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Abstract. We propose and solve the optimal-location query in spatial
databases. Given a set S of sites, a set O of weighted objects, and a
spatial region Q, the optimal-location query returns a location in Q with
maximum influence. Here the influence of a location l is the total weight
of its RNNs, i.e. the total weight of objects in O that are closer to l than
to any site in S. This new query has practical applications, but is very
challenging to solve. Existing work on computing RNNs assumes a single
query location, and thus cannot be used to compute optimal locations.
The reason is that there are infinite candidate locations in Q. If we
check a finite set of candidate locations, the result can be inaccurate,
i.e. the revealed location may not have maximum influence. This paper
proposes three methods that accurately compute optimal locations. The
first method uses a standard R*-tree. To compute an optimal location,
the method retrieves certain objects from the R*-tree and sends them as
a stream to a plane-sweep algorithm, which uses a new data structure
called the aSB-tree to ensure query efficiency. The second method is
based on a new index structure called the OL-tree, which novelly extends
the k-d-B-tree to store segmented rectangular records. The OL-tree is
only of theoretical usage for it is not space efficient. The most practical
approach is based on a new index structure called the Virtual OL-tree.
These methods are theoretically and experimentally evaluated.

1 Introduction

Spatial databases play more and more important roles in applications such as
corporation decision-support systems. For instance, an interesting query that
the McDonald’s Corporation may ask again and again is: “what is the optimal
location in a given region to put a new McDonald’s store?” Here an optimal
location can be defined as a location which geographically benefits the most
number of customers. This example motivates the optimal-location query. In
general, let S be the set of sites (e.g. existing McDonald’s stores) and let O be
the set of weighted objects (e.g. residential buildings, where the weight for a
building is the number of residents in it). Given a spatial region Q, the optimal-
location query computes a location l in Q which maximizes the total weight of
objects that are closer to l than to any site.
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We focus our discussions on the L1 distance (also known as Manhattan dis-
tance) for it more accurately models the driving distance in a city road net-
work [SKC93]. Given two locations (x1, y1) and (x2, y2), their L1 distance is
|x1 − x2| + |y1 − y2|. If a road network consists of a set of north-south roads
and a set of east-west roads (e.g. in Manhattan), the L1 distance is the shortest
driving distance. When we say “the closest site of o”, we mean the site whose
L1 distance to o is the smallest.

A closely related problem is the bichromatic Reverse Nearest Neighbor (RNN)
query [KM00, YL01, SRAE01]. There, a query location is given, and the RNN
query computes the set of objects in O that are closer to l than to any site
in S. There are three differences between the bichromatic RNN query and our
newly proposed optimal-location query. A small difference is that the RNN query
considers L2 distance (also known as Euclidean distance). The most important
difference is that the optimal-location query involves a query region Q, which
consists of infinite number of candidate locations. One can approximate Q as
a grid, and limit the candidates to the finite set of grid intersections. But this
approach cannot accurately compute optimal locations, for the optimal location
may be off the grid. The third difference is that the optimal-location query is
interested in the influence of a candidate location, or the total weight of objects
in the RNN set, instead of the RNN objects themselves.

This paper proposes three methods that accurately compute optimal loca-
tions. The first solution (Section 4) assumes we have an R*-tree indexing the
set O of objects. Similar to how the Rdnn-tree [YL01] extends the R-tree, we
assume the R-tree stores some extra information. Every object stores the L1
distance to its closest site in S, and every index entry stores the maximum L1
distance of objects in the sub-tree. In particular, we propose a concept called the
nn buffer, for an object o. It is a spatial contour such that a location l is inside
o.nn buffer, if and only if o is closer to l than to any site. As we will see later,
each such contour, based on L1 distance, has the shape of a diamond which has
four right angles. If we rotate the coordinate by 45o counter-clockwise, every
nn buffer is an axis-parallel square in the rotated coordinate. The solution fol-
lows two steps. The first step is to retrieve from the R*-tree those objects which
may affect the influence of some locations in Q. The objects are identified in
certain order which enables a plane-sweep algorithm (as the second step) to go
through the stream of objects once and identify an optimal location. The only
objects that may affect the influence of locations in the query region Q are the
ones whose nn buffers intersect with Q. Our approach retrieves such objects in
increasing order of nn buffer.x low in the rotated coordinate, even though the
R*-tree was built in the original coordinate. This enables the run-time plane
sweep. A naive plane-sweep solution has O(n2) cost, where n is the number of
objects in the stream. We propose the aggregation SB-tree (aSB-tree), extended
from the SB-tree [YW01], to reduce the query cost to O(n log n).

Our second solution (Section 5.1) to the optimal-location query is based on a
new specialized aggregation index called the OL-tree. It is disk-based, balanced
and dynamically updateable. The index is built in the rotated coordinate. It
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is a novel extension to the k-d-B-tree. While the k-d-B-tree maintains point
objects, the OL-tree keeps axis-parallel squares. In the OL-tree, each index entry
maintains a value called fullcover to count how many squares fully contain the
range of it. Besides, Each index entry stores maxoverlap: the maximum local
influence in the sub-tree, and maxrange, a rectangular region where any location
in it has maximum local influence.

