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Preface

It is our great pleasure to introduce the papers of the proceedings of the 9th In-
ternational Symposium on Spatial and Temporal Databases – SSTD 2005. This
year’s symposium continues the tradition of being the premier forum for the
presentation of research results and experience reports on leading edge issues of
spatial and temporal database systems, including data models, systems, applica-
tions and theory. The mission of the symposium is to share innovative solutions
that fulfill the needs of novel applications and heterogeneous environments and
identify new directions for future research and development. SSTD 2005 gives
researchers and practitioners a unique opportunity to share their perspectives
with others interested in the various aspects of database systems for managing
spatial and temporal data and for supporting their applications.

A total of 77 papers were submitted this year from several countries. After
a thorough review process, the program committee accepted 24 papers covering
a variety of topics, including indexing techniques and query processing, mobile
environments and moving objects, and spatial and temporal data streams. We
are very pleased with the variety of the symposium’s topics, and we are proud
of the resulting strong program.

Many people contributed to the success of the SSTD 2005 program. First of
all, we would like to thank the authors for providing the content of the program,
and all the members of the program committee and the additional reviewers,
for their detailed comments. Philippe Rigaux was of help in adding functions
to his program MyReview, which was used in the reviewing process. We would
also like to express our gratitude to Gilberto Câmara, the general chair of SSTD
2005, for his constant guidance and advice on many organizational aspects of
the symposium and for his work on the local arrangements. Finally, we would
like to thank our sponsors (notably INPE – the Brazilian National Institute for
Space Research) who have enabled us to hold a successful meeting. We are also
grateful for the support of the Brazilian Computer Society (SBC).

We hope that you find this program to be both beneficial and enjoyable and
that the symposium provides you with the opportunity to meet other researchers
and practitioners from institutions around the world. Enjoy!!

August 2005 Claudia Bauzer Medeiros,
Max Egenhofer,

Elisa Bertino
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Selectivity Estimation of High Dimensional

Window Queries via Clustering

Christian Böhm, Hans-Peter Kriegel, Peer Kröger, and Petra Linhart

Institute for Computer Science, University of Munich, Germany
{boehm, kriegel, kroegerp, linhart}@dbs.ifi.lmu.de

Abstract. Query optimization is an important functionality of mod-
ern database systems and often based on estimating the selectivity of
queries before actually executing them. Well-known techniques for esti-
mating the result set size of a query are sampling and histogram-based
solutions. Sampling-based approaches heavily depend on the size of the
drawn sample which causes a trade-off between the quality of the esti-
mation and the time in which the estimation can be executed for large
data sets. Histogram-based techniques eliminate this problem but are
limited to low-dimensional data sets. They either assume that all at-
tributes are independent which is rarely true for real-world data or else
get very inefficient for high-dimensional data. In this paper we present
the first multivariate parametric method for estimating the selectivity of
window queries for large and high-dimensional data sets. We use clus-
tering to compress the data by generating a precise model of the data
using multivariate Gaussian distributions. Additionally, we show efficient
techniques to evaluate a window query against the Gaussian distributions
we generated. Our experimental evaluation shows that this approach is
significantly more efficient for multidimensional data than all previous
approaches.

1 Introduction

The storage and management of vectors of a multidimensional feature space has
become an important basic functionality of a database system. Advanced ap-
plications such as multimedia [1], CAD [2], molecular biology [3], etc. require
efficient and effective methods for content based similarity search and data min-
ing. Such methods are typically based on feature vectors of moderate or high
dimensionality. Although a vast number of index structures [4,5] and access
methods [6] for vector data has been proposed, database management systems
do not yet support the storage and retrieval of vector data in the same way as
relational data from applications such as accounting and billing. In order to give
full support to advanced applications the database system needs efficient and ef-
fective techniques for query optimization. One of the most important challenges
in query optimization is the estimation of the selectivity of a query predicate.
While a number of techniques to model the data distribution and thus to esti-
mate the selectivity are known for one- and low-dimensional data spaces, this is
still an unsolved problem for data spaces of medium to high dimensionality.

C. Bauzer Medeiros et al. (Eds.): SSTD 2005, LNCS 3633, pp. 1–18, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 C. Böhm et al.

Three different paradigms of data modelling for selectivity estimation in gen-
eral can be distinguished: Histograms, sampling, and parametric techniques. Of
those three, only sampling can be directly applied without modification in higher
dimensional data spaces. Many different sampling methods have been proposed.
They share the common idea to evaluate the predicate on top of a small sub-
set of the actual database objects and to extrapolate the observed selectivity.
The well-known techniques differ in the way how the sample is drawn as well as
in the determination of the suitable size of the sample. The general drawback
of sampling techniques is that the accuracy of the result is strictly limited by
the sample rate. To get an accurate estimation of the selectivity, a large sample
(>10%) of the database is required. To evaluate the query on top of the large
sample is not much cheaper than to evaluate it on the original data set which
limits its usefulness for query optimization.

Histogram techniques, the most prevalent paradigm to model the data dis-
tribution in the one-dimensional case, have a different problem. This concept
is very difficult to be carried over to the multidimensional case, even for low
or moderate dimensional data. One way to adapt one-dimensional histograms
to multidimensional data is to describe the distribution of the individual at-
tributes of the vectors independently by usual histograms. These histograms are
sometimes called marginal distributions. In this case, the selectivity of multi-
dimensional queries can be determined easily provided that the attributes are
statistically independent, i.e. neither correlated nor clustered. Real-world data
sets, however, rarely fulfill this condition. Another approach is to partition the
data space by a multidimensional grid and to assign a histogram bin to each grid
cell. This approach may be possible for two- and three-dimensional spaces. How-
ever, for higher dimensional data this method becomes inefficient and ineffective
since the number of grid cells is exponential in the dimensionality. Techniques
of dimensionality reduction such as Fourier transformation, wavelets, principal
component analysis or space-filling curves (Z-ordering, Hilbert) may reduce this
problem to some extent. The possible problem reduction, however, is limited by
the intrinsic dimensionality of the data set.

The idea of parametric techniques is to describe the data distribution by
curves (functions) which have been fitted into the data set. In most cases Gaus-
sian functions (normal distributions) are used. Instead of using one single Gaus-
sian, a set of multivariate Gaussians can be fitted into the data set which makes
the technique more accurate. Each Gaussian is then described by three param-
eters (mean, variance and the relative weight of the Gaussian in the ensemble).
This approach can be transferred into the multidimensional case by two tech-
niques. Like described above for histograms, the marginal distribution of each
attribute can be modelled independently by a set of Gaussians. The multidimen-
sional query selectivity can be estimated by combining the marginal distribu-
tions. This approach leads to similar problems like marginal histograms.

Therefore, our solution is different. Our technique directly models the multi-
dimensional data distribution by a set of multivariate Gaussian functions. There
are two options to use the Gaussian primitives: The Gaussians can either be used
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with a matrix containing both variances and covariances or with a vector of the
multivariate variances only. As we will discuss later, both approaches have their
advantages and disadvantages. When using Gaussians with covariance matrix,
the data distribution can be described more accurately by a single primitive. On
the other side, more storage is needed for the covariance matrices (O(d2) for each
Gaussian) compared to the variance vector approach (O(d) for each Gaussian).
Moreover, the processing cost for reading the parameters and for the determi-
nation of the estimated selectivity is much higher when covariance matrices are
used. Let us note that, unlike the approaches using marginal distributions, our
Gaussian technique with no covariance matrix does not rely on the attribute
independence assumption. This technique assumes attribute independence for
each individual Gaussian primitive only, but places no constraints to the over-
all data distribution. We will discuss this issue in more detail in Section 4, an
experimental validation is given in Section 5.

To obtain a collection of Gaussians distributions we apply a clustering al-
gorithm. Clustering is the task of grouping vectors into different subsets (the
clusters) such that the intra-cluster similarity is maximized and the inter-cluster
similarity is minimized. That means points belonging to the same cluster are
close together whereas points of different clusters are far away from each other.
Many different algorithms have been proposed such as k-means [7], single-link
[8], density-based clustering [9,10] and many others. Most of these algorithms
use a point as a representative of each cluster. In contrast, the EM clustering
algorithm (expectation maximization) [11] uses a multivariate Gaussian function
as a cluster representative. We will discuss the suitability of different variants of
the EM algorithm for our problem of getting a good approximation of the actual
data distribution.

To summarize our contribution, we propose in this paper a new cost model
for estimating the selectivity of multidimensional queries on top of vector data of
medium to high dimensionality. The data distribution is represented by a set of
multivariate Gaussian functions that have been determined using the EM cluster-
ing algorithm. We develop two methods for estimating the selectivity of window
queries and range queries using the multivariate Gaussians. We demonstrate ex-
perimentally the superiority of our approach over competitive cost models based
on histograms and sampling. The remainder of our paper is organized as follows:
In Section 2 we discuss related work on selectivity estimation and point out our
contribution. Section 3 and 4 describes in detail our proposed methods to find
a representation of the data distribution by an ensemble of multivariate Gaus-
sian functions using EM clustering and to estimate the selectivity on top of this
model. Section 5 contains the experimental evaluation, and section 6 concludes
our paper.

2 Related Work

In this chapter, we review current approaches for selectivity estimation and dis-
cuss their potentials.
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(a) One dimensional his-
tograms

(b) Multi dimensional his-
tograms

(c) Selectivity estimation
via clustering

Fig. 1. Visualization of different concepts for selectivity estimation

2.1 Review

Recent work on selectivity estimation can be categorized into three classes,
namely histogram-based methods, sampling-based methods, and parametric
methods. In the following, we review and discuss the most important repre-
sentatives of each class briefly.

Histogram-based Methods. The most widespread approach for selectivity
estimation in practice is the use of histograms. In general, the data space is par-
titioned into buckets, and the frequency of points inside each bucket is computed.
We can distinguish between one-dimensional and multi-dimensional histograms.

Selectivity estimation using one-dimensional histograms is based on the as-
sumption that the attributes of the data set are independent, i.e. there is no
correlation between different dimensions of the feature space. For each dimen-
sion, a histogram is built and the selectivity of a window query q is estimated
in each dimension separately. The selectivity of q in the full-dimensional space
is evaluated by multiplying the selectivity estimations for each attribute. Equi-
width histograms [12] compute buckets of fixed size and variable point frequency,
whereas equi-depth histograms [13] compute buckets of variable size and fixed
point frequency.

With growing dimensionality of the feature space, the recombination of one-
dimensional buckets becomes costly. Thus, in recent years, multi-dimensional
histograms have been investigated. Multi-dimensional equi-depth histograms [14]
partition the feature space into multi-dimensional buckets with variable size and
fixed point frequency. In [14] an algorithm to construct multi-dimensional equi-
depth histograms is presented that iteratively partitions the data space along
each attribute into a fixed number of buckets, where the order of attributes
is fixed. The selectivity of a window query q is estimated analogously to one-
dimensional histograms taking the buckets into account that intersect with q.
The algorithm MHIST [15] partitions the data space along the single attributes
in a similar way, but decides in each step which attribute is partitioned rather
than processing the attributes in a fixed order.

STHoles [16] is a recent approach that proposes hierarchically organized
multi-dimensional histograms. A histogram may contain another histogram com-
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pletely, or may be completely covered by part of another histogram. The is-part
of hierarchy of the histograms is represented as a tree where each node repre-
sents a bucket. Using this hierarchical concept, a non-uniform distribution inside
a bucket b can be adopted more accurately by several smaller buckets inside (that
are part of) b. STHoles histograms are constructed using a set of sample queries
as reference. Regions in the data space, that are queried more frequently, can
thus be represented in more detail through a larger number of buckets. The his-
tograms are refined after each query. However, the refinement procedure takes
care that no more than a fixed upper bound of buckets is generated. If this upper
bound is violated temporarily during reorganization, some buckets are merged.

In [17] the authors propose another strategy of computing multidimensional
histograms using Wavelet transformation. In particular, the authors show how
to apply a Wavelet transformation to one dimensional data sets. The data space
is split evenly in a recursive fashion. The Wavelet coefficients are computed for
each bucket. The resulting grid can be more fine grained than for traditional
histograms because using the Wavelet coefficients the data is compressed more
efficiently. For higher dimensional data, the authors in [17] suggest to split each
attribute recursively in a given order.

Sampling-based Methods. A second approach for estimating the selectivity
of queries is based on sampling. Usually, the selectivity of a query q is estimated
on a small sample of the database and is then extrapolated onto the entire
database. The simplest way of computing a sample is the well-known random
sampling method. A more data driven variant is adaptive sampling [18,19].

A similar approach called ’double sampling’ is proposed in [20]. The main
difference to the adaptive sampling method is a different estimation of the sample
size. In fact, the sample size is reduced using a two-way sampling procedure.
However, there is no hint on how to choose the size of the first sample.

Parametric Methods. In [21], a method called Adaptive Selectivity Estimator
(ASE) is proposed that tries to approximate the distribution of the data objects
along one attribute using an appropriate polynomial function. This function is
adopted and refined taking predefined queries into account, and minimizes the
squared error between the real and the estimated selectivity. ASE is evaluated
in [21] using one- and two-dimensional data sets only.

2.2 Discussion

As noticed above, current approaches for selectivity estimation have severe draw-
backs. Sampling techniques suffer from the fact, that the accuracy of the result
is strictly constrained by the sample rate. High sample rates on the other hand
are quite inefficient and limit the usefulness of sampling techniques for query
optimization. One-dimensional histograms (cf. Figure 1(a)) rely on the attribute
independence assumption, i.e. on the assumption that the attributes are neither
correlated nor clustered. This is quite unrealistic in real-world data sets which
rarely fulfill this condition. Multi-dimensional histograms (cf. 1(b)) become in-
efficient and ineffective for higher dimensionalities since the number of grid cells
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is exponential in the dimensionality. Techniques of dimensionality reduction are
(at least) limited by the intrinsic dimensionality of the data set. Similar problems
are prevalent using parametric methods.

In this paper, we propose the use of clustering to get an accurate character-
ization of the data by means of a collection of multivariate Gaussians (cf. 1(c)).
Our two methods are called SEC (Selectivity Estimation via Clustering) and
SEC+ and both use different variants of the EM clustering algorithm to extract
a collection of Gaussian distributions. For SEC each Gaussian is represented by
the mean value, the variances and the covariances and the relative weight of the
Gaussian in the ensemble. SEC+ uses the same representation but leaves out
the covariances. Based on these representations, SEC and SEC+ efficiently and
effectively estimate the selectivity of window queries in spatial data. We empir-
ically show that especially SEC+ yields significantly more accurate results than
comparative methods, especially when applied to higher dimensional data.

3 SEC: Selectivity Estimation via Clustering

The overall goal of representing a given data set for selectivity estimation is to
find a model of the data that is as compact as possible (low amount of storage
necessary) and as accurate as possible (for accurate selectivity estimations). The
key idea of our new approach is to use a clustering algorithm to gain an accurate
description of the data and then use this description for selectivity estimation.
In this section, we describe both the clustering process and the method for
selectivity estimation in detail.

3.1 Describing the Data via Clustering

Clustering has gained a lot of attention from the data mining research community
over the past decades. In particular, clustering is the task of grouping objects of
a data set into classes (clusters), while maximizing intra-cluster similarity and
minimizing inter-cluster similarity. An overview over recent work on clustering
can be found e.g. in [22]. Often clustering algorithms can also be used to obtain a
compact representation of a data set. An efficient way to represent a data set for
selectivity estimation, is to use a mixture of different distribution functions. The
most prominent algorithm that tries to describe the data by multiple distribution
functions is the EM algorithm [11]. In the following, we describe a variant of this
algorithm which is used by our selectivity estimation method SEC.

Let D be a set of d-dimensional points, i.e. D ⊆ d. The general idea of the
EM algorithm is to describe the data by a mixture M of k Gaussian distributions.
Note that the EM algorithm can also be seen as a variant of k-means clustering.
Instead of assigning each object to a cluster as is the case for k-means-based
clustering algorithms, it assigns each object to a cluster according to a weight
representing the probability of membership.

Each cluster C ∈ M is a tuple C = (μC , ΣC), where
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– μC is the mean value of all points in C and
– ΣC is the d× d covariance matrix of all points in C.

To compute the probability distributions, we need the following concepts.
The probability with which a point x ∈ D belongs to a Gaussian distribution

C = (μC , ΣC) can be computed by:

P (x|C) =
1√

(2π)d|ΣC |
e−

1
2 (x−μC)T(ΣC)−1(x−μC).

The combined probability for k clusters can then be computed by:

P (x) =
k∑

i=1

wCiP (x|Ci),

where wCi is the fraction of points that belongs to cluster Ci = (μCi , ΣCi), i.e.
wCi is the weight of Ci.

Then the probability that a point x ∈ D belongs to a cluster C can be
computed by the rule of Bayes:

P (C|x) = wC
P (x|Ci)
P (x)

.

The accuracy of a mixture M = (C1, . . . , Ck) of k Gaussian distributions
which describes how good the model approximates the actual data set can be
computed by:

E(M) =
∑
x∈D

log (P (x)).

The higher the value of E(M), the more likely it is that the data set D has
been generated by the mixture M of k Gaussian distributions. Thus, the aim
of the EM algorithm is to optimize the parameters of M , i.e. the parameters of
the k Gaussian distributions C1, . . . , Ck, such that E(M) is maximized. For that
purpose, the algorithm proceeds in four steps:

1. Initialization
Since the clusters, i.e. Gaussian distributions C1, . . . , Ck, are unknown at the
beginning, a set of k initial clusters are built randomly. For that purpose,
each point x ∈ D is randomly assigned to one cluster Ci. An initial model is
produced by computing μC and ΣC for each cluster C ∈M

2. Expectation
Based on the current model, the parameters μC and ΣC can be computed for
each cluster C ∈ M and the accuracy E(M) of this mixture M is obtained.

3. Maximization
In this step the accuracy of the mixture is improved via a recomputation of
the parameters of each of the k clusters. Given a mixture M of k Gaussians,
the parameters μC , ΣC , and wC of each cluster C ∈ M are recomputed.
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The resulting mixture M ′ has an equal or higher accuracy than M , i.e.
E(M) ≤ E(M ′). For improving the mixture, the parameters are recomputed
as follows:

wC =
1
|D|

∑
x∈D

P (C|x),

μC =
∑

x∈D x · P (C|x)∑
x∈D P (C|x)

,

ΣC =
∑

x∈D P (C|x)(x − μC)(x − μC)T∑
x∈D P (C|x)

.

4. Iteration
Step 2 and 3 are iterated until the accuracy of the improved mixture M ′

differs from the accuracy of the previous mixture M by a smaller value than
a user specified threshold ε, i.e. until |E(M)− E(M ′)| < ε.

The result of the EM algorithm is a set of k d-dimensional Gaussian distribu-
tions, each represented by the mean value μ and the covariance matrix Σ. The
assignment of a point x ∈ D to a cluster C is given by the probability P (C|x).
We thus can compute how likely a point is assigned to each of the k clusters.

The accuracy of the result of the EM algorithm, i.e. the accuracy of the
resulting mixture, depends on the initial mixture, i.e. on step 1 of the algorithm,
and on the choice of k. In [23] a method for producing a good initial mixture
is presented which is based on multiple sampling. It is empirically shown that
using this method the EM algorithm achieves accurate clustering results. The
authors further propose a method for determining a suitable number of clusters,
i.e. a suitable value for k.

3.2 Selectivity Estimation of Window Queries

As discussed in the previous subsection, we describe the data distribution using
k Gaussian distributions each represented by a mean value and a covariance
matrix. Let us note that this representation does not rely on the unrealistic
attribute independence assumption nor has it problems in higher dimensions
such as exponential storage cost that must be compensated by less accuracy.

In the following, we assume that M is a mixture of k Gaussian distributions
computed by the EM algorithm applied on the database D as described above.
We will also call M a model that describes the distribution of the objects in D
and we will use the two notions Gaussian distribution and cluster interchangeably
for a given C ∈ M . A window query Q is a list of d pairs (li, ui), where li and ui

are the lower and upper bounds, respectively, of Q in the i-th dimension, where
1 ≤ i ≤ d. The center of Q is denoted by cQ.

Intuitively, a good estimation of the selectivity of a query Q is the integral
I(Q, C) of the intersection of Q and each C ∈ M . A straightforward idea to
estimate the selectivity of a query Q using the model M is the following. For
each cluster C ∈ M we can compute the probability that the center cQ is in
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Q

C
C

cQ

(a) Illustration (b) Problem

Fig. 2. The naive approach to selectivity estimation

C, i.e. P (cQ|C). This probability can then be multiplied with the volume of the
query. The resulting integral of the intersection of Q and cluster C is a first
approximation of the selectivity of Q. If the integral is above a threshold ε, it
may be interesting to further improve the estimation. We can achieve this by
decomposing Q into 2d rectangles Qi of equal size and computing the integrals
of the intersection of C with each resulting rectangle Qi. This can be iteratively
continued until all decomposed Qi have an integral above ε. Then the selectivity
of Q w.r.t. C can be computed by the sum of the integrals of the decomposed
windows Qi having an integral above ε, multiplied by the weight of the cluster
wC . The overall selectivity of Q is then simply the sum over all C ∈ M . This
approach is illustrated in Figure 2(a). The query Q is decomposed into four
smaller windows. One of them (marked in gray) is further decomposed. The
selectivity of Q w.r.t. C is the sum of the integrals of the intersection of each
gray window with C.

We called this approach SEC (Selectivity Estimation via Clustering). The
next chapter will present an approach called SEC+ that proposes certain im-
provements over the basic version SEC.

4 SEC+: Improved Selectivity Estimation via Clustering

Unfortunately, the simple idea of decomposing the query window rises several
problems. First of all, the iterative decomposition of Q into 2d rectangles is quite
inefficient and requires high storage cost. For an accurate estimation, however,
we probably need multiple decompositions, i.e. several iterations of the decom-
position process. Secondly, representing a window query only by its center has
drawbacks, too. Especially in higher dimensional spaces, the center of Q may be
far away from any C ∈ M even if Q contains C. This is illustrated in Figure
2(b). Although query Q contains a large part of C, the center of Q is too far
away from μC and the probability P (cQ|C) is far too small. Thus, multiplication
of P (cQ|C) with the volume of Q will yield a very small value, most likely below
a reasonable threshold ε. A third problem is that the storage cost in SEC for a
single cluster is relatively high (d2 + d values per cluster). Therefore, we modify
in SEC+ our data model, the clustering algorithm, as well as our method of
selectivity estimation.
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C1

(a) SEC

C2

C3

C1

(b) SEC+

Fig. 3. Visualization of the model created for SEC (a) and SEC+ (b)

To reduce the storage cost per cluster our idea is to store only the diagonal
elements of the covariance matrix, i.e. we store only the variance values of single
attributes but no covariances between different attributes. This means that the
Gaussian functions are oriented in an axis-parallel way rather than arbitrarily.
Note that this does not mean we assume attribute independence for the complete
data space (which would be unacceptable as discussed before). We assume only
that the points which are associated to a common cluster observe the attribute in-
dependence assumption. This is much easier to motivate than demanding global
independence for the complete data set because (1) the individual clusters con-
tain data which is locally selected and (2) we can modify the EM algorithm to
determine preferably clusters in which the assumption is fulfilled. (3) Due to
saved storage cost we can maintain considerably more individual clusters in our
model which generally allows a better adaptation to the real data distribution.
In our SEC+-model a cluster is represented by its d-dimensional mean vector
μC and a d-dimensional variance vector varC = (var1

C , ..., vard
C).

To guarantee that the EM-algorithm determines a good approximation of
the real data distribution, we adapt the probability density function P (x|C) for
the clusters in order to use diagonal matrices only:

P (x|C) =
1√

(2π)d
∏

1≤j≤d varj
C

e−
1
2

∑
1≤j≤d(xj−μC,j)2varj

C .

This additionally makes the clustering algorithm more efficient as the vari-
ance vector is easier to determine and to invert (for computing the determinant)
than a quadratic covariance matrix. Moreover, since our new model with axis-
parallel Gaussians is now reflected in the algorithm and in the accuracy measure
E(M) the EM algorithm searches for an optimal model according to the new
demands.

Figure 3 shows that our new model is not constraining the accuracy we
reach for selectivity estimation. In case of strong correlations in the data set,
the algorithm simply assigns more Gaussian functions to the data set. Due to
the dramatically reduced storage cost for an individual Gaussian function, the



Selectivity Estimation of High Dimensional Window Queries via Clustering 11

C1

C2
C3

Q

C2

C1

C3

C2

C1

C3

x

y

x

x

x

y y

y

(a) One-dimensional Gaussian
distributions for three clus-
ters.

i

Gaussian distribution along attribute i

li ui

query range in attribute i

proportion of

qualifiying objects

(b) Intersection of a query and a Gaus-
sian distribution in attribute i.

Fig. 4. Illustration of selectivity estimation using SEC+

overall storage requirement for the complete model is still much lower. Note that
the algorithm may assign up to d times more clusters without any extra storage
cost. We will evaluate this issue experimentally in Section 5 and show that a
higher number of axis-parallel Gaussians can even represent data distributions
exhibiting non axis-parallel clusters more accurate than a lower number of non
axis-parallel Gaussians.

Due to our new model, the method of selectivity estimation given a window
query can also be improved with respect to efficiency and effectiveness in SEC+.
Still, the integrals of the intersections of the query window and the Gaussian dis-
tributions are computed. However, each multi-dimensional Gaussian distribution
C is split into all one-dimensional distributions and the selectivity is determined
using these one-dimensional distributions. This methods avoids the problems of
the first approach. We will highlight the procedure of SEC+ in the following.

Instead of measuring the selectivity of a query Q by the probability P (cQ|C)
of a cluster C ∈ M , we split the d-dimensional Gaussian distribution into d corre-
sponding one-dimensional Gaussian distributions Ci. This is visualized in Figure
4(a). The integral I(Q, C) is the product of the integrals of all one-dimensional
distributions, i.e. I(Q, C) =

∏d
i=1 I(Q, Ci). Let us note, that this requires the

assumption that the attributes are independent for the points belonging to that
cluster. However, as discussed above this is no serious constraint. Figure 4(b)
illustrates the integral of the intersection of a one-dimensional Gaussian and the
query Q for an attribute i. The query in that attribute is given by the interval
[li, ui]. The integral I(Q, Ci) measures the proportion of qualifying points, i.e.
points of D that match the query Q.

Given the d-dimensional Gaussian distribution C = (μC , varC), the d corre-
sponding one-dimensional Gaussian distributions can easily be obtained. These
one-dimensional Gaussian distributions are represented by the mean μi

C and by
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SEC+ (SetOfObjects D, Query Q)

Compute model M of D by EM(D);

for each cluster Ci ∈ M do

for each dimension j of D do

Compute I(Q, Cj
i )

end for

Compute I(Q, Cj) =
∏d

i=1 I(Q, Ci
j)

end for

Compute Sec+(Q, M) =
∑k

i=1 wCi · I(Q, Ci).

Fig. 5. Pseudocode of SEC+

the standard deviation si
C , i.e. Ci = (μi

C , si
C). The mean value μi

C is simply the
i-th component of μC . The standard deviation si

C can be computed as follows:

si
C =

√
vari

C ,

where vari
C ∈ varC is the variance of attribute i. Obviously, at this point, we do

not need the covariance matrix ΣC , but only the variances vari
C which has the

above discussed advantages. The integral I(Q, Ci) can then be computed rather
straightforward. We simply materialize the standard Gaussian distribution Φ
with μ = 0 and σ = 1 in a table. The integral can then be computed as follows:

I(Q, Ci) = |Φ(ui)− μi
C

σi
C

− Φ(li)− μi
C

σi
C

|.

The selectivity of Q w.r.t. a cluster C is then the product of all attribute-wise
integrals, i.e.

I(Q, C) =
d∏

i=1

I(Q, Ci).

The overall selectivity of a query Q is estimated as the weighted sum of
selectivities of Q w.r.t. all Ci ∈ M , formally

Sec+(Q, M) =
∑
c∈M

wC · I(Q, C).

The pseudo code of our method SEC+ is given in Figure 5. In the next
section we will show experimentally that SEC+ is superior to SEC and to other
comparative methods.

5 Experimental Evaluation

In this section, we present a broad experimental evaluation of SEC, SEC+ and
comparative methods on synthetic and real-world data sets. We used randomly
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Fig. 6. Results on synthetic data set with Gaussian non-axis parallel ellipsoid clusters

generated window queries throughout all our experiments. To judge the accuracy
of each selectivity estimation method we used two measurements to compute the
error rate of each method, the relative error rate and the absolute error rate. Let
SQ be the true selectivity and S′

Q the estimated selectivity of a query Q. Let n
be the number of tuples in the considered data set. The relative error rate Er(q)
measures the error of the estimation w.r.t. the true selectivity, formally

Er(Q) =
|SQ − S′

Q|
SQ

The absolute error rate Ea(Q) measures the error of the estimation w.r.t. the
size of the database, formally

Ea(Q) =
|SQ − S′

Q|
n

We compared SEC+ to several competitive methods, including random sam-
pling using 1% of the database as sampling rate (indicated in the diagrams by
“Random 1%”), random sampling using 5% of the database as sampling rate
(indicated in the diagrams by “Random 5%”), one-dimensional equi-width his-
tograms using 30 intervals per dimension (indicated in the diagrams by “Equi-
Width”), one-dimensional equi-depth histograms using an interval capacity of
5% of the data set (indicated in the diagrams by “EquiDepth”), and multi-
dimensional histograms (STHoles) using 1,000 randomly generated sample
queries to establish the histogram as proposed in [16]. In [23] a method to choose
the parameter k and the intial clustering for any variant of the EM algorithm
is described. We used this method to determine k and the intial clustering for
SEC and SEC+.

5.1 Comparison of SEC and SEC+

In Figure 6, we compared SEC and SEC+ with its competitors. SEC is the vari-
ant that uses covariances throughout the EM-clustering process, whereas SEC+
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Fig. 7. Results on the “Abalone” data set

0

10

20

30

40

50

60

70

80

90

100

1 5 10 20 30 40 50 60 75

selectivity

re
la

ti
v

e
 e

rr
o

r 
ra

te

EquiWidth

StHoles

SEC+

Random 1%

Random 5%

EquiDepth

(a) Relative error rate

0

2

4

6

8

10

12

14

16

18

20

1 5 10 20 30 40 50 60 75

selectivity

a
b

s
o

lu
te

 e
rr

o
r 

ra
te

EquiWidth

StHoles

SEC+

Random 1%

Random 5%

EquiDepth

(b) Absolute error rate

Fig. 8. Results on the gene expression data set

only uses variances. All our experiments show that SEC+ performs as good or
even better than SEC. For a comparison of SEC, SEC+ and other techniques,
we applied all methods on a data set of 10,000 5-dimensional tuples containing
several non-axis parallel Gaussian clusters. This data set was chosen because
it seems to favor SEC which uses covariances over SEC+. SEC outperforms all
competitive methods besides SEC+. However, as illustrated in Figure 6, the use
of the covariances during clustering does not achieve a gain in accuracy com-
pared to the improved SEC+ algorithm. In case of queries with lower selectivity,
SEC+ even outperforms SEC which uses covariances during clustering. Let us
note that we needed less storage for SEC+ than for SEC in our experiments
but achieved better results when using SEC+ rather than SEC. This result was
repeated in all other experiments, justifying the use of SEC+. Thus, throughout
the rest of our evaluation, we will only show the results of SEC+.

5.2 Accuracy of SEC+

Comparison with other methods. We applied SEC+ and the comparative meth-
ods on several real-world data sets. Due to space limitations, we focus on two
data sets. The first one is the “Abalone” benchmark data set from the UCI
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Fig. 9. Comparison of the accuracy w.r.t. dimensionality of the data set

Machine Learning Database Repository1. It contains approximately 4,200 ob-
jects in a 8-dimensional feature space. The second data set is a gene expression
data set from our project partners2 and contains approximately 1500 objects
in a 5-dimensional feature space. We evaluated the error rates of SEC+ and
the comparative methods w.r.t. the selectivity (in %) of the queries. The re-
sults on the “Abalone” data set are depicted in Figure 7. SEC+ outperforms all
other methods regarding relative and absolute error rates. Only for very selec-
tive queries (<5%), random sampling with 5% sampling rate is slightly better.
However, a sampling rate of 5% is rather high for large databases. A similar
observation can be made from Figure 8 illustrating the results on the gene ex-
pression data set. Again, SEC+ outperforms all other comparative methods
w.r.t. both the relative error rate and the absolute error rate, even for very se-
lective queries. The histogram based approaches perform slightly better than on
the “Abalone” data set, especially compared to the sampling based approaches.
We guess that this can be explained with the lower dimensionality of the gene
expression data set. Both experiments show, that SEC+ outperforms compet-
itive approaches in terms of accuracy especially in high dimensional spatial
data.
Accuracy w.r.t. data dimensionality. We evaluated the accuracy of SEC+ and
the five comparative methods w.r.t. the dimensionality of the data set using
synthetic data of 10,000 tuples and a sample query q having a selectivity Sq =
10%. The results are visualized in Figure 9. As expected, we can observe that the
accuracy of random sampling methods are independent of the dimensionality of
the data set, whereas the accuracy of histogram-based methods detoriates with
increasing dimensionality. Let us note that StHoles is not shown in the charts
because its error rates are far above the interval shown here. It can also be
seen that the accuracy of SEC+ is independent of the data dimensionality. In a
5-, 7- and 10-dimensional feature spaces, SEC+ performs better than all other
techniques besides 5% random sampling. But even 5% random sampling which
is already very inefficient for large data sets, is only as good as SEC+.
1 http://www.ics.uci.edu/∼mlearn/MLRepository.html
2 Genomatix SW GmbH: http://www.genomatix.de/
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Fig. 10. Results on the synthetic data set with 20% noise

Influence of noisy data. Next, we tested the influence of noisy data on the ac-
curacy of SEC+ and the competitive methods. Since SEC+ relies on clustering,
noisy data may cause problems in generating an accurate compression of the
data distribution and thus may influence the selectivity estimation. Figure 10
illustrates the error rates of SEC+ and the comparative methods w.r.t. the se-
lectivity of the query on a synthetic data set of 10,000 tuples of 5 dimensions
with 80% of the data belonging to clusters and 20% noise objects. As it can be
seen, SEC+ is quite robust against noisy data. For a broad range of query selec-
tivity, SEC+ outperforms its competitors w.r.t. the relative and absolute error
rates. Again, the sampling based methods are ranked second followed by one-
dimensional histograms. Equi-depth and equi-width histograms produce nearly
the same results in that experiment.

6 Conclusions

Advanced database applications rely on accurate and efficient query optimiza-
tion. One key step for query optimization is the estimation of the selectivity of
a given query. Recent approaches for selectivity estimation have problems with
medium to high dimensional data spaces and/or usually require a high sampling
rate to achieve accurate results.

In this paper, we proposed two new methods for selectivity estimation of
spatial window queries called SEC (Selectivity Estimation via Clustering) and
SEC+. Our solutions are based on modelling the data through a set of multi-
variate Gaussian functions which are computed using different variants of the
EM clustering algorithm. Two techniques to derive an accurate estimation of
the query size using the generated models are discussed in detail. A broad ex-
perimental evaluation illustrates that SEC+ outperforms existing approaches in
terms of accuracy. In particular, SEC+ is robust against the dimensionality of
the data space and can handle noisy data effectively.
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Abstract. This paper presents a framework for building and continu-
ously maintaining spatio-temporal histograms (ST-Histograms, for
short). ST-Histograms are used for selectivity estimation of continuous
pipelined query operators. Unlike traditional histograms that examine
and/or sample all incoming data tuples, ST-Histograms are built by mon-
itoring the actual selectivities of the outstanding continuous queries. ST-
Histograms have three main features: (1) The ST-Histograms are built
with (almost) no overhead to the system. We use only feedback (i.e.,
the actual selectivity) from the existing continuous queries. (2) Rather
than wasting system resources in maintaining accurate histograms for
the whole spatial space, we only maintain accurate histograms for that
part of the space that is relevant to the current existing queries. The
rest of the space has less accurate histograms. (3) The ST-Histograms
are equipped with a periodicity detection procedure that predicts the
future execution of the continuous queries. Hence, the query processing
engine can continuously adapt the continuous query pipeline to reflect
this prediction. Experimental results based on a real implementation in-
side a data stream management system show a superior performance of
ST-Histograms in terms of providing accurate operator selectivity esti-
mations with no extra overhead.

1 Introduction

The rapid increase in spatio-temporal applications calls for new query processing
and query optimization techniques to deal with both the spatial and temporal
domains. Examples of these applications include location-aware services [34],
traffic monitoring [37], and enhanced 911 service [1]. These applications have
two main characteristics: (1) A highly dynamic environment where data from
mobile objects (e.g., moving vehicles in road networks) are received continuously.
(2) Queries in these spatio-temporal applications are mostly continuous (e.g.,
monitoring queries). Continuous queries require continuous evaluation as the
query area and/or the data are continuously moving.

Most of the previous work on continuous spatio-temporal queries (e.g.,
see [19,22,25,26,27,42,44,47,48]) focus on developing out-of-the-box algorithms
(i.e., algorithms built on top of database management systems (DBMSs)). Hav-
ing out-of-the-box algorithms bypass completely the role of the query optimizer
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in DBMSs, thus severely limiting the query performance. Recently, within the
PLACE server (Pervasive Location-Aware Computing Environments) [35], more
attention is given to embed the functionality of continuous query processing
into existing database and data stream query engines. The main idea is to fur-
nish existing query processors with a set of spatio-temporal operators that can
be combined with traditional operators to support efficient execution of a wide
variety of continuous spatio-temporal queries. Our previous work in PLACE
widens the scope of research in continuous spatio-temporal queries to include
system-oriented support for continuous spatio-temporal queries (e.g., query op-
timization, adaptive query processing, and query scalability [35]).

In this paper, we focus on query optimization for continuous spatio-temporal
queries. In particular, we are concerned with two main functionalities for opti-
mizing the execution of continuous spatio-temporal queries: (1) Building a new
optimal query plan for each newly submitted continuous query, and (2) Contin-
uously monitoring the performance of continuous queries to make sure that the
original optimal query plan maintains its optimality. Once the query optimizer
discovers that the original query plan become suboptimal, the query optimizer
tunes the suboptimal plan to another optimal one. To support these functionali-
ties, we propose to build and continuously maintain spatio-temporal histograms
(ST-Histograms, for short). Instead of monitoring the whole spatial space as in
traditional histograms, ST-Histograms are query-driven where they monitor only
the spatial space that is covered by at least one outstanding continuous spatio-
temporal query. ST-histograms continuously maintain spatio-temporal selectivity
estimations that are used by the query optimizer to decide on the optimality of
various candidate query execution plans.

The proposed ST-Histograms start by an initial estimate of the spatio-
temporal selectivity of the underlying spatial space. The accuracy of the initial
estimation is continuously enhanced based on monitoring the execution of the
continuous outstanding spatio-temporal queries. One of the attractive features
of an ST-Histogram is that its accuracy (and hence the efficiency of the query
execution) increases with the increase in the number of outstanding continuous
queries. Moreover, the ST-Histogram consults some data mining techniques for
periodicity detection (e.g., [13]) to provide better spatio-temporal selectivity with
less overhead. All the algorithms and ideas in this paper are implemented as part
of the PLACE project [4,35] currently being developed at Purdue University.

1.1 Motivation

Spatio-temporal databases provide the ideal infrastructure for keeping track of
and answering continuous queries on moving objects. To find an execution plan
for a continuous query, the query optimizer needs to know (estimates of) the
selectivity of any range that a query covers.

The distribution of the moving objects change with time. For instance, many
cars go to downtown from 9am to 5pm leaving the suburbs with fewer cars.
At night, most of the cars park, and hence deregister from the database. Con-
sequently the number of the cars in the database is less. Obviously, building a
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SELECT M.ID
FROM MovingObjects M
WHERE M.Type = "Truck"
INSIDE Area A

Fig. 1. Query Q

histogram once and using it for a long period is not enough. We need to maintain
a spatio-temporal histogram and to reflect the change in the objects distribution
on the histogram.

Not only the density of the moving objects change with time, but also there
is some kind of periodicity in their behavior (as time repeats itself). For exam-
ple, many people travel on weekends, yielding more traffic on the highways on
Friday and Sunday evenings than on other week-evenings. Also, lots of traffic
and congestion occur during the rush hour everyday. By detecting such patterns
in the distribution of the moving objects, we believe that we can enhance the
selectivity estimation.

We illustrate the importance of having an ST-Histogram by the following
example. Consider the query Q in Figure 1 that returns the ID of any truck whose
location is inside an area A. The INSIDE query operator is proposed in [33] to
check whether or not a moving object is in a certain range. Initially, at time t1,
the query optimizer finds that the selectivity of the INSIDE operator is less than
the selectivity of the WHERE clause (Figure 2(a)). Thus the query optimizer
picks up the query execution plan in Figure 2(b) to be used to answer the query.
At time t2, many vehicles enter the area A and this increases the selectivity of the
INSIDE operator, and meanwhile the number of trucks decreases (Figure 2(c)).
Using an ST-Histogram, the query optimizer is able to recognize that the current
plan is suboptimal. The query optimizer calls for changing the current execution
plan to the plan in Figure 2(d). Notice that query re-optimization is a non-trivial
process, especially that the space of the possible execution plans is large.

1.2 Challenges and Paper Outline

The main challenges for ST-Histograms are the following:

– The large number of the moving objects, which is a computing challenge and
a scalability challenge.

– Keeping the overhead of maintaining the ST-Histograms low and not to hurt
the execution of the continuous queries.

– Having an accurate selectivity estimation with the frequent change in the
data distribution over the time.

The rest of this paper is organized as follows. Section 2 highlights some of
the related work in the areas of maintaining histograms and continuous queries.
The architecture of our spatio-temporal histogram is given in Section 3. The role
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Fig. 2. Moving vehicles (T = truck, O = other) on the spatial space and the corre-
sponding query execution plan

of the query executor is shown in Section 4. Section 5 introduces the histogram
manager and the theory behind constructing and refining ST-Histograms. We
discuss some query optimization issues in Section 6. In Section 7, we demonstrate
by experiments the accuracy of ST-Histograms. Finally, Section 8 concludes the
paper.

2 Related Work

Traditionalhistogramshavebeenusedextensivelyasameans for selectivity estima-
tion in relational databases (e.g., [10,11,15,17,18,24,28,29,31,32,36,38,39,40,41]).
Currently, state-of-the-art histograms are query-driven (e.g. [2,21,23]). The main
idea is to use a feedback from the query execution engine to estimate the data dis-
tribution. Thus, the cost of building the histograms is reduced where histograms
are built during the regular process of query execution.
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With the emergence of spatial applications, several approaches are proposed
for the selectivity estimation of spatial operations (e.g., [3,5,6,7,14,30,43,46]).
These approaches deal with the selectivity estimation in various data structures,
e.g., selectivity estimation for quad trees [5], selectivity estimation for R-tree [6],
and selectivity estimation for point data [8].

Recently, many research efforts focus on developing spatio-temporal his-
tograms for various spatio-temporal operations. Spatio-temporal histograms are
first proposed to provide selectivity estimation for predictive spatio-temporal
queries [12]. The main focus is on one-dimensional moving objects. The selec-
tivity estimation of multi-dimensional objects is computed by multiplying the
selectivity estimations of each single dimension. Similar idea in the context of
predictive spatio-temporal queries is introduced in [48]. However, the main focus
is on multi-dimensional moving rectangles. Other work on selectivity estimation
of spatio-temporal queries relies on duality transformation [20], the existence of
a secondary index structure [20], or clustering approaches [50]. The state-of-the-
art approach for spatio-temporal selectivity estimation is Venn sampling [49].
Venn sampling is a sampling technique that is not based on histograms where it
aims to reduce the number of samples needed for perfect estimation. The main
idea is allow each moving object to be aware of a set of some pivot queries.
Moving objects update their locations and speed only when they start/cease to
satisfy pivot queries.

3 Architecture

Figure 3 gives the big picture. Spatio-temporal queries are submitted to the
query optimizer to generate adequate query execution plans. The query optimizer
(e.g., System R [45] and Volcano [16]) picks the best execution plan based on
the total cost. ST-Histograms provide the query optimizer with the selectivity

Fig. 3. The big picture
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estimates used in calculating the total cost. During the execution of a spatio-
temporal query, feedbacks are sent to the histogram manager. These feedbacks
are typically the actual query selectivity; i.e., the fraction of the input data that
is part of the query answer.

The histogram manager uses these feedbacks to refine the selectivity esti-
mates online. The online refinement serves both the new incoming queries and
the outstanding continuous queries. New incoming queries find a more accurate
histogram, whereas the execution plan of outstanding continuous queries may
be changed adaptively when the environment changes.

The ST-Histograms proposed in this paper consult an online periodicity min-
ing technique (Section 6.1) to see if a periodic pattern appears in the selectivity
of any region. Whenever such periodicity is detected, ST-Histograms take it into
account to get more accurate selectivity estimates.

4 Query Executor

The spatial space is mapped with an NxN grid. When a moving object registers
with a grid cell, the moving object sends periodic updates about its location.
Hence, each grid cell is only aware of the objects inside it. Also, when a query
registers with the system, the grid cells that overlap with the query are notified.
Only when a change in the moving objects happens in those grid cells, the thread
that executes this query is notified. In other words, each grid cell is aware of only
the objects that are inside it and the queries that overlaps with it.

The query executor uses the plan provided by the optimizer to execute the
query on the input data (Figure 3). Each INSIDE operator keeps track of the
ratio of the number of its output tuples to the number of its input tuples. In
PLACE [35], this ratio is part of the logic of the INSIDE operator. Thus this
does not invoke substantial overhead on the executor. Periodically, such ratio is
reported to the histogram manager as the selectivity of the INSIDE operator.

5 Histogram Manager

For streaming applications, we cannot afford storing the incoming data. The
continuous query model does not allow for scanning the whole data in order to
build the histogram. In fact, an ST-Histogram is built and refined progressively.
We use feedback from the query result to update the spatio-temporal histogram
online. Periodically, each operator reports the actual selectivity of its monitored
range. These statistics are inherently computed in the operators. They do not
impose additional overhead on the query executor.

Definition 1. Dark cell: is a grid cell corresponding to a region with which no
query overlaps.

Definition 2. Lit cell: is a grid cell corresponding to a region with which one
or more queries overlap.
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Initially, the whole space is assumed to be dark, where darkness represents
the unawareness of the selectivity. Queries act as spots of light. They light up
a region with their feedback about the region’s selectivity. We distribute this
selectivity uniformly over the lit region. For the remaining dark regions, we
consult the online periodicity mining technique (Section 6.1). If a region exhibits
some kind of periodicity, its current selectivity can be estimated according to
such periodicity. In other words, the periodic behavior of a region shades this
region with little light when the corresponding grid cell is currently dark. The
regions that neither fall inside the query regions nor exhibit any periodicity will
stay dark. The selectivities of the remaining dark regions are estimated such that
they complement the selectivities of those lit and shaded regions. This estimate
is uniformly distributed over the ST-Histogram buckets that correspond to the
dark regions.

The ST-Histogram is represented by a two-dimensional array. Each element
of the array holds the selectivity of the corresponding histogram cell. We assume
that a variable holds the total number of moving objects in the database.

5.1 Constructing the Histogram

The ST-Histogram is grid-based of size NxN grid cells. The grid divides the
universe uniformly into a number of disjoint cells. We denote the current view
of the ST-Histogram with H, where H[r, c] is the selectivity estimate of the
grid cell G[r, c]. Starting with all grid cells being dark, the selectivity estimate of
each bucket is initialized uniformly according to Equation 1. With the successive
feedbacks from the operators, better selectivity estimates are obtained due to a
clearer view of the coverage area.

H[r, c] =
1

N2 for all r, c ∈ {1, 2, . . . , N} (1)

A query q is represented by a rectilinear rectangular region Rq. Let Fq(r, c)
be a scalar function that returns the fraction of the grid cell G[r, c] that is
covered by Rq. Hence, the selectivity estimate of a query q is calculated as
in Equation 2. Similarly, let Fdark(i, j) be the dark fraction of G[r, c]. Thus the
selectivity estimate of the whole dark area is calculated as in Equation 3.

SelEst(q) =
N∑

i=1

N∑
j=1

H[i, j]Fq(i, j) (2)

SelEst(dark) =
N∑

i=1

N∑
j=1

H[i, j]Fdark(i, j) (3)

5.2 Refining the Histogram

When the histogram manager receives feedback from the query engine, it up-
dates the histogram to reflect the newly reported statistics. Queries act as light
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RefineHistogram(H, q, S)
Diff = S − SelEst(q);
if Diff > 0

Diff = min(Diff ,SelEst(dark));
AddDiff(H, q,Diff );
AddDiff(H,dark, −Diff );

AddDiff(H, q,Diff )
for i = 1 : N

for j = 1 : N
H(i, j) = H[i, j] + Rq(i, j) ∗ Diff ;

Fig. 4. Procedure for refining the ST-Histogram

spots; they eliminate the darkness from a histogram region. The intensity of the
light spot a query offers to a histogram region is proportional to the fraction
of the histogram region illuminated by the query. When queries overlap, many
light spots are directed on the overlapped histogram region. The more the light
intensity of a histogram region, the better accuracy of the refinement of the
selectivity estimate of this histogram region.

Definition 3. The normalized rate of a query q for a grid cell G[r, c] is defined
as the ratio between the selectivity estimation of the part of q that overlaps G[r, c]
and the selectivity estimation of q. We denote this normalized rate by Rq(r, c).

Rq(r, c) =
Fq(r, c)H[r, c]∑N

i=1
∑N

j=1 Fq(i, j)H[i, j]

=
Fq(r, c)H[r, c]

SelEst(q)
(4)

Rq(r, c) =
Fq(r, c)∑N

i=1
∑N

j=1 Fq(i, j)
When SelEst(q) = 0 (5)

The actual selectivity that a query reports is assumed to be distributed uni-
formly on the query range. Figure 4 gives the procedure to refine the histogram
when a feedback from the query engine reports the actual selectivity S of a
query q.

First, the grid cells overlapped by q will have their values changed according
to the difference of S and the current selectivity estimate of q. Typically, this dif-
ference is distributed according to the normalized rate of q for each of these grid
cells. Next, all the grid cells that have dark portions will be modified similarly
to conform with the unity invariance of H (

∑N
i=1

∑N
j=1H[i, j] = 1). Hence, the

selectivity estimation of the dark portions is the upper bound for the difference
when the difference is positive.

Example. We illustrate the histogram refinement by the example given in Fig-
ure 5(a). In this example, we have six continuous queries mapped to a 5x5 grid
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Q5

Q3

Q2

Q1

Q6

Q4

(a) Example of six continuous
queries

4.00% 4.00%

4.00%4.00%4.00%4.00%

4.00% 4.00% 4.00% 4.00%4.00%

4.00%

4.00% 4.00%4.00%4.00%4.00%

4.00% 4.00%4.00%4.00%4.00%

4.00%4.00%

Q4

Q6

Q1

Q2

Q3

Q5

4.00%

(b) Initial ST-Histogram

Fig. 5. Example of six continuous queries with an initial histogram

buckets. Each of these queries returns the vehicles of type ”Truck” in its covering
region (Figure 1). Q2 is overlapped by Q1, Q3, and Q4. Q6 is contained in Q5.
Each grid bucket starts with a selectivity estimate of 4% (Figure 5(b)). Consider
when the histogram manager receives feedback from the query executor that Q1
reports its selectivity as 10%.

The selectivity estimate of Q1 is 6% according to Equation 2. The difference
10-6 = 4% is distributed among those grid cells overlapped by Q1. Consider the
upper left grid cell Cul. The normalized rate of Q1 for Cul’s is 0.25*0.04/0.06
= 0.1667. Thus H[1, 1] = 0.04 + 0.1667*0.04 = 0.0467 = 4.67%. We still need
to modify the histogram in order to reach the unity invariance. The increase
(or decrease) of the selectivity estimate in a lit region should be accompa-
nied with the decrease (or increase) of the selectivity estimate in the dark
region. So, we decrease the selectivity estimate of the dark regions uniformly
as much as the increase in the lit regions (4%). For instance, the lower-right
bucket, Clr, consists of 1/13.25 of the dark area. The current normalized rate
of the dark region for Clr is 0.0755. The new value for H[5, 5] will be 0.04
- 0.0755*0.04 = 0.0370 = 3.70%. Figure 6(a) gives the histogram after refine-
ment. The upper-left bucket has also a dark portion that results in decreasing
H[1, 1].

Figures 6(b) and 6(f) give the successive updates to the histogram due to the
subsequent feedbacks that the histogram manager receives as follows: Q2 reports
20%, Q3 reports 15%, Q4 reports 10%, Q5 reports 10%, and Q6 reports 3%.

As a validity check, note that after refining the histogram, we just get a
better selectivity estimate for the query. The new estimate is not the same as
S. Also, better selectivity estimates are obtained for the dark regions. With
the succession of the feedbacks that report (almost) the same selectivity, the
estimate for the query converges to the feedback.
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Fig. 6. Successive refinements of the ST-Histogram after receiving the feedback
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6 Query Optimization Issues

Inspired by the fact that time repeats itself, we use online periodicity detection to
detect periodic patterns in the distribution of the moving objects over the time.
This helps in enhancing the selectivity estimation in ST-Histograms. In fact, this
is an instance of where data mining can fit evenly in query optimization.

6.1 Online Periodicity Mining

Periodicity mining is defined as the process of discovering frequent periodic
patterns in an attempt towards predicting the future behavior in time series
data [13]. In our context, a time series for each region in the space is formed
by collecting the selectivity values over time, whether they are exact values col-
lected from the queries, or estimates computed by the previous technique. If the
selectivity values are quantized into nominal levels, and each level (e.g., high,
medium, low) is denoted by a symbol (e.g., a, b, c), then the time series can be
considered a sequence over a finite alphabet Σ = {a, b, c, · · · }.

Periodically, the histogram manager tries to see if any periodic pattern exists
in any cell of the histogram. We use the periodicity mining technique in [13].
When we detect a periodic pattern in a dark cell of the grid, we no longer
compute its selectivity estimate as being uniformly distributed on all the dark
regions. Indeed, we call such cell “a shaded cell”. Shaded cells are treated as if
there is a query that covers the whole cell. Such query reports the selectivity of
the cell according to the periodic pattern of its selectivity.

Note that the periodicity behavior of a region is considered only if this region
does not fall inside any query. In other words, the intense of the periodicity light
is too little to affect the total light intensity of an already lighted region, yet is
enough to shade a dark region.

6.2 Dynamic Query Optimization

The equipment of the DBMS with ST-Histograms enables the existence of an
adaptive query processor. With the online update of the ST-Histograms, we are
able to detect when the currently executed query plan is suboptimal. In this case,
a need to re-optimize flag is raised and the optimizer is reinvoked to compute a
new optimal query execution plan to continue with. Hence, the already existing
queries tune their pipeline for the current workload. Moreover, the new queries
get benefit of the enhanced selectivity estimations (versus having one static
histogram).

7 Experimental Results

We perform experiments to illustrate the efficiency of predicting the selectivity
estimation using ST-Histograms. We use the Network-based Generator of Mov-
ing Objects [9] to generate a set of moving objects. The input to the generator is
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Fig. 7. Road network map of the Greater Lafayette Area City

the road map of the Greater Lafayette Area (Home of Purdue University) given
in Figure 7. The output of the generator is a set of moving points that move on
the road network of the given city. Moving objects can be cars, cyclists, pedes-
trians, etc. We generate 5K moving objects and up to 80 continuous queries
over 10x10 grid. Each moving object or query reports its new information (if
changed) every 10 seconds.

7.1 Effect of Query Size on the Prediction

We measure the accuracy of the selectivity estimation of the existing queries by
monitoring the relative error in estimating their selectivities. Let Si and Ei be
the actual and estimated selectivity of the ith query (1 ≤ i ≤ M), respectively,
where M is the number of the queries. Equation 6 gives the relative error of
estimating the selectivities of the existing queries.

α =

√√√√ 1
M

M∑
i=1

(Si − Ei

Si

)2
(6)

Figures 8(a) and 8(b) give the performance of estimating the selectivity of
the existing queries. α measures how accurate the prediction of the selectivity of
the existing queries. From this experiment, we notice that smaller queries suffer
from less accuracy than moderate to larger queries. When the queries are too
small, many moving objects enter and exit the query range with high frequency.
The high frequency of moving in and out the query range results in larger relative
error. For a query of size 0.25% of the whole area, the average relative error is
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Fig. 8. Performance of estimating the selectivity of the existing queries

91.1% whereas for a query size of 0.5% the average relative error is 67.4%. This
error is due to the existence of big dark portions in the grid cells corresponding
to the queries. The smaller the dark portion, the less the relative error.

Moderate sized queries do not suffer from the fast moving objects. For mod-
erate sized queries (1% of the whole range), the histogram manager is able to
estimate the selectivity of the existing queries with an average relative error of
8.5%. The larger the query size the more accurate the estimation. Queries of size
4% give a relative error of 3.1%.

7.2 Coverage and the Prediction

A new query may come to the system in any area, whether lit or dark. We
measure the accuracy of the prediction process for the selectivity of the new
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queries using the accuracy of the whole ST-Histogram. Equation 7 gives the
average of the ratio between the estimated and the actual selectivities of all the
histogram buckets, where Sij is the actual selectivity of the grid cell G[i, j].

β =
1

N2

N∑
i=1

N∑
j=1

H[i, j]
Sij

(7)

The selectivity estimate of existing queries is calculated by consulting lit
buckets in the ST-Histogram. However, to get a selectivity estimate for a new
arriving queries, dark buckets in the ST-Histogram may be consulted, yielding
to higher relative error. Figure 9 gives the performance of estimating the selec-
tivity of a bucket in an ST-Histogram (averaged over all buckets). β measures
how accurate the selectivity estimates of any new arriving query. The histogram
manager is able to estimate the current selectivity for any new query with an
average error of 39% when the coverage are is 20%. In this experiment, the value
of the error is due to a large number of grid cells totally dark (about 80% of the
grid cells). The selectivity estimate of the dark region is uniformly distributed
among those dark grid cells. The more spread the queries are on the space, the
less number of complete dark cells, the less the relative error. When the coverage
is 40%, the error is 31%. For coverage of 60%, the error is 25%, whereas the error
is 11% for 80% coverage.
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8 Conclusion

In this paper, we explored the usage of spatio-temporal histograms for selectivity
estimation of spatio-temporal operators. We presented a general framework for
building and continuously maintaining spatio-temporal histograms. The main
idea of our proposed spatio-temporal histograms is to use a continuous feed-
back from the outstanding continuous queries to maintain a spatio-temporal
histogram for only those parts of the spatial space that are of interest to at
least one outstanding continuous query. Parts of the spatial space that are not
of interest to any of the outstanding queries do not participate in maintaining
the spatio-temporal histograms, thus the overhead of continuously maintaining
our spatio-temporal histograms is reduced. Our proposed spatio-temporal his-
tograms utilize periodicity detection techniques to discover temporal periodic
patterns. Discovering temporal patterns provides pre-computation of the opti-
mal query plan over the course of execution of continuous queries. Experimental
results show that our spatio-temporal histograms provide only 8.5% error for
the existing queries of size 1%. An average error of 25% for new queries when
the existing query coverage is 60%.
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Abstract. Simulating user mobility is crucial for mobile computing and
spatial database research. However, all existing moving object generators
assume a fixed and often unrealistic mobility model. In this paper, we
represent the moving behavior as a trajectory in the location-temporal
space and propose two generic metrics to evaluate a trajectory dataset.
In this context, trajectory generation is treated as an optimization prob-
lem and a framework, GAMMA, is proposed to solve it by the genetic
algorithm. We demonstrate GAMMA’s practicability and flexibility by
configuring it for two specific simulations, namely, cellular network tra-
jectory and symbolic location tracking. The experimental results show
that GAMMA can efficiently and robustly produce high quality moving
object datasets for various simulation objectives.

1 Introduction

Simulation is a common practice for performance evaluation due to its low cost
and ease of realization. Simulating user mobility has been widely accepted for
the evaluation of moving object databases (MOD). However, existing spatio-
temporal dataset generators [1,2,3] always consider the moving behavior either
as a purely random walk [4] or a predefined mobility model [5], although some
sophisticated generators further concern other factors such as obstacles or road
networks.

In this paper, each moving object i is represented by a trajectory T (i) in
the location-temporal space. The space can be considered two-dimensional: the
x-axis denotes the timeline whereas the y-axis denotes the location, i.e., i’s spa-
tial property. In this context, simulating moving object behavior is equivalent to
generating satisfactory trajectories T (i) in the location-temporal space accord-
ing to the simulation objective. The degree of satisfaction, denoted as fitness of
the trajectories, is two-fold: individual fitness and global fitness. The former
designates how close each individual trajectory is to the expected moving behav-
ior. And the latter designates how close the set of trajectories follow a certain
distribution, i.e., the mobility model. All previous generators only considered
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global fitness and required the mobility model to be in a closed mathematical
form. However, in many real-life applications, no closed form mobility model can
be applied. In this paper, we consider the trajectory generation problem from an
optimization perspective. Specifically, all possible trajectories comprise a search
space, and the generator’s objective is to find a set of trajectories which have
the optimal values for both individual and global fitness.

We then apply genetic algorithm (GA) to solve the optimization problem
and hence obtain the trajectories. The proposed generator framework is called
GAMMA, which stands for “Generating Artificial Modeless Movement by
genetic-Algorithm”. The genetic algorithm (GA) is known as a robust global
optimization technique for both numerical and non-numerical problems [6]. The
distinguishing characteristic of GA from other optimization techniques is that
an entire population of solutions, rather than a single solution, evolves, which
makes GA an ideal optimizer for the moving object generation problem.

The rest of the paper is organized as follows. Section 2 introduces exist-
ing work and some preliminaries of genetic algorithms. Section 3 overviews the
GAMMA framework and addresses the configuration of its components. In Sec-
tions 4 and 5, we demonstrate GAMMA by devising the generators respectively
for two simulations with specific purposes. The empirical performance analysis
of the two generators is conducted in Section 6.

2 Related Work and Preliminaries

2.1 Generating Moving Objects with the Predefined Mobility
Model

In order to analyze and evaluate wireless (PCS or ad-hoc) networks, a variety
of user mobility models have been proposed. They can be categorized into geo-
metric and symbolic models, which are suitable for Euclidean space and cellular
network space, respectively. The most fundamental geometric mobility model is
the random period model [7]. In this model, each object selects a direction
θ from the range [0, 2π] and a speed from a user-defined distribution. Then it
moves in the chosen direction and speed for a random period of time. The object
then halts, selects a new direction and speed, and resumes its movement.

Many variations such as the random direction model originate from it.
The most widely used model is the random waypoint model [8]. In this model,
each object selects a random point in the simulation area as its destination, and
a speed v from an input range [vmin, vmax]. The object then moves to the
destination at the chosen speed. When it reaches the destination, it rests for a
random period of time and selects a new destination and speed to resume its
movement. However, the random waypoint model suffers from three defects: (1)
the objects tend to congregate in the center of the simulation area, resulting
in non-uniform network density; (2) the average speed of the objects decreases
until converging to some long-term average; and (3) the objects are free to move
in the space, which is not realistic. In order to address issues (1) and (2), Yoon
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et al. proposed a framework which stabilizes the mobility model by choosing the
initial speeds from a steady-state distribution (which can be derived analytically)
and subsequent speeds from the original speed distribution [9]. Jardosh et al.
addressed issue (3) by allowing the existence of obstacles and restricting the
objects’ movement to paths which are constructed by the Voronoi diagram of
obstacle vertices [7].

Symbolic mobility models exist in cellular networks. In the basic model, for
each mobile user, a particular cell in the network is chosen as the destination.
Whenever the user leaves the current cell, he/she moves to the neighboring cell
which is closest to the destination. If the mobile user is already in the destination
cell, after a certain period of time it will move to one of the neighboring cells.
This continues until the next destination is chosen. Another particular model for
cellular networks is the hexagonal random walk model [5]. In this model, the
mobile user resides in a cell for a period of time with a known distribution and
then moves to the next cell, which is selected from the neighboring cells with
equal probabilities. Though simple and easy to implement, these models are far
from real-life user moving behavior.

From a spatio-temporal database perspective, the moving object trajecto-
ries form a spatio-temporal dataset. The first and the most significant spatio-
temporal dataset generator, GSTD, was proposed by Theodoridis et al. [1]. It
defines a set of parameters that control the trajectory of the moving objects:
(1) the duration of an object instance, i.e., the change of timestamps between
consecutive instances; (2) the shift of an object, i.e., the change of an object’s
spatial location; and (3) the resizing of an object, i.e., the change of an object’s
size. These parameters at the new timestamp t′ is calculated by summing up
the respective current values and the respective δ values of these parameters.
The initial and δ values of these parameters, as well as other parameters, can
be defined by the user to generate desirable datasets. The authors extended
this work to generate more realistic moving objects by introducing the notion
of clustered movement and a new parameter dinterval (i.e., directed movement
interval, an interval in which the object’s δ(shift) keeps constant) [3]. By this
means, the authors showed some more realistic moving behavior, such as pre-
ferred movement, group movement, and obstructed movement. Brinkhoff further
proposed a framework for generating road network-based moving objects [2].
The moving behavior of the objects is influenced by such characteristics as the
maximum speed and the maximum capacity of roads, the influence of nearby
moving objects , and the route of an object.

As a conclusion, all these moving object generators require the object’s be-
havior to follow a simple and close-form mobility model. This restriction makes
the generated datasets significantly different from realistic ones and heavily con-
fines the generators’ scope of usage.

2.2 Genetic Algorithm

The genetic algorithm (GA) is a computational model inspired by evolution [6].
The algorithm encodes a solution to a specified problem on a chromosome-like
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data structure. GA makes a set of solutions, called the population, evolve into
better solutions by selection to preserve good solutions, and by recombination
to generate new solutions in the solution space. In this section, we show some
preliminaries of a genetic algorithm; a more thorough tutorial can be found
in [10].

To operate on the solutions, GA encodes every solution into a fixed-length
string, called a chromosome. After initialization, the population of the solution
goes through a series of evolutions, called generations. The solutions in the
next generation are obtained by selection, crossover, and mutation on the
solutions in this generation:

1. selection: each chromosome is evaluated by a fitness function, which mea-
sures how good the corresponding solution is to the problem. The probability
that a chromosome is selected for the next generation is inversely propor-
tional to its fitness value ranking in the whole population.

2. crossover: the binary operator breaks down two chromosomes at the same
positions and recombines the segments to form two new chromosomes. The
number of breakdown positions can be one or more.

3. mutation: the unary operator randomly selects a bit in the chromosome
string and changes its value.

The crossover and mutation are performed with certain probabilities.
Though genetic algorithms are often used as function optimizers, the range of

problems to which they can be applied is quite broad. GA has already been used
to enhance the simulation effect in such areas as chip design and network protocol
analysis. In [11], GA guided the random input sequences generation to achieve
the same chip design verification coverage with fewer input sequences. In [12],
Baldi et al. evaluated the TCP protocol by identifying network traffic patterns
that lead to network sensitiveness and bottleneck. GA was used to generate the
background traffic, which turned out to be a more effective network underminer
than the traffic generated by statistical simulation.

3 GAMMA Framework Overview

Figure 1 illustrates the GAMMA architecture. The six gray boxes, namely, apri-
ori knowledge, selection, crossover, mutation, evaluation and refinement, and
decoding, are the configurable components in GAMMA. They exhibit gen-
erality and flexibility for this framework.

The modeling operation from the trajectory T to a chromosome is called en-
coding, which involves choosing appropriate events to represent T ’s behavior.1

An event is an activity which the object performs to change its moving behav-
ior. The inverse operation is called decoding, which involves interpolating the
locations at a time when no events occur.
1 In the sequel, unless otherwise stated, chromosome and trajectory are used inter-

changeably.
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Fig. 1. The GAMMA Architecture

The core component of GAMMA is the GA processor, which performs the
selection, crossover and mutation operators. The chromosome population evolve
according to individual fitness for a certain number of generations before being
outputted to a chromosome repository where they are further evaluated and
refined according to global fitness. The initial population is obtained from some
sample trajectories.

The chromosome repository has two purposes: (1) to buffer all the chromo-
somes generated so far (since the population in GA normally cannot be too large,
the GA processor has to run many iterations to generate a required number
of trajectories); (2) to store the set of intermediate chromosomes for further
evaluation and refinement according to its global fitness.

3.1 Configuring GAMMA Components

The six configurable components control the output trajectories. In this subsec-
tion, we propose their configuration guidelines for various simulation objectives

Encoding and Decoding. Encoding should select events, i.e., the “keyframes”,
as much distinguishing as possible so that the chromosome reflects the mobility
characteristics. Thus a good event is where/when the mobility behavior of the
trajectory is significantly altered (hereby interpolation is imprecise). The defi-
nition of altering is dependent on the simulation objective. There is an obvious
trade-off between the preciseness and conciseness for the encoding. On the other
hand, decoding need to interpolate the rest of the points on the trajectory. The
simplest method is to linearly interpolate the locations between two consecutive
events with a constant velocity.

Fitness Function and Selection. The essential part of GAMMA is the fitness
function F , which is a mapping from the chromosome domain M to the non-
negative real domain, i.e., F : M → R+. The fitness function is always associated
with the distance measure between two trajectories, denoted as Dist. To compute
Dist(T1, T2) based on time series, we: (1) assign each location a real value using a
space filling curve; (2) translate the T1 and T2 into two conventional real-valued
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time-series; and (3) use the Segmented Dynamic Time Warping method
[13] to calculate the similarity distance between T1 and T2.

We then distinguish three types of fitness functions as follows: 2

– Type 1: the fitness function only involves trajectory T and some static data.
– Type 2: the fitness function involves both trajectory T and a static set of

trajectories I. For example, to generate trajectories which resemble those
sample trajectories I, we may define the fitness function as the inverse of
the k-th nearest similarity distance between T and I.

– Type 3: the fitness function involves both trajectory T and the entire set of
trajectories in the chromosome repository. For example, to generate a set of
trajectories that have similar mobility behavior, the fitness should be defined
as the inverse of the k-th nearest similarity distance between T and those in
the chromosome repository.

For the Type 3 fitness function, the naive way of finding the kth nearest
distance is through a sequential scan. However, as the repository size gets larger,
sequential scan becomes less efficient. In this regard, we first embed all the
chromosomes in an n-dimensional Euclidean space using FastMap [14]. Then
we perform a K-nearest-neighbor search (K ≥ k) in the embedding space. The
resulting set of chromosomes is the cutdown candidate set for the sequential
search.

Crossover and Mutation. In GAMMA, the chromosome is not in a canonical
form (i.e., each chromosome bit is either bit 1 or 0), it doesn’t even have a fixed
length. The crossover and mutation operators are based on events rather than
bits.

Mutation selects a fixed-length time period, removes the events within the
period, and then generates new events. During the removal, some events may
overlap with, but not completely reside in this range. If this occurs, we stochas-
tically decide whether they are removed (i.e., the mutation time period is pro-
longed) or retained (i.e., the mutation time period shrinks).

The crossover operation selects a time point t and based on this pivot,
switches the events of two chromosomes c1 and c2. There are four possible cases:
(1) t is within the time period of event i ∈ c1 and event j ∈ c2 while i.location =
j.location; (2) t is not within the time period of any event in c1 or c2; (3) same
as (1), except that i.location �= j.location; (4) t is within the time period of an
event in c1 (or c2), but not within that of any event in c2 (or c1). The crossovers
in (1)(2) are valid whereas those in the last two are not, since events are con-
sidered as atomic and should not be further divided for swapping. Obviously,
the domain of valid t is intersection(ĉ1, ĉ2) where ĉ1 is an augmented trajec-
tory of c1 which adds a dummy event 〈dummy location, i.endtime, j.begintime〉
2 To prevent some “super-best” chromosomes from dominating the population, the

probability of a chromosome being selected for the next generation is inversely pro-
portional to its fitness value ranking among the population, rather than to the fitness
value itself.
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between each two consecutive events i and j. The crossover has a potential prob-
lem if intersection(ĉ1, ĉ2) is null. If this occurs, the crossover operation is not
performed. Given the fact that the dummy event is ubiquitous, such a scenario
is quite rare.

Handling Constraints and Other Apriori Knowledge. In practice, the
user’s moving behavior should conform to certain rules and heuristics specific to
each application. In [6], the techniques of handling various types of constraints
in genetic algorithms were studied. The authors listed four alternatives, namely,
eliminating infeasible chromosomes, repairing infeasible chromosomes, preserv-
ing feasibility by special mutation/crossover operators, and transforming the
search space into a regular one. In GAMMA, we incorporate the constraints and
other heuristics as follows:

1. The mutation and crossover operation is augmented to be aware of these
rules and heuristics. For example, if a piece of apriori knowledge is “the user
goes to the library at most once a day,” the mutation operator should respect
this rule and check existing library event before creating a new one.

2. After crossover and mutation, the trajectories might invalidate certain apri-
ori rules or heuristics, so a chromosome repairing scheme is devised to
correct them.

3. The fitness function should be aware of apriori rules and heuristics. For
example, a trajectory that violates certain constraints is assigned the lowest
possible fitness value as a penalty.

Evaluation and Refinement. The weakness of most existing spatio-temporal
dataset generators is the lack of a uniform metric to evaluate the generated
datasets. In GAMMA, we evaluate the datasets in terms of individual fitness
and global fitness:

1. Evaluation on Individual Fitness: by the mean and standard deviation
of all the individual fitness values in the dataset.

2. Evaluation on Global Fitness: by the distribution of the set of trajecto-
ries.

The global fitness metric measures how the dataset conforms to a specified dis-
tribution, i.e., mobility model. Either the trajectories themselves or their projec-
tions on the spatial/temporal/arbitrary axis are the subjects of distribution. We
distinguish two special types of distributions in GAMMA. For uniform (random)
distribution, the global fitness is derived in the next subsection, which proposes
a hash test as a general technique to determine whether the trajectories are sig-
nificantly randomly distributed. For normal distributed trajectories, the global
fitness is derived from a statistical T-test, which tests if a dataset conforms to
a given normal distribution. In this case, the global fitness is defined as the
statistical variable T = X−μ0

S/
√

n
.

The evaluation is followed by the refinement process, in which “bad” chro-
mosomes that lead to low individual or global fitness values are removed or
modified.
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Hash Test. The hash test, also known as the collision test, is a general tech-
nique to test the randomness of a sequence of keys [15]. It creates a hash table
containing k memory addresses. Imagine a perfectly uniform hashing function
which hashes n keys (k 
 n) into the table. The expected number of collisions
C follows the Poisson distribution with mean value λ = n2/2k [16]. If the n keys
are perfectly random, the number of hashing collisions x should approximate
this mean value.

In GAMMA, a signature function first maps the trajectory space to an integer
domain, which serves as the domain of the memory address of the hash table.
The hash test then collects the number of the actual collisions x and denotes 1

x−λ
as the global fitness value. If this value is significantly low, the chromosome with
a lower individual fitness value in each conflicted chromosome pair is modified
or removed with probability λ

x to resolve the collision. After the refinement, x
approximates λ and the set of chromosomes is guaranteed to be random.

4 Generating Trajectories in a Cellular Space

In this and the next section, we present two concrete examples of how to configure
GAMMA to generate satisfactory moving trajectories for different simulation
objectives.

In spatial database research, the result of a nearest neighbor query may
contain not only the nearest object, but also a vicinity region where the result
is still valid [17]. It saves communication costs for subsequent queries which fall
in this region. As a similar approach, a “time-parameterized nearest neighbor”
(TPNN) query returns the query result’s valid time period [18]. These schemes
essentially deal with a cellular space, i.e., the Voronoi Diagram. The performance
depends on how frequently the user passes through the borders of Voronoi cells3.
As such, to measure the worse-case performance, we need to generate moving
trajectories that frequently cross cell borders.

10.71km

10.71km

Trajectory 1

Trajectory 2

Vonoroi cell

Fig. 2. Moving Trajectories in a Cellular Network

3 The higher the frequency, the less effective these schemes are, as it becomes more
probable that the next query goes beyond the valid region or the valid time period for
this query. Figure 2 illustrates this proposition. Although trajectories 1 and 2 have
the same length, “ 2” passes through many more Voronoi cells (11 vs. 4). Therefore,
many more queries can be answered at the client side in “1” than in “2”, thanks to
the semantic cache or the TPNN scheme.
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The cellular space is the only input for GAMMA. It acts as the static data
to compute the individual fitness. To simplify the problem, we assume that: (1)
users are points; (2) their speed is constant; (3) they are free to move in the
space.

4.1 Trajectory Encoding/Decoding and Fitness Function

As the speed is fixed, the user can change his/her moving direction only. We let
the events be the time points when the user takes a turn. These positions are
called turning points. Since the speed is fixed, the begintime and endtime of
each event, can be derived from the turning points. Therefore, the projection on
the spatial axis suffices to represent the trajectory. In other words, the trajectory
is represented by a polyline segment interconnected by turning points.

Let C denote the cellular space and E(C) denote the edges that form C.
Likewise, let E(T ) = {T.e1, T.e2, ...T.eL} denote the set of line segments in
trajectory T . Let cross(a, b) denote the number of intersection points between
line (or lines set) a and b. The fitness function F(T ), which denotes the number
of times T goes across the border of the cells in a unit length, is derived as:

F(T ) =
cross(E(C), E(T ))

T.length
=

∑L
i=1 cross(E(C), T.ei)

T.length
(1)

4.2 Mutation and Crossover

We simplify the mutation by allowing it to modify one event at a time. Three al-
ternatives are possible: to add, remove, or to update a turning point. To crossover
two trajectories, the sequences of the turning points are swapped at a certain
time point t ∈ intersection(T̂1, T̂2), which is simply the set of geometric points
where T1 and T2 intersect. Formally, let T denote the chromosome of the trajec-
tory. T = {p1, p2, ..., pL} where pi are the turning points of T .

mutation(T ) : T ′ = {p1, p2, ..., pi, p
∗, pi+1, ..., pL}

or T ′ = {p1, p2, ..., pi−1, pi+1, ..., pL}
or T ′ = {p1, p2, ..., pi−1, p

′
i, pi+1..., pL}

crossover(T 1, T 2) : T 1′ = {p11, ..., p1i, p2i+1, ..., p2L1}
T 2′ = {p21, ..., p2j, p1j+1, ..., p1L2},

where line segment p1ip1i+1 intersects p2ip2i+1.

4.3 Evaluation and Refinement

To remove “bad” trajectories, we set the individual fitness threshold to the mean
fitness value F . There are two ways to obtain F : empirically or by analysis. The
former adopts the Monte Carlo method which randomly generates N trajectories
Ti and let F =

∑N
i=1 F(Ti)/N . The latter develops a mathematical model as
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follows. Let Dia(i) 4 denote the mean distance between two points on the border
of a cell i and area(i) denote the area of i. We have:

F ≈ 1
Dia(C)

=
∑C

i=1 area(i)∑C
i=1 area(i) ∗Dia(i)

, (2)

where C is the cellular space. To derive Dia(i) and area(i), we approximate the
cell i by a circle C with radius r. Thus, Dia(i) is “the average distance between
two points on the circumference of Cir.”

Dia(i) ≈
r ·

∫ π

0

√
2− 2 cos θ dθ∫ π

0 dθ
=

4r

π

And area(i) is the area of C, i.e., area(i) = πr2. There are two approxima-
tions of C, namely “optimistic” and “pessimistic,” whose radii are denoted as
ropt and rpess, respectively. The optimistic circle, which is the inscribed circle
of i, achieves an upper bound estimation of F , whereas the pessimistic one,
i.e., the circumcircle of i, achieves a lower bound estimation of F . Whichever
approximation we apply, the mean individual fitness is:

F ≈
∑C

i=1 πr2
i∑C

i=1 4r3
i

(3)

Regarding the global fitness, since simulation coverage is the main concern,
the trajectories should distribute randomly throughout the space. Thus, the
hash-test-based refinement is performed. The signature function is devised as
follows. First, the space is partitioned into m-by-m even-sized rectangles. Then
each chromosome is represented by an m2-bit string, where each bit corresponds
to one rectangle. A “1” on this bit means “the trajectory passes through this
rectangle” while “0” means the opposite. Finally the signature is the decimal
value of this binary string.

5 Simulating Real-Life Symbolic Moving Behavior

In this section, we aim to generate a set of real-life symbolic trajectories for a sin-
gle user. The trajectories are symbolic in that all the locations are symbolic, such
as campus, office, cafeteria, home, etc. Symbolic locations preserve the semantics
of the user’s moving behavior better than geometric coordinates. The generated
trajectories are used for the simulation of applications such as “location predic-
tion” and “context-aware mobile phone.” The trajectories are “real-life” in that:
(1) they conform to a set of mobility patterns which hide in the sample trajec-
tories obtained from real-life location tracking; (2) they conform to the real-life
constraints and heuristics.
4 The abbreviation for ”Diameter”.
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The difficulty of designing such a dataset generator is that a user’s real-
life moving behavior is governed by: (1) a variety of heuristics and rules from
different disciplines; (2) his/her underlying mobility model, which has no perfect
mathematical form. As too many factors concern the behavior, we assume that:

1. The set of locations G in which the user might stay is known.
2. The user is out of the scope of all leaf locations for the time periods not

covered by any event.
3. The distances between the leaf locations in terms of transportation time are

known and stored as edges in a complete graph, called a distance graph.
Figure 3(a) illustrates set of locations and the distance graph. The digits on
each line denote the time cost in minutes.5
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Fig. 3. Real-Life Symbolic Trajectory Generation

5.1 Trajectory Encoding/Decoding and Fitness Function

Each event e designates that the user stays at e.location from e.begintime to
e.endtime. Furthermore, the trajectory conforms to the transportation prac-
ticability constraint, i.e., the time interval between two consecutive events
should be large enough to allow the user to move between the two locations:

As the objective is to generate trajectories with the same mobility patterns
as the samples, we define the individual fitness as the similarity between the
trajectory and the samples, i.e.,

F(T ) = {KMINTi∈SDist(T , Ti)}−1,

where S is the set of sample trajectories and KMIN is the operator to retrieve
the kth minimal. A large fitness value means that T is close to some samples,
whereas a small value means that it is probably an outlier.

5.2 Mutation, Crossover and Refinement

The mutation operator may violate the transportation practicability constraint.
We repair the chromosome by randomly assigning the responsibility of maintain-
ing the practicability to one of the events. As illustrated in Figure 3(b), event
5 To improve legibility, we do not depict all distances in the figure. If the edge between

a and b is missing, distance(a, b) is equivalent to the shortest path from a to b.
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a is the responsible event; it shrinks its duration to leave the intermission time
between a and b equivalent to the a, b transportation time defined in the distance
graph.

As for refinement, the fitness threshold is set to the mean individual fitness
value F of all possible chromosomes. As it is infeasible to derive F analytically
in the original chromosome space, we use FastMap to embed all sample chromo-
somes into an n-dimensional Euclidean space Rn. Given a uniform distribution
of the N embedding points (i.e., the images of the N sample chromosomes), the
average k-nearest distance for any point is: 6

Distk = n

√
kV (n/2)!
Nπn/2 , (4)

where V =
∏n

i=1 (Ri.max−Ri.min) is the volume of the subspace Rn.
To refine a trajectory T , it is first embedded into a point in this Rn space,

where its k-nearest distance to the sample trajectories is obtained. If the value
is greater than Distk obtained in Equation 4, the corresponding chromosome is
dropped.

As of refinement on global fitness, we expect the set of trajectories to exhibit
randomness when his/her behavior is less regulated and predictable, e.g., during
the leisure hours. As such, a hash test is necessary to guarantee the random-
ness. We devise the signature of a trajectory as the locations at the “sampling
moments”:

signature(c) = (a1a2...an)L =
n∑

i=1

aiL
n−i, (5)

where L is the number of leaf locations and n is the number of sampling moments;
ai is the location id (from 0 to L−1) at sample moment ti. To determine the set of
sampling moments, we randomly generate a set of candidate sampling moments
and choose those good moments where the location distribution of all sample
chromosomes is random. The randomness is measured in terms of entropy:

entropy(t) = −
L∑

i=1

pi
t · log pi

t (6)

where pi
t is the probability that the user is at location i at moment t in the

samples. The higher the entropy value, the more random the distribution is at
time t.

6 Experiments

In this section, we analyze the datasets generated according to the previous two
sections to further study the characteristics of GAMMA.
6 For an even number n, the volume of a hypersphere with radius r in n-dimensional

space is πn/2rn

(n/2)!
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6.1 Moving Object Trajectories in a Cellular Network

We generate the trajectories by GAMMA and the traditional random waypoint
model (RANWAY). In RANWAY, the turning points are randomly selected. We
compare their performance under the same number of CPU cycles. The two-
dimensional cellular partition of the space is derived by generating 30 random
service points and computing the Voronoi diagram. Regarding the signature
function, the space is evenly partitioned into a three-by-three grid. Thus, the
hash table size is 23×3 = 512. The experimental parameters are summarized in
Table 1.

Table 1. Experimental Parameters for Trajectories in a Cellular Network

Parameter Value Parameter Value
population 100 generation 50

mutation probability 0.05 default iterations 20

crossover probability 0.8

0

100

200

300

400

8 8.5 9 9.5 10 10.5 11 11.5 12

Fitness Threshold

E
lig

ib
le

 T
ra

je
ct

or
ie

s

GAMMA
RANWAY

(a) Experiment 1: Eligible Trajectories vs. Fit-

ness Threshold

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

GAMMA
RANWAY

(b) Sample Trajectories from GAMMA and

RANWAY

Fig. 4. Moving Object Trajectories

Experiment 1: Fixed CPU Time. In this experiment, GAMMA is shown to
generate trajectories with high individual fitness values. We fix the CPU time,
vary the individual fitness threshold, and measure the number of eligible trajec-
tories generated from GAMMA and RANWAY. The performance comparison
is plotted in Figure 4(a). GAMMA generates 100 × 20 = 2, 000 trajectories,
while RANWAY generates 90,000 in the same period of CPU time. When the
threshold increases from 8 to 12, the number of eligible trajectories generated by
RANWAY decreases sharply (from 937 to 0), whereas GAMMA steadily drops
by 60%. This is because: when the threshold gets higher, RANWAY is less likely
to generate eligible trajectories; nevertheless GAMMA searches the trajectory
space more efficiently and still obtains a satisfactory number of trajectories even
when the threshold is harsh. As a concrete evident, Figure 4(b) visualizes the
cellular network and two sample trajectories which are randomly picked from the
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two generated datasets; GAMMA is more clever in choosing areas with dense
cells so that the trajectory cross the boundaries frequently. As a conclusion,
GAMMA is much more efficient and robust than RANWAY for generating mov-
ing trajectories with desired characteristics.

Experiment 2: Fixed Fitness Threshold. In this experiment, we fix the
fitness threshold and vary the CPU time. For each CPU time setting, we obtain
m trajectories output from GAMMA and choose the best m trajectories from
RANWAY for comparison. Their mean individual fitness and global fitness val-
ues are compared in Figures 5(a) and 5(b). In terms of individual fitness, the
trajectories from GAMMA is always better than those from RANWAY. More
importantly, as the population grows GAMMA is able to retain a high mean
fitness value. Furthermore, Figure 5(b) shows that GAMMA yields a higher
and more steady global fitness value than that of RANWAY as the population
grows. As a final note, the population grows steadily in GAMMA as more CPU
time is consumed. To conclude, GAMMA is a robust, efficient, and high-quality
generator for moving trajectories.
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6.2 Real- ife Symbolic Trajectories

In this experiment, we simulate the moving behavior of a graduate student from
8am to 6pm everyday as shown in Section 5. The experimental parameters are
summarized in Table 2.

Table 2. Experimental Parameters for Real-life Symbolic Trajectories

Parameter Value Parameter Value
population 100 generation 50

mutation probability 0.05 k 5

crossover probability 0.9 mutation granularity 1 hr

fitness threshold 150 iterations 500

L
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Fig. 6. Performance of Symbolic Trajectory Generation

Twenty real trajectories are tracked and recorded as the samples, some of
which are illustrated in Figure 9(a). As we analyzed, these trajectories exhibit
the following mobility patterns of the user:

– He/She normally goes to campus at about 8:30∼9:30 and leaves for home at
about 16:00∼18:00.

– In campus, he/she is mainly at the mobile lab, but occasionally goes to the
database lab (for meeting or discussion) and to the pervasive lab (for some
experiments) in the afternoon.

– He/She goes to the library for one or two hours at times, but without a fixed
time schedule.

– He/She usually has lunch at cafeteria at noon.
– Occasionally, he/she goes to the grocery on the way home or to the campus;

once in a while, he/she goes to the restaurant for dinner.

As there is no comparable generator reported in the literature, we only mea-
sured the performance of GAMMA. It ran for 500 iterations and we measured
the metrics, namely, the mean individual fitness, the global fitness and the whole
population in the repository. Figures 6(a) and 6(b) plot the performance curves.
It is observed that when the population increases, the mean fitness value stabi-
lizes at about 300 and the global fitness at 0.1. This implies that the quality of
the trajectories produced in each iteration is almost equally good. Nevertheless,
the population grows more slowly as the iteration increases, due to the increasing
possibility of a hash test collision.

To demonstrate the effectiveness of GAMMA, we show all samples and gen-
erated trajectories in the embedded three-dimensional space in Figure 7. The
generated trajectories, designated by the crosses, are always around some sam-
ples. To visualize from another perspective, we also project them on the spatial
axis and derive the first-order Markov models of the location transitions for
the samples and the generated trajectories, respectively. The location transition
diagrams are partially plotted in Figures 8(a) and 8(b).7 The state transition
from each locations are similar. For example, in Figure 8(a), the user moves
7 To make the figures legible, only the transitions from “library”, “cafeteria”, “gro-

cery” and “home” are depicted.
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Fig. 7. Visualization of Symbolic Trajectories in a 3D space

from “home” to “grocery”, “mobile lab” and “library” with probability 0.1, 0.75
and 0.15; in Figure 8(b), the destinations are “grocery”, “mobile lab”, “library”
and “restaurant” with probability 0.1, 0.66, 0.14 and 0.1. This implies that a
similar underlying mobility patterns. Therefore, we conclude that the generated
trajectories resemble the samples and reserve the user’s mobility patterns.
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As a direct evidence of this conclusion, we also choose five generated trajecto-
ries randomly and plot them in Figure 9(b). The semantics of these trajectories
conforms to common sense and they exhibit almost the same mobility patterns
as the samples.

7 Conclusion and Future Work

Simulating a user’s moving behavior is crucial for mobile computing and spa-
tial database research. However, realistic object (user) moving behavior does
not have a fixed and close form mobility model, which is required by all existing
moving object generators. In this paper, we represent moving behavior as trajec-
tories and present a framework, GAMMA, to generate high-quality trajectories
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Fig. 9. Symbolic Trajectories Generated by GAMMA

according to individual and global fitness. We regard the data generation as an
optimization problem and adopt GA to search the trajectory space. The frame-
work is highly flexible in that the components of GAMMA can be configured to
meet various simulation objectives. To demonstrate its feasibility and usage, we
configure it for two specific simulations.

As for future work, we will investigate how the GAMMA parameters, such as
population size and mutation probability, affect its performance. We also plan
to apply the generated datasets to some simulations such as those in [17,18] and
report its effect on the simulation result.
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Abstract. Assume that a franchise plans to open k branches in a city, so that the
average distance from each residential block to the closest branch is minimized.
This is an instance of the k-medoids problem, where residential blocks constitute
the input dataset and the k branch locations correspond to the medoids. Since the
problem is NP-hard, research has focused on approximate solutions. Despite an
avalanche of methods for small and moderate size datasets, currently there exists
no technique applicable to very large databases. In this paper, we provide efficient
algorithms that utilize an existing data-partition index to achieve low CPU and
I/O cost. In particular, we exploit the intrinsic grouping properties of the index in
order to avoid reading the entire dataset. Furthermore, we apply our framework
to solve medoid-aggregate queries, where k is not known in advance; instead,
we are asked to compute a medoid set that leads to an average distance close
to a user-specified parameter T . Compared to previous approaches, we achieve
results of comparable or better quality at a small fraction of the CPU and I/O costs
(seconds as opposed to hours, and tens of node accesses instead of thousands).

1 Introduction

Given a set P of points, we wish to find a set of medoids R ⊆ P with cardinality k that
minimizes the average Euclidean distance ||p − r(p)|| between each point p ∈ P and
its closest medoid r(p) ∈ R. Formally, our aim is to minimize the function

C(R) =
1
|P |

∑
p∈P

||p− r(p)||

under the constraint that R ⊆ P and |R| = k. Figure 1 shows an example, where
|P | = 23, k = 3, and R = {h, o, t}. Assuming that the points of P constitute residential
blocks, the three medoids h, o, t constitute candidate locations for service facilities (e.g.,
franchise branches), so that the average distance C(R) from each block to its closest
facility is minimized. A related problem is the medoid-aggregate (MA) query, where k
is not known in advance. The goal is to select a minimal set R of medoids, such that
C(R) best approximates an input value T . Considering again the franchise example,
instead of specifying the number of facilities, we seek the minimum set of branches that
leads to an average distance (between each residential block and the closest branch) of
about T = 500 meters.
� Supported by grant HKUST 6180/03E from Hong Kong RGC.
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Fig. 1. Example of a k-medoid query

Efficient solutions to medoid queries are essential in several applications related to
resource allocation and spatial decision making. In this paper, we propose TPAQ (Tree-
based PArtition Querying), a strategy that avoids reading the entire dataset by exploiting
the grouping properties of a data partition method on P . TPAQ initially traverses the
index top-down, stopping at an appropriate level and placing the corresponding entries
into groups according to proximity. Finally, it returns the most centrally located point
within each group as the corresponding medoid. Compared to previous approaches,
TPAQ achieves solutions of comparable or better quality, at a small fraction of the cost
(seconds as opposed to hours).

