
Density Estimation for Spatial Data Streams

Cecilia M. Procopiuc and Octavian Procopiuc

AT&T Shannon Labs, Florham Park, NJ 07950, USA
magda@research.att.com
oprocopiuc@gmail.com

Abstract. In this paper we study the problem of estimating several types of spa-
tial queries in a streaming environment. We propose a new approach, which we
call Local Kernels, for computing density estimators by using local rather than
global statistics on the data. The approach is easy to extend to an on-line setting,
by maintaining a small random sample with a kd-tree-like structure on top of it.
Our structure dynamically adapts to changes in the locality of data and has small
update time. Experimental results show that the proposed algorithm returns good
approximate results for a variety of data and query distributions. We also show
that it is useful in off-line computations, as well.

1 Introduction

We consider the problem of estimating the data distribution and query selectivity for
spatial data streams. More precisely, we assume the so-called cash register model in
which data points are inserted into the set, but they are never deleted. Each data point
is a multidimensional real-valued tuple. In this paper, we propose new methods for
maintaining an approximate density function on the data, by computing kernel density
estimators in an on-line setting. We then use this information in order to approximate
the selectivity of range queries.

As in all data stream applications, algorithms for computing the desired statistics
must satisfy certain conditions. First, they must require only one pass over the data,
and use only a small amount of space compared to the size of the dataset. In addition,
processing an update should be fast, as in many applications new tuples arrive with high
frequency. And finally, answering queries should be both fast and accurate.

The data stream model has become popular in recent years, motivated by applica-
tions that deal with massive information such as Internet and phone traffic log analysis,
financial tickers, ATM and credit card operations, sensor networks, etc. Although in
many such applications the data is stored and archived, its volume makes it prohibitively
expensive to access. Thus, it is often necessary to monitor the contents of very large
databases in an incremental, on-line fashion. In addition, for many application domains
the ability to answer queries as the data arrives is crucial for mission-critical tasks such
as fraud detection or financial transactions.

There is already a large body of literature that studies approximation algorithms
for computing various statistics and aggregate queries over data streams. For exam-
ple, [12,17] propose methods for computing approximate quantiles, and [4,3] estimate
on-line self-join and multi-way join sizes. A recent result by Das et al. [9] addresses
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the problem of computing on-line spatial joins and range queries. Summarization tech-
niques such as sketches [7,21], wavelets [11,13], and histograms [10,14,22] have been
proposed as a means of answering more complex queries, such as range queries. How-
ever, all these methods make the assumption that each tuple in the data stream has
attribute values from some finite universe {1, . . . , U} (for simplicity, we henceforth re-
fer to them as discrete methods). While this is a reasonable restriction for many types of
data, it is not always feasible to assume such a priori knowledge of it. For example, in
the case of spatial, temporal or multimedia datasets, objects are represented as feature
vectors with real-valued attributes. Monitoring such data via discrete on-line methods
requires an initial discretization of the objects. The accuracy of the result then depends
not only on the guarantee provided by the algorithm, but also on the discretization grid.
The higher the accuracy desired, the larger the size U of the discretized universe, and
the slower the method (since its space and update time almost always depend on U ).
Moreover, the problem worsens as the dimensionality of the data increases.

In the experimental section we will discuss an application in which the goal is to
maintain statistical information of network measurements over time. The data consists
of real-valued tuples representing the current state of AT&T’s backbone network, re-
flecting delay times between pairs of servers. Each tuple is an aggregate of measure-
ments taken during a fifteen-minute interval, with multiple measurements generated
each minute. Because of the size of the data, only a small amount of it is stored on disk,
with older data being moved to tape, which makes accessing it a difficult task. How-
ever, it is often the case that only an approximate view of it will suffice, usually to be
used for comparison purposes. Thus, our proposed algorithm offers a way to generate a
low-storage data summary that is nonetheless powerful enough to answer queries with
relatively small error.

Computing summary statistics for real-valued datasets has also been extensively
studied in the literature. The Min-Skew [1], MHIST [19] and GENHIST [15] algorithms
are histogram-based methods that estimate the selectivity of multi-dimensional range
queries. In addition, kernel density algorithms have been proposed in [5,15]. However,
all these methods either require multiple passes over the data, or a large enough memory
(in relation to the overall data size). The multi-dimensional kernel estimator proposed
in [15] is a one-pass algorithm that comes closest to being suitable for an on-line envi-
ronment. However, its accuracy crucially depends on the computation of approximate
values for the standard deviation along each dimension. Such computation requires stor-
ing a significant sample of the data. In addition, the proposed algorithm assumes that
all queries are asked after the entire data has been seen once.

Our Contributions. In this paper we propose a new method for maintaining approxi-
mate data distributions on real-valued multi-dimensional data streams. We then use this
information in order to estimate the selectivity of range queries arriving in an on-line
fashion. To the best of our knowledge, this is the first algorithm that estimates range
selectivity over real-valued data streams.

