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Abstract. Networks often form the core of many users’ spatial databases. 
Networks are used to support the rapid navigation and analysis of linearly 
connected data such as that found in transportation networks. Common types of 
analysis performed on such networks include shortest path, traveling salesman, 
allocation, and distance matrix computation.  

Network data models are usually represented as a small collection of tables: 
a junction table and an edge table. In the context of networks used to model 
transportation infrastructure, it is also necessary to model turn restrictions and 
impedances (delays). Network data is frequently persisted in normalized 
relational tables that are accessible via standard SQL-based queries. We 
propose a different approach where the network connectivity information is 
persisted using a compressed binary storage representation in a relational 
database. The connectivity information is accessible via standard Java, .NET, 
and COM APIs that are tailored to common access patterns used in the support 
of high performance network engines. These network engines run on the client 
or application server tier rather than as extensions on the relational server. 

In this paper, we discuss the problem of building a robust and scalable 
implementation of a network data model. The fundamental and central 
requirements are enumerated. These requirements include support for hierarchical 
networks, turn restrictions, and logical z elevations. We propose a different 
approach to representing network topology that addresses many of the high-end 
modeling requirements of network systems. Our approach supports all of the 
listed requirements in addition to multimodal modeling (e.g., coexistent road, bus, 
and rail networks) within the context of multi-user, long transaction databases. 

1   Introduction 

Network data models have been used to represent geographic information for well 
over thirty years [15], [18], [19]. These models have been incorporated into a number 
of operational systems (see, for example TransCAD [3] or ARC/INFO [22]). Despite 
the relative maturity of such technology, most systems have fallen short of meeting 
the most sophisticated requirements of transportation network modeling. Such 
requirements include the ability to model multimodal (or intermodal) transportation 
systems (transportation networks where two or more different transportation modes 
are linked – e.g., roads and rail) and the ability to handle coincident features 
participating in different modes of the model (e.g, subways underneath streets, or bus 
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routes along city streets) when geometric analysis of the participant features is used to 
derive network connectivity [29]. In addition, some systems fail to address the 
requirement to model turns and maneuvers without applying complex graph 
transformations to represent permissible turns as explicit edges [30]. 

In this paper, we describe a design for modeling multimodal networks that are 
persisted in relational databases. This design is the basis for our implementation of 
networks in the ArcGIS geographic information system. The design satisfies the 
fundamental goal of supporting sophisticated network models that are consumed by 
high performance network engines, and is tailored for fast retrieval of connectivity 
information within network analysis algorithms. Network engines provide fine 
grained (i.e., forward star [6]) access to very large external networks persisted in an 
RDBMS or the file system, and are intended to reside on the client in the case of 
traditional two-tier systems, or on the application server in n-tier architectures. The 
network engine supports a rich set of network analysis algorithms, such as shortest 
path finding, traveling salesman problems, and network resource allocation 
operations, that also execute in the desktop or application server tier and are used in a 
variety of desktop and server-based network analysis applications. 

 In the first section of this paper, we review the logical model of network topology. 
The major requirements of a high-end network data model are discussed and a 
connectivity model that supports multimodal networks is presented. We then consider 
the issue of representing turn restrictions and maneuvers (multi-part turns) – a critical 
component in transportation networks [9]. Existing approaches to representing turns 
are reviewed and our modeling approach is presented. The access model of 
consuming networks is reviewed in the context of common workflows as well as a 
query model that is tailored to the support of high performance network engines. We 
then address the issue of the physical storage representation of a network. The 
conventional physical database implementation is briefly detailed. We then present 
our alternative physical representation and highlight the reasons and motivation 
behind its departure from the conventional implementation. We conclude with a brief 
discussion of our implementation experience and outline our ongoing future research 
in this domain. 

2   Logical Model 

The movement of people, the transportation of goods and services, as well as the 
distribution of resources, energy, and communication are commonly modeled with 
network systems. Network data structures for representing geographic information are 
a standard topic in geographic information science [18], [27]. 

In this paper, we use the term network to refer to a connectivity graph of junctions 
and their connecting edges, where each junction and edge is associated with a feature 
with point or line geometry respectively. The term network element is used to refer to 
the collection of junctions and edges comprising the network. All network elements 
have a set of numeric properties, called network attributes. Attributes capture 
information about network elements, such as the travel time across an element, and 
are used to define the navigation context during an analysis. 
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Junction attribute values provide a high-level view of traversing intersections. For 
example, the travel time attribute value on a junction element describes how long it 
takes to cross the element, ignoring the edge elements used to enter and exit the 
junction element. For more detailed modeling of traversing intersections, we use 
turns. In the simplest case, a turn element models entering a junction from a particular 
edge element and exiting to another. A multipart turn element, also known as a 
maneuver, enters the junction element from a path of two or more connected edge 
elements. 

