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Abstract. Traditional query processing provides exact answers to queries trying 
to maximize throughput while minimizing response time. However, in many 
applications the response time of exact answers is often longer than what is 
acceptable. Approximate query processing has emerged as an alternative 
approach to give to the user an answer in a shorter time than the traditional 
approach. The goal is to provide an estimated result very close to the exact 
answer, along with a confidence interval, in a short time. There is a large set of 
techniques for approximate query processing available in different research 
areas. However most of them are only suitable for traditional data. This work is 
concerned with approximate query processing in spatial databases. We propose 
a new algorithm to estimate the overlapping area of polygon join using raster 
signatures. We executed experimental tests over real world data sets, and the 
results demonstrated our approach effectiveness.  

1   Introduction 

A main issue in the database area is to process queries efficiently so that the user does 
not have to wait a long time to get an answer. However, there are many cases where it 
is not easy to accomplish this requirement, for example: to process a huge volume of 
data requires a large number of I/O operations that can demand tens of minutes or 
hours; to access remote data can be reasonably time-consuming due to a slow network 
link or even temporary non-availability.  

Environments for which providing an exact answer results in undesirable response 
times motivated the research for techniques in the approximate query processing field. 
The goal is to provide an estimated response in orders of magnitude less time than the 
time to compute an exact answer, by avoiding or minimizing the number of disk 
accesses to the base data [20]. 
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There are many scenarios and applications where a slow exact answer can be 
replaced by a fast approximate one, provided that it has the desired accuracy. [13] 
emphasizes that in Decision Support Systems the intensification in business 
competitiveness that requires an information-based industry to make more use of its 
accumulated data, and thus techniques, of presenting useful data to decision makers in 
a timely manner, to be held as crucial. They also propose the use of approximate 
query processing during a drill-down query sequence in ad-hoc data mining, where 
the earlier queries in the sequence are used solely to determine what the interesting 
queries are. [14] and [21] present the need for performance and scalability when 
accessing very large volumes of data during the analysis process in data warehousing 
environments. [29] and [20] propose the use of approximate query processing 
techniques to define the most efficient access plan for a given query. [1] proposes 
their use in selectivity estimation in Spatial Database Management Systems (SDMS). 
An approximate answer can also be used as a tentative answer when the data is 
unavailable in warehousing environments and in distributed data recording as pointed 
by [20], [3] and [8] or in mobile computing as highlighted by [25]. [2] points to the 
use of  approximate query processing in order to make decisions and infer interesting 
patterns online, such as over continuous data streams.  

There is a large set of techniques for approximate query processing available in 
different research areas. However, most of them are only suitable for relational 
databases. Good surveys of techniques for approximate query processing are 
presented in [4] and [12]. On the other hand, providing a short time answer to users’ 
queries becomes a bigger challenge in spatial database area, where the data usually 
have high complexity and is available in huge amounts. Furthermore, this subject is a 
hot research issue in spatial-temporal databases as pointed by [15]. Moreover, spatial 
query processing techniques assume that the positional attributes of spatial objects are 
precisely known. In practice, however, they are known only approximately, with the 
error depending on the nature of the measurement and the source of data, as pointed 
by [5] and [16]. So the “exact answer” is actually an approximation, although it is 
close to the real answer. 

[23] defines a spatial database system as a full-fledged database system with 
additional capabilities for representing, querying, and manipulating geometric data. 
Such a system provides the underlying database technology needed to support 
applications such as geographical information systems and others. Spatial data types 
like point, line, and region provide a fundamental abstraction for modeling the 
structure of geometric entities, their relationships, properties, and operations.  

Efficient evaluation of spatial queries is an important issue in spatial database. 
Among spatial operations, spatial join operations are very useful but costly to 
evaluate. Spatial joins have been well studied in the literature, and there are many 
approaches to process spatial join operations. [9] emphasizes that traditional 
approaches to performing spatial join processing in two steps ([11] and [24]), and 
proposes efficient algorithms to be used in the second step. In the two-step approach, 
the first step employs a Spatial Access Method (SAM) in order to reduce the search 
space. The Minimum Bounding Rectangle (MBR) is usually used by SAM methods. 
The second step is a refinement step where the objects resulting from the first step are 
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read from disk and have their geometries processed. On the other hand, [26] proposes 
a Multi-Step Query Processor (MSQP) including another step between the first and 
the second step presented previously. In the proposed step the output resulting from 
the first step is processed against a geometric filter that uses a compact and 
approximate representation of the object, such as Convex Hull, 5C, RMBR and others 
found in [27]. The goal is to reduce the number of objects that will have their exact 
geometry processed in the last step. However, in both approaches (processing the 
spatial join in two or three steps) it is necessary to process the exact geometries of the 
objects, the most expensive step that consumes more CPU and I/O resources. To be 
the best of our knowledge, there is no approach that does not execute the last step, 
returning to the user an approximate answer along with a confidence interval, 
processing the join predicate on small approximations of data and not reading the real 
objects from the disk. 

