

C. Bauzer Medeiros et al. (Eds.): SSTD 2005, LNCS 3633, pp. 91 – 108, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Estimating the Overlapping Area of Polygon Join

Leonardo Guerreiro Azevedo1,*, Geraldo Zimbrão1,2,**,
Jano Moreira de Souza1,2, and Ralf Hartmut Güting3

1 Computer Science Department, Graduate School of Engineering,
Federal University of Rio de Janeiro, PO Box 68511,

ZIP code: 21945-970, Rio de Janeiro, Brazil
2 Computer Science Department, Institute of Mathematics,

Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
3 LG Datenbanksysteme für neue Anwendungen, FB Informatik,

Fernuniversität Hagen, D-58084 Hagen, Germany
{azevedo, zimbrao, jano}@cos.ufrj.br, rhg@fernuni-hagen.de

Abstract. Traditional query processing provides exact answers to queries trying
to maximize throughput while minimizing response time. However, in many
applications the response time of exact answers is often longer than what is
acceptable. Approximate query processing has emerged as an alternative
approach to give to the user an answer in a shorter time than the traditional
approach. The goal is to provide an estimated result very close to the exact
answer, along with a confidence interval, in a short time. There is a large set of
techniques for approximate query processing available in different research
areas. However most of them are only suitable for traditional data. This work is
concerned with approximate query processing in spatial databases. We propose
a new algorithm to estimate the overlapping area of polygon join using raster
signatures. We executed experimental tests over real world data sets, and the
results demonstrated our approach effectiveness.

1 Introduction

A main issue in the database area is to process queries efficiently so that the user does
not have to wait a long time to get an answer. However, there are many cases where it
is not easy to accomplish this requirement, for example: to process a huge volume of
data requires a large number of I/O operations that can demand tens of minutes or
hours; to access remote data can be reasonably time-consuming due to a slow network
link or even temporary non-availability.

Environments for which providing an exact answer results in undesirable response
times motivated the research for techniques in the approximate query processing field.
The goal is to provide an estimated response in orders of magnitude less time than the
time to compute an exact answer, by avoiding or minimizing the number of disk
accesses to the base data [20].

* Leonardo Guerreiro Azevedo is supported by CNPq under grant number 200241/2004-4.
** Geraldo Zimbrão da Silva is supported by CAPES under grant number 3294-04-08.

92 L.G. Azevedo et al.

There are many scenarios and applications where a slow exact answer can be
replaced by a fast approximate one, provided that it has the desired accuracy. [13]
emphasizes that in Decision Support Systems the intensification in business
competitiveness that requires an information-based industry to make more use of its
accumulated data, and thus techniques, of presenting useful data to decision makers in
a timely manner, to be held as crucial. They also propose the use of approximate
query processing during a drill-down query sequence in ad-hoc data mining, where
the earlier queries in the sequence are used solely to determine what the interesting
queries are. [14] and [21] present the need for performance and scalability when
accessing very large volumes of data during the analysis process in data warehousing
environments. [29] and [20] propose the use of approximate query processing
techniques to define the most efficient access plan for a given query. [1] proposes
their use in selectivity estimation in Spatial Database Management Systems (SDMS).
An approximate answer can also be used as a tentative answer when the data is
unavailable in warehousing environments and in distributed data recording as pointed
by [20], [3] and [8] or in mobile computing as highlighted by [25]. [2] points to the
use of approximate query processing in order to make decisions and infer interesting
patterns online, such as over continuous data streams.

There is a large set of techniques for approximate query processing available in
different research areas. However, most of them are only suitable for relational
databases. Good surveys of techniques for approximate query processing are
presented in [4] and [12]. On the other hand, providing a short time answer to users’
queries becomes a bigger challenge in spatial database area, where the data usually
have high complexity and is available in huge amounts. Furthermore, this subject is a
hot research issue in spatial-temporal databases as pointed by [15]. Moreover, spatial
query processing techniques assume that the positional attributes of spatial objects are
precisely known. In practice, however, they are known only approximately, with the
error depending on the nature of the measurement and the source of data, as pointed
by [5] and [16]. So the “exact answer” is actually an approximation, although it is
close to the real answer.

[23] defines a spatial database system as a full-fledged database system with
additional capabilities for representing, querying, and manipulating geometric data.
Such a system provides the underlying database technology needed to support
applications such as geographical information systems and others. Spatial data types
like point, line, and region provide a fundamental abstraction for modeling the
structure of geometric entities, their relationships, properties, and operations.

Efficient evaluation of spatial queries is an important issue in spatial database.
Among spatial operations, spatial join operations are very useful but costly to
evaluate. Spatial joins have been well studied in the literature, and there are many
approaches to process spatial join operations. [9] emphasizes that traditional
approaches to performing spatial join processing in two steps ([11] and [24]), and
proposes efficient algorithms to be used in the second step. In the two-step approach,
the first step employs a Spatial Access Method (SAM) in order to reduce the search
space. The Minimum Bounding Rectangle (MBR) is usually used by SAM methods.
The second step is a refinement step where the objects resulting from the first step are

 Estimating the Overlapping Area of Polygon Join 93

read from disk and have their geometries processed. On the other hand, [26] proposes
a Multi-Step Query Processor (MSQP) including another step between the first and
the second step presented previously. In the proposed step the output resulting from
the first step is processed against a geometric filter that uses a compact and
approximate representation of the object, such as Convex Hull, 5C, RMBR and others
found in [27]. The goal is to reduce the number of objects that will have their exact
geometry processed in the last step. However, in both approaches (processing the
spatial join in two or three steps) it is necessary to process the exact geometries of the
objects, the most expensive step that consumes more CPU and I/O resources. To be
the best of our knowledge, there is no approach that does not execute the last step,
returning to the user an approximate answer along with a confidence interval,
processing the join predicate on small approximations of data and not reading the real
objects from the disk.