Our approach is to compute kernel density functions and maintain them over inser-
tions and deletions from the sample set of kernel centers (thus making it suitable for
on-line computations). We propose new methods for computing the kernel bandwidths,
by estimating the standard deviations for each kernel only for points that fall in a local-
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ity of the kernel center. More precisely, we will maintain a kd-tree-like structure and we
will compute separate density functions in each leaf of the tree. We then approximate
the standard deviations only for the data points in the corresponding cell. As the kd-tree
structure changes, we use previous density information from nearby cells, as well as
newly arriving data in order to maintain the standard deviations in the new leaves.

This allows us to achieve good query accuracy while still using only a very lim-
ited amount of memory. Previous methods used global standard deviations to compute
kernel bandwidths. As we discuss in the experimental section, such approaches usually
require larger samples to achieve good accuracy; they may also suffer from an over-
smoothing effect of the density estimators. Gunopulos et al. [15] suggested replacing
global statistics by local ones, by first clustering the data. However, no experimental
data was provided. Moreover, such an approach would be more difficult to adapt to an
on-line setting, than the one we propose in this paper. We note that our Local Kernels
algorithm is of independent interest and could also be used for off-line applications
in order to compute locality-sensitive statistics. We also compare our method with a
state-of-the-art on-line algorithm for discrete data, and conclude that it is significantly
faster and generally more accurate. Hence, the Local Kernels method is a competitive
alternative to current approaches for summarizing discrete on-line data.

Furthermore, the capability to compute on-line approximate density functions can
lead to algorithms for other problems, such as maintaining an approximate visualization
of the dataset, or detecting high-density areas. The latter is a generalization of the notion
of heavy hitters, which were defined for discrete one-dimensional datasets. In general,
any off-line application that uses the underlying distribution of the data in order to
compute some fast summary statistics can also be translated into a streaming application
using our proposed on-line density estimators.

2 Preliminaries

Data and Query Model. We assume that the dataset is a stream of tuples 〈p1, p2, . . .〉,
where each pi ∈ R

d is a d-dimensional point. The points are indexed in the order in
which they arrive. We focus on the so-called cash register model for data streams, in
which points are inserted, but not deleted from the database. This is the natural model
for the two real-life applications we consider, in which the data consists of network
and weather measurements accumulated over certain periods of time. We will briefly
discuss how our approach can be extended to the turnstile model, which allows points
to be both inserted and deleted from the stream.

We focus on range selectivity queries, defined as pairs of type Qi = 〈i, Ri〉, where
Ri is a d-dimensional hyper-rectangle (see the discussion in Section 4 for extensions to
other queries). The selectivity of Qi is defined as sel(Qi) = |{pj|j ≤ i, pj ∈ Ri}|.
In other words, it is the number of points that have arrived up to time step i and that
lie inside the query range Ri. We study the problem of estimating sel(Qi), under the
assumption that queries arrive in a continuous stream, which is interleaved with the
data stream. A query Qi must be answered before the point pi+1 is processed. This
requirement arises from the fact that processing the point pi+1 changes a subset of
the statistics we maintain, and thus has the potential to affect the outcome of Qi. In
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practice, if the frequency with which points arrive is too high relative to query time, we
can tolerate the processing of a small number of subsequent points, as the changes they
induce are not significant. Moreover, as we explain below, processing a point usually
affects only a constant number of statistical values, and thus can be handled ’out of
sync’ by using a small amount of extra memory.

One significant property of our algorithm is that it does not require a priori knowl-
edge of the overall size of the data stream, nor of the range of values along each dimen-
sion. The latter is important in any approach that tries to discretize the data first, while
the former is often required by discrete on-line methods.

Kernel Density Estimators. The problem of estimating an underlying data distribution is
a central theme in statistics research [8,20]. Kernel estimators are statistical techniques
for approximating the probability distribution, by generalizing random sampling. The
first step is to compute a uniform random sample of the data, and to assign each sample
point (also called kernel center) a weight of one. The second and crucial step is to
distribute the weight of each point in the space around it according to a kernel function.
In general, kernel functions distribute most of the weight over the area in the vicinity
of the center, and taper off smoothly to zero as the distance from the center increases.
However, in practice it is easier to use non-smooth kernel functions that are zero outside
a given area. The study in [8] shows that the shape of the kernel function does not
significantly affect the quality of the approximation.

In this paper we will use the Epanechnikov kernel function, which was also em-
ployed in [15]. More precisely, let S = {s1, . . . , sm} be a random subset of the data.
Then the underlying probability distribution is approximated by the function

f(x) =
1
m

m∑

i=1

k(x − si),

where x = (x1, . . . , xd) and si = (si1, . . . , sid) are d-dimensional points, and

k(x1, . . . , xd) = 0.75d 1
B1B2 . . . Bd

d∏

j=1

(
1 −

(
xj

Bj

)2
)

if | xj

Bj
< 1| for all j, and 0 otherwise. See Figure 1 (a).

