Verified Query Results from Hybrid
Authentication Trees

Glen Nuckolls

Department of Computer Sciences, University of Texas at Austin,
Austin, TX 78712-0233 USA
nuckolls@cs.utexas.edu
http://www.cs.utexas.edu/ nuckolls/

Abstract. We address the problem of verifying the accuracy of query
results provided by an untrusted third party Publisher on behalf of a
trusted data Owner. We propose a flexible database verification struc-
ture, the Hybrid Authentication Tree (HAT), based on fast cryptographic
hashing and careful use of a more expensive one-way accumulator. This
eliminates the dependence on tree height of earlier Merkle tree based pro-
posals and improves on the VB tree, a recent proposal to reduce proof
sizes, by eliminating a trust assumption and reliance on signatures. An
evaluation of the Hybrid Authentication Tree against the VB tree and
Authentic Publication showing that a HAT provides the smallest proofs
and faster verification than the VB tree. With moderate bandwidth lim-
itations, the HATs low proof overhead reduces transfer time to signif-
icantly outweigh the faster verification time of Authentic Publication.
A HAT supports two verification modes that can vary per query and
per Client to match Client resources and applications. This flexibility
allows the HAT to match the best performance of both hash based and
accumulator based methods.

1 Introduction

An increasing number and variety of applications and systems require access to
data over a network. Third party architectures offer one way to address availabil-
ity when the data source may have limited resources, by relying on a dedicated
third party Publisher to provide responses. The related Edge Server model in-
creases the availability of data services defined by a central server by replicating
them at edge servers closer to clients. Maintaining data integrity along with high
availability is a significant challenge. Providing database access introduces more
complications. Typically, the number of different responses that can be gener-
ated from queries on a single data set is much larger than the data set itself.
The integrity of query response involves showing that the response was correct,
meaning the returned data was from the correct data set, and that the response
is complete, meaning all matching data was returned.

We address the problem of verifying the accuracy of query results provided by
an untrusted third party in the third party Publisher model. The Owner relies

S. Jajodia and D. Wijesekera (Eds.): Data and Applications Security 2005, LNCS 3654, pp. 84-[08] 2005.
© IFIP International Federation for Information Processing 2005

Verified Query Results from Hybrid Authentication Trees 85

on the untrusted Publisher to process Client database queries. In the related
Authentic Publication model [6], the Publisher is assumed to be untrusted, but
the Owner is trusted, so Clients use a small digest value computed over the
database by the Owner, to verify the query results. The same digest verifies
many different queries on the same database. This allows the Owner to rely on,
presumably cheaper, untrusted resources to handle Client requests. Authentic
Publication [6] uses the organization of a tree digest, based on Merkle trees, to
provide efficient verification for Clients.

Proof overhead can be significant when bandwidth is limited relative to pro-
cessing power. In the original Authentic Publication method, proof size depends
on the number of data points in the answer and the tree height, O(log N) ad-
ditional hash values for a tree over N data points. Pang and Tan [I7] proposed
to eliminate this dependence on tree height with the verifiable B-tree (VB tree).
This requires some degree of trust in the Publisher, relies heavily on Owner
signatures and a proposed one-way digest function based on modular exponen-
tiation. The trust assumption is problematic and the use of expensive primitives
adds excessive overhead to both proof size and verification time.

In this paper we propose a flexible verification method, the Hybrid Authenti-
cation Tree (HAT), that eliminates the dependence on the tree height. Our novel
method carefully incorporates fast hash functions with a more expensive cryp-
tographic primitive, a one-way accumulator. The accumulator helps break the
dependence on tree height without relying on Owner signatures and the lighter
weight hash function speeds up the Client verification process. The design finds
an efficient balance between the two primitives, using the heavier accumulators
sparingly. Using the same one-time digest value, the HAT design allows the ver-
ification method to vary per query and per Client according to Client bandwidth
and application requirements. One verification mode relies on both fast hash
operations and the accumulator. The other mode bypasses the expensive accu-
mulator operations, relying only on fast hash operations in a Merkle tree like
method similar to Authentic Publication. In effect, we design a digest that gives
us two verification schemes in one. Our analysis shows that, even for reasonable
bandwidths of 1 mbps or more, the low proof overhead of the HAT improves
significantly over the VB-tree and the original Authentic Publication method.

