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Abstract. With fast evolving resources for 3D objects such as the Pro-
tein Data Bank (PDB) or the World Wide Web, new techniques, so-called
similarity models to efficiently and effectively search for these 3D objects
become indispensible. Invariances w.r.t. specific geometric transforma-
tions such as scaling, translation, and rotation are important features of
similarity models. In this paper, we focus on rotation invariance. We first
propose a new method of representing objects more accurately in the con-
text of rotation invariance than the well-known voxelization technique.In
addition, we extend existing feature-based similarity models by propos-
ing a new spherical partitioning of the data objects based on proportion-
ality and redundancy1, and generalizing an existing method for feature
extraction. A broad experimental evaluation compares our method with
existing methods in terms of accuracy and efficiency. In particular, we
experimentally confirm that our point sampling method is better suited
to represent 3D objects in the context of rotation invariance than vox-
elized representations. In addition, we empirically show that our new
similarity model significantly outperfoms competitive rotation invariant
models in terms of accuracy as well as efficiency.

1 Introduction

During the last years, more and more 3D models became available, e.g. through
the fast-growing protein database PDB [1] or through the World Wide Web
[2]. This trend will probably continue and thus, new techniques are required to
efficiently and effectively search within such 3D databases.

This paper covers feature-based methods to describe 3D objects, so called
shape descriptors. Shape descriptors extract numerical features of a 3D object
so that the object is mapped to a metric space called feature space. The similarity
of two spatial objects is then measured by the proximity of their feature vectors.

In this paper, we are particularly interested in shape descriptors that are
invariant with respect to rotation, translation, and scaling.

We will base our work on an existing shape descriptor (the volume model [3])
by applying a combination of new techniques. The original descriptor is already
1 Patent pending.
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invariant w.r.t. the mentioned transformations because it uses a spherical parti-
tioning of data objects after moving the balance point of an object to the origin
of the coordinate system. For a given object, the model extracts the volume of
the object from each partition as feature.

The retrieval quality of this very intuitive but simple model can be signifi-
cantly enhanced by our newly proposed techniques. The first improvement we
propose in this paper is a new representation of 3D objects. Instead of the com-
monly used voxel representation, we use uniformly distributed surface points.

Our second enhancement is a new way of decomposing an object into several
partitions. Instead of constructing equidistant shells like in [3], our method cre-
ates partitions that are dynamically adapted to the specific shape of an object.
In addition, we propose a new technique for the assignment of parts of an object
to different partitions. Instead of assigning each part to exactly one partition,
our new redundant assignment method associates parts of an object to several
overlapping partitions.

A third enhancement we are proposing is to use an advanced feature extrac-
tion method instead of the rotation invariant but rather simple feature extraction
based on the volume of the object in a partition. In particular, we show how the
eigenvalue model which is presented in [4] for voxelized data working with cubic
partitionings, can be generalized for arbitrarily shaped partitionings. We further
adopt this generalization to our new object partitioning method.

We empirically show how these newly introduced techniques can be com-
bined, to significantly improve quality of similarity search on 3D models.

The rest of the paper is organized as follows. We review related work on
rotation invariant shape descriptors in Section 2. We then discuss the limitations
of voxel representation in the context of rotation invariance and present our
solution to this problem based on point sampling in Section 3. Section 4 presents
our new object partitioning methods and Section 5 describes the generalization
of the eigenvalue model. Section 6 summerizes our new method to compute
rotation invariant shape descriptors. The experimental evaluation of our methods
is presented in Section 7. Section 8 provides conclusions.

2 Related Work

Various methods for the characterization of 3D shapes have been reported. In this
section we focus on techniques that result in a rotation invariant representation
of an object without requiring a normalization step.

In [5] Osada et al. presented a technique called “D2” to describe 3D shapes.
At first the distances of pairs of randomly selected points on the surface of an
object are measured. These distances are used to create a histogram that is
finally used as a feature vector. This method is intended to distinguish large
differences in geometric shape. It is not able to discriminate between objects
that differ only in small details. In addition, a high number of pairwise distances
has to be calculated to obtain a robust description of the object.

The idea of the D2 descriptor was refined in [6]. The authors not only cal-
culated the distance between two randomly distributed surface points, but also
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classified it according to the position of the two points. The line between two
points either can lie completely inside the object, completely outside of the ob-
ject, or inside and outside of the object. This separation yields three histograms
instead of one. The presented results show that very similar shape distributions
are still derived for dissimilar parts. The complexity of the method is the same
as above while the time that has to be spent for each pair of points is even longer
since the connecting line has to be classified.

