

C. Bauzer Medeiros et al. (Eds.): SSTD 2005, LNCS 3633, pp. 308 – 327, 2005.
© Springer-Verlag Berlin Heidelberg 2005

High Performance Multimodal Networks

Erik G. Hoel, Wee-Liang Heng, and Dale Honeycutt

Environmental Systems Research Institute,
380 New York Street, Redlands, CA 92373

{ehoel, wheng, dhoneycutt}@esri.com

Abstract. Networks often form the core of many users’ spatial databases.
Networks are used to support the rapid navigation and analysis of linearly
connected data such as that found in transportation networks. Common types of
analysis performed on such networks include shortest path, traveling salesman,
allocation, and distance matrix computation.

Network data models are usually represented as a small collection of tables:
a junction table and an edge table. In the context of networks used to model
transportation infrastructure, it is also necessary to model turn restrictions and
impedances (delays). Network data is frequently persisted in normalized
relational tables that are accessible via standard SQL-based queries. We
propose a different approach where the network connectivity information is
persisted using a compressed binary storage representation in a relational
database. The connectivity information is accessible via standard Java, .NET,
and COM APIs that are tailored to common access patterns used in the support
of high performance network engines. These network engines run on the client
or application server tier rather than as extensions on the relational server.

In this paper, we discuss the problem of building a robust and scalable
implementation of a network data model. The fundamental and central
requirements are enumerated. These requirements include support for hierarchical
networks, turn restrictions, and logical z elevations. We propose a different
approach to representing network topology that addresses many of the high-end
modeling requirements of network systems. Our approach supports all of the
listed requirements in addition to multimodal modeling (e.g., coexistent road, bus,
and rail networks) within the context of multi-user, long transaction databases.

1 Introduction

Network data models have been used to represent geographic information for well
over thirty years [15], [18], [19]. These models have been incorporated into a number
of operational systems (see, for example TransCAD [3] or ARC/INFO [22]). Despite
the relative maturity of such technology, most systems have fallen short of meeting
the most sophisticated requirements of transportation network modeling. Such
requirements include the ability to model multimodal (or intermodal) transportation
systems (transportation networks where two or more different transportation modes
are linked – e.g., roads and rail) and the ability to handle coincident features
participating in different modes of the model (e.g, subways underneath streets, or bus

 High Performance Multimodal Networks 309

routes along city streets) when geometric analysis of the participant features is used to
derive network connectivity [29]. In addition, some systems fail to address the
requirement to model turns and maneuvers without applying complex graph
transformations to represent permissible turns as explicit edges [30].

In this paper, we describe a design for modeling multimodal networks that are
persisted in relational databases. This design is the basis for our implementation of
networks in the ArcGIS geographic information system. The design satisfies the
fundamental goal of supporting sophisticated network models that are consumed by
high performance network engines, and is tailored for fast retrieval of connectivity
information within network analysis algorithms. Network engines provide fine
grained (i.e., forward star [6]) access to very large external networks persisted in an
RDBMS or the file system, and are intended to reside on the client in the case of
traditional two-tier systems, or on the application server in n-tier architectures. The
network engine supports a rich set of network analysis algorithms, such as shortest
path finding, traveling salesman problems, and network resource allocation
operations, that also execute in the desktop or application server tier and are used in a
variety of desktop and server-based network analysis applications.

 In the first section of this paper, we review the logical model of network topology.
The major requirements of a high-end network data model are discussed and a
connectivity model that supports multimodal networks is presented. We then consider
the issue of representing turn restrictions and maneuvers (multi-part turns) – a critical
component in transportation networks [9]. Existing approaches to representing turns
are reviewed and our modeling approach is presented. The access model of
consuming networks is reviewed in the context of common workflows as well as a
query model that is tailored to the support of high performance network engines. We
then address the issue of the physical storage representation of a network. The
conventional physical database implementation is briefly detailed. We then present
our alternative physical representation and highlight the reasons and motivation
behind its departure from the conventional implementation. We conclude with a brief
discussion of our implementation experience and outline our ongoing future research
in this domain.

2 Logical Model

The movement of people, the transportation of goods and services, as well as the
distribution of resources, energy, and communication are commonly modeled with
network systems. Network data structures for representing geographic information are
a standard topic in geographic information science [18], [27].

In this paper, we use the term network to refer to a connectivity graph of junctions
and their connecting edges, where each junction and edge is associated with a feature
with point or line geometry respectively. The term network element is used to refer to
the collection of junctions and edges comprising the network. All network elements
have a set of numeric properties, called network attributes. Attributes capture
information about network elements, such as the travel time across an element, and
are used to define the navigation context during an analysis.

310 E.G. Hoel, W.-L. Heng, and D. Honeycutt

Junction attribute values provide a high-level view of traversing intersections. For
example, the travel time attribute value on a junction element describes how long it
takes to cross the element, ignoring the edge elements used to enter and exit the
junction element. For more detailed modeling of traversing intersections, we use
turns. In the simplest case, a turn element models entering a junction from a particular
edge element and exiting to another. A multipart turn element, also known as a
maneuver, enters the junction element from a path of two or more connected edge
elements.

Turn elements are not strictly part of the graph model. They represent a relationship
rather than being an abstraction of a real-world entity. Turns do not modify the
junction-edge connectivity of the network; instead they affect traversability of the
network elements. Turns are not considered an attribute of a network junction, though
they occur at every junction. This is because they are intrinsically dependent upon the
properties of the associated network edges.