The rest of the paper is organized as follows. Section 2 reviews related work. Section
3 introduces key concepts and describes the intuition and the general framework for
our techniques. Section 4 considers k-medoid queries and Section 5 focuses on MA
queries. Section 6 presents experimental results on both real and synthetic datasets.
Finally, Section 7 concludes the paper.

2 Background

Although our techniques can be used with any data-partition method, here we assume
R*-trees [1] due to their popularity. Section 2.1 overviews R*-trees and their application
to nearest neighbor queries. Section 2.2 presents existing algorithms for k-medoids and
related problems.

2.1 R- rees and Nearest Neighbor Search

We illustrate our examples with the R-tree of Figure 2 assuming a capacity of four
entries per node. Points that are nearby in space (e.g., a, b, c, d) are inserted into the
same leaf node (N3). Leaf nodes are recursively grouped in a bottom-up manner ac-
cording to their vicinity, up to the top-most level that consists of a single root. Each
node is represented as a minimum bounding rectangle (MBR) enclosing all the points
in its sub-tree. The nodes of an R*-tree are meant to be compact, have small margin and

T
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(a) R-tree node extents and locations (b) R-tree data structure

Fig. 2. R-tree example

achieve minimal overlap (among nodes of the same level) [2]. Additionally, in practice,
nodes at the same level contain a similar number of data points, due to a minimum
utilization constraint (typically, 40%). These properties imply that the R-tree (or any
other data-partition method based on similar concepts) provides a natural way to parti-
tion P according to object proximity and group cardinality criteria. However, with few
exceptions (discussed in the next subsection) R-trees have been used exclusively for
processing spatial queries such as range search, nearest neighbors and spatial joins.

A nearest neighbor (NN) query retrieves the data object that is closest to an input
point q. R-tree algorithms for processing NN queries utilize some metrics to prune the
search space. The most common such metric is mindist(N, q), which is defined as the
minimum possible distance between q and any point in the sub-tree rooted at node N .
Figure 2 shows the mindist between q and nodes N1 and N2. The algorithm of [3]
traverses the tree in a depth-first (DF) manner: starting from the root, it first visits the
node with the minimum mindist (i.e., N1 in our example). The process is repeated
recursively until a leaf node (N4) is reached, where the first potential nearest neighbor
(point e) is found. Subsequently, the algorithm only visits entries whose minimum dis-
tance is less than ||e − q||. In the example, N3 and N5 are pruned since their mindist
from q is greater than ||e − q||. Similarly, when backtracking to the upper level, node
N2 is also excluded and the process terminates with e as the result. The extension to
k (> 1) NNs is straightforward. Hjaltason and Samet [4] propose a best-first variation
which is I/O optimal (i.e., it only visits nodes that may contain NNs) and incremental
(the number of NNs does need to be known in advance).

2.2 k-Medoids and Related Problems

A number of approximation schemes for k-medoids1 and related problems appear in
the literature [5]. Most of these findings, however, are largely theoretical in nature.
Kaufmann and Rousseeuw [6] propose partitioning around medoids (PAM), a practical

1 If the selected points (R) do not necessarily belong to the dataset P (i.e., they are arbitrary
points in the Euclidean space), the problem is known as Euclidean k-medians [5].
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algorithm based on the hill climbing paradigm. In particular, PAM starts with a random
set of k medoids R0 ⊆ P . At each iteration i, it updates the current set Ri of medoids by
exhaustively considering all neighbor sets R′

i that result from Ri by exchanging one of
its elements with another object. For each of these k · (|P |−k) alternatives, it computes
the function C(R′

i) and chooses as Ri+1 the one that achieves the lowest value. It stops
when no further improvement is possible. Since computing C(R′

i) requires (O|P |) dis-
tance calculations, PAM is prohibitively expensive for large |P |. Thus, [6] also present
clustering large applications (CLARA), which draws one or more random samples
from P and runs PAM on those. Ng and Han [7] propose clustering large applications
based on randomized search (CLARANS) as an extension to PAM. CLARANS draws
a random sample of size maxneighbors from all the k · (|P | − k) possible neighbor sets
R′

i of Ri. It performs numlocal restarts and selects the best local minimum as the final
answer.

Although CLARANS is more scalable than PAM, it is inefficient for disk-resident
datasets because each computation of C(R′

i) requires a scan of the entire database.
Assuming that P is indexed with an R-tree, Ester et al. [8,9] develop focusing on rep-
resentatives (FOR) for large datasets indexed by R-trees. FOR takes the most centrally
located point of each leaf node and forms a sample set, which is considered as represen-
tative of the entire P . Then, it applies CLARANS on this sample to find the k medoids.
Although FOR is more efficient than CLARANS, it still has to read the entire dataset
in order to extract the representatives. Furthermore, in very large databases, the leaf
level population may still be too high for the efficient application of CLARANS (the
experiments of [8] use R-trees with only 50,559 points and 1,027 leaf nodes).

The k-medoid problem is related to clustering. Clustering methods designed for
large databases include DBSCAN [10], BIRCH [11], CURE [12] and OPTICS [13].
However, the objective of clustering is to partition data objects in groups (clusters) such
that objects within the same group are more similar to each other than points in other
groups. Figure 3(a) depicts a 2-way clustering for a dataset, while Figure 3(b) shows the
two medoids. Clearly, assigning a facility per cluster would not achieve the purpose of
minimizing the average distance between points and facilities. Furthermore, although
the number of clusters depends on the data characteristics, the number of medoids is an
input parameter determined by the application requirements.

(a) 2 clusters

medoid

(b) 2 medoids

Fig. 3. Clustering versus medoids problem
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Extensive work on medoids and clustering has been carried out in the areas of statis-
tics [14,6,15], machine learning [16,17,18] and data mining [10,19]. However, the fo-
cus there is on assessing the statistical quality of a given clustering, usually based on
assumptions about the data distribution [15,6,17,18]. Only few approaches aim at dis-
covering the number of clusters dynamically [17,18]. Besides tackling a problem of
different nature, existing algorithms are computationally intensive and unsuitable for
disk-resident datasets. In summary, there is need for methods that fully exploit spatial
access methods and can answer alternative types of medoid queries.

3 General Framework and Definitions

The TPAQ framework traverses the R-tree in a top-down manner, stopping at the top-
most level that provides enough information for answering the given query. In the case
of k-medoids, this decision depends on the number of entries at the level. On the other
hand, for MA queries, the selection of the partitioning level is also based on the spatial
extents and the expected cardinality of its entries. Next, TPAQ groups the entries of the
partitioning level into slots. For given k, this procedure is performed by a fast algorithm
that applies a single pass over the initial entries. For MA, multiple passes over the en-
tries might be required. The last step returns the NN of each slot center as the medoid
of the corresponding partition. We first provide some basic definitions, which are used
throughout the paper.

Definition 1 (Extended entry). An extended entry e consists of an R-tree entry N ,
augmented with information about the underlying data points, i.e.,

e = 〈c, w, N〉
where the weight w is the expected number of points in the subtree rooted at N . The
center c is a vector of co-ordinates that corresponds to the geometric centroid of N ,
assuming that the points in the sub-tree of N are uniformly distributed.

Definition 2 (Slot). A slot s consists of a set E of extended entries, along with aggre-
gate information about them. Formally, a slot s is defined as s = 〈c, w, E〉, where w is
the expected number of points represented by s,

w =
∑
e∈E

e.w

and c is the weighted center of s,

c =
1
w

∑
e∈E

e.w · e.c

A fundamental operation is the insertion of an extended entry e into a slot s. The
pseudo-code for this function is shown in Figure 4. The insertion computes the new
center taking into account the relative positions and weights of the slot s and the entry
e, e.g., if s and e have the same weights, the new center is at the midpoint of the line
segment connecting s.c and e.c. Table 1 summarizes the frequently used symbols, along
with short descriptions. In the subsequent sections, we describe the algorithmic details
for each query type.
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Function InsertEntry(extended entry e, slot s)
1. s.c = (e.w · e.c + s.w · s.c)/(e.w + s.w)
2. s.w = e.w + s.w
3. s.E = s.E ∪ {e}

Fig. 4. The InsertEntry function

Table 1. Frequently used symbols

Symbol Description
P Set of data points

||p1 − p2|| Euclidean distance between points p1 and p2

R Set of medoids
k Number of medoids k = |R|

r(p) Closest medoid of p ∈ P

C(R) Average distance achieved by R

T Target distance (for MA queries)
N R-tree node
E Set of entries ei = 〈ci, wi, Ni〉
S Set of slots si = 〈ci, wi, Ei〉

4 k-Medoid Queries

Given a k-medoid query, TPAQ finds the top-most level with k′ ≥ k entries. For example,
if k = 3 in the tree of Figure 2, TPAQ descends to level 1, which contains k′ = 7
entries, N3 through N9. The weights of these entries are computed as follows. Since
|P | = 23, the weight of the root node Nroot is wroot = 23. Assuming that the entries
of Nroot are equally distributed between the two children N1 and N2, w1 = w2 =
N/2 = 11.5 (whereas, the true cardinalities are 11 and 12, respectively). The process
is repeated for the children of N1 (w3 = w4 = w5 = w1/3 = 3.83) and N2(w6 =
w7 = w8 = w9 = w2/4 = 2.87). Figure 5 illustrates the algorithm for computing the
initial set of entries. Note that InitEntries considers that k does not exceed the number of
leaf nodes. This assumption is not restrictive because the lowest level typically contains
several thousand nodes (e.g., in our datasets, between 3,000–60,000),which is sufficient
for all ranges of k that are of practical interest. Nevertheless, if needed, larger values of
k can be accommodated by conceptually splitting leaf level nodes.

The next step merges the k′ initial entries in order to obtain exactly k groups. Ini-
tially, k out of the k′ entries are selected as slot seeds, i.e., each of the chosen entries
forms an initial slot. Clearly, the seed locations play an important role in the quality of
the final answer. The seeds should capture the distribution of points in P , i.e., dense ar-
eas should contain many seeds. Our approach for seed selection is based on space-filling
curves, which map a multi-dimensional space into a linear order. Among several alter-
natives, Hilbert curves best preserve the locality of points [20,21]. Therefore, we first
Hilbert-sort the k′ entries and select every other m-th entry as a seed, where m = k′/k.
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Function InitEntries(P,k)
1. Load the root of the R-tree of P
2. Initialize list = {e}, where e = 〈Nroot.c, |P |, Nroot〉
3. While list contains fewer than k extended entries
4. Initialize an empty list next level entries
5. For each e = 〈c, w, N〉 in list do
6. Let num be the number of child entries in node N
7. For each entry Ni in node N do
8. wi = w/num // the expected cardinality of Ni

9. Insert extended entry 〈Ni.c, wi, Ni〉 to next level entries
10. Set list = next level entries
11. Return list

Fig. 5. The InitEntries function

This procedure is fast and produces well-spaced seeds that follow the data distribution.
Returning to our example, Figure 6 shows the level 1 MBRs (for the R-tree of Figure 2)
and the output seeds s1 = N4, s2 = N9 and s3 = N7 according to their Hilbert order.
Recall that each slot is represented by its weight (e.g., s1.w = w4 = 3.83), its center
(e.g., s1.c is the centroid of N4) and its MBR.

Then, each of the remaining (k′ − k) entries is inserted into the k seed slots, based
on proximity criteria. More specifically, for each entry e, we choose the slot s whose
weighted center s.c is closest to the entry’s center e.c. In the running example, assuming
that N3 is considered first, it is inserted into the slot s1 using the InsertEntry function of
Figure 4. The center of s1is updated to the midpoint of N3 and N4’s centers, as shown
in Figure 7(a). TPAQ proceeds in this manner, until the final slots and weighted centers
are computed as shown in Figure 7(b).

After grouping all entries into exactly k slots, we find one medoid per slot by per-
forming a nearest-neighbor query. The query point is the slot’s weighted center s.c, and
the search space is the set of entries s.E. Since all the levels of the R-tree down to
the partition level have already been loaded in memory, the NN queries incur very few

Fig. 6. Hilbert seeds on example dataset
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(a) Insertion of N3 (b) Final slot content

Fig. 7. Insertion of entries into slots

node accesses and negligible CPU cost. Observe that an actual medoid (i.e., a point in
P that minimizes the sum of distances) is more likely to be closer to s.c than simply
to the center of the MBR of s. The intuition is that s.c captures information about the
point distribution within s. The NN queries on these points return the final medoids
R = {h, o, t}. Figure 8 shows the complete TPAQ k-medoid computation algorithm.

Note that the problem of seeding the slot table is similar to that encountered in spa-
tial hash joins, where the number of buckets is bounded by the available main memory
[22,23,24]. However, our ultimate goals are different. First, in the case of hash joins, the
table capacity is an upper bound. Reaching it is desirable in order to exploit available
memory as much as possible, but falling slightly short is not a problem. In contrast,
we want exactly k slots. Second, in our case slots should minimize the average dis-
tance C(R) on one dataset, whereas slot selection in spatial joins attempts to minimize
the number of intersection tests that must be performed between objects that belong to
different datasets.

Algorithm TPAQ(P, k)
1. Initialize a set S = ∅, and empty list
2. Set E = the set of entries returned by InitEntries(P, k)
3. Hilbert-sort the centers of the entries in E and store them in a sorted list sorted list
4. For i = 1 to k do // compute the slot seeds
5. Form a slot containing the (i · |E|/k)-th entry of sorted list and insert it into S
6. For each entry e in E (apart from the ones selected as seeds) do
7. Find the slot s in S with the minimum distance ||e.c − s.c||
8. InsertEntry(e, s)
9. For each s ∈ S do
10. Perform a NN search at s.c on the points under s.E
11. Append the retrieved point to list
12. Return list

Fig. 8. The TPAQ algorithm
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5 Medoid-Aggregate Queries

A medoid-aggregate (MA) query specifies the desired average distance T (between
points and medoids), and asks for the minimal medoid set R that achieves C(R) = T .
Consider the example of Figure 9, and assume that we know a priori all the optimal
i-medoid sets Ri and the corresponding C(Ri), for i = 1, . . . , 23. If C(R4) is the
average distance that best approximates T (compared to C(Ri) ∀i �= 4), set R4 is
returned as the result of the query. The proposed algorithm, TPAQ-MA, is based on the
fact that as the number of medoids |R| increases, the corresponding C(R) decreases. In
a nutshell, it first descends the R-tree of P down to an appropriate (partitioning) level.
Next, it estimates the value of |R| that achieves the closest average distance C(R) to T
and returns the corresponding medoid set R.

Fig. 9. A medoid-aggregate query example

The first step of TPAQ-MA is to determine the partitioning level. The algorithm
selects for partitioning the top-most level whose minimum possible average distance
(MPD) is less than or equal to T . The MPD of a level is the smallest C(R) that can
be achieved if partitioning takes place in this level. According to the methodology pre-
sented in Section 4, MPD equals to the C(R) resulting if we extract one medoid from
each entry in the level. Since computing the exact C(R) requires scanning the entire
dataset P , we use an estimate of C(R) as the MPD. In particular, for each entry e of the
level, we assume that the underlying points are distributed uniformly in its MBR2, and
that the corresponding medoid is at e.c. The average distance C̄(e) between the points
in e and the e.c is given by the following lemma.

Lemma 1. If the points in e are uniformly distributed in its MBR, then their average
distance from e.c is

C̄(e) =
1
3

(
D

2
+

B2

8A
ln

(
D + A

D −A

)
+

A2

8B
ln

(
D + B

D −B

))
,

where A and B are the side lengths of the MBR of e and D is its diagonal length.

2 This is a reasonable assumption for low-dimensional R-trees [2].
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Proof. If we translate the MBR of e so that its center e.c falls at the origin (0,0), C̄(e) is
the average distance of points (x, y) ∈ [−A/2, A/2]× [−B/2, B/2] from (0,0). Hence,

C̄(e) =
1

AB

∫ A/2

−A/2

∫ B/2

−B/2

√
x2 + y2 dxdy,

which evaluates to the quantity of Lemma 1.

The MPD of the considered level is estimated by averaging C̄(e) over all e ∈ E,
where E is the set of entries at the level, i.e.,

MPD =
1
|P |

∑
e∈E

e.w · C̄(e)

TPAQ-MA applies the InitEntries function to select the top-most level that has MPD ≤
T . The pseudo-code of InitEntries is the same as shown in Figure 5, after replacing the
while-condition of line 3 with the expression: “the estimated MPD is more than T ”.
Returning to our running example, the root node Nroot of the R-tree of P has MPD =
C̄(Nroot) higher than T . Therefore, InitEntries proceeds with level 2 (containing entries
N1 and N2), whose MPD is also higher than T . Next, it loads the level 1 nodes and
computes the MPD over the entries from N3 to N9. The MPD is less than T , and
level 1 is selected for partitioning. The InitEntries procedure returns a list containing 7
extended entries corresponding to N3 up to N9.

The next step of TPAQ-MA is to determine the number of medoids that better ap-
proximate the value T . If E is the set of entries in the partitioning level, then the can-
didate values for |R| range between 1 and |E|. Assuming that C(R) is decreasing with
respect to |R|, TPAQ-MA performs binary search in order to select the value of |R| that
yields the closest average distance to T . This procedure considers O(log |E|) different
values for |R|, and creates slots for each of them as discussed in Section 4. Since the
exact evaluation of C(R) for every examined |R| would be very expensive, we produce
an estimate C̄(S) of C(R) for the corresponding set of slots S. Particularly, we assume
that the medoid of each slot s is located at s.c, and that the average distance from the
points in every entry e ∈ s equals the distance ||e.c− s.c||. Hence, the estimated value
for C(R) is given by the formula

C̄(S) =
1
|P |

∑
s∈S

∑
e∈s

e.w · ||e.c− s.c||

where S is the set of slots produced by partitioning the entries in E into |R| groups.
Note that we could use a more accurate estimator assuming uniformity within each
entry e ∈ s, similar to Lemma 1. However, the derived expression would be more
complex and more expensive to evaluate, because now we need the average distance
from s.c (as opposed to the center e.c of the entry’s MBR). The overall TPAQ-MA
algorithm is shown in Figure 10.

In the example of Figure 9, the partitioning level contains entries E = {N3, N4,
N5, N6, N7, N8, N9}. The binary search considers values of |R| between 1 and 7.
Starting with |R| = (1 + 7)/2 = 4, the algorithm creates S with 4 slots, as shown in
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Algorithm TPAQ-MA(P,T )
1. Initialize an empty list
2. Set E = set of the entries at the topmost level with MPD ≤ T
3. low = 1; high = |E|
4. While low ≤ high do
5. mid = (low + high)/2
6. Group the entries in E into mid slots
7. S = the set of created slots
8. If C̄(S) < T , set high = mid
9. Else, set low = mid
10. For each s ∈ S do
11. Perform a NN search at s.c on the points under s.E
12. Append the retrieved point to list
13. Return list

Fig. 10. The TPAQ-MA algorithm

Fig. 11. Entries and final slots

Figure 11. It computes C̄(S), which is lower than T . It recursively continues the search
for |R| ∈ [1, 4] in the same way, and finally decides that |R| = 4 yields a value of C̄(S)
that best approximates T . Next, TPAQ-MA performs a NN search at the center s.c of
the slots corresponding to |R| = 4, and returns the retrieved points (f , i, o, and k) as
the result.

6 Experimental Evaluation

In this section we evaluate the performance of the proposed methods for k-medoid
and medoid-aggregate queries. We use both synthetic and real datasets. The synthetic
ones (SKW) follow a zipf distribution with parameter α = 0.8, and have cardinality
256K, 512K, 1M, 2M and 4M points. The real datasets are (i) NA, with 569,120 points
(available at www.maproom.psu.edu/dcw), and (ii) LA, with 1,314,620 points (available



66 K. Mouratidis, D. Papadias, and S. Papadimitriou

at www.rtreeportal.org). All datasets are normalized to cover the same space with extent
104×104 and indexed by an R*-tree [1] (the block size ranges between 1 and 4Kbytes).
For the experiments we use a Pentium 3GHz CPU.

6.1 k-Medoid Queries

First, we focus on k-medoid queries and compare TPAQ against FOR (which, as dis-
cussed in Section 2.2, is the only other method that utilizes R-trees for computing k-
medoids). For TPAQ, we use the depth-first algorithm of [3] to retrieve the nearest
neighbor of each computed centroid. In the case of FOR we have to set the parameters
numlocal (number of restarts) and maxneighbors (sample size of the possible neigh-
bor sets) of the CLARANS component. Ester et al. [8] suggest setting numlocal = 2
and maxneighbors = k · (M − k)/800, where M is the number of leaf nodes in the
R-tree of P . With these parameters, FOR does not terminate within reasonable time
for our datasets. Therefore, we set maxneighbors = k · (M − k)/(8000 · log M) and
keep numlocal = 2. These values speed up FOR considerably, while the deterioration of
the resulting solutions (with respect to the suggested values of numlocal and maxneigh-
bors) is negligible. One final remark concerning FOR, is that all results presented in
this section are average values over 10 runs of the algorithm. This is necessary because
the performance of FOR depends on the random choices of its CLARANS component.
The algorithms are compared for different data cardinality |P |, number of medoids k
and block size. Table 2 summarizes the parameters under investigation along with their
ranges and default values. In each experiment we vary a single parameter, while setting
the remaining ones to their default (median) values.

Table 2. Default parameter values

Parameter Range Default
|P | 256K – 4M 1M
k 2 – 512 32

Block size 1KB – 4KB 2KB

The first set of experiments measures the effect of |P |. In Figure 12(a), we show the
running time of TPAQ and FOR, for SKW when k = 32 and |P | varies between 256K
and 4M. TPAQ is 2 to 4 orders of magnitude faster than FOR. Even for |P | = 4M
objects, our method terminates in less than 0.04 seconds (while FOR needs more than
3 minutes). Figure 12(b) shows the I/O cost (number of node accesses) for the same
experiment. FOR is around 2 to 3 orders of magnitude more expensive than TPAQ since
it reads the entire dataset once. Both the CPU and the I/O costs of TPAQ are relatively
stable and small, because partitioning takes place at a high level of the R-tree.

The cost improvements of TPAQ come with no compromise of the answer quality.
Figure 12(c) shows the average distance C(R) achieved by the two algorithms. TPAQ
outperforms FOR in all cases. An interesting observation is that the average distance
for FOR drops when the cardinality of the dataset |P | increases. This happens because
higher |P | implies more possible “paths” to a local minimum. To summarize, the results
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Fig. 13. Performance versus k (synthetic data)

of Figure 12 verifies that TPAQ scales gracefully with dataset cardinality and incurs
much lower cost than FOR, without sacrificing the medoid quality.

The next set of experiments studies the performance of TPAQ and FOR when k
varies between 2 and 512, using a SKW dataset of cardinality |P | = 1M . Figure 13(a)
compares the running time of the methods. In both cases, TPAQ is 3 orders of magnitude
faster than FOR. It is worth mentioning that for k = 512 our method terminates in 2.5
seconds, while FOR requires around 1 hour and 20 minutes. For k = 512, both the
partitioning into slots of TPAQ and the CLARANS component of FOR are applied on
an input of size 14,184; the input of the TPAQ partitioning algorithm consists of the
extended entries at the leaf level, while the input of CLARANS is the set of actual
representatives retrieved in each leaf node. The large difference in CPU time verifies
the efficiency of our partitioning algorithm.

Figure 13(b) shows the effect of k on the I/O cost. The node accesses of FOR are
constant and equal to the total number of nodes in the R-tree of P (i.e., 14,391). On
the other hand, TPAQ accesses more nodes as k increases. This happens because (i) it
needs to descend more R-tree levels in order to find one with a sufficient number (i.e.,
k) of entries, and (ii) it performs more NN queries (i.e., k) at the final step. However,
TPAQ is always more efficient than FOR; in the worst case TPAQ reads all R-tree nodes
up to level 1 (this is the situation for k = 512), while FOR reads the entire dataset P
for any value of k. Figure 13(c) compares the accuracy of the methods. TPAQ achieves
lower C(R) for all values of k.
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In order to confirm the generality of our observations, Figures 14 and 15 repeat the
above experiment for real datasets NA and LA. TPAQ outperforms FOR by orders of
magnitude in terms of both CPU time (Figures 14(a) and 15(a) for NA and LA, respec-
tively) and number of node accesses (Figures 14(b) and 15(b)). Regarding the average
distance C(R), the methods achieve similar results, with TPAQ being the winner. Note
that the CPU and I/O costs of the methods are higher for LA (than NA), since it is larger
and its R-tree has more entries per level. The achieved C(R) values are lower for NA,
because it is more skewed than LA (i.e., the objects are concentrated in a smaller area
of the workspace).

Figures 16(a) and 17(a) show the running time of TPAQ and FOR on 32-medoid
queries as a function of the block size for datasets NA and LA. When the block size in-
creases, the number of leaf nodes drops. Thus the CPU cost of FOR decreases because
its expensive CLARANS step processes fewer representatives. TPAQ does not necessar-
ily follow the same trend. For NA, the running time drops, since the number of entries
at the partitioning level is 618, 143 and 33 for block size 1KB, 2KB and 4KB, respec-
tively. For LA the populations of the partitioning levels are 43, 313 and 77, respectively,
yielding higher running time in the 2KB case. Concerning the I/O cost, larger block size
implies smaller R-tree height, and fewer nodes per level. Therefore, both methods are
less costly (as illustrated in Figures 16(b) and 17(b)). Independently of the block size,
TPAQ incurs much fewer node accesses than FOR. Finally, Figures 16(c) and 17(c)
illustrate the effect of the block size in the quality of the retrieved medoid sets. In all
cases, the average distance achieved by TPAQ is lower than that of FOR.
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6.2 Medoid-Aggregate Queries

In this section we study the performance of TPAQ-MA. We use datasets SKW (with
1M objects) and LA, and vary T in the range from 100 to 1500 (recall that our datasets
cover a space with extent 104×104). Since there is no existing algorithm for processing
such queries on large indexed datasets, we compare TPAQ-MA against an exhaustive
algorithm (EXH) that works as follows. Let E be the set of entries at the partitioning
level of TPAQ-MA; then, EXH computes and evaluates all the medoid sets for |R| = 1
up to |R| = |E|, by performing partitioning of E into slots with the technique presented
in Section 4. EXH returns the medoid set that yields the closest average distance to T .
Note that EXH is prohibitively expensive in practice because, for each examined value
of |R|, it scans the entire dataset P in order to exactly evaluate C(R). Therefore, we
exclude EXH from the CPU and I/O cost charts.

Our evaluation starts with SKW. Figure 18(a) shows the C(R) for TPAQ-MA ver-
sus T . Clearly, the average distance returned by TPAQ-MA approximates the desired
distance (dotted line) very well. Figure 18(b) plots the deviation percentage between
the average distances achieved by TPAQ-MA and EXH. The deviation is below 9%
in all cases, except for T = 300 where it equals 13.4%. Interestingly, for T = 1500,
TPAQ-MA returns exactly the same result as EXH with |R| = 5. Figures 18(c) and
18(d) illustrate the running time and the node accesses of our method, respectively. For
T = 100, both costs are relatively high (100.8 seconds and 1839 node accesses) com-
pared to larger values of T . The reason is that when T = 100, partitioning takes place
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at level 1 (leaf level, which contains 14,184 entries) and returns |R| = 1272 medoids,
incurring many computations and I/O operations. In all other cases, partitioning takes
place at level 2 (containing 203 entries), and TPAQ-MA runs in less than 0.11 seconds
and reads fewer than 251 pages.

Figure 19 repeats the above experiment for the LA dataset. Figures 19(a) and 19(b)
compare the average distance achieved by TPAQ-MA with the input value T and the
result of EXH, respectively. The deviation from EXH is always smaller than 8.6%,
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while for T = 1500 the answer of TPAQ-MA is the same as EXH. Concerning the
efficiency of TPAQ-MA, we observe that the algorithm has, in general, very low CPU
and I/O cost. The highest cost is again in the case of T = 100 for the reasons explained
in the context of Figure 18; TPAQ-MA partitions 19,186 entries into slots and extracts
|R| = 296 medoids, taking in total 105.6 seconds and performing 781 node accesses.

7 Conclusion

This paper studies k-medoids and related problems in large databases. In particular,
we consider k-medoid and medoid-aggregate (MA) queries, and propose TPAQ (Tree-
based PArtition Querying), a framework for their efficient processing. TPAQ provides
high-quality answers almost instantaneously, thus facilitating data analysis, especially
in time-critical resource allocation applications. Our techniques are the first ones to fully
exploit the data partitioning properties of an already existing spatial access method on
the dataset. TPAQ processes a query in three steps. Initially, it descends the index, and
stops at the topmost level that provides sufficient information about the underlying data
distribution. Next, it partitions the entries of the selected level into a number of slots. In
the case of k-medoid queries, the number of slots is equal to k. For MA, this number
is decided using binary search in conjunction with some average distance estimators.
Finally, TPAQ retrieves one medoid for each slot with a NN query therein. An extensive
experimental evaluation shows that TPAQ outperforms the state-of-the-art method for
k-medoid queries by orders of magnitude, and achieves results of better or comparable
quality. Our empirical study also illustrates the effectiveness and efficiency of TPAQ
for processing MA queries.

The quality of the medoid sets returned by TPAQ is determined by the achieved
average distance. An interesting direction for future work is to extend our index-based
strategies to other aggregate distance functions, such as max. In the max case, we wish
to minimize the maximum distance between the points in the input dataset and their
closest medoid; i.e., C(R) = maxp∈P ||p−r(p)||. Further, it is also interesting to solve
constrained partitioning queries. For example, consider that each facility can serve up
to a maximum number of clients. In this case the algorithms must be extended to take
into account existing capacity (or processing capability) constraints.
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Department of Computer Science, Aalborg University,
Fredrik Bajers Vej 7E, DK-9220, Aalborg, Denmark

{xghuang, csj, simas}@cs.aau.dk

Abstract. Much research has recently been devoted to the data management
foundations of location-based mobile services. In one important scenario, the
service users are constrained to a transportation network. As a result, query pro-
cessing in spatial road networks is of interest. We propose a versatile approach
to k nearest neighbor computation in spatial networks, termed the Islands ap-
proach. By offering flexible yet simple means of balancing re-computation and
pre-computation, this approach is able to manage the trade-off between query and
update performance. The result is a single, efficient, and versatile approach to k
nearest neighbor computation that obviates the need for using several k nearest
neighbor approaches for supporting a single service scenario. The experimental
comparison with the existing techniques uses real-world road network data and
considers both I/O and CPU performance, for both queries and updates.

1 Introduction

An infrastructure is emerging that enables location-based mobile services, and we are
witnessing substantial efforts in the research community to establish fundamental data
management support for such services. Mobile services typically involve service users
and so-called points of interest. We consider the scenario where these are located within
a spatial network or, more specifically, a road network [12,13,14,17,21,29]. The move-
ments of the users, often termed moving objects, are constrained by the network, and
the points of interest can only be visited by traveling along the network. The relevant
notion of distance is network distance based on shortest-path computation.

Existing approaches to k nearest neighbor (kNN) computation in spatial networks
can be divided into two types: approaches that compute kNN queries by incrementally
scanning the network until k neighbors are found, and approaches that apply some form
of pre-computation and “compute” kNN queries by looking up data collected in pre-
computed data structure. Both types of approaches assume that the spatial network is
represented by graph-like data structures.

The first type of approach, denoted as “online computation,” naturally captures the
dynamic aspects of the network, e.g., the emergence or disappearance of points of inter-
est, and applies some form of network expansion-based search. This type of approach
is able to output the network distances and paths to each kNN, as these are computed
as part of the process. The data structures used in online computation capture the con-
nectivity of the network and are easily updated. When compared to online computation,

C. Bauzer Medeiros et al. (Eds.): SSTD 2005, LNCS 3633, pp. 73–90, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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the second type of approach, termed “pre-computation,” typically has better query per-
formance, but has difficulty in coping with frequent updates of the road network and
the points of interest.

We consider the performance of queries as well as updates, as both efficient query-
ing and update are important for location-based mobile services. In particular, we pro-
pose a novel approach, termed the Islands approach, to kNN processing in spatial net-
works. This approach computes the kNNs along with the distance to each, but does not
compute the corresponding shortest paths. The rationale for this design decision is that
a mobile user is expected to only be interested in the actual path to one nearest neighbor
selected from the kNN result, and so the path computation is better left to a subsequent
processing step.

The Islands approach is designed with the assumption that the overall I/O cost of
queries and updates is the main performance evaluation criterion, and the approach aims
to be efficient for varying frequencies of queries and updates, which yields broad appli-
cability. The versatility of the approach is demonstrated by an experimental comparison
with two other approaches that covers the cases these two are optimized for.

The paper makes three main contributions.

– The Islands approach offers an attractive generalization of the existing kNN query
processing techniques for spatial networks. It employs a relatively simple data
structure and an intuitive search algorithm. And it is applicable to a broad range
of mobile service scenarios, thus avoiding the need for using more specialized al-
gorithms for different scenarios.

– The Islands approach offers a direct and elegant way of controlling the amount of
pre-computation performed and thus also the trade-off between query and update
performance. This enables the approach to accommodate varying densities of points
of interest and varying query versus update frequencies.

– The paper presents an experimental evaluation that is significantly more compre-
hensive than previous evaluations. Specifically, this is the first evaluation that cov-
ers both online computation and pre-computation and hat considers both query and
update performance in a setting with real road network data. The paper thus offers
new insight into relative merits of the existing approaches.

In Section 2, we proceed to introduce related work. Section 3 presents the Islands
approach and its variations. This is followed by a section that compares the Islands
approach with existing kNN techniques. Section 5 then presents the empirical perfor-
mance study that characterizes the Islands approach as well as compares it with the
existing algorithms. The last section summarizes and offers directions for future re-
search.

2 Related Work

Nearest neighbor computation is a classical topic. Many existing algorithms assume an
indexing structure, e.g., an R-tree, and search in a branch-and-bound manner [10,18].
Many extensions and applications of kNN computation have also been proposed
[1,5,11,15,20,23,24,27,28].
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Query processing for objects moving in spatial networks, e.g., cars moving in road
networks, has also received attention recently. However, most existing spatial query
processing techniques cannot be applied directly in this setting, one reason being that
the distance between two locations in a spatial network is the length of the shortest path
in the network between these rather than being the Euclidean distance.

This paper assumes a specific data model and disk-based data structure for a spatial
network and its associated data points as the foundation for its proposed algorithms.
Among the several data models and data structures available [4,6,7,19,25], we adopt a
fairly standard graph-based data model and structure [7,19] so that the algorithms are
generally applicable.

We consider several existing disk-based data structures for shortest path compu-
tation and general query processing in spatial networks [8,17,22]. The CCAM struc-
ture [22] aims to support network computations such as route evaluation and aggregate
queries. In this structure, a two-way partition algorithm [3] is adapted to partition the
spatial network and then arrange network nodes into disk pages. Another algorithm for
partitioning a road network is proposed by Huang et al. [8], and Papadias et al. [17]
propose a network storage scheme for supporting both network-based and traditional
Euclidean-distance-based spatial query processing. Our storage scheme enhances this
scheme to capture additional aspects of real-world road networks.

To provide a thorough discussion of the existing techniques for kNN computation
in spatial networks, and to compare them in detail to the Islands approach, we defer
consideration of these works to Section 4.

3 The Islands Approach

Following a definition of the assumed transportation network model, concepts and ob-
servations related to the use of islands are presented. Section 3.3 presents an algorithm
for kNN computation based on islands, and Section 3.4 covers several extensions to the
algorithm.

3.1 Transportation Networks and Query and Data Points

We consider location-based mobile services in road networks as our application sce-
nario. In this scenario, mobile service users are moving in a road network. A number of
facilities or so-called points of interest, e.g., gas stations or supermarkets, are located
within the road network. We define the network distance between a user and a point of
interest as the length of the shortest path from the users’ current location to the point of
interest. A k nearest neighbor query issued by a service user will return the k nearest
points of interest to the user based on the network distance. Using query point to denote
a user and data point to denote a point of interest, we proceed to model the elements of
the network scenario.

A road network is defined as a two tuple RN = (G, coE), where G is a directed,
labeled graph and coE is a binary, so-called co-edge, relationship on edges. Graph G is
given by G = (V, E), where V is a set of vertices and E is a set of edges. Vertices model
intersections and the starts and ends of roads. An edge e models the road in-between
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two vertices and is a three-tuple e = (vs, ve, l), where vs, ve ∈ V are, respectively, the
start and the end vertex of the edge. The edge can be traversed only from vs to ve. The
element l captures the travel length of the edge. Two edges ei and ej are in the co-edge
relationship ((ei, ej) ∈ coE), if and only if they represent the same bi-directional part
of a road for which U-turn is allowed.

Next, a location on the road network is a two tuple loc = (e, pos) where e is the
edge on which the location is located and pos represents the distance from the starting
vertex of the edge to loc. A data point is modeled as a set of locations, i.e., dp =
{loc1, · · · , lock}. Note that adding and removing data points or their locations does
not affect the road network itself, which is important for maintainability in practice. A
query point qp is modeled as a location.

An edge with start vertex vi and end vertex vj is denoted by ei,j . Figure 1 il-
lustrates the concepts defined above, e.g., edge e1,4 = (v1, v4, 2), data point dp1 =
{(e4,5, 1), (e5,4, 3)}, and query point qp = (e7,6, 1).

The example road network in Figure 1 is assumed to have only bi-directional roads
with no u-turn restrictions and each data point has two positions—one on each side of a
bi-directional road. The remainder of the description of the Islands approach is carried
out under these assumptions.

3.2 Observations

Intuitively, an incremental expansion process starting from the query point can be used
to find the k nearest data points in Euclidean space. To optimize the search process, one
can “enlarge” each data point into a big circle—see Figure 2(a)—so that the expansion
process will terminate early. As shown in the figure, data point dp3 will be found as
the nearest neighbor, dp1 is the second-nearest neighbor and dp2 is the third-nearest
neighbor. After touching the border of dp2, the 3NN search process can stop.

In a road network, given a distance value r, the island of a data point dp is the
subset of the road network covered by a network expansion from dp with the range r.
We define r as a radius of this island. Intuitively, all vertices with distance to dp less
than or equal to the radius belong to the island. We denote these vertices as the island’s
vertices. A vertex of an island is an internal vertex of the island if all its neighboring
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vertices are vertices of the same island. A vertex of an island is a border vertex of this
island if at least one of its neighboring vertices does not belong to this island. All the
edges connecting the island’s vertices are the island’s edges. A location (or, a query
point) in the road network is inside an island if its network distance to the data point of
this island is less than or equal to the radius of the island.

As illustrated in Figure 2(b), for the part of the road network belonging to the island
of dp1 with a radius of 5, v4 is an internal vertex and v1, v2, and v5 are border vertices.
The location loc = (e4,2, 2) is inside this island.
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Fig. 2. Observations on Islands

To record
information about
islands, each ver-
tex in the network
stores references
to all the data
points that are cen-
ters of the islands
covering the ver-
tex. The distance
from the vertex to
the data point is
stored with each
such reference.

Then, similar to the Euclidean case in Figure 2(a), the network expansion process of
a kNN query will be reduced, since a data point can be declared to be found when the
expansion process visits a border vertex of this data point’s island. If all islands have the
same radius, and a query point is already inside l islands, the data points correspond-
ing to these islands are the l nearest neighbors of the query point. The distances from
the query point to these l neighbors are found from the above-mentioned pre-computed
distances.

In general, the kNN search process includes two steps. First, we need to check the
islands covering the query point. Second, if the number of such islands is smaller than
k, a network expansion is needed to find additional islands.

If the islands have different radiuses, the islands approach uses the minimum ra-
dius, rmin, i.e., all data points are assumed to have islands with radius rmin (no larger
than the islands they actually have). As will be explained later, having different island
radiuses brings flexibility to the Islands approach. Specifically, the kNN query per-
formance and the update efficiency can be controlled by changing the radiuses of the
islands in different regions of the road network. We proceed to describe the Islands
approach in more detail.

3.3 Islands-Based kNN Algorithm

The Islands approach consists of a pre-computation component and an online network-
expansion component. The pre-computation component stores, for each vertex in the
road network, references to the islands that cover the vertex and the network distances
from the vertex to the data points that generate the islands. With this component, the
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network expansion, denoted as IslandExpansion(qp, k), first checks the islands that
the query point qp is inside and maintains the data points found in a priority queue, then
starts a network expansion process from qp to find borders of new islands. The network
expansion process terminates when the sum of the expansion radius and the minimum
radius of all pre-computed islands exceeds the distance from the query point qp to the
kth data point in the priority queue.

We proceed to describe IslandExpansion(qp, k) algorithm in the following. It is
similar to the INE algorithm [17], which in turn is a modified Dijkstra’s single source
shortest paths algorithm. Two priority queues, Qdp and Qv, are used in the algorithm
to record the covered data points and vertices together with their distances to the query
point, denoted as d(qp, dp) and d(qp, v). Both queues sort elements by the distance
value and do not allow duplicate data points or vertices. The size of Qdp is limited to k
elements.

We introduce update and deque operations for the two queues. The update(dp/v,
dist) operation inserts a new data point or vertex and the corresponding distance into
the queue. If this data point or vertex is already in the queue then, if dist is smaller than
the distance stored in the queue, the distance value in the queue is updated to dist. The
deque operation removes and returns the vertex with the smallest distance. Suppose the
minimum radius of all islands is rmin. The pseudo code of IslandExpansion is given
below. Queues Qv and Qdp are assumed to be empty initially.

(1) procedure IslandExpansion(qp, k)

(2) for each data point dp on edge qp.e: Qdp.update(dp, d(qp,dp))
(3) Qv.update(qp.e.vs, d(qp,dp.e.vs)), Qv.update(qp.e.ve, d(qp, qp.e.ve))

(4) for each dp, if its island covers qp.e.vs or qp.e.ve: Qdp.update(dp, d(qp, dp))
(5) if ∃a, such that (a, qp.e) ∈ coE , do lines (2)–(4) assuming qp = (a,a.l − qp.pos)

(6) Let dpk denote the k-th element in Qdp, or dpk = ∅, if there is no such element
(7) dk ← d(qp, dpk) // dk ← ∞ if dpk = ∅
(8) v ← Qv .deque, mark v visited
(9) while d(qp, v) + rmin < dk

(10) for each non-visited adjacent vertex vx of v

(11) Qv .update(vx, d(qp, vx)) // d(qp, vx) assumes the path qp → · · · → v → vx

(12) for each dp, the center of an island covering vx: Qdp.update(dp, d(qp,dp))
(13) dk ← d(qp, dpk)

(14) v ← Qv .deque, mark v visited
(15) return Qdp

Note that in line 12 of the algorithm, d(qp, dp) = d(qp, vx)+d(vx, dp), where d(qp, vx)
is taken from Qv and d(vx, dp) is the pre-computed distance stored with vx. Analogous
computation of d(qp, dp) is also performed in line 4.

To see how the algorithm works, consider Figure 2(b) and let all three data points
have islands with radius 6. Starting from the query point qp = (e7,6, 1), the algorithm
IslandExpansion(qp, 2) first adds vertices v6 and v7 to Qv (Qv = 〈(v6, 1), (v7, 1)〉).
Then it checks the islands covering v6 and v7, and data point dp2 is found. Starting with
v6, the expansion process finds the islands of dp1, dp2 and dp3 through the adjacent ver-
tices v5 and v2. Thus, Qdp = 〈(dp2, 4), (dp1, 9)〉 and Qv = 〈(v7, 1), (v5, 6), (v2, 8)〉.
At the next step, since rmin = 6 and the distance d2 from the query point to the 2nd
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NN is 9, only vertex v7 in Qv needs to be checked (based on the while-loop criteria in
line 9). Finally, dp2 and dp1 are the two data points returned. It can be observed that
using the pre-computed information, the network expansion finds the data points dp1
and dp3 before reading the edges they are located at.

If k = 1, the algorithm starting from qp will find dp2 in the first step. Since
rmin = 6 and the distance from qp to dp2 is d1 = 4, the algorithm will finish without
the network expansion process (since d(qp, v6) + rmin > d1). This, as mentioned in
Section 3.2, is always the case if k or more islands cover the query point.

The IslandExpansion algorithm uses disk-based data structures for the network
and pre-computed data. Section 4 provides a detailed description of the data structures,
and it compares the Islands approach with the existing road network kNN algorithms
using examples. We proceed to discuss several extensions of the Islands approach.

3.4 Extensions

An accompanying technical report [9] covers several extensions to the Islands approach,
which we proceed to describe briefly. First, shrink and expand operations are provided
that can be applied to any island to change its rmin. This offers a basis for balancing
the overall query and update performance. The following section describes how these
operations can be used to achieve different query and update performance trade-offs in
different parts of a road network.

Second, we have seen that islands in different parts of a road network can have
different radiuses. Intuitively, the radiuses of islands in urban areas should be relatively
smaller than those of islands in rural areas since the densities of points of interest are
relatively higher and there are relatively more frequent updates of road network data.
When a kNN query is issued close to the border of areas with different rmin values,
algorithm IslandExpansion can be improved to take into account the different rmin

values. The accompanying technical report details how to modify the IslandExpansion
algorithm to better handle such cross-area expansions.

Third, we extend the Islands approach, make changes to both the pre-computation
component and the network expansion algorithm, to accommodate road networks with
uni-directional edges, data points that have more than one network location, optional
U-turn restrictions, and turn restrictions at intersections.

4 The Islands Approach in Comparison to Existing Techniques

The Islands approach consists of a pre-computation component and a network expan-
sion algorithm. With the shrink and expand operations and the procedure for handling
cross-area expansions, the trade-off between the performance of kNN queries and road-
network updates can be controlled. For comparison purposes, we proceed to survey and
exemplify the existing kNN algorithms. We also describe the disk-based data structure
for the road network and the pre-computed data.

4.1 Online k Nearest Neighbor Computation

Intuitively, kNN computation can be done by employing a best-first search through
adjacent edges until k neighbors are found. In contrast to the traditional shortest-path
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algorithms in graph theory, the kNN search in spatial networks has to employ a disk-
based data structure for representing the network, the objective being to minimize I/O.

Papadias et al. [17] introduce two algorithms for kNN computation in spatial net-
work, namely Incremental Euclidean Restriction (IER) and Incremental Network Ex-
pansion (INE). As they show that the INE algorithm outperforms the IER algorithm, we
focus on the INE algorithm. This algorithm performs incremental network expansions
from the query point and examines data points in the order they are encountered during
the expansion process. The INE algorithm is an adaptation of Dijkstra’s single source
shortest paths algorithm on graphs. It terminates when the expansion’s range exceeds
the network distance to the kth nearest neighbor. It can be seen as a special case of the
Islands approach where each data point’s island has a radius of 0.

The performance of the INE approach depends on the density of the data points.
Intuitively, for a large road network with only few data points, the expansion process of
the INE algorithm will have to scan large parts of the road network until enough data
points are collected.

4.2 kNN Pre-computation Approach

To reduce the cost of network expansion in queries, pre-computation techniques can
be applied. Shahabi et al. [21] introduce a technique to transform a road network to a
high dimensional space in which simpler distance functions can be used. However, this
transformation requires pre-computation of the network distances between all pairs of
vertices in the road network, which is often impractical.
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Fig. 3. Network Voronoi Diagram

Kolahdouzan and Shahabi [13] recently pro-
posed the so-called VN3 technique for kNN
computation in road networks. Starting from
each data point, VN3 first creates a Network-
Voronoi-Diagram [16], then pre-calculates the
network distances within each Voronoi polygon.
The network expansion within each Voronoi
polygon can then be replaced by a look-up over
the pre-computed distances.

Consider a Network-Voronoi-Diagram con-
structed for the example road network in Fig-
ure 1. As shown in Figure 3, the Voronoi poly-
gon of dp2 contains border points b3, b4, and b5.

Using the pre-computed information, a 2NN query from the query point qp first finds
that qp is inside the Voronoi polygon of dp2. Thus, dp2 is its nearest neighbor. Then the
network distance from qp to b3, b4, and b5 can be found by look-up in a pre-computed
distance table. To find the next nearest neighbor, the VN3 approach generates a candi-
date set consisting of “adjacent” data points, i.e., data points whose Voronoi polygons
are adjacent to dp2’s polygon. Thus, dp1 and dp3 are included in the candidate set. Then
a refinement step is used to find the actual network distance from qp to these candidate
data points. Since the distances from border points of dp1 and dp3 to these data points
are pre-computed, it requires just a look-up process to get the network distance from qp
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to dp1 and dp3 via the border points b3, b4, and b5. The VN3 approach continues this
process until enough kNNs are found.

The VN3 approach excels in query performance when the density of data points
is low, but is not efficient in situations when many data points are located in a small
network area, e.g., points of interest in a city center. In addition, this approach does not
provide a clear way of representing different “types” of data points in the road network.
it is possible to construct a “multi-level” structure by constructing Voronoi diagrams for
each type of data points, but such multi-level Voronoi-diagrams do not enable efficient
processing of the kNN queries for multiple types of data points. An example of such
query could be looking for k nearest tourist attractions such as museums, shopping
malls, and parks.

4.3 Disk-Based Data Structure

The disk-based data structure for road network data used together with the INE, VN3,
and Islands approaches, shown in Figure 4, is an adaptation of the data structures pro-
posed for the INE [17] and VN3 [13] approaches. The structure has six components, the
Vertex-Edge, Edge-Data, Island-Precomputation, Voronoi-Polygon, Border-Adjacency,
and Voronoi-Precomputation component.
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The road network and
data points are represented by
the Vertex-Edge and Edge-
Data components. Using the
example road network in Fig-
ure 1, Figure 4 illustrates that
the adjacency list l4 for ver-
tex v4 is composed of en-
tries standing for edges start-
ing from v4. The data point
dp1 located on edge e4,5 is
stored in an entry in the Edge-
Data component.

Specifically, in the
Vertex-Edge component,
each entry denotes an edge
and is of the form (vsID ,
veID , pt NBVE , L, ptDP ,
ptI ). Here, vsID and veID
are the id’s of the start and
end vertices, ptNBVE points
to the disk page containing
the end vertex, L is the length
of this edge, ptDP points to
the disk page containing the
data points on this edge, and
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ptI points to the disk page containing Island-Precomputation data of the end vertex.
Pointers are set to Nil if there is no linked page. Entries in the Vertex-Edge component
are assigned to pages based on the Hilbert value of the start vertex.

Each entry in the Edge-Data component has the form (dpID , eID , offset), where
dpID , eID denote the data point and edge, and offset is the distance from the start
vertex to the data point. We assume the eID value can be obtained from the vsID and
veID values in the Vertex-Edge entry. Otherwise, these two attributes are used instead.
Both the Vertex-Edge and the Edge-Data components are used in the INE algorithm.

For each vertex, the Island-Precomputation component stores a list containing its
distance to related islands. Each entry in the list has the form (vID , dpID ,D) where
vID and dpID denote the vertex and data point, and D is the network distance between
them. These entries are arranged into pages based on the Hilbert values of the vertices.
As illustrated in Figure 4, the list of vertex v2 has three entries, describing its distances
to the three data points. The IslandExpansion algorithm uses the Vertex-Edge compo-
nent, the Island-Precomputation component and the Edge-Data component (only in the
first step).

The VN3 approach uses the Voronoi-Polygon, Border-Adjacency and the Voronoi-
Precomputation components. The Voronoi-Polygon component stores, for each data
point, the vertices inside its Voronoi polygon. This component is used to decide the
Voronoi polygon where the query point is located and provides the first nearest neigh-
bor. Each entry has the form (dpID , vID ,D , ptB), where dpID denotes the data point
generating this Voronoi polygon, vID is the id of a vertex inside the Voronoi polygon, D
is their distance, and ptB points to the disk pages of the Border-Adjacency component
containing the border points and adjacency information for all the Voronoi polygons.
Each entry in the Border-Adjacency component has the form (dpsID , dpeID , bID ,D ,
ptP), where dpsID and dpeID denotes two data points whose Voronoi polygons are
adjacent, bID denotes one border point of the two Voronoi polygons, D is the distance
from the border point to the two data points, and ptP is the pointer to the disk page con-
taining pre-computed distance values of this border point. The Voronoi-Precomputation
component stores, for each border point, its distance to other border points and vertices
of the same Voronoi polygons.

We assume that the edge where the query point is located is known before the query
so that it can be visited directly. Otherwise, all the edges can be indexed using an R-
tree, which can then be used for “map-matching.” If the “id” or “name” of the edges can
always be revealed for the query, a B+-tree can be used to index these attributes and
provide direct access to edges in the Vertex-Edge component. The whole disk-based
data structure for the example road network in Figure 1, consisting of 9 disk pages, is
presented in Figure 13 in the appendix. Each island is given a radius of 8. Each attribute
value takes 1 unit size, and we set the page capacity to 54 units.

4.4 Example

Based on the example road network, we proceed to exemplify the workings of the INE,
VN3, and Islands approaches. We employ an LRU buffer with a size of 2 pages and
execute a 2NN query for query point qp = (e7,6, 1). We show the pages in the buffer
and the total amount of I/Os for the three approaches. The I/O column denotes the
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Approach Steps Qv Qdp d2 Buffer I/O
1 〈(v6, 1), (v7, 1)〉 ∅ ∞ P2 1/0
2 〈(v7, 1), (v5, 6), (v2, 8)〉 〈(dp2, 4)〉 ∞ P2, P3 2/0
3 〈(v5, 6), (v3, 7), (v2, 8)〉 〈(dp2, 4)〉 ∞ P3, P2 2/0

INE 4 〈(v3, 7), (v2, 8), (v4, 9)〉 〈(dp2, 4), (dp1, 9)〉 9 P2, P3 2/0
5 〈(v2, 8), (v4, 9)〉 〈(dp2, 4), (dp1, 9)〉 9 P2, P3 2/0
6 〈(v4, 9), (v1, 11)〉 〈(dp2, 4), (dp1, 9)〉 9 P1, P3 3/0

Island, rmin = 8 1 〈(v6, 1), (v7, 1)〉 〈(dp2, 4), (dp1, 9)〉 9 P2, P4 2/0

1 〈(v6, 1), (v7, 1)〉 〈(dp2, 4)〉 ∞ P2, P4 2/0
Island, rmin = 7 2 〈(v7, 1), (v5, 6), (v2, 8)〉 〈(dp2, 4), (dp1, 9)〉 9 P2, P4 2/0

3 〈(v5, 6), (v3, 7), (v2, 8)〉 〈(dp2, 4), (dp1, 9)〉 9 P2, P4 2/0

(a) Example of the INE and Island (rmin = 7, 8) Approaches

Steps Candidates Distances Results Buffer I/O
1 ∅ ∅ {(dp2, 4)} P2, P5 2/0

2 {dp1, dp3} D(qp, b4), D(b4, dp3), D(qp, b5),
D(b5, dp1), D(qp, b3), D(b3, dp3)

{(dp2, 4)} P5, P6 3/0

3 ∅ ∅ {(dp2, 4), (dp1, 9)} P8, P9 5/0

(b) Example of the VN3 Approach

Fig. 5. Running Example of INE, Island, and VN3 Approach

amount of input/ouput (in pages). For the INE and Islands approaches, we also observe
the content of the two queues Qv and Qdp, and the distance from qp to the second
nearest data point, denoted as d2. For the VN3 approach, we track the candidate set, the
distance values used, and the final data points found.

It can be observed from Figure 5 that the query performance of the Islands approach
is sensitive to the island radius used. When rmin = 8, the query results are found
by checking the islands within which the query point is located. When the radius is
decreased to 7, the network expansion takes 2 more steps to finish.

Update of network and data points for the INE approach is obvious—updates only
affect one or adjacent pages in the Vertex-Edge and Edge-Data component. For the
Islands approach, updates cause the associated islands to be re-computed. As an ex-
ample, to update data point dp1, the re-computation will need pages P1, P2, and P3
for network expansion and will then read page P4 for updating data. Updating network
and data point for the VN3 approach, as discussed in [13], requires adjacent Voronoi-
Polygons to be re-generated. We use a network expansion process to update the Voronoi
polygon of a data point. For example, to update the data point dp1, a network expansion
starting from dp1 will stop after neighboring data points dp2 and dp3 are found. The
re-computation process use disk pages P1, P2, and P3. Then pages P5, P6, P7, and P9
and possibly page P8 are accessed for updating.

5 Performance Evaluation

Two real-world datasets are used in the evaluation of the INE, VN3, and Islands ap-
proaches. The first, AAL, contains the road network of the Aalborg area in the North-
ern Jutland region of Denmark along with real points of interest. The network contains
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11, 300 vertices, 13, 375 bi-directional edges, and 279 points of interest. The second,
LA, represents the road network of Los Angeles, California. This data was obtained
via the Internet [26] and converted into network files via the Tiger File Manager [2].
It contains 195, 010 vertices and 266, 335 bi-directional edges. We generate synthetic
points of interest for this network.

We measure the performance of the three approaches in terms of CPU time and I/O
cost. The CPU time checks, by loading the whole network and pre-computed data into
physical memory, the actual running times of the experiments with the three approaches.
To measure the I/O cost, we arrange the road network and pre-computation data into the
data structures described in Section 4.3, we set the page size to 4k, and we employ an
LRU buffer. The buffer size is set to 10% of the sum of the sizes of the Vertex-Edge and
Edge-Data components. The AAL dataset contains 129 pages in the two components,
and the LA dataset contains 4, 132 pages in the Vertex-Edge component. We disregard
the space use that stems form the queues and variables used in the algorithms and thus
do not consider them as part of the buffer.

Two series of experiments are conducted. The first series assumes that there are no
updates to the road network and studies the effects on query performance of varying k,
data point density, and islands radius. The density of data points is the ratio between
the number of data points and the number of bi-directional edges in the road network.
We define the maximum Euclidean distance between all vertices in the road network as
Dmax. The island radius used is represented as the fraction of Dmax. In all experiments,
islands of the same road network have the same radius.

The second series of experiments considers both query and update performance. We
define the update ratio Ru as the ratio of updates being executed per query. The overall
performance is the sum of the query and update cost. (To be consistent with the assumed
application scenario, we assume an online-processing system where update operations
have to be processed together with the query operations so as to provide correct query
results). We use updates of edge lengths and updates of the positions of data points
on an edge as standard update operations. Given an update ratio Ru and an amount of
queries N , there are N · Ru updates on edges as well as data points. The experiments
examine the effect on the overall performance of the three approaches of varying update
ratio, data point density, and island radius.

In all experiments, the query points are randomly generated. For the first set of
experiments, we execute a workload of 200 queries and report the average performance.
For the second series of experiments, we increase the number of queries so as to get a
proper amount of update operations (the update ratio is assumed to never exceed 0.1).
Experiments with the same update ratio are conducted at least three times to obtain
average performance figures.

The experiments are performed on a Pentium IV 1.3 GHZ processor with 512 MB
of main memory and running Windows 2000. The C++ programming language is used.

5.1 Experiments on Query Performance

Query Performance Versus k. We set the island radius to 0.1 of Dmax and k is varied
from 5 to 200. The density of the (real) data points in AAL is 0.02, while the density
of the data points (generated) in LA is 0.005. The results are shown in Figure 6. It can
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be observed that with the growth of k, the computational cost of all three approaches
increases. The CPU time of the Islands approach is lower than those of the other two.
Both the VN3 and Islands approaches show less I/O than the INE approach. The Islands
approach is better than VN3 with respect to I/O cost until k exceeds 50.

Query Performance Versus Density of Data Points. We keep the island radius fixed
at 0.1 of Dmax and the value k is set to 10. We now use synthetic data points in both
AAL and LA, varying the density from 0.001 to 0.5. It can be seen from Figure 7
that as the density increases, the INE approach improves substantially and becomes
competitive. The Islands approach has similar behavior. It has worse performance for
the AAL network and data than the VN3 approach (as shown in Figure 7(b)) when
the density is less than 0.005, but becomes the best among the three approaches when
the density exceeds 0.005. For the LA network and data, the Islands approach always
shows better performance than the VN3 approach. The two networks differ in that the
connectivity among vertices and the density of edges in the LA network are much higher
than in the AAL network. This means that for the same density of data points, the
network expansion process finishes earlier in the LA network than in the AAL network.
The Islands approach works well in the LA network, as each island is related to more
network vertices, which makes it fast for the network expansion process to discover an
island. The VN3 approach, in the LA network with its high connectivity and density,
possesses more border vertices and pre-computed distance data. It thus requires more
I/O in its filter and refinement steps.
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Query Performance Versus Island Radius. We set k = 10 and use the real data
points in AAL and synthetic data points in LA (density = 0.005). To determine the
impact of the island radius on the query performance, the radius is varied from 0.001
to 0.5 of Dmax. Note that in Figure 8, we also draw horizontal lines for the INE and
VN3 approaches. The Islands approach always has the best CPU performance. As for
I/O, the VN3 approach is best when the radius is quite small. When the radius grows to
0.05 of Dmax, the Islands approach is preferable.

5.2 Experiments on Overall Performance

We proceed to consider the overall costs for different densities and update ratios of the
INE, the VN3, and the Islands approach with two island sizes. The value of k is set to 10
in these experiments (this value is not related to the update operation). The performance
costs reported are the sums of the cost of all queries and the cost of all updates of edges
as well as data points, divide by the numbers of queries.

Overall Performance Versus Update Ratio. We fix the island radius at 0.01 of Dmax.
We use real data points for the AAL network and synthetic data points with density
0.005 for the LA network. The update ratio is varied from 0.0005 to 0.1 per query. It
can be seen from Figure 9 that the INE approach has stable overall performance for the
different update ratios, since the update operation only needs to read one or two disk
pages. The VN3 approach is better than the other two approaches when the update ratio
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is less than 0.01. The Islands approach with a radius of 0.01 exhibits almost the same
trend as the INE approach.

Overall Performance Versus Density of Data Points. The island radius remains at
0.01 of Dmax, and the update ratio is set to 0.01. We use synthetic data points with
both networks, varying the density from 0.001 to 0.5, to determine the effect on the
overall performances. Figure 10 illustrates that as the density increases, the overall
performances of the three approaches improve. At a low density, i.e., 0.001, the VN3
approach has the best performance. When the density grows to 0.01 and beyond, the
Islands approach becomes dominant. The INE approach becomes superior when the
density reaches 0.5.

Overall Performance Versus Island Radius. We retain the update ratio of 0.01 and
use the real data points in AAL and synthetic data points in LA (with density = 0.005).
The island radius is varied from 0.001 to 0.5 of Dmax. Figure 11 has horizontal lines
for the INE and VN3 approaches, for which the radius is not a parameter. It can be
observed that the Islands approach has the best CPU performance when the radius is
0.05 or less. As for I/O, experiments on both the AAL and LA datasets show that the
overall performance of the Islands approach is better than those of the INE and VN3 for
certain radiuses (0.005 and 0.01 for AAL and 0.05 for LA). When the radius exceeds
0.05, the cost of re-computing the islands becomes substantial since islands grow large
and overlap significantly.
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Island Radius Versus Density and Update Ratio. To obtain additional insight into the
adaptability of the Islands approach, we conduct experiments on the LA data to check
how this approach can be used to cope with different update ratios and densities of data
points. We use islands with radiuses that are 0.01 and 0.05 of Dmax.

Figure 12(a), where the density is 0.005, shows that using islands with radius
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0.05 yields the best
performance when
the update ratio is
less than 0.01.
When the update ra-
tio exceeds 0.01, the
islands with radius
0.01 become the
best.

In the experi-
ment shown in Fig-
ure 12(b), the up-
date ratio is fixed at

0.01. We still use islands with radiuses of 0.01 and 0.05. When the density is lower
than 0.005, the Islands approach with an island radius of 0.005 achieves the best over-
all performance. For higher densities, the Islands approach with a radius of 0.01 is a
good choice. When the density grows to 0.5, the INE approach shows the best overall
performance.

6 Summary and Future Work

This paper presents a versatile approach to k nearest neighbor computation in spa-
tial networks, termed the Islands approach, that generalizes existing re-computation
and pre-computation approaches. In particular, pre-computation is performed inside
so-called islands, and re-computation is performed in-between islands. An island in-
tuitively is a sub-network with vertices and edges that are no further than a certain
distance, termed the radius, away from a data point. Variation of the radiuses of islands
enables the approach to accommodate networks with few as well as many data points
and few as well as many updates. This enables flexible management of the trade-off
between update and query cost.

The paper experimentally compares the Islands approach with two popular kNN al-
gorithms, namely INE and VN3. The experiments result show that the Islands approach
is indeed more versatile than these and can be tuned to yield better performance in most
cases.

In future work, it would be of interest to try to take into account additional seman-
tics of road networks and transportation infrastructures. For example, real-time road
conditions, such as road blocks or traffic jams, may be taken into account. Computing
kNN queries in such “dynamic” networks offers new challenges [4,6]. Next, the Islands
approach is capable of using islands with different radiuses within different areas of the
network. Techniques for how to dynamically maintain a partitioning of a network into
different areas, each with its own, optimal island radius remains an open problem.



The Islands Approach to Nearest Neighbor Querying in Spatial Networks 89

References

1. R. Benetis, C. S. Jensen, G. Karciauskas, S. Saltenis. Nearest Neighbor and Reverse Nearest
Neighbor Queries for Moving Objects. In Proc. IDEAS, pp. 44–53, 2002.

2. T. Brinkhoff. The Tiger File Manager. http://www.fh-oow.de/institute/iapg/personen/brink-
hoff/generator/.

3. C. K. Cheng, Y. C. Wei. An Improved Two-Way Partitioning Algorithm with Stable Perfor-
mance. In IEEE Trans. CAD, 10(12), pp. 1502–1511, 1991.
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Appendix

v1 v2 P1 3 Nil P4

v1 v4 P1 2 Nil P4

v2 v1 P1 3 Nil P4

v2 v3 P2 5 P3 P4

v2 v4 P1 4 Nil P4

v2 v6 P2 7 P3 P4

v4 v1 P1 2 Nil P4

v4 v2 P1 4 Nil P4

v4 v5 P2 4 P3 P4

(a) Page: P1

v3 v2 P1 5 P3 P4

v3 v7 P2 7 P3 P4

v5 v4 P1 4 P3 P4

v5 v6 P2 5 Nil P4

v6 v5 P2 5 Nil P4

v6 v2 P1 7 P3 P4

v6 v7 P2 2 Nil P4

v7 v3 P2 6 Nil P4

v7 v6 P2 2 Nil P4

(b) Page: P2

dp1 e4,5 1
dp1 e5,4 3
dp2 e2,6 4
dp2 e6,2 3
dp3 e2,3 2
dp3 e3,2 3

(c) Page: P3

v1 dp1 3
v1 dp2 7
v1 dp3 5
v2 dp1 5
v2 dp2 4
v2 dp3 2
v3 dp3 3
v4 dp1 1
v4 dp2 8
v4 dp3 6
v5 dp1 3
v5 dp2 8
v6 dp1 3
v6 dp2 3
v7 dp2 5

(d) Page: P4
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(f) Page: P6
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b1 b3 3
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b5 b4 6.5
b5 v1 8.5
b5 v4 6.5
b5 v5 2.5
b5 v6 2.5
b5 v7 4.5

(i) Page: P9

Fig. 13. Sample Data Pages
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Abstract. Traditional query processing provides exact answers to queries trying 
to maximize throughput while minimizing response time. However, in many 
applications the response time of exact answers is often longer than what is 
acceptable. Approximate query processing has emerged as an alternative 
approach to give to the user an answer in a shorter time than the traditional 
approach. The goal is to provide an estimated result very close to the exact 
answer, along with a confidence interval, in a short time. There is a large set of 
techniques for approximate query processing available in different research 
areas. However most of them are only suitable for traditional data. This work is 
concerned with approximate query processing in spatial databases. We propose 
a new algorithm to estimate the overlapping area of polygon join using raster 
signatures. We executed experimental tests over real world data sets, and the 
results demonstrated our approach effectiveness.  

1   Introduction 

A main issue in the database area is to process queries efficiently so that the user does 
not have to wait a long time to get an answer. However, there are many cases where it 
is not easy to accomplish this requirement, for example: to process a huge volume of 
data requires a large number of I/O operations that can demand tens of minutes or 
hours; to access remote data can be reasonably time-consuming due to a slow network 
link or even temporary non-availability.  

Environments for which providing an exact answer results in undesirable response 
times motivated the research for techniques in the approximate query processing field. 
The goal is to provide an estimated response in orders of magnitude less time than the 
time to compute an exact answer, by avoiding or minimizing the number of disk 
accesses to the base data [20]. 
                                                           
* Leonardo Guerreiro Azevedo is supported by CNPq under grant number 200241/2004-4. 
** Geraldo Zimbrão da Silva is supported by CAPES under grant number 3294-04-08. 
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There are many scenarios and applications where a slow exact answer can be 
replaced by a fast approximate one, provided that it has the desired accuracy. [13] 
emphasizes that in Decision Support Systems the intensification in business 
competitiveness that requires an information-based industry to make more use of its 
accumulated data, and thus techniques, of presenting useful data to decision makers in 
a timely manner, to be held as crucial. They also propose the use of approximate 
query processing during a drill-down query sequence in ad-hoc data mining, where 
the earlier queries in the sequence are used solely to determine what the interesting 
queries are. [14] and [21] present the need for performance and scalability when 
accessing very large volumes of data during the analysis process in data warehousing 
environments. [29] and [20] propose the use of approximate query processing 
techniques to define the most efficient access plan for a given query. [1] proposes 
their use in selectivity estimation in Spatial Database Management Systems (SDMS). 
An approximate answer can also be used as a tentative answer when the data is 
unavailable in warehousing environments and in distributed data recording as pointed 
by [20], [3] and [8] or in mobile computing as highlighted by [25]. [2] points to the 
use of  approximate query processing in order to make decisions and infer interesting 
patterns online, such as over continuous data streams.  

There is a large set of techniques for approximate query processing available in 
different research areas. However, most of them are only suitable for relational 
databases. Good surveys of techniques for approximate query processing are 
presented in [4] and [12]. On the other hand, providing a short time answer to users’ 
queries becomes a bigger challenge in spatial database area, where the data usually 
have high complexity and is available in huge amounts. Furthermore, this subject is a 
hot research issue in spatial-temporal databases as pointed by [15]. Moreover, spatial 
query processing techniques assume that the positional attributes of spatial objects are 
precisely known. In practice, however, they are known only approximately, with the 
error depending on the nature of the measurement and the source of data, as pointed 
by [5] and [16]. So the “exact answer” is actually an approximation, although it is 
close to the real answer. 

[23] defines a spatial database system as a full-fledged database system with 
additional capabilities for representing, querying, and manipulating geometric data. 
Such a system provides the underlying database technology needed to support 
applications such as geographical information systems and others. Spatial data types 
like point, line, and region provide a fundamental abstraction for modeling the 
structure of geometric entities, their relationships, properties, and operations.  

Efficient evaluation of spatial queries is an important issue in spatial database. 
Among spatial operations, spatial join operations are very useful but costly to 
evaluate. Spatial joins have been well studied in the literature, and there are many 
approaches to process spatial join operations. [9] emphasizes that traditional 
approaches to performing spatial join processing in two steps ([11] and [24]), and 
proposes efficient algorithms to be used in the second step. In the two-step approach, 
the first step employs a Spatial Access Method (SAM) in order to reduce the search 
space. The Minimum Bounding Rectangle (MBR) is usually used by SAM methods. 
The second step is a refinement step where the objects resulting from the first step are 
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read from disk and have their geometries processed. On the other hand, [26] proposes 
a Multi-Step Query Processor (MSQP) including another step between the first and 
the second step presented previously. In the proposed step the output resulting from 
the first step is processed against a geometric filter that uses a compact and 
approximate representation of the object, such as Convex Hull, 5C, RMBR and others 
found in [27]. The goal is to reduce the number of objects that will have their exact 
geometry processed in the last step. However, in both approaches (processing the 
spatial join in two or three steps) it is necessary to process the exact geometries of the 
objects, the most expensive step that consumes more CPU and I/O resources. To be 
the best of our knowledge, there is no approach that does not execute the last step, 
returning to the user an approximate answer along with a confidence interval, 
processing the join predicate on small approximations of data and not reading the real 
objects from the disk. 

This work is concerned with approximate query processing in spatial databases. 
We extended the approach presented in [17] in which the use of Four-Colours Raster 
Signature [6] for approximate spatial query processing was introduced. We propose a 
new algorithm to compute the approximate intersection area of polygon × polygon, 
processing the query on 4CRS raster approximation, along with a confidence interval 
that is returned to the user allowing him to decide if the accuracy of the response is 
sufficient. Besides, we also present experimental results in order to show the 
effectiveness of our approach. One application that could benefit from our approach is 
the agriculture production estimation. According to the estimated values of agriculture 
production, several decisions must be taken, for example number and size of 
warehouses that will store the harvest, number of transports that must be available, 
roads and railroads that must be (re)constructed, etc. Several spatial joins involving 
the overlay of thematic planes such as soil, rural areas, rainfall indicators, pollution, 
areas that are open to pest attacks, etc., must be evaluated to estimate the agriculture 
production, something that can take a lot of time. On the other hand, a fast 
approximate answer could be enough for the agriculture production estimation. 

The work has been divided in sections, as follows. Section 1 is the introduction. 
Section 2 presents the most important characteristics of Four-Colours Raster 
Signature for this work and our proposal of using Four-Colours Raster Signature for 
estimating the overlapping area of polygon join. Section 3 is dedicated to present the 
experimental results. Finally, Section 4 shows the conclusions and the future 
developments of this work. 

2   Four-Colours Raster Signature and Estimating the Overlapping 
Area of Polygon Join 

2.1   Four-Colours Raster Signature 

The Four-Colours Raster Signature (4CRS) was introduced by [6] to be used as a 
polygon approximation in spatial join processing. The characteristics of 4CRS and its 
advantages over other methods motivated its use in approximate query processing 
area as well. The target of this new approach is to reduce the time required to process 
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a query by avoiding accessing the real datasets which can lead to large amount of 
time, and processing an approximate query through the execution of a fast algorithm 
on approximate data, much smaller than the real one. On the other hand, the answer 
will be estimated and not exact. So, it is also necessary to return a confidence interval 
in order to have a precision measure of the approximate answer. In general, it is 
enough for the user to have an approximate answer to make his decision since it has a 
short execution time and the desired accuracy. 

The 4CRS of one polygon is a raster approximation represented by a small four-
colour bitmap upon a grid of cells. Each cell of the grid has a colour representing the 
percentage of the polygon’s area within the cell, as shown in Table 1. In Figure 1, an 
example of 4CRS is presented. The grid can have its scale changed in order to obtain 
a more accurate representation (higher resolution) or a more compact one (lower 
resolution). Further details of 4CRS signature can be found in [6] and [17]. 

Table 1. Types of 4CRS cell 

Bit value Cell type Description 
00 Empty The cell is not intersected by the polygon 
01 Weak The cell contains an intersection of 50% or less with the 

polygon 
10 Strong The cell contains an intersection of more than 50% with the 

polygon and less than 100% 
11 Full The cell is fully occupied by the polygon 

Figure 2 presents two examples of grid of cells of the same size. It is easy to notice 
that it is harder to figure out a simple algorithm that executes on grids like the one 
presented in Figure 2.a than to figure out a simple algorithm that executes on perfectly 
overlapped grid, as shown in Figure 2.b. [6] presents an approach for computing the 
grid of raster approximations where the space is divided into cells independently of 
the object position through a universal grid so that the coordinate system determines 
the grid. By doing so, it is assured that if two cells overlap each other then their sides 
are perfectly superimposed (Figure 2.b). Also, the length of each cell side is always a 
power of two. So, if two 4CRS signatures have different lengths of cell side and they 
overlap each other, it is ensured that a small cell is entirely within a great one. This 
approach was employed in this work, and more details about it can be found in [6]. 

 

Polygon 4CRS approximation 

Empty Cell Cell with 
Few intersection 

Cell with much 
intersection 

Full cell

     
(a) (b) 

 

  Fig. 1. Example of 4CRS signatures Fig. 2. Grids of cells with same size (a) not overlap-
ping perfectly and (b) overlapping perfectly  
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When executing query processing on two 4CRS approximations, it is essential that 
both of them have the same cell size. If that does not apply, it is imperative to perform 
a change of scale. This is accomplished through the grouping of cells of the 
approximation with smaller cell size. The algorithm to change the scale evaluates the 
average of the sum of numerical values assigned to each type of cell, which represents 
the percentage of the polygon’s area within the cell. For Empty and Full cells the 
numerical values are 0% and 100%, respectively, since these values represent the 
exact percentage of intersection area of the cell and the polygon. Due to the fact that 
in approximate query processing an exact answer is not required, but a close 
approximate one, in this work we propose to use the average percentage of polygon’s 
area inside the cell as the numerical values for Weak and Strong cells, which are of 
25% and 75%, respectively. These values can be used because the grid and the 
polygon are independent from each other, and it is expected that the distribution of the 
percentage of the polygon’s area within the cell is very close to the uniform 
distribution. In fact, we computed the distribution of the polygon area within the cell 
for the township dataset of Iowa (US) in intervals of 1%, and the result suggests that 
the uniform distribution assumption holds. Moreover, as shown in [17], the measure 
used for computing the confidence interval is the variance. Assuming the uniform 
distribution, the variance of area of weak cells in percentage is (0.5-0)2/12 = 1/48 = 
0.020833, since weak cells have distribution between (0, 0.50]. The strong cell has the 
same variance. In our test over township dataset of Iowa (US), the computed 
variances were 0.021978 and 0.021952 for weak and strong cells respectively, whose 
values are very close to the variance assuming the uniform distribution. 

2.2   Expected Area 

In this section, the calculus of the expected areas corresponding to the overlapping of 
two different types of cells with the same size is presented. These expected areas are 
employed by the algorithm for estimating the overlapping area of polygon join, which 
is presented in Sub-Section 2.3. 

It is easy to notice that the expected area corresponding to a combination of an 
Empty cell with any other type of cell results in an expected area of 0% (zero percent). 
In the same way when two Full cells overlap, the expected area is 100%. Thus, we 
compute the expected intersection areas for the overlapping of the other type of cells. 
They were estimated as the mean value of the possible percentage occurrences of the 
intersection area between two types of cells.  

As the datasets are reasonably independent (for example, there is no rule that all 
township boundaries must be defined by courses of rivers), we can assume that the 
expected area corresponding to the intersection of two cells with areas x1 and x2 is x1 × 
x2. For instance, the expected area corresponding to the overlapping of two Weak cells 
with 10% and 15% of the area of the polygon within them is 1.5% (0.01 × 0.15). 
Besides, even though the area is a continuous value, in order to make easy the 
demonstration of the calculus, we are assuming that the cell area is computed as 
discrete values, in steps of size of 1/n for a large n (n ). Also, all the values are 
shown in percentage. 
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Let X be a random variable representing the computed intersection area of one cell 
of the grid against the polygon; G(x1, x2) a function that gives the intersection area 
between two types of cells x1 and x2; and p(x1, x2) the join probability function of two 
variables X1 and X2. The definition of mean (or expected value E) of two variables is 
presented in Equation 1 [7]. 

[ ] ),(),(),( 212121
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xxpxxGXXG
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Since the intersection area between a cell and a polygon is independent of the 
intersection area of another cell and the polygon, X1 and X2  are linearly independent 
and the joint probability function p(x1, x2) can be expressed as p(x1, x2)= p(x1) × p(x2).  
In addition, let n be the possible observed values of the percentage of the area of the 
polygon within the cell. Thus p(x1) and p(x2) are equal to 1/n, since that each value for 
the intersection area has the same probability of occurrence. Besides, G(x1, x2) can be 
expressed as the multiplication of the intersection areas of the cells within the 
polygon. Therefore for n different kinds of cell intersections E[G(x1,x2)] can be 
approximately given by Equation 2. 
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Where (x) is a function that returns the percentages of the area of the polygon 
within the cell. This function can be expressed as equations 3 and 4. 
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In the case of Weak and Strong cells the percentages vary in the intervals (0, 50%] 
and (50%, 100%), respectively. While the percentages for Empty cell is 0% and for 
Full cells is 100%. 

From equations 2, 3 and 4 the expected area of the overlapping of two Weak cells 
employed by the algorithm for computing the approximate intersection area of two 
polygons can be calculated as follows. 

• Weak x Weak cells 
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the L’Hôpital rule, Equation 5 can be rewritten as Equation 6. 
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Following the same reasoning the expected area of the intersection of Weak x 
Strong cells, Strong × Strong cells, Weak × Full cells, and Strong × Full cells have the 
values 3/16, 9/16, 1/4 and 3/4, respectively. Table 2 presents the expected overlapping 
areas of different types of cells. 

Table 2. Expected areas of the overlapping of different types of cells 

Cell types Empty Weak Strong Full
Empty 0 0 0 0 
Weak 0 0.0625 0.1875 0.25
Strong 0 0.1875 0.5625 0.75

Full 0 0.25 0.75 1 

2.3   Algorithm for Estimating the Overlapping Area of Polygon Join 

The algorithm for estimating the overlapping area of polygon join computes the sum 
of the expected area of their 4CRS signatures’ cells that overlap each other, and 
multiplies the resulting value by the cell’s area. Since there are four different types of 
cells, the superimposing possibilities are sixteen (Table 2), and the algorithm employs 
a matrix to store the expected areas. It is only necessary to consider the cells that are 
inside the intersection MBR of the two 4CRS signatures. The algorithm in C-like 
language is presented in Figure 3, and it handles 4CRS signatures with different or the 
same length of cell side. It is ensured that when two cells intersect, their sides overlap 
exactly, and when the lengths of cell sides are different it is always ensured that the 
smaller cell is whole contained by greater one, according to the approach used to 
compute the grid of cells presented in Sub-Section 2.1. 

void approxIntersectionArea(signat4CRS1, signat4CRS2) 
  approximateArea = 0; 
  interMBR = intersectionMBR(signat4CRS1, signat4CRS2); 
  if (signat4CRS1.lengthOfCellSide ==    
      signat4CRS2.lengthOfCellSide) then 
    s4CRS = signat4CRS1; 
    b4CRS = signat4CRS2; 
  else 
    s4CRS = smallerCellSide(signat4CRS1, signat4CRS2); 
    b4CRS = biggerCellSide (signat4CRS1, signat4CRS2); 
  approximateArea = 0; 
  For each b4CRS cell b that is inside interMBR Do 
     For each s4CRS cell s that is inside cell b Do 
       approximateArea += expectedArea[s.type,b.type]; 
  cellArea = s4CRS.lengthOfCellSide *   
             s4CRS.lengthOfCellSide; 
  return approximateArea * cellArea; 

Fig. 3. Algorithm for computing the approximate intersection area of polygon × polygon 
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2.4   Confidence Interval Calculus 

When executing a query whose result is an approximate answer, it is important to 
show to the user a confidence interval of the query’s answer, so that the user can 
decide if the precision of the approximate answer is enough. The precision measure 
used in this work is based on the Central Limit Theorem [22], which holds almost 
regardless of the form of the density function. The Central Limit Theorem states that 
if a population has a mean μ and a variance 2, then the distribution of sample means 
derived from this distribution approaches the normal distribution with mean μ and 
variance 2/n as the sample size n increases. Thus, at some stage, means for large 
enough sample sizes, whether the random variable is discrete or continuous, will be 
approximately normally distributed. Clearly, the form of the parent density function 
will have some effect on the sample size required, and an asymmetric distribution will 
generally call for a large n than a symmetric one. However, a sample size of 30 is 
sufficiently large for many distributions. The confidence interval for approximate 
processing is computed as the sum of the confidence intervals of each combination of 
pair of cells. Consulting a statistical table of normal distribution, for a 95% 
confidence interval we have a range of (μ±1.96×( 2/n)1/2), and for a 99% confidence 
interval we have (μ±2.576×( 2/n)1/2). Equation 7 was used for computing the 
confidence interval of our experiments. 
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• μc and c
2 correspond to the mean and the variance of a combination of cells c in 

the set {Empty × Empty, Empty × Weak, …, Weak × Weak, …, Full × Full}; 
• p is the value corresponding to the confidence interval chosen, i.e., 1.96 for a 
95% confidence interval;  
• nc is the number of cells for the combination c.  

In order to get the result in area units it is necessary to multiply the result by the 
cell’s area.  

For the confidence interval calculus it is necessary to have computed the mean and 
variance values of the expected areas corresponding to the overlapping of two 
different types of cells with the same size. Mean values are presented in Table 2 (Sub-
Section 2.2) and the calculus of the variance for each combination is presented as 
follows. 

The expected area corresponding to a combination of an Empty cell with any other 
type of cell results in an expected area of 0% (zero percent), because of the 
intersection area of such kinds of cells is zero. Consequently, the variance of the 
expected area is zero. In the same way, when two Full cells overlap, the expected area 
is always 100%, and the variance is also zero. Thus, we only need to compute the 
variances of the expected intersection areas for the overlapping of the other types of 
cells. We use the same assumptions that were used to calculate the expected areas 
corresponding to the overlapping of two different types of cells with the same size 
(Sub-Section 2.2).  
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Let X be a random variable representing the computed intersection area of one cell 
of the grid against the polygon; G(x1, x2) a function that gives the intersection area 
between two types of cells x1 and x2; and p(x1, x2) the join probability function of two 
variables X1 and X2, the variance of the intersection area of two different types of cells 
can be expressed as Equation 8.  
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In the same way as presented in Sub-Section 2.2, we assume that X1 and X2  are 
linearly independent and the joint probability function p(x1, x2) can be expressed as 
p(x1, x2)= p(x1) × p(x2); p(x1) and p(x2) can be expressed as p(x1) = p(x2) = 1/n; and, 
G(x1, x2) is the multiplication of the intersection areas of the cells within the polygon. 
By doing so, Equation 8 can be rewritten as Equation 9. 
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Where (x) is a function that returns the percentages of the area of the polygon 
within the cell. This function can be expressed as equations 3 and 4 (Sub-Section 2.2). 
Thus, from equations 3, 4 and 9 the variance of the percentage of the intersection area 
between two Weak cells can be calculated as follows (Equation 10). 
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limits of Equation 10 can be solved as equations 11, 12 and 13. 
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Applying equations 11, 12 and 13 in Equation 10, the variance of the percentage of 
the intersection area between two Weak cells are presented in Equation 14. 
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The variances of the expected areas of the intersection of other types of cells can be 
calculated following the same reasoning. They are presented in Table 3, and we do 
not present their calculus due to space limitations. 

Table 3. Variance of the expected areas of the overlapping of different types of cells 

Cell types Empty Weak Strong Full 
Empty 0 0 0 0 
Weak 0 0.003038194 0.013454861 0.020833333 
Strong 0 0.013454861 0.023871528 0.020833333 

Full 0 0.020833333 0.020833333 0 

Therefore it is possible to return to the user a confidence interval for the 
approximate query processing. For instance, let a query to produce the following pair 
of cells 100 Weak × Weak cells, 40 Weak × Strong cells, 70 Weak × Full cells, 60 
Strong × Strong cells and 200 Full × Full cells we compute the 95% confidence 
interval as presented in Figure 4 (for simplicity we assume that each cell has the same 
area, equals to 1). 

• W×W:100 × (0.0625 ± 1.96 × (0.0030382/100)1/2) = 6.25 ± 1.0803 
• W×S: 40 × (0.1875 ± 1.96 × (0.013454/40)1/2) = 7.50 ± 1.4378 
• W×F: 70 × (0.2500 ± 1.96 × (0.020833/70)1/2) = 17.50 ± 2.3669 
• S×S: 60 × (0.5625 ± 1.96 × (0.023872/60)1/2)= 33.75 ± 2.3457 
• F×F: 200 × 1 = 200 (full cells have the exact area!) 
• Total: 265 ± 7.2308. 

Fig. 4. Example of 95% confidence interval calculus 
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So, the confidence interval has a range of ±7.2308 that is 95% of the approximate 
answers with these numbers of cell combinations will have an error of at most 
±2.7286%, a result with enough precision for most applications. For a 99% 
confidence interval, it is necessary to replace 1.96 to 2.576 in the calculus presented 
in Figure 4. In this case, the computed value is 265 ± 9.5034. The confidence interval 
has a range of ±9.5034, which means an error of at most ±3.5862% in 99% of the 
cases. 

3   Experimental Results 

This section is dedicated to present the experimental results found by using 4CRS 
signature for estimating the overlapping area of polygon join. In order to evaluate the 
effectiveness of our approach we compared the approximate processing against the 
exact processing according to the following metrics: response time (the time to 
provide an approximate answer for a query); accuracy (the precision of the answers, 
along with a confidence interval); and footprint (the storage requirements for the 
approximations). 

3.1   Test Environment, Experimental Data Sets, 4CRS Signatures and R*-Tree 
Characteristics 

Tests were executed on a PC Pentium IV 1.8 GHz with 512 MB of RAM. A page size 
of 2,048 bytes for I/O operations was defined. The polygon real data sets used in the 
experiments consist of township boundaries, census block-group, geologic map and 
hydrographic map from Iowa (US), available online at “http://www.igsb.uiowa.edu/ 
rgis/gishome.htm”, and Brazilian municipalities [10]. In order to simulate large 
datasets, the Iowa datasets were replicated six times, in the same way as suggested by 
[26]. The original polygons were shifted by random displacements of x and y 
coordinates. In the case of Brazilian municipalities, we performed only one 
replication (named Brazilian municipalities’), so that we could execute the test of 
Brazilian municipalities against Brazilian municipalities’. Some data characteristics 
are presented in Table 4.  

Table 4. Test data sets characteristics 

Datasets size (KB) # pol. # seg. Avg #  seg. 
Census block-group 38,824 17,844 1,764,588 98 
Topography 60,748 40,140 7,561,104 188 
Hydrologic map 6,904 2,670 475,812 178 
Township boundaries 25,288 12,216 1,059,438 86 

Iowa 

Geological map 21,856 9,984 640,428 64 
Municipalities 9,840 4,645 399,002 85 

Brazil 
Municipalities’ 9,840 4,645 399,002 85 

Average 24,757 13,163 1,757,053 112 
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In order to generate the 4CRS signatures, we have to choose the maximum number 
of cells of the grid [6]. Intuitively, the larger the number of cells, the closer is the 
approximation to the original polygon. However, processing 4CRS signatures that 
have large sizes could produce high I/O and CPU costs. To evaluate the effects of 
different choices, we executed experimental tests with maximum number of cells of 
250, 500, 1000, 1500 and 2000. We evaluated the approximate processing against the 
exact processing computing the intersection area of dataset 1 × dataset 2 presented in 
Table 7. Signatures with maximum number of cells equal to 250 have smaller storage 
requirements, but the precision of the approximate answers is not good enough. On 
the other hand, the answers are better estimated when the maximum number of cells 
was 2000; however the I/O and CPU costs are higher as well, because of the higher 
signature sizes. Figure 5 summarizes these experimental results showing: storage 
requirements (percentage of 4CRS signatures’ sizes related to the datasets’ sizes); 
error of the approximate answer (the percentage corresponding to the difference 
between the approximate value and the exact value related to exact value); percentage 
of the time required to execute the approximate processing related to the exact 
processing; and the percentage corresponding to the number of disk accesses needed 
to execute the approximate processing related to the exact one. We present in details 
in Sub-Section 3.2 the experimental results when 500 was used as the maximum 
number of the grid cells, which produced approximate answers with acceptable 
average error and confidence interval. 
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Fig. 5. Storage requirements, accuracy and number of disk access for maximum number of 
cells of the grid equal to 250, 500, 1000, 1500 and 2000  

The 4CRS signature generation time was not shown because [6] evaluated its 
efficiency and presented good results. Table 5 presents the 4CRS signatures 
characteristics for the maximum number of cells equals to 500. We can notice that,  
in order to store 4CRS signatures of maximum number of cells equal to 500 it  is only  
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Table 5. 4CRS signatures’ characteristics with maximum number of cells equal to 500 

Datasets 
Dataset 

size (KB) 
4CRS 

size (KB)

4CRS / 
Dataset size 

(%) 
Census block-

group 
38,824 1,603 4.13 

Hydrologic map 6,904 177 2.56 
Township 

boundaries 
25,288 838 3.31 

Iowa 

Geological map 21,856 676 3.09 
Municipalities 9,840 329 3.34 

Brazil
Municipalities’ 9,840 329 3.34 

Average 18,759 659 3.30 

needed, on average, 3.30% of the space needed to store the real datasets. In other 
words, it is necessary approximately 30 times more space to store the real datasets 
than to store the 4CRS signatures. 

To perform the join, the R*-tree [19] was chosen as a spatial access method in order 
to reduce the search space. In other words, the R*-Tree was used to take account only 
the objects that have at least MBR intersection and not all of them. That choice was due 
to the wide use of R*-Tree, as well as, to the successful results found in the literature. 
The access methods traditionally used employ the object’s Minimum Bounding 
Rectangle (MBR), and the access methods execution returns what is called a set of 
candidates, since it contains all the pairs of polygons that belong to the answer plus 
other pairs that have only MBR intersection. In the same way as [26] and [6] do, for our 
tests we generated R*-Trees that store the 4CRS signatures as part of the polygons’ 
keys, and this means that they were stored in the leaf nodes in the R*-Tree index. It is a 
reasonable approach since in this way we have to compute the 4CRS just once.  

