
On Discovering Moving Clusters in
Spatio-temporal Data

Panos Kalnis1, Nikos Mamoulis2, and Spiridon Bakiras3

1 Department of Computer Science, National University of Singapore
kalnis@comp.nus.edu.sg

2 Department of Computer Science, University of Hong Kong, Pokfulam Road, Hong Kong
nikos@cs.hku.hk

3 Department of Computer Science, Hong Kong University of Science and Technology,
Clear Water Bay, Hong Kong
sbakiras@cs.ust.hk

Abstract. A moving cluster is defined by a set of objects that move close to each
other for a long time interval. Real-life examples are a group of migrating ani-
mals, a convoy of cars moving in a city, etc. We study the discovery of moving
clusters in a database of object trajectories. The difference of this problem com-
pared to clustering trajectories and mining movement patterns is that the identity
of a moving cluster remains unchanged while its location and content may change
over time. For example, while a group of animals are migrating, some animals
may leave the group or new animals may enter it. We provide a formal definition
for moving clusters and describe three algorithms for their automatic discovery:
(i) a straight-forward method based on the definition, (ii) a more efficient method
which avoids redundant checks and (iii) an approximate algorithm which trades
accuracy for speed by borrowing ideas from the MPEG-2 video encoding. The
experimental results demonstrate the efficiency of our techniques and their appli-
cability to large spatio-temporal datasets.

1 Introduction

With the advances of telecommunication technologies we are able to record the move-
ments of objects over a long history. Data analysts are often interested in the automatic
discovery of trends or patterns from large amounts of recorded movements. An interest-
ing problem is to find dense clusters of objects which move similarly for a long period.
For example, migrating animals usually move in groups (clusters). Another example
could be a convoy of cars that follow the same route in a city.

We observe that in many cases such moving clusters do not retain the same set of
objects in their lifetime, but objects may enter or leave, while the clusters are moving. In
the migrating animals example, during the movement of the cluster, some new animals
may enter the group (e.g., those passing nearby the cluster’s trajectory), while some
animals may leave the group (e.g., those attacked and eaten by lions). Nevertheless the
cluster itself retains its density during its whole lifetime, no matter whether it ends up
with a totally different set of objects compared to its initial formation.

The automatic discovery of such moving clusters is arguably an important problem
with several applications. For example, ecologists may want to study the evolution of

C. Bauzer Medeiros et al. (Eds.): SSTD 2005, LNCS 3633, pp. 364–381, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On Discovering Moving Clusters in Spatio-temporal Data 365

moving groups of animals. Military applications may monitor troops that move in par-
allel and merge/evolve over time. The identification of moving dense areas of traffic is
useful to traffic surveillance systems. Finally, intelligence and counterterrorism services
may want to identify suspicious activity of individuals moving similarly.

The contribution of this paper is the formal definition of moving clusters and the
proposal of methods that automatically discover them from a long history of recorded
trajectories. Intuitively, a moving cluster is a sequence of spatial clusters that appear
in consecutive snapshots of the object movements, such that two consecutive spatial
clusters share a large number of common objects. Here, we propose three methods to
identify moving clusters in spatio-temporal datasets. Based on the problem definition,
our first algorithm, MC1, performs spatial clustering at each snapshot and combines the
results into a set of moving clusters. We prove that we can speed-up this process by
pruning object combinations that cannot belong to the same cluster, without affecting
the correctness of the solution; the resulting algorithm is called MC2. Then, we observe
that many clusters remain relatively stable in consecutive snapshots. The challenge is
to identify them without having to perform clustering for the entire set of objects. We
propose an approximate algorithm, called MC3, which uses information from the past
to predict the set of clusters at the current snapshot. In order to minimize the approxi-
mation error, we borrow from MPEG-2 video encoding the idea of interleaving approx-
imate with exact cluster sets. We minimize the number of the expensive computations
of exact cluster sets by employing a method inspired by the TCP/IP protocol. Our ex-
periments show that MC3 reduces considerably the execution time and produces high
quality results.

Previous work has focused mainly on the identification of static dense areas over
time [1], or on the clustering of object trajectories for sets that contain the same objects
during a time interval [2]. Our problem is different, since both the location and the set
of objects of a moving cluster change over time. Related to our work is the incremental
maintenance of clusters [3]. Such methods are efficient only if a small percentage of
objects is updated. This is not true in our case since potentially all object may be up-
dated (i.e., move) in consecutive snapshots. Recent methods which use approximation
to improve the efficiency of incremental clustering [4] are also not applicable in our
problem since they do not maintain the continuity of clusters in the time dimension. To
the best of our knowledge, this is the first work which deals with the identification of
moving clusters.

The rest of the paper is organized as follows: First, we present a formal definition
of our problem in Section 2, followed by a survey of the related work in Section 3.
Our methods are presented in Section 4, while Section 5 contains the results of our
experiments. Finally, Section 6 summarizes the paper and presents some directions for
future work.

2 Problem Formulation

Let H = {t1, t2, . . . , tn} be a long, timestamped history. Let S = {o1, o2, . . . , om} be
a collection of objects that have moved during H . An object oi not necessarily existed
throughout the whole history, but during a contiguous subsequence oi.T of H . Without

366 P. Kalnis, N. Mamoulis, and S. Bakiras

o1
o2

o4o3

o5

o1

o2

o4

o3 o5
o6

o1

o4

o3 o5

o6

S1 S2 S3

c1 c2
c3

Fig. 1. Example of a moving cluster

loss of generality, we assume that the locations of each object were sampled at every
timestamp during oi.T . We refer to oi.T , as the lifetime of oi.