The connectivity graph of a network is derived from the source data during a
process called network building. During a build, junction, edge and turn elements are
generated from point, line and turn features, and connectivity relationships are
established. The connectivity graph is typically stored separately from the source data,
with network analysis algorithms (including the build process) consuming it.

2.1 Requirements

The primary requirements for any robust implementation of network data models are:

• Multimodal models. In the context of transportation networks, a multimodal
network is one in which two or more types of transportation modes (such as
walking, riding a train, or driving a car) are modeled. Alternatively, with utility
networks, a multimodal network may consist of the differing transmission and
distribution systems.

• Hierarchical models. Hierarchy is used within network models to further control
the flow within the network [19]. Differing elements may be assigned to different
levels of hierarchy, with flow through the higher levels of the hierarchy taking
precedence over the lower levels when performing path or route finding
operations. Within transportation networks, interstate highways are commonly
associated with the highest level of the hierarchy, state highways and major
feeders the next lower level, and city streets the lowest level of the hierarchy.

• Turns and maneuvers. Support for turning movements, both two-part turns and
multi-part turns (known as maneuvers), is necessary in order to more accurately
model transportation networks. The definition of a turn should be separated from
its attribution. A turn is not simply one restriction or penalty; instead it should be
regarded as a first-class entity with attribution.

• Fast network navigation. The persisted representation must support fast retrieval
of connectivity information for use within network analysis algorithms, and should
be structured according to the most common access patterns.

 High Performance Multimodal Networks 311

• Z elevations. In order to refine network connectivity with planar network
datasets (e.g., modeling freeway over and underpasses), logical z elevation values
are supplied by commercial data vendors on the ends of each line feature. These
elevation values must be respected when establishing network connectivity.

• Rich attribution of network elements. To capture real-world constraints, such
as one-way travel restrictions, height/weight limits, and time-of-day travel times,
we need a rich attribute model that supports multiple attributes on a network
element.

• Uniform attribute access model. Clients of the model should be insulated from
the details of where attribute values originate. For example, the travel time
attribute for an edge element may be derived from the properties of the associated
street feature, or it may be a real-time value. In each case, client applications
should be able to retrieve attribute values without knowledge of the underlying
storage.

In addition to these network specific requirements, other standard system
requirements such as performance, editability, persistence in a relational database,
support for long transactions, and scalability (e.g, a continental dataset of 50+ million
edges) also apply.

2.2 Connectivity Model

Connectivity in a network is generally based upon spatial coincidence of the
endpoints of line (real-world) features and other point features. This leads to a 1:1
mapping between features participating in a network and the network elements used
to represent the network connectivity. This approach works reasonably well for
simpler planar network datasets (e.g., TIGER/Line [20], or others commonly
available from commercial data vendors such as Tele Atlas or NAVTEQ). However,
with non-planar datasets (e.g., long linear features such as highways in transportation
networks), it is useful to allow network connectivity partway along a linear feature
(we term this mid-span connectivity). The familiar one-to-one mapping between linear
features and edge elements must be generalized into a one-to-many mapping. Mid-
span connectivity is supported in some network models such as the ArcGIS
Geometric Network [31]. The example shown in Fig. 1 depicts the one-to-many
mapping between line features and edge elements when mid-span connectivity is
supported.

Fig. 1. Mid-span connectivity example; on the left, the long linear feature l1 (dashed line) will
correspond to edge elements e11, e12, and e13 if mid-span connectivity is supported

312 E.G. Hoel, W.-L. Heng, and D. Honeycutt

Multimodal Models. As discussed previously, multimodal network models are
particularly important in the context of transportation modeling. We employ the
concept of connectivity groups within the connectivity model to allow users to group
together line classes that should be connected when geometric coincidence is present.
A line class may participate in only one group. The number of groups is not
constrained. All connectivity is local to a group; line features are not connected to
other line features that are found in different connectivity groups. In order to establish
connectivity between two groups (e.g., road network in one group, subway network in
another group), point feature classes are allowed to participate in one or more groups.
Thus, a point feature that is coincident with a road feature in one group and a subway
feature in a second group will connect the two groups together in its role as a junction
element. Connectivity groups may be employed to model networks containing
multiple overlapping subnetworks – e.g., street networks, subway networks, and bus
route networks.

An example highlighting connectivity groups is shown in Fig. 2. In this example,
the line features participate in two different groups. The first line class contains line l1
which is depicted by the dashed line. The second line class contains two line features,
l2 and l3, depicted with solid lines. A point feature class, containing point feature p1,
participates in both connectivity groups. On the right side of Fig. 2, the resulting
connectivity is shown. Note that l1 (edges e11 and e12) and l2 (edges e21 and e22) are
connected at point p1 (junction j3). There is no connectivity between line l1 and line l3
as they are in different groups and there is no point feature where they intersect.

Fig. 2. Example of connectivity groups. Linear feature l1 (dashed line) is in one group, and
features l2 and l3 are in a second group. Point feature p1 is in both groups

Z Elevations. Z elevations (sometimes termed ‘z-levs’) are a critical component for
modeling overpasses and underpasses, tunnels, and highway interchanges with planar
datasets (most commercial and governmental datasets are planar). At each endpoint of
a line feature, there may be associated z elevation information that is used to refine
network connectivity. This elevation information is typically logical – it does not
correspond to actual geographical elevations, but rather a logical (ordinal) elevation
value. For example, the endpoints of line features representing roads that comprise an
underpass may have a z elevation value of 0, while the lines representing the overpass
roads may have a value of 1. This logical vertical ordering can extend to support very
complex highway interchanges.

