A decomposition tree T1 of the TTSP term graph g given in Fig. 1, the con-
traction tree T2 of T1 and the parse tree T3 of g in Fig. 1

(b) A colored-tree T = (VT , ET ) having an o-vertex ro as the root and
having T1 and T2 as children of r with r1 <T

r r2 is a decomposition
tree of the TTSP term graph g1 ∗ g2. Namely, VT = V1 ∪ V2 ∪ {ro} and
ET = E1 ∪ E2 ∪ {(ro, a, r1), (ro, a, r2)}.

We remark that a decomposition tree is a tree whose internal vertices are o-
vertices or u-vertices, all of whose leaves have labels in Λ ∪ X and all of whose
edges have the label a.

Let T be a decomposition tree having at least two vertices. We call an edge
whose both endpoints are o-vertices (resp., u-vertices) an o-edge (resp., a u-edge).
Let e = (u, a, v) be an o-edge or a u-edge of T . A contraction of e is an operation
of removing e from T , identifying u with v and, if u and v are o-vertices, updating
a total ordering <T ′

u on the o-vertex u(= v) of the result tree T ′ as follows.

(1) For w and w′ are children of u if w <T
u w′ then w <T ′

u w′.
(2) For w and w′ are children of v if w <T

v w′ then w <T ′
u w′.

(3) For w and w′ are children of u and v, respectively, if w <T
u v then w <T ′

u w′.
(4) For w and w′ are children of u and v, respectively, if v <T

u w then w′ <T ′
u w.

Let g be a TTSP term graph and Tg a decomposition tree of g. A contraction
tree of Tg is the tree obtained from Tg by recursively applying contractions of
o-edges and u-edges until there exists neither o-edges nor u-edges. For the TTSP
term graph g in Fig. 1, for example, T1 shown in Fig. 6 is a decomposition tree
of g and T2 shown in Fig. 6 is the contraction tree of T1.

Let g be a TTSP term graph. And let T = (VT , ET ) be the contraction
tree of a decomposition tree of g and r the root of T . A parse tree of g is
the term tree tg = (Vt, Et, Ht) such that Vt = VT ∪ {v0}, Et = {(v0, a, r)} ∪
{(u, a, v) | (u, a, v) ∈ ET , v is an internal vertex of T} ∪ {(u, b, v) | (u, b, v) ∈
ET , v is a leaf labeled with b ∈ Λ } and Ht = {[u, x, v] | (u, x, v) ∈ ET , v is a
leaf labeled with x ∈ X}. For example, for a TTSP term graph g in Fig. 1, T3

presented in Fig. 6 is the parse tree of g.
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Algorithm TTSPTG-Matching(G, g);
input G: a TTSP graph, g: a TTSP term graph;
output “yes” or “no”;
begin
1. T := Parse(G); // Construct the parse tree T of G
2. t:= Parse(g); // Construct the parse tree t of g
3. output TT-Matching(T, t)
end.

Procedure Parse(G);
input G: a TTSP term graph;
output TG: the parse tree of G;
begin

Construct a decomposition tree T of G;
Construct the contraction tree T ′ of T ;
Construct the parse tree TG of G from T ′;
return TG

end;

Fig. 7. Algorithm TTSPTG-Matching

Lemma 2. Let g1 and g2 be TTSP term graphs. Let t1 and t2 be the parse trees
of g1 and g2, respectively. Then, g1 ≡ g2 if and only if t1 ≡ t2.

Proof. (Sketch) Let T1 and T2 be the contraction trees of g1 and g2, respectively.
Then, from the definition of a parse tree, by showing that g1 ≡ g2 if and only
if T1 ≡ T2, we can prove Lemma 2. We can show that if g1 ≡ g2 then T1 ≡ T2

by using an induction on |E1 ∪ H1|, where g1 = (V1, E1, H1). Moreover, we can
prove that if T1 ≡ T2 then g1 ≡ g2 by using an induction on the height of a
subtree of T1. �

Lemma 3. Let g be a TTSP term graph and G a TTSP graph. Let Tg and
TG be the parse trees of g and G, respectively. Then, G ∈ L(g) if and only if
TG ∈ L(Tg).

In Fig. 7, we give a polynomial time algorithm TTSPTG-Matching which
solves the membership problem for LT T SP .

Theorem 3. The membership problem for LT T SP is solvable in polynomial
time.

Proof. It is easy to see that TTSPTG-Matching certainly terminates. From
Lemma 3, given a TTSP graph G = (VG, EG) and a TTSP term graph g =
(Vg, Eg, Hg), TTSPTG-Matching correctly decides whether or not L(g) con-
tains G. By using a linear time algorithm presented by Valdes et al. [12], we
can construct the parse trees of G and g in time proportional to |VG| + |EG|.
Moreover, by using TT-Matching given in Fig. 5, Line 3 can be executed in
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O(|EG|1.5 × |Eg ∪ Hg|). Hence, for a given TTSP graph G and a given TTSP
term graph g, the algorithm TTSPTG-Matching decides whether or not L(g)
contains G in O(|EG|1.5 × |Eg ∪ Hg|) time. �

4 An Algorithm for Finding a Minimally Generalized
TTSP Term Graph

Let Λ be a set of edge labels. In this section, we assume that |Λ| = ∞. Let g and
f be TTSP term graphs. We denote g  f if there exists a substitution θ such
that g ≡ fθ. For any TTSP term graph g, we denote by s(g) the TTSP term
graph obtained from g by replacing each of all edges of g with a variable, i.e., for
g = (Vg , Eg, Hg), s(g) = (Vg , ∅, H ′

g) where H ′
g = Hg ∪ {[u, xe, v] | e = (u, a, v) ∈

Eg and xe is a new variable label only for e}. For any two TTSP term graphs g
and f , we write g ≈ f if s(g) ≡ s(f). It is easy to see the following lemma since
|Λ| = ∞.

Lemma 4. Let g and f be two TTSP term graphs in T GT T SP . If g ≈ f and
L(g) ⊆ L(f) then g  f .

The algorithm MINL-T T SP (Fig. 8) solves the MINL problem for LT T SP .
The procedure Variable-Extension (Fig. 8) extends a TTSP term graph g by
adding variables as much as possible while S ⊆ L(g) holds. Edge-Replacing
(Fig. 8) tries to replace each variable in g with a labeled edge if possible. We
use the following three substitutions in the algorithm. These substitutions are
called refinement operators.

Par(h) : Replace h = [u, x, v] ∈ Hg with h′ = [u, x′, v] and h′′ = [u, x′′, v],
where x′ and x′′ are new variable labels in X .

Ser(h) : Replace h = [u, x, v] ∈ Hg with h′ = [u, x′, w] and h′′ = [w, x′′, v],
where w is a new vertex and x′ and x′′ are new variable labels in X .

Lab(h)λ : Replace h = [u, x, v] ∈ Hg with (u, λ, v) where λ ∈ Λ.

Lemma 5. Let g ∈ T GT T SP be the TTSP term graph just after the procedure
Variable-Extension for an input S finishes. Let g′ be another TTSP term
graph. If S ⊆ L(g′) ⊆ L(g) then g′ ≈ g.

Proof. (Sketch) Let T (g′) and T (g) be the contraction trees of decomposition
trees of g′ and g, respectively. In the procedure Variable-Extension (Fig. 8),
for one variable popped up from a queue of variables, a refinement operator Par
is executed first as much as possible (line 5–9), and then for each variable which
is newly added by those Par operators, Ser is executed as much as possible (line
15–19). From this algorithm, we can show that T (g) must be equivalent to T (g′)
if the labels of leaves are not considered. The statement follows from this fact.
�

Lemma 6. Let g ∈ T GT T SP be the output of the algorithm MINL-T T SP for
an input S. Let g′ be a TTSP term graph such that S ⊆ L(g′) ⊆ L(g) holds.
Then g′ ≡ g.
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Algorithm MINL-T T SP(S);
input: a set of TTSP graphs S ⊆ T T SP;
output a minimally generalized TTSP term graph g in T GT T SP for S;
begin

g := ({u, v}, ∅, {[u, x, v]}), where u and w are new vertices and x is in X ;
Let q be a queue [[u, x, v]], which stores variables of g as elements;
Variable-Extension(g, S, q); Edge-Replacing(g,S);
output g

end.

Procedure Variable-Extension(g, S, q);
begin
1: while q is not empty do begin
2: // Parallel Extensions
3: Let q′ be an empty queue;
4: htarget := pop(q);
5: g′ := g Par(htarget);
6: while S ⊆ L(g′) do begin
7: g := g′; Let h′ and h′′ be two variables newly added by Par(htarget);
8: htarget := h′; q′ := q′&[h′′]; g′ := g Par(htarget).
9: end;
10: q′ := q′&[htarget];
11: // Series Extensions
12: while q′ is not empty do begin
13: Let q′′ be an empty queue;
14: htarget := pop(q′);
15: g′ := g Ser(htarget);
16: while S ⊆ L(g′) do begin
17: g := g′; Let h′ and h′′ be two variables newly added by Ser(htarget);
18: htarget := h′; q′′ := q′′&[h′′]; g′ := g Ser(htarget)
19: end;
20: if q′′ is not empty then q := q&q′′&[htarget]
21: end
22: end
end;

Procedure Edge-Replacing(g,S);
begin

Let ΛS be the set of edge labels which appear in S;
foreach variable h in g do
foreach edge label λ ∈ ΛS do begin

g′ := g Lab(h)λ; if S ⊆ L(g′) then begin g := g′; break end
end

end;

Fig. 8. Algorithm MINL-T T SP: For a queue q, pop(q) represents an operation which
removes the first element from q and returns it. A notation q&q′ represents a concate-
nation of two queues q and q′.



382 R. Takami et al.

Proof. (Sketch) From Lemmas 4 and 5, we have g′  g. The procedure Edge-
Replacing (Fig. 8) replaces all possible variables with labeled edges. Therefore
from S ⊆ L(g′), g′ ≡ g holds. �

Theorem 4. The algorithm MINL-T T SP finds a minimally generalized TTSP
term graph in T GT T SP for a given set of TTSP graphs in T T SP in polynomial
time.