The two solutions have interesting tradeoffs. The R*-tree based solution has
efficient (linear) space cost. However, as objects are not pre-aggregated, a query
needs to examine all objects whose nn buffers intersect with Q. If Q has large size,
the query performance is poor. On the other hand, the OL-tree is a specialized
aggregation index, whose space overhead is higher since an object may have
many copies. But it may have faster query support. For instance, if Q intersects
with the maxrange stored at the root, the algorithm instantly returns.

The third solution (Section 5) combines the benefits of the previous two
approaches. As in solution 1, we use an R*-tree to store the objects. But to
guide the search, we use a small, in-memory OL-tree-like structure. This index
is named the Virtual OL-tree (VOL-tree). It looks like an OL-tree, but it does
not store any nn buffer. A leaf entry has the same meaning of an index entry.
It corresponds to a spatial range, and it logically references a node that stores
(pieces of) nn buffers in that range. These nn buffers can be retrieved from
the R*-tree dynamically. Because the VOL-tree is small, each leaf entry may
correspond to many nn buffers (as a comparison, each OL-tree leaf node has
at most B nn buffers). Thus it is more costly to maintain maxoverlap in a
VOL-tree, which may require to retrieve all nn buffers corresponding to some
leaf entry. For this reason, instead of maintaining maxoverlap, the VOL-tree
maintains lower max and upper max, which are a lower bound and an upper
bound of maxoverlap. In particular, maxrange is associated with lower max.

This paper contributes in several ways to the understanding of the emerging
class of located-based applications.

1. We propose the optimal-location query. It has practical applications such as
corporate decision-support systems.

2. We present an R*-tree-based solution. In particular, our solution retrieves
objects of interest in some given order and then uses a plane-sweep algorithm
to identify an optimal location. The plane-sweep algorithm uses a new data
structure called the aSB-tree to improve the query performance from O(n2)
to O(n log n).

3. We introduce a theoretical solution based on a new index structure called
the OL-tree. It is a specialized index with higher space cost but possibly
more efficient query performance.

4. We provide a practical solution based on the Virtual OL-tree, which is both
space efficient and query efficient.

5. We show experimental results on real datasets which reveal the tradeoffs of
the proposed methods.

The rest of the paper is organized as follows. Section 2 reviews related work.
Section 3 provides problem transformation and introduces the rotated space.
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Section 4 presents the R*-tree-based solution. Section 5 presents the OL-tree-
based and the Virtual-OL-tree-based solutions. Section 7 shows performance
results. And Section 8 concludes the paper.

2 Related Work

The nearest neighbor (NN) query, since its introduction in [RKV95], has received
vast attention in spatial database research community. One recent variation in-
troduced by [KM00] was the RNN query. That is, given a query location l, find
the objects in a given set O that consider l as their nearest neighbor. Note that
existing work assumes the Euclidean distance while we focus on the Manhattan
distance.

There are two variations of the RNN query: the monochromatic case and
the bichromatic case. In the monochromatic case [SAE00, TPL04], the distance
between an object o ∈ O and the query location l is compared with the distances
between o and other objects in O. In the bichromatic case [SRAE01], there is
another dataset: a set S of sites. And the distance between o and l is compared
with the distances between o and sites in S. Many real-life applications corre-
spond to the bichromatic case. For instance, given a new location, compute the
set of residence buildings that are closer to this location than to any existing
McDonald’s store. In [Smi97], it was proved that for the monochromatic case,
the number of RNNs is bounded. For instance, there are at most 6 RNNs in the
2D case and at most 12 RNNs in the 3D case. But for the bichromatic case, the
number of RNNs is unbounded even for the 2D case.

One solution to the bichromatic RNN query is based on precomputation
[KM00, YL01]. (It also works for the monochromatic case.) The idea of [KM00]
is to build an R-tree that stores circles instead of points. Every circle is centered
at some object o, with radius being the distance from o to its nearest site.
Precomputation is required to get these distances. Given a query location l, its
RNNs are retrieved by locating the circles that enclose l.

Yang and Lin [YL01] proposed the Rdnn-tree which combines the R-tree of
circles with the R-tree of objects. It is an R-tree of objects, where every object
stores the distance to its closest site, while every index entry stores the maximum
distance of all objects in the sub-tree. The structure logically maintains the R-
tree of circles. It remains to determine, given a location l and an index entry
e, whether the sub-tree referenced by e may contain some object whose “circle”
(not stored) encloses l. The solution is to expand the index entry’s MBR outward
by the associated maximum distance. If the expanded region does not enclose l,
there is no need to check the sub-tree.

The R-tree that we use, in the first solution to the optimal-location query,
is the Rdnn-tree [YL01] which stores L1 distance instead of L2 distance. Our
concept of nn buffer corresponds to their concept of circle for each object. How-
ever, in this paper both the addressed problem and the R-tree-based solution
are different from [YL01]. Our problem takes as input a spatial region and aims
at identifying an optimal location (with maximum influence), while [YL01] takes
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as input a single location and finds its RNNs. As for the solution, while [YL01]
finds the objects whose circles enclose the given location and terminates, we find
the objects whose nn buffers intersects with the given region as the first stage
of a pipeline process. The second pipeline stage takes this stream of objects and
identifies an optimal location via plane sweep.