The parameters B1, . . . , Bd are referred to as the kernel bandwidth along each di-
mension. Choosing the right values for these parameters is the crucial step in computing
kernel estimators, as they determine the accuracy of selectivity computations. No effi-
cient solution exists for finding optimal bandwidths. The problem has been addressed
in [20], which proposes using the following rule: Bj =

√
5σjm

−1/(d+4), where σj is
the standard deviation of the sample along the jth dimension. Note that this rule implies
that the same d parameter values are used for all kernel functions, in other words the
local distribution around each center is assumed to be identical. Moreover, the accuracy
of the method depends on how closely σj approximates the standard deviation of the
entire data. Good approximations require large values for m (the sample size).

In this paper we will use a slightly different approach. We build a kd-tree-like struc-
ture on top of the sample S, and assume that each sample point si is the centroid of the
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(a) (b)

Fig. 1. One-dimensional kernels: (a) Kernel function, B = 1; (b) Contribution of multiple kernels
to estimate of range query

dataset in its leaf. We then maintain a set of d values σij , 1 ≤ j ≤ d, that are generally
distinct for each sample point, such that σij approximates the standard distribution of
the points in the cell of si, along dimension j. Note that we can update these values in
an on-line fashion, by looking at all points in the cell (rather than just a sample). The
detailed description of the procedure is given in the next section.

Computing range selectivities. Let R = [a1, b1] × . . . × [ad, bd] be a range selectivity
query. Let Ti denote the subset of points in the tree leaf associated with sample point
si = (si1, . . . , sid), and let Bi1, . . . , Bid be the kernel bandwidths for that leaf. Then
the selectivity of R with respect to Ti is approximated in time O(d) as follows:

sel(R, Ti) ≈ |Ti|(0.75)d 1
Bi1 . . . Bid

×
d∏

j=1

∫

[aj ,bj ]

(
1 −

(
xj − sij

Bij

)2
)

dxd . . . dx1.

The overall selectivity is then computed in time O(dm) as sel(R) ≈
∑m

i=1 sel(R, Ti).
See Figure 1 (b) for an illustration of the contribution of three kernel functions to the
selectivity mass of a range query (in the one-dimensional case).

3 On-line Algorithm

In this section we describe our algorithm for maintaining a set of kernel density estima-
tors that closely approximates the underlying data distribution of a spatial data stream.
An important contribution of our approach is to design kernel estimators that use local
statistics on the data in order to define the weight distribution functions. The advan-
tage of using such estimators is that local statistics can be maintained very accurately
with only a small amount of memory, and in an on-line fashion. By contrast, previous
methods approximated global standard deviations and required a large sample size in
order to ensure reasonable accuracy. In addition, our experimental results indicate that
using local statistics improves the quality of the results. We will call our approach Local
Kernels.

We propose using a kd-tree-like structure to partition the kernel centers, and define
the neighborhood of a center to be its corresponding leaf. The algorithm will maintain
the (approximate) standard deviations for each subset of data points in a leaf. Other
partitioning schemes could also be employed to define such neighborhoods. However,
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as we show at the end of Section 3.1, the tree structure we consider exhibits certain
properties that make it particularly suitable for our task.

Let S be a uniform sample of the data seen so far. The kernel centers are defined to
be the points of S. We maintain a hierarchical decomposition tree on S, denoted T (S),
with the following properties: each leaf of T (S) corresponds to a (possibly unbounded)
axis-parallel hyper-rectangle in R

d, so that there is exactly one point of S in each leaf;
any two leaves are disjoint; and the union of all leaves is R

d. For the initial random
sample S, T (S) is a kd-tree. As points are inserted and deleted from S, the structure
T (S) will no longer be a kd-tree, but it will maintain the above properties. For each
sample point si ∈ S we also maintain d + 1 values: τi, which is the (approximate)
number of stream points that lie in the leaf corresponding to si, and σij , 1 ≤ j ≤ d,
which approximate the standard deviations of the points in the leaf of si along each
dimension.

3.1 Random Sampling

The random sample S is chosen using the reservoir sampling method of [24]. More
precisely, point pi is chosen in S with probability |S|/i (recall that the points are in-
dexed in the order in which they arrive in the stream). If pi is chosen, a random point
of S is deleted. Vitter [24] proves that using this technique guarantees that S is always
a uniform random sample of the data seen so far.

A powerful probabilistic result by Vapnik and Chervonenkis [23] allows us to com-
pute the size of the random sample S for which certain estimation errors are guaranteed
with high probability. More precisely, we can prove the following.

Theorem 1. Let T be the data stream seen so far, and let S ⊆ T be a random sample
chosen via the reservoir sampling techqnique, such that |S| = Θ( d

ε2 log 1
ε + log 1

δ ),
where 0 < ε, δ < 1. Then with probability 1 − δ, for any axis-parallel hyper-rectangle
Q the following is true:

|sel(Q) − sel(Q, S)
|T |
|S| | ≤ ε|T | (1)

where sel(Q) = |Q ∩ T | is the selectivity of Q with respect to the data stream seen so
far, and sel(Q, S) = |Q ∩ S| is the selectivity of Q with respect to the random sample.

Proof. Consider the set system (T,H(T )), where each H ∈ H(T ) is a subset of T
lying in an axis-parallel hyper-rectangle (for an introduction to the theory of set systems
we refer the reader to, e.g., the book [18]). It is well known that the VC-dimension of
this system is 2d. By the result of [24], S is a uniform random sample of T . Then the
main theorem of [23] states that, if S has the size specified above, with probability 1−δ
equation 1 is true for any axis-parallel hyper-rectangle Q.