This work is concerned with approximate query processing in spatial databases. 
We extended the approach presented in [17] in which the use of Four-Colours Raster 
Signature [6] for approximate spatial query processing was introduced. We propose a 
new algorithm to compute the approximate intersection area of polygon × polygon, 
processing the query on 4CRS raster approximation, along with a confidence interval 
that is returned to the user allowing him to decide if the accuracy of the response is 
sufficient. Besides, we also present experimental results in order to show the 
effectiveness of our approach. One application that could benefit from our approach is 
the agriculture production estimation. According to the estimated values of agriculture 
production, several decisions must be taken, for example number and size of 
warehouses that will store the harvest, number of transports that must be available, 
roads and railroads that must be (re)constructed, etc. Several spatial joins involving 
the overlay of thematic planes such as soil, rural areas, rainfall indicators, pollution, 
areas that are open to pest attacks, etc., must be evaluated to estimate the agriculture 
production, something that can take a lot of time. On the other hand, a fast 
approximate answer could be enough for the agriculture production estimation. 

The work has been divided in sections, as follows. Section 1 is the introduction. 
Section 2 presents the most important characteristics of Four-Colours Raster 
Signature for this work and our proposal of using Four-Colours Raster Signature for 
estimating the overlapping area of polygon join. Section 3 is dedicated to present the 
experimental results. Finally, Section 4 shows the conclusions and the future 
developments of this work. 

2   Four-Colours Raster Signature and Estimating the Overlapping 
Area of Polygon Join 

2.1   Four-Colours Raster Signature 

The Four-Colours Raster Signature (4CRS) was introduced by [6] to be used as a 
polygon approximation in spatial join processing. The characteristics of 4CRS and its 
advantages over other methods motivated its use in approximate query processing 
area as well. The target of this new approach is to reduce the time required to process 
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a query by avoiding accessing the real datasets which can lead to large amount of 
time, and processing an approximate query through the execution of a fast algorithm 
on approximate data, much smaller than the real one. On the other hand, the answer 
will be estimated and not exact. So, it is also necessary to return a confidence interval 
in order to have a precision measure of the approximate answer. In general, it is 
enough for the user to have an approximate answer to make his decision since it has a 
short execution time and the desired accuracy. 

The 4CRS of one polygon is a raster approximation represented by a small four-
colour bitmap upon a grid of cells. Each cell of the grid has a colour representing the 
percentage of the polygon’s area within the cell, as shown in Table 1. In Figure 1, an 
example of 4CRS is presented. The grid can have its scale changed in order to obtain 
a more accurate representation (higher resolution) or a more compact one (lower 
resolution). Further details of 4CRS signature can be found in [6] and [17]. 

Table 1. Types of 4CRS cell 

Bit value Cell type Description 
00 Empty The cell is not intersected by the polygon 
01 Weak The cell contains an intersection of 50% or less with the 

polygon 
10 Strong The cell contains an intersection of more than 50% with the 

polygon and less than 100% 
11 Full The cell is fully occupied by the polygon 

Figure 2 presents two examples of grid of cells of the same size. It is easy to notice 
that it is harder to figure out a simple algorithm that executes on grids like the one 
presented in Figure 2.a than to figure out a simple algorithm that executes on perfectly 
overlapped grid, as shown in Figure 2.b. [6] presents an approach for computing the 
grid of raster approximations where the space is divided into cells independently of 
the object position through a universal grid so that the coordinate system determines 
the grid. By doing so, it is assured that if two cells overlap each other then their sides 
are perfectly superimposed (Figure 2.b). Also, the length of each cell side is always a 
power of two. So, if two 4CRS signatures have different lengths of cell side and they 
overlap each other, it is ensured that a small cell is entirely within a great one. This 
approach was employed in this work, and more details about it can be found in [6]. 

