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Abstract. In this paper, we propose a novel approach to address the
problem of change detection in time series data. Our approach is based
on wavelet footprints proposed originally by the signal processing com-
munity for signal compression. We, however, exploit the properties of
footprints to capture discontinuities in a signal. We show that trans-
forming data using footprints generates nonzero coefficients only at the
change points. Exploiting this property, we propose a change detection
query processing scheme which employs footprint-transformed data to
identify change points, their amplitudes, and degrees of change efficiently
and accurately. Our analytical and empirical results show that our ap-
proach outperforms the best known change detection approach in terms
of both performance and accuracy. Furthermore, unlike the state of the
art approaches, our query response time is independent of the number
of change points and the user-defined change threshold.

1 Introduction

Time series data are generated, maintained, and processed within a broad range
of application domains in different fields such as economics, meteorology, or soci-
ology. Moreover, recent advances in the manufacturing of modern sensory devices
have caused several applications to utilize these sensors towards better under-
standing of the physical world. These sensors when deployed in an environment
generate large amount of measurement data streams which can be stored as time
series data.

Mining such time series data becomes vital as the applications demand for
understanding of the underlying processes/phenomena that generate the data.
There has been an explosion of interest within the data mining community in
indexing, segmenting, clustering, and classifying time series [13,14,15,16]. A spe-
cific interesting mining task is to detect change points in a given time series
[7,8,12,21,24]. These are the time positions in the original data where the local
trend in the data values has changed. They may indicate the points in time when
external events have caused the underlying process to behave differently.

The problem of detecting change in time series has been mostly studied in the
class of segmentation problems [14,6] where each portion of the data is modelled
by a known function. Subsequently, change points are defined as the points in
data where two adjacent segments of the time series are connected.
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For the past year, we have been working with Chevron on mining real data
generated during oil well tests. This is a real-world petroleum engineering ap-
plication studied within the USC’s Center of Excellence for Research and Aca-
demic Training on Interactive Smart Oilfield Technologies (CiSoft). Petroleum
engineers deploy sensors in oil wells to monitor different characteristics of the
underlying reservoir. Here, the underneath pressure values measured by sensors
form a time series. When the second derivative in the pressure vs. time plot
becomes fixed (i.e., a radial flow event), they estimate the “permeability” of the
reservoir [11]. At the same time, they would like to know if the first derivative is
changing. To us, these points are the positions in the pressure time series where
a change of degree 1 or 2 occurs. In this paper we focus on identifying both the
change points and the degrees of change in time series data. While the definition
of change is highly application-specific, we focus on points in data where discon-
tinuities occur in the data or any of its ith derivatives. Moreover, we consider the
notion of degree of change as the degree of the changing derivatives at the change
point. This general definition of change has been broadly used in many scientific
application areas such as petroleum engineering [11]. However, its significance
has been ignored within the data mining community.

We propose a novel efficient approach to find change points in time series
data. Our approach utilizes wavelet footprints, a new family of wavelets recently
introduced by the signal processing community for signal compression and de-
noising [5]. While footprints are defined to address a different problem in a
different context, we exploit their interesting properties that make them a pow-
erful data analysis tool for our change detection problem. Our contribution starts
with employing the idea of wavelet footprints in the context of a data mining
problem. This is yet another example of adapting signal processing techniques
for the purpose of data mining which started by Vitter et. al proposing the use
of wavelets in answering OLAP range-sum queries [19], and Chakrabarti et. al
using multi-dimensional wavelets for general approximate query processing [1].

We show that footprints efficiently capture discontinuities of any degree in
the time series data by gathering the change information in the correspond-
ing coefficients. Motivated by this property, we make the following additional
contributions:

– We propose two database-friendly methods to transform the time series data
using footprints up to degree D. These methods enable us to detect all the
change points of degree 0 to degree D, their corresponding amplitude and
degree of change. To the best of our knowledge, this is the first change
detection approach that captures all the above parameters at the same time.

– While we transform the data using footprints, our methods can work with
any user-defined threshold value. That is, there is no need to rerun our al-
gorithms each time the user-defined threshold value changes; we answer any
new query via a single scan over the transformed data to return the coeffi-
cients greater than the user threshold. This is a considerable improvement
over the best change detection algorithms which are highly dependent on
this threshold value.
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– Both analytically and empirically, we show that our query processing
schemes significantly outperform the state of the art change detection meth-
ods in terms of performance. Our query response time is independent of
the number of change points in the data. This is while both our methods
demonstrate a significant increase in accuracy.