Theorem 1 implies that with high probability we can estimate the selectivity of any
range query via the simple random sampling method, and achieve an additive error
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ε|T |. In the following, we will be interested in selectivity estimators with small relative
errors, where the relative error for a query Q is defined as

|sel(Q) − estimated sel(Q)|
max{sel(Q), 1} .

Hence, for the random sampling estimator, defined as

estimated sel(Q) = sel(Q, S)
|T |
|S| ,

the relative error is ε |T |
max{sel(Q),1} . Note that this error is small for queries with high

selectivity, but it can grow as large as Θ(|T |) if sel(Q) = O(1). This behavior of the
random sampling estimator is well known in practical applications, and has justified
the study of more sophisticated estimators. As mentioned before, kernel density esti-
mators can be viewed as a generalization of random sampling, in which the points in
S distribute their weight over a local neighborhood, and the selectivity is estimated as
an integral of the weight distribution functions. This smoothing technique improves the
accuracy of the approximation, especially for ranges of small selectivity.

An immediate consequence of Theorem 1 is that, with high probability, no leaf of
the decomposition tree T (S) contains more than 2ε|T | data stream points. Indeed, let
L be the axis-parallel hyper-rectangle associated with a leaf of T (S). By construction
of the tree, sel(L, S) = 1. Then if we assume that sel(L) ≥ 2ε|T |, equation 1 implies
|S| ≤ 1/ε, a contradiction. Hence, T (S) induces a good partitioning of the data stream,
in the sense that no leaf is too dense. This is particularly important if the underlying data
is clustered in a reasonably large number of dense subsets, as it ensures that points from
different clusters fall in different leaves. This in turn means that our estimates σij of the
standard deviations for points in each leaf are close to the real values for that region.

The above observations justify our choice of using a kd-tree-like structure for parti-
tioning the data stream. Note that other means of defining local neighborhoods for the
sample points can also be employed. For example, one could use the Voronoi diagram
of S, and compute the values τi and σij for each subset of points lying in a Voronoi
cell. However, in order to ensure that no cell of the partition is too dense (in the sense
discussed above), we have to significantly increase the sample S. More precisely, |S|
must have a linear dependence on the VC-dimension of the corresponding set-system;
this is asymptotically larger for any other reasonable decomposition schemes.

In addition to this well-balanced property in terms of data density in each cell, T (S)
also has the advantage of being easy to maintain. As we show below, we can update
T (S) in time O(|S|) under insertions and deletions from S.

3.2 Updating T (S)

For ease of presentation, we introduce the following notations. Let box(v) be the axis-
parallel hyper-rectangle associated with a node v of T (S). If v is an internal node, let
h(v) denote the hyper-plane orthogonal to a coordinate axis that divides box(v) into the
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two smaller boxes associated with the children of v. Let leaf(si) be the leaf containing
sample point si. We maintain τi ≈ number of stream points contained in leaf(si) and

Σij ≈
∑

p∈leaf(si)

(pj − sij)2, 1 ≤ j ≤ d.

Then σij =
√

Σij/(τi − 1) is the approximate standard deviation of the points in
leaf(si) along dimension j (assuming si is the centroid of the distribution).

Let p be the current point in the data stream. If p is not selected in the sample S, we
find the leaf that contains p - say this is leaf(si). Then we increment τi by one, and we
add (pj − sij)2 to Σij , 1 ≤ j ≤ d.

We now consider the case when p is selected in the random sample S. Let q denote
the point that gets deleted from S. The updating procedure first deletes leaf(q) from
the tree, and then adds a new leaf corresponding to p. We detail each step below.

Deleting a leaf. Let u denote the parent node of leaf(q), and let v be the sibling of
leaf(q). Without loss of generality, assume that leaf(q) lies to the left of h(u) and
v lies to the right of h(u); see Figure 2. The structure of T (S) will be modified as
illustrated in Figure 3: make v a descendant of the parent node of u; delete nodes u
and leaf(q). Let N (q) denote the leaves in the subtree of v that have one boundary
contained in h(u); we will call these the neighbors of leaf(q). The deletion procedure
can be viewed as extending the bounding box of each neighbor of leaf(q) past the
hyper-plane h(u), until it hits the left boundary of leaf(q). The points that were previ-
ously contained in leaf(q) must thus be redistributed among the leaves in N (q), and
the corresponding τ and Σ values must be updated for all these leaves. The procedure

q r

h(u)