Turn elements are not strictly part of the graph model. They represent a relationship 
rather than being an abstraction of a real-world entity. Turns do not modify the 
junction-edge connectivity of the network; instead they affect traversability of the 
network elements. Turns are not considered an attribute of a network junction, though 
they occur at every junction. This is because they are intrinsically dependent upon the 
properties of the associated network edges. 

The connectivity graph of a network is derived from the source data during a 
process called network building. During a build, junction, edge and turn elements are 
generated from point, line and turn features, and connectivity relationships are 
established. The connectivity graph is typically stored separately from the source data, 
with network analysis algorithms (including the build process) consuming it. 

2.1   Requirements 

The primary requirements for any robust implementation of network data models are:   

• Multimodal models. In the context of transportation networks, a multimodal 
network is one in which two or more types of transportation modes (such as 
walking, riding a train, or driving a car) are modeled. Alternatively, with utility 
networks, a multimodal network may consist of the differing transmission and 
distribution systems. 

• Hierarchical models. Hierarchy is used within network models to further control 
the flow within the network [19]. Differing elements may be assigned to different 
levels of hierarchy, with flow through the higher levels of the hierarchy taking 
precedence over the lower levels when performing path or route finding 
operations. Within transportation networks, interstate highways are commonly 
associated with the highest level of the hierarchy, state highways and major 
feeders the next lower level, and city streets the lowest level of the hierarchy. 

• Turns and maneuvers. Support for turning movements, both two-part turns and 
multi-part turns (known as maneuvers), is necessary in order to more accurately 
model transportation networks. The definition of a turn should be separated from 
its attribution. A turn is not simply one restriction or penalty; instead it should be 
regarded as a first-class entity with attribution. 

• Fast network navigation. The persisted representation must support fast retrieval 
of connectivity information for use within network analysis algorithms, and should 
be structured according to the most common access patterns. 
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• Z elevations. In order to refine network connectivity with planar network 
datasets (e.g., modeling freeway over and underpasses), logical z elevation values 
are supplied by commercial data vendors on the ends of each line feature. These 
elevation values must be respected when establishing network connectivity.  

• Rich attribution of network elements. To capture real-world constraints, such 
as one-way travel restrictions, height/weight limits, and time-of-day travel times, 
we need a rich attribute model that supports multiple attributes on a network 
element. 

• Uniform attribute access model. Clients of the model should be insulated from 
the details of where attribute values originate. For example, the travel time 
attribute for an edge element may be derived from the properties of the associated 
street feature, or it may be a real-time value. In each case, client applications 
should be able to retrieve attribute values without knowledge of the underlying 
storage. 

In addition to these network specific requirements, other standard system 
requirements such as performance, editability, persistence in a relational database, 
support for long transactions, and scalability (e.g, a continental dataset of 50+ million 
edges) also apply. 

2.2   Connectivity Model 

Connectivity in a network is generally based upon spatial coincidence of the 
endpoints of line (real-world) features and other point features. This leads to a 1:1 
mapping between features participating in a network and the network elements used 
to represent the network connectivity. This approach works reasonably well for 
simpler planar network datasets (e.g., TIGER/Line [20], or others commonly 
available from commercial data vendors such as Tele Atlas or NAVTEQ). However, 
with non-planar datasets (e.g., long linear features such as highways in transportation 
networks), it is useful to allow network connectivity partway along a linear feature 
(we term this mid-span connectivity). The familiar one-to-one mapping between linear 
features and edge elements must be generalized into a one-to-many mapping. Mid-
span connectivity is supported in some network models such as the ArcGIS 
Geometric Network [31]. The example shown in Fig. 1 depicts the one-to-many 
mapping between line features and edge elements when mid-span connectivity is 
supported. 

 

Fig. 1. Mid-span connectivity example; on the left, the long linear feature l1 (dashed line) will 
correspond to edge elements e11, e12, and e13 if mid-span connectivity is supported  
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Multimodal Models. As discussed previously, multimodal network models are 
particularly important in the context of transportation modeling. We employ the 
concept of connectivity groups within the connectivity model to allow users to group 
together line classes that should be connected when geometric coincidence is present. 
A line class may participate in only one group. The number of groups is not 
constrained. All connectivity is local to a group; line features are not connected to 
other line features that are found in different connectivity groups. In order to establish 
connectivity between two groups (e.g., road network in one group, subway network in 
another group), point feature classes are allowed to participate in one or more groups. 
Thus, a point feature that is coincident with a road feature in one group and a subway 
feature in a second group will connect the two groups together in its role as a junction 
element. Connectivity groups may be employed to model networks containing 
multiple overlapping subnetworks – e.g., street networks, subway networks, and bus 
route networks. 