This work is concerned with approximate query processing in spatial databases.
We extended the approach presented in [17] in which the use of Four-Colours Raster
Signature [6] for approximate spatial query processing was introduced. We propose a
new algorithm to compute the approximate intersection area of polygon × polygon,
processing the query on 4CRS raster approximation, along with a confidence interval
that is returned to the user allowing him to decide if the accuracy of the response is
sufficient. Besides, we also present experimental results in order to show the
effectiveness of our approach. One application that could benefit from our approach is
the agriculture production estimation. According to the estimated values of agriculture
production, several decisions must be taken, for example number and size of
warehouses that will store the harvest, number of transports that must be available,
roads and railroads that must be (re)constructed, etc. Several spatial joins involving
the overlay of thematic planes such as soil, rural areas, rainfall indicators, pollution,
areas that are open to pest attacks, etc., must be evaluated to estimate the agriculture
production, something that can take a lot of time. On the other hand, a fast
approximate answer could be enough for the agriculture production estimation.

The work has been divided in sections, as follows. Section 1 is the introduction.
Section 2 presents the most important characteristics of Four-Colours Raster
Signature for this work and our proposal of using Four-Colours Raster Signature for
estimating the overlapping area of polygon join. Section 3 is dedicated to present the
experimental results. Finally, Section 4 shows the conclusions and the future
developments of this work.

2 Four-Colours Raster Signature and Estimating the Overlapping
Area of Polygon Join

2.1 Four-Colours Raster Signature

The Four-Colours Raster Signature (4CRS) was introduced by [6] to be used as a
polygon approximation in spatial join processing. The characteristics of 4CRS and its
advantages over other methods motivated its use in approximate query processing
area as well. The target of this new approach is to reduce the time required to process

94 L.G. Azevedo et al.

a query by avoiding accessing the real datasets which can lead to large amount of
time, and processing an approximate query through the execution of a fast algorithm
on approximate data, much smaller than the real one. On the other hand, the answer
will be estimated and not exact. So, it is also necessary to return a confidence interval
in order to have a precision measure of the approximate answer. In general, it is
enough for the user to have an approximate answer to make his decision since it has a
short execution time and the desired accuracy.

The 4CRS of one polygon is a raster approximation represented by a small four-
colour bitmap upon a grid of cells. Each cell of the grid has a colour representing the
percentage of the polygon’s area within the cell, as shown in Table 1. In Figure 1, an
example of 4CRS is presented. The grid can have its scale changed in order to obtain
a more accurate representation (higher resolution) or a more compact one (lower
resolution). Further details of 4CRS signature can be found in [6] and [17].

Table 1. Types of 4CRS cell

Bit value Cell type Description
00 Empty The cell is not intersected by the polygon
01 Weak The cell contains an intersection of 50% or less with the

polygon
10 Strong The cell contains an intersection of more than 50% with the

polygon and less than 100%
11 Full The cell is fully occupied by the polygon

Figure 2 presents two examples of grid of cells of the same size. It is easy to notice
that it is harder to figure out a simple algorithm that executes on grids like the one
presented in Figure 2.a than to figure out a simple algorithm that executes on perfectly
overlapped grid, as shown in Figure 2.b. [6] presents an approach for computing the
grid of raster approximations where the space is divided into cells independently of
the object position through a universal grid so that the coordinate system determines
the grid. By doing so, it is assured that if two cells overlap each other then their sides
are perfectly superimposed (Figure 2.b). Also, the length of each cell side is always a
power of two. So, if two 4CRS signatures have different lengths of cell side and they
overlap each other, it is ensured that a small cell is entirely within a great one. This
approach was employed in this work, and more details about it can be found in [6].

Polygon 4CRS approximation

Empty Cell Cell with
Few intersection

Cell with much
intersection

Full cell

(a) (b)

 Fig. 1. Example of 4CRS signatures Fig. 2. Grids of cells with same size (a) not overlap-
ping perfectly and (b) overlapping perfectly

 Estimating the Overlapping Area of Polygon Join 95

When executing query processing on two 4CRS approximations, it is essential that
both of them have the same cell size. If that does not apply, it is imperative to perform
a change of scale. This is accomplished through the grouping of cells of the
approximation with smaller cell size. The algorithm to change the scale evaluates the
average of the sum of numerical values assigned to each type of cell, which represents
the percentage of the polygon’s area within the cell. For Empty and Full cells the
numerical values are 0% and 100%, respectively, since these values represent the
exact percentage of intersection area of the cell and the polygon. Due to the fact that
in approximate query processing an exact answer is not required, but a close
approximate one, in this work we propose to use the average percentage of polygon’s
area inside the cell as the numerical values for Weak and Strong cells, which are of
25% and 75%, respectively. These values can be used because the grid and the
polygon are independent from each other, and it is expected that the distribution of the
percentage of the polygon’s area within the cell is very close to the uniform
distribution. In fact, we computed the distribution of the polygon area within the cell
for the township dataset of Iowa (US) in intervals of 1%, and the result suggests that
the uniform distribution assumption holds. Moreover, as shown in [17], the measure
used for computing the confidence interval is the variance. Assuming the uniform
distribution, the variance of area of weak cells in percentage is (0.5-0)2/12 = 1/48 =
0.020833, since weak cells have distribution between (0, 0.50]. The strong cell has the
same variance. In our test over township dataset of Iowa (US), the computed
variances were 0.021978 and 0.021952 for weak and strong cells respectively, whose
values are very close to the variance assuming the uniform distribution.

2.2 Expected Area

In this section, the calculus of the expected areas corresponding to the overlapping of
two different types of cells with the same size is presented. These expected areas are
employed by the algorithm for estimating the overlapping area of polygon join, which
is presented in Sub-Section 2.3.

It is easy to notice that the expected area corresponding to a combination of an
Empty cell with any other type of cell results in an expected area of 0% (zero percent).
In the same way when two Full cells overlap, the expected area is 100%. Thus, we
compute the expected intersection areas for the overlapping of the other type of cells.
They were estimated as the mean value of the possible percentage occurrences of the
intersection area between two types of cells.