Fig. 2. Deleting leaf(q) means extending the bounding boxes of leaves in N (q) (represented as
gray rectangles)

for updating the τ values is simple: for each leaf in N (q), we increment its τ value by
the selectivity of its (expanded) bounding box with respect to the points contained in
leaf(q). As long as the kernel function for leaf(q) is a good model for the distribu-
tion of points inside the leaf, τ remains a good approximation for the actual number of
points inside each leaf of N (q). However, updating the Σ values requires more infor-
mation than we store. This is because points in leaf(q) will contribute differently to the
standard deviations of the (expanded) leaves in N (q), based on their relative position
to the centroids of those leaves. Let r be a point so that leaf(r) ∈ N (q), and for a fixed
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u

q v

v

=>

Fig. 3. Deleting leaf(q) from the tree. Gray nodes correspond to N (q)

q r

ν2 να = ρjλj = ν1

Fig. 4. Updating Σrj by discretizing the intersection of boxe(r) and the kernel of q along dimen-
sion j (the gray area represents wt2)

dimension j, let [λj , ρj ] be the intersection of the expanded box of r, denoted boxe(r)
and the kernel function of q along dimension j (see Figure 4). We discretize the interval
[λj , ρj ] by choosing a set of equidistant points λj = ν1, ν2, . . . , να = ρj (where α is a
sufficiently large constant), and update the value of Σrj as follows:

Σrj = Σrj +
α−1∑

i=1

((νi + νi+1)/2 − rj)2wti,

where

wti = 0.75 · τq
1

Bqj

∫ νi+1

νi

(
1 − (

x − qj

Bqj
)2

)
dx

is the (approximate) number of points of leaf(q) whose j’th coordinate lies in the inter-
val [νi, νi+1]. In other words, we approximate all points in this interval by its midpoint,
and use this approximation to update the Σ value for r.

The update procedures are summarized in Figure 5. The overall procedure for delet-
ing a leaf is given in Figure 6 (a).

Inserting a leaf. Let p be the point newly selected in the sample S, and q be an existing
sample point such that p ∈ leaf(q). We split leaf(q) by a hyperplane passing through
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PROCEDURE τ -Update(q, r, box(r))
τr + = it sel(box(r), leaf(q));

end

PROCEDURE Σ-Update(q, r, box(r))
boxj(r): projection of box(r) along dimension j;
α: constant;
for j = 1, . . . , d

[λj , ρj ] = boxj(r) ∩ [qj − Bqj , qj + Bqj ];
discretize λj = ν1, ν2, . . . , να = ρj ;
for i = 1, . . . , α − 1

wti = 0.75 · τq
1

Bqj

∫ νi+1
νi

(
1 −

(
x−qj

Bqj

)2
)

dx;

Σrj + = ((νi + νi+1)/2 − rj)
2wti;

end for
end for

end

Fig. 5. Updating values τ and Σ

the midpoint (p + q)/2. The direction of the hyperplane is chosen according to the
alternating rule of a kd-tree, i.e., if i is the splitting dimension for the parent of q, then
we split q along dimension (i + 1) mod d. Let boxc(q) denote the contracted box that
bounds the new leaf(q). We set τq and τp to be the selectivity of boxc(q), respectively
box(p), with respect to the set of points previously contained in leaf(q) (in fact, τp is
one more than the selectivity, to account for the new point p). We then compute the Σ
values for p and q using the procedure described in Figure 5, using boxc(q) and box(p)
as the third argument. The overall procedure is summarized in Figure 6 (b).

Clearly, the update time is dominated by the leaf deletion procedure. Its time com-
plexity is proportional to the number of leaves in the subtree rooted at the sibling of the
leaf, which is O(|S|) in the worst case. Hence, we conclude with the following.

Theorem 2. The update and query time for our online range searching procedure is
O(|S|), where S is the sample size.
Extension to turnstile model. The overall approach can also be extended to handle
the case when points are allowed to be deleted from the data stream. If the point p
to be deleted is not a kernel center, we compute si such that p ∈ leaf(si). We then
subtract 1 from τi, and (pj − sij)2 from Σij , 1 ≤ j ≤ d. If p is a kernel center, then
we delete leaf(p) and choose the next point inserted in the stream to replace p in the
sample. This approach suffers from the same problems as maintaining a data sample
over deletions, which is that we can no longer guarantee (with high probability) that
the sample is uniform with respect to the data currently present in the stream. However,
if the deletions do not exhibit strong spatial or temporal locality, then the approach is
likely to work well in practice.
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PROCEDURE Delete(leaf(q))
Compute N (q);
for each r ∈ N (q)

boxe(r): expanded box of r;
τ -Update(q, r, boxe(r));
Σ-Update(q, r, boxe(r));

end for
Replace parent of leaf(q) by sibling of leaf(q)

in T (S);
end

PROCEDURE Insert(leaf(p))
Compute q so that p ∈ leaf(q);
Split leaf(q) through (p+ q)/2 along ap-

propriate axis;
boxc(q): contracted box of new leaf(q);
oldq: all values assoc. with q before split-

ting;
τp = τq = 0;
Σqj = Σpj = 0, 1 ≤ j ≤ d;
τ -Update(oldq, q, boxc(q));
τ -Update(oldq, p, box(p)); τp+ = 1;
Σ-Update(oldq, q, boxc(q));
Σ-Update(oldq, p, box(p));

end

(a) (b)

Fig. 6. (a) Deleting leaf(q). (b) Inserting leaf(p)

4 Experimental Results

We evaluate the performance of our on-line algorithm on both synthetic and real data
sets, in different number of dimensions and under varying query loads. We focus on
range selectivity queries in the experiments described in this section, as they are one of
the most common type of queries asked against multi-dimensional data, and have been
extensively studied in previous literature. Note, however, that other types of queries can
also be handled using the statistical information maintained by Local Kernels, and the
range selectivity computation as a basic procedure. For example, the rank of a point p =
(p1, . . . , pd), defined as the number of points dominated by p on all coordinates, can be
computed as the range selectivity of the hyper-rectangle (−∞, p1) × · · · × (−∞, pd).
Hot spots, defined as unit cubes containing at least αn points in the stream, for some
user-defined 0 < α < 1 (see [16]), could also be computed by answering range selec-
tivity queries on an appropriate set of candidate cubes.