Proof. The correctness follows from Lemma 6. Let S = {G1, . . . , Gm} be an
input set of TTSP graphs, where Gi = (Vi, Ei) (1 ≤ i ≤ m). Let Nmin =
min1≤i≤m |Ei| and Nmax = max1≤i≤m |Ei|. Let g = (Vg, Eg, Hg) be the TTSP
term graph generated by the algorithm MINL-T T SP for S. It is easy to see that
|Eg ∪Hg| ≤ Nmin. Therefore O(Nmin) refinement operators are totally executed
at lines 5–9 and 15–19 in Variable-Extension. From Theorem 3, one inclusion
test at lines 6 or 16 needs

∑
1≤i≤m O(|Ei|1.5×|Eg∪Hg|) = O(mN1.5

maxNmin) time.
Since one inclusion test is executed every refinement operation, the procedure
Variable-Extension needs O(mN1.5

maxN2
min) time. Let ΛS be the set of edge

labels which appear in S. Since Edge-Replacing tries to replace variables with
labeled edges at most |ΛS|Nmin times, the procedure needs totally |ΛS |Nmin ×
O(mN1.5

maxNmin) time. Hence the total time for all executions in the algorithm
MINL-T T SP is O(|ΛS |mN1.5

maxN
2
min), which is polynomial w.r.t. S. �

5 Conclusion

We have shown the polynomial time learnabilities of TTSP graph languages
from positive data by giving a reduction to that of a special kind of term tree
languages. Firstly, we have introduced a TTSP term graph as a graph pattern
consisting of a TTSP graph structure and structured variables. Moreover, for
a TTSP term graph g, we have defined a TTSP graph language L(g) as the
set of all TTSP term graphs obtained from g by substituting arbitrary TTSP
graphs for all variables in g. Secondly, we have given a set T T of term trees such
that there exists a bijection from the set T GT T SP of all TTSP term graphs to
T T , and have presented a polynomial time matching algorithm for solving the
membership problem for LT T SP = {L(g) | g ∈ T GT T SP} by giving a polynomial
time matching algorithm for solving the membership problem for LT T = {L(t) |
t ∈ T T }. Finally, we have presented a polynomial time algorithm for solving
the minimal language problem for LT T SP . By using the above polynomial time
algorithms for LT T SP , we have shown the polynomial time learnability of LT T SP
from positive data.

Our results given in this paper lead us to study the learnability of languages
over other classes of graphs such as series parallel graphs, outerplanar graphs,
graphs of bounded treewidth (see [13]). As future works, we consider the learn-
ability of languages on other classes of graph patterns. We also consider the
learnability of LT T SP in other learning models (e.g., query learning model) and
the learnability of the class of finite unions of TTSP graph languages from pos-
itive data. Moreover, we consider applications our results in this paper to other
fields such as data mining from graph structured data.
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Abstract. We introduce a novel method for relational learning with
neural networks. The contributions of this paper are threefold. First, we
introduce the concept of relational neural networks: feedforward networks
with some recurrent components, the structure of which is determined
by the relational database schema. For classifying a single tuple, they
take as inputs the attribute values of not only the tuple itself, but also of
sets of related tuples. We discuss several possible architectures for such
networks. Second, we relate the expressiveness of these networks to the
‘aggregation vs. selection’ dichotomy in current relational learners, and
argue that relational neural networks can learn non-trivial combinations
of aggregation and selection, a task beyond the capabilities of most cur-
rent relational learners. Third, we present and motivate different possible
training strategies for such networks. We present experimental results on
synthetic and benchmark data sets that support our claims and yield in-
sight in the behaviour of the proposed training strategies.

1 Introduction

Neural networks are a very popular learning method. However, their use is still
mainly limited to propositional data. A number of approaches exist to extend
them to structured domains, such as logical terms, trees and graphs [9, 18, 8].
However, none of them is specifically oriented to relational databases. Other
research focuses on the combination of neural networks and first-order logic
[3, 1], but the relational problem should be simpler to solve. In this paper, we
will discuss a possible extension of propositional neural networks to relational
databases.

In general, learning concepts over relational data can be considered as learn-
ing a combination of aggregation and selection. The distinction between ag-
gregation and selection is basically a distinction between two different ways of
handling sets. The difficulties for current relational learners to make combina-
tions of both are an important motivation for our relational neural networks
(RNNs).

This problem of combining aggregation and selection will be elaborated in
section 2. In the context of neural networks, these combinations can be learned
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using a neural network consisting of feedforward and recurrent parts. The pre-
cise structure of relational neural networks will be explained in section 3. The
training method for the networks is based on the well-known backpropagation
algorithm. Some specific issues for training relational neural networks are dis-
cussed in section 4. To test our approach, four experiments were conducted and
the results are presented in section 5. Finally, some conclusions will be formu-
lated in section 6.

2 Aggregation Versus Selection

In propositional learning, an example is described by a single tuple of a fixed type
(i.e., each example is described by the same attributes). In relational learning,
an example is essentially described by a set of tuples that are somehow related
to each other. The tuples may be of different types and the size of such a set is in
general not constrained. Because of the latter property, the set cannot be reduced
to a single tuple without loss of information. Thus, we can say that the essential
difference between propositional and relational learning is that relational learners
need to be able to handle sets in some way. They need to be able to construct
tests on sets rather than on scalar attributes.

Some relational learners use what is called a propositionalisation approach:
they transform the data into a propositional format using a number of predefined
features, and let the propositional learner choose those features that are most
relevant. Other relational learners integrate the construction of such features in
the learning process.

Independent of the question whether feature construction happens before or
during learning, we can also look at the type of features that are constructed.
In relational algebra terminology, we can say that such features are of the form
F(σC(S)) where F is some aggregate function, σC maps the set S into its subset
of elements that fulfill condition C, and S is the natural join of all the tuples
linked by foreign keys to the tuple to be classified [2].

We can classify symbolic relational learners according to what kind of ag-
gregate functions and selection conditions they consider. It then turns out that
many propositionalisation approaches choose F from a predefined set of func-
tions (typically count, sum, average, max, min; note that except for count, one
has to specify an attribute in combination with the function, which means the
actual number of features to be considered is linear in the number of attributes),
and use for C a trivial or very simple condition.

Many propositionalisation approaches consider C to be true. The number
of possible features then derived is still O(fa) with f the number of aggregate
functions and a the number of attributes. For instance, the RELAGGS approach
[12, 13] considers several aggregate functions, and atomic conditions of the form
Aθv with A an attribute, v a value, and θ a comparison operator. This makes
the number of possible features O(fa2). Building a more complex C, for instance,
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one involving multiple conjuncts, is difficult because the number of possible
conjunctions grows exponentially in the number of conjuncts.

Inductive logic programming systems can be considered as constituting the
other side of the spectrum: they build complex conditions C but a trivial ag-
gregate function F that returns true if σC(S) is non-empty. Indeed, a clause
such as

pos(X) :- page(X), hub(X), linked(X,Y), hub(Y).

can be seen as constructing a boolean feature that expresses whether the page is
linked to by a hub. (In other words, the set of pages linking to this page that are
hubs, is non-empty.) An ILP system could add further conditions on Y to the
clause, possibly introducing more variables somehow linked to Y , thus making
the C condition arbitrarily complex.

As ILP systems focus on the construction of the selection condition, we call
them selection-oriented. Systems that include aggregate functions with only very
simple selection conditions, can be called aggregation-oriented. The question
then arises whether systems could be built that look for patterns involving both
aggregation and non-trivial selection conditions.

It turns out that this is difficult because of several reasons. First, clearly,
the feature space that has to be searched becomes much larger. Second, it is
more difficult to navigate this space in an efficient and structured way. One
approach towards combining aggregation and selection is the work by Knobbe
et al. [11]. They propose a method to search this more complex feature space for
aggregations over complex selections. In order to keep the search well-behaved,
however, they have to restrict the aggregate functions to monotone ones. Vens et
al. [20] propose an approach where any aggregate functions can be combined with
complex selections; their random forests [4] based approach involves a random
sampling of the feature space, which makes the search feasible.

Perlich and Provost [16] provide an alternative characterization of relational
learners in terms of probability distributions; what we call an aggregate over a
complex conjunction, in their terminology boils down to summarizing statistics
of a joint distribution over multiple variables. They essentially arrive at the
same conclusion with respect to the position of ILP and aggregation-oriented
relational learning approaches: both are at different sides of a spectrum that is
very sparsely populated (if at all) in between.

The relational learning approach that we propose here, is a non-symbolic
approach, and as such does not make a distinction between searching for aggre-
gate functions and searching for complex conditions. It does both in parallel,
and yields models that may be closer to selection-oriented models, or closer to
aggregation-oriented ones, depending on what seems most fit for the dataset un-
der consideration. In addition, they are not constrained to using only predefined
aggregation functions, or to using a specific kind of conditions. Our approach is
unique in this respect and makes it possible to learn patterns that none of the
current relational learners can model.
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3 The Structure of Relational Neural Networks

The structure of a relational neural network (RNN) is based on the schema of
the relational database. More specifically, it is influenced by the different types
of tuples in the data set, the number of attributes for each tuple type and the
relationships that are allowed. It is important that every attribute should be
a real value, because these are the only values a neural network can process.
Other types of attributes require a transformation to a fixed number of real
values. Standard transformations for this are known.

A good starting point to address the relational learning task, is the typical
setting for solving propositional learning tasks. The usual method to construct
a neural network for a propositional data set is illustrated in figure 1(a). In a
propositional data set, only one type of tuple is present, in this case account
tuples. All tuples of this kind are characterized by three attributes, X1, X2 and
XT , as is shown on the left side of the figure. On the right side, a corresponding
neural network is depicted. More specifically, a standard feedforward neural net-
work with two layers is used. X1 and X2 are used as inputs to this network. XT

is a special attribute, because it is the target attribute, which must be predicted.
This value is used to train the neural network at the output.

(a) Propositional case. (b) One-to-one or many-to-one relation-
ship, complete participation.

(c) One-to-one or many-to-one relation-
ship, partial participation.

(d) One-to-many or many-to-many rela-
tionship.

Fig. 1.
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Starting from this propositional case, an extension can now be proposed to
solve relational tasks. This extension is developed in three steps. The first step
is to handle one-to-one relationships with complete participation. Figure 1(b)
shows how a new type of tuple, client, is added to the original data set. This
new type of tuple has a one-to-one relationship with account tuples. It means
that each account is related to exactly one client. This case could easily be
transformed into a propositional case by adding some extra inputs for the related
client tuple to the original network.

However, we will follow a different approach here, that is more similar to
the use of combinations of aggregation and selection. When using such a com-
bination, the related tuples are actually summarized and the result is used in
predicting the target. Similarly, we can use a neural network, representing a com-
bination of aggregation and selection, to summarize related tuples. The outputs
of this network are then used as extra inputs into the original network so that
it can predict the target.

In the case of a one-to-one relationship, this summarizing is performed by a
feedforward network. On the right side of figure 1(b), the original propositional
network, indicated by the white neurons, can still be distinguished. However,
a new neural network, indicated by the black neurons, has been added. The
attributes Y1 and Y2 of the client tuples are used as inputs to this network and
the outputs are used as extra inputs to the original propositional network.

More generally, we are assuming that we have a data set with a target relation
RT and some other relations R1, . . . , RM . The attribute set of Ri is denoted by
Ui. S1(R) can now be defined as the set of all relations Ri with which R has a
one-to-one or many-to-one relationship with complete participation. For all Ri

in S1(RT ), where RT is the target relation, a feedforward neural network Ni is
created. The inputs Ii of Ni are equal to Ui in this case. The outputs Oi of Ni

are used as inputs for NT , so IT = UT ∪ (∪i:Ri∈S1(RT )Oi).
The second step is very similar to the first one. Instead of a one-to-one or

many-to-one relationship with complete participation, a one-to-one or many-to-
one relationship with only partial participation is considered here. This could
be a relationship between account and card tuples for example, as shown in
figure 1(c). Compared to the neural network for the first relational extension,
only a new input Z is added. As there is only a partial participation between
account and card, not every account has a card tuple related to it. The variable Z
is therefore used to indicate whether there is a card tuple related to the account
tuple or not. This variable has two possible values, for instance zero and one.