Our tests can be described according to the concepts of Multi-Step Query 
Processor (MSQP) proposed by [26], presented in Section 1. In the approximate query 
processing, only the first two steps of the MSQP (SAM + Filter steps) were executed. 
Since it is not necessary to access the real objects when computing an approximate 
answer, the last step of MSQP was not executed. On the other hand, in the exact query 
processing, we executed the first and last step of MSQP (SAM + Refinement steps). 
In other words, after finding the objects that have MBR intersection, the exact 
representation of the objects was processed, and exact answers returned. To perform a 
fair test we generated R*-Trees without storing the 4CRS signatures on their leaf 
nodes to be used in the exact query processing. By doing so, the sizes of the R*-Trees 
without storing signatures are smaller than the sizes of the R*-Trees that store them, 
consequently the number of disk accesses in the first step is smaller as well. The R*-
Trees characteristics are presented in Table 6. The column “R*-Tree type” shows that 
the characteristics presented are of R*-Tree that stores 4CRS signatures or R*-tree 
that do not store signatures. 
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In order to evaluate the 4CRS effectiveness in the approximate processing area, 
besides the storage requirements, we evaluated the approximate processing against the 
exact processing testing the accuracy of the approximate answer, execution time and 
disk accesses. The approximate query processing was done executing the algorithm 
proposed in the Sub-Section 2.3, while the exact query processing was performed 
using the General Polygon Clipping library that is available on the web at 
http://www.cs.man.ac.uk/aig/staff/alan/ software/#gpc.  

Table 6. R*-Trees’ characteristics 

Datasets 
R*-
Tree 
type 

R*-
Tree 
size 

(KB) 

Time 
(sec) 

Leaf node 
average 
use (%) 

Height 
# 

leafs 

4CRS 2,124 19.04 69.98 3 1045 Census block-
group - 1,160 17.93 69.81 3 570 

4CRS 334 2.24 68.33 3 162 
Hydrologic map 

- 162 2.14 75.35 2 79 
4CRS 1,546 12.95 68.70 3 760 Township 

boundaries - 800 11.97 69.50 3 392 
4CRS 1,258 9.55 68.41 3 617 

Iowa 

Geological map 
- 644 9.32 70.46 3 316 

4CRS 586 4.66 71.15 3 286 
Municipalities 

- 284 4.07 75.05 3 138 
4CRS 582 4.92 71.63 3 284 

Brazil 
Municipalities’ 

- 284 4.11 75.05 3 138 
4CRS 1,289 8.89 69.70 3 525 

Average 
- 663 8.26 72.54 3 272 

3.2   Results of Approximate Query Processing 

This sub-section is dedicated to presenting, in detail, the experimental results when 
the maximum number of cells of the grid was 500. The results correspond to: 
precision of the approximate answer, including confidence intervals; processing time; 
and number of disk accesses. Storage requirements of 4CRS signatures were 
presented in Sub-Section 3.1 (Table 5). We executed queries computing the 
intersection area of dataset 1 against dataset 2 (presented in Table 7) comparing the 
approximate processing against the exact one.  Each query was executed 20 times, 
and for each time we generated a random window so that only the considered pairs of 
objects were inside the window. In order to evaluate the effect of the number of 
objects returned by each query, we executed two different tests. In one test the 
random windows were generated with size of 4% of the size of the whole space of the 
datasets, and in the other test the windows were generated with size of 12.25%. The 
results are presented in Table 8 and Table 9. Since the values of both tests are quite 
similar, we will only analyze in more details the results corresponding to the second 
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test (Table 9). The most relevant difference between the tests is that in the second test 
each window is intercepted by more objects than the number of intersections in the 
first test. As a result, the number of cells considered to compute the confidence 
interval is bigger and its value is closer to the computed approximate answer. 

Experimental results show the effectiveness of the use of 4CRS signature in the 
approximate processing area due to the quite small error of the approximate answers, 
the short time of the approximate processing and the small number of disk accesses. 
The average error of the approximate answers is 0.59%, while the confidence 
intervals of 95% and 99% have average values of 0.97% and 1.28%, respectively 
(Table 9, column “Error and confidence interval”). In other words, the approximate 
answers have on average a difference of only 0.59% related to the exact ones. 
Besides, in order to show the accuracy of the approximate answers, a confidence 
interval is also returned to the user which means that for a precision of 95% the error 
is at most ±0.97%, while for a precision of 99% the error is at most ±1.28%.  

The approximate query processing is on average approximately 9 times faster than 
the exact query processing, since it needs only approximately 11% of the time of the 
exact processing to execute the approximate one. Table 9 (columns “Processing 
Time”) presents the processing time in seconds and the percentages corresponding to 
the approximate query processing related to exact one.  

Table 7. Tests 

Labels Dataset 1 Dataset 2 
Query-1 Brazilian municipalities Brazilian municipalities’ 
Query-2 Township boundaries Census block 
Query-3 Township boundaries Geological map 
Query-4 Township boundaries Hydrologic map 
Query-5 Census Block Hydrologic map 
Query-6 Hydrologic map Geological map 

Table 8. Experimental results corresponding to the 20 executions of the intersection area of 
dataset 1 × dataset 2 × random window with size of 4% of the size of the whole space  

 
Error and 

Confidence Interval Processing Time 
Number of Disk 

Accesses 

Queries 
Error 
(%) 

C. I. 
95% 

C. I. 
99% 

Approx. 
Proc. 

Exact 
Proc. % 

Approx. 
Proc. 

Exact 
Proc. % 

Average 
of 

objects 
per 

window 
Query-1 0.779 2.973 3.907 6.279 73.025 8.60 2138 26826 7.97 1813 
Query-2 0.304 0.534 0.702 14.621 93.204 15.69 8691 50979 17.05 2590 
Query-3 0.831 1.386 1.822 12.478 109.337 11.41 5440 44289 12.28 2551 
Query-4 0.255 1.231 1.617 8.212 75.098 10.94 5747 27064 21.23 1591 
Query-5 0.438 1.292 1.699 17.375 110.85 15.67 4470 33862 13.20 1935 
Query-6 0.847 1.243 1.634 20.66 95.217 21.70 2736 22419 12.20 1267 

Average 0.58 1.44 1.90 13.27 92.79 14.00 4870 34240 13.99 1958 
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The total execution time is not a good measure of performance gain as it is totally 
dependent on the algorithm used to execute the exact processing. Besides, the cache 
of the Operating System can influence processing time. Instead, the total number of 
disk accesses is a reliable performance gain measure, as the objects to be processed 
have to be, at least, read from disk. Table 9 (columns “Number of Disk Accesses”) 
presents the gains of the approximate processing related to the exact one. The former 
needs in average only 16% of the number of disk access of the latter. In other words, 
the exact processing requires in average 6 times more disk accesses than the 
approximate processing.  

Table 9. Experimental results corresponding to 20 executions of the intersection area of dataset 
1 × dataset 2 × random window with size of 12.25% of the size of the whole space  

 
Error and 

Confidence Interval Processing Time Number of Disk Accesses 

Queries 
Error 
(%) 

C. I. 
95% 

C. I. 
99% 

Approx. 
Proc. 

Exact 
Proc. % 

Approx. 
Proc. 

Exact 
Proc. % 

Average 
of 

objects 
per 

window 

Query-1 1.05 2.48 3.26 18.00 272 6.62 6166 62353 9.89 4907 

Query-2 0.30 0.31 0.40 40.64 398 10.22 24512 133509 18.36 7394 

Query-3 0.79 0.82 1.08 33.68 392 8.60 15737 108508 14.50 6940 

Query-4 0.18 0.75 0.99 21.84 250 8.74 13378 65645 20.38 4305 

Query-5 0.45 0.74 0.97 46.14 390 11.84 13055 87123 14.98 5581 

Query-6 0.74 0.75 0.98 86.01 405 21.22 9504 59656 15.93 3886 

Average 0.59 0.97 1.28 41.05 351 11.21 13725 86132 15.67 5502 

4   Conclusions 

This work proposes, implements, and evaluates a new approach for estimating the 
overlapping area of polygon join queries. The target is to provide an estimated result 
in orders of magnitude less time than the time to compute an exact answer, along with 
a confidence interval for the answer. We propose to compute the intersection area of 
pairs of polygons over 4CRS signatures of the polygons, processing compact and 
approximate representations of the objects, and avoiding accessing the whole data. By 
doing so, the exact geometries of the objects are not processed during the join 
execution, which is the most costly part of the spatial join since it requires the search 
and transfer of large objects from the disk to the main storage ([26] and [18]). Also, 
the exact processing algorithm needs to use complex CPU-time intensive algorithms 
for deciding whether the objects match the query condition [27]. There are many 
scenarios and applications where a slow exact answer can be replaced by a fast 
approximate one, provided that it has the desired accuracy, as presented in Section 1.  

We evaluate our approach comparing the approximate processing against the exact 
processing according to storage requirements, accuracy, response time, and number of 
disk accesses. The results achieved were quite good, and demonstrated the 
effectiveness of our approach. The 4CRS signature has low storage requirements; the 
approximate answers have a quite small error; and, the processing time and the 
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number of disk accesses required to execute the approximate processing are much 
smaller than the time and number of disk accesses of the exact processing. In Sub-
Section 3.2, we presented details of the experimental results for small size signatures. 
These tests showed that an average of 30 times less space to store 4CRS signatures is 
needed than to store the real datasets. The approximate answers have an average error 
of 0.6%, while the confidence intervals of 95% and 99% have average values of 
0.97% and 1.28% respectively, which is enough precision for most applications. 
Besides, the approximate processing varies from 5 to 15 times faster than the exact 
processing in response time and from 5 to 10 times relate to number of disk accesses. 

As future work we plan to evaluate the use of more colours in the raster 
approximations, for example, eight colours. We believe that it can provide a better 
precision, and confidence intervals closer to the approximate answer. Besides, 
although this will have the extra cost of storing more bits for colour representation, 
storage requirements can be kept small since we apply compression methods on the 
4CRS signatures. We also plan to investigate an algorithm to compute the number of 
cells that leads to a 4CRS signature that better represents the polygon, based on the 
complexity of the polygon [28]. A straightforward approach is to compute the 4CRS 
signature starting with the maximum number of cells equal to one, and then increase 
this number until the proportion between approximate area (strong and weak cells) 
and the exact area reaches a pre-defined threshold. Besides, the algorithm proposed in 
this work can be extended or new algorithms can be developed in order to process 
other kinds of operations.  
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Abstract. In this paper we study the problem of estimating several types of spa-
tial queries in a streaming environment. We propose a new approach, which we
call Local Kernels, for computing density estimators by using local rather than
global statistics on the data. The approach is easy to extend to an on-line setting,
by maintaining a small random sample with a kd-tree-like structure on top of it.
Our structure dynamically adapts to changes in the locality of data and has small
update time. Experimental results show that the proposed algorithm returns good
approximate results for a variety of data and query distributions. We also show
that it is useful in off-line computations, as well.

1 Introduction

We consider the problem of estimating the data distribution and query selectivity for
spatial data streams. More precisely, we assume the so-called cash register model in
which data points are inserted into the set, but they are never deleted. Each data point
is a multidimensional real-valued tuple. In this paper, we propose new methods for
maintaining an approximate density function on the data, by computing kernel density
estimators in an on-line setting. We then use this information in order to approximate
the selectivity of range queries.

As in all data stream applications, algorithms for computing the desired statistics
must satisfy certain conditions. First, they must require only one pass over the data,
and use only a small amount of space compared to the size of the dataset. In addition,
processing an update should be fast, as in many applications new tuples arrive with high
frequency. And finally, answering queries should be both fast and accurate.

The data stream model has become popular in recent years, motivated by applica-
tions that deal with massive information such as Internet and phone traffic log analysis,
financial tickers, ATM and credit card operations, sensor networks, etc. Although in
many such applications the data is stored and archived, its volume makes it prohibitively
expensive to access. Thus, it is often necessary to monitor the contents of very large
databases in an incremental, on-line fashion. In addition, for many application domains
the ability to answer queries as the data arrives is crucial for mission-critical tasks such
as fraud detection or financial transactions.

There is already a large body of literature that studies approximation algorithms
for computing various statistics and aggregate queries over data streams. For exam-
ple, [12,17] propose methods for computing approximate quantiles, and [4,3] estimate
on-line self-join and multi-way join sizes. A recent result by Das et al. [9] addresses
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the problem of computing on-line spatial joins and range queries. Summarization tech-
niques such as sketches [7,21], wavelets [11,13], and histograms [10,14,22] have been
proposed as a means of answering more complex queries, such as range queries. How-
ever, all these methods make the assumption that each tuple in the data stream has
attribute values from some finite universe {1, . . . , U} (for simplicity, we henceforth re-
fer to them as discrete methods). While this is a reasonable restriction for many types of
data, it is not always feasible to assume such a priori knowledge of it. For example, in
the case of spatial, temporal or multimedia datasets, objects are represented as feature
vectors with real-valued attributes. Monitoring such data via discrete on-line methods
requires an initial discretization of the objects. The accuracy of the result then depends
not only on the guarantee provided by the algorithm, but also on the discretization grid.
The higher the accuracy desired, the larger the size U of the discretized universe, and
the slower the method (since its space and update time almost always depend on U ).
Moreover, the problem worsens as the dimensionality of the data increases.

In the experimental section we will discuss an application in which the goal is to
maintain statistical information of network measurements over time. The data consists
of real-valued tuples representing the current state of AT&T’s backbone network, re-
flecting delay times between pairs of servers. Each tuple is an aggregate of measure-
ments taken during a fifteen-minute interval, with multiple measurements generated
each minute. Because of the size of the data, only a small amount of it is stored on disk,
with older data being moved to tape, which makes accessing it a difficult task. How-
ever, it is often the case that only an approximate view of it will suffice, usually to be
used for comparison purposes. Thus, our proposed algorithm offers a way to generate a
low-storage data summary that is nonetheless powerful enough to answer queries with
relatively small error.

Computing summary statistics for real-valued datasets has also been extensively
studied in the literature. The Min-Skew [1], MHIST [19] and GENHIST [15] algorithms
are histogram-based methods that estimate the selectivity of multi-dimensional range
queries. In addition, kernel density algorithms have been proposed in [5,15]. However,
all these methods either require multiple passes over the data, or a large enough memory
(in relation to the overall data size). The multi-dimensional kernel estimator proposed
in [15] is a one-pass algorithm that comes closest to being suitable for an on-line envi-
ronment. However, its accuracy crucially depends on the computation of approximate
values for the standard deviation along each dimension. Such computation requires stor-
ing a significant sample of the data. In addition, the proposed algorithm assumes that
all queries are asked after the entire data has been seen once.

Our Contributions. In this paper we propose a new method for maintaining approxi-
mate data distributions on real-valued multi-dimensional data streams. We then use this
information in order to estimate the selectivity of range queries arriving in an on-line
fashion. To the best of our knowledge, this is the first algorithm that estimates range
selectivity over real-valued data streams.

Our approach is to compute kernel density functions and maintain them over inser-
tions and deletions from the sample set of kernel centers (thus making it suitable for
on-line computations). We propose new methods for computing the kernel bandwidths,
by estimating the standard deviations for each kernel only for points that fall in a local-
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ity of the kernel center. More precisely, we will maintain a kd-tree-like structure and we
will compute separate density functions in each leaf of the tree. We then approximate
the standard deviations only for the data points in the corresponding cell. As the kd-tree
structure changes, we use previous density information from nearby cells, as well as
newly arriving data in order to maintain the standard deviations in the new leaves.

This allows us to achieve good query accuracy while still using only a very lim-
ited amount of memory. Previous methods used global standard deviations to compute
kernel bandwidths. As we discuss in the experimental section, such approaches usually
require larger samples to achieve good accuracy; they may also suffer from an over-
smoothing effect of the density estimators. Gunopulos et al. [15] suggested replacing
global statistics by local ones, by first clustering the data. However, no experimental
data was provided. Moreover, such an approach would be more difficult to adapt to an
on-line setting, than the one we propose in this paper. We note that our Local Kernels
algorithm is of independent interest and could also be used for off-line applications
in order to compute locality-sensitive statistics. We also compare our method with a
state-of-the-art on-line algorithm for discrete data, and conclude that it is significantly
faster and generally more accurate. Hence, the Local Kernels method is a competitive
alternative to current approaches for summarizing discrete on-line data.

Furthermore, the capability to compute on-line approximate density functions can
lead to algorithms for other problems, such as maintaining an approximate visualization
of the dataset, or detecting high-density areas. The latter is a generalization of the notion
of heavy hitters, which were defined for discrete one-dimensional datasets. In general,
any off-line application that uses the underlying distribution of the data in order to
compute some fast summary statistics can also be translated into a streaming application
using our proposed on-line density estimators.

2 Preliminaries

Data and Query Model. We assume that the dataset is a stream of tuples 〈p1, p2, . . .〉,
where each pi ∈ Rd is a d-dimensional point. The points are indexed in the order in
which they arrive. We focus on the so-called cash register model for data streams, in
which points are inserted, but not deleted from the database. This is the natural model
for the two real-life applications we consider, in which the data consists of network
and weather measurements accumulated over certain periods of time. We will briefly
discuss how our approach can be extended to the turnstile model, which allows points
to be both inserted and deleted from the stream.

We focus on range selectivity queries, defined as pairs of type Qi = 〈i, Ri〉, where
Ri is a d-dimensional hyper-rectangle (see the discussion in Section 4 for extensions to
other queries). The selectivity of Qi is defined as sel(Qi) = |{pj|j ≤ i, pj ∈ Ri}|.
In other words, it is the number of points that have arrived up to time step i and that
lie inside the query range Ri. We study the problem of estimating sel(Qi), under the
assumption that queries arrive in a continuous stream, which is interleaved with the
data stream. A query Qi must be answered before the point pi+1 is processed. This
requirement arises from the fact that processing the point pi+1 changes a subset of
the statistics we maintain, and thus has the potential to affect the outcome of Qi. In
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practice, if the frequency with which points arrive is too high relative to query time, we
can tolerate the processing of a small number of subsequent points, as the changes they
induce are not significant. Moreover, as we explain below, processing a point usually
affects only a constant number of statistical values, and thus can be handled ’out of
sync’ by using a small amount of extra memory.

One significant property of our algorithm is that it does not require a priori knowl-
edge of the overall size of the data stream, nor of the range of values along each dimen-
sion. The latter is important in any approach that tries to discretize the data first, while
the former is often required by discrete on-line methods.

Kernel Density Estimators. The problem of estimating an underlying data distribution is
a central theme in statistics research [8,20]. Kernel estimators are statistical techniques
for approximating the probability distribution, by generalizing random sampling. The
first step is to compute a uniform random sample of the data, and to assign each sample
point (also called kernel center) a weight of one. The second and crucial step is to
distribute the weight of each point in the space around it according to a kernel function.
In general, kernel functions distribute most of the weight over the area in the vicinity
of the center, and taper off smoothly to zero as the distance from the center increases.
However, in practice it is easier to use non-smooth kernel functions that are zero outside
a given area. The study in [8] shows that the shape of the kernel function does not
significantly affect the quality of the approximation.

In this paper we will use the Epanechnikov kernel function, which was also em-
ployed in [15]. More precisely, let S = {s1, . . . , sm} be a random subset of the data.
Then the underlying probability distribution is approximated by the function

f(x) =
1
m

m∑
i=1

k(x− si),

where x = (x1, . . . , xd) and si = (si1, . . . , sid) are d-dimensional points, and

k(x1, . . . , xd) = 0.75d 1
B1B2 . . . Bd

d∏
j=1

(
1−

(
xj

Bj

)2
)

if | xj

Bj
< 1| for all j, and 0 otherwise. See Figure 1 (a).

The parameters B1, . . . , Bd are referred to as the kernel bandwidth along each di-
mension. Choosing the right values for these parameters is the crucial step in computing
kernel estimators, as they determine the accuracy of selectivity computations. No effi-
cient solution exists for finding optimal bandwidths. The problem has been addressed
in [20], which proposes using the following rule: Bj =

√
5σjm

−1/(d+4), where σj is
the standard deviation of the sample along the jth dimension. Note that this rule implies
that the same d parameter values are used for all kernel functions, in other words the
local distribution around each center is assumed to be identical. Moreover, the accuracy
of the method depends on how closely σj approximates the standard deviation of the
entire data. Good approximations require large values for m (the sample size).

In this paper we will use a slightly different approach. We build a kd-tree-like struc-
ture on top of the sample S, and assume that each sample point si is the centroid of the
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Fig. 1. One-dimensional kernels: (a) Kernel function, B = 1; (b) Contribution of multiple kernels
to estimate of range query

dataset in its leaf. We then maintain a set of d values σij , 1 ≤ j ≤ d, that are generally
distinct for each sample point, such that σij approximates the standard distribution of
the points in the cell of si, along dimension j. Note that we can update these values in
an on-line fashion, by looking at all points in the cell (rather than just a sample). The
detailed description of the procedure is given in the next section.

Computing range selectivities. Let R = [a1, b1] × . . . × [ad, bd] be a range selectivity
query. Let Ti denote the subset of points in the tree leaf associated with sample point
si = (si1, . . . , sid), and let Bi1, . . . , Bid be the kernel bandwidths for that leaf. Then
the selectivity of R with respect to Ti is approximated in time O(d) as follows:

sel(R, Ti) ≈ |Ti|(0.75)d 1
Bi1 . . . Bid

×
d∏

j=1

∫
[aj ,bj ]

(
1−

(
xj − sij

Bij

)2
)

dxd . . .dx1.

The overall selectivity is then computed in time O(dm) as sel(R) ≈
∑m

i=1 sel(R, Ti).
See Figure 1 (b) for an illustration of the contribution of three kernel functions to the
selectivity mass of a range query (in the one-dimensional case).

3 On-line Algorithm

In this section we describe our algorithm for maintaining a set of kernel density estima-
tors that closely approximates the underlying data distribution of a spatial data stream.
An important contribution of our approach is to design kernel estimators that use local
statistics on the data in order to define the weight distribution functions. The advan-
tage of using such estimators is that local statistics can be maintained very accurately
with only a small amount of memory, and in an on-line fashion. By contrast, previous
methods approximated global standard deviations and required a large sample size in
order to ensure reasonable accuracy. In addition, our experimental results indicate that
using local statistics improves the quality of the results. We will call our approach Local
Kernels.

We propose using a kd-tree-like structure to partition the kernel centers, and define
the neighborhood of a center to be its corresponding leaf. The algorithm will maintain
the (approximate) standard deviations for each subset of data points in a leaf. Other
partitioning schemes could also be employed to define such neighborhoods. However,
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as we show at the end of Section 3.1, the tree structure we consider exhibits certain
properties that make it particularly suitable for our task.

Let S be a uniform sample of the data seen so far. The kernel centers are defined to
be the points of S. We maintain a hierarchical decomposition tree on S, denoted T (S),
with the following properties: each leaf of T (S) corresponds to a (possibly unbounded)
axis-parallel hyper-rectangle in Rd, so that there is exactly one point of S in each leaf;
any two leaves are disjoint; and the union of all leaves is Rd. For the initial random
sample S, T (S) is a kd-tree. As points are inserted and deleted from S, the structure
T (S) will no longer be a kd-tree, but it will maintain the above properties. For each
sample point si ∈ S we also maintain d + 1 values: τi, which is the (approximate)
number of stream points that lie in the leaf corresponding to si, and σij , 1 ≤ j ≤ d,
which approximate the standard deviations of the points in the leaf of si along each
dimension.

3.1 Random Sampling

The random sample S is chosen using the reservoir sampling method of [24]. More
precisely, point pi is chosen in S with probability |S|/i (recall that the points are in-
dexed in the order in which they arrive in the stream). If pi is chosen, a random point
of S is deleted. Vitter [24] proves that using this technique guarantees that S is always
a uniform random sample of the data seen so far.

A powerful probabilistic result by Vapnik and Chervonenkis [23] allows us to com-
pute the size of the random sample S for which certain estimation errors are guaranteed
with high probability. More precisely, we can prove the following.

Theorem 1. Let T be the data stream seen so far, and let S ⊆ T be a random sample
chosen via the reservoir sampling techqnique, such that |S| = Θ( d

ε2 log 1
ε + log 1

δ ),
where 0 < ε, δ < 1. Then with probability 1 − δ, for any axis-parallel hyper-rectangle
Q the following is true:

|sel(Q)− sel(Q, S)
|T |
|S| | ≤ ε|T | (1)

where sel(Q) = |Q ∩ T | is the selectivity of Q with respect to the data stream seen so
far, and sel(Q, S) = |Q ∩ S| is the selectivity of Q with respect to the random sample.

Proof. Consider the set system (T ,H(T )), where each H ∈ H(T ) is a subset of T
lying in an axis-parallel hyper-rectangle (for an introduction to the theory of set systems
we refer the reader to, e.g., the book [18]). It is well known that the VC-dimension of
this system is 2d. By the result of [24], S is a uniform random sample of T . Then the
main theorem of [23] states that, if S has the size specified above, with probability 1−δ
equation 1 is true for any axis-parallel hyper-rectangle Q.

Theorem 1 implies that with high probability we can estimate the selectivity of any
range query via the simple random sampling method, and achieve an additive error
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ε|T |. In the following, we will be interested in selectivity estimators with small relative
errors, where the relative error for a query Q is defined as

|sel(Q)− estimated sel(Q)|
max{sel(Q), 1} .

Hence, for the random sampling estimator, defined as

estimated sel(Q) = sel(Q, S)
|T |
|S| ,

the relative error is ε |T |
max{sel(Q),1} . Note that this error is small for queries with high

selectivity, but it can grow as large as Θ(|T |) if sel(Q) = O(1). This behavior of the
random sampling estimator is well known in practical applications, and has justified
the study of more sophisticated estimators. As mentioned before, kernel density esti-
mators can be viewed as a generalization of random sampling, in which the points in
S distribute their weight over a local neighborhood, and the selectivity is estimated as
an integral of the weight distribution functions. This smoothing technique improves the
accuracy of the approximation, especially for ranges of small selectivity.

An immediate consequence of Theorem 1 is that, with high probability, no leaf of
the decomposition tree T (S) contains more than 2ε|T | data stream points. Indeed, let
L be the axis-parallel hyper-rectangle associated with a leaf of T (S). By construction
of the tree, sel(L, S) = 1. Then if we assume that sel(L) ≥ 2ε|T |, equation 1 implies
|S| ≤ 1/ε, a contradiction. Hence, T (S) induces a good partitioning of the data stream,
in the sense that no leaf is too dense. This is particularly important if the underlying data
is clustered in a reasonably large number of dense subsets, as it ensures that points from
different clusters fall in different leaves. This in turn means that our estimates σij of the
standard deviations for points in each leaf are close to the real values for that region.

The above observations justify our choice of using a kd-tree-like structure for parti-
tioning the data stream. Note that other means of defining local neighborhoods for the
sample points can also be employed. For example, one could use the Voronoi diagram
of S, and compute the values τi and σij for each subset of points lying in a Voronoi
cell. However, in order to ensure that no cell of the partition is too dense (in the sense
discussed above), we have to significantly increase the sample S. More precisely, |S|
must have a linear dependence on the VC-dimension of the corresponding set-system;
this is asymptotically larger for any other reasonable decomposition schemes.

In addition to this well-balanced property in terms of data density in each cell, T (S)
also has the advantage of being easy to maintain. As we show below, we can update
T (S) in time O(|S|) under insertions and deletions from S.

3.2 Updating T (S)

For ease of presentation, we introduce the following notations. Let box(v) be the axis-
parallel hyper-rectangle associated with a node v of T (S). If v is an internal node, let
h(v) denote the hyper-plane orthogonal to a coordinate axis that divides box(v) into the
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two smaller boxes associated with the children of v. Let leaf(si) be the leaf containing
sample point si. We maintain τi ≈ number of stream points contained in leaf(si) and

Σij ≈
∑

p∈leaf(si)

(pj − sij)2, 1 ≤ j ≤ d.

Then σij =
√

Σij/(τi − 1) is the approximate standard deviation of the points in
leaf(si) along dimension j (assuming si is the centroid of the distribution).

Let p be the current point in the data stream. If p is not selected in the sample S, we
find the leaf that contains p - say this is leaf(si). Then we increment τi by one, and we
add (pj − sij)2 to Σij , 1 ≤ j ≤ d.

We now consider the case when p is selected in the random sample S. Let q denote
the point that gets deleted from S. The updating procedure first deletes leaf(q) from
the tree, and then adds a new leaf corresponding to p. We detail each step below.

Deleting a leaf. Let u denote the parent node of leaf(q), and let v be the sibling of
leaf(q). Without loss of generality, assume that leaf(q) lies to the left of h(u) and
v lies to the right of h(u); see Figure 2. The structure of T (S) will be modified as
illustrated in Figure 3: make v a descendant of the parent node of u; delete nodes u
and leaf(q). Let N (q) denote the leaves in the subtree of v that have one boundary
contained in h(u); we will call these the neighbors of leaf(q). The deletion procedure
can be viewed as extending the bounding box of each neighbor of leaf(q) past the
hyper-plane h(u), until it hits the left boundary of leaf(q). The points that were previ-
ously contained in leaf(q) must thus be redistributed among the leaves in N (q), and
the corresponding τ and Σ values must be updated for all these leaves. The procedure

q r

h(u)

Fig. 2. Deleting leaf(q) means extending the bounding boxes of leaves in N (q) (represented as
gray rectangles)

for updating the τ values is simple: for each leaf in N (q), we increment its τ value by
the selectivity of its (expanded) bounding box with respect to the points contained in
leaf(q). As long as the kernel function for leaf(q) is a good model for the distribu-
tion of points inside the leaf, τ remains a good approximation for the actual number of
points inside each leaf of N (q). However, updating the Σ values requires more infor-
mation than we store. This is because points in leaf(q) will contribute differently to the
standard deviations of the (expanded) leaves in N (q), based on their relative position
to the centroids of those leaves. Let r be a point so that leaf(r) ∈ N (q), and for a fixed
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u

q v

v

=>

Fig. 3. Deleting leaf(q) from the tree. Gray nodes correspond to N (q)

q r

ν2 να = ρjλj = ν1

Fig. 4. Updating Σrj by discretizing the intersection of boxe(r) and the kernel of q along dimen-
sion j (the gray area represents wt2)

dimension j, let [λj , ρj ] be the intersection of the expanded box of r, denoted boxe(r)
and the kernel function of q along dimension j (see Figure 4). We discretize the interval
[λj , ρj ] by choosing a set of equidistant points λj = ν1, ν2, . . . , να = ρj (where α is a
sufficiently large constant), and update the value of Σrj as follows:

Σrj = Σrj +
α−1∑
i=1

((νi + νi+1)/2− rj)2wti,

where

wti = 0.75 · τq
1

Bqj

∫ νi+1

νi

(
1− (

x− qj

Bqj
)2

)
dx

is the (approximate) number of points of leaf(q) whose j’th coordinate lies in the inter-
val [νi, νi+1]. In other words, we approximate all points in this interval by its midpoint,
and use this approximation to update the Σ value for r.

The update procedures are summarized in Figure 5. The overall procedure for delet-
ing a leaf is given in Figure 6 (a).

Inserting a leaf. Let p be the point newly selected in the sample S, and q be an existing
sample point such that p ∈ leaf(q). We split leaf(q) by a hyperplane passing through
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PROCEDURE τ -Update(q, r, box(r))
τr + = it sel(box(r), leaf(q));

end

PROCEDURE Σ-Update(q, r, box(r))
boxj(r): projection of box(r) along dimension j;
α: constant;
for j = 1, . . . , d

[λj , ρj ] = boxj(r) ∩ [qj − Bqj , qj + Bqj ];
discretize λj = ν1, ν2, . . . , να = ρj ;
for i = 1, . . . , α − 1

wti = 0.75 · τq
1

Bqj

∫ νi+1
νi

(
1 −

(
x−qj

Bqj

)2
)

dx;

Σrj + = ((νi + νi+1)/2 − rj)
2wti;

end for
end for

end

Fig. 5. Updating values τ and Σ

the midpoint (p + q)/2. The direction of the hyperplane is chosen according to the
alternating rule of a kd-tree, i.e., if i is the splitting dimension for the parent of q, then
we split q along dimension (i + 1) mod d. Let boxc(q) denote the contracted box that
bounds the new leaf(q). We set τq and τp to be the selectivity of boxc(q), respectively
box(p), with respect to the set of points previously contained in leaf(q) (in fact, τp is
one more than the selectivity, to account for the new point p). We then compute the Σ
values for p and q using the procedure described in Figure 5, using boxc(q) and box(p)
as the third argument. The overall procedure is summarized in Figure 6 (b).

Clearly, the update time is dominated by the leaf deletion procedure. Its time com-
plexity is proportional to the number of leaves in the subtree rooted at the sibling of the
leaf, which is O(|S|) in the worst case. Hence, we conclude with the following.

Theorem 2. The update and query time for our online range searching procedure is
O(|S|), where S is the sample size.
Extension to turnstile model. The overall approach can also be extended to handle
the case when points are allowed to be deleted from the data stream. If the point p
to be deleted is not a kernel center, we compute si such that p ∈ leaf(si). We then
subtract 1 from τi, and (pj − sij)2 from Σij , 1 ≤ j ≤ d. If p is a kernel center, then
we delete leaf(p) and choose the next point inserted in the stream to replace p in the
sample. This approach suffers from the same problems as maintaining a data sample
over deletions, which is that we can no longer guarantee (with high probability) that
the sample is uniform with respect to the data currently present in the stream. However,
if the deletions do not exhibit strong spatial or temporal locality, then the approach is
likely to work well in practice.
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PROCEDURE Delete(leaf(q))
Compute N (q);
for each r ∈ N (q)

boxe(r): expanded box of r;
τ -Update(q, r, boxe(r));
Σ-Update(q, r, boxe(r));

end for
Replace parent of leaf(q) by sibling of leaf(q)

in T (S);
end

PROCEDURE Insert(leaf(p))
Compute q so that p ∈ leaf(q);
Split leaf(q) through (p+ q)/2 along ap-

propriate axis;
boxc(q): contracted box of new leaf(q);
oldq: all values assoc. with q before split-

ting;
τp = τq = 0;
Σqj = Σpj = 0, 1 ≤ j ≤ d;
τ -Update(oldq, q, boxc(q));
τ -Update(oldq, p, box(p)); τp+ = 1;
Σ-Update(oldq, q, boxc(q));
Σ-Update(oldq, p, box(p));

end

(a) (b)

Fig. 6. (a) Deleting leaf(q). (b) Inserting leaf(p)

4 Experimental Results

We evaluate the performance of our on-line algorithm on both synthetic and real data
sets, in different number of dimensions and under varying query loads. We focus on
range selectivity queries in the experiments described in this section, as they are one of
the most common type of queries asked against multi-dimensional data, and have been
extensively studied in previous literature. Note, however, that other types of queries can
also be handled using the statistical information maintained by Local Kernels, and the
range selectivity computation as a basic procedure. For example, the rank of a point p =
(p1, . . . , pd), defined as the number of points dominated by p on all coordinates, can be
computed as the range selectivity of the hyper-rectangle (−∞, p1) × · · · × (−∞, pd).
Hot spots, defined as unit cubes containing at least αn points in the stream, for some
user-defined 0 < α < 1 (see [16]), could also be computed by answering range selec-
tivity queries on an appropriate set of candidate cubes.

As we discuss below, the data distribution for one of the real datasets we used was
significantly different from the synthetic data. However, our method returned good re-
sults on both distributions. There are two main issues we are interested in evaluating in
our experimental set-up: the accuracy of our method with respect to existing techniques,
both on-line and off-line, and the trade-off between accuracy and space usage.

We first provide experimental evidence that our proposed local-statistics kernels
computation is competitive in an off-line setting with previous density-based methods.
In fact, as we show below, it has better accuracy in most of the cases we study. This is
an important issue, because the off-line accuracy of local kernels is an upper bound on
the accuracy that we can achieve when moving to the on-line setting. Hence, we need
to validate our strategy as a multi-pass method first. By this, we mean that instead of
maintaining the approximate values for the number of points and standard distribution
in a leaf, we compute them exactly in one pass over the current data, every time the set
of kernel centers changes. Note that off-line local-statistics kernels are of independent
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interest, as they can be used for summarization and mining for large-scale data ware-
housing. As we discuss below, in the context of data warehousing, off-line local kernels
require only two data scans. Our experiments also show that they yield highly accurate
results with small space requirements, even when query selectivity is very low.

Next, we study the performance of our on-line algorithm. We first compare it to the
discrete one-pass histogram method proposed in [22], on a set of integer-valued two-
dimensional data. Although the method can be used to answer range queries that arrive
interspersed with the data, the expensive histogram computation makes it impractical
for such a setting. Therefore, we restricted our experiments to the case when all queries
arrive after the entire data stream has been processed. Finally, we evaluate our method
in its most general setting, i.e. over real-valued data that arrives interspersed with the
queries. We compare it with random sampling, which we consider as a base method for
on-line range searching, due to its simplicity and effectiveness in practice. The version
that we implemented uses reservoir sampling [24] to maintain a sample of the points in
a streaming environment. We also consider the off-line version of local kernels compu-
tation, which we use as a basis of comparison for accuracy results. As mentioned above,
this represents the best approximation that can be obtained via local kernels.

Datasets and queries. We used four datasets: a 2-dimensional synthetic set SD2, a
4-dimensional synthetic set SD4, and a 2-dimensional set NM2 containing network
measurements. Each of the two synthetic datasets contains 1 million points, of which
90% are contained in clusters, and 10% are uniformly distributed. The data generator
we used is similar to the one described in [2], which was introduced in order to model
local dependencies in the data. There are 100 clusters in each dataset, and the points in
each cluster are drawn from a normal distribution around a randomly chosen center. The
variance in each cluster is determined randomly in the following manner: Fix a spread
parameter r and choose a scale factor sij ∈ [1, s] uniformly at random, where s is user
defined. Then the variance of the normal distribution in cluster i and along dimension
j is (sij · r)2. The number of points in each cluster is proportional to the realization of
an exponential random variable. Once all clusters are generated, we compute a random
permutation of the points, and choose that to be the order in which the data arrives.
Thus, the stream does not exhibit temporal correlation, i.e. consecutive points are likely
to belong to different clusters.

The network dataset NM2 contains 1 million two-dimensional data points with real-
valued attributes. Each point is an aggregate of measurements taken during a fifteen-
minute interval, reflecting minimum and maximum delay times between pairs of servers
on AT&T’s backbone network.1 The dataset is only a small snapshot of the entire infor-
mation stored in the course of a month, which we have chosen for the purpose of ex-
perimental evaluation. As mentioned in Section 1, summarization methods with small
storage are highly desirable in this case, as older data is no longer stored on disk, mak-
ing it difficult to access.

For every dataset, we create two query workloads. The queries are chosen randomly
in the attribute space, but each query in a workload has approximately the same selec-
tivity: 0.5% for the first workload, and 10% for the second. Hence, the first workload

1 The proprietary nature of the data prohibits us from disclosing more details.
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corresponds to low selectivity ranges, and reflects how much our kernel density ap-
proach manages to improve over random sampling. The second workload corresponds
to high selectivity ranges, and is used in order to verify that our method does not result
in an over-smoothing of the distribution function, which would then imply significantly
under-estimating the query counts. All workloads contain 200 queries each. The times-
tamps of the queries are randomly interspersed in the data stream.

Accuracy measure. For the remainder of this paper, we report the accuracy of each
method as the average 1-norm relative error, defined below. Because of the random
nature of all the algorithms we discuss, each point on a graph is the average value over
five runs.

For a query Qi = 〈i, Ri〉, the relative estimation error of Qi is defined as

erri =
|sel(Qi)− estimated sel(Qi)|

max{sel(Qi), 1}
.

Let {Qi1, . . . , Qik} be the query workload for a given experiment. Then the average
1-norm error for this workload is defined as avg err = (

∑k
j=1 errij)/k. Note that in

the off-line setting, N ≤ i1, . . . , ik, where N is the size of the data stream; i.e., all
queries are asked after the entire data is seen.

Validating local kernels in an off-line setting. In the context of data warehousing, the
computation of summaries or density functions does not take place concurrently with
query processing. The assumption is that the entire data is available for pre-processing
before queries can be answered. Hence, we do not need to maintain our local kernels
under insertions and deletions from the sample set. Rather, we scan the data once to
select our random sample of centers, compute the associated kd-tree, and then use a
second scan to compute the exact values for the number of points and standard distribu-
tion in each leaf. All queries are answered after the two data scans are completed. We
denote this algorithm by MPLKernels, from Multi-Pass Local Kernels.

We will compare this approach with the kernel-density method proposed in [15],
which we denote by GKernels (Global Kernels). The main difference between MPLK-
ernels and GKernels is that the latter defines kernel bandwidths as functions of the
global standard deviations of the data along each dimension. In their paper, the authors
note that their algorithm can be implemented as a one-pass method, by approximating
the global standard deviations with the standard deviations of the random sample. How-
ever, since we are interested in comparing the relative accuracy of the two methods, we
report results for the two-pass GKernels, which provides better query estimates.

For the sake of completion, we also include accuracy results for the random sam-
pling estimator, as well as for our on-line local kernels method, which we denote by
LKernels. For the latter, we emphasize that, although we maintain the kernels in the
on-line manner described in the previous section, the fact that all queries are processed
after the entire data has been seen implies that only the last set of kernels is impor-
tant. Hence, LKernels should be regarded, in this context, as a one-pass warehousing
method, rather than an on-line one.

Figures 7 and 8 indicate that both MPLKernels and LKernels are competitive with
GKernels in terms of accuracy. In fact, they out-perform it in almost all the cases, except
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Fig. 7. Off-line query workloads on dataset SD2: (a) selectivity 0.5%; (b) selectivity 10%

for small (below 1500) sample sizes for SD2. This is not surprising, since intuitively,
using local statistics should provide a better estimate on the data density. Gunopulos et
al. [15] have also suggested that the performance of their density-based estimator would
improve by using a clustering algorithm first, and then replacing global statistics by
local statistics in each cluster. However, they did not provide any experimental results,
and such an approach would be more difficult to adapt to an on-line setting. As noted
in the previous section, one of the main advantages of using a kd-tree-like structure is
that updating it is easy and fast.
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Fig. 8. Off-line query workloads on dataset SD4: (a) selectivity 0.5%; (b) selectivity 10%

Note that for the low selectivity workload, the accuracy of GKernels is almost inde-
pendent of the sample size. This can be explained by the fact that using global statistics
is too coarse an estimate of local density, and the accuracy degrades as the selectivity de-
creases. Perhaps even more surprising is the fact that the random sample estimator out-
performs GKernels on both SD2 and SD4, for sample sizes bigger than 1000. In looking
more closely at the results, we noticed that in these cases GKernels under-estimates al-
most all of the queries. This is due to an over-smoothing of the data, a problem that has
been studied intensely in the statistics literature [20] in relation to density estimators.
Our approach of computing local kernels significantly alleviates this drawback.
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Table 1. The performance of the Histogram algorithm for various values of parameter ρ, com-
pared with the performance of the LKernels algorithm

Error Update time Query time
LKernels 35% 0.0039ms 2.5ms
Histogram (optimal) 33% 0.007ms 2011ms
Histogram (ρ = 3) 50% 0.007ms 286ms
Histogram (ρ = 2) 60% 0.007ms 252ms
Histogram (ρ = 1) 63% 0.007ms 211ms
Histogram (ρ = 0.5) 81% 0.007ms 167ms

Comparison with histogram methods. Histograms are a widely used method for com-
puting summary statistics and answering selectivity queries. While off-line histogram
computation has been studied for a long time, it is only more recently that the ap-
proach has been adapted to on-line settings. Two recent approaches have been proposed
in [6,22]. The first algorithm, called STHoles [6], computes the histogram via a training
phase, which poses queries and uses the exact answers to build the resulting histogram.
The second approach [22] maintains a sketch of the actual data distribution, and uses
it to extract histogram buckets. As the sketch can be maintained on-line, this method
is closer in spirit to the problem we consider. Moreover, the experimental evaluation
in [22] shows that it has comparable or sometimes better accuracy than STHoles. We
therefore restrict our attention only to this algorithm.

We evaluate it on a synthetic two-dimensional dataset of 100x100, generated sim-
ilarly to the one above, except that the points are restricted to the integer grid. For a
fair comparison, we restrict both methods to use the same amount of memory cache,
which is 11000 integers. This translates into 1200 sample points for Local Kernels (we
use 9 integers per sample point). As for the dynamic histogram, a careful analysis of
the results in [22] shows that the space utilization is min(n2, sn) + 2s, where s is the
sketch size, and n is the attribute range (in our case, 100). Based also on the evaluations
presented in the original paper, we use a sketch size of 500, and extract 50 buckets. We
have implemented the faster heuristic (EGreedy), and present the accuracy and com-
putation time in table 1. Update time represents the average time spent per data point,
and query time is the average time to answer a query (it includes the histogram com-
putation time for EGreedy). The parameter ρ represents the ratio α/k in the original
paper, which is used to speed up histogram computation, at the cost of reducing accu-
racy. The higher the value of ρ, the better the accuracy. The notation ’optimal’ denotes
the algorithm EGreedy in which the optimal bucket is computed at each iteration.

As is apparent from Table 1, our approach is at least two orders of magnitude faster
than the on-line histograms method, as well as significantly more accurate in most cases.
The only situation in which EGreedy is slightly more accurate is when optimal buckets
are computed, but in that case EGreedy is three orders of magnitude slower. Note also
that the update time per point for our method is about half the time required by EGreedy.
Thus, in an on-line environment in which points arrive with reasonably high frequency,
and/or the queries are interspersed with the points, Local Kernels is clearly a better
choice. Even in a setting in which all queries are computed after the entire dataset has
been seen, Local Kernels may still be the preferred solution, as the small accuracy gain
of EGreedy comes at a much higher cost in terms of processing time. We conclude that,
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although designed with enough flexibility to handle real-valued data, Local Kernels is
competitive as an on-line algorithm over discrete data, as well.

General on-line setting. We now evaluate the accuracy of our method for real-valued
datasets in an on-line context, in which queries arrive interleaved with points. Each
query must be processed with respect to the data seen so far, rather than at the end. We
first present the performance of LKernels for the 2 and 4-dimensional synthetic datasets,
and then discuss the NM2 set. As mentioned above, we use both the random sample
estimator and MPLKernels as basis of comparison for accuracy results. In this context,
MPLKernels performs a data scan every time it must answer a query: it first computes
the exact number of points and the standard deviations in each leaf of T (S), and then
processes the query. Note that in this case MPLKernels is an impractical approach. We
include it here only as a benchmark, to better understand the limits of our method.

As expected, MPLKernels has the smallest relative error for all sample sizes. How-
ever, it is important to note that, just as in the off-line setting, the error of LKernels is
always smaller than that of random sampling, which shows that we are indeed able to
minimize the problem of over-smoothing in a consistent manner.

It is interesting to look at the graphs corresponding to LKernels in Figures 9 and
7 (respectively, Figures 10 and 8) side by side. The relative errors are very similar,
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Fig. 9. Query workloads on dataset SD2: (a) selectivity 0.5%; (b) selectivity 10%
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Fig. 10. Query workloads on dataset SD4: (a) selectivity 0.5%; (b) selectivity 10%
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Fig. 11. Query workloads on dataset NM2: (a) selectivity 0.5%; (b) selectivity 10%

whether the queries are answered on the fly, or all at the end. This indicates that the
performance of our method does not decrease with time, as we update our data structure
and statistics estimates.

The experiments on the network dataset NM2 are shown in Figure 11. Unlike the
synthetic data, for which we randomly chose the order in which points arrive, in this
case points have a well established order given by the timestamp of the measurement.
However, since each point refers to a different network connection, there is little locality
in the data. The graphs exhibit the same patterns as before, with LKernels proving the
robustness of the kernel-based methods.

5 Conclusions

In this paper we have proposed a new approach for computing density estimators over
spatial data, and showed how it can be adapted to on-line environments. Our method
maintains a random sample with a kd-tree-like structure on top of it, which permits the
estimators to easily adapt to changes in the locality of the data. Given these density es-
timators, we can approximate the selectivity of range queries that arrive interspersed in
the data stream. Our algorithm requires no a priori knowledge of the range of attribute
values, nor of the number of tuples in the data stream, and is thus easy to use in a large
number of practical applications. We have also provided extensive experimental evalu-
ations that prove that the method is competitive (in terms of both accuracy and running
time) with off-line summarization approaches and with one-pass histograms. Finally,
we note that the idea of maintaining an indexing structure over spatial data streams,
together with density functions, may be of independent interest, such as for visualizing
the distribution of low-dimensional streaming data (e.g., network measurements).
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Abstract. In this paper, we propose a novel approach to address the
problem of change detection in time series data. Our approach is based
on wavelet footprints proposed originally by the signal processing com-
munity for signal compression. We, however, exploit the properties of
footprints to capture discontinuities in a signal. We show that trans-
forming data using footprints generates nonzero coefficients only at the
change points. Exploiting this property, we propose a change detection
query processing scheme which employs footprint-transformed data to
identify change points, their amplitudes, and degrees of change efficiently
and accurately. Our analytical and empirical results show that our ap-
proach outperforms the best known change detection approach in terms
of both performance and accuracy. Furthermore, unlike the state of the
art approaches, our query response time is independent of the number
of change points and the user-defined change threshold.

1 Introduction

Time series data are generated, maintained, and processed within a broad range
of application domains in different fields such as economics, meteorology, or soci-
ology. Moreover, recent advances in the manufacturing of modern sensory devices
have caused several applications to utilize these sensors towards better under-
standing of the physical world. These sensors when deployed in an environment
generate large amount of measurement data streams which can be stored as time
series data.

Mining such time series data becomes vital as the applications demand for
understanding of the underlying processes/phenomena that generate the data.
There has been an explosion of interest within the data mining community in
indexing, segmenting, clustering, and classifying time series [13,14,15,16]. A spe-
cific interesting mining task is to detect change points in a given time series
[7,8,12,21,24]. These are the time positions in the original data where the local
trend in the data values has changed. They may indicate the points in time when
external events have caused the underlying process to behave differently.

The problem of detecting change in time series has been mostly studied in the
class of segmentation problems [14,6] where each portion of the data is modelled
by a known function. Subsequently, change points are defined as the points in
data where two adjacent segments of the time series are connected.

C. Bauzer Medeiros et al. (Eds.): SSTD 2005, LNCS 3633, pp. 127–144, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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For the past year, we have been working with Chevron on mining real data
generated during oil well tests. This is a real-world petroleum engineering ap-
plication studied within the USC’s Center of Excellence for Research and Aca-
demic Training on Interactive Smart Oilfield Technologies (CiSoft). Petroleum
engineers deploy sensors in oil wells to monitor different characteristics of the
underlying reservoir. Here, the underneath pressure values measured by sensors
form a time series. When the second derivative in the pressure vs. time plot
becomes fixed (i.e., a radial flow event), they estimate the “permeability” of the
reservoir [11]. At the same time, they would like to know if the first derivative is
changing. To us, these points are the positions in the pressure time series where
a change of degree 1 or 2 occurs. In this paper we focus on identifying both the
change points and the degrees of change in time series data. While the definition
of change is highly application-specific, we focus on points in data where discon-
tinuities occur in the data or any of its ith derivatives. Moreover, we consider the
notion of degree of change as the degree of the changing derivatives at the change
point. This general definition of change has been broadly used in many scientific
application areas such as petroleum engineering [11]. However, its significance
has been ignored within the data mining community.

We propose a novel efficient approach to find change points in time series
data. Our approach utilizes wavelet footprints, a new family of wavelets recently
introduced by the signal processing community for signal compression and de-
noising [5]. While footprints are defined to address a different problem in a
different context, we exploit their interesting properties that make them a pow-
erful data analysis tool for our change detection problem. Our contribution starts
with employing the idea of wavelet footprints in the context of a data mining
problem. This is yet another example of adapting signal processing techniques
for the purpose of data mining which started by Vitter et. al proposing the use
of wavelets in answering OLAP range-sum queries [19], and Chakrabarti et. al
using multi-dimensional wavelets for general approximate query processing [1].

We show that footprints efficiently capture discontinuities of any degree in
the time series data by gathering the change information in the correspond-
ing coefficients. Motivated by this property, we make the following additional
contributions:

– We propose two database-friendly methods to transform the time series data
using footprints up to degree D. These methods enable us to detect all the
change points of degree 0 to degree D, their corresponding amplitude and
degree of change. To the best of our knowledge, this is the first change
detection approach that captures all the above parameters at the same time.

– While we transform the data using footprints, our methods can work with
any user-defined threshold value. That is, there is no need to rerun our al-
gorithms each time the user-defined threshold value changes; we answer any
new query via a single scan over the transformed data to return the coeffi-
cients greater than the user threshold. This is a considerable improvement
over the best change detection algorithms which are highly dependent on
this threshold value.
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– Both analytically and empirically, we show that our query processing
schemes significantly outperform the state of the art change detection meth-
ods in terms of performance. Our query response time is independent of
the number of change points in the data. This is while both our methods
demonstrate a significant increase in accuracy.

The remainder of this paper is organized as follows. Section 2 reviews the
current data mining research on change detection in time series data. Section 3
provides the background on linear algebra and wavelet theory. In Section 4, we
first illustrate the idea of using footprints to capture discontinuities by focusing
only on piecewise linear time series. We then generalize our change detection
approach and propose our lazy and absolute methods for footprint transforma-
tion in Section 5. In Section 6, we show how our footprint-based approach can
be incorporated within systems where time series data is stored in wavelet do-
main. Section 7 includes our experimental results, and Section 8 discusses the
conclusion and our future plans.

2 Related Work

Change detection in time series has recently received considerable attention in
the field of data mining. Change detection has also been studied for a long time
in statistics literature where the main purpose is to find the number of change-
points first and identify the stationary model to fit the dataset based on the
number of change points.

In the data mining literature, change detection has mainly been studied in
the time series segmentation problems. Most of these studies use linear interpo-
lation to approximate the signal with a series of best fitting lines and return the
endpoints of the segments as change points. However, there are many examples
of real-world time series which fitting a linear model is inappropriate. For ex-
ample, Puttagunta et al. [21] use incremental LSR to detect the change points
and outlier points with the assumption that the data can be fit with linear mod-
els. Also Keogh et al. [12] use probabilistic methods to fit the data with linear
segments in order to find patterns in time series.

Yamanish et al. [24] reduce the problem of change point detection in time
series into that of outlier detection from time series of moving-averaged scores.
Ge et al. [7] extend hidden semi markov model for change detection. Both these
solutions are applicable to different data distributions using different regression
functions; however, they are not scalable to large size datasets due to their time
complexity.

Guralnik et al. [8] suggest using maximum likelihood technique to find the
best function to fit the data in each segment. Their method is mainly based on the
trade-off between the data fit quality and the number of estimated changes. They
also consider a wider group of curve fitting functions; however, they do not con-
sider the possible disagreement among different human observers on the actual
change points. Also their approach lacks enough flexibility in the sense that they
have to rerun the algorithm for different change thresholds asserted by the user.
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The method described in this paper is mostly similar to the work done by
Guralnik et al. in [8]; however, we return all the possible change points for several
polynomial curve fitting functions since then users have the flexibility to focus
only on the interesting change points. For example, the user can focus only on the
change points detected by the quadratic and linear models. Moreover, after we
find the change points once, there is no need to rerun the algorithm for different
change thresholds asserted by the user.

3 Preliminaries

We consider time series Xn of size n as a vector (x1, ..., xn) where each xi is a
real number (i.e., xi ∈ R). Given F , a class of functions (e.g., polynomials), one
can find the piecewise segmented function X : [1, n] → R that models time series
Xn as follows:

X (t) =

⎧⎪⎪⎨
⎪⎪⎩

P1(t) + e1(t) 1 < t ≤ θ1
P2(t) + e2(t) θ1 < t ≤ θ2
:
PK+1(t) + eK+1(t) θK < t ≤ n .

(1)

Each function Pi is a member of class F that best fits the corresponding
segment of the data in Xn and each ei(t) is the amount of error introduced
when fitting the segment with Pi. Our ultimate goal is to identify θ1, ..., θK

when Pi’s are not known a priori. We refer to these points as the change points
in data where discontinuities occur in the data or its derivatives. We use change
point and discontinuity interchangeably in this paper.

Throughout the paper, F is the class of polynomial functions of maximum
degree D. That is, each Pi(t) in Equation 1 can be represented as

Pi(t) = pi,DtD + pi,D−1t
D−1 + ... + pi,2t

2 + pi,1t + pi,0 . (2)

We call a change point θi, a change point of degree j if the corresponding coeffi-
cients pi,j and pi+1,j differ in the polynomial representations of Pi(t) and Pi+1(t).
Notice that θi is a change point of all degrees j where we have pi,j �= pi+1,j .

3.1 Linear Algebra

In this section, we present some background linear algebraic definitions. We use
these definitions in Section 4 when we discuss transforming time series with
wavelet footprints.

Definition 1. A finite basis B for a vector space Rd is a set of vectors Bi ∈ Rd

(i.e., B = {B1, B2, ..., Bn} where n = d) such that any vector V ∈ Rd can be

written as a linear combination of Bi’s, i.e., V =
n∑

i=1
ciBi. Note that given a basis

B, the set of coefficients ci is unique for a vector V . However, if the number of
vectors in B is greater than d (i.e., n > d) then the vector V can be represented
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as the linear combination of Bi’s in infinite number of ways. Such collection B
where n > d is an overcomplete collection for Rd.For ease of use we call it an
“overcomplete basis” for the rest of the paper.

Definition 2. Suppose B = {B1, B2, ..., Bn} is a finite basis for vector space Rd

and there exists a basis B̃ = {B̃1, B̃2, ..., B̃n} such that

〈Bi, B̃j〉 =
{

1 if i = j
0 if i �= j .

(3)

where 〈X, Y 〉 denotes the inner product of vectors X and Y . The “unique” basis
B̃ is known as the dual basis of B.

Definition 3. A basis B = {B1, B2, ..., Bn} is a biorthogonal basis if we have
〈Bi, B̃j〉 = 0 for any Bi �= Bj and 〈Bi, B̃j〉 = 1 otherwise.

Definition 4. A basis B = {B1, B2, ..., Bn} is an orthogonal basis if for any
Bi �= Bj, we have 〈Bi, Bj〉 = 0. According to Definition 2, an orthogonal basis
is the dual basis of itself (i.e., it is self-dual).

To find each coefficient ci where 1 ≤ i ≤ n for a vector V given a basis B
(as in Definition 1), we simply compute 〈V, B̃i〉. For orthogonal bases, due to
their self-duality, ci is computed by the inner product of V to the basis itself,
i.e., 〈V, Bi〉 .

The basic idea of compression is to find the basis B and then for each given
vector V , only store the coefficients ci’s. The main question is what is the best
basis for a given application and dataset, such that several of ci’s become zero
or take negligible values. In our case, wavelet footprints would result in ci’s that
would take non-zero values only if a change occurs in the vector V . The value
of ci then corresponds to the amount (or amplitude) of change.

3.2 Wavelets

We develop the background on the wavelet transformation using an example. We
use Haar wavelets to transform our example time series into the wavelet domain.
Consider the time series X8 = (0, 0, 0, 0, 0, 1, 1, 1). The transformation starts by
computing the pairwise averages and differences of data (also multiplying by a
normalization factor at each level) to produce two vectors of summary coefficients
H1 = (0, 0, 0.7, 1.4) and detail coefficients G1 = (0, 0,−0.7, 0), respectively. This
process repeats by applying the same computation on the vector of summary
coefficients. The last summary coefficient followed by all n− 1 detail coefficients
form the transformed data, i.e., (1.06,−1.06, 0,−0.5, 0, 0,−0.7, 0).

We can conceptualize the process of wavelet transformation as the projection
of the time series vector of size n to n different vectors ψi termed as wavelet basis
vectors. Suppose |X | denotes the length of a vector X , the wavelet transforma-
tion1 of Xn is X̂n = (x̂1, ..., x̂n) where x̂i = 〈Xn, ψi〉. 1

|ψi| and the term 1
|ψi| is a

1 Throughout the paper, we assume that the size of the time series we work with is
always a power of 2. This can be achieved in practice by padding the time series with
zeroes.
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normalization factor (notice that Haar wavelet basis is orthogonal, and hence self-
dual). Moreover, time series Xn can be represented as Xn =

∑n
i=1 x̂iψi. Figure 1

shows Haar wavelet basis vectors of size 8 as different rows of an 8× 8 matrix.
In general, we identify Haar wavelet basis vectors of size n as ψi where

1 ≤ i ≤ n. The first vector ψ1 consists of n 1’s. The remainder n − 1 vectors
corresponding to the detail coefficients are defined as follows:

ψ2j+k+1(l) =

⎧⎨
⎩

1 k. N
2j ≤ l ≤ k. N

2j + N
2j+1 − 1

−1 k. N
2j + N

2j+1 ≤ l ≤ k. N
2j + N

2j − 1
0 otherwise .

(4)

where 0 ≤ j ≤ log n, k = 0, ..., 2j − 1, and 1 ≤ l ≤ n. We now define the term
support interval that we will use throughout the paper.

Definition 5. Let X̂n = (x̂1, ..., x̂n) be the wavelet transformation of the time
series Xn. The support interval of a wavelet coefficient x̂i is the range of indices
j ∈ [1, n] such that x̂i is derived from xj ’s.

For example, the support interval of the first coefficient x̂1 is the entire time
series (i.e., [1, n]), while that of the last coefficient x̂n is the last two elements of
Xn (i.e., [n− 1, n]). We use Sup(x̂i) to denote the support interval of coefficient
x̂i. Similarly, we use Sup−1(j) to refer to the set of all wavelet coefficients which
are derived from xj , i.e., all x̂i’s such that xj ∈ Sup(x̂i).

1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1
1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1

Fig. 1. Haar wavelet basis of size 8

4 Footprints

Wavelets have been widely used in different data mining applications due to their
power in capturing the trend of the data as well as their approximation property
[17]. However, wavelets in their general form do not efficiently model disconti-
nuities in the data. To illustrate the problem, consider the example time series
X8 = (0, 0, 0, 0, 0, 1, 1, 1). Although there exists only one discontinuity point at
fifth position of X8, we get three nonzero coefficients (other than the average)
in the final transformed vector X̂8. The reason is that there is a great amount
of overlap among the support intervals of different coefficients at different levels.
Therefore, to benefit from the approximation power of wavelets and efficiently
model the change points in the underlying data at the same time, a new form
of basis is required.
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Dragotti et al. [3] introduce a new basis which removes the overlap among
the support intervals of corresponding wavelet coefficients at different levels.
They call this basis wavelet footprints or footprints for short. We now explain
the idea behind the footprints, assuming for simplicity piecewise constant data
only. Consider Xn with only one discontinuity at position θ:

Xn(i) =
{

a 1 ≤ i ≤ θ
b θ < i ≤ n .

(5)

where a and b are two real values. In our example X8, we have a = 0, b = 1, and
θ = 5. We transform Xn using Haar wavelet basis vectors ψi as:

Xn = x̂1ψ1 +
n∑

i=2

x̂iψi . (6)

where x̂i = 〈Xn, ψi〉.
Considering the procedure of transformation discussed in Section 3.2, only

those coefficients whose support interval include the point of discontinuity θ (i.e.,
xθ) will be nonzero (i.e., x̂i if i ∈ Sup−1(θ)). In other word, we get

Xn = x̂1ψ1 +
i�=1∑

i∈Sup−1(θ)

x̂iψi . (7)

Now, if we define a new vector fθ as the linear combination of the multipli-
cation of nonzero coefficients to their corresponding wavelet basis vectors (i.e.,
the second term in Equation 7), we obtain a representation of Xn as follows:

Xn = x̂1ψ1 + αθfθ . (8)
where αθ = 1.

We refer to fθ as the footprint for discontinuity point xθ of degree zero as it
captures a change point of degree zero.

Here, we apply the same scenario to our example time series X8. If we rewrite
X8 in terms of ψi’s we get X8 = 1.0607 ψ1

|ψ1| − 1.0607 ψ2
|ψ2| − 0.5 ψ4

|ψ4| − 0.7071 ψ7
|ψ7| .

Let f5 = −1.0607 ψ2
|ψ2| − 0.5 ψ4

|ψ4| − 0.7071 ψ7
|ψ7| . Similar to Equation 8 we get X8 =

1.0607×ψ1+1×f5. Therefore, we can represent X8 with one summary coefficient
and only one nonzero detail coefficient at position 5.

Now, we need to show that the above scenario is extendable to time series
data with m discontinuities of degree zero (piecewise constant). It is easy to see
that any piecewise constant time series with m discontinuities can be represented
as linear combination of m time series each with only one discontinuity. We use
Parseval’s theorem [20] to extend the scenario we developed so far:

Theorem 1. Let X̂ denote wavelet transformation of vector X using orthogonal
wavelets (e.g., Haar). If Xn = X1n + ...+Xmn, we have X̂n = X̂1n + ...+X̂mn.

The direct conclusion of Parseval’s theorem is that X̂n is represented in
terms of the set of summary vector and footprints fi each used in representing
Xin. That is, any piecewise constant time series with m discontinuities can be
represented with the summary vector together with m footprints.

As the previous example shows, we get a much sparser representation of the
data if we use wavelet footprints as our basis. This idea can easily be generalized
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to generate all vectors fi of degree d = 0, ..., D each with only one discontinuity
point i (i = 1, ..., n) of degree d. Using these vectors as a basis enables us
to capture polynomial changes up to degree D in time series data. Interested
readers can find the details in [23]. Dragotti et al. [3] prove that each discontinuity
of degree D at xi can be represented with the summary vector together with
maximum D + 1 footprints (i.e., f

(0)
i ,...,f (D)

i ).

4.1 Properties

In this section, we enumerate different properties of footprints.
– The set of footprints together with the summary vector constitutes a basis.
– The footprint basis is an overcomplete basis (except for the case of constant

piecewise where we have footprints of degree 0 only). Notice that when the
length of the data is n the number of footprint vectors in f

(D)
i is n× (D+1),

and hence the resulting basis is overcomplete.
– The footprints efficiently model discontinuities in time series data; a piece-

wise polynomial time series with K discontinuities, can be represented with
only K × (D + 1) footprints together with the summary coefficients. Each
footprint coefficient also contains
1. The amplitude of the discontinuity that it represents.
2. The characteristics of the two polynomials right before and after the

discontinuity point.

5 Change Detection with Footprints

We showed that nonzero coefficients in footprint transformed time series data
are representatives of the change points in the data. Therefore, a novel change
detection approach emerges by employing footprints. Throughout this section,
we assume that we have pre-computed the biorthogonal footprint basis FD. Note
that this is a one time process independent of either the data or the queries. We
would like to answer two major categories of change detection queries:
– Qd: Return change points of all degrees.
– Qda: Return change points of all degrees, their corresponding degrees and

change amplitudes.

Similar to any general SQL query, user can enforce restrictions on degree
of change point or its change amplitude. For example, user can ask for change
points of degree d where the change amplitude is greater than a threshold T .

Our approach stores the time series data in the wavelet domain. We use foot-
print basis FD as our wavelet basis. Therefore, our approach answers change de-
tection queries by returning the nonzero coefficients stored in its database. Figure
2 illustrates the process flow of our approach. We describe each part in details.

5.1 Insert/Update

Upon receiving the new data (i.e., time series), we transform it using FD and
then store it in the database. The transformation will further be explained in
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Fig. 2. Query processing in wavelet domain (on the left) and Ad hoc query processing
(on the right)

Section 5.3. To update the transformed data, approaches such as Shift-Split [9]
can be used to update the transform data stored in the wavelet domain efficiently.

5.2 Query Processing

On receiving a change detection query on a portion of the data, we retrieve the
nonzero coefficients corresponding to that portion of the data from the database.
For each nonzero coefficient f

(d)
i , we return a change of degree d at point i. If

the user is interested in changes greater than a given threshold, we return only
those coefficients that are greater than the threshold. The time complexity of
this approach is O(n), since we only need a single scan over the data.2

The pre-transformation of the data eliminates the need to restart the entire
process whenever user specifies a new degree and/or threshold for the change val-
ues. This makes our approach faster and more practical than the other change de-
tection approaches where the algorithms are highly dependent on either thresh-
old value or degree.

5.3 Footprint Transformation

The challenge here is to transform the data using the footprint basis. We propose
two different methods for footprint transformation. In both these methods, we
assume that FD and F̃D are pre-computed. Note that the computation of these
vectors is completely data-independent.

The first lazy method is mainly based on approximating the footprint coeffi-
cients by projecting the time series on the dual basis of the footprint basis. This
method is highly efficient in terms of performance.

2 This can be improved further (perhaps to O(logn)) by using an index-structure on
the coefficients.
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The second absolute method is based on a greedy iterative algorithm termed
matching pursuit [18] which is a proven approach in signal processing for repre-
senting signals in terms of an overcomplete basis. The outputs of both methods
enable us to answer change detection queries by retrieving the nonzero coeffi-
cients and reporting their positions as change points. Because of possible noise
in the data, both methods may employ thresholds to select nonzero coefficients.

The Lazy Footprint Transformation. The lazy method approximates the
coefficients of Xn by simply computing the α

(d)
i = 〈Xn, f̃

(d)
i 〉 for all f

(d)
i ’s in the

basis. During the query processing, it returns i as a change point if α
(d)
i is greater

than the user defined threshold in each footprint basis of degree d (see Section
5.2). The universal threshold u = σ

√
2 lnN suggested in [4] is an appropriate

candidate for the threshold value.
Notice that the coefficients computed by the lazy method are not the ex-

act footprint coefficients due to the overcompleteness of the basis. They only
approximate the discontinuity points. However, in Section 7 we show that the
lazy transformation performs very effectively for detecting the change points.
For each time series of size n, it is easy to see that the time complexity of the
lazy transformation is O(n2).3

The Absolute Footprint Transformation. As mentioned before, the foot-
print vectors constitute an overcomplete basis. This overcomplete basis gives us
more power and flexibility in modelling changes in the data. As a drawback,
transformation of the time series Xn (i.e., coefficients α

(d)
i ) becomes a more

challenging task. Here, in order to compute the exact values for α
(d)
i ’s we use

the matching pursuit technique to find the nonzero α
(d)
i coefficients. Due to lack

of space, we omit the details of the technique and corresponding algorithm. In-
terested readers can find the details in [23].

The set of coefficients returned using the matching pursuit technique are the
change points in the time series Xn. Notice that the coefficients computed by
the absolute approach are the exact coefficients of the footprint transformation.
We can modify matching pursuit such that the algorithm terminates after max-
imum

⌈
K
2

⌉
iterations where K is the number of change points in Xn. Since each

iteration of matching pursuit algorithm takes O(n2), the overall time complexity
of the absolute transformation becomes O(

⌈
K
2

⌉
.n2). 4

5.4 Ad Hoc Query Processing

If the data cannot be stored in the wavelet domain, we must transform it in real-
time when we receive a query. We choose between the lazy or absolute method
based on the type of query. The time complexity of this ad hoc change detection
approach is equal to the time complexity of the transformation using footprints.
3 This can be improved further by utilizing the fact that the f

(d)
i matrices are very

sparse.
4 The same as what we had for the Lazy transformation the time complexity can be

improved.
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6 Customizing Footprints for Wavelet-Based Applications

In this section, we show that our approach can be incorporated within systems
where the time series data is maintained in the wavelet domain (e.g., ProDA
[10]). An example of an approach dealing with the data directly in the wavelet
domain is ProPolyne introduced in [22]. ProPolyne is a wavelet-based technique
for answering polynomial range-aggregate queries. It uses the transformed data
from the wavelet domain to generate the result. We show that ProPolyne’s ap-
proach to answer polynomial range-aggregate queries is still feasible when the
data is transformed using footprint basis.

With ProPolyne, a polynomial range-aggregate query (e.g., SUM, AVER-
AGE, or VARIANCE) is represented as a query vector Qn. Then, the answer
to the query is 〈Xn, Qn〉. The family of wavelet basis used by ProPolyne each
constitutes an orthogonal basis. Thus, according to Parseval’s theorem, they
preserve the energy of the data after the transformation and hence we have:

〈Xn, Qn〉 = 〈X̂n, Q̂n〉 . (9)

Therefore, ProPolyne evaluates 〈X̂n, Q̂n〉 as the answer to the query Qn.
However, it is easy to see that Equation 9 does not hold for wavelet footprints

since the footprint basis is not an orthogonal basis. Here, we extend Equation 9 to
hold for the biorthogonal bases. Assume that X̂n and X̃n are the transformations
of Xn using the footprint wavelet basis, and its dual basis, respectively. Now,
according to Definitions 3 and 4, and Equation 9 it is easy to see that

〈Xn, Qn〉 = 〈X̂n, Q̃n〉 (10)

〈Xn, Qn〉 = 〈X̃n, Q̂n〉 . (11)

In practice, we use Equation 10 where the data is transformed to wavelet in
advance and the dual of the query will be computed on the fly to perform the dot
product at the query time. Hence, we are still able to answer polynomial range-
aggregate queries proposed by ProPolyne. Therefore, ProPolyne can transform
data using footprint basis and still benefit from its unique properties.

7 Experimental Results

We conducted several experiments to evaluate the performance of our proposed
approach for change detection in time series data. We compared the query re-
sponse time of our ad hoc query processing approach described in Section 5.4
with the maximum likelihood-based algorithm proposed by Guralnik et. al [8].
We chose their approach for comparison because it is the fastest change detection
algorithm that considers different degrees of change. Throughout this section,
we refer to their method as the Likelihood method. We studied how the size of
the time series (n) and the total number of its change points (K) affects the
performance of each method.
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a. Query cost vs. size of data b. Query cost vs. number of change points K

Fig. 3. Performance Comparison

We also evaluated our lazy and absolute methods by investigating the ef-
fect of the following parameters on their accuracy: 1) the minimum distance
between two consecutive change points (MinDist), 2) the maximum degree of
change points in the data (MaxDeg), 3) the maximum degree D of footprint
basis (MaxDegF), and 4) the amount of noise in the data (Noise). We represent
the accuracy of each method in terms of the average number of false negatives
(AFN) and the average number of detected false hits (AFH).

We used both synthetic and real-world datasets. We generated a synthetic
dataset D3 of 80 time series each with a size in the range of 100 to 5,000.
Each time series of the dataset D3 is a concatenation of several segments each
modelled by a polynomial of degree up to 3. Our real-world dataset include oil
and gas time series for different oil wells in California.

Notice that for the absolute method, we used a modified version of matching
pursuit introduced in [3] which terminates after

⌈
K
2

⌉
iterations. For the likelihood

method, we use the threshold value with which the method computes the most
accurate result. Sections 7.1 and 7.2 focus on our synthetic dataset as we already
know the exact characteristics of the change in their time series. This enables us
to measure the accuracy of our approach. Section 7.3 discusses our experiments
with the real-world data.

7.1 Performance

In our first set of experiments, we compared the performance of our ad hoc
change detection query processing. As the Likelihood method uses the original
time series data as input, it is only fair to compare it with our ad hoc approach.
That is, the CPU time reported for the lazy and absolute methods include both
the time for the footprint transformation of time series and that of detecting the
change points. We used footprint basis of up to degree 3 to transform the data
in the lazy and absolute methods. That is, MaxDeg = MaxDegF. Also, we used
polynomials of up to degree 3 in the Likelihood method.
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a. lower threshold values b. higher threshold values

Fig. 4. Detected change points by the absolute, lazy and Likelihood methods with the
actual change points in the data (the vertical lines)

We varied the size of time series data from 100 to 5,000 and measured the
CPU cost of each method. In Figure 3a, Lazy(i) denotes the measurements of
the lazy method in which the threshold value is i×u (u is the universal threshold
and i is simply a factor multiplied by u). As shown in the figure, our lazy and
absolute methods outperform the Likelihood method by a factor of 2 to 8 when
the size of data increases from 100 to 5,000. We also compared the performance
of all the mentioned methods by running the algorithms on overlapping chunks of
size 256 for the subset of time series with size larger than 1000. However, since
all the methods benefit from the input with smaller sizes the result diagram
shows approximately the same trend.

The theoretical time complexities of the absolute and Likelihood methods
depend on K. On the other hand, the lazy method is a series of simple projections
which are independent of the characteristics of the data. To study the effect of K
on the performance of each method, we varied K and measured the CPU cost.
Figure 3b illustrates that while the performance of both our methods remains
almost fixed for different number of change points, the CPU cost of Likelihood
method dramatically increases.

7.2 Accuracy

Our second set of experiments were [2] aimed to evaluate the accuracy of each
method in terms of number of missed change points and the detected spurious
change points (i.e., precision and recall). Figure 4 shows a small time series of
size 200 generated with polynomial segments of maximum degree 2 as well as
the true change points and those detected by each method. We used footprint
basis of up to degree 2 to transform the data and for the Likelihood method we
used polynomials of up to degree 2.5

5 Notice that the performance of the likelihood method can be improved further by
adapting the technique described in [2]. As part of our future work, we plan to
compare the performance of the improved version of the likelihood method with our
improved versions of Lazy and Absolute methods.
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Table 1. Accuracy results of all methods for cases F2 and F3

F3 F2
Method AFN Method AFN

MinDist= 5 MinDist= 5

Lazy(1.5) 3 Lazy(1.5) 3.5
Lazy(1) 2.1 Lazy(1) 3.1
Absolute 0.9 Absolute 1
Likelihood 4.5 Likelihood 4.1

MinDist= 10 MinDist= 10

Lazy(1.5) 1.9 Lazy(1.5) 2.9
Lazy(1) 0.9 Lazy(1) 2.7
Absolute 0.2 Absolute 0.5
Likelihood 1.8 Likelihood 3.0

MinDist= 20 MinDist= 20

Lazy(1.5) 0.5 Lazy(1.5) 1.1
Lazy(1) 0.2 Lazy(1) 0.6
Absolute 0 Absolute 0.1
Likelihood 0.2 Likelihood 1

MinDist= 50 MinDist= 50

Lazy(1.5) 0.3 Lazy(1.5) 0.9
Lazy(1) 0.2 Lazy(1) 0.4
Absolute 0 Absolute 0.1
Likelihood 0.2 Likelihood 0.8

There are ten actual change points as shown in Figure 4 and the minimum
distance between each two change points is 20. In Figure 4a, the likelihood and
lazy(1) methods both miss the change point at t = 120. Also, Likelihood method
detects two false hits at points t = 51 and t = 90. And for the change that occurs
at point t = 100, it detects two change points at t = 98 and t = 101. The lazy
method returns no false hit. The absolute method returns all 10 actual change
points at their exact positions without any false hit. It is interesting to note
that the increased threshold values result in ignoring the minor change points
at t = 120 and t = 160 by all the methods as shown in Figure 4b. However the
likelihood method still has a false hit at t = 51 and for the change that occurs
at point t = 100, it also detects two change points at t = 98 and t = 101.

Notice that using our footprint-based approach, we also acquire valuable
information about the degree and amplitude of each change point. For example,
at point t = 40, we have a discontinuity caused by a quadratic segment following
a constant segment. Also at point t = 140, we have a discontinuity caused by a
constant segment following a linear segment.

We repeated the previous experiment on time series of the dataset D3 for
which K = 10. We varied the minimum distance between each two consecutive
change points in the data (MinDist) from 5 to 50. Table 1 shows the average
number of false negatives (AFN) for all the methods. Column F3 shows the
results for the experiment where we used footprints of degrees 0, 1, 2, and 3.
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Note that in this case MaxDegF is identical to MaxDeg. Likewise, column F2
shows the case where we used footprints of degrees 0, 1, and 2. The Likelihood
method also used polynomials of degrees up to 2 (resp. 3) for case F2 (resp. F3).

The Effect of MinDist. As Table 1 depicts, our footprint methods always
outperform the Likelihood approach in terms of accuracy with absolute being
the superior method. With small values of MinDist, the accuracies of all methods
dramatically downgrade. However, even for close change points, the absolute
method misses only one of 10 change points on average. This yields that the
absolute method is resilient to the effect of closeness of change points.

The Effect of Noise. In our third set of experiments, we fixed the minimum
distance between change points to 10, threshold value equal to 1.5 × u, and
FD = F2. Using polynomials of degree up to 2, we generated two noisy datasets.
We added noise with the standard deviation of about 1/15 to 1/30 and 1/150
to 1/300 of the average of values in time series to generate two noisy datasets
N oisy(1) and N oisy(0.1), respectively. Table 2 shows the accuracy results of
applying all three methods on both datasets.

Table 2. Accuracy results of all methods for datasets N oisy(1) and N oisy(0.1)

Noisy(1) Noisy(0.1)
Method AFN AFH Method AFN AFH

Lazy(1) 5 1.2 Lazy(1) 3.5 1
Absolute 2 0.9 Absolute 1.5 0.8
Likelihood 2.8 3 likelihood 2.6 3

7.3 Experiment with Real-World Datasets

Finally, the last set of experiments focuses on real-world time series data. We
tested our methods on different time series generated within the oil industry.
Here, we only report the results on three time series OIL1, OIL2, and GAS
obtained from Petroleum Technology Transfer Council6 due to lack of space.
These time series are collected from wells in active oil fields in California. OIL1
and OIL2 include oil production during 1985-1995 and 1974-2002, respectively.
GAS includes the gas production rate measured in a 2300 day period, sampling
once every 15 days.

Unlike synthetic time series, here we do not know where the exact change
points are. Therefore, we evaluated our methods visually based on the position
of their detected change points. Figure 5a, 5b and 6 depicts the change points
detected in time series OIL1, OIL2 and GAS, respectively.

Notice that our absolute method does not identify any change at points such
as t = 235 in Figure 5b. The reason here is that the segment corresponding to
the range [228, 240] can be modelled by a polynomial of degree 3. Therefore,
t = 235 is not a discontinuity of degree 3 in OIL2.
6 http://www.westcoastpttc.org/.
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Figure 6b illustrates the detected change points in GAS data by each of the
three methods when they use higher threshold values as compared to those used
in Figure 6a. Comparing Figures 6a and 6b shows that the former detects all
small changes while the later identifies only major changes in the data. Notice
that once our methods detect changes using a given threshold value, changes
above different thresholds can be identified only by performing a simple scan
over all the coefficients. However, with the likelihood method, we need to rerun
the whole process when the user changes her threshold value. For example, we
ran the likelihood method separately for the results of each of Figures 6a and 6b.

a. OIL1 b. OIL2

Fig. 5. Detected change points by the absolute, lazy and Likelihood methods

a. lower threshold values b. higher threshold values

Fig. 6. Detected change points by the absolute, lazy and Likelihood methods

8 Conclusions and Future Work

We studied the problem of detecting changes in time series data. We formally
defined the degree of change for change points in the time series data. Our defi-
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nition is closely related to the difference in two polynomial functions fitting two
adjacent segments of data. We then described our novel approach which employs
wavelet footprints for defining discontinuities of different degrees. We proposed
lazy and absolute methods to transform the data using footprint basis. Finally,
we compared the performance and accuracy of our footprint-based approach with
the maximum likelihood method [8] through exhaustive sets of experiments with
both synthetic and real-world data. The results show that our approaches are
faster, more accurate and return more information about the changes. In ad-
dition their performances are less sensitive to user defined parameters such as
threshold values and number of changes.

In this paper, for the first time we exploited the interesting characteristics
of footprints for change detection in time series data. Motivated by our results,
we plan to develop a footprint-based tool for real-time change detection on data
streams.
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Abstract. Most recent research on querying and managing data streams
has concentrated on traditional data models where the data come in the
form of tuples or XML data. Complex types of streaming data, in par-
ticular spatio-temporal data, have primarily been investigated in the
context of moving objects and location-aware services. In this paper, we
study query processing and optimization aspects for streaming Remotely-
Sensed Imagery (RSI) data. Streaming RSI is typical for the vast amount
of imaging satellites orbiting the Earth, and it exhibits certain charac-
teristics that make it very attractive to tailored query optimization tech-
niques. Our approach uses a Dynamic Cascade Tree (DCT ) to (1) index
spatio-temporal query regions associated with continuous user queries
and (2) efficiently determine what incoming RSI data is relevant to what
queries. The DCT supports the processing of different types of RSI data,
ranging from point data to more general spatial extents in which the in-
coming imagery can be single pixels, rows of pixels, or discrete parts
of images. The DCT exploits spatial trends in incoming RSI data to
efficiently filter the data of interest to the individual query regions. Ex-
perimental results using random input and Geostationary Operational
Environmental Satellite (GOES) data give a good insight into process-
ing streaming RSI and verify the efficiency and utility of the DCT .

1 Introduction

The current interest in data stream management [1,2,6] has driven various new
processing methods and paradigms for streaming data, such as adaptivity [11,15]
and operator scheduling [3,5]. Some proposed approaches have extended to the
realm of spatio-temporal data, where new methods defining the spatial relation-
ships between queries and data streams are being investigated, in particular in
the context of continuous queries over moving objects (e.g., [12,18,19]). A new
area of research where these streaming data paradigms can have a great impact
is in applications surrounding remotely-sensed geospatial image data originating
from the various satellites orbiting the Earth.

Figure 1(a) gives an overview of a data stream management system (Dsms)
for Remotely-Sensed Imagery (RSI) data. Such data has a number of character-
istics that are different from traditional streaming relational or spatio-temporal
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data typically described in a Dsms context. One aspect is that the incoming
RSI data stream is very large, usually arriving as discrete parts of binary im-
age data. Another important point is that streaming RSI data is more highly
organized with respect to its spatial and temporal components than is usually
assumed for more generic types of spatio-temporal data. This organization has
some profound effects on how data and queries can be processed in a RSI Dsms.
The organization of the incoming RSI data affects the query evaluation and the
index structures used. In this paper, we discuss in detail an indexing scheme
for queries in such a system. This structure, the Dynamic Cascade Tree (DCT )
utilizes the characteristics of the RSI data and facilitates the efficient routing of
relevant portions of the streaming data to query operators.

Exactly how data arrives varies for different RSI data streams, but generally
image data arrives as discrete contiguous packets of data. The packets may be in-
dividual pixels or organized sets of pixel data, depending on the instrument. Dif-
ferent types of RSI data have different orderings and structures. Figure 1(b) illus-
trates the common structures, including image-by-image, row-by-row, and pixel-
by-pixel. Many satellite instruments, such as the Geostationary Operational Envi-
ronmental Satellite (GOES) weather satellite [7], obtain RSI data in a row-by-row
fashion. Although conceptually the data collected by GOES is represented as a set
of complete images, the images are incrementally received in row-scan order where
pixels are delivered a few lines at a time. Other types of sensors gather data on a
pixel-by-pixel basis. These include imaging sensors with large pixel sizes, or active
sensors such as Light Detection and Ranging (LIDAR) sounding instruments.

Within a packet of data, the spatial organization, represented as image pixels,
is well defined. The ordering of the packets is also well defined, and consecutive
data packets from an RSI data stream are in close spatial and temporal prox-
imity. Data from an RSI stream usually arrive only at one or a small number of
spatial locations for a given instrument.

The above scenarios illustrate an important characteristic exploited in the
following approach. Consecutive packets in an RSI data stream have close spatial
and temporal proximity. In the DCT , this spatial trend is used to influence how
multiple queries against a stream of RSI data are processed.

1.1 Problem Description and Objectives

Most continuous queries against an RSI data stream include operations to re-
strict the spatio-temporal data to specified regions of interest. Such Continuous
Query (CQ) regions are part of more complex queries users issue against a Dsms.
Other, more complex operators of a query against an RSI data stream, such as
map projections or spatial and value transforms, typically follow a spatial restric-
tion as they are much less selective. Clearly, query regions specified by different
users may overlap. This is typical for RSI streams that have geographic hot spots
or regions that are of interest to many users. An RSI stream management sys-
tem needs to (1) efficiently intersect incoming image data with a possibly large
number of query regions, and (2) it should provide a means that allows queries
to share the incoming data for further processing. These aspects are illustrated
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Fig. 1. Geospatial data stream system and characteristics of streaming RSI data

in Fig. 1(c), where one region query Ri is associated with each of the user queries
Qi. In the figure, incoming RSI data intersects with two query regions R1 and
R2 (left). Instead of filtering incoming data for each individual query Q1, Q2,
and Q3 (middle), a mechanism is needed to determine what incoming image
data is relevant to what queries and pipeline the relevant data to subsequent
query operators. The DCT is such a mechanism that filters and streams rele-
vant data to subsequent operators of individual queries, here only Q′

1 and Q′
2

(right). To efficiently process these spatial restrictions, the organization of the
incoming data stream needs to be considered.

The Dynamic Cascade Tree (DCT ) is a space efficient structure that indexes
query regions that are part of more complex queries against RSI data streams. In
particular, the DCT supports the efficient processing of a moving data stream.
A data stream query is one that, for a window describing the spatial extent of
the incoming image data (pixel, row, or image), will identify all CQ regions that
spatially and temporally overlap the data window. This allows the pipelining of
image data to those queries to which the data is of interest, and it facilitates
the sharing of image data among queries in the case of non-disjoint query re-
gions. The design of the data structures and algorithms underlying the DCT is
guided by some important requirements, which are typical for RSI data streams:
(1) The DCT indexes CQ regions and is sufficiently small to be kept in main
memory. It also has to support efficient insertion and deletion of CQ regions
associated with user queries. (2) The geospatial data stream comes from a single
source corresponding to the real-time streaming satellite data. Sequential stream
data are usually in close proximity and might have a regular trajectory through
space. The DCT has to account for both size and spatio-temporal trends of the
incoming data. (3) Because of the size of the CQ regions and the size and shape
of the incoming stream data, selectivity is high. For example, incoming RSI data
packets intersect about 20% of CQ regions for typical GOES applications.
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1.2 Structure of the Paper

Section 2 describes the DCT and shows how it filters incoming image data for
multiple CQ regions. Section 3 details the performance of the DCT in general
terms and discusses the parameters affecting performance. In Section 4, several
experimental results are presented. These include experiments on random data
to study the performance under changing input parameters, and experiments
closer to real world scenarios using GOES data as a practical example. Section 5
describes related research for similar problem domains. Section 6 concludes the
paper and highlights future research directions.

2 The Dynamic Cascade Tree (DCT)

The DCT data structure is designed to use a single rectangular window of pixel
data from a RSI data stream as input to a window query on a number of CQ
regions associated with user queries, as illustrated in Fig. 1(c). The DCT uses
the spatial extent of the most recent input window to quickly answer multiple
queries on a stream of RSI data. That is, for a given input window from the
stream, the DCT returns all CQ regions that overlap this input. For streaming
RSI data, input windows correspond to individual packets of contiguous image
data. The regions correspond to the spatial extents of the individual CQ queries
registered in the Dsms.

The most important aspect for RSI data in terms of designing the DCT
is that the incoming stream data comes as contiguous data packets that are
typically in close spatial and temporal proximity to the previous data. Our goal
is to take advantage of this proximity and to develop an index structure that
improves the search performance for subsequent parts of the stream.

The DCT structure realizes an index that is dynamically tuned to the cur-
rent location of an input RSI window. For the spatial extent of the most re-
cent input window, the DCT maintains the CQ regions around that window
where the result set will change. New RSI input can be processed very quickly
if the new window has the same result set of CQ regions as the previous win-
dow; and will incrementally update the result set otherwise. The structure is
designed to be small, and allow for fast insertions and deletions of new CQ
regions registered by the Dsms. It assumes some particular characteristics of
the input stream, notably that the stream changes in such a way that many
successive data extents from the RSI stream will share the same result set of
CQ regions. Therefore, the cost of maintaining a dynamic structure can be
amortized over the incoming data stream. Sections 3 and 4 examine in more
detail the actual performance with different CQ regions and data stream pa-
rameters. First a general overview of the components of the DCT is given, fol-
lowed with details on how the DCT is built, maintained, and queried. Hart [10]
gives a more complete algorithmic description of the DCT , including a sim-
pler point-based version of the DCT and algorithms for insertion, deletion, and
queries.
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2.1 DCT Components

Figure 2 gives an overview of the DCT . The figure shows a set of rectangular CQ
regions a, b, . . . , f , and a rectangular input window corresponding to the most
recent data in the RSI stream. Also shown are the associated structures that
make up and maintain the DCT . This figure describes a DCT that indexes two
dimensions, although the DCT can be extended to more. The figure shows the
dimensions being cascaded first in the x dimension and then in the y dimension.
The DCT maintains separate trees for both the minimum and maximum end-
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Fig. 2. Dynamic Cascade Tree (DCT) with six CQ regions, a, b, . . . , f . Shown are the
indexed regions, the current data stream input window, and the cascading trees, X−,
X+, Y−, Y+, A, and the window node pointers, wx−, wx+, wy−, wy+ that make up the
data structure. � and � represent the minimum endpoints of the regions in x and y
dimension, � and � the maximum endpoints of the regions in x and y dimension

points of each of the CQ regions for each dimension. In Fig. 2, these are denoted
as X− and X+ for the x-dimension, and Y− and Y+ for the y-dimension and are
termed endpoint trees in the DCT . A final tree, A, maintains an index of all the
regions that overlap with the current data in the input stream. The figure shows
these trees notionally, emphasizing their ordering and structure; the endpoint
trees using one endpoint and the unique identifier rid for each indexed region,
and the A tree only using rid. The values of the nodes contain pointers back to
the regions, or the associated CQ query in the Dsms.

Which of the CQ regions are included in the trees varies with the dimension.
The trees for the first dimension, x, contain the minimum (in X−) and maximum
(in X+) endpoints for every CQ region. Y− and Y+ do not contain the endpoints
of all the regions in DCT , but only the regions with x extent that overlap the
current data stream’s x extent. This is easily expanded to more dimensions,
where each additional dimension adds another set of trees to the DCT that hold
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the minimum/maximum endpoints of the CQ regions in this new dimension.
Again, each of these new trees only indexes those regions that overlap the current
window up to that dimension.

A is the final tree and contains all the regions that overlap with the current
window in all dimensions. Just as the trees in the y-dimension contain only a
subset of the regions that are indexed in the x-dimension, A contains the subset
of the regions where the y-dimension of the window and the CQ regions overlap.
These tree structures in each dimension make a cascade of indices, each a subset
of the previous index.