As the datasets are reasonably independent (for example, there is no rule that all
township boundaries must be defined by courses of rivers), we can assume that the
expected area corresponding to the intersection of two cells with areas x1 and x2 is x1 ×
x2. For instance, the expected area corresponding to the overlapping of two Weak cells
with 10% and 15% of the area of the polygon within them is 1.5% (0.01 × 0.15).
Besides, even though the area is a continuous value, in order to make easy the
demonstration of the calculus, we are assuming that the cell area is computed as
discrete values, in steps of size of 1/n for a large n (n ∞). Also, all the values are
shown in percentage.

96 L.G. Azevedo et al.

Let X be a random variable representing the computed intersection area of one cell
of the grid against the polygon; G(x1, x2) a function that gives the intersection area
between two types of cells x1 and x2; and p(x1, x2) the join probability function of two
variables X1 and X2. The definition of mean (or expected value E) of two variables is
presented in Equation 1 [7].

[]),(),(),(212121

1 2

xxpxxGXXG
x x

×=Ε ∑∑ .
(1)

Since the intersection area between a cell and a polygon is independent of the
intersection area of another cell and the polygon, X1 and X2 are linearly independent
and the joint probability function p(x1, x2) can be expressed as p(x1, x2)= p(x1) × p(x2).
In addition, let n be the possible observed values of the percentage of the area of the
polygon within the cell. Thus p(x1) and p(x2) are equal to 1/n, since that each value for
the intersection area has the same probability of occurrence. Besides, G(x1, x2) can be
expressed as the multiplication of the intersection areas of the cells within the
polygon. Therefore for n different kinds of cell intersections E[G(x1,x2)] can be
approximately given by Equation 2.

[])()()()(),(212
1 1

121 xpxpxxXXG
n

i

n

j

×××==Ε ∑∑
= =

δδµ . (2)

Where δ(x) is a function that returns the percentages of the area of the polygon
within the cell. This function can be expressed as equations 3 and 4.

n

k
k

2
)(=δ , 1 ≤ k ≤ n, for Weak cell . (3)

⎟
⎠
⎞

⎜
⎝
⎛ +=

2

1
)(

n

k
kδ , 1 ≤ k ≤ n, for Strong cell . (4)

In the case of Weak and Strong cells the percentages vary in the intervals (0, 50%]
and (50%, 100%), respectively. While the percentages for Empty cell is 0% and for
Full cells is 100%.

From equations 2, 3 and 4 the expected area of the overlapping of two Weak cells
employed by the algorithm for computing the approximate intersection area of two
polygons can be calculated as follows.

• Weak x Weak cells

[])()()()(),(212
1 1

121 weakpweakpweakweakWeakWeakG
n

i

n

j
ji ×××==Ε ∑∑

= =

δδµ

∑ ∑∑∑
= =∞→= =∞→

==
n

i

n

j
n

n

i

n

j
n

ji
n

Lim
nnn

j

n

i
Lim

1 1
4

1 1 4

111

22
µ .

(5)

Since the sum of the sequence∑
=

n

k

k
1

 can be expressed as ∑
=

+=
n

k

nn
k

1 2

)1(, and using

the L’Hôpital rule, Equation 5 can be rewritten as Equation 6.

 Estimating the Overlapping Area of Polygon Join 97

() () ()()
16

1

16

1

2

1

2

1

4

1

4

1
4

22

4
1 1

4
=++=++==

∞→∞→= =∞→ ∑∑
n

nnnn
Lim

nnnn

n
Limji

n
Lim

nn

n

i

n

j
n

µ . (6)

Following the same reasoning the expected area of the intersection of Weak x
Strong cells, Strong × Strong cells, Weak × Full cells, and Strong × Full cells have the
values 3/16, 9/16, 1/4 and 3/4, respectively. Table 2 presents the expected overlapping
areas of different types of cells.

Table 2. Expected areas of the overlapping of different types of cells

Cell types Empty Weak Strong Full
Empty 0 0 0 0
Weak 0 0.0625 0.1875 0.25
Strong 0 0.1875 0.5625 0.75

Full 0 0.25 0.75 1

2.3 Algorithm for Estimating the Overlapping Area of Polygon Join

The algorithm for estimating the overlapping area of polygon join computes the sum
of the expected area of their 4CRS signatures’ cells that overlap each other, and
multiplies the resulting value by the cell’s area. Since there are four different types of
cells, the superimposing possibilities are sixteen (Table 2), and the algorithm employs
a matrix to store the expected areas. It is only necessary to consider the cells that are
inside the intersection MBR of the two 4CRS signatures. The algorithm in C-like
language is presented in Figure 3, and it handles 4CRS signatures with different or the
same length of cell side. It is ensured that when two cells intersect, their sides overlap
exactly, and when the lengths of cell sides are different it is always ensured that the
smaller cell is whole contained by greater one, according to the approach used to
compute the grid of cells presented in Sub-Section 2.1.

void approxIntersectionArea(signat4CRS1, signat4CRS2)
 approximateArea = 0;
 interMBR = intersectionMBR(signat4CRS1, signat4CRS2);
 if (signat4CRS1.lengthOfCellSide ==
 signat4CRS2.lengthOfCellSide) then
 s4CRS = signat4CRS1;
 b4CRS = signat4CRS2;
 else
 s4CRS = smallerCellSide(signat4CRS1, signat4CRS2);
 b4CRS = biggerCellSide (signat4CRS1, signat4CRS2);
 approximateArea = 0;
 For each b4CRS cell b that is inside interMBR Do
 For each s4CRS cell s that is inside cell b Do
 approximateArea += expectedArea[s.type,b.type];
 cellArea = s4CRS.lengthOfCellSide *
 s4CRS.lengthOfCellSide;
 return approximateArea * cellArea;

Fig. 3. Algorithm for computing the approximate intersection area of polygon × polygon

98 L.G. Azevedo et al.

2.4 Confidence Interval Calculus

When executing a query whose result is an approximate answer, it is important to
show to the user a confidence interval of the query’s answer, so that the user can
decide if the precision of the approximate answer is enough. The precision measure
used in this work is based on the Central Limit Theorem [22], which holds almost
regardless of the form of the density function. The Central Limit Theorem states that
if a population has a mean µ and a variance σ2, then the distribution of sample means
derived from this distribution approaches the normal distribution with mean µ and
variance σ2/n as the sample size n increases. Thus, at some stage, means for large
enough sample sizes, whether the random variable is discrete or continuous, will be
approximately normally distributed. Clearly, the form of the parent density function
will have some effect on the sample size required, and an asymmetric distribution will
generally call for a large n than a symmetric one. However, a sample size of 30 is
sufficiently large for many distributions. The confidence interval for approximate
processing is computed as the sum of the confidence intervals of each combination of
pair of cells. Consulting a statistical table of normal distribution, for a 95%
confidence interval we have a range of (µ±1.96×(σ2/n)1/2), and for a 99% confidence
interval we have (µ±2.576×(σ2/n)1/2). Equation 7 was used for computing the
confidence interval of our experiments.

