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Abstract. Topological predicates are an important element of database
systems that allow manipulation of spatial data. Based on the necessity
for such systems to handle uncertainty, we introduce a general mech-
anism that identifies vague topological predicates. This definition forms
part of a formal data model referred to as VASA (Vague Spatial Algebra),
in which the data types vague regions, vague lines, and vague points are
defined in terms of existing definition of crisp spatial data types. Follow-
ing this trend, the mechanism presented here identifies vague topological
predicates on the basis of well defined crisp topological predicates. An
example implementation of the mechanism for vague regions is given.

1 Introduction

Most, if not all, man-made spatial objects such as buildings, roads, pipelines and
even political divisions have a clear boundary and extension. The location of the
Eiffel tower is well known and certain, the path of the Interamerican highway
is well established and North Dakota has certainly defined boundaries and ex-
tension. These are in our words, crisp spatial objects. Current spatial database
models and GIS successfully implement such object types but lack modeling and
representation power when handling objects with not such crispness.

Spatial vagueness or indeterminacy is an inherent property of many objects
that are handled in the spatial database context. Point locations may not be
exactly known, paths or trails might fade and become uncertain at intervals.
The boundary of regions might not be certainly known or simply not be as
sharp as that of a building or a highway. Take as examples lakes (and rivers)
whose extension (and path) depends on pluvial activity, or take the location
of oil fields that in many cases can only be guessed. This inherent uncertainty
brings to light the necessity of more comprehensive models that are able to cope
with what we will refer to as vague spatial objects.

Correctly handling spatial data involves more than a good definition of the
data types. It also involves defining a complete set of operations and predicates
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that make the data objects useful in their context. Topological predicates are
proven to be very important in spatial data applications. In the case of crisp
spatial objects, topological predicates are well studied and plenty of approaches
exist for their proper definition. But this is not the case for vague spatial objects
where a well defined set of topological predicates does not exist currently. The
goal of this paper is to provide a comprehensive model for identifying topological
predicates between vague spatial objects. The predicates to be identified have
the added complexity of dealing with the vagueness present in the objects them-
selves, thus making the predicates vague in nature. The model we present here
enhances the results of preliminary work that has been part of our own research
as part of the VASA (Vague Spatial Algebra) project. The data types used are
our own vague spatial data types [5] and include vague points, vague lines and,
vague regions. A major benefit of vague spatial objects is that their is definition
expressed in terms of crisp spatial operations so that they represent executable
specifications. The same benefits are sought for topological predicates, and so we
define them for vague spatial objects in terms of the already defined topological
predicates for crisp spatial objects.

Section 2 presents related work. Section 3 introduces our vague spatial data
types upon which the topological predicates are identified. Our enhanced general
mechanism for identifying vague topological predicates is explained in Section 4
where we also draw a comparison to our previous approach. In Section 5 we
introduce a case study based on the implementation of the identification mecha-
nism on vague regions. Section 6 introduces the notions necessary to implement
the newly identified predicates as part of common database query languages.
Finally, Section 7 draws some conclusions and addresses future work.

2 Related Work

We refer to spatial vagueness as a natural feature of a spatial object. Vagueness
defines object properties as uncertain or indeterminate such that it is not possible
to assure whether certain components belong to the object or not. Three main
alternatives have been proposed as general design methods. Models based on fuzzy
sets (e.g., [15]) are all based on fuzzy set theory, allow a fine-grained modeling
of vague spatial objects but are computationally rather expensive with respect
to data structures and algorithms. Models based on rough sets (e.g., [16]) work
with lower and upper approximations of spatial objects, which is similar to our
approach. But the formal background is rather different. Models based on exact
spatial objects (e.g., [9,10]) extend data models, type systems, and concepts for
crisp spatial objects to vague spatial objects. A discussion of the differences of
these approaches can be found in [15]. Vague spatial data types [5,7] leveraged
in this paper belong to the latter category.

The basis of the latter category are crisp spatial data types (see [14] for a
survey). We assume a very general definition of these data types and call them
complex. Point objects are considered to be finite collection of points. Lines
are assumed to be finite collections of disjoint curves which may meet in single
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endpoints. Regions are finite collections of disjoint faces except for single common
points, and faces may have disjoint holes except for single common points.