A snapshot Si of H is the set of objects and their locations at time ti. Si is a subset
of S, since not all objects in S necessarily existed at ti. Formally, Si = {oj ∈ S : ti ∈
oj .T }. Given a snapshot Si, we can employ a standard spatial clustering algorithm, like
DBSCAN [5] to identify dense groups of objects in Si which are close to each other and
the density of the group meets the density constraints (MinPts and ε) of the clustering
algorithm.

Let ci and ci+1 be two such snapshot clusters for Si and Si+1, respectively. We say

that cici+1 is a moving cluster if
|ci ∩ ci+1|
|ci ∪ ci+1| ≥ θ, where θ (0 < θ ≤ 1) is an integrity

threshold for the contents of the two clusters. Intuitively, if two spatial clusters at two
consecutive snapshots have a large percentage of common objects then we consider
them as a moving cluster that moved between these two timestamps. The definition of a
spatio-temporal cluster can be generalized as follows:

Definition 1. Let g = c1, c2, . . . , ck be a sequence of snapshot clusters such that for
each i(1 ≤ i < k), the timestamp of ci is exactly before the timestamp of ci+1. Then g is

a moving cluster, with respect to an integrity threshold θ (0 < θ ≤ 1), if
|ci ∩ ci+1|
|ci ∪ ci+1| ≥

θ, ∀i : 1 ≤ i < k.

Figure 1 shows an example of a moving cluster. S1, S2, and S2 are three snapshots.
In each of them there is a timeslice cluster (c1, c2, and c3). Let θ = 0.5. c1c2c3 is a

moving cluster, since
|c1 ∩ c2|
|c1 ∪ c2| =

3
6

and
|c2 ∩ c3|
|c2 ∪ c3| =

4
5

are both at least θ. Note that

objects may enter or leave the moving cluster during its lifetime.

3 Related Work

3.1 Clustering Static Spatial Data

Clustering static spatial data (i.e., static points) is a well-studied subject. Different clus-
tering paradigms have been proposed with different definitions and evaluation criteria,

On Discovering Moving Clusters in Spatio-temporal Data 367

based on the clustering objective. Partitioning methods, like k-medoids [6,7], divide the
objects into k groups and iteratively exchange objects between them until the quality
of the clusters does not further improve. First, k medoids are chosen randomly from
the dataset. Each object is assigned to the cluster corresponding to their nearest medoid
and the quality of the clusters is defined by summing the distances of all points to their
nearest medoid. Then, a medoid is replaced by a random object and the change is com-
mitted only if it results to clusters of better quality. A local optimum is reached after
a large sequence of unsuccessful replacements. This process is repeated for a number
of initial random medoid-sets and the clusters are finalized according to the best local
optimum found.

Another class of (agglomerative) hierarchical clustering techniques define the clus-
ters in a bottom-up fashion, by first assuming that all objects are individual clusters and
gradually merging the closest pair of clusters until a desired number of clusters remain.
Algorithms like BIRCH [8] and CURE [9] were proposed to improve the scalability of
agglomerative clustering and the quality of the discovered partitions. C2P [10] is an-
other hierarchical algorithm similar to CURE, which employs closest pairs algorithms
and uses a spatial index to improve scalability.

Density-based methods discover dense regions in space, where objects are close to
each other and separate them from regions of low density. DBSCAN [5] is the most
representative method in this class. First, DBSCAN selects a point p from the dataset.
A range query, with center p and radius ε is applied to verify if the neighborhood of p
contains at least a number MinPts of points (i.e., it is dense). If so, these points are
put in the same cluster as p and this process is iteratively applied again for the new
points of the cluster. DBSCAN continues until the cluster cannot be further expanded;
the whole dense region where p falls is discovered. The process is repeated for unvisited
points until all clusters and outlier points have been discovered. OPTICS [11] is another
density based method. It works similarly to DBSCAN but it does not compute the set
of clusters. Instead, it outputs an ordering of the points in the dataset which is used in a
second step to identify the clusters for various values of ε.

Although these methods can be used to discover snapshot clusters at a given times-
lice of the history, they cannot be applied directly for the identification of moving
clusters.

3.2 Clustering Spatio-temporal Data

Previous methods on clustering spatio-temporal data have focused on grouping trajecto-
ries of similar shape. The one-dimensional version of this problem is equivalent to clus-
tering time-series that exhibit similar movements. Ref. [12] formalized a LCSS (Least
Common Subsequence) distance, which assists the application of traditional clustering
algorithms (e.g., partitioning, hierarchical, etc.) on object trajectories. In Ref. [2], re-
gression models are used for clustering similar trajectories. Finally, Ref. [13,14] use
traditional clustering algorithms on features of segmented time series. The problem of
clustering similar trajectories or time-series is essentially different to that of finding
moving clusters. The key difference is that a trajectory cluster has a constant set of ob-
jects throughout its lifetime, while the contents of a moving cluster may change over
time. Another difference is that the input to a moving cluster discovery problem does

368 P. Kalnis, N. Mamoulis, and S. Bakiras

not necessarily include trajectories that span the same lifetime. Finally, we require the
segments of trajectories that participate in a moving cluster to move similarly and to be
close to each other in space.