In addition, pointers are maintained identifying where the current window is
located. This is accomplished by pointing to nodes within each of the endpoint
trees for each of the dimensions in the DCT . The pointers match the closest
endpoint with a value less than or equal to the current window location. These
are pointers to existing nodes and not the actual values of the window endpoints
themselves. The nodes correspond to line segments and these pointers identify
regions where the current result set is still valid.

Figure 2 shows these pointers in each dimension. They are designated as wx−
and wx+ for the x-dimension, and wy− and wy+ for the y-dimension. Note that
the minimum window pointers, for example wx−, point into the tree of maximum
endpoints for the CQ regions. Similarly, the maximum window pointers are in the
trees of minimum endpoints. By moving these pointers along their corresponding
trees, the DCT constructs a new result set of CQ regions from the previous result
set for a new input window. A more detailed explanation is given in Sect. 2.4.
In short, imagine as a spatial extent grows in size, new CQ regions are added
to the result set as the maximum edge of the extent crosses the minimum edge
of new regions. Similarly, regions would be added as the data extent minimum
crosses new region maximum edges. The same idea applies for shrinking edges.
Tracking the movement of the spatial extent of the incoming data stream from
input window to input window is how the DCT incrementally maintains a result
set of intersecting CQ regions.

The endpoint trees of the DCT are implemented using simple binary tree
structures that support insertion, deletion, and iteration of nodes in both forward
and reverse directions. The keys for each node in the endpoint trees are made up
of two values, one corresponding to an endpoint value for each CQ region in one
dimension, and one corresponding to a unique identifier for each region, rid. The
two values are combined so that spatial order is maintained. Different CQ regions
that share an endpoint value are differentiated by the rid’s. Individual nodes corre-
spond to the half-open line segments between two endpoints in a single dimension.
The trees all have an additional node with a minimum endpoint that is less than
any possible region, shown as a dot in the trees of Fig. 2. These allow half-open line
segments to completely cover any potential location of the incoming data stream.

2.2 DCT Initialization

The DCT is initialized by creating the minimum/maximum endpoint trees for
each dimension of the DCT . Initial nodes for each endpoint tree are created
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by adding a node with a value that is less than any possible value for a region
in each dimension. These are shown as dots in the trees of Fig. 2. The current
window location is then created by assigning the pointers wx−, wx+, wy−, and
wy+ to the appropriate minimum node for each of the endpoint trees in each
dimension. The A structure is initially empty.

2.3 Inserting and Deleting CQ Regions

For inserting a new region r, first the x-dimension endpoints are inserted into
X− and X+. The new region is checked for overlap with the current stream
window extent, that is both wx− < rx+ and wx+ >= rx− hold, where rx+ and
rx− are the maximum and minimum values of the new region in the x dimension.
If the new region does overlap the current window, then the region is also added
into trees Y− and Y+. If the new region overlaps in this dimension, wy− < ry+
and wy+ >= ry−, the region is added into A using rid as the index. Insertion
maintains the validity of the result set A with respect to the current stream
window.

Deletion is similar, following the cascade of the DCT , with one modification.
The current window pointers need to be checked to verify that they are not
pointing to a node that is being removed. If they are, then they need to be
modified. For example, to delete region r, if wx+ points to this region, then
decrement wx+ to the previous node in X−. If wx− points to the maximum
endpoint of r, then decrement wx− to the previous point in X+. These changes
maintain the validity for Y−, Y+, and A. The endpoints of r are then deleted
from X− and X+. If the region intersects the current window, it needs to be
deleted in a similar manner from Y− and Y+, and potentially A as well.

2.4 Queries

Figure 3 describes the changes to the DCT for new stream data (windows) with
new extent. As X− and X+ are not changed, only the values of Y−, Y+, and A are
shown. Figure 3(a) shows the query change due to the movement of the window
in the x dimension, and 3(b) shows the change due to the movement in the y
dimension. Just as the trees for each dimension and A need to be maintained
when new regions are inserted and deleted, each new stream window requires
maintenance of these trees as the window changes its location. These changes
are made incrementally on the existing structure of the DCT .

Since Y− and Y+ contain regions overlapping the current window’s x ex-
tent, when new data arrives with a different x-extent, Y−,Y+, and A need to
be modified. These modifications occur when the window region endpoints cross
a boundary of a CQ region. For each x region boundary in the DCT that is
crossed, the y-dimensional trees need to be modified to account for inclusion or
deletion of this region. A similar method needs to be associated with boundary
crossings in the y-dimension, requiring modification of A.

The algorithm for reporting overlapping CQ regions for a new window w =
{(wx−, wy−), (wx+, wy+)} begins by traversing the endpoint trees in the x dimen-
sion. Figure 3(a) shows an example where the new window region has increasing
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Fig. 3. Query on a new input stream window. The original window position (as in
Fig. 2) is the hatched box on the left, and the region of the new window is the hatched
box on the right. (a) shows the updated Y−,Y+, and A structures after moving the
window in x dimension; (b) shows the final structures after moving in y dimension

minimum and maximum x edges. An increasing minimum edge implies that the
movement can result in CQ regions being deleted from the result set A. The
movement of wx− is tracked by incrementing along the nodes of X+. Moving
wx− to a new node corresponds to a boundary crossing of the window minimum
with a region maximum, and in this case corresponds to one region, e, being
removed from Y− and Y+. This deletion is cascaded to A as well. The increasing
maximum, wx+, corresponds to a movement that would add CQ regions. How-
ever, in this case, although the window maximum is greater, no minimum nodes
are crossed, and wx+ points to the node that contains the minimum endpoint
of the region d. The net result of moving the window in the x dimension is that
region e is removed from Y−, Y+, and A.

Next, the movement of the window in the y dimension is accounted for as
shown in Fig. 3(b). In this case, although the y minimum of the window has
changed, no maximum boundaries are crossed, and wy− remains pointing to the
maximum value of region f . Moving the window maximum in y, however, results
in the minimum edge of region a to be crossed. wy+ now points to the minimum
edge of a, and a is added to the result set A.

This example shows one type of movement of the window region, but the
same algorithm works for all changes of the window region. The window can
grow and contract on all sides, or move in any direction. The algorithm works
the same way; each edge of the window query is handled separately either adding
to or deleting from the subsequent trees and the final result, based on the direc-
tion of movement of the edge. There is one caveat to this algorithm for updating
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the DCT based on the movement of edges individually. Without modification
of the above algorithm, the expansive movements of the new window need to
be performed before the shrinking movements. Large movements of the window
can produce movements across both edges of a CQ region. Expanding before
shrinking prevents a region from being deleted first on a shrinking movement,
and then erroneously inserted back on expansion. Executing deletions first, how-
ever, is preferable as they decrease the size of the trees in the DCT . To allow
shrinking movements first, during the expansive movements, range checks need
to verify that the region indeed belongs to the overlapping set before insertion
into subsequent trees.

3 DCT Performance

The window query performance of the DCT , i.e., determining which CQ regions
intersect with a new incoming stream window, is highly dependant on the loca-
tion of the CQ regions, the properties of the input window, and the interaction
of these parameters. For window queries over n CQ regions, with k being the
result count, the execution time for window query can range from O(k) in the
best case, when the result set is the same as the previous set to O(n lg n + k) in
the worst case, when every region is entered in a single movement of the spatial
extent of the incoming window. Before looking at some experimental results,
there are some simple guidelines to consider for the application of the DCT .

3.1 Region Insertion and Deletion Cost

The DCT data structure is small and robust to many insertions and deletions
of CQ regions. Insertions and deletions take O(lg n) time as the query region
is potentially added to the endpoint trees in some constant dimension and A.
These trees are simple to maintain dynamically in O(n) space.

3.2 Query Cost Versus the Number of Boundaries Crossed

The DCT is designed for trending data, which can be measured by the number
of region boundary crossings from one window query to the next. The structure
works best when the number of region boundaries crossed by successive input
windows is not large. When no boundaries are crossed, then no internal lists
are modified, and reporting CQ regions runs in O(k) time. When a boundary is
crossed in movement of the window, then each region with a crossed boundary
needs to be inserted into or deleted from subsequent endpoint trees. This is true
for at least one set of endpoint trees or A, even for CQ regions whose domains
in other dimensions do not overlap the new window and thus do not contribute
to the final result. The cost of a window query in this case can be as high as
O(n lg n+k), since all CQ regions could potentially be inserted into dimensional
trees during one window query.

The DCT data structure indexes somewhat lazily in the sense that for in-
sertions of new regions that do not overlap the current window, only the first
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dimension is indexed, and not the other dimensions. The indexing costs on win-
dow queries can be thought of as finally incurring those indexing costs. However,
the problem with the DCT is that these costs can occur many times in the mo-
tion of the input stream data. Rather than indexing region values once, the DCT
re-indexes a subset of points multiple times as boundaries are crossed. The hope
is that many successive window queries will be in the same region with the same
result, and that the low cost for those queries will make up for the extra cost of
maintaining a dynamic index.

3.3 Trajectory of the Trending Windows

Another aspect affecting performance is the movement trajectory of the input
windows. For example, consider a DCT in two dimensions as shown in Fig. 2
with trajectories that are monotonic in the x and y dimensions. In this case, CQ
regions are inserted into the y endpoint trees and A at most one time, and once
more potentially for deletion. The total time for maintaining the DCT then is at
most O(n lg n), fixing a bound on the dynamic maintenance costs. For m window
queries over that trajectory, the cost of all queries would be O(n lg n+mk) where
k is the average number of results per window query. Similar savings exist for
trajectories that are only generally monotonic, such as most RSI data streams.

On the other hand, more erratic window trajectories can result in poor per-
formance. Consider a window movement that repeatedly crosses all n region
boundaries. Each window query iteration would require O(n lg n) time, as the y
dimensional trees are repeatedly made up and torn down.

Also, the DCT as described in the above figures, which indexes on x and
then y, favors windows that trend in the y direction over windows that trend in
the x direction. This is because boundary crossings in the x dimension have to
modify more trees, and the trees tend to be bigger, so they take more time. In
our examples, movements in the y dimension only modify A, the smallest tree
in the DCT . Also, movements in the x direction result in insertions into Y− and
Y+ that can be somewhat wasted in the sense that these CQ regions may never
contribute to a final result set, whereas boundary crossings in the y direction will
always affect the result set. Although, the time it takes to update the DCT due
to a boundary crossing is O(lg n), for either x or y dimension, y modifications
will always be faster.

This shows that order in the cascade is very important, and dimensions that
see more boundary crossings for successive window queries into the DCT should
be pushed deeper into the structure. Boundary crossings are of course dependant
on the trajectory of incoming windows and the organization of the regions in
the DCT . Section 4 tests and quantifies some of these performance features.

4 Experiments

To test the performance of the DCT , two experimental setups were used. The
first tests are on randomly moving stream data (windows) and random CQ



Evaluation of a Dynamic Tree Structure for Indexing Query Regions 155

regions, with a number of variations on specific input parameters. The second
experiment was developed to more closely replicate the queries made on Dsms
with GOES RSI data as input, and more realistic region parameters.

Comparisons were made to an existing in memory R*-tree implementation
from the Spatial Index Library [9]. For better comparison, the DCT implemen-
tation included some components from this same library. All trees in this im-
plementation of the DCT were simple set objects from the Standard Template
Library (STL) [22]. The total size of this experimental DCT implementation
was about 600 lines of C++ code. All experiments were run on a single 1.6 GHz
Pentium M CPU with a 1MB L2 cache and 512MB of main memory.

4.1 Random Continuous Queries with a Random Data Stream

The more extensive tests were run using a set of CQ regions that were randomly
located throughout a two dimensional space, with some variation of parameters
as shown in Fig. 4(a). For most tests, the input stream window moved ran-
domly through the region, with the default parameters shown in Fig. 4(a). The
CQ regions were distributed uniformly throughout a square region. Some region
parameters are modified for certain tests, these tables show the default values.
Aspect is the ratio of lengths x

y of the spatial extent of the input window. For
most tests, input windows moved in a random direction from one window to the
next. Sometimes, the extent of the input windows would trend off the region of
interest. When this occurred, a new starting point within the region was chosen
to reset the window location.

These experiments do not correspond too closely to any real world applica-
tion, but are instructive in testing the performance of the DCT with respect to
various parameters. All experiments plot the average response time for a window
query as a function of a single parameter. All experiments were run using 4K
and 16K CQ regions.

Figure 4(b) shows the average window query time while varying the average
distance moved from on window to another. The direction of the move was
randomly determined. This is one of the most important parameters to consider
when using the DCT . The windows must come close to one another for the
index to work effectively. As expected, while the R*-tree is insensitive to this
parameter, the DCT performance is very dependant on the distance moved for a
window. As the distance between windows increases, the amount of information
that can be shared in the trees of the DCT becomes less and less. For data in
the input stream at a size of 1% of the total area, a move over a distance of
2% virtually eliminates all sharing of information between window queries. At
what point the distance between queries becomes limiting is dependant on other
application parameters. For example, as more regions are added into the DCT ,
more boundaries are likely to be crossed over the same distance moved.

The size of the stream input window spatial extent also affects the perfor-
mance of the DCT . In general, windows with a larger spatial extent would be
expected to share more results from query to query and therefore improve the
performance of the DCT . Figure 5(a) compares the DCT to the R*-tree for dif-
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ferent incoming input window extent sizes. The average response time increases
for both implementations, but less so for the DCT . For this experiment, the
result set for the window queries increases with window query size as well, so it
is expected that the response time increases with stream data extent. The DCT
results are somewhat artificially high for another reason. As was described, the
query window is relocated to a new random location when the window trends off
the experiment’s region. Since this is more likely to occur with a larger extent,
more of these relocations occur in those experiments, and since each relocation
corresponds to larger query distance movements in the DCT , this increases the
average distance between data in the stream.

As described in the introduction, the intent of the DCT is for use in streaming
RSI, and these usually entail incoming data packets of a row, or small number of
rows of data. Since these correspond to the extents of the individual data in the
incoming geospatial data stream, DCT queries can have a high aspect ratios,
that is, x

y 
 1. Figure 5(b) shows the change in response time as a function of
aspect ratio. The R*-tree performance is slightly degraded as the aspect ratio
increases, while the DCT performance remains insensitive to this parameter.
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Fig. 5. Average window query times as a function of area of the window (a) and aspect
ratio of spatial extent of the stream windows (b)
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In Sect. 3, we described how the DCT can be affected by the average trajec-
tory of the successive data (windows) from the stream. Performance is expected
to improve as the window trajectory aligns with the dimensions farther down
in the DCT cascade. Figure 6(a) illustrates this gain. As expected, the R*-tree
is insensitive to this parameter, whereas the DCT ’s performance increases by a
factor of two based on the trajectory of the window.
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Fig. 6. Average query times as a function of trajectory of the input window (a), and
size of CQ regions (b)

Figure 6(b) shows the affect of the average size of the CQ regions on the
DCT performance. As the size of the regions increases, the average response time
increases for both search structures, due in part to the fact that more regions
overlap with each individual window. The R*-tree slows down more than the
DCT , since more of the results from successive window queries can be shared
from query to query. This is an important consideration for applications where
the CQ regions are large.

In summary, the DCT performance is affected by the number of region
boundaries crossed for successive window queries, and the trajectory of the win-
dow. Also, the size of the CQ regions and input data extent affect performance.
Often the performance changes are different than seen in the more typical R*-
tree. How the DCT performs under more realistic situations is described next.

4.2 GOES Experiment

From the discussion of the DCT performance and the experimental results for
random windows and regions, the parameters associated with higher perfor-
mance of the DCT can be anticipated. These include: (1) relatively large ex-
tents of data in the stream, possibly with a high aspect ratio, (2) small distances
from data to data in the stream, and (3) a regular trajectory of the data in the
stream, with the DCT tuned to that direction. The DCT also works well with
large CQ regions, having a relatively high selectivity. These are all aspects of a
typical satellite RSI data stream.
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For a more realistic scenario for the DCT , an experiment using queries for
weather satellite data from the National Oceanic and Atmospheric Administra-
tion National Oceanic and Atmospheric Administration (NOAA) GOES satel-
lite [7] was developed. Figure 7(a) gives an overview of the GOES sensors. The
GOES satellite continuously scans a hemisphere of the Earth with two sensors,
the Imager and the Sounder. Imager data arrives row-by-row, whereas Sounder
data arrives more in a pixel-by-pixel manner. The experiment uses Imager data
as input. GOES offers a continuous stream of data for regions ranging from the
continental United States to a hemisphere centered near Hawaii. Each complete
image at some time is termed a frame. Data from the GOES visible channel
comes in blocks that contain 8 rows of data. Other channels from the GOES
imager come in blocks of 1 or 2 rows. The number of columns in a row varies
from frame to frame. An entire frame of data is reported 8 rows at a time from
North to South. New frames start from their most northern extent. On average
there are about 5125 rows per frame, which means that for every frame start that
requires a long traverse through the DCT structure, there are about 640 small
steps downward in the y direction. Query regions also tend to be approximately
square regions covering relatively large regions.

Imager

4 [km2] pixels
5 bands

1-8 rows at a time
Data arrives by row(s)
[2, 500 − 17, 000]2 size

Sounder

19 Spectral bands
64 [km2] pixels

(a) GOES satellite scans

Contributions

30% North America
15% West Coast
15% Northern Hemi
15% Hemisphere
9% California
9% Mexico
2% Random (1K x 1K)
5% Random (6K x 4K)

from 5000 regions

Region
Variations

Area 0.8-1.2
Aspect ±10%
Center ±10%

(b) Query region statistics

Fig. 7. GOES based DCT experiment

GOES streaming RSI data is well suited to the DCT . In each frame, the data
trends only in the downward direction and incrementally. Therefore, endpoints
are only added into the X−, X+ structures one time, limiting the maintenance
time to O(n lg n) for each frame. For normal GOES data, the starting column of
each row does not change within a frame, and the Y−, Y+, and A structures are
the only structures that change in determining which regions overlap any given
set of incoming streaming rows of data.

For the experiment, 5000 regions were indexed. Rather than randomly locat-
ing these regions throughout the image domain, they were preferentially located
around a small number of “hot spots” in the hemisphere. This more closely re-
lates to real world scenarios, where specific parts of the RSI data are requested
by a large numbers of users. Although the general area of the queries was fixed to
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a small number of locations, the individual region centers, total sizes and aspect
ratios were varied for each region. This corresponds to many users requesting
slightly different particulars for a general region of interest. A small fraction of
random regions was also included in the experimental setup. Figure 7(b) de-
scribes the parameters for the CQ regions. The table shows the various regions
and their contributions to the total regions. The other table shows the variation
of the individual regions. The figure graphically depicts the experimental setup.

10,000 window queries were performed on the CQ regions. The RSI data
corresponding to the input data stream were taken from a sample of the GOES
West Imager instrument, each query corresponding to 8 rows of data. Depending
on some assumptions about other aspects of a Dsms indexing GOES data, this
corresponds to somewhere between 7.5 to 60 minutes of streaming time.

Again, the DCT was compared to the in-memory R*-tree implementation.
The R*-tree implementation required 48 seconds to perform all the queries, for
an average query time of 4800 [μs]. The DCT performed the queries in 9 seconds,
900 [μs] per query. It is also interesting to note that of those nine seconds for
the DCT , only 0.88 seconds where used in the maintenance of the DCT and
its structures. Nearly all the other 8.22 seconds involved copying the final result
A structure into new lists for output. This was done to match the output of
the R*-tree, but scenarios can be envisioned where applications access the A
structure directly after a query, reducing this overhead cost.

5 Related Work

This work is an extension of a more simple Dynamic Cascade Tree (DCT ), first
proposed to efficiently restrict streaming spatial data points to specified regions
of interest [10]. That structure defined the problem as solving many stabbing
point queries, where the incoming data stream was a single moving point used for
each query. The DCT proposed in this paper aims to allow many spatial regions
to be evaluated simultaneously as the stream of input spatial data arrives in the
Dsms. The obvious application of the DCT is in multi-query evaluation, where
a single operator uses the DCT structure to perform the spatial restrictions for
a large number of queries, see Fig. 1(c). Similar multi-query optimizations have
been discussed in streaming databases where they have been described as group
filters [15,16] and in spatio-temporal databases where this optimization has been
described as query indexing [19].

Many data structures have been developed for one and two dimensional win-
dow queries including among others, interval trees, priority search trees, and
segment trees [4,20]. Space partitioning methods of answering window queries
include quadtrees, hashes, and numerous variants of R-trees.

The common methods for solving window queries in two dimensions are
multi-level segment trees [4], interval trees [20], and R-trees [8]. It is difficult
to modify these methods to take advantage of trending data. Using multi-level
segment trees, one dimension of the region is stored in a segment tree, while
the second dimension is indexed with an associated interval structure for each
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node in the first segment tree. Storage for these structures can be O(n lg n),
with query times of O(lg 2n). Dynamic maintenance of such a structure is more
complicated and requires larger storage costs [14]. It is difficult to modify the
multi-level segment tree to improve results for trending data. If the input window
moves a small distance, which does not change the query result, it still would
take O(lg n) time to respond. That is because even if every node in the multi-
level segment tree maintains knowledge of the previous point, it would still take
lg(n) time to traverse the primary segment tree to discover that no changes to
the query result occurred.

Interval trees yield an optimal worst-case space and query time solution to
the window query problem, O(n) in space and O(n lg n+k) in query time, where
k is the number of regions intersected with the given region. However, interval
trees are static structures, because all the region intervals need to be known in
advance to construct the trees. Also, like segment trees, it is difficult to modify
interval trees to take advantage of data trendiness.

R-trees solve window queries by traversing through minimum bounding rect-
angles that include the extent of all regions in the sub-tree, generally with good
performance. Since these rectangle regions generally overlap, there can be no
savings from knowing the previous window, as there is no way to know if an
entirely new path through the segment tree needs to be traversed. R+-trees [21]
may be modified for trending windows, since the minimum bounding rectangles
are not allowed to overlap. Thus, maintaining the previous window can help to
verify a window query that has not left a particular region. R+-trees, however,
have problems with redundant storage and dynamic updates [17].

Another approach similar to the DCT described in this paper is the Query
Index [12,19]. The Query Index builds a space partitioning index on a set of
static query regions and at each time interval, allows a number of moving ob-
jects to probe the index to determine overlapping queries. Experiments with
main memory implementations show that grid-based hashing of query regions
generally outperform R-tree or quad-tree based methods. The query index is
most effective for small regions and query points, and experiments show perfor-
mance degradation with larger regions or high selectivity query windows [13].

The DCT is also an incremental approach to answering queries where up-
dates are made to a current query result. SINA [18] describes an incremental
method to solving the problem of intersecting moving objects, though the ap-
proach focuses on efficient integration of incremental query changes with disk-
based static queries, and a complete main-memory implementation would be
more similar to the query index approach.

In another sense, the DCT is a method of dynamically maintaining bound-
aries around a current window where the current result set is valid, and identify-
ing where this result set will change. Another method of dynamically describing
a neighborhood of validity for a query using R-trees was proposed in [23], which
builds an explicit region of validity around a current query point. This method is
meant to minimize transmission costs to a client, and the technique makes many
additional queries to an R-tree style index to build these regions of validity.
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6 Conclusions and Future Work

Remotely-sensed imagery clearly provides a great opportunity to study concepts
and paradigms for the management and processing of streaming data, given
the existence of various satellites that are used constantly for numerous data
products in environmental sciences, disaster management, climatology etc.

In this paper, we have presented the Dynamic Cascade Tree (DCT ), which is
suitable for window queries that are most common to most of RSI data streams.
This simple data structure is designed to work especially well for streaming data
with spatial extents that are in close proximity and follow certain trendiness in
their movement. These are characteristics of solving multi-query optimizations
for streaming RSI data, for which the DCT was developed. Performance evalua-
tion and experiments over random data identified some strengths and weaknesses
of the DCT in more general situations, while an experiment using GOES weather
imagery demonstrated its suitability for streaming RSI database applications.

The DCT is part of query processing architecture being developed to sup-
port complex continuous queries over streams of remotely-sensed geospatial im-
age data and will be an important component to facilitate the optimization of
multiple restriction queries against such a stream.
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Abstract. We propose and solve the optimal-location query in spatial
databases. Given a set S of sites, a set O of weighted objects, and a
spatial region Q, the optimal-location query returns a location in Q with
maximum influence. Here the influence of a location l is the total weight
of its RNNs, i.e. the total weight of objects in O that are closer to l than
to any site in S. This new query has practical applications, but is very
challenging to solve. Existing work on computing RNNs assumes a single
query location, and thus cannot be used to compute optimal locations.
The reason is that there are infinite candidate locations in Q. If we
check a finite set of candidate locations, the result can be inaccurate,
i.e. the revealed location may not have maximum influence. This paper
proposes three methods that accurately compute optimal locations. The
first method uses a standard R*-tree. To compute an optimal location,
the method retrieves certain objects from the R*-tree and sends them as
a stream to a plane-sweep algorithm, which uses a new data structure
called the aSB-tree to ensure query efficiency. The second method is
based on a new index structure called the OL-tree, which novelly extends
the k-d-B-tree to store segmented rectangular records. The OL-tree is
only of theoretical usage for it is not space efficient. The most practical
approach is based on a new index structure called the Virtual OL-tree.
These methods are theoretically and experimentally evaluated.

1 Introduction

Spatial databases play more and more important roles in applications such as
corporation decision-support systems. For instance, an interesting query that
the McDonald’s Corporation may ask again and again is: “what is the optimal
location in a given region to put a new McDonald’s store?” Here an optimal
location can be defined as a location which geographically benefits the most
number of customers. This example motivates the optimal-location query. In
general, let S be the set of sites (e.g. existing McDonald’s stores) and let O be
the set of weighted objects (e.g. residential buildings, where the weight for a
building is the number of residents in it). Given a spatial region Q, the optimal-
location query computes a location l in Q which maximizes the total weight of
objects that are closer to l than to any site.
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We focus our discussions on the L1 distance (also known as Manhattan dis-
tance) for it more accurately models the driving distance in a city road net-
work [SKC93]. Given two locations (x1, y1) and (x2, y2), their L1 distance is
|x1 − x2| + |y1 − y2|. If a road network consists of a set of north-south roads
and a set of east-west roads (e.g. in Manhattan), the L1 distance is the shortest
driving distance. When we say “the closest site of o”, we mean the site whose
L1 distance to o is the smallest.

A closely related problem is the bichromatic Reverse Nearest Neighbor (RNN)
query [KM00, YL01, SRAE01]. There, a query location is given, and the RNN
query computes the set of objects in O that are closer to l than to any site
in S. There are three differences between the bichromatic RNN query and our
newly proposed optimal-location query. A small difference is that the RNN query
considers L2 distance (also known as Euclidean distance). The most important
difference is that the optimal-location query involves a query region Q, which
consists of infinite number of candidate locations. One can approximate Q as
a grid, and limit the candidates to the finite set of grid intersections. But this
approach cannot accurately compute optimal locations, for the optimal location
may be off the grid. The third difference is that the optimal-location query is
interested in the influence of a candidate location, or the total weight of objects
in the RNN set, instead of the RNN objects themselves.

This paper proposes three methods that accurately compute optimal loca-
tions. The first solution (Section 4) assumes we have an R*-tree indexing the
set O of objects. Similar to how the Rdnn-tree [YL01] extends the R-tree, we
assume the R-tree stores some extra information. Every object stores the L1
distance to its closest site in S, and every index entry stores the maximum L1
distance of objects in the sub-tree. In particular, we propose a concept called the
nn buffer, for an object o. It is a spatial contour such that a location l is inside
o.nn buffer, if and only if o is closer to l than to any site. As we will see later,
each such contour, based on L1 distance, has the shape of a diamond which has
four right angles. If we rotate the coordinate by 45o counter-clockwise, every
nn buffer is an axis-parallel square in the rotated coordinate. The solution fol-
lows two steps. The first step is to retrieve from the R*-tree those objects which
may affect the influence of some locations in Q. The objects are identified in
certain order which enables a plane-sweep algorithm (as the second step) to go
through the stream of objects once and identify an optimal location. The only
objects that may affect the influence of locations in the query region Q are the
ones whose nn buffers intersect with Q. Our approach retrieves such objects in
increasing order of nn buffer.x low in the rotated coordinate, even though the
R*-tree was built in the original coordinate. This enables the run-time plane
sweep. A naive plane-sweep solution has O(n2) cost, where n is the number of
objects in the stream. We propose the aggregation SB-tree (aSB-tree), extended
from the SB-tree [YW01], to reduce the query cost to O(n log n).

Our second solution (Section 5.1) to the optimal-location query is based on a
new specialized aggregation index called the OL-tree. It is disk-based, balanced
and dynamically updateable. The index is built in the rotated coordinate. It
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is a novel extension to the k-d-B-tree. While the k-d-B-tree maintains point
objects, the OL-tree keeps axis-parallel squares. In the OL-tree, each index entry
maintains a value called fullcover to count how many squares fully contain the
range of it. Besides, Each index entry stores maxoverlap: the maximum local
influence in the sub-tree, and maxrange, a rectangular region where any location
in it has maximum local influence.

The two solutions have interesting tradeoffs. The R*-tree based solution has
efficient (linear) space cost. However, as objects are not pre-aggregated, a query
needs to examine all objects whose nn buffers intersect with Q. If Q has large size,
the query performance is poor. On the other hand, the OL-tree is a specialized
aggregation index, whose space overhead is higher since an object may have
many copies. But it may have faster query support. For instance, if Q intersects
with the maxrange stored at the root, the algorithm instantly returns.

The third solution (Section 5) combines the benefits of the previous two
approaches. As in solution 1, we use an R*-tree to store the objects. But to
guide the search, we use a small, in-memory OL-tree-like structure. This index
is named the Virtual OL-tree (VOL-tree). It looks like an OL-tree, but it does
not store any nn buffer. A leaf entry has the same meaning of an index entry.
It corresponds to a spatial range, and it logically references a node that stores
(pieces of) nn buffers in that range. These nn buffers can be retrieved from
the R*-tree dynamically. Because the VOL-tree is small, each leaf entry may
correspond to many nn buffers (as a comparison, each OL-tree leaf node has
at most B nn buffers). Thus it is more costly to maintain maxoverlap in a
VOL-tree, which may require to retrieve all nn buffers corresponding to some
leaf entry. For this reason, instead of maintaining maxoverlap, the VOL-tree
maintains lower max and upper max, which are a lower bound and an upper
bound of maxoverlap. In particular, maxrange is associated with lower max.

This paper contributes in several ways to the understanding of the emerging
class of located-based applications.

1. We propose the optimal-location query. It has practical applications such as
corporate decision-support systems.

2. We present an R*-tree-based solution. In particular, our solution retrieves
objects of interest in some given order and then uses a plane-sweep algorithm
to identify an optimal location. The plane-sweep algorithm uses a new data
structure called the aSB-tree to improve the query performance from O(n2)
to O(n log n).

3. We introduce a theoretical solution based on a new index structure called
the OL-tree. It is a specialized index with higher space cost but possibly
more efficient query performance.

4. We provide a practical solution based on the Virtual OL-tree, which is both
space efficient and query efficient.

5. We show experimental results on real datasets which reveal the tradeoffs of
the proposed methods.

The rest of the paper is organized as follows. Section 2 reviews related work.
Section 3 provides problem transformation and introduces the rotated space.
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Section 4 presents the R*-tree-based solution. Section 5 presents the OL-tree-
based and the Virtual-OL-tree-based solutions. Section 7 shows performance
results. And Section 8 concludes the paper.

2 Related Work

The nearest neighbor (NN) query, since its introduction in [RKV95], has received
vast attention in spatial database research community. One recent variation in-
troduced by [KM00] was the RNN query. That is, given a query location l, find
the objects in a given set O that consider l as their nearest neighbor. Note that
existing work assumes the Euclidean distance while we focus on the Manhattan
distance.

There are two variations of the RNN query: the monochromatic case and
the bichromatic case. In the monochromatic case [SAE00, TPL04], the distance
between an object o ∈ O and the query location l is compared with the distances
between o and other objects in O. In the bichromatic case [SRAE01], there is
another dataset: a set S of sites. And the distance between o and l is compared
with the distances between o and sites in S. Many real-life applications corre-
spond to the bichromatic case. For instance, given a new location, compute the
set of residence buildings that are closer to this location than to any existing
McDonald’s store. In [Smi97], it was proved that for the monochromatic case,
the number of RNNs is bounded. For instance, there are at most 6 RNNs in the
2D case and at most 12 RNNs in the 3D case. But for the bichromatic case, the
number of RNNs is unbounded even for the 2D case.

One solution to the bichromatic RNN query is based on precomputation
[KM00, YL01]. (It also works for the monochromatic case.) The idea of [KM00]
is to build an R-tree that stores circles instead of points. Every circle is centered
at some object o, with radius being the distance from o to its nearest site.
Precomputation is required to get these distances. Given a query location l, its
RNNs are retrieved by locating the circles that enclose l.

Yang and Lin [YL01] proposed the Rdnn-tree which combines the R-tree of
circles with the R-tree of objects. It is an R-tree of objects, where every object
stores the distance to its closest site, while every index entry stores the maximum
distance of all objects in the sub-tree. The structure logically maintains the R-
tree of circles. It remains to determine, given a location l and an index entry
e, whether the sub-tree referenced by e may contain some object whose “circle”
(not stored) encloses l. The solution is to expand the index entry’s MBR outward
by the associated maximum distance. If the expanded region does not enclose l,
there is no need to check the sub-tree.

The R-tree that we use, in the first solution to the optimal-location query,
is the Rdnn-tree [YL01] which stores L1 distance instead of L2 distance. Our
concept of nn buffer corresponds to their concept of circle for each object. How-
ever, in this paper both the addressed problem and the R-tree-based solution
are different from [YL01]. Our problem takes as input a spatial region and aims
at identifying an optimal location (with maximum influence), while [YL01] takes
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as input a single location and finds its RNNs. As for the solution, while [YL01]
finds the objects whose circles enclose the given location and terminates, we find
the objects whose nn buffers intersects with the given region as the first stage
of a pipeline process. The second pipeline stage takes this stream of objects and
identifies an optimal location via plane sweep.

Another bichromatic RNN query solution was proposed by [SRAE01]. The
idea is to dynamically construct the influence region of the query location l. Here,
the influence region is defined as a polygon in space which encloses and only
encloses all possible RNNs of l. This is equivalent to the Voronoi cell enclosing
l [BKOS97]. Conceptually, if we draw a bisector line between l and a site s, any
object located on the l side of the bisector will have smaller Euclidean distance
to l than to s. The l side of the bisector is a half plane. If we compare l against
all sites and take the intersection of these l-side half planes, we get the Voronoi
cell containing l.

Of course, to compare with all sites is expensive. [SRAE01] provides a clever
way to compute the rectangle that is guaranteed to contain all sites needed for
computing the exact Voronoi cell of l. Then the Voronoi cell of l can be computed
by only examining these sites with in the rectangle. So to find the RNNs of l, a
range query using the Voronoi cell is performed on the R-tree of objects.

If we had limited candidate locations, the approach could be extended to
solve the optimal location problem, with two modifications. First, we now need
to construct a Voronoi cell with regards to the L1 distance [LW80]. Second,
for each location, we need to know its influence rather than the actual RNN
objects. So we can index the set of objects using the aggregation R-tree (aR-
tree) [PKZT01] where each index entry stores the total weight of objects in the
sub-tree. If the MBR of an index entry is contained in a Voronoi cell, the stored
total weight contributes to the computation of influence, without browsing the
sub-tree.

Unfortunately, in the optimal-location query, there are infinite number of
candidate locations. So the approach of [SRAE01] (with the above modifica-
tions) does not work. Before presenting our solutions, let’s first study a problem
reduction.

3 Problem Transformation

An illustration of the optimal-location query, defined in Section 1, appears in
Figure 1(a). There are four objects and two sites. In particular, the object o3
with weight 5 has s1 as the closest site, where d(o3, s1)=22. And the object o4
with weight 6 has s2 as the closest site, where d(o4, s2)=12. The influence of a
location is the total weight of objects that are closer to this location than to
their closest sites. For instance, the influence of l is the total weight of o3 and
o4, which is 5+6=11. Given a query region Q, the optimal-location query finds
an location inside Q with maximum influence. In this example, l is an optimal
location. There may be more than one optimal location. The query asks for one
of them.
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(a) the optimal-location query (b) its transformation

Fig. 1. In (a), l is an optimal location, with influence 11. The transformation in (b)
shows that any location in the intersection between Q and region 2 is an optimal
location

To efficiently compute an optimal location, we first define the concept of
nn buffer, and then transform the optimal-location query into the problem of
finding a location with maximum overlap among objects’ nn buffers.

Definition 1. Let s be the closest site of an object o. The nn buffer of o is a
contour such that ∀ l on the contour, d(l, o) = d(o, s). Here d() is L1 distance.
Given a MBR of objects, let t be the maximum distance between any such object
to its closest site, the nn buffer of the MBR is a outside contour such that ∀ l
on the contour, the minimum distance between l and the MBR is t.

o

45

s
o

MBRt
t

(a) (b)

Fig. 2. The nn buffer of an object and the nn buffer of an MBR

As shown in Figure 2(a), the nn buffer of an object o is a diamond with four
right angles. It is easy to check that the L1 distance between o and any location
on the boundary of the diamond is fixed.

The weight of object o contributes to the influence of a location l, if and
only if l is inside the nn buffer of o. So as shown in Figure 1(b), an optimal
location is a location l inside Q which maximizes the total weight of objects
whose nn buffers contain l. The concept of nn buffer can also be defined for an
minimum bounding rectangle (MBR) of a set of objects. The nn buffer of an
MBR is the tightest contour which is guaranteed to contain the nn buffers of all
objects in the MBR, without knowing the locations of the objects. The nn buffer
of an MBR is a polygon with eight edges, as illustrated in Figure 2(b).

Consider the coordinate which has the same origin as in the original coor-
dinate, but whose X and Y axes are rotated 45o counter-clockwise. We call it
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the 45o (reads rotate-45-degree) coordinate (Figure 3). In this paper, the R*-
tree indexes in the original coordinate (to satisfy the possible need for other
applications), while the aSB-tree, the OL-tree and the VOL-tree indexes in the

45o coordinate.

t

45
o

o
X’

X

Y

Y’

x

y
x’

y’

Fig. 3. Illustration of the ro-
tated coordinate

Our analysis shows that an object o located
at (x, y) in the original coordinate is mapped
to (x+y√

2
, −x+y√

2
) in the 45o coordinate. Fur-

thermore, let t be the L1 distance from o to
its closest site. The nn buffer of o is an axis-
parallel square in the 45o coordinate, whose
lower-left corner and upper-right corner are:
(x+y−t√

2
, −x+y−t√

2
) and (x+y+t√

2
, −x+y+t√

2
).

4 The R*-Tree-Based Solution

Our first solution to the optimal-location query assumes the objects are indexed
by an R*-tree. Similar to how the Rdnn-tree [YL01] extends the R*-tree, we
assume every object stores the L1 distance to its closest site, and every index
entry stores the maximum L1 distance of objects in the sub-tree.

The R*-tree indexes objects in the original coordinate (not the 45o coor-
dinate), since there may be other applications that need to access the data in
the original coordinate. However the plane-sweep algorithm works in the 45o

coordinate. In order to do the plain sweep, we have to retrieve the objects in
increasing order of their nn buffer’s x low in the 45o coordinate. Section 4.1
shows how to retrieve objects, Section 4.2 describe a naive plane sweep algorithm
with O(n2) cost, Section 4.3 propose the aSB-tree structure which can reduce
the worst-case query cost to O(n log n), and Section 4.4 extends the algorithms
to incorporate a rotated query region.

4.1 Retrieving Objects from the R*-Tree

To retrieve the objects whose nn buffers intersects with Q, we can browse the R*-
tree in a top-down fashion, similar to the range query. The difference is that to
determine whether to expand an sub-tree, instead of checking whether its MBR
intersects with Q, we check whether the MBR’s nn buffer intersects with Q.

The remaining issue of object retrieval is how to return objects in increasing
order of their nn buffer’s x low in the 45o coordinate. This is achieved by using
a best-first search. That is, we keep a heap of the R*-tree’s index entries as
well as objects. The entries are ordered in increasing nn buffer.x low in the 45o

coordinate. Initially, the heap contains the index entry referencing the whole
tree. In each iteration, the entry e with minimum nn buffer.x low is extracted.
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If e is a object, output it (to be sent, as the next element of an input stream,
to the plane-sweep algorithm discussed in the next section). Otherwise, e is an
index entry. We examine every entry se in the node referenced by e, and push
se into the heap if its nn buffer intersects with Q.

4.2 The Naive Plane Sweep

X

 1

 o  :3 2

 o  :5 3

 o  :6 4

12105421 9
1
2

5

8
9

12

Y

 o  :4

Fig. 4. nn buffers in the rotated
coordinate

In the rotated coordinate, the nn buffers are
axis-parallel squares. To find the optimal lo-
cation, the basic idea is to perform a plane
sweep in increasing order of X . For each
particular X , the Y axis is partitioned into
a set of intervals, each associated with an
influence value. For instance, at X=4, the
Y axis is partitioned into six intervals: (-
∞,2):0, (2,5):5, (5,8):12, (8,9):7, (9,12):3, and
(12,∞):0. Whenever a change happens, up-
date the set of intervals. During the process,
always maintain a location with maximum in-
fluence. In fact we can maintain a rectangular
region with maximum influence, instead of a
single location.

At the end, any location in the maintained region is an optimal location. As
an example, in Figure 4, any location in the X range of (4,5) and Y range of
(5,8) is an optimal location, with influence 12.

4.3 The aSB-Tree

The naive plane sweep has O(n2) worst-case performance. The reason is that
there are O(n) events to handle, and each event needs to scan through O(n)
intervals that partition the Y axis. We hereby propose a data structure called
the Aggregation SB-tree (aSB-tree), derived from the SB-tree [YW01]. The new
structure enables any event to be processed in O(log n) time, and therefore
reduces the overall cost to O(n log n).

The idea is to organize the intervals (that partition the Y axis) into a bal-
anced B-tree-like structure. To insert a new Y range which may affect many
intervals in the naive approach, with the aSB-tree we only need to update two
paths from root to leaf. The key idea that enables this is: if the Y range to be
inserted fully contains the interval of an index entry, we do not insert into the
sub-tree. Instead, we update a value fullcover maintained along with the index
entry. The aSB-tree extends the SB-tree by storing the max influence and the
corresponding spatial region in the sub-tree. Figure 5 shows a two-level aSB-tree,
which corresponds to Figure 4 right after processing the event at X = 4 and the
event at X = 5. Let’s examine it in more details.
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  and Y in (5, 8)

(−M, 2): 0 (2, 5): 5 (5, 8): 12 (8, 9): 7 (9, 12): 3 (12, M): 0

max=3 in (9, 12) at X>2max=5 in (2, 5) at X>4

(−M, 5): 0 (9, M): 0

(−M, M): 0root entry:

Global max = 12
max=12 in (5, 8) at X>4

max=12 in (5, 8) at X>4

(5, 9): 0
when X in (4, ?)

(a) at the sweep line X=4

(−M, 2): 0 (2, 5): 5 (5, 8): 12 (8, 9): 7 (9, 12): 3 (12, M): 0

max=3 in (9, 12) at X>2max=5 in (2, 5) at X>4

(−M, 5): 0 (9, M): 0(5, 9): −4

(−M, M): 0
max=8 in (5, 8) at X>5

max=12 in (5, 8) at X>5

root entry:

Global max = 12
when X in (4, 5)
  and Y in (5, 8)

(b) at the sweep line X=5

Fig. 5. An example of aSB-tree

Properties inherited from the SB-tree:

– The aSB-tree is a balanced tree structure. The maximum number of entries
in a (leaf or index) node is fixed. Except the root, every node must be at
least half full.

– Every entry corresponds to an interval (a Y range). For any index entry e,
all intervals of entries in Node(e) form an exact partition of e.interval. E.g.
in Figure 5(a), the root entry has an interval as the whole Y space.

– Every leaf entry has a value influence. In Figure 5(a), the leaf entry (5,8):12
means that right after the current X = 4, any location with Y ∈ (5, 8) has
influence 12.

– Every index entry has a value fullcover, which corresponds to the total weight
of inserted Y ranges which fully cover the entry’s interval. E.g. the second
index entry in the root of Figure 5(a), which has (5,9):0, means its fullcover
is 0, while the interval is (5,9).

– To insert a range I with weight w, we update (at most) two paths from the
root to the leaf level. These are the nodes whose referencing entry’s interval
partially intersects with I. E.g. Figure 5(b) shows the result after processing
the event at X = 5, i.e. inserting I=(5,9) and w=-4. In particular, the
insertion stopped at the root node, since no entry in the root node has an
interval partially intersecting with I. For any entry (e.g. the second index
entry in root) whose interval is contained in I, w is added to its fullcover.
An overflow/underflow, if happens, is treated like in the B-tree.

Properties extended from the SB-tree:

– There is a gap between what the SB-tree provides and what we need. The
ultimate goal we need is: after all the nn buffers are seen, report an optimal
location with its influence. To do so, separate from the aSB-tree we maintain
a globally maximum influence and its spatial range.
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– This global max is maintained after processing each insertion. Here every
index entry in the aSB-tree stores the local maximum influence of some lo-
cation in the sub-tree. It is local because the actual influence should consists
of the fullcover of index entries for all ancestor nodes. For instance, in the
second index entry in Figure 5(b), the local maximum influence is 12. But
the actual maximum influence is 12+(-4)=8. Since the old global max is no
smaller than the new one, it is not changed.

– Along with each local maximum influence stored at an index entry, or with
the global max, we also store the corresponding spatial region. That is, any
location in this region has this maximum influence. For a local max, its
corresponding region only needs to store the left X border for the right
border is not known yet. With a new insertion, it is possible to close the right
border of the previous max region and start a new one. E.g. in Figure 5(b),
two index entries’ local max region change their left border from X = 4 to
X = 5. The right border of the global max region may need to be closed
correspondingly. All the additional information can be maintained along with
the insertion process, by following the insertion paths backwards. So the
update cost remains O(log n) as in the SB-tree. Therefore, the plane-sweep
algorithm integrated with the aSB-tree has O(n log n) query cost.

4.4 Extension to Involve a Query Region

In the original coordinate, the query region Q is an axis-parallel rectangle. Thus,
in the 45o coordinate, the query region Q becomes a rectangle rotated 45o clock-
wise (as shown in Figure 6). To perform the query correctly, our aSB-tree based
plane-sweep algorithm needs to be extended as follows:

– The Y space of the aSB-tree is not the whole
space (-M ,M), but the Y projection of Q.
This is because we only care about the loca-
tions in Q. In Figure 6, the Y space of the
aSB-tree should be (yl, yh).

– For each nn buffer, we calculate the smallest
X (called start) when it ‘enters’ Q and the
largest X (called end) when it ‘leaves’ Q.
The insertion/removal events occur at these
calculated X values, instead of the x low and
x high of the nn buffers.

h

y
l

endstart X

Y
y

Q

Fig. 6. Illustration of a ro-
tated query region

– Finally, it is no longer true that whenever the aSB-tree is updated due to an
event, the current maximum influence is known only by checking the root
entry. The reason is that the maintained maximum influence may be in a
region outside Q. To address this issue, we perform a range-max query on
the aSB-tree. That is to find the maximum influence within the actual Y
range. The range-max query can be performed in O(log n) time, since it only
needs to examine two paths of the aSB-tree. The reason is that, similar to
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the insertion algorithm, a sub-tree whose interval is contained in the query
interval does not need to be expanded.

A side note is: even though we use the aSB-tree as an in-memory structure
to improve the plain sweep, if needed the structure can be implemented as a
disk-based index like the SB-tree.

5 The Virtual OL-Tree

The R*-tree based solution examines all objects whose nn buffers intersect with
the query region Q, and thus is not efficient when a large Q results in the
examination of many objects. This section first proposes an theoretical solution
to the optimal-location query based on a new index structure called the Optimal-
Location Tree (OL-tree). Then we extend it to a more practical and efficient
solution based on the Virtual Optimal-Location Tree (VOL-tree).

5.1 The OL-Tree-Based Solution

The OL-tree is a k-d-B-tree-like structure which is balanced, disk-based and
dynamically-updateable. Roughly speaking, it stores the nn buffers in the 45o

coordinate. Like the k-d-B-tree, the OL-tree is a space-partitioning method (ver-
sus a data-partitioning method like the R*-tree). Unlike the k-d-B-tree, the OL-
tree stores rectangular records in its leaf nodes. If a square partially intersects
with the ranges of multiple index entries, it is split and multiple copies are in-
serted. However, if the square fully contains the range of some index entry, we
only update a value called fullcover stored along with the index entry, with-
out further inserting into the sub-tree. Each index entry stores maxoverlap: the
maximum local influence in the sub-tree. That is, the maximum influence in the
sub-tree, subtracted by the fullcover values of all ancestor index entries. A rect-
angular region maxrange is also stored, where any location in it has maximum
local influence. Due to the space limitation, we skip the details of the update
and query processing.

The OL-tree may cause cascading split of child nodes if splitting an index
node. One may wonder how bad the space complexity can be. We argue that the
space complexity of the OL-tree (with an additional requirement) is O(n2/B)
for the following reasons. First, the total number of leaf entries is O(n2). With n
axis-parallel squares, there are O(n) different X positions and O(n) different Y
positions, which form O(n2) cells. In the worse case each cell is stored in the tree
separately. Thus there are at most O(n2) leaf entries. Second, the total number
of nodes in O(n2/B). The linear storage of the k-d-B-tree can be guaranteed
by re-organization of sub-trees which contain too few leaf entries. Similarly, the
OL-tree with O(n2) leaf entries needs O(n2/B) nodes.

This bound reveals that the OL-tree is not a practical spatial index structure.
In the next subsection we introduce a practical structure, named the VOL-tree,
to solve the optimal-location query.
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5.2 The VOL-Tree Structure

The OL-tree has more than linear space because if an nn buffer is split into
multiple pieces, each of them is physically stored in some leaf node(s). What if
we do not physically store any leaf node of the OL-tree? We can use an R*-tree
to store the original objects, and whenever the content of a leaf node is needed,
we perform a range query on the R*-tree. This is the key idea to the Virtual
OL-tree (VOL-tree).

It is challenging to implement this idea. As we already spend the space to
store the R*-tree, it is ideal to have a small VOL-tree that fits in memory. On the
other hand, as there are O(n2/B) leaf nodes in an OL-tree, there are O(n2/B2)
index nodes, which would be the size of the VOL-tree if we treat it as an OL-
tree without leaf nodes. There is a big gap. Thus we claim that the VOL-tree is
NOT merely an OL-tree without the leaf level. It has to be much much smaller,
possibly only consisting of one index level besides the root. A consequence is that
each leaf entry of the VOL-tree corresponds to a virtual node (content stored in
the R*-tree) with much more than B nn buffers. So a crucial issue jumps out: it
is expensive to maintain maxrange and maxoverlap because an update requires
us to perform plane sweeps on the virtual nodes.

To address this issue, we propose another change from the OL-tree: along
with each index entry, instead of keeping the accurate maxoverlap, keep two
values lowermax and uppermax, which are a lower bound and an upper bound
of maxoverlap.

In more detail, the entries in the tree are as follows:

– An index entry e has the following format: (range, nodeID, fullcover,
lowermax, maxrange, uppermax). Here range is the spatial range of the
corresponding sub-tree, and nodeID points to the referenced node. The value
fullcover is the total weight of nn buffers whose insertion stopped at e (such
a nn buffer contains e.range, but not the range of e’s parent).

– The values lowermax and uppermax are some lower and upper bounds of
the maximum local influence in e.range. And maxrange is a rectangle fully
contained in e.range where every location in maxrange has local influence
= lowermax.

– A leaf entry and an index entry have the same content, with a minor differ-
ence that a leaf entry’s nodeID is empty.

5.3 The VOL-Tree Query Algorithm

Figure 7 shows the optimal-location-query algorithm in the VOL-tree. We start
from the root node. In the VOL-tree, even if root.maxrange intersects with Q, it
is possible that some location in Q−root.maxrange has an influence larger than
root.lowermax (when root.lowermax < root.uppermax). So as Step 1 shows,
we can safely return a location in root.maxrange ∩Q only if root.lowermax =
root.uppermax or Q is completely inside root.maxrange.

Step 2 inserts the root entry into a heap. Every entry in the heap has, besides
an index entry, two values min and upper. These are the actual ( not local) lower
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Algorithm. VOLTreeQuery
Input: Query region Q, VOL-tree root.
Return: An optimal location in Q.

1. if root.maxrange ∩ Q �= ∅ and (root.lowermax = root.uppermax or Q ⊆
root.maxrange), return any location in root.maxrange ∩ Q.

2. heap.Insert(root, 0, root.uppermax)
3. Set opt loc as an arbitrary location in Q, and opt inf = 0,
4. while heap is not empty

(a) (e, min, upper) = heap.ExtractMaxUpper().
(b) if upper ≤ opt inf , return opt loc.
(c) if e references an index node

for every entry se in Node(e.nodeID) s.t. se.range ∩ Q �= ∅
A. Set m = min + se.fullcover, and u = min + se.fullcover +

se.uppermax.
B. if u ≤ opt inf , goto next entry.
C. if opt inf < m, set opt inf = m and opt loc be any location in

se.range ∩ Q.
D. if se.maxrange ∩ Q �= ∅,

(i) l = min + se.fullcover + se.lowermax
(ii) if opt inf < l, set opt inf = l and opt loc be any location in

se.maxrange ∩ Q.
(iii) if u �= l and (Q ∩ se.range) � se.maxrange, heap.Insert(se, m, u)

E. else
heap.Insert(se, m, u)

F. end if
end for

(d) else
A. Using e.range ∩ Q as a new query region, retrieve nn buffers from the

R*-tree of objects. Use plane sweep to find an optimal location (inf, loc)
within the new query region.

B. if opt inf < min + inf , set opt loc = loc, and opt inf = min + inf .
(e) end if

5. end while
6. return opt loc.

Fig. 7. Finding an optimal location using the VOL-tree

bound and upper bound of influence for locations in the sub-tree. Meanwhile,
we maintain the currently seen optimal location opt loc along with its influence
opt inf , initialized to be an arbitrary location with influence 0 (Step 3).

While the heap is not empty, we process each element at a time. In each
iteration, the heap entry with maximum upper is extracted. As Step 4(b) of
the algorithm shows, if this extracted upper is no larger than opt inf , we can
determine that opt loc is an optimal location and thus the algorithm returns.
The crucial steps are Step 4(c) which expands an index node and Step 4(d)
which expands a leaf node.

To expand an index node, we examine every child entry se whose range
intersects with Q, and try to push se.nodeID into the heap. Here the new lower
bound is m = min + se.fullcover, and the new upper bound is u = min +
se.fullcover + se.lowermax. There are two pruning opportunities. First, if the
new upper bound u is no larger than opt inf , there is no need to expand the sub-
tree (Step 4(c)B). Second, if se.maxrange intersects with Q, we already know
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the influence of the locations within the intersection, and thus we may have the
chance to update the maintained optimal location before expanding the sub-tree
(Step 4(c)D). It likely causes other entries to be pruned earlier.

To expand a leaf node (Step 4(d)), we go to the R*-tree to retrieve the
nn buffers that intersect with e.range∩Q and then perform a plane sweep tech-
nique of Section 4 to compute a location inside Q with maximum global influence
inf . If this influence is bigger than opt inf , we update the maintained opt inf
and opt loc.

5.4 The Update Algorithm

The VOL-tree can be bulk-loaded. Due to space limitations, the algorithm is
omitted. We only point out that immediately after bulk-loading, every entry
in the VOL-tree has accurate local maximum information, i.e. lowermax =
uppermax. With dynamic update, this may not be true. Let us examine the
update algorithm below.

The insertion algorithm is shown in Figure 8, while a deletion is treated as an
insertion with negative weight. To insert into an index node (Step 1), we consider
every child entry se whose range intersects with the parameter R. If se.range is
contained in R, we simply add w to se.fullcover. If se.range partially intersects
with R, we recursively insert into the sub-tree referenced by se. After insertion,
we need to re-aggregate the lowermax, uppermax and maxrange if necessary.

When e refers to a virtual leaf node which is not stored, the actual object
is maintained in a separate R*-tree. So we only need to modify e.lowermax,
e.uppermax and e.maxrange. The update of e.uppermax is simple. As Step
2(a) shows, for a positive weight, e.uppermax is increased by w. For a negative
weight, e.uppermax remains unchanged. We may modify e.lowermax and/or
e.maxrange only if e.maxrange intersects with R. For a positive weight (Step
2(c)), the intersection part of e.maxrange and R is the new e.maxrange, with
weight increased by w. For a negative weight (Step 2(d)), there are two cases.
If e.maxrange is fully covered by R, we decrease e.lowermax. Otherwise, we
shrink e.maxrange to e.maxrange−R but keep e.lowermax unchanged.

6 Performance

In this section, we report experimental results on the R*-tree approach and the
VOL-tree approach. In our experiments we used real datasets: the Digital Chart
of the World from the R-tree Portal [The03]. It contains two type of point data:
the populated places and cultural landmarks in North America, a total of 24,493
and 9,203 points respectively. We use the populated places as the objects and
cultural landmarks as the sites. From the dataset, we generated an object R*-
tree for all populated place, which is augmented by the L1 distance from each
object to its nearest site. We set the page size to 1k and the default buffer size
to 256 pages. All the programs were written in Java and run on a Pentium IV
Dell PC equipped with 3.2GHz CPU.
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Algorithm. VOLTreeInsert
Input: Range R, Weight w, VOL-tree index entry e.
Pre-condition: R intersects with, but does not fully contain, e.range.
Action: Insert range R with weight w to the sub-tree referenced by e.

1. if e refers to a node in the VOL-tree
(a) for every se in Node(e) s.t. R contains se.range, se.fullcover += w.
(b) for every se in Node(e) s.t. R partially intersects with se.range,

VOLTreeInsert(R, w, se).
(c) Let se0 be the entry in Node(e) with maximum se.fullcover+se.lowermax.
(d) Set e.maxrange = se0.maxrange and e.lowermax = se0.fullcover +

se0.lowermax.
(e) e.uppermax=max{se.fullcover+se.uppermax} for all entry se in Node(e).

2. else /* e refers to a virtual leaf node */
(a) if w > 0, e.uppermax += w.
(b) if e.maxrange ∩ R = ∅, return.
(c) if w > 0

i. e.maxrange = e.maxrange ∩ R
ii. e.lowermax+ = w

(d) else
i. if e.maxrange ⊆ R, e.lowermax+ = w.
ii. else e.maxrange = e.maxrange − R.

(e) end if
3. end if

Fig. 8. The Insertion algorithm of the VOL-tree

From our preliminary experimental results, we found that it does not help
to make the VOL-tree disk based. So the VOL-tree is in memory, and only the
I/O of R*-tree will be measured. However, it consumes part of the buffer. For
example, if the size of the VOL-tree is 50 pages, the buffer available to the R*-
tree retrieval in the VOL-tree based method should be 256− 50 = 206. For each
experiment we start with a clean buffer, run 100 random queries, and measure
the total I/Os. Buffer will not be flushed during the execution of 100 queries.
Our preliminary experimental results show that, with fixed area of the query
range, the shape of the query range has little impact on the query performance
of the VOL-tree based methods. Thus we always use square query ranges.

In many applications, the datasets are known in advance. For instance, the set
of McDonald’s stores and the set of residential buildings can be given in advance
when building the index, although changes may happen later on. Therefore, we
use the VOL-tree based method with high bulk-loading percentage (80% and
100%). In the experiments, we compare the performance of three methods listed
in Table 1.

Table 1. There different settings for experiments

Name of method Explanation

R* R*-tree based method (without using VOL-tree)

VOL80 VOL-tree based method with 80% of the objects being bulk loaded

VOL100 VOL-tree based method with 100% of the objects being bulk loaded
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Fig. 9. The I/O performance of
the VOL-tree for various size

To utilize the VOL-tree, the first question
to answer is how large the VOL-tree should
be. Figure 9 shows the I/O of the R*-tree of
various sizes (in the unit of the page size).
When the size of the VOL-tree is small
(< 20 pages), the I/Os become close to the
R*-tree based method (which corresponds
to VOL-tree size = 0). When the size of the
VOL-tree is large (> 80 pages), the I/Os
also increase. That is because the larger
VOL-tree does not help much to prune the
search space, but it uses a large proportion
of the buffer, which results in the worse I/O
of the R*-tree.

From the results, we draw the conclusion that a small VOL-tree is sufficient.
Thus, in the later experiments, we set the size of VOL-tree to 20 pages.

To study the effect of the size of query range on the I/Os, we change the
area of the query range. Figure 10 (a) and (b) shows the results when the query
range is small and is large respectively. When the query area is smaller than
1% of the whole space, their performances are very close although VOL-tree
methods outperform. When the query area is larger than 1%, the R*-tree based
method has I/Os of more than 10,000 so we do not even show it in figure. An
expected fact is that when the query range becomes very large, the performance
of both VOL80 and VOL100 improve. That is because, the large query ranges
is more likely to intersect with maxranges stored in the VOL-tree, and thus is
more likely to prune some subtrees.

(a) Queries with small area (b) Queries with large area

Fig. 10. The I/O performance of of the VOL-tree for various query area

The updates increase the difference between lowermax (uppermax) and the
local maximal influence, thus decreasing the pruning capability. Figure 11 shows
how updates affect the I/O performance. We bulk load some objects and insert
the others. The X-axis presents the percentage of the number of inserted objects
to the number of bulk loaded objects. For example, X = 50% corresponds to the
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case when we bulk load 2/3 of the objects and insert the remaining 1/3. With
the increase of the percentage, the I/O performance decreases. After about 50%
insertions, the performance becomes comparable to the R*-tree based method.
There are two reasons for that. First, the VOL-tree uses some buffer of the R*-
tree. Second, the VOL-tree may cause multiple scans of same page. We need to
point out that even if an application is update intensive, the VOL-tree based
method is still a good choice since the tree can be rebuilt in part or in full. And
the rebuilding cost is amortized. Furthermore, the rebuilding can be integrated
with the query processing.

Fig. 11. The Effect of the Updates Fig. 12. The Effect of the Buffer Size

Figure 12 shows how the buffer size affects the I/O performance of the VOL-
tree. When buffer size is 128, the R* outperforms VOL80. That is because the
VOL-tree has size of 20 and occupies about 20% the buffer. After the buffer
size is doubled to 256, the I/O of VOL80 dramatically drops to below R*. With
the increase of the buffer size, the performance of all the three methods get
improved, while the VOL-tree based method is again better.

7 Conclusions

In this paper we proposed and solved the optimal-location query. The query
has real applications, e.g. in corporate decision-support systems. We presented
three solutions to accurately answer such a query. In particular, the VOL-tree
approach is the most efficient. The approach uses an R*-tree to index the objects,
while a small, in-memory VOL-tree is used to prune the search space. The query
performance is much better than the plain R*-tree approach, especially when
the query size is large. (Notice that the R*-tree approach is already optimized
via a new index called the aSB-tree.) For instance, if the query area is 5% of the
space, the VOL-tree approach computes an optimal location 6 times faster than
the R*-tree approach. If the query size increases, the improvement increases
as well, which can be multiple orders of magnitude better. Also, the size of
the VOL-tree is small. In our experiments, while the R*-tree of objects is over
700 disk pages, the VOL-tree is only 20 pages. The VOL-tree has very efficient
updates, as the index is small and updating it does not need to touch the R*-tree
(except for ordinary object insertion/removal). One set of experiments showed
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that within 50% new updates, the VOL-tree approach remained to have better
query performance. Of course, if there are too many updates, the VOL-tree can
be re-built and the cost is amortized across all the new updates. In summary, the
VOL-tree approach is the most efficient solution to the optimal-location query.
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Abstract. This paper proposes and solves a-autonomy and k-stops shortest path
problems in large spatial databases. Given a source s and a destination d, an a-
autonomy query retrieves a sequence of data points connecting s and d, such
that the distance between any two consecutive points in the path is not greater
than a. A k-stops query retrieves a sequence that contains exactly k intermediate
data points. In both cases our aim is to compute the shortest path subject to these
constraints. Assuming that the dataset is indexed by a data-partitioning method,
the proposed techniques initially compute a sub-optimal path by utilizing the Eu-
clidean distance information provided by the index. The length of the retrieved
path is used to prune the search space, filtering out large parts of the input dataset.
In a final step, the optimal (a-autonomy or k-stops) path is computed (using only
the non-eliminated data points) by an exact algorithm. We discuss several pro-
cessing methods for both problems, and evaluate their efficiency through exten-
sive experiments.

1 Introduction

Shortest path computation has been studied extensively in graph theory and computer
networks, assuming in-memory processing. However, the emergence of time-critical ap-
plications that require processing of voluminous spatial datasets necessitates the design
of efficient shortest path algorithms for disk-resident data. In this paper we study two
variations of the problem, and demonstrate how spatial access methods can be exploited
to speed up processing. In particular, we consider the existence of a large collection of
data in a Euclidean space, where each point is accessible from any other point in the
database, with a cost equal to their distance. In this context, identifying the shortest
path between two points is trivial; it is always the straight line connecting them. Nev-
ertheless, real-world applications impose constraints that complicate the computation
of the answer. We propose solutions to the following variations of the problem: (i) the
a-autonomy shortest path, and (ii) the k-stops shortest path.

Definition 1 (a-autonomy path). Let DB be a collection of points in the Euclidean
space and a be a constant. An a-autonomy path from source s to destination d is a
sequence of points (path) s → p1 → p2 → . . . → d, where each intermediate point
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belongs to DB, and the distance between any two consecutive points in the path is not
greater than a.

The parameter a is called the autonomy constraint. Informally, it expresses the max-
imum distance that one can travel without a stop. Assume, for example, that an airplane
must perform a flight from city A to city B, whose distance is D. If a is the autonomy
of the plane and D > a, which intermediate airports should we choose to use as refu-
eling bases, in order to minimize the overall flight distance? The a-autonomy problem
also arises in the area of mobile communications. A signal can be successfully received
when the distance between the sender and the receiver is no greater than a constant a.
Given a source s and a destination d, we want to determine the intermediate communi-
cation centers that a message has to pass from, so that the latency (which is proportional
to the overall covered distance) is minimized.

Definition 2 (k-stops path). Let DB be a collection of points in the Euclidean space
and k be a constant. A k-stops path from source s to destination d is a sequence s →
p1 → . . . → pk → d, where each intermediate point belongs to DB, and the number
of intermediate points is exactly k.

As an instance of the k-stops shortest path problem, assume that a delivery vehicle
loads some goods at point s, and has to drive to its terminus at point d. In its course
it has to deliver the goods to k of the company’s customers, where k depends on its
cargo capacity. Which k customers should it choose to serve in order to minimize the
total traveled distance? The k-stops shortest path is also related to the prize collecting
traveling salesman problem [1], where the salesman must choose k out of the total N
cities to visit.

To the best of our knowledge, there is no previous work on the aforementioned prob-
lems in the context of spatial databases. On the other hand, naı̈ve solutions, such as ex-
haustive search, are inapplicable to large datasets, due to their prohibitive CPU and I/O
cost. In this paper, we propose algorithms for both the a-autonomy and the k-stops short-
est paths. Specifically, given s and d, we initially compute an approximate solution (i.e.,
a sub-optimal path connecting s and d) that satisfies the input constraint. To obtain this
approximate answer we design fast heuristics that utilize an existing data-partition index
on the input dataset DB. The length of the retrieved path is used to prune the search space,
filtering out large parts of the input dataset. Finally, an exact algorithm computes the op-
timal a-autonomy or k-stops shortest path among the remaining points. The proposed
methodology reads only a fraction of DB from the disk, and has very low cost.

The rest of the paper is organized as follows. Section 2 surveys related work. Sec-
tion 3 describes the general framework and states our basic pruning criterion. Sections
4 and 5 focus on the a-autonomy and the k-stops problem, respectively. Section 6 ex-
perimentally evaluates our techniques with real datasets, and Section 7 concludes the
paper with a discussion on future work.

2 Related Work

Section 2.1 describes R-trees and algorithms for nearest neighbor (NN) search. Section
2.2 presents existing methods for shortest path computation and related problems.
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2.1 R-Trees and Nearest Neighbor Queries

Although our techniques can be used with any data-partition method, here we assume
R-trees [2,3] due to their popularity. Figure 1 shows an R-tree for point set DB =
{p1,p2, . . . , p12} with a capacity of three entries per node. Points that are close in space
(e.g., p1, p2, p3) are clustered in the same leaf node (N3). Nodes are then recursively
grouped together with the same principle up to the top level, which consists of a single
root. Given a node N and a query point q, the mindist(N, q) corresponds to the closest
possible distance between q and any point in the sub-tree of node N . Figure 1(a) shows
the mindist between point q and node N1.

The first NN algorithm for R-trees [4] searches the tree in a depth-first (DF) manner,
by recursively visiting the node with the minimum mindist from q. In Figure 1, for
example, DF accesses the root, followed by N1 and N4, where the first potential nearest
neighbor is found (p5). During backtracking to the upper level (node N1), the algorithm
prunes entries whose mindist is equal to or larger than the distance (best dist) of the
nearest neighbor already retrieved. In the example of Figure 1, after discovering p5, DF
backtracks to the root level (without visiting N3), and then follows the path N2, N6
where the actual NN p11 is found.

The DF algorithm is sub-optimal, i.e., it accesses more nodes than necessary. On
the other hand, the best-first (BF) algorithm of [5] achieves the optimal I/O perfor-
mance, visiting only nodes intersecting the circle centered at the query point q with
radius equal to the distance between q and its nearest neighbor. These nodes have to
be examined anyway in order to avoid false misses. In Figure 1(a), for instance, BF
visits only the root, N1, N2, and N6 (whereas DF also visits N4). BF maintains a
heap H with the entries encountered so far, sorted by their mindist. Starting from
the root, it inserts all the entries into H (together with their mindist), e.g., in Figure
1(a), H = {< N1, mindist(N1, q) >, < N2, mindist(N2, q) >}. Then, at each step,
it visits the node in H with the smallest mindist. Continuing the example, the algo-
rithm retrieves the contents of N1 and inserts all its entries in H , after which H = {<
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Fig. 1. Example of an R-tree and a NN query
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N2, mindist(N2, q) >, < N4, mindist(N4, q) >, < N3, mindist(N3, q) >}. Simi-
larly, the next two nodes accessed are N2 and N6 (inserted in H after visiting N2), in
which p11 is discovered as the current NN. At this time, the algorithm terminates (with
p11 as the final result) since the next entry (N4) in H is farther (from q) than p11. BF
(as well as DF) can be easily extended to kNN queries, where k >1. Additionally, BF
is incremental, implying that it can output the NNs in ascending order of their distance
to the query without a pre-defined termination condition.

An interesting variation of the NN search is the aggregate nearest neighbor (ANN)
query. Given a set of query points Q = {q1, q2, . . . , qm} and an object p, the ag-
gregate distance adist(p, Q) is defined as a function f over the individual distances
|p, qi| between p and each point qi ∈ Q. Assuming, for example, n users at locations
q1, . . . , qn and f = sum, an ANN query outputs the data object p that minimizes
adist(p, Q) =

∑
qi∈Q |p, qi|, i.e., the sum of distances that the users have to travel in

order to meet at the position of p. Similarly, if f = max, the ANN query reports the
object p that minimizes the maximum distance that any user has to travel to reach p. In
turn, this leads to the earliest time that all users will arrive at the location of p (assuming
that they move with the same speed). Finally, if f = min, the result is the object p which
is closest to any user, i.e., p has the smallest adist(p, Q) = minqi∈Q |p, qi|. Assuming
that the data set is indexed by an R-tree, the minimum bounding method [6] applies best-
first NN search, with the difference that each encountered node N is inserted into the
heap H with key equal to f(mindist(N, qi), mindist(N, q2), . . . , mindist(N, qm)).
We use this technique, as a module of the proposed algorithms, in Sections 4 and 5.

2.2 Shortest Path Computation and Related Problems

To the best of our knowledge, a-autonomy and k-stops shortest paths have not been
studied before. On the other hand, there is extensive work on shortest path algorithms
for main memory and disk-resident graphs. The most popular algorithm of the former
category is proposed by Dijkstra [7]. This technique expands the input graph starting
from the source node until it reaches the destination. It uses a priority queue to store
the encountered nodes with key equal to their graph distance from the source. In every
step, the node with the smallest key is de-queued, and its adjacent (non-visited) nodes
are en-queued. The procedure terminates when a complete path (connecting the source
and the destination) is found. A* search [8] uses heuristics in order to direct the graph
expansion and prune the search space, assuming that the Euclidean distance between
two nodes lower bounds their graph distance. The difference from Dijkstra’s algorithm
is that the key of each en-queued node is the sum of its graph distance from the source
and its Euclidean distance from the destination. Other main memory methods include
the Bellman-Ford [9,10] and Floyd [11] algorithms.

Shortest path computation techniques for disk-resident data, such as HiTi [12] and
HEPV [13], are based on partial materialization. They partition the graph into sub-
graphs that fit in memory, and each sub-graph is abstracted as a graph node. The sub-
graphs are grouped recursively into higher level nodes, thus forming a hierarchy. All the
distances between the sub-graph boundary nodes are computed and stored in the upper
level. To answer a shortest path query, the algorithms (i) determine the lowest-level sub-
graph containing the source and destination, and (ii) utilize the materialized information
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along the two search paths to retrieve the result. [14,8] analyze the performance of
several secondary memory adaptations of shortest path algorithms.

Papadias et al. [15] propose a storage scheme for large graphs and algorithms for
nearest neighbors, range search and distance joins. Their methods combine connec-
tivity and location information about the data objects (indexed by R-trees) to guide
the search. Kolahdouzan and Shahabi [16] use the concept of network Voronoi cells
and materialization to speed-up query processing. Shahabi et al. [17] find approximate
nearest neighbors in road networks by transforming the problem to high dimensional
space. Jensen et al. [18] discuss nearest neighbor queries for points moving in a net-
work. Shekhar and Yoo [19] find all the nearest neighbors along a given route. Yiu and
Mamoulis [20] study clustering problems in spatial networks.

The most related paper to our work is [21] that uses thematic spatial constraints to
restrict the permitted paths (e.g., “find the shortest path that passes only through rural
areas”). Although the problem is similar, in the sense that it also deals with constrained
shortest path computation in spatial databases, the thematic restrictions are very differ-
ent from our autonomy and cardinality constraints. Summarizing, all the existing tech-
niques are inapplicable to the proposed problems. In the sequel, we discuss algorithms
for a-autonomy and k-stops shortest paths, starting with the general framework.

3 General Framework and Pruning Criterion

The proposed techniques follow the methodology of Figure 2. The first step applies
heuristics to efficiently retrieve a path, not necessarily optimal, that satisfies the given
constraint (on a or k). The second step uses the length of this path to prune the search
space and eliminate the majority of the data points. Finally, the third step computes the
actual shortest path (subject to the constraints) using only the non-eliminated points.

Algorithm Find Shortest Path
// Input: the source s, the destination d, the dataset DB, the parameter a or k
// Output: the constrained (i.e., a-autonomy or k-stops) shortest path
1. Find a sub-optimal solution with a fast algorithm
2. Use the length of the obtained path to prune parts of the workspace
3. Compute the exact (a-autonomy or k-stops) shortest path using only the

non-eliminated data points

Fig. 2. The general processing methodology

Whereas steps 1 and 3 are problem-dependent, the pruning criterion is common
for both a-autonomy and k-stops shortest paths. Consider that in Figure 3, we already
have a path s → p1 → p2 → d with length l satisfying the given constraint (a or k).
Our goal is to use this path in order to restrict the search space. For example, point p3
cannot belong to a better path because |s, p3| + |p3, d| > l, where |s, p3| and |p3, d|
are the distances of p3 from s and d, respectively. In general, any data point p that
may be part of a path with length equal to or shorter than l must satisfy the condition
|s, p| + |p, d| ≤ l, i.e., it must lie in the ellipse with foci at points s and d, and sum of
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s d
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l1+l2>lp3

Fig. 3. Pruning example

distances from the foci equal to l. Such points are efficiently retrieved by a range query
(in the shape of the ellipse) on the data R-tree. Based on the above, the goal of the first
step of our framework is to retrieve a nearly-optimal path, so that the area of the ellipse,
and the number of data points therein, is minimized. Then, the third step computes the
actual shortest path using only these points. In the following sections we discuss steps
1 and 3 for a-autonomy and k-stops shortest paths.

4 a-Autonomy Shortest Paths

Section 4.1 describes alternative ways to obtain a good approximate solution for the
a-autonomy problem, while Section 4.2 deals with the optimal path computation.

4.1 Fast Sub-optimal Path Computation

The shortest route between the source s and the destination d in the Euclidean space is
obviously the line segment sd connecting them. If the distance |s, d| between s and d is
greater than the autonomy of the problem a, we have to introduce intermediate stops. An
intuitive strategy for choosing the stops is to select points that cause the least diversion
from the optimal route (i.e., the line segment sd). In particular, the point p in DB that
lies closest to sd is chosen as a part of the path. The process continues recursively with
segments sp and pd if their individual lengths exceed a. This Least Diversion Method
(LDM) terminates when (i) a complete path fulfilling the autonomy constraint is found,
or (ii) when all possible solutions are examined. In the latter case, there is no solution
for the given value of a and the required path is infeasible.

We illustrate the functionality of LDM using the example of Figure 4(a). Initially,
LDM retrieves the NN of the line segment sd, which is point p1. Assuming that the dis-
tance |s, p1| is less than a, s → p1 is accepted as a component of the path. On the other
hand, if |p1, d| is greater than a, the process is repeated for the line segment p1d. Contin-
uing the example, in Figure 4(b) the NN of p1d is point p2. Since both distances |p1, p2|
and |p2, d| are smaller than the autonomy a, the components p1 → p2 and p2 → d are
inserted into the path, and LDM terminates with s → p1 → p2 → d as the result.

Figure 5 contains a divide-and-conquer version of LDM. The first call has input
parameters s, d, and an empty list path. The algorithm recursively examines points
according to their distance from sd. If some point cannot lead to a feasible solution
(lines 11, 12), LDM backtracks, and continues with the next NN of the line segment
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Fig. 4. LDM example

Algorithm LDM(p, p′, path)
// p and p′ are two intermediate points, and path is the path constructed so far
1. If |p, p′| > a
2. Find the next nearest neighbor pNN of line segment pp′ in DB − {path}
3. If no pNN is found // i.e., all possible pNN have been unsuccessfully examined
4. Return false // Backtracking
5. Else
6. LDM(p, pNN , path) // Recursion
7. LDM(pNN , p′, path)
8. If both above calls of LDM return true
9. Add pNN to path
10. Return true
11. Else // Selection of pNN cannot lead to a valid path
12. Go to line 2 and continue with the next NN of pp′

13. Else // i.e., |p, p′| ≤ a
14. Add p to path
15. Return true

Fig. 5. The least diversion method for the a-autonomy problem

in line 2. Upon termination, if the returned result is false, the problem is infeasible.
Otherwise, the obtained path is stored in path. The nearest neighbor of a line segment
(in line 2) is retrieved in a way similar to the best-first NN search discussed in Section
2.1. The difference is that the mindist between the query line segment and an MBR is
computed according to the method of [22].

LDM may incur relatively high cost because each NN query (to a line segment)
may visit numerous nodes (that intersect, or are near, the segment). Furthermore, since
LDM does not aim at minimizing the intermediate points in the path, the number of such
queries may be large. Motivated by this we propose a Greedy Heuristic Method (GHM)
that (i) applies point (instead of line segment) NN queries and (ii) tries to minimize the
number of intermediate points. GHM is based on the observation that an optimal set
of intermediate points would lie on sd, and that the distance between any consecutive
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Fig. 6. GHM example

Algorithm GHM(p, path)
// p is an intermediate point, and path is the path constructed so far
1. If |p, d| > a

2. Set o to be the point in the line segment pd with distance from p equal to a
3. Find the next NN of o (pNN ) in the circle with center at p and radius a
4. If no pNN is found // i.e., all possible pNN have been unsuccessfully examined
5. Return false // Backtracking
6. Else
7. GHM(pNN , path) // Recursion
8. If the above call of GHM returns true
9. Add pNN to path
10. Return true
11. Else // Selection of pNN cannot lead to a valid path
12. Go to line 3 and continue with the next NN of o
13. Else // i.e., |p, p′| ≤ a
14. Add p to path
15. Return true

Fig. 7. The greedy heuristic method

pair would be equal to the autonomy a. Since such points do not necessarily exist in the
database, it tries to use their NNs.

Figure 6(a) illustrates GHM with an example. Ideally, the first intermediate point
o1 would lie on the line segment sd at distance a from s. GHM retrieves the NN p1
of o1 among the points that are directly reachable by s (i.e., the points falling in the
circle centered at s with radius a) and inserts it into the path. To compute the second
intermediate point, it determines the ideal point o2 that lies on p1d at distance a from
p1 (see Figure 6(b)). Then, it retrieves the NN of o2 (i.e., p2) among the points that are
directly reachable from p1, and inserts it into the path. The distance |p2, d| is smaller
than a, and GHM terminates with s → p1 → p2 → d as the result.

Figure 7 shows the pseudo-code of GHM. The NN computation in line 3 is an in-
stance of a constrained NN query [23], since the retrieved points must fall in a specified
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region (i.e., the circle centered at p with radius a). The search algorithm follows the
best-first paradigm and, thus, it is incremental. In particular, it inserts into a search heap
only R-tree entries N where mindist(N, p) ≤ a, with sorting key mindist(N, o). It
reports only points pNN with |p, pNN | ≤ a in ascending order of their distance from o.

Note that the paths obtained by LDM and GHM are possibly different and sub-
optimal. For instance, LDM first exploits paths containing the first NN p of the segment
sd, but the best path does not necessarily contain this point (even if there is a path
passing from p that satisfies the autonomy constraint). Similarly, in Figure 6(a), GHM
will not discover the best path s → p3 → p4 → d because p3 is not the NN of
o1. Therefore, both LDM and GHM only constitute fast filter steps before the exact
computation, which is discussed next.

4.2 Optimal Path Computation

After obtaining a sub-optimal path, we perform a query on the R-tree to retrieve the data
points that may lead to better solutions. As discussed in Section 3, if l is the length of
the sub-optimal path (returned by LDM or GHM), potential candidates lie in the ellipse
defined by points s, d, and the value of l. Assume that the corresponding set of points is
DBeps ⊆ DB. To identify the optimal path, we process DBeps with a modified version
of A* search, which takes into account the autonomy constraint and the approximate
solution available. In order to apply the algorithm, we consider that the retrieved points
form a graph, such that (i) two points (nodes) are connected, if their Euclidean distance

Algorithm Optimal Path Computation
// s: source point, d: destination point, a: autonomy
// DBeps: the subset of DB after the pruning step
1. Initialize a min-priority queue Q
2. Insert s into Q with key dist(s) = |s, d|
3. While Q is not empty
4. Get the next entry < e,dist(e) > in Q
5. If e �= d // expand the graph around point e
6. For each point p inside the circle centered at e with radius a
7. If dist(e) − |e, d| + |e, p| + |p, d| ≥ l
8. Go back to line 6 and continue with the next point
9. If p has not been de-queued before
10. If p is not currently in Q // i.e., p is visited for the first time
11. En-queue < p,dist(e) − |e, d| + |e, p| + |p, d| > in Q
12. Else // i.e., p was visited before and it is contained in Q
13. Let dist(p) be the key of p in Q
14. If dist(p) > dist(e) − |e, d| + |e, p| + |p, d|
15. Update the key of p in Q to be dist(e) − |e, d| + |e, p| + |p, d|
16. Else // i.e., e = d
17. Return the corresponding path as the result, and terminate
18. Return the path at hand as the result // i.e., no better path was found

Fig. 8. The optimal a-autonomy path computation over the un-pruned part of the dataset
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does not exceed the autonomy a, (ii) the cost of an edge connecting two points equals
their distance.

Figure 8 illustrates the pseudo-code for the optimal path computation module. Line
6 guarantees that the path returned is valid by considering as reachable only points
within distance a from the de-queued entry. The knowledge of a path with length l is
used to reduce the search space in line 7. Note that the pruning condition (dist(e) −
|e, d|+ |e, p|+ |p, d| ≥ l) for a considered point p also takes into account |p, d|, which
constitutes a lower bound for the length of the shortest path between p and d, in accor-
dance with the A* algorithm.

5 k-Stops Shortest Paths

Section 5.1 presents two heuristics for the efficient retrieval of sub-optimal k-stops
paths. Section 5.2 describes an algorithm for computing the optimal answer.

5.1 Fast Sub-optimal Path Computation

A naı̈ve heuristic for computing a good initial path is to select the k closest points to the
line segment that connects s and d. In certain cases, however, this may lead to a poor
solution. Consider, for instance, that in Figure 9(a) we want to compute the shortest path
that passes through three intermediate stops. The four NNs of sd are p1, p2, p3, p4 (in
this order). The path s → p1 → p2 → p3 → d containing the first 3NNs is relatively
long since p2 is on the opposite side (of sd) with respect to p1 and p3. In order to
avoid this problem we follow the least diversion paradigm. Figure 9(b) illustrates the
adaptation of LDM (called k-LDM) to the k-stops problem on the example of Figure
9(a). First, k-LDM adds to the path the NN (p1) of line segment sd. Then, it retrieves
the point with the minimum distance from line segments sp1 and p1d. Among the NNs
(p3 and p4) of sp1 and p1d, p3 is inserted into the path. The process is repeated for the
NN of sp1, p1p3, p3d, and LDM terminates with s → p4 → p1 → p3 → d as the result.

The k-LDM algorithm is illustrated in Figure 10. It is worth mentioning that the best
NN computation in line 3 is not performed by individual NN queries for each edge of
the path, because this approach would lead to multiple traversals of the R-tree of DB.

s d

p1

p2

p3
p4

(a) 3NNs as 3 intermediate stops

s d

p1

p2

p
3

p4

(b) k-LDM shortest path

Fig. 9. k-LDM motivation and example
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Algorithm k-LDM(s,d)
// s and d are the source and destination, and path is the path constructed so far
1. Initialize path to s → d
2. For i = 1 to k
3. Find the point p in DB with the min distance from any line segment in path
4. Add p to path
5. Return path

Fig. 10. The least diversion method for the k-stops problem

s d

p1

(a) Retrieval of p1

E1s d

p1
p2

E2

(b) Retrieval of p2

Fig. 11. LOM example

To compute an intermediate point with a single traversal, line 3 is implemented us-
ing an adaptation of the aggregate nearest neighbor search discussed in Section 2.1.
In particular, the query set Q now consists of the edges in the path constructed so
far, and the aggregate distance of a point is defined as the distance from its closest
line segment in Q. The algorithm follows the best-first paradigm, by inserting each
encountered node N in the R-tree of DB into the search heap H with key equal to
minp→p′∈path mindist(N, pp′), i.e., the minimum mindist between N and any of the
edges in the path.

An alternative to k-LDM is the Local Optimum Method (LOM). Given any pair of
points p and p′, if we want to select one intermediate point o ∈ DB so that the length
of the path p → o → p′ is minimized, then o is by definition the point that minimizes
the sum of distances from p and p′ (i.e., |p, o| + |o, p′|). Based on this observation,
given a path with fewer than k points, LOM chooses as the next point o the one that
minimizes the sum of distances from any pair of consecutive points in the current path.
In other words, it selects o ∈ {DB−path} that minimizes minp→p′∈path |p, o|+|o, p′|.
Figure 11 gives an example for a 2-stops query. The first intermediate point is p1, since
it minimizes the sum of distances from s and d. Geometrically, this implies that the
ellipse in Figure 11(a) does not contain any other point. The second intermediate point
p2 is computed as the point in DB−{s, d, p1} that minimizes the quantity min(|s, p2|+
|p2, p1|, |p1, p2|+|p2, d|). Consequently, in Figure 11(b) the ellipse E1 does not contain
any point other than p2, while ellipse E2 (defined by foci p1 and d, and length |p1, p2|+
|p2, d|) is empty.

Figure 12 shows the LOM algorithm. Similar to the implementation of k-LDM,
step 3 is performed with an ANN algorithm, in order to avoid multiple traversals of
the R-tree of DB. The query set Q contains all the edges in the current path, and the
aggregate distance of a point is defined as the minimum sum of distances from the
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Algorithm LOM(s,d)
// s and d are the source and destination, and path is the path constructed so far
1. Initialize path to s → d
2. For i = 1 to k
3. Find the point p in DB with the min sum of distances from the endpoints
4. of any line segment in path
5. Add p to path
6. Return path

Fig. 12. The local optimum heuristic method for the k-stops problem

endpoints of any line segment in Q. The ANN search traverses the R-tree of DB in
a best-first manner, inserting each encountered node N into the search heap H with
key equal to minp→p′∈path mindist(N, p) + mindist(N, p′), i.e., the minimum sum
of mindist between N and the endpoints of any of the edges in the path.

5.2 Optimal Path Computation

The optimal path computation involves an implementation of Bellman-Ford’s algo-
rithm. This algorithm works iteratively, and calculates the shortest paths in increasing
number of hops. In particular, during step i it computes the shortest paths consisting
of exactly i hops between the source node and every other node of the graph. The
complexity of Bellman-Ford’s algorithm is O(mE) for a graph with E edges and a
maximum path length of m hops, rendering it very expensive for dense graphs. Notice
that in the k-stops problem formulation there is no autonomy constraint, and therefore,
the number of edges is O(N2) (where N is the number of points after the pruning step).
Consequently, the running time of the algorithm is expected to be O(kN2), and a good
first solution is crucial for achieving low cost.

6 Experimental Evaluation

In this section we experimentally evaluate the performance of our methods, in terms
of I/O and CPU cost. We use the two real spatial datasets TCB and LA (available at
www.rtreeportal.org), containing 450K and 1.3M points, respectively. Both datasets are
normalized to fit in a [0, 10000]2 workspace. The block size of the R-trees is set to 2
KBytes. For each simulation, we select two random points from the dataset and compute
the constrained shortest path using the proposed methods. In order to reduce random-
ness, each result is obtained by averaging over the measurements of 10 simulations. For
all experiments we use a Pentium 3.2 GHz CPU with 1 GByte memory. Section 6.1
focuses on the a-autonomy problem, while Section 6.2 on k-stops shortest paths.

6.1 Evaluation of a-Autonomy

We first study the effect of the autonomy value a using the GHM and LDM heuristics.
We fix the distance between the source and destination points to 3000 and vary a from
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Fig. 14. Total CPU time vs. autonomy a

200 to 600. Figure 13 shows the total I/O cost for datasets TCB and LA, and its break-
down into the sub-optimal path computation (step 1) and the elliptical range search (step
2) that collects the points passing the criterion of Section 3. As a increases, the cost
drops because the path consists of fewer intermediate points. Regarding the final range
search, the methods incur similar overhead. On the other hand, obtaining the initial path
with GHM incurs significantly fewer node accesses compared to LDM. This happens
because GHM performs (cheap) point NN queries, as opposed to the (expensive) linear
NN queries of LDM. Furthermore, since GHM aims at reaching the destination with
the minimum number of steps, it performs fewer NN searches than LDM.

Figure 14 depicts the total CPU time for the previous experiment. The running time
decreases with a because both the sub-optimal and the optimal path consist of fewer
points. The performance gain of GHM is similar to the I/O gain for the reasons ex-
plained in the context of Figure 13. An important remark concerning both methods is
that the initial path computation dominates the total CPU time because, as discussed
shortly the number of non-eliminated points (that participate in the selection of the op-
timal path) is small.

We now present some interesting measurements regarding the cost and accuracy
of the sub-optimal path computation. Figure 15 depicts the CPU time for calculating
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Fig. 15. CPU time and quality of the sub-optimal path vs. autonomy a
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the initial path, the deviation percentage e of the achieved path length compared to the
optimal one, and the percentage p of the dataset that is pruned according to the criterion
of Section 3. LDM provides a better quality path than GHM, at the expense of higher
CPU cost. Both methods, however, produce a very accurate result (with less than 0.04%
deviation from the optimal path length) and are able to prune over 99% of the database.
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Fig. 18. CPU time and quality of the sub-optimal path vs. distance of endpoints

Next, we investigate the effect of the distance between the source and destination.
We set the autonomy variable a to 300, and vary the (Euclidean) distance between the
endpoints of the path from 1000 to 5000. The total number of node accesses and the
overall CPU time are illustrated in Figures 16 and 17, respectively. As expected, a larger
distance implies higher I/O and CPU cost. LDM is affected more because of the numer-
ous linear NN queries. Figure 18 focuses on the sub-optimal path computation step.
As the distance between the endpoints of the path increases, the pruning percentage p
decreases, since the ellipse of the criterion of Section 3 grows. On the other hand, the
deviation e from the optimal solution is very small in all cases.