Another bichromatic RNN query solution was proposed by [SRAE01]. The
idea is to dynamically construct the influence region of the query location l. Here,
the influence region is defined as a polygon in space which encloses and only
encloses all possible RNNs of l. This is equivalent to the Voronoi cell enclosing
l [BKOS97]. Conceptually, if we draw a bisector line between l and a site s, any
object located on the l side of the bisector will have smaller Euclidean distance
to l than to s. The l side of the bisector is a half plane. If we compare l against
all sites and take the intersection of these l-side half planes, we get the Voronoi
cell containing l.

Of course, to compare with all sites is expensive. [SRAE01] provides a clever
way to compute the rectangle that is guaranteed to contain all sites needed for
computing the exact Voronoi cell of l. Then the Voronoi cell of l can be computed
by only examining these sites with in the rectangle. So to find the RNNs of l, a
range query using the Voronoi cell is performed on the R-tree of objects.

If we had limited candidate locations, the approach could be extended to
solve the optimal location problem, with two modifications. First, we now need
to construct a Voronoi cell with regards to the L1 distance [LW80]. Second,
for each location, we need to know its influence rather than the actual RNN
objects. So we can index the set of objects using the aggregation R-tree (aR-
tree) [PKZT01] where each index entry stores the total weight of objects in the
sub-tree. If the MBR of an index entry is contained in a Voronoi cell, the stored
total weight contributes to the computation of influence, without browsing the
sub-tree.

Unfortunately, in the optimal-location query, there are infinite number of
candidate locations. So the approach of [SRAE01] (with the above modifica-
tions) does not work. Before presenting our solutions, let’s first study a problem
reduction.

3 Problem Transformation

An illustration of the optimal-location query, defined in Section 1, appears in
Figure 1(a). There are four objects and two sites. In particular, the object o3
with weight 5 has s1 as the closest site, where d(o3, s1)=22. And the object o4
with weight 6 has s2 as the closest site, where d(o4, s2)=12. The influence of a
location is the total weight of objects that are closer to this location than to
their closest sites. For instance, the influence of l is the total weight of o3 and
o4, which is 5+6=11. Given a query region Q, the optimal-location query finds
an location inside Q with maximum influence. In this example, l is an optimal
location. There may be more than one optimal location. The query asks for one
of them.
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(a) the optimal-location query (b) its transformation

Fig. 1. In (a), l is an optimal location, with influence 11. The transformation in (b)
shows that any location in the intersection between Q and region 2 is an optimal
location

To efficiently compute an optimal location, we first define the concept of
nn buffer, and then transform the optimal-location query into the problem of
finding a location with maximum overlap among objects’ nn buffers.

Definition 1. Let s be the closest site of an object o. The nn buffer of o is a
contour such that ∀ l on the contour, d(l, o) = d(o, s). Here d() is L1 distance.
Given a MBR of objects, let t be the maximum distance between any such object
to its closest site, the nn buffer of the MBR is a outside contour such that ∀ l
on the contour, the minimum distance between l and the MBR is t.

o

45

s
o

MBRt
t

(a) (b)

Fig. 2. The nn buffer of an object and the nn buffer of an MBR

As shown in Figure 2(a), the nn buffer of an object o is a diamond with four
right angles. It is easy to check that the L1 distance between o and any location
on the boundary of the diamond is fixed.

The weight of object o contributes to the influence of a location l, if and
only if l is inside the nn buffer of o. So as shown in Figure 1(b), an optimal
location is a location l inside Q which maximizes the total weight of objects
whose nn buffers contain l. The concept of nn buffer can also be defined for an
minimum bounding rectangle (MBR) of a set of objects. The nn buffer of an
MBR is the tightest contour which is guaranteed to contain the nn buffers of all
objects in the MBR, without knowing the locations of the objects. The nn buffer
of an MBR is a polygon with eight edges, as illustrated in Figure 2(b).

Consider the coordinate which has the same origin as in the original coor-
dinate, but whose X and Y axes are rotated 45o counter-clockwise. We call it
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the 45o (reads rotate-45-degree) coordinate (Figure 3). In this paper, the R*-
tree indexes in the original coordinate (to satisfy the possible need for other
applications), while the aSB-tree, the OL-tree and the VOL-tree indexes in the

45o coordinate.

t
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o
X’

X

Y

Y’

x

y
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Fig. 3. Illustration of the ro-
tated coordinate

Our analysis shows that an object o located
at (x, y) in the original coordinate is mapped
to (x+y√

2
, −x+y√

2
) in the 45o coordinate. Fur-

thermore, let t be the L1 distance from o to
its closest site. The nn buffer of o is an axis-
parallel square in the 45o coordinate, whose
lower-left corner and upper-right corner are:
(x+y−t√

2
, −x+y−t√

2
) and (x+y+t√

2
, −x+y+t√

2
).

4 The R*-Tree-Based Solution

Our first solution to the optimal-location query assumes the objects are indexed
by an R*-tree. Similar to how the Rdnn-tree [YL01] extends the R*-tree, we
assume every object stores the L1 distance to its closest site, and every index
entry stores the maximum L1 distance of objects in the sub-tree.