A similar problem to the discovery of moving clusters is the identification of areas
that remain dense in a long period of time. Ref. [1] proposed methods for discovering
such regions in the future, given the locations and velocities of currently moving ob-
jects. This problem is different to moving clusters discovery in several aspects. First,
it deals with the identification of static, as opposed to moving, dense regions. Second,
a sequence of such static dense regions at consecutive timestamps does not necessar-
ily correspond to a moving cluster, since there is no guarantee that there are common
objects between regions in the sequence. Third, the problem refers to predicting dense
regions in the future, as opposed to discovering them in a history of trajectories.

Our work is also related to the incremental maintenance of clusters in data ware-
houses. Many researchers have studied the incremental updating of association rules for
data mining. Closer to our problem are the incremental implementations of DBSCAN
[3] and OPTICS [15]. The intuition of both methods is that, due to the density-based
nature of the clustering, the insertion or deletion of a new object oj affects only the
objects in the neighborhood of oj . Updates are applied in batch and it is assumed that
the updated objects are only a small percentage of the dataset. This is not true for our
problem due to the movement of objects. Potentially, the entire dataset can be updated
at each timestamp rendering the incremental maintenance of clusters prohibitively ex-
pensive. Another method, proposed by Nassar et. al. [4], minimizes the updating cost
by employing data bubbles [16] which are approximate representations of clusters. The
method attempts to redistribute the updated objects inside the existing data bubbles. It
is not suitable for our problem, since it does not maintain the continuity of clusters in
the time dimension.

4 Retrieval of Moving Clusters

In this section we describe three algorithms for the retrieval of moving clusters. The
first one, MC1, is a straight forward implementation of the problem definition. The next
algorithm, MC2, improves the efficiency by avoiding redundant checks. Finally, MC3
is an approximate algorithm which trades accuracy for speed.

4.1 MC1: The Straight-Forward Approach

A direct method for retrieving moving clusters is to follow the problem definition. Start-
ing from S1, density-based clustering is applied at each timeslice and consecutive times-
lice clusters are merged to moving clusters. A pseudocode for the algorithm is given in
Figure 2.

The algorithm scans through the timeslices, maintaining at each step a set G of
current moving clusters. When examining timeslice Si, G includes the moving clusters
containing a timeslice cluster in Si−1. After discovering the timeslice clusters in Si,
every pair (g, c), g ∈ G, c ∈ Si is checked to verify whether g ◦ c (i.e., g extended
by c in Si) forms a valid moving cluster. Clusters in G that were not extended at Si,

On Discovering Moving Clusters in Spatio-temporal Data 369

Algorithm. MC1(Spatio-temporal history H , real ε, int MinPts, real θ)
1. G := ∅; // set of current clusters
2. for i:=1 to n // for each timestamp
3. for each current moving cluster g ∈ G
4. g.extended := false
5. Gnext := ∅; // next set of current clusters
6. // retrieve timeslice clusters at Si

7. L := DBSCAN(Si, e, MinPts);
8. for each timeslice cluster c ∈ L
9. assigned := false;
10. for each current moving cluster g ∈ G
11. if g ◦ c is a valid moving cluster then
12. g.extended := true;
13. Gnext := Gnext ∪ g ◦ c;
14. assigned := true;
15. if (not assigned) then
16. Gnext := Gnext ∪ c;
17. for each current moving cluster g ∈ G
18. if (not g.extended) then
19. output g;
20. G := Gnext;

Fig. 2. The MC1 algorithm for computing moving clusters

are output. The Gnext set of moving clusters to be used at the next iteration (i.e., for
Si+1) consists of (i) clusters in G that were extended in Si and (ii) timeslice clusters
c ∈ Si that were not used as extensions to some g ∈ G. In this way, MC1 does not miss
any cluster and does not output any redundant clusters, whose extensions are also valid
clusters.

We assume that all points of the current timeslice Si fit in memory. In practice this
means that a relatively low-end computer with 1GB of RAM supports more than 10M
points per timeslice. Notice that there is no restriction on the number of timeslices. Hav-
ing the entire Si in the main memory eliminates the need to build a spatial index in order
to speed-up the clustering algorithm. Instead, we developed a main-memory version of

DBSCAN. We divide the 2-D space into a grid where the cell size is
ε√
2
× ε√

2
and hash

each point of Si to its corresponding cell. Observe that the distance between any two
points in the same cell is at most ε. Therefore, any cell containing more than MinPts
points is part of a cluster; such cells are called dense. The main-memory DBSCAN pro-
ceeds by merging neighboring dense cells and finally it handles the remaining points
which belong to sparse cells.

For each iteration of Line 3, we only need to keep one cluster g of G in the memory.
Therefore, the memory required by MC1 is O(|Si|+ |g|+ ε2

2). The if-statement in Line
11 is executed |G|·|L| times and calculates the similarity criterion of Definition 1 which
involves an intersection and a union operation. We employ a hash table to implement
these operations efficiently. The cost is O(|g|+|c|), where g and c are clusters belonging
to G and L, respectively.

370 P. Kalnis, N. Mamoulis, and S. Bakiras

4.2 MC2: Minimizing Redundant Checks

MC1 contains two time-consuming operations: the call to DBSCAN (line 7) and the
computation of intersection/union of clusters (line 11). Especially the later exhibits sig-
nificant redundancy since we expect each cluster g ∈ G to share objects only with a few
clusters c ∈ L. In this section we present an improved algorithm, called MC2 which
minimizes the redundant combinations of (g, c).