 

Polygon 4CRS approximation 

Empty Cell Cell with 
Few intersection 

Cell with much 
intersection 

Full cell

     
(a) (b) 

 

  Fig. 1. Example of 4CRS signatures Fig. 2. Grids of cells with same size (a) not overlap-
ping perfectly and (b) overlapping perfectly  
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When executing query processing on two 4CRS approximations, it is essential that 
both of them have the same cell size. If that does not apply, it is imperative to perform 
a change of scale. This is accomplished through the grouping of cells of the 
approximation with smaller cell size. The algorithm to change the scale evaluates the 
average of the sum of numerical values assigned to each type of cell, which represents 
the percentage of the polygon’s area within the cell. For Empty and Full cells the 
numerical values are 0% and 100%, respectively, since these values represent the 
exact percentage of intersection area of the cell and the polygon. Due to the fact that 
in approximate query processing an exact answer is not required, but a close 
approximate one, in this work we propose to use the average percentage of polygon’s 
area inside the cell as the numerical values for Weak and Strong cells, which are of 
25% and 75%, respectively. These values can be used because the grid and the 
polygon are independent from each other, and it is expected that the distribution of the 
percentage of the polygon’s area within the cell is very close to the uniform 
distribution. In fact, we computed the distribution of the polygon area within the cell 
for the township dataset of Iowa (US) in intervals of 1%, and the result suggests that 
the uniform distribution assumption holds. Moreover, as shown in [17], the measure 
used for computing the confidence interval is the variance. Assuming the uniform 
distribution, the variance of area of weak cells in percentage is (0.5-0)2/12 = 1/48 = 
0.020833, since weak cells have distribution between (0, 0.50]. The strong cell has the 
same variance. In our test over township dataset of Iowa (US), the computed 
variances were 0.021978 and 0.021952 for weak and strong cells respectively, whose 
values are very close to the variance assuming the uniform distribution. 

2.2   Expected Area 

In this section, the calculus of the expected areas corresponding to the overlapping of 
two different types of cells with the same size is presented. These expected areas are 
employed by the algorithm for estimating the overlapping area of polygon join, which 
is presented in Sub-Section 2.3. 

It is easy to notice that the expected area corresponding to a combination of an 
Empty cell with any other type of cell results in an expected area of 0% (zero percent). 
In the same way when two Full cells overlap, the expected area is 100%. Thus, we 
compute the expected intersection areas for the overlapping of the other type of cells. 
They were estimated as the mean value of the possible percentage occurrences of the 
intersection area between two types of cells.  

As the datasets are reasonably independent (for example, there is no rule that all 
township boundaries must be defined by courses of rivers), we can assume that the 
expected area corresponding to the intersection of two cells with areas x1 and x2 is x1 × 
x2. For instance, the expected area corresponding to the overlapping of two Weak cells 
with 10% and 15% of the area of the polygon within them is 1.5% (0.01 × 0.15). 
Besides, even though the area is a continuous value, in order to make easy the 
demonstration of the calculus, we are assuming that the cell area is computed as 
discrete values, in steps of size of 1/n for a large n (n ∞). Also, all the values are 
shown in percentage. 
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Let X be a random variable representing the computed intersection area of one cell 
of the grid against the polygon; G(x1, x2) a function that gives the intersection area 
between two types of cells x1 and x2; and p(x1, x2) the join probability function of two 
variables X1 and X2. The definition of mean (or expected value E) of two variables is 
presented in Equation 1 [7]. 
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Since the intersection area between a cell and a polygon is independent of the 
intersection area of another cell and the polygon, X1 and X2  are linearly independent 
and the joint probability function p(x1, x2) can be expressed as p(x1, x2)= p(x1) × p(x2).  
In addition, let n be the possible observed values of the percentage of the area of the 
polygon within the cell. Thus p(x1) and p(x2) are equal to 1/n, since that each value for 
the intersection area has the same probability of occurrence. Besides, G(x1, x2) can be 
expressed as the multiplication of the intersection areas of the cells within the 
polygon. Therefore for n different kinds of cell intersections E[G(x1,x2)] can be 
approximately given by Equation 2. 
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Where δ(x) is a function that returns the percentages of the area of the polygon 
within the cell. This function can be expressed as equations 3 and 4. 
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In the case of Weak and Strong cells the percentages vary in the intervals (0, 50%] 
and (50%, 100%), respectively. While the percentages for Empty cell is 0% and for 
Full cells is 100%. 

From equations 2, 3 and 4 the expected area of the overlapping of two Weak cells 
employed by the algorithm for computing the approximate intersection area of two 
polygons can be calculated as follows. 
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the L’Hôpital rule, Equation 5 can be rewritten as Equation 6. 
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Following the same reasoning the expected area of the intersection of Weak x 
Strong cells, Strong × Strong cells, Weak × Full cells, and Strong × Full cells have the 
values 3/16, 9/16, 1/4 and 3/4, respectively. Table 2 presents the expected overlapping 
areas of different types of cells. 