In [7], Kazhdan et al. presented a rotation invariant shape descriptor by
applying the spherical Fourier analysis to a number of spherical functions defined
on a voxel grid. The concentric spheres constructed around the center of the voxel
grid are used to define corresponding spherical functions.

In [8] the authors describe a shape descriptor based on the work in [7]. A
spherical function is defined by measuring the distance between the surface of
an object and its balance point. This function is afterwards analyzed with the
spherical Fourier transform and the Fourier coefficients are used to characterize
the object.

As the computation of the Fourier coefficients by means of the SFT algorithm
requires a lot of function values we decided to use the method in [7] for our
experimental comparisons because it is easier to determine whether or not a
voxel is filled than to intersect a large number of rays with a triangle mesh.

Hilaga et al. in [9] introduced a technique to characterize 3D shapes based on
so-called Reeb graphs. The better these graphs match, the higher is the similarity
between the corresponding objects. However, this method compares the topology
of objects rather than their geometry.

An intuitive and rotation invariant technique to describe the 3D shapes of
proteins was presented by Ankerst et al. in [3]. Since our method uses a simi-
lar technique for object partitioning, we will present details on this method in
Section 4. The method also will be included in our experimental comparisons.

3 Representation of 3D Objects

In this section, we discuss how 3D objects can be represented in order to effi-
ciently derive spatial features. Often, 3D objects are given by triangle meshes,
i.e. sets of connected triangles. The algorithm in [10] for example calculates a
triangulated surface of a protein. Although well suited for the graphical display,
this representation is still too complex for the efficient computation of feature
vectors. In the following, we discuss voxelization as a method to represent 3D
objects and its problems in terms of rotation invariance. Thereafter, we propose
a new representation method called point sampling that overcomes the short-
comings of voxelization regarding rotation.

3.1 Voxelization

A well-known method to represent 3D data for extracting spatial features is vox-
elization. For voxelization, an object is usually placed into a standardized cube.
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(a) 720 voxels. (b) 3075 voxels.

Fig. 1. Rotation variant voxel representation

(a) Rendered
view.

(b) Triangle
mesh.

(c) 503 voxel
grid.

(d) Points.

Fig. 2. Different representations of a 3D object

This cube is partitioned into n3 small cubes (so-called voxels) using an equidis-
tant grid. A voxel is considered as filled if it intersects a triangle of the triangle
mesh. The algorithm proposed by Kaufman in [11] yields a conservative approx-
imation of the object surface by means of voxels. A further advantage of this
representation is the possibility to model filled objects by adding interior voxels.

However, this representation is not invariant with respect to rotations, i.e.
the number of voxels changes when the object is rotated. This effect is illus-
trated in Figure 1. As we will demonstrate experimentally, this rotation variant
representation of objects reduces the quality of shape descriptors working with
voxel input.

3.2 Point Sampling

In this section we introduce another approach to represent a given mesh of
triangles. Let M = {T1, . . . , Tm} be the set of triangles the mesh consists of. For
1 ≤ i ≤ m let Ai denote the area of the triangle Ti and let Pi, Qi, Ri ∈ �3 be
the three vertices of Ti. Then in a first step the total area A =

∑m
i=1 Ai of all

triangles is calculated and the desired number n ∈ � of points to be sampled is
chosen. Afterwards, the following steps are repeated n times:

Selection of a Triangle. With probability p = Ai

A triangle Ti is selected. This
selection is implemented by a preprocessing step assigning to each triangle the
sum of the areas of all its predecessors plus its own area, i.e. Asumi =

∑i
j=1 Aj .

Afterwards, a random number r ∈ �, 0 ≤ r ≤ A is created and the triangle Tj

is selected so that Asumj ≥ r and �i : 1 ≤ i < j : Asumi ≥ r.

Sampling of a Random Point. According to [12] a random point is created
inside triangle Tj .

In contrast to the voxelization method this method is not able to model filled
volumes. Nevertheless, our experiments show an improved quality when using
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shape descriptors working on models that have not been normalized before the
shape descriptor is applied.

Figure 2 shows different representations of a 3D object.

4 Partitioning Data Objects

The general idea of our rotation invariant shape descriptors is to partition an
object into shells similar to the method proposed in [3] and then extracting
spatial features from each partition. We show how this method can be adopted
and enhanced in terms of acurracy. Let us note that the following concepts do
not rely on a certain kind of object representation, i.e. objects represented as
voxels or using sampled points. In the following, we assume that the data objects
are represented as points, either center points of voxels or sampled points.