The idea is simple: We select a random object oj ∈ gi and search for it in all clusters
of L. Let ci ∈ L be the cluster which contains oj . Then we calculate the intersection and
union only for the pair (gi, ci). If they satisfy the similarity criterion, we insert gi ◦ ci

in the result. Else we must select another object ok ∈ gi and repeat the process. Notice
that some objects are pruned: ok is selected from gi − ci since the common objects of
(gi, ci) cannot belong to any other cluster of L. The interesting observation is that we
never need to test more than (1 − θ)|gi| points. The following lemma has the details:

Lemma 1. Let c1 and c2 be clusters. c1c2 is not a moving cluster if |c1 − c2| > (1 −
θ)|c1|.
Proof. For any set c1, c2, it holds that |c1∩c2| ≤ |c1|. We know that there are more than
(1−θ)|c1| points in c1 which do not exist in c2. Therefore, |c1∩c2| < |c1|−(1−θ)|c1|.
By using this value in the formula of Definition 1, we have:

|c1 ∩ c2|
|c1 ∪ c2| <

|c1| − (1 − θ)|c1|
|c1 ∪ c2| ≤ |c1| − (1 − θ)|c1|

|c1| = θ

Since
|c1 ∩ c2|
|c1 ∪ c2| < θ, c1c2 is not a moving cluster.

Figure 3 presents the pseudocode of MC2. The algorithm is similar to MC1, except
that the expensive union/intersection between clusters (Line 15) is executed at most
(1 − θ)|gi| times for every gi ∈ G. Notice that another potentially expensive operation
is the search for object oj in the clusters of L (Line 12). To implement this efficiently,
at each timeslice Si we generate a hash table which contains all objects of Si. The cost
is O(|Si|) on average. Then we can find an object in constant time, on average. The
tradeoff is that we need O(|Si|) additional memory to store the hash table. If memory
size is a concern, we can use an in-place algorithm (e.g., quicksort) to sort the objects
of Si and locate objects by binary search.

Note that if θ ≤ 1
2

ties may appear during the generation of moving clusters; in

this case, MC2 does not necessarily produce the same output as MC1. This is illus-

trated in the example of Figure 4, where θ =
1
3

. The original cluster c0 splits into two

smaller clusters c1 and c2 at timeslice Si+1. Both of them satisfy the criterion of Def-

inition 1 since
|c0 ∩ c1|
|c0 ∪ c1| =

|c0 ∩ c2|
|c0 ∪ c2| =

1
3

. Therefore, both {c0c1, c2} and {c0c2, c1}
are legal sets of moving clusters. The same behavior is also observed in the symmet-
ric case, where two small clusters are merged into a larger one. Since MC1 and MC2
break such ties arbitrarily, the outputs may differ; nevertheless, the result of MC2 is not
approximate.

On Discovering Moving Clusters in Spatio-temporal Data 371

Algorithm. MC2(Spatio-temporal history H , real ε, int MinPts, real θ)
1. G := ∅; // set of current clusters
2. for i:=1 to n // for each timestamp
3. Gnext := ∅; // next set of current clusters
4. L := DBSCAN(Si, e, MinPts); // retrieve timeslice clusters at Si

5. for each timeslice cluster c ∈ L
6. c.assigned := false;
7. for each current moving cluster g ∈ G
8. g.extended := false;
9. k := (1 − θ)|g|;
10. while (k > 0)
11. oj is a random object of g;
12. c := find(oj inside L); // c ∈ L contains oj

13. if (oj not found) then k := k − 1;
14. else
15. if g ◦ c is a valid moving cluster then
16. g.extended := true;
17. Gnext := Gnext ∪ g ◦ c;
18. c.assigned := true;
19. k = k − |g − c|;
20. if (not g.extended) then output g;
21. for each cluster c ∈ L
22. if (not c.assigned) then Gnext := Gnext ∪ c;
23. G := Gnext;

Fig. 3. The MC2 algorithm for computing moving clusters

4.3 MC3: Approximate Moving Clusters

Although MC2 avoids checking redundant combinations of clusters, it still needs to
perform an expensive call to DBSCAN for each timeslice. In this section we present an
alternative algorithm, called MC3, which decreases the execution time by minimizing
the set of objects processed by DBSCAN. MC3 is an approximate algorithm which
trades speed for accuracy. A cluster c may be approximate because: (i) there exists
an object oj ∈ c which is a core object but has less than MinPts objects in its ε-
neighborhood (see [5] for details), or (ii) the distance of oj from any other object in c is
larger than ε.

MC3 works as follows: given a current moving cluster set G and a timeslice Si, it
maps all objects oj ∈ Si to a set of clusters G′. This mapping is done by assuming that
all objects which are common in Si−1 and Si remain in the same clusters, irrespectively
of their new position in Si. Any new objects appearing in Si are assigned to the closest
existing cluster within distance

√
2ε, or they are considered as noise if no such cluster

exists. Let L1 be the subset of G′ containing the clusters that do not overlap with each
other, and S′

i ⊆ Si be a set containing these objects that do not belong to any cluster
of L1. The algorithm assumes that L1 contains valid clusters and does not process
them further. On the other hand, the objects in S′

i probably define some new clusters.
Therefore, MC3 applies DBSCAN only on S′

i. The output of DBSCAN together with

372 P. Kalnis, N. Mamoulis, and S. Bakiras

o
o1
oo2

o

o3
o

o4

o

o5

o

o6
oo

o

o7
o8
o9

c0

o
o1
oo2

o

o4
o5

o6
oo

o

o9

c2

c1

Si Si+1

Fig. 4. Cluster split (θ = 1
3

)

L1 is the set L of clusters in timeslice Si. Finally, the next set of moving clusters Gnext

is computed from G and L by employing the fast intersection technique of MC2. The
details of MC3 are presented in Figure 5.