Table 2. Expected areas of the overlapping of different types of cells 

Cell types Empty Weak Strong Full
Empty 0 0 0 0 
Weak 0 0.0625 0.1875 0.25
Strong 0 0.1875 0.5625 0.75

Full 0 0.25 0.75 1 

2.3   Algorithm for Estimating the Overlapping Area of Polygon Join 

The algorithm for estimating the overlapping area of polygon join computes the sum 
of the expected area of their 4CRS signatures’ cells that overlap each other, and 
multiplies the resulting value by the cell’s area. Since there are four different types of 
cells, the superimposing possibilities are sixteen (Table 2), and the algorithm employs 
a matrix to store the expected areas. It is only necessary to consider the cells that are 
inside the intersection MBR of the two 4CRS signatures. The algorithm in C-like 
language is presented in Figure 3, and it handles 4CRS signatures with different or the 
same length of cell side. It is ensured that when two cells intersect, their sides overlap 
exactly, and when the lengths of cell sides are different it is always ensured that the 
smaller cell is whole contained by greater one, according to the approach used to 
compute the grid of cells presented in Sub-Section 2.1. 

void approxIntersectionArea(signat4CRS1, signat4CRS2) 
  approximateArea = 0; 
  interMBR = intersectionMBR(signat4CRS1, signat4CRS2); 
  if (signat4CRS1.lengthOfCellSide ==    
      signat4CRS2.lengthOfCellSide) then 
    s4CRS = signat4CRS1; 
    b4CRS = signat4CRS2; 
  else 
    s4CRS = smallerCellSide(signat4CRS1, signat4CRS2); 
    b4CRS = biggerCellSide (signat4CRS1, signat4CRS2); 
  approximateArea = 0; 
  For each b4CRS cell b that is inside interMBR Do 
     For each s4CRS cell s that is inside cell b Do 
       approximateArea += expectedArea[s.type,b.type]; 
  cellArea = s4CRS.lengthOfCellSide *   
             s4CRS.lengthOfCellSide; 
  return approximateArea * cellArea; 

Fig. 3. Algorithm for computing the approximate intersection area of polygon × polygon 
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2.4   Confidence Interval Calculus 

When executing a query whose result is an approximate answer, it is important to 
show to the user a confidence interval of the query’s answer, so that the user can 
decide if the precision of the approximate answer is enough. The precision measure 
used in this work is based on the Central Limit Theorem [22], which holds almost 
regardless of the form of the density function. The Central Limit Theorem states that 
if a population has a mean µ and a variance σ2, then the distribution of sample means 
derived from this distribution approaches the normal distribution with mean µ and 
variance σ2/n as the sample size n increases. Thus, at some stage, means for large 
enough sample sizes, whether the random variable is discrete or continuous, will be 
approximately normally distributed. Clearly, the form of the parent density function 
will have some effect on the sample size required, and an asymmetric distribution will 
generally call for a large n than a symmetric one. However, a sample size of 30 is 
sufficiently large for many distributions. The confidence interval for approximate 
processing is computed as the sum of the confidence intervals of each combination of 
pair of cells. Consulting a statistical table of normal distribution, for a 95% 
confidence interval we have a range of (µ±1.96×(σ2/n)1/2), and for a 99% confidence 
interval we have (µ±2.576×(σ2/n)1/2). Equation 7 was used for computing the 
confidence interval of our experiments. 
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• µc and σc
2 correspond to the mean and the variance of a combination of cells c in 

the set {Empty × Empty, Empty × Weak, …, Weak × Weak, …, Full × Full}; 
• p is the value corresponding to the confidence interval chosen, i.e., 1.96 for a 
95% confidence interval;  
• nc is the number of cells for the combination c.  

In order to get the result in area units it is necessary to multiply the result by the 
cell’s area.  

For the confidence interval calculus it is necessary to have computed the mean and 
variance values of the expected areas corresponding to the overlapping of two 
different types of cells with the same size. Mean values are presented in Table 2 (Sub-
Section 2.2) and the calculus of the variance for each combination is presented as 
follows. 

The expected area corresponding to a combination of an Empty cell with any other 
type of cell results in an expected area of 0% (zero percent), because of the 
intersection area of such kinds of cells is zero. Consequently, the variance of the 
expected area is zero. In the same way, when two Full cells overlap, the expected area 
is always 100%, and the variance is also zero. Thus, we only need to compute the 
variances of the expected intersection areas for the overlapping of the other types of 
cells. We use the same assumptions that were used to calculate the expected areas 
corresponding to the overlapping of two different types of cells with the same size 
(Sub-Section 2.2).  
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Let X be a random variable representing the computed intersection area of one cell 
of the grid against the polygon; G(x1, x2) a function that gives the intersection area 
between two types of cells x1 and x2; and p(x1, x2) the join probability function of two 
variables X1 and X2, the variance of the intersection area of two different types of cells 
can be expressed as Equation 8.  
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In the same way as presented in Sub-Section 2.2, we assume that X1 and X2  are 
linearly independent and the joint probability function p(x1, x2) can be expressed as 
p(x1, x2)= p(x1) × p(x2); p(x1) and p(x2) can be expressed as p(x1) = p(x2) = 1/n; and, 
G(x1, x2) is the multiplication of the intersection areas of the cells within the polygon. 
By doing so, Equation 8 can be rewritten as Equation 9. 
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Where δ(x) is a function that returns the percentages of the area of the polygon 
within the cell. This function can be expressed as equations 3 and 4 (Sub-Section 2.2). 
Thus, from equations 3, 4 and 9 the variance of the percentage of the intersection area 
between two Weak cells can be calculated as follows (Equation 10). 
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Applying equations 11, 12 and 13 in Equation 10, the variance of the percentage of 
the intersection area between two Weak cells are presented in Equation 14. 
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The variances of the expected areas of the intersection of other types of cells can be 
calculated following the same reasoning. They are presented in Table 3, and we do 
not present their calculus due to space limitations. 