The R*-tree indexes objects in the original coordinate (not the 45o coor-
dinate), since there may be other applications that need to access the data in
the original coordinate. However the plane-sweep algorithm works in the 45o

coordinate. In order to do the plain sweep, we have to retrieve the objects in
increasing order of their nn buffer’s x low in the 45o coordinate. Section 4.1
shows how to retrieve objects, Section 4.2 describe a naive plane sweep algorithm
with O(n2) cost, Section 4.3 propose the aSB-tree structure which can reduce
the worst-case query cost to O(n log n), and Section 4.4 extends the algorithms
to incorporate a rotated query region.

4.1 Retrieving Objects from the R*-Tree

To retrieve the objects whose nn buffers intersects with Q, we can browse the R*-
tree in a top-down fashion, similar to the range query. The difference is that to
determine whether to expand an sub-tree, instead of checking whether its MBR
intersects with Q, we check whether the MBR’s nn buffer intersects with Q.

The remaining issue of object retrieval is how to return objects in increasing
order of their nn buffer’s x low in the 45o coordinate. This is achieved by using
a best-first search. That is, we keep a heap of the R*-tree’s index entries as
well as objects. The entries are ordered in increasing nn buffer.x low in the 45o

coordinate. Initially, the heap contains the index entry referencing the whole
tree. In each iteration, the entry e with minimum nn buffer.x low is extracted.
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If e is a object, output it (to be sent, as the next element of an input stream,
to the plane-sweep algorithm discussed in the next section). Otherwise, e is an
index entry. We examine every entry se in the node referenced by e, and push
se into the heap if its nn buffer intersects with Q.

4.2 The Naive Plane Sweep

X

 1

 o  :3 2

 o  :5 3

 o  :6 4

12105421 9
1
2

5

8
9

12

Y

 o  :4

Fig. 4. nn buffers in the rotated
coordinate

In the rotated coordinate, the nn buffers are
axis-parallel squares. To find the optimal lo-
cation, the basic idea is to perform a plane
sweep in increasing order of X . For each
particular X , the Y axis is partitioned into
a set of intervals, each associated with an
influence value. For instance, at X=4, the
Y axis is partitioned into six intervals: (-
∞,2):0, (2,5):5, (5,8):12, (8,9):7, (9,12):3, and
(12,∞):0. Whenever a change happens, up-
date the set of intervals. During the process,
always maintain a location with maximum in-
fluence. In fact we can maintain a rectangular
region with maximum influence, instead of a
single location.

At the end, any location in the maintained region is an optimal location. As
an example, in Figure 4, any location in the X range of (4,5) and Y range of
(5,8) is an optimal location, with influence 12.

4.3 The aSB-Tree

The naive plane sweep has O(n2) worst-case performance. The reason is that
there are O(n) events to handle, and each event needs to scan through O(n)
intervals that partition the Y axis. We hereby propose a data structure called
the Aggregation SB-tree (aSB-tree), derived from the SB-tree [YW01]. The new
structure enables any event to be processed in O(log n) time, and therefore
reduces the overall cost to O(n log n).

The idea is to organize the intervals (that partition the Y axis) into a bal-
anced B-tree-like structure. To insert a new Y range which may affect many
intervals in the naive approach, with the aSB-tree we only need to update two
paths from root to leaf. The key idea that enables this is: if the Y range to be
inserted fully contains the interval of an index entry, we do not insert into the
sub-tree. Instead, we update a value fullcover maintained along with the index
entry. The aSB-tree extends the SB-tree by storing the max influence and the
corresponding spatial region in the sub-tree. Figure 5 shows a two-level aSB-tree,
which corresponds to Figure 4 right after processing the event at X = 4 and the
event at X = 5. Let’s examine it in more details.
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  and Y in (5, 8)

(−M, 2): 0 (2, 5): 5 (5, 8): 12 (8, 9): 7 (9, 12): 3 (12, M): 0

max=3 in (9, 12) at X>2max=5 in (2, 5) at X>4

(−M, 5): 0 (9, M): 0

(−M, M): 0root entry:

Global max = 12
max=12 in (5, 8) at X>4

max=12 in (5, 8) at X>4

(5, 9): 0
when X in (4, ?)

(a) at the sweep line X=4

(−M, 2): 0 (2, 5): 5 (5, 8): 12 (8, 9): 7 (9, 12): 3 (12, M): 0

max=3 in (9, 12) at X>2max=5 in (2, 5) at X>4

(−M, 5): 0 (9, M): 0(5, 9): −4

(−M, M): 0
max=8 in (5, 8) at X>5

max=12 in (5, 8) at X>5

root entry:

Global max = 12
when X in (4, 5)
  and Y in (5, 8)

(b) at the sweep line X=5

Fig. 5. An example of aSB-tree

Properties inherited from the SB-tree:

– The aSB-tree is a balanced tree structure. The maximum number of entries
in a (leaf or index) node is fixed. Except the root, every node must be at
least half full.

– Every entry corresponds to an interval (a Y range). For any index entry e,
all intervals of entries in Node(e) form an exact partition of e.interval. E.g.
in Figure 5(a), the root entry has an interval as the whole Y space.