Much research on spatial databases has been devoted to topological predi-
cates (like overlap, meet, or disjoint) on crisp spatial data types. The two main
solution approaches employ either spatial logic [1] or point set theory and point
set topology [12]. Our definition of vague topological predicates rests on a gen-
eralization [8,13] of the latter approach (the well known 9-intersection model
[12]) in the sense that topological predicates are defined on crisp complex spa-
tial objects and not on simple spatial objects as in the other approaches. The
difference between considering simple and complex spatial objects is important,
for example, the number of topological predicates for simple regions is 8, whereas
the number for complex regions is 33. Topological predicates for simplified vague
regions have already been studied in [9,10]. These approaches, although already
quite sophisticated, suffer from two main drawbacks. First, the crisp regions
used are simple regions, i.e., they do not allow holes and only consist of a single
component. Second, the vague regions defined are regions with “broad bound-
aries”. That is, one crisp simple region, which represents the area that definitely
belongs to the vague region, is located in another larger crisp simple region.
The geometric difference between the larger crisp region and the smaller one is
considered to be the broad, vague boundary. Operations on such simple vague
spatial objects suffer greatly from a lack of closure properties and expressiveness,
which are part of our goals. The simple approach they follow is insufficient for
our definition and goals, hence we look to define a general method with more
expressive power and that is still usable. The works in [10] and [9] have identi-
fied 44 and 46 different topological relationships, respectively. The results from
these two previous approaches are not applicable to our own vague spatial data
types because they represent only the topological relationships between so-called
concentric regions (i.e.the kernel is always surrounded by the conjecture) that
belong to a special case of our vague regions under which not all vague region
topological relationships are covered. The previous models are only defined for
vague regions and not for vague points and vague lines.

3 Vague Spatial Data Types

To motivate our definition of vague spatial data types, we illustrate an ecological
scenario that is to be considered for the development of a nature preservation
program. The program developers need to consider (among many other data)
the extension of lakes, the paths followed by rivers, and the refuges of animals
as well as their roaming routes. We can notice how the lake and river data
can be uncertain due to rain activity within a time period. Roaming routes of
some species might be only approximate as these can change slightly or it is not
possible to record the exact path for all cases. Animal refuges might be uncertain
due to their underground or cave nature. All these are examples of what we
refer to as vague spatial objects. The animal refuge locations are specifically
modeled as a vague point object where the precisely known locations are called
the kernel point object and the assumed locations are denoted as the conjecture
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Fig. 1. Examples of a (complex) vague point object (a), a (complex) vague line object
(b), and a (complex) vague region object (c). Each collection of components forms a
single vague object

point object. The roaming routes and river paths can be modeled as vague line
objects. Some routes, called kernel line objects, have been definitely identified
and are certainly part of the river or route. Other routes can only be assumed and
these are denoted as conjecture line objects. Knowledge about extension of lakes
and other areas within the ecological system can be modeled similarly with vague
regions formed by kernel and conjecture parts. Figure 1 gives some illustrations.
Grey shaded areas, straight lines, and grey points indicate kernel parts; areas
with white interiors, dashed lines, and white points refer to conjecture parts.

For the definition of vague points, vague lines, and vague regions we leverage
the well known data types point for crisp points, line for crisp lines, and region
for crisp regions [13]. These types are closed under the geometric set operations
union (⊕ : α×α → α), intersection (⊗ : α×α → α), difference (� : α×α → α),
and complement (∼: α → α). The use of an exact model for constructing vague
spatial data types leads to the benefit that existing definitions, techniques, data
structures and algorithms need not be redeveloped but can simply be used or in
the worst case slightly modified or extended as necessary.

A vague spatial object is described by a pair of two crisp complex spatial
objects. Hence, the same generic definition is applicable to all vague spatial data
types. That is, the extension of a crisp spatial data type to a corresponding
vague type is given by a type constructor v as follows:

v(α) = α × α ∀α ∈ {point, line, region}

This means that for α = region we obtain v(region) = region × region, which
we also name vregion. Accordingly, the data types vline and vpoint are defined.
For a vague spatial object w = (wk, wc) ∈ v(α), the first crisp spatial object wk,
called the kernel part, describes the determinate component of w, that is, the
component that definitely belongs to the vague object. The second crisp spatial
object wc, called the conjecture part, describes the vague component of w, that
is, the component from which we cannot say with any certainty whether it or
subparts of it belong to the vague object or not. Maybe the conjecture part or
subparts of it belong to the vague object, maybe this is not the case. Since the
kernel part and the conjecture part of the same vague spatial object may not
share interior points, we define the following as a more general constraint from
the original defined in [5]:
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∀α ∈ {point, line, region} ∀w = (wk, wc) ∈ v(α) : w◦
k ∩ w◦

c = ∅

More details, in particular about the semantics of vague spatial data types
as well as the definition of vague spatial operations, can be found in [5].

4 General Mechanism for Vague Topological Predicates

The approach we present here is based on three main goals. The first goal is
to develop a formalism that works independently of the data types to which it
is applied. It is desired that the formalism can be applied to two vague points
equally as it can be applied to two vague lines or to the combination of a vague
line and a vague region. Second, we consider important to make use of existing
definitions of topological predicates for crisp spatial objects. This goal is a direct
result from the definition of vague spatial objects. As noted in Section 3, vague
spatial objects are constructed from crisp spatial objects. It is only consistent
to let vague topological predicates be constructed from existing crisp topologi-
cal predicates (see Figure 2). The final goal is to benefit from implementation
advantages in such a way that VASA as a whole can make use of a preexisting
crisp spatial algebra implementation as a simple executable specification.