1.1 Outline of the Paper

Section [2] gives some useful background. Section [B] presents the details of the
HAT construction and digest, explaining the motivation for using accumulator
functions to break the dependence on tree height in Section [3.1], describing how
completeness is verified in Section B.2] and then defining the digest and verifica-
tion in 3.3 and 3.4l We establish parameters for evaluation in Section [and give
a detailed evaluation and comparison of the HAT with Authentic Publication
and the VB-tree in Section [l looking at proof overhead in [5.1] verification cost
in[5.2] and bandwidth considerations in 5.3

Section [6] describes how a HAT can bypass the use of the accumulator when
advantageous. We discuss related research in[7] discuss future directions in[Bland
conclude in

86 G. Nuckolls

2 Preliminary Building Blocks

We briefly describe the hash functions, one-way accumulators, Merkle trees and
Authentic Publication.

2.1 Collision Intractable Hash Function

Hash functions such as MD5 or SHA-1 can be used to detect modifications
in files by recomputing the MD5 or SHA-1 checksum on the file in question
and comparing to the original checksum value. It is assumed to be difficult to
produce another file with the same MD5 checksum or the original. This property
is known as collision resistance or collision intractability. Though not formal
in the cryptographic sense, we can reasonably rely on the following notion of
collision resistance.

Definition 1. A function f mapping the set of all binary strings to the set
of strings of some fixed length is collision resistant if, given a “random” input
value x, and the image f(x), it is computationally infeasible for an adversary to
compute ©' # x such that f(z') = f(z).

One informality evident is the reference to a random input. Since the size of
the input is not specified, the domain cannot be uniformly sampled. The formal
cryptographic definition of collision resistance handles this, and the function we
rely on, SHA-1, is widely relied on for collision resistance.

When f is a hash function, we write f(z1,22) to denote the application of
f to a single string constructed by concatenating x; and x2 and some unique
delimiter between them. The hash can apply to any number of strings with no
ambiguity about the value and number of inputs.

2.2 Merkle Trees and Authentic Publication

We review the basic Merkle tree construction [I3] since it is a common thread
to many recent efforts in efficient query answer verification. The structure is a
binary search tree, over a data set D of size N, with the key key(d) and data for
each item d € D stored at the leaves. The key is simply a unique identifier for
d e.g. the primary key for a relational tuple. Our example, shown on the left in
Figure Z.2] uses a set of integer keys and ignores any associated data attributes.
The tree is digested using a collision-resistant hash function h to produce a value
f(v) at each node v as follows: Starting at the leaves, the value of a leaf is its key
value and the value of an internal node is the hash of the child values. Alternately
we can hash the associated attributes with the key to produce the leaf value.
The overall digest value of the tree, denoted X, is just the digest value at the
root. With this digest value, an efficient proof, of size O(log N) can be given
that a data item is or is not in the set. The proof consists of the intermediate
hash value for each sibling of a node along the search path.

We follow the general Authentic Publication model [6]: a trusted data Owner
relies on an untrusted third party Publisher to respond to Client queries on

Verified Query Results from Hybrid Authentication Trees 87

‘ Answer data

2 = v)=h(f(v).f(v)
©,

by
f(vn:h(f(vu).fw @ @ compuea by Client 4
fm%/) f0=h68) @) T X
/ AN

2 5 6 8 11 14 19 23

Fig. 1. Merkle hashing, left, and range query verification, right

a data set. First, a trusted Owner computes a digest of the data set (e.g. as
in the binary search tree example). Next, the data is given to one or more
untrusted Publishers and the digest is distributed to Clients. Publishers send
additional proof values with each Client query response. Clients verify the answer
by partially recomputing the root digest. Clients can send any number of queries
on the data set to an untrusted Publisher and verify that the answers are the
same as the Owner used to compute Y. This approach scales well, with no
security assumptions on Publishers.

2.3 An Efficient RSA Based One-Way Accumulator

Benaloh and de Mare [2] define an accumulator as a family of one-way, quasi-
commutative hash functions. A hash function f is one-way if, given x € X and
v,y € Y it is hard to find 2’/ € X such that f(x,y) = f(2’,y'). The function f
is quasi-commutative if

f(f(x,y1),92) = f(f(z,92),91) Vo € X,y €Y

We define f(x,y1,92,...,yn) tobe f(... f(f(z,y1),y2)...,yn) for convenience.
Given an initial value z, if z = f(x,y1,¥2,...,yn), the y; values can be input
into the accumulator in any order and still produce z. Now, given a value y; € Y,
let z; be the result of applying f to all the values in Y — {y;} with initial value
x. Then f(z;,y;) = z and, z; serves as a proof that y; was used to compute z.

The one-way property is weaker than strict collision resistance since the ad-
versary can not choose y’. However, quasi-commutativity directly provides the
means to break collision-resistance, and one-way is often sufficient since the val-
ues y; € Yy, used as input to the accumulator are themselves often the result of
a cryptographic collision resistant hash function. In fact, the domain set Yy can
be restricted to the result of a hash on some input. In order to forge a proof for
a value that hashes to 7 with respect to a collection {y;}V, an adversary would
need to find an alternate proof Z; for a value g that can be changed, by choosing
a different value to hash, but not chosen, since the hash output is unpredictable.
We restrict input to accumulators to be the output of a collision resistant hash
function.