 High Performance Multimodal Networks 313

Fig. 3 contains an example of four lines meeting at a location that corresponds to
an overpass. In the example, lines l1 and l3 pass beneath lines l2 and l4 (note that all
four lines l1 – l4 share a coincident endpoint; if one did not consider the z elevations
when determining network connectivity, all four lines would be connected together).
The z elevations are shown (0, 0, 1, and 1 respectively). The resulting connectivity is
shown on the right side of the figure. Edges e1 and e3 are connected at junction j13;
edges e2 and e4 are connected at junction j24. Junctions j13 and j24 appear coincident in
the figure.

Fig. 3. Example of z elevations and their impact upon connectivity. Z elevations are shown in
the left. On the right, the two junctions j13 and j24 are coincident

The extensions to the simple endpoint connectivity model are reflected in the
network build algorithm. During the geometric analysis and connectivity discovery
phase of the build process, the connectivity model and the z elevations are used to
refine the connectivity between spatially coincident geometries.

2.3 Turns and Maneuvers

Turn restrictions and impedances (or delays) present a problem to most network
models. The presence of turns can greatly impact the movement through a network
[7], [21]. A common way to model turns within a network is with a turn table [30]. A
turn table represents each explicitly specified turn restriction (or penalty) as a row
with references to the associated two edges. Turn tables may be augmented with an
impedance attribute if the turns may also represent delays or impedances. When
traversing the network, the turn table is queried as necessary. An alternative approach
is to employ a transition matrix that represents possible transitions at an intersection
[10]. The matrix can be encoded into a bitmap for a smaller physical representation.

In order to overcome the performance problems (as perceived by some) of
representing turns in an extra table that is disjoint from the network connectivity tables,
graph modification techniques have been employed. The goal behind these techniques
is to allow the turns to be more directly imbedded within the network connectivity
information in order to achieve better performance during network traversals.

Graph Modification – Node Expansion. Node expansion is one technique to imbed
turns within a graph by expanding each junction in the graph to a subgraph where
permissible turns are explicitly represented as edges [1], [15], [24], [28]. The primary
advantage of this approach is that the turns are represented within the connectivity
graph of the network (thereby possibly improving traversal performance).

314 E.G. Hoel, W.-L. Heng, and D. Honeycutt

Fig. 4. Example highlighting node expansion where a junction connected to three edges is
expanded to a set of three junctions with nine edges representing possible turns (u-turns omitted
for clarity)

However, for an intersection of n edges, there are n2 possible turns (including u-
turns). This highlights the fundamental problem with this approach, namely, the
significant bloating of the network storage requirements. This adversely impacts both
storage costs and traversal performance [21]. In Fig. 4, the intersection junction j1 is
expanded and replaced with three junctions (labeled j11 through j13), and edges are
used to explicitly indicate permissible turns (the bidirectional edges on the right side
of Fig. 4).

Fig. 5. Example of a turn restriction, the equivalent expanded graph, and an incorrect traversal
in the expanded graph

Node expansion also introduces an algorithmic issue caused by traversing the
edges in the expanded subgraph in sequence. Such a traversal corresponds to making
multiple turns at the same junction in the original graph, and is meaningless. In Fig. 5,
the turn from e2 to e1 is restricted. The restricted turn is reflected in the expanded
graph with the directed edge e4. However, we can still incorrectly go from e2 to e1 via
the edges e6 and e5. Analysis algorithms that operate on the expanded graph have to
avoid such traversals in order to generate correct results.

Graph Modification – Line Graphs. Line graphs (sometimes inappropriately termed
dual graphs) are also used to explicitly model turns within a network [2], [30]. Line
graphs are a transformation of the original (or primal) graph where edges in the
primal are replaced with junctions in the line graph, and edges in the line graph
represent turns in the primal. An example is shown in Fig. 6 where a simple (primal)
graph consisting of three edges is transformed into the line graph on the right side of
the figure. Edge e1 in the primal is transformed into junction j11 in the line graph, edge
e2 into junction j12, and edge e3 into junction j13 respectively. Presuming that all turn
movements are allowed, bidirectional edges in the line graph will be created between
the three junctions in the line graph (edges e12, e13, and e23).

 High Performance Multimodal Networks 315

Fig. 6. Example line graph representation. On the right, the primal graph is represented in gray
and the line graph is in black. In this example, all turns are possible (u-turns omitted)

Similar to the node expansion technique, the advantage of this approach is that the
turns are explicitly represented in the graph. In addition, it results in a smaller graph
than with the node expansion technique. However, line graphs require that the primal
graph be retained in order to complete certain types of operations such as route
drawing [30].

Fig. 7. Example of a three part maneuver e1-e2-e3 at an intersection with a dual carriageway

Maneuvers. A maneuver is a turn that spans three or more edges. Maneuvers are
used to model turning movements at complex street intersections within
transportation networks. Consider the following intersection formed by a dual
carriageway (i.e., a street where each travel direction is represented as a separate line
feature) and a two-way street in Fig. 7. To restrict the u-turn from edge e1 to edge e3,
we need a maneuver composed of the edges e1, e2 and e3 in sequence. The maneuver
cannot be synthesized from the two overlapping turns e1-e2 and e2-e3, since
restricting the e1-e2 turn also incorrectly restricts the left turn specified by the
sequence e1-e2-e4.

Maneuvers can get arbitrarily complicated. We have observed instances of
maneuvers with high part counts in transportation networks, such as a nine-part
maneuver in the street network for Osaka, Japan. It is awkward to adapt graph
modification techniques to model maneuvers.