As we discuss below, the data distribution for one of the real datasets we used was
significantly different from the synthetic data. However, our method returned good re-
sults on both distributions. There are two main issues we are interested in evaluating in
our experimental set-up: the accuracy of our method with respect to existing techniques,
both on-line and off-line, and the trade-off between accuracy and space usage.

We first provide experimental evidence that our proposed local-statistics kernels
computation is competitive in an off-line setting with previous density-based methods.
In fact, as we show below, it has better accuracy in most of the cases we study. This is
an important issue, because the off-line accuracy of local kernels is an upper bound on
the accuracy that we can achieve when moving to the on-line setting. Hence, we need
to validate our strategy as a multi-pass method first. By this, we mean that instead of
maintaining the approximate values for the number of points and standard distribution
in a leaf, we compute them exactly in one pass over the current data, every time the set
of kernel centers changes. Note that off-line local-statistics kernels are of independent
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interest, as they can be used for summarization and mining for large-scale data ware-
housing. As we discuss below, in the context of data warehousing, off-line local kernels
require only two data scans. Our experiments also show that they yield highly accurate
results with small space requirements, even when query selectivity is very low.

Next, we study the performance of our on-line algorithm. We first compare it to the
discrete one-pass histogram method proposed in [22], on a set of integer-valued two-
dimensional data. Although the method can be used to answer range queries that arrive
interspersed with the data, the expensive histogram computation makes it impractical
for such a setting. Therefore, we restricted our experiments to the case when all queries
arrive after the entire data stream has been processed. Finally, we evaluate our method
in its most general setting, i.e. over real-valued data that arrives interspersed with the
queries. We compare it with random sampling, which we consider as a base method for
on-line range searching, due to its simplicity and effectiveness in practice. The version
that we implemented uses reservoir sampling [24] to maintain a sample of the points in
a streaming environment. We also consider the off-line version of local kernels compu-
tation, which we use as a basis of comparison for accuracy results. As mentioned above,
this represents the best approximation that can be obtained via local kernels.

Datasets and queries. We used four datasets: a 2-dimensional synthetic set SD2, a
4-dimensional synthetic set SD4, and a 2-dimensional set NM2 containing network
measurements. Each of the two synthetic datasets contains 1 million points, of which
90% are contained in clusters, and 10% are uniformly distributed. The data generator
we used is similar to the one described in [2], which was introduced in order to model
local dependencies in the data. There are 100 clusters in each dataset, and the points in
each cluster are drawn from a normal distribution around a randomly chosen center. The
variance in each cluster is determined randomly in the following manner: Fix a spread
parameter r and choose a scale factor sij ∈ [1, s] uniformly at random, where s is user
defined. Then the variance of the normal distribution in cluster i and along dimension
j is (sij · r)2. The number of points in each cluster is proportional to the realization of
an exponential random variable. Once all clusters are generated, we compute a random
permutation of the points, and choose that to be the order in which the data arrives.
Thus, the stream does not exhibit temporal correlation, i.e. consecutive points are likely
to belong to different clusters.

The network dataset NM2 contains 1 million two-dimensional data points with real-
valued attributes. Each point is an aggregate of measurements taken during a fifteen-
minute interval, reflecting minimum and maximum delay times between pairs of servers
on AT&T’s backbone network.1 The dataset is only a small snapshot of the entire infor-
mation stored in the course of a month, which we have chosen for the purpose of ex-
perimental evaluation. As mentioned in Section 1, summarization methods with small
storage are highly desirable in this case, as older data is no longer stored on disk, mak-
ing it difficult to access.

For every dataset, we create two query workloads. The queries are chosen randomly
in the attribute space, but each query in a workload has approximately the same selec-
tivity: 0.5% for the first workload, and 10% for the second. Hence, the first workload

1 The proprietary nature of the data prohibits us from disclosing more details.
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corresponds to low selectivity ranges, and reflects how much our kernel density ap-
proach manages to improve over random sampling. The second workload corresponds
to high selectivity ranges, and is used in order to verify that our method does not result
in an over-smoothing of the distribution function, which would then imply significantly
under-estimating the query counts. All workloads contain 200 queries each. The times-
tamps of the queries are randomly interspersed in the data stream.

Accuracy measure. For the remainder of this paper, we report the accuracy of each
method as the average 1-norm relative error, defined below. Because of the random
nature of all the algorithms we discuss, each point on a graph is the average value over
five runs.