The remainder of this paper is organized as follows. Section 2 reviews the
current data mining research on change detection in time series data. Section 3
provides the background on linear algebra and wavelet theory. In Section 4, we
first illustrate the idea of using footprints to capture discontinuities by focusing
only on piecewise linear time series. We then generalize our change detection
approach and propose our lazy and absolute methods for footprint transforma-
tion in Section 5. In Section 6, we show how our footprint-based approach can
be incorporated within systems where time series data is stored in wavelet do-
main. Section 7 includes our experimental results, and Section 8 discusses the
conclusion and our future plans.

2 Related Work

Change detection in time series has recently received considerable attention in
the field of data mining. Change detection has also been studied for a long time
in statistics literature where the main purpose is to find the number of change-
points first and identify the stationary model to fit the dataset based on the
number of change points.

In the data mining literature, change detection has mainly been studied in
the time series segmentation problems. Most of these studies use linear interpo-
lation to approximate the signal with a series of best fitting lines and return the
endpoints of the segments as change points. However, there are many examples
of real-world time series which fitting a linear model is inappropriate. For ex-
ample, Puttagunta et al. [21] use incremental LSR to detect the change points
and outlier points with the assumption that the data can be fit with linear mod-
els. Also Keogh et al. [12] use probabilistic methods to fit the data with linear
segments in order to find patterns in time series.

Yamanish et al. [24] reduce the problem of change point detection in time
series into that of outlier detection from time series of moving-averaged scores.
Ge et al. [7] extend hidden semi markov model for change detection. Both these
solutions are applicable to different data distributions using different regression
functions; however, they are not scalable to large size datasets due to their time
complexity.

Guralnik et al. [8] suggest using maximum likelihood technique to find the
best function to fit the data in each segment. Their method is mainly based on the
trade-off between the data fit quality and the number of estimated changes. They
also consider a wider group of curve fitting functions; however, they do not con-
sider the possible disagreement among different human observers on the actual
change points. Also their approach lacks enough flexibility in the sense that they
have to rerun the algorithm for different change thresholds asserted by the user.
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The method described in this paper is mostly similar to the work done by
Guralnik et al. in [8]; however, we return all the possible change points for several
polynomial curve fitting functions since then users have the flexibility to focus
only on the interesting change points. For example, the user can focus only on the
change points detected by the quadratic and linear models. Moreover, after we
find the change points once, there is no need to rerun the algorithm for different
change thresholds asserted by the user.

3 Preliminaries

We consider time series Xn of size n as a vector (x1, ..., xn) where each xi is a
real number (i.e., xi ∈ R). Given F , a class of functions (e.g., polynomials), one
can find the piecewise segmented function X : [1, n] → R that models time series
Xn as follows:

X (t) =

⎧
⎪⎪⎨

⎪⎪⎩

P1(t) + e1(t) 1 < t ≤ θ1
P2(t) + e2(t) θ1 < t ≤ θ2
:
PK+1(t) + eK+1(t) θK < t ≤ n .

(1)

Each function Pi is a member of class F that best fits the corresponding
segment of the data in Xn and each ei(t) is the amount of error introduced
when fitting the segment with Pi. Our ultimate goal is to identify θ1, ..., θK

when Pi’s are not known a priori. We refer to these points as the change points
in data where discontinuities occur in the data or its derivatives. We use change
point and discontinuity interchangeably in this paper.

Throughout the paper, F is the class of polynomial functions of maximum
degree D. That is, each Pi(t) in Equation 1 can be represented as

Pi(t) = pi,DtD + pi,D−1t
D−1 + ... + pi,2t

2 + pi,1t + pi,0 . (2)

We call a change point θi, a change point of degree j if the corresponding coeffi-
cients pi,j and pi+1,j differ in the polynomial representations of Pi(t) and Pi+1(t).
Notice that θi is a change point of all degrees j where we have pi,j �= pi+1,j .

3.1 Linear Algebra

In this section, we present some background linear algebraic definitions. We use
these definitions in Section 4 when we discuss transforming time series with
wavelet footprints.

Definition 1. A finite basis B for a vector space R
d is a set of vectors Bi ∈ R

d

(i.e., B = {B1, B2, ..., Bn} where n = d) such that any vector V ∈ R
d can be

written as a linear combination of Bi’s, i.e., V =
n∑

i=1
ciBi. Note that given a basis

B, the set of coefficients ci is unique for a vector V . However, if the number of
vectors in B is greater than d (i.e., n > d) then the vector V can be represented
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as the linear combination of Bi’s in infinite number of ways. Such collection B
where n > d is an overcomplete collection for R

d.For ease of use we call it an
“overcomplete basis” for the rest of the paper.