∑ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
×±×

c
c

c
c n

pn
2

c

σµ . (7)

• µc and σc
2 correspond to the mean and the variance of a combination of cells c in

the set {Empty × Empty, Empty × Weak, …, Weak × Weak, …, Full × Full};
• p is the value corresponding to the confidence interval chosen, i.e., 1.96 for a
95% confidence interval;
• nc is the number of cells for the combination c.

In order to get the result in area units it is necessary to multiply the result by the
cell’s area.

For the confidence interval calculus it is necessary to have computed the mean and
variance values of the expected areas corresponding to the overlapping of two
different types of cells with the same size. Mean values are presented in Table 2 (Sub-
Section 2.2) and the calculus of the variance for each combination is presented as
follows.

The expected area corresponding to a combination of an Empty cell with any other
type of cell results in an expected area of 0% (zero percent), because of the
intersection area of such kinds of cells is zero. Consequently, the variance of the
expected area is zero. In the same way, when two Full cells overlap, the expected area
is always 100%, and the variance is also zero. Thus, we only need to compute the
variances of the expected intersection areas for the overlapping of the other types of
cells. We use the same assumptions that were used to calculate the expected areas
corresponding to the overlapping of two different types of cells with the same size
(Sub-Section 2.2).

 Estimating the Overlapping Area of Polygon Join 99

Let X be a random variable representing the computed intersection area of one cell
of the grid against the polygon; G(x1, x2) a function that gives the intersection area
between two types of cells x1 and x2; and p(x1, x2) the join probability function of two
variables X1 and X2, the variance of the intersection area of two different types of cells
can be expressed as Equation 8.

()),(),(21
2

21
2

1 2

xxpxxG
x x

×−=∑∑ µσ .
(8)

In the same way as presented in Sub-Section 2.2, we assume that X1 and X2 are
linearly independent and the joint probability function p(x1, x2) can be expressed as
p(x1, x2)= p(x1) × p(x2); p(x1) and p(x2) can be expressed as p(x1) = p(x2) = 1/n; and,
G(x1, x2) is the multiplication of the intersection areas of the cells within the polygon.
By doing so, Equation 8 can be rewritten as Equation 9.

())()()()(21
1 1

2
21

2 xpxpxx
n

i

n

j

××−×=∑∑
= =

µδδσ . (9)

Where δ(x) is a function that returns the percentages of the area of the polygon
within the cell. This function can be expressed as equations 3 and 4 (Sub-Section 2.2).
Thus, from equations 3, 4 and 9 the variance of the percentage of the intersection area
between two Weak cells can be calculated as follows (Equation 10).

• Weak × Weak

()

∑∑

∑∑

∑∑

= =
×

×

∞→

= =
×∞→

= =
×

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

××⎟
⎠
⎞

⎜
⎝
⎛ −×=

××−×=

n

i

n

j
weakweak

weakweak

n

n

i

n

j
weakweak

n

n

i

n

j
weakweak

nn

ij

n

ji
Lim

nnn

j

n

i
Lim

weakpweakpweakweak

1 1
2

2

24

22
2

1 1

2
2

21
1 1

2
21

2

1

216

11

22

)()()()(

µµσ

µσ

µδδσ

∑∑∑∑∑∑
= =

×

∞→= =

×

∞→= =∞→
+−=

n

i

n

j

weakweak

n

n

i

n

j

weakweak

n

n

i

n

j
n n

Lim
n

ij
Lim

n

ji
Lim

1 1
2

2

1 1
4

1 1
6

22
2

216

µµσ .

(10)

Since the sum of the sequences ∑
=

n

k

k
1

 and ∑
=

n

k

k
1

2 can be expressed as

∑
=

+=
n

k

nn
k

1 2

)1(and ∑
=

++=
n

k

nnn
k

1

23
2

6
32 , and using the L’Hôpital rule, the three

limits of Equation 10 can be solved as equations 11, 12 and 13.

144

16

32

6

32

16

1

16

1

16 6

2323

6

1 1

22

1 1
6

22

=

++×++

==
∞→

= =

∞→= =∞→

∑∑
∑∑

n

nnnnnn

Lim
n

ji

Lim
n

ji
Lim

n

n

i

n

j

n

n

i

n

j
n

 . (11)

100 L.G. Azevedo et al.

4
1

4

1 1

1 1
4

2

)1(

222 n

nn
i

Lim
n

ij

Lim
n

ij
Lim

n

i

n

weakweak

n

i

n

j

n

n

i

weakweak
n

j

weakweak

n

∑∑∑
∑∑ =

∞→

×= =

∞→=

×

=

×

∞→

+

==
µµµ

128

1

8

1

16

1

8
2

)1(
2

)1(

2 4
=×==

+×+

= ×

∞→

× weakweak

n

weakweak

n

nnnn

Lim
µµ .

(12)

256
1

16
1

2
2

2

2

1 1
2

2

=⎟
⎠
⎞

⎜
⎝
⎛==×= ×→∞×

= =

×

→∞ ∑∑ weakweak
n

weakweak

n

i

n

j

weakweak

n n

nn
Lim

n
Lim µµµ (13)

Applying equations 11, 12 and 13 in Equation 10, the variance of the percentage of
the intersection area between two Weak cells are presented in Equation 14.