An example highlighting connectivity groups is shown in Fig. 2. In this example, 
the line features participate in two different groups. The first line class contains line l1 
which is depicted by the dashed line. The second line class contains two line features, 
l2 and l3, depicted with solid lines. A point feature class, containing point feature p1, 
participates in both connectivity groups. On the right side of Fig. 2, the resulting 
connectivity is shown. Note that l1 (edges e11 and e12) and l2 (edges e21 and e22) are 
connected at point p1 (junction j3). There is no connectivity between line l1 and line l3 
as they are in different groups and there is no point feature where they intersect. 

 

Fig. 2. Example of connectivity groups. Linear feature l1 (dashed line) is in one group, and 
features l2 and l3 are in a second group. Point feature p1 is in both groups

Z Elevations. Z elevations (sometimes termed ‘z-levs’) are a critical component for 
modeling overpasses and underpasses, tunnels, and highway interchanges with planar 
datasets (most commercial and governmental datasets are planar). At each endpoint of 
a line feature, there may be associated z elevation information that is used to refine 
network connectivity. This elevation information is typically logical – it does not 
correspond to actual geographical elevations, but rather a logical (ordinal) elevation 
value. For example, the endpoints of line features representing roads that comprise an 
underpass may have a z elevation value of 0, while the lines representing the overpass 
roads may have a value of 1. This logical vertical ordering can extend to support very 
complex highway interchanges. 
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Fig. 3 contains an example of four lines meeting at a location that corresponds to 
an overpass. In the example, lines l1 and l3 pass beneath lines l2 and l4 (note that all 
four lines l1 – l4 share a coincident endpoint; if one did not consider the z elevations 
when determining network connectivity, all four lines would be connected together). 
The z elevations are shown (0, 0, 1, and 1 respectively). The resulting connectivity is 
shown on the right side of the figure. Edges e1 and e3 are connected at junction j13; 
edges e2 and e4 are connected at junction j24. Junctions j13 and j24 appear coincident in 
the figure. 

 

Fig. 3. Example of z elevations and their impact upon connectivity. Z elevations are shown in 
the left. On the right, the two junctions j13 and j24 are coincident  

The extensions to the simple endpoint connectivity model are reflected in the 
network build algorithm. During the geometric analysis and connectivity discovery 
phase of the build process, the connectivity model and the z elevations are used to 
refine the connectivity between spatially coincident geometries. 

2.3   Turns and Maneuvers 

Turn restrictions and impedances (or delays) present a problem to most network 
models. The presence of turns can greatly impact the movement through a network 
[7], [21]. A common way to model turns within a network is with a turn table [30]. A 
turn table represents each explicitly specified turn restriction (or penalty) as a row 
with references to the associated two edges. Turn tables may be augmented with an 
impedance attribute if the turns may also represent delays or impedances. When 
traversing the network, the turn table is queried as necessary. An alternative approach 
is to employ a transition matrix that represents possible transitions at an intersection 
[10]. The matrix can be encoded into a bitmap for a smaller physical representation. 

In order to overcome the performance problems (as perceived by some) of 
representing turns in an extra table that is disjoint from the network connectivity tables, 
graph modification techniques have been employed. The goal behind these techniques 
is to allow the turns to be more directly imbedded within the network connectivity 
information in order to achieve better performance during network traversals. 

Graph Modification – Node Expansion. Node expansion is one technique to imbed 
turns within a graph by expanding each junction in the graph to a subgraph where 
permissible turns are explicitly represented as edges [1], [15], [24], [28]. The primary 
advantage of this approach is that the turns are represented within the connectivity 
graph of the network (thereby possibly improving traversal performance).  
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Fig. 4. Example highlighting node expansion where a junction connected to three edges is 
expanded to a set of three junctions with nine edges representing possible turns (u-turns omitted 
for clarity)  

However, for an intersection of n edges, there are n2 possible turns (including u-
turns). This highlights the fundamental problem with this approach, namely, the 
significant bloating of the network storage requirements. This adversely impacts both 
storage costs and traversal performance [21]. In Fig. 4, the intersection junction j1 is 
expanded and replaced with three junctions (labeled j11 through j13), and edges are 
used to explicitly indicate permissible turns (the bidirectional edges on the right side 
of Fig. 4). 

 

Fig. 5. Example of a turn restriction, the equivalent expanded graph, and an incorrect traversal 
in the expanded graph  

Node expansion also introduces an algorithmic issue caused by traversing the 
edges in the expanded subgraph in sequence. Such a traversal corresponds to making 
multiple turns at the same junction in the original graph, and is meaningless. In Fig. 5, 
the turn from e2 to e1 is restricted. The restricted turn is reflected in the expanded 
graph with the directed edge e4. However, we can still incorrectly go from e2 to e1 via 
the edges e6 and e5. Analysis algorithms that operate on the expanded graph have to 
avoid such traversals in order to generate correct results. 