Definition 2. Suppose B = {B1, B2, ..., Bn} is a finite basis for vector space R
d

and there exists a basis B̃ = {B̃1, B̃2, ..., B̃n} such that

〈Bi, B̃j〉 =
{

1 if i = j
0 if i �= j .

(3)

where 〈X, Y 〉 denotes the inner product of vectors X and Y . The “unique” basis
B̃ is known as the dual basis of B.

Definition 3. A basis B = {B1, B2, ..., Bn} is a biorthogonal basis if we have
〈Bi, B̃j〉 = 0 for any Bi �= Bj and 〈Bi, B̃j〉 = 1 otherwise.

Definition 4. A basis B = {B1, B2, ..., Bn} is an orthogonal basis if for any
Bi �= Bj, we have 〈Bi, Bj〉 = 0. According to Definition 2, an orthogonal basis
is the dual basis of itself (i.e., it is self-dual).

To find each coefficient ci where 1 ≤ i ≤ n for a vector V given a basis B
(as in Definition 1), we simply compute 〈V, B̃i〉. For orthogonal bases, due to
their self-duality, ci is computed by the inner product of V to the basis itself,
i.e., 〈V, Bi〉 .

The basic idea of compression is to find the basis B and then for each given
vector V , only store the coefficients ci’s. The main question is what is the best
basis for a given application and dataset, such that several of ci’s become zero
or take negligible values. In our case, wavelet footprints would result in ci’s that
would take non-zero values only if a change occurs in the vector V . The value
of ci then corresponds to the amount (or amplitude) of change.

3.2 Wavelets

We develop the background on the wavelet transformation using an example. We
use Haar wavelets to transform our example time series into the wavelet domain.
Consider the time series X8 = (0, 0, 0, 0, 0, 1, 1, 1). The transformation starts by
computing the pairwise averages and differences of data (also multiplying by a
normalization factor at each level) to produce two vectors of summary coefficients
H1 = (0, 0, 0.7, 1.4) and detail coefficients G1 = (0, 0, −0.7, 0), respectively. This
process repeats by applying the same computation on the vector of summary
coefficients. The last summary coefficient followed by all n − 1 detail coefficients
form the transformed data, i.e., (1.06, −1.06, 0, −0.5, 0, 0, −0.7, 0).

We can conceptualize the process of wavelet transformation as the projection
of the time series vector of size n to n different vectors ψi termed as wavelet basis
vectors. Suppose |X | denotes the length of a vector X , the wavelet transforma-
tion1 of Xn is X̂n = (x̂1, ..., x̂n) where x̂i = 〈Xn, ψi〉. 1

|ψi| and the term 1
|ψi| is a

1 Throughout the paper, we assume that the size of the time series we work with is
always a power of 2. This can be achieved in practice by padding the time series with
zeroes.
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normalization factor (notice that Haar wavelet basis is orthogonal, and hence self-
dual). Moreover, time series Xn can be represented as Xn =

∑n
i=1 x̂iψi. Figure 1

shows Haar wavelet basis vectors of size 8 as different rows of an 8 × 8 matrix.
In general, we identify Haar wavelet basis vectors of size n as ψi where

1 ≤ i ≤ n. The first vector ψ1 consists of n 1’s. The remainder n − 1 vectors
corresponding to the detail coefficients are defined as follows:

ψ2j+k+1(l) =

⎧
⎨

⎩

1 k. N
2j ≤ l ≤ k. N

2j + N
2j+1 − 1

−1 k. N
2j + N

2j+1 ≤ l ≤ k. N
2j + N

2j − 1
0 otherwise .

(4)

where 0 ≤ j ≤ log n, k = 0, ..., 2j − 1, and 1 ≤ l ≤ n. We now define the term
support interval that we will use throughout the paper.

Definition 5. Let X̂n = (x̂1, ..., x̂n) be the wavelet transformation of the time
series Xn. The support interval of a wavelet coefficient x̂i is the range of indices
j ∈ [1, n] such that x̂i is derived from xj ’s.

For example, the support interval of the first coefficient x̂1 is the entire time
series (i.e., [1, n]), while that of the last coefficient x̂n is the last two elements of
Xn (i.e., [n − 1, n]). We use Sup(x̂i) to denote the support interval of coefficient
x̂i. Similarly, we use Sup−1(j) to refer to the set of all wavelet coefficients which
are derived from xj , i.e., all x̂i’s such that xj ∈ Sup(x̂i).