())()()()(21
1 1

2
21

2 weakpweakpweakweak
n

i

n

j
weakweak ××−×=∑∑

= =
×µδδσ

 003038194.0
256

1

128

1

144

12 =+−=σ .

(14)

The variances of the expected areas of the intersection of other types of cells can be
calculated following the same reasoning. They are presented in Table 3, and we do
not present their calculus due to space limitations.

Table 3. Variance of the expected areas of the overlapping of different types of cells

Cell types Empty Weak Strong Full
Empty 0 0 0 0
Weak 0 0.003038194 0.013454861 0.020833333
Strong 0 0.013454861 0.023871528 0.020833333

Full 0 0.020833333 0.020833333 0

Therefore it is possible to return to the user a confidence interval for the
approximate query processing. For instance, let a query to produce the following pair
of cells 100 Weak × Weak cells, 40 Weak × Strong cells, 70 Weak × Full cells, 60
Strong × Strong cells and 200 Full × Full cells we compute the 95% confidence
interval as presented in Figure 4 (for simplicity we assume that each cell has the same
area, equals to 1).

• W×W:100 × (0.0625 ± 1.96 × (0.0030382/100)1/2) = 6.25 ± 1.0803
• W×S: 40 × (0.1875 ± 1.96 × (0.013454/40)1/2) = 7.50 ± 1.4378
• W×F: 70 × (0.2500 ± 1.96 × (0.020833/70)1/2) = 17.50 ± 2.3669
• S×S: 60 × (0.5625 ± 1.96 × (0.023872/60)1/2)= 33.75 ± 2.3457
• F×F: 200 × 1 = 200 (full cells have the exact area!)
• Total: 265 ± 7.2308.

Fig. 4. Example of 95% confidence interval calculus

 Estimating the Overlapping Area of Polygon Join 101

So, the confidence interval has a range of ±7.2308 that is 95% of the approximate
answers with these numbers of cell combinations will have an error of at most
±2.7286%, a result with enough precision for most applications. For a 99%
confidence interval, it is necessary to replace 1.96 to 2.576 in the calculus presented
in Figure 4. In this case, the computed value is 265 ± 9.5034. The confidence interval
has a range of ±9.5034, which means an error of at most ±3.5862% in 99% of the
cases.

3 Experimental Results

This section is dedicated to present the experimental results found by using 4CRS
signature for estimating the overlapping area of polygon join. In order to evaluate the
effectiveness of our approach we compared the approximate processing against the
exact processing according to the following metrics: response time (the time to
provide an approximate answer for a query); accuracy (the precision of the answers,
along with a confidence interval); and footprint (the storage requirements for the
approximations).

3.1 Test Environment, Experimental Data Sets, 4CRS Signatures and R*-Tree
Characteristics

Tests were executed on a PC Pentium IV 1.8 GHz with 512 MB of RAM. A page size
of 2,048 bytes for I/O operations was defined. The polygon real data sets used in the
experiments consist of township boundaries, census block-group, geologic map and
hydrographic map from Iowa (US), available online at “http://www.igsb.uiowa.edu/
rgis/gishome.htm”, and Brazilian municipalities [10]. In order to simulate large
datasets, the Iowa datasets were replicated six times, in the same way as suggested by
[26]. The original polygons were shifted by random displacements of x and y
coordinates. In the case of Brazilian municipalities, we performed only one
replication (named Brazilian municipalities’), so that we could execute the test of
Brazilian municipalities against Brazilian municipalities’. Some data characteristics
are presented in Table 4.

Table 4. Test data sets characteristics

Datasets size (KB) # pol. # seg. Avg # seg.
Census block-group 38,824 17,844 1,764,588 98
Topography 60,748 40,140 7,561,104 188
Hydrologic map 6,904 2,670 475,812 178
Township boundaries 25,288 12,216 1,059,438 86

Iowa

Geological map 21,856 9,984 640,428 64
Municipalities 9,840 4,645 399,002 85

Brazil
Municipalities’ 9,840 4,645 399,002 85

Average 24,757 13,163 1,757,053 112

102 L.G. Azevedo et al.

In order to generate the 4CRS signatures, we have to choose the maximum number
of cells of the grid [6]. Intuitively, the larger the number of cells, the closer is the
approximation to the original polygon. However, processing 4CRS signatures that
have large sizes could produce high I/O and CPU costs. To evaluate the effects of
different choices, we executed experimental tests with maximum number of cells of
250, 500, 1000, 1500 and 2000. We evaluated the approximate processing against the
exact processing computing the intersection area of dataset 1 × dataset 2 presented in
Table 7. Signatures with maximum number of cells equal to 250 have smaller storage
requirements, but the precision of the approximate answers is not good enough. On
the other hand, the answers are better estimated when the maximum number of cells
was 2000; however the I/O and CPU costs are higher as well, because of the higher
signature sizes. Figure 5 summarizes these experimental results showing: storage
requirements (percentage of 4CRS signatures’ sizes related to the datasets’ sizes);
error of the approximate answer (the percentage corresponding to the difference
between the approximate value and the exact value related to exact value); percentage
of the time required to execute the approximate processing related to the exact
processing; and the percentage corresponding to the number of disk accesses needed
to execute the approximate processing related to the exact one. We present in details
in Sub-Section 3.2 the experimental results when 500 was used as the maximum
number of the grid cells, which produced approximate answers with acceptable
average error and confidence interval.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

4CRS / Dataset
(%)

Error (%) Time (%) Disk Access
(%)

250 cells

500 cells

1000 cells

1500 cells

2000 cells

Fig. 5. Storage requirements, accuracy and number of disk access for maximum number of
cells of the grid equal to 250, 500, 1000, 1500 and 2000

The 4CRS signature generation time was not shown because [6] evaluated its
efficiency and presented good results. Table 5 presents the 4CRS signatures
characteristics for the maximum number of cells equals to 500. We can notice that,
in order to store 4CRS signatures of maximum number of cells equal to 500 it is only

 Estimating the Overlapping Area of Polygon Join 103

Table 5. 4CRS signatures’ characteristics with maximum number of cells equal to 500

Datasets
Dataset

size (KB)
4CRS

size (KB)

4CRS /
Dataset size

(%)
Census block-

group
38,824 1,603 4.13

Hydrologic map 6,904 177 2.56
Township

boundaries
25,288 838 3.31

Iowa

Geological map 21,856 676 3.09
Municipalities 9,840 329 3.34

Brazil
Municipalities’ 9,840 329 3.34

Average 18,759 659 3.30

needed, on average, 3.30% of the space needed to store the real datasets. In other
words, it is necessary approximately 30 times more space to store the real datasets
than to store the 4CRS signatures.