– Every leaf entry has a value influence. In Figure 5(a), the leaf entry (5,8):12
means that right after the current X = 4, any location with Y ∈ (5, 8) has
influence 12.

– Every index entry has a value fullcover, which corresponds to the total weight
of inserted Y ranges which fully cover the entry’s interval. E.g. the second
index entry in the root of Figure 5(a), which has (5,9):0, means its fullcover
is 0, while the interval is (5,9).

– To insert a range I with weight w, we update (at most) two paths from the
root to the leaf level. These are the nodes whose referencing entry’s interval
partially intersects with I. E.g. Figure 5(b) shows the result after processing
the event at X = 5, i.e. inserting I=(5,9) and w=-4. In particular, the
insertion stopped at the root node, since no entry in the root node has an
interval partially intersecting with I. For any entry (e.g. the second index
entry in root) whose interval is contained in I, w is added to its fullcover.
An overflow/underflow, if happens, is treated like in the B-tree.

Properties extended from the SB-tree:

– There is a gap between what the SB-tree provides and what we need. The
ultimate goal we need is: after all the nn buffers are seen, report an optimal
location with its influence. To do so, separate from the aSB-tree we maintain
a globally maximum influence and its spatial range.
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– This global max is maintained after processing each insertion. Here every
index entry in the aSB-tree stores the local maximum influence of some lo-
cation in the sub-tree. It is local because the actual influence should consists
of the fullcover of index entries for all ancestor nodes. For instance, in the
second index entry in Figure 5(b), the local maximum influence is 12. But
the actual maximum influence is 12+(-4)=8. Since the old global max is no
smaller than the new one, it is not changed.

– Along with each local maximum influence stored at an index entry, or with
the global max, we also store the corresponding spatial region. That is, any
location in this region has this maximum influence. For a local max, its
corresponding region only needs to store the left X border for the right
border is not known yet. With a new insertion, it is possible to close the right
border of the previous max region and start a new one. E.g. in Figure 5(b),
two index entries’ local max region change their left border from X = 4 to
X = 5. The right border of the global max region may need to be closed
correspondingly. All the additional information can be maintained along with
the insertion process, by following the insertion paths backwards. So the
update cost remains O(log n) as in the SB-tree. Therefore, the plane-sweep
algorithm integrated with the aSB-tree has O(n log n) query cost.

4.4 Extension to Involve a Query Region

In the original coordinate, the query region Q is an axis-parallel rectangle. Thus,
in the 45o coordinate, the query region Q becomes a rectangle rotated 45o clock-
wise (as shown in Figure 6). To perform the query correctly, our aSB-tree based
plane-sweep algorithm needs to be extended as follows:

– The Y space of the aSB-tree is not the whole
space (-M ,M), but the Y projection of Q.
This is because we only care about the loca-
tions in Q. In Figure 6, the Y space of the
aSB-tree should be (yl, yh).

– For each nn buffer, we calculate the smallest
X (called start) when it ‘enters’ Q and the
largest X (called end) when it ‘leaves’ Q.
The insertion/removal events occur at these
calculated X values, instead of the x low and
x high of the nn buffers.

h

y
l

endstart X

Y
y

Q

Fig. 6. Illustration of a ro-
tated query region

– Finally, it is no longer true that whenever the aSB-tree is updated due to an
event, the current maximum influence is known only by checking the root
entry. The reason is that the maintained maximum influence may be in a
region outside Q. To address this issue, we perform a range-max query on
the aSB-tree. That is to find the maximum influence within the actual Y
range. The range-max query can be performed in O(log n) time, since it only
needs to examine two paths of the aSB-tree. The reason is that, similar to
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the insertion algorithm, a sub-tree whose interval is contained in the query
interval does not need to be expanded.

A side note is: even though we use the aSB-tree as an in-memory structure
to improve the plain sweep, if needed the structure can be implemented as a
disk-based index like the SB-tree.

5 The Virtual OL-Tree

The R*-tree based solution examines all objects whose nn buffers intersect with
the query region Q, and thus is not efficient when a large Q results in the
examination of many objects. This section first proposes an theoretical solution
to the optimal-location query based on a new index structure called the Optimal-
Location Tree (OL-tree). Then we extend it to a more practical and efficient
solution based on the Virtual Optimal-Location Tree (VOL-tree).

5.1 The OL-Tree-Based Solution

The OL-tree is a k-d-B-tree-like structure which is balanced, disk-based and
dynamically-updateable. Roughly speaking, it stores the nn buffers in the 45o

coordinate. Like the k-d-B-tree, the OL-tree is a space-partitioning method (ver-
sus a data-partitioning method like the R*-tree). Unlike the k-d-B-tree, the OL-
tree stores rectangular records in its leaf nodes. If a square partially intersects
with the ranges of multiple index entries, it is split and multiple copies are in-
serted. However, if the square fully contains the range of some index entry, we
only update a value called fullcover stored along with the index entry, with-
out further inserting into the sub-tree. Each index entry stores maxoverlap: the
maximum local influence in the sub-tree. That is, the maximum influence in the
sub-tree, subtracted by the fullcover values of all ancestor index entries. A rect-
angular region maxrange is also stored, where any location in it has maximum
local influence. Due to the space limitation, we skip the details of the update
and query processing.