1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1
1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1

Fig. 1. Haar wavelet basis of size 8

4 Footprints

Wavelets have been widely used in different data mining applications due to their
power in capturing the trend of the data as well as their approximation property
[17]. However, wavelets in their general form do not efficiently model disconti-
nuities in the data. To illustrate the problem, consider the example time series
X8 = (0, 0, 0, 0, 0, 1, 1, 1). Although there exists only one discontinuity point at
fifth position of X8, we get three nonzero coefficients (other than the average)
in the final transformed vector X̂8. The reason is that there is a great amount
of overlap among the support intervals of different coefficients at different levels.
Therefore, to benefit from the approximation power of wavelets and efficiently
model the change points in the underlying data at the same time, a new form
of basis is required.
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Dragotti et al. [3] introduce a new basis which removes the overlap among
the support intervals of corresponding wavelet coefficients at different levels.
They call this basis wavelet footprints or footprints for short. We now explain
the idea behind the footprints, assuming for simplicity piecewise constant data
only. Consider Xn with only one discontinuity at position θ:

Xn(i) =
{

a 1 ≤ i ≤ θ
b θ < i ≤ n .

(5)

where a and b are two real values. In our example X8, we have a = 0, b = 1, and
θ = 5. We transform Xn using Haar wavelet basis vectors ψi as:

Xn = x̂1ψ1 +
n∑

i=2

x̂iψi . (6)

where x̂i = 〈Xn, ψi〉.
Considering the procedure of transformation discussed in Section 3.2, only

those coefficients whose support interval include the point of discontinuity θ (i.e.,
xθ) will be nonzero (i.e., x̂i if i ∈ Sup−1(θ)). In other word, we get

Xn = x̂1ψ1 +
i�=1∑

i∈Sup−1(θ)

x̂iψi . (7)

Now, if we define a new vector fθ as the linear combination of the multipli-
cation of nonzero coefficients to their corresponding wavelet basis vectors (i.e.,
the second term in Equation 7), we obtain a representation of Xn as follows:

Xn = x̂1ψ1 + αθfθ . (8)
where αθ = 1.

We refer to fθ as the footprint for discontinuity point xθ of degree zero as it
captures a change point of degree zero.

Here, we apply the same scenario to our example time series X8. If we rewrite
X8 in terms of ψi’s we get X8 = 1.0607 ψ1

|ψ1| − 1.0607 ψ2
|ψ2| − 0.5 ψ4

|ψ4| − 0.7071 ψ7
|ψ7| .

Let f5 = −1.0607 ψ2
|ψ2| − 0.5 ψ4

|ψ4| − 0.7071 ψ7
|ψ7| . Similar to Equation 8 we get X8 =

1.0607×ψ1+1×f5. Therefore, we can represent X8 with one summary coefficient
and only one nonzero detail coefficient at position 5.

Now, we need to show that the above scenario is extendable to time series
data with m discontinuities of degree zero (piecewise constant). It is easy to see
that any piecewise constant time series with m discontinuities can be represented
as linear combination of m time series each with only one discontinuity. We use
Parseval’s theorem [20] to extend the scenario we developed so far:

Theorem 1. Let X̂ denote wavelet transformation of vector X using orthogonal
wavelets (e.g., Haar). If Xn = X1n + ...+Xmn, we have X̂n = X̂1n + ...+X̂mn.

The direct conclusion of Parseval’s theorem is that X̂n is represented in
terms of the set of summary vector and footprints fi each used in representing
Xin. That is, any piecewise constant time series with m discontinuities can be
represented with the summary vector together with m footprints.

As the previous example shows, we get a much sparser representation of the
data if we use wavelet footprints as our basis. This idea can easily be generalized
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to generate all vectors fi of degree d = 0, ..., D each with only one discontinuity
point i (i = 1, ..., n) of degree d. Using these vectors as a basis enables us
to capture polynomial changes up to degree D in time series data. Interested
readers can find the details in [23]. Dragotti et al. [3] prove that each discontinuity
of degree D at xi can be represented with the summary vector together with
maximum D + 1 footprints (i.e., f

(0)
i ,...,f (D)

i ).

4.1 Properties

In this section, we enumerate different properties of footprints.
– The set of footprints together with the summary vector constitutes a basis.
– The footprint basis is an overcomplete basis (except for the case of constant

piecewise where we have footprints of degree 0 only). Notice that when the
length of the data is n the number of footprint vectors in f

(D)
i is n× (D+1),

and hence the resulting basis is overcomplete.
– The footprints efficiently model discontinuities in time series data; a piece-

wise polynomial time series with K discontinuities, can be represented with
only K × (D + 1) footprints together with the summary coefficients. Each
footprint coefficient also contains
1. The amplitude of the discontinuity that it represents.
2. The characteristics of the two polynomials right before and after the

discontinuity point.