To perform the join, the R*-tree [19] was chosen as a spatial access method in order
to reduce the search space. In other words, the R*-Tree was used to take account only
the objects that have at least MBR intersection and not all of them. That choice was due
to the wide use of R*-Tree, as well as, to the successful results found in the literature.
The access methods traditionally used employ the object’s Minimum Bounding
Rectangle (MBR), and the access methods execution returns what is called a set of
candidates, since it contains all the pairs of polygons that belong to the answer plus
other pairs that have only MBR intersection. In the same way as [26] and [6] do, for our
tests we generated R*-Trees that store the 4CRS signatures as part of the polygons’
keys, and this means that they were stored in the leaf nodes in the R*-Tree index. It is a
reasonable approach since in this way we have to compute the 4CRS just once.

Our tests can be described according to the concepts of Multi-Step Query
Processor (MSQP) proposed by [26], presented in Section 1. In the approximate query
processing, only the first two steps of the MSQP (SAM + Filter steps) were executed.
Since it is not necessary to access the real objects when computing an approximate
answer, the last step of MSQP was not executed. On the other hand, in the exact query
processing, we executed the first and last step of MSQP (SAM + Refinement steps).
In other words, after finding the objects that have MBR intersection, the exact
representation of the objects was processed, and exact answers returned. To perform a
fair test we generated R*-Trees without storing the 4CRS signatures on their leaf
nodes to be used in the exact query processing. By doing so, the sizes of the R*-Trees
without storing signatures are smaller than the sizes of the R*-Trees that store them,
consequently the number of disk accesses in the first step is smaller as well. The R*-
Trees characteristics are presented in Table 6. The column “R*-Tree type” shows that
the characteristics presented are of R*-Tree that stores 4CRS signatures or R*-tree
that do not store signatures.

104 L.G. Azevedo et al.

In order to evaluate the 4CRS effectiveness in the approximate processing area,
besides the storage requirements, we evaluated the approximate processing against the
exact processing testing the accuracy of the approximate answer, execution time and
disk accesses. The approximate query processing was done executing the algorithm
proposed in the Sub-Section 2.3, while the exact query processing was performed
using the General Polygon Clipping library that is available on the web at
http://www.cs.man.ac.uk/aig/staff/alan/ software/#gpc.

Table 6. R*-Trees’ characteristics

Datasets
R*-
Tree
type

R*-
Tree
size

(KB)

Time
(sec)

Leaf node
average
use (%)

Height

leafs

4CRS 2,124 19.04 69.98 3 1045 Census block-
group - 1,160 17.93 69.81 3 570

4CRS 334 2.24 68.33 3 162
Hydrologic map

- 162 2.14 75.35 2 79
4CRS 1,546 12.95 68.70 3 760 Township

boundaries - 800 11.97 69.50 3 392
4CRS 1,258 9.55 68.41 3 617

Iowa

Geological map
- 644 9.32 70.46 3 316

4CRS 586 4.66 71.15 3 286
Municipalities

- 284 4.07 75.05 3 138
4CRS 582 4.92 71.63 3 284

Brazil
Municipalities’

- 284 4.11 75.05 3 138
4CRS 1,289 8.89 69.70 3 525

Average
- 663 8.26 72.54 3 272

3.2 Results of Approximate Query Processing

This sub-section is dedicated to presenting, in detail, the experimental results when
the maximum number of cells of the grid was 500. The results correspond to:
precision of the approximate answer, including confidence intervals; processing time;
and number of disk accesses. Storage requirements of 4CRS signatures were
presented in Sub-Section 3.1 (Table 5). We executed queries computing the
intersection area of dataset 1 against dataset 2 (presented in Table 7) comparing the
approximate processing against the exact one. Each query was executed 20 times,
and for each time we generated a random window so that only the considered pairs of
objects were inside the window. In order to evaluate the effect of the number of
objects returned by each query, we executed two different tests. In one test the
random windows were generated with size of 4% of the size of the whole space of the
datasets, and in the other test the windows were generated with size of 12.25%. The
results are presented in Table 8 and Table 9. Since the values of both tests are quite
similar, we will only analyze in more details the results corresponding to the second

 Estimating the Overlapping Area of Polygon Join 105

test (Table 9). The most relevant difference between the tests is that in the second test
each window is intercepted by more objects than the number of intersections in the
first test. As a result, the number of cells considered to compute the confidence
interval is bigger and its value is closer to the computed approximate answer.

Experimental results show the effectiveness of the use of 4CRS signature in the
approximate processing area due to the quite small error of the approximate answers,
the short time of the approximate processing and the small number of disk accesses.
The average error of the approximate answers is 0.59%, while the confidence
intervals of 95% and 99% have average values of 0.97% and 1.28%, respectively
(Table 9, column “Error and confidence interval”). In other words, the approximate
answers have on average a difference of only 0.59% related to the exact ones.
Besides, in order to show the accuracy of the approximate answers, a confidence
interval is also returned to the user which means that for a precision of 95% the error
is at most ±0.97%, while for a precision of 99% the error is at most ±1.28%.

The approximate query processing is on average approximately 9 times faster than
the exact query processing, since it needs only approximately 11% of the time of the
exact processing to execute the approximate one. Table 9 (columns “Processing
Time”) presents the processing time in seconds and the percentages corresponding to
the approximate query processing related to exact one.