2.4 Network Attributes

Network attributes are numeric properties of network elements that are used to define
the navigation context during an analysis [21]. Examples of common attributes found
on network elements include travel time, one-way restrictions, speed along an edge,
and hierarchy value. The various types of attributes can be classified as:

316 E.G. Hoel, W.-L. Heng, and D. Honeycutt

• cost impedances, which may be apportioned if the line feature is associated
with multiple network edges (e.g., travel time),

• descriptor a characteristic of the entire element (e.g., speed limits, lane count),

• restriction identify which elements cannot be traversed (e.g., one-way), and

• hierarchy used in conjunction with hierarchical analysis algorithms (e.g., an
order or grade – highways, arteries, and city streets).

Network attributes are usually persisted along with the network elements (e.g., the
attribute columns in the standard relational model depicted in Fig. 9). The network
attributes often are mapped to attributes found in the associated feature; during the
process of building the network and establishing network connectivity, attribute
values are read from the features and persisted into the network. The reason for doing
so is to minimize the number of tables that must be queried during network analysis,
in order to achieve better performance.

However, with very dynamic environments such as are found in location-based
service applications, it is sometimes advantageous not to have to persist the value of a
network attribute along with the network connectivity. This is particularly the case if
the attributes on the feature that are mapped to a network attribute are subject to
frequent change. Evaluator components serve to abstract away the underlying storage
of the network attributes. Client applications (including the build algorithm and the
forward star cursors, as well as analysis algorithms) instead query the evaluators that
are associated with attributes and feature classes. The evaluators may return values
that are persisted directly in the connectivity network, or they may derive an attribute
value on the fly (or even query a web service). In this manner, client applications are
presented a uniform view of accessing attribute values.

3 Access Model

There are various approaches to effectively building, maintaining, and navigating the
elements contained within a network. Some systems (e.g., [23]) have placed the onus
upon the client application for the discovery and maintenance of network elements;
client applications are responsible for determining the connectivity and appropriately
setting the foreign keys that are used to specify the connectivity in the persisted
representation (e.g., setting the from and to junctions on the edge elements). Other
previous systems (e.g., [22], [31]) have instead provided mechanisms that perform
geometric analysis in order to automatically determine connectivity and persist the
information. The choice of when to establish or update the persisted connectivity
information is based in part upon the user workflows that the network solution is
trying to address.

In addition to building the networks, various approaches have been taken to how
the network should be queried. Some systems have relied upon low level querying of
the persisted network representation (e.g., which two junctions are connected to the
specified edge), while other have provided alternative query mechanisms.

 High Performance Multimodal Networks 317

3.1 Workflows

There are two common usage classes among users of network data (from a
maintenance standpoint); one class of user purchases their network data (or obtains it
from external sources) and infrequently edits or modifies the data. They are instead
focused on performing analysis upon the obtained network data. The second class of
user is actively engaged in editing and maintaining their data. Most often, the second
class of users are large organizations such as the government, utilities, or data
providers. We have observed that the first class of user is far more common – most
people do not actively edit the features participating in their networks.

For the first class of user that infrequently edits their network data, it is sufficient
to support a build process that can complete all geometric and connectivity analysis
and network element persistence across the dataset in its entirety. For such users,
the network is built immediately following network definition and creation. If the
user chooses to edit the features in the network, the entire network will have to be
rebuilt in order to guarantee correctness of the connectivity used during network
analysis.

With the second class of user that is actively editing the features participating in
their network, it may still prove viable to only support a global network build process
if the organization can tolerate a build occurring on a periodic basis (e.g., over the
weekend; see Section 5 for details concerning building the entire US road network in
less than two days). If the organization is editing smaller datasets, the build operation
can be staged on a more frequent basis (e.g,, overnight).

There is however a subset of this second class of user (the frequent editors) that
needs to have correct network connectivity during the course of editing. For such
users, it becomes necessary to support a user-initiated incremental build process
where only those portions of the network that correspond to edited features are
rebuilt. Techniques may be employed (such as dirty area management with ArcGIS
Topology [11]) that will assist in the incremental build of the network.

The need for incremental builds during frequent editing can be obviated if network
connectivity is “live”, i.e., network connectivity is automatically re-generated after
individual edits to the source data. This alternative approach is used in the ArcGIS
Geometric Network [31]; however, it is not as viable here given our rich connectivity
model and the complexities introduced by turns and maneuvers.

3.2 Connectivity Queries

For the conventional normalized relational representation, standard SQL queries may
be employed. Navigation at this level can prove cumbersome and slow. In some
instances, in order to overcome this problem, middleware libraries have been
developed [16] that provide analysis functions (e.g., shortest path between two
junctions, or the traveling salesman problem [4], [21]). This is useful; however, the
navigation is at a high level, precluding clients from developing their own analysis
functionality that may require low-level navigation.

318 E.G. Hoel, W.-L. Heng, and D. Honeycutt

Fig. 8. Example highlighting difference between connectivity and traversability when turn
restrictions are present. Connectivity is depicted on the left, with traversability on the right

Alternatively, low-level network navigation may be performed using a forward star
adjacency query [6]. A forward star query returns the elements in a network that are
immediately reachable from another element. The query is constrained by a set of
restrictions (e.g., one-way streets, prohibited turns) that controls which elements are
traversable. For example, consider the situation depicted in Fig. 8. In this example,
there is a turn restriction at junction j0 when moving from edge e2 to edge e1. This is
shown on the left side of the figure. A forward star query at junction j0 from edge e2
will result in two edge-junction pairs being returned; namely (e3, j3), and (e4, j4). The
edge-junction pair (e1, j1) is not returned as it is not traversable from edge e2 at
junction j0 because of the turn restriction. From a performance standpoint, forward
star queries (and storage representations – see Section 4.2) are the preferred method
for querying network connectivity during network analysis operations [26].