5 Change Detection with Footprints

We showed that nonzero coefficients in footprint transformed time series data
are representatives of the change points in the data. Therefore, a novel change
detection approach emerges by employing footprints. Throughout this section,
we assume that we have pre-computed the biorthogonal footprint basis FD. Note
that this is a one time process independent of either the data or the queries. We
would like to answer two major categories of change detection queries:
– Qd: Return change points of all degrees.
– Qda: Return change points of all degrees, their corresponding degrees and

change amplitudes.

Similar to any general SQL query, user can enforce restrictions on degree
of change point or its change amplitude. For example, user can ask for change
points of degree d where the change amplitude is greater than a threshold T .

Our approach stores the time series data in the wavelet domain. We use foot-
print basis FD as our wavelet basis. Therefore, our approach answers change de-
tection queries by returning the nonzero coefficients stored in its database. Figure
2 illustrates the process flow of our approach. We describe each part in details.

5.1 Insert/Update

Upon receiving the new data (i.e., time series), we transform it using FD and
then store it in the database. The transformation will further be explained in
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Fig. 2. Query processing in wavelet domain (on the left) and Ad hoc query processing
(on the right)

Section 5.3. To update the transformed data, approaches such as Shift-Split [9]
can be used to update the transform data stored in the wavelet domain efficiently.

5.2 Query Processing

On receiving a change detection query on a portion of the data, we retrieve the
nonzero coefficients corresponding to that portion of the data from the database.
For each nonzero coefficient f

(d)
i , we return a change of degree d at point i. If

the user is interested in changes greater than a given threshold, we return only
those coefficients that are greater than the threshold. The time complexity of
this approach is O(n), since we only need a single scan over the data.2

The pre-transformation of the data eliminates the need to restart the entire
process whenever user specifies a new degree and/or threshold for the change val-
ues. This makes our approach faster and more practical than the other change de-
tection approaches where the algorithms are highly dependent on either thresh-
old value or degree.

5.3 Footprint Transformation

The challenge here is to transform the data using the footprint basis. We propose
two different methods for footprint transformation. In both these methods, we
assume that FD and F̃D are pre-computed. Note that the computation of these
vectors is completely data-independent.

The first lazy method is mainly based on approximating the footprint coeffi-
cients by projecting the time series on the dual basis of the footprint basis. This
method is highly efficient in terms of performance.

2 This can be improved further (perhaps to O(logn)) by using an index-structure on
the coefficients.
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The second absolute method is based on a greedy iterative algorithm termed
matching pursuit [18] which is a proven approach in signal processing for repre-
senting signals in terms of an overcomplete basis. The outputs of both methods
enable us to answer change detection queries by retrieving the nonzero coeffi-
cients and reporting their positions as change points. Because of possible noise
in the data, both methods may employ thresholds to select nonzero coefficients.

The Lazy Footprint Transformation. The lazy method approximates the
coefficients of Xn by simply computing the α

(d)
i = 〈Xn, f̃

(d)
i 〉 for all f

(d)
i ’s in the

basis. During the query processing, it returns i as a change point if α
(d)
i is greater

than the user defined threshold in each footprint basis of degree d (see Section
5.2). The universal threshold u = σ

√
2 lnN suggested in [4] is an appropriate

candidate for the threshold value.
Notice that the coefficients computed by the lazy method are not the ex-

act footprint coefficients due to the overcompleteness of the basis. They only
approximate the discontinuity points. However, in Section 7 we show that the
lazy transformation performs very effectively for detecting the change points.
For each time series of size n, it is easy to see that the time complexity of the
lazy transformation is O(n2).3

The Absolute Footprint Transformation. As mentioned before, the foot-
print vectors constitute an overcomplete basis. This overcomplete basis gives us
more power and flexibility in modelling changes in the data. As a drawback,
transformation of the time series Xn (i.e., coefficients α

(d)
i ) becomes a more

challenging task. Here, in order to compute the exact values for α
(d)
i ’s we use

the matching pursuit technique to find the nonzero α
(d)
i coefficients. Due to lack

of space, we omit the details of the technique and corresponding algorithm. In-
terested readers can find the details in [23].