The general method we propose, characterizes vague topological predicates
on the basis of conjunctions of crisp topological predicates. The crisp topolog-
ical predicates used as the underlying model are those defined in [13]. For two
vague spatial object A, B, we evaluate the conjunction of the crisp topological
predicates in the relationships between (Ak, Bk), (Ak ⊕ Ac, Bk), (Ak, Bk ⊕ Bc),
and (Ak⊕Ac, Bk⊕Bc). These relationships represent the smallest objects which
certainly exist (Ak, Bk), to the biggest possible objects represented with all un-
certain features (Ak ⊕ Ac, Bk ⊕ Bc). Given α, β ∈ {point , line, region}, let Tα,β

be the set of crisp topological predicates between the types α and β. To identify
the vague topological predicates for type-combination v(α)×v(β) we analyze all
possible |Tα,β|4 combinations for the four relationships noted above. It is possible

Fig. 2. Relations between crisp and vague spatial data models
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Fig. 3. General Mechanism for Identifying Vague Topological Predicates

that not all combinations are valid due to contradictions between the relation-
ships so we proceed to apply cancellation rules that validate each combination
(see Figure 3). The cancellation rules are defined on the basis of the point set
intersections that define the crisp topological relationships between each of the
components involved. This means that we do not refer to the crisp topological
predicate by name, but rather specify more general cancellation rules by simply
analyzing their point set intersections. Once all invalid combinations have been
eliminated, we can refer to the remaining combinations as the vague topological
predicates for v(α) × v(β).

It is likely that the identified vague topological predicates will constitute a
large set that could prove difficult to handle for the user. To provide for an easier
management of such large sets of predicates we implement a step of what we call
clustering. At this step, we define clustering rules which are in charge of grouping
single vague topological predicates (as identified in the previous step) into mean-
ingful clusters. Due to the involvement of the conjecture in the definition of the
topological relationship, it becomes insufficient for the predicates representing
these relationships to simply result in either true or false. As previously proposed
in [6], each cluster results in a new data type vbool = {true, false, maybe} that
extends the regular boolean type and allows handling the inherent uncertainty.
This three-valued logic can be adapted to boolean logic through a simple con-
version that extends the set of available predicates and is detailed in Section 6.

The method we just detailed, is similar to the preliminary approach we ex-
pose in [6]. Based on the experiences learned from that preliminary work, we
identified two key features that make our current approach better. First, we
only take into account four combinations instead of the nine used in the prelimi-
nary approach. We eliminated all relationships from the preliminary approach in
which the conjecture of an object might be considered alone without the kernel.
The reasoning behind this change rests on the fact that in no situation the con-
jecture of an object will be considered without considering the kernel. From the
definition of vague spatial objects, the kernel is always part of the object and the
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conjecture might not be part of it. This reasoning relates to the rough set idea
of lower approximation (Ak, A ∈ v(α)) and an upper approximation (Ak ⊕ Ac),
noticing that no consideration of (Ak ⊕ Ac − Ak = Ac) is made. The second
key feature improvement lies in the specification of cancellation and clustering
rules. In the preliminary approach, we specified cancellation and clustering rules
on the basis of the named crisp topological predicates. This was possible with
a small set of easily identified predicates like those for complex points. When
dealing with a large set of crisp topological predicates, such as the 33 predicates
between complex regions and the 82 predicates between complex lines, it be-
comes unfeasible to understand the semantics of each unnamed crisp topological
predicate and define the rules this way. This is why the rules are now specified on
the basis of the point set intersections that represent the individual topological
predicates. This removes the necessity of dealing with the large unnamed set,
which reduces the probability for errors, and simplifies the set of rules.

We move on in the next section to show how the approach can be imple-
mented. This is done by using a case study involving the identification of topo-
logical predicates between vague regions.

5 Topological Predicates Between Vague Regions

In this section we use vague regions to illustrate the mechanism described in
Section 4. The example implementation shown here identifies the topological
predicates between two vague region objects. The underlying crisp topological
predicates used are those defined in [13] for two complex crisp regions. A sum-
mary of such definition follows.

5.1 Topological Predicates Between Complex Spatial Objects

Originally described in [4,12], the 9-intersection model (4-intersection model pre-
viously), defines topological predicates between simple regions on the basis of
the intersection between the parts (interior, boundary, exterior) of the regions
involved. Later the model is extended in [3] to account for simple regions with
holes and in [11] to work with regions made up of multiple components. Finally,
in [13], a comprehensive definition of topological predicates for complex regions
is proposed. Complex regions can contain both holes and multiple components.
The proposed method works by simply applying the 9-intersection model to the
point sets belonging to the complex regions.