6.2 Evaluation of k-Stops

In the following experiments we evaluate the performance of the k-stops shortest path
algorithms. First, we study the effect of k on the LOM and k-LDM techniques. We fix
the distance between the source and destination points to 3000 and vary the number k
of intermediate stops from 3 to 7. Figure 19 shows the total I/O cost, and its breakdown
into the initial sub-optimal path computation and the retrieval of points passing the
pruning criterion. The node accesses of LOM remain relatively stable, while for k-
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Fig. 19. Total I/O cost vs. number k of required stops
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Fig. 21. CPU time and quality of the sub-optimal path computation vs. number k of required
stops

Step 1, sub-optimal path computation Step 2, retrieval of points within ellipse

0

200

400

600

800

1000

1200

1400

1600

1000 2000 3000 4000 5000

Source-destination distance

I/O cost (node accesses)

 

k-LDM

k-LDM

k-LDM

k-LDM

k-LDM

LOM

LOM

LOM

LOM

LOM

(a) TCB

0

500

1000

1500

2000

2500

3000

1000 2000 3000 4000 5000

Source-destination distance

I/O cost (node accesses)

 

k-LDM

k-LDM

k-LDM

k-LDMk-LDMLOM
LOM

LOM

LOM

LOM

(b) LA

Fig. 22. Total I/O cost vs. distance of endpoints

LDM they increase linearly with k. Initially, k-LDM incurs fewer node accesses than
LOM, but this changes for larger values of k. Regarding the elliptical range search for
points passing the pruning criterion, its I/O cost is similar for both methods.

Figure 20 illustrates the total running time for the previous experiment. k-LDM is
considerably faster than LOM, and the performance gap increases sharply with k. This
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Fig. 24. CPU time and quality of the sub-optimal path vs. distance of endpoints

fact indicates that the k-LDM technique retrieves a better sub-optimal solution, and
thus achieves more effective pruning than LOM. Recall that the time complexity of the
optimal path computation is O(kN2), where N is the number of points that pass the
criterion of Section 3. It follows that even a slightly worse initial solution can increase
significantly the overall running time. Regarding the detailed behavior of each method,
the CPU time for LOM is dominated by the optimal path computation, while for k-LDM
approximately 10%-50% of the CPU time is spent on the initial path computation.

Figure 21 verifies the above observation, by comparing the accuracy and the CPU
time of the sub-optimal path computation for k-LDM and LOM. The path returned by
k-LDM is at most 0.003% longer than the optimal one in all cases. LOM is not as
effective, especially for large values of k. Its solution deviates from the optimal by up
to 0.86%. On the other hand, LOM is considerably faster than k-LDM, and it is a good
choice for providing approximate results to time-critical applications that can tolerate a
certain amount of inaccuracy in return for a fast response.

Finally, in Figures 22, 23 and 24 we investigate the impact of the distance between
the two endpoints of the path. We set the number k of stops to 5, and vary the distance
between the source and destination from 1000 to 5000. As expected, when the distance
increases, both the I/O and CPU costs are higher. The reason is that the ellipse covers
a larger area of the workspace, and prunes fewer nodes and points (also verified by the
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pruning percentages p in Figure 24). Furthermore, the I/O cost increases because the
edges of the path are longer, and the ANN queries of both k-LDM and LOM access
a larger part of the index. As shown in Figure 24, the running time of the heuristics
remains relatively stable because the required number of intermediate points is con-
stant (i.e., k).

7 Conclusion

This paper formulates and solves a-autonomy and k-stops shortest path queries, in spa-
tial databases. Assuming a large collection of points in the Euclidean space indexed
by a data-partitioning access method, we propose several techniques for the efficient
computation of the constrained shortest paths. Our methods exploit the spatial infor-
mation provided by the index, in order to produce very fast an initial sub-optimal path.
The length of this path is then used to prune the workspace, according to a geometric
criterion. The optimal path is retrieved by utilizing an exact shortest path algorithm on
the non-eliminated data points. Our experimental results on real spatial datasets demon-
strate that the proposed techniques are able to prune over 98% of the database for all
examined settings, thus leading to very low response times.

A promising direction for future work concerns a top-K version of the constrained
shortest path problem, where instead of a single path, we are asked to compute the best
K paths according to some input constraint (e.g., a-autonomy or k-stops). Furthermore,
in this paper we consider that all points are equivalent. It would be interesting to study
cases where the data points have different properties. For instance, in autonomy prob-
lems it may be beneficial to visit a point that incurs relatively high diversion, if it can
provide a large benefit (e.g., in terms of refueling capacity).
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18. Jensen, C.S., Kolárvr, J., Pedersen, T.B., Timko, I.: Nearest neighbor queries in road net-

works. In: GIS. (2003) 1–8
19. Shekhar, S., Yoo, J.S.: Processing in-route nearest neighbor queries: a comparison of alter-

native approaches. In: GIS. (2003) 9–16
20. Yiu, M.L., Mamoulis, N.: Clustering objects on a spatial network. In: SIGMOD. (2004)

443–454
21. Huang, Y., Jing, N., Rundensteiner, E.A.: Integrated query processing strategies for spatial

path queries. In: ICDE. (1997) 477–486
22. Tao, Y., Papadias, D., Shen, Q.: Continuous nearest neighbor search. In: VLDB. (2002)

287–298
23. Ferhatosmanoglu, H., Stanoi, I., Agrawal, D., Abbadi, A.: Constrained nearest neighbor

queries. In: SSTD. (2001) 257–278



Accurate and Efficient Similarity Search on 3D

Objects Using Point Sampling, Redundancy, and
Proportionality

Johannes Aßfalg1,2, Hans-Peter Kriegel1, Peer Kröger1, and Marco Pötke2
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Abstract. With fast evolving resources for 3D objects such as the Pro-
tein Data Bank (PDB) or the World Wide Web, new techniques, so-called
similarity models to efficiently and effectively search for these 3D objects
become indispensible. Invariances w.r.t. specific geometric transforma-
tions such as scaling, translation, and rotation are important features of
similarity models. In this paper, we focus on rotation invariance. We first
propose a new method of representing objects more accurately in the con-
text of rotation invariance than the well-known voxelization technique.In
addition, we extend existing feature-based similarity models by propos-
ing a new spherical partitioning of the data objects based on proportion-
ality and redundancy1, and generalizing an existing method for feature
extraction. A broad experimental evaluation compares our method with
existing methods in terms of accuracy and efficiency. In particular, we
experimentally confirm that our point sampling method is better suited
to represent 3D objects in the context of rotation invariance than vox-
elized representations. In addition, we empirically show that our new
similarity model significantly outperfoms competitive rotation invariant
models in terms of accuracy as well as efficiency.

1 Introduction

During the last years, more and more 3D models became available, e.g. through
the fast-growing protein database PDB [1] or through the World Wide Web
[2]. This trend will probably continue and thus, new techniques are required to
efficiently and effectively search within such 3D databases.

This paper covers feature-based methods to describe 3D objects, so called
shape descriptors. Shape descriptors extract numerical features of a 3D object
so that the object is mapped to a metric space called feature space. The similarity
of two spatial objects is then measured by the proximity of their feature vectors.

In this paper, we are particularly interested in shape descriptors that are
invariant with respect to rotation, translation, and scaling.

We will base our work on an existing shape descriptor (the volume model [3])
by applying a combination of new techniques. The original descriptor is already
1 Patent pending.

C. Bauzer Medeiros et al. (Eds.): SSTD 2005, LNCS 3633, pp. 200–217, 2005.
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invariant w.r.t. the mentioned transformations because it uses a spherical parti-
tioning of data objects after moving the balance point of an object to the origin
of the coordinate system. For a given object, the model extracts the volume of
the object from each partition as feature.

The retrieval quality of this very intuitive but simple model can be signifi-
cantly enhanced by our newly proposed techniques. The first improvement we
propose in this paper is a new representation of 3D objects. Instead of the com-
monly used voxel representation, we use uniformly distributed surface points.

Our second enhancement is a new way of decomposing an object into several
partitions. Instead of constructing equidistant shells like in [3], our method cre-
ates partitions that are dynamically adapted to the specific shape of an object.
In addition, we propose a new technique for the assignment of parts of an object
to different partitions. Instead of assigning each part to exactly one partition,
our new redundant assignment method associates parts of an object to several
overlapping partitions.

A third enhancement we are proposing is to use an advanced feature extrac-
tion method instead of the rotation invariant but rather simple feature extraction
based on the volume of the object in a partition. In particular, we show how the
eigenvalue model which is presented in [4] for voxelized data working with cubic
partitionings, can be generalized for arbitrarily shaped partitionings. We further
adopt this generalization to our new object partitioning method.

We empirically show how these newly introduced techniques can be com-
bined, to significantly improve quality of similarity search on 3D models.

The rest of the paper is organized as follows. We review related work on
rotation invariant shape descriptors in Section 2. We then discuss the limitations
of voxel representation in the context of rotation invariance and present our
solution to this problem based on point sampling in Section 3. Section 4 presents
our new object partitioning methods and Section 5 describes the generalization
of the eigenvalue model. Section 6 summerizes our new method to compute
rotation invariant shape descriptors. The experimental evaluation of our methods
is presented in Section 7. Section 8 provides conclusions.

2 Related Work

Various methods for the characterization of 3D shapes have been reported. In this
section we focus on techniques that result in a rotation invariant representation
of an object without requiring a normalization step.

In [5] Osada et al. presented a technique called “D2” to describe 3D shapes.
At first the distances of pairs of randomly selected points on the surface of an
object are measured. These distances are used to create a histogram that is
finally used as a feature vector. This method is intended to distinguish large
differences in geometric shape. It is not able to discriminate between objects
that differ only in small details. In addition, a high number of pairwise distances
has to be calculated to obtain a robust description of the object.

The idea of the D2 descriptor was refined in [6]. The authors not only cal-
culated the distance between two randomly distributed surface points, but also



202 J. Aßfalg et al.

classified it according to the position of the two points. The line between two
points either can lie completely inside the object, completely outside of the ob-
ject, or inside and outside of the object. This separation yields three histograms
instead of one. The presented results show that very similar shape distributions
are still derived for dissimilar parts. The complexity of the method is the same
as above while the time that has to be spent for each pair of points is even longer
since the connecting line has to be classified.

In [7], Kazhdan et al. presented a rotation invariant shape descriptor by
applying the spherical Fourier analysis to a number of spherical functions defined
on a voxel grid. The concentric spheres constructed around the center of the voxel
grid are used to define corresponding spherical functions.

In [8] the authors describe a shape descriptor based on the work in [7]. A
spherical function is defined by measuring the distance between the surface of
an object and its balance point. This function is afterwards analyzed with the
spherical Fourier transform and the Fourier coefficients are used to characterize
the object.

As the computation of the Fourier coefficients by means of the SFT algorithm
requires a lot of function values we decided to use the method in [7] for our
experimental comparisons because it is easier to determine whether or not a
voxel is filled than to intersect a large number of rays with a triangle mesh.

Hilaga et al. in [9] introduced a technique to characterize 3D shapes based on
so-called Reeb graphs. The better these graphs match, the higher is the similarity
between the corresponding objects. However, this method compares the topology
of objects rather than their geometry.

An intuitive and rotation invariant technique to describe the 3D shapes of
proteins was presented by Ankerst et al. in [3]. Since our method uses a simi-
lar technique for object partitioning, we will present details on this method in
Section 4. The method also will be included in our experimental comparisons.

3 Representation of 3D Objects

In this section, we discuss how 3D objects can be represented in order to effi-
ciently derive spatial features. Often, 3D objects are given by triangle meshes,
i.e. sets of connected triangles. The algorithm in [10] for example calculates a
triangulated surface of a protein. Although well suited for the graphical display,
this representation is still too complex for the efficient computation of feature
vectors. In the following, we discuss voxelization as a method to represent 3D
objects and its problems in terms of rotation invariance. Thereafter, we propose
a new representation method called point sampling that overcomes the short-
comings of voxelization regarding rotation.

3.1 Voxelization

A well-known method to represent 3D data for extracting spatial features is vox-
elization. For voxelization, an object is usually placed into a standardized cube.
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(a) 720 voxels. (b) 3075 voxels.

Fig. 1. Rotation variant voxel representation

(a) Rendered
view.

(b) Triangle
mesh.

(c) 503 voxel
grid.

(d) Points.

Fig. 2. Different representations of a 3D object

This cube is partitioned into n3 small cubes (so-called voxels) using an equidis-
tant grid. A voxel is considered as filled if it intersects a triangle of the triangle
mesh. The algorithm proposed by Kaufman in [11] yields a conservative approx-
imation of the object surface by means of voxels. A further advantage of this
representation is the possibility to model filled objects by adding interior voxels.

However, this representation is not invariant with respect to rotations, i.e.
the number of voxels changes when the object is rotated. This effect is illus-
trated in Figure 1. As we will demonstrate experimentally, this rotation variant
representation of objects reduces the quality of shape descriptors working with
voxel input.

3.2 Point Sampling

In this section we introduce another approach to represent a given mesh of
triangles. Let M = {T1, . . . , Tm} be the set of triangles the mesh consists of. For
1 ≤ i ≤ m let Ai denote the area of the triangle Ti and let Pi, Qi, Ri ∈ 3 be
the three vertices of Ti. Then in a first step the total area A =

∑m
i=1 Ai of all

triangles is calculated and the desired number n ∈ of points to be sampled is
chosen. Afterwards, the following steps are repeated n times:

Selection of a Triangle. With probability p = Ai

A triangle Ti is selected. This
selection is implemented by a preprocessing step assigning to each triangle the
sum of the areas of all its predecessors plus its own area, i.e. Asumi =

∑i
j=1 Aj .

Afterwards, a random number r ∈ , 0 ≤ r ≤ A is created and the triangle Tj

is selected so that Asumj ≥ r and �i : 1 ≤ i < j : Asumi ≥ r.

Sampling of a Random Point. According to [12] a random point is created
inside triangle Tj .

In contrast to the voxelization method this method is not able to model filled
volumes. Nevertheless, our experiments show an improved quality when using
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shape descriptors working on models that have not been normalized before the
shape descriptor is applied.

Figure 2 shows different representations of a 3D object.

4 Partitioning Data Objects

The general idea of our rotation invariant shape descriptors is to partition an
object into shells similar to the method proposed in [3] and then extracting
spatial features from each partition. We show how this method can be adopted
and enhanced in terms of acurracy. Let us note that the following concepts do
not rely on a certain kind of object representation, i.e. objects represented as
voxels or using sampled points. In the following, we assume that the data objects
are represented as points, either center points of voxels or sampled points.

4.1 Construction of the Shells

The shell model to partition the data was originally proposed in [3]. After the
computation of the balance point M (cf. Section 5) of a given object O and the
radius of the bounding sphere around O the space enclosed by the bounding
sphere is divided up into k ∈ shells.

Equidistant Shell Construction. The original approach in [3] constructs k
shells whose distance to each other is the same for each pair of adjacent shells. So
we will refer to this method as the equidistant construction method. Although
the innermost shell actually is a sphere, we nonetheless will denote it as a shell.
Let rBS ∈ be the radius of the bounding sphere. Then the thickness δ of each
shell,i.e. the radius of the inner sphere, can be computed by δ = rBS/k.

For each i ∈ {1, . . . , k} the shell Si is characterized by its inner radius ri−1
and its outer radius ri where ri = δ · i.

This method is illustrated in Figure 3. An object is inscribed into its minimal
bounding sphere and the bounding sphere is afterwards partitioned into k = 3
equidistant shells. This method corresponds to the calculation of so-called shape
histograms [3].

(a) Original object. (b) Partitioned
bounding sphere.

(c) Equidistant
shell construction.

(d) Proportional
shell construction.

Fig. 3. Shell construction
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Proportional Shell Construction.1 The shell construction method of [3] de-
scribed above keeps the distance between adjacent shells constant. However, this
method does not partition the bounding sphere into areas of equal complexity
and thus of equal interest. Shells of very low complexity (i.e. with few points)
are most likely of very low interest. The granularity of the partitioning is too
fine to extract meaningful spatial features in that case. In the worst case, the
equidistant construction method may result in empty partitions that are of no
interest. On the other hand, other shells contain many more points. In this
case, the granularity of the partitioning may be too coarse to extract meaningful
spatial features. The solution we are proposing in the following is to apply a
proportional shell construction such that each partitioning has the same level of
complexity and interest.

Let O = {p1, . . . , pn} be an object represented by a set of points (either
representing voxels or sampled points as discussed above). Let M be the balance
point of O, let rBS be the radius of the bounding sphere around O, and let k ∈
be the desired number of shells to be constructed. Then the number a ∈ of
points to be placed into each shell is given by a = �n/k� .

Now the points of O are sorted in ascending order with respect to the Eu-
clidean distance deucl of its elements to M such that O can be rewritten as O =
{ps(1), . . . , ps(n)}, where deucl(M, ps(1)) ≤ deucl(M, ps(2))≤ . . . ≤ deucl(M, ps(n)).

Let k �= 1. Then the shell Si, i ∈ {1, . . . , k − 1}, is characterized by its inner
radius ri−1 and its outer radius ri where ri = deucl(M, ps(i·a)).

The outer radius rk of the outmost shellSk is set to rBS . In case of objects repre-
sented using point sampling, this radius is not necessarily equal to deucl(M, ps(n)).
This is due to the random process with which the sampled points of O have been
created. The inner radius rk−1 of Sk is calculated as described above.

The radii of the shells are important for our method of feature extraction
from the partitions which will be presented in Section 5.

If n �= k ·a, the remaining elements of O (ps(k·a+1), . . . , ps(n)) are assigned to
the outmost shell.

Obviously, the proportional shell construction method partitions the bound-
ing sphere into areas of equal complexity and thus of equal interest. The gran-
ularity of the partitioning adopts to the shape of the data objects. The method
is illustrated in Figure 3(d). While the equidistant shell construction method
corresponds to the calculation of shape histograms, the proportional method
generates shape quantiles.

4.2 Assignment to Shells

After the space enclosed by the bounding sphere has been partitioned, i.e. after
the shells have been constructed in an equidistant or proportional way, points
of O = {v1, . . . , vn} (either representing voxels or sampled points) have to be
assigned to these partitions.

Let M be the balance point of O and let the bounding sphere be segmented
into shells S1, . . . , Sk, k ∈ . Each shell Si is characterized by its inner radius
ri−1 and its outer radius ri, where r0 := 0.
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(a) Shells. (b) Disjoint assignment. (c) Redundant assignment.

Fig. 4. Disjoint vs. redundant assignment. Cross section of the bounding sphere

Disjoint Assignment. In [3] a disjoint assignment is proposed. For each shell
Si, a set Vi is created. An element vj of O is assigned to Vi if and only if
ri−1 < deucl(M, vj) ≤ ri.

As every element of O is assigned to exactly one shell, this assignment results
in a disjoint decomposition of O into V1, . . . , Vk. Each set corresponds to the
space enclosed by a certain shell. This method is illustrated in Figure 4(b).

Redundant Assignment.1 The disjoint assignment proposed in [3] has a severe
limitation. If two (or more) shells (and their associated elements) are rotated
against each other, the resulting feature vector will be exactly the same as the
one derived from the unrotated elements. Although the so changed set of points
may represent a totally different object, this object will be regarded as very
similar to the one described by the unrotated points.

To overcome this weakness we introduce a new method for the assignment of
elements to spherical partitions. This method can be applied to both, equidistant
and proportional shells.

A set V S
i is created for each shell Si. An element vj of O is assigned to V S

i

if and only if deucl(M, vj) ≤ ri.
To illustrate the method, imagine x ∈ O, ri−1 < deucl(M, x) ≤ ri, i.e. x lies in-

side the shellSi. The disjoint assignmentmethodwould assignx to only one specific
set Vi, whereas the redundant assignmentmethod assignsx to the sets V S

i , . . . , V S
k .

It is obvious that rotating a shell against other shells now results in a different
feature vector. If for example shell Si is rotated, the sets V S

i , . . . , V S
k will yield

different features.
The set V S

i corresponds to the space enclosed by a sphere with radius ri that
is centered at M . V S

k represents the space enclosed by the bounding sphere and
thus V S

k = O. In Figure 4(c), an example of the partitions resulting from the
redundant assignment method is depicted.

4.3 Problems with Thin Shells

No matter how the elements are assigned to the spherical partitions, a problem
can occur when the underlying shells are constructed proportionally. If all or
almost all points representing an object have the same distance to their balance
point, the constructed shells will be very thin.

Let object O be a perfectly triangulated globe, i.e. the triangle mesh of O
consists of infinitesimally small triangles and thus the points that are sampled
on the surface of O all have the same Euclidean distance to their balance point
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(a) Without blur-
ring.

(b) With blurring. (c) Without blur-
ring.

(d) With blurring.

Fig. 5. Impact of blurring on (a),(b) thin shells and (c),(d) thick shells

M , the center of the globe. Sorting the points according to their distance to M
will then result in a list whose ordering is in the best case random and in the
worst case determined by the creation time of a certain point. The elements of
a certain partition will therefore not reflect the globular shape of O. It is more
likely that a partition only describes a small (non-globular) area of O.

In reality, due to a triangulation process that is far from being perfect, not
all sampled points representing O will have the same Euclidean distance to M .
Nonetheless the constructed shells will be very thin and the distribution of points
in the partitions will most probably not reflect the globular distribution of the
complete set of sampled points. The points assigned to a certain shell will more
likely reflect geometric deviations from the ideal surface of the globe due to a
non-perfect triangulation of O.

An example of this problem is illustrated in Figure 5(a). The points are
marked with four different colors. The colors correspond to the disjoint assign-
ment of the sampled points to different shells. The shape of the object is globular
and thus the mentioned problem becomes visible. Instead of being equally dis-
tributed, points of the same color are grouped together in certain areas.

A possible solution to this problem is to shuffle the points. Therefore, we
introduce a value we call the blur-distance β. Let O =

(
ps(1), . . . , ps(n)

)
be rep-

resented by a list of sampled points. Let M be the balance point of O and let
deucl(M, ps(1)) ≤ . . . ≤ deucl(M, ps(n)), i.e. the points are sorted in ascending
order with respect to the Euclidean distance to M . Thus the blur-distance β is
defined by: β = c · deucl(M, ps(n)), c ∈ [0, 1].

The blur-distance is specified as a portion of the maximum distance to M
over all elements of O. Our experiments suggest that 0.01 is a good choice for
c, so we will set c = 0.01 throughout the rest of the paper. The blur-distance
specifies regions adjacent to borders between shells. The elements of these regions
are afterwards shuffled with regard to their position in the sorted list O. The
exact procedure is as follows:
1. Let k ∈ be the number of shells to be constructed.
2. The number a of elements to be assigned to each shell is calculated. Then

the set B = {s(a), s(2a), . . . , s((k−1)a)} contains the indices of the outmost
elements (with respect to M) of the shells (except for the outmost shell).
These elements mark the border between two adjacent shells.
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3. Now we successively use each index b ∈ B as a starting point in the list O.
We proceed downwards in the list until we reach for the first time an index
l such that deucl(pb, ps(l)) > β or until we reach the innermost element of O.
In this case, we set l = 1.

4. Afterwards, for each b ∈ B we proceed upwards in the list O until we for the
first time reach an index u, such that deucl(pb, ps(u)) > β or until we reach
the outermost element of O In this case we set u = n.

5. As a result, a pair of indices (l, u) was determined for each element of B.
Each pair specifies a portion of the list O that now is shuffled (the elements
from ps(l+1) to ps(u−1)). If two or more of these regions overlap, they are all
shuffled at once such that an element of one part of O can be swapped with
an element of another part.

This shuffling ensures that the distribution of points of a very thin shell
describes all parts of an object that lie in adjacent thin shells. In Figure 5(b)
this effect is demonstrated with the globular object mentioned above. Now all
shells reflect the spherical shape of the original object. In Figure 5(c) we depicted
an object partitioned into thick shells. The clearly defined borders become only
slightly blurred when applying the method described above (cf. Figure 5(d)).

5 Extracting Spatial Features

Having partitioned the objects into shells, we have to extract spatial features to
build a feature vector. In [3], the volume, i.e. the number of representing points,
of the object in a given partition is extracted as feature. The resulting feature
vector consists of one volume measurement in each of the k shells. We refer to
this method of extracting spatial features as the volume model.

In [4] the eigenvalue model has been introduced which clearly outperfoms the
volume model in terms of effectiveness. Thus, we argue that it is more accurate
to use this eigenvalue model to extract spatial features. The eigenvalue model
was originally introduced in [4] but was only applied to a cubic partitioning
of a voxelized object. The method is based on PCA, the principal component
analysis [13], to analyze a given set of data and extract shape descriptors from a
given partitioning. In the following, we describe the basic idea of the eigenvalue
model, and generalize a procedure for obtaining feature vectors from the data
of a given partition. The sets to be analyzed are the sets of 3D points that lie
inside a certain partition.

The eigenvalue model. The basic idea of the eigenvalue model is to obtain
the eigenvalues of a set of data within a cubic partitioning as shape descriptors
[4]. Originally, it was applied to voxelized data, however, it is quite simple to
apply it on objects being represented by sampled points.

Let V = {v1, . . . , vn} be a set of 3D points, i.e. vi ∈ 3, 1 ≤ i ≤ n, where
vi = (vi1 , vi2 , vi3)T. If the object is voxelized, the vi represent the center of voxel
vi, whereas if the object is represented using point sampling, vi is simply one of
the sampled points.
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Each vi ∈ V is translated such that M afterwards coincides with the origin
and afterwards the covariance matrix C for V is computed as follows:

C=
1

|V | − 1

n∑
j=1

(vj−M) · (vj −M)T
, where M =

1
n

n∑
j=1

vj is the balance point.

The covariance matrix can be decomposed as C = VEVT, where V is an
orthonormal matrix containing the eigenvectors of C and E is a diagonal matrix
containing the eigenvalues of C. The eigenvectors are called principal axes of V .
They describe the three orthogonal axes where the scattering of the elements
is greatest. The eigenvalues describe the variance along the three principal axes
and thus can be used to characterize the shape of the elements of V . As stated
above, in [4], the authors apply this idea to voxelized data. The data objects are
partitioned into axis-parallel units. From each unit, the eigenvalues of the voxels
(represented as vectors of their center point) are obtained as shape descriptors.
Let us note, that this method is not rotation invariant due to the cubic parti-
tioning of the data. The resulting feature vector consists of 3k values since for
each partition, 3 features (eigenvalues) are extracted.

Generalization and Adoption to Spherical Partitionings. The eigenvalue
model as proposed in [4] is applicable on cubic partitionings only and thus is not
rotation invariant. In the following, we present a way to normalize the calculated
eigenvalues such that eigenvalues of different partitions or even different similar-
ity models can be compared to each other or can be combined with each other.
In particular, we show how this model can be applied to spherical partitions like
the shells constructed in Section 4. The idea is to express each eigenvalue as a
portion of the maximum possible eigenvalue.

Lemma 1. Let V be a 3D space and let dmax be the maximum Euclidean dis-
tance two points in V can be apart from each other. The maximum variance
V armax that can occur in V is given by V armax = 1

2d2
max.

Proof. The highest variance in a certain direction is given by two points that have
the highest possible distance from each other and that lie on a line indicating
the specific direction. Let therefore T = {(a1, a2, a3), (b1, b2, b3)} =: {a, b} be a
set with two points in a 3D space V and let deucl(a, b) be the largest Euclidean
distance two elements in V can be apart from each other.

The mean value M of T is equal to (a1+b1
2 , a2+b2

2 , a3+b3
2 ). The variance of T

is then given by:

V ar(T ) =
∑

t∈T (deucl(t, M))2

|T | − 1

=
(a1 − a1+b1

2 )2 + (a2 − a2+b2
2 )2 + (a3 − a3+b3

2 )2

1

+
(b1 − a1+b1

2 )2 + (b2 − a2+b2
2 )2 + (b3 − a3+b3

2 )2

1

=
1
2
((a1 − b1)2 + (a2 − b2)2 + (a3 − b3)2) =

1
2

(deucl(a, b))2
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Lemma 1 states, that in order to normalize the calculated eigenvalues of V ,
it is sufficient to determine the largest possible distance dmax that can occur
in V . Using dmax, the maximum possible variance, i.e. the maximum possible
eigenvalue, can be computed as indicated in Lemma 1. For example, the maxi-
mum distance dmax can be the diameter of a shell or the diagonal of a cube. An
eigenvalue λ is normalized by the mapping λ �→ λ/V armax.

In the following, if we speak of the eigenvalue model, we mean the generalized
version of the model, i.e. we will assume that the normalized eigenvalues are
obtained as shape descriptors.

The eigenvalue model can now be applied to spherical partitionings such as
the shells constructed in Section 4. In both cases of a disjoint or a redundant
assignment of points to the shells, the maximum Euclidean distance dmax of
two elements within a shell Si or SS

i , respectively, can be determined by 2ri.
The maximum variance, i.e. the maximum eigenvalue for scaling, can then be
computed according to Lemma 1.

6 Computing Invariant Shape Descriptors

Now we can summarize our proposed methods of computing shape descriptors
and discuss whether they are invariant w.r.t. several transformations, including
translation, rotation, reflection, and scaling.

The general technique of how invariance with respect to translation, rotation,
reflection, and scaling is achieved is the same for all descriptors. Let O be the
object whose feature vector is to be calculated. The following steps depend on
the type of representation.

Voxel Representation: Let O = {v1, . . . , vn}, vi ∈ 3 be represented by a
set of voxels (cf. Section 3.1). Then the balance point M = 1

n

∑n
i=1 vi of O is

computed. Afterwards, O is moved so that M coincides with the origin. Finally,
the minimum bounding sphere centered at M is constructed. The radius rBS of
the bounding sphere is determined by rBS = maxvi∈O{deucl(M, vi)}.
Sampled Points Representation: Let O = {p1, . . . , pn}, vi ∈ 3 be repre-
sented by a set of sampled points. In principle the method for the calculation of
the center and the radius of the bounding sphere described above can be applied
to any set of 3D coordinates. But with regard to the random process, the sam-
pled point set was created with (cf. Section 3.2), we decided to calculate these
values with the help of the original triangle mesh. The triangle vertices used
to calculate the balance point are weighted by the area of the corresponding
triangle. This procedure was proposed in [14]. To determine the radius of the
bounding sphere we again use the vertices of the triangles rather than the set
of interpolated points. This is due to a problem that may occur when using the
sampled points. Consider a very small but long, needle-shaped triangle with one
vertex being the most remote point with respect to the balance point. Due to
its tininess only one point might be sampled into the triangle. Thus the radius
of the bounding sphere may vary significantly depending on the position of this
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point. Using the vertices of the triangles will result in a radius that is invariant
with respect to the randomly generated points.

After these steps, invariance with respect to translation is achieved as the
balance point of O has been moved to the origin.

Our method partitions the space enclosed by the bounding sphere of a given
object into several shells centered at the balance point of the object. In Section
4, we presented two methods to construct these shells, in particular equidistant
partitioning as proposed in [3] and proportional partitioning. In addition, we
presented two methods to assign the points representing a given object to the
shells. The first method uses a disjoint assignment of the points to shells (cf. [3])
whereas the second method uses a redundant assignment.

Afterwards, we apply the eigenvalue model [4] to the elements (voxels or
sampled points) of each shell. We presented a generalization of this model in
Section 5. As the variance of the elements inside a certain shell does not change
even if the object is rotated the resulting eigenvalues are invariant with respect
to rotation. At the same time, invariance with respect to reflection is achieved.
The amount of scattering of the elements of a certain shell remains unchanged,
if the object is reflected. Finally, the eigenvalues derived for the single parti-
tions are scaled (cf. Section 5) and thus, invariance with respect to scaling is
achieved.

7 Experiments

In this section, we present our experimental evaluation of the proposed methods.
In particular, we will first evaluate the usability of the sampled points represen-
tation in comparison to a voxelized representation in the context of rotation
invariance. Next, we confirm the superiority of our adoption of the eigenvalue
model over the volume model. Last but not least, we evaluate the performance
of the different shell construction techniques and point assignment strategies de-
scribed in Section 4 and compare the best shape descriptor with existing work
on rotation invariant similarity models.

7.1 Data Sets

For our experiments we used two different real-world data sets that are described
in the following.

Princeton Shape Benchmark. The models of this set originate from the
Princeton Shape Benchmark Set [2] consisting of 1814 models collected from the
World Wide Web. Along with the models, a hierarchical classification is provided
that can be used to evaluate the quality of different shape descriptors with
precision/recall plots. We decided to only regard the leaves of the classification
system. Thus, the set is partitioned into 161 disjoint classes. We will refer to this
set of objects as the “PSB set”.
Proteins. A huge amount of 3D protein structure data is available at the online
repository of the Protein Data Bank (PDB) [1]. We used the MSMS program [10]
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Fig. 6. Evaluation of sample points vs. voxel representation

to calculate the solvent excluded surface [15] of each molecule. Afterwards the
surface was triangulated and so all experiments could be performed on the same
type of data. For the classification of the proteins we used the FSSP (Families
of Structurally Similar Proteins) classification [16], a well-known classification
system for proteins. To create classes of approximately the same size without
selecting too many proteins for the test set, we scanned the PDB for classes whose
size ranged from 50 to 100 members. This resulted in a set of 3279 proteins in
47 classes which we will refer to as the “PDB set”.

We rotated all models in both sets around a random axis by a randomly
determined angle in a preprocessing step to ensure a non-canonical orientation.
All experiments were run on an Intel Pentium 4 processor featuring 2.53 GHz
and 1 GB RAM.

7.2 Sampled Points vs. Voxel Representation

Our first experiments evaluated the representation of 3D objects. In Section 3
we discussed the limitation of voxelization in the context of rotation invariance
and proposed the technique of point sampling to overcome this limitation. To
evaluate the usability of voxelization and point sampling for rotation invariance,
we randomly selected 100 models from the PDB set and duplicated each selected
model four times. In addition, we rotated each copy randomly. Finally the re-
sulting 500 models together with the rest of the PDB set were mapped to a
feature space using the eigenvalue model on 8 disjoint and equidistant shells. We
applied the same preprocessing to the PSB set.

First we analyzed the influence of the number of sampled points on retrieval
quality and computational cost. The task was for each of the 500 preprocessed
models to retrieve the 4 corresponding (arbitrarily rotated) models. The exper-
iment was performed for different numbers of sampled points. We measured the
average time needed for the feature extraction for one model. The results shown
in Figure 6(a) and Figure 6(b) suggest a sensible trade-off between retrieval
quality and computational cost is a number of 50, 000 sampled points.

We then compared the accuracy of both the sampled points representation
and the voxel representation, using precision/recall plots. To confirm our as-
sumption that the representation by voxels is inferior to the sampled points
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representation we repeated the above described experiments for the 500 dupli-
cated models in both data sets. The models were mapped to a feature space
using 20,000 sampled points, and for the 4 possible recall values the average pre-
cision was determined. Then the objects of both data sets were represented by a
603 voxel grid. The resulting precision/recall plots (cf. Figure 6(c)) confirm our
presumption. Although we used a relatively low number of sampled points and
a relatively high voxel resolution, the sampled points representation generated
significantly higher precision values.

Thus, throughout the rest of our experiments we used the sampled points
representation for the 3D objects. Due to our experiments presented above, we
set the number of sampled points to 50,000.

7.3 Volume Model vs. Eigenvalue Model

The following experiments evaluate the applicability of our generalization of the
eigenvalue model (cf. Section 5). Therefore, we compared the volume model as
proposed in [3] with our generalized eigenvalue model. Both models are based
on an equidistant shell construction with disjoint point assignment. In case of
the eigenvalue model, we used 10 shells whereas in case of the volume model we
used the parameter setting that performed best according to [3], i.e. 120 shells.

Figure 7 illustrates the result of the comparison. The precision/recall plot of
the volume model is labelled with “Volume” and the results for the eigenvalue
model are marked with “EV”.

While the two models yield almost the same results on the PDB set (cf.
Figure 7(a)), the eigenvalue model yields significantly better results on the PSB
set (cf. Figure 7(b)). These results underline that the eigenvalue model is more
accurate than the volume model. Let us note that in case of the volume model
we need 12 times more partitions than using the eigenvalue model resulting in
significantly higher waste of resources for the volume model.

Thus, we use the eigenvalue model throughout the rest of the experiments as
the method for extracting spatial features.
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Fig. 9. Redundant vs. disjoint assignment

7.4 Shell Construction and Assignment to the Shells

In this section, we evaluated the different methods of shell construction and shell
assignment presented in Section 4.

First we analyzed the impact of the different methods for the shell construc-
tion. Figure 8 shows that for both data sets and for different numbers of con-
structed shells the proportional shell construction significantly outperforms the
equidistant method. Let us note that the presented results were achieved with
a disjoint assignment step. The same effect occurs when assigning the sampled
points redundantly (results are not shown here due to space limitations).

A further significant improvement in the quality of 3D model retrieval can be
observed when using the redundant assignment to the shells. This is shown for
different numbers of proportional shells and for both data sets in Figure 9. We
empirically verified that this is also true for all considered numbers of equidistant
shells (results are not shown here due to space limitations).

7.5 Comparison with Existing Approaches

Last but not least, we compared the best of our proposed shape descriptors with
existing rotation invariant methods. In particular, we compared the accuracy
of proportional and redundant shells and equidistant and disjoint shells (both
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Fig. 10. Results for different shape descriptors

combined with the eigenvalue model) with the work presented in [7] and the
method proposed in [3]. The latter model corresponds to 120 equidistant and
disjoint shells combined with the volume model.

In Figure 10, we show the resulting precision/recall plots for the competing
shape descriptors. The plot of the method of [3] is marked with “Volume”, the
result of our generalized eigenvalue model applied to 8 equidistant and disjoint
shells is labelled with “ED8”, and the results of our generalized eigenvalue model
applied to our 8 proportional and redundant shells are labelled with “PR8”. We
furthermore implemented the shape descriptor based on spherical harmonics
(marked with “SH” in Figure 10) as described in [7]. The dimensionality of
“Volume” is 120, the dimensionality of “ED8” and “PR8” is 3 · 8 = 24, and the
dimensionality of “SH” is 512. As can be seen from Figure 10, the combination of
the newly introduced proportional shell construction and the newly introduced
redundant assignement in combination with the generalized eigenvalue model
and the point sampling representation leads to a significantly higher retrieval
quality.

We also determined the efficiency of the competitive methods by measuring
the time that was necessary to create a precision/recall plot for the PDB data set.
We started the measurement after all features were loaded into main memory.
As we employed no index structures, the measured time depends only on the
dimensionality of the feature space.

The results depicted in Figure 10(c) show that the presented combination
of proportional shell construction and redundant assignment with the general-
ized eigenvalue model does not outperform the other methods only in terms of
accuracy, but also in terms of efficiency. The reason for this performance is the
comparatively low dimensionality of the resulting feature space. This is also an
advantage if a spatial index structure is applied for further speeding-up similar-
ity queries since the performance of spatial index structures usually detoriates
with increasing data dimensionality.

In summary, we can observe that our newly proposed method of propor-
tional shell construction and redundant shell assignment in combination with
our generalized eigenvalue model and our new object representation based on
point sampling significantly outperfoms existing rotation invariant approaches
in terms of accuracy and efficiency.
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8 Conclusions

In this paper, we presented different similarity models featuring many important
invariances with a focus on rotation invariance. In particular, we discussed the
limitation of voxel representations (a well-known standard technique to represent
3D objects) in the context of rotation invariance and proposed a solution to this
limitation based on point sampling. Furthermore, we introduced a new similarity
model that is based on two key ingredients: (1) a new partitioning of the data
objects that extends spherical partitionings using the ideas of redundancy and
proportionality; (2) a generalization of the existing eigenvalue model and an
adoption of this generalization to the newly introduced sherical partitionings.

Our broad experimental evaluation shows that the sampled point represen-
tation is better suited in the context of rotation invariance than the well-known
voxel representation. In addition, we showed that our new similarity model us-
ing proportional shells with redundant point assignment as object partitioning
method and the adoption of the eigenvalue model as feature extraction tech-
nique clearly outperfoms existing rotation invariant models in terms of accuracy
as well as efficiency.
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Abstract. Many web documents refer to specific geographic localities and 
many people include geographic context in queries to web search engines. 
Standard web search engines treat the geographical terms in the same way as 
other terms. This can result in failure to find relevant documents that refer to 
the place of interest using alternative related names, such as those of included 
or nearby places. This can be overcome by associating text indexing with 
spatial indexing methods that exploit geo-tagging procedures to categorise 
documents with respect to geographic space.  We describe three methods for 
spatio-textual indexing based on multiple spatially indexed text indexes, 
attaching spatial indexes to the document occurrences of a text index, and 
merging text index access results with results of access to a spatial index of 
documents. These schemes are compared experimentally with a conventional 
text index search engine, using a collection of geo-tagged web documents, and 
are shown to be able to compete in speed and storage performance with pure 
text indexing.  

1   Introduction 

The main focus of developments in spatial database design has been in support of the 
maintenance of highly structured map-based geometric data and their attributes. The 
World Wide Web introduces a challenge to spatial databases in that it consists of a 
vast repository of largely unstructured information that is dominantly in the form of 
text documents. A large amount of information on the web is geographically specific, 
in the sense that it refers to particular geographical locations, but the geographic 
references are as a rule embedded within the textual content of the documents, in the 
form of place names, addresses, postcodes and the associated geographical 
terminology of spatial relationships. Users of the web often submit geographical 
enquiries requesting information about, for example, services relating to retailing, 
tourist attractions, accommodation, sport, entertainment, transport, public services and 
cultural heritage. In a study of a log of the Excite search engine, it was found that 
about one fifth of all queries were geographical, as determined by the presence of a 
geographical term such as a place name, a post code, a type of place or a directional 
qualifier such as north [18].  
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When a user submits a geographically-specific web search they usually use a place 
name to provide the geographic reference. This name will then be treated the same as 
the other search terms and documents containing the query terms will be retrieved. 
For purposes of geographic search, this approach has major limitations in that it will 
ignore potentially relevant documents that refer to the place of interest but do not 
include the specified place name. Thus relevant documents could refer to places that 
are inside or near the specified place or they could use an alternative version of the 
specified place name. It is also the case that there are many places in different 
locations sharing the same name, resulting in the return of irrelevant documents. 
Another problem with using place names for geographic search with conventional 
search engines is that place names are commonly used in the names of organisations, 
people and buildings, resulting in the retrieval of documents that may have no 
geographical relevance despite the inclusion of the place name. In theory, the 
limitations above that result in missing relevant documents can be overcome by 
creating an expanded list of query terms. The expanded list could include alternative 
names and the names of places inside and nearby the target geographical location. In 
practice this would lead to the possibility of intractable query expressions containing 
many thousands of geographical terms. This would occur for target places that were 
spatially extensive to the extent that they contained many other named places. The 
approach would also inevitably result in the return of irrelevant documents that used 
the target place names to refer to the names of organizations, people or other 
phenomena for which the name does not provide geographical context.  

There is a need therefore to develop geographically-aware web search technology 
that can index and retrieve effectively documents according to their geographical 
context. Indexing documents according to their geographical context would not only 
overcome the problems referred to above. It would also facilitate intelligent 
interpretation of spatial relationships that the user may employ to qualify the query 
place names. This includes terms such as near, north of, and within 5 kilometers of. 
Several working and experimental systems for geographical web search have 
appeared in recent years (some examples of which are reviewed below) but there is 
much work to be done to create effective systems. There are several important aspects 
of geographically-aware search that introduce challenges in their own right. 
Categorisation of web documents according their geographical content (geo-tagging) 
requires geo-parsing and geocoding procedures to detect and interpret geographical 
terminology in web documents and to “ground” (geocode) the resulting references 
with coordinates.  This process of document categorisation requires a source of place 
name knowledge in the form of a gazetteer or geographical ontology that maintains 
information about place names in association with, for example, alternative names, 
geometric footprints that give coordinates for places, place types and the hierarchical 
structure of geographic space. Once documents have been categorised geographically 
they must be indexed with respect both to the textual content and to geographic space. 
Retrieval of documents must be accompanied by relevance ranking that needs to take 
account both of the geographical context and of the non-spatial concept terms that the 
user has employed in a query. Effective geographical search also requires a user 
interface that can help the user to disambiguate place names that refer to multiple 
places and to assist in formulating geographically-specific queries and reporting the 
results.  



220 S. Vaid et al. 

 

In this paper we focus on the issue of combining text indexing with spatial 
indexing. We present two spatio-textual indexing schemes which may be regarded as 
spatial-primary and text-primary respectively and compare them with each other and 
with using a pure text index in conjunction with a separate spatial index of documents 
and with a pure text index by itself. Experiments are conducted in the context of the 
SPIRIT prototype spatially-aware web search engine [20], using a collection of actual 
web documents. The performance of the various schemes are compared with respect 
to index costs and to query times and the numbers of documents retrieved. In the 
remainder of the paper we summarise briefly previous work on geographical web 
search, before providing an overview of the architecture of the SPIRIT system. In 
Section 4 we describe the indexing schemes that have been implemented for these 
experiments, before reporting on results of applying them using several types of query 
in Section 5. The paper concludes in Section 6 highlighting the relative merits of the 
implemented techniques and indicating future research directions.  

2   Related Work 

A geosearch tool from the Vicinity company was implemented in association with the 
Northern Light search engine [14], but no longer operates. It provided the facility to 
search for web documents on a specified topic relating to an address in the USA or 
Canada, allowing the user to specify a radius of search, The techniques employed 
were not openly published. Google introduced a geographical search facility in the 
Google Local version of their search engine [6]. Indexing of web pages is associated 
with a Yellow Pages directory, but again no technical details are published. In Europe 
the Mirago web site [13] provides a geographically specific search facility that allows 
the user to perform web searches based on administrative regions, which are also 
displayed on a map on the user interface. Sagara and Kitsuregawa [17] have described 
briefly a system for retrieving and scoring geographically specific documents from 
the web with a prototype spatial search engine. They used Yellow Pages to generate 
key words to find documents on the web relating to listed businesses. These were then 
scored, according to measures of popularity and reliability but the indexing methods 
were not described. An experimental system for geographical navigation of the web 
has been described by McCurley [12]. A variety of techniques was proposed for 
extraction of the geographical context of a web page, on the basis of the occurrence of 
text addresses and post codes, place names and telephone numbers. This information 
was then transformed to one of a limited set of point-referenced map locations. An 
early example of developing methods to determine the geographical scope of web 
pages was described by Buyukokkten [3]. This involved associating IP addresses with 
telephone area codes of the associated network administrators, and hence, via zip 
code databases, to place names and geographical coordinates. The approach facilitates 
the analysis of the geographical distribution of web sites. But it appears to require that 
the content of a web page is related to the place where the web page was created. 
Ding et al [5] attempted to determine the geographic scope of pages using a gazetteer 
to recognise place names which were then analysed with respect to their frequency of 



 Spatio-textual Indexing for Geographical Search on the Web 221 

 

occurrence. They also considered the geography of the sources that linked to the web 
document. Silva et al [19] described methods for determining of the scope of web 
documents in the Portugese tumba! web search engine. After transforming web 
documents to a structured XML/RDF format they were progressively augmented with 
geographical descriptors through a sequence of lexical analysis, geographical entity 
recognition and semantic and web inference procedures. 

Recent work on establishing the geographic scope of web pages has been presented 
by Amitay et al [1].  They identify the presence of candidate place names using a 
gazetteer, before assigning confidence levels to the interpretation of the name based 
on associated evidence.  A technique for indexing web documents geographically 
using spatio-textual keys was presented briefly in [7] and evaluated using synthetic 
data. In the context of a synthetic web document collection, the approach was shown 
to be beneficial, but no evidence was provided for its accuracy when applied to real 
data. A large proportion of recent published research relating to geographic web 
search has been concerned with the problems of geotagging (see also e.g. [10] [15]). 

3   Overview of SPIRIT Search Engine 

The spatio-textual indexing methods described in this paper were implemented in the 
experimental SPIRIT search engine [9] [7]. Here we describe briefly the overall 
architecture of the SPIRIT search engine in order to place the indexing methods in 
context. The main components are the user interface, document analysis and metadata 
extraction, core search engine, indexes, the geographical ontology, and relevance 
ranking. The user interface allows users to specify a concept, a geographical place 
name and a spatial relationship to the named place. Spatial relationships may be 
proximal (distance), topological or directional. Examples of types these types of 
queries are illustrated in Table 1.  

Table 1. Query types for a SPIRIT query 

Query Type Example 
1. Distance 1. schools within 10 km of Zurich city centre 

2. hotels near Cardiff University 
2. Topological 1. hospitals in London 
3. Directional 1. holiday resorts north of Milan 

SPIRIT employs disambiguation functionality, to allow the user to select the 
appropriate instance of a place name that has multiple occurrences, and presents the 
search results as a list of URLs and on an interactive map linked to the retrieved 
document list. The geographical ontology stores knowledge of instances of place 
names with alternative names, place types, qualitative spatial relationships to other 
places and one or more geometric footprints [8]. Place footprints may be in the form 
of a representative point (centroid), a minimum bounding box, a polygon or a line. 
The user interface uses the geographical ontology for disambiguation of the part of a 
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user’s query that specifies place. This results in a query footprint FQ representing a 
geometric interpretation of the specified spatial relationship to the named place. For 
many geographical queries, notably those that employ the “near” relationship, the user 
can be expected to be interested in documents that relate to locations in the vicinity of 
the specified geographical location as well as those that match exactly with the named 
place. The query footprint is therefore expanded beyond the boundary of the footprint 
of the specified geographical location. Along with the other textual query terms 
specifying the concept of the query T = {t1, t2, …tm}, it is then submitted to the search 
engine. In general a user query Q takes the form Q = T ∪ FQ . 

The document analysis and metadata extraction component is used to build a 
database of web documents that are indexed with regard to textual content and to 
geographic context. The geographic context is encoded in the form of a document 
footprint Fd derived from footprints of place names in the geographical ontology that 
have been detected as geographically significant. The individual footprints of a 
document footprint are equivalent to the place name footprints in the ontology and are 
used to perform spatial indexing of the document. Typically there will be several 
individual footprints in a Fd = {f1, f2, …fn} and hence a document may be spatially 
indexed with respect to multiple locations. The core search engine finds those 
documents whose footprints intersect the query footprint.  The individual documents 
returned di consist of those documents in the document collection D which contain all 
the non-spatial textual query terms tj ∈ T and which have footprints that intersect the 
query footprint. The set of documents returned is therefore 

        {di  |  di ∈ D, ( tj ∈ di  (∀j ∈ 1..m) ) ∧ ( Q ∩ fk ) ,   fk ∈ Fdi   (k ∈  1..n) } 

where Fdi  refers to the document footprint of document di . 
Relevance ranking determines an overall ranking for a document by combining a 

score from text ranking, in the form of a BM25 score [16], with a score from spatial 
ranking. The spatial ranking can be performed in several different ways. It measures 
the distance between the query footprint and the document footprint(s) primarily as a 
Euclidean distance but it is also possible to measure angular difference in order to 
process queries that employ a directional spatial relationship. The textual and spatial 
scores can be combined using distributed and non-distributed methods [11].  

It should be noted that retrieval of the set of document ids whose footprints match 
the query footprint is not accompanied by any geometric filtering prior to submission 
to the relevance ranking component. If a spatial indexing method is used in which 
documents are referenced by spatial cells, all documents referenced by a cell that 
intersects the query footprint are passed to the relevance ranking component. This is 
justifiable in that documents that are outside the query footprint will be ranked lowest 
in the geographical dimension, and will be geographically adjacent to documents 
within the query footprint.  

4   Spatial and Textual Indexing 

Here we investigate hybrid indexing schemes that combine inverted files, that list the 
documents containing indexed document terms, with a spatial access method to 
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maintain the geometric footprints of indexed documents. The spatial indexing 
methods employed here are all based on a fixed grid scheme. Clearly more 
sophisticated spatial access methods could be used but a fixed grid lends itself to 
relatively simple schemes that should be sufficient to demonstrate the relative merits 
of the approaches presented (note that fixed grids are used successfully in some 
commercial GIS).  

Once a textual index for terms and a spatial index for document footprints are 
available then either of them can be used first to get a set of results that can be refined 
by using the other. Thus an important issue is to decide the order of the search on the 
index types i.e. Text followed by Spatial or Spatial followed by Text. Here we present 
and implement schemes based on both approaches and compare their performance 
experimentally with each other and with a pure text indexing scheme. The pure text 
indexing scheme PT treats geographical terms the same as other text terms and hence 
relies entirely on exact matching of query terms with document terms.  Our first 
spatio-textual scheme ST uses a spatial index in a first stage and later searches text 
indexes created separately for each cell of space. Access to the second spatio-textual 
scheme TS starts with a term index and then exploits spatial indexes associated with 
each term of the term index. The third scheme T performs textual indexing and spatial 
indexing of documents independently, before combing the results.  

4.1   Pure Text Indexing PT 

In the pure text indexing scheme an inverted file scheme is used consisting of a 
lexicon file, each record of which contains fields for an item of text and a pointer (and 
associated offset data) to an entry in the “postings” file containing lists of occurrences 
of those documents from the document set D of size N that contain the text item. 
There will be L records in the lexicon, where L is the number of indexed terms, and L 
lists of document ids in the postings file. In a worst case scenario, all documents 
contain all indexed terms so that the list of document occurrences for a term would be 
of length N, resulting in O(L.N) storage. (Note that we are including some component 
factors of some linear complexity functions, such as in the latter expression, in order 
to help make distinctions between the various indexing schemes). In practice it is 
generally assumed that following Heap’s Law [2] the size of the lexicon is O(Nβ), 
where 0 < β < 1 with typical values between 0.4 and 0.6, with the occurrences storage 
being O(N).  Total storage may therefore be regarded as O(N).  

Queries to this index contain all the terms in the user’s query, consisting of m non-
spatial textual query terms and n geographical query terms. Assuming that, having 
found a text term, the cost of a read into memory of the corresponding document list 
is proportional to Ka, the maximum number of documents referenced by a lexicon 
term, then, if the lexicon is managed with an access structure such as a binary tree or a 
B-tree, the access time for the PT index is O( (m+n)(logL + Ka  ) ).  

4.2   Spatial Primary Index ST 

In this index, the space corresponding to the geographical coverage of the place names 
specified in documents is divided into a set of p regular grid cells C = {c1, …. cp } and 
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for each cell an inverted text index is constructed. Each text index is structured in the 
same manner as the pure text index PT described above, but the document set S that it 
refers to consists of those documents dj  whose document footprint FD

j intersects the 
corresponding spatial cell. Thus for a particular cell ci the corresponding documents S 
=  { dj  | dj ∈ D  ∧ FD

j  ∩  ci }. Those documents whose document footprints intersect 
more than one cell will be represented in multiple cell text indexes. The principle of the 
ST index is illustrated with respect to the set of documents whose footprints are 
represented as rectangles in Figure 1. Here a collection of 16 documents, D={D1, D2, .., 
D16}, is distributed over a document space R divided into 4 cells. Let SR be the 
document space associated with the entire set D, where the respective subdivisions for 
cells R1, R2, R3 and R4 are SR1 = {D1, D7, D12, D15}, SR2 = {D15, D10, D11, D3, D13}, SR3 
= {D2, D5, D14, D12, D15}, SR4 = {D15, D14, D9, D6, D11, D16, D4, D8}. 
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D3 

D4 
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D7 

 
D8 

D5 

 
D10 

D11 

 
 
 
 

D12

D13

 
 
 
 
 

D14 

 
D15

D9

D16 

R

R1 

R3 

R2

R4  

Fig. 1. A spatial index of documents with rectangular footprints 

In a worst case scenario the storage cost for this scheme would be p times that of 
the PT scheme, i.e. O(p.N), corresponding to the event that all document footprints 
intersected all cells. In practice the process of categorising documents geographically, 
or geo-tagging, associates the majority of documents with a number of specific areas, 
reflecting the geographical focus of the documents. Consequently, the individual cell 
text indexes can be expected to be smaller than the PT index (this is investigated in 
the experimental results). Query times can be expected to depend on the number of 
cells r that are intersected by the query footprint and the sizes of the text indexes 
associated with those cells. Having determined which r cells are intersected by the 
query footprint, which can be computed relatively trivially in a regular grid spatial 
index, the subsequent query time would be  O( r((mlog(La ) + Kb ) + log(p)) ), where 
m is the number of non-spatial query terms, La is the maximum number of terms 
indexed by the cell-specific indexes and Kb is the maximum number of documents 
referenced by a term in a cell-specific term index .  Note that log(p) refers to the cost 
of locating the start of a cell-specific term index, and assumes a sorted list of location 
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codes to identify the spatial cells. If the indexes are stored in separate files then access 
to the relevant index may be achieved in constant time. 

4.3   Text Primary Spatio-textual Index (TS) 

In this index a pure text index structure is modified so that the list of documents in the 
postings file for each term is associated with a spatially-grouped set of documents that 
contain the term. The spatially organised documents take the form 
[Cell1[DocumentList1]; Cell2[DocumentList2]….Cellp[DocumentListp] ], where Celli 

are the cell identifiers of the regular grid cells and DocumentListi are the lists of 
documents whose footprints intersect the corresponding cell. For the example given in 
Figure 1, let us suppose that we have a list of documents associated with the index 
term “spirit” : 

spirit {D1, D2, D3, D7, D8, D9, D11, D13} 

In the TS index the term “spirit” would be associated with a list of document 
occurrences grouped as: 

spirit {R1(D1, D7); R2(D3, D11, D13); R3(D2); R4(D8,D9,D11)} 

In the worst case, the document footprints of all documents would intersect all 
cells. This storage may be characterized as O(p.N). As indicated above in the context 
of the space primary scheme, in practice each document can be expected to be 
referenced by a subset of the cells, reflecting its geographical focus. 

A query to this index consists of the m text terms and the query footprint. Having 
calculated which r spatial cells are intersected by the query footprint, m queries are 
required to the main index, corresponding to the individual textual query terms. For 
each such query, the r cells of the term-specific spatial index are accessed. If, for each 
term, there are maximum Kc documents referenced per cell then the access time is  
 O(m (log(L) + r(log(p) + Kc) ) ). 

4.4   Text Index with Spatial Post-processing (T) 

In this scheme we use a pure text index to find those documents D1 that contain the 
non-geographical query terms. Separately, a spatial index of documents (based on 
their footprints) is used to find those documents D2 whose document footprint 
intersects the query footprint. These two sets are then intersected to find those 
documents that both contain the non-spatial query terms and have a footprint that 
intersects the query footprint. The storage for this scheme is O(N) for the text index 
and O(p.Kd ) for the spatial index, where Kd  is the maximum number of documents 
referenced by a spatial cell. It may be noted that the storage for ST might also be 
characterized in the same way, but there is a difference in practice in that the storage 
for ST is very much bigger, as for each cell a term index is stored, as opposed to the 
single list of document occurrences per cell in the T scheme. 

The query time for accessing the text index is reduced relative to PT in that the 
geographical terms are not included, giving O( m(logL + Ka ) ).  The query time to 
access the spatial index of documents is O( r( log(p) + Kd  ) ), where r is again the 
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number of cells intersected by the query footprint. Thus each access to a spatial cell 
will be accompanied by a retrieval of the list of documents referenced by the cell. 
Having obtained two lists of documents they can be matched to find the common 
documents, a process that will be enhanced if the documents are stored in both lists in 
order of their document ids. In this case the match time would be directly proportional 
to the total numbers of documents. 

5   Experimental Comparison of Indexing Schemes 

The performance of the four indexing schemes described above has been compared 
with regard to query time and to the numbers of documents that are returned. The 
spatio-textual schemes are compared with respect to differing cell size of the spatial 
index. The number of documents returned is of particular interest as this measures the 
size of the set passed to the relevance ranking procedure, which is itself a significant 
cost in the document retrieval process. We do not compare the quality of the results 
between the schemes from a user’s point of view. This would require a geographical 
test collection of documents that had been ranked manually or semi-manually with 
regard to their relevance for particular queries. At present no such test collection is 
freely available though efforts are in place to create one [15]. In the present study all 
three spatio-textual schemes return exactly the same sets of documents for each 
spatial cell resolution that is studied. As explained earlier, the pure text scheme will 
inevitably be inferior with regard to a “recall” measure of quality in that, assuming no 
query term expansion, it will not find documents that are geographically relevant but 
which do not include the geographical query term employed in the query.  

The document collection consists of 19,956 HTML documents relating to the 
United Kingdom taken from a terabyte-sized crawl of the Web conducted in 2001. A 
subset of 19,046 documents was allocated document footprints (geo-tagged) using the 
GATE (General Architecture for TEXT Engineering) information extraction system 
[4]. ANNIE, the default Information Extraction system, was used to perform named 
entity recognition to detect the presence of place names. This uses gazetteer lists (e.g. 
common names of people and places) and context rules to disambiguate between 
named entities. These rules assist in distinguishing between place names that are used 
in a geographical context, and hence are of interest, and those that may be 
geographically spurious in that they refer for example to people’s names and the 
names of organisations and buildings.  The standard GATE gazetteer is enhanced here 
with the UK Ordnance Survey 1:50,000 gazetteer containing over 250,000 place 
names of topographic features and settlements, the SABE geo-dataset for the UK, 
from which more than 10,000 names and footprints were extracted, and the UK 
Ordnance Survey CodePoint dataset which lists more than a million UK postcodes.  

Text indexing facilities are provided by an in-house research IR system called 
GLASS. All indexing schemes are file-based resulting in much longer access times 
than for a commercial system, in which most indexes would be maintained in main 
memory. As the purpose is to compare performance characteristics of spatio-textual 
indexing methods with pure text indexing, absolute timings are not of particular 
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consequence. For each of the spatio-textual schemes, spatial cell resolutions range 
from a 2 X 2 subdivision of the geographical region covered by the geo-tagged 
documents to an 8 X 8 subdivision (and include a 1 X 1, i.e. single cell, subdivision 
for reference purposes). For each cell resolution we report statistics on the index sizes, 
the average numbers of documents referenced per cell and the average number of 
terms indexed within each cell. The purpose of these statistics is to demonstrate the 
way in which spatial indexing focuses search on geographically-specific documents. 

5.1   Implemented Indexing Schemes 

5.1.1   PT: Pure Text 
The pure text indexing scheme employs the basic GLASS text indexing procedure 
that is exploited in the SPIRIT search engine. It follows the structure explained above 
and the file-based lexicon is accessed using a binary search on the sorted index terms. 
Query expressions include all geographical and non-geographical terms.  

5.1.2   ST: Space-Primary Spatio-textual Indexing  
This scheme consists of a set of spatial cell-specific text indexes. Each such text index 
is implemented using the same indexing method as in PT, except that the documents 
indexed in an individual cell-specific index are those whose footprints intersect the 
cell. Following calculation of the cells intersected by the query, the files containing 
each of the relevant text indexes are accessed initially through the unix file system, 
with the file names being generated from the cell ids.  

5.1.3   TS: Text-Primary Spatio-textual Indexing 
This indexing scheme is created by modifying the document occurrences lists in the 
GLASS index. For an individual indexed term, the occurrences list is segmented into 
cell-specific sub-lists. Each such sub-list contains the identities of documents whose 
footprint intersects the respective cell. The beginning of the occurrences file contains 
header data providing the offsets of the start and end of each cell-specific sub-list, 
supporting direct access reads to the relevant file sections.  

5.1.4   T: Separate Text and Spatial Indexes 
In the T indexing scheme the pure text index component is identical in structure to 
that of PT, while the spatial index consists of a table containing records with the 
structure [cell_id, document_list]. The unix grep command is used to the access 
relevant parts of the file for a given cell id in order to read the respective sub-list into 
main memory. This may fall short of the theoretical logarithmic access referred to 
above in this context. The results from the text and spatial index, which are ordered 
by document id, are intersected using a unix shell script matching procedure.  

5.2   Query Schemes 

Four query sets were employed , for each of which 100 queries were run. We now 
describe these query sets: 
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Random text terms and random place names (Random): Non-geographical concept 
query terms were selected randomly from the terms in the lexicon and combined with a 
randomly selected geographical term selected from the SPIRIT list of geographical 
place names within the UK region. The number of non-geographical query terms was 
also chosen randomly from the range of 1 to 10.  

Selected concept terms and random geography, largest 500 footprints (Top500FP): 
The non-geographical query terms were selected randomly from 241 concepts (terms or 
phrases) obtained from the UpMyStreet.com web site, which provides a directory of 
geographically-specific information. The geographical terms were chosen randomly 
from the 500 SPIRIT UK place names with the largest footprints. These queries will 
tend towards larger geographic areas, using “realistic” concept terms. 

Selected concept terms and random geography, smallest 500 footprints 
(Bottom500FP): The same as Top500FP but geographical terms are those in the 
SPIRIT geo-ontology with the 500 smallest footprints. The geographical search is 
highly focused and lie often within a single cell of the spatial indexes.  

Selected concept terms and random geography from 5 largest footprints (Top5FP): 
As Top500FP but the query footprints are derived randomly from the 5 SPIRIT UK 
place names with the largest footprints. It maximises the numbers of spatial cells that 
need to be accessed to retrieve relevant documents.  

5.3   Experimental Results 

The experimental results have been used to compare the schemes with regard to the 
size of the indexes, the time to construct the indexes and the query times for each of 
the four query sets. Results are presented with respect to the differing spatial index 
resolutions. We also show how the numbers of documents returned, the numbers of 
documents that intersect each spatial cell, and the numbers of terms indexed, change 
with cell size.  

The sizes of the indexes for each of the schemes are compared in Figure 2. Here we 
can see that, for the ST and TS schemes, decreasing cell size, and hence increasing 
numbers of cells, has a significant negative impact on storage, as predicted in Section 
4.  For the highest resolution index with p = 64 cells, the latter schemes are in fact 
about 20 times bigger than the PT scheme.  This factor demonstrates that there is a 
definite degree of geographical focus of the documents. This focus is illustrated in 
Figure 3 which plots the average numbers of documents and of terms per cell against 
grid resolution.  For 8 X 8 grid resolution there are on average about 3000 documents 
per cell, out of nearly 20,000 documents. This reflects the fact that many documents 
are represented by multiple individual footprints, averaging 21, with a maximum 
value of 803 in these experiments. The T scheme shows very little degradation in 
index size with increasing grid resolution. This is because the spatial index of 
documents, used here with the PT index, occupies relatively little space compared 
with the term indexes. Total storage for the 8 X 8 resolution grid index is about 1Mb, 
whereas the total storage for PT is of the order of 100Mb (see figure 2). Note that in 
this and subsequent figures “GLASS” in the legend refers to the PT scheme.   
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The indexing times for the schemes are presented in Figure 4. The ST scheme 
stands out as having poorer performance with increasing grid resolution. This scheme 
differs notably from the others in that it is necessary to build separate inverted text 
indexes for each spatial cell. TS in comparison is more integrated, with a single text 
index. It is the document occurrences file that is modified in TS relative to PT, with 
the additional cell-specific document occurrence “sub-lists”. 
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Fig. 2. Index Size (GLASS refers to PT) 
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Fig. 4. Indexing Times 
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Table 2 summarises some statistics of the four query sets that were used to study 
query timings and numbers of documents retrieved for the different indexing 
schemes. It presents the minimum, maximum and average size of the query footprint 
as a percentage of the total area of the indexed region. For the highest resolution 
spatial indexing scheme, each grid cell would be about 0.016%. Thus in the 
Top500FP query set the biggest query footprint is similar in size to the smallest cell 
used in the spatial indexing method. The third query set Bottom500FP has small 
query footprints relative to spatial index cell size, while the query footprints for the 
fourth query set Top5FP are extremely large, averaging 0.39 of the entire indexed 
region. The number of terms in the concept part of the queries is given and it 
corresponds to the value m in Section 4. The numbers of terms in the place name 
corresponds to the value n, and only the PT scheme, since these terms are not 
submitted to the indexes directly in the other schemes (they are converted to a 
geometric query footprint).  All queries use the “near” spatial relation and so increase 
he size of the target place name footprint in order to generate the query footprint.  
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Table 2.  Query set characteristics 

Query Set  Query Footprint 
(% of Total 
Space) 

Terms 
 in  

Concept 

Terms 
in 

Place 
 Name 

Min 0.000395   1     1 
Max 0.069283 10 4 

Random 

Avg 0.002951 5.94 1.48 
Min 0.000399 1 1 
Max 0.017344 6 4 

Top 500 FP 

Avg 0.002185 2.65 1.61 
Min 9.47E-08 1 1 
Max 1.67E-06 7 3 

Bottom 500 
FP 

Avg 1.21E-06 2.87 1.55 
Min 0.061869 1 1 
Max 1 6 2 

Top 5 FP 

Avg 0.391055 2.55 1.2 
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Fig. 5. Average Query Time : Random 
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Fig. 6. Average Query Time : Top 500 FP 

Figures 5 to 8 illustrate the average query times for each query set respectively, 
based on 100 queries for each query set. In the first three query sets, the ST  
and  TS schemes are similar or better than PT for all grid resolutions. The T scheme is  
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Fig. 7. Average Query Time : Bottom 500 FP 
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Fig. 8. Average Query Time : Top 5 FP 

somewhat inferior to the other schemes, though in the case of the more realistic 
query sets (Top500FP and Bottom 500FP) it is usually no worse than double the 
other spatio-textual schemes and not much worse than PT. We regard this as a 
reflection of an inefficient document merging process (using unix shell scripts) that 
matches the results of the pure text index with the spatial index of document 
occurrences.  

Figure 8 illustrates the results for the Top5FP query set, which employs very large 
query footprints. The results here clearly reflect the theoretical analysis whereby 
timings depend upon the numbers of spatial cells intersected by the query footprint. 
The average query footprint occupies 0.39 of the entire index and hence intersects a 
similar proportion of the spatial cells of the respective indexes. This impacts most 
upon schemes ST and T in which results must be obtained from each intersected cell, 
prior to merging of the result sets. In both ST and T the merging is performed outside 
of the main index access programs, using unix scripts. The TS scheme works 
comparatively well with this query set as all data processing is performed within the 
shared memory of the modified version of GLASS. In this respect it is the most well 
integrated spatio-textual scheme. The absolute query times for all schemes here were 
slow (about a second per query), but this is due to the use of disk-based as opposed to 
main memory storage methods and the fact that the text indexing methods are not 
optimised in several respects.  
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Fig. 9. Average Documents Returned: Random 
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Fig. 10. Average Documents Returned: Top 500 FP 
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Fig. 11. Average Documents Returned: Bottom 500 FP 
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Fig. 12. Average Documents Returned: Top 5 FP 
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Figures 9 to 12 illustrate the numbers of documents returned for each of the query 
sets. In the Random query set only about 2 documents are being returned per query, 
due to the unrealistic random combinations of concept query terms, and no clear 
pattern emerges. The other three schemes, notably Top500FP and Bottom 500FP, 
demonstrate a clear trend of reducing numbers of documents returned as grid cell 
resolution increases. The reason for the decrease in numbers of documents returned is 
that, as indicated previously, there is no filtering at this stage of the retrieved data 
against the query footprint. All data in spatial cells that intersect the query footprint 
are returned. As cell size decreases so there will be a decrease in the numbers of 
documents that fall outside the query footprint but which lie inside the intersected 
index cells. The fewer documents that are outside the query footprint the less work is 
required of the relevance ranking component. In the results here for the Top500FP 
and Bottom500FP, i.e. the most realistic query sets, the highest resolution spatial 
indexes result in returning about 50% of those documents returned using a single cell.  

6   Conclusions 

Spatial indexing of web documents in combination with text indexing of the 
document content provides a means of managing and retrieving relevant web 
documents for purposes of geographic search that is superior to conventional text 
indexing alone. Effective spatio-textual indexing will help to ensure that all relevant 
documents are retrieved, even when they do not include geographical terms that 
match exactly with those in a user’s query. Spatial indexing also facilitates processing 
search engine queries that include spatial relationships to a named place, such as near 
and north of. Three indexing schemes combining spatial and textual indexing have 
been presented and compared with each other and with a pure text index (PT), using a 
web collection of real documents classified with regard to their geographical context. 
The ST indexing scheme is space primary and creates a set of spatially-specific text 
indexes. The TS scheme is text primary and associates spatially ordered lists of 
documents with the indexed terms. The T scheme uses a pure text index to find 
relevant documents containing the non-geographical query terms and a separate 
spatial index of documents to find documents whose footprint intersects the query 
footprint, before intersecting the result sets. 

Comparing index sizes, both ST and TS proved expensive relative to PT. The T 
scheme resulted in very little additional storage cost. The high storage overheads of 
ST and TS can be explained largely by the fact that the document footprints usually 
consist of many individual footprints (average 21) reflecting the multiple places 
referred to in the document. This could be alleviated by more sophisticated 
geoparsing and geocoding procedures which identified a few dominant individual 
places to which a document refers as described in [1]. Query times for TS and ST 
were usually faster than for PT for all spatial index grid resolutions considered (PT 
has to process all query terms, whereas the other methods convert geographical terms 
to a query footprint for access to the spatial elements of the indexes and do not use 
them for access to the text index). An exception to this performance occurred with the 
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ST index for queries with very large query footprints. The T scheme produced slower 
query times on the whole than the other spatio-textual schemes but, for the most 
realistic query sets, this was about double, while in comparison with PT it was only 
about 25% greater. The slower times reflect the pragmatic but inefficient use of unix 
script functions such as grep. It showed the same degradation with increasing grid 
resolution for the query set using very large query footprints. For speed, the TS 
scheme was consistently advantageous. All spatio-textual schemes behaved the same  
returning fewer documents with increasing spatial grid resolution, reflecting the closer 
approximation of the grid cells to the query footprint with increasing resolution.  

It should be stressed that the objective of this study was to investigate the viability 
of spatio-textual indexing schemes in comparison with pure text indexing. It is 
assumed that spatio-textual indexing will retrieve more relevant documents (i.e. 
improve recall) in comparison with pure text methods, as it will be able to find 
documents referring to contained and nearby places to the geographical query place, 
and to places with alternative names to that specified in the query. In summary, the 
study has demonstrated that scheme T introduced minimal storage overheads while 
resulting in only a small degradation in query times relative to PT, except for very 
large query footprints. The TS scheme gave the most consistently good query time 
performance but was marred by the large storage overheads of multiple footprints.  

There is clearly scope for further work to refine the methods described with regard 
to improved geo-tagging and improved document merging methods. It would also be 
appropriate to investigate higher spatial grid resolutions and other spatial indexing 
methods, as well as the use of a much larger web collection. However, spatial index 
access times were not a significant overhead here. It would be of interest to 
investigate closer integration of text and spatial indexing, such as the use of spatial 
cell identifiers (locational keys) as part of the text index.  

An issue requiring further attention is that of user evaluation of the results. It has 
been stated that spatio-textual indexing is assumed to generate superior results relative 
to pure text indexing. Provided that the geoparsing and geocoding of documents is 
done effectively, i.e. documents are on the whole correctly categorized with regard to 
their geographical context, then this appears to be a reasonable assumption. Future 
studies will conduct such an evaluation to test this assumption when an adequate test 
collection becomes available.  
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Abstract. A top-k OLAP query groups measures with respect to some abstrac-
tion level of interesting dimensions and selects the k groups with the highest
aggregate value. An example of such a query is “find the 10 combinations of
product-type and month with the largest sum of sales”. Such queries may also
be applied in a spatial database context, where objects are augmented with some
measures that must be aggregated according to a spatial division. For instance,
consider a map of objects (e.g., restaurants), where each object carries some non-
spatial measure (e.g., the number of customers served during the last month).
Given a partitioning of the space into regions (e.g., by a regular grid), the goal is
to find the regions with the highest number of served customers. A straightfor-
ward method to evaluate a top-k OLAP query is to compute the aggregate value
for each group and then select the groups with the highest aggregates. In this
paper, we study the integration of the top-k operator with the aggregate query
processing module. For this, we make use of spatial indexes, augmented with
aggregate information, like the aggregate R–tree. We device a branch-and-bound
algorithm that accesses a minimal number of tree nodes in order to compute the
top-k groups. The efficiency of our approach is demonstrated by experimentation.

1 Introduction

Data warehouses integrate and summarize large amounts of historical information, ac-
cumulated from operational databases. On-line Analytical Processing (OLAP) refers to
the set of operations that are applied on a Data Warehouse to assist analysis and decision
support. Data warehouses are usually modeled by the star schema [8], where some mea-
sures (e.g., sales) are analyzed with respect to some interesting dimensions (e.g., prod-
ucts, stores, time, etc.), representing business perspectives. A fact table stores records
corresponding to transactions that have been consolidated in the warehouse. One or
more columns in the fact table capture the measures, while each remaining attribute
stores values for a dimension at the most refined abstraction level. For example, a tuple
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in the fact table stores a transaction for a particular product-id sold at a particular store-
id at some particular time instant. A dimensional table models multi-level hierarchies of
a particular dimension. For example, a tuple in the dimensional table product stores
information about the color, type, manufacturer, etc., for each product-id. Data analysts
are interested in summarizing the fact table information with respect to the interesting
dimensions at some particular level of their hierarchies, e.g., “retrieve the total sales per
month, product color, and store location”.

The star schema was extended in [6] to include spatial abstraction levels and dimen-
sions. The location of stores where products are sold is an example of a spatial attribute,
with respect to which the sales could be analyzed (possibly together with non-spatial
attributes of other dimensions). We can also define hierarchies for spatial attributes. In
general, hierarchies of spatial and non-spatial ordinal attributes can be defined either by
predefined decompositions of the value ranges (e.g., exact location, city, county, state,
country, etc.) or by ad-hoc partitioning techniques (e.g., by a regular spatial grid of
arbitrary granularity).

An ideal method to manage a data warehouse, in order to answer OLAP queries
efficiently, is to materialize all possible groupings of the measures with respect to ev-
ery combination of dimensions and hierarchies thereof. In this way, the result of each
OLAP query could directly be accessed. Unfortunately, this technique is infeasible, be-
cause huge space is required for storing the results for all possible combinations and
long time is required to maintain these combinations after updates in the warehouse. In
view of this, several partial materialization techniques [7,6] select from the complete hi-
erarchy of possible hyper-cubes those that assist the evaluation of most frequent OLAP
queries and at the same time they meet the space and maintenance time constraints.
Nevertheless these techniques still cannot deal with ad-hoc groupings of the dimen-
sional ranges, which may still have to be evaluated directly on base tables of the data
warehouse. This is particularly the case for spatial attributes, for which the grouping
hierarchies are mostly ad-hoc.

Papadias et al. [14] proposed a methodology that remedies the problem of ad-hoc
groupings in spatial data warehouses. Their method is based on the construction of
an aggregate R–tree [10] (simply aR–tree) for the finest granularity of the OLAP di-
mensions (i.e., for the fact table data). The aR–tree has similar structure and construc-
tion/update algorithms as the R*–tree [3]; the difference is that each directory node en-
try e is augmented with aggregate results on all values indexed in the sub-tree pointed
by e. Accordingly, the leaf node entries contain information about measures for some
particular combination of dimensional values (i.e., spatial co-ordinates or ordinal val-
ues of other dimensions at the finest granularity). This index can be used to efficiently
compute the aggregate values of ad-hoc selection ranges on the indexed attributes (e.g.,
“find the total sales for product-ids 100 to 130 between 10 Jan 2005 and 15 Feb 2005”).
In addition, it can be used to answer OLAP group-by queries for ad-hoc groupings of
dimensions by spatially joining the regions defined by the cube cells with the tree.

An interesting OLAP query generalization is the iceberg query [5]; the user is only
interested in cells of the cuboid with aggregate values larger than a threshold t (e.g.,
“find the sum of sales for each combination of product-type and month, only for combi-
nations where the sum of sales is greater than 1000”). In this paper, we study a variant
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of iceberg queries, which, to our knowledge, has not been addressed in the past. A top-
k OLAP query groups measures in a cuboid and returns only the k cells of the cuboid
with the largest aggregate value (e.g., “find the 10 combinations of product-type and
month with the largest sum of sales”). A naive way to process top-k OLAP queries (and
iceberg queries) is to perform the aggregation for each cell and then select the cells with
the highest values. Previous work [5] on iceberg queries for ad-hoc groupings employed
hashing, in order to early eliminate groups having small aggregates and minimize the
number of passes over the base data.

We follow a different approach for top-k OLAP query evaluation, which operates
on an aR-tree that indexes the fact table. We traverse the tree in a branch-and-bound
manner, following entries that have the highest probability to contribute to cells of large
aggregate results. By detecting these dense cells early, we are able to minimize the
number of visited tree nodes until the termination of the algorithm. Our method can
also be applied for iceberg queries, after replacing the floating bound of the k-th cell by
the fixed bound t, expressed in the iceberg query. As we show, our method can evaluate
ad-hoc top-k OLAP queries and iceberg queries by only a part of the base data, only
once. Therefore, it is more efficient than hash-based methods [5] or spatial joins [14],
which require multiple passes over the whole fact table. The efficiency of our approach
is demonstrated by extensive experimentation with real datasets.

The remainder of the paper is organized as follows. Section 2 reviews related work.
Section 3 formally defines top-k OLAP queries. In Section 4, we describe in detail our
proposed solution. Section 5 experimentally demonstrates the efficiency of the proposed
algorithm. Finally, Section 6 concludes the paper.

2 Related Work

To date, there is a huge bibliography on data warehousing and OLAP [13], regarding
view selection and maintenance [7,12], modeling [8,2], evaluation of OLAP queries [1],
indexing [9], etc. In this section, we discuss in more detail past research on indexing
spatial data for evaluating aggregate range queries and OLAP queries in the presence
of spatial dimensions. In addition, we review past work on iceberg queries and top-k
selection queries and discuss their relation to the problem studied in this paper.

2.1 Spatial OLAP

Methods for view selection have been extended for spatial data warehouses [6,15],
where the spatial dimension plays an important role, due to the ad-hoc nature of groups
there. Papadias et al. [14] proposed a methodology, where a spatial hierarchy is defined
by the help of an aggregate R–tree (aR–tree). The aR–tree is structurally similar to the
R*–tree [3], however, it is not used to index object-ids, but measures at particular loca-
tions (which could be mixtures of spatial co-ordinates and ordinal values of non-spatial
dimensions at the finest granularity). The main difference to the R*–tree is that each
directory node entry e is augmented with aggregate results for all measures indexed in
the sub-tree pointed by e. Figure 1 shows an exemplary aR–tree (the ids of entries at
the leaf level and the contents of some nodes are omitted). The value shown under each
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non-leaf entry ei corresponds to an aggregate value (e.g., sum) for all measures in the
subtree pointed by ei.

The tree can be used to efficiently compute aggregate range queries, which summa-
rize the measures contained in a spatial region. These queries are processed similarly
to normal range queries on a R–tree. Tree entries (and their corresponding subtrees)
are pruned if they do not intersect the query region. If the MBR of an entry e partially
overlaps the query, it is followed as usual, however, if e’s MBR is totally covered by
the query range, the augmented aggregate result e.agg on e is counted and the subtree
pointed by e needs not be accessed. For example, consider an aggregate sum query q
indicated by the dashed rectangle of Figure 1. From the three root entries, q overlaps
only e2, so the pointer is followed to load the corresponding node and examine entries
e7, e8, e9. From these, e7 is pruned and e8 partially overlaps q, so it is followed and 10,
5 are added to the partial result. On the other hand, e9 is totally covered by q, so we can
add e9.agg = 20 to the query result, without having to visit the leaf node pointed by e9.
The aR–tree can also be used for approximate query processing, if partially overlapped
entries are not followed, but their aggregate results are scaled based on the overlapped
fraction of e.MBR [10].
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Fig. 1. An aR–tree

[14] showed how the aR–tree can be used to process OLAP group-by queries for
groups defined by ad-hoc spatial regions. In this case, a spatial join is performed be-
tween the tree and the boundaries of the regions for which we want to compute aggre-
gate results. Finally, if there is not enough space to fully materialize the tree, it can be
partially materialized, by selecting levels that correspond to most significant grouped
hierarchies (i.e., the ones that assist most queries).

Another query, related to the top-k OLAP query we study in this paper, is the top-k
spatial join [16]. Given two spatial datasets A and B, the top-k spatial join retrieves
the k objects from A or B that intersect the largest number of objects from the other
dataset. A branch-and-bound algorithm that computes this join is proposed in [16],
assuming that both A and B are indexed by R–trees. Our top-k OLAP queries could
be considered as a variant of this join query, where one of the joined datasets is the
set of regions from which we want to derive the ones with the top-k aggregate result.
However, these regions in our problem are ad-hoc and we do not presume an index on
them. In addition, the top-k join considers the count aggregate function only. Finally,
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the algorithm proposed in [16] is a join method that essentially accesses both datasets
at least once for most typical queries. On the other hand, we do not explicitly access
a dataset corresponding to the interesting regions (we compute their results on-the-fly
instead) and we access only a part of the base data (using an aR–tree index on them).

2.2 Iceberg Queries

The term iceberg query was defined in [5] to characterize a class of OLAP queries
that retrieve aggregate values above some specified threshold t (defined by a HAVING
clause). An example of an iceberg query in SQL is shown below:

SELECT product-type, store-city, sum(quantity)
FROM Sales
GROUP BY product-type, store-city
HAVING sum(quantity) >= 1000 ;

In this example, from all groups of product-types and store locations (cities), the
user wants only those having aggregate result no smaller than t = 1000. The motiva-
tion is that the data analyst is often interested in exceptional aggregate values that may
be helpful for decision support. A typical query optimizer would first perform the ag-
gregation for each 〈product-type,store-city〉 group and then return the ones
whose aggregate value exceeds the threshold. In order to avoid useless aggregations
for the pairs which disqualify the query, [5] present several hash-based methods with
output-sensitive cost. These techniques were later extended for selecting exceptional
groups in a whole hierarchy of data cubes [4]. The iceberg query is similar to the top-k
OLAP query we study in this paper. In our case, we are interested in the k groups with
the largest aggregate values, instead of aggregates above a given threshold. As opposed
to the methods in [5], our top-k OLAP algorithm is not based on hashing, but operates
on an existing aR–tree that indexes the base data. As we show, our method can also be
adapted for iceberg queries.

2.3 Top-k Aggregate Queries

[11] propose methods for processing top-k range queries in OLAP cubes. Given an
arbitrary query range, the problem is to find the top-k measures in this range. This
query is a generalization of max range queries (i.e., k = 1 for max queries). The data
cube is partitioned into sufficiently small cells and the top-k aggregate values in each
partition are pre-computed. These values can then be used to compute the top-k results
in query regions that cover multiple cells. Top-k range queries are essentially different
than top-k OLAP queries, since the latter deal with the retrieval of top-k aggregated
values of groups (as opposed to top-k measures) in the whole space (as opposed to a
particular range). To our knowledge, there is no prior work on the problem we study
in this paper. In the next section, we formally define top-k OLAP queries and motivate
their processing using aR–trees.
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3 Problem Formulation

We assume a data warehouse with a star-schema, where the dimensional values recorded
in the fact table correspond to either spatial locations (for spatial dimensions) or to or-
dinal (i.e., numerical) values at finest granularity. We also assume that the user is in-
terested in computing aggregates based on a partitioning of the dimensional domains
(e.g., “retrieve the total sales per month, product type, and store location (city)”). This
partitioning could be ad-hoc or according to some known hierarchy (e.g., time instants
are grouped to hours, days, weeks, months, etc.). We assume that each partition forms
a contiguous range of values in the domain, and that partitions are disjoint and cover
the complete domain of the dimension. Finally, we consider a single aggregate function
(sum) on a single measure (e.g., sales quantity). We will later discuss how to extend our
methodology for cases where these assumptions do not hold.

Let D be the total number of dimensions. As discussed in [7,14], we typically se-
lect a subset of the 2D dimensional combinations to materialize/index. Consider such a
combination of dimensions. We can build an aR–tree index on top of the correspond-
ing cuboid, where we index the summarized information based on the finest granularity
values recorded in the fact table. This index can be used to answer OLAP queries (both
group-by’s and range selections) related to this set of dimensions (or a subset thereof)
for any combination of hierarchies (i.e., partitionings) in the individual dimensions.
For example, an aR–tree on dimensions 〈time, product, store-location〉
could be used to compute the aggregate value for every combination of date/week/month,
product-id/type, and street/city/county/state location of stores.

Selecting the combinations of dimensions to materialize can be done with exist-
ing techniques (e.g., [7]) and it is out of the scope of this paper. While results for all
or some combinations of predefined dimensional partitionings could be pre-computed
and materialized, we assume that only the finer granularity summaries for the selected
dimensional sets are materialized. The rationale is that (i) it is expensive to store and
maintain pre-computed results for all possible combinations of dimensional partition-
ings, (ii) there could be ad-hoc partitionings, especially in the space dimension (as dis-
cussed in [6,15,14]), and (iii) the aR–tree can handle well arbitrary partitionings of the
multi-dimensional space [14].

Now, we are ready to formally define the top-k OLAP query:

Definition 1. Let D = {d1, . . . , dm} be a set of m interesting dimensions and assume

that the domain of each dimension di ∈ D is partitioned into a set Ri = {r1
i , . . . , r

|Ri|
i }

of |Ri| ad-hoc or predefined ranges based on some hierarchy level. Let k be a positive
integer. An OLAP top-k query on D selects the k groups g1, . . . , gk with the largest
aggregate results, such that gj = {r1, . . . , rm} and ri ∈ Ri∀i ∈ [1, m].

An example top-10 OLAP query could be expressed by the SQL statement that
follows. Here, the partition ranges at each dimension are implicitly defined by levels of
hierarchy (type for products and city for stores).

SELECT product-type, store-city, sum(quantity)
FROM Sales
GROUP BY product-type, store-city



242 N. Mamoulis, S. Bakiras, and P. Kalnis

ORDER BY sum(quantity)
STOP AFTER 10;

A naive method to process a top-k OLAP query is to compute the aggregate result
for each cell (i.e., group of ranges from different dimensions) and while doing so main-
tain a set of the top-k cells. This method has several shortcomings. First, many cells
with small aggregate values will be computed and then filtered out, wasting computa-
tions and I/O accesses. Second, since the definition of the dimensional ranges may be
ad-hoc, measures within a given cell may be physically located far in the disk. As a
result, it may not be possible to compute the aggregates for all cells at a single pass.
In order to alleviate the problem, hashing or chunking techniques can be used. Alter-
natively, a spatial join can be performed if the base data are indexed by an aR–tree, as
discussed. Nevertheless it is still desirable to process the top-k OLAP query without
having to access all data and without having excessive memory requirements.

Assume that we have only two (spatial) dimensions x and y, with integer values
ranging from 0 to 15. In addition, assume that each dimension is partitioned into value
ranges [0, 5), [5, 10), [10, 15]. Figure 2 shows a set of measures indexed by an aR–tree
(the same as in Figure 1) and the 3×3 groups (cells) c1, . . . , c9 defined by the combina-
tions of partition ranges. Based on the information we see in the figure (some contents
are omitted), we know that c1.agg = 120, since e6 with e6.agg = 30 is totally con-
tained in c1. In addition, we know that c4.agg ≥ 90 and c4.agg ≤ 90 + e3.agg = 140.
Similarly, c9.agg ≤ 20+e9.agg = 40. Observe that result of a top-1 OLAP query (i.e.,
the cell with the highest aggregate result, assuming sum is the aggregate function) is c6,
with c6.agg = 150, because there is no other cell that can reach this result in any case.
Thus, by having browsed the tree partially we can derive some upper and lower bounds
for the aggregate results at each cell, which can help determining early the top-k OLAP
query result. This observation is used by our branch-and-bound algorithm described in
the next section.
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Fig. 2. Top-k grouping example

4 Processing Top-k OLAP Queries Using an aR–Tree

Given an aR–tree that indexes a set of dimensions at a finest granularity and a top-k
OLAP query that is based on an ad-hoc partitioning of each dimensional domain, our
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objective is to evaluate the query by visiting the smallest possible number of nodes in
the aR–tree. Assume, for the moment, that we can maintain in memory information
about all cells (i.e., the total number of cells is manageable). While traversing the aR–
tree, we can compute (partial or total) results for various cells. For example, by visiting
the leftmost path of the tree in Figure 2, we know that the result c4.agg for cell c4 is
between 90 (due to the contents of e4) and 140 (due to e3 that overlaps c4). Thus, we can
set lower c4.lb and upper c4.ub bounds for the aggregate result in c4, and accordingly
for all cells in space. In addition, based on the information derived by traversing the
tree, we can maintain a set LB of k cells with the largest lower bounds. The k-th largest
lower bound can be used to prune aR–tree entries (and the corresponding sub-trees) as
follows:

Lemma 1. Let t be the k-th largest lower bound. Let ei be an aR–tree entry. If for all
cells c that intersect ei, c.ub ≤ t, then the subtree pointed by ei cannot contribute to
any top-k result, and thus it can be pruned from search.

The proof of the lemma is straightforward based on the definitions of lower and up-
per bounds. Intuitively, this lemma can be used to terminate the algorithm after we have
computed exactly the contents of some cells and non-visited subtrees overlap only with
cells that cannot end up in the top-k result. Now the question is how we can compute
and update the lower and upper bounds while traversing the tree. Another question is
how should we traverse the tree (i.e., in what order should the nodes be visited) if we
want to maximize the pruning power of Lemma 1. It turns out that both questions are
related; their answers are given by the algorithm described in the next subsection.

4.1 The Basic Algorithm

An entry ei of a subtree (not visited yet) that intersects a number of cells can contribute
at most ei.agg to the aggregate result of the cell. For example, in Figure 2, even though
we do not know the contents of the subtree pointed by e3, we know that c4 can contribute
at most 50 to this cell. In addition, for an entry ei which is totally contained in a cell
c, we know that it contributes exactly ei.agg to c, without having to access the subtree
pointed by ei. For example, visiting the leaf node pointed by e4 is pointless, since the
MBR of the entry is totally contained in c4, thus we know that c4 gets exactly 90 from
this entry. These observations, lead to the design of our top-k OLAP algorithm, which
is described in Figure 3.

During the initialization phase of the algorithm, we visit the root node of the aR–
tree and compute upper and lower bounds for all cells based on their overlap with root
entries (lines 1–9). In our running example, we use e1.agg, e2.agg, e3.agg to compute
c1.ub = 220, c2.ub = 420, c3.ub = 200, etc. In addition, ci.lb = 0 for all cells ci, since
no entry is totally contained in one of them. Assuming that k = 1 (in this example) and
based on the information so far, the algorithm cannot terminate, since the highest lower
bound is smaller than some upper bound.