The set of coefficients returned using the matching pursuit technique are the
change points in the time series Xn. Notice that the coefficients computed by
the absolute approach are the exact coefficients of the footprint transformation.
We can modify matching pursuit such that the algorithm terminates after max-
imum

⌈
K
2

⌉
iterations where K is the number of change points in Xn. Since each

iteration of matching pursuit algorithm takes O(n2), the overall time complexity
of the absolute transformation becomes O(

⌈
K
2

⌉
.n2). 4

5.4 Ad Hoc Query Processing

If the data cannot be stored in the wavelet domain, we must transform it in real-
time when we receive a query. We choose between the lazy or absolute method
based on the type of query. The time complexity of this ad hoc change detection
approach is equal to the time complexity of the transformation using footprints.
3 This can be improved further by utilizing the fact that the f

(d)
i matrices are very

sparse.
4 The same as what we had for the Lazy transformation the time complexity can be

improved.
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6 Customizing Footprints for Wavelet-Based Applications

In this section, we show that our approach can be incorporated within systems
where the time series data is maintained in the wavelet domain (e.g., ProDA
[10]). An example of an approach dealing with the data directly in the wavelet
domain is ProPolyne introduced in [22]. ProPolyne is a wavelet-based technique
for answering polynomial range-aggregate queries. It uses the transformed data
from the wavelet domain to generate the result. We show that ProPolyne’s ap-
proach to answer polynomial range-aggregate queries is still feasible when the
data is transformed using footprint basis.

With ProPolyne, a polynomial range-aggregate query (e.g., SUM, AVER-
AGE, or VARIANCE) is represented as a query vector Qn. Then, the answer
to the query is 〈Xn, Qn〉. The family of wavelet basis used by ProPolyne each
constitutes an orthogonal basis. Thus, according to Parseval’s theorem, they
preserve the energy of the data after the transformation and hence we have:

〈Xn, Qn〉 = 〈X̂n, Q̂n〉 . (9)

Therefore, ProPolyne evaluates 〈X̂n, Q̂n〉 as the answer to the query Qn.
However, it is easy to see that Equation 9 does not hold for wavelet footprints

since the footprint basis is not an orthogonal basis. Here, we extend Equation 9 to
hold for the biorthogonal bases. Assume that X̂n and X̃n are the transformations
of Xn using the footprint wavelet basis, and its dual basis, respectively. Now,
according to Definitions 3 and 4, and Equation 9 it is easy to see that

〈Xn, Qn〉 = 〈X̂n, Q̃n〉 (10)

〈Xn, Qn〉 = 〈X̃n, Q̂n〉 . (11)

In practice, we use Equation 10 where the data is transformed to wavelet in
advance and the dual of the query will be computed on the fly to perform the dot
product at the query time. Hence, we are still able to answer polynomial range-
aggregate queries proposed by ProPolyne. Therefore, ProPolyne can transform
data using footprint basis and still benefit from its unique properties.

7 Experimental Results

We conducted several experiments to evaluate the performance of our proposed
approach for change detection in time series data. We compared the query re-
sponse time of our ad hoc query processing approach described in Section 5.4
with the maximum likelihood-based algorithm proposed by Guralnik et. al [8].
We chose their approach for comparison because it is the fastest change detection
algorithm that considers different degrees of change. Throughout this section,
we refer to their method as the Likelihood method. We studied how the size of
the time series (n) and the total number of its change points (K) affects the
performance of each method.
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a. Query cost vs. size of data b. Query cost vs. number of change points K

Fig. 3. Performance Comparison

We also evaluated our lazy and absolute methods by investigating the ef-
fect of the following parameters on their accuracy: 1) the minimum distance
between two consecutive change points (MinDist), 2) the maximum degree of
change points in the data (MaxDeg), 3) the maximum degree D of footprint
basis (MaxDegF), and 4) the amount of noise in the data (Noise). We represent
the accuracy of each method in terms of the average number of false negatives
(AFN) and the average number of detected false hits (AFH).

We used both synthetic and real-world datasets. We generated a synthetic
dataset D3 of 80 time series each with a size in the range of 100 to 5,000.
Each time series of the dataset D3 is a concatenation of several segments each
modelled by a polynomial of degree up to 3. Our real-world dataset include oil
and gas time series for different oil wells in California.

Notice that for the absolute method, we used a modified version of matching
pursuit introduced in [3] which terminates after

⌈
K
2

⌉
iterations. For the likelihood

method, we use the threshold value with which the method computes the most
accurate result. Sections 7.1 and 7.2 focus on our synthetic dataset as we already
know the exact characteristics of the change in their time series. This enables us
to measure the accuracy of our approach. Section 7.3 discusses our experiments
with the real-world data.