Benaloh and de Mare propose a one-way quasi-commutative accumulator
based on an RSA modulus and prove it’s security in [2]. Given n we define H,
by Hy,(z,y) = ¥ mod n. H, is quasi-commutative by the laws of exponents:
(z¥1)¥2 = (z¥2)¥:. To ensure H,, is one-way, the modulus n is chosen to be a

88 G. Nuckolls

rigid integer, meaning n = p - ¢ where p and ¢ are safe primes of the same bit
size. A prime p is safe if p = 2p’ + 1 and p’ is an odd prime. The factorization
of n is considered trapdoor knowledge and in our model is known only by the
Owner. Efficient methods for choosing rigid moduli are discussed in [2] and [12].

ForasetY = {y1,...yn} and z = Hy(x,y1,...,YN), 2; = gV1¥2 Vi-1Vis1UN
serves as a proof for y; € Y. The value of « is also chosen by the Owner, but is not
trapdoor knowledge. The Owner, knowing p, ¢, and thus ¢(n) = (p—1)(¢—1), can
exponentiate by first reducing the exponent mod ¢(n). This is an advantage we
cannot give the Publisher and Client since ¢(n) easily reveals p and q. However,
the Publisher can still compute a proof by exponentiating.

3 The Hybrid Authentication Tree

We combine an accumulator function with Merkle hashing to providing proofs
for answer correctness and completeness that are independent of tree height is
fairly straightforward. However, since accumulator operations are so much more
expensive than hashing, minimizing their use requires special consideration. We
then describe how completeness is verified and then present the complete digest
and verification processes.

3.1 Breaking the Dependence on Tree Height

A HAT is just a binary search tree with data stored at the leaves, along with
a digest procedure that incorporates a fast collision intractable hash function
h and an accumulator H. We want to take advantage of the input reordering
allowed by an accumulator to avoid checking the entire hash path to the root
as done when using Merkle trees as in Authentic Publication [6] and related
schemes. However, accumulators have larger output, typically near the 1024 bits
of an RSA modulus compared to the 160 bit output of SHA-1, and take longer
to verify a value y; against a proof z; for a set value z. For example, suppose
our range returned exactly one leaf w. Instead of the client verifying that w is
the correct answer by hashing from w up to the root of the tree, the client could
simply verify that w was included in a final accumulation value, requiring only a
constant size proof. Answer completeness would need to be addressed, but could
still be done with a constant size proof. This method breaks the dependence on
the height of a Merkle tree but does not scale well to larger answer sizes.

Our approach uses Merkle hashing to certain nodes of the tree and then use
the accumulator to verify the values of those nodes, eliminating the hashing
along remaining path to the root. One natural set of nodes to consider for a
range query is the set of canonical covering roots (CCRs) for the range in the
tree as shown in Figure[2l The set of CCRs in a search tree for a range query is
the set of nodes with disjoint subtrees whose leaves are the exact answer to the
range query. For a range returning 7" leaves, is not hard to show that there are
O(log T) CCRs and they have height O(logT).

The CCRs seem like good nodes to switch from Merkle hashing to accumu-
lation. Their size and number depend only on the answer size so they break the

Verified Query Results from Hybrid Authentication Trees 89

@ ccrs

L& d 6, 43

Fig. 2. The range, left, associated CCRs, center, and Covering Nodes vr, vr

dependence on the tree height. In fact, using CCRs provides smaller proofs than
the scheme we present, but the number of accumulator computations required is
still high. In order to further reduce the number of accumulator computations,
we rely on the following.

Given a full binary search tree and range with T satisfying leaves, there are
at most two nodes of height O(logT) whose leaves contain all the leaves in the
range.

The pair with the smallest subtree is the covering pair for the range, or
covering node in case there is only one. The verification switches from Merkle
hashing to accumulator computations at the covering nodes (see Figure [2)). This
reduces the accumulator verification to one or two values.

3.2 Completeness and Covering Node Adjacency

The previous section only addressed verification that data is from the correct
data set. We have not addressed how we can provide a proof that the answer is
complete, containing all values within the range. The client will be able to verify
that data matches the range, but not that all data matching the range has been
returned.

First, note that Merkle hashing does much of this implicitly. Nodes in the
middle of the range can’t be left out without changing the root hash value
without breaking the hash function. Verifying that no leaves were left off either
end is the only requirement. Authentic publication includes the next highest
and next lowest leaves in order to prove range completeness. It is easy to avoid
revealing the data not in the range by providing only the data key and a hash of
the data itself. However, they key, or at least some part of it, must be revealed.
One alternate approach includes the split values in the hash at each node. These
are checked in the verification and ensure range completeness. This approach
is described in [II]. The additional split values would introduce a significant
amount of additional proof overhead and it is not clear that much privacy can
be gained over the inclusion of boundary key values. Privacy with completeness
is an important concern, but is left to future research.