Table 3. Variance of the expected areas of the overlapping of different types of cells 

Cell types Empty Weak Strong Full 
Empty 0 0 0 0 
Weak 0 0.003038194 0.013454861 0.020833333 
Strong 0 0.013454861 0.023871528 0.020833333 

Full 0 0.020833333 0.020833333 0 

Therefore it is possible to return to the user a confidence interval for the 
approximate query processing. For instance, let a query to produce the following pair 
of cells 100 Weak × Weak cells, 40 Weak × Strong cells, 70 Weak × Full cells, 60 
Strong × Strong cells and 200 Full × Full cells we compute the 95% confidence 
interval as presented in Figure 4 (for simplicity we assume that each cell has the same 
area, equals to 1). 

• W×W:100 × (0.0625 ± 1.96 × (0.0030382/100)1/2) = 6.25 ± 1.0803 
• W×S: 40 × (0.1875 ± 1.96 × (0.013454/40)1/2) = 7.50 ± 1.4378 
• W×F: 70 × (0.2500 ± 1.96 × (0.020833/70)1/2) = 17.50 ± 2.3669 
• S×S: 60 × (0.5625 ± 1.96 × (0.023872/60)1/2)= 33.75 ± 2.3457 
• F×F: 200 × 1 = 200 (full cells have the exact area!) 
• Total: 265 ± 7.2308. 

Fig. 4. Example of 95% confidence interval calculus 
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So, the confidence interval has a range of ±7.2308 that is 95% of the approximate 
answers with these numbers of cell combinations will have an error of at most 
±2.7286%, a result with enough precision for most applications. For a 99% 
confidence interval, it is necessary to replace 1.96 to 2.576 in the calculus presented 
in Figure 4. In this case, the computed value is 265 ± 9.5034. The confidence interval 
has a range of ±9.5034, which means an error of at most ±3.5862% in 99% of the 
cases. 

3   Experimental Results 

This section is dedicated to present the experimental results found by using 4CRS 
signature for estimating the overlapping area of polygon join. In order to evaluate the 
effectiveness of our approach we compared the approximate processing against the 
exact processing according to the following metrics: response time (the time to 
provide an approximate answer for a query); accuracy (the precision of the answers, 
along with a confidence interval); and footprint (the storage requirements for the 
approximations). 

3.1   Test Environment, Experimental Data Sets, 4CRS Signatures and R*-Tree 
Characteristics 

Tests were executed on a PC Pentium IV 1.8 GHz with 512 MB of RAM. A page size 
of 2,048 bytes for I/O operations was defined. The polygon real data sets used in the 
experiments consist of township boundaries, census block-group, geologic map and 
hydrographic map from Iowa (US), available online at “http://www.igsb.uiowa.edu/ 
rgis/gishome.htm”, and Brazilian municipalities [10]. In order to simulate large 
datasets, the Iowa datasets were replicated six times, in the same way as suggested by 
[26]. The original polygons were shifted by random displacements of x and y 
coordinates. In the case of Brazilian municipalities, we performed only one 
replication (named Brazilian municipalities’), so that we could execute the test of 
Brazilian municipalities against Brazilian municipalities’. Some data characteristics 
are presented in Table 4.  