7.1 Performance

In our first set of experiments, we compared the performance of our ad hoc
change detection query processing. As the Likelihood method uses the original
time series data as input, it is only fair to compare it with our ad hoc approach.
That is, the CPU time reported for the lazy and absolute methods include both
the time for the footprint transformation of time series and that of detecting the
change points. We used footprint basis of up to degree 3 to transform the data
in the lazy and absolute methods. That is, MaxDeg = MaxDegF. Also, we used
polynomials of up to degree 3 in the Likelihood method.
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a. lower threshold values b. higher threshold values

Fig. 4. Detected change points by the absolute, lazy and Likelihood methods with the
actual change points in the data (the vertical lines)

We varied the size of time series data from 100 to 5,000 and measured the
CPU cost of each method. In Figure 3a, Lazy(i) denotes the measurements of
the lazy method in which the threshold value is i×u (u is the universal threshold
and i is simply a factor multiplied by u). As shown in the figure, our lazy and
absolute methods outperform the Likelihood method by a factor of 2 to 8 when
the size of data increases from 100 to 5,000. We also compared the performance
of all the mentioned methods by running the algorithms on overlapping chunks of
size 256 for the subset of time series with size larger than 1000. However, since
all the methods benefit from the input with smaller sizes the result diagram
shows approximately the same trend.

The theoretical time complexities of the absolute and Likelihood methods
depend on K. On the other hand, the lazy method is a series of simple projections
which are independent of the characteristics of the data. To study the effect of K
on the performance of each method, we varied K and measured the CPU cost.
Figure 3b illustrates that while the performance of both our methods remains
almost fixed for different number of change points, the CPU cost of Likelihood
method dramatically increases.

7.2 Accuracy

Our second set of experiments were [2] aimed to evaluate the accuracy of each
method in terms of number of missed change points and the detected spurious
change points (i.e., precision and recall). Figure 4 shows a small time series of
size 200 generated with polynomial segments of maximum degree 2 as well as
the true change points and those detected by each method. We used footprint
basis of up to degree 2 to transform the data and for the Likelihood method we
used polynomials of up to degree 2.5

5 Notice that the performance of the likelihood method can be improved further by
adapting the technique described in [2]. As part of our future work, we plan to
compare the performance of the improved version of the likelihood method with our
improved versions of Lazy and Absolute methods.
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Table 1. Accuracy results of all methods for cases F2 and F3

F3 F2
Method AFN Method AFN
MinDist= 5 MinDist= 5
Lazy(1.5) 3 Lazy(1.5) 3.5
Lazy(1) 2.1 Lazy(1) 3.1
Absolute 0.9 Absolute 1
Likelihood 4.5 Likelihood 4.1
MinDist= 10 MinDist= 10
Lazy(1.5) 1.9 Lazy(1.5) 2.9
Lazy(1) 0.9 Lazy(1) 2.7
Absolute 0.2 Absolute 0.5
Likelihood 1.8 Likelihood 3.0
MinDist= 20 MinDist= 20
Lazy(1.5) 0.5 Lazy(1.5) 1.1
Lazy(1) 0.2 Lazy(1) 0.6
Absolute 0 Absolute 0.1
Likelihood 0.2 Likelihood 1
MinDist= 50 MinDist= 50
Lazy(1.5) 0.3 Lazy(1.5) 0.9
Lazy(1) 0.2 Lazy(1) 0.4
Absolute 0 Absolute 0.1
Likelihood 0.2 Likelihood 0.8

There are ten actual change points as shown in Figure 4 and the minimum
distance between each two change points is 20. In Figure 4a, the likelihood and
lazy(1) methods both miss the change point at t = 120. Also, Likelihood method
detects two false hits at points t = 51 and t = 90. And for the change that occurs
at point t = 100, it detects two change points at t = 98 and t = 101. The lazy
method returns no false hit. The absolute method returns all 10 actual change
points at their exact positions without any false hit. It is interesting to note
that the increased threshold values result in ignoring the minor change points
at t = 120 and t = 160 by all the methods as shown in Figure 4b. However the
likelihood method still has a false hit at t = 51 and for the change that occurs
at point t = 100, it also detects two change points at t = 98 and t = 101.

Notice that using our footprint-based approach, we also acquire valuable
information about the degree and amplitude of each change point. For example,
at point t = 40, we have a discontinuity caused by a quadratic segment following
a constant segment. Also at point t = 140, we have a discontinuity caused by a
constant segment following a linear segment.