Given that we stop hashing at two covering nodes, and that the quasi-
commutative property of accumulators makes completeness harder, we have two
tasks. Prove that the ends are complete, and prove that the leaves of the two
covering nodes form a continuous range in the tree. Two nodes are adjacent if
their subtrees are disjoint and have adjacent leaves (see Figure[B)). If we can show

90 G. Nuckolls

rav) = la(w)
__LCAofvand w forany LA @@

@ right adjacent to v = right znlJaLem node wto v @ @ djacent pairs
%&gm %@é X g@é&o
Fig. 3. Node v’s right adjacent nodes and all adjacent pairs with same LCA

adjacent adjacent
leaf pair leaf pair

that our two covering nodes are adjacent, the Merkle hashing scheme used in
each subtree will ensure that the range is complete. A fact about trees provides
a simple and efficient way to show that any two adjacent nodes are, in fact,
adjacent.

Looking at any tree, it is clear that all adjacent node pairs defined by the
same adjacent leaf pair have the same least common ancestor, and that for any
single node v all of the left adjacent nodes to v produce the same lca. The
same holds for the right. We use la(v) and ra(v) to denote this single lca of v
with all left and right adjacent nodes respectively (see Figure [3). The fact that
ra(v) = la(w;) serves as a compact proof that v and w; are adjacent in the tree.
These left and right adjacency values are hashed in with the f; value at each node
after the standard Merkle hash and are given to Clients to use in verification.
After this, the resulting fo values at each node (see Section B.3)) will then be
used to compute a single value using the accumulator. The final digest value is
the hash of the root value of the Merkle hash and the accumulated value.

The Owner could achieve more or less the same effect as using the lca adja-
cency hash value by assigning some random value instead to serve as this proof,
but this has a number of potential disadvantages. In particular, it prevents the
Publishers from computing the digest on their own from the data and knowledge
of the general digesting scheme. The hash of this lca node is computed directly
from the structure and data set just as the root digest. Requiring that these ran-
dom number be sent for each adjacent leaf pair adds unnecessary complication.

3.3 Digest

For each data item d € D, key(d) and the hash output h(d) are both computed
in a way known to all parties from the attributes of d. Each leaf node of the
binary search tree corresponds to some d € D and they appear in the tree sorted
by key() value. Internal nodes v have left lc(v) and right Ic(v) child fields, and
every node has a left la(v) and right ra(v) adjacent lca node field as defined in
sectionB.2l If no such node exists, the field is assigned some fixed value indicating
the left or right end. The digest uses a publicly known collision resistant hash
function h and accumulator H to compute the final digest value X' that the
Owner provides to Clients.

1. f1 is a standard Merkle hash using h.

filv) = {h(fl(lc(v)))7f1(rc(v))) v internal
h(key(d), h(d)) v is a leaf with associated data d

Verified Query Results from Hybrid Authentication Trees 91

2. fo incorporates the hash values from adjacency lca nodes.

fa(v) = h(f1(v), f(la(v)), fi(ra(v)))

3. A value A is computed using the accumulator H with some initial value x.
If v1,v9, ... v, are thee nodes of the tree,

A= H(z, fa(v1), f2(v2), .- -, f2(ym))

H is quasi-commutative so the node order will not affect the result.
4. Let root denote the root of the tree. The final digest value X' is computed as

X = h(A, fa(root))

3.4 Proof and Client Verification

The Client submits a range query [a, b] that returns T satisfying leaf nodes. We
assume that the Client has key(d) and h(d) for data item d associated with each
returned leaf v and the two boundary leaves. The Client can compute key(d)
and h(d) from the answer data except for the boundary leaves. We assume there
are exactly two covering nodes denoted v; and vgr. For a node v, 2, denotes
the proof that f2(v) was used to compute the value A using accumulator H as
described in Section Verification proceeds as follows:

1. Compute f1(vr) and fi(vg)

In addition to the key(d) and h(d) values the Client already has, the bound-
ary values are required and the 2logT supporting hash values for each of
the covering nodes as in the Authentic Publication method.

2. Compute fa(vy) and f2(vg) values and check that vy, and vy are adjacent.
Check that f1(ra(vr)) = fi(la(vg)), and thus vy, and vy are adjacent.
Requires fi(ra(vr)) = fi(la(vr)), fi(la(vr)) and fi(ra(vr))

3. Check that H(zy,, fa(vr)), H(2vs, f2(vr)) both equal A.

Requires accumulator proofs z,, and z,, and value A.