The topological predicate definition from [13] initially analyzes all possible
3× 3 matrices (for a total of 512 matrices). Each matrix entry contains either a
1 or a 0 that represent whether that intersection is non-empty or empty respec-
tively. A type-combination dependent set of constraint rules is applied to the
original set of 512 matrices. The constraint rules are in charge of eliminating all
non-constraint satisfying matrices that represent invalid scenes. Once all invalid
matrices are eliminated, the remaining ones are considered the topological pred-
icates between objects of the type-combination in question. For the purpose of
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this case study it is only necessary to consider complex regions, but the refer-
ence identifies topological predicates between all type combinations of complex
points, complex lines and complex regions.

In the case of complex regions, a total of nine constraint rules result in
33 possible topological predicates between two complex regions. Such a large
number of predicates presents problems of manageability for the user. This is
the reason for the clustering of topological predicates presented in [13]. So-called
topological cluster predicates are defined by means of clustering rules that are
some kind of relaxed constraint rules. The clustering rules define a cluster by
taking into account not all the nine intersections in the matrix causing a slight
generalization that results in possibly more than one of the original predicates
to form part of a single cluster. The authors define eight clustered predicates
with semantics similar to the original topological predicates for simple regions
identified by the 9-intersection model.

5.2 Cancellation Rules

Now we proceed to identify the topological predicates between vague regions.
The first step is the definition of the cancellation rules that eliminate all con-
tradictory information within the combinations explored as part of the general
mechanism detailed in Section 4. The underlying set of topological predicates
used is, as mentioned before, as shown in [13] and identifies 33 topological predi-
cates between complex regions. We originally deal with a total of 334 = 1185921
combinations. To make the formal rules more compact, we make use of variables
w ∈ {Bk, Bk ⊕ Bc}, v ∈ {Ak, Ak ⊕ Ac}.
Lemma 1. Any part ( interior, boundary, exterior) of a single component
(i.e. kernel or conjecture) or the union of components of the first object that in-
tersects the interior of at least one component from the second object, must also
intersect the interior of the union of components from the second object, i.e.,

Lemma 1.1 ∀p, q ∈ Tα,β :
¬(p(Ak, w) ∧ q(Ak ⊕ Ac, w)) s .t .
∃ r ∈ {◦, ∂,−} :
(p(Ak, w) ⇒ A◦

k ∩ wr = ∅ ∧
q(Ak ⊕ Ac, w) ⇒
(Ak ⊕ Ac)◦ ∩ wr = ∅)

Lemma 1.2 ∀p, q ∈ Tα,β :
¬(p(v, Bk) ∧ q(v, Bk ⊕ Bc)) s .t .
∃ r ∈ {◦, ∂,−} :
(p(w, Bk) ⇒ B◦

k ∩ vr = ∅ ∧
q(v, Bk ⊕ Bc) ⇒
(Bk ⊕ Bc)◦ ∩ vr = ∅)

Proof. We know that for any vague region C, C◦
k ⊆ (Ck ⊕Cc)◦. From this fact,

we can derive that for any point set x, it is always true that C◦
k ∩ x = ∅ ⇒

(Ck ⊕ Cc)◦ ∩ x = ∅. Thus, Lemma 1 takes care of those combinations in which
this implication is contradicted. �

Lemma 2. Any part of a single component or the union of components of the
first object that does not intersect the exterior of at least one component from
the second object must also not intersect the exterior of the union of components
from the second object, i.e.,
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Lemma 2.1 ∀p, q ∈ Tα,β :
¬(p(Ak, w) ∧ q(Ak ⊕ Ac, w)) s .t .
∃ r ∈ {◦, ∂,−} :
(p(Ak, w) ⇒ A−

k ∩ wr = ∅ ∧
q(Ak ⊕ Ac, w) ⇒
(Ak ⊕ Ac)− ∩ wr = ∅)

Lemma 2.2 ∀p, q ∈ Tα,β :
¬(p(v, Bk) ∧ q(v, Bk ⊕ Bc)) s .t .
∃ r ∈ {◦, ∂,−} :
(p(w, Bk) ⇒ B−

k ∩ vr = ∅ ∧
q(v, Bk ⊕ Bc) ⇒
(Bk ⊕ Bc)− ∩ vr = ∅)

Proof. We know that for any vague region C, C−
k ⊇ (Ck ⊕Cc)−. From this fact,

we can derive that for any point set x, it is always true that C−
k ∩ x = ∅ ⇒

(Ck ⊕ Cc)− ∩ x = ∅. Thus, Lemma 2 takes care of those combinations in which
this implication is contradicted. �

Lemma 3. A single component or the union of components of the first object
that is not disjoint from at least one component from the second object, must
also not be disjoint from the union of both components from the second object,
i.e.,

Lemma 3.1 ∀p, q ∈ Tα,β :
¬(p(Ak, w) ∧ q(Ak ⊕ Ac, w)) s .t .
∃ r, s ∈ {◦, ∂} : (p(Ak, w) ⇒
Ak

r ∩ ws = ∅) ∧
∀ t, u ∈ {◦, ∂} :
(q(Ak ⊕ Ac, w) ⇒
(Ak ⊕ Ac)t ∩ wu = ∅))