Table 7. Tests

Labels Dataset 1 Dataset 2
Query-1 Brazilian municipalities Brazilian municipalities’
Query-2 Township boundaries Census block
Query-3 Township boundaries Geological map
Query-4 Township boundaries Hydrologic map
Query-5 Census Block Hydrologic map
Query-6 Hydrologic map Geological map

Table 8. Experimental results corresponding to the 20 executions of the intersection area of
dataset 1 × dataset 2 × random window with size of 4% of the size of the whole space

Error and

Confidence Interval Processing Time
Number of Disk

Accesses

Queries
Error
(%)

C. I.
95%

C. I.
99%

Approx.
Proc.

Exact
Proc. %

Approx.
Proc.

Exact
Proc. %

Average
of

objects
per

window
Query-1 0.779 2.973 3.907 6.279 73.025 8.60 2138 26826 7.97 1813
Query-2 0.304 0.534 0.702 14.621 93.204 15.69 8691 50979 17.05 2590
Query-3 0.831 1.386 1.822 12.478 109.337 11.41 5440 44289 12.28 2551
Query-4 0.255 1.231 1.617 8.212 75.098 10.94 5747 27064 21.23 1591
Query-5 0.438 1.292 1.699 17.375 110.85 15.67 4470 33862 13.20 1935
Query-6 0.847 1.243 1.634 20.66 95.217 21.70 2736 22419 12.20 1267

Average 0.58 1.44 1.90 13.27 92.79 14.00 4870 34240 13.99 1958

106 L.G. Azevedo et al.

The total execution time is not a good measure of performance gain as it is totally
dependent on the algorithm used to execute the exact processing. Besides, the cache
of the Operating System can influence processing time. Instead, the total number of
disk accesses is a reliable performance gain measure, as the objects to be processed
have to be, at least, read from disk. Table 9 (columns “Number of Disk Accesses”)
presents the gains of the approximate processing related to the exact one. The former
needs in average only 16% of the number of disk access of the latter. In other words,
the exact processing requires in average 6 times more disk accesses than the
approximate processing.

Table 9. Experimental results corresponding to 20 executions of the intersection area of dataset
1 × dataset 2 × random window with size of 12.25% of the size of the whole space

Error and

Confidence Interval Processing Time Number of Disk Accesses

Queries
Error
(%)

C. I.
95%

C. I.
99%

Approx.
Proc.

Exact
Proc. %

Approx.
Proc.

Exact
Proc. %

Average
of

objects
per

window

Query-1 1.05 2.48 3.26 18.00 272 6.62 6166 62353 9.89 4907

Query-2 0.30 0.31 0.40 40.64 398 10.22 24512 133509 18.36 7394

Query-3 0.79 0.82 1.08 33.68 392 8.60 15737 108508 14.50 6940

Query-4 0.18 0.75 0.99 21.84 250 8.74 13378 65645 20.38 4305

Query-5 0.45 0.74 0.97 46.14 390 11.84 13055 87123 14.98 5581

Query-6 0.74 0.75 0.98 86.01 405 21.22 9504 59656 15.93 3886

Average 0.59 0.97 1.28 41.05 351 11.21 13725 86132 15.67 5502

4 Conclusions

This work proposes, implements, and evaluates a new approach for estimating the
overlapping area of polygon join queries. The target is to provide an estimated result
in orders of magnitude less time than the time to compute an exact answer, along with
a confidence interval for the answer. We propose to compute the intersection area of
pairs of polygons over 4CRS signatures of the polygons, processing compact and
approximate representations of the objects, and avoiding accessing the whole data. By
doing so, the exact geometries of the objects are not processed during the join
execution, which is the most costly part of the spatial join since it requires the search
and transfer of large objects from the disk to the main storage ([26] and [18]). Also,
the exact processing algorithm needs to use complex CPU-time intensive algorithms
for deciding whether the objects match the query condition [27]. There are many
scenarios and applications where a slow exact answer can be replaced by a fast
approximate one, provided that it has the desired accuracy, as presented in Section 1.

We evaluate our approach comparing the approximate processing against the exact
processing according to storage requirements, accuracy, response time, and number of
disk accesses. The results achieved were quite good, and demonstrated the
effectiveness of our approach. The 4CRS signature has low storage requirements; the
approximate answers have a quite small error; and, the processing time and the

 Estimating the Overlapping Area of Polygon Join 107

number of disk accesses required to execute the approximate processing are much
smaller than the time and number of disk accesses of the exact processing. In Sub-
Section 3.2, we presented details of the experimental results for small size signatures.
These tests showed that an average of 30 times less space to store 4CRS signatures is
needed than to store the real datasets. The approximate answers have an average error
of 0.6%, while the confidence intervals of 95% and 99% have average values of
0.97% and 1.28% respectively, which is enough precision for most applications.
Besides, the approximate processing varies from 5 to 15 times faster than the exact
processing in response time and from 5 to 10 times relate to number of disk accesses.

As future work we plan to evaluate the use of more colours in the raster
approximations, for example, eight colours. We believe that it can provide a better
precision, and confidence intervals closer to the approximate answer. Besides,
although this will have the extra cost of storing more bits for colour representation,
storage requirements can be kept small since we apply compression methods on the
4CRS signatures. We also plan to investigate an algorithm to compute the number of
cells that leads to a 4CRS signature that better represents the polygon, based on the
complexity of the polygon [28]. A straightforward approach is to compute the 4CRS
signature starting with the maximum number of cells equal to one, and then increase
this number until the proportion between approximate area (strong and weak cells)
and the exact area reaches a pre-defined threshold. Besides, the algorithm proposed in
this work can be extended or new algorithms can be developed in order to process
other kinds of operations.

References

1. Das, A., Gehrke, J., Riedwald, M.: Approximation Techniques for Spatial Data. In Proc.
of ACM-SIGMOD Conference, Paris, France (2004) 695-706.

2. Dobra, A., Garofalakis, M., Gehrke, J. E., Rastogi, R.: Processing complex aggregate
queries over data streams. In Proc. of SIGMOD (2002) 61-72.

3. Faloutsos, C., Jagadish, H. V., Sidiropoulos, N. D.: Recovering information from summary
data. In Proc. of 23rd Int. Conf. on Very Large Data Bases, Athens, Greece (1997) 36-45.