Table 4. Test data sets characteristics 

Datasets size (KB) # pol. # seg. Avg #  seg. 
Census block-group 38,824 17,844 1,764,588 98 
Topography 60,748 40,140 7,561,104 188 
Hydrologic map 6,904 2,670 475,812 178 
Township boundaries 25,288 12,216 1,059,438 86 

Iowa 

Geological map 21,856 9,984 640,428 64 
Municipalities 9,840 4,645 399,002 85 

Brazil 
Municipalities’ 9,840 4,645 399,002 85 

Average 24,757 13,163 1,757,053 112 
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In order to generate the 4CRS signatures, we have to choose the maximum number 
of cells of the grid [6]. Intuitively, the larger the number of cells, the closer is the 
approximation to the original polygon. However, processing 4CRS signatures that 
have large sizes could produce high I/O and CPU costs. To evaluate the effects of 
different choices, we executed experimental tests with maximum number of cells of 
250, 500, 1000, 1500 and 2000. We evaluated the approximate processing against the 
exact processing computing the intersection area of dataset 1 × dataset 2 presented in 
Table 7. Signatures with maximum number of cells equal to 250 have smaller storage 
requirements, but the precision of the approximate answers is not good enough. On 
the other hand, the answers are better estimated when the maximum number of cells 
was 2000; however the I/O and CPU costs are higher as well, because of the higher 
signature sizes. Figure 5 summarizes these experimental results showing: storage 
requirements (percentage of 4CRS signatures’ sizes related to the datasets’ sizes); 
error of the approximate answer (the percentage corresponding to the difference 
between the approximate value and the exact value related to exact value); percentage 
of the time required to execute the approximate processing related to the exact 
processing; and the percentage corresponding to the number of disk accesses needed 
to execute the approximate processing related to the exact one. We present in details 
in Sub-Section 3.2 the experimental results when 500 was used as the maximum 
number of the grid cells, which produced approximate answers with acceptable 
average error and confidence interval. 
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Fig. 5. Storage requirements, accuracy and number of disk access for maximum number of 
cells of the grid equal to 250, 500, 1000, 1500 and 2000  

The 4CRS signature generation time was not shown because [6] evaluated its 
efficiency and presented good results. Table 5 presents the 4CRS signatures 
characteristics for the maximum number of cells equals to 500. We can notice that,  
in order to store 4CRS signatures of maximum number of cells equal to 500 it  is only  



 Estimating the Overlapping Area of Polygon Join 103 

 

Table 5. 4CRS signatures’ characteristics with maximum number of cells equal to 500 

Datasets 
Dataset 

size (KB) 
4CRS 

size (KB)

4CRS / 
Dataset size 

(%) 
Census block-

group 
38,824 1,603 4.13 

Hydrologic map 6,904 177 2.56 
Township 

boundaries 
25,288 838 3.31 

Iowa 

Geological map 21,856 676 3.09 
Municipalities 9,840 329 3.34 

Brazil
Municipalities’ 9,840 329 3.34 

Average 18,759 659 3.30 

needed, on average, 3.30% of the space needed to store the real datasets. In other 
words, it is necessary approximately 30 times more space to store the real datasets 
than to store the 4CRS signatures. 

To perform the join, the R*-tree [19] was chosen as a spatial access method in order 
to reduce the search space. In other words, the R*-Tree was used to take account only 
the objects that have at least MBR intersection and not all of them. That choice was due 
to the wide use of R*-Tree, as well as, to the successful results found in the literature. 
The access methods traditionally used employ the object’s Minimum Bounding 
Rectangle (MBR), and the access methods execution returns what is called a set of 
candidates, since it contains all the pairs of polygons that belong to the answer plus 
other pairs that have only MBR intersection. In the same way as [26] and [6] do, for our 
tests we generated R*-Trees that store the 4CRS signatures as part of the polygons’ 
keys, and this means that they were stored in the leaf nodes in the R*-Tree index. It is a 
reasonable approach since in this way we have to compute the 4CRS just once.  

Our tests can be described according to the concepts of Multi-Step Query 
Processor (MSQP) proposed by [26], presented in Section 1. In the approximate query 
processing, only the first two steps of the MSQP (SAM + Filter steps) were executed. 
Since it is not necessary to access the real objects when computing an approximate 
answer, the last step of MSQP was not executed. On the other hand, in the exact query 
processing, we executed the first and last step of MSQP (SAM + Refinement steps). 
In other words, after finding the objects that have MBR intersection, the exact 
representation of the objects was processed, and exact answers returned. To perform a 
fair test we generated R*-Trees without storing the 4CRS signatures on their leaf 
nodes to be used in the exact query processing. By doing so, the sizes of the R*-Trees 
without storing signatures are smaller than the sizes of the R*-Trees that store them, 
consequently the number of disk accesses in the first step is smaller as well. The R*-
Trees characteristics are presented in Table 6. The column “R*-Tree type” shows that 
the characteristics presented are of R*-Tree that stores 4CRS signatures or R*-tree 
that do not store signatures. 
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In order to evaluate the 4CRS effectiveness in the approximate processing area, 
besides the storage requirements, we evaluated the approximate processing against the 
exact processing testing the accuracy of the approximate answer, execution time and 
disk accesses. The approximate query processing was done executing the algorithm 
proposed in the Sub-Section 2.3, while the exact query processing was performed 
using the General Polygon Clipping library that is available on the web at 
http://www.cs.man.ac.uk/aig/staff/alan/ software/#gpc.  