The OL-tree may cause cascading split of child nodes if splitting an index
node. One may wonder how bad the space complexity can be. We argue that the
space complexity of the OL-tree (with an additional requirement) is O(n2/B)
for the following reasons. First, the total number of leaf entries is O(n2). With n
axis-parallel squares, there are O(n) different X positions and O(n) different Y
positions, which form O(n2) cells. In the worse case each cell is stored in the tree
separately. Thus there are at most O(n2) leaf entries. Second, the total number
of nodes in O(n2/B). The linear storage of the k-d-B-tree can be guaranteed
by re-organization of sub-trees which contain too few leaf entries. Similarly, the
OL-tree with O(n2) leaf entries needs O(n2/B) nodes.

This bound reveals that the OL-tree is not a practical spatial index structure.
In the next subsection we introduce a practical structure, named the VOL-tree,
to solve the optimal-location query.
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5.2 The VOL-Tree Structure

The OL-tree has more than linear space because if an nn buffer is split into
multiple pieces, each of them is physically stored in some leaf node(s). What if
we do not physically store any leaf node of the OL-tree? We can use an R*-tree
to store the original objects, and whenever the content of a leaf node is needed,
we perform a range query on the R*-tree. This is the key idea to the Virtual
OL-tree (VOL-tree).

It is challenging to implement this idea. As we already spend the space to
store the R*-tree, it is ideal to have a small VOL-tree that fits in memory. On the
other hand, as there are O(n2/B) leaf nodes in an OL-tree, there are O(n2/B2)
index nodes, which would be the size of the VOL-tree if we treat it as an OL-
tree without leaf nodes. There is a big gap. Thus we claim that the VOL-tree is
NOT merely an OL-tree without the leaf level. It has to be much much smaller,
possibly only consisting of one index level besides the root. A consequence is that
each leaf entry of the VOL-tree corresponds to a virtual node (content stored in
the R*-tree) with much more than B nn buffers. So a crucial issue jumps out: it
is expensive to maintain maxrange and maxoverlap because an update requires
us to perform plane sweeps on the virtual nodes.

To address this issue, we propose another change from the OL-tree: along
with each index entry, instead of keeping the accurate maxoverlap, keep two
values lowermax and uppermax, which are a lower bound and an upper bound
of maxoverlap.

In more detail, the entries in the tree are as follows:

– An index entry e has the following format: (range, nodeID, fullcover,
lowermax, maxrange, uppermax). Here range is the spatial range of the
corresponding sub-tree, and nodeID points to the referenced node. The value
fullcover is the total weight of nn buffers whose insertion stopped at e (such
a nn buffer contains e.range, but not the range of e’s parent).

– The values lowermax and uppermax are some lower and upper bounds of
the maximum local influence in e.range. And maxrange is a rectangle fully
contained in e.range where every location in maxrange has local influence
= lowermax.

– A leaf entry and an index entry have the same content, with a minor differ-
ence that a leaf entry’s nodeID is empty.

5.3 The VOL-Tree Query Algorithm

Figure 7 shows the optimal-location-query algorithm in the VOL-tree. We start
from the root node. In the VOL-tree, even if root.maxrange intersects with Q, it
is possible that some location in Q−root.maxrange has an influence larger than
root.lowermax (when root.lowermax < root.uppermax). So as Step 1 shows,
we can safely return a location in root.maxrange ∩ Q only if root.lowermax =
root.uppermax or Q is completely inside root.maxrange.

Step 2 inserts the root entry into a heap. Every entry in the heap has, besides
an index entry, two values min and upper. These are the actual ( not local) lower
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Algorithm. VOLTreeQuery
Input: Query region Q, VOL-tree root.
Return: An optimal location in Q.

1. if root.maxrange ∩ Q �= ∅ and (root.lowermax = root.uppermax or Q ⊆
root.maxrange), return any location in root.maxrange ∩ Q.

2. heap.Insert(root, 0, root.uppermax)
3. Set opt loc as an arbitrary location in Q, and opt inf = 0,
4. while heap is not empty

(a) (e, min, upper) = heap.ExtractMaxUpper().
(b) if upper ≤ opt inf , return opt loc.
(c) if e references an index node

for every entry se in Node(e.nodeID) s.t. se.range ∩ Q �= ∅
A. Set m = min + se.fullcover, and u = min + se.fullcover +

se.uppermax.
B. if u ≤ opt inf , goto next entry.
C. if opt inf < m, set opt inf = m and opt loc be any location in

se.range ∩ Q.
D. if se.maxrange ∩ Q �= ∅,

(i) l = min + se.fullcover + se.lowermax
(ii) if opt inf < l, set opt inf = l and opt loc be any location in

se.maxrange ∩ Q.
(iii) if u �= l and (Q ∩ se.range) � se.maxrange, heap.Insert(se, m, u)

E. else
heap.Insert(se, m, u)

F. end if
end for

(d) else
A. Using e.range ∩ Q as a new query region, retrieve nn buffers from the

R*-tree of objects. Use plane sweep to find an optimal location (inf, loc)
within the new query region.