4. Check that h(f2(root), A) = X. Requires fa(root).

4 Proof Size and Verification Cost

We derive expressions for the proof overhead and verification in this section. In
Section [we instantiate the hash and accumulator functions and give a detailed
analysis of realistic overhead and cost values in order to compare our protocol
with related proposals.

We assume that any node of the tree with M leaves has height at most
2log M. We also assume that the key size is negligible. The expression proofy st
is in bits and and verifyyar is in bit operation per second. They are derived from
Section [B] and the balance assumption.

prOOfHAT = (4 IOg T)Shash + 2Sacc
verifyyar = (T + 2log T)Thash + 2T acc(160)

Hashing to the cover nodes takes at most 27" hashes. We assume here that
the few value comparisons involved are not significant.

92 G. Nuckolls

Table 1. Parameters used in performance analysis

Proof Overhead Parameters Verification Cost Parameters in bit operations

N Number of elements in data set. Thasn Compute hash output from one input block.
T Number of data elements in query range. Tace(b) Verifying accumulator proof for b bit value.
h Height of the tree.
Shasn Bit size of the hash output, SHA-1 is 160. Bandwidth and Processing Parameters
Sace Bt size of accumulator output. t Bandwidth in bits per second.

We use the recommended 1024 bit modulus p Processing in bit ops per second.

for RSA here and for VB tree signatures. Tiotar Total time: transfer + verify.

Tprooy Time: transfer proof + verify.

Proof Size (in bits) per Answer Size T Verification Cost in seconds at 1Ghz, per Answer Size T

T 1000 T

" VBitred binary 5 a"a’ T T T i
0 HAT —6— P 100 L . o

10 AP: N = 100 105 107 10— B e & ‘B/El’

g8 -
_B-Er'a 10 4
-
= e
A 1B B
pag - 5T o o=
- P e
= 0g—a—ooe-0-09 &8 =]
g e

] r B -~
10° | — 1 //
e 0.01
e
0.001 = El

VBtree-hinary —5—

_ HAT —8— 5

AP: N = 10°P- 107 107 ——
L i

0.0001

I L L L o005 : !
10 107 1 10! 1 10" 107 10 10 1% 10 10! ' 10% i 10

Fig. 4. Proof sizes (bits) and verification cost (seconds) calculated at 64 x 10° bit ops
per second, for varying answer sizes T, both on log-log scale. Authentic Publication
depends on N for proofs, N and T for verification, so we plot for several values of N

5 Performance Comparison

We compare three different range query verification methods, Authentic Publi-
cation proposed by Devanbu, et al. in [6], Pang and Tan’s verifiable B-tree (VB
tree) in [17] and the proposals in this paper. We focus on Client proof overhead
and verification cost and then consider the effect of bandwidth.

5.1 Proof Overhead

We give expressions for the proof size in terms of bits for each scheme. A detailed
derivation of the expressions is omitted due to space considerations.

proofyar = 640logT + 2048
proofap =640 -log N
proofygree = 4096 - log T — 1024

The proof size for the HAT was given in equation @l We apply the parameters
chosen in the previous section. The proof overhead in the Authentic Publication
method consists only of supporting hash values. It is possible that split values
are also used at each node, but this adds to the proof size and key values at the
leaves are sufficient to give a proof that no values were omitted.

Verified Query Results from Hybrid Authentication Trees 93

We take our VB tree analysis from [I7] and use a branching factor of 2 since
larger factors add significantly to proof size. We conservatively ignore overhead
from projections. Projections with VB trees do not handle duplicate elimination
and the other schemes produce smaller proofs in this case.

Figure @ shows results for returned answer set sizes up to 10% and data set
sizes up to 10° for Authentic Publication. We assumed a tree balanced within
a factor of two at each subtree. The HAT has smallest overhead of any of the
schemes and is close to AP only when T is near N. HATs have roughly 3 to 4
times smaller proofs for small answer sizes.

5.2 Verification Cost

We use values derived from a detailed analysis, omitted here, and round con-
servatively. As before, these expressions were derived from a detailed analysis
omitted due to space considerations.

verifyyar = 28,500 T + 6.5 x 108
verifyp = 57,000 - log N + 28,500 - T
verifyygiree = 4 X 102 - T 4 1010 - log T — 4 x 10?

We assume a 1024 bit modulus for the one-way hash used in the VB tree
and the same modulus for the Owner RSA signatures. We also choose a low 16
bit public exponent for efficiency. As before, a binary branching factor is the
most efficient instantiation of a VB tree, and projection does not improve the
comparison. For Authentic Publication, Clients simply hash to the root using,
for our comparison, SHA-1. Verification depends on N in this case.