4.1 Construction of the Shells

The shell model to partition the data was originally proposed in [3]. After the
computation of the balance point M (cf. Section 5) of a given object O and the
radius of the bounding sphere around O the space enclosed by the bounding
sphere is divided up into k ∈ � shells.

Equidistant Shell Construction. The original approach in [3] constructs k
shells whose distance to each other is the same for each pair of adjacent shells. So
we will refer to this method as the equidistant construction method. Although
the innermost shell actually is a sphere, we nonetheless will denote it as a shell.
Let rBS ∈ � be the radius of the bounding sphere. Then the thickness δ of each
shell,i.e. the radius of the inner sphere, can be computed by δ = rBS/k.

For each i ∈ {1, . . . , k} the shell Si is characterized by its inner radius ri−1

and its outer radius ri where ri = δ · i.
This method is illustrated in Figure 3. An object is inscribed into its minimal

bounding sphere and the bounding sphere is afterwards partitioned into k = 3
equidistant shells. This method corresponds to the calculation of so-called shape
histograms [3].

(a) Original object. (b) Partitioned
bounding sphere.

(c) Equidistant
shell construction.

(d) Proportional
shell construction.

Fig. 3. Shell construction
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Proportional Shell Construction.1 The shell construction method of [3] de-
scribed above keeps the distance between adjacent shells constant. However, this
method does not partition the bounding sphere into areas of equal complexity
and thus of equal interest. Shells of very low complexity (i.e. with few points)
are most likely of very low interest. The granularity of the partitioning is too
fine to extract meaningful spatial features in that case. In the worst case, the
equidistant construction method may result in empty partitions that are of no
interest. On the other hand, other shells contain many more points. In this
case, the granularity of the partitioning may be too coarse to extract meaningful
spatial features. The solution we are proposing in the following is to apply a
proportional shell construction such that each partitioning has the same level of
complexity and interest.

Let O = {p1, . . . , pn} be an object represented by a set of points (either
representing voxels or sampled points as discussed above). Let M be the balance
point of O, let rBS be the radius of the bounding sphere around O, and let k ∈ �
be the desired number of shells to be constructed. Then the number a ∈ � of
points to be placed into each shell is given by a = �n/k� .

Now the points of O are sorted in ascending order with respect to the Eu-
clidean distance deucl of its elements to M such that O can be rewritten as O =
{ps(1), . . . , ps(n)}, where deucl(M, ps(1)) ≤ deucl(M, ps(2))≤ . . . ≤ deucl(M, ps(n)).

Let k �= 1. Then the shell Si, i ∈ {1, . . . , k − 1}, is characterized by its inner
radius ri−1 and its outer radius ri where ri = deucl(M, ps(i·a)).

The outer radius rk of the outmost shell Sk is set to rBS . In case of objects repre-
sented using point sampling, this radius is not necessarily equal to deucl(M, ps(n)).
This is due to the random process with which the sampled points of O have been
created. The inner radius rk−1 of Sk is calculated as described above.

The radii of the shells are important for our method of feature extraction
from the partitions which will be presented in Section 5.

If n �= k ·a, the remaining elements of O (ps(k·a+1), . . . , ps(n)) are assigned to
the outmost shell.

Obviously, the proportional shell construction method partitions the bound-
ing sphere into areas of equal complexity and thus of equal interest. The gran-
ularity of the partitioning adopts to the shape of the data objects. The method
is illustrated in Figure 3(d). While the equidistant shell construction method
corresponds to the calculation of shape histograms, the proportional method
generates shape quantiles.

4.2 Assignment to Shells

After the space enclosed by the bounding sphere has been partitioned, i.e. after
the shells have been constructed in an equidistant or proportional way, points
of O = {v1, . . . , vn} (either representing voxels or sampled points) have to be
assigned to these partitions.

Let M be the balance point of O and let the bounding sphere be segmented
into shells S1, . . . , Sk, k ∈ �. Each shell Si is characterized by its inner radius
ri−1 and its outer radius ri, where r0 := 0.
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(a) Shells. (b) Disjoint assignment. (c) Redundant assignment.

Fig. 4. Disjoint vs. redundant assignment. Cross section of the bounding sphere

Disjoint Assignment. In [3] a disjoint assignment is proposed. For each shell
Si, a set Vi is created. An element vj of O is assigned to Vi if and only if
ri−1 < deucl(M, vj) ≤ ri.