Graph Modification – Line Graphs. Line graphs (sometimes inappropriately termed 
dual graphs) are also used to explicitly model turns within a network [2], [30]. Line 
graphs are a transformation of the original (or primal) graph where edges in the 
primal are replaced with junctions in the line graph, and edges in the line graph 
represent turns in the primal. An example is shown in Fig. 6 where a simple (primal) 
graph consisting of three edges is transformed into the line graph on the right side of 
the figure. Edge e1 in the primal is transformed into junction j11 in the line graph, edge 
e2 into junction j12, and edge e3 into junction j13 respectively. Presuming that all turn 
movements are allowed, bidirectional edges in the line graph will be created between 
the three junctions in the line graph (edges e12, e13, and e23). 
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Fig. 6. Example line graph representation. On the right, the primal graph is represented in gray 
and the line graph is in black. In this example, all turns are possible (u-turns omitted)  

Similar to the node expansion technique, the advantage of this approach is that the 
turns are explicitly represented in the graph. In addition, it results in a smaller graph 
than with the node expansion technique. However, line graphs require that the primal 
graph be retained in order to complete certain types of operations such as route 
drawing [30]. 

 

Fig. 7. Example of a three part maneuver e1-e2-e3 at an intersection with a dual carriageway 

Maneuvers. A maneuver is a turn that spans three or more edges. Maneuvers are 
used to model turning movements at complex street intersections within 
transportation networks. Consider the following intersection formed by a dual 
carriageway (i.e., a street where each travel direction is represented as a separate line 
feature) and a two-way street in Fig. 7. To restrict the u-turn from edge e1 to edge e3, 
we need a maneuver composed of the edges e1, e2 and e3 in sequence. The maneuver 
cannot be synthesized from the two overlapping turns e1-e2 and e2-e3, since 
restricting the e1-e2 turn also incorrectly restricts the left turn specified by the 
sequence e1-e2-e4. 

Maneuvers can get arbitrarily complicated. We have observed instances of 
maneuvers with high part counts in transportation networks, such as a nine-part 
maneuver in the street network for Osaka, Japan. It is awkward to adapt graph 
modification techniques to model maneuvers. 

2.4   Network Attributes 

Network attributes are numeric properties of network elements that are used to define 
the navigation context during an analysis [21]. Examples of common attributes found 
on network elements include travel time, one-way restrictions, speed along an edge, 
and hierarchy value. The various types of attributes can be classified as: 
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• cost  impedances, which may be apportioned if the line feature is associated 
with multiple network edges (e.g., travel time),  

• descriptor  a characteristic of the entire element (e.g., speed limits, lane count),  

• restriction identify which elements cannot be traversed (e.g., one-way), and  

• hierarchy used in conjunction with hierarchical analysis algorithms (e.g., an 
order or grade – highways, arteries, and city streets). 

Network attributes are usually persisted along with the network elements (e.g., the 
attribute columns in the standard relational model depicted in Fig. 9). The network 
attributes often are mapped to attributes found in the associated feature; during the 
process of building the network and establishing network connectivity, attribute 
values are read from the features and persisted into the network. The reason for doing 
so is to minimize the number of tables that must be queried during network analysis, 
in order to achieve better performance. 

However, with very dynamic environments such as are found in location-based 
service applications, it is sometimes advantageous not to have to persist the value of a 
network attribute along with the network connectivity. This is particularly the case if 
the attributes on the feature that are mapped to a network attribute are subject to 
frequent change. Evaluator components serve to abstract away the underlying storage 
of the network attributes. Client applications (including the build algorithm and the 
forward star cursors, as well as analysis algorithms) instead query the evaluators that 
are associated with attributes and feature classes. The evaluators may return values 
that are persisted directly in the connectivity network, or they may derive an attribute 
value on the fly (or even query a web service). In this manner, client applications are 
presented a uniform view of accessing attribute values. 

3   Access Model 

There are various approaches to effectively building, maintaining, and navigating the 
elements contained within a network. Some systems (e.g., [23]) have placed the onus 
upon the client application for the discovery and maintenance of network elements; 
client applications are responsible for determining the connectivity and appropriately 
setting the foreign keys that are used to specify the connectivity in the persisted 
representation (e.g., setting the from and to junctions on the edge elements). Other 
previous systems (e.g., [22], [31]) have instead provided mechanisms that perform 
geometric analysis in order to automatically determine connectivity and persist the 
information. The choice of when to establish or update the persisted connectivity 
information is based in part upon the user workflows that the network solution is 
trying to address. 

In addition to building the networks, various approaches have been taken to how 
the network should be queried. Some systems have relied upon low level querying of 
the persisted network representation (e.g., which two junctions are connected to the 
specified edge), while other have provided alternative query mechanisms. 
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3.1   Workflows 

There are two common usage classes among users of network data (from a 
maintenance standpoint); one class of user purchases their network data (or obtains it 
from external sources) and infrequently edits or modifies the data. They are instead 
focused on performing analysis upon the obtained network data. The second class of 
user is actively engaged in editing and maintaining their data. Most often, the second 
class of users are large organizations such as the government, utilities, or data 
providers. We have observed that the first class of user is far more common – most 
people do not actively edit the features participating in their networks. 