Lemma 3.2 ∀p, q ∈ Tα,β :
¬(p(v, Bk) ∧ q(v, Bk ⊕ Bc)) s .t .
∃ r, s ∈ {◦, ∂} : (p(v, Bk) ⇒
Bk

r ∩ vs = ∅) ∧
∀ t, u ∈ {◦, ∂} :
(q(v, Bk ⊕ Bc) ⇒
(Bk ⊕ Bc)t ∩ vu = ∅))

Proof. Due to the nature of the ⊕ (geometric union) operation, any intersection
of the interiors of the complex regions a and b will remain untouched, and any
intersection between boundaries or between an interior and a boundary will
either remain untouched or be replaced by an interior-interior intersection when
the union operation is applied and instead the intersections between a⊕ d, b are
analyzed. This means that there is no possibility for any such intersection to
disappear or be replaced by an intersection with an exterior that could result in
disjointment of the objects involved. Thus, we can imply that ¬(disjoint (a, b)) ⇒
¬(disjoint ((a⊕ d), b)) where disjoint refers to the clustered predicate as defined
in [13]. �

Lemma 4. If we assume that some τ representing a component or the union
of components of the first object is not contained by a single component of the
second object but is contained by the union of components of the second object,
then τ must not contain the interior of the union of the components from the
second object, i.e.,

Lemma 4.1 ∀p, q ∈ Tα,β :
¬(p(Ak, w) ∧ q(Ak ⊕ Ac, w)) s .t .
(p(Ak, w) ⇒ ∂Ak ∩ ∂w = ∅) ∧
(q(Ak ⊕ Ac, w) ⇒ ((Ak ⊕ Ac)◦ ⊆ w◦)
∧ (∂(Ak ⊕ Ac) ∩ ∂w = ∅))

Lemma 4.2 ∀p, q ∈ Tα,β :
¬(p(v, Bk) ∧ q(v, Bk ⊕ Bc)) s .t .
(p(v, Bk) ⇒ ∂Bk ∩ ∂v = ∅) ∧
(q(v, Bk ⊕ Bc) ⇒ ((Bk ⊕ Bc)◦ ⊆ v◦)
∧ (∂(Bk ⊕ Bc) ∩ ∂v = ∅))
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Proof. We show the first sublemma; the proof for the second sublemma is simi-
lar. Given (Ak ⊕Ac)◦ ⊆ w◦ ⇒ A◦

k ⊆ w◦, then the rule represents a contradiction
because, for it to be true that ∂Ak ∩ ∂w = ∅ ∧ ∂(Ak ⊕ Ac) ∩ ∂w = ∅, Ac

must share the same boundary with Ak as Ak shares with w, i.e.(∂Ak ∩ ∂Ac =
∂Ak ∩ ∂w). This means that Ac makes Ak grow towards the exterior of w which
in turn makes it impossible for (Ak ⊕ Ac)◦ ⊆ w◦ to hold. �

Lemma 5. If some τ which represents a single component or the union of com-
ponents from the first object, is completely contained within the interior of a
single component from the second object, then the boundary of τ must not inter-
sect the boundary of the union of components from the second object, i.e.,

Lemma 5.1 ∀p, q ∈ Tα,β :
¬(p(Ak, w) ∧ q(Ak ⊕ Ac, w)) s .t .
(p(Ak, w) ⇒ ∂Ak ∩ ∂w = ∅ ∧
(Ak ⊕ Ac)◦ ⊇ w◦) ∧
(q(Ak⊕Ac, w) ⇒ ∂(Ak⊕Ac)∩∂w = ∅))

Lemma 5.2 ∀p, q ∈ Tα,β :
¬(p(v, Bk) ∧ q(v, Bk ⊕ Bc)) s .t .
(p(v, Bk) ⇒ ∂Bk ∩ ∂v = ∅) ∧
(Bk ⊕ Bc)◦ ⊇ v◦ ∧
(q(v, Bk⊕Bc) ⇒ (∂(Bk⊕Bc)∩∂v = ∅)

Proof. This case represents a similar situation to that in Lemma 4. The differ-
ence here is that the boundaries of the subsets do not intersect but, when the
conjecture is added, the boundaries intersect. Such a situation is impossible when
the first object is completely contained in the second that is being expanded by
the conjecture. The reason is that the conjecture would expand the object to-
wards the inside of its own region’s kernel which is in direct contradiction with
the definition of vague regions. �

Lemma 6. If it can be inferred that the conjecture of the first object is empty
(⊥), then it must be true that the predicates defined by the relationships between
the kernel of the first object and any component or union of the components of
the second object, and between the union of the components of the first object
and the same component or whole of the second object, are the same, i.e.,