As every element of O is assigned to exactly one shell, this assignment results
in a disjoint decomposition of O into V1, . . . , Vk. Each set corresponds to the
space enclosed by a certain shell. This method is illustrated in Figure 4(b).

Redundant Assignment.1 The disjoint assignment proposed in [3] has a severe
limitation. If two (or more) shells (and their associated elements) are rotated
against each other, the resulting feature vector will be exactly the same as the
one derived from the unrotated elements. Although the so changed set of points
may represent a totally different object, this object will be regarded as very
similar to the one described by the unrotated points.

To overcome this weakness we introduce a new method for the assignment of
elements to spherical partitions. This method can be applied to both, equidistant
and proportional shells.

A set V S
i is created for each shell Si. An element vj of O is assigned to V S

i

if and only if deucl(M, vj) ≤ ri.
To illustrate the method, imagine x ∈ O, ri−1 < deucl(M, x) ≤ ri, i.e. x lies in-

side the shellSi. The disjoint assignmentmethodwould assignx to only one specific
setVi, whereas the redundant assignmentmethod assignsx to the sets V S

i , . . . , V S
k .

It is obvious that rotating a shell against other shells now results in a different
feature vector. If for example shell Si is rotated, the sets V S

i , . . . , V S
k will yield

different features.
The set V S

i corresponds to the space enclosed by a sphere with radius ri that
is centered at M . V S

k represents the space enclosed by the bounding sphere and
thus V S

k = O. In Figure 4(c), an example of the partitions resulting from the
redundant assignment method is depicted.

4.3 Problems with Thin Shells

No matter how the elements are assigned to the spherical partitions, a problem
can occur when the underlying shells are constructed proportionally. If all or
almost all points representing an object have the same distance to their balance
point, the constructed shells will be very thin.

Let object O be a perfectly triangulated globe, i.e. the triangle mesh of O
consists of infinitesimally small triangles and thus the points that are sampled
on the surface of O all have the same Euclidean distance to their balance point
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(a) Without blur-
ring.

(b) With blurring. (c) Without blur-
ring.

(d) With blurring.

Fig. 5. Impact of blurring on (a),(b) thin shells and (c),(d) thick shells

M , the center of the globe. Sorting the points according to their distance to M
will then result in a list whose ordering is in the best case random and in the
worst case determined by the creation time of a certain point. The elements of
a certain partition will therefore not reflect the globular shape of O. It is more
likely that a partition only describes a small (non-globular) area of O.

In reality, due to a triangulation process that is far from being perfect, not
all sampled points representing O will have the same Euclidean distance to M .
Nonetheless the constructed shells will be very thin and the distribution of points
in the partitions will most probably not reflect the globular distribution of the
complete set of sampled points. The points assigned to a certain shell will more
likely reflect geometric deviations from the ideal surface of the globe due to a
non-perfect triangulation of O.

An example of this problem is illustrated in Figure 5(a). The points are
marked with four different colors. The colors correspond to the disjoint assign-
ment of the sampled points to different shells. The shape of the object is globular
and thus the mentioned problem becomes visible. Instead of being equally dis-
tributed, points of the same color are grouped together in certain areas.

A possible solution to this problem is to shuffle the points. Therefore, we
introduce a value we call the blur-distance β. Let O =

(
ps(1), . . . , ps(n)

)
be rep-

resented by a list of sampled points. Let M be the balance point of O and let
deucl(M, ps(1)) ≤ . . . ≤ deucl(M, ps(n)), i.e. the points are sorted in ascending
order with respect to the Euclidean distance to M . Thus the blur-distance β is
defined by: β = c · deucl(M, ps(n)), c ∈ [0, 1].

The blur-distance is specified as a portion of the maximum distance to M
over all elements of O. Our experiments suggest that 0.01 is a good choice for
c, so we will set c = 0.01 throughout the rest of the paper. The blur-distance
specifies regions adjacent to borders between shells. The elements of these regions
are afterwards shuffled with regard to their position in the sorted list O. The
exact procedure is as follows:
1. Let k ∈ � be the number of shells to be constructed.
2. The number a of elements to be assigned to each shell is calculated. Then

the set B = {s(a), s(2a), . . . , s((k−1)a)} contains the indices of the outmost
elements (with respect to M) of the shells (except for the outmost shell).
These elements mark the border between two adjacent shells.
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3. Now we successively use each index b ∈ B as a starting point in the list O.
We proceed downwards in the list until we reach for the first time an index
l such that deucl(pb, ps(l)) > β or until we reach the innermost element of O.
In this case, we set l = 1.