For a query Qi = 〈i, Ri〉, the relative estimation error of Qi is defined as

erri =
|sel(Qi) − estimated sel(Qi)|

max{sel(Qi), 1}
.

Let {Qi1, . . . , Qik} be the query workload for a given experiment. Then the average
1-norm error for this workload is defined as avg err = (

∑k
j=1 errij)/k. Note that in

the off-line setting, N ≤ i1, . . . , ik, where N is the size of the data stream; i.e., all
queries are asked after the entire data is seen.

Validating local kernels in an off-line setting. In the context of data warehousing, the
computation of summaries or density functions does not take place concurrently with
query processing. The assumption is that the entire data is available for pre-processing
before queries can be answered. Hence, we do not need to maintain our local kernels
under insertions and deletions from the sample set. Rather, we scan the data once to
select our random sample of centers, compute the associated kd-tree, and then use a
second scan to compute the exact values for the number of points and standard distribu-
tion in each leaf. All queries are answered after the two data scans are completed. We
denote this algorithm by MPLKernels, from Multi-Pass Local Kernels.

We will compare this approach with the kernel-density method proposed in [15],
which we denote by GKernels (Global Kernels). The main difference between MPLK-
ernels and GKernels is that the latter defines kernel bandwidths as functions of the
global standard deviations of the data along each dimension. In their paper, the authors
note that their algorithm can be implemented as a one-pass method, by approximating
the global standard deviations with the standard deviations of the random sample. How-
ever, since we are interested in comparing the relative accuracy of the two methods, we
report results for the two-pass GKernels, which provides better query estimates.

For the sake of completion, we also include accuracy results for the random sam-
pling estimator, as well as for our on-line local kernels method, which we denote by
LKernels. For the latter, we emphasize that, although we maintain the kernels in the
on-line manner described in the previous section, the fact that all queries are processed
after the entire data has been seen implies that only the last set of kernels is impor-
tant. Hence, LKernels should be regarded, in this context, as a one-pass warehousing
method, rather than an on-line one.

Figures 7 and 8 indicate that both MPLKernels and LKernels are competitive with
GKernels in terms of accuracy. In fact, they out-perform it in almost all the cases, except



122 C.M. Procopiuc and O. Procopiuc

0 500 1000 1500 2000 2500 3000 3500 4000
0

20

40

60

80

100

120

140

Sample Points

A
ve

ra
ge

 R
el

at
iv

e 
E

rr
or

 (
in

 %
)

Sample
LKernels
MPLKernels
GKernels

0 500 1000 1500 2000 2500 3000 3500 4000
0

5

10

15

20

25

30

Sample Points

A
ve

ra
ge

 R
el

at
iv

e 
E

rr
or

 (
in

 %
)

Sample
LKernels
MPLKernels
GKernels

(a) (b)

Fig. 7. Off-line query workloads on dataset SD2: (a) selectivity 0.5%; (b) selectivity 10%

for small (below 1500) sample sizes for SD2. This is not surprising, since intuitively,
using local statistics should provide a better estimate on the data density. Gunopulos et
al. [15] have also suggested that the performance of their density-based estimator would
improve by using a clustering algorithm first, and then replacing global statistics by
local statistics in each cluster. However, they did not provide any experimental results,
and such an approach would be more difficult to adapt to an on-line setting. As noted
in the previous section, one of the main advantages of using a kd-tree-like structure is
that updating it is easy and fast.
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Fig. 8. Off-line query workloads on dataset SD4: (a) selectivity 0.5%; (b) selectivity 10%

Note that for the low selectivity workload, the accuracy of GKernels is almost inde-
pendent of the sample size. This can be explained by the fact that using global statistics
is too coarse an estimate of local density, and the accuracy degrades as the selectivity de-
creases. Perhaps even more surprising is the fact that the random sample estimator out-
performs GKernels on both SD2 and SD4, for sample sizes bigger than 1000. In looking
more closely at the results, we noticed that in these cases GKernels under-estimates al-
most all of the queries. This is due to an over-smoothing of the data, a problem that has
been studied intensely in the statistics literature [20] in relation to density estimators.
Our approach of computing local kernels significantly alleviates this drawback.
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Table 1. The performance of the Histogram algorithm for various values of parameter ρ, com-
pared with the performance of the LKernels algorithm

Error Update time Query time
LKernels 35% 0.0039ms 2.5ms
Histogram (optimal) 33% 0.007ms 2011ms
Histogram (ρ = 3) 50% 0.007ms 286ms
Histogram (ρ = 2) 60% 0.007ms 252ms
Histogram (ρ = 1) 63% 0.007ms 211ms
Histogram (ρ = 0.5) 81% 0.007ms 167ms

Comparison with histogram methods. Histograms are a widely used method for com-
puting summary statistics and answering selectivity queries. While off-line histogram
computation has been studied for a long time, it is only more recently that the ap-
proach has been adapted to on-line settings. Two recent approaches have been proposed
in [6,22]. The first algorithm, called STHoles [6], computes the histogram via a training
phase, which poses queries and uses the exact answers to build the resulting histogram.
The second approach [22] maintains a sketch of the actual data distribution, and uses
it to extract histogram buckets. As the sketch can be maintained on-line, this method
is closer in spirit to the problem we consider. Moreover, the experimental evaluation
in [22] shows that it has comparable or sometimes better accuracy than STHoles. We
therefore restrict our attention only to this algorithm.