The Authentic Publication verification is only has faster than a HAT for
answer sizes up to 10°. The VB tree is the slowest and is nearly infeasible for
answer sizes more than 100,000. For answers of size less than 10,000, a HAT
remains roughly constant, dominated by the modular exponentiation on the two
160 bit hash values to check against the accumulator proof value. Only one
exponentiation may be required. Clearly our method is more practical than the
VB tree. For answer sizes above 10°, a HAT is as efficient as the Authentic
Publication, yet has smaller proof size.

5.3 Bandwidth Versus CPU

When bandwidth is limited in comparison to processing resources, proof over-
head is a larger factor. We compare the total time to transfer and verify proofs
with and without full data transfer for HATs and Authentic Publication. Both
comparisons are of interest since the Client may obtain data and proof from
different sources or channels. The Client may also want a proof without needing
all data sent. For an expired result similar to the current version, transmitting
changes may be much smaller than the data set.

However, we still compare transmission including data as well. We assume
that the data size per item is small, only 1024 bits, or 128 bytes. Clearly for
much larger data sizes, this transmission cost will dominate, but it is useful to
consider smaller, but reasonable sizes.

94 G. Nuckolls

Time in seconds at lmbps bandwidth Time in seconds at 10kbps bandwidih

10 T T T T }’;}3' T 10 T T T T :Q(v‘e,/,d T

o 5 1 wﬂ 5

o
o
L@
0.1 F | 0.1 F |

0.01 — 4 0.01

0001 | = 0,001

HAT —&— HAT —&—
AP: N 10t 0Pt ——
L L L

AP: N = 10 10 108 ——
0.0001 : L L L L 0.0001 L L 1 L

0 0 1 iy 1o® g 107 10° 10 0 1 iy L 10* i 10

10 kbps bandwidth, data inclided in transfer

0.1

0.01 F= 4 001 4

0.001 = 0.001 H
HAT —9— HAT —9—

APz N = 10t 10t 0

i L L

APz N = 10t 10 o®
h L L

0.0001
10° " 10* 10 107 1 1ot 10® 10° 1w 10*

0.0001

Fig. 5. Transmission time in seconds vs number 7' of items in answer, assuming a 1
gigahertz 64 bit processor at 64 x 10° bit ops per second

1024 -T proof verify
+ +
t t D

Toroof excludes the first term of Tio1q;. We keep the 1 GHz 64 bit processor
assumption since varying bandwidth will have largest affect and varying both
parameters adds too much complexity. Figure Bl shows total transfer and ver-
ification time for proof only and data included for average bandwidths to the
Publisher of 1 mbps and 10 kbps. For small answer sets, the HAT takes between
3 and 10 times less time depending on the size N and if the data is included. The
improvement is similar for both bandwidth values, but a little better as expected
for the lower value. The improvement is sustained up to answer sizes of 10* for 1
mbps and over 10° for 10 kbps, for proof transmission only, and for answer sizes
of less than 100 when answer data is included. Clearly, when bandwidth is very
high, much higher than 1 mbps, Authentic Publication’s verification time will
win for smaller answers, but for reasonable bandwidth assumptions, low proof
overhead shows significant improvement for smaller answer sizes.

Ttotal =

6 Flexible per Query Tradeoffs: A Hybrid Tree

The HAT digest structure supports a per query, per client choice of two verifi-
cation modes, both equally compatible with a single computation of the digest
value. We described the accumulator mode in Section B4 and evaluated it in
later sections. The hash only mode bypasses the accumulator checks and simply
hashes to the root as in the Authentic Publication scheme, treating the covering

Verified Query Results from Hybrid Authentication Trees 95

nodes the same as any other node. The only difference is that the Client hashes
in the accumulated value A with the root f, value at the end. This option is
available per query and effectively produces a hybrid scheme able to bypass the
accumulator step if advantageous.

The analysis and comparisons of Section [§ demonstrate one advantage of
this flexibility. It also allows Publishers responding to a heterogeneous Client
set to choose and adapt a verification strategy tailored to the Client’s (possibly
changing) resources, bandwidth, and application requirements.

7 Related Work

As discussed in Section the proposed techniques are based on the original
work by Merkle [13]. Naor and Nissim [I5] made refinements in the context of
certificate revocation. Goodrich and Tamassia [7] and Anagnostopoulos et al. [I]
developed authenticated dictionaries. Authentic Publication was introduced in
[6] where they showed how to securely answer some types of relational database
queries. Devanbu, et al. described authentication for queries on XML document
collections in [5]. Bertino, et al. focus in detail on XML documents in [3] and
leverage access control mechanisms as a means of providing client proofs of com-
pleteness. They also expand supported query types and provide a detailed inves-
tigation of XML authentication issues including updates, and address important
implementation issues.