Lemma 6.1 ∀p, q, r, s ∈ Tα,β :
¬(p(Ak, Bk) ∧ q(Ak ⊕ Ac, Bk) ∧
r(Ak, Bk ⊕ Bc) ∧
s(Ak ⊕ Ac, Bk ⊕ Bc)) s .t .
(p(Ak, Bk) ∧ q(Ak ⊕ Ac, Bk) ⇒
Ac = ⊥ ∧
(r(Ak, Bk ⊕Bc) = s(Ak ⊕Ac, Bk ⊕Bc))

Lemma 6.2 ∀p, q, r, s ∈ Tα,β :
¬(p(Ak, Bk) ∧ q(Ak ⊕ Ac, Bk) ∧
r(Ak , Bk ⊕ Bc) ∧
s(Ak ⊕ Ac, Bk ⊕ Bc)) s .t .
(p(Ak, Bk) ∧ r(Ak, Bk ⊕ Bc) ⇒
Bc = ⊥ ∧
(q(Ak ⊕Ac, Bk) = s(Ak ⊕Ac, Bk ⊕Bc))

Proof. If a conjecture is known to be empty, then it does not add any features
to the kernel of the object, in other words (Ak ⊕ Ac = Ak) for some vague
region A . Thus, any crisp topological predicates p and q of the whole object and
the kernel by itself, respectively, with some other region w must be the same
(p(Ak ⊕ Ac, w) = q(Ak, w)). �

After applying all rules to the over 1.1 million original combinations, only
69682 remain valid. Such a large number is difficult to manage at any level of
usability, thus we present clustering rules to reduce the predicates to a workable
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set. We consider important to note that we have not provided a formal proof
that all the remaining combinations are valid. It is our opinion that this is a
weakness of the case study presented here but does not take any merit away
from the general mechanism for identifying vague topological predicates.

5.3 Clustering Rules

Being able to identify topological predicates by name is necessary for the user.
The original names of the eight topological predicates between simple regions
(disjoint , meet , inside, contains , coveredBy , covers , equal and overlap) as de-
tailed in [12] seem to be appropriate names thus we name the clustered vague
topological predicates alike. We simply capitalize their names to differentiate
them from the original. The clusters presented here represent only one of many
ways in which the clustering of the predicates can be performed. We attempt
to define each cluster in a way so that it has similar semantics as those that
identified the topological predicates between simple regions in the 9-intersection
model. It is important that the clusters are mutually exclusive in terms of the
true results. This means that, after the cancellation rules are applied, each of the
resulting combinations should result in true for one and only one of the following
clusters.

Disjoint. Two vague regions as truly disjoint if none of their components have
intersections of interior or boundaries between each other. The vague regions are
truly not disjoint if the interiors or boundaries of their kernel parts intersect. Any
other situation leaves the topological relationship uncertain; thus the predicate
result is maybe. Formally:

– Disjoint(A, B) = true ⇔ ((Ak ⊕ Ac)◦ ∩ (Bk ⊕ Bc)◦ = ∅) ∧ ((Ak ⊕ Ac)◦ ∩
∂(Bk ⊕ Bc) = ∅) ∧
(∂(Ak ⊕ Ac) ∩ (Bk ⊕ Bc)◦ = ∅) ∧ (∂(Ak ⊕ Ac) ∩ ∂(Bk ⊕ Bc) = ∅)

– Disjoint(A, B) = false ⇔ (A◦
k ∩ B◦

k = ∅) ∨ (A◦
k ∩ ∂Bk = ∅) ∨

(∂Ak ∩ B◦
k = ∅) ∨ (∂Ak ∩ ∂Bk = ∅)

– Disjoint(A, B) = maybe ⇔ ¬(Disjoint (A, B) = true ∨ Disjoint(A, B) =
false)

Meet. Two vague regions certainly meet when the boundaries of their kernels
intersect but the interiors of all components do not intersect. They certainly do
not meet when the interiors of their kernels intersect or when they are certainly
Disjoint . Formally:

– Meet(A, B) = true ⇔ (∂Ak ∩ ∂Bk = ∅) ∧ ((Ak ⊕ Ac)◦ ∩ (Bk ⊕ Bc)◦ = ∅)
– Meet(A, B) = false ⇔ (A◦

k ∩ B◦
k = ∅) ∨

(((Ak ⊕ Ac)◦ ∩ (Bk ⊕ Bc)◦ = ∅) ∧ ((Ak ⊕ Ac)◦ ∩ ∂(Bk ⊕ Bc) = ∅) ∧
(∂(Ak ⊕ Ac) ∩ (Bk ⊕ Bc)◦ = ∅) ∧ (∂(Ak ⊕ Ac) ∩ ∂(Bk ⊕ Bc) = ∅))

– Meet(A, B) = maybe ⇔ ¬(Meet(A, B) = true ∨ Meet(A, B) = false)
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Inside. A vague region is certainly inside another one if all parts from all com-
ponents of the first vague region are inside the kernel component of the second
vague region. On the other hand, a vague region is certainly not inside another
one when the interior of its kernel intersects the exterior of the second region or
their boundaries intersect. Formally:

– Inside(A, B) = true ⇔ ((Ak ⊕ Ac)◦ ∩ B◦
k = ∅) ∧ (∂(Ak ⊕ Ac) ∩ B◦

k =
∅) ∧ ((Ak ⊕ Ac)◦ ∩ B−

k = ∅) ∧
(∂(Ak⊕Ac)∩B−

k = ∅) ∧ ((Ak⊕Ac)◦∩∂Bk = ∅) ∧ (∂(Ak⊕Ac)∩∂Bk = ∅)
– Inside(A, B) = false ⇔ (A◦

k ∩ (Bk ⊕Bc)− = ∅) ∨ (∂Ak ∩ ∂(Bk ⊕Bc) = ∅)
– Inside(A, B) = maybe ⇔ ¬(Inside(A, B) = true ∨ Inside(A, B) = false)

Contains. The result for the Contains cluster is symmetric to Inside. Formally,
Contains(A, B) ⇔ Inside(B, A).

CoveredBy. A vague region is certainly covered by another one if all parts from
all components of the first vague region are inside the kernel component of the
second vague region and the boundary of the kernel of the first region intersects
the boundary of the kernel of the second region. On the other hand, a vague
region is certainly not covered by another one if the interior of its kernel intersects
the exterior of the second region or their boundaries do not intersect. Formally:

– CoveredBy(A, B) = true ⇔ ((Ak ⊕ Ac)◦ ∩ B◦
k = ∅) ∧

(∂(Ak ⊕ Ac) ∩ B◦
k = ∅) ∧ ((Ak ⊕ Ac)◦ ∩ B−

k = ∅) ∧
(∂(Ak⊕Ac)∩B−

k = ∅) ∧ ((Ak⊕Ac)◦∩∂Bk = ∅) ∧ (∂(Ak⊕Ac)∩∂Bk = ∅)
∧ (∂(Ak⊕Ac)∩∂(Bk⊕Bc) = ∅) ∧ (∂Ak∩∂Bk = ∅) ∧ (∂Ak∩∂(Bk⊕Bc) = ∅)

– CoveredBy(A, B) = false ⇔ (A◦
k∩(Bk⊕Bc)− = ∅) ∨ (Inside(A, B) = true)

– CoveredBy(A, B) = maybe ⇔ ¬(CoveredBy(A, B) = true
∨ CoveredBy(A, B) = false)

Covers. The result of Covers cluster is symmetric to CoveredBy . Formally,
Covers(A, B) ⇔ CoveredBy(B, A).

Equal. The only way two vague regions are certainly equal is if their kernels are
equal and their conjectures are empty. They are definitely not equal when the
interior of one kernel touches the exterior of the other region or if one region is
contained inside the kernel of another. Formally:

– Equal(A, B) = true ⇔ (A◦
k ∩ ∂Bk = ∅) ∧ (A◦

k ∩ B−
k = ∅) ∧

(∂Ak ∩ B◦
k = ∅) ∧ (∂Ak ∩ B−

k = ∅) ∧
(A−

k ∩ ∂Bk = ∅) ∧ (A−
k ∩ B◦

k = ∅) ∧
(A◦

k ∩ ∂(Bk ⊕ Bc) = ∅) ∧ (A◦
k ∩ (Bk ⊕ Bc)− = ∅) ∧

(∂Ak ∩ (Bk ⊕ Bc)◦ = ∅) ∧ (∂Ak ∩ (Bk ⊕ Bc)− = ∅) ∧
(A−

k ∩ ∂(Bk ⊕ Bc) = ∅) ∧ (A−
k ∩ (Bk ⊕ Bc)◦ = ∅) ∧

((Ak ⊕ Ac)◦ ∩ ∂Bk = ∅) ∧ ((Ak ⊕ Ac)◦ ∩ B−
k = ∅) ∧

(∂(Ak ⊕ Ac) ∩ B◦
k = ∅) ∧ (∂(Ak ⊕ Ac) ∩ B−

k = ∅) ∧
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((Ak ⊕ Ac)− ∩ ∂Bk = ∅) ∧ ((Ak ⊕ Ac)− ∩ B◦
k = ∅) ∧

((Ak ⊕ Ac)◦ ∩ ∂(Bk ⊕ Bc) = ∅) ∧ ((Ak ⊕ Ac)◦ ∩ (Bk ⊕ Bc)− = ∅) ∧
(∂(Ak ⊕ Ac) ∩ (Bk ⊕ Bc)◦ = ∅) ∧ (∂(Ak ⊕ Ac) ∩ (Bk ⊕ Bc)− = ∅) ∧
((Ak ⊕ Ac)− ∩ ∂(Bk ⊕ Bc) = ∅) ∧ ((Ak ⊕ Ac)− ∩ ∫