For the first class of user that infrequently edits their network data, it is sufficient 
to support a build process that can complete all geometric and connectivity analysis 
and network element persistence across the dataset in its entirety. For such users, 
the network is built immediately following network definition and creation. If the 
user chooses to edit the features in the network, the entire network will have to be 
rebuilt in order to guarantee correctness of the connectivity used during network 
analysis. 

With the second class of user that is actively editing the features participating in 
their network, it may still prove viable to only support a global network build process 
if the organization can tolerate a build occurring on a periodic basis (e.g., over the 
weekend; see Section 5 for details concerning building the entire US road network in 
less than two days). If the organization is editing smaller datasets, the build operation 
can be staged on a more frequent basis (e.g,, overnight). 

There is however a subset of this second class of user (the frequent editors) that 
needs to have correct network connectivity during the course of editing. For such 
users, it becomes necessary to support a user-initiated incremental build process 
where only those portions of the network that correspond to edited features are 
rebuilt. Techniques may be employed (such as dirty area management with ArcGIS 
Topology [11]) that will assist in the incremental build of the network. 

The need for incremental builds during frequent editing can be obviated if network 
connectivity is “live”, i.e., network connectivity is automatically re-generated after 
individual edits to the source data. This alternative approach is used in the ArcGIS 
Geometric Network [31]; however, it is not as viable here given our rich connectivity 
model and the complexities introduced by turns and maneuvers. 

3.2   Connectivity Queries 

For the conventional normalized relational representation, standard SQL queries may 
be employed. Navigation at this level can prove cumbersome and slow. In some 
instances, in order to overcome this problem, middleware libraries have been 
developed [16] that provide analysis functions (e.g., shortest path between two 
junctions, or the traveling salesman problem [4], [21]). This is useful; however, the 
navigation is at a high level, precluding clients from developing their own analysis 
functionality that may require low-level navigation. 
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Fig. 8. Example highlighting difference between connectivity and traversability when turn 
restrictions are present. Connectivity is depicted on the left, with traversability on the right  

Alternatively, low-level network navigation may be performed using a forward star 
adjacency query [6]. A forward star query returns the elements in a network that are 
immediately reachable from another element. The query is constrained by a set of 
restrictions (e.g., one-way streets, prohibited turns) that controls which elements are 
traversable. For example, consider the situation depicted in Fig. 8. In this example, 
there is a turn restriction at junction j0 when moving from edge e2 to edge e1. This is 
shown on the left side of the figure. A forward star query at junction j0 from edge e2 
will result in two edge-junction pairs being returned; namely (e3, j3), and (e4, j4). The 
edge-junction pair (e1, j1) is not returned as it is not traversable from edge e2 at 
junction j0 because of the turn restriction. From a performance standpoint, forward 
star queries (and storage representations – see Section 4.2) are the preferred method 
for querying network connectivity during network analysis operations [26]. 

4   Physical Model 

4.1   Standard Physical Implementation 

Network topology can be implemented for relational databases in a straightforward 
fashion as a normalized relational model with explicit representation of network 
primitives and connectivity using primary and foreign keys (see Fig. 9). This model 
has been employed in both research and commercial systems [5], [14], [21], [23]. We 
term this the standard relational network model. A fundamental implementation 
choice is whether or not the tables representing the network elements (junctions and 
edges) contain any associated geometry (in Fig. 9, we depict an implementation 
where geometry is persisted in the network element tables). If geometry is absent 
from the network tables, they are sometimes referred to as a logical network. If 
geometry is present, they may be termed spatial networks [16]. 

The network connectivity is represented by the from and to junction id foreign keys 
in the edge table. This representation is definition-based and follows naturally from 
the mathematical definition of the edges as being a binary relation on the junctions. 
Attributes may be added to both the junction and edge tables as necessary. It is 
common to associate impedances or hierarchy values with network elements in this 
manner. 

The normalized relational model is suited to a class of SQL-based connectivity 
queries. For a given junction (presuming the junction id is known), the connected 
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edges may be obtained via a selection query of the edge table where either the from or 
to junction id foreign keys match the specified junction’s id value. When traversing a 
network (e.g, a shortest path computation), each junction that is explored will require 
a separate SQL query. This can be quite expensive in terms of server loading and 
suffers from a performance standpoint. 

 

Fig. 9. Standard relational network model with geometry represented in the network tables 

In order to address this problem, middleware based solutions have been proposed 
that cache network connectivity information on the client (or application server) and 
provide access to the information through a conventional API (e.g., Java) on a 
collection of higher level components [23]. Data management is usually performed via 
low-level SQL, while navigation and connectivity analysis is via the higher-level API. 