At this moment, we have to determine which node to visit next. Intuitively, an entry
which intersects the cell with the greatest upper bound should be followed first, in order
to decrease this upper bound and at the same time increase the lower bounds of other
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cells, potentially leading to an early termination of the algorithm. In addition, from
all entries intersecting the cell with the greatest upper bound the one with the largest
e.agg should be visited first, since it is likely to contribute most in the cells it overlaps.
Thus, we prioritize the entries to be visited according to the above criteria, and follow
a best-first search order. In other words, all entries (i.e., subtrees) of the aR-tree that
have not been followed yet are organized in a heap H (i.e., priority queue). The entry
e to be followed next is the one with the greatest e.agg from those intersecting the
cell with the greatest upper bound. In our example, after visiting the root, e1, e2, e3 are
inserted into H and e1 becomes the top element, since it intersects c2 (and c5) having
c2.ub = 420 and e1.agg > e2.agg (e2 also intersects c2 and c5). Lines 10–12 of the
algorithm compute the heap order key for the root entries and insert them to H .

When de-heaping an entry e from H , we visit the corresponding node n at the
aR–tree. Let C be the set of cells intersected by e. The first thing to do is to decrease the
upper bounds of cells in C by e.agg, since these bounds will be refined by the entries
of the new node n. For each entry ei ∈ n again we consider two cases; (i) ei is totally
contained in a cell, or (ii) ei overlaps more than one cells. In the first case, we only
update the lower bound of the covering cell. Otherwise, we add ei.agg to the upper
bounds of all cells that intersect ei. Note that for entries at the leaf level only case (i)
applies. After processing all entries, the upper bounds of all cells in C are updated.
Based on these new bounds, we compute the heap key of the newly processed entries
(only for case (ii) entries) and add them on H . In addition, for entries that are already
in H and intersect any cell in C, we change the positions in H , if necessary, considering
the new upper bounds of these cells.

The algorithm terminates (line 15) if for the entry e that is de-heaped e.ub ≤ t,
where t is the smallest of the top-k results found so far (stored in LB). Indeed if this
condition holds, no cell can potentially have higher aggregate value than the currently
k-th result.

Consider again the example of Figure 2 and assume that we want to find the cell
with the highest aggregate value (i.e., k = 1). We start by examining the three root
entries. We add them on H , after having computed e1.ub = 420, e2.ub = 420, and
e3.ub = 270. e1 becomes the top heap element, since e1.agg > e2.agg.

After de-heaping e1, we load the aR–tree node pointed by it. First, we reduce the
upper bounds of c1, c2, c4, c5 by e1.agg = 220. Entry e4 is totally covered by cell c4,
thus we now have c4.lb = 90. Note that we will never have to visit the node pointed
by e4. c4 now becomes the currently best result and t = 90. Entry e5 overlaps cells
c1 and c2, increasing their upper bounds by e5.agg. Finally, e6 is fully contained in c1
and sets c1.lb = 50. The upper bounds of e2 and e3 are updated to 300 (due to c2) and
140 (due to c4), respectively. In addition, e5 has been added to H with e5.ub = 300
(due to c2). The next entry to be de-heaped is e2. Since e2.ub > t, the algorithm does
not terminate and we load the corresponding node and examine its entries which are all
added on H . The top heap entry is now e7 with e7.ub = 250 (due to c2). Still e7.ub > t
and we pop the pointed node by it, which is a leaf node. The currently best cell now
becomes c6 with c6.lb = 140. In turn, the top heap entry is e8, with e8.ub = 170
(due to c6). After visiting the leaf node pointed by e8, c6.lb becomes 150, which is the
current t. The algorithm now terminates because the next entry popped from H is e3
with e3.ub = 140 < t.
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Algorithm TopkOLAP(aR–tree T , k)
1. LB := ∅; t := 0; c.lb := c.ub := 0, for all cells;
2. n := root(R);
3. for each entry ei ∈ n do
4. if ei.MBR is contained in a cell c then
5. c.lb := c.lb + ei.agg; c.ub := c.ub + ei.agg;
6. add/update c in LB; /*heap of lower bounds*/
7. t := k-th largest value in LB;
8. else /*not contained*/
9. for each cell c intersected by ei set c.ub := c.ub + ei.agg;
10. for each entry ei ∈ n do
11. ei.ub := max{c.ub, ∀ cells c intersected by ei};
12. add ei on a max-heap H ; /*organize H primarily by ei.ub; break ties, using ei.agg*/
13. while notempty(H) do
14. e := H .top;
15. if e.ub ≤ t then break; /*termination condition*/
16. n := load aR–tree node pointed by e;
17. C := all cells c intersected by e;
18. for each cell c ∈ C set c.ub := c.ub − ei.agg;
19. for each entry ei ∈ n do
20. if ei.MBR is contained in a cell c then /* always true if n is a leaf node */
21. c.lb := c.lb + ei.agg; c.ub := c.ub + ei.agg;
22. add/update c in LB;
23. t := k-th largest value in LB;
24. else /*not contained*/
25. for each cell c intersected by ei set c.ub := c.ub + ei.agg;
26. for each entry ei ∈ n not contained in a cell do
27. ei.ub := max{c.ub, ∀ cells c intersected by ei};
28. add ei on H ;
29. for each entry ej ∈ H overlapping some cell in C do
30. ej .ub := max{c.ub, ∀ cells c intersected by ej};
31. update ej’s position in H , if necessary;

Fig. 3. The basic algorithm for top-k OLAP queries

4.2 Minimizing the Memory Requirements

The pseudo-code of Figure 3 shows the basic functionality of our top-k OLAP algo-
rithm. Due to the effective branch-and-bound nature of the algorithm, we can avoid
accessing a large fraction of the aR–tree nodes, resulting in a sub-linear I/O perfor-
mance. However, the basic version of algorithm has large space requirements, since for
each cell we need to maintain and update a lower and upper aggregate bound. If the to-
tal number of cells is larger than the available memory (this can happen when we have
very refined partitions at each dimension), then the algorithm is inapplicable. There-
fore, it is crucial to minimize the number of cells for which we compute and maintain
information. For this purpose, we use the following observations:
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– We need not keep information about cells that are intersected by at most one entry.
At the early phases of the algorithm, the MBRs of the high-level entries we have
seen so far (e.g., the root entries) intersect a large number of cells. However, for a
cell c that is intersected by only one entry ei, we know that c.ub = ei.agg, thus
we do not have to have to explicitly compute and maintain this information. In
addition, for cells intersected by no entry, we need not keep any information at all.
Thus, we maintain information only for cells that are intersected by more than one
entries. This holds only for cells with 0 lower bound; i.e., those for which no partial
aggregate has been computed. On the other hand, we have to maintain any cell c
with a partial aggregate (i.e., with c.lb > 0), if c.ub > t.

– We can keep a single upper bound for all cells intersected by the same set of entries.
Consider two entries that are close in space and jointly affect a contiguous range
of cells. We need not keep an upper bound for each cell, since we can use a single
upper bound for the whole range. Later, if one of the two entries is de-heaped and
the contents of its subtree are loaded, the range of cells is also broken and the
(different) upper bounds for the individual cells are computed.

– We need not keep information about cells that may not end up in the top-k result.
If, for a cell c, we know that c.ub < t, we can prune the cell and never consider it
in computations of lower and upper bounds, for nodes that are visited next.

We implemented an advanced version of the top-k OLAP algorithm, which has
small memory requirements, based on these observations. Initially, we do not keep ex-
plicit upper bounds for the cells, but compute ei.ub for the examined entries, according
to the common cells they intersect. As soon as lower bounds (i.e., partial result) are
computed for cells, we start maintaining cells with c.lb > 0, which may end-up in the
top-k result. In addition, for every entry ei in H , we keep pointers to all candidate cells
(with c.lb > 0) that they overlap, but compute and maintain ei.ub on-the-fly, consider-
ing also cells with c.lb = 0, however, without explicitly maintaining those cells.

For example consider again the top-1 OLAP query on the tree of Figure 2 and as-
sume that we are in the phase of examining the root entries (i.e., lines 3–12 of Figure 3).
Instead of explicitly computing c.ub for each cell overlapped by any entry, and then
computing e1.ub, e2.ub, e3.ub from them, we follow an alternative approach that needs
not materialize c.ub. For each entry (e.g., e1), we compute on-the-fly c.ub for all cells c
it overlaps, by considering the influence of all other entries (e.g., e2, e3) in c. Then we
set as ei.ub the largest c.ub. Later, after e1 is de-heaped and the corresponding node is
loaded, c1.lb and c4.lb are computed and stored explicitly, while these cells can end up
in the top-k result.

4.3 Extensions for Related Problems and Generic Problem Settings

So far, we have described our basic algorithm and optimization techniques for it for the
case of OLAP queries, where we look for the top-k cell in a cuboid with the greatest
sum of a single measure. We now discuss variants of this query and how our algorithm
can be adapted for them.

Iceberg queries. Our top-k OLAP algorithm can also be used to process iceberg queries
(described in Section 2.2). We use exactly the same technique for searching the tree.
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However, the threshold t used for termination is not floating, based on the current top-k
result, but it is a fixed user parameter for the iceberg query. Entries for which ei.ub < t
can be immediately pruned from search. In addition, cells for which the aggregate result
has been computed and it is found no smaller than t, are immediately output. We do not
need priority queues H and LB, but we can apply a simple depth-first traversal of
the tree, to progressively refine the results for cells, until we know that the cell passes
the threshold, or can never pass it, based on the potential aggregate value ranges. This
method is expected to perform much better than the algorithm of [5] (which operates on
raw data) because it utilizes the tree to avoid reading (i.e., prune) cells with aggregate
values lower than t. Note that the algorithm of [5] requires reading all base data at least
once.

Range-restricted top-k OLAP queries. Our algorithm can be straightforwardly adapted
for top-k range OLAP queries, where the top-k cells are not searched in the whole
space, but only in a sub-space defined by a window. For this case, we combine the
window query with the top-k aggregation, by immediately pruning aR–tree entries and
cells that do not intersect the window. Apart from that, the algorithm is exactly the
same.

Arbitrary partitionings. In spatial OLAP, the regions of interest, for which data are ag-
gregated and the top-k of them are selected, may not be orthocanonical (i.e., defined by
some grid), but they could have arbitrary shape (e.g., districts in a city). Our algorithm
can be adapted also for arbitrary regions as follows. When the aR–tree root is loaded,
we spatially join the MBRs of the root entries to the extents of the regions. Thus, we
define a bipartite graph, that connects regions to entries that overlap them. When an en-
try e is de-heaped, the graph is used to immediately find the regions it affects, in order
(i) to compute upper bounds for the regions, based on e’s children and (ii) to extend the
graph by connecting the newly en-heaped entries (i.e., the children of e) that partially
overlap some of these regions.

Query dimensionality. So far, we have assumed that there is an aR–tree for each com-
bination of dimensions that could be in a top-k OLAP query. Nevertheless, as already
discussed, it is usually impractical or infeasible to materialize and index even the most
refined data level (i.e., the fact table) for all combinations of dimensions. Thus, a prac-
ticable approach is to index only certain dimensional combinations. Our algorithm can
also be applied for top-k OLAP queries, where the set of dimensions is a subset of
an indexed dimensional set. In this case, instead of cells, the space is divided into
hyper-stripes defined by the partitionings of only those dimensions of the top-k OLAP
query. For the remaining dimensions, the whole dimensional range is considered for
each partition. For instance, consider an aR–tree on dimensions 〈time, product,
store-location〉 and a top-k OLAP query on dimensions 〈product, store-
location〉. We can use the aR–tree to process the query, however, disregarding the
time dimension in the visited entries (and of course in the partitionings).

Non-contiguous ranges. We have assumed each partition of a particular dimension,
defines a contiguous range on the base data. For example, in an OLAP query about
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product-types, we assume that the product-ids are ordered or clustered based on product-
type. However, this might not be the case, for all hierarchical groupings of the same
dimension. For instance, we cannot expect the domain of product-ids to be ordered or
clustered by both product-type and product-color. In order to solve this problem, we
consider as a different dimension each ordering at the most refined level of an original
dimension (according to the hierarchies of the dimension). In other words, we treat as
different dimensions two orderings of product-ids; one based on product-type and one
based on product-color. Given an arbitrary OLAP query, we use the set of dimensions,
where each dimension is ordered (at the finest granularity level) such that the OLAP
partitionings are contiguous in the domains of the individual dimensions.

Multiple measures and different aggregate functions. So far, we considered a single
measure (e.g., sales quantity) and aggregate function (i.e., sum). As discussed in [10,14],
the aR–tree could be augmented with information about multiple measures and more
than one aggregate functions (i.e., sum, count, min, max). Our method is straightfor-
wardly applied for arbitrary aggregations of the various measures, assuming that the
aR–tree on which it operates supports the measure and aggregate function of the query.

5 Experimental Evaluation

We evaluated the efficiency of the proposed top-k OLAP algorithm, using synthetically
generated and real spatial data. We compared our algorithm to the naive approach of
scanning the data and computing on-the-fly the aggregate results for each cell, while
maintaining at the same time the top-k cells with the largest aggregate results. Un-
less otherwise stated, we assume that we can allocate a counter (i.e., partial measure)
for each cell in memory, a reasonable assumption for most queries. In the case where
memory is not enough for these counters, the naive approach first hashes the data into
disk-based buckets corresponding to groups of cells and then computes the top-k result
at a second pass over these groups. We use I/O cost as a primary comparison factor,
as the computational cost is negligible compared to the cost of accessing the data. The
naive method and our top-k OLAP algorithm were implemented on a 2.4GHz Pentium
4 PC with 512 Mb of memory.

5.1 Description of Data

Our synthetic data are d-dimensional points generated uniformly in a [1 : 10000]d map.
We use the following approach in order to generate the measure of each point. First,
we randomly choose 10 anchor points in the data space. To generate the measure for a
point, we fist find its nearest anchor point and its distance to it. All potential distances of
points to their nearest anchor were discretized using 1000 bins. The measure assigned
to a point follows a Zipfian distribution favoring small distances. The measure value
corresponding to the largest distance is 1. The remaining measures were normalized
based on this value. The generator simulates an OLAP application, where most of the
transactions (i.e., points) have similar and small measures, whereas there are few, large
transactions.
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We also used a non-uniform dataset; a 2D spatial dataset containing 400K road
segments of North America.1 We assigned a measure at the center of each segment,
using the same methodology as for the synthetic data described above. The resulting
dataset models a collection of traffic measurements on various roads of a real map.

5.2 Experimental Results

In the first set of experiments, we compare the efficiency and memory requirements of
our algorithm for top-k OLAP queries, compared to the naive approach on the synthetic
data, for various data generation and query parameters. The default data generation
parameter values are N=200K points (i.e., fact table tuples), d=2 dimensions, and θ=1
for the Zipfian distribution of measures. Unless otherwise stated, we set the page (and
aR–tree node) size to 1Kb. For top-k queries, the default parameter values are k = 16
and c = 10000 total group-by cells (e.g., 100× 100 cells for a 2D dataset).

The first experiment compares our algorithm to the naive approach for various sizes
of the base data, using the default values for the other parameters. Figure 4 shows the
results. Our top-k OLAP algorithm incurs an order of magnitude fewer I/O accesses
compared to the naive approach, due to its ability to prune early aR–sub-trees that do
not contain query results. The performance gap grows with N , because the aR–tree node
extents become smaller and there are higher chances for node MBRs to be contained in
cells and not accessed.
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Fig. 4. Performance as a function of database size

Next, we evaluate the efficiency of our approach as a function of the skew on the
measures (Figure 5). We used the default data generation parameters and varied the
values of θ to 0, 0.5, 1, 1.5, 2. As expected, the efficiency of our method increases with
θ, because the top-k cells become more distinguishable from the majority of cells with
low aggregate values. On the other hand, for uniform measures (recall that the points
are also uniform), our algorithm becomes worse than the naive approach; it accesses
all aR–tree pages (more than the data blocks due to the lower node utilization). In this
case, the top-k results are indistinguishable from the remaining cells, since all cells have
more or less the same aggregate value.

1 collected and integrated from http://www.maproom.psu.edu/dcw/
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Fig. 5. Performance as a function of skew on the measure values

We also validated efficiency as a function of k; the number of cells with the high-
est values to be retrieved. As Figure 6 shows, the cost of our method increases with
k, although not dramatically. The reason is that for large values of k, the k-th result
becomes less indistinguishable from the average cells (or else, the k-th result becomes
less different than the k+1-th).
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Fig. 6. Performance as a function of k

So far, we have assumed a fixed number of cells (100× 100). We now evaluate the
performance of our method when this value changes. Figure 7a shows the I/O cost of
our method as a function of the number of partitions at each dimension. The dimen-
sionality is fixed to d = 2, so the total number of cells is the square of the partitions
per dimension. In general, the performance of our algorithm decreases with c, but not
dramatically. For as few as c = 10 × 10 cells, our method accesses many nodes be-
cause k = 16 is relatively high compared to the number of cells and there is no great
difference between the k-th and k+1-th cell.

We also plot the memory requirements of the two algorithms in Figure 7b. The
memory usage is measured in terms of cells for which lower bounds (or partial measures
for the naive approach) are explicitly maintained in memory in the worst case. For
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the naive algorithm this corresponds to the total number of cells, assuming that the
memory is large enough to accommodate them. For our algorithm (see Section 4.2),
the memory requirements are also dominated by the number of cells, which is expected
to be much larger than the number of entries in the heap. The number of cells for
which we have to keep information in memory is not constant; initially it increases, it
reaches a peak, and then decreases. Here, we plot the peak number of cells. Observe
that for small c our method has similar memory requirements to the naive approach.
However, the memory requirements of our method increase almost linearly with the
number of partitions per dimension, as opposed to the naive approach which requires
O(c) memory (i.e., quadratic to the number of partitions per dimension). This is a very
important advantage of our approach, because memory savings are more important for
large values of c, e.g., where c exceeds the available memory.
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Fig. 7. Performance varying the number of partitions

Figure 8 shows the performance of our algorithm, when varying the problem di-
mensionality d. The total number of cells is fixed to c = 10000, which implies that
the partitions per dimension decrease with d. Note that for few dimensions (2 or 3)
our method performs well, however, for higher dimensional values, it may access sim-
ilar or more pages compared to the naive approach. This behavior can be attributed to
two facts. First, as the dimensionality increases, the performance of multi-dimensional
structures (like the aR–tree) deteriorates. The bounding hyper-rectangles become less
tight with more empty space. In addition, their extents are larger and it becomes unlikely
that they separate well the top-k cells from cells of small aggregate values. Second, as d
increases, the extents of cells at each dimension become larger, thus more aR–tree nodes
overlap the cells in the result, as well as other, irrelevant cells. Thus, our method is es-
pecially useful for low (2 or 3) dimensional data (like spatial OLAP data), or skewed
high-dimensional data.

The next experiment evaluates the efficiency of our approach for top-k spatial OLAP
queries. We used the spatial dataset and generated a measure for each point in it, accord-
ing to their distance to the nearest of 10 random anchor points (θ = 1). Figure 9a shows
that our algorithm is very efficient compared to the naive approach for a wide range of
spatial partitionings. In Figure 9b, we compare the two methods for 100 × 100 cells
and different values of θ, when generating the measures. Our top-k OLAP algorithm is
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more efficient than the naive approach, even for uniform measures. Due to the spatial
skew, many cells are empty and there is large difference in the aggregate values of cells,
making our method very effective in pruning the search space. In addition, the data are
very dense, compared to the uniform points in the synthetically generated datasets, and
many nodes of the aR–tree need not be loaded as they are included in cells. Overall,
our method is very efficient when either the data points or the measures are skewed,
a realistic case especially in spatial data warehouses (since most real spatial data are
skewed by nature).
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Fig. 9. Performance for spatial OLAP queries

6 Conclusions

In this paper, we studied a new and important query type for on-line analytical process-
ing; the top-k OLAP query. We proposed a branch-and-bound technique that operates
on an aR–tree and computes the result of the query, by accessing only a part of the tree.
We proposed an effective optimization that greatly reduces the memory requirements
of our method, rendering it applicable even to queries with a huge number of candi-
date results (i.e., cells of the partitioned space). Experiments confirm the efficiency of
our approach, compared to a conventional hash-based approach that does not utilize
existing indexes.
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Abstract. Many new applications involving moving objects require the collec-
tion and querying of trajectory data, so efficient indexing methods are needed
to support complex spatio-temporal queries on such data. Current work in this
domain has used MBRs to approximate trajectories, which fail to capture some
basic properties of trajectories, including smoothness and lack of internal area.
This mismatch leads to poor pruning when such indices are used. In this work,
we revisit the issue of using parametric space indexing for historical trajectory
data. We approximate a sequence of movement functions with single continuous
polynomial. Since trajectories tend to be smooth, our approximations work well
and yield much finer approximation quality than MBRs. We present the PA-tree,
a parametric index that uses this new approximation method. Experiments show
that PA-tree construction costs are orders of magnitude lower than that of com-
peting methods. Further, for spatio-temporal range queries, MBR-based methods
require 20%–60% more I/O than PA-trees with clustered indicies, and 300%–
400% more I/O than PA-trees with non-clustered indicies.

1 Introduction

GPS has been widely used for a number of years in support of a variety of new ap-
plications, including tracking of vehicle fleets, navigation of watercraft and aircraft,
the emergency E911 service for cellular phones [13]. Such applications would benefit
greatly from an ability to make complex spatio-temporal queries on databases contain-
ing huge amounts of trajectory data about objects moving in two or higher dimensional
space.

Work already exists on developing indices to support spatio-temporal queries. Such
work is typically either in support of predictive queries, which require the future loca-
tion of objects based on their current locations and velocities (for example, “find all
objects that will be within Union Square in 10 minutes”), or in support of historical
queries, which query the past locations of moving objects (for example, “find all ob-
jects which were at the intersection of Freeway 10 and 15 an hour ago”). In this paper,
we focus on historical queries, intended to search a large set of historical trajectories.

In general, we can classify indexing methods into Native Space Indexing meth-
ods (NSI), and Parametric Space Indexing methods (PSI) [18]. In NSI, motion in a
d-dimensional space is represented as a series of line segments (or curves) in d + 1 di-
mensional space, using time as an additional dimension. PSI can be regarded as the dual
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transformation of NSI, where a parametric space defined by the motion parameters is
used. PSI has be shown to be an efficient approach for predictive queries, for example,
TPR-tree [19], TPR*-tree [22], STRIPES [16].

PSI has not been advocated in the literature for historical queries. Indeed, Porkaew
et al. [18] showed that PSI was actually outperformed by NSI for historical queries.
Unlike the predicted trajectory case, which uses only one predicted motion function
for each object, each historical trajectory could consist of hundreds or even thousands
motion functions. PSI will hence introduce large storage overheads, and significantly
degrades query performance. As a result, much previous work on historical queries has
attempted to index each trajectory in the native space, using approximations such as
Minimum Bounding Rectangles (MBRs) [9,8], Octagons [25], or regular grid cells [4].
However, as shown by Kollios et al [10], MBRs are rather coarse approximation for
trajectory. A trajectory typically consists of a series of line segments or curves, and does
not have any internal area. Consequently, using MBRs may result in a large amount of
dead space, leading to a significant loss in pruning power.

1.1 Our Work

In this paper, we revisit the issue of indexing historical trajectory in parametric space.
Unlike previous work in the area [18], we do not represent each line segment or curve
with a parametric function. Instead, we try to approximate a series of line segments
or curves with a single continuous polynomial. This approximated trajectory may not
perfectly match the original trajectory. However, if we also keep track of the maximum
deviation between the approximation and the original movement, we can still ensure
that the approximation is conservative, and will not generate false negatives. Therefore,
as long as the maximum deviation is small, the approximated polynomial function and
the maximum deviation together provide a much tighter approximation than the gener-
ally used MBRs. We are therefore able to improve query performance significantly.

The fundamental observation behind our scheme is that trajectories, in general, have
a certain degree of smoothness, as suggested in [3]. First, object movements are gov-
erned by the laws of physics, resulting in smooth motion trajectories. Second, many
objects are constrained to move along road networks, which usually have some degree
of smoothness. Indeed, for similarity-based queries, exploiting the smoothness of tra-
jectories has yielded performance far better than that of previous methods[3].

The work in [3] also uses polynomials to approximate trajectories, but there are ma-
jor differences between our work and theirs. First, [3] targets similarity-based queries,
and defines similarity over entire trajectories of equal length, ignoring the time com-
ponents. Hence the techniques in [3] are generally not applicable to spatio-temporal
databases, where the time component is crucial in answering timestamp or time in-
terval queries [17]. Second, the lower-bound lemma in [3] is only valid for similar-
ity queries, so that other approaches are needed to deal with spatio-temporal queries
using polynomial approximations. Further, [3] uses approximations of the same de-
gree for all the trajectories, which can cause serious difficulties when the approxima-
tion degree is high. In contrast, we use different polynomials of different degrees for
different trajectories, and develop a two-level index structures to avoid this problem.
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In this work, we make the following contributions:

– We revisit the issue of indexing historical trajectory in parametric space. Observing
the smoothness of object movements, we show that parametric indexing using poly-
nomial approximations can improve query performance significantly over current
schemes using native space indexing.

– We develop a cost model to optimize the degree of the polynomial approximation
given a trajectory segment. Further, we present the PA-tree, a new index scheme for
historical trajectory data, based on polynomial approximations.

– We evaluate the performance of our schemes using synthetic trajectory datasets.
Our empirical results indicate that in most cases, the MVR-trees require 20% - 60%
more IO than PA-trees with clustered indicies, and 300%–400% more IO than PA-
trees with non-clustered indicies. More importantly, the cost of constructing PA-
trees is orders of magnitude faster than the construction of MVR-trees, suggesting
that PA-trees may be suitable for on-line indexing of trajectories.

2 Related Work

MBRs have been widely used to approximate multi-dimensional data, and consequently
R-trees are the most common index structure for multidimensional data. Earlier work
using MBRs for trajectories includes the RT-tree [24] and 3D R-tree [23]. However
since the RT-tree does not take temporal attributes into account during the
insertion/deletion, timestamp or time interval queries are inefficient. 3D R-tree is in-
efficient for timestamp queries, since the query time depends on the total number of
entries in the history [21].

Kollios et al. [11] present methods for indexing linear historical trajectories. They
model a long-lived trajectory with multiple MBRs by splitting it into segments to reduce
the large dead space resulting from the use of a single MBR, and use partial-persistent
R-trees (“PPR-tree”) to index the multiple MBRs. This work is extended in [9,8], where
the motion function could be arbitrary (In the latest work [8], term “MVR-tree” is used
in stead of “PPR-tree”). This method can be more efficient than 3D R-tree, since the
total empty volume after splitting would be reduced. However, since this method still
uses MBRs for approximating each segment, there remains significant dead space.

Zhu et al [25] used octagonal prisms, which are MBRs whose four corners are
cut off to approximate trajectory. However, their experiments demonstrate only small
differences between octagonal prisms and MBR when the number of splits increases
to a certain point, since little gains will result from cutting off MBR corners when the
number of splits becomes large.

Some previous work has been based on a discrete event model, under which an
object is assumed to stay at its current position until it issues an update to the server.
However, this model can not be used to represent gradual changes in object locations,
limiting its applicability[4]. The basic idea is to build a separate R-tree for each times-
tamp, as in HR-tree [14] and MR-tree [24]. Unchanged nodes are not duplicated in
consecutive R-trees to reduce the storage cost. However, these index structures are only
efficient for timestamp queries, but are not efficient for time interval queries [4,21]. The
MV3R-tree [21] is a hybrid structure that uses a multi-version R-tree for timestamp
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queries, and a small 3D R-tree for time-interval queries. The two indices share the same
leaf pages, in order to reduce the storage cost, resulting in a quite complex algorithm
for maintaining the indices [4].

SETI [4] is an indexing method which can support both inserts and searches. SETI
uses two-level index structures to decouple the spatial and the temporal dimensions.
Space is partitioned into multiple cells, and the temporal attributes of all line segments
intersecting a cell will be indexed with a 1-dimensional index structure. However, since
multiple line segments of the same trajectory may overlap the query range, SETI must
eliminate duplicates, which may be expensive. Also SETI does not have the trajectory
preservation property [17], since each data page may contain segments of multiple tra-
jectories, with no guarantee all line segments of one trajectory will be stored together.
Hence, SETI may not be able to efficiently support trajectory-based queries [17].

Polynomial approximations have been used to approximate predictive trajectories
by Tao et al. [20], who use STP-trees to index the polynomial coefficients. Several
major differences exist between their work and ours. First, our query types are different.
Second, [20] applies the same degree of approximation for all trajectories, assuming the
same motion type for all objects. In practice, different objects may have trajectories with
different complexities. In contrast, we choose the degree of polynomial approximation
based on the complexities of trajectory, a strategy applicable in more general scenarios.
Further, in [20], when a k degree polynomial is used for each axis in a d-dimensional
space, the STP-tree becomes an index structure in the parametric space of (k + 1)d
dimensions, leading to the problem of curse of dimensionality for large k. Unlike [20],
we adopt a two-level structure (see Section 6) to address this problem.

3 Problem Definition and Data Model

Data Model. In many location-based services, location data are obtained by periodic
sampling. Specifically, the trajectory for an object Oi has the form

Trj(Oi) = {IDi, t0, t1, · · · , tn, f1(t), f2(t), · · · , fn(t)}

Function fj(t) is a movement function representing movement during time interval
[tj−1 : tj ], 1 ≤ j ≤ n. The interval [t0 : tn] is the lifetime of the trajectory.

Our approach is applicable to any movement function f(t), as long as we can de-
termine the location of the object at any time instant during its lifetime from f(t). For
simplicity of exposition, we adopt a linear mobility model, which is widely used in the
literature [4,17]. Each fj(t) is now a linear function of time, so that a trajectory consists
of a series of connected line segments. This representation is refereed to as a polyline.

As in previous work [9,8], we assume time is discrete, and the dataset temporal
range [0, T ] contains the lifetimes of all the trajectories. We assume an object moves in
a two-dimensional XY-space. The extension to higher dimensions is straightforward.

Query Types. We focus mainly on historical coordinate-based queries, in particular on
spatio-temporal range queries, since spatio-temporal range queries are essential build-
ing blocks for all other types of queries. A spatio-temporal range query may be a times-
tamp query, or a time interval query. A timestamp query Q(r, t) asks for all the objects
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(b) Polynomial approximation.

Fig. 1. Approximating a trajectory segment with polynomials

within spatial range r at timestamp t. Similarly, a time interval query Q(r, tb, te) asks
for all the objects which were within spatial range r at any timestamp t ∈ [tb : te].

The PA-tree also supports efficient execution of trajectory-based queries, which
may take the output of coordinate-based queries as input and retrieve the exact trajectory
so that certain properties, such as direction or speed can be derived [17,25]. As we
will explain, the PA-tree allows a series of consecutive line segments belonging to the
same trajectory to be stored together. This trajectory preservation property ensures the
trajectory-based queries can be answered efficiently with the PA-tree.

4 Overview of Our Approach

Our approach proceeds in two steps. In the first step, we calculate the parametric repre-
sentations used to approximate each trajectory. We will approximate a trajectory in the
XY-space with two polynomial functions: f̂x(t) and f̂y(t) modeling movement in the
X direction and in the Y direction, respectively, where t is time. We also determine the
maximum deviation of the polynomial approximation from the exact movement in X
and Y dimensions. The polynomial coefficients and the maximum deviation suffice for
us to make the approximation conservative, guaranteeing no false negatives.

Fig. 1(a) and Fig. 1(b) shows the X-component of a trajectory, and illustrates how
we construct a linear and an order-k polynomial approximation to it. Such approxima-
tions are not exact, so we create conservative upper and lower bounds for the object’s
position by offsetting the approximating polynomial upwards and downwards by an
amount equal to the maximum deviation between the trajectory and the polynomial.
We can now guarantee that the object will be located within these bounds.

In the second step, we build an index structure over the coefficients obtained in the
first step. However, not all trajectory are likely to be equally complex, so that we may
need polynomials of different degree for different trajectories. This causes problems
when building an index structure using the coefficients, since the dimensionalities of the
indexed items may be different. Current index structures assume that the dimensionality
of all data is the same. Adopting the same polynomial degree for all trajectories is not
advisable, since the curse of dimensionality will quickly degrade the performance of
any index structure in high dimensional space.
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(d) Finer approximation.

Fig. 2. Comparison of approximations for a moving vehicle trajectory collected in [1]

Two-Level Indexing. We address this problem by using a two-level index structure.
The first-level index structure uses only the first two coefficients of each polynomial,
so that each data entry is a 6-tuple (two coefficients for each dimension, and the cor-
responding maximum deviations). This strategy ensures that we are not operating in a
high dimensional space, so that an R-tree or its variants can still be efficient for index-
ing. As we will illustrate in Section 5, by appropriately splitting the temporal domain
[0, T ] into intervals, we can adopt a piecewise linear approximation in the first level
index structure, each linear approximation corresponding to multiple line segments in
the trajectory. However, even with this piecewise-linear approximation, we can achieve
much smaller dead space than the MBRs with the same size of representation.

The second-level index structure is elaborated within the leaf nodes of the first-level
structure. As noted earlier, some trajectories may be complex and require higher-degree
polynomial approximations. The higher-degrees coefficients are stored in the second
level structure. If we descend to the leaf nodes in the first level structure, and still are
unable to determine whether the trajectory satisfies the query predicates, the additional
coefficients can be retrieved and used in the filtering step. As our experiments will show,
most trajectories can be approximated very well with quadratic or cubic polynomials,
so that the second level structure does not introduce significant space overhead.

An Illustrative Example. Figure 2(a) plots the trajectory of a moving vehicle for
10 minutes, collected in the Intellishare project [1] at the University of California–
Riverside. Figure 2(b) plots the X-movement against time, and the eight MBRs ob-
tained with the LAGreedy algorithm proposed in [9,8]. We note that the eight MBRs
together requires 8 × 6 = 48 values. Figure 2(c) plots the result of our method, in
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which the trajectory is split into 6 segments, each of which is approximated with a
linear function. Each segment requires two coefficients, and one maximum deviation
each for X-movement or Y-movement, plus the temporal intervals. In all, 48 values are
required for the approximations. It is quite clear that our polynomial approximations
produce much smaller dead space than the MBR approximations. We should note that
since we split all the trajectories at the same split timestamps, there is no need to keep
the temporal intervals in the intermediate nodes in the index structure, which would
further save storage cost. Figure 2(d) plots the approximation with more coefficients,
with significantly reduced dead space. This example motivates our work.

5 Approximating Trajectories with Polynomials

In this paper, we propose an approximation in parametric space by using Chebyshev
polynomials. Chebyshev polynomials have been shown to have the near-optimal L∞
deviation among all approximations with the same degree [12], and perfectly match our
requirements. Further, the Chebyshev coefficients are easy to compute [12,3].

We have chosen to split each trajectory into multiple segments by dividing the tem-
poral domain [0, T ] into m disjoint time intervals, each of which is approximated with
a polynomial. There are two reasons for such splitting. First, approximating the entire
trajectory with a single polynomial may require a polynomial of high degree, leading
to a high-dimensional indexing problem. Second, the marginal benefit for the first few
coefficients will be much larger than that of high-order coefficients. Therefore, it is
wise to split the trajectory into multiple segments, and approximate each segment with
a lower-degree polynomial.

5.1 Splitting the Time Domain

We split the temporal domain [0, T ] into m equal time intervals: I1 = [0, T1), I2 =
[T1, T2), · · · , Im = [Tm−1, T ), where T1, T2, · · · , Tm−1 are called splitting times-
tamps. Each trajectory is split into multiple segments using the same m − 1 splitting
timestamps. This strategy is different from that in [9], where each trajectory selects
different splitting timestamps. We choose our strategy for three reasons. First, since
we index in parametric space, a set of segments can not be clustered unless they have
the same temporal domain, since it would be meaningless to cluster coefficients cor-
responding to different temporal domains. Second, even with a equal-sized splitting
strategy, we can still use different numbers of coefficients for different trajectories. In-
deed, basing the number of coefficients for approximation on the trajectory complexity
is equivalent to using different splitting timestamps. Finally, using equal-length splitting
intervals obviates the need to maintain time intervals in index nodes. This could signif-
icantly reduce the storage cost of the index structure, and eventually lead to a reduction
of I/O cost during the filtering step.

One problem in using equal-sized intervals is that some trajectories may begin or
end within some time interval. For instance, in Figure 3(a), trajectory Tr2 begins in
the middle of interval I2. We can simply extend its lifetime to the beginning of I2,
and require that the object remain at its initial location during this extension. This will
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Fig. 3. Splitting the temporal domain

result in a “faked” trajectory. However, as long as we maintain the actual object lifetime
in the second level index structure, we will see no false positives. Figure 3(b) shows
the trajectories with extended lifetimes, where the dashed line segments represents the
extension.

An important issue is how to choose the number of intervals. This is a complex
problem, since we have to minimize the overall query cost. Similar as [8,4] which chose
the number of MBRs or grid cells through experiments, we also vary the number of
intervals in experimental evaluations, and choose the number of intervals which result
in the best query I/O cost.

5.2 Approximating a Trajectory Segment with a Polynomial

We now consider how to obtain polynomial approximation (PA) with Chebyshev poly-
nomials. Consider a trajectory segment in the temporal interval Ii = [Ti−1, Ti)

{IDj , t0, t1, t2, · · · , ts, f
x
0 (t), fy

0 (t), fx
1 (t), fy

1 (t), · · · , fx
s−1(t), f

y
s−1(t)}

where the linear functions fx
i and fy

i describe the X-movement and the Y-movement
during the interval [ti, ti+1], and t0 = Ti−1, ts = Ti. We illustrate the approximation
for the X-movement only, so we will omit the superscript x when no confusion can
arise. We can rewrite piecewise linear functions for X-movement in functional form as
follows: f(t) = fi(t), if t ∈ [ti, ti+1].

Given function f(t), we can use Chebyshev polynomials as the base functions to
get the approximated function f̂(t). We first normalize the temporal domain [t0, ts] to
the interval [-1,1], by substituting t′ = 2t−ts−t0

ts−t0
. Now, f(t) can be approximated as

f̂(t) = c0T0(t) + c1T1(t) + · · ·+ ckTk(t), (1)

where Ti(t) = cos(i arccos(t)), t ∈ [−1, 1] is the Chebyshev polynomial of degree
i, and the coefficients c0, c1, · · · , ck are to be determined. The Gauss-Chebyshev for-
mula leads to the following theorem [12], which gives an explicit way to compute the
coefficients:
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Theorem 1. Let f(t) be the function over interval [−1, 1] to be approximated. The
polynomial Tm(t) has m roots ρj = cos (j−0.5)π

m for 1 ≤ j ≤ m. Now,

c0 = 1
m

∑m
j=1 f(ρj)T0(ρj) = 1

m

∑m
j=1 f(ρj)

ci = 2
m

∑m
j=1 f(ρj)Ti(ρj), 1 ≤ i ≤ k

Since f̂(t) only approximates f(t), it may differ from f(t) at time instant t ∈
[t0, ts]. To ensure that this approximation leads to no false negatives, we must find a
conservative approximation such that the approximation is guaranteed to contain the
object’s location at all times. This goal can be achieved by computing the maximum

deviation εk = max
{
|f(t)− f̂(t)|

}
, t ∈ [t0, ts], after obtaining the k+1 coefficients.

Now the range [f̂(t)− εk, f̂(t) + εk] is guaranteed to contain f(t) for t ∈ [t0, ts].
The k + 1 coefficients can be computed in time O(mk), where m is the highest

degree of Chebyshev polynomial used in the approximation, and k is the number of
coefficients. The computation of maximum deviation error requires time O(lk), where
l is the number of instants between t0, ts. Therefore, the total cost is O(mk + lk).

5.3 Clustering Multiple Polynomials

As with any index, each level of the PA-tree must maintain a bound on the key at-
tributes of lower-level nodes. In our case, each non-leaf entry in the index structure
for interval Ii = [Ti−1, Ti) maintains certain coefficients {c�i } and {c⊥i } that enable
us to compute conservative upper and lower bounds for the values of the polynomi-
als f̂1(t), f̂2(t), · · · , f̂n(t) stored in the child node pointed by the entry. We will now
discuss how to compute these bounds if we are using order-k polynomial approxima-
tions. In Section 6.2 we discuss the use of these coefficients in query processing. As in
Section 5, we first normalize t to [−1, 1].

 0.93

 0.96

-1  0  1

t

lower bound
upper bound

Fig. 4. Bounds

Let f̂j(t) = c0,j + c1,jT1(t) + · · ·+ ck,jTk(t), where
1 ≤ j ≤ n. We store the values c�i = max{ci,j}, c⊥i =
min{ci,j}, where 1 ≤ j ≤ n, 0 ≤ i ≤ k in the index
node. For any t ∈ [−1, 1], the lower- and upper-bounds
are computed from the functions

φ⊥(t) = c⊥0 + a1(t)T1(t) + · · ·+ ak(t)Tk(t), and

φ�(t) = c�0 + b1(t)T1(t) + · · ·+ bk(t)Tk(t), where

ai(t) =

{
c�i , if Ti(t) ≤ 0

c⊥i , otherwise,
and bi(t) =

{
c⊥i , if Ti(t) ≤ 0

c�i , otherwise,
for all i.

Theorem 2. The bounds φ⊥(t) and φ�(t) are conservative.

Proof. Consider any f̂j(t) = c0,j + c1,jT1(t) + · · ·+ ck,jTk(t). We will have φ�(t)−
f̂j(t) =

∑
i(bi(t) − ci,j)Ti(t), and (bi(t) − ci,j) > 0 when Ti(t) > 0, and (bi(t) −

ci,j) < 0 when Ti(t) < 0, from bi(t)’s definition. Now, φ�(t) − f̂j(t) is the sum of
positive terms, and is positive. The proof for φ⊥(t) is similar.
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Figure 4 shows three solid curves representing three 3-order polynomials, while the
dotted lines represent the lower- and upper-bounding polynomials computed as above.
We note that this bound may not be tight for all t, but it is conservative, guaranteeing
that any polynomial f̂j(t) will be inside the bound. There is an issue with a possibly
high computation cost when the query interval [tb, te] is large, since we may have to
compute the bound for all t ∈ [tb, te]. Fortunately, in the first level of the PA-tree, only
the linear approximations in the form of co + c1T1(t) = c0 + c1t are used, which has
a much simpler way to compute the bound over [tb, te], due to the monotonicity of
c0 + c1t (see Section 6.2).

5.4 Comparing Approximation Quality

To gauge the potential for improvement with our scheme, we compare the dead space
obtained using our method with that obtained with the MBR approximation. This metric
captures the pruning power of index structures based on the respective approximations.
Larger amounts of dead space would suggest smaller pruning power, since it will result
in more refinement candidates.
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We compare our scheme with the MBR approxi-
mations obtained using the LAGreedy algorithm [9].
The volume of each MBR, is simply the product of
the edge lengths along the X-dimension, Y-dimension
and the temporal dimension. Each entry is a 6-tuple,
as discussed in Section 4.

If we use k + 1 coefficients each to approximate
the X-movements and Y-movements, the volume of
dead space can be computed as 4εx

kεy
k(ts− t0), where

[t0, ts] is the temporal domain. The representation
size is 2(k + 1) + 5, since we represent 2(k + 1)
coefficients in all, the value of k, as well as the maximum deviation and the temporal
domain.
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Figure 5 and 61 compare the quality of our polynomial
approximation with that of MBR approximations for a
dataset of 5000 trajectories generated using the network-
based generator of [2]. The generator took the road net-
work in San Joaquin County, CA as its input and sim-
ulated the movements of objects moving along the road
network (see Section 7). Clearly, we see that for a given
representation size, the dead space with our our polyno-
mial approximation is much as to 2–5 times smaller than
the dead space with MBR approximations. This is ex-
pected, since the polynomial approximation captures the
inherent smoothness of the movement, and treats the tra-

1 The ratio is computed as the dead space of MBRs over the dead space of PA with the same or
smaller size of representation.
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jectory as a polyline, rather than a spatial object with extent. Therefore, there is signifi-
cant potential for improving the overall query performance.

5.5 Choosing the Degree of Approximating Polynomials

In general, the polynomial degree k should be determined based on the characteristics
of trajectories. Clearly, there is a trade-off between the approximation quality and the
degree k used for approximation. A smaller k value requires less space in the index, as
well as less I/O during the filter step. On the other hand, fewer coefficients may result
in poorer filtering, causing more trajectories to be examined during the refinement step,
increasing its I/O cost.

Another consideration is the complexity of the trajectory segment. Obviously, if the
trajectory segment has a relatively simple form, a few coefficients will suffice to get
small deviation error. However, since we are not aware of any well-defined notion of
complexity for this context, it is not easy to estimate the optimal degree.

We present a heuristic method to estimate the degree k, aimed at minimizing the
expected size of representations to be retrieved during query evaluation. We will make
the following reasonable assumptions. First, we assume the spatial range r of the query
is an lx × ly rectangle, with lx and ly uniformly distributed between 0 and some max-
imum value L. Second, the spatial range r itself is uniformly distributed in the region
normalized to a unit square.

uu−l

l

uu−l

l

uu−l

l

uu−l

l

uu−l

l

uu−l

l

xx− x+ε ε

refinement true hit

filtering true hit

refinement true hit

false hit

false hit

Fig. 7. True and false hits

Let Sk be the size of representa-
tion of k-degree polynomials approx-
imation. Let S be the size of the exact
representation for the trajectory seg-
ment. Next, we derive the expected
size of representations that have to be
retrieved for a random query.

If the approximation does not in-
tersect the query range, we can safely
prune it out during the filter step. If
a segment’s approximation lies com-
pletely inside r, we can safely say it is
a true hit during the filter step, and no
further checking is needed. We call
this category of true hit a filtering true
hit (FT). Otherwise, the segment becomes a candidate (CD) for the refinement step, in
which its exact representation must be retrieved. If a segment lies outside r, we have a
false hit (FH). If a segment truly lies inside r, we will record a true hit during refine-
ment, and refer to it as a refinement true hit (RT).

To estimate the expected I/O cost, we must estimate the probability that the trajec-
tory segment is a candidate for refinement. A candidate can be either a false hit or a
refinement true hit. In the following, we consider the X and Y dimensions separately,
and omit the x and y superscripts and the subscript k when no confusion is likely.

Let the query range r’s projection on X-dimension be [u− l, u]. Let the exact loca-
tion of an object on a trajectory segment at query timestamp be x. As shown in Figure 7,
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if u ∈ [x − ε, x) ∪ (x + l, x + l + ε], we have a false hit, since r will overlap with our
trajectory approximation, but x does not belong to [u− l, u]. Therefore, the probability
a false hit on the X-dimension is Pr[FHX ] = 2ε.

Further, as shown in Figure 7, if l ≤ 2ε, there can be no filtering true hit, since
the segment’s approximation along the X-dimension can not be completely inside r’s
project on X-dimension. However, when l ≥ 2ε, and u ∈ [x + ε, x + l − ε], we have
a filtering true hit on the X-dimension. When u ∈ [x, x + ε] ∪ [x + l − ε, x + l],
we have a refinement true hit. Therefore, the probability of a refinement true hit on
X-dimension is Pr[RTX ]= 1

L

( ∫ 2ε

0 ldl +
∫ L

2ε 2εdl
)

=2ε − 2ε2/L. Now, the probability
the trajectory segment is a candidate for refinement on X-dimension is Pr[CDX ] =
Pr[FHX ] +Pr[RTX ] = 4ε− 2ε2/L.

Now, since a candidate occurs only when it is a candidate on the X- or Y-dimensions,
the probability of a candidate is Pr[CD] = 1− (1−Pr[CDX ])(1−Pr[CDY ]) = 1− (1−
4εx

k + 2(εx
k)2/L)(1− 4εy

k + 2(εy
k)2/L).

Now, the expected I/O cost for the trajectory segment when using degree k for ap-
proximation is IOk = Sk+Pr[CD]S. This metric provides us a heuristics for estimating
the degree k required to be used in the polynomial approximation. More specifically,
we would like to find k such that IOk is minimized.

6 PA-Trees and Query Processing

We now present the PA-tree, a new method for indexing polynomial approximations
of 2-D trajectories. PA-trees resemble R*-trees, but each entry consists of polynomial
coefficients, rather than MBRs. We recall that the temporal domain [0, T ] is split into
m intervals. In a gross sense, the root node of a PA-tree has m index trees as children,
each responsible for indexing trajectory segments within one of these intervals.

Figure 8 shows a PA-tree. Indexing in PA-trees actually occurs at two levels. The
first level of indexing is an R*-tree like structure, and is used to index the two lead-
ing coefficients of the polynomial describing movement along each dimension. It is
reasonable to see this as a 4-dimensional indexing problem, with each dimension corre-
sponding to one coefficient. Each entry in the index structure also holds the maximum
deviation errors εx

1 and εy
1.

I1 I2

pa1 pa2 pa3 pa4

pa5 pa6 pa7 pa8

......

......

First Level

Data File

Second Level

Fig. 8. An example of PA-tree

As in R*-trees, an entry in a leaf node has
the form (ptr, pa), where ptr is the pointer
to the exact representation of the trajectory
segment, and pa is a tuple of 6 values:
〈cx

0 , cx
1 , cy

0, c
y
1 , ε

x
1 , εy

1〉. Entries in non-leaf nodes
are of the form (ptr, pa), where ptr is the
pointer to a child node, and pa has the form
〈cx⊥

0 , cy⊥
0 , cx⊥

1 , cy⊥
1 , cx�

0 , cy�
0 , cx�

1 , cy�
1 , εx

1 , εy
1〉,

representing the lower (upper) bounds of the co-
efficients for the entries stored in the child node
pointed by ptr. Also, pa maintains the maxi-
mum εx

1 and εy
1 for all the entries in the subtree.
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In the second level, we store more coefficients as well as the corresponding maxi-
mum deviation for each trajectory segment, if the estimated degree is larger than 1 (See
subsection 5). This information provides more pruning power than the linear approxi-
mation used in the first level structure.

Insertions and deletions are similar to the corresponding operations for R*-tree. The
primary difference is that we need to ensure that the εx

1 , εy
1 values in the non-leaf nodes

are the maximum εx
1 , εy

1 for all the segments in its subtree.

6.1 Improving Query Performance with Clustered Indices

As suggested in [9], clustered indices can significantly reduce the I/O cost for the re-
finement step. This optimization can also be applied to the PA-tree, so that all data
associated with a leaf node entry is stored sequentially on the disk next to the leaf node
itself, resulting in sequential retrieval of data. Clustered indices can be created in two
steps. In the first step, a non-clustered index is created. In the second step, we can reor-
ganize the disk pages to store data pages sequentially next to the leaf pages.

We note that clustered indices may not be an appropriate choice in some applica-
tions. For example, some applications may need indices clustered on other attributes,
say object ID. Also, some applications that may already have collected large amounts
of trajectory data, may not allow data reorganization due to its high cost. Consequently,
we consider both clustered and non-clustered indices in our experimental evaluation.
For both cases, PA-tree shows significant improvements over current methods.

6.2 Query Processing

Given a query Q(r, tb, te), we start with PA-tree root which contains the pointers to the
segment index roots and the corresponding temporal intervals. We check whether the
temporal interval intersects [tb, te]. If they do not, the subtree rooted at that root node is
discarded. Otherwise, we search the corresponding subtree.

Let Ii = [Ti−1, Ti] be the temporal interval corresponding to an entry in a non-leaf
node in the PA-tree. Given Q(r, tb, te), we must check whether there is a trajectory
segment inside r at any time t ∈ [max{tb, Ti−1}, min{te, Ti}]. Let the index entry be
〈cx⊥

0 , cy⊥
0 , cx⊥

1 , cy⊥
1 , cx�

0 , cy�
0 , cx�

1 , εx
1 , εy

1〉. In the following discussion, we will omit
the superscripts x and y for the sake of clarity.

As in Section 5, t is first normalized to [−1, 1]. Let t1 and t2 be the normal-
ized values of max{tb, Ti−1} and min{te, Ti}, respectively. Now, the non-leaf entry
represents all movement in the approximated linear form c0 + c1T1(t) = c0 + c1t,
where c0 ∈ [c⊥0 , c�0 ], and c1 ∈ [c⊥1 , c�1 ]. In principle, we can apply the dual trans-
formation technique of [10] to check whether there are linear trajectories intersect-
ing r during [t1, t2]. However, the slope c1 and the temporal attribute t could be ei-
ther positive or negative, making it hard to apply duality transformations. Instead, we
determine the upper and lower bounding polynomials for the motion segment in the
form c0 + c1t, where c0 ∈ [c⊥0 , c�0 ], c1 ∈ [c⊥1 , c�1 ], and t ∈ [t1, t2]. If ε1 is the
maximum deviation error, we use the monotonicity of c0 + c1t to compute the lower
bound as: x⊥ = c⊥0 + min{c⊥1 t1, c⊥1 t2, c�1 t1, c�1 t2} − ε1, and the upper bound as:
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Table 1. Characteristics of the datasets used in the experiments

Dataset Description Total objects Average movement Total num. Dataset size (MB)
functions per object of line segments

CA5k San Joaquin, CA 5,000 300 1,500,000 48
OD5k Oldenburg 5,000 258 1,290,000 41

(a) CA5k. (b) CA5k(3d). (c) OD5k. (d) OD5k(3d).

Fig. 9. A snapshot of datasets

x� = c�0 + max{c⊥1 t1, c⊥1 t2, c�1 t1, c�1 t2}+ ε1. If the computed range intersects with
the query range r, we know there may be candidates satisfying the query predicates. We
now descend the tree and repeat the process for the subtree rooted at this entry, down to
the leaf nodes.

At the leaf node, we will first retrieve the k + 1 coefficients in the second level
structure, stored sequentially in the leaf nodes. The approximate location f̂(t) at any
normalized time instant t ∈ [t1, t2] can be computed using Equation 1, as well as the
spatial range [f̂(t) − εk, f̂(t) + εk]. If there is a time t ∈ [t1, t2] such that the spatial
computed compass is completely inside r, the trajectory segment is a filtering true hit,
its ID will be reported. If this range does not intersect query r for any t ∈ [t1, t2],
the trajectory segment is pruned out. Otherwise, refinement is required for determining
whether this trajectory segment is a true hit or false hit.

7 Experimental Evaluation

Since no real trajectory data sets are currently publicly available, we generated synthetic
data sets using Brinkhof’s network-based generator [2]. We used the TIGER data files
for the road network in San Joaquin County, CA, and the road network in the city of
Oldenburg, German. Our datasets were obtained by running the simulation for a total
of 1000 timestamps. We focus mainly on the results of the datasets generated by the
network-based generator, since it is has been extensively used in the previous work in
this area [4,8,25]. Further, as indicated by some recent work [15,6], movement along
roads has practical significance in real-world applications.

Datasets CA5k and OD5k have 5, 000 trajectories in all, and were generated with
6 object classes, 3 external object classes, 3, 000 initial objects, and 2 new objects per
time-instant. We note that each object reports its position and movement function at
every time instant during its lifetime, so the number of movement functions for each
object will be the same as the duration of its lifetime. Table 1 shows the characteristics
of our datasets.

We implemented the PA-tree with the Spatial Index Library of [7]. Our method
is compared with the MVR-tree approach [9,8], which uses the LAGreedy algorithm
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Fig. 10. CPU cost

to model each trajectory with multiple MBRs. In the following figures, the legend
PA-tree represents our method, while MVR-tree represents the method of [9,8].

Our experiments were run on an Intel Pentium IV 1.7Ghz processor, with 512
Mbytes of main memory. The page size is 4Kbyte in all experiments. We use a buffer
with size being about 10% of the original dataset. Unlike [8], we do not reset the buffer
before executing every query, since reseting the buffer will render the buffer useless
when evaluating a workload of multiple queries. Further, we assume the ratio of cost of
sequential I/O to that of random I/O is 1 : 20 [5].

We use three types of query workloads, each containing 1000 queries with vary-
ing qlen, the length of temporal interval. The three workloads consist of queries with
qlen = 1 for timestamp queries, qlen = 50 and qlen = 100 for medium and large time
interval queries, respectively. Each query range is a rectangle uniformly distributed in
the unit square, with the edge length being uniformly distributed in [0, 0.1]. In the fol-
lowing figures, the average query performances per query are reported.

We evaluated performance with respect to the size of index structures, by varying
the number of MBRs for the MVR-tree or the number of interals for the PA-tree. For the
MVR-tree, let S% represents (1+S%)N MBRs are used for a dataset of N trajectories.
S is varied from 10 to 1000. For the PA-tree, we varied m, the number of intervals that
the temporal domain is split into, from 5 to 50.

Clustered Index vs. Non-clustered Index. We tested the query performance for both
clustered index and non-clustered index. For a clustered index, all the trajectory seg-
ments associated with the entries in a leaf node will be stored sequentially to that leaf
node. For non-clustered index, same as the TB-tree [17], each data page consists of line
segments belonging to the same trajectory. All the data page will be stored sequentially,
according to the order of the start-time of the line segments (in case of a tier, trajectory
id will be used), while each entry of leaf nodes will have a pointer to its data page.

Further, for clustered index, we notice that assigning all the available buffer to the
index structure can reduce the overall I/O cost. This is because the data pages are se-
quentially retrieved, while the index pages are retrieved via random I/O. In contrast, for
non-clustered index, both index pages and data pages could be random I/O. Therefore,
we assign 50% buffer to the index structure, while 50% buffer to the data file.
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7.1 Performance of Index Construction

For the MVR-tree, building the index structures involved assigning MBRs to each tra-
jectory, creating MBRs for each trajectory, and loading the MBRs into MVR-trees. As
pointed in [8], the first two steps are extremely expensive, since it requires one full
database scan in order to compute the best approximation per trajectory. In contrast,
building PA-trees is much more efficient, since each trajectory can be processed in-
dividually. We split each trajectory into segments according to the temporal domain
splits, estimate the degree of polynomial approximation and insert the polynomial ap-
proximations into the PA-tree. Therefore, as Figure 10(a) shows, the cost of building
the MVR-tree is about 50 times higher than that of building the PA-tree for the CA5k
dataset. This clearly demonstrates the PA-tree will be a more appropriate choice when
the dataset is extremely large, or when the trajectory data is collected at high rate, re-
quiring on-line processing.

7.2 Query Performance

Executing query over the PA-tree requires us to compute the polynomials during the
filtering step, so that the CPU cost will be higher than that of the MVR-tree. However,
since the PA-tree has higher pruning power, we have a much smaller candidate set for
the refinement step, so the CPU cost during the refinement step will be much smaller
than the MVR-tree. As a result, in Figure 10(b), we can see that in most cases the overall
CPU cost for the PA-tree is actually better than that of the MVR-tree. At any rate, the
bottleneck is typically I/O, since CPU speeds tend to improve much faster than I/O
speeds. We will therefore focus on the I/O cost, due to space limitations.

Figure 11 and 12 plots the IO performance for the dataset CA5k and OD5K, re-
spectively. We only discuss CA5k in detail, since results for OD5k are quite similar.
From Figure 11(a), we observe that both PA-tree and MVR-tree reduce the size of can-
didate set for the refinement step more effectively with larger index structures. This is
expected, since increasing index size implies smaller dead space, and higher approxi-
mation quality results in fewer candidates. However, we can clearly see the PA-tree has
significantly smaller candidate set than that of the MVR-tree, which is consistent with
the comparison shown in Figure 5. Further, this disparity increases with qlen, since
longer query period implies higher chance of false hits with MBR approximations.

Performance with Clustered Indices. Figure 11(b) shows the total I/O cost including
both filtering and refinement steps, in terms of the numbers of equivalent random I/O
operations. For all types of workloads, the PA-tree incurs lower overall I/O cost than
the MVR-tree. The improved approximation quality in the PA-tree requires checking of
fewer index nodes and fewer candidates.

Figure 11(b) captures some interesting trade-offs. A larger index allows better prun-
ing, lowering the number of candidates and I/O cost for the refinement step. However,
since the buffer size is fixed, increasing the index size beyond a certain point causes
the filtering-step I/O cost to overwhelm the benefits of better pruning. After that point,
increasing index size yields no benefit. This results in an upward trend in the I/O cost,
which is quite noticeable for the MVR-tree. This effect is stronger with clustered in-
dices, for which a larger fraction of I/O costs are incurred in the filter step.
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For a given index size, the MVR-tree is able to split a trajectory into more segments
than the PA-tree, since the PA-tree must hold more coefficients per segment. When a
clustered index is used, only the line segments of the candidate segment, stored sequen-
tially adjacent to the leaf nodes, will be retrieved. Therefore, the MVR-tree incurs lower
I/O cost per candidate trajectory segment. (This advantage disappears for non-clustered
indices, as we see shortly.) However, the PA-tree still requires lower refinement step
costs than the MVR-tree due to its superior ability to reduce candidate set size.

Figure 13(a) plots the best I/O performance for MVR-tree and PR-tree over all
possible index sizes. For clustered index, the MVR-tree is 20%–60% more expensive
than the PA-tree.

Performance with Non-clustered Indices. Figure 11(c) plots the overall IO cost us-
ing non-clustered indices. PA-tree performance shows even greater improvements over
the MVR-tree, and mirrors the improvements in candidate set size. For non-clustered
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indices, a candidate requires at least one disk I/O, except for a buffer hit. Overall, as
Figure 13(b) shows, the best I/O cost achieved with PR-tree is about 3–4 times lower
than that for MVR-tree.

8 Conclusions and Future Work

In this paper, we have presented a new parametric indexing method suitable for large
trajectory datasets, and for answering historical spatio-temporal queries efficiently. Our
polynomial approximations method achieves much better performance than the general
used MBR approximation. We present the PA-tree, a two-level structure for indexing
trajectories using polynomial approximations. Our comprehensive experimental eval-
uations demonstrate that the PA-tree significantly outperforms current methods which
uses MBR approximation, such as the MVR-tree. Consequently, the PA-tree is an ex-
tremely efficient and practical indexing structure for evaluating historical queries over
trajectory data. As a future work, we are investigating the applicability of our methods
to domains other than trajectory data, such as complex spatial objects.
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Abstract. In this paper we discuss a new type of query in Spatial Databases,
called the Trip Planning Query (TPQ). Given a set of points of interest P in
space, where each point belongs to a specific category, a starting point S and a
destination E, TPQ retrieves the best trip that starts at S, passes through at least
one point from each category, and ends at E. For example, a driver traveling from
Boston to Providence might want to stop to a gas station, a bank and a post office
on his way, and the goal is to provide him with the best possible route (in terms
of distance, traffic, road conditions, etc.). The difficulty of this query lies in the
existence of multiple choices per category. In this paper, we study fast approxi-
mation algorithms for TPQ in a metric space. We provide a number of approx-
imation algorithms with approximation ratios that depend on either the number
of categories, the maximum number of points per category or both. Therefore,
for different instances of the problem, we can choose the algorithm with the best
approximation ratio, since they all run in polynomial time. Furthermore, we use
some of the proposed algorithms to derive efficient heuristics for large datasets
stored in external memory. Finally, we give an experimental evaluation of the
proposed algorithms using both synthetic and real datasets.

1 Introduction

Spatial databases has been an active area of research in the last two decades and many
important results in data modeling, spatial indexing, and query processing techniques
have been reported [29,17,40,37,42,26,36,4,18,27]. Despite these efforts, the queries
that have been considered so far concentrate on simple range and nearest neighbor
queries and their variants. However, with the increasing interest in intelligent transporta-
tion and modern spatial database systems, more complex and advanced query types
need to be supported.

In this paper we discuss a novel query in spatial databases, the Trip Planning Query
(TPQ). Assume that a database stores the locations of spatial objects that belong to
one or more categories from a fixed set of categories C. The user specifies two points
in space, a starting point S and a destination point E, and a subset of categories R,
(R ⊆ C), and the goal is to find the best trip (route) that starts at S, passes through
at least one point from each category in R and ends at E. An example of a TPQ is
the following: A user plans to travel from Boston to Providence and wants to stop
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at a supermarket, a bank, and a post office. Given this query, a database that stores
the locations of objects from the categories above (as well as other categories) should
compute efficiently a feasible trip that minimizes the total traveling distance. Another
possibility is to provide a trip that minimizes the total traveling time.

Efficient TPQ evaluation could become an important new feature of advanced nav-
igation systems and can prove useful for other geographic applications as has been
advocated in previous work [12]. For instance, state of the art mapping services like
MapQuest, Google Maps, and Microsoft Streets & Trips, currently support queries that
specify a starting point and only one destination, or a number of user specified desti-
nations. The functionality and usefulness of such systems can be greatly improved by
supporting more advanced query types, like TPQ. An example from Streets & Trips is
shown in Figure 1, where the user has explicitly chosen a route that includes an ATM, a
gas station and a Greek restaurant. Clearly, the system could not only optimize this route
by re-arranging the order in which these stops should be made, but it could also suggest
alternatives, based on other options available (e.g., from a large number of ATMs that
are shown on the map), that the user might not be aware of.

Fig. 1. A route from Boston University (1) to Boston downtown (5) that passes by a gas station
(2), an ATM (3), and a Greek restaurant (4) that have been explicitly specified by the user in that
order. Existing applications do not support route optimization, nor do they give suggestions of
more suitable routes, like the one presented to the right

TPQ can be considered as a generalization of the Traveling Salesman problem (TSP)
[2,1,10] which is NP -hard. The reduction of TSP to TPQ is straightforward. By as-
suming that every point belongs to its own distinct category, any instance of TSP can
be reduced to an instance of TPQ. TPQ is also closely related to the group minimum
spanning/steiner tree problems [24,20,16], as we discuss later. From the current spa-
tial database queries, TPQ is mostly related to time parameterized and continuous NN
queries [5,41,36,37], where we assume that the query point is moving with a constant
velocity and the goal is to incrementally report the nearest neighbors over time as the
query moves from an initial to a final location. However, none of the methods developed
to answer the above queries can be used to find a good solution for TPQ.

Contributions. This paper proposes a novel type of query in spatial databases and stud-
ies methods for answering this query efficiently. Approximation algorithms that achieve
various approximation ratios are presented, based on two important parameters: The to-
tal number of categories m and the maximum category cardinality ρ. In particular:

– We introduce four algorithms for answering TPQ queries, with various approxima-
tion ratios in terms of m and ρ. We give two practical, easy to implement solutions
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better suited for external memory datasets, and two more theoretical in nature al-
gorithms that give tighter answers, better suited for main memory evaluation.

– We present various adaptations of these algorithms for practical scenarios, where we
exploit existing spatial index structures and transportation graphs to answer TPQs.

– We perform an extensive experimental evaluation of the proposed techniques on
real transportation networks and points of interest, as well as on synthetic datasets
for completeness.

In parallel and independently with our work, Sharifzadeh et al. [31], addressed a
similar query called the Optimal Sequenced Route (OSR) Query. The main difference
between the TPQ and the OSR query is that in the latter, the user has to specify the
order of the groups that must be visited.

2 Preliminaries

This section defines formally the general TPQ problem and introduces the basic nota-
tion that will be used in the rest of the paper. Furthermore, a concise overview of related
work is presented.

2.1 Problem Formulation

We consider solutions for the TPQ problem on metric graphs. Given a connected graph
G(V , E) with n vertices V = {v1, . . . , vn} and s edges E = {e1, . . . , es}, we denote
the cost of traversing a path vi, . . . , vj with c(vi, . . . , vj) ≥ 0.

Definition 1. G is a metric graph if it satisfies the following conditions:

1. c(vi, vj) = 0 iff vi = vj

2. c(vi, vj) = c(vj , vi)
3. The triangle inequality c(vi, vk) + c(vk, vj) ≥ c(vi, vj)

Given a set of m categories C = {C1, . . . , Cm} (where m ≤ n) and a mapping
function π : vi −→ Cj that maps each vertex vi ∈ V to a category Cj ∈ C, the TPQ
problem can be defined as follows:

Definition 2. Given a set R ⊆ C (R = {R1, R2, . . . , Rk}), a starting vertex S and an
ending vertex E, identify the vertex traversal T = {S, vt1 , . . . , vtk

, E} (also called a
trip) from S to E that visits at least one vertex from each category inR (i.e.,∪k

i=1π(vti)
= R) and has the minimum possible cost c(T ) (i.e., for any other feasible trip T ′

satisfying the condition above, c(T ) ≤ c(T ′)).

In the rest, the total number of vertices is denoted by n, the total number of cate-
gories by m, and the maximum cardinality of any category by ρ. For ease of exposition,
it will be assumed that R = C, thus k = m. Generalizations forR ⊂ C are straightfor-
ward (as will be discussed shortly).

2.2 Related Work

In the context of spatial databases, the TPQ problem has not been addressed before.
Most research has concentrated on traditional spatial queries and their variants, namely
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range queries [18], nearest neighbors [15,19,29], continuous nearest neighbors
[5,37,41], group nearest neighbors [26], reverse nearest neighbors [22], etc. All these
queries are fundamentally different from TPQ since they do not consider the compu-
tation of optimal paths connecting a starting and an ending point, given a graph and
intermediate points.

Research in spatial databases also addresses applications in spatial networks repre-
sented by graphs, instead of the traditional Euclidean space. Recent papers that extend
various types of queries to spatial networks are [27,21,30]. Most of the solutions therein
are based on traditional graph algorithms [10,23]. Clustering in a road network database
has been studied in [43], where a very efficient data structure was proposed based on
the ideas of [32]. Likewise, here we study the TPQ problem on road networks, as well.

The Traveling Salesman Problem (TSP) has received a lot of attention in the last
thirty years. A simple polynomial time 2-approximation algorithm for TSP on a metric
graph can be obtained using the Minimum Spanning Tree (MST) [10]. The best constant
approximation ratio for metric TSP is the 3

2 -approximation that can be derived by the
Christofides algorithm [9]. Recently, a polynomial time approximation scheme (PTAS)
for Euclidean TSP has been proposed by Arora [1]. For any fixed ε > 0 and any n
nodes in R2 the randomized version of the scheme can achieve a (1+ε)-approximation
in O(n logO( 1

ε n) running time. Unfortunately, it seems that the TPQ does not admit a
PTAS. Furthermore, there are many approximation algorithms for variations of the TSP
problem, e.g., TSP with neighborhoods [11]. Nevertheless, the solutions to these prob-
lems cannot be applied directly to TPQ, since the problems are fundamentally different.
For more approximation algorithms for different versions of TSP, we refer to [2] and
the references therein. Finally, there are many practical heuristics for TSP [33], e.g., ge-
netic and greedy algorithms, that work well for some practical instances of the problem,
but no approximation bounds are known about them.

TPQ is also closely related to the Generalized Minimum Spanning Tree (GMST)
problem. The GMST is a generalized version of the MST problem where the vertices
in a graph G belong to m different categories. A tree T is a GMST of G if T contains
at least one vertex from each category and T has the minimum possible cost (total
weight or total length). Even though the MST problem is in P , it is known that the
GMST is in NP . There are a few methods from the operational research and economics
community that propose heuristics for solving this problem [24] without providing a
detailed analysis on the approximation bounds. The GMST problem is a special instance
of an even harder problem, the Group Steiner Tree (GST) problem [16,20]. For example,
polylogarithmic approximation algorithms have been proposed recently [14,13]. Since
the GMST problem is a special instance of the GST problem, such bounds apply to
GMST as well.

3 Fast Approximation Algorithms

In this section we examine several approximation algorithms for answering the trip
planning query in main memory. For each solution we provide the approximation ratios
in terms of m and ρ. For simplicity, consider that we are given a complete graph Gc,
containing one edge per vertex pair vi, vj (1 ≤ i, j ≤ n) representing the cost of the



On Trip Planning Queries in Spatial Databases 277

shortest path from vi to vj in the original graph G. Let Tk = {vt0 , vt1 , . . . , vtk
} denote

the partial trip that has visited k vertices, excluding S (where S = vt0 ). Trivially, it
can be shown that a trip Tk constructed on the induced graph Gc, has exactly the same
cost as in graph G, with the only difference being that a number of vertices visited
on the path from a given vertex to another are hidden. Hiding irrelevant vertices by
using the induced graph Gc guarantees that any trip T produced by a given algorithm
will be represented by exactly m significant vertices, which will simplify exposition
substantially in what follows. In addition, by removing from graph Gc all vertices that
do not belong to any of the m categories in R, we can reduce the size of the graph
and simplify the construction of the algorithms. Given a solution obtained using the
reduced graph and the complete shortest path information for graph Gc, the original
trip on graph G can always be acquired. In the following discussion, T P

a denotes an
approximation trip for problem P , while T P

o denotes the optimal trip. When P is clear
from context the superscript is dropped. Furthermore, due to lack of space the proofs
for all theorems appear in the full version of this paper.

3.1 Approximation in Terms of m

In this section we provide two greedy algorithms with tight approximation ratios with
respect to m.

Nearest Neighbor Algorithm. The most intuitive algorithm for solving TPQ is to form
a trip by iteratively visiting the nearest neighbor of the last vertex added to the trip from
all vertices in the categories that have not been visited yet, starting from S. Formally,
given a partial trip Tk with k < m, Tk+1 is obtained by inserting the vertex vtk+1 which
is the nearest neighbor of vtk

from the set of vertices in R belonging to categories that
have not been covered yet. In the end, the final trip is produced by connecting vtm to
E. We call this algorithmANN , which is shown in Algorithm 1..

Algorithm 1. ANN (Gc,R, S, E)
1: v = S, I = {1, . . . , m}, Ta = {S}
2: for k = 1 to m do
3: v = the nearest NN(v, Ri) for all i ∈ I
4: Ta ← {v}
5: I ← I − {i}
6: end for
7: Ta ← {E}

Theorem 1. ANN gives a (2m+1 − 1)-approximation (with respect to the optimal so-
lution). In addition, this approximation bound is tight.

Minimum Distance Algorithm. This section introduces a novel greedy algorithm,
calledAMD , that achieves a much better approximation bound, in comparison with the
previous algorithm. The algorithm chooses a set of vertices {v1, . . . , vm}, one vertex
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per category inR, such that the sum of costs c(S, vi) + c(vi, E) per vi is the minimum
cost among all vertices belonging to the respective category Ri (i.e., this is the vertex
from category Ri with the minimum traveling distance from S to E). After the set of
vertices has been discovered, the algorithm creates a trip from S to E by traversing
these vertices in nearest neighbor order, i.e., by visiting the nearest neighbor of the last
vertex added to the trip, starting with S. The algorithm is shown in Algorithm 2.

Algorithm 2. AMD(Gc,R, S, E)
1: U = ∅
2: for i = 1 to m do
3: U ← π(v) = Ri : c(S, v) + c(v, E) is minimized
4: v = S, Ta ← {S}
5: while U �= ∅ do
6: v = NN(v, U)
7: Ta ← {v}
8: Remove v from U
9: end while

10: Ta ← {E}

Theorem 2. If m is odd (even) then AMD gives an m-approximate (m + 1-
approximate) solution. In addition this approximation bound is tight.

3.2 Approximation in Terms of ρ

In this section we consider an Integer Linear Programming approach for the TPQ prob-
lem which achieves a linear approximation bound w.r.t. ρ, i.e., the maximum category
cardinality. Consider an alternative formulation of the TPQ problem with the constraint
that S = E and denote this problem as Loop Trip Planning Query(LTPQ) problem.
Next we show how to obtain a 3

2ρ-approximation for LTPQ using Integer Linear Pro-
gramming.

Let A = (aji) be the m × (n + 1) incidence matrix of G, where rows correspond
to the m categories, and columns represent the n + 1 vertices (including v0 = S = E).
A’s elements are arranged such that aji = 1 if π(vi) = Rj , aji = 0 otherwise. Clearly,
ρ = maxj

∑
i aji, i.e., each category contains at most ρ distinct vertices. Let indicator

variable y(v) = 1 if vertex v is in a given trip and 0 otherwise. Similarly, let x(e) = 1
if the edge e is in a given trip and 0 otherwise. For any S ⊂ V , let δ(S) be the edges
contained in the cut (S,V \ S). The integer programming formulation for the LTPQ
problem is the following:

Problem IPLTPQ = minimize
∑

e∈E c(e)x(e), subject to:

1.
∑

e∈δ({v}) x(e) = 2y(v), for all v ∈ V ,
2.

∑
e∈δ(S) x(e) ≥ 2y(v), for all S ⊂ V , v0 /∈ S, and all v ∈ S,

3.
∑n

i=1 ajiy(vi) ≥ 1, for all j = 1, . . . , m,
4. y(v0) = 1,
5. y(vi) ∈ {0, 1}, x(ei) ∈ {0, 1}
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Condition 1 guarantees that for every vertex in the trip there are exactly two edges
incident on it. Condition 2 prevents subtrips, that is the trip cannot consist of two dis-
joint subtrips. Condition 3 guarantees that the chosen vertices cover all categories in
R. Condition 4 guarantees that v0 is in the trip. In order to simplify the problem we
can relax the above Integer Programming into LPLTPQ by relaxing Conditions 5 to:
0 ≤ y(v), x(e) ≤ 1. Any efficient algorithm for solving Linear Programming could
now be applied to solve LPLTPQ [34]. In order to get a feasible solution for IPLTPQ,
we apply the randomized rounding scheme stated below:

Randomized Rounding: For solutions obtained by LPLTPQ, set y(vi) = 1 if y(vi) ≥
1
ρ . If the trip visits vertices from the same category more than once, randomly select
one to keep in the trip and set y(vj) = 0 for the rest.

Theorem 3. LPLTPQ together with the randomized rounding scheme above finds a
3
2ρ-approximation for IPLTPQ, i.e., the integer programming approach is able to find
a 3

2ρ-approximation for the LTPQ problem.

We denote any algorithm for LTPQ as ALTPQ. A TPQ problem can be converted
into an LTPQ problem by creating a special category Cm+1 = E. The solution from
this converted LTPQ problem is guaranteed to pass through E. Using the result returned
by ALTPQ, a trip with constant distortion could be obtained for TPQ:

Lemma 1. A β-approximation algorithm for LTPQ implies a 3β-approximation algo-
rithm for TPQ.

Therefore, by combining Theorem 3 and Lemma 1:

Lemma 2. There is a polynomial time algorithm based on Integer Linear Programming
for the TPQ problem with a 9

2ρ-approximation.

3.3 Approximation in Terms of m and ρ

In Section 2 we discussed the Generalized Minimum Spanning Tree (GMST) problem
which is closely related to the TPQ problem. Recall that the TSP problem is closely
related to the Minimum Spanning Tree (MST) problem, where a 2-approximation al-
gorithm can be obtained for TSP based on MST. In similar fashion, it is expected that
one can obtain an approximate algorithm for TPQ problem, based on an approximation
algorithm for GMST problem.

Unlike the MST problem which is in P, GMST problem is in NP. Suppose we are
given an approximation algorithm for GMST problem, denoted AGMST . We can con-
struct an approximation algorithm for TPQ problem as shown in Algorithm 3.

Lemma 3. If we use a β-approximation algorithm for GMST problem, then Algorithm
3. for TPQ problem is a 2β-approximation algorithm.

We can get a solution for TPQ by using Lemma 3 and any known approxima-
tion algorithm for GST, as GMST is a special instance of GST. For example, the
O(log2 ρ log m) algorithm proposed in [14], which yields a solution to TPQ with the
same complexity.
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Algorithm 3. APPROXIMATION ALGORITHM FOR TPQ BASED ON GMST

1: Compute a β-approximation TreeGMST
a for G rooted at S using AGMST .

2: Let LT be the list of vertices visited in a pre-order tree walk of TreeGMST
a .

3: Move E to the end of LT .
4: Return T TPQ

a as the ordered list of vertices in LT .

4 Algorithm Implementations in Spatial Databases

In this section we discuss implementation issues of the proposed TPQ algorithms from
a practical perspective, given disk resident datasets and appropriate index structures.
We show how the index structures can be utilized to our benefit, for evaluating TPQs
efficiently. We opt at providing design details only for the greedy algorithms,ANN and
AMD since they are simpler to implement in external memory, while the Integer Linear
Programming and GMST approaches are more appropriate for main memory and are
not easily applicable to external memory datasets.

4.1 Applications in Euclidean Space

First, we consider TPQs in a Euclidean space where a spatial dataset is indexed using
an R-tree [18]. We show how to adapt ANN and AMD in this scenario. For simplicity,
we analyze the case where a single R-tree stores spatial data from all categories.

Implementation of ANN . The implementation of ANN using an R-tree is straightfor-
ward. Suppose a partial trip Tk = {S, p1, . . . , pk} has already been constructed and
let C(Tk) = ∪k

i=1π(pi), denote the categories visited by Tk. By performing a near-
est neighbor query with origin pk, using any well known NN algorithm, until a new
point pk+1 is found, such that π(pk+1) /∈ C(Tk), we iteratively extend the trip one
vertex at a time. After all categories in R have been covered, we connect the last vertex
to E and the complete trip is returned. The main advantage of ANN is its efficiency.
Nearest neighbor query in R-tree has been well studied. One could expect very fast
query performance for ANN . However, the main disadvantage of ANN is the prob-
lem of “searching without directions”. Consider the example shown in Figure 2. ANN

will find the trip T 1 = {S → A1 → B1 → C1 → E} instead of the optimal trip
T 2 = {S → C2 → A2 → B2 → E}. In ANN , the search in every step greedily
expands the point that is closest to the last point in the partial trip without considering
the end destination, i.e., without considering the direction. The more intuitive approach
is to limit the search within a vicinity area defined by S and E. The next algorithm
addresses this problem.

Implementation of AMD . Next, we show how to implement AMD using an R-tree.
The main idea is to locate the m points, one from each category inR, that minimize the
Euclidean distanceD(S, E, p) = c(S, p) + c(p, E) from S to E through p. We call this
the minimum distance query. This query meets our intuition that the trip planning query
should be limited within the vicinity area of the line segment defined by S, E (as in the
example in Figure 2). The minimum distance query can be answered by modifying the
NN search algorithm for R-trees [29], where instead of using the traditional MinDist
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measure for sorting candidate distances, we use D. In that case, the vicinity area is an
ellipse and not a circle (Figure 2). Given S and E we run the modified NN search once
for locating all m points incrementally, and report the final trip.

All NN algorithms based on R-trees compute the nearest neighbors incrementally
using the tree structure to guide the search. An interesting problem that arises in this
case is how to geometrically compute the minimum possible distance D(S, E, p) be-
tween points S, E and any point p inside a given MBR M (similar to the MinDist
heuristic of the traditional search). This problem can be reduced to that of finding the
point p on line segment AB (where AB is a boundary of M ) that minimizesD(S, E, p),
which can then be used to find the minimum distance from M , by applying it on the
MBR boundaries lying closer to line segment SE. Point p can be computed by project-
ing the mirror image E′ of E, given AB. It can be proved that:

Lemma 4. Given line segments AB and SE, the point p that minimizes D(S, E, p) is:
Case A: If EE′ intersects AB, then p is the intersection of AB and SE′.
Case B: If EE′ and SE do not intersect AB, then p is either A or B.
Case C: If SE intersects AB, then p is the intersection of SE and AB.

Using the lemma, we can easily compute the minimum distances D(S, E, M) for ap-
propriately sorting the R-tree MBRs during the NN search. The details of the minimum
distance query algorithm is shown in Algorithm 4.. For simplicity, here we show the
algorithm that searches for a point from one particular category only, which can eas-
ily be extended for multiple categories. In line 8 of the algorithm, if c is a node then
D(S, E, c) is calculated by applying Lemma 4 with line segments from the borders of
the MBR of c; if c is a point thenD(S, E, c) is the length |Sc|+ |cE|. Straightforwardly,
the algorithm can also be modified for returning the top k points.

4.2 Applications in Road Networks

An interesting application of TPQs is on road network databases. Given a graph N
representing a road network and a separate set P representing points of interest (gas
stations, hotels, restaurants, etc.) located at fixed coordinates on the edges of the graph,
we would like to develop appropriate index structures in order to answer efficiently
trip planning queries for visiting points of interest in P using the underlying network
N . Figure 3 shows an example road network, along with various points of interest
belonging to four different categories.
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Algorithm 4. ALGORITHM MINIMUM DISTANCE QUERY FOR R-TREES

Require: Points S, E, Category Ri, R-tree rtree
1: PriorityQueue QR = ∅, QS = {(rtree.root, 0)}; B = ∞
2: while QS not empty do
3: n = QS.top;
4: if n.dist ≥ B then
5: return QR.top
6: for all children c of n do
7: dist = D(S, E, c)
8: if n is an index node then
9: QS ← (c, dist)

10: else if π(M) = Ri then 
 (c is a point)
11: QR ← (c, dist)
12: if dist ≤ B then B = dist

For our purposes we represent the road network using techniques from [32,43,27].
In summary, the adjacency list of N and set P are stored as two separate flat files
indexed by B+-trees. For that purpose, the location of any point p ∈ P is represented
as an offset from the road network node with the smallest identifier that is incident on
the edge containing p. For example, point p4 is 1.1 units away from node n3.

Implementation ofANN . Nearest neighbor queries on road networks have been studied
in [27], where a simple extension of the well known Dijkstra algorithm [10] for the
single-source shortest-path problem on weighted graphs is utilized to locate the nearest
point of interest to a given query point. As with the R-tree case, straightforwardly, we
can utilize the algorithm of [27] to incrementally locate the nearest neighbor of the
last stop added to the trip, that belongs to a category that has not been visited yet. The
algorithm starts from point S and when at least one stop from each category has been
added to the trip, the shortest path from the last discovered stop to E is computed.

Implementation of AMD . Similarly to the R-tree approach, the idea is to first locate
the m points from categories inR that minimize the network distance c(S, pi, E) using
the underlying graphN , and then create a trip that traverses all pi in a nearest neighbor
order, from S to E. It is easy to show with a counter example that simply finding a point
p that first minimizes cost c(S, p) and then traverses the shortest path from p to E, does
not necessarily minimize cost c(S, p, E). Thus, Dijkstra’s algorithm cannot be directly
applied to solve this problem. Alternatively, we propose an algorithm for identifying
such points of interest. The procedure is shown in Algorithm 5.

The algorithm locates a point of interest p : π(p) ∈ Ri (given Ri) such that the dis-
tance c(S, p, E) is minimized. The search begins from S and incrementally expands all
possible paths from S to E through all points p. Whenever such a path is computed and
all other partial trips have cost smaller than the tentative best cost, the search stops. The
key idea of the algorithm is to separate partial trips into two categories: one that contains
only paths that have not discovered a point of interest yet, and one that contains paths
that have. Paths in the first category compete to find the shortest possible route from
S to any p. Paths in the second category compete to find the shortest path from their
respective p to E. The overall best path is the one that minimizes the sum of both costs.
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Algorithm 5. ALGORITHM Minimum Distance Query FOR ROAD NETWORKS

Require: Graph N , Points of interest P , Points S, E, Category Ri

1: For each ni ∈ N : ni.cp = ni.c¬p = ∞
2: PriorityQueue PQ = {S}, B = ∞, TB = ∅
3: while PQ not empty do
4: T = PQ.top
5: if T .c ≥ B then return TB

6: for each node n adjacent to T .last do
7: T ′ = T 
 (create a copy)
8: if T ′ does not contain a p then
9: if ∃p : p ∈ P , π(p) = Ri on edge (T ′.last, n) then

10: T ′.c+ = c(T ′.last, p)
11: T ′ ← p, PQ ← T ′

12: else
13: T ′.c+ = c(T ′.last, n), T ′ ← n
14: if n.c¬p > T ′.c then
15: n.c¬p = T ′.c, PQ ← T ′

16: else
17: if edge (T ′, n) contains E then
18: T ′.c+ = c(T ′.last, E), T ′ ← E
19: Update B and TB accordingly
20: else
21: T ′.c+ = c(T ′.last, n), T ′ ← n
22: if n.cp > T ′.c then
23: n.cp = T ′.c, PQ ← T ′

24: endif
25: endfor
26: endwhile

The algorithm proceeds greedily by expanding at every step the trip with the small-
est current cost. Furthermore, in order to be able to prune trips that are not promising,
based on already discovered trips, the algorithm maintains two partial best costs per
node n ∈ N . Cost n.cp (n.c¬p) represents the partial cost of the best trip that passes
through this node and that has (has not) discovered an interesting point yet. After all
k points(one from each category Ri ∈ R) have been discovered by iteratively call-
ing this algorithm, an approximate trip for TPQ can be produced. It is also possible to
design an incremental algorithm that discovers all points from categories in R concur-
rently.

5 Extensions

5.1 I/O Analysis for the Minimum Distance Query

In this section we study the I/O bounds for the minimum distance query in Euclidean
space, i.e., the expected number of I/Os when we try to find the point p that minimizes
D(S, E, p) from a point set indexed with an R-tree. By carefully examining Algorithm
4. and Lemma 4, we can claim the following:
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Fig. 4. The search region of a minimum distance query

Claim. The lower bound of I/Os for minimum distance queries is the number of MBRs
that intersect with line segment SE.

For the average case, the classical cost models for nearest neighbor queries can be
used [39,7,6,28,38]. On average the I/O for any type of queries on R-trees is given by
the expected node access: NA =

∑h−1
i=0 niPNAi where h is the height of the tree, ni

is the number of nodes in level i and PNAi is the probability that a node at level i is
accessed. The only peculiarity of minimum distance queries is that their search region
SR, i.e., the area of the data space that may contain candidate results, forms an ellipse
with focii the points S, E. It follows immediately that, on average, in order to answer
a minimum distance query we have to visit all MBRs that intersect with its respective
SR. Thus, if we quantify the size of SR we can estimate PNAi .

Consider the example in Figure 4, and suppose p1 is currently the point that mini-
mizesD(S, E, p1). Then the ellipse defined by S, E, p1 will be the region that contains
possible better candidates, e.g., p in this example. This is true due to the property of
the ellipse that r1 + r2 = 2a, i.e., any point p′ on the border of the ellipse satisfies
D(S, E, p′) = 2a. Therefore, to estimate the I/O cost of the query all we need to
do is estimate quantity a. Assuming uniformity and a unit square universe, we have
AreaSR = k/|P |. We also know that AreaSR = Areaellipse = 2π/

√
4ac− b2 =

2π/
√

4ac− (a2 − c2). Hence, a = 2c +
√

5c2 − (2π|P |
k )2

With S, E, c = |SE|/2, and a, we could determine the search region for a k mini-
mum distance query. With the search region being identified, one could derive the prob-
ability of any node of the R-tree being accessed. Then, the standard cost model analysis
in [7,6,28,38] can be straightforwardly be applied, hence the details are omitted. Gener-
alizations for non-uniform distributions can also be addressed similarly to the analysis
presented in [38], where few modifications are required given the ellipsoidal shape of
the search regions. The I/O estimation for queries on road networks is much harder to
analyze and heavily depends on the particular data structures used, therefore it is left as
future work.

5.2 Hybrid Approach

We also consider a hybrid approach to the trip planning query for disk based datasets
(in both Euclidean space and road networks). Instead of evaluating the queries using
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Fig. 5. Real dataset from California

the proposed algorithms, the basic idea is to first select a sufficient number of good
candidates from disk, and then process those in main memory. We apply the minimum
distance query to locate the top k points from each respective category and then, assum-
ing that the query visits a total of m categories, the k ×m points are processed in main
memory using any of the strategies discussed in Section 3. In addition, an exhaustive
search is also possible. In this case, there are mk number of instances to be checked. If
mk is large, a subset can be randomly selected for further processing, or the value of k
is reduced. Clearly, the hybrid approach will find a solution at least as good as algorithm
AMD . In particular, since the larger the value of k the closer the solution will be to the
optimal answer, with a hybrid approach the user can tune the accuracy of the results,
according to the cost she is willing to pay.

6 Experimental Evaluation

This section presents a comprehensive performance evaluation of the proposed tech-
niques for TPQ in spatial databases. We used both synthetic datasets generated on real
road networks and real datasets from the state of California. All experiments were run
on a Linux machine with an Intel Pentium 4 2.0GHz CPU.

Experimental Setup. To generate synthetic datasets we obtained two real road net-
works, the city of Oldenburg(OL) with 6105 nodes and 7035 edges and San Joaquin
county(TG) with 18263 nodes and 23874 edges, from [8]. For each dataset, we gener-
ated uniformly at random a number of points of interest on the edges of the network.
Datasets with varying number of categories, as well as varying densities of points per
category were generated. The total number of categories is in the range m ∈ [5, 30],
while the category density is in the range of ρ ∈ [0.01N, 0.25N ], where N is the total
number of edges in the network. For Euclidean datasets, points of interest are generated
using the road networks, but the distances are computed as direct Euclidean distances
between points, without the network constraints. Our synthetic dataset has the flexibil-
ity of controlling different densities and number of categories, however it is based on
uniform distribution on road network (not necessarily uniform in the Euclidean space).
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To study the general distribution of different categories, we also obtain a real dataset
for our experiments. First we get a collection of points of interests that fall into differ-
ent categories for the state of California from [35] as shown in Figure 5(a), then we
obtain the road network for the same state from [25] as shown in Figure 5(b). Both
of them represent the locations in a longitude/latitude space, which makes the merg-
ing step straightforward. The California dataset has 63 different categories, including
airports, hospitals, bars, etc., and altogether more than 100, 000 points. Different cate-
gories exhibit very different densities and distributions. The road network in California
has 21, 048 nodes and 22, 830 edges. For all experiments, we generate 100 queries with
randomly chosen S and E.