Algorithm. MC3(Spatio-temporal history H , real ε, int MinPts, real θ)
1. G := ∅; // set of current clusters
2. timer := 0;
3. period := 1;
4. for i:=1 to n // for each timestamp
5. Gnext := ∅; // next set of current clusters
6. if (timer < period) then // Approximate clustering
7. G′ := Use G to assign all objects of Si to clusters;
8. L1 := {g|g ∈ G′ ∧ g is disjoint};
9. S′

i := Si− {all objects belonging to a cluster of L1};
10. L2 := DBSCAN(S′

i, e, MinPts); // retrieve timeslice clusters at S′
i

11. L := L1 ∪ L2;
12. timer := timer + 1;
13. else
14. L := DBSCAN(Si, e, MinPts); // retrieve timeslice clusters at Si

15. if ((deleted + inserted clusters in MC2) > α|G|) then
16. period := min(1, period/2);
17. else period := period + 1;
18. timer := 0;
19. Use the fast intersection method of MC2 to compute Gnext;
20. G := Gnext;

Fig. 5. The MC3 algorithm for computing moving clusters

The intuition behind the algorithm is that several clusters will continue to exist in
consecutive timeslices. Therefore, by employing the incremental approach of MC3, |S′

i|
(i.e., the input to the expensive DBSCAN procedure) is expected to be much smaller
than |Si|. Notice that S′

i can be computed with linear time complexity. First we create
a hash table which maps objects to moving clusters of G. We use this hash table to
generate G′; the entire process costs O(|Si−1| + |Si|) on average. Next, we divide the
space into a regular grid with cell size equal to ε × ε and we assign each object to its
corresponding cell; the cost is O(|Si|). During this step we can identify if two clusters

On Discovering Moving Clusters in Spatio-temporal Data 373

intersect with each other. Then we check that (i) every cluster c is connected (i.e, all
cells belonging to c meet each other) and (ii) no pair of clusters meet each other. The
complexity of this step is O(9ε2), where ε is constant. Figure 6 presents an example
with 3 clusters c1···3. c1 is connected and does not meet or intersect with any other
cluster; therefore it is placed in L1. On the other hand, the objects of c2 and c3 must be
added to S′

i because the two clusters meet.
Observe that in order to minimize the computation cost, we determine the relation-

ships among clusters by considering only the corresponding grid cells. This introduces
inaccuracies to the cluster identification process. For instance, the distance of an object
oj ∈ c1 from any other object in c1 may be up to 2

√
2ε, therefore oj may need to be

removed from c1. Also, there may be some noise object ok in the space between c1

and c2. By considering these two clusters together with ok, c1 and c2 may need to be
merged. When dealing with moving clusters which span several timeslices, an error at
the initial assignment propagates to the following timeslice. Therefore, errors tend to
accumulate and the quality of the result degrades fast.

1

1

1 1 1

ε22

2

2

3

Fig. 6. Checking cluster intersection on an ε × ε grid

In order to minimize the approximation error, we use a method from video compres-
sion. The MPEG-2 encoder achieves high compression rates at high quality by using
two types of video frames1: I-frames which are static JPEG images and P -frames which
represent the difference between framet and framet−1; in general I-frames are larger
that P -frames. First an I-frame is sent followed by a stream of P -frames (Figure 7.a).
When the encoding error exceeds some threshold (e.g., a different scene in the movie),
a new I-frame is sent to increase the quality (i.e., eliminate the error). We employ a
similar technique in our algorithm. Observe that the set L of clusters generated for each
timeslice by MC3, is analogous to P -frames. To decrease the approximation error, we
need to introduce periodically new reference cluster sets (i.e., similar to I-frames). We
achieve this by interleaving the approximate clustering algorithm with exact clustering.
This is shown in Line 14 of MC3, where DBSCAN is executed on the entire Si. Notice
that, contrary to MPEG-2, even after performing exact clustering the error is not nec-
essarily eliminated. This is due to the fact that moving clusters span several timeslices,
while exact clustering assigns correctly only the static clusters of the current timeslice.

1 There is also a B-frame, which is not relevant to our problem.

374 P. Kalnis, N. Mamoulis, and S. Bakiras

1

10

100

1000

1 101 201 301 401 501 601 701 801 901 1001 1101

Time

P
er

io
d

(a) Example MPEG-2 frame sequence (b) Example period function.

I P P P I IP P

Time

Fig. 7. Example of MPEG-2 and TCP/IP-based period adjustment

Therefore, in order to recover from errors, we may need to execute exact clustering
several times within a short interval. On the other hand, if exact clustering is performed
too frequently, MC3 degenerates to MC2.