A modified adjacency structure is presented in [10] which stores for each edge in the 
network, a list of possible outgoing edges from its ending junction, taking into account 
permissible turns between edges. The modified structure does not satisfy our modeling 
requirements because it only considers turn prohibitions, which are always enforced to 
constrain the outgoing edges for each incoming edge. In contrast, we regard a turn as a 
first-class entity with attribution, e.g., one left turn can be used to specify turning 
restrictions and penalties for different vehicle types using multiple network attributes. 
Turns do not modify network connectivity, but affect traversability and costs based on 
the attributes applied during a network analysis. Furthermore, the modified adjacency 
structure is limited to two-part turns and cannot represent multi-part turns. 

 

Fig. 10. Basic components in the network engine object model 

4.2   Alternative Object Model and Physical Implementation 

In order to address some of the problems inherent in the standard network physical 
implementation and better support the aforementioned requirements (e.g., high 
performance network analysis functions residing on the client or application server tier) 
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and workflows, we describe a new object model that is currently hosted within the 
ArcGIS 9.1 Geodatabase [31]. The basic architecture is a small collection of components 
that are exposed through industry standard Java, .NET, and COM APIs.  

The principal components in the network engine implementation are shown in Fig. 
10. The Network is the central component to the system. Chief among its 
functionality is that which allows the client to build the connectivity of the persisted 
network representation through geometric analysis of the line and point Features 
found in the associated FeatureClasses. Each Feature will ultimately correspond to 
one (or more in the case of line features when the connectivity model is configured to 
support mid-span connectivity) NetworkElement. The NetworkElement (an abstract 
class, with three concrete subclasses – Junction, Edge, and Turn) provides an API that 
allows the direct navigation to the other immediately traversable NetworkElements. It 
additionally provides a general method for accessing the values of the associated 
network attributes. 

The Network component supports a query model where clients (such as high-
performance network analysis algorithms) issue forward star queries [6]. When such a 
query is issued, a ForwardStarCursor component is returned. This cursor allows the 
client to index or iterate through the returned traversable NetworkElements (i.e., 
connected NetworkElements that satisfy the traversability requirements such as 
respecting turn restrictions, etc.). If necessary, a client can also use lower-level query 
models supported by the Network component, such as ‘give me all NetworkElements 
that are associated with the specified Feature.’ 

Storage Representation. The network consists of a collection of tables within a 
geographical database. The network contains metadata (network definition and 
connectivity configuration information), junction, edge, and turn elements, the 
connectivity relationships between them, and the attributes necessary for traversing 
the network and performing analysis.  

Junction Table. The physical storage representation of the network differs, however, 
from the conventional relational implementation discussed previously (r.e., Fig. 9). 
While the connectivity information in the conventional implementation is represented as 
foreign keys within the edge table, we instead represent the connectivity as a set of 
(edge id, junction id) foreign key tuples that are associated with a junction record in the 
junction connectivity table. This representation is navigation-based, and is designed to 
answer the most common adjacency query during network analysis, which is to find the 
edges and junctions connected to a given junction (r.e., the forward star query in Section 
3.2). Each junction record can have four such tuples; if more are needed (e.g., the 
junction is connected to five or more edges), an overflow table is used. 

 

Fig. 11. Network storage representation optimized for forward star queries 
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It is important to note that this storage representation utilizes fixed-length records 
(r.e., the need for an overflow table). Fixed length records allow us to have direct 
access into the connectivity data. The number of adjacency tuples in the fixed-length 
record was determined empirically. For transportation networks, almost all junctions 
have degree four or less (i.e., the number of edges connected to each junction is 
typically four or less). This is evident in Table 1, which shows the frequency 
distribution of junction degrees for a network on Southern California (715,286 
junctions and 978,965 edges). 

For this network, with four tuples per fixed-length record, the space utilization is 
68% with 10 bytes per junction unoccupied or being used for overflow record 
information. This compares favorably with variable-length records, which would have 
similar overhead. Only the junctions whose degrees are five or higher (which is less 
than 0.5% in this network) require two or more records to hold adjacency 
information; almost all the junctions require only one record for adjacency 
information. Note that the three-tuple per record representation has a slightly higher 
space utilization of 76%, but 21% of the junctions would require two or more records. 

Table 1. Frequency distribution of junction degrees for a Southern California road network 

Degree 1 2 3 4 5 6 7 8 

Count 147,86 43,737 375,34 145,40 2,689 234 11 1 

Percentage 20.7% 6.1% 52.5% 20.3% 0.4% 0.03 <0.01 <0.01% 

Each fixed-length record shown in Fig. 11 is not stored as a row in a relational 
table; instead, we chose to serialize and compress the rows into larger collections of 
data (pages) and persist the pages in BLOB tables (an RDBMS column/data type 
capable of storing binary large objects [13]) within the relational database. The 
relational database in effect is being used as a paged file system. The network engine 
components (that reside at either the client or application tiers as described in Section 
1 and shown in Fig. 10) provide caching mechanisms and APIs that support both data 
management and analysis functionality. 