Table 6. R*-Trees’ characteristics 

Datasets 
R*-
Tree 
type 

R*-
Tree 
size 

(KB) 

Time 
(sec) 

Leaf node 
average 
use (%) 

Height 
# 

leafs 

4CRS 2,124 19.04 69.98 3 1045 Census block-
group - 1,160 17.93 69.81 3 570 

4CRS 334 2.24 68.33 3 162 
Hydrologic map 

- 162 2.14 75.35 2 79 
4CRS 1,546 12.95 68.70 3 760 Township 

boundaries - 800 11.97 69.50 3 392 
4CRS 1,258 9.55 68.41 3 617 

Iowa 

Geological map 
- 644 9.32 70.46 3 316 

4CRS 586 4.66 71.15 3 286 
Municipalities 

- 284 4.07 75.05 3 138 
4CRS 582 4.92 71.63 3 284 

Brazil 
Municipalities’ 

- 284 4.11 75.05 3 138 
4CRS 1,289 8.89 69.70 3 525 

Average 
- 663 8.26 72.54 3 272 

3.2   Results of Approximate Query Processing 

This sub-section is dedicated to presenting, in detail, the experimental results when 
the maximum number of cells of the grid was 500. The results correspond to: 
precision of the approximate answer, including confidence intervals; processing time; 
and number of disk accesses. Storage requirements of 4CRS signatures were 
presented in Sub-Section 3.1 (Table 5). We executed queries computing the 
intersection area of dataset 1 against dataset 2 (presented in Table 7) comparing the 
approximate processing against the exact one.  Each query was executed 20 times, 
and for each time we generated a random window so that only the considered pairs of 
objects were inside the window. In order to evaluate the effect of the number of 
objects returned by each query, we executed two different tests. In one test the 
random windows were generated with size of 4% of the size of the whole space of the 
datasets, and in the other test the windows were generated with size of 12.25%. The 
results are presented in Table 8 and Table 9. Since the values of both tests are quite 
similar, we will only analyze in more details the results corresponding to the second 
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test (Table 9). The most relevant difference between the tests is that in the second test 
each window is intercepted by more objects than the number of intersections in the 
first test. As a result, the number of cells considered to compute the confidence 
interval is bigger and its value is closer to the computed approximate answer. 

Experimental results show the effectiveness of the use of 4CRS signature in the 
approximate processing area due to the quite small error of the approximate answers, 
the short time of the approximate processing and the small number of disk accesses. 
The average error of the approximate answers is 0.59%, while the confidence 
intervals of 95% and 99% have average values of 0.97% and 1.28%, respectively 
(Table 9, column “Error and confidence interval”). In other words, the approximate 
answers have on average a difference of only 0.59% related to the exact ones. 
Besides, in order to show the accuracy of the approximate answers, a confidence 
interval is also returned to the user which means that for a precision of 95% the error 
is at most ±0.97%, while for a precision of 99% the error is at most ±1.28%.  

The approximate query processing is on average approximately 9 times faster than 
the exact query processing, since it needs only approximately 11% of the time of the 
exact processing to execute the approximate one. Table 9 (columns “Processing 
Time”) presents the processing time in seconds and the percentages corresponding to 
the approximate query processing related to exact one.  

Table 7. Tests 

Labels Dataset 1 Dataset 2 
Query-1 Brazilian municipalities Brazilian municipalities’ 
Query-2 Township boundaries Census block 
Query-3 Township boundaries Geological map 
Query-4 Township boundaries Hydrologic map 
Query-5 Census Block Hydrologic map 
Query-6 Hydrologic map Geological map 

Table 8. Experimental results corresponding to the 20 executions of the intersection area of 
dataset 1 × dataset 2 × random window with size of 4% of the size of the whole space  

 
Error and 

Confidence Interval Processing Time 
Number of Disk 

Accesses 

Queries 
Error 
(%) 

C. I. 
95% 

C. I. 
99% 

Approx. 
Proc. 

Exact 
Proc. % 

Approx. 
Proc. 