4 Physical Model

4.1 Standard Physical Implementation

Network topology can be implemented for relational databases in a straightforward
fashion as a normalized relational model with explicit representation of network
primitives and connectivity using primary and foreign keys (see Fig. 9). This model
has been employed in both research and commercial systems [5], [14], [21], [23]. We
term this the standard relational network model. A fundamental implementation
choice is whether or not the tables representing the network elements (junctions and
edges) contain any associated geometry (in Fig. 9, we depict an implementation
where geometry is persisted in the network element tables). If geometry is absent
from the network tables, they are sometimes referred to as a logical network. If
geometry is present, they may be termed spatial networks [16].

The network connectivity is represented by the from and to junction id foreign keys
in the edge table. This representation is definition-based and follows naturally from
the mathematical definition of the edges as being a binary relation on the junctions.
Attributes may be added to both the junction and edge tables as necessary. It is
common to associate impedances or hierarchy values with network elements in this
manner.

The normalized relational model is suited to a class of SQL-based connectivity
queries. For a given junction (presuming the junction id is known), the connected

 High Performance Multimodal Networks 319

edges may be obtained via a selection query of the edge table where either the from or
to junction id foreign keys match the specified junction’s id value. When traversing a
network (e.g, a shortest path computation), each junction that is explored will require
a separate SQL query. This can be quite expensive in terms of server loading and
suffers from a performance standpoint.

Fig. 9. Standard relational network model with geometry represented in the network tables

In order to address this problem, middleware based solutions have been proposed
that cache network connectivity information on the client (or application server) and
provide access to the information through a conventional API (e.g., Java) on a
collection of higher level components [23]. Data management is usually performed via
low-level SQL, while navigation and connectivity analysis is via the higher-level API.

A modified adjacency structure is presented in [10] which stores for each edge in the
network, a list of possible outgoing edges from its ending junction, taking into account
permissible turns between edges. The modified structure does not satisfy our modeling
requirements because it only considers turn prohibitions, which are always enforced to
constrain the outgoing edges for each incoming edge. In contrast, we regard a turn as a
first-class entity with attribution, e.g., one left turn can be used to specify turning
restrictions and penalties for different vehicle types using multiple network attributes.
Turns do not modify network connectivity, but affect traversability and costs based on
the attributes applied during a network analysis. Furthermore, the modified adjacency
structure is limited to two-part turns and cannot represent multi-part turns.

Fig. 10. Basic components in the network engine object model

4.2 Alternative Object Model and Physical Implementation

In order to address some of the problems inherent in the standard network physical
implementation and better support the aforementioned requirements (e.g., high
performance network analysis functions residing on the client or application server tier)

320 E.G. Hoel, W.-L. Heng, and D. Honeycutt

and workflows, we describe a new object model that is currently hosted within the
ArcGIS 9.1 Geodatabase [31]. The basic architecture is a small collection of components
that are exposed through industry standard Java, .NET, and COM APIs.

The principal components in the network engine implementation are shown in Fig.
10. The Network is the central component to the system. Chief among its
functionality is that which allows the client to build the connectivity of the persisted
network representation through geometric analysis of the line and point Features
found in the associated FeatureClasses. Each Feature will ultimately correspond to
one (or more in the case of line features when the connectivity model is configured to
support mid-span connectivity) NetworkElement. The NetworkElement (an abstract
class, with three concrete subclasses – Junction, Edge, and Turn) provides an API that
allows the direct navigation to the other immediately traversable NetworkElements. It
additionally provides a general method for accessing the values of the associated
network attributes.

The Network component supports a query model where clients (such as high-
performance network analysis algorithms) issue forward star queries [6]. When such a
query is issued, a ForwardStarCursor component is returned. This cursor allows the
client to index or iterate through the returned traversable NetworkElements (i.e.,
connected NetworkElements that satisfy the traversability requirements such as
respecting turn restrictions, etc.). If necessary, a client can also use lower-level query
models supported by the Network component, such as ‘give me all NetworkElements
that are associated with the specified Feature.’

Storage Representation. The network consists of a collection of tables within a
geographical database. The network contains metadata (network definition and
connectivity configuration information), junction, edge, and turn elements, the
connectivity relationships between them, and the attributes necessary for traversing
the network and performing analysis.

Junction Table. The physical storage representation of the network differs, however,
from the conventional relational implementation discussed previously (r.e., Fig. 9).
While the connectivity information in the conventional implementation is represented as
foreign keys within the edge table, we instead represent the connectivity as a set of
(edge id, junction id) foreign key tuples that are associated with a junction record in the
junction connectivity table. This representation is navigation-based, and is designed to
answer the most common adjacency query during network analysis, which is to find the
edges and junctions connected to a given junction (r.e., the forward star query in Section
3.2). Each junction record can have four such tuples; if more are needed (e.g., the
junction is connected to five or more edges), an overflow table is used.

Fig. 11. Network storage representation optimized for forward star queries

 High Performance Multimodal Networks 321

It is important to note that this storage representation utilizes fixed-length records
(r.e., the need for an overflow table). Fixed length records allow us to have direct
access into the connectivity data. The number of adjacency tuples in the fixed-length
record was determined empirically. For transportation networks, almost all junctions
have degree four or less (i.e., the number of edges connected to each junction is
typically four or less). This is evident in Table 1, which shows the frequency
distribution of junction degrees for a network on Southern California (715,286
junctions and 978,965 edges).