Obviously, the period between calls to exact clustering cannot be constant, since the
data distribution (and consequently the error), vary among timeslices. In order to adjust
the period adaptively, we borrowed an idea from the networks area and specifically
from the TCP/IP protocol. When a node starts transmitting, TCP/IP assigns a medium
transmission rate. If the percentage of packet loss is low, it means that there is spare
capacity in the network; therefore the transmission rate is slowly increased. However,
if the percentage of packet loss increases considerably, the transmission rate decreases
quickly in order to resolve fast the congestion problem in the network. We employ a
similar method: initially the period for executing exact clustering is set to 1. If the error
is low, the period is increased linearly at each timestamp. In this way, as long as the
error does not increase too much, the expensive clustering is performed infrequently.
On the other hand, if the error exceeds some threshold, the period is decreased expo-
nentially (Figure 7.b). Therefore, the incorrect cluster assignments are not allowed to
propagate through many timeslices.

The reader should note that we cannot perform exact clustering only when there is
an error, because we cannot estimate the error unless we compute the exact clustering.
The above mentioned method minimizes the unnecessary computations, but some re-
dundancy is unavoidable. We estimate the error in the following way: when an exact
clustering is performed, we count the number of moving clusters which are created or
removed at the current timeslice. If this number is greater that α|G|, 0 < α ≤ 1, we
assume that the error is high. The intuition is that if many moving clusters are changing
this may be due to the fact that there were many incorrect assignments at the previ-
ous timeslices. Other methods for error estimation are also possible. For instance, we
could execute approximate and exact clustering at the same timeslice and compare the
results. However, this would increase the execution time, while our heuristic poses min-
imal overhead and works well in practice.

5 Experimental Evaluation

In this section we present the experimental evaluation of our methods. Due to the
unavailability of real datasets, we developed a generator which generates synthetic

On Discovering Moving Clusters in Spatio-temporal Data 375

Fig. 8. Output from the generator: a sample timeslice Si with 9000 objects

datasets with various distributions. The generator accepts several parameters includ-
ing the number of clusters per timeslice, the average number of objects per cluster, the
neighborhood radius ε and the density MinPts. The average velocity of the clusters
and the change probability Pc are also given as input. The output of the generator is
a series of timeslices. At each timeslice each cluster may move from the previous po-
sition; the velocity vector changes with probability Pc. With the same probability, a
cluster may rotate around its center. Also, objects are inserted or deleted with probabil-
ity Pc. Figure 8 shows a sample of the distribution of objects at a given timeslice. We
generated several datasets by varying the number of objects per timeslice from 10K to
50K and the number of timeslices from 50 to 100. Therefore, the size of each dataset
was between 500K and 5M objects. We implemented our algorithms in C++ and run all
experiments on a relatively low-end Linux system with 1.2GB RAM and 1.3GHz CPU.

In order to evaluate the accuracy of MC3’s approximation, we compared at each
timeslice the current set of moving clusters produced by MC3 against the set generated
by MC2. The quality of the solution is defined as:

F =
2 · precision · recall

precision + recall

This metric is commonly used in data mining [17]. Obviously, F is always 1 for MC1
and MC2, since their solution is exact.

In the first set of experiments we test the scalability of our methods to the size of
the dataset. We generated datasets with 100 timeslices. Each timeslice contained 10K
to 50K objects and 800 clusters on average, resulting to a database size of 1M to 5M
objects. We set θ = 0.9 and α = 0.1 (recall that α is used in Line 15 of MC3). The re-
sults are shown in Figure 9. As expected, the execution time of all algorithms increases
with the dataset size. MC2 is much faster than MC1 and the difference increases for
larger datasets. This demonstrates clearly that MC2 manages to prune a large number
of redundant cluster combinations. MC3 is faster than MC2 but there is some error in-
troduced to the solution. In Figure 9.b we draw the quality F of MC3’s solution for
each timeslice. Notice that the quality is reduced at first, because the error is not high
enough to trigger the execution of exact clustering. However, when the error exceeds
the threshold value, the algorithm adjusts fast to high quality solutions.

376 P. Kalnis, N. Mamoulis, and S. Bakiras

0

50

100

150

200

250

300

350

10K 20K 30K 40K 50K

Number of Points

T
im

e
(s

ec
)

MC1 MC2 MC3

(a) Execution time vs. database size

0

0.2

0.4

0.6

0.8

1

1 11 21 31 41 51 61 71 81 91

Timeslice

Q
ua

lit
y

F

10K 20K 30K 40K 50K

(b) Quality F of MC3 at each timeslice

Fig. 9. Varying the number of objects. 800 clusters, θ = 0.9, α = 0.1

Table 1. Average quality F of MC3. 800 clusters, θ = 0.9, α = 0.1

10K objects 20K objects 30K objects 40K objects 50K objects

F 94.7% 91.1% 90.0% 90.8% 87.0%

The average quality of MC3 for the entire database is shown in Table 1. Given that
the number of clusters remains the same for all datasets, when the database size in-
creases, so does the average number of objects per clusters. When this happens, the
extends of clusters tend to grow and therefore more errors are introduced due to incor-
rect assignment of cluster splits or noise objects (see Figure 6 for details). Nevertheless,
the average quality remained at acceptable levels (i.e, at least 87%) in all cases.