Again, this result can be described more formally for a target relation RT

and a number of other relations R1, . . . , RM . Now we define S01(R) as the set of
all relations Ri with which R has a one-to-one or many-to-one relationship with
partial participation. For all Ri in S01(RT ) we define a feedforward network Ni,
with inputs Ii = Ui ∪ {Z}. The domain of Z is {0, 1}. The outputs Oi of Ni are
used again as inputs for NT , so IT = UT ∪ (∪i:Ri∈S1(RT )∪S01(RT )Oi) so far.

A third step is required to facilitate handling sets, which involves recurrent
neural networks. Instead of a one-to-one relationship, a one-to-many relationship
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is now added to the data set in the form of a relationship between account and
transaction tuples. An account can not only have one or zero transactions, as
with cards, but also multiple transactions. An extra variable Z is used to indicate
whether or not there is at least one transaction present. To be able to process
multiple transactions, the added network is now a recurrent network. It contains
recurrent connections which feed signals from the second layer back into the first
layer. This enables the processing of a sequence of input vectors, so the set of
transaction tuples is fed in the recurrent network as a sequence.

Formally, we define the set SM (R) of all relations Ri with a one-to-many or
many-to-many relationship from R to Ri. This time a recurrent network Ni is
constructed for each Ri in SM (RT ). The inputs for Ni are Ii = Ui ∪ {Z}, where
Z ∈ {0, 1}. The outputs Oi of Ni are added again to the inputs of NT , resulting
in IT = UT ∪ (∪i:Ri∈S1(RT )∪S01(RT )∪SM (RT )Oi).

The described method of constructing a new neural network and using its
outputs as extra inputs to the original network, can also be applied to further
relationships. If transaction tuples have a relationship with a bank, for instance,
a new network to process this bank tuple can be added and the outputs used
as extra inputs to the recurrent network for transaction tuples. This results in a
tree structure, where every node is a network that processes tuples of some type
and its children process tuples involved in some relationship with the parent
tuple. The signals are propagated from bottom to top.

The most expressive recurrent networks are fully connected networks in which
each neuron is connected to all other neurons. However, this makes the number
of connections increase quadratically with respect to the number of neurons
and therefore we prefer the Jordan recurrent network [10]. In the latter type of
recurrent network, each neuron in the second layer is connected to all neurons in
the first layer. This is the same as using the outputs of the neurons in the second
layer as extra inputs for the network in the next update step. The number of
recurrent connections is then n1 × n2, with n1 and n2 the number of neurons in
the first and second layer respectively. This results in a good trade-off between
expressiveness and the number of neurons and connections in the network.

4 Training

The described relational neural network consists of feedforward as well as re-
current parts. Both are trained using the backpropagation algorithm. For the
feedforward parts, standard backpropagation is used and the recurrent parts
are trained with backpropagation through time. The latter is an adapted ver-
sion of standard backpropagation for recurrent networks [21]. The key idea to
backpropagation through time is to unfold the recurrent network into a feedfor-
ward network. As many folds or copies of the original network are created as
there are instances in the input sequence. All recurrent connections are converted
into feedforward connections between successive folds. The resulting feedforward
network is trained using standard backpropagation, except for the fact that all
weight updates are added to the original weights.
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As explained above, the recurrent networks are used to process sets of tuples.
This means that all tuples in the set are fed in the recurrent network as a
sequence. The particular order of these sequences is arbitrary, as there is no real
order in the set of tuples. To avoid imposing an artificial order on the data, it is
possible to reshuffle or reorder these sequences randomly to train the network.
Thus, the variation in the data presented to the network is increased, which
should improve learnability. Reshuffling can also be done for testing where each
sample is tested in different orders and the results are averaged, which should
improve prediction.

There are two ways of reshuffling for training. In a first setting, simply reshuf-
fle the training set after every iteration. This method presents a maximum of
variation to the network, at least in the long term. Another possibility is to
expand the original training set with a number of reshuffled copies. The latter
method will increase the size of the training set initially, but during the training
process the training samples remain the same. At first sight, reshuffling after ev-
ery iteration would seem to give the best result as it produces maximal variation
in the data presented to the network. However, it also changes the gradient from
one iteration to the next, which can make it difficult for the training algorithm
to converge.

5 Experiments

The described approach was tested on four different data sets. Experiments were
conducted using ten-fold cross-validation and the results are averages over five
different runs. Three different settings were used for training: without reshuffling,
using continuous reshuffling and using ten reshuffled copies. When reshuffling is
used for training, the accuracy on the test set is measured over twenty reshuffled
tests for each sample. At least two questions should be answered by conducting
these experiments. First, we want to know how the results obtained with rela-
tional neural networks compare to results for other systems, such as first-order
random forests (FORFs) [20]. This should indicate whether our RNNs are indeed
able to learn relational concepts. Second, the effect of reshuffling on learning such
concepts should become clear.

5.1 Musk

Musk is actually a multi-instance data set, but multi-instance learning can be
seen as a special, simple case of relational learning [5]. The data set consists of
two parts, each containing a number of molecules and a bag of conformations
for each molecule [14]. A conformation is described by 166 numerical attributes.
Each molecule has to be classified as musk or not. There are 92 molecules in the
first data set and 102 in the second one. A further difference between the two
data sets is the average number of conformations per molecule. For the first data
set there are 5 conformations per molecule on average, for the second data set
the average is 65.
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Table 1. Accuracies for relational neural networks on all tested data sets. Average
accuracy and standard deviation over five runs are given for ten-fold cross-validation.

no reshuffling continuous reshuffling 10 reshuffled copies

musk 1 80±3% 82±3% 84±3%
musk 2 78±2% 79±2% 80±2%
trains 1 76±4% 91±3% 93±3%
trains 2 74±4% 86±3% 87±3%
trains 3 86±3% 94±3% 96±3%
trains 4 83±4% 85±3% 89±3%
mutagenesis 86±3% 88±3% 86±4%
diterpenes 81±2% 78±2% 79±2%

Table 2. Accuracies on musk data set compared to other methods. Results were ob-
tained from [6] and [17].

method musk 1 musk 2

1 iterated-discrim APR 92.4% 89.2%
2 GFS elim-kde APR 91.3% 80.4%
3 GFS elim-count APR 90.2% 75.5%
4 GFS all-positive APR 83.7% 66.7%
5 all-positive APR 80.4% 72.6%
6 simple backpropagation 75.0% 67.7%
7 multi-instance neural networks 88.0% 82.0%
8 C4.5 68.5% 58.8%

9 1-nearest neighbor (euclidean distance) / 75%
10 neural network (standard poses) / 75%
11 1-nearest neighbor (tangent distance) / 79%
12 neural network (dynamic reposing) / 91%

13 relational neural networks 84% 80%

Table 1 shows the results obtained with relational neural networks for differ-
ent settings. These results illustrate that reshuffling gives an improvement of the
final accuracy and that copy reshuffling works better than continuous reshuffling
in this case. Table 2 compares the best results for relational neural networks
with the results for other methods. These other results come from [6], except
for the results for multi-instance neural networks [17]. It should be noted that
methods 11 and 12 require computation of the molecular surface, which cannot
be done using the feature vectors in the data set.

Comparing the different neural network approaches, we see that RNNs do
not perform as well as multi-instance neural networks, but substantially better
than simple backpropagation. This method ignores the multi-instance character
of the musk data set and treats all of the positive instances as positive examples.
This is actually some kind of propositional approach. As RNNs perform clearly
better than this method, it seems that they are able to learn a real multi-instance
concept, which is also a relational concept.



392 W. Uwents and H. Blockeel

5.2 Trains

The trains data set is an artificially created data set containing a number of
trains. Every train consists of a number of cars, carrying some load. Some of the
trains are eastbound, the others are westbound. This target concept is based on
the properties of the cars of a train and their loads. A data generator for this
train problem was used to create the data set [15]. A simple (trains 1 and 2)
and a more complicated concept (trains 3 and 4) were defined to generate the
data sets. The simple concept defines trains that are eastbound as trains with
at least two circle loads, the other trains are westbound. The more complicated
concept defines westbound trains as trains that have more than seven wheels
in total but not more than one open car with a rectangle load, or trains that
have more than one circle load; the other trains are eastbound. There is also a
distinction between data sets without noise (trains 1 and 3) and those with 5%
noise added (trains 2 and 4).

Training was done with learning rate 0.1 and during 5000 iterations. Results
for the different settings can be found in table 1 and a comparison with first-
order random forests (FORFs) [20] in table 5. Apparently, the first two data
sets, containing 100 samples, are too small to train the network sufficiently.
Therefore, better performance for these data sets is obtained with FORF. For
data set 3 and 4, the results are very similar to those obtained with FORF. Using
reshuffling clearly outperforms no reshuffling for this experiment. This indicates
that reshuffling does indeed help to learn relational concepts.

5.3 Mutagenesis

Mutagenesis is a well-known ILP data set [19]. It consists of 230 molecules
which have to be classified as mutagenic or not. A structural description of
each molecule is given, stating all atoms of the molecule and the bonds between
them. In this case, best results were achieved when using 20% of the training
set as validation set to do early stopping. This means that after every training
iteration the performance on this validation set and on the test set is computed
and after training the iteration with the lowest validation error is used to select
the test accuracy.

The network was trained for 20000 iterations with a learning rate of 0.5.
The large number of training iterations was needed because convergence seems
to be quite slow for this experiment. Results for different settings are shown in
table 1. Best results are obtained using continuous reshuffling. The reason that
this works better than copy reshuffling, could be the large number of training
iterations. A comparison with FORF can be found in table 4. For this data set,
RNNs achieve substantially better results than FORFs.

5.4 Diterpenes

For the last experiment, the diterpenes data set is used [7]. This data set contains
information about 1503 diterpene structures. For each of the 20 carbon atoms
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Table 3. Accuracy results for the diterpenes data set compared to other systems.
Results for FOIL, RIBL and ICL come from [7], the result for FORF is obtained
from [20].

RNN FORF FOIL RIBL ICL

81% 93% 78% 91% 86%

Table 4. Accuracy results for the mutagenesis data set compared to those for
FORF [20]

RNN FORF

88% 79%

Table 5. Results for trains data sets compared with FORF

concepts samples noise RNN FORF

trains 1 simple 100 none 93% 100%
trains 2 simple 100 5% 87% 93%
trains 3 complex 800 none 96% 96%
trains 4 complex 800 5% 89% 90%

in the diterpene structure, multiplicity and frequency are given. The results are
shown in table 1. Again, training was done over 20000 iterations and with 0.5
learning rate. A comparison with other results can be found in table 3. For this
data set, relational neural networks do not perform very well and reshuffling gives
worse results than using no reshuffling at all. It is not very clear why this is so.

5.5 Experimental Conclusions

One must be careful to draw straightforward conclusions from the four exper-
iments as a whole. It seems to be partially problem dependent which training
setting gives the best results. Copy reshuffling improves accuracy for musk and
trains for instance, but for mutagenesis continuous reshuffling is better and best
results for diterpenes are obtained without any reshuffling. Moreover, some re-
sults are rather sensitive to changes in the training setting. Even small changes
for parameters can produce quite different results. This is also the reason why
the training methodology is not uniform in the conducted experiments. There is
not one setting that produces acceptable results for all experiments.