4. Afterwards, for each b ∈ B we proceed upwards in the list O until we for the
first time reach an index u, such that deucl(pb, ps(u)) > β or until we reach
the outermost element of O In this case we set u = n.

5. As a result, a pair of indices (l, u) was determined for each element of B.
Each pair specifies a portion of the list O that now is shuffled (the elements
from ps(l+1) to ps(u−1)). If two or more of these regions overlap, they are all
shuffled at once such that an element of one part of O can be swapped with
an element of another part.

This shuffling ensures that the distribution of points of a very thin shell
describes all parts of an object that lie in adjacent thin shells. In Figure 5(b)
this effect is demonstrated with the globular object mentioned above. Now all
shells reflect the spherical shape of the original object. In Figure 5(c) we depicted
an object partitioned into thick shells. The clearly defined borders become only
slightly blurred when applying the method described above (cf. Figure 5(d)).

5 Extracting Spatial Features

Having partitioned the objects into shells, we have to extract spatial features to
build a feature vector. In [3], the volume, i.e. the number of representing points,
of the object in a given partition is extracted as feature. The resulting feature
vector consists of one volume measurement in each of the k shells. We refer to
this method of extracting spatial features as the volume model.

In [4] the eigenvalue model has been introduced which clearly outperfoms the
volume model in terms of effectiveness. Thus, we argue that it is more accurate
to use this eigenvalue model to extract spatial features. The eigenvalue model
was originally introduced in [4] but was only applied to a cubic partitioning
of a voxelized object. The method is based on PCA, the principal component
analysis [13], to analyze a given set of data and extract shape descriptors from a
given partitioning. In the following, we describe the basic idea of the eigenvalue
model, and generalize a procedure for obtaining feature vectors from the data
of a given partition. The sets to be analyzed are the sets of 3D points that lie
inside a certain partition.

The eigenvalue model. The basic idea of the eigenvalue model is to obtain
the eigenvalues of a set of data within a cubic partitioning as shape descriptors
[4]. Originally, it was applied to voxelized data, however, it is quite simple to
apply it on objects being represented by sampled points.

Let V = {v1, . . . , vn} be a set of 3D points, i.e. vi ∈ �3, 1 ≤ i ≤ n, where
vi = (vi1 , vi2 , vi3)T. If the object is voxelized, the vi represent the center of voxel
vi, whereas if the object is represented using point sampling, vi is simply one of
the sampled points.
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Each vi ∈ V is translated such that M afterwards coincides with the origin
and afterwards the covariance matrix C for V is computed as follows:

C=
1

|V | − 1

n∑

j=1

(vj−M) · (vj − M)T
, where M =

1
n

n∑

j=1

vj is the balance point.

The covariance matrix can be decomposed as C = VEVT, where V is an
orthonormal matrix containing the eigenvectors of C and E is a diagonal matrix
containing the eigenvalues of C. The eigenvectors are called principal axes of V .
They describe the three orthogonal axes where the scattering of the elements
is greatest. The eigenvalues describe the variance along the three principal axes
and thus can be used to characterize the shape of the elements of V . As stated
above, in [4], the authors apply this idea to voxelized data. The data objects are
partitioned into axis-parallel units. From each unit, the eigenvalues of the voxels
(represented as vectors of their center point) are obtained as shape descriptors.
Let us note, that this method is not rotation invariant due to the cubic parti-
tioning of the data. The resulting feature vector consists of 3k values since for
each partition, 3 features (eigenvalues) are extracted.

Generalization and Adoption to Spherical Partitionings. The eigenvalue
model as proposed in [4] is applicable on cubic partitionings only and thus is not
rotation invariant. In the following, we present a way to normalize the calculated
eigenvalues such that eigenvalues of different partitions or even different similar-
ity models can be compared to each other or can be combined with each other.
In particular, we show how this model can be applied to spherical partitions like
the shells constructed in Section 4. The idea is to express each eigenvalue as a
portion of the maximum possible eigenvalue.

Lemma 1. Let V be a 3D space and let dmax be the maximum Euclidean dis-
tance two points in V can be apart from each other. The maximum variance
V armax that can occur in V is given by V armax = 1

2d2
max.

Proof. The highest variance in a certain direction is given by two points that have
the highest possible distance from each other and that lie on a line indicating
the specific direction. Let therefore T = {(a1, a2, a3), (b1, b2, b3)} =: {a, b} be a
set with two points in a 3D space V and let deucl(a, b) be the largest Euclidean
distance two elements in V can be apart from each other.