The second set of experiments test the scalability of the algorithms to the number
of clusters. All datasets contain 100 timeslices with 50K objects each (i.e., database
size is 5M objects). The average number of clusters per timeslice is varied from 100
to 800. Again, we set θ = 0.9 and α = 0.1. The results are presented in Figure 10.
The trend is similar to the previous experiment with the exception that the relative
performance of MC3 has improved. To explain this, observe the graph of the quality
F . For the case of 100 clusters, the quality remains high during the entire lifespan of
the dataset. This happens because there are fewer clusters in the space, therefore there
is a smaller probability of interaction among them which decreases the probability of
errors in MC3. Consequently, the expensive exact clustering in Line 14 of MC3 is called
very infrequently and the total execution time is improved.

Table 2 shows the average quality of MC3 for the entire dataset. Notice the strange
trend: the quality first decreases and then increases again when there are more clusters.
To understand this behavior, refer again to Figure 10.b. We already explained why qual-
ity is high for the 100 clusters dataset. On the other hand, when there are 800 clusters,
there are a lot of interactions among them which introduce a large margin for error.
Therefore, MC3 reaches the error threshold fast and starts performing exact clustering
in order to recover. Now look at the 200 and 400 clusters datasets. There is a large
number of clusters, therefore quality drops. Nevertheless, the error does not exceed

On Discovering Moving Clusters in Spatio-temporal Data 377

0

50

100

150

200

250

300

350

100 200 400 800

Number of Clusters

T
im

e
(s

ec
)

MC1 MC2 MC3

(a) Execution time vs. number of clus-
ters

0

0.2

0.4

0.6

0.8

1

1 11 21 31 41 51 61 71 81 91

Timeslice

Q
ua

lit
y

F

100 200 400 800

(b) Quality F of MC3 at each timeslice

Fig. 10. Varying the number of clusters. 50K objects, θ = 0.9, α = 0.1

Table 2. Average quality F of MC3. 50K objects, θ = 0.9, α = 0.1

100 clusters 200 clusters 400 clusters 800 clusters

F 95.7% 86.9% 72.7% 87.0%

the threshold and MC3 does not attempt to recover. The cause of this problem is the
inappropriate value for parameter α.

In order to investigate further how parameter α affects the result, we used the 800
clusters, 50K objects dataset from the previous experiment and varied α from 0.05 to
0.2. The quality of MC3 for each timeslice, is shown in Figure 11. When α is low, MC3
reaches the error threshold fast. When this happens, it starts using the exact clustering
function in order to recover fast. When α is larger, MC3 needs more time before initiat-
ing the recovery process. A point to note here is that for large values of α, the algorithm
does not recover completely. For instance, if α = 0.2, the algorithm starts oscillating
around F = 0.4 after some time.

The execution time of MC3 also depends on α. This is expected, because the al-
gorithm trades accuracy for speed. To test this, we generated two more datasets with
the same characteristics as before, but with different object agility. Assuming that the
previous dataset has Medium agility, one of the new datasets contains objects with High
agility and the other contains objects with Low agility. The results are shown in Fig-
ure 12. As expected, MC3 is faster for larger values of α. This is due to the fact that
when we accept higher error, MC3 uses most of the time the fast approximate function
for clustering. Observe that MC3 is faster for low agility datasets. Such datasets contain
fewer interactions among clusters; therefore the approximation error is low resulting to
very few calls to the expensive exact clustering function.

Table 3 compares the execution time and the solution quality of MC3 against MC2
(recall that F = 1 always for MC2). In contrast to MC3, MC2 does not exhibit sensi-
tivity to the agility of the dataset. Therefore, for the low agility dataset, the speedup of
MC3 is very high. However, the average quality drops. To compare the various cases,

378 P. Kalnis, N. Mamoulis, and S. Bakiras

0

0.2

0.4

0.6

0.8

1

1 11 21 31 41 51 61 71 81 91

Timeslice

Q
ua

lit
y

F

������ ����� ������ �����

Fig. 11. Quality F of MC3 at each timeslice. 800 clusters, 50K objects, θ = 0.9

0

50

100

150

200

250

������ ����� ������ �����

Alpha

T
im

e
(s

ec
)

High Med Low

Fig. 12. Execution time of MC3 for varying α. 800 clusters, 50K objects, θ = 0.9

we use the relative quality per time unit, defined as:

F (MC3|MC2) =
FMC3
tMC3

− 1
tMC2

1
tMC2

Observe that F (MC3|MC2) is much higher for the low agility dataset, meaning that
MC3 traded a small percentage of accuracy in order to achieve a much lower execution
time.

The last set of experiments investigates the effect of θ, which is the integrity thresh-
old of Definition 1. We used the 800 clusters, 50K objects, medium agility dataset from
the previous experiment and set α = 0.1. We varied θ from 0.7 to 0.95. Figure 13 shows
the execution time for the three algorithms. There is a very small increase of the exe-
cution time when θ increases. This is more obvious for MC1. The reason is that when
θ is large, there is a smaller probability to find matching moving clusters in consecu-
tive timeslices. To conclude that there is no match, MC1 must check all cluster pairs,
whereas, the search would stop as soon as one match was found.

Figure 14 and Table 4 demonstrate the effect of theta on the quality of MC3. In-
terestingly, the quality improves when θ increases. This happens because, even if the

On Discovering Moving Clusters in Spatio-temporal Data 379

Table 3. Average quality of MC3 for datasets with varying agility

MC2: Time (sec) MC3: Time (sec) MC3: Quality (F) F (MC3|MC2)

High 252 246 98.6% 1.2%
Med 248 208 87.0% 3.9%
Low 256 118 73.0% 59.0%

0

50

100

150

200

250

300

350

����� ����� ����� ������

Theta

T
im

e
(s

ec
)

MC1 MC2 MC3

Fig. 13. Execution time vs. θ. 800 clusters, 50K objects, α = 0.1

approximate clustering function generates some incorrect clusters, there is a high pos-
sibility that the corresponding moving clusters will not satisfy the θ criterion and will
be eliminated. Therefore, there is a smaller probability of errors.