Edge Table. The edge table in our storage representation contains the foreign key of 
the from-junction associated with the edge. If the to-junction is needed, the junction 
table is queried using the from-junction and edge identifiers. We have observed that 
finding the from- and to-junctions associated with an edge is actually a fairly 
uncommon operation during efficient network analysis operations. Thus, we have 
optimized our storage representation to more effectively support the most common 
connectivity access pattern - the forward star adjacency query (see Section 3.2). In its 
simplest form, the forward star adjacency query takes as input a junction element, and 
returns the set of connected edges and the junctions at the other end of those edges. 

Turn Tables. We have chosen not to employ a graph modification technique (e.g., 
node expansion or line graphs) to represent turning movements as edge elements 
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within the network. As noted earlier, such techniques are awkward for representing 
complex turns (maneuvers), and the modified graphs are also difficult to maintain in a 
dynamic editing environment. Instead, we store turn elements in a turn table, with a 
representation that is optimized for the most common client access patterns.  

 

Fig. 12. Turn table representation 

The turn table concept that we employ is generalized to effectively support 
maneuvers as well as the forward star adjacency queries. For each junction in the 
network, we indicate if there are any associated turns anchored (i.e., the last junction 
participating in the turn) at the junction. If there are any associated turns anchored at 
the junction, the turn table contains up to five (turn id, first edge id, last edge id) 
triplets. An example of a turn table is shown in Fig. 12. If more than five turns are 
anchored at the junction, an overflow mechanism is supported (similar to that 
employed with the junction table). As is the case with the junction and edge 
connectivity tables, we utilize a fixed length record format to facilitate the 
compression and serialization of the turn table into pages persisted within a BLOB 
column in the relational database. 

During a forward star adjacency query, for a given junction and inbound edge, the 
turn table may be queried with the specified junction and (first) edge. If an entry 
matches the (junction, first edge) pair, then the last edge information in the turn entry 
allows the pairing of the turn with the correct outgoing edge in the forward star result. 

4.3   Network Building  

As noted earlier, our implementation supports a network building process where the 
connectivity graph of a network is derived from its source data via geometric analysis. 
The steps during building are: 

1. Extract the geometries of the features in the source data. The extracted 
coordinates and their feature parentage are stored in a vertex information table. 

2. Sort the vertex information table by coordinate values, so that coincident vertices 
are grouped together. 

3. Analyze each group of coincident vertices according to the connectivity model, 
and generate the appropriate junction elements. During this analysis, vertices that 
do not connect to other vertices are discarded, while the remaining vertices may 
be further partitioned into disjoint subsets. 
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4. Re-sort the vertex information table by vertex, so that vertices from each line 
feature are re-grouped together.  

5. Scan the vertex information table, and generate edge elements connecting 
adjacent vertices on each line. 

6. Analyze turn features and generate associated turn elements.  

7. Populate the attribute values of the generated network elements. 

Spatial Clustering. When a network analysis algorithm is executing (e.g., a shortest 
path search between two locations), it typically does not examine the network in a 
haphazard manner. Instead, there is spatial locality of reference [24]. Areas of the 
network that are queried next are usually near areas that have already been explored. 
We exploit this locality by spatially clustering the network elements during the 
network build process using a space-filling curve (we employed a Peano curve [25]), 
and persist the network elements in the clustering order within the BLOB pages of the 
network tables. Other spatial clustering techniques of network elements have been 
tested and found to be superior to both non-clustered and topologically clustered 
elements [12].  

5   Implementation Experience 

This new network model has been implemented and is currently shipping with ESRI’s 
ArcGIS 9.1 product. It addresses each of the requirements enumerated in Section 2.1. 
It has been used to build very large continent-wide transportation networks, including 
a dataset derived from the features contained within the entire continental United 
States (35.9 million line features). 

Performance statistics on several different size network build operations are shown 
in Table 2 (number of linear source features, number of vertices in their geometries, 
number of network elements created, and the wallclock build time). A reasonable PC 
(2.4GHz, 2GB RAM) running ArcGIS 9.1 was utilized on the client side and a 
commercial relational database was employed on the server side. Reported build 
times include the geometric analysis of the feature geometry in order to establish 
connectivity, as well as the population of attributes within the persisted network 
representation (e.g., travel time along an edge). We observed that in the typical case, 
geometry and connectivity analysis consumed 45% of the build process time, while 
creation of the persistent network elements took 30% of the build time, and 
population of network attributes the remaining 25% of the processing time. 