Road Network Datasets. In this part we study the performance of the two algorithms
for road networks. First, we study the effects of m and ρ. Due to lack of space we
present the results for the OL based datasets only. The results for the TG datasets were
similar. Figure 6(a) plots the results for the average trip length as a function of m, for
ρ = 0.01N . Figure 6(b) plots the average trip length as a function of ρ, for m = 30. In
both cases, clearly AMD outperformsANN . In general,AMD gives a trip that is 20%-
40% better (in terms of trip length) than the one obtained from ANN . It is interesting
to note that with the increase of m and the decrease of ρ the performance gap between
the two algorithms increases.ANN is greatly affected by the relative locations of points
as it greedily follows the nearest point from the remaining categories irrespective of its
direction with respect to the destination E. With the increase of m, the probability that
ANN wanders off the correct direction increases. With the decrease of ρ, the probability
that the next nearest neighbor is close enough decreases, which in turn increases the
chance that the algorithm will move far away from E. However, for both casesAMD is
not affected.

We also study the query cost of the two algorithms measured by the average running
time of one query. Figure 7(a) plots the results as a function of density, and m = 15. In
general, ANN has smaller runtime. The reason is that the AMD query in the road net-
work is much more complex and needs to visit an increased number of nodes multiple
times.

Euclidean Datasets. Due to lack of space we omit the plots for Euclidean datasets. In
general, the results and conclusions were the same as for the road network datasets. A
small difference is that the performance of the two algorithms is measured with respect
to the total number of R-tree I/Os. In this case, ANN was more efficient than AMD ,
especially for higher densities as shown in Figure 7(b).
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Fig. 8. Experiments with real dataset

General Datasets and Query Workloads. In the previous experiments datasets had a
fixed density for all categories. Furthermore, queries had to visit all categories. Here,
we examine a more general setting where the density for different categories is not
fixed and queries need to visit a subset R of all categories. Figure 6(c) summarizes the
results. We set m = 20 and ρ uniformly distributed in [0.01N, 0.20N ]. We experiment
with subsets of varying cardinalities per query and measure the average trip length
returned by both algorithms. AMD outperformsANN by 15% in the worst case. With
the increase of the cardinality ofR, the performance gain on AMD increases.

Real Datasets. So far we have tested our algorithm on synthetic datasets To compare
the performance of the algorithms in a real setting, we apply ANN and AMD on the
real dataset from California. There are 63 different categories in this dataset, hence
we show the query workload that requires visits to a subset of categories (up to 30
randomly selected categories). Figure 8(a) compares the average trip length obtained
by ANN and AMD in the road network case. In this case, we simply use longitude
and latitude as the point coordinates and calculate the distance based on that. So the
absolute value for the distance is small. As we have noticed, AMD still outperforms
ANN in terms of trip length, however, with the price of a higher query cost as indicated
in Figure 8(b). Notice that the running time in this experiment is much higher than
the one in Figure 7(a) as we are dealing with a much larger network as well as more
data points. Similar results have been observed for the same dataset in Euclidean space
(where the cost is measured in I/Os) and they are omitted. It is interesting to note that the
trip length is increasing w.r.t. the number of categories in a non-linear fashion (e.g., from
25 categories to 30 categories), as compared to the same experiment on the synthetic
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dataset shown in Figure 6(a). This could be explained by the non-uniformity property
and skewness of the real dataset. For example, there are more than 900 airports and only
about 50 harbors. So when a query category for harbors is included, one expect to see a
steep increase in the trip length.

Study of the Hybrid Approach. We also investigate the effectiveness of the hybrid ap-
proach as suggested in Section 5.2. Our experiments on synthetic datasets show that
the hybrid approach improves results over AMD by a small margin (Figure 8(a)). This
is expected due to the uniformity of the underlying datasets. With the real dataset, as
we can see in Figure 8(a), there is a noticeable improvement with the hybrid approach
over AMD (we set m = 5). This is mainly due to the skewed distribution in different
categories in the real dataset. The hybrid approach incurs additional computational cost
in main memory (i.e., cpu time) but identifies better trips. We omit the running time
of hybrid approach from Figure 8(b) as it exhibits exponential increase(O(mk)) with
the number of categories. However, when the number of categories is small, the run-
ning time of hybrid approach is comparable to ANN and AMD , e.g., when m = 5 its
running time is about 3.8 seconds for one query, on average.

7 Conclusions and Future Work

We introduced a novel query for spatial databases, namely the Trip Planning Query.
First, we argued that this problem is NP-Hard, and then we developed four polyno-
mial time approximation algorithms, with efficient running time and varying worst case
guarantees. We also showed how to apply these algorithms in practical scenarios, both
for Euclidean spaces and Road Networks. Finally, we presented a comprehensive ex-
perimental evaluation. For future work we plan to extend our algorithms to support
trips with user defined constraints. Examples include visiting a certain category during
a specified time period [3], visiting categories in a given order, and more.
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1 Introduction

Evacuation planning is critical for numerous important applications, e.g. dis-
aster emergency management and homeland defense preparation. Traditional
evacuation warning systems simply convey the threat descriptions and the need
for evacuation to the affected population via mass media communication. Such
systems do not consider capacity constraints of the transportation network and
thus may lead to unanticipated effects on the evacuation process. For example,
when Hurricane Andrew was approaching Florida in 1992, the lack of effective
planning caused tremendous traffic congestions, general confusion and chaos [1].
Therefore, efficient tools are needed to produce evacuation plans that identify
routes and schedules to evacuate affected populations to safety in the event of
natural disasters or terrorist attacks [12,14,7,8].

The current methods of evacuation planning can be divided into two cate-
gories, namely traffic assignment-simulation approach and route-schedule plan-
ning approach. The traffic assignment-simulation approach uses traffic simula-
tion tools, such as DYNASMART [27] and DynaMIT [5], to conduct stochastic
simulation of traffic movements based on origin-destination traffic demands and
uses queuing methods to account for road capacity constraints. However, it may
take a long time to complete the simulation process for a large transportation
network. The route-schedule planning approaches use network flow and rout-
ing algorithms to produce origin-destination routes and schedules of evacuees
on each route. Many research works have been done to model the evacuation
problem as a network flow problem [15,4] and to find the optimal solution using
linear programming methods. Hamacher and Tjandra [17] gave an extensive lit-
erature review of the models and algorithms used in these linear programming
methods. Based on the triple-optimization results by Jarvis and Ratliff [20], lin-
ear programming method for evacuation route planning works as follows. First,
it models the evacuation network into a network graph, as shown by network
G in Figure 1, and it requires the user to provide an estimated upper bound
T of the evacuation egress time. Second, it converts evacuation network G to a
time-expanded network, as shown by GT in Figure 2, by duplicating the original
evacuation network G for each discrete time unit t = 0, 1, . . . , T . Then, it de-
fines the evacuation problem as a minimum cost network flow problem [15,4] on
the time-expanded network GT . Finally, it feeds the expanded network GT to
minimum cost network flow solvers, such as NETFLO [21], to find the optimal so-
lution. For example, EVACNET [9,16,22,23] is a computer program based on this
approach which computes egress time for building evacuations. It uses NETFLO
code to obtain the optimal solution. Hoppe and Tardos [18,19] gave a polynomial
time bounded algorithm by using ellipsoid method of linear programming to find
the optimal solution for the minimum cost flow problem. Theoretically, ellipsoid
method has a polynomial bounded running time. However, it performs poorly
in practice and has little value for real application [6].

Linear programming approach can produce optimal solutions for evacuation
planning. It is useful for evacuation scenarios with moderate size networks,
such as building evacuation. However, this approach has the following limita-
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Fig. 1. Evacuation Network G,
(source: [17])

Fig. 2. Time-expanded Network GT , with T=4,
(source: [17])

tions. First, it significantly increases the problem size because it requires time-
expanded network GT to produce a solution. As can been seen in Figures 1
and 2, if the original evacuation network G has n nodes and the time upper
bound is T , the time-expanded network GT will have at least (T + 1)n nodes.
This approach may not be able to scale up to large size transportation networks
in urban evacuation scenarios due to high computational run-time caused by
the tremendously increased size of the time-expanded network. Second, linear
programming approach requires the user to provide an upper bound T of the
evacuation time in order to generate the time-expanded network. It is almost
impossible to precisely estimate the evacuation time for an urban scenario where
the number of evacuees is large and the transportation network is complex. An
under-estimated time bound T will result in failure of finding a solution. In this
case, the user will have to increase the value of T and re-run the algorithm until
a solution can be reached. On the other hand, an over-estimated T will result
in an over-expanded network GT and hence lead to unnecessary storage and
run-time.

Heuristic routing and scheduling algorithms can be used to find sub-optimal
evacuation plan with reduced computational cost. It is useful for evacuation
scenarios with large size networks and scenarios that do not require an optimal
plan, but need to produce an efficient plan within a limited amount of time. How-
ever, old heuristic approaches only compute the shortest distance route from a
source to the nearest destination without considering route capacity constraints.
It cannot produce efficient plans when the number of evacuees is large and the
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evacuation network is complex. New heuristic approaches are needed to account
for capacity constraints of the evacuation network. Lu, Huang and Shekhar [26]
proposed prototypes of two heuristic capacity constrained routing algorithms,
namely SRCCP and MRCCP, and tested its performance using small size build-
ing networks. SRCCP assigns only one route to each source node. It has very
fast run-time but the solution quality is very poor and hence has little value for
real application. MRCCP assigns multiple routes to each source node and pro-
duces high quality solution with much less run-time compared to that of linear
programming approach. However, its scalability to large size networks is unsat-
isfactory because it has a computational cost of O(p · n2logn) (where n the is
number of nodes and p is the number of evacuees). In this paper, we present an
improved algorithm called Capacity Constrained Route Planner (CCRP). CCRP
can reduce the run-time to O(p · nlogn) by conducting only one shortest path
search in each iteration instead of the multiple searches used in MRCCP. We
also present the analysis of its algebraic cost model and provide the results of
performance evaluation using large size transportation networks.

In the CCRP algorithm, we model capacity as a time series because available
capacity of each node and edge may vary during the evacuation. We use a gener-
alized shortest path search algorithm to account for route capacity constraints.
This algorithm can divide evacuees from each source into multiple groups and
assign a route and time schedule to each group of evacuees based on an order
that is prioritized by each group’s destination arrival time. It then reserves route
capacities for each group subject to the route capacity constraints. The quick-
est route available for one group is re-calculated in each iteration based on the
available capacity of the network. Performance evaluation on various network
configurations shows that the CCRP algorithm produces high quality solutions,
and significantly reduces the computational cost compared to linear program-
ming approach. CCRP is also scalable to the number of evacuees and the size
of the network. A case study using a nuclear power plant evacuation scenario
shows that this algorithm can be used to improve existing evacuation plans by
reducing evacuation time.

We also explored the possibility of formulation of a new optimal algorithm
using A* search[28,29]. It addresses the limitations of linear programming ap-
proach by using only the original evacuation network to find the optimal solution
and it does not require the user to provide an upper bound of the evacuation
time. Details of the A* search formulation and the proof of monotonicity and
admissibility of this A* search algorithm are available in [25]. It is not included
in this paper due to space constraints.

Outline: The rest of the paper is organized as follows. In Section 2, the problem
formulation is provided and related concepts are illustrated by an example evac-
uation network. Section 3 describes the Capacity Constrained Route Planner
(CCRP) algorithm and the algebraic cost model. In Section 4, we present the
experimental design and performance evaluation. We summarize our work and
discuss future directions in Section 5.
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2 Problem Formulation

We formulate the evacuation planning problem as follows:

Given: A transportation network with non-negative integer capacity
constraints on nodes and edges, non-negative integer travel time on edges,
the total number of evacuees and their initial locations, and locations of
evacuation destinations.

Output: An evacuation plan consisting of a set of origin-destination routes and
a scheduling of evacuees on each route. The scheduling of evacuees on each
route should observe the capacity constraints of the nodes and edges on this
route.

Objective: (1) Minimize the evacuation egress time, which is the time elapsed
from the start of the evacuation until the last evacuee reaches the evac-
uation destination. (2) Minimize the computational cost of producing the
evacuation plan.

Constraint: (1) Edge travel time preserves FIFO (First-In First-Out) property.
(2) Edge travel time reflects delays at intersections. (3) Limited amount of
computer memory.

We illustrate the problem formulation and a solution with an example evac-
uation network, as shown in Figure 3. In this evacuation network, each node is
shown by an ellipsis. Each node has two attributes: maximum node capacity and
initial node occupancy. For example, at node N1, the maximum capacity is 50,
which means this node can hold at most 50 evacuees at each time point, while the
initial occupancy is 10, which means there are initially 10 evacuees at this node.
In Figure 3, each edge, shown as an arrow, represents a link between two nodes.
Each edge also has two attributes: maximum edge capacity and travel time. For
example, at edge N4-N6, the maximum edge capacity is 5, which means at each
time point, at most 5 evacuees can start to travel from node N4 to N6 through
this link. The travel time of this edge is 4, which means it takes 4 time units to
travel from node N4 to N6. This approach of modelling a evacuation scenario to
a capacitated node-edge graph is similar to those presented in Hamacher [17],
Kisko [23] and Chalmet [9].

As shown in Figure 3, suppose we initially have 10 evacuees at node N1, 5
at node N2, and 15 at node N8. The task is to compute an evacuation plan that
evacuates the 30 evacuees to the two destinations (node N13 and N14) using the
least amount of time.

Example 1 (An Evacuation Plan). Table 1 shows an example evacuation plan
for the evacuation network in Figure 3. In this table, each row shows one group
of evacuees moving together during the evacuation with a group ID, source node,
number of evacuees in this group, the evacuation route with time schedule, and
the destination time. The route is shown by a series of node number and the
time schedule is shown by a start time associated with each node on the route.
Take source node N8 for example; initially there are 15 evacuees at N8. They
are divided into 3 groups: Group A with 6 people, Group B with 6 people and
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Fig. 3. Node-Edge Graph Model of Example Evacuation Network

Group C with 3 people. Group A starts from node N8 at time 0 to node N10,
then starts from node N10 at time 3 to node N13, and reaches destination N13 at
time 4. Group B follows the same route of group A, but has a different schedule
due to capacity constraints of this route. This group starts from N8 at time 1
to N10, then starts from N10 at time 4 to N13, and reaches destination N13
at time 5. Group C takes a different route. It starts from N8 at time 0 to N11,
then starts from N11 at time 3 to N14, and reaches destination N14 at time 5.
The procedure is similar for other groups of evacuees from source node N1 and
N2. The whole evacuation egress time is 16 time units since the last groups of
people (Group H and I) reach destination at time 16. This evacuation plan is an
optimal plan for the evacuation scenario shown in Figure 3.

In our problem formulation, we allow time dependent node capacity and
edge capacity, but we assume that edge capacity does not depend on the ac-
tual flow amount in the edge. We also allow time dependent edge travel time,
but we require that the network preserve the FIFO (First-In First-Out)
property.

Alternate problem formulations of the evacuation problem are available by
changing the objective of the problem. The main objective of our problem for-
mulation is to minimize the evacuation egress time. Two alternate objectives are:
(1) Maximize the number of evacuees that reach destination for each time unit;
(2) Minimize the average evacuation time for all evacuees. Jarvis and Ratliff
presented and proved the triple optimization theorem [20], which illustrated the
properties of the solutions that optimize the above objectives of the evacuation
problem. A review of linear programming approaches to solve these problem
formulations was given by Hamacher and Tjandra [17].
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Table 1. Example Evacuation Plan

Group of Evacuees
ID Source Number Route with Schedule Dest.Time
A N8 6 N8(T0)-N10(T3)-N13 4

B N8 6 N8(T1)-N10(T4)-N13 5

C N8 3 N8(T0)-N11(T3)-N14 5

D N1 3 N1(T0)-N3(T1)-N4(T4)-N6(T8)-N10(T13)-N13 14

E N1 3 N1(T0)-N3(T2)-N4(T5)-N6(T9)-N10(T14)-N13 15

F N1 1 N1(T0)-N3(T1)-N5(T4)-N7(T8)-N11(T13)-N14 15

G N2 2 N2(T0)-N3(T1)-N5(T4)-N7(T8)-N11(T13)-N14 15

H N2 3 N2(T0)-N3(T3)-N4(T6)-N6(T10)-N10(T15)-N13 16

I N1 3 N1(T1)-N3(T2)-N5(T5)-N7(T9)-N11(T14)-N14 16

3 Proposed Approach

Linear programming approach can produce optimal solutions for evacuation
planning. It is useful for evacuation scenarios with moderate size networks, such
as building evacuation. However, it may not be able to scale up to large size trans-
portation networks in urban evacuation scenarios due to high computational cost
caused by the tremendously increased size of the time-expanded network. Heuris-
tic routing and scheduling algorithms can be used to find sub-optimal evacuation
plan with reduced computational cost. It is useful for evacuation scenarios with
large size networks and scenarios that do not require an optimal plan, but need
to produce an efficient plan within a limited amount of time.

In this section, we present a heuristic algorithm, namely Capacity Con-
strained Route Planner (CCRP), that produces sub-optimal solutions for evac-
uation planning. We model edge capacity and node capacity as a time series
instead of fixed numbers. A time series represents the available capacity at each
time instant for a given edge or node. We propose a heuristic approach based
on an extension of shortest path algorithms [13,11] to account for capacity con-
straints of the network.

3.1 Capacity Constrained Route Planner (CCRP)

The Capacity Constrained Route Planner (CCRP) uses an iterative approach. In
each iteration, the algorithm first searches for route R with the earliest destina-
tion arrival time from any source node to any destination node, taking previous
reservations and possible waiting time into consideration. Next, it computes the
actual amount of evacuees that will travel through route R. This amount is af-
fected by the available capacity of route R and the remaining number of evacuees.
Then, it reserves the node and edge capacity on route R for those evacuees. The
algorithm continues to iterate until all evacuees reach destination. The detailed
pseudo-code and algorithm description are shown in Algorithm 1..

The CCRP algorithm keeps iterating as long as there are still evacuees left at
any source node (line 1). Each iteration starts with finding the route R with the
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Algorithm 1. Capacity Constrained Route Planner (CCRP)
Input:

1) G(N, E): a graph G with a set of nodes N and a set of edges E;
Each node n ∈ N has two properties:

Maximum Node Capacity(n) : non-negative integer
Initial Node Occupancy(n) : non-negative integer

Each edge e ∈ E has two properties:
Maximum Edge Capacity(e) : non-negative integer
Travel time(e) : non-negative integer

2) S: set of source nodes, S ⊆ N;
3) D: set of destination nodes, D ⊆ N;

Output: Evacuation plan:Routes with schedules of evacuees on each route
Method:
Pre-process network: add super source node s0 to network,

link s0 to each source nodes with an edge which
Maximum Edge Capacity() = ∞ and Travel time() = 0; (0)

while any source node s ∈ S has evacuee do { (1)
find route R < n0, n1, . . . , nk > with time schedule < t0, t1, . . . , tk−1 >

using one generalized shortest path search from super source s0

to all destinations, (where s ∈ S,d ∈ D,n0 = s,nk = d)
such that R has the earliest destination arrival time among

routes between all (s,d) pairs,
and Available Edge Capacity(enini+1 , ti) > 0, ∀i ∈ {0, 1, . . . , k − 1},
and Available Node Capacity(ni+1, ti + Travel time(enini+1)) > 0,

∀i ∈ {0, 1, . . . , k − 1}; (2)
flow = min( number of evacuees still at source node s,

Available Edge Capacity(enini+1 , ti), ∀i ∈ {0, 1, . . . , k − 1},
Available Node Capacity(ni+1, ti + Travel time(enini+1)),

∀i ∈ {0, 1, . . . , k − 1};
); (3)

for i = 0 to k − 1 do { (4)
Available Edge Capacity(enini+1 , ti) reduced by flow; (5)
Available Node Capacity(ni+1, ti+Travel time(enini+1)) reduced by flow;

(6)
} (7)

} (8)
Output evacuation plan; (9)

earliest destination arrival time from any sources node to any destination node
based on the current available capacities (line 2). This is done by generalizing
Dijkstra’s shortest path algorithm [13,11] to work with the time series node and
edge capacities and edge travel time. Route R is the route that starts from a
source node and gets to a destination node in the least amount of time and
available capacity of the route allows at least one person to travel through route
R to a destination node.

Compared with the earlier MRCCP algorithm [26], major improvements in
CCRP lie in line 0 and line 2. In MRCCP, finding route R (line 2) is done by



Capacity Constrained Routing Algorithms for Evacuation Planning 299

running generalized shortest path searches from each source node. Each search is
terminated when any destination node is reached. In CCRP, this step is improved
by adding a super source node s0 to the network and connecting s0 to all source
nodes(line 0). This allows us to complete the search for route R by using only
one single generalized shortest path search, which takes the super source s0 as
the start node. This search terminates when any destination node is reached.
Since the super source s0 is connected to each source nodes by an edge with
infinite capacity and zero travel time, it can be easily proved that the shortest
route found by this search is the route R we need in line 2. This improvement
significantly reduces the computational cost of the algorithm by one degree of
magnitude compared with MRCCP. We give a detailed analysis of the cost model
of CCRP algorithm in the next section.

3.2 Algebraic Cost Model of CCRP

We now provide the algebraic cost model for the computational cost of the
proposed CCRP algorithm. We assume that n is the number of nodes in the
evacuation network, m is the number of edges, and p is the number of evacuees.

The CCRP algorithm is an iterative approach. In each iteration, the route
for one group of people is chosen and the capacities along the route are reserved.
The total number of iterations equals the number of groups generated. In the
worst case, each individual evacuee forms one group. Therefore, the upper bound
of the number of groups is p, i.e. the number of iterations is O(p). In each iter-
ation, the computation of the route R with earliest destination arrival time is
done by running one generalized Dijkstra’s shortest path search. The worst case
computational complexity of Dijkstra’s algorithm is O(n2) for dense graphs [11].
Various implementations of Dijkstra’s algorithm have been developed and eval-
uated extensively [4,10,32]. Many of these implementations can reduce the com-
putational cost by taking advantage of the sparsity of the graph. Transportation
road networks are very sparse graphs with a typical edge/node ratio around 3.
In CCRP, we implement Dijkstra’s algorithm using heap structures, which runs
in O(m + nlogn) time [4,10]. For sparse graphs, nlogn is the dominant term.
The generalization of Dijkstra’s algorithm to account for capacity constraints
affects only how the shortest distance to each node is defined. It does not affect
the computational complexity of the algorithm. Therefore, we can complete the
search for route R with O(nlogn) run-time. The reservation step is done by up-
dating the node and edge capacities along route R, which has a cost of O(n).
Therefore, each iteration of the CCRP algorithm is done in O(nlogn) time. As
we have seen, it takes O(p) iterations to complete the algorithm. The cost model
of the CCRP algorithm is O(p·nlogn). CCRP is an improved algorithm based on
the same heuristic method of MRCCP [26] which has a run-time of O(p ·n2logn).
CCRP reduces the computational cost of MRCCP by one degree of magnitude.

The computational cost of linear programming approach depends on the
method used to solve the minimum cost flow problem. Hoppe and Tardos [18]
showed that this problem can be solved using ellipsoid method which is theo-
retically polynomial time bounded. However, the computational complexity of
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Table 2. Comparison of Computational Costs (n: number of nodes, p: number of
evacuees, T : user-provided upper-bound on evacuation time)

Algorithm Computational Cost Solution Quality
CCRP O(p · nlogn) Sub-optimal

MRCCP O(p · n2logn) Sub-optimal

Linear Programming Approach at least O((T · n)6) Optimal

ellipsoid method is at least O(N6)[6](where N is the number of nodes in the net-
work). Since linear programming approach requires a time-expanded network,
N equals to (T +1)n (where n is the number of nodes in the original evacuation
network, T is the user-provided evacuation time upper bound).

Table 2 provides a comparison of CCRP, MRCCP, and the linear program-
ming approach. As can be seen, linear programming approach produces optimal
solutions but suffers from high computational cost. Both CCRP and MRCCP
reduce the computation cost by producing sub-optimal solution, while CCRP
gives better computational cost than MRCCP.

Lemma 1 : CCRP is strictly faster than MRCCP.

The computational costs of CCRP and MRCCP are O(p·nlogn) and O(p·n2logn)
respectively, as shown in Table 2.

4 Experiment Design and Performance Evaluation

Performance evaluation of the CCRP algorithm was done by conducting ex-
periments using various evacuation network configurations. In this section, we
present the experiment design and an analysis of the experiment results.

4.1 Experiment Design

Figure 4 describes the experiment design to evaluate the performance of the
CCRP algorithm. The purpose is to compare the algorithm run-time and solu-
tion quality of the proposed CCRP algorithms with that of MRCCP [26] and
NETFLO [21] which is a popular linear programming package used to solve
minimum cost flow problems.

First, we used NETGEN [24] to generate evacuation networks with evacuees.
NETGEN is a program that generates transportation networks with capacity
constraints and initial supplies based on input parameters. In our experiments,
the following three were selected as independent parameters to test their im-
pacts on the the performance of the algorithms: number of evacuees initially in
the network, number of source nodes, and network size represented by number
of nodes. Number of edges is treated as a dependent parameter as we set the
number of edges to be equal to 3 times the number of nodes because 3 is the
typical edge/node ratio for real transportation road networks. Next, the same



Capacity Constrained Routing Algorithms for Evacuation Planning 301

evacuation network generated by NETGEN was fed to the CCRP and MRCCP
algorithms. Before feeding the network to NETFLO, we used a network transfor-
mation tool to transform the evacuation network into a time-expanded network,
which is required by minimum cost flow solvers as NETFLO to solve evacua-
tion problems [17,9]. This process requires an input parameter T which is the
estimated upper-bound on evacuation egress time. If the evacuation cannot be
completed by time T, NETFLO will return no solution. In this case, we must
increase T to create a new time-expanded network and try to run NETFLO
again until a solution can be reached. Finally, after CCRP, MRCCP and NET-
FLO produced a solution for each test case, the evacuation egress time, which
represents the solution quality, and the algorithm run-time were collected and
analyzed in the data analysis module.

Fig. 4. Experiment Design

The experiments were conducted on a workstation with Intel Pentium IV
2GHz CPU, 2GB RAM and Debian Linux operating system.

4.2 Experiment Results and Analysis

We want to answer three questions: (1) How does the number of evacuees affect
the performance of the algorithms? (2) How does the number of source nodes
affect the performance of the algorithms? (3) Are the algorithms scalable to
the size of the network, particularly will they handle large size transportation
networks as in urban evacuation scenarios?

Experiment 1: How does the number of evacuees affect the performance of the
algorithms?
The purpose of the first experiment is to evaluate how the number of evacuees

affects the performance of the algorithms. We fixed the number of nodes and
the number of source nodes of the network, and varied the number of evacuees
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to observe the quality of the solution and the run-time of CCRP, MRCCP and
NETFLO algorithms.

The experiment was done with four test groups. Each group had a fixed
network size of 5000 nodes and fixed number of source nodes at 1000, 2000,
3000, and 4000 respectively. We varied the number of evacuees from 5000 to
50000. Here we present the experiment results of the test group with number of
source nodes fixed at 2000. We omit the results from the other three groups since
this group shows a typical result of all test groups. Figure 5 shows the solution
quality represented by evacuation egress time and Figure 6 shows the run-times
of the three algorithms.
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Fig. 6. Run-time With Respect to
Number of Evacuees

Since CCRP and MRCCP use the same heuristic method to find solution, it
is expected that CCRP and MRCCP produced solutions with the same evacu-
ation egress time for each test case. As seen in Figure 5, CCRP and MRCCP
produced very high quality solution compared with the optimal solution pro-
duced by NETFLO. The solution quality of CCRP and MRCCP drops slightly
as the the number of evacuees grows. In Figure 6, we can see that, in each case,
the run-time of CCRP remains half that of MRCCP and less than 1/3 that of
NETFLO. In addition, the CCRP run-time is scalable to the number of evacuees
while the run-time of NETFLO grows much faster.

This experiment shows: (1) CCRP produces high quality solutions with much
less run-time than that of NETFLO. (2) The run-time of CCRP is scalable to
the number of evacuees.

Experiment 2: How does the number of source nodes affect the performance of
the algorithms?
In the second experiment, we evaluate how the number of source nodes affects

the performance of the algorithms. We fixed the number of nodes and the number
of evacuees in the network, and varied the number of source nodes to observe
the quality of the solution and the run-time. In this experiment, by varying the
number of source nodes, we actually create different evacuee distributions in the
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network. A higher number of source nodes means that the evacuees are more
scattered in the network.

Again, the experiment was done with four test groups. Each group had a
fixed network size of 5000 nodes and fixed number of evacuees at 5000, 20000,
35000, and 50000 respectively. We varied the number of source nodes from 1000
to 4000. Here we present the experiment results of the test group with number
of evacuees fixed at 5000. It shows a typical result of all test groups. Figure 7
shows the solution quality represented by evacuation egress time and Figure 8
shows the run-times of the three algorithms.

320

330

340

350

360

370

380

1000 2000 3000 4000

Number of Source Nodes

E
va

cu
at

io
n

 E
g

re
ss

 T
im

e 
(u

n
it

)

CCRP & MRCCP NETFLO

Fig. 7. Quality of Solution With
Respect to Number of Source
Nodes

0

100

200

300

400

500

600

1000 2000 3000 4000

Number of Source Nodes

A
lg

o
ri

th
m

 R
u

n
-T

im
e 

(s
ec

o
n

d
)

CCRP MRCCP NETFLO

Fig. 8. Run-time With Respect to
Number of Source Nodes

As seen in Figure 7, in each test case, CCRP and MRCCP produced high
quality solution (within 5 percent longer evacuation time) and the number of
source nodes has little effect on the solution quality. It is also noted that the
evacuation time is non-monotonic with respect to the number of source nodes
and we plan to explore the potential reasons in future works.

Figure 8 shows that the run-time of all three algorithms are scalable to the
number of source nodes. However, the run-time of CCRP remains less than half
that of NETFLO.

This experiment shows: (1)The solution quality of CCRP is not affected by
the number of source nodes. (2) The run-time of CCRP is scalable to the number
of source nodes.

Experiment 3: Are the algorithms scalable to the size of the network?
In the third experiment, we evaluate how the network size affects the perfor-

mance of the algorithms. We fixed the number of evacuees and the number of
source nodes in the network, and varied the network size to observe the quality
of solution and the run-time of the algorithms.

The experiment was done with a fixed number of evacuees at 5000 and the
number of source nodes at 10. We varied the number of nodes from 50 to 50000.
Figure 9 shows the solution quality represented by evacuation egress time and
Figure 10 shows the run-times.
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Note: x-axis(number of nodes) in Figure 9 and 10 is on a logarithmic scale
rather than linear. Run-time of CCRP and MRCCP in Figure 10 grow in small
polynomial.

There is no data point for NETFLO at network size of 50000 nodes. We were
unable to run NETFLO for this setup because the size of the time-expanded
network became too large (more than 20 million nodes and 80 million edges)that
NETFLO could not produce solution.

As seen in Figure 9, in each of the first three test case, CCRP and MRCCP
produced high quality solution (within 5 percent longer evacuation time) and the
solution quality becomes closer to optimal solution as the network size increases.
Figure 10 is shown with a data table of each run-time. The x-axis(number of
nodes) of Figure 10 is on a logarithmic scale rather than linear and the run-time
of CCRP and MRCCP grow in small polynomial. It can be seen that the run-
time of CCRP is scalable to the network size while the NETFLO run-time grows
exponentially.

This experiment shows: (1) Given a fixed number of evacuees and source
nodes, the solution quality of CCRP increases as the network size increases. (2)
The run-time of CCRP is scalable to the size of the network.

We also conducted experiments using a real evacuation scenario. The Monti-
cello nuclear power plant is about 40 miles to the northwest of the Twin Cities.
Evacuation plans need to be in place in case of accidents or terrorist attacks. The
evacuation zone is a 10-mile radius around the nuclear power plant as defined
by Minnesota Homeland Security and Emergency Management [3].

The experiment was done using the road network around the evacuation zone
provided by the Minnesota Department of Transportation [2], and the Census
2000 population data for each affected city. The total number of evacuees is about
42,000. The old hand-crafted evacuation plan has an evacuation egress time of
268 minutes. CCRP algorithm produced a much better plan with evacuation time
of only 162 minutes. This experiment shows that our algorithm is effective in
real evacuation scenarios to reduce evacuation time and improve existing plans.

Our approach was presented in the UCGIS Congressional Breakfast Program
on homeland security[30], and the Minnesota Homeland Security and Emergency
Management newsletter[31]. It was also selected by the Minnesota Department
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of Transportation to be used in the evacuation planning project for the Twin
Cities Metro Area, which involves a road network of about 250,000 nodes and a
population of over 2 million people.

5 Conclusions and Discussions

In this paper, we proposed a new capacity constrained routing algorithm for
evacuation planning problem. Existing linear programming approach uses time-
expanded network and requires user provided upper bound on evacuation time.
To address these limitations, we presented a heuristic algorithm, namely Capac-
ity Constrained Route Planner(CCRP), which produces sub-optimal solution for
evacuation planning problem without using time-expanded networks. We pro-
vided the algebraic cost model and the performance evaluations using various
network configurations. Experiments show that CCRP algorithm produces high
quality solution and significantly reduces the computational cost compared to
linear programming approach which produces optimal solution. It is also shown
that the CCRP algorithm is scalable to the number of evacuees and the size of the
transportation network. A case study using real evacuation scenario shows that
CCRP algorithm can be used to improve existing evacuation plans by reducing
total evacuation time.

The limitation of CCRP algorithm remains the follows. First, we assume that
maximum capacity of an edge does not depend on traffic flow amount on the edge.
We understand that it is a challenging task to accurately model the capacity of
each road segment in a real evacuation scenario as the actual traffic flow rate
may depend on vehicle speed as well as road occupancy. Second, the generalized
shortest path algorithm we used in CCRP requires that the edge travel time
reflects traffic delays at intersections. For future work, we plan to incorporate
existing research results, such as Ziliaskopoulos and Mahmassani [33], to better
address this problem.

To address the sub-optimality issue of the CCRP algorithm, we also explored
the possibility of formulating the evacuation problem as a search problem using
A* algorithm. Our A* search formulation addresses the limitations of linear
programming approach by only using the original evacuation network to find
optimal solution. Thus, it does not require prior knowledge of evacuation time.
We proved that the heuristic function used in our A* formulation is monotone
and admissible thus guaranteeing the optimality of the solution. Details of the
A* search formulation can be found in [25]. It is not included in this paper due
to space constraints.
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Abstract. Networks often form the core of many users’ spatial databases. 
Networks are used to support the rapid navigation and analysis of linearly 
connected data such as that found in transportation networks. Common types of 
analysis performed on such networks include shortest path, traveling salesman, 
allocation, and distance matrix computation.  

Network data models are usually represented as a small collection of tables: 
a junction table and an edge table. In the context of networks used to model 
transportation infrastructure, it is also necessary to model turn restrictions and 
impedances (delays). Network data is frequently persisted in normalized 
relational tables that are accessible via standard SQL-based queries. We 
propose a different approach where the network connectivity information is 
persisted using a compressed binary storage representation in a relational 
database. The connectivity information is accessible via standard Java, .NET, 
and COM APIs that are tailored to common access patterns used in the support 
of high performance network engines. These network engines run on the client 
or application server tier rather than as extensions on the relational server. 

In this paper, we discuss the problem of building a robust and scalable 
implementation of a network data model. The fundamental and central 
requirements are enumerated. These requirements include support for hierarchical 
networks, turn restrictions, and logical z elevations. We propose a different 
approach to representing network topology that addresses many of the high-end 
modeling requirements of network systems. Our approach supports all of the 
listed requirements in addition to multimodal modeling (e.g., coexistent road, bus, 
and rail networks) within the context of multi-user, long transaction databases. 

1   Introduction 

Network data models have been used to represent geographic information for well 
over thirty years [15], [18], [19]. These models have been incorporated into a number 
of operational systems (see, for example TransCAD [3] or ARC/INFO [22]). Despite 
the relative maturity of such technology, most systems have fallen short of meeting 
the most sophisticated requirements of transportation network modeling. Such 
requirements include the ability to model multimodal (or intermodal) transportation 
systems (transportation networks where two or more different transportation modes 
are linked – e.g., roads and rail) and the ability to handle coincident features 
participating in different modes of the model (e.g, subways underneath streets, or bus 
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routes along city streets) when geometric analysis of the participant features is used to 
derive network connectivity [29]. In addition, some systems fail to address the 
requirement to model turns and maneuvers without applying complex graph 
transformations to represent permissible turns as explicit edges [30]. 

In this paper, we describe a design for modeling multimodal networks that are 
persisted in relational databases. This design is the basis for our implementation of 
networks in the ArcGIS geographic information system. The design satisfies the 
fundamental goal of supporting sophisticated network models that are consumed by 
high performance network engines, and is tailored for fast retrieval of connectivity 
information within network analysis algorithms. Network engines provide fine 
grained (i.e., forward star [6]) access to very large external networks persisted in an 
RDBMS or the file system, and are intended to reside on the client in the case of 
traditional two-tier systems, or on the application server in n-tier architectures. The 
network engine supports a rich set of network analysis algorithms, such as shortest 
path finding, traveling salesman problems, and network resource allocation 
operations, that also execute in the desktop or application server tier and are used in a 
variety of desktop and server-based network analysis applications. 

 In the first section of this paper, we review the logical model of network topology. 
The major requirements of a high-end network data model are discussed and a 
connectivity model that supports multimodal networks is presented. We then consider 
the issue of representing turn restrictions and maneuvers (multi-part turns) – a critical 
component in transportation networks [9]. Existing approaches to representing turns 
are reviewed and our modeling approach is presented. The access model of 
consuming networks is reviewed in the context of common workflows as well as a 
query model that is tailored to the support of high performance network engines. We 
then address the issue of the physical storage representation of a network. The 
conventional physical database implementation is briefly detailed. We then present 
our alternative physical representation and highlight the reasons and motivation 
behind its departure from the conventional implementation. We conclude with a brief 
discussion of our implementation experience and outline our ongoing future research 
in this domain. 

2   Logical Model 

The movement of people, the transportation of goods and services, as well as the 
distribution of resources, energy, and communication are commonly modeled with 
network systems. Network data structures for representing geographic information are 
a standard topic in geographic information science [18], [27]. 

In this paper, we use the term network to refer to a connectivity graph of junctions 
and their connecting edges, where each junction and edge is associated with a feature 
with point or line geometry respectively. The term network element is used to refer to 
the collection of junctions and edges comprising the network. All network elements 
have a set of numeric properties, called network attributes. Attributes capture 
information about network elements, such as the travel time across an element, and 
are used to define the navigation context during an analysis. 
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Junction attribute values provide a high-level view of traversing intersections. For 
example, the travel time attribute value on a junction element describes how long it 
takes to cross the element, ignoring the edge elements used to enter and exit the 
junction element. For more detailed modeling of traversing intersections, we use 
turns. In the simplest case, a turn element models entering a junction from a particular 
edge element and exiting to another. A multipart turn element, also known as a 
maneuver, enters the junction element from a path of two or more connected edge 
elements. 

Turn elements are not strictly part of the graph model. They represent a relationship 
rather than being an abstraction of a real-world entity. Turns do not modify the 
junction-edge connectivity of the network; instead they affect traversability of the 
network elements. Turns are not considered an attribute of a network junction, though 
they occur at every junction. This is because they are intrinsically dependent upon the 
properties of the associated network edges. 

The connectivity graph of a network is derived from the source data during a 
process called network building. During a build, junction, edge and turn elements are 
generated from point, line and turn features, and connectivity relationships are 
established. The connectivity graph is typically stored separately from the source data, 
with network analysis algorithms (including the build process) consuming it. 

2.1   Requirements 

The primary requirements for any robust implementation of network data models are:   

• Multimodal models. In the context of transportation networks, a multimodal 
network is one in which two or more types of transportation modes (such as 
walking, riding a train, or driving a car) are modeled. Alternatively, with utility 
networks, a multimodal network may consist of the differing transmission and 
distribution systems. 

• Hierarchical models. Hierarchy is used within network models to further control 
the flow within the network [19]. Differing elements may be assigned to different 
levels of hierarchy, with flow through the higher levels of the hierarchy taking 
precedence over the lower levels when performing path or route finding 
operations. Within transportation networks, interstate highways are commonly 
associated with the highest level of the hierarchy, state highways and major 
feeders the next lower level, and city streets the lowest level of the hierarchy. 

• Turns and maneuvers. Support for turning movements, both two-part turns and 
multi-part turns (known as maneuvers), is necessary in order to more accurately 
model transportation networks. The definition of a turn should be separated from 
its attribution. A turn is not simply one restriction or penalty; instead it should be 
regarded as a first-class entity with attribution. 

• Fast network navigation. The persisted representation must support fast retrieval 
of connectivity information for use within network analysis algorithms, and should 
be structured according to the most common access patterns. 
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• Z elevations. In order to refine network connectivity with planar network 
datasets (e.g., modeling freeway over and underpasses), logical z elevation values 
are supplied by commercial data vendors on the ends of each line feature. These 
elevation values must be respected when establishing network connectivity.  

• Rich attribution of network elements. To capture real-world constraints, such 
as one-way travel restrictions, height/weight limits, and time-of-day travel times, 
we need a rich attribute model that supports multiple attributes on a network 
element. 

• Uniform attribute access model. Clients of the model should be insulated from 
the details of where attribute values originate. For example, the travel time 
attribute for an edge element may be derived from the properties of the associated 
street feature, or it may be a real-time value. In each case, client applications 
should be able to retrieve attribute values without knowledge of the underlying 
storage. 

In addition to these network specific requirements, other standard system 
requirements such as performance, editability, persistence in a relational database, 
support for long transactions, and scalability (e.g, a continental dataset of 50+ million 
edges) also apply. 

2.2   Connectivity Model 

Connectivity in a network is generally based upon spatial coincidence of the 
endpoints of line (real-world) features and other point features. This leads to a 1:1 
mapping between features participating in a network and the network elements used 
to represent the network connectivity. This approach works reasonably well for 
simpler planar network datasets (e.g., TIGER/Line [20], or others commonly 
available from commercial data vendors such as Tele Atlas or NAVTEQ). However, 
with non-planar datasets (e.g., long linear features such as highways in transportation 
networks), it is useful to allow network connectivity partway along a linear feature 
(we term this mid-span connectivity). The familiar one-to-one mapping between linear 
features and edge elements must be generalized into a one-to-many mapping. Mid-
span connectivity is supported in some network models such as the ArcGIS 
Geometric Network [31]. The example shown in Fig. 1 depicts the one-to-many 
mapping between line features and edge elements when mid-span connectivity is 
supported. 

 

Fig. 1. Mid-span connectivity example; on the left, the long linear feature l1 (dashed line) will 
correspond to edge elements e11, e12, and e13 if mid-span connectivity is supported  
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Multimodal Models. As discussed previously, multimodal network models are 
particularly important in the context of transportation modeling. We employ the 
concept of connectivity groups within the connectivity model to allow users to group 
together line classes that should be connected when geometric coincidence is present. 
A line class may participate in only one group. The number of groups is not 
constrained. All connectivity is local to a group; line features are not connected to 
other line features that are found in different connectivity groups. In order to establish 
connectivity between two groups (e.g., road network in one group, subway network in 
another group), point feature classes are allowed to participate in one or more groups. 
Thus, a point feature that is coincident with a road feature in one group and a subway 
feature in a second group will connect the two groups together in its role as a junction 
element. Connectivity groups may be employed to model networks containing 
multiple overlapping subnetworks – e.g., street networks, subway networks, and bus 
route networks. 

An example highlighting connectivity groups is shown in Fig. 2. In this example, 
the line features participate in two different groups. The first line class contains line l1 
which is depicted by the dashed line. The second line class contains two line features, 
l2 and l3, depicted with solid lines. A point feature class, containing point feature p1, 
participates in both connectivity groups. On the right side of Fig. 2, the resulting 
connectivity is shown. Note that l1 (edges e11 and e12) and l2 (edges e21 and e22) are 
connected at point p1 (junction j3). There is no connectivity between line l1 and line l3 
as they are in different groups and there is no point feature where they intersect. 

 

Fig. 2. Example of connectivity groups. Linear feature l1 (dashed line) is in one group, and 
features l2 and l3 are in a second group. Point feature p1 is in both groups

Z Elevations. Z elevations (sometimes termed ‘z-levs’) are a critical component for 
modeling overpasses and underpasses, tunnels, and highway interchanges with planar 
datasets (most commercial and governmental datasets are planar). At each endpoint of 
a line feature, there may be associated z elevation information that is used to refine 
network connectivity. This elevation information is typically logical – it does not 
correspond to actual geographical elevations, but rather a logical (ordinal) elevation 
value. For example, the endpoints of line features representing roads that comprise an 
underpass may have a z elevation value of 0, while the lines representing the overpass 
roads may have a value of 1. This logical vertical ordering can extend to support very 
complex highway interchanges. 
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Fig. 3 contains an example of four lines meeting at a location that corresponds to 
an overpass. In the example, lines l1 and l3 pass beneath lines l2 and l4 (note that all 
four lines l1 – l4 share a coincident endpoint; if one did not consider the z elevations 
when determining network connectivity, all four lines would be connected together). 
The z elevations are shown (0, 0, 1, and 1 respectively). The resulting connectivity is 
shown on the right side of the figure. Edges e1 and e3 are connected at junction j13; 
edges e2 and e4 are connected at junction j24. Junctions j13 and j24 appear coincident in 
the figure. 

 

Fig. 3. Example of z elevations and their impact upon connectivity. Z elevations are shown in 
the left. On the right, the two junctions j13 and j24 are coincident  

The extensions to the simple endpoint connectivity model are reflected in the 
network build algorithm. During the geometric analysis and connectivity discovery 
phase of the build process, the connectivity model and the z elevations are used to 
refine the connectivity between spatially coincident geometries. 

2.3   Turns and Maneuvers 

Turn restrictions and impedances (or delays) present a problem to most network 
models. The presence of turns can greatly impact the movement through a network 
[7], [21]. A common way to model turns within a network is with a turn table [30]. A 
turn table represents each explicitly specified turn restriction (or penalty) as a row 
with references to the associated two edges. Turn tables may be augmented with an 
impedance attribute if the turns may also represent delays or impedances. When 
traversing the network, the turn table is queried as necessary. An alternative approach 
is to employ a transition matrix that represents possible transitions at an intersection 
[10]. The matrix can be encoded into a bitmap for a smaller physical representation. 

In order to overcome the performance problems (as perceived by some) of 
representing turns in an extra table that is disjoint from the network connectivity tables, 
graph modification techniques have been employed. The goal behind these techniques 
is to allow the turns to be more directly imbedded within the network connectivity 
information in order to achieve better performance during network traversals. 

Graph Modification – Node Expansion. Node expansion is one technique to imbed 
turns within a graph by expanding each junction in the graph to a subgraph where 
permissible turns are explicitly represented as edges [1], [15], [24], [28]. The primary 
advantage of this approach is that the turns are represented within the connectivity 
graph of the network (thereby possibly improving traversal performance).  
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Fig. 4. Example highlighting node expansion where a junction connected to three edges is 
expanded to a set of three junctions with nine edges representing possible turns (u-turns omitted 
for clarity)  

However, for an intersection of n edges, there are n2 possible turns (including u-
turns). This highlights the fundamental problem with this approach, namely, the 
significant bloating of the network storage requirements. This adversely impacts both 
storage costs and traversal performance [21]. In Fig. 4, the intersection junction j1 is 
expanded and replaced with three junctions (labeled j11 through j13), and edges are 
used to explicitly indicate permissible turns (the bidirectional edges on the right side 
of Fig. 4). 

 

Fig. 5. Example of a turn restriction, the equivalent expanded graph, and an incorrect traversal 
in the expanded graph  

Node expansion also introduces an algorithmic issue caused by traversing the 
edges in the expanded subgraph in sequence. Such a traversal corresponds to making 
multiple turns at the same junction in the original graph, and is meaningless. In Fig. 5, 
the turn from e2 to e1 is restricted. The restricted turn is reflected in the expanded 
graph with the directed edge e4. However, we can still incorrectly go from e2 to e1 via 
the edges e6 and e5. Analysis algorithms that operate on the expanded graph have to 
avoid such traversals in order to generate correct results. 

Graph Modification – Line Graphs. Line graphs (sometimes inappropriately termed 
dual graphs) are also used to explicitly model turns within a network [2], [30]. Line 
graphs are a transformation of the original (or primal) graph where edges in the 
primal are replaced with junctions in the line graph, and edges in the line graph 
represent turns in the primal. An example is shown in Fig. 6 where a simple (primal) 
graph consisting of three edges is transformed into the line graph on the right side of 
the figure. Edge e1 in the primal is transformed into junction j11 in the line graph, edge 
e2 into junction j12, and edge e3 into junction j13 respectively. Presuming that all turn 
movements are allowed, bidirectional edges in the line graph will be created between 
the three junctions in the line graph (edges e12, e13, and e23). 
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Fig. 6. Example line graph representation. On the right, the primal graph is represented in gray 
and the line graph is in black. In this example, all turns are possible (u-turns omitted)  

Similar to the node expansion technique, the advantage of this approach is that the 
turns are explicitly represented in the graph. In addition, it results in a smaller graph 
than with the node expansion technique. However, line graphs require that the primal 
graph be retained in order to complete certain types of operations such as route 
drawing [30]. 

 

Fig. 7. Example of a three part maneuver e1-e2-e3 at an intersection with a dual carriageway 

Maneuvers. A maneuver is a turn that spans three or more edges. Maneuvers are 
used to model turning movements at complex street intersections within 
transportation networks. Consider the following intersection formed by a dual 
carriageway (i.e., a street where each travel direction is represented as a separate line 
feature) and a two-way street in Fig. 7. To restrict the u-turn from edge e1 to edge e3, 
we need a maneuver composed of the edges e1, e2 and e3 in sequence. The maneuver 
cannot be synthesized from the two overlapping turns e1-e2 and e2-e3, since 
restricting the e1-e2 turn also incorrectly restricts the left turn specified by the 
sequence e1-e2-e4. 

Maneuvers can get arbitrarily complicated. We have observed instances of 
maneuvers with high part counts in transportation networks, such as a nine-part 
maneuver in the street network for Osaka, Japan. It is awkward to adapt graph 
modification techniques to model maneuvers. 

2.4   Network Attributes 

Network attributes are numeric properties of network elements that are used to define 
the navigation context during an analysis [21]. Examples of common attributes found 
on network elements include travel time, one-way restrictions, speed along an edge, 
and hierarchy value. The various types of attributes can be classified as: 
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• cost  impedances, which may be apportioned if the line feature is associated 
with multiple network edges (e.g., travel time),  

• descriptor  a characteristic of the entire element (e.g., speed limits, lane count),  

• restriction identify which elements cannot be traversed (e.g., one-way), and  

• hierarchy used in conjunction with hierarchical analysis algorithms (e.g., an 
order or grade – highways, arteries, and city streets). 

Network attributes are usually persisted along with the network elements (e.g., the 
attribute columns in the standard relational model depicted in Fig. 9). The network 
attributes often are mapped to attributes found in the associated feature; during the 
process of building the network and establishing network connectivity, attribute 
values are read from the features and persisted into the network. The reason for doing 
so is to minimize the number of tables that must be queried during network analysis, 
in order to achieve better performance. 

However, with very dynamic environments such as are found in location-based 
service applications, it is sometimes advantageous not to have to persist the value of a 
network attribute along with the network connectivity. This is particularly the case if 
the attributes on the feature that are mapped to a network attribute are subject to 
frequent change. Evaluator components serve to abstract away the underlying storage 
of the network attributes. Client applications (including the build algorithm and the 
forward star cursors, as well as analysis algorithms) instead query the evaluators that 
are associated with attributes and feature classes. The evaluators may return values 
that are persisted directly in the connectivity network, or they may derive an attribute 
value on the fly (or even query a web service). In this manner, client applications are 
presented a uniform view of accessing attribute values. 

3   Access Model 

There are various approaches to effectively building, maintaining, and navigating the 
elements contained within a network. Some systems (e.g., [23]) have placed the onus 
upon the client application for the discovery and maintenance of network elements; 
client applications are responsible for determining the connectivity and appropriately 
setting the foreign keys that are used to specify the connectivity in the persisted 
representation (e.g., setting the from and to junctions on the edge elements). Other 
previous systems (e.g., [22], [31]) have instead provided mechanisms that perform 
geometric analysis in order to automatically determine connectivity and persist the 
information. The choice of when to establish or update the persisted connectivity 
information is based in part upon the user workflows that the network solution is 
trying to address. 

In addition to building the networks, various approaches have been taken to how 
the network should be queried. Some systems have relied upon low level querying of 
the persisted network representation (e.g., which two junctions are connected to the 
specified edge), while other have provided alternative query mechanisms. 
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3.1   Workflows 

There are two common usage classes among users of network data (from a 
maintenance standpoint); one class of user purchases their network data (or obtains it 
from external sources) and infrequently edits or modifies the data. They are instead 
focused on performing analysis upon the obtained network data. The second class of 
user is actively engaged in editing and maintaining their data. Most often, the second 
class of users are large organizations such as the government, utilities, or data 
providers. We have observed that the first class of user is far more common – most 
people do not actively edit the features participating in their networks. 

For the first class of user that infrequently edits their network data, it is sufficient 
to support a build process that can complete all geometric and connectivity analysis 
and network element persistence across the dataset in its entirety. For such users, 
the network is built immediately following network definition and creation. If the 
user chooses to edit the features in the network, the entire network will have to be 
rebuilt in order to guarantee correctness of the connectivity used during network 
analysis. 

With the second class of user that is actively editing the features participating in 
their network, it may still prove viable to only support a global network build process 
if the organization can tolerate a build occurring on a periodic basis (e.g., over the 
weekend; see Section 5 for details concerning building the entire US road network in 
less than two days). If the organization is editing smaller datasets, the build operation 
can be staged on a more frequent basis (e.g,, overnight). 

There is however a subset of this second class of user (the frequent editors) that 
needs to have correct network connectivity during the course of editing. For such 
users, it becomes necessary to support a user-initiated incremental build process 
where only those portions of the network that correspond to edited features are 
rebuilt. Techniques may be employed (such as dirty area management with ArcGIS 
Topology [11]) that will assist in the incremental build of the network. 

The need for incremental builds during frequent editing can be obviated if network 
connectivity is “live”, i.e., network connectivity is automatically re-generated after 
individual edits to the source data. This alternative approach is used in the ArcGIS 
Geometric Network [31]; however, it is not as viable here given our rich connectivity 
model and the complexities introduced by turns and maneuvers. 

3.2   Connectivity Queries 

For the conventional normalized relational representation, standard SQL queries may 
be employed. Navigation at this level can prove cumbersome and slow. In some 
instances, in order to overcome this problem, middleware libraries have been 
developed [16] that provide analysis functions (e.g., shortest path between two 
junctions, or the traveling salesman problem [4], [21]). This is useful; however, the 
navigation is at a high level, precluding clients from developing their own analysis 
functionality that may require low-level navigation. 
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Fig. 8. Example highlighting difference between connectivity and traversability when turn 
restrictions are present. Connectivity is depicted on the left, with traversability on the right  

Alternatively, low-level network navigation may be performed using a forward star 
adjacency query [6]. A forward star query returns the elements in a network that are 
immediately reachable from another element. The query is constrained by a set of 
restrictions (e.g., one-way streets, prohibited turns) that controls which elements are 
traversable. For example, consider the situation depicted in Fig. 8. In this example, 
there is a turn restriction at junction j0 when moving from edge e2 to edge e1. This is 
shown on the left side of the figure. A forward star query at junction j0 from edge e2 
will result in two edge-junction pairs being returned; namely (e3, j3), and (e4, j4). The 
edge-junction pair (e1, j1) is not returned as it is not traversable from edge e2 at 
junction j0 because of the turn restriction. From a performance standpoint, forward 
star queries (and storage representations – see Section 4.2) are the preferred method 
for querying network connectivity during network analysis operations [26]. 

4   Physical Model 

4.1   Standard Physical Implementation 

Network topology can be implemented for relational databases in a straightforward 
fashion as a normalized relational model with explicit representation of network 
primitives and connectivity using primary and foreign keys (see Fig. 9). This model 
has been employed in both research and commercial systems [5], [14], [21], [23]. We 
term this the standard relational network model. A fundamental implementation 
choice is whether or not the tables representing the network elements (junctions and 
edges) contain any associated geometry (in Fig. 9, we depict an implementation 
where geometry is persisted in the network element tables). If geometry is absent 
from the network tables, they are sometimes referred to as a logical network. If 
geometry is present, they may be termed spatial networks [16]. 

The network connectivity is represented by the from and to junction id foreign keys 
in the edge table. This representation is definition-based and follows naturally from 
the mathematical definition of the edges as being a binary relation on the junctions. 
Attributes may be added to both the junction and edge tables as necessary. It is 
common to associate impedances or hierarchy values with network elements in this 
manner. 

The normalized relational model is suited to a class of SQL-based connectivity 
queries. For a given junction (presuming the junction id is known), the connected 
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edges may be obtained via a selection query of the edge table where either the from or 
to junction id foreign keys match the specified junction’s id value. When traversing a 
network (e.g, a shortest path computation), each junction that is explored will require 
a separate SQL query. This can be quite expensive in terms of server loading and 
suffers from a performance standpoint. 

 

Fig. 9. Standard relational network model with geometry represented in the network tables 

In order to address this problem, middleware based solutions have been proposed 
that cache network connectivity information on the client (or application server) and 
provide access to the information through a conventional API (e.g., Java) on a 
collection of higher level components [23]. Data management is usually performed via 
low-level SQL, while navigation and connectivity analysis is via the higher-level API. 

A modified adjacency structure is presented in [10] which stores for each edge in the 
network, a list of possible outgoing edges from its ending junction, taking into account 
permissible turns between edges. The modified structure does not satisfy our modeling 
requirements because it only considers turn prohibitions, which are always enforced to 
constrain the outgoing edges for each incoming edge. In contrast, we regard a turn as a 
first-class entity with attribution, e.g., one left turn can be used to specify turning 
restrictions and penalties for different vehicle types using multiple network attributes. 
Turns do not modify network connectivity, but affect traversability and costs based on 
the attributes applied during a network analysis. Furthermore, the modified adjacency 
structure is limited to two-part turns and cannot represent multi-part turns. 

 

Fig. 10. Basic components in the network engine object model 

4.2   Alternative Object Model and Physical Implementation 

In order to address some of the problems inherent in the standard network physical 
implementation and better support the aforementioned requirements (e.g., high 
performance network analysis functions residing on the client or application server tier) 
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and workflows, we describe a new object model that is currently hosted within the 
ArcGIS 9.1 Geodatabase [31]. The basic architecture is a small collection of components 
that are exposed through industry standard Java, .NET, and COM APIs.  

The principal components in the network engine implementation are shown in Fig. 
10. The Network is the central component to the system. Chief among its 
functionality is that which allows the client to build the connectivity of the persisted 
network representation through geometric analysis of the line and point Features 
found in the associated FeatureClasses. Each Feature will ultimately correspond to 
one (or more in the case of line features when the connectivity model is configured to 
support mid-span connectivity) NetworkElement. The NetworkElement (an abstract 
class, with three concrete subclasses – Junction, Edge, and Turn) provides an API that 
allows the direct navigation to the other immediately traversable NetworkElements. It 
additionally provides a general method for accessing the values of the associated 
network attributes. 

The Network component supports a query model where clients (such as high-
performance network analysis algorithms) issue forward star queries [6]. When such a 
query is issued, a ForwardStarCursor component is returned. This cursor allows the 
client to index or iterate through the returned traversable NetworkElements (i.e., 
connected NetworkElements that satisfy the traversability requirements such as 
respecting turn restrictions, etc.). If necessary, a client can also use lower-level query 
models supported by the Network component, such as ‘give me all NetworkElements 
that are associated with the specified Feature.’ 

Storage Representation. The network consists of a collection of tables within a 
geographical database. The network contains metadata (network definition and 
connectivity configuration information), junction, edge, and turn elements, the 
connectivity relationships between them, and the attributes necessary for traversing 
the network and performing analysis.  

Junction Table. The physical storage representation of the network differs, however, 
from the conventional relational implementation discussed previously (r.e., Fig. 9). 
While the connectivity information in the conventional implementation is represented as 
foreign keys within the edge table, we instead represent the connectivity as a set of 
(edge id, junction id) foreign key tuples that are associated with a junction record in the 
junction connectivity table. This representation is navigation-based, and is designed to 
answer the most common adjacency query during network analysis, which is to find the 
edges and junctions connected to a given junction (r.e., the forward star query in Section 
3.2). Each junction record can have four such tuples; if more are needed (e.g., the 
junction is connected to five or more edges), an overflow table is used. 

 

Fig. 11. Network storage representation optimized for forward star queries 
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It is important to note that this storage representation utilizes fixed-length records 
(r.e., the need for an overflow table). Fixed length records allow us to have direct 
access into the connectivity data. The number of adjacency tuples in the fixed-length 
record was determined empirically. For transportation networks, almost all junctions 
have degree four or less (i.e., the number of edges connected to each junction is 
typically four or less). This is evident in Table 1, which shows the frequency 
distribution of junction degrees for a network on Southern California (715,286 
junctions and 978,965 edges). 

For this network, with four tuples per fixed-length record, the space utilization is 
68% with 10 bytes per junction unoccupied or being used for overflow record 
information. This compares favorably with variable-length records, which would have 
similar overhead. Only the junctions whose degrees are five or higher (which is less 
than 0.5% in this network) require two or more records to hold adjacency 
information; almost all the junctions require only one record for adjacency 
information. Note that the three-tuple per record representation has a slightly higher 
space utilization of 76%, but 21% of the junctions would require two or more records. 

Table 1. Frequency distribution of junction degrees for a Southern California road network 

Degree 1 2 3 4 5 6 7 8 

Count 147,86 43,737 375,34 145,40 2,689 234 11 1 

Percentage 20.7% 6.1% 52.5% 20.3% 0.4% 0.03 <0.01 <0.01% 

Each fixed-length record shown in Fig. 11 is not stored as a row in a relational 
table; instead, we chose to serialize and compress the rows into larger collections of 
data (pages) and persist the pages in BLOB tables (an RDBMS column/data type 
capable of storing binary large objects [13]) within the relational database. The 
relational database in effect is being used as a paged file system. The network engine 
components (that reside at either the client or application tiers as described in Section 
1 and shown in Fig. 10) provide caching mechanisms and APIs that support both data 
management and analysis functionality. 

Edge Table. The edge table in our storage representation contains the foreign key of 
the from-junction associated with the edge. If the to-junction is needed, the junction 
table is queried using the from-junction and edge identifiers. We have observed that 
finding the from- and to-junctions associated with an edge is actually a fairly 
uncommon operation during efficient network analysis operations. Thus, we have 
optimized our storage representation to more effectively support the most common 
connectivity access pattern - the forward star adjacency query (see Section 3.2). In its 
simplest form, the forward star adjacency query takes as input a junction element, and 
returns the set of connected edges and the junctions at the other end of those edges. 

Turn Tables. We have chosen not to employ a graph modification technique (e.g., 
node expansion or line graphs) to represent turning movements as edge elements 
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within the network. As noted earlier, such techniques are awkward for representing 
complex turns (maneuvers), and the modified graphs are also difficult to maintain in a 
dynamic editing environment. Instead, we store turn elements in a turn table, with a 
representation that is optimized for the most common client access patterns.  

 

Fig. 12. Turn table representation 

The turn table concept that we employ is generalized to effectively support 
maneuvers as well as the forward star adjacency queries. For each junction in the 
network, we indicate if there are any associated turns anchored (i.e., the last junction 
participating in the turn) at the junction. If there are any associated turns anchored at 
the junction, the turn table contains up to five (turn id, first edge id, last edge id) 
triplets. An example of a turn table is shown in Fig. 12. If more than five turns are 
anchored at the junction, an overflow mechanism is supported (similar to that 
employed with the junction table). As is the case with the junction and edge 
connectivity tables, we utilize a fixed length record format to facilitate the 
compression and serialization of the turn table into pages persisted within a BLOB 
column in the relational database. 

During a forward star adjacency query, for a given junction and inbound edge, the 
turn table may be queried with the specified junction and (first) edge. If an entry 
matches the (junction, first edge) pair, then the last edge information in the turn entry 
allows the pairing of the turn with the correct outgoing edge in the forward star result. 

4.3   Network Building  

As noted earlier, our implementation supports a network building process where the 
connectivity graph of a network is derived from its source data via geometric analysis. 
The steps during building are: 

1. Extract the geometries of the features in the source data. The extracted 
coordinates and their feature parentage are stored in a vertex information table. 

2. Sort the vertex information table by coordinate values, so that coincident vertices 
are grouped together. 

3. Analyze each group of coincident vertices according to the connectivity model, 
and generate the appropriate junction elements. During this analysis, vertices that 
do not connect to other vertices are discarded, while the remaining vertices may 
be further partitioned into disjoint subsets. 
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4. Re-sort the vertex information table by vertex, so that vertices from each line 
feature are re-grouped together.  

5. Scan the vertex information table, and generate edge elements connecting 
adjacent vertices on each line. 

6. Analyze turn features and generate associated turn elements.  

7. Populate the attribute values of the generated network elements. 

Spatial Clustering. When a network analysis algorithm is executing (e.g., a shortest 
path search between two locations), it typically does not examine the network in a 
haphazard manner. Instead, there is spatial locality of reference [24]. Areas of the 
network that are queried next are usually near areas that have already been explored. 
We exploit this locality by spatially clustering the network elements during the 
network build process using a space-filling curve (we employed a Peano curve [25]), 
and persist the network elements in the clustering order within the BLOB pages of the 
network tables. Other spatial clustering techniques of network elements have been 
tested and found to be superior to both non-clustered and topologically clustered 
elements [12].  

5   Implementation Experience 

This new network model has been implemented and is currently shipping with ESRI’s 
ArcGIS 9.1 product. It addresses each of the requirements enumerated in Section 2.1. 
It has been used to build very large continent-wide transportation networks, including 
a dataset derived from the features contained within the entire continental United 
States (35.9 million line features). 

Performance statistics on several different size network build operations are shown 
in Table 2 (number of linear source features, number of vertices in their geometries, 
number of network elements created, and the wallclock build time). A reasonable PC 
(2.4GHz, 2GB RAM) running ArcGIS 9.1 was utilized on the client side and a 
commercial relational database was employed on the server side. Reported build 
times include the geometric analysis of the feature geometry in order to establish 
connectivity, as well as the population of attributes within the persisted network 
representation (e.g., travel time along an edge). We observed that in the typical case, 
geometry and connectivity analysis consumed 45% of the build process time, while 
creation of the persistent network elements took 30% of the build time, and 
population of network attributes the remaining 25% of the processing time. 

Table 2. Summary statistics of large networks built 

Dataset Features Vertices Net Elements Build Time 

U.S. National  35.9 million 128.3 million 65.1 million 43 hours 

Northeast U.S.  5.3 million 27.0 million 9.6 million 1.8 hours 

Major U.S. Streets 1.8 million 20.4 million 3.1 million 0.5 hours 

Paris Metro 0.4 million 0.8 million 0.7 million < 3 minutes 



324 E.G. Hoel, W.-L. Heng, and D. Honeycutt 

 

6   Future Work 

There are several areas of ongoing research and development with our network model 
that will be incorporated into the ArcGIS product following the 9.1 release. These 
include the direct support for the class of user that is a heavy editor of the features 
participating in the network (as described in the Section 3.1). In order to support this 
group, it will be necessary to support the incremental build of the network in the 
versioned environment. An analogous capability was developed and provided with 
ArcGIS Topology [11]; this entailed dirty area management, the development of an 
incremental topology validation process, and incorporation of topology into the 
ArcGIS Version Management infrastructure. Analogous development tasks will occur 
with this new network model. 

Dirty Areas. A network can have an associated dirty area – a dirty area corresponds 
to the regions within the network extent where features participating in the network 
have been modified (added, deleted, or updated) but whose connectivity has not been 
re-established. When the geometry of a feature that participates in a network is 
modified, the extent of the dirty area is enlarged to encompass the extent of the 
bounding rectangle of the modified geometry (note that other simplified geometry 
representations may also be employed - e.g., convex hulls). The dirty area is persisted 
with the network. In order to ensure that the network is correct, the portion of the 
network encompassed in the dirty areas will need to be rebuilt.  

It is not necessary to build the entire space spanned by the dirty area at one time; 
instead, a subset of the dirty area can be built. If the dirty area is partially built, the 
original dirty area will be clipped by the extent of the region that is built.  

Allowing users the ability to build a portion of the dirty area is a pragmatic 
requirement of supporting extremely large seamless network. For example, when a 
network is first defined, or when the network metadata (e.g., connectivity model, etc.) 
is modified, the entire extent of the network is dirty. If users were not provided with 
the capability to build a portion of the dirty area, the user would be required to build 
the entire network which could prove to be a very lengthy process (e.g., a couple days 
of processing time for large continent-wide network datasets). As was discussed in 
[11], the dirty area model effectively supports partial processing in computationally 
intensive areas of GIS such as topology. 

Incremental Build. In order to minimize the amount of processing necessary to 
maintain a consistent connectivity network, the dirty area mechanism may be 
exploited in conjunction with an incremental build algorithm. In an incremental build, 
the connectivity information associated with features in a dirty area is deleted and 
rebuilt (recreated) in order to achieve a consistent state of the network. The high level 
algorithm is as follows: 

1. Delete the network elements associated with the line features intersecting the 
dirty area (or portion thereof) being built. 

2. Load the geometries of all the line features intersecting the area being built along 
with the associated network metadata (connectivity model, ternary mapping of 
evaluators to network attributes and feature classes).  
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3. Load the geometries of all point features that are connected to the line features 
intersecting the area being built (these point features may lie outside the area 
being built if the line feature extends outside the area). 

4. Sort the vertices associated with the features, retaining the parentage information. 

5. Discard all isolated line vertices (i.e., the vertices on the line features that are not 
coincident with other vertices from differing line or point features). 

6. Discard interior line vertices if the connectivity model does not support mid-span 
connectivity on the associated line feature class. 

7. Create network junctions as necessary for the remaining line vertices and other 
isolated vertices associated with point features. 

8. Create network edges between the junctions as appropriate based upon the 
connectivity model. 

9. Update the dirty areas associated with the network. 

It is important to note that the network build process does not need to span all 
features within the network. A build can be performed on a subset of the space 
spanned by the dataset. This is a complex task since the re-built portion of the 
network has to be properly stitched together with the rest of the network. 

7   Conclusion 

In this paper we described the logical model of GIS network topology and several 
extensions to the standard network model that directly facilitate the modeling of 
multimodal systems, supporting mid-span connectivity on line features, as well as 
supporting endpoint elevation data that often accompanies large planar datasets from 
commercial data vendors. We reviewed a common physical database implementation 
that uses the conventional notions for mapping entities and relationships to tables and 
the standard primary key / foreign key referential integrity model. Problems with this 
approach were discussed. We then presented an alternative implementation of the 
network model which used a different physical approach to persisting network 
connectivity. This new model additionally supports turn restrictions and impedances, 
both two-part turns as well as multi-part turns (maneuvers). Efficient mechanisms for 
navigating the network connectivity were discussed (the forward star adjacency 
query), as well as a more flexible mechanism (network evaluators) for maintaining 
and querying attributes on the network elements. This design serves as the basis for 
our implementation of transportation networks in the ArcGIS geographic information 
system; this new model has been implemented and is currently shipping with the 
ArcGIS 9.1 product. 

Our future work will focus on extending the network with support for dirty area 
management policies and an incremental build algorithm that is more useful for 
organizations that frequently edit their network data (e.g., governmental organizations 
and commercial data providers). In addition, we will be supporting this network 
model in the distributed database environment, incorporating aspatial features 
(features without geometry) into the network model, as well as other performance 
enhancements. 
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Abstract. With the increasing number of Mobile Location Services (MLS), the 
need for effective k-NN query processing over historical trajectory data has be-
come the vehicle for data analysis, thus improving existing or even proposing 
new services. In this paper, we investigate mechanisms to perform NN search 
on R-tree-like structures storing historical information about moving object tra-
jectories. The proposed branch-and-bound algorithms vary with respect to the 
type of the query object (stationary or moving point) as well as the type of the 
query result (continuous or not). We also propose novel metrics to support our 
search ordering and pruning strategies. Using the implementation of the pro-
posed algorithms on a member of the R-tree family for trajectory data (the TB-
tree), we demonstrate their scalability and efficiency through an extensive ex-
perimental study using synthetic and real datasets. 

1   Introduction 

With the integration of wireless communications and positioning technologies, the 
concept of Moving Object Databases (MOD) has become increasingly important, and 
has posed a great challenge to the database community. In such implicitly formulated 
location-aware environments, moving objects are continuously changing locations; 
nevertheless existing DBMSs are not well equipped to handle continuously changing 
data. Emerging location-dependent services (including nearby information accessing 
and enhanced 911 services) call for new query processing algorithms and techniques 
to deal with both the spatial and temporal domains.  

Unlike traditional databases, MODs have some distinctive characteristics: First of 
all, spatio-temporal queries are continuous in nature. In contrast to snapshot queries, 
which are invoked only once, continuous queries require continuous evaluation as the 
query result becomes invalid after a short period of time. Secondly, we typically have 
to deal with vast volumes of historical data which correspond to a large number of 
mobile and stationary objects. As a consequence, querying functionality embedded in 
an extensible DBMS that supports moving objects has to present robust behavior in 
the above mentioned issues. 
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An important class of queries that definitely turns out to be useful for MOD proc-
essing is the so-called k nearest neighbor (k-NN) queries, where one is interested in 
finding the k closest trajectories to a predefined query object Q. To our knowledge, in 
the literature such queries primarily deal with either static ([8], [2], [4]) or continu-
ously moving query points ([11], [13]) over stationary datasets, or queries about the 
future positions of a set of continuously moving points ([1], [12], [5]). Apparently, 
these types of queries do not cover NN search on historical trajectories. 

The challenge accepted in this paper is to describe diverse mechanisms to perform 
k-NN search on R-tree-like structures [6] storing historical information. To illustrate 
the problem, consider an application tracking the positions of rare species of wild 
animals. Such an application is composed of a MOD storing the location dependent 
data, together with a spatial index for searching and answering k-NN queries in an 
efficient manner. Experts in the field would be advantaged if they could pose queries 
about the nearest trajectories of animals to a stationary point (lab, source of food or 
other non-emigrational species) or an animal moving from location P1 to P2 during a 
period of time. By these types of queries an expert may figure out motion habits and 
patterns of wild species or deviations from natural emigration, which could be interre-
lated with environmental and/or ecological changes or destructions. Having in mind 
that users of MODs are usually interested in continuous types of queries, the above 
queries can be extended to their continuous counterparts, where the result is a time-
varying number (the nearest distance depends on time) along with a collection of 
trajectory ids and the appropriate time intervals for which each moving object is valid. 

To make the previous example more intelligible, Fig. 1 illustrates the trajectories of 
six moving animals {O1, O2, O3, O4, O5, O6} along with two stationary points (Q1 and 
Q2) representing two sources of food. Now, consider the following queries demon-
strated in Fig. 1 (Queries 2 and 4 are the continuous counterparts of Queries 1 and 3, 
respectively):  

x

t 

y 
Q1 

O1 O2

Q2

O3 O6O4 O5

t1 

t4 

t2 

t6 

t3 

t5

 

Fig. 1. Continuous and non-continuous point and trajectory NN queries over moving objects 
trajectories  

• Query 1. “Find which animal was nearest to the stationary food source Q1 during 
the time period [t1, t4]”, resulting to animal O1. 

• Query 2. “Find which animal was nearest to the stationary food source Q2 at any 
time instance of the time period [t1 t4]”, resulting to a list of objects: O2 for the in-
terval [t1,t3); O1 for the interval [t3,t4]. 
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• Query 3. “Find which animal was nearest to animal O3 during the time period 
[t2,t6]”, resulting to O2. 

• Query 4. “Find which animal was nearest to animal O6 at any time instance of the 
time period [t2,t6]”, resulting to a list of objects: O5 for the interval [t2,t5); O4 for the 
interval [t5,t6]. 

To the best of our knowledge, this is the first work on continuous k-NN query 
processing over historical trajectories of moving objects. Outlining the major issues 
that will be addressed in this paper, our main contributions are as follows: 

• We propose a set of four query processing algorithms to perform NN search on R-
tree-like structures storing historical information about moving objects. The de-
scription of our branch-and-bound traversal algorithms for different queries de-
pends on the type of the query object as well as on whether the query itself is con-
tinuous or not. The algorithms are generalized to find the k nearest neighbors. 

• We propose novel metrics to support our search ordering and pruning strategies. 
More specifically, the definition of the minimum distance metric MINDIST be-
tween points and rectangles, initially proposed in [8] and extended in [13], is fur-
ther extended in order for our algorithms to calculate the minimum distance be-
tween trajectories and rectangles. 

• We conduct a comprehensive set of experiments over synthetic and real datasets 
demonstrating that the algorithms are highly scalable and efficient in terms of 
node accesses and pruned space. 

The rest of the paper is structured as follows. Related work is discussed in Section 
2, while Section 3 introduces, at an abstract level, the set of k-NN algorithms over 
moving object trajectories, as well as the metrics that support our search ordering and 
pruning strategies. Sections 4 and 5 constitute the core of the paper describing in 
detail the query processing algorithms to perform NN search over historical trajectory 
information (Section 4) together with their continuous counterparts (Section 5). Sec-
tion 6 presents the results of our experimental study and Section 7 provides the con-
clusions of the paper and some interesting research directions. 

2   Related Work 

In the last decade, NN queries have fueled the spatial and spatiotemporal database 
community with a series of interesting noteworthy research issues.  

The first algorithm for k nearest neighbor search over a moving query point was 
proposed in [11]. The algorithm assumes that sites (landmark points) are static and 
their locations (known in advance) are stored in an R-tree-like structure. A discrete 
time dimension is assumed, thus a periodical sampling technique is applied on the 
trace of the moving query point. The location of the query point that lies between two 
consecutive sampled locations is estimated using linear or polynomial splines.  

Using the TPR-tree (Time Parameterized Tree) structure [9], Benetis et al. [1] pre-
sented efficient solutions for NN and RNN (Reverse Nearest Neighbor) queries for 
moving objects. (An RNN query returns all the objects that the query object is the 
nearest neighbor of.) The proposed algorithm was the first to address continuous RNN 
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queries, since previous existing RNN algorithms were developed under the assump-
tion that the query point is stationary. The algorithms for both NN and RNN queries 
in [1] refer to future (estimated) locations of the query and data points, which are 
assumed to be continuously moving on the plane. In the same paper, an algorithm for 
answering CNN queries is also proposed. 

Tao et al. [13] also studied CNN queries and proposed an R-tree based algorithm  
(for moving query points and static data points) that avoids the pitfalls of previous 
ones (false misses and high processing cost). The proposed tree pruning heuristics 
exploit the MINDIST metric presented in [8]. At each leaf entry, the algorithm fo-
cuses on the accurate calculation of the split points (the points of the query segment 
that demonstrate a change of neighborhood). A theoretical analysis of the optimal 
performance for CNN algorithms was presented and cost models for node accesses 
were proposed. Finally, the CNN algorithm was extended for the case of k neighbors 
and trajectory inputs. 

Shahabi et al. [10] presented the first algorithm for processing the k-NN queries for 
moving objects in road networks. Their proposed algorithm, which utilizes the net-
work distance between two locations instead of the Euclidean, is based on transform-
ing the road network into a higher dimensional space, in which simpler distance func-
tions can be applied. Using this embedding space, efficient techniques are proposed 
for finding the shortest path between two points in the road network. The above pro-
cedure, which is utilized in the case of static query points, is slightly modified in order 
to support the case of moving query points. 

Acknowledging the advantages of the above fundamental techniques, in this paper 
we present the first complete treatment of historical NN queries over moving object 
trajectories, handling both stationary and moving query objects. 

3   Problem Statements and Metrics 

We first define the NN queries that are considered in this paper. Subsequently, we 
present the heuristics utilized by our algorithms to implement the metrics needed to 
formulate our ordering and pruning strategy. 

3.1   Problem Statement  

Let D be a database of N moving objects with objects ids {O1, O2, …, ON}. The trajec-

tory Ti of a moving object Oi consists of Mi 3D-line segments { 1iL , 2iL , …, iMi
L }. 

Each 3D line segment Lj is of the form ((xj-start, yj-start, tj-start), (xj-end, yj-end, tj-end)), where t0 ≤ 
tj-start < tj-end ≤ now. Obviously, as we treat only historical moving object trajectories, 
each partial linear movement is temporally restricted between t0, the beginning of the 
calendar, and now, the current time point. 

We have already stated that NN queries search for the closest trajectories to a 
query object Q. In our case, we distinguish two types of query objects: Qp, a point 
(x,y) that remains stationary during the time period of the query Qper[tstart, tend], and Q ,  
a moving object with trajectory T. Furthermore, the MOD is indexed by an R-tree like 
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structure such as the 3D R-tree [16], the STR-tree or the TB-tree [7]. Having in mind 
the previous discussion, we define the following two types of NN queries:  

• NN_Qp (D, Qp, Qper) query searches database D for the NN over a point Qp that 
remains stationary during a time period Qper, and returns the closest to Qp point pc 
from which a moving object Oi passed during the time period Qper, as well as the 
implied minimum distance. 

• NN_QT (D, QT, Qper) query is similar to the previous with the difference being upon 
the query object Q which in the current case is a moving object with trajectory T. 

The extensions of the above queries to their continuous counterparts vary in the 
output of the algorithms. In the continuous case, each query returns a time-varying 
real number, as the nearest distance depends on time. We introduce the following two 
types of CNN queries: 

• CNN_Qp (D, Qp, Qper) query over a point Qp that remains stationary during a time 
period Qper returns a list of triplets consisting of the time-varying real value Ri along 
with a moving object Oi (belonging in database D) and the corresponding time pe-
riod [ti-start, ti-end) for which the nearest distance between Qp and Oi stands. These time-
varying real values Ri are, in any time instance of their lifetime, smaller or equal to 
the distance between any moving object Oj in D and the query point Qp. The time 
periods [ti-start, ti-end) are mutually disjoint and their union forms Qper.  

• Similarly, CNN_QT (D, QT, Qper) differs, compared to the previous, upon the query 
object Q which in the current case is a moving object with trajectory T. These 
time-varying real values Ri are, in any time instance of their lifetime, smaller or 
equal to the distance between any moving object Oj and the query trajectory QT. 
The time periods [ti-start, ti-end) are mutually disjoint and their union forms Qper. 

The above four queries are generalized to produce the corresponding k-NN queries. 
The generalization of the first two queries is straightforward by simply requesting the 
1-st, 2-nd, …, k-th nearest point – with respect to a query point or a query trajectory – 
from which a moving object Oi passed during the time period Qper, excluding at the 
same time points belonging to a moving object already marked as the j-th nearest (1 ≤ 
j < k). The continuous queries are generalized to produce k-CNN requesting to pro-
vide with k lists of {Ri, [ti-start, ti-end), Oi} triplets. Then, for any time during the time 
period Qper, the i-th list (1 ≤ i ≤ k) will contain the i-order NN moving object (with 
respect to the query point or the query trajectory) at this time instance.  

To exemplify the proposed k-NN extensions, let us recall Fig. 1. Searching for the 
2-NN versions of the four queries (Query 1, 2, 3 and 4) presented in Section 1, we 
will have the following results: 

• Query 1 (non-continuous): O1 (1
st NN) and O2 (2

nd NN) 
• Query 2 (continuous): 1-NN list includes O2 for the interval [t1,t3) and O1 for the 

interval [t3,t4]; 2-NN list includes O1 for the interval [t1,t3) and O2 for the interval 
[t3,t4] 

• Query 3 (non-continuous): O2 (1st NN) and O4 (2nd NN) 
• Query 4 (continuous): 1-NN list includes O5 for the interval [t2,t5) and O4 for the 

interval [t5,t6]; 2-NN list includes O4 for the interval [t2,t5) and O5 for the interval 
[t5,t6]. 
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3.2   Metrics 

We exploit on the definition of the minimum distance metric (MINDIST) presented in 
[8] between points and rectangles, in order to calculate, on the one hand, the mini-
mum distance between line segments and rectangles and, on the other hand, the 
minimum distance between trajectories and rectangles that are needed to implement 
the above discussed algorithms. 

Initially, in [8], Roussopoulos et al. defined the Minimum Distance (MINDIST) 
between a point P in the n-dimensional space and a rectangle R in the same space as 
the square of the Euclidean distance between P and the nearest edge of R, if P is out-
side R (or zero, if P is inside R).  

In the sequel, Tao et al. [13] proposed a method to calculate the MINDIST between 
a 2D line segment L and a rectangle M. They initially determine whether L intersects 
M; if so, MINDIST is set to zero. Otherwise, they choose the shortest among six dis-
tances, namely the four distances between each corner point of M and L and the two 
minimum distances from the start and end point of L to M. Therefore, the calculation 
of MINDIST between a line segment and a rectangle involves an intersection check, 
four segment-to-point MINDIST calculations and two point-to-rectangle MINDIST 
calculations.  

In this paper, we propose a more efficient method to calculate MINDIST between a 
line segment L and a rectangle M (Fig. 2). As before, if L intersects M, then 
MINDIST is obviously zero. Otherwise, we decompose the space in four quadrants 
using the two axes passing through the center of M and we determine the quadrants Qs 
and Qe in which the start (L.start) and the end (L.end) point of L lie in, respectively. 

Then, MINDIST is the minimum among:  

• Case 1 (L.start and L.end belong to the same quadrant (Qs= Qe)): (i) MINDIST 
between the corner of M in Qs and L, (ii) MINDIST between L.start and M or (iii) 
MINDIST between L.end and M. 

• Case 2 (L.start and L.end belong to adjacent quadrants Qs and Qe, respectively): (i) 
MINDIST between the corner of M in Qs and L, (ii) MINDIST between the corner 
of M in Qe and L, (iii) MINDIST between L.start and M or (iv) MINDIST between 
L.end and M.  

• Case 3 (L.start and L.end belong to non adjacent quadrants Qs and Qe, respec-
tively): two MINDIST between the two corners of M, that do not belong in either 
Qs or Qe, and L. 

This method utilizes a smaller number of (point-to-segment and point-to-rectangle) 
distance calculations compared to the corresponding algorithm in [13]. Finally, we 
extend the above method in order to calculate the MINDIST metric between the pro-
jection of a trajectory T on the plane (usually called route) and a rectangle M. Since a 
route can be viewed as a collection of 2D line segments, the MINDIST between a 
route of a trajectory and a rectangle can be computed as the minimum of all 
MINDIST between the rectangle and each line segment composing the route. The 
efficiency of this calculation can be enhanced by simply not computing twice, with 
respect to the query rectangle, the quadrant and the MINDIST of the end and the start 
of adjacent line segments. 
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Fig. 2. The proposed calculation method of MINDIST between a line segment and a rectangle 

4   NN Algorithms over Trajectories 

In this section we describe in details the algorithms answering the four types of NN 
queries presented in Section 3.1 and, then, we generalize them in order to support the 
respective k-NN queries. 

4.1   NN Algorithm for Stationary Query Objects (Points) 

The NN algorithm for stationary query objects (PointNNSearch algorithm, illus-
trated in Fig. 3, provides the ability to answer NN queries for a static query object Qp, 
during a certain query time period Qper[tstart, tend]. The algorithm uses the same heuris-
tics as in [8] and [2], pruning the search space according to Qper. 

The algorithm accesses the tree structure (which indexes the trajectories of the 
moving objects) in a depth-first way pruning the tree nodes according to Qper rejecting 
those being fully outside it. At leaf level, the algorithm iterates through the leaf en-
tries checking whether the lifetime of an entry overlaps Qper (Line 4); if the temporal 
component of the entry is fully inside Qper, the algorithm calculates the actual Euclid-
ean distance between Q and the (spatial component of the) entry; otherwise, if the 
temporal component of the entry is only partially inside Qper, a linear interpolation is 
applied so as to compute the entry’s portion being inside Qper (Line 5) and calculate 
the Euclidean distance between Q and the portion of that entry. When a candidate 
nearest is selected, the algorithm, backtracking to the upper level, prunes the nodes in 
the active branch list (Line 20) applying the MINDIST heuristic [8] [2]. 

4.2   NN Algorithm for Moving Query Objects (Trajectories) 

PointNNSearch algorithm can be modified in order to support the second type of NN 
query where the query object is a trajectory of a moving point (TrajectoryNN-
Search algorithm, illustrated in Fig. 5). At the leaf level, the algorithm calculates 
the minimum horizontal Euclidean Distance between each leaf entry and each query 
trajectory segment using the Min_Horizontal_Dist function (Line 10) which 
computes the minimum horizontal Euclidean Distance between two 3D line segments. 
In addition, for each segment of trajectory Q and before calculating its distance from 
the current entry we first check whether its temporal extent overlaps the temporal 
extent of the bounding rectangle of node N. 
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Algorithm PointNNSearch(node N, 2D point Q, time period Qper, struct 
Nearest) 
 1.  IF N Is Leaf 
// Iterate by computing actual Euclidean distance from point Q 
 2.    FOR i = 1 to N.EntriesCount 
 3.      E = N.Entry(i) 
// If entry is (fully or partially) inside the period 
 4.      IF Qper Overlaps (E.TS, E.TE) 
// Compute entry’s spatial extent inside the period 
 5.        nE = Interpolate(E, Max(Qper.TS, E.TS), Min(Qper.TE, E.TE)) 
// Compute actual distance from Q. Update Nearest if necessary 
 6.        Dist = Euclidean_Dist_2D(Q, nE) 
 7.        IF Dist < Nearest.Dist 
 8.          Nearest.Entry = nE 
 9.          Nearest.Dist = Dist 
10.        END IF 
11.      END IF 
12.    NEXT 
13.  ELSE 
// Generate branch list with entries overlapping the query period 
14.    BranchList = GenBranchList(Q, N, Qper) 
// Sort active branch List by MinDist 
15.    SortBranchList(BranchList) 
// Iterate through active branch List  
16.    FOR i = 1 TO BranchList.Count 
17.      E = N.Entry(i) 
// Visit Child Nodes 
18.      NN = E.ChildNode 
19.      PointNNSearch(NN, Q, Qper, Nearest) 
// Apply MinDist heuristic to do pruning  
20.      PruneBranchList(BranchList) 
21.    NEXT 
22.  END IF 

Fig. 3. Historical NN search algorithm for stationary query points (PointNNSearch) 

Algorithm genTrajectoryBranchList(node N, trajectory Q) 
 1.  FOR i = 1 TO N.EntriesCount 
 2.    E = N.Entry(i) 
// If entry is (fully or partially) inside the trajectory lifetime 
 3.    IF (Q.TS, Q.TE) Overlaps (E.TS, E.TE)  
// Compute trajectory’s spatial extent inside E’s lifetime 
 4.      nQ = Interpolate(Q, Max(Q.TS, E.TS), Min(Q.TE, E.TE)) 
// Compute MinDist between the resulted trajectory and the rectangle 
 5.      Dist=MinDist_Trajectory_Rectangle(nQ, E) 
// Add the rectangle along with its calculated distance in the list 
 6.      List.Add(nQ, Dist) 
 7.    END IF 
 8.  NEXT 
 9.  RETURN List 

Fig. 4. Generating Branch List of Node N against Trajectory Q 
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Algorithm TrajectoryNNSearch(node N, trajectory Q, time period Qper, 
struct Nearest) 
 1.  Q = Interpolate(Q, Max(Q.TS, Qper.TS), Min(Q.TE, Qper.TE)) 
 2.  IF N Is Leaf 
 3.    FOR j = 1 to Q.Entries  
 4.      QE=Q.Entry(j) 
 5.      IF (QE.Ts, QE.Te) Overlaps (N.TS, N.TE) 
 6.        FOR i = 1 to N.EntriesCount 
 7.          E = N.Entry(i) 
 8.          IF (QE.Ts, QE.Te) Overlaps (E.TS, E.TE) 
 9.            nE = Interpolate(E, Max(QE.TS, E.TS), Min(QE.TE, E.TE)) 
10.            Dist = Min_Horizontal_Dist(QE, nE) 
11.            IF Dist < Nearest.Dist 
12.              Nearest.Entry = nE 
13.              Nearest.Dist = Dist 
14.            END IF 
15.          END IF 
16.        NEXT 
17.      END IF 
18.    NEXT 
19.  ELSE 
20.    BranchList = GenTrajectoryBranchList(Q, N) 
21.    SortBranchList(BranchList) 
22.    FOR i = 1 TO BranchList.Count 
23.      E = N.Entry(i) 
24.      NN = E.ChildNode 
25.      nQ = Interpolate(Q, Max(Q.TS NN.TS), Min(Q.TE NN.TE)) 
26.      TrajectoryNNSearch(NN, nQ, Nearest) 
27.      PruneBranchList(BranchList) 
28.    NEXT 
29.  END IF 

Fig. 5. Historical NN search algorithm for moving query points (TrajectoryNNSearch) 

At the non-leaf levels, the algorithm utilizes GenTrajectoryBranchList 
function (pseudo-code in Fig. 4) instead of GenBranchList. GenTrajectory-
BranchList(node N, Trajectory Q) utilizes the MinDist_Trajectory_ Rec-
tangle metric introduced in Section 3.2 in order to calculate the MINDIST between 
the query trajectory and the rectangle of each entry of the node. Here, we have to 
point out that we do not calculate MinDist_Trajectory_Rectangle against 
the original query trajectory Q, but against the part of Q being inside the temporal 
extent of the bounding rectangle of N, and therefore (if necessary) we have to interpo-
late to produce the new query trajectory nQ. 

4.3   Extending to k-NN Algorithms 

In the same fashion as in [8], we generalize the above two algorithms to searching the 
k-nearest neighbors by considering the following: 

• Using a buffer of at most k (current) nearest objects sorted by their actual distance 
from the query object (point or trajectory). 