6 Conclusions

In this paper we investigated the problem of identifying moving clusters in large spatio-
temporal datasets. The availability of accurate location information from embedded
GPS devices, will enable in the near future numerous novel applications requiring the
extraction of moving clusters. Consider, for example, a traffic control data mining sys-
tem which diagnoses the causes of traffic congestion by identifying convoys of similarly
moving vehicles. Military applications can also benefit by monitoring, for instance, the
movement of groups of soldiers.

We defined formally the problem and proposed exact and approximate algorithms
to identify moving clusters. MC2 is an efficient algorithm which can be used if 100%
accuracy is essential. MC3, on the other hand, generates faster an approximate solu-
tion. In order to minimize the approximation error without sacrificing the efficiency, we
borrowed methods from MPEG-2 and TCP/IP. Our experimental results demonstrate
the applicability of our methods to large datasets with varying object distribution and
agility. To the best of our knowledge, this is the first work to focus on the automatic
extraction of moving clusters.

The efficiency and accuracy of MC3 depends on the appropriate selection of param-
eter α and the accurate estimation of error. Currently we are working on a self-tuning

380 P. Kalnis, N. Mamoulis, and S. Bakiras

0

0.2

0.4

0.6

0.8

1

1 11 21 31 41 51 61 71 81 91

Timeslice

Q
ua

lit
y

F

����� ����� ����� ������

Fig. 14. Quality F of MC3 vs. θ. 800 clusters, 50K objects, α = 0.1

Table 4. Average quality of MC3 for varying θ

θ = 0.7 θ = 0.8 θ = 0.9 θ = 0.95

MC3: Quality (F) 83.0% 86.8% 87.0% 96.5%
F (MC3|MC2) 1.1% 3.4% 3.9% 5.3%

method for parameter selection. We also plan to explore sophisticated methods for error
estimation.

References

1. Hadjieleftheriou, M., Kollios, G., Gunopulos, D., Tsotras, V.J.: On-line discovery of dense
areas in spatio-temporal databases. In: Proc. of SSTD. (2003)

2. Gaffney, S., Smyth, P.: Trajectory clustering with mixtures of regression models. In: Proc.
of ICDM. (1999) 63–72

3. Ester, M., Kriegel, H.P., Sander, J., Wimmer, M., Xu, X.: Incremental clustering for mining
in a data warehousing environment. In: Proc. of VLDB. (1998) 323–333

4. Nassar, S., Sander, J., Cheng, C.: Incremental and effective data summarization for dynamic
hierarchical clustering. In: Proc. of ACM SIGMOD. (2004) 467–478

5. Martin, E., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering
clusters in large spatial databases with noise. In: Proc. of KDD. (1996)

6. Kaufman, L., Rousueeuw, P.: Finding Groups in Data: an Introduction to Cluster Analysis.
John Wiley and Sons (1990)

7. Ng, R.T., Han, J.: Efficient and effective clustering methods for spatial data mining. In: Proc.
of VLDB. (1994)

8. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: An efficient data clustering method for
very large databases. In: Proc. of ACM SIGMOD. (1996)

9. Guha, S., Rastogi, R., Shim, K.: CURE: An efficient clustering algorithm for large databases.
In: Proc. of ACM SIGMOD. (1998)

10. Nanopoulos, A., Theodoridis, Y., Manolopoulos, Y.: C2P: Clustering based on closest pairs.
In: Proc. of VLDB. (2001)

On Discovering Moving Clusters in Spatio-temporal Data 381

11. Ankerst, M., Breunig, M., Kriegel, H.P., Sander, J.: OPTICS: Ordering points to identify the
clustering structure. In: Proc. of ACM SIGMOD. (1999) 49–60

12. Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional trajectories.
In: Proc. of ICDE. (2002) 673–684

13. Das, G., Lin, K.I., Mannila, H., Renganathan, G., Smyth, P.: Rule discovery from time series.
In: Proc. of KDD. (1998) 16–22

14. Li, C.S., Yu, P.S., Castelli, V.: Malm: A framework for mining sequence database at multiple
abstraction levels. In: Proc. of CIKM. (1998) 267–272

15. Kriegel, H.P., Kröoger, P., Gotlibovich, I.: Incremental OPTICS: Efficient computation of
updates in a hierarchical cluster ordering. In: Proc. of DaWaK. (2003) 224–233

16. Breunig, M.M., Kriegel, H.P., Kröger, P., Sander, J.: Data bubbles: Quality preserving per-
formance boosting for hierarchical clustering. In: Proc. of ACM SIGMOD. (2001)

17. Larsen, B., Aone, C.: Fast and effective text mining using linear-time document clustering.
In: Proc. of KDD. (1999) 16–22

	Introduction
	Problem Formulation
	Related Work
	Clustering Static Spatial Data
	Clustering Spatio-temporal Data

	Retrieval of Moving Clusters
	MC1: The Straight-Forward Approach
	MC2: Minimizing Redundant Checks
	MC3: Approximate Moving Clusters

	Experimental Evaluation
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