Table 2. Summary statistics of large networks built 

Dataset Features Vertices Net Elements Build Time 

U.S. National  35.9 million 128.3 million 65.1 million 43 hours 

Northeast U.S.  5.3 million 27.0 million 9.6 million 1.8 hours 

Major U.S. Streets 1.8 million 20.4 million 3.1 million 0.5 hours 

Paris Metro 0.4 million 0.8 million 0.7 million < 3 minutes 
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6   Future Work 

There are several areas of ongoing research and development with our network model 
that will be incorporated into the ArcGIS product following the 9.1 release. These 
include the direct support for the class of user that is a heavy editor of the features 
participating in the network (as described in the Section 3.1). In order to support this 
group, it will be necessary to support the incremental build of the network in the 
versioned environment. An analogous capability was developed and provided with 
ArcGIS Topology [11]; this entailed dirty area management, the development of an 
incremental topology validation process, and incorporation of topology into the 
ArcGIS Version Management infrastructure. Analogous development tasks will occur 
with this new network model. 

Dirty Areas. A network can have an associated dirty area – a dirty area corresponds 
to the regions within the network extent where features participating in the network 
have been modified (added, deleted, or updated) but whose connectivity has not been 
re-established. When the geometry of a feature that participates in a network is 
modified, the extent of the dirty area is enlarged to encompass the extent of the 
bounding rectangle of the modified geometry (note that other simplified geometry 
representations may also be employed - e.g., convex hulls). The dirty area is persisted 
with the network. In order to ensure that the network is correct, the portion of the 
network encompassed in the dirty areas will need to be rebuilt.  

It is not necessary to build the entire space spanned by the dirty area at one time; 
instead, a subset of the dirty area can be built. If the dirty area is partially built, the 
original dirty area will be clipped by the extent of the region that is built.  

Allowing users the ability to build a portion of the dirty area is a pragmatic 
requirement of supporting extremely large seamless network. For example, when a 
network is first defined, or when the network metadata (e.g., connectivity model, etc.) 
is modified, the entire extent of the network is dirty. If users were not provided with 
the capability to build a portion of the dirty area, the user would be required to build 
the entire network which could prove to be a very lengthy process (e.g., a couple days 
of processing time for large continent-wide network datasets). As was discussed in 
[11], the dirty area model effectively supports partial processing in computationally 
intensive areas of GIS such as topology. 

Incremental Build. In order to minimize the amount of processing necessary to 
maintain a consistent connectivity network, the dirty area mechanism may be 
exploited in conjunction with an incremental build algorithm. In an incremental build, 
the connectivity information associated with features in a dirty area is deleted and 
rebuilt (recreated) in order to achieve a consistent state of the network. The high level 
algorithm is as follows: 

1. Delete the network elements associated with the line features intersecting the 
dirty area (or portion thereof) being built. 

2. Load the geometries of all the line features intersecting the area being built along 
with the associated network metadata (connectivity model, ternary mapping of 
evaluators to network attributes and feature classes).  
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3. Load the geometries of all point features that are connected to the line features 
intersecting the area being built (these point features may lie outside the area 
being built if the line feature extends outside the area). 

4. Sort the vertices associated with the features, retaining the parentage information. 

5. Discard all isolated line vertices (i.e., the vertices on the line features that are not 
coincident with other vertices from differing line or point features). 

6. Discard interior line vertices if the connectivity model does not support mid-span 
connectivity on the associated line feature class. 

7. Create network junctions as necessary for the remaining line vertices and other 
isolated vertices associated with point features. 

8. Create network edges between the junctions as appropriate based upon the 
connectivity model. 

9. Update the dirty areas associated with the network. 

It is important to note that the network build process does not need to span all 
features within the network. A build can be performed on a subset of the space 
spanned by the dataset. This is a complex task since the re-built portion of the 
network has to be properly stitched together with the rest of the network. 

7   Conclusion 

In this paper we described the logical model of GIS network topology and several 
extensions to the standard network model that directly facilitate the modeling of 
multimodal systems, supporting mid-span connectivity on line features, as well as 
supporting endpoint elevation data that often accompanies large planar datasets from 
commercial data vendors. We reviewed a common physical database implementation 
that uses the conventional notions for mapping entities and relationships to tables and 
the standard primary key / foreign key referential integrity model. Problems with this 
approach were discussed. We then presented an alternative implementation of the 
network model which used a different physical approach to persisting network 
connectivity. This new model additionally supports turn restrictions and impedances, 
both two-part turns as well as multi-part turns (maneuvers). Efficient mechanisms for 
navigating the network connectivity were discussed (the forward star adjacency 
query), as well as a more flexible mechanism (network evaluators) for maintaining 
and querying attributes on the network elements. This design serves as the basis for 
our implementation of transportation networks in the ArcGIS geographic information 
system; this new model has been implemented and is currently shipping with the 
ArcGIS 9.1 product. 

Our future work will focus on extending the network with support for dirty area 
management policies and an incremental build algorithm that is more useful for 
organizations that frequently edit their network data (e.g., governmental organizations 
and commercial data providers). In addition, we will be supporting this network 
model in the distributed database environment, incorporating aspatial features 
(features without geometry) into the network model, as well as other performance 
enhancements. 
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