For this network, with four tuples per fixed-length record, the space utilization is
68% with 10 bytes per junction unoccupied or being used for overflow record
information. This compares favorably with variable-length records, which would have
similar overhead. Only the junctions whose degrees are five or higher (which is less
than 0.5% in this network) require two or more records to hold adjacency
information; almost all the junctions require only one record for adjacency
information. Note that the three-tuple per record representation has a slightly higher
space utilization of 76%, but 21% of the junctions would require two or more records.

Table 1. Frequency distribution of junction degrees for a Southern California road network

Degree 1 2 3 4 5 6 7 8

Count 147,86 43,737 375,34 145,40 2,689 234 11 1

Percentage 20.7% 6.1% 52.5% 20.3% 0.4% 0.03 <0.01 <0.01%

Each fixed-length record shown in Fig. 11 is not stored as a row in a relational
table; instead, we chose to serialize and compress the rows into larger collections of
data (pages) and persist the pages in BLOB tables (an RDBMS column/data type
capable of storing binary large objects [13]) within the relational database. The
relational database in effect is being used as a paged file system. The network engine
components (that reside at either the client or application tiers as described in Section
1 and shown in Fig. 10) provide caching mechanisms and APIs that support both data
management and analysis functionality.

Edge Table. The edge table in our storage representation contains the foreign key of
the from-junction associated with the edge. If the to-junction is needed, the junction
table is queried using the from-junction and edge identifiers. We have observed that
finding the from- and to-junctions associated with an edge is actually a fairly
uncommon operation during efficient network analysis operations. Thus, we have
optimized our storage representation to more effectively support the most common
connectivity access pattern - the forward star adjacency query (see Section 3.2). In its
simplest form, the forward star adjacency query takes as input a junction element, and
returns the set of connected edges and the junctions at the other end of those edges.

Turn Tables. We have chosen not to employ a graph modification technique (e.g.,
node expansion or line graphs) to represent turning movements as edge elements

322 E.G. Hoel, W.-L. Heng, and D. Honeycutt

within the network. As noted earlier, such techniques are awkward for representing
complex turns (maneuvers), and the modified graphs are also difficult to maintain in a
dynamic editing environment. Instead, we store turn elements in a turn table, with a
representation that is optimized for the most common client access patterns.

Fig. 12. Turn table representation

The turn table concept that we employ is generalized to effectively support
maneuvers as well as the forward star adjacency queries. For each junction in the
network, we indicate if there are any associated turns anchored (i.e., the last junction
participating in the turn) at the junction. If there are any associated turns anchored at
the junction, the turn table contains up to five (turn id, first edge id, last edge id)
triplets. An example of a turn table is shown in Fig. 12. If more than five turns are
anchored at the junction, an overflow mechanism is supported (similar to that
employed with the junction table). As is the case with the junction and edge
connectivity tables, we utilize a fixed length record format to facilitate the
compression and serialization of the turn table into pages persisted within a BLOB
column in the relational database.

During a forward star adjacency query, for a given junction and inbound edge, the
turn table may be queried with the specified junction and (first) edge. If an entry
matches the (junction, first edge) pair, then the last edge information in the turn entry
allows the pairing of the turn with the correct outgoing edge in the forward star result.

4.3 Network Building

As noted earlier, our implementation supports a network building process where the
connectivity graph of a network is derived from its source data via geometric analysis.
The steps during building are:

1. Extract the geometries of the features in the source data. The extracted
coordinates and their feature parentage are stored in a vertex information table.

2. Sort the vertex information table by coordinate values, so that coincident vertices
are grouped together.

3. Analyze each group of coincident vertices according to the connectivity model,
and generate the appropriate junction elements. During this analysis, vertices that
do not connect to other vertices are discarded, while the remaining vertices may
be further partitioned into disjoint subsets.

 High Performance Multimodal Networks 323

4. Re-sort the vertex information table by vertex, so that vertices from each line
feature are re-grouped together.

5. Scan the vertex information table, and generate edge elements connecting
adjacent vertices on each line.

6. Analyze turn features and generate associated turn elements.

7. Populate the attribute values of the generated network elements.

Spatial Clustering. When a network analysis algorithm is executing (e.g., a shortest
path search between two locations), it typically does not examine the network in a
haphazard manner. Instead, there is spatial locality of reference [24]. Areas of the
network that are queried next are usually near areas that have already been explored.
We exploit this locality by spatially clustering the network elements during the
network build process using a space-filling curve (we employed a Peano curve [25]),
and persist the network elements in the clustering order within the BLOB pages of the
network tables. Other spatial clustering techniques of network elements have been
tested and found to be superior to both non-clustered and topologically clustered
elements [12].

5 Implementation Experience

This new network model has been implemented and is currently shipping with ESRI’s
ArcGIS 9.1 product. It addresses each of the requirements enumerated in Section 2.1.
It has been used to build very large continent-wide transportation networks, including
a dataset derived from the features contained within the entire continental United
States (35.9 million line features).

Performance statistics on several different size network build operations are shown
in Table 2 (number of linear source features, number of vertices in their geometries,
number of network elements created, and the wallclock build time). A reasonable PC
(2.4GHz, 2GB RAM) running ArcGIS 9.1 was utilized on the client side and a
commercial relational database was employed on the server side. Reported build
times include the geometric analysis of the feature geometry in order to establish
connectivity, as well as the population of attributes within the persisted network
representation (e.g., travel time along an edge). We observed that in the typical case,
geometry and connectivity analysis consumed 45% of the build process time, while
creation of the persistent network elements took 30% of the build time, and
population of network attributes the remaining 25% of the processing time.