Another problem is that convergence tends to be slow. Probably, this is par-
tially due to the use of recurrent neural networks. It is known that these networks
are harder to train than feedforward networks. The fact that we increased the
number of layers, decreases learnability further. These problems are related to
the use of backpropagation as training method, which has problems to back-
propagate an error signal over too long distances.

However, some conclusions can be made. For instance, the improvement of
the accuracy when using reshuffling for the trains data set is remarkable. Because
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this data set is artificially created, we are sure that the concept to be learned
is a combination of aggregation and selection. As the results improve so much,
this is a strong indication that reshuffling is indeed helping to learn this kind of
concepts. If we look at the overall accuracies achieved for the different data sets
and compare them to other approaches, we can also conclude that RNNs seem
to be able to express relational concepts quite well.

6 Conclusions

In this paper, we presented a novel neural network approach to relational learn-
ing. The fact that current relational learners are very limited in making combi-
nations of aggregation and selection is an important motivation for this work.
By using neural networks, such combinations can be made in an implicit way
and we should be able to avoid a bias to either aggregation or selection.

The structure of a RNN is based on the relational database schema. It is a
combination of feedforward and recurrent networks to process a tuple together
with its related tuples. The fact that sets of tuples are fed in the recurrent
networks as sequences, is also used to improve training and testing. By reordering
these sequences, the variation in the data can be increased, which should increase
learnability.

Experiments on four different data sets give some insight in the capacities of
RNNs. They seem to be able to learn relational concepts reasonably well. The
beneficial effect of reshuffling in training and testing could also be demonstrated.
But issues as verifying what concepts are actually learned and a training algo-
rithm that is better suited to train this kind of neural networks, are worth further
investigation. Understandability is an important issue in ILP, but it is a known
problem for neural networks. A lot of work has been done in rule extraction
from neural networks, but relational neural networks present some complica-
tions. With regard to the training method, a genetic algorithm could be a better
method than backpropagation.
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instance problem with axis-parallel rectangles. Artificial Intelligence, 89(1-2):31–
71, 1997.
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Abstract. State-of-the-art algorithms implementing the ‘extended
transformation approach’ to propositionalization use backtrack depth
first search for the construction of relational features (first order atom
conjunctions) complying to user’s mode/type declarations and a few ba-
sic syntactic conditions. As such they incur a complexity factor exponen-
tial in the maximum allowed feature size. Here I present an alternative
based on an efficient reduction of the feature construction problem on the
propositional satisfiability (SAT) problem, such that the latter involves
only Horn clauses and is therefore tractable: a model to a propositional
Horn theory can be found without backtracking in time linear in the
number of literals contained. This reduction allows to either efficiently
enumerate the complete set of correct features (if their total number is
polynomial in the maximum feature size), or otherwise efficiently obtain
a random sample from the uniform distribution on the feature space.
The proposed sampling method can also efficiently provide an unbiased
estimate of the total number of correct features entailed by the user
language declaration.

1 Introduction

A major stream of approaches to propositionalization [6] is based on constructing
relational features in the form of Datalog queries, such as the one below

car(C) ∧ load(C,L) ∧ small(L) ∧ triangle(L)

from the well-known Michalski’s east-west trains domain, querying whether there
is car carrying a small, triangle shaped load (in a train). In this paper I con-
strain myself to expressions that are conjunctions of non-negated atoms without
constants (thus avoiding atoms such as numOfWheels(Car, 2) and rather con-
sidering an atom has2Wheels(Car)). Much like traditional ILP systems suffer
from two sources of computational complexity–the size of the hypothesis space
and the complexity of proving examples from a hypothesis–the burden of this
propositionalization approach is also twofold, represented by these factors:

1. the complexity of constructing a syntactically well-formed feature definition
2. the complexity of finding the extension of a feature, ie. the subset of data

instances for which the feature holds true.

S. Kramer and B. Pfahringer (Eds.): ILP 2005, LNAI 3625, pp. 397–413, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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A lot of research has been conducted to make subsumption check based proving
(ie. the problem underlying Item 2) more efficient. This includes both enhance-
ments preserving completeness and correctness [2] as well as those representing
tractable approximations to the subsumption check [11]. In contrast, Item 1 is
in state-of-the-art propositionalization systems approached through an exhaus-
tive, usually depth-first search, which of course becomes quickly intractable once
language bounds (eg. the maximum number of atoms in a feature) are softened.

Note the complexity trade-off between Items 1 and 2. The finer conditions
are stipulated on the acceptable syntactical form of a feature, the fewer correct
features exist in the search space, decreasing the effort needed to exert in Item
2, but the more difficult it may be to find a correct feature if one resorts to a
naive backtrack search.

Correct Feature. In this paper, I constrain the notion of a well-formed fea-
ture1 in a natural way, by combining two popular language-bias specification
techniques. First, as in many successful ILP systems (such as Progol [8]), I as-
sume the user to pre-specify the set of predicates which can be employed in a
feature, as well as types and modes of each argument place therein. In a correct
feature, no variable appears at two, differently typed arguments. For each argu-
ment, the mode is either ‘+’, or ‘-’ and a variable occurrence at that argument is
called an input, or output, respectively. Furthermore, the maximum branching
factor (maximum number of occurrences of a given predicate in a feature with
the same input variables2), and the maximum size of a feature (maximum num-
ber of atoms contained), are pre-set. Second, I impose the provisos suggested
in the Extended Transformation Approach propositionalization framework [7],
namely that (i) each variable in a feature is used exactly once as an output and
at least once as an input, (ii) no correct feature is an atom-wise union of two or
more correct features.

Conditions (i) and (ii) actually distinguish the feature construction process
from the clause-enumeration procedures at the heart of most ILP systems. While
(i) is motivated primarily by the ease of human interpretation of a relational
feature, (ii) prevents the assembly of features by simply conjoining simpler ones–
an excess expressivity given that propositional algorithms, to which the resulting
features are subjected, are themselves able to construct conjunctions.

Assume the user declaration is specified, including n, β representing the
bounds on the feature size and branching-factor, respectively. Here I mainly
show that if the declaration obeys certain easily acceptable restrictions, one can
either efficiently (in time polynomial in n and β) enumerate the complete set of
correct features (if the number N of actually existing correct features is poly-
nomial in n), or efficiently obtain a polynomial-size random sample of correct
features (if N is exponential in n) from a uniform probability distribution on the
set of all correct features. Although it is not known beforehand, whether or not N
is polynomial in n given a declaration and varying n, running the two respective

1 I will use interchangeably the terms ‘feature’, ‘correct feature’ and ‘well-formed fea-
ture’.

2 This parameter is called recall in Progol.
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algorithms in parallel would of course result in obtaining one of the two results
efficiently. The fundamental technique I exploit is a polynomial-time reduction
of the feature-construction problem onto an instance of HORN-SAT, ie. finding
a model of a propositional Horn theory. It is interesting to note that HORN-
SAT is the only non-trivial tractable subclass of the generally NP-complete SAT
problem [10]. A model to a propositional Horn theory can be found without
backtracking, in time linear in the number of literals in the theory [5].

Let me now present three specific reasons why the method here presented
is an important contribution to both propositionalization and state-of-the-art
relational learning in general.

1. The first reason is practical. Even if a user requires to obtain the complete
set of correct features rather than a sample, and thus resorts to an exhaustive
enumerative method, there is presently no way of efficiently determining how
large a set of correct features is entailed by the current language declaration.
Thus the typical propositionalization modus operandi consists of repeated
executions of the feature construction process stopped after a long run time
and an unacceptable number of features generated, followed by iterative re-
tuning of the declaration.3 A consequence of my sampling method is that the
total number of correct features can be efficiently and accurately estimated
prior to enumerating all features.

2. Recent research [14,4,1] indicates the possibility that rather than using an
exhaustive set of features enumerated from a small space of simple expres-
sions, it may be beneficial to uniformly sample (eg. the same number of)
features from a larger space (for which an exhaustive method is intractable),
allowing for more descriptive complexity as well as variability between the
features. My method provides the necessary bits for this sake.

3. A recent, very interesting paper [13] shows the advantages of constructing
random-forest classifiers based on relational features. A random sample of
features provided by the method presented here can be used as an input to
construct a randomized decision tree, as a component of a random forest.4

Experimental evaluation of this idea is however out of the scope of this paper.

2 Correct Features as HORN-SAT Solutions

Before exposing details, here is a brief outline of my strategy. Recall the definition
of a correct feature from the introduction. Let me call a finite set of constant-
free Datalog atoms5 an expression and, given a mode/type declaration, let every
expression be called proper if all its variables have exactly one output and at least
one input occurrence, and connected if it all its atoms are pairwise connected.

3 This argument of course follows solely from my subjective experience.
4 My method only generates one of two types of features considered in the mentioned

paper, there called selective features.
5 For simplicity I work with sets, although examples of such expressions will be shown

as conjunctions of the elements.
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Two atoms a and b in an expression are connected if they share a variable or
both a and b are connected with another atom c in the expression. Clearly, any
correct feature is connected (remind the requirement of the undecomposability
of a feature into two or more features). In this section, the adjective polynomial
(exponential) will stand for polynomial (exponential) in n (the maximum feature
size). By definition of the branching factor β, it must hold β ≤ n, so for simplicity
of analysis, I will use the upper-bound β := n and then make sure that the time
complexity of the algorithm is polynomial in n implying it is also polynomial
in β.

I first construct a ‘bottom feature’ ⊥ – a proper expression complying to the
type/mode declaration, which is an atom-wise superset (up to variable renaming)
of all correct features. Slight restrictions on the user declaration will guarantee
that ⊥ exists, has a polynomial number of atoms, and can be constructed in
polynomial time. As ⊥ complies to typing and moding constraints, so do all its
subsets. What remains to do then is to find all proper, connected subexpressions
of ⊥ of size ≤ n, A straightforward verification of all subexpression of size ≤ n
would obviously require exponential time, however, I show that this problem may
be efficiently reduced onto a polynomial-size HORN-SAT instance, for which an
efficient solving algorithm exists.

2.1 Bottom Feature Construction

I now regard the first step, ie. constructing the bottom feature ⊥ given a type/
mode declaration and n, the maximum feature size. To encode a declaration,
I employ a simple form used with slight variations in numerous ILP systems.
Here, available predicates are listed with mode and type indicators plugged into
the argument places. An example declaration follows

car(-c), hasRoof(+c), load(+c,-l), triangle(+l), box(+l)

The modes -/+ denote outputs/inputs, respectively, and c, l represent the re-
spective car and load argument types. I now impose two natural, yet important
restrictions on declarations. First, a declaration has a finite size and each de-
clared predicate has a finite arity. Second, there exists a partial irreflexive order
≺ on types, such that for any two types t1, t2 it holds t1 ≺ t2 whenever t1 occurs
at an input position of a declared predicate and t2 appears at an output position
in the same predicate. This assumption is trivially met by the example declara-
tion above (here c ≺ l). The declaration would remain valid if eg. tows(+c,+c)
was added to it, but not if tows(+c,-c) was added. Finally, for clarity of ex-
planation I will only consider predicates with at most one output argument,
although the further presented principles do not require that condition.