The mean value M of T is equal to (a1+b1
2 , a2+b2

2 , a3+b3
2 ). The variance of T

is then given by:

V ar(T ) =
∑

t∈T (deucl(t, M))2

|T | − 1

=
(a1 − a1+b1

2 )2 + (a2 − a2+b2
2 )2 + (a3 − a3+b3

2 )2

1

+
(b1 − a1+b1

2 )2 + (b2 − a2+b2
2 )2 + (b3 − a3+b3

2 )2

1

=
1
2
((a1 − b1)2 + (a2 − b2)2 + (a3 − b3)2) =

1
2

(deucl(a, b))2
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Lemma 1 states, that in order to normalize the calculated eigenvalues of V ,
it is sufficient to determine the largest possible distance dmax that can occur
in V . Using dmax, the maximum possible variance, i.e. the maximum possible
eigenvalue, can be computed as indicated in Lemma 1. For example, the maxi-
mum distance dmax can be the diameter of a shell or the diagonal of a cube. An
eigenvalue λ is normalized by the mapping λ �→ λ/V armax.

In the following, if we speak of the eigenvalue model, we mean the generalized
version of the model, i.e. we will assume that the normalized eigenvalues are
obtained as shape descriptors.

The eigenvalue model can now be applied to spherical partitionings such as
the shells constructed in Section 4. In both cases of a disjoint or a redundant
assignment of points to the shells, the maximum Euclidean distance dmax of
two elements within a shell Si or SS

i , respectively, can be determined by 2ri.
The maximum variance, i.e. the maximum eigenvalue for scaling, can then be
computed according to Lemma 1.

6 Computing Invariant Shape Descriptors

Now we can summarize our proposed methods of computing shape descriptors
and discuss whether they are invariant w.r.t. several transformations, including
translation, rotation, reflection, and scaling.

The general technique of how invariance with respect to translation, rotation,
reflection, and scaling is achieved is the same for all descriptors. Let O be the
object whose feature vector is to be calculated. The following steps depend on
the type of representation.

Voxel Representation: Let O = {v1, . . . , vn}, vi ∈ �3 be represented by a
set of voxels (cf. Section 3.1). Then the balance point M = 1

n

∑n
i=1 vi of O is

computed. Afterwards, O is moved so that M coincides with the origin. Finally,
the minimum bounding sphere centered at M is constructed. The radius rBS of
the bounding sphere is determined by rBS = maxvi∈O{deucl(M, vi)}.
Sampled Points Representation: Let O = {p1, . . . , pn}, vi ∈ �3 be repre-
sented by a set of sampled points. In principle the method for the calculation of
the center and the radius of the bounding sphere described above can be applied
to any set of 3D coordinates. But with regard to the random process, the sam-
pled point set was created with (cf. Section 3.2), we decided to calculate these
values with the help of the original triangle mesh. The triangle vertices used
to calculate the balance point are weighted by the area of the corresponding
triangle. This procedure was proposed in [14]. To determine the radius of the
bounding sphere we again use the vertices of the triangles rather than the set
of interpolated points. This is due to a problem that may occur when using the
sampled points. Consider a very small but long, needle-shaped triangle with one
vertex being the most remote point with respect to the balance point. Due to
its tininess only one point might be sampled into the triangle. Thus the radius
of the bounding sphere may vary significantly depending on the position of this
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point. Using the vertices of the triangles will result in a radius that is invariant
with respect to the randomly generated points.

After these steps, invariance with respect to translation is achieved as the
balance point of O has been moved to the origin.

Our method partitions the space enclosed by the bounding sphere of a given
object into several shells centered at the balance point of the object. In Section
4, we presented two methods to construct these shells, in particular equidistant
partitioning as proposed in [3] and proportional partitioning. In addition, we
presented two methods to assign the points representing a given object to the
shells. The first method uses a disjoint assignment of the points to shells (cf. [3])
whereas the second method uses a redundant assignment.

Afterwards, we apply the eigenvalue model [4] to the elements (voxels or
sampled points) of each shell. We presented a generalization of this model in
Section 5. As the variance of the elements inside a certain shell does not change
even if the object is rotated the resulting eigenvalues are invariant with respect
to rotation. At the same time, invariance with respect to reflection is achieved.
The amount of scattering of the elements of a certain shell remains unchanged,
if the object is reflected. Finally, the eigenvalues derived for the single parti-
tions are scaled (cf. Section 5) and thus, invariance with respect to scaling is
achieved.