Table 2. Summary statistics of large networks built

Dataset Features Vertices Net Elements Build Time

U.S. National 35.9 million 128.3 million 65.1 million 43 hours

Northeast U.S. 5.3 million 27.0 million 9.6 million 1.8 hours

Major U.S. Streets 1.8 million 20.4 million 3.1 million 0.5 hours

Paris Metro 0.4 million 0.8 million 0.7 million < 3 minutes

324 E.G. Hoel, W.-L. Heng, and D. Honeycutt

6 Future Work

There are several areas of ongoing research and development with our network model
that will be incorporated into the ArcGIS product following the 9.1 release. These
include the direct support for the class of user that is a heavy editor of the features
participating in the network (as described in the Section 3.1). In order to support this
group, it will be necessary to support the incremental build of the network in the
versioned environment. An analogous capability was developed and provided with
ArcGIS Topology [11]; this entailed dirty area management, the development of an
incremental topology validation process, and incorporation of topology into the
ArcGIS Version Management infrastructure. Analogous development tasks will occur
with this new network model.

Dirty Areas. A network can have an associated dirty area – a dirty area corresponds
to the regions within the network extent where features participating in the network
have been modified (added, deleted, or updated) but whose connectivity has not been
re-established. When the geometry of a feature that participates in a network is
modified, the extent of the dirty area is enlarged to encompass the extent of the
bounding rectangle of the modified geometry (note that other simplified geometry
representations may also be employed - e.g., convex hulls). The dirty area is persisted
with the network. In order to ensure that the network is correct, the portion of the
network encompassed in the dirty areas will need to be rebuilt.

It is not necessary to build the entire space spanned by the dirty area at one time;
instead, a subset of the dirty area can be built. If the dirty area is partially built, the
original dirty area will be clipped by the extent of the region that is built.

Allowing users the ability to build a portion of the dirty area is a pragmatic
requirement of supporting extremely large seamless network. For example, when a
network is first defined, or when the network metadata (e.g., connectivity model, etc.)
is modified, the entire extent of the network is dirty. If users were not provided with
the capability to build a portion of the dirty area, the user would be required to build
the entire network which could prove to be a very lengthy process (e.g., a couple days
of processing time for large continent-wide network datasets). As was discussed in
[11], the dirty area model effectively supports partial processing in computationally
intensive areas of GIS such as topology.

Incremental Build. In order to minimize the amount of processing necessary to
maintain a consistent connectivity network, the dirty area mechanism may be
exploited in conjunction with an incremental build algorithm. In an incremental build,
the connectivity information associated with features in a dirty area is deleted and
rebuilt (recreated) in order to achieve a consistent state of the network. The high level
algorithm is as follows:

1. Delete the network elements associated with the line features intersecting the
dirty area (or portion thereof) being built.

2. Load the geometries of all the line features intersecting the area being built along
with the associated network metadata (connectivity model, ternary mapping of
evaluators to network attributes and feature classes).

 High Performance Multimodal Networks 325

3. Load the geometries of all point features that are connected to the line features
intersecting the area being built (these point features may lie outside the area
being built if the line feature extends outside the area).

4. Sort the vertices associated with the features, retaining the parentage information.

5. Discard all isolated line vertices (i.e., the vertices on the line features that are not
coincident with other vertices from differing line or point features).

6. Discard interior line vertices if the connectivity model does not support mid-span
connectivity on the associated line feature class.

7. Create network junctions as necessary for the remaining line vertices and other
isolated vertices associated with point features.

8. Create network edges between the junctions as appropriate based upon the
connectivity model.

9. Update the dirty areas associated with the network.

It is important to note that the network build process does not need to span all
features within the network. A build can be performed on a subset of the space
spanned by the dataset. This is a complex task since the re-built portion of the
network has to be properly stitched together with the rest of the network.

7 Conclusion

In this paper we described the logical model of GIS network topology and several
extensions to the standard network model that directly facilitate the modeling of
multimodal systems, supporting mid-span connectivity on line features, as well as
supporting endpoint elevation data that often accompanies large planar datasets from
commercial data vendors. We reviewed a common physical database implementation
that uses the conventional notions for mapping entities and relationships to tables and
the standard primary key / foreign key referential integrity model. Problems with this
approach were discussed. We then presented an alternative implementation of the
network model which used a different physical approach to persisting network
connectivity. This new model additionally supports turn restrictions and impedances,
both two-part turns as well as multi-part turns (maneuvers). Efficient mechanisms for
navigating the network connectivity were discussed (the forward star adjacency
query), as well as a more flexible mechanism (network evaluators) for maintaining
and querying attributes on the network elements. This design serves as the basis for
our implementation of transportation networks in the ArcGIS geographic information
system; this new model has been implemented and is currently shipping with the
ArcGIS 9.1 product.

Our future work will focus on extending the network with support for dirty area
management policies and an incremental build algorithm that is more useful for
organizations that frequently edit their network data (e.g., governmental organizations
and commercial data providers). In addition, we will be supporting this network
model in the distributed database environment, incorporating aspatial features
(features without geometry) into the network model, as well as other performance
enhancements.