To demonstrate the construction of ⊥, I will distinguish two cases: (SI) any
declared predicate has at most one input, (MI) some have two or more inputs. I
will first exemplify the former case, using the sample declaration above. Due to
the ≺ existence and the assumption (SI), every correct feature can be represented
as a tree, where vertices correspond to atoms and edges connect pairs of atoms
where one contains a variable as an output and the other contains the same
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β ≤ n

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

car(C) −hasRoof(C)
−load(C, L1) −box(L1)

−triangle(L1)
−load(C, L2) −box(L2)

−triangle(L2)
...

...

−load(C, Ln)
...︸ ︷︷ ︸

Δ≤Δmax

Fig. 1. A tree graph representing the bottom feature ⊥ whose size is a polynomial
function of n. Vertices correspond to atoms in ⊥. β denotes the branching factor, Δ
stands for the tree depth, bounded by some constant Δmax.

variable as an input. Similarly, ⊥ also corresponds to a tree, which must contain
all correct features as root-sharing subtrees. The tree form of ⊥, whose size
depends on n, is sketched in Fig. 1.

Due to the feature connectivity requirement and assumption (SI), no correct
feature may regard two or more cars: such an expression would necessarily be
disconnected.6 Therefore, only one car/1 atom is present in ⊥, as the root. Due
to the assumed partial ordering of types ≺ and the finiteness of the declaration,
the depth of the tree is bounded by some constant Δmax. Also its branching
factor can be upper-bounded by n (eg. no feature of size at most n can address
more loads than n; this upper bound may of course be quite easily improved).
The number of nodes, ie. the size of the bottom set is thus of order nΔmax , ie.
polynomial.

Consider now the more general (MI) case where a declaration contains a
predicate with multiple inputs. This is a natural case in domains where a feature
may relate two substructures of the individual. An example declaration follows
capturing a simplified version of the Mutagenesis problem [12].

atm(-a), crb(+a), nit(+a), oxy(+a), hyd(+a),
bond(+a,+a,-b), single(+b), double(+b)

With respect to the graph representation I introduced in the previous paragraph,
due to the presence of the bond/3 predicate with 2 inputs, correct features no
longer form a tree and neither does ⊥.7 The proof of ⊥ still having a polynomial
size now relies on the fact that ⊥’s atoms can still be organized in ‘layers’
(corresponding to the columns in Fig. 2 on Page 404), using the assumed partial
type order ≺. Up to n atoms are in the first layer, so the first layer generates
O(n) output variables. The cardinality of the second layer is thus O(nI), where

6 I ignore the case when the declaration has more than one predicate with only out-
put variables (such as car/1), while assuming (SI): again due to the connectivity
requirement, this case can be treated as two separate feature construction problems.

7 Also, the atm/1 predicate will need to be placed n times in ⊥ with distinct output
variables, unlike the car/1 predicate in the (SI) case.
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I is the maximum number of input arguments in an atom, among atoms in the
declaration. The third layer may use O(nI) variables, so its cardinality is at
most O(nI×I). Thus in general, O(|⊥|) may be upper bounded by nIΔmax . Since
the exponential factor is a constant, I accept this as a polynomial bound as I
intended to achieve in this section.8

2.2 Avoiding Improperness

Having constructed ⊥, I now proceed to the problem of how to efficiently extract
⊥’s proper subexpressions of size ≤ n. The basic idea is to assign a propositional
variable to each atom of ⊥ and use the variables to construct a clause set,
encoding the properness requirements, so that every solution of the clause set
corresponds to a proper expression. Interestingly, encoding the constraints turns
out to require only Horn clauses. Again, I will illustrate the procedure by way of
example in the East-West train domain, continuing with its previous predicate
declaration. Let n = 3. Then ⊥ =

car(C)∧hasRoof(C)∧load(C,L)∧triangle(L)∧box(L)
P1 P2 P3 P4 P5

is a correct bottom feature. Note that using the branching-factor upper-bound
β := n used above for bounding |⊥|, I would include three load/2 atoms into ⊥
(refer to the corresponding branches in Fig. 1), however, in this case all correct
features of length up to 3 atoms are clearly subsets (up to variable renaming)
of this shorter ⊥. As the lower line indicates, I assign one propositional variable
(P1 to P5) to each atom. A truth assignment to these variables will represent
a ⊥’s subexpression as follows: if and only if a variable has the false value,
the corresponding atom belongs to the subexpression.9 As the reader will easily
verify, the following set of clauses is satisfied if and only if each variable present
in the subexpression has at least one input occurrence (the first clause relating
to C, the second to L).

¬P2 ∨ ¬P3 ∨ P1 (1)
¬P4 ∨ ¬P5 ∨ P3 (2)

In each clause, I introduced a negative literal corresponding to each atom con-
taining the respective variable as an input, and the positive literal in each clause
corresponds to the atom with an output appearance of the respective variable.
Since I assume each variable to have exactly one output occurrence, I necessar-
ily obtain Horn clauses. It of course remains to make sure that the mentioned
8 This, in general rapid polynomial growth of |⊥| may be reduced by imposing a small

branching factor bound β.
9 With this choise the dual propositional problem will acquire a HORNSAT form. I

may equally have assigned the true value to denote the membership thus arriving
instead at a NON-HORNSAT problem, ie. one with at most one negative literal in
each clause.
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assumption is indeed satisfied. Note first that by construction of ⊥ (refer to Fig.
1), each output argument is assigned a distinct variable and therefore each vari-
able in any subexpression of ⊥ appears as an output at most once. I now need to
make sure that it appears as an output at least once. Evidently, this is the case
if and only if the following four clauses, which I add to the constructed clause
set, are satisfied (the upper two for C, the lower two for L).

¬P1 ∨ P2 ¬P1 ∨ P3 (3)
¬P3 ∨ P4 ¬P3 ∨ P5 (4)

Here the negative (positive) literals correspond to input (output) occurrences of
the respective variables in ⊥. Since, as the reader has already seen, there is at
most one output occurrence of each variable, also these clauses are necessarily
Horn. Let me now determine the total number of Horn clauses obtained in gen-
eral by the procedure so far. A simple insight yields that I get one clause per
every output argument in ⊥ (such as the two clauses 1 - 2) and one clause per
every input in ⊥ (such as the four clauses 3 - 4). Due to assigning a single propo-
sitional variable to every atom in ⊥, the number of literals in each clause is at
most |⊥|. As I have constructed a polynomial size ⊥, the resulting HORN-SAT
instance (consisting of all clauses 1 - 4) has a polynomial number of clauses with
a polynomial number of literals in each. A trivial solution simply makes true
all involved propositional variables (note the omnipresence of a positive literal).
To avoid this useless solution–corresponding to the empty feature–I append one
more Horn clause

¬P1 ∨ ¬P2 ∨ . . . ∨ ¬P5 (5)

2.3 Avoiding Disconnected Features

At this stage, whenever a solution satisfying all clauses constructed so far makes
false n or fewer of the propositional variables, it corresponds to a correct fea-
ture. Although I constructed no dedicated clauses guaranteeing connectedness
of extracted expressions, due to the (SI) character of the particular example at
hand, this property is satisfied automatically: from Fig. 1 it is easy to see that
any disconnected subgraph of the tree would represent an expression with an
input variable with no output occurrence. Such a non-proper expression would
be eliminated by the so-far constructed clauses. However, the (MI) setting allows
for proper yet disconnected expressions such as

atm(A) ∧ crb(A) ∧ atm(B) ∧ oxy(B)

–an example taken from the Mutagenesis domain. The method to avoid obtaining
disconnected expressions such as the above, is based on a polynomial extension
of the generated Horn set. Let a primary predicate (atom) be a declared predicate
(atom based thereon) with no input argument (ie. one relating directly to the
individual, such as atm/1 or car/1). I will distinguish two (MI) subcases: (MI-
S) only one primary predicate is declared, and (MI-M) more than one primary
predicates are declared.
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atm(A2)

atm(A1) bond(A1,A2,B1)
bond(A2,A1,B2)

bond(A3,A1,B4)
bond(A1,A3,B3)

bond(A2,A3,B5)
bond(A3,A2,B6)

nit(A1)
crb(A1)

single(B1)
double(B1)
single(B2)

oxy(A3)
hyd(A3)

{1}

{2}

atm(A3)
{3}

{3}

{3}

{1}

{1}

{1,2}

{1,2}

{1,3}

{1,3}

{2,3}

{2,3}

{1,2}

{1,2}

{1,2}

P

P
P

P

Pi

j

k

l

m

Fig. 2. A fraction of the ⊥ graph representation in a (MI) setting. Chemical bonds are
not oriented so half of the shown bond/3 atoms are semantically superfluous, however,
I am not concerned here with feature semantics.

I first regard (MI-S). In the layer-wise construction of ⊥ (enabled again by
assuming the ≺ order, refer to Fig. 2), I assign a distinct integer singleton label to
each (necessarily primary) atom in the first layer. Then the label of every vertex
in layer l (l ≥ 2) is the union of the labels of its parents in layer l− 1. Now I am
able to identify atoms (‘joints’), which are simultaneously descendants of more
than one primary atoms. The idea now is to allow the inclusion of a second or
further primary atom in a feature, only if there is a joint for it with another
primary atom in the feature. For example, for the primary atom atm(A3), I can
facilitate that by adding the following Horn clause into the HORN-SAT instance
(refer to the Pm . . . Pl variables assigned to vertices in the figure)

Pm ∨ ¬Pi ∨ ¬Pj ∨ ¬Pk ∨ ¬Pl (6)

In general, assume that P1 . . . P|⊥| are variables assigned to atoms in ⊥, and let
L(Ps) (1 ≤ s ≤ |⊥|) be a function yielding the label of the vertex corresponding
to the to variable Ps. For each primary atom, corresponding to variable Pr and
having the label {λ} = L(Pr), the following Horn clause will be added to the
HORN-SAT instance:

Pr

∨
1≤s≤|⊥|, {λ}⊂L(Ps), ∀ρ∈L(Ps): ρ≤λ

¬Ps (7)

This extension has a polynomial size since it generates at most |⊥| additional
clauses each with at most |⊥| literals. The ρ ≤ λ inequality in the selector line
exploits the order imposed on primary atoms by the vertex labelling (I reflect
here the order also in output-variable naming). It prevents the construction of
disconnected expressions such as

atm(A1)∧atm(A2)∧bond(A1,A2,B1)∧single(B1)
∧atm(A3)∧atm(A4)∧bond(A3,A4,B2)∧single(B2)
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This expression is disqualified since atm(A3) has no joint with with atm(A1) or
atm(A2) (although it has one with atm(A4)). At first sight it seems incorrect
that this technique thus also disqualifies connected expressions such as

atm(A1)∧atm(A2)∧atm(A3)∧bond(A1,A3,B1)
∧bond(A2,A3,B2)∧single(B1)∧single(B2)

since atm(A2) has no joint with atm(A1). This expression, however, is equivalent
to the non-discarded counterpart where A1 and A3 are mutually exchanged. In
can be shown also generally that no connected proper feature will be discarded
by this technique, as long as one adheres to the (MI-S) assumption, that is, only
one primary predicate is declared.