We repeated the previous experiment on time series of the dataset D3 for
which K = 10. We varied the minimum distance between each two consecutive
change points in the data (MinDist) from 5 to 50. Table 1 shows the average
number of false negatives (AFN) for all the methods. Column F3 shows the
results for the experiment where we used footprints of degrees 0, 1, 2, and 3.
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Note that in this case MaxDegF is identical to MaxDeg. Likewise, column F2
shows the case where we used footprints of degrees 0, 1, and 2. The Likelihood
method also used polynomials of degrees up to 2 (resp. 3) for case F2 (resp. F3).

The Effect of MinDist. As Table 1 depicts, our footprint methods always
outperform the Likelihood approach in terms of accuracy with absolute being
the superior method. With small values of MinDist, the accuracies of all methods
dramatically downgrade. However, even for close change points, the absolute
method misses only one of 10 change points on average. This yields that the
absolute method is resilient to the effect of closeness of change points.

The Effect of Noise. In our third set of experiments, we fixed the minimum
distance between change points to 10, threshold value equal to 1.5 × u, and
FD = F2. Using polynomials of degree up to 2, we generated two noisy datasets.
We added noise with the standard deviation of about 1/15 to 1/30 and 1/150
to 1/300 of the average of values in time series to generate two noisy datasets
N oisy(1) and N oisy(0.1), respectively. Table 2 shows the accuracy results of
applying all three methods on both datasets.

Table 2. Accuracy results of all methods for datasets N oisy(1) and N oisy(0.1)

Noisy(1) Noisy(0.1)
Method AFN AFH Method AFN AFH
Lazy(1) 5 1.2 Lazy(1) 3.5 1
Absolute 2 0.9 Absolute 1.5 0.8
Likelihood 2.8 3 likelihood 2.6 3

7.3 Experiment with Real-World Datasets

Finally, the last set of experiments focuses on real-world time series data. We
tested our methods on different time series generated within the oil industry.
Here, we only report the results on three time series OIL1, OIL2, and GAS
obtained from Petroleum Technology Transfer Council6 due to lack of space.
These time series are collected from wells in active oil fields in California. OIL1
and OIL2 include oil production during 1985-1995 and 1974-2002, respectively.
GAS includes the gas production rate measured in a 2300 day period, sampling
once every 15 days.

Unlike synthetic time series, here we do not know where the exact change
points are. Therefore, we evaluated our methods visually based on the position
of their detected change points. Figure 5a, 5b and 6 depicts the change points
detected in time series OIL1, OIL2 and GAS, respectively.

Notice that our absolute method does not identify any change at points such
as t = 235 in Figure 5b. The reason here is that the segment corresponding to
the range [228, 240] can be modelled by a polynomial of degree 3. Therefore,
t = 235 is not a discontinuity of degree 3 in OIL2.
6 http://www.westcoastpttc.org/.
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Figure 6b illustrates the detected change points in GAS data by each of the
three methods when they use higher threshold values as compared to those used
in Figure 6a. Comparing Figures 6a and 6b shows that the former detects all
small changes while the later identifies only major changes in the data. Notice
that once our methods detect changes using a given threshold value, changes
above different thresholds can be identified only by performing a simple scan
over all the coefficients. However, with the likelihood method, we need to rerun
the whole process when the user changes her threshold value. For example, we
ran the likelihood method separately for the results of each of Figures 6a and 6b.

a. OIL1 b. OIL2

Fig. 5. Detected change points by the absolute, lazy and Likelihood methods

a. lower threshold values b. higher threshold values

Fig. 6. Detected change points by the absolute, lazy and Likelihood methods

8 Conclusions and Future Work

We studied the problem of detecting changes in time series data. We formally
defined the degree of change for change points in the time series data. Our defi-
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nition is closely related to the difference in two polynomial functions fitting two
adjacent segments of data. We then described our novel approach which employs
wavelet footprints for defining discontinuities of different degrees. We proposed
lazy and absolute methods to transform the data using footprint basis. Finally,
we compared the performance and accuracy of our footprint-based approach with
the maximum likelihood method [8] through exhaustive sets of experiments with
both synthetic and real-world data. The results show that our approaches are
faster, more accurate and return more information about the changes. In ad-
dition their performances are less sensitive to user defined parameters such as
threshold values and number of changes.

In this paper, for the first time we exploited the interesting characteristics
of footprints for change detection in time series data. Motivated by our results,
we plan to develop a footprint-based tool for real-time change detection on data
streams.
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