4. Barbara, D., DuMouchel, W., Faloutsos, C., Hass, P., Hellerstein, J. M., Ioannidis, Y.,
Jagadish, H., Johnson, T., Ng, R., Poosala, V., Ross, K., Sevcik, K.: The New Jersey data
reduction report. Bulletin of the Technical Committee on Data Engineering, IEEE Data
Engineering Bulletin (1997) 20(4):3-45.

5. Heuvelink, G.: Error Propagation in Environmental Modeling with GIS, Taylor & Francis,
London, UK (1998).

6. Zimbrao, G., Souza, J. M.: A Raster Approximation for Processing of Spatial Joins. In
Proc. of the 24th VLDB Conference, New York City, New York (1998) 558-569.

7. Larson, H. J.: Introduction to probability theory and statistical inference. John Wiley &
Sons (1982).

8. Jagadish, H. V., Mumick, I. S., Silberschatz, A.: View maintenance issues in the chronicle
data model. In Proc. ACM PODS, San Jose, CA (1995) 113-124.

9. Zhu, H., Su, J., Ibarra, O. H.: Toward Spatial Joins for Polygons. In Proc. Int. Conf. of
SSDBM, Berlin, Germany (2000) 2431-246.

10. IBGE (Brazilian Institute of Geography and Statistics): Malha Municipal Digital do Brasil,
Rio de Janeiro, Brasil (1994).

108 L.G. Azevedo et al.

11. Orenstein, J. A.: Spatial query processing in an object-oriented database system. In Proc.
of ACM SIGMOD Int. Conf. on Management of Data, Washington, DC (1986) 326-336.

12. Han, J., Kamber, M.: Data Mining: concepts and techniques. Academic Press (2001).
13. Hellerstein, J. M., Haas, P. J., Wang, H. J.: Online aggregation. In Proc. of ACM

SIGMOD Int. Conf on Management of Data, Tucson, Arizona (1997) 171-182.
14. Costa, J. P., Furtado, P.: Time-Stratified Sampling for Approximate Answers to Aggregate

Queries. In Proc. of Int. Conf. on Database Systems for Advanced Applications, Kyoto,
Japan (2003) 215-222.

15. Roddick, J., Egenhofer, M., Hoel, E., Papadias, D., Salzberg, B.: Spatial, Temporal and
Spatiotemporal Databases Hot Issues and Directions for PhD Research. SIGMOD Record,
(2004) 33(2):126-131.

16. Zhang, J., Goodchild, M.: Uncertainty in Geographical Information System. Taylor &
Francis, Erewhon, NC (2002).

17. Azevedo, L. G., Monteiro, R. S., Zimbrao, G., Souza, J. M.: Approximate Spatial Query
Processing Using Raster Signatures. In Proc. of VI Brazilian Symposium on
GeoInformatics, Campos do Jordao, Brazil (2004).

18. Lo, M. L., Ravishankar, C. V.: Spatial Hash-Joins. In Proc. of the ACM-SIGMOD
Conference, Montreal, Canada (1996) 247-258.

19. Beckmann, N., Kriegel, H. P., Schneider, R., Seeger, B.: The R*-tree: An Efficient and
Robust Access Method for Points and Rectangles. In Proc. of ACM SIGMOD Int. Conf.
on Management of Data, Atlantic City, NJ (1990) 322-331.

20. Gibbons, P. B., Matias, Y., Poosala, V.: Aqua project white paper. Technical report, Bell
Laboratories, Murray Hill, NJ (1997).

21. Furtado, P., Costa, J. P.: Time-Interval Sampling for Improved Estimations in Data
Warehouses. In Proc. of 4th Int. Conf. on Data Warehousing and Knowledge Discovery,
Aix-en-Provence, France (2002) 327-338.

22. Steel, R. G. D., Torrie, J. H.: Introduction to statistics. McGraw-Hill Book Company (1976).
23. Güting, R. H., de Ridder, T., Schneider, M.: Implementation of the ROSE Algebra:

Efficient Algorithms for Realm-Based Spatial Data Types. In Proc. of the 4th Int.
Symposium on Large Spatial Databases, Portland, Maine (1995) 216-239.

24. Kothuri, R. K., Ravada, S.: Efficient Processing of Large Spatial Queries Using Interior
Approximations. Proc. of the Int. Symposium on Spatial and Temporal Databases, Los
Angeles, CA (2001) 404-424.

25. Madria, S. K., Mohania, M. K., Roddick, J. F.: A Query Processing Model for Mobile
Computing using Concept Hierarchies and Summary Databases. Proc. of Int. Conference
of Foundations of Data Organization, Kobe, Japan (1998) 147-157.

26. Brinkhoff, T., Kriegel, H. P., Schneider, R., Seeger, B.: Multi-step Processing of Spatial
Joins. In Proc. of ACM-SIGMOD Int. Conference on Management of Data, Minneapolis,
MN (1994) 197-208.

27. Brinkhoff, T., Kriegel, H. P., Schneider, R.: Comparison of Approximations of Complex
Objects Used for Approximation-based Query Processing in Spatial Database Systems. In
Procs. of Int. Conf. on Data Engineering, Vienna, Austria, (1993) 40-49.

28. Brinkhoff, T., Kriegel, H. P., Schneider, R., Braun, A.: Measuring the Complexity of
Polygonal Objects. In Proc. of ACM Int. Workshop on Advances in Geographic
Information Systems, Baltimore, MD, (1995) 109-118.

29. Ioannidis, Y. E., Poosala, V.: Balancing histogram optimality and practicality for query
result size estimation. ACM SIGMOD, (1995) 233-244.

	Introduction
	Four-Colours Raster Signature and Estimating the Overlapping Area of Polygon Join
	Four-Colours Raster Signature
	Expected Area
	Algorithm for Estimating the Overlapping Area of Polygon Join
	Confidence Interval Calculus

	Experimental Results
	Test Environment, Experimental Data Sets, 4CRS Signatures and R*-Tree Characteristics
	Results of Approximate Query Processing

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