Unfortunately, I cannot provide any efficient feature connectivity verification
technique for the remaining, most general (MI-M) case (multiple input arity
+ multiple primary predicates). I do not believe that one can be implemented
without solving the general intractable graph connectivity testing problem. The
(MI-M) case would correspond to a problem where individuals would be struc-
tured by two or more different manners, and it would be required to mutually
relate such multiple kinds of substructures. This fortunately does not seem to
be a typical case in applied propositionalization.

2.4 Avoiding Multiple Equivalent Features

The reader has certainly noticed an evident deficiency of the feature set corre-
sponding to the set of all solutions to the dual HORN-SAT problem. The set may
contain classes of equivalent features, only differing in variable naming. Indeed, if
⊥ contains eg. multiple occurrences of the load/2 predicate, as necessary for large
enough n (refer to Fig. 1), two distinct solutions to the corresponding HORN-SAT
instance will represent for instance the following, equivalent features:

car(C)∧load(C,L1)∧triangle(L1)
car(C)∧load(C,L2)∧triangle(L2)

Such cases may however be remedied by an extension of the generated HORN-
SAT instance in the following way. Let Pb1 , Pb2 , . . . Pbn be the propositional vari-
ables corresponding the (up to) n roots of the branches stemming from an atom
in ⊥ (again, refer to Fig. 1 for quicker insight). I add the following polynomial
number (again due to the bounded branching factor and depth) of Horn clauses

¬Pb1 ∨ Pb2 , ¬Pb2 ∨ Pb3 , . . . ¬Pbn−1 ∨ Pbn (8)

In the continuing example, Pb1 , Pb2 , . . . Pbn correspond to the multiple hasLoad/2
atoms contained and the clauses above will guarantee that load(C,Li+1) (i ≥ 1)
will appear in a feature only if it also includes load(C,Li). To see that this
technique does not eliminate features that are not redundant, realize that in the
⊥ graph representation all children vertices of a given parent vertex have the
same (up to variable naming) descendant subgraph, so any feature containing
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load(C,Li+1) and not load(C,Li) has its equivalent containing load(C,Li) and
not load(C,Li+1).

Still, the technique just explained does guarantee syntactic uniqueness of ev-
ery feature in the resulting set. A thorough discussion of redundancy elimination
is out of the scope of this paper; I just note here that the residual redundancy,
exemplified by the following two equivalent features

car(C)∧load(C,L1)∧load(C,L2)∧triangle(L1)∧box(L2)
car(C)∧load(C,L1)∧load(C,L2)∧triangle(L2)∧box(L1)

manifests itself as well in the standard backtrack-search based feature construc-
tion systems and in neither framework there seems to be an apparent syntac-
tic redundancy removal method not resorting to the NP-complete subsumption
check.

2.5 Extracting Correct Features from the Bottom Feature

I am now in the position to extract correct features from ⊥ by finding a satisfying
assignment to a polynomial-size set of propositional Horn clauses. Horn satisfi-
ability was identified as a tractable problem as early as in the 1970’s [10] and
later, efficient algorithms have been designed [5] able to find a maximal (mini-
mal) solution, that is, one that assigns the true value to the greatest (smallest)
possible number of variables, or determine that no solution exists. In this paper’s
context, a maximal solution corresponds to the smallest connected proper subex-
pression of ⊥ (remind that a ⊥’s atom belongs to the extracted subexpression if
its corresponding propositional variable is false). Consequently, if the efficiently
found maximal solution makes false n or fewer variables, I have found a correct
feature. Otherwise, I can conclude that the declaration allows for no correct fea-
ture. In the continuing example, a maximal solution to the clauses constructed
above makes true P3, P4 and P5 (the reader will check that all seven clauses 1 –
5 are indeed satisfied), thus P1 and P2 are false. This corresponds to the correct
feature car(C)∧hasRoof(C).

So far I have merely shown how to efficiently decide the feature existence
problem by finding a correct feature if one exists. In practice though, one will
need to enumerate the entire set of correct features. For this purpose, fortunately,
one can accommodate the algorithm proposed in [3] able to produce the set of all
HORN-SAT instance solutions by iterative executions of the core procedure for
finding a single solution. The input clause set is at each call modified in a way
guaranteeing that the successive solutions form the entire (lexicographically or-
dered) set of solutions to the original HORN-SAT instance. A favorable property
of the algorithm is that the total number of calls to the core procedure is polyno-
mial in (i) the total number of literals in the original clause set, (ii) the number
of existing solutions, that is, the algorithm does not introduce an exponential
complexity factor when upgrading a single solution finding onto finding of all
solutions. I refer the reader to [3] for further details. By employing this algorithm
(in the way described in Fig. 3) to find all solutions to the HORN-SAT instance
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EnumerationOfFeatures(D, n) : Given a correct user predicate declaration D and
a number n ≥ 0, produces the set of all proper connected features of size ≤ n,
satisfying D.
1. Construct bottom feature ⊥ = ⊥(D, n).
2. Construct HORN-SAT instance H from ⊥.
3. S := AllModels(H).
4. For all s ∈ S with at most n false assignments, convert s into the corresponding

feature f and output f .

Fig. 3. Enumeration of all correct features through the HORN-SAT reduction strategy.
Steps 1 and 2 are detailed in Section 2. Step 3, ie. procedure AllModels implements [3]:
it terminates in polynomial time if the number of all models is polynomial. A correct
declaration D complies to assumptions described in Section 2 (finiteness, ≺ order on
types) and one of the (SI) or (MI-S) assumptions.

corresponding to the feature construction problem instance, I do not conduct
significant ‘excess computation’ (corresponding to exploring exponentially large
search subspaces containing no solution in the case of standard backtrack fea-
ture construction approaches), and specifically, if the actual number of correct
features is polynomial, they are all enumerated in polynomial time.

3 Sampling the Feature Space

For the case when the total number of correct features allowed by the user declara-
tion is exponential in n (maximal feature size) and complete feature enumeration
is intractable, I offer two algorithms for feature sampling. Both of them approach
the task by sampling in the space of models for the dual HORN-SAT problem.

The first algorithm described in Fig. 4 simply generates random truth as-
signments with at most n false-valued variables (corresponding to the maximal
feature size n) to the dual HORN-SAT instance and checks (through a linear
time algorithm) if they are models. To obtain a uniform sample of features, care
must be taken to generate the truth assignments equiprobably, given the max-
imal feature length (n) constraint. The corresponding technique is explained in
the Figure. Due to the uniformity, this algorithm is also able to produce an unbi-
ased estimate of the total number of existing features. The number of iterations
(truth assignments made) in the algorithm is linear in s (the required sample
size) and 1/p, where p is the actual proportion of the number of all models to the
number of all possible truth assignments, which grows exponentially in n. There-
fore, if the number of all correct features, ie. the number of all models of the dual
problem is also exponential in n, the number of iterations is at most polynomial.

The second, locally deterministic algorithm shown in Fig. 6 can be viewed as
a middle-ground between complete enumerative search and sampling. At each
iteration it generates a random partition of the search space by assigning the
true value to at least |V| − n randomly chosen variables in the dual HORN-
SAT instance with |V| variables, thereby guaranteeing that any found model
will convert to a feature of at most n atoms. The completion to a total truth



408 F. Železný

SampleFeatures(D,n, s) : Given a correct user predicate declaration D and a number
n ≥ 0, produces a set F of s random features of size ≤ n, satisfying D and an
estimate e of the total number of such features.

1. Construct bottom feature ⊥ = ⊥(D, n).
2. H = ConvertToHornSAT (⊥, n); V := the set of propositional variables in H.
3. t := 0; f := 0;F := {}
4. T := RandomTruthAssignment(V, n); t := t + 1
5. if ModelCheck(H, T ) then F := F ∪ {ConvertToFeature(⊥,T )}; f := f + 1

6. if f = s then return F and e = f/t ∗
∑n

i=0

(
|V|
i

)
, else go to 4

Fig. 4. Sampling features by generating random truth assignments to the dual
HORN-SAT problem and checking whether they are models thereof. Procedures
ConvertToHornSAT and ConvertToFeature implement reduction principles de-
scribed in Section 2. Procedure ModelCheck implements a linear time HORN-SAT
model checking algorithm. Proc. RandomTruthAssignment is described in Fig. 5.

RandomTruthAssignment(V,n) : Given a set of propositional variables V and a num-
ber n ≤ |V|, produces a random truth assignment to V with at most n false as-
signments, with equal probability among all such assignments.

1. Choose a random number 0 ≤ r ≤ n with probability

P (r) =

(
|V|
r

)
∑n

i=0

(
|V|
i

) (9)

2. Choose a random combination Cr of r variables from V with equal probability
among all such combinations.

3. Output the assignment {false ← vi|vi ∈ Cr} ∪ {vj ← true|vj /∈ Cr}.

Fig. 5. Procedure RandomTruthAssignment ensures equiprobability by first selecting
the number r ≤ n of false valued variables in the selected assignment with probability
proportional to the number of all assignments with r false valued variables, and then
drawing a random combination of r variables to be falsified

assignment is then done by formally adding the instantiated variables as positive
singletons to the Horn clause set and then using a simple linear time-algorithm [5]
for finding a minimal HORN-SAT model (instantiating the rest of the variables).
Unlike the previous sampling algorithm, this locally deterministic algorithm does
not guarantee that resulting features form a sample from a uniform distribution
on all correct features, and thus it cannot provide an unbiased estimate of the
total number of correct clauses. The non-uniformity is a consequence of both
the bias toward the minimal model in each search space partition as well as the
possible overlaps between individual partitions.

Although I formally use the name ModelCheck in Fig. 4 and HornModel
in Fig. 6, I implemented the two procedures naturally by a single binary Prolog
predicate, where the model carrying argument may or may not be instantiated
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LocalSearchOfFeatures(D, n, s) : Given a correct user predicate declaration D and
a number n ≥ 0, produces a set F of s random features of size ≤ n, satisfying D.

1. Construct bottom feature ⊥ = ⊥(D, n).
2. H = ConvertToHornSAT (⊥, n); V := the set of propositional variables in H.
3. f := 0;F := {}
4. Choose a random number |V| − n ≤ r ≤ |V| with probability

P (r) =

(
|V|
r

)
∑|V|

i=|V|−n

(
|V|
i

) (10)

5. Choose a random combination Cr of r variables from V with equal probability
among all such combinations.

6. Hext := H ∪ {vi ← true|vi ∈ Cr}
7. if T := HornModel(Hext) succeeds then

F := F ∪ {ConvertToFeature(⊥,T )}; f := f + 1
8. if f = s then return F , else go to 4

Fig. 6. Sampling features by generating a random, partial truth assignment to variables
in the dual HORN-SAT theory, and then verifying if the assignment can be completed
to a model of the theory. Procedure HornModel terminates in linear time [5].

when calling the predicate. The total number of calls to this predicate will rep-
resent a parameter used in comparing the two methods.

4 Implementation and Experiments

The algorithms presented in this paper have been implemented in SWI Prolog.
The implementation is available for download from http://labe.felk.cvut.
cz/~zelezny/feature_sampling.pl .