Martel, et al. [I1] establish a general model, Search DAGs, and provide se-
curity proofs for authenticating a broad class of data structures. Goodrich et al.
[8] show that a broad class of geometric data structures fit the general model
in [II] and thus have efficient authenticated versions. Similar Merkle hash tree
based techniques have been used by Maniatis and Baker [10] and most recently
Li, et al. [9] for secure storage. Buldas, et al. [4] describe methods that support
certificate attestation when there is no trusted Owner. Nuckolls, et al. show how
to extend the techniques in [6] to a distributed setting, allowing a collection of
Owners to rely on an untrusted Publisher or other untrusted resources to achieve
the same effect as a single trusted Owner while distributing the costs among the
trusted parties.

Pang and Tang [17] proposed the VB tree as a way of eliminating dependence
of proof size on the tree height, but require some trust of the Publisher since
they only ensure that answer data is a subset of the original set. They also
incorporate more expensive signatures and a proposed one-way function based
on modular exponentiation. We discuss the VB tree in our performance analysis
section and compare it to our proposed method.

Proving that values are not excluded in set membership queries, Micali, et al.
[14] have shown how to construct zero-knowledge databases that preserve pri-
vacy, in addition to authentication. Ostrovsky, et al. [I8] tackle the same problem
for multi-attribute queries using a multidimensional range tree (MDRT).

Accumulators were proposed by Benaloh and de Mare [2] more constructions
followed in [16]. Many of the RSA based accumulators contain a trap door and
a proposal for accumulators without trapdoors has been given by Sander in [19].

96 G. Nuckolls
8 Future Directions

We’d like to extend the methods here to a wider range of structures. So far, no
systematic approach has been suggested for extending query verification tech-
niques to the relational model. Devanbu et al. [6] discuss projection and joins,
Martel et al. [TI] present a solution for multidimensional range trees that sup-
port multi-attribute queries, and [I7] suggest an approach to projections, but do
not address the issue of duplicate values. There are many remaining issues with
integrity on all types of relational queries.

The HAT relies on an accumulator with trapdoor information that must be
kept secret by the Owner. Accumulators without trapdoors exist [T9] but are not
efficient enough for our purposes. An efficient quasi-commutative accumulator
without a trapdoor would speed up our verification time.

Efficiently eliminating the dependence on the tree size lends increased flexibil-
ity to the verification process. This improves support for different types of Client
applications and is worth exploring in the short term. One example is supporting
Client verification of data in an order appropriate to the end application. The
proposal in this paper easily adapts to provide priority verification for subranges
of a query and then subsequently, if required, full query verification, and should
also support incremental verification for small changes to previous requests.

We are also hopeful about the prospect of incorporating privacy in efficient
database query authentication. Another promising goal is to bridge the differ-
ences between the work started in [I4I18] and the current state of the more
efficient authentication only methods, including the proposals of this paper. In
addition to privacy, we hope to see progress on the longer term goal of ensuring
that databases operated entirely by an untrusted and possibly distributed third
party, satisfy arbitrary and general security requirements.

9 Conclusion

We carefully evaluated three methods: 1) fast hashing, specifically Authentic
Publication over a binary search tree, 2) our hybrid authentication tree in accu-
mulator mode, and 3) the VB tree. We show that both Authentic Publication
and our accumulator based method significantly out perform the VB tree. We
also show that the HAT always produces a smaller proof size than Authentic
Publication and improves by a factor of 3 or 4 for smaller answer sizes.

HT Proof size is also smaller for answers significantly smaller than the
database size. Authentic publication, as expected, has more efficient verifica-
tion, but when bandwidth and transmission time is considered, the smaller
HAT proofs provide up to 10 times faster overall verification time than the
Authentic Publication method for smaller answer sizes. Even assuming infinite
bandwidth, for answer sizes around 10° or higher, the HAT matches the per-
formance of fast hashing in the Authentic Publication method. Our scheme is
also competitive when considering storage overhead, digest computation, proof
retrieval/generation, and updates.

Verified Query Results from Hybrid Authentication Trees 97

For high bandwidths, Authentic Publication will provide faster verification,
but our analysis shows there are significant benefits from a hybrid scheme that
takes the best of the fast hashing and accumulator methods. Good tradeoff values
can be analytically determined, changed on the fly per query with changing
network conditions and client preferences.

Our analysis assumes a nearly balanced tree. Skewed trees could make our
method even more attractive since hash trees performance depends on the length
of paths to the root. Many applications and specialized data structures, such as
XML document structures, are often not balanced. A HAT may provide flexibil-
ity in the data structure choice, reducing or eliminating the effect of unbalanced
trees on Client costs.