B. if opt inf < min + inf , set opt loc = loc, and opt inf = min + inf .
(e) end if

5. end while
6. return opt loc.

Fig. 7. Finding an optimal location using the VOL-tree

bound and upper bound of influence for locations in the sub-tree. Meanwhile,
we maintain the currently seen optimal location opt loc along with its influence
opt inf , initialized to be an arbitrary location with influence 0 (Step 3).

While the heap is not empty, we process each element at a time. In each
iteration, the heap entry with maximum upper is extracted. As Step 4(b) of
the algorithm shows, if this extracted upper is no larger than opt inf , we can
determine that opt loc is an optimal location and thus the algorithm returns.
The crucial steps are Step 4(c) which expands an index node and Step 4(d)
which expands a leaf node.

To expand an index node, we examine every child entry se whose range
intersects with Q, and try to push se.nodeID into the heap. Here the new lower
bound is m = min + se.fullcover, and the new upper bound is u = min +
se.fullcover + se.lowermax. There are two pruning opportunities. First, if the
new upper bound u is no larger than opt inf , there is no need to expand the sub-
tree (Step 4(c)B). Second, if se.maxrange intersects with Q, we already know
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the influence of the locations within the intersection, and thus we may have the
chance to update the maintained optimal location before expanding the sub-tree
(Step 4(c)D). It likely causes other entries to be pruned earlier.

To expand a leaf node (Step 4(d)), we go to the R*-tree to retrieve the
nn buffers that intersect with e.range∩Q and then perform a plane sweep tech-
nique of Section 4 to compute a location inside Q with maximum global influence
inf . If this influence is bigger than opt inf , we update the maintained opt inf
and opt loc.

5.4 The Update Algorithm

The VOL-tree can be bulk-loaded. Due to space limitations, the algorithm is
omitted. We only point out that immediately after bulk-loading, every entry
in the VOL-tree has accurate local maximum information, i.e. lowermax =
uppermax. With dynamic update, this may not be true. Let us examine the
update algorithm below.

The insertion algorithm is shown in Figure 8, while a deletion is treated as an
insertion with negative weight. To insert into an index node (Step 1), we consider
every child entry se whose range intersects with the parameter R. If se.range is
contained in R, we simply add w to se.fullcover. If se.range partially intersects
with R, we recursively insert into the sub-tree referenced by se. After insertion,
we need to re-aggregate the lowermax, uppermax and maxrange if necessary.

When e refers to a virtual leaf node which is not stored, the actual object
is maintained in a separate R*-tree. So we only need to modify e.lowermax,
e.uppermax and e.maxrange. The update of e.uppermax is simple. As Step
2(a) shows, for a positive weight, e.uppermax is increased by w. For a negative
weight, e.uppermax remains unchanged. We may modify e.lowermax and/or
e.maxrange only if e.maxrange intersects with R. For a positive weight (Step
2(c)), the intersection part of e.maxrange and R is the new e.maxrange, with
weight increased by w. For a negative weight (Step 2(d)), there are two cases.
If e.maxrange is fully covered by R, we decrease e.lowermax. Otherwise, we
shrink e.maxrange to e.maxrange − R but keep e.lowermax unchanged.

6 Performance

In this section, we report experimental results on the R*-tree approach and the
VOL-tree approach. In our experiments we used real datasets: the Digital Chart
of the World from the R-tree Portal [The03]. It contains two type of point data:
the populated places and cultural landmarks in North America, a total of 24,493
and 9,203 points respectively. We use the populated places as the objects and
cultural landmarks as the sites. From the dataset, we generated an object R*-
tree for all populated place, which is augmented by the L1 distance from each
object to its nearest site. We set the page size to 1k and the default buffer size
to 256 pages. All the programs were written in Java and run on a Pentium IV
Dell PC equipped with 3.2GHz CPU.
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Algorithm. VOLTreeInsert
Input: Range R, Weight w, VOL-tree index entry e.
Pre-condition: R intersects with, but does not fully contain, e.range.
Action: Insert range R with weight w to the sub-tree referenced by e.

1. if e refers to a node in the VOL-tree
(a) for every se in Node(e) s.t. R contains se.range, se.fullcover += w.
(b) for every se in Node(e) s.t. R partially intersects with se.range,

VOLTreeInsert(R, w, se).
(c) Let se0 be the entry in Node(e) with maximum se.fullcover+se.lowermax.
(d) Set e.maxrange = se0.maxrange and e.lowermax = se0.fullcover +

se0.lowermax.
(e) e.uppermax=max{se.fullcover+se.uppermax} for all entry se in Node(e).

2. else /* e refers to a virtual leaf node */
(a) if w > 0, e.uppermax += w.
(b) if e.maxrange ∩ R = ∅, return.
(c) if w > 0

i. e.maxrange = e.maxrange ∩ R
ii. e.lowermax+ = w

(d) else
i. if e.maxrange ⊆ R, e.lowermax+ = w.
ii. else e.maxrange = e.maxrange − R.