Exact 
Proc. % 

Average 
of 

objects 
per 

window 
Query-1 0.779 2.973 3.907 6.279 73.025 8.60 2138 26826 7.97 1813 
Query-2 0.304 0.534 0.702 14.621 93.204 15.69 8691 50979 17.05 2590 
Query-3 0.831 1.386 1.822 12.478 109.337 11.41 5440 44289 12.28 2551 
Query-4 0.255 1.231 1.617 8.212 75.098 10.94 5747 27064 21.23 1591 
Query-5 0.438 1.292 1.699 17.375 110.85 15.67 4470 33862 13.20 1935 
Query-6 0.847 1.243 1.634 20.66 95.217 21.70 2736 22419 12.20 1267 

Average 0.58 1.44 1.90 13.27 92.79 14.00 4870 34240 13.99 1958 
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The total execution time is not a good measure of performance gain as it is totally 
dependent on the algorithm used to execute the exact processing. Besides, the cache 
of the Operating System can influence processing time. Instead, the total number of 
disk accesses is a reliable performance gain measure, as the objects to be processed 
have to be, at least, read from disk. Table 9 (columns “Number of Disk Accesses”) 
presents the gains of the approximate processing related to the exact one. The former 
needs in average only 16% of the number of disk access of the latter. In other words, 
the exact processing requires in average 6 times more disk accesses than the 
approximate processing.  

Table 9. Experimental results corresponding to 20 executions of the intersection area of dataset 
1 × dataset 2 × random window with size of 12.25% of the size of the whole space  

 
Error and 

Confidence Interval Processing Time Number of Disk Accesses 

Queries 
Error 
(%) 

C. I. 
95% 

C. I. 
99% 

Approx. 
Proc. 

Exact 
Proc. % 

Approx. 
Proc. 

Exact 
Proc. % 

Average 
of 

objects 
per 

window 

Query-1 1.05 2.48 3.26 18.00 272 6.62 6166 62353 9.89 4907 

Query-2 0.30 0.31 0.40 40.64 398 10.22 24512 133509 18.36 7394 

Query-3 0.79 0.82 1.08 33.68 392 8.60 15737 108508 14.50 6940 

Query-4 0.18 0.75 0.99 21.84 250 8.74 13378 65645 20.38 4305 

Query-5 0.45 0.74 0.97 46.14 390 11.84 13055 87123 14.98 5581 

Query-6 0.74 0.75 0.98 86.01 405 21.22 9504 59656 15.93 3886 

Average 0.59 0.97 1.28 41.05 351 11.21 13725 86132 15.67 5502 

4   Conclusions 

This work proposes, implements, and evaluates a new approach for estimating the 
overlapping area of polygon join queries. The target is to provide an estimated result 
in orders of magnitude less time than the time to compute an exact answer, along with 
a confidence interval for the answer. We propose to compute the intersection area of 
pairs of polygons over 4CRS signatures of the polygons, processing compact and 
approximate representations of the objects, and avoiding accessing the whole data. By 
doing so, the exact geometries of the objects are not processed during the join 
execution, which is the most costly part of the spatial join since it requires the search 
and transfer of large objects from the disk to the main storage ([26] and [18]). Also, 
the exact processing algorithm needs to use complex CPU-time intensive algorithms 
for deciding whether the objects match the query condition [27]. There are many 
scenarios and applications where a slow exact answer can be replaced by a fast 
approximate one, provided that it has the desired accuracy, as presented in Section 1.  

We evaluate our approach comparing the approximate processing against the exact 
processing according to storage requirements, accuracy, response time, and number of 
disk accesses. The results achieved were quite good, and demonstrated the 
effectiveness of our approach. The 4CRS signature has low storage requirements; the 
approximate answers have a quite small error; and, the processing time and the 
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number of disk accesses required to execute the approximate processing are much 
smaller than the time and number of disk accesses of the exact processing. In Sub-
Section 3.2, we presented details of the experimental results for small size signatures. 
These tests showed that an average of 30 times less space to store 4CRS signatures is 
needed than to store the real datasets. The approximate answers have an average error 
of 0.6%, while the confidence intervals of 95% and 99% have average values of 
0.97% and 1.28% respectively, which is enough precision for most applications. 
Besides, the approximate processing varies from 5 to 15 times faster than the exact 
processing in response time and from 5 to 10 times relate to number of disk accesses. 

As future work we plan to evaluate the use of more colours in the raster 
approximations, for example, eight colours. We believe that it can provide a better 
precision, and confidence intervals closer to the approximate answer. Besides, 
although this will have the extra cost of storing more bits for colour representation, 
storage requirements can be kept small since we apply compression methods on the 
4CRS signatures. We also plan to investigate an algorithm to compute the number of 
cells that leads to a 4CRS signature that better represents the polygon, based on the 
complexity of the polygon [28]. A straightforward approach is to compute the 4CRS 
signature starting with the maximum number of cells equal to one, and then increase 
this number until the proportion between approximate area (strong and weak cells) 
and the exact area reaches a pre-defined threshold. Besides, the algorithm proposed in 
this work can be extended or new algorithms can be developed in order to process 
other kinds of operations.  
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