7 Experiments

In this section, we present our experimental evaluation of the proposed methods.
In particular, we will first evaluate the usability of the sampled points represen-
tation in comparison to a voxelized representation in the context of rotation
invariance. Next, we confirm the superiority of our adoption of the eigenvalue
model over the volume model. Last but not least, we evaluate the performance
of the different shell construction techniques and point assignment strategies de-
scribed in Section 4 and compare the best shape descriptor with existing work
on rotation invariant similarity models.

7.1 Data Sets

For our experiments we used two different real-world data sets that are described
in the following.

Princeton Shape Benchmark. The models of this set originate from the
Princeton Shape Benchmark Set [2] consisting of 1814 models collected from the
World Wide Web. Along with the models, a hierarchical classification is provided
that can be used to evaluate the quality of different shape descriptors with
precision/recall plots. We decided to only regard the leaves of the classification
system. Thus, the set is partitioned into 161 disjoint classes. We will refer to this
set of objects as the “PSB set”.
Proteins. A huge amount of 3D protein structure data is available at the online
repository of the Protein Data Bank (PDB) [1]. We used the MSMS program [10]
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Fig. 6. Evaluation of sample points vs. voxel representation

to calculate the solvent excluded surface [15] of each molecule. Afterwards the
surface was triangulated and so all experiments could be performed on the same
type of data. For the classification of the proteins we used the FSSP (Families
of Structurally Similar Proteins) classification [16], a well-known classification
system for proteins. To create classes of approximately the same size without
selecting too many proteins for the test set, we scanned the PDB for classes whose
size ranged from 50 to 100 members. This resulted in a set of 3279 proteins in
47 classes which we will refer to as the “PDB set”.

We rotated all models in both sets around a random axis by a randomly
determined angle in a preprocessing step to ensure a non-canonical orientation.
All experiments were run on an Intel Pentium 4 processor featuring 2.53 GHz
and 1 GB RAM.

7.2 Sampled Points vs. Voxel Representation

Our first experiments evaluated the representation of 3D objects. In Section 3
we discussed the limitation of voxelization in the context of rotation invariance
and proposed the technique of point sampling to overcome this limitation. To
evaluate the usability of voxelization and point sampling for rotation invariance,
we randomly selected 100 models from the PDB set and duplicated each selected
model four times. In addition, we rotated each copy randomly. Finally the re-
sulting 500 models together with the rest of the PDB set were mapped to a
feature space using the eigenvalue model on 8 disjoint and equidistant shells. We
applied the same preprocessing to the PSB set.

First we analyzed the influence of the number of sampled points on retrieval
quality and computational cost. The task was for each of the 500 preprocessed
models to retrieve the 4 corresponding (arbitrarily rotated) models. The exper-
iment was performed for different numbers of sampled points. We measured the
average time needed for the feature extraction for one model. The results shown
in Figure 6(a) and Figure 6(b) suggest a sensible trade-off between retrieval
quality and computational cost is a number of 50, 000 sampled points.

We then compared the accuracy of both the sampled points representation
and the voxel representation, using precision/recall plots. To confirm our as-
sumption that the representation by voxels is inferior to the sampled points
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Fig. 7. Volume model vs. eigenvalue model

representation we repeated the above described experiments for the 500 dupli-
cated models in both data sets. The models were mapped to a feature space
using 20,000 sampled points, and for the 4 possible recall values the average pre-
cision was determined. Then the objects of both data sets were represented by a
603 voxel grid. The resulting precision/recall plots (cf. Figure 6(c)) confirm our
presumption. Although we used a relatively low number of sampled points and
a relatively high voxel resolution, the sampled points representation generated
significantly higher precision values.

Thus, throughout the rest of our experiments we used the sampled points
representation for the 3D objects. Due to our experiments presented above, we
set the number of sampled points to 50,000.

7.3 Volume Model vs. Eigenvalue Model

The following experiments evaluate the applicability of our generalization of the
eigenvalue model (cf. Section 5). Therefore, we compared the volume model as
proposed in [3] with our generalized eigenvalue model. Both models are based
on an equidistant shell construction with disjoint point assignment. In case of
the eigenvalue model, we used 10 shells whereas in case of the volume model we
used the parameter setting that performed best according to [3], i.e. 120 shells.

Figure 7 illustrates the result of the comparison. The precision/recall plot of
the volume model is labelled with “Volume” and the results for the eigenvalue
model are marked with “EV”.