(e) end if
3. end if

Fig. 8. The Insertion algorithm of the VOL-tree

From our preliminary experimental results, we found that it does not help
to make the VOL-tree disk based. So the VOL-tree is in memory, and only the
I/O of R*-tree will be measured. However, it consumes part of the buffer. For
example, if the size of the VOL-tree is 50 pages, the buffer available to the R*-
tree retrieval in the VOL-tree based method should be 256− 50 = 206. For each
experiment we start with a clean buffer, run 100 random queries, and measure
the total I/Os. Buffer will not be flushed during the execution of 100 queries.
Our preliminary experimental results show that, with fixed area of the query
range, the shape of the query range has little impact on the query performance
of the VOL-tree based methods. Thus we always use square query ranges.

In many applications, the datasets are known in advance. For instance, the set
of McDonald’s stores and the set of residential buildings can be given in advance
when building the index, although changes may happen later on. Therefore, we
use the VOL-tree based method with high bulk-loading percentage (80% and
100%). In the experiments, we compare the performance of three methods listed
in Table 1.

Table 1. There different settings for experiments

Name of method Explanation
R* R*-tree based method (without using VOL-tree)

VOL80 VOL-tree based method with 80% of the objects being bulk loaded
VOL100 VOL-tree based method with 100% of the objects being bulk loaded
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Fig. 9. The I/O performance of
the VOL-tree for various size

To utilize the VOL-tree, the first question
to answer is how large the VOL-tree should
be. Figure 9 shows the I/O of the R*-tree of
various sizes (in the unit of the page size).
When the size of the VOL-tree is small
(< 20 pages), the I/Os become close to the
R*-tree based method (which corresponds
to VOL-tree size = 0). When the size of the
VOL-tree is large (> 80 pages), the I/Os
also increase. That is because the larger
VOL-tree does not help much to prune the
search space, but it uses a large proportion
of the buffer, which results in the worse I/O
of the R*-tree.

From the results, we draw the conclusion that a small VOL-tree is sufficient.
Thus, in the later experiments, we set the size of VOL-tree to 20 pages.

To study the effect of the size of query range on the I/Os, we change the
area of the query range. Figure 10 (a) and (b) shows the results when the query
range is small and is large respectively. When the query area is smaller than
1% of the whole space, their performances are very close although VOL-tree
methods outperform. When the query area is larger than 1%, the R*-tree based
method has I/Os of more than 10,000 so we do not even show it in figure. An
expected fact is that when the query range becomes very large, the performance
of both VOL80 and VOL100 improve. That is because, the large query ranges
is more likely to intersect with maxranges stored in the VOL-tree, and thus is
more likely to prune some subtrees.

(a) Queries with small area (b) Queries with large area

Fig. 10. The I/O performance of of the VOL-tree for various query area

The updates increase the difference between lowermax (uppermax) and the
local maximal influence, thus decreasing the pruning capability. Figure 11 shows
how updates affect the I/O performance. We bulk load some objects and insert
the others. The X-axis presents the percentage of the number of inserted objects
to the number of bulk loaded objects. For example, X = 50% corresponds to the
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case when we bulk load 2/3 of the objects and insert the remaining 1/3. With
the increase of the percentage, the I/O performance decreases. After about 50%
insertions, the performance becomes comparable to the R*-tree based method.
There are two reasons for that. First, the VOL-tree uses some buffer of the R*-
tree. Second, the VOL-tree may cause multiple scans of same page. We need to
point out that even if an application is update intensive, the VOL-tree based
method is still a good choice since the tree can be rebuilt in part or in full. And
the rebuilding cost is amortized. Furthermore, the rebuilding can be integrated
with the query processing.

Fig. 11. The Effect of the Updates Fig. 12. The Effect of the Buffer Size

Figure 12 shows how the buffer size affects the I/O performance of the VOL-
tree. When buffer size is 128, the R* outperforms VOL80. That is because the
VOL-tree has size of 20 and occupies about 20% the buffer. After the buffer
size is doubled to 256, the I/O of VOL80 dramatically drops to below R*. With
the increase of the buffer size, the performance of all the three methods get
improved, while the VOL-tree based method is again better.

7 Conclusions

In this paper we proposed and solved the optimal-location query. The query
has real applications, e.g. in corporate decision-support systems. We presented
three solutions to accurately answer such a query. In particular, the VOL-tree
approach is the most efficient. The approach uses an R*-tree to index the objects,
while a small, in-memory VOL-tree is used to prune the search space. The query
performance is much better than the plain R*-tree approach, especially when
the query size is large. (Notice that the R*-tree approach is already optimized
via a new index called the aSB-tree.) For instance, if the query area is 5% of the
space, the VOL-tree approach computes an optimal location 6 times faster than
the R*-tree approach. If the query size increases, the improvement increases
as well, which can be multiple orders of magnitude better. Also, the size of
the VOL-tree is small. In our experiments, while the R*-tree of objects is over
700 disk pages, the VOL-tree is only 20 pages. The VOL-tree has very efficient
updates, as the index is small and updating it does not need to touch the R*-tree
(except for ordinary object insertion/removal). One set of experiments showed
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that within 50% new updates, the VOL-tree approach remained to have better
query performance. Of course, if there are too many updates, the VOL-tree can
be re-built and the cost is amortized across all the new updates. In summary, the
VOL-tree approach is the most efficient solution to the optimal-location query.
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