We evaluate it on a synthetic two-dimensional dataset of 100x100, generated sim-
ilarly to the one above, except that the points are restricted to the integer grid. For a
fair comparison, we restrict both methods to use the same amount of memory cache,
which is 11000 integers. This translates into 1200 sample points for Local Kernels (we
use 9 integers per sample point). As for the dynamic histogram, a careful analysis of
the results in [22] shows that the space utilization is min(n2, sn) + 2s, where s is the
sketch size, and n is the attribute range (in our case, 100). Based also on the evaluations
presented in the original paper, we use a sketch size of 500, and extract 50 buckets. We
have implemented the faster heuristic (EGreedy), and present the accuracy and com-
putation time in table 1. Update time represents the average time spent per data point,
and query time is the average time to answer a query (it includes the histogram com-
putation time for EGreedy). The parameter ρ represents the ratio α/k in the original
paper, which is used to speed up histogram computation, at the cost of reducing accu-
racy. The higher the value of ρ, the better the accuracy. The notation ’optimal’ denotes
the algorithm EGreedy in which the optimal bucket is computed at each iteration.

As is apparent from Table 1, our approach is at least two orders of magnitude faster
than the on-line histograms method, as well as significantly more accurate in most cases.
The only situation in which EGreedy is slightly more accurate is when optimal buckets
are computed, but in that case EGreedy is three orders of magnitude slower. Note also
that the update time per point for our method is about half the time required by EGreedy.
Thus, in an on-line environment in which points arrive with reasonably high frequency,
and/or the queries are interspersed with the points, Local Kernels is clearly a better
choice. Even in a setting in which all queries are computed after the entire dataset has
been seen, Local Kernels may still be the preferred solution, as the small accuracy gain
of EGreedy comes at a much higher cost in terms of processing time. We conclude that,
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although designed with enough flexibility to handle real-valued data, Local Kernels is
competitive as an on-line algorithm over discrete data, as well.

General on-line setting. We now evaluate the accuracy of our method for real-valued
datasets in an on-line context, in which queries arrive interleaved with points. Each
query must be processed with respect to the data seen so far, rather than at the end. We
first present the performance of LKernels for the 2 and 4-dimensional synthetic datasets,
and then discuss the NM2 set. As mentioned above, we use both the random sample
estimator and MPLKernels as basis of comparison for accuracy results. In this context,
MPLKernels performs a data scan every time it must answer a query: it first computes
the exact number of points and the standard deviations in each leaf of T (S), and then
processes the query. Note that in this case MPLKernels is an impractical approach. We
include it here only as a benchmark, to better understand the limits of our method.

As expected, MPLKernels has the smallest relative error for all sample sizes. How-
ever, it is important to note that, just as in the off-line setting, the error of LKernels is
always smaller than that of random sampling, which shows that we are indeed able to
minimize the problem of over-smoothing in a consistent manner.

It is interesting to look at the graphs corresponding to LKernels in Figures 9 and
7 (respectively, Figures 10 and 8) side by side. The relative errors are very similar,
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Fig. 9. Query workloads on dataset SD2: (a) selectivity 0.5%; (b) selectivity 10%
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Fig. 10. Query workloads on dataset SD4: (a) selectivity 0.5%; (b) selectivity 10%
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Fig. 11. Query workloads on dataset NM2: (a) selectivity 0.5%; (b) selectivity 10%

whether the queries are answered on the fly, or all at the end. This indicates that the
performance of our method does not decrease with time, as we update our data structure
and statistics estimates.

The experiments on the network dataset NM2 are shown in Figure 11. Unlike the
synthetic data, for which we randomly chose the order in which points arrive, in this
case points have a well established order given by the timestamp of the measurement.
However, since each point refers to a different network connection, there is little locality
in the data. The graphs exhibit the same patterns as before, with LKernels proving the
robustness of the kernel-based methods.

5 Conclusions

In this paper we have proposed a new approach for computing density estimators over
spatial data, and showed how it can be adapted to on-line environments. Our method
maintains a random sample with a kd-tree-like structure on top of it, which permits the
estimators to easily adapt to changes in the locality of the data. Given these density es-
timators, we can approximate the selectivity of range queries that arrive interspersed in
the data stream. Our algorithm requires no a priori knowledge of the range of attribute
values, nor of the number of tuples in the data stream, and is thus easy to use in a large
number of practical applications. We have also provided extensive experimental evalu-
ations that prove that the method is competitive (in terms of both accuracy and running
time) with off-line summarization approaches and with one-pass histograms. Finally,
we note that the idea of maintaining an indexing structure over spatial data streams,
together with density functions, may be of independent interest, such as for visualizing
the distribution of low-dimensional streaming data (e.g., network measurements).
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