While the two models yield almost the same results on the PDB set (cf.
Figure 7(a)), the eigenvalue model yields significantly better results on the PSB
set (cf. Figure 7(b)). These results underline that the eigenvalue model is more
accurate than the volume model. Let us note that in case of the volume model
we need 12 times more partitions than using the eigenvalue model resulting in
significantly higher waste of resources for the volume model.

Thus, we use the eigenvalue model throughout the rest of the experiments as
the method for extracting spatial features.
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Fig. 8. Proportional vs. equidistant shell construction
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Fig. 9. Redundant vs. disjoint assignment

7.4 Shell Construction and Assignment to the Shells

In this section, we evaluated the different methods of shell construction and shell
assignment presented in Section 4.

First we analyzed the impact of the different methods for the shell construc-
tion. Figure 8 shows that for both data sets and for different numbers of con-
structed shells the proportional shell construction significantly outperforms the
equidistant method. Let us note that the presented results were achieved with
a disjoint assignment step. The same effect occurs when assigning the sampled
points redundantly (results are not shown here due to space limitations).

A further significant improvement in the quality of 3D model retrieval can be
observed when using the redundant assignment to the shells. This is shown for
different numbers of proportional shells and for both data sets in Figure 9. We
empirically verified that this is also true for all considered numbers of equidistant
shells (results are not shown here due to space limitations).

7.5 Comparison with Existing Approaches

Last but not least, we compared the best of our proposed shape descriptors with
existing rotation invariant methods. In particular, we compared the accuracy
of proportional and redundant shells and equidistant and disjoint shells (both
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Fig. 10. Results for different shape descriptors

combined with the eigenvalue model) with the work presented in [7] and the
method proposed in [3]. The latter model corresponds to 120 equidistant and
disjoint shells combined with the volume model.

In Figure 10, we show the resulting precision/recall plots for the competing
shape descriptors. The plot of the method of [3] is marked with “Volume”, the
result of our generalized eigenvalue model applied to 8 equidistant and disjoint
shells is labelled with “ED8”, and the results of our generalized eigenvalue model
applied to our 8 proportional and redundant shells are labelled with “PR8”. We
furthermore implemented the shape descriptor based on spherical harmonics
(marked with “SH” in Figure 10) as described in [7]. The dimensionality of
“Volume” is 120, the dimensionality of “ED8” and “PR8” is 3 · 8 = 24, and the
dimensionality of “SH” is 512. As can be seen from Figure 10, the combination of
the newly introduced proportional shell construction and the newly introduced
redundant assignement in combination with the generalized eigenvalue model
and the point sampling representation leads to a significantly higher retrieval
quality.

We also determined the efficiency of the competitive methods by measuring
the time that was necessary to create a precision/recall plot for the PDB data set.
We started the measurement after all features were loaded into main memory.
As we employed no index structures, the measured time depends only on the
dimensionality of the feature space.

The results depicted in Figure 10(c) show that the presented combination
of proportional shell construction and redundant assignment with the general-
ized eigenvalue model does not outperform the other methods only in terms of
accuracy, but also in terms of efficiency. The reason for this performance is the
comparatively low dimensionality of the resulting feature space. This is also an
advantage if a spatial index structure is applied for further speeding-up similar-
ity queries since the performance of spatial index structures usually detoriates
with increasing data dimensionality.

In summary, we can observe that our newly proposed method of propor-
tional shell construction and redundant shell assignment in combination with
our generalized eigenvalue model and our new object representation based on
point sampling significantly outperfoms existing rotation invariant approaches
in terms of accuracy and efficiency.
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8 Conclusions

In this paper, we presented different similarity models featuring many important
invariances with a focus on rotation invariance. In particular, we discussed the
limitation of voxel representations (a well-known standard technique to represent
3D objects) in the context of rotation invariance and proposed a solution to this
limitation based on point sampling. Furthermore, we introduced a new similarity
model that is based on two key ingredients: (1) a new partitioning of the data
objects that extends spherical partitionings using the ideas of redundancy and
proportionality; (2) a generalization of the existing eigenvalue model and an
adoption of this generalization to the newly introduced sherical partitionings.

Our broad experimental evaluation shows that the sampled point represen-
tation is better suited in the context of rotation invariance than the well-known
voxel representation. In addition, we showed that our new similarity model us-
ing proportional shells with redundant point assignment as object partitioning
method and the adoption of the eigenvalue model as feature extraction tech-
nique clearly outperfoms existing rotation invariant models in terms of accuracy
as well as efficiency.
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