326 E.G. Hoel, W.-L. Heng, and D. Honeycutt

Acknowledgements

Numerous other individuals within ESRI Development were involved in the design
and implementation of this network model in the ArcGIS 9.1 product. Key people
included Frederic Albert, Gillian Allen, Hal Bowman, Jai Chakrapani, Matt Crowder,
Craig Gillgrass, Alan Hatakeyama, Rich Krabill, Jim McKinney, Sudhakar Menon,
Scott Morehouse, Jay Sandhu, Frederic Schettini, Doug Sterling, and Jeff Wickstrom.

References

1. J. Añez, T. de la Barra, and B. Pérez. Dual Graph Representation of Transport Networks.
Transportation Research 30(3), June 1996

2. T. Caldwell. On Finding Minimum Routes in a Network with Turn Penalties.
Communications of the ACM 4(2), February 1961

3. Caliper. TransCAD: Transportation GIS Software Ref. Man., Newton, MA, 1996
4. T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms, 2nd Edition.

MIT Press, Cambridge, Massachusetts, 2001
5. K. Dueker and J. Butler. GIS-T Enterprise Data Model with Suggested Implementation

Choices. PR101, Center for Urban Studies, Portland State, 1997
6. J. Evans and E. Minieka. Optimization Algorithms for Networks and Graphs. M. Dekker

(editor), New York, 1992
7. ESRI. Network Analysis; Workspation ARC/INFO version 8.1. Prepared by Environmental

Systems Research Institute, Redlands, California, 2001
8. T. Foresman (editor). The History of Geographical Information Systems. Prentice Hall

PTR, Upper Saddle River, New Jersey, 1998
9. M. Goodchild. Geographic Information Systems and Disaggregate Transportation

Planning. Geographical Systems 5, 1998
10. R. Güting, V. de Almeida, and Z. Ding. Modeling and Querying Moving Objects in

Networks. FernUniversität in Hagen, Informatik-Report 308, 2004
11. E. Hoel, S. Menon, and S. Morehouse. Building a Robust Relational Implementation of

Topology. In Proc. of the 8th Intl. Symp. on Spatial and Temporal Databases (SSTD 2003).
Santorini Island, Greece, July 2003

12. Y.-W. Huang, N. Jing, and E. Rundensteiner. Optimizing Path Query Performance: Graph
Clustering Strategies. Transportation Research Part C 8, 2000

13. International Organization for Standardization (ISO). ISO International Standard:
Database Language SQL – Part 2: Foundation (SQL/Foundation), ANSI/ISO.IEC 9075-
2:99, September 1999

14. C. Jensen, T. Pedersen, L. Speičys, and I. Timko. Data Modeling for Mobile Services in
the Real World. In Proc. of the 8th Intl. Symp. on Spatial and Temporal Databases (SSTD
2003). Santorini Island, Greece, July 2003

15. R. Kirby and R. Potts. The Minimum Route Problem for Networks with Turn Penalties
and Prohibitions. Transportation Research 3, 1969

16. R. Kothuri, A. Godfrind, E. Beinat. Pro Oracle Spatial. Apress, Berkeley, 2004
17. L. Lang. Transportation GIS. ESRI Press, Redlands, California, 1999
18. P. Longley, M. Goodchild, D. Maguire, and D. Rhind (editors). Geographical Information

Systems, Volume 2. John Wiley & Sons, New York, 1999

 High Performance Multimodal Networks 327

19. M. Mainguenaud. Modeling the Network Component of Geographical Information
Systems. International Journal of Geographic Information Systems 9(6), 1995

20. R. Marx. The TIGER System: Automating the Geographic Structure of the United States
Census. Government Publications Review 13, 1986

21. H. Miller and S.-L. Shaw. Geographic Information Systems for Transportation. Oxford
University Press, Oxford, England, 2001

22. S. Morehouse. ARC/INFO: A Geo-Relational Model for Spatial Information. In Proc. of
the 7th Intl. Symp. on Computer Assisted Cartography (Auto-Carto 7), Washington, DC,
March 1985

23. Oracle. Oracle Database 10g Network Data Model. Prepared by Oracle Corporation,
Redwood Shores, California, 2003

24. D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query Processing in Spatial Network
Databases. In Proc. of the 29th VLDB Conf. (VLDB 2003). Berlin, 2003

25. G. Peano. Sur une Courbe Qui Remplit Toute une Aire Plaine. Mathematische Annalen,
36: 157-160, 1890

26. B. Ralston. GIS and ITS Traffic Assignment: Issues in Dynamic User-Optimal
Assignments. GeoInformatica 4(2), June 2000

27. P. Rigaux, M. Scholl, and A. Voisard. Spatial Databases with Application to GIS. Morgan
Kaufmann, San Francisco, 2002

28. L. Speičys, C. Jensen, and A. Kligys. Computational Data Modeling for Network-
Constrained Moving Objects. In Proc. of the 11th ACM Intl. Workshop on Advances in
Geographic Information Systems (ACM-GIS’03), New Orleans, Nov. 2003

29. F. Southworth and B. Peterson. Intermodal and International Freight Network Modeling.
Transportation Research Part C 8, 2000

30. S. Winter. Modeling Costs of Turns in Route Planning. GeoInformatica 6(4), 2002
31. M. Zeiler. Modeling Our World: The ESRI Guide to Geodatabase Design. ESRI Press,

Redlands, California, 1999

	Introduction
	Logical Model
	Requirements
	Connectivity Model
	Turns and Maneuvers
	Network Attributes

	Access Model
	Workflows
	Connectivity Queries

	Physical Model
	Standard Physical Implementation
	Alternative Object Model and Physical Implementation
	Network Building

	Implementation Experience
	Future Work
	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