Acknowledgments

The author thanks Mike Dahlin and Felipe Voloch for helpful discussions and
the valuable comments of the anonymous reviewers.

References

1. A. Anagnostopoulos, M. T. Goodrich, and R. Tamassia. Persistent authenticated
dictionaries and their applications. Lecture Notes in Computer Science, 2200:379,
2001.

2. J. Benaloh and M. de Mare. One-way accumulators: A decentralized alternative
to digital signatures. In Advances in Cryptology - EUROCRYPT ’93, number 765
in LNCS, pages 274-285, 1994.

3. E. Bertino, B. Carminati, E. Ferrari, B. Thuraisingham, and A. Gupta. Selective
and authentic third-party distribution of xml documents. IFEE Transactions on
Knowledge and Data Engineering, 16(10):1263-1278, 2004.

4. A. Buldas, P. Laud, and H. Lipmaa. Eliminating counterevidence with applications
to accountable certificate management. Journal of Computer Security, 10:273-296,
2002.

5. P. Devanbu, M. Gertz, A. Kwong, C. Martel, G. Nuckolls, and S. G. Stubblebine.
Flexible authentication of xml documents. In Proceedings of the 8th ACM Confer-
ence on Computer and Communications Security (CCS-8), pages 136-145, 2001.

6. P. T. Devanbu, M. Gertz, C. U. Martel, and S. G. Stubblebine. Authentic publi-
cation over the internet. Journal of Computer Security, 3(11):291-314, 2003.

7. M. Goodrich, R. Tamassia, and A. Schwerin. Implementation of an authenticated
dictionary with skip lists and commutative hashing. DISCEX II, 2001.

8. M. T. Goodrich, R. Tamassia, N. Triandopoulos, and R. Cohen. Authenticated data
structures for graph and geometric searching. In Topics in Cryptology - CT-RSA
2003, Proceedings of the Cryptographers’ Track at the RSA Conference, volume
2612 of LNCS, pages 295-313, 2003.

9. J. Li, M. N. Krohn, D. Mazires, and D. Shasha. Secure untrusted data repository
(sundr). In Proceedings of the 6th Symposium on Operating Systems Design and
Implementation, pages 91-106, 2004.

10. P. Maniatis and M. Baker. Enabling the archival storage of signed documents. In
Proceedings of the USENIX Conference on File and Storage Technologies (FAST
2002), pages 31-45, Monterey, CA, USA, Jan. 2002. USENIX Association.

98

11

12.

13.

14.

15.

16.

17.

18.

19.

G. Nuckolls

C. U. Martel, G. Nuckolls, P. T. Devanbu, M. Gertz, A. Kwong, and S. G. Stub-
blebine. A general model for authenticated data structures. Algorithmica, 39(1):21—
41, 2004.

A. J. Menenzes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1996.

R. Merkle. Protocols for public key cryptosystems. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 122-134. IEEE Computer Society Press,
1980.

S. Micali, M. O. Rabin, and J. Kilian. Zero-knowledge sets. In Proceedings of the
44th Symposium on Foundations of Computer Science (FOCS 2003), pages 80-91,
2003.

M. Naor and K. Nissim. Certificate revocation and certificate update. IEEE
Journal on Selected Areas in Communications, 18(4):561-570, 2000.

K. Nyberg. Fast accumulated hashing. In Proceedings of the Third Fast Software
Encryption Workshop, number 1039 in LNCS, pages 83-87, 1996.

H. Pang and K.-L. Tan. Authenticating query results in edge computing. In
Proceedings of the 20th International Conference on Data Engineering (ICDE’04),
2004.

A. S. Rafail Ostrovsky, Charles Rackoff. Efficient consistency proofs for generalized
queries on a committed database. In Proceedings of the 31st International Collo-
quium on Automata, Languages and Programming (ICALP 2004), volume 3142 of
LNCS, pages 1041-1053, 2004.

T. Sander. Efficient accumulators without trapdoor. In Proceedings of the Second
International Conference on Information and Communication Security - ICICS’99,
number 1726 in LNCS, pages 252-262, 1999.

	Introduction
	Outline of the Paper

	Preliminary Building Blocks
	Collision Intractable Hash Function
	Merkle Trees and Authentic Publication
	An Efficient RSA Based One-Way Accumulator

	The Hybrid Authentication Tree
	Breaking the Dependence on Tree Height
	Completeness and Covering Node Adjacency
	Digest
	Proof and Client Verification

	Proof Size and Verification Cost
	Performance Comparison
	Proof Overhead
	Verification Cost
	Bandwidth Versus CPU

	Flexible per Query Tradeoffs: A Hybrid Tree
	Related Work
	Future Directions
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.33333
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.33333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