(Bk ⊕ Bc) = ∅)
– Equal(A, B) = false ⇔ (A◦

k ∩ (Bk ⊕Bc)− = ∅) ∨ ((Ak ⊕Ac)−∩B◦
k = ∅) ∨

(((Ak⊕Ac)◦∩B◦
k = ∅) ∧ (∂(Ak⊕Ac)∩B◦

k = ∅) ∧ ((Ak⊕Ac)◦∩B−
k = ∅) ∧

(∂(Ak ⊕ Ac) ∩ B−
k = ∅) ∧ ((Ak ⊕ Ac)◦ ∩ ∂Bk = ∅)) ∨

((A◦
k∩(Bk⊕Bc)◦ = ∅) ∧ (A◦

k∩∂(Bk⊕Bc) = ∅) ∧ (A−
k ∩(Bk⊕Bc)◦ = ∅) ∧

(A−
k ∩ ∂(Bk ⊕ Bc) = ∅) ∧ (∂Ak ∩ (Bk ⊕ Bc)◦ = ∅))

– Equal(A, B) = maybe ⇔ ¬(Equal (A, B) = true ∨ Equal(A, B) = false)

Overlap. Two vague regions surely overlap if their kernel interiors intersect each
other and also intersect their whole exteriors. We can certainly say the vague
regions do not overlap if any of the other 7 clusters holds true, which leaves a
large number of possibilities for the regions to maybe overlap. Formally:

– Overlap(A, B) = true ⇔ (A◦
k ∩ B◦

k = ∅) ∧ (A◦
k ∩ Bk ⊕ B−

c = ∅) ∧ (Ak ⊕
A−

c ∩ B◦
k = ∅)

– Overlap(A, B) = false ⇔ (Disjoint(A, B) = true) ∨ (Meet(A, B) = true) ∨
(Inside(A, B) = true) ∨
(Contains(A, B) = true) ∨ (CoveredBy(A, B) = true) ∨ (Covers(A, B) =
true) ∨
(Equal (A, B) = true)

– Overlap(A, B) = maybe ⇔ ¬(Overlap(A, B) = true ∨ Overlap(A, B) =
false)

In the next section, we show by using examples, how these clusters can be
used in common database queries.

6 Querying

Popular database query language such as SQL understand predicates as boolean
expressions. This means that the three values resulting from the clusters must
be translated to boolean logic in order to use the vague topological predicates
in SQL-like query languages. The translation is done by the following general
definition for any clustered predicate P :

True P(A, B) = true ⇒ P (A, B) = true
True P(A, B) = false ⇒ P (A, B) = maybe ∨ P (A, B) = false

Maybe P(A, B) = true ⇒ P (A, B) = maybe
Maybe P(A, B) = false ⇒ P (A, B) = true ∨ P (A, B) = false
False P(A, B) = true ⇒ P (A, B) = false
False P(A, B) = false ⇒ P (A, B) = true ∨ P (A, B) = maybe

For the sample queries, we assume a scenario (similar to that in Section 3) of
an ecological application. We define roaming areas for species as vague regions
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with sections that definitely delimit the area in which some species lives. The
representation also includes some areas for which we are not sure whether or not
the species roam around.

In the first query, we are interested in the roaming areas of all groups of
an imaginary endangered species pastuzo whose main predator is the tiger. We
need to know of all roaming areas for pastuzos, that might be contained inside
roaming areas of tigers. This would help establish whether or not the majority
of pastuzos left are in danger of being eaten by tigers.

SELECT p.id
FROM groups p, groups t
WHERE p.species = "pastuzo"
and t.species = "tiger"
and Maybe_Inside(p.area,t.area);

In the next query, we want to establish all pastuzo groups that certainly live
in areas outside those of the tigers. The purpose of this is to allocate resources
and provide reproductive help to these pastuzo groups.

SELECT p.id
FROM groups p, groups t
WHERE p.species = "pastuzo"
and t.species = "tiger"
and True_Disjoint(p.area,t.area);

7 Conclusions and Future Work

We provide a mechanism that is able to identify topological predicates between
vague spatial objects. We believe the strength of the mechanism stems from
having accomplished all three goals imposed on its design. First, the mecha-
nism described is type-independent. That is, given as input a set of cancellation
rules and a set of clustering rules the mechanism identifies all vague topologi-
cal predicates for the respective vague spatial data type combination. Second,
the mechanism makes use of existing definitions for crisp topological predicates
by defining vague topological predicates on their basis. Third, the definition of
vague spatial data types, operations and predicates can be regarded as an exe-
cutable specification based on crisp concepts. The accomplishment of these goals
is improved by the lessons learned from a preliminary approach resulting in a
mechanism that is both powerful and simple. We also showed how using the
vague topological predicates in common query languages requires only a simple
conversion that allows for common sense handling of uncertainty in spatial data
through querying.

The obvious step to follow now is the identification of topological predicates
between all type combinations of vague spatial data types. Also we consider
important to finalize this approach by a full implementation of the concepts
that are part of VASA.
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