Let me now consider the following mode/type declaration

car(-c), connected(+c, +c), load(+c,-l), big(+l), small(+l)

and set the maximum branching factor β = 2 and maximum feature size n = 10.
The bottom feature for this declaration has 18 atoms, and consequently there

exist
∑10

i=0

(
18
i

)
= 199140 possible truth assignments in the dual HORN-SAT

instance (out of which 567 are models to the corresponding Horn theory).
I have two goals in this exercise. First, I want to verify that the estimate e of

the total number of correct features provided by the algorithm SampleFeatures
in Fig. 4 converges sufficiently rapidly to the correct value with growing sample
size, in comparison to an estimate based on enumerating subsets of the bot-
tom feature in systematic manners, either top-down or bottom-up. Second, I
want to compare the efficiency of algorithms SampleFeatures in Fig. 4 and
LocalSearchOfFeatures in Fig. 6 to see whether abandoning the distributional
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uniformity in LocalSearchOfFeatures trades off for a significant speedup of
the feature sample construction, with respect to SampleFeatures.

Figure 7 answers the first question by demonstrating that the uniform sam-
pling method (unlike the systematic top-down or bottom-up procedures) pro-
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vides a stable estimate, which remains in a 15% error margin once about 5,000
truth assignments (about 2.5% of the search space) are sampled.

The second question is addressed in Fig. 8, showing that the rate at which
the algorithm runtime increases with the growing number of feature sampled
is reduced by LocalSearchOfFeatures to about 1/100 of that invested by
SampleFeatures.

5 Related Work

Similarly to the work of Pfahringer and Holmes [9], my approach aims at gen-
erating randomized features, viewable as extracting some constrained random
subgraphs of some graph G. While in my approach, G (the bottom feature) is
derived from a user’s syntactic declaration, in [9], G is a structural representation
of a chosen example of a class for which the features are generated. This difference
has two fundamental consequences. First, unlike [9], my approach is class-blind
and as such it is not apriori biased towards constructing features with discrimi-
native power, which needs to be assessed (and possibly used for posterior feature
selection) after the feature syntax has been generated. Second, Pfahringer’s and
Holmes’ features are, to my best understanding, less expressive than my features.
Assuming ground descriptions of examples, their feature graphs correspond to
ground logic formulas, so unlike in my approach, they eg. cannot express the fea-
ture ‘there are two carbon atoms c1, c2 both connected to some other atom A.

My method includes a number of ingredients, whose application in relational
machine learning is not original. Namely, the concept of a bottom feature derived
on the basis of user moding and typing declarations deliberately adopts the ideas
of the mode directed inverse entailment [8] technique popular in ILP, where a
bottom clause is constructed to constrain the search space. To my best knowledge
though, there is no previous approach exploiting the ‘bottom’ concept for feature
construction. The crucial point where I diverge from the traditional approach is
in the utilization of the bottom feature: rather than using it as a constraint for
a backtrack search, I translate it into a propositional Horn theory whose models
represent correct features.

Furthermore, the basic idea of estimating the number of features by sampling
in the feature space was inspired by an analogous technique implemented by
Ashwin Srinivasan in the ILP system Aleph for estimating the number of existing
legal clauses (see eg. [14]). Again, the principal difference of my materialization of
that idea from the one in Aleph stems from the conversion of feature construction
onto a propositional satisfiability problem enabling to carry out the sampling in
the ‘easily conquerable’ space of propositional truth assignments.

6 Conclusion, Future Work

I have presented an approach to relational feature construction based on its
poly-time reduction to the tractable HORN-SAT problem. Under acceptable re-
strictions on user language declarations, I am able to either efficiently enumerate
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the complete set of proper, connected, declaration compliant relational features
(if their total number is polynomial in the maximum feature size), or other-
wise efficiently obtain their random sample from the uniform distribution on the
feature space.

The assumptions I imposed on the user declarations to achieve the results
were its finite size, existing partial irreflexive order on types, which ‘agrees’ with
the input-output order of types in any declared predicate (see Section 2 for
details), and the ‘non (MI-M)’ condition which stipulates that either no two
different declared predicates are primary (without input arguments), or no de-
clared predicate has more than one input. Dropping the ‘non (MI-M)’ condition
has the consequence that solutions arising from the dual HORN-SAT problem
may correspond to disconnected features, which may be decomposed into two or
more correct features and therefore are redundant.

Intuition suggests that the efficient technique used for solving the dual, sat-
isfiability problem in linear time without backtracking, should have its ‘mirror’
procedure applicable directly on the primary problem of correct feature search.
I have not yet been able to exactly determine what form such search procedure
would acquire and this is a goal of my future work.

The approach admittedly needs more experimental evaluation. Also, the pre-
sented method for estimating the number of correct features (or, equivalently,
their relative frequency 0 ≤ p ≤ 1 in the search space) calls for a statistical anal-
ysis to determine the required size of the sample which, with a given probability,
leads to an estimate p̂ of p in a given error bound. Altough simple statistical
techniques are available for calculating the error bound, they assume p not too
close to 0 or 1. Unfortunately, p is typically very close to zero in the expression
spaces in question. An alternative way, suggested by a reviewer, is to approach
the estimate-reliability analysis empirically, eg. by repeated sampling.

Acknowledgement. Thanks go to the ILP 2005 reviewers for their informative
suggestions and particularly for pointing out the relevant paper [9]. I am sup-
ported by the Czech Ministry of Education through the project 1ET101210513
“Relational Machine Learning for Biomedical Data Analysis” in the “Informa-
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The goal of this presentation is to convince the research community that
music is much more than an interesting and “nice”, but ultimately esoteric toy
domain for machine learning experiments. I will try to show that right now is
the time for machine learning to really make an impact in both the arts, the
(music) sciences, and, not least, the music market. In order to demonstrate that,
some impressions will be given of what computers can currently do with music.

In the domain of classical music, I will show how machine learning can give
us new insights into complex artistic behaviours such as expressive music per-
formance, with examples ranging from the automatic discovery of characteristic
stylistic patterns to automatic artist identification and even computers that learn
to play music with “expression”.

In the (commercially more relevant) domain of popular music, the currently
ongoing rapid shift of the music market towards digital music distribution opens
myriads of application possibilities for machine learning, from intelligent music
recommendation services to content-based music search engines to adaptive radio
stations. Again, some ongoing work in this area will be briefly demonstrated.

A number of challenges for machine learning research will be identified
throughout the presentation, and my hope is that after the conferences, a large
part of the ICML and ILP attendants will go back to their labs and get involved
in machine learning and music right away.

S. Kramer and B. Pfahringer (Eds.): ILP 2005, LNAI 3625, p. 414, 2005.
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Statistical machine learning is in the midst of a “relational revolution”. Af-
ter many decades of focusing on independent and identically-distributed (iid)
examples, many researchers are now studying problems in which the examples
are linked together into complex networks. These networks ca be a simple as
sequences and 2-D meshes (such as those arising in part-of-speech tagging and
remote sensing) or as complex as citation graphs, the world wide web, and rela-
tional data bases.

Statistical relational learning raises many new challenges and opportunities.
Because the statistical model depends on the domain’s relational structure, pa-
rameters in the model are often tied. This has advantages for making parameter
estimation feasible, but complicates the model search. Because the “features” in-
volve relationships among multiple objects, there is often a need to intelligently
construct aggregates and other relational features. Problems that arise from
linkage and autocorrelation among objects must be taken into account. Because
instances are linked together, classification typically involves complex inference
to arrive at “collective classification” in which the labels predicted for the test
instances are determined jointly rather than individually. Unlike iid problems,
where the result of learning is a single classifier, relational learning often involves
instances that are heterogeneous, where the result of learning is a set of multi-
ple components (classifiers, probability distributions, etc.) that predict labels of
objects and logical relationships between objects.

In this tutorial, we will survey several of the major branches of this newly
emerging field : rule-based approaches, frame-based approaches and stochastic/
functional programming approaches. We will describe representational issues,
learning and inference. Many of the approaches are based in some way on graph-
ical models, and we will describe approaches which are based on both directed
and undirected graphical models. We will describe several useful inference tasks
such as link prediction, group detection and entity resolution and applications
areas including citation graphs, the world wide web and social networks.

S. Kramer and B. Pfahringer (Eds.): ILP 2005, LNAI 3625, p. 415, 2005.
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Abstract. In this paper we survey work being conducted at Imperial College
on the use of machine learning to build Systems Biology models of the effects
of toxins on biochemical pathways. Several distinct, and complementary mod-
elling techniques are being explored. Firstly, work is being conducted on apply-
ing Support-Vector ILP (SVILP) as an accurate means of screening high-toxicity
molecules. Secondly, Bayes’ networks have been machine-learned to provide
causal maps of the effects of toxins on the network of metabolic reactions within
cells. The data were derived from a study on the effects of hydrazine toxicity in
rats. Although the resultant network can be partly explained in terms of existing
KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway descriptions, sev-
eral of the strong dependencies in the Bayes’ network involve metabolite pairs
with high separation in KEGG. Thirdly, in a complementary study KEGG path-
ways are being used as background knowledge for explaining the same data us-
ing a model constructed using Abductive ILP, a logic-based machine learning
technique. With a binary prediction model (up/down regulation) cross validation
results show that even with a restricted number of observed metabolites high
predictive accuracy (80-90%) is achieved on unseen metabolite concentrations.
Further increases in accuracy are achieved by allowing discovery of general rules
from additional literature data on hydrazine inhibition. Ongoing work is aimed
at formulating probabilistic logic models which combine the learned Bayes’ net-
work and ILP models.

1 Introduction

In the past experimental analysis of any single biological component, such as a gene
or its protein product, was extremely time consuming. Consequently a single biology
laboratory could study only a handful of such components at any one time. The recent
revolution in high-throughput technologies offers an exciting opportunity to study such
complex biological systems as an integrated whole. This new integrated approach to
modelling of biological entities is known as Systems Biology. Systems Biologists use
graph-based descriptions of bio-molecular interactions which describe cellular activi-
ties such as gene regulation, metabolism and transcription. Biologists build and main-
tain these network models based on the results of experiments in wild and mutated
organisms. This paper will provide an overview of recent research in this area involving
a consortium of computer scientists and biologists at Imperial College London. Some
of the intrinsic interest in the area from a logic-based machine learning perspective
include:

1. the availability of large-scale background knowledge on existing known biochemi-
cal networks from publicly available resources such as KEGG [2] (used in data sets
such as those in [1,11,5]);

S. Kramer and B. Pfahringer (Eds.): ILP 2005, LNAI 3625, pp. 416–423, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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MSE R-squared
CHEM 1.04 0.48

PLS 1.03 0.47
TOPKAT 2.2 0.26

SVILP 0.8 0.57

Fig. 1. MSE and R-squared for CHEM, PLS, TOPKAT and SVILP

2. an abundance of training and test data from a variety of sources including micro-
array experiments (see for instance [3]) and metabolomic data [10] from NMR and
mass spectroscopy experiments;

3. the inherent importance of the problem (see [6,7]) owing to its application in biol-
ogy and medicine;

4. the inherent relational structure in the form of spatial and temporal interactions of
the molecules involved;

From a logical perspective the objects within this area include genes, proteins, metabo-
lites, inhibitors and cofactors. The relations include biochemical reactions in which one
set of metabolites is transformed to another in a biochemical reaction catalysed by an
enzyme. One of the representational challenges is that within various databases the
same object can be referred to in several ways.

A large part of the incentive for using machine learning techniques in this area
comes from the incompleteness of detailed knowledge concerning the effects of in-
hibitors on known biochemical reactions. The requirement to infer such objects and
relations indirectly from observational data necessitates the use of a mixture of abduc-
tion and induction within the ILP approaches to modelling in this problem.

Such models have wide potential application. For instance, in the new area of per-
sonalised medicines techniques which allow the construction of models of the toxic
reactions of individuals to drug treatment would be of great benefit. Non-invasive test-
ing, such as the NMR analysis of urine used in these studies, would be an appropriate
basis for such modelling.

The paper is arranged as follows. Section 2 describes a novel approach to combining
Support Vector Machines and ILP for directly predicting the effects of toxins on the
basis of molecular features of the inhibitors. Section 3 describes the use of Bayes’
network technology to estimate the structure and parameters of the causal network of
interactions between metabolites whose up and down regulation patterns are observable
within the NMR data. An ILP model built on the same data is described in Section 4.
The model provides more detailed and testable predictions of the inhibited enzymes.
Finally we conclude the paper in Section 5.

2 SVILP Prediction of Toxins

In [9] an accurate means of screening high-toxicity molecules is described. This ap-
proach uses a general method for constructing kernels for Support Vector Inductive
Logic Programming (SVILP). The kernel not only captures the semantic and syntactic
relational information contained in the data but also provides the flexibility of using



418 S.H. Muggleton

Fig. 2. Metabolic network showing the effects of hydrazine on rat metabolism. The thickness of
arcs indicates the strength of dependencies between observable metabolites.

arbitrary forms of structured and non-structured data coded in a relational way. While
specialised kernels have been developed for strings, trees and graphs the approach uses
declarative background knowledge to provide the learning bias. The use of explicitly
encoded background knowledge distinguishes SVILP from existing relational kernels
which in ILP-terms work purely at the atomic generalisation level.

The SVILP approach is a form of generalisation relative to background knowledge,
though the final combining function for the ILP-learned clauses is an SVM rather than
a logical conjunction. SVILP was evaluated empirically against related approaches, in-
cluding an industry-standard toxin predictor called TOPKAT. Evaluation was conducted
on a broad-ranging toxicity dataset DSSTox [12]. Figure 1 shows the cross-validated er-
ror of SVILP compared to a number of alternative predictors on the DSSTox dataset.
The results demonstrate that the approach significantly outperforms other state-of-the-
art approaches on the wide-ranging set of toxins represented.

Such toxin-substructure based techniques, much like the ILP approach to predicting
mutagenesis in [4,13], are appropriate for large-scale screening of potential toxic side-
effects of drugs. By contrast, techniques for detailed analysis of the causes of toxic
reaction are addressed in the next two sections.

3 Bayes’ Network Model for Metabolic Pathways

Metabolism comprises the network of chemical reactions involved in the biological
processes of cells. These reactions are typically catalysed by enzymes and are highly
interconnected.
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In [15] a modular approach for representing metabolic pathways using Bayes’ net-
works is described. The authors examined different models for a single reaction
metabolism and introduced a Bayes’ network model for this purpose. The performance
of the model was compared to a Stochastic Logic Program representation for learning
the aromatic amino acid pathway of yeast.

In subsequent work the authors have used this approach to model the effects of the
toxin hydrazine administered to rats. The data were derived from Nuclear Magnetic
Resonance (NMR) studies conducted by the Consortium for Metabonomic Toxicology
(COMET) [10]. The derived Bayes’ network is shown in Figure 2. Although the resul-
tant network can be partly explained in terms of existing KEGG pathway descriptions,
several of the strong dependencies in the Bayes’ network involve metabolite pairs which
are distant in the KEGG network.

4 Abductive ILP Models of Toxicity

In [14] the hydrazine NMR toxicity data studied previously using Bayes’ nets was re-
analysed within an ILP framework using Progol5.0 [8]. Figure 3 shows the approach
adopted. KEGG pathway descriptions were used as background knowledge. Only a lim-
ited subset (less than 10%) of the up/down regulation levels of metabolites in the KEGG
model were directly observable within the NMR data. Progol5.0 was given this data as
examples together with background knowledge consisting of the KEGG model and
some general background rules concerning the transitive behaviour of the inhibitory ef-
fects of the toxin on various enzymes. From this it generated a set of ground hypotheses
to explain the data in terms of inhibition of various enzymes. These ground hypothe-
ses were then further generalised inductively together with known facts concerning the
inhibition of various enzymes by hydrazine.
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Fig. 3. Abductive ILP modelling of hydrazine toxicity
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Fig. 4. Predicted inhibitions within the network. Modes represent metabolites with up and down
regulation indicated by arrows when observable. Solid arcs represent single reactions, labelled
by the catalysing enzyme’s classification number. Dotted lines indicate a reaction sequence, with
the list of associated enzymes. Red/green arrows indicate an inhibited/uninhibited (respectively)
reaction (or reaction sequence). The arrow head shows the direction of inhibition.

The resulting set of predicted inhibitions are shown in Figure 4. Owing to the spare-
seness of the known and documented inhibitory effects of hydrazine, all but one of the
predicted inhibitory effects is novel. With the help of biological experts the model has
been compared in detail with the Bayes’ net model shown in Figure 2. In general the
ILP model gives more detailed suggestions for the location of the inhibitory effects
of the toxin. This level of detail allows for the possibility of laboratory testing of the
inhibitory effects suggested by the ILP model.

The model was tested by randomly leaving out subsets of the examples and testing
the predictions on the remaining observations. The resulting learning curves for ab-
duction on its own versus the combination of abduction and subsequent induction are
shown in Figure 5.
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Fig. 5. Learning curves for abduction on its own versus abduction and subsequent induction. The
X-axis indicates the number of examples in the training test after removal of a randomly chosen
test set of varying sizes. The Y-axis gives predictive accuracy on the test set for results averaged
over multiple trials.

5 Conclusions and Further Work

In this paper we have described three distinct machine learning approaches to modelling
the toxic effects of molecules. These three approaches should not be considered as being
in competition, but rather as complementary approaches to the problem which can be
used in a series of analytical phases. During drug development it is usual to consider a
large set of potential candidates in the early stages of development. The SVILP toxicity
predictor described in Section 2 has been proved to be at least as good as alternative
state-of-the-art toxicity predictors in such a setting.

Having selected a particular candidate for further investigation it would be advan-
tageous to apply more detailed analysis to the compound in question to understand its
toxic effects better. NMR analyses of urine could then be conducted. Such an analysis
incurs experimental costs, but could potentially be applied non-invasively in both an-
imal and human testing. The results could then be modelled in a broad-brush fashion
using the Bayes’ network technology described in Section 3. An advantage of this ap-
proach is that no additional background knowledge of metabolism need be considered.

A more detailed analysis of inhibitory effects of the compound could be produced
using the ILP modelling approach. It makes sense to apply ILP modelling last, since
both the development of appropriate background knowledge and the computational
costs of running ILP models incur more costs than the other two modelling approaches.

Many open questions are still to be addressed in this work. In particular, the treat-
ment of time in both the Bayes’ network and ILP models is presently inadequate. The
NMR data are available as a time series measured at intervals of several hours over a
72 hour period. Within the Bayes net setting it may seem attractive to build dynamic
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Bayes’ nets to deal with this temporal data. However, such models do not adequately
account for the underlying causality of the domain. Metabolic reactions and fluxes take
place within a period of under 1 millisecond, while the intervals between readings are
at least 8 hours. Persistence of inhibitory effects are due to the toxin remaining in the
blood stream over an extended period of time. While it is possible to model such per-
sistence axiomatically within a logical model, it is unclear how this could be achieved
in the case of the Bayes’ model.

Work is presently progressing on including aspects of both the Bayes’ and ILP
models within a Probabilistic Logic Programming model. Such integration holds the
promise of allowing uncertainty to be expressed explicitly within ILP-generated
models.

Finally, modelling within Systems Biology is a key application area for Machine
Learning in general. The studies described in this paper indicate that ILP has the po-
tential to be a key technology in an area which is now drawing major scientific interest
internationally.
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Five Problems in Five Areas for Five Years
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I have chosen the title of this talk in the same spirit as the early Buddhists,
who often resorted to enumeration as a mnemonic device. (cf. the Three Jewels,
the Four Noble Truths, the Eight-Fold Path containing the Five Elementary
Precepts, the Six Virtues, the 84,000 Teachings and so on). Specifically, it is my
intention to remind you of an invited talk at ILP 2000 by David Page, in which
five areas were proposed as pressing issues for Inductive Logic Programming to
address. For those who came in late, these were1:

1. Incorporating probabilities.
2. Novel search methods.
3. Techniques for parallel ILP.
4. Using special-purpose reasoners.
5. Enhancing human-computer interaction.

Five years is a reasonable length of time to take stock and ask: has progress
been made on each of these fronts? We know different approaches have been
proposed for incorporating probabilities, some unusual search methods have been
developed and a few techniques for concurrent processing have been investigated.
But can we do things now that we could not five years ago (or at least, could do
so only with great difficulty then)? The principal hindrances to a direct answer
are that there are no yardsticks established for measuring progress, nor has the
same ILP system been used in all cases. As a result, we can do little more that
list out who has done what and how over the past five years.

It is my belief—unsurprising, given my own training and inclination—that we
need a well-defined engineering R&D project to implement and apply conceptual
advances being made in these five areas. Consider what this means. It means a
band of engineers working together to design and develop an ILP system that
is routinely updated to incorporate advances made in each of the five areas.
As with any well-engineered tool, demonstrations of robustness and efficiency
using standard tests will be necessary. It is also common for such projects to
be driven by a performance wish-list. For this I propose that we agree on five
problems—one for each area above—that are beyond the capabilities of current
1 A description can be found in C.D. Page and A. Srinivasan (2003), “ILP: A Short

Look back and a Longer Look Forward”, Journal of Machine Learning Research,
4:415–430.

S. Kramer and B. Pfahringer (Eds.): ILP 2005, LNAI 3625, pp. 424–425, 2005.
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ILP systems, but ones that we would want to solve routinely in say, five years
or so.

Having spent the last decade or so in developing and maintaining the ILP
system Aleph, I have some good reasons to advocate such a project. First, it has
been my experience and those of many others that there is some significant value
in having a tool that incorporates many ILP advances within a single system.
Second, I am acutely aware that the Aleph approach cannot scale-up. It is limited
by the interests, understanding, received wisdom, skills and availability of one
person (and friends). This works as a hobby, but cannot scale to even being
a cottage industry. Instead, what I have in mind is more along the lines of
collaborative projects like Wikipedia, Linux, or even like WEKA. Third, all too
often ILP has been described as “an interesting approach, but still not robust
or efficient enough for tackling industrial problems.” Any response to this will
necessarily require a well-engineered tool. Finally, nothing spurs development
more than research problems that are hard nuts to crack: much of the early
development of Progol was fuelled by simply trying to get it do something useful
with the “mutagenesis” problem. Similar problems will be needed to motivate
the development of ILP systems for the next decade.

I am concious that the project that I propose has the smell of oil and grease.
But if ILP is to truly fulfil its potential and boldly go where other machine
learning methods have not, then it will need its share of Montgomery Scotts.
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