• Pruning according to the distance of the (currently) furthest object in the buffer. 
• Updating the distance of each moving object inside the buffer when visiting a 

node that contains an entry of the same object closer to the query object. 



 Nearest Neighbor Search on Moving Object Trajectories 337 

 

5   CNN Algorithms over Trajectories 

The continuous counterparts of the previously described algorithms are also of 
branch-and-bound type. 

5.1   CNN Algorithm for Stationary Query Objects (Points) 

We first discuss the query that searches for the nearest moving objects to a stationary 
query point at any time during a given time period. ContPointNNSearch algo-
rithm used to process this type of query is illustrated in Fig. 6. 

All the continuous algorithms use a MovingDist structure (Fig. 6, Line 6), stor-
ing the parameters of the distance function, along with the entry’s temporal extent and 
the associated minimum and maximum (Dmin and Dmax respectively) of the function 
during its lifetime. We also store the actual entry inside the structure in order to be 
able to return it as the query result. ConstructMovingDistance simply calcu-
lates this structure. 

In Line 8, the Nearests structure is introduced. Nearests is a list of adjacent 
“Moving Distances” temporally covering the period QPer. Roof  is the maximum of 
all moving distances stored inside the Nearests list and is used to quickly reject 
those entries (and prune those branches at the non-leaf level) having their minimum 
distance greater than Roof  (consequently, greater than all moving distances stored 
inside the Nearests list). More details on the maintenance of the Nearests structure 
can be found in [3]. 

Algorithm ContPointNNSearch(node N, 2D point Q, Period Qper, List 
Nearests, Roof) 
 1.  IF N Is Leaf 
 2.    FOR i = 1 to N.EntriesCount 
 3.      E = N.Entry(i) 
 4.      IF Qper Overlaps (E.TS, E.TE) 
 5.        nE = Interpolate(E, Max(Qper.TS, E.TS), Min(Qper.TE, E.TE)) 
 6.        MovingDist = ConstructMovingDistance(nE, Q) 
 7.        IF MovingDist.Dmin < Roof 
 8.          UpdateNearests(Nearests, MovingDist, Roof) 
 9.        END IF 
10.      END IF 
11.    NEXT 
12.  ELSE 
13.    BranchList = GenBranchList(Q, N, Qper) 
14.    SortBranchList(BranchList) 
15.    PruneContBranchList(BranchList, Nearests, Roof) 
16.    FOR i = 1 TO BranchList.Count 
17.      E = N.Entry(i) 
18.      NN = E.ChildNode 
19.      ContPointNNSearch(NN, Q, Qper, Nearests, Roof) 
20.      PruneContBranchList(BranchList, Nearests, Roof) 
21.    NEXT 
22.  END IF 

Fig. 6. Historical CNN search algorithm for stationary query points (ContPointNNSearch) 
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When backtracking at non-leaf levels, ContPointNNSearch applies Prun-
eContBranchList, which prunes the branch list using the MINDIST heuristic: 
First, it compares the MINDIST of each entry with Roof, then it calculates the maxi-
mum distance inside the Nearests list during the entry’s lifetime and prunes all entries 
having MINDIST greater than the calculated one. 

5.2   CNN Algorithm for Moving Query Objects (Trajectories) 

The fourth type of NN query is the continuous version of the NN query where the 
query object is the trajectory of a moving point. The algorithm ContTrajec-
toryNNSearch, used to process this type of query is illustrated in Fig. 7. 

Algorithm ContTrajectoryNNSearch (node N, Trajectory Q, time period 
Qper, List Nearests, Roof) 
 1.  Q = Interpolate(Q, Max(Q.TS, Qper.TS), Min(Q.TE, Qper.TE)) 
 2.  IF N Is Leaf 
 3.    FOR j = 1 to Q.Entries  
 4.      QE=Q.Entry(j) 
 5.      IF (QE.Ts, QE.Te) Overlaps (N.TS, N.TE) 
 6.        FOR i = 1 to N.EntriesCount 
 7.          E = N.Entry(i) 
 8.          IF (QE.Ts, QE.Te) Overlaps (E.TS, E.TE) 
 9.            nE = Interpolate(E, Max(QE.TS, E.TS), Min(QE.TE,E.TE)) 
10.            MovingDist = ConstructMovingDistance(nE, QE) 
11.            IF MovingDist.Dmin < Roof 
12.              UpdateNearests(Nearests, MovingDist, Roof) 
13.            END IF 
14.          END IF 
15.        NEXT 
16.      END IF 
17.    NEXT 
18.  ELSE 
19.    BranchList = GenTrajectoryBranchList(Q, N) 
20.    SortBranchList(BranchList) 
21.    PruneContBranchList(BranchList, Nearests, Roof) 
22.    FOR i = 1 TO BranchList.Count 
23.      E = N.Entry(i) 
24.      NN = E.ChildNode 
25.      nQ = Interpolate(Q, Max(Q.TS, NN.TS), Min(Q.TE, NN.TE)) 
26.      ContTrajectoryNNSearch(NN, nQ, Nearests, Roof) 
27.      PruneContBranchList(BranchList, Nearests, Roof) 
28.    NEXT 
29.  END IF 

Fig. 7. Historical CNN search algorithm for moving query points (ContTrajectoryNNSearch 
algorithm)

ContTrajectoryNNSearch differs from ContPointNNSearch at two 
points only: Firstly, at leaf level, ConstructMovingDistance calculates the 
“Moving distance” between two moving points, instead of one moving and one sta-
tionary in the non-continuous case (Line 10). As in TrajectoryNNSearch, we 
perform a loop through all the 3D line segments of the query trajectory Q and, for 
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each segment of Q and before processing the leaf entries, we first check whether the 
lifetime of Q overlaps the temporal extent of the bounding rectangle of N (Line 8). 
Secondly, at the non-leaf level, GenBranchList is replaced by GenTrajec-
toryBranchList introduced in the description of TrajectoryNNSearch 
algorithm (Line 19). 

5.3   Extending to k-CNN Algorithms 

The two continuous algorithms can be also generalized to searching the k- nearest 
neighbors by considering the following: 

• Using a buffer of at most k current Nearests Lists 
• Pruning according to the distance of the furthest Nearests Lists in the buffer – 

therefore Roof is calculated as the maximum distance of the furthest Nearests 
List 

• Processing each entry against the i-th list (with i increasing, from 1 to k) checking 
whether it qualifies to be in a list 

• Testing each moving distance, replaced by a new entry in the i-th list, against the 
(i+1)-th list to find whether it qualifies to be in a list. 

6   Performance Study 

The above illustrated algorithms can be implemented in any R-tree-like structure 
storing historical moving object information such as the 3D R-tree [16], the STR-tree 
[7] and the TB-tree [7]. Among them, we have chosen to implement the algorithms 
using the TB-tree due to its proven efficiency regarding historical trajectory informa-
tion, as demonstrated in [7]. In our implementation, we set a page size of 4096 bytes 
and a (variable size) buffer fitting the 10% of the index size, thus leading to a maxi-
mum of 1000 pages. The experiments were performed in a PC running Microsoft 
Windows XP with AMD Athlon 64 3GHz processor, 512 MB RAM and several GB 
of disk size. 

6.1   Datasets 

While several real spatial datasets are around for experimental purposes, this is not 
true for the moving object domain. Nevertheless, in this paper, we have exploited on 
two real-world datasets: a fleet of trucks and a fleet of school buses illustrated in Fig. 
8(a) and (b), respectively, and consisting of 276 (112203) and 145 (66096) trajecto-
ries (entries in the index), respectively. We have also used synthetic datasets gener-
ated by the GSTD data generator [14] in order to achieve a scalability in the volumes 
of the datasets. A snapshot of the generated data using GSTD is illustrated in Fig. 
8(c). The synthetic trajectories generated by GSTD correspond to 20, 50, 100, 250, 
500 and 1000 moving objects with the position of each object sampled approximately 
1500 times. 
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(a) a fleet of trucks (b) a fleet of school buses (c) GSTD synthetic data 

Fig. 8. Snapshots of real and synthetic spatiotemporal data 

Table 1 illustrates summary information about the datasets used. The number of 
pages occupied by the index for each dataset will be used for calculating the pruning 
acheived in the search space. 

Table 1. Summary Dataset Information  

 Real Data GSTD 
 Trucks Buses 20 50 100 250 500 1000 

# trajectories 276 145 20 50 100 250 500 1000 
# entries 112203 66096 30277 75717 151482 378803 757360 1514844 
index size in 
pages (of 4kb)

835 466 205 507 1010 2521 5040 10073 

6.2   Results on the Search Cost of the Non-continuous Algorithms 

The performance of the proposed algorithms was measured in terms of node accesses. 
Several queries were used in order to evaluate the performance of the proposed algo-
rithms over the synthetic and real data. In particular, we have used the following 
query sets: 

• Q1, Q2: PointNNSearch was evaluated with two sets of 500 NN queries in-
creasing the number of moving objects over the GSTD datasets. The queries used 
a random point in the 2D space and a time period of 1% (5%) of the temporal di-
mension for Q1 (Q2). 

• Q3, Q4: TrajectoryNNSearch was evaluated with two sets of 500 NN que-
ries increasing the number of moving objects over the GSTD datasets. The 500 
query objects (trajectories) were produced using GSTD also employing a Gaussian 
initial distribution and a random movement distribution. Then, in Q3 (Q4) we used 
a random 1% (5%) part of each trajectory as the query trajectory.  

• Q5, Q6: two sets of 500 k-NN queries over the real Trucks dataset increasing the 
number of k with fixed time and increasing the size of the time interval (with fixed 
k=1) respectively. For PointNNSearch we used a random point in the 2D space 
with a 5% of time as query period, while for TrajectoryNNSearch we used a 
random part of a random trajectory belonging to Buses dataset, temporally cover-
ing 1% of time. 
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Fig. 9. Node Accesses and searched space in queries Q1-Q4 with the number of moving objects 

Fig. 9 illustrates the average number of node accesses per query for the query sets 
Q1-Q4 evaluating PointNNSearch and TrajectoryNNSearch. In particular, 
Fig. 9(a) shows the average number of node accesses per query using the point query 
sets Q1 and Q2, while Fig. 9(b) shows the average number of node accesses per query 
using the trajectory query sets Q3 and Q4. As it is clearly illustrated, the performance 
of the algorithm depends linearly on the dataset cardinality and degrades (more pages 
are accessed) as the cardinality grows. It is worth to point out that comparing query 
sets Q1 and Q2, the algorithm accesses more pages in query set Q1, although the 
lifetime of Q2 is longer than that of Q1 (5% against 1% of the total time). This 
observation can be explained bearing in mind that decreasing the query temporal 
extent, the expected nearest distance increases, resulting in fewer pruned nodes in the 
backtracking procedure of the algorithm. As expected, TrajectoryNNSearch 
tends to be much more expensive than PointNNSearch. 

The results in Fig. 9(c) and (d) demonstrate the percentage of the indexed space ac-
tually used for searching. As illustrated, in all cases, increasing the index size, the 
percentage of the space to be searched decreases, resulting (for over 1000 moving 
objects) in a 0.20% of the whole index space for point NN queries and in a 1.2% - 2% 
for trajectory NN queries. So as to make the results more readable, we have to point 
out that a range search over the index with zero spatial and 1% temporal extent would 
lead to a searching among the 10% of the whole indexed space – showing that the 
pruning performed by our algorithms is much more efficient than a sequential search. 
The conclusion gathered from the previous observations is that the algorithms pre-
sented show high pruning ability, well bounding the space to be searched in order to 
answer NN queries. 

The performance of the two non-continuous NN algorithms increasing the number 
of k is shown in Fig. 10(a) against Buses dataset.  

Clearly, the number of node accesses needed for the processing of a k-NN query 
increases linearly with k. Fig. 10(b) illustrates the average number of node accesses 
per non-continuous point and trajectory query increasing the temporal extent against 
the real “trucks” dataset. It is clear that the cost of TrajectoryNNSearch tends to 
increase with greater rate than the increase of PointNNSearch. This observation 
can be easily explained since when increasing the temporal interval, the spatial extent 
of the query trajectory also increases leading to a greater spatial space to be searched. 
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Fig. 10. Node Accesses in queries (a) Q5 increasing the number of k and (b) Q6 increasing the 
query temporal extent  

6.3   Results on the Search Cost of the Continuous Algorithms 

In coincidence with the experiments conducted for the non-continuous algorithms, the 
continuous NN search algorithms were evaluated with the following query sets: 

• Q7, Q8: ContPointNNSearch was evaluated with two sets of 500 NN queries 
increasing the number of moving objects over the GSTD datasets like what was 
done for query sets Q1 and Q2. 

• Q9, Q10: ContTrajectoryNNSearch was evaluated with two sets of 500 NN 
queries increasing the number of moving objects over the GSTD datasets like 
what was done for query sets Q3 and Q4. 

• Q11, Q12: two sets of 500 k-CNN queries over the real dataset of buses increasing 
the number of k with fixed time and increasing the size of the time interval (with 
fixed k=1) respectively. For ContPointNNSearch we used a random point in 
2D space with a 5% of time as query period, while for ContTrajectoryNN-
Search we used a random part of a random trajectory belonging to the buses 
dataset, temporally covering 1% of time. 

Fig. 11 illustrates similar results as in Fig. 9, regarding the continuous counterpart 
of the NN algorithms, thus, illustrating the average number of node accesses per 
query for the queries sets Q7- Q10. In particular, Fig. 11(a) presents the average num-
ber of node accesses per query using ContPointNNSearch against query sets Q7 
and Q8 while Fig. 11(b) presents the average number of node accesses per query 
using ContTrajectoryNNSearch against query sets Q9 and Q10.  

Again, the performance of the algorithms linearly depends on the dataset cardinal-
ity and degrades (more pages are accessed) as the cardinality grows. Fig. 11(c) and 
(d) show the accessed index part as a percentage of the indexed space, illustrating that 
in all cases, increasing the index size the percentage of the space to be searched de-
creases, resulting (for over 1000 moving objects) in a 0.50% of the whole index space 
for point CNN search and in a 2.5% - 3 % for trajectory CNN search. 
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Fig. 11. Node Accesses and searched space in queries Q7-Q10 increasing the number of mov-
ing objects  

A comparison between the non-continuous NN algorithms with their continuous 
counterparts (e.g. Fig. 9 vs. Fig. 11), shows that the continuous algorithms are much 
more expensive than the non-continuous ones, which is expected since the continuous 
algorithms prune the search space by using a list of moving distances instead of a 
single distance.  

The performance of the continuous NN algorithms increasing the number of k is il-
lustrated in Figure 12(a) for the real Buses dataset. The number of node accesses 
required for the processing of a k-NN query increases linearly with k. Figure 12(b) 
illustrates the average number of node accesses per continuous point and trajectory 
query increasing the temporal extent for Trucks dataset. Presenting the same behavior 
as with the non-continuous queries, the performance of ContTrajectoryNN-
Search tends to degrade with greater rate than that of ContPointNNSearch, 
having the same explanation (by increasing the temporal interval, the spatial extent of 
the query trajectory also increases leading to a greater spatial space to be searched). 
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Fig. 12. Node Accesses in queries (a) Q11 increasing the number of k and (b) Q12 increasing 
the query temporal extent  

7   Conclusions and Future Work 

NN queries have been in the core of the spatial and spatiotemporal database research 
during the last decade. The majority of the algorithms processing such queries so far 
mainly deals with either stationary or moving query points over static datasets or 
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future (predicted) locations over a set of continuously moving points. In this work, 
acknowledging the contribution of related work, we presented the first complete treat-
ment of historical NN queries over moving object trajectories stored on R-tree like 
structures. Based on our proposed novel metrics, which support our searching and 
pruning strategies, we presented algorithms answering the NN and CNN queries for 
stationary query points or trajectories and generalized them to search for the k nearest 
neighbors. The algorithms are applicable to R-tree variations for trajectory data, 
among which, we used the TB-tree for our performance study due to its proven effi-
ciency regarding historical trajectory information. Under various synthetic datasets 
(generated by GSTD) and two real trajectory datasets, we illustrated that our algo-
rithms show high pruning ability, well bounding the space to be searched in order to 
answer NN and CNN queries. The pruning power of our algorithms is also verified in 
the case of the k-NN and k-CNN queries (for various values of k). 

As such, future work includes the development of algorithms to support distance 
join queries (“find pairs of objects passed nearest to each other (or within distance d 
from each other) during a certain time interval and/or under a certain space con-
straint”). A second research direction includes the development of selectivity estima-
tion formulae for query optimization purposes investing on the work presented in [15] 
for predictive spatiotemporal queries. 
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Abstract. In this paper we examine the dissemination of availability reports 
about resources in mobile peer-to-peer networks, where moving objects com-
municate with each other via short-range wireless transmission. Each dissemi-
nated report represents an observed spatial-temporal event, and the relevance of 
the report to a moving object decays as the age of the reported resource and the 
distance from its location increase.  We propose an opportunistic approach, in 
which an object propagates the reports it carries (namely the information that it 
has about these resources) to encountered objects and obtains new reports in 
exchange. Least relevant reports are discarded after each exchange so as to limit 
the communication data volume of future exchanges. Our theoretical and ex-
perimental analysis indicates that the opportunistic dissemination algorithm 
automatically limits the global distribution of a report to a bounded spatial area 
and to the duration for which it is of interest. We propose two variants of the 
opportunistic dissemination algorithm and compare them with the traditional 
client-server architecture in terms of data accuracy. The proposed system has 
the potential to create a completely new information marketplace. 

1   Introduction 

A mobile peer-to-peer network is a set of moving objects that communicate via short-
range wireless technologies such as IEEE 802.11 [1], Bluetooth [2], or Ultra Wide 
Band (UWB) [3]. With such communication mechanisms, a moving object receives 
information from its neighbors, or from remote objects by multi-hop transmission 
relayed by intermediate moving objects. A killer application of mobile peer-to-peer 
networks is resource discovery in transportation. For example, the mobile peer-to-peer 
approach can be used to disseminate the information of available parking slots, which 
enables a vehicle to continuously display on a map to the driver, at any time, the avail-
able parking spaces around the current location of the vehicle. Or, the driver may use 
this approach to get the traffic conditions (e.g. average speed) one mile ahead. Simi-
larly, a cab driver may use this approach to find a cab customer, or vice versa.  

A mobile peer-to-peer network can also be used in matching resource producers 
and consumers among pedestrians.  For example, an individual wishing to sell a pair 
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of tickets for an event (e.g. ball game, concert), may use this approach right before the 
event, at the event site, to propagate the resource information.  For another example, a 
passenger who arrives at an airport may use this approach to find another passenger 
for cab-sharing from the airport to downtown, so as to split the cost of the cab. Fur-
thermore, the approach can be used in social networks; when two singles whose pro-
files match are in close geographic proximity, then one can call the other's cell phone 
and suggest a short face-to-face meeting.  

The approach can also be used for emergency response and disaster recovery, in 
order to match specific needs with expertise (e.g. burn victim and dermatologist) or to 
locate victims. For example, scientists are developing cockroach-sized robots or sen-
sors that are carried by real cockroaches, which are able to search victims in exploded 
or earthquake-damaged buildings [4]. These robots or sensors are equipped with radio 
transmitters. When a robot discovers a victim, it can use the data dissemination 
among mobile sensors to propagate the information to human rescuers.  Sensors can 
also be installed on wild animals for endangered species animal assistance. A sensor 
monitors its carrier's health condition, and it disseminates a report when an emergency 
symptom is detected. Thus we use the term moving objects to refer to all, vehicles, 
pedestrians, robots, and animals.   

In this paper we propose to examine an opportunistic approach to dissemination of 
reports regarding availability of resources (parking slot, taxi-cab customer, derma-
tologist, etc.). In this approach, a moving object propagates the reports it carries to 
encountered objects, and obtains new reports in exchange. For example, a vehicle 
finds out about available parking spaces from other vehicles. These spaces may either 
have been vacated by these encountered vehicles or these vehicles have obtained this 
information from other previously encountered ones. Thus the parking space informa-
tion transitively spreads out across vehicles. Similarly, information about an accident 
or a taxi cab customer is propagated transitively. In this paper we explore this infor-
mation propagation paradigm, which we call opportunistic peer-to-peer (or OP2P). 

With OP2P, a moving object constantly receives availability reports from the peers 
it encounters. If not controlled, the number of reports saved and communicated by a 
peer may continuously increase. In order to limit the data exchange volume, we em-
ploy a relevance function that prioritizes the availability reports. The relevance of a 
report to a moving object o is clearly spatio-temporal, namely the relevance decreases 
the older the report gets, and the farther the reported resource is from m.  In this pa-
per, we introduce a simple spatio-temporal relevance function, and assume that each 
moving object saves only the M most relevant reports. We call this method Opportun-
istic Report Dissemination (ORD). In this paper we study ORD from three aspects. 

First, we examine the pattern of report propagation with ORD. Mathematical 
modeling and analysis of the report-distribution is intractable in general. However, it 
can be solved for the case in which the relevance is purely temporal, i.e., no spatial 
component. This is the case for hotspots that broadcast to neighboring moving ob-
jects, for example, the current stock-market average. Thus we first devise differential 
equations that model object distribution in case relevance of a report to a moving 
object is temporal. We show that a report R generated at a certain time disappears 
from the system after a limited period of time, t. Using the maximum speed of a mov-
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ing object, t can be easily translated to a limited geographic area where the informa-
tion about R spreads.  This area is a circle around the point in space where the report 
was generated, namely its home location.  

Then, using simulations we analyze the more general case, where relevance to a 
moving object is spatio-temporal. We show that again, a report only spreads within a 
limited geographic area around its home location (e.g. the location of a parking space, 
or the location of a cab customer). Second, within this limited area, the replication-
density of a report varies with time, in a way which will be explained. Finally, the 
report starts disappearing from the system, until a time threshold beyond which there 
is no copy of the report in the system.  

Then we compare ORD with the client/server model. In the client/server model, a 
sensor senses the availability of the resource, and sends a report to a central database 
when the resource becomes available. The moving objects access the server through a 
cellular network. There are several drawbacks of the client/server model. First, it is 
difficult for the model to scale to a large number of moving objects. One possible 
solution to increase the scalability is to divide a geographic area into service regions 
(similar to cells in a cellular infrastructure). There is a server in each service region 
that handles resources and moving objects within that region. However, this solution 
introduces the complexity of hand-over, which occurs when a moving object crosses 
the border between two service regions. Second, the client/server model is vulnerable 
to the failure of the central server. Finally, in the client/server mode, a moving object 
user has to pay for the cellular communication and the information service. In the 
peer-to-peer model a user only needs to pay for the initial installation of the commu-
nication module. The operation of the communication module is virtually free. A back 
of the envelope calculation reveals that the cost (in terms of fuel) of communicating 
with encountered vehicles is less than a cent per day, even if the communication is 
continuous throughout the day.  

With all the above extra cost, what does client/server buy us? We compare the 
quality of data received with ORD and client/server. Observe that at any time instance 
an availability report in the local database of a moving object o may be incorrect in 
the sense that a resource that shows as available, actually becomes unavailable before 
o reaches it. So we propose a set of data quality measures that mimic the preci-
sion/recall measures used in information retrieval. Our simulations show that with 
very reasonable object density and wireless transmission range, the quality of the 
ORD method reaches that of client/server. This indicates that OP2P could serve well 
as an alternative to the client/server model but with much less operational cost. We 
also study the performance of ORD when there are failures in peer-to-peer interac-
tions. In an OP2P environment, interaction failures may be caused by packet loss, 
communication module sleeping for power reservation, or the limited connection time 
between highly mobile objects. 

Finally, we study a variant of ORD, in which invalidation messages are propagated 
when a resource becomes unavailable. This algorithm is called Opportunistic Report 
Dissemination with Invalidation (ORDI). We compare ORDI with ORD and cli-
ent/server with invalidation. It would appear that clearly the invalidation algorithm 
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will have a higher data quality, but this is misleading since we compare the algorithms 
on the same size of local database; therefore, the invalidation messages may occupy 
space of other correct reports. However, our experimental analysis shows that ORDI 
is indeed superior to ORD.  

In summary, this paper makes the following contributions. First, we devise a 
mathematical model for dissemination of information about purely temporal resources 
and experimentally analyze the dissemination of information about spatio-temporal 
resources.  Then we propose an algorithm for opportunistic dissemination of informa-
tion about spatio-temporal resources, and we compare it with the tradition cli-
ent/server model. Finally we analyze the performance of the algorithm when using 
invalidation messages. 

Although some concepts employed in this paper including gossiping and in-
validation have been analyzed in the past, this paper applies these concepts to a 
mobile peer-to-peer environment. Furthermore, it combines these concepts with 
a novel aspect, which is filtering and ranking of spatio-temporal information 
based on a relevance function.  

The rest of the paper is organized as follows. Section 2 introduces the model and 
the ORD algorithm. Section 3 analyzes the report propagation pattern. Section 4 com-
pares ORD with the client/server model. Section 5 describes ORDI and compares it 
with ORD and the client/server model. Section 6 discusses relevant work and section 
7 concludes the paper. 

2   The Model  

2.1   Resource Model 

In our system, resources may be spatial, temporal, or spatio-temporal. Information 
about the location of a gas station is a spatial resource. Information about the price of 
a stock on 11/12/03 at 2pm is temporal. There are various types of spatio-temporal 
resources, including parking slots, car accidents (reports about such resources provide 
traffic-jam information), taxi-cab requests, ride-sharing invitations, demands of exper-
tise in disaster situations, and so on. These resources are spatial in the sense that they 
are tied to a location, and are temporal in the sense that they are valid or available 
only for a limited time-duration.  

Formally, in our model there are N resource types T1, T2, ..., TN . At any point in 
time there are M resources R1, R2, ..., RM, where each resource belongs to a resource 
type. We assume that resources are located at points in two-dimensional geospace. 
The location of the resource is referred to as the home of the resource. This is the 
spatial aspect of resources. For example, the home of an available parking space is the 
location of the space, and the home of a cab request or a cab-sharing invitation is the 
location of the customer. The state of each resource alternates between valid (i.e. 
available) and invalid. The period of time during which the resource is valid is called 
the valid duration. This is the temporal aspect of resources. For example, the valid 
duration of the cab request resource is the time period since the request is issued, until 
the request is satisfied or canceled.   
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2.2   Peers and Validity Reports 

The system consists of two types of peers, namely fixed hotspots and moving objects. 
Each peer o that senses the validity of resources produces validity reports. Denote by 
a(R) a report for a resource R. For each resource R there is a single peer o that pro-
duces validity reports, called the report producer for R. A peer may be the report 
producer for multiple resources. Each report a(R) contains four attributes, namely 
resource-type, resource-id, timestamp, and home-location. Attribute resource-type 
indicates the resource type of R. Resource-id is the identification of R that is unique 
among all the resources in the system. In our model time is a sequence of discrete 
atomic time units, 1, 2, 3, …, and timestamp is a natural number indicating the time at 
which a(R) is transmitted to a peer by its producer. 

For each resource type T, a peer o has a validity reports database, or reports data-
base. Denote by DBo(T) the reports database of o for the resource type T. 

2.3   Relevance Model 

In order to limit the data exchange volume, for each resource type T, a moving object 
keeps in the reports database the top M relevant reports of type T that the object 
knows at that time. M is referred to as the interest threshold. For example, a user who 
is looking for a resource type T has the reports database that keeps the top 10 relevant 
validity reports of T. In other words, the user wants only the 10 most relevant reports 
to be saved and displayed. In this paper we use the following relevance function: 

)0,()())((Rel ≥⋅+⋅−= βαβα dteRa  (1) 

where t is the age of a(R), namely the number of time units since a(R) is transmit-
ted by its producer, and d is the travel distance from the home-location of R to the 
moving object. α and β are constants that represent the decay of relevance with re-
spect to time and distance respectively. α and β may vary per resource type. Observe 
that this function is always positive, indicating that each report always has some rele-
vance, and it decreases as t and d increase. We assume that each moving object is 
equipped with a GPS system so that (i) the object knows its location at any point in 
time and (ii) the clock is synchronized among all the objects. Thus both the age t and 
the distance d can be computed by the moving object. 

Let us consider the resources that require a moving object to physically reach them 
ahead of other objects in order to occupy or possess them (e.g. parking slots, cab 
requests, or highway assistance requests).  In our prior work ([22]) we have shown 
that for such a resource R, under some conditions the relevance of a report a(R) equals 
to the probability that R is valid when the moving object reaches it.  

Theorem 1. Assume that the length of the valid duration (see subsection 2.1) of R is a 
random variable with an exponential distribution having mean u. Let the speed of the 
moving object be v. If u/1=α  and )/(1 vu ⋅=β , then the relevance of a report a(R) is 
the probability (at report acquisition time) that the resource R is valid when the mov-
ing object reaches R.   
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For the proof of Theorem 1 a reader is referred to [22]. The theorem motivates our 
definition of the relevance function (at least for resources with exponentially distrib-
uted valid-duration).  

2.4   The Opportunistic Report Dissemination (ORD) Algorithm 

We assume that each peer is capable of communicating with the neighboring peers 
within a maximum of a few hundred meters. One example is an 802.11 hotspot or a 
PDA with Bluetooth support. The underlying communication module provides a 
mechanism to resolve interference and collisions. Each peer is also capable of discov-
ering peers that enter into or leave out of its transmission range (see e.g. [13]).  

Recall that each moving object keeps a database of size M for each resource type. 
When two moving objects A and B encounter each other (i.e. they come within trans-
mission range)1, for each resource type T, A and B exchange their local databases, i.e. 
DBA(T) and DBB(T), and each one keeps the M most relevant reports. When A en-
counters a hotspot C, C transmits to A the reports it produces. Again A keeps the M 
most relevance reports. 

In the rest of this paper we will assume that there is a single resource type in the 
system. However, most of our results also apply when there are multiple resource 
types, and we will specify when they do not. 

3   Pattern of Report Propagation 

In subsection 3.1 we study the propagation pattern of reports for temporal resources 
and in 3.2 we study the propagation pattern of reports for spatio-temporal resources. 

3.1   Propagation Pattern of Reports for Temporal Resources 

In this subsection we theoretically analyze how a report is propagated per time and 
per distance with the ORD algorithm. We consider a special case for the relevance 
function, where the decay factor of distance β is zero. Thus the relevance is purely a 
function of the age. This relevance function models the decay of the reports that are 
only specific to time, e.g. the Dow Jones Industrial Average at a particular time. In 
this section we first introduce the parameters and our assumptions, and then we de-
velop a mathematical model that describes the propagation of a report. Finally we use 
the mathematical model to analyze the propagation of reports. 

3.1.1   Parameters and Assumptions 
Let N be the total number of peers in the system. We assume that the value of M is 1 
for all the peers although our result can be extended to the general case where M is 
more than 1. Each peer interacts with other peers by a Poisson process with intensity 

                                                           
1  If A uses broadcast, then the broadcast is used to select a peer to interact with. After the peer 

is selected, the interaction follows the one-to-one exchange procedure. Extension of report 
exchange to take the advantage of broadcast is a subject of our future work. 
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λ . We assume that the length of the valid duration of a resource is 0, and the wireless 
transmission range is small enough such that at most one peer can receive the report 
when it is produced. Observe that with this assumption, the age of a report is always 0 
when it is acquired. Further observe that the report may still be relevant even after it is 
invalid. For example, although a Dow Jones Industrial Average report is invalid right 
after it is generated, it is still of interest for a period of time. For another example, 
even after occupied, a parking slot report is relevant because peers do not always 
know whether it is occupied. We consider only the reports that are received by a peer 
when they are produced. Such reports are generated within the system by a Poisson 
process with intensity μ . Peers are randomly distributed in the space at any point in 

time, and therefore each peer is equally probable to receive each produced report. A 
newly generated report is sent to exactly one peer. Thus each peer receives newly 
generated reports according a Poisson process with the rate μ/N. Finally we assume 
that each report exchange is finished instantaneously. 

3.1.2   A Mathematical Model for Report Propagation 
Let us define two variables: q(t): The conditional probability that a peer has a report 
for a resource R at time t (t>0) given that R is created at time 0. g(t): The probability 
that at time t (t>0) a report that is created after 0 is in the reports database of a peer. 
Now consider q(t+Δt) which is the probability that at time t+Δt a report R that is cre-
ated at time 0 is in the reports database of a peer o. Let Δt be small enough such that 
at most one report is generated in the system between t and t+Δt and o can interact 
with at most one peer during the same time interval. q(t+Δt) is the probability that one 
of the following mutually exclusive events happens: 

1. o has R at time t, and it does not acquire any new report between t and t+Δt, and 
it does not interact with any peer between t and t+Δt. The probability for this to hap-

pen is )1()1()( t
N

ttq Δ⋅−⋅Δ⋅−⋅ μλ . 

2. o has R at time t, and it does not acquire any new report between t and t+Δt, and 
it interacts with one peer o' between t and t+Δt, and o' does not have a report that is 
created after 0. The probability for this to happen is ))(1()1()( tgtt

N
tq −⋅Δ⋅⋅Δ⋅−⋅ λμ . 

3. At time t o has no reports, or has a report that is created before 0, and it does not 
acquire any new report between t and t+Δt, and it interacts with one peer m' between t 
and t+Δt, and m' has R. The probability for this to happen is 

)()1())()(1( tqtt
N

tgtq ⋅Δ⋅⋅Δ⋅−⋅−− λμ . 

Thus 
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By similar analysis, we obtain the following equation: 

)())(1()1()()1()( tgttgt
N

tgt
N

t
N

ttg ⋅Δ⋅⋅−⋅Δ⋅−+⋅Δ⋅−+Δ⋅=Δ+ λμμμ  

After simplification of the above difference equations, we get the following differ-
ential equations: 

⋅−⋅+⋅−=

⋅−−⋅⋅⋅+⋅+−=

2

2

)()()(
)(

)())(1()(2)()(
)(

tgtgtg
NNdt

tdg

tqtgtqtq
Ndt

tdq

λλμμ

λλμλ  
(2)

Since each peer is equally probable to acquire the report, q(0)=1/N. Finally, g(0)=0. 
Let C(t) be the number of copies of a report t time units after its creation. We have the 
following theorem. 

Theorem 2: C(t) is a random variable with expected value q(t)⋅N where q(t) is given 
by the equation group (2). 

We used Theorem 2 to compute the expected number of copies as a function of 
time. We used the following set of parameter values: N=2500, λ=0.12, μ=10. The 
solid line in Figure 1 shows the result. Observe that the number first increases until a 
maximum value is reached. And then it decreases until disappearing from the system. 
From this figure we can estimate how far away a report can be propagated. Take the 
cut-off age beyond which the expected number of copies is below 1, which is about 
60 seconds. Assume that the wireless transmission range is zero. Multiplying this cut-
off age by the maximum speed of moving objects gives the maximum distance the 
report can be propagated to. For example, if the maximum speed is 60 miles/hour, 
then the maximum distance is 1 mile. 

3.1.3   Validation of the Mathematical Model 
We conducted a simulation to validate the analytical model. In this simulation, 2500 
objects are initially uniformly distributed within a 5mile×5mile square area and they 
randomly  move  with a constant speed  40 miles/hour. The transmission range is 50  
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Fig. 1. Number of copies of a report as a func-
tion of its age   

Fig. 2. Propagation pattern of reports 



354 A.P. Sistla, O. Wolfson, and B. Xu 

 

meters. This setup gives on average 0.12 interactions per each object per each second. 
Reports are generated with intensity 10 and each report is randomly assigned to an 
object. Figure 1 shows the results. The dashed line represents the experimental result. 
It can be seen that Theorem 1 accurately describes the behavior of the system. 

3.2   Propagation Pattern of Reports for Spatio-temporal Resources 

In this subsection we study by simulations the propagation pattern of reports for spa-
tio-temporal resources. First we describe the simulation method and then we present 
the simulation results. 

3.2.1   Simulation Method 
We synthetically generated and moved objects within a 10mile×10mile square area. 
The objects move in a random-walk model. Specifically, for each object i, we ran-
domly chose two points within the square area, and assigned them as the start point 
and the first stop of i respectively. i moves along line segment between the two points 
at a constant speed. When the first stop is reached, another random point is chosen as 
the second stop of i, and i moves from the first stop to the second stop at the same 
constant speed. And so on. The motion speed of i is randomly picked up from the 
interval [v-5, v+5] where v is a parameter.  

Hotspots are randomly distributed in the square area with density 500 hotspots per 
square mile. Resources are generated only at hotspots. At each hotspot, the length of 
the valid duration of a resource follows an exponential distribution with mean u sec-
onds, and the time length of the invalid duration follows an exponential distribution 
with mean 360 seconds. The home of all the reports announced by a hotspot is the 
location of the hotspot. All the hotspots and the moving objects have the same wire-
less transmission range. All the moving objects have the same interest threshold. The 
value of the time decay factor α is 1/u and the distance decay factor β is 1/(u⋅s) where 
s is the motion speed of a moving object. 

There are five parameters for each simulation run, namely the interest threshold M, 
the wireless transmission range r, the constant speed v, the objects density g (i.e. the 
number of objects per square mile), and the mean of valid duration u. M is fixed to be 
10, v is fixed to be 40 miles/hour, and u is fixed to be 120 seconds. The time unit is 
second. All the parameters and their values are listed in Table 1.  

Each simulation run is executed as follows. At the beginning of the simulation run, 
10×10×g objects are generated and they start to move at the same time (time 0). Re-
sources are generated and the status of each resource alternates between valid and 
invalid as described earlier. When the distance between two peers is  smaller  than r in  

Table 1. Simulation parameters and their values 

Parameter Symbol Unit Value 
Mean of valid duration u second 120 
Interest threshold M  10 
Transmission range r meter 50 
Motion speed v miles/hour 40 
Object density g objects/mile2 100 
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a time unit, they exchange their reports, re-evaluate the relevance, and purge the least 
relevant reports if needed. Each exchange is finished instantaneously. The length of 
each run is 10 simulated hours. 

During a simulation run, we trace the distribution of each report a(R) at each time 
unit. For this purpose, we generate 50 rings centered at the home of R, each with the 
width of 0.05 mile. At each time unit we calculate the density of the copies of a(R) at 
each ring, and average among all the time units of a simulation run. 

3.2.2   Simulation Results 
Figure 2 shows the average density as a function of the age and the distance to home 
for ORD. The density is coded by the gray-level, such that a deeper gray-level repre-
sents a higher density. The lowest gray-level (white) represents zero density. We 
make the following observations. 

Observation 1: At any point in time, there is a spatial boundary for the distribution of 
the report, beyond which the density is zero. This boundary first expands, until a 
maximum value (about 0.9 mile) is reached. Then the boundary starts to shrink until 
finally the report disappears from the system (at the age of 450 seconds or so). The 
boundary expands at beginning because of the propagation of the report caused by 
opportunistic exchanges. However, as time passes, the relevance decreases, causing 
two effects: (i) more objects purge the report out; and (ii) less objects save it. These 
two effects make the number of copies start to decrease, and thus the boundary starts 
to shrink. After some time, the relevance becomes so low that all the objects that have 
carried it have purged it out, and no objects save it upon exchange. The report thus 
disappears from the system.  

Observation 2: The gray-level tends to be deep when the distance to the home is 
small and it fades as the distance to home increases. In other words, the copies are 
more densely distributed in the areas close to the home than in the areas farther away. 
This is a useful behavior, because it means that the report has a higher availability in 
the area to which it is of interest.   

The above propagation pattern shows that, by very simple local decisions made at 
each moving object, the opportunistic dissemination algorithm automatically limits 
the global distribution of a report to a bounded spatial area, which is a circle around 
the home location of the resource. The algorithm also limits the distribution to the 
time-duration for which the report is of interest. We conducted experiments with more 
parameter configurations. These experiments show that the spatial and temporal 
boundaries automatically adapt depending on the number of resources in the system, 
the traffic density and speed, and other parameters that dictate the amount of storage, 
processing power, and bandwidth that should be allocated to each resource. For ex-
ample, if resources are generated less frequently, then each report will stay in the 
system longer, and spread farther. 

4   Comparison with Client/Server Model 

With the ORD algorithm, a moving object o may have validity reports that are incor-
rect, i.e. the resources these reports refer to become invalid before o reaches them. 
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When the validity reports in an object are used for decision making, an important 
measure is how many out of them are correct and how many are incorrect. In this 
section we compare ORD with the client/server model with this regard. In the cli-
ent/server model, the validity reports are stored in a central database, and transmitted 
to the moving objects as query answers.  

In subsection 4.1 we describe the client/server model. In 4.2 we define the per-
formance measure. In 4.3 we describe the simulation setup, and in 4.4 we present the 
simulation results. 

4.1   Client/Server Access (CS) 

In the client/server model, there is a centralized database that stores validity reports. 
The database is updated by report producers and is queried by moving objects. A report 
producer inserts a validity report a(R) to the database when a resource R is sensed. 
Each moving object o issues a continuous query to the centralized database. For exam-
ple, when approaching the destination, o issues query acquire the top 10 relevant 
validity reports about parking slots .  At each time unit the centralized database evalu-
ates each query and transmits o the top M reports (top with regard to o) where M is the 
interest threshold. The timestamp of each transmitted report is set to the transmission 
time. o replaces the current reports in its local reports database with the received re-
ports. The centralized database knows the location of o at any point in time.  

4.2   Performance Measure 

Definition 1. A resource R is correct for a moving object o at time t if R remains valid 
when o reaches it under the condition that o goes to R at t.  Otherwise R is incorrect 
for o at t. 

According to the above definition, if R is invalid at t, then it is definitely incorrect 
for o at t.  However, R may be incorrect for o at t even if R is valid at t. What matters 
is whether R is still valid when o reaches it.  

Definition 2. A validity report a(R) is correct for a moving object o at time t if R is 
correct for o at t.  Otherwise a(R) is incorrect for o at t. 

Notice that in reality, at the time when o receives a(R), it usually does not know 
whether a(R) is correct or not, because it does not know whether R will remain valid 
when o reaches R. In this paper “correctness” and “incorrectness” of reports are de-
fined solely for the purpose of performance evaluation. 

Definition 3. Let K be the sum of the relevance values of the validity reports in o’s 
reports database at time t. Let K’ be the sum of the relevance values of validity reports 
in o’s reports database that are correct for o at t. The precision of o’s reports database 
at time t is KK ' . 

We call the above measure “precision” because it indicates how many of the re-
ports that o know are correct. This mimics the precision measure that is used in the 
information retrieval area. However, in our definition, precision is not the fraction of 
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the correct reports known by o out of all the reports known by o. Instead, it is the ratio 
between the total relevance of the two sets. The reason for this is that the reports are 
unequal in relevance and therefore are different in importance for decision making. 
Thus when each report is counted for precision, it should be weighted by the rele-
vance. With the same fraction of the correct reports, the higher relevance the correct 
reports occupy, the better data quality of the database. Next we define the notion of 
recall. 

Definition 4. Let R be a resource that is correct for o at time t. The relevance of R to o 
at t is the relevance of the report a(R) assuming that its timestamp is t.   

Notice that above we define the relevance of a resource, as opposed to the rele-
vance of a report defined in section 2.3. Intuitively the relevance of R to o at t is the 
relevance of the report a(R) that has age 0. In other words, the relevance of R to o 
depends only on the distance of o from the resource.  

Definition 5. Let C be the sum of the relevance values of the correct validity reports 
in o’s reports database at time t. Let C′ be the sum of the relevance values of the M 
correct resources in the system that are most relevant to o (i.e. the M closest correct 
resources). The recall of m’s reports database at time t is 'CC .  

We call the above measure “recall” because it indicates how many of the correct 
resources that o is interested in knowing (i.e. the correct top M in the system), are 
actually known by it. However, notice that in our definition, recall is not the fraction 
of resources correctly known by o out of the top M resources in the system. Instead, it 
is the ratio between the total relevance of the two sets.  

Definition 6. Let P be the precision of o’s reports database at time t, and Q the recall 
of the database at t. The precision-recall product of the database at t is QP ⋅ .  

In this paper the precision-recall product is used as the performance measure. 

4.3   Simulation Method 

The simulation setup is similar to the one used in 3.2, except for the following. First, 
the CS algorithm is implemented. With the CS algorithm, at each simulated time unit 
the system sorts all the resources in the order of their relevance to o and puts the top 
M to o’s database. Second, in ORD an exchange between two moving objects suc-
ceeds with probability p. p is called the successful interaction probability. 

Let us emphasize that in the simulations for the CS model we assume that the 
bandwidth available for the communication between the server and the clients is infi-
nite, and we ignore the contention/collisions that may cause transmission failures. In 
the simulations for the ORD algorithm, on the other hand, we take into considerations 
the bandwidth constraint and contention/collisions, in the following way. First, we 
calculate the bandwidth required by the ORD algorithm with the most bandwidth-
consuming parameter configuration in Table 1. This configuration is object density g 
= 2500 per square mile and transmission range r = 200 meters. With this configura-
tion, the bandwidth consumption of the ORD algorithm is 40KBytes per second per 
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object2. On the other hand, we estimated, for the above network configuration, with 
contention and collisions, the effective bandwidth available for each object is 
56KBytes per second when 802.11g ([6]) is used. The estimation is extrapolated from 
the empirical results of [7]3. This suggests that even with the most bandwidth-
consuming parameter configuration, the bandwidth consumption of the ORD algo-
rithm does not exceeds the network capacity. Therefore in all the experiments with 
ORD, the successful interaction probability p is set to be 1, except for the group that 
study the impact of p.  

The above justification assumes a single resource type. If there are multiple re-
source types, then with the above network configuration, the bandwidth consumption 
of ORD may exceeds the network capacity. In that case the successful interaction 
probability p is lower than 1, which we will also study. 

Table 2. Variable simulation parameters 

Parameter Symbol Unit Value 
Transmission range r meter 50, 100, 150, 200 

Object density g objects/mile2 100, 500, 1000, 1500, 2000, 2500 
Successful interaction 

probability 
p  0.05, 0.1, 0.15, 0.2, 0.25, 0.5, 0.75, 1 

Finally, let us mention that we repeated the experiments for motion in a grid net-
work rather than Euclidean space. The reason is that in our traffic applications vehi-
cles move along a road network. We determined that the network results are very 
similar to those reported here for Euclidean space. Due to space limitations these 
network results are omitted. The parameters are listed in Table 2. 

4.    Simulation Results 

Impact of object density. Figures 3, 4, and 5 show the precision-recall product of ORD 
as functions of the object density and compare these measures with those of CS. For 
ORD, the performance increases as the object density increases. Intuitively, as the ob-
ject density increases, the interactions among objects become more frequent, and thus 
the newly generated reports get propagated more quickly. These reports purge the old 
reports out of the databases of moving objects. Since the new reports are more likely to 
be correct than the old ones, both the precision and the recall increase. Notice that the 
precision-recall product of CS is not 1. This is because the central database does not 
know when a resource R will become invalid, and therefore the report a(R) returned by 
CS to a moving object o may be incorrect (i.e. R is invalid when o reaches R).  

The figures show that the performance of ORD approaches to CS when the trans-
mission range is 50 meters and the object density is 2500 objects per square mile. In 

                                                           
2  Notice that the moving object does not transmit any report to a hotspot. 
3  The reference analyzes the effective bandwidth available per object for a short-range wireless 

technology, with contention and collisions taken into considerations. 

4
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this situation, the average distance between two neighboring moving objects is about 
32 meters, smaller than the transmission range. In other words, most of the time the 
network formed by moving objects is connected. In this case, with ORD the propaga-
tion of a report reaches its maximum spatial boundary almost instantaneously. How-
ever, this is different than a simple flooding in a connected network. In our model 
each moving object only transmits top M reports and the spreading of each report is 
automatically restricted within a small portion of the whole network (see the propaga-
tion analysis in section 3). 
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Impact of transmission range. Figure 4 shows the precision-recall of ORD as func-
tions of the transmission range and compare with those of CS. Intuitively, as the ob-
ject density increases, the interactions among objects become more frequent, which 
generates similar effects as when the object density increases.  

Impact of successful interaction probability. Figure 5 shows the performance 
measures of ORD as functions of the successful interaction probability. Intuitively, as 
the successful interaction probability increases, the effective interactions among ob-
jects become more frequent, which generates similar effects as when the object den-
sity increases. In fact, comparing Figure 5 and Figure 3, we notice that reducing the 
successful  interaction  probability  is  the  same as simply reducing the object density.  
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For example, the effect of a successful interaction probability of 0.25 is the same as 
reducing the object density from 2000 to 1000.  

Observe that we tested with a long range of probability values, from 0.05 to 1. This 
is because the successful interaction probability is used to model not only communi-
cation reliability, but also the ORD implementations in which not every encounter 
generates an interaction. For example, if a moving object broadcasts for every 20 time 
units, or the communication module is awake for 5% of time, then the successful 
interaction probability is 0.05. 

5   Opportunistic Report Dissemination with Invalidation (ORDI) 

In this section we first present the ORDI algorithm in which invalidity reports are 
generated and propagated to reduce the fraction of incorrect reports in a moving ob-
ject’s reports database. Then we compare ORD, ORDI, and the client/server model 
with invalidation. 

5.1   Description of the ORDI Algorithm 

At each report producer o, whenever a resource R is detected invalid, o creates an 
invalidity report i(R). i(R) contains the following four attributes: (i) resource-type the 
resource type of R; (ii) resource-id the id of R; (iii) timestamp the time when report 
i(R) is created; and (iv) home-location the home of R.  

After i(R) is produced, the validity report of R is removed from the reports data-
base DBo(resource-type), and i(R) is inserted into DBo(resource-type). In order to 
distinguish between validity reports and invalidity reports, each report is given an 
extra attribute report-type when it is inserted into a reports database. report-type indi-
cates whether the report is a validity report or an invalidity report. 

The invalidity report uses the same relevance function as a validity report, and is 
exchanged similarly to a validity report. The only difference is as follows. When an 
invalidity report i(R) is received by an object o, o uses the resource-id attribute to 
search a(R) in o′s reports database. If a(R) is found and its timestamp is smaller than 
that of i(R), then the validity report is replaced by i(R). If the validity report is not 
found, then i(R) is either discarded or saved into DBm(resource-type) based on its 
relevance, in the same way a validity report is treated.  The reason i(R) is saved is to 
invalidate a validity report that may arrive later. 

5.2   Comparison with ORD and the Client/Server Model 

In this subsection we compare ORDI with two algorithms. One is ORD and another is 
client/server with invalidation, or CSI. CSI works similarly as CS except the follow-
ing. At each report producer o, whenever a resource R is detected invalid, o removes 
the report a(R) from the centralized database. Thus the centralized database will not 
include a(R) in any query answer since then. 
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The simulation setup is the same as described in subsection 4.3. The results are 
shown in Figures 6, 7, 8. First let us compare ORDI and ORD. The precision of ORDI 
is higher than that of ORD (Figure 7(a)). This is because invalidation reports push 
incorrect reports out of the reports database and therefore the fraction of correct re-
ports increases. However, there is little difference between ORDI and ORD in recall 
(Figure 7(b)). This is somehow surprising because invalidity reports share the same 
database with validity reports and therefore they may occupy spaces that could have 
been used to accommodate correct reports. The fact that ORDI is as good as ORD in 
recall suggests that in most cases invalidity reports occupy the spaces of incorrect 
reports, which is a desirable behavior. As a result, the precision-recall product of 
ORDI is better than that of ORD (Figure 7(c)).  

Now let us compare ORDI and ORD with CSI. The precision of ORDI approaches 
to CSI beyond certain object density (Figure 7(a)) or transmission range (figure omit-
ted due to space limitations). This is similar to the observation we have in subsection 
4.4 when comparing ORD and CS, and the explanation is also similar. However, 
neither ORDI nor ORD ever reaches CSI in recall (Figure 7(b)). ORDI never reaches 
CSI in recall, because with ORDI, invalidity reports share the same database with 
validity reports, whereas with CSI there are no invalidity reports in a moving object’s 
reports database. In other words, the number of validity reports in a reports database 
with CSI is higher than that with ORDI. ORD never reaches CSI in recall, because 
with ORD there can be reports that refer to the resources that have become invalid; 
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with CSI there are no such reports. As the result, ORDI and ORD never reach CSI in 
precision-recall product (Figures 7, 8).  

The effect of the successful interaction probability to ORDI is similar to that to 
ORD (see Figure 6).  

6   Relevant Work 

Resource discovery and publish/subscribe in mobile ad hoc networks are usually 
implemented by building a routing structure for resource information (see e.g. [8, 9, 
11, 15]). Most of these works rely on routing structures. However, the constructed 
routing structure may easily become obsolete in a highly dynamic and partitionable 
network environment. Work has also been done on data dissemination in mobile peer-
to-peer networks [10, 12, 14, 16, 18, 20, 21]. These methods use the gossip-
ing/epidemic communication paradigm. However, they consider dissemination of 
regular data objects rather than spatio-temporal resources, and they do not rank the 
resources for determining what to broadcast.  

This paper differs from our prior work (e.g. [19, 22]) on the same topic in multiple 
aspects. The theoretical analysis of the propagation pattern is new. The comparison 
with the client/server model is new, and so is the invalidation algorithm. 

7   Conclusion 

In this paper we devised an algorithm, ORD, for dissemination of spatial and temporal 
resource-information in a mobile peer-to-peer environment, in which the resource-
information database is distributed among the hotspots and moving objects. We ana-
lyzed ORD theoretically, using differential equations, and experimentally, using simula-
tions.  We compared ORD with the client/server model by simulations. The perform-
ance measures are relevance-weighted precision and recall. We determined that ORD 
performs better when the object density and the wireless transmission range increase. 
ORD reaches the client/server model in performance when the object density or the 
transmission range is high enough. We also studied the impact of successful interaction 
probability, and determined that reducing the successful interaction probability is the 
same as simply reducing the object density. Thus ORD can perform as well as the cli-
ent/server model in low success probability environment by increasing the object den-
sity. Finally, we studied a variant of ORD, ORDI, which uses invalidity reports to in-
crease precision. The experimental results show that ORDI is better than ORD.  
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Abstract. A moving cluster is defined by a set of objects that move close to each
other for a long time interval. Real-life examples are a group of migrating ani-
mals, a convoy of cars moving in a city, etc. We study the discovery of moving
clusters in a database of object trajectories. The difference of this problem com-
pared to clustering trajectories and mining movement patterns is that the identity
of a moving cluster remains unchanged while its location and content may change
over time. For example, while a group of animals are migrating, some animals
may leave the group or new animals may enter it. We provide a formal definition
for moving clusters and describe three algorithms for their automatic discovery:
(i) a straight-forward method based on the definition, (ii) a more efficient method
which avoids redundant checks and (iii) an approximate algorithm which trades
accuracy for speed by borrowing ideas from the MPEG-2 video encoding. The
experimental results demonstrate the efficiency of our techniques and their appli-
cability to large spatio-temporal datasets.

1 Introduction

With the advances of telecommunication technologies we are able to record the move-
ments of objects over a long history. Data analysts are often interested in the automatic
discovery of trends or patterns from large amounts of recorded movements. An interest-
ing problem is to find dense clusters of objects which move similarly for a long period.
For example, migrating animals usually move in groups (clusters). Another example
could be a convoy of cars that follow the same route in a city.

We observe that in many cases such moving clusters do not retain the same set of
objects in their lifetime, but objects may enter or leave, while the clusters are moving. In
the migrating animals example, during the movement of the cluster, some new animals
may enter the group (e.g., those passing nearby the cluster’s trajectory), while some
animals may leave the group (e.g., those attacked and eaten by lions). Nevertheless the
cluster itself retains its density during its whole lifetime, no matter whether it ends up
with a totally different set of objects compared to its initial formation.

The automatic discovery of such moving clusters is arguably an important problem
with several applications. For example, ecologists may want to study the evolution of
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moving groups of animals. Military applications may monitor troops that move in par-
allel and merge/evolve over time. The identification of moving dense areas of traffic is
useful to traffic surveillance systems. Finally, intelligence and counterterrorism services
may want to identify suspicious activity of individuals moving similarly.

The contribution of this paper is the formal definition of moving clusters and the
proposal of methods that automatically discover them from a long history of recorded
trajectories. Intuitively, a moving cluster is a sequence of spatial clusters that appear
in consecutive snapshots of the object movements, such that two consecutive spatial
clusters share a large number of common objects. Here, we propose three methods to
identify moving clusters in spatio-temporal datasets. Based on the problem definition,
our first algorithm, MC1, performs spatial clustering at each snapshot and combines the
results into a set of moving clusters. We prove that we can speed-up this process by
pruning object combinations that cannot belong to the same cluster, without affecting
the correctness of the solution; the resulting algorithm is called MC2. Then, we observe
that many clusters remain relatively stable in consecutive snapshots. The challenge is
to identify them without having to perform clustering for the entire set of objects. We
propose an approximate algorithm, called MC3, which uses information from the past
to predict the set of clusters at the current snapshot. In order to minimize the approxi-
mation error, we borrow from MPEG-2 video encoding the idea of interleaving approx-
imate with exact cluster sets. We minimize the number of the expensive computations
of exact cluster sets by employing a method inspired by the TCP/IP protocol. Our ex-
periments show that MC3 reduces considerably the execution time and produces high
quality results.

Previous work has focused mainly on the identification of static dense areas over
time [1], or on the clustering of object trajectories for sets that contain the same objects
during a time interval [2]. Our problem is different, since both the location and the set
of objects of a moving cluster change over time. Related to our work is the incremental
maintenance of clusters [3]. Such methods are efficient only if a small percentage of
objects is updated. This is not true in our case since potentially all object may be up-
dated (i.e., move) in consecutive snapshots. Recent methods which use approximation
to improve the efficiency of incremental clustering [4] are also not applicable in our
problem since they do not maintain the continuity of clusters in the time dimension. To
the best of our knowledge, this is the first work which deals with the identification of
moving clusters.

The rest of the paper is organized as follows: First, we present a formal definition
of our problem in Section 2, followed by a survey of the related work in Section 3.
Our methods are presented in Section 4, while Section 5 contains the results of our
experiments. Finally, Section 6 summarizes the paper and presents some directions for
future work.

2 Problem Formulation

Let H = {t1, t2, . . . , tn} be a long, timestamped history. Let S = {o1, o2, . . . , om} be
a collection of objects that have moved during H . An object oi not necessarily existed
throughout the whole history, but during a contiguous subsequence oi.T of H . Without
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Fig. 1. Example of a moving cluster

loss of generality, we assume that the locations of each object were sampled at every
timestamp during oi.T . We refer to oi.T , as the lifetime of oi.

A snapshot Si of H is the set of objects and their locations at time ti. Si is a subset
of S, since not all objects in S necessarily existed at ti. Formally, Si = {oj ∈ S : ti ∈
oj .T }. Given a snapshot Si, we can employ a standard spatial clustering algorithm, like
DBSCAN [5] to identify dense groups of objects in Si which are close to each other and
the density of the group meets the density constraints (MinP ts and ε) of the clustering
algorithm.

Let ci and ci+1 be two such snapshot clusters for Si and Si+1, respectively. We say

that cici+1 is a moving cluster if
|ci ∩ ci+1|
|ci ∪ ci+1|

≥ θ, where θ (0 < θ ≤ 1) is an integrity

threshold for the contents of the two clusters. Intuitively, if two spatial clusters at two
consecutive snapshots have a large percentage of common objects then we consider
them as a moving cluster that moved between these two timestamps. The definition of a
spatio-temporal cluster can be generalized as follows:

Definition 1. Let g = c1, c2, . . . , ck be a sequence of snapshot clusters such that for
each i(1 ≤ i < k), the timestamp of ci is exactly before the timestamp of ci+1. Then g is

a moving cluster, with respect to an integrity threshold θ (0 < θ ≤ 1), if
|ci ∩ ci+1|
|ci ∪ ci+1|

≥
θ, ∀i : 1 ≤ i < k.

Figure 1 shows an example of a moving cluster. S1, S2, and S2 are three snapshots.
In each of them there is a timeslice cluster (c1, c2, and c3). Let θ = 0.5. c1c2c3 is a

moving cluster, since
|c1 ∩ c2|
|c1 ∪ c2|

=
3
6

and
|c2 ∩ c3|
|c2 ∪ c3|

=
4
5

are both at least θ. Note that

objects may enter or leave the moving cluster during its lifetime.

3 Related Work

3.1 Clustering Static Spatial Data

Clustering static spatial data (i.e., static points) is a well-studied subject. Different clus-
tering paradigms have been proposed with different definitions and evaluation criteria,
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based on the clustering objective. Partitioning methods, like k-medoids [6,7], divide the
objects into k groups and iteratively exchange objects between them until the quality
of the clusters does not further improve. First, k medoids are chosen randomly from
the dataset. Each object is assigned to the cluster corresponding to their nearest medoid
and the quality of the clusters is defined by summing the distances of all points to their
nearest medoid. Then, a medoid is replaced by a random object and the change is com-
mitted only if it results to clusters of better quality. A local optimum is reached after
a large sequence of unsuccessful replacements. This process is repeated for a number
of initial random medoid-sets and the clusters are finalized according to the best local
optimum found.

Another class of (agglomerative) hierarchical clustering techniques define the clus-
ters in a bottom-up fashion, by first assuming that all objects are individual clusters and
gradually merging the closest pair of clusters until a desired number of clusters remain.
Algorithms like BIRCH [8] and CURE [9] were proposed to improve the scalability of
agglomerative clustering and the quality of the discovered partitions. C2P [10] is an-
other hierarchical algorithm similar to CURE, which employs closest pairs algorithms
and uses a spatial index to improve scalability.

Density-based methods discover dense regions in space, where objects are close to
each other and separate them from regions of low density. DBSCAN [5] is the most
representative method in this class. First, DBSCAN selects a point p from the dataset.
A range query, with center p and radius ε is applied to verify if the neighborhood of p
contains at least a number MinP ts of points (i.e., it is dense). If so, these points are
put in the same cluster as p and this process is iteratively applied again for the new
points of the cluster. DBSCAN continues until the cluster cannot be further expanded;
the whole dense region where p falls is discovered. The process is repeated for unvisited
points until all clusters and outlier points have been discovered. OPTICS [11] is another
density based method. It works similarly to DBSCAN but it does not compute the set
of clusters. Instead, it outputs an ordering of the points in the dataset which is used in a
second step to identify the clusters for various values of ε.

Although these methods can be used to discover snapshot clusters at a given times-
lice of the history, they cannot be applied directly for the identification of moving
clusters.

3.2 Clustering Spatio-temporal Data

Previous methods on clustering spatio-temporal data have focused on grouping trajecto-
ries of similar shape. The one-dimensional version of this problem is equivalent to clus-
tering time-series that exhibit similar movements. Ref. [12] formalized a LCSS (Least
Common Subsequence) distance, which assists the application of traditional clustering
algorithms (e.g., partitioning, hierarchical, etc.) on object trajectories. In Ref. [2], re-
gression models are used for clustering similar trajectories. Finally, Ref. [13,14] use
traditional clustering algorithms on features of segmented time series. The problem of
clustering similar trajectories or time-series is essentially different to that of finding
moving clusters. The key difference is that a trajectory cluster has a constant set of ob-
jects throughout its lifetime, while the contents of a moving cluster may change over
time. Another difference is that the input to a moving cluster discovery problem does
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not necessarily include trajectories that span the same lifetime. Finally, we require the
segments of trajectories that participate in a moving cluster to move similarly and to be
close to each other in space.

A similar problem to the discovery of moving clusters is the identification of areas
that remain dense in a long period of time. Ref. [1] proposed methods for discovering
such regions in the future, given the locations and velocities of currently moving ob-
jects. This problem is different to moving clusters discovery in several aspects. First,
it deals with the identification of static, as opposed to moving, dense regions. Second,
a sequence of such static dense regions at consecutive timestamps does not necessar-
ily correspond to a moving cluster, since there is no guarantee that there are common
objects between regions in the sequence. Third, the problem refers to predicting dense
regions in the future, as opposed to discovering them in a history of trajectories.

Our work is also related to the incremental maintenance of clusters in data ware-
houses. Many researchers have studied the incremental updating of association rules for
data mining. Closer to our problem are the incremental implementations of DBSCAN
[3] and OPTICS [15]. The intuition of both methods is that, due to the density-based
nature of the clustering, the insertion or deletion of a new object oj affects only the
objects in the neighborhood of oj . Updates are applied in batch and it is assumed that
the updated objects are only a small percentage of the dataset. This is not true for our
problem due to the movement of objects. Potentially, the entire dataset can be updated
at each timestamp rendering the incremental maintenance of clusters prohibitively ex-
pensive. Another method, proposed by Nassar et. al. [4], minimizes the updating cost
by employing data bubbles [16] which are approximate representations of clusters. The
method attempts to redistribute the updated objects inside the existing data bubbles. It
is not suitable for our problem, since it does not maintain the continuity of clusters in
the time dimension.

4 Retrieval of Moving Clusters

In this section we describe three algorithms for the retrieval of moving clusters. The
first one, MC1, is a straight forward implementation of the problem definition. The next
algorithm, MC2, improves the efficiency by avoiding redundant checks. Finally, MC3
is an approximate algorithm which trades accuracy for speed.

4.1 MC1: The Straight-Forward Approach

A direct method for retrieving moving clusters is to follow the problem definition. Start-
ing from S1, density-based clustering is applied at each timeslice and consecutive times-
lice clusters are merged to moving clusters. A pseudocode for the algorithm is given in
Figure 2.

The algorithm scans through the timeslices, maintaining at each step a set G of
current moving clusters. When examining timeslice Si, G includes the moving clusters
containing a timeslice cluster in Si−1. After discovering the timeslice clusters in Si,
every pair (g, c), g ∈ G, c ∈ Si is checked to verify whether g ◦ c (i.e., g extended
by c in Si) forms a valid moving cluster. Clusters in G that were not extended at Si,
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Algorithm. MC1(Spatio-temporal history H , real ε, int MinPts, real θ)
1. G := ∅; // set of current clusters
2. for i:=1 to n // for each timestamp
3. for each current moving cluster g ∈ G
4. g.extended := false
5. Gnext := ∅; // next set of current clusters
6. // retrieve timeslice clusters at Si

7. L := DBSCAN(Si, e, MinPts);
8. for each timeslice cluster c ∈ L
9. assigned := false;
10. for each current moving cluster g ∈ G
11. if g ◦ c is a valid moving cluster then
12. g.extended := true;
13. Gnext := Gnext ∪ g ◦ c;
14. assigned := true;
15. if (not assigned) then
16. Gnext := Gnext ∪ c;
17. for each current moving cluster g ∈ G
18. if (not g.extended) then
19. output g;
20. G := Gnext;

Fig. 2. The MC1 algorithm for computing moving clusters

are output. The Gnext set of moving clusters to be used at the next iteration (i.e., for
Si+1) consists of (i) clusters in G that were extended in Si and (ii) timeslice clusters
c ∈ Si that were not used as extensions to some g ∈ G. In this way, MC1 does not miss
any cluster and does not output any redundant clusters, whose extensions are also valid
clusters.

We assume that all points of the current timeslice Si fit in memory. In practice this
means that a relatively low-end computer with 1GB of RAM supports more than 10M
points per timeslice. Notice that there is no restriction on the number of timeslices. Hav-
ing the entire Si in the main memory eliminates the need to build a spatial index in order
to speed-up the clustering algorithm. Instead, we developed a main-memory version of

DBSCAN. We divide the 2-D space into a grid where the cell size is
ε√
2
× ε√

2
and hash

each point of Si to its corresponding cell. Observe that the distance between any two
points in the same cell is at most ε. Therefore, any cell containing more than MinP ts
points is part of a cluster; such cells are called dense. The main-memory DBSCAN pro-
ceeds by merging neighboring dense cells and finally it handles the remaining points
which belong to sparse cells.

For each iteration of Line 3, we only need to keep one cluster g of G in the memory.
Therefore, the memory required by MC1 is O(|Si|+ |g|+ ε2

2 ). The if-statement in Line
11 is executed |G|·|L| times and calculates the similarity criterion of Definition 1 which
involves an intersection and a union operation. We employ a hash table to implement
these operations efficiently. The cost is O(|g|+|c|), where g and c are clusters belonging
to G and L, respectively.
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4.2 MC2: Minimizing Redundant Checks

MC1 contains two time-consuming operations: the call to DBSCAN (line 7) and the
computation of intersection/union of clusters (line 11). Especially the later exhibits sig-
nificant redundancy since we expect each cluster g ∈ G to share objects only with a few
clusters c ∈ L. In this section we present an improved algorithm, called MC2 which
minimizes the redundant combinations of (g, c).

The idea is simple: We select a random object oj ∈ gi and search for it in all clusters
of L. Let ci ∈ L be the cluster which contains oj . Then we calculate the intersection and
union only for the pair (gi, ci). If they satisfy the similarity criterion, we insert gi ◦ ci

in the result. Else we must select another object ok ∈ gi and repeat the process. Notice
that some objects are pruned: ok is selected from gi − ci since the common objects of
(gi, ci) cannot belong to any other cluster of L. The interesting observation is that we
never need to test more than (1− θ)|gi| points. The following lemma has the details:

Lemma 1. Let c1 and c2 be clusters. c1c2 is not a moving cluster if |c1 − c2| > (1 −
θ)|c1|.

Proof. For any set c1, c2, it holds that |c1∩c2| ≤ |c1|. We know that there are more than
(1−θ)|c1| points in c1 which do not exist in c2. Therefore, |c1∩c2| < |c1|−(1−θ)|c1|.
By using this value in the formula of Definition 1, we have:

|c1 ∩ c2|
|c1 ∪ c2|

<
|c1| − (1− θ)|c1|

|c1 ∪ c2|
≤ |c1| − (1− θ)|c1|

|c1|
= θ

Since
|c1 ∩ c2|
|c1 ∪ c2|

< θ, c1c2 is not a moving cluster.

Figure 3 presents the pseudocode of MC2. The algorithm is similar to MC1, except
that the expensive union/intersection between clusters (Line 15) is executed at most
(1 − θ)|gi| times for every gi ∈ G. Notice that another potentially expensive operation
is the search for object oj in the clusters of L (Line 12). To implement this efficiently,
at each timeslice Si we generate a hash table which contains all objects of Si. The cost
is O(|Si|) on average. Then we can find an object in constant time, on average. The
tradeoff is that we need O(|Si|) additional memory to store the hash table. If memory
size is a concern, we can use an in-place algorithm (e.g., quicksort) to sort the objects
of Si and locate objects by binary search.

Note that if θ ≤ 1
2

ties may appear during the generation of moving clusters; in

this case, MC2 does not necessarily produce the same output as MC1. This is illus-

trated in the example of Figure 4, where θ =
1
3

. The original cluster c0 splits into two

smaller clusters c1 and c2 at timeslice Si+1. Both of them satisfy the criterion of Def-

inition 1 since
|c0 ∩ c1|
|c0 ∪ c1|

=
|c0 ∩ c2|
|c0 ∪ c2|

=
1
3

. Therefore, both {c0c1, c2} and {c0c2, c1}
are legal sets of moving clusters. The same behavior is also observed in the symmet-
ric case, where two small clusters are merged into a larger one. Since MC1 and MC2
break such ties arbitrarily, the outputs may differ; nevertheless, the result of MC2 is not
approximate.
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Algorithm. MC2(Spatio-temporal history H , real ε, int MinPts, real θ)
1. G := ∅; // set of current clusters
2. for i:=1 to n // for each timestamp
3. Gnext := ∅; // next set of current clusters
4. L := DBSCAN(Si, e, MinPts); // retrieve timeslice clusters at Si

5. for each timeslice cluster c ∈ L
6. c.assigned := false;
7. for each current moving cluster g ∈ G
8. g.extended := false;
9. k := (1 − θ)|g|;
10. while (k > 0)
11. oj is a random object of g;
12. c := find(oj inside L); // c ∈ L contains oj

13. if (oj not found) then k := k − 1;
14. else
15. if g ◦ c is a valid moving cluster then
16. g.extended := true;
17. Gnext := Gnext ∪ g ◦ c;
18. c.assigned := true;
19. k = k − |g − c|;
20. if (not g.extended) then output g;
21. for each cluster c ∈ L
22. if (not c.assigned) then Gnext := Gnext ∪ c;
23. G := Gnext;

Fig. 3. The MC2 algorithm for computing moving clusters

4.3 MC3: Approximate Moving Clusters

Although MC2 avoids checking redundant combinations of clusters, it still needs to
perform an expensive call to DBSCAN for each timeslice. In this section we present an
alternative algorithm, called MC3, which decreases the execution time by minimizing
the set of objects processed by DBSCAN. MC3 is an approximate algorithm which
trades speed for accuracy. A cluster c may be approximate because: (i) there exists
an object oj ∈ c which is a core object but has less than MinP ts objects in its ε-
neighborhood (see [5] for details), or (ii) the distance of oj from any other object in c is
larger than ε.

MC3 works as follows: given a current moving cluster set G and a timeslice Si, it
maps all objects oj ∈ Si to a set of clusters G′. This mapping is done by assuming that
all objects which are common in Si−1 and Si remain in the same clusters, irrespectively
of their new position in Si. Any new objects appearing in Si are assigned to the closest
existing cluster within distance

√
2ε, or they are considered as noise if no such cluster

exists. Let L1 be the subset of G′ containing the clusters that do not overlap with each
other, and S′

i ⊆ Si be a set containing these objects that do not belong to any cluster
of L1. The algorithm assumes that L1 contains valid clusters and does not process
them further. On the other hand, the objects in S′

i probably define some new clusters.
Therefore, MC3 applies DBSCAN only on S′

i. The output of DBSCAN together with
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3 )

L1 is the set L of clusters in timeslice Si. Finally, the next set of moving clusters Gnext

is computed from G and L by employing the fast intersection technique of MC2. The
details of MC3 are presented in Figure 5.

Algorithm. MC3(Spatio-temporal history H , real ε, int MinPts, real θ)
1. G := ∅; // set of current clusters
2. timer := 0;
3. period := 1;
4. for i:=1 to n // for each timestamp
5. Gnext := ∅; // next set of current clusters
6. if (timer < period) then // Approximate clustering
7. G′ := Use G to assign all objects of Si to clusters;
8. L1 := {g|g ∈ G′ ∧ g is disjoint};
9. S′

i := Si− {all objects belonging to a cluster of L1};
10. L2 := DBSCAN(S′

i, e, MinPts); // retrieve timeslice clusters at S′
i

11. L := L1 ∪ L2;
12. timer := timer + 1;
13. else
14. L := DBSCAN(Si, e, MinPts); // retrieve timeslice clusters at Si

15. if ((deleted + inserted clusters in MC2) > α|G|) then
16. period := min(1, period/2);
17. else period := period + 1;
18. timer := 0;
19. Use the fast intersection method of MC2 to compute Gnext;
20. G := Gnext;

Fig. 5. The MC3 algorithm for computing moving clusters

The intuition behind the algorithm is that several clusters will continue to exist in
consecutive timeslices. Therefore, by employing the incremental approach of MC3, |S′

i|
(i.e., the input to the expensive DBSCAN procedure) is expected to be much smaller
than |Si|. Notice that S′

i can be computed with linear time complexity. First we create
a hash table which maps objects to moving clusters of G. We use this hash table to
generate G′; the entire process costs O(|Si−1| + |Si|) on average. Next, we divide the
space into a regular grid with cell size equal to ε × ε and we assign each object to its
corresponding cell; the cost is O(|Si|). During this step we can identify if two clusters
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intersect with each other. Then we check that (i) every cluster c is connected (i.e, all
cells belonging to c meet each other) and (ii) no pair of clusters meet each other. The
complexity of this step is O(9ε2), where ε is constant. Figure 6 presents an example
with 3 clusters c1···3. c1 is connected and does not meet or intersect with any other
cluster; therefore it is placed in L1. On the other hand, the objects of c2 and c3 must be
added to S′

i because the two clusters meet.
Observe that in order to minimize the computation cost, we determine the relation-

ships among clusters by considering only the corresponding grid cells. This introduces
inaccuracies to the cluster identification process. For instance, the distance of an object
oj ∈ c1 from any other object in c1 may be up to 2

√
2ε, therefore oj may need to be

removed from c1. Also, there may be some noise object ok in the space between c1
and c2. By considering these two clusters together with ok, c1 and c2 may need to be
merged. When dealing with moving clusters which span several timeslices, an error at
the initial assignment propagates to the following timeslice. Therefore, errors tend to
accumulate and the quality of the result degrades fast.

1

1

1 1 1 

ε22

2

2

3

Fig. 6. Checking cluster intersection on an ε × ε grid

In order to minimize the approximation error, we use a method from video compres-
sion. The MPEG-2 encoder achieves high compression rates at high quality by using
two types of video frames1: I-frames which are static JPEG images and P -frames which
represent the difference between framet and framet−1; in general I-frames are larger
that P -frames. First an I-frame is sent followed by a stream of P -frames (Figure 7.a).
When the encoding error exceeds some threshold (e.g., a different scene in the movie),
a new I-frame is sent to increase the quality (i.e., eliminate the error). We employ a
similar technique in our algorithm. Observe that the set L of clusters generated for each
timeslice by MC3, is analogous to P -frames. To decrease the approximation error, we
need to introduce periodically new reference cluster sets (i.e., similar to I-frames). We
achieve this by interleaving the approximate clustering algorithm with exact clustering.
This is shown in Line 14 of MC3, where DBSCAN is executed on the entire Si. Notice
that, contrary to MPEG-2, even after performing exact clustering the error is not nec-
essarily eliminated. This is due to the fact that moving clusters span several timeslices,
while exact clustering assigns correctly only the static clusters of the current timeslice.

1 There is also a B-frame, which is not relevant to our problem.
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Therefore, in order to recover from errors, we may need to execute exact clustering
several times within a short interval. On the other hand, if exact clustering is performed
too frequently, MC3 degenerates to MC2.

Obviously, the period between calls to exact clustering cannot be constant, since the
data distribution (and consequently the error), vary among timeslices. In order to adjust
the period adaptively, we borrowed an idea from the networks area and specifically
from the TCP/IP protocol. When a node starts transmitting, TCP/IP assigns a medium
transmission rate. If the percentage of packet loss is low, it means that there is spare
capacity in the network; therefore the transmission rate is slowly increased. However,
if the percentage of packet loss increases considerably, the transmission rate decreases
quickly in order to resolve fast the congestion problem in the network. We employ a
similar method: initially the period for executing exact clustering is set to 1. If the error
is low, the period is increased linearly at each timestamp. In this way, as long as the
error does not increase too much, the expensive clustering is performed infrequently.
On the other hand, if the error exceeds some threshold, the period is decreased expo-
nentially (Figure 7.b). Therefore, the incorrect cluster assignments are not allowed to
propagate through many timeslices.

The reader should note that we cannot perform exact clustering only when there is
an error, because we cannot estimate the error unless we compute the exact clustering.
The above mentioned method minimizes the unnecessary computations, but some re-
dundancy is unavoidable. We estimate the error in the following way: when an exact
clustering is performed, we count the number of moving clusters which are created or
removed at the current timeslice. If this number is greater that α|G|, 0 < α ≤ 1, we
assume that the error is high. The intuition is that if many moving clusters are changing
this may be due to the fact that there were many incorrect assignments at the previ-
ous timeslices. Other methods for error estimation are also possible. For instance, we
could execute approximate and exact clustering at the same timeslice and compare the
results. However, this would increase the execution time, while our heuristic poses min-
imal overhead and works well in practice.

5 Experimental Evaluation

In this section we present the experimental evaluation of our methods. Due to the
unavailability of real datasets, we developed a generator which generates synthetic
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Fig. 8. Output from the generator: a sample timeslice Si with 9000 objects

datasets with various distributions. The generator accepts several parameters includ-
ing the number of clusters per timeslice, the average number of objects per cluster, the
neighborhood radius ε and the density MinP ts. The average velocity of the clusters
and the change probability Pc are also given as input. The output of the generator is
a series of timeslices. At each timeslice each cluster may move from the previous po-
sition; the velocity vector changes with probability Pc. With the same probability, a
cluster may rotate around its center. Also, objects are inserted or deleted with probabil-
ity Pc. Figure 8 shows a sample of the distribution of objects at a given timeslice. We
generated several datasets by varying the number of objects per timeslice from 10K to
50K and the number of timeslices from 50 to 100. Therefore, the size of each dataset
was between 500K and 5M objects. We implemented our algorithms in C++ and run all
experiments on a relatively low-end Linux system with 1.2GB RAM and 1.3GHz CPU.

In order to evaluate the accuracy of MC3’s approximation, we compared at each
timeslice the current set of moving clusters produced by MC3 against the set generated
by MC2. The quality of the solution is defined as:

F =
2 · precision · recall

precision + recall

This metric is commonly used in data mining [17]. Obviously, F is always 1 for MC1
and MC2, since their solution is exact.

In the first set of experiments we test the scalability of our methods to the size of
the dataset. We generated datasets with 100 timeslices. Each timeslice contained 10K
to 50K objects and 800 clusters on average, resulting to a database size of 1M to 5M
objects. We set θ = 0.9 and α = 0.1 (recall that α is used in Line 15 of MC3). The re-
sults are shown in Figure 9. As expected, the execution time of all algorithms increases
with the dataset size. MC2 is much faster than MC1 and the difference increases for
larger datasets. This demonstrates clearly that MC2 manages to prune a large number
of redundant cluster combinations. MC3 is faster than MC2 but there is some error in-
troduced to the solution. In Figure 9.b we draw the quality F of MC3’s solution for
each timeslice. Notice that the quality is reduced at first, because the error is not high
enough to trigger the execution of exact clustering. However, when the error exceeds
the threshold value, the algorithm adjusts fast to high quality solutions.
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Fig. 9. Varying the number of objects. 800 clusters, θ = 0.9, α = 0.1

Table 1. Average quality F of MC3. 800 clusters, θ = 0.9, α = 0.1

10K objects 20K objects 30K objects 40K objects 50K objects

F 94.7% 91.1% 90.0% 90.8% 87.0%

The average quality of MC3 for the entire database is shown in Table 1. Given that
the number of clusters remains the same for all datasets, when the database size in-
creases, so does the average number of objects per clusters. When this happens, the
extends of clusters tend to grow and therefore more errors are introduced due to incor-
rect assignment of cluster splits or noise objects (see Figure 6 for details). Nevertheless,
the average quality remained at acceptable levels (i.e, at least 87%) in all cases.

The second set of experiments test the scalability of the algorithms to the number
of clusters. All datasets contain 100 timeslices with 50K objects each (i.e., database
size is 5M objects). The average number of clusters per timeslice is varied from 100
to 800. Again, we set θ = 0.9 and α = 0.1. The results are presented in Figure 10.
The trend is similar to the previous experiment with the exception that the relative
performance of MC3 has improved. To explain this, observe the graph of the quality
F . For the case of 100 clusters, the quality remains high during the entire lifespan of
the dataset. This happens because there are fewer clusters in the space, therefore there
is a smaller probability of interaction among them which decreases the probability of
errors in MC3. Consequently, the expensive exact clustering in Line 14 of MC3 is called
very infrequently and the total execution time is improved.

Table 2 shows the average quality of MC3 for the entire dataset. Notice the strange
trend: the quality first decreases and then increases again when there are more clusters.
To understand this behavior, refer again to Figure 10.b. We already explained why qual-
ity is high for the 100 clusters dataset. On the other hand, when there are 800 clusters,
there are a lot of interactions among them which introduce a large margin for error.
Therefore, MC3 reaches the error threshold fast and starts performing exact clustering
in order to recover. Now look at the 200 and 400 clusters datasets. There is a large
number of clusters, therefore quality drops. Nevertheless, the error does not exceed
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Table 2. Average quality F of MC3. 50K objects, θ = 0.9, α = 0.1

100 clusters 200 clusters 400 clusters 800 clusters

F 95.7% 86.9% 72.7% 87.0%

the threshold and MC3 does not attempt to recover. The cause of this problem is the
inappropriate value for parameter α.

In order to investigate further how parameter α affects the result, we used the 800
clusters, 50K objects dataset from the previous experiment and varied α from 0.05 to
0.2. The quality of MC3 for each timeslice, is shown in Figure 11. When α is low, MC3
reaches the error threshold fast. When this happens, it starts using the exact clustering
function in order to recover fast. When α is larger, MC3 needs more time before initiat-
ing the recovery process. A point to note here is that for large values of α, the algorithm
does not recover completely. For instance, if α = 0.2, the algorithm starts oscillating
around F = 0.4 after some time.

The execution time of MC3 also depends on α. This is expected, because the al-
gorithm trades accuracy for speed. To test this, we generated two more datasets with
the same characteristics as before, but with different object agility. Assuming that the
previous dataset has Medium agility, one of the new datasets contains objects with High
agility and the other contains objects with Low agility. The results are shown in Fig-
ure 12. As expected, MC3 is faster for larger values of α. This is due to the fact that
when we accept higher error, MC3 uses most of the time the fast approximate function
for clustering. Observe that MC3 is faster for low agility datasets. Such datasets contain
fewer interactions among clusters; therefore the approximation error is low resulting to
very few calls to the expensive exact clustering function.

Table 3 compares the execution time and the solution quality of MC3 against MC2
(recall that F = 1 always for MC2). In contrast to MC3, MC2 does not exhibit sensi-
tivity to the agility of the dataset. Therefore, for the low agility dataset, the speedup of
MC3 is very high. However, the average quality drops. To compare the various cases,
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we use the relative quality per time unit, defined as:

F (MC3|MC2) =
FMC3
tMC3

− 1
tMC2

1
tMC2

Observe that F (MC3|MC2) is much higher for the low agility dataset, meaning that
MC3 traded a small percentage of accuracy in order to achieve a much lower execution
time.

The last set of experiments investigates the effect of θ, which is the integrity thresh-
old of Definition 1. We used the 800 clusters, 50K objects, medium agility dataset from
the previous experiment and set α = 0.1. We varied θ from 0.7 to 0.95. Figure 13 shows
the execution time for the three algorithms. There is a very small increase of the exe-
cution time when θ increases. This is more obvious for MC1. The reason is that when
θ is large, there is a smaller probability to find matching moving clusters in consecu-
tive timeslices. To conclude that there is no match, MC1 must check all cluster pairs,
whereas, the search would stop as soon as one match was found.

Figure 14 and Table 4 demonstrate the effect of theta on the quality of MC3. In-
terestingly, the quality improves when θ increases. This happens because, even if the



On Discovering Moving Clusters in Spatio-temporal Data 379

Table 3. Average quality of MC3 for datasets with varying agility

MC2: Time (sec) MC3: Time (sec) MC3: Quality (F) F (MC3|MC2)

High 252 246 98.6% 1.2%
Med 248 208 87.0% 3.9%
Low 256 118 73.0% 59.0%
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Fig. 13. Execution time vs. θ. 800 clusters, 50K objects, α = 0.1

approximate clustering function generates some incorrect clusters, there is a high pos-
sibility that the corresponding moving clusters will not satisfy the θ criterion and will
be eliminated. Therefore, there is a smaller probability of errors.

6 Conclusions

In this paper we investigated the problem of identifying moving clusters in large spatio-
temporal datasets. The availability of accurate location information from embedded
GPS devices, will enable in the near future numerous novel applications requiring the
extraction of moving clusters. Consider, for example, a traffic control data mining sys-
tem which diagnoses the causes of traffic congestion by identifying convoys of similarly
moving vehicles. Military applications can also benefit by monitoring, for instance, the
movement of groups of soldiers.

We defined formally the problem and proposed exact and approximate algorithms
to identify moving clusters. MC2 is an efficient algorithm which can be used if 100%
accuracy is essential. MC3, on the other hand, generates faster an approximate solu-
tion. In order to minimize the approximation error without sacrificing the efficiency, we
borrowed methods from MPEG-2 and TCP/IP. Our experimental results demonstrate
the applicability of our methods to large datasets with varying object distribution and
agility. To the best of our knowledge, this is the first work to focus on the automatic
extraction of moving clusters.

The efficiency and accuracy of MC3 depends on the appropriate selection of param-
eter α and the accurate estimation of error. Currently we are working on a self-tuning



380 P. Kalnis, N. Mamoulis, and S. Bakiras

0

0.2

0.4

0.6

0.8

1

1 11 21 31 41 51 61 71 81 91

Timeslice

Q
ua

lit
y 

F

����� ����� ����� �����	

Fig. 14. Quality F of MC3 vs. θ. 800 clusters, 50K objects, α = 0.1

Table 4. Average quality of MC3 for varying θ

θ = 0.7 θ = 0.8 θ = 0.9 θ = 0.95

MC3: Quality (F ) 83.0% 86.8% 87.0% 96.5%
F (MC3|MC2) 1.1% 3.4% 3.9% 5.3%

method for parameter selection. We also plan to explore sophisticated methods for error
estimation.

References

1. Hadjieleftheriou, M., Kollios, G., Gunopulos, D., Tsotras, V.J.: On-line discovery of dense
areas in spatio-temporal databases. In: Proc. of SSTD. (2003)

2. Gaffney, S., Smyth, P.: Trajectory clustering with mixtures of regression models. In: Proc.
of ICDM. (1999) 63–72

3. Ester, M., Kriegel, H.P., Sander, J., Wimmer, M., Xu, X.: Incremental clustering for mining
in a data warehousing environment. In: Proc. of VLDB. (1998) 323–333

4. Nassar, S., Sander, J., Cheng, C.: Incremental and effective data summarization for dynamic
hierarchical clustering. In: Proc. of ACM SIGMOD. (2004) 467–478

5. Martin, E., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering
clusters in large spatial databases with noise. In: Proc. of KDD. (1996)

6. Kaufman, L., Rousueeuw, P.: Finding Groups in Data: an Introduction to Cluster Analysis.
John Wiley and Sons (1990)

7. Ng, R.T., Han, J.: Efficient and effective clustering methods for spatial data mining. In: Proc.
of VLDB. (1994)

8. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: An efficient data clustering method for
very large databases. In: Proc. of ACM SIGMOD. (1996)

9. Guha, S., Rastogi, R., Shim, K.: CURE: An efficient clustering algorithm for large databases.
In: Proc. of ACM SIGMOD. (1998)

10. Nanopoulos, A., Theodoridis, Y., Manolopoulos, Y.: C2P: Clustering based on closest pairs.
In: Proc. of VLDB. (2001)



On Discovering Moving Clusters in Spatio-temporal Data 381

11. Ankerst, M., Breunig, M., Kriegel, H.P., Sander, J.: OPTICS: Ordering points to identify the
clustering structure. In: Proc. of ACM SIGMOD. (1999) 49–60

12. Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional trajectories.
In: Proc. of ICDE. (2002) 673–684

13. Das, G., Lin, K.I., Mannila, H., Renganathan, G., Smyth, P.: Rule discovery from time series.
In: Proc. of KDD. (1998) 16–22

14. Li, C.S., Yu, P.S., Castelli, V.: Malm: A framework for mining sequence database at multiple
abstraction levels. In: Proc. of CIKM. (1998) 267–272
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Abstract. Spatial data are particularly useful in mobile environments.
However, due to the low bandwidth of most wireless networks, developing
large spatial database applications becomes a challenging process. In this
paper, we provide the first attempt to combine two important techniques,
multiresolution spatial data structure and semantic caching, towards ef-
ficient spatial query processing in mobile environments. Based on the
study of the characteristics of multiresolution spatial data (MSD) and
multiresolution spatial query, we propose a new semantic caching model
called Multiresolution Semantic Caching (MSC) for caching MSD in mo-
bile environments. MSC enriches the traditional three-category query
processing in semantic cache to five categories, thus improving the per-
formance in three ways: 1) a reduction in the amount and complexity
of the remainder queries; 2) the redundant transmission of spatial data
already residing in a cache is avoided; 3) a provision for satisfactory
answers before 100% query results have been transmitted to the client
side. Our extensive experiments on a very large and complex real spatial
database show that MSC outperforms the traditional semantic caching
models significantly.

1 Introduction

Spatial data have been increasingly used in mobile environments such as elec-
tronic navigation, dynamic map generalization, and location-dependent applica-
tions. This raises many new research challenges and opportunities. Compared to
traditional distributed systems, mobile computing environments have distinctive
characteristics which impact on the manipulation of spatial databases [2]. First,
in mobile computing environments, there are usually restrictions such as a lim-
ited bandwidth, unstable wireless link and short-life battery power. All of these
seriously conflict with the tremendous volume of spatial data. Second, the capa-
bilities of mobile units vary greatly, each of which could be a powerful portable
computer or a personal digital assistants (PDAs) with very small screens. Thus,
users of different mobile units may require different qualities of query answers.
Third, in mobile environments, spatial queries are generally not isolated to each
other but lie in several typical patterns.

Semantic caching is an important method to improve the performance of
mobile computing. This method maintains the semantic descriptions as well as

C. Bauzer Medeiros et al. (Eds.): SSTD 2005, LNCS 3633, pp. 382–399, 2005.
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results of previous queries on the client side. Semantic caching is based on an as-
sumption that queries are relevant to each other semantically. Interestingly, this
matches the property of spatial queries in mobile environments, which will be
discussed later in section 5.1. By caching pertinent and frequently queried data
in mobile units, semantic caching can reduce network traffic, shorten response
time and provide better scalability [10].

Generally speaking, there are two basic approaches to reduce the data size
processed in spatial queries: (1) reducing the size of candidate sets; and (2)
reducing the complexity of geometry objects. The filter-refinement strategy has
been well-established for the former purpose, while the multiresolution method is
designed for the latter purpose. Multiresolution databases break spatial objects
into parts, and then fetch only those parts that may contribute to a particular
resolution [13]. Hence, the multiresolution method can lead to a smaller data
transmission which is crucial in mobile environments. Furthermore, it permits
users to flexibly designate their required query qualities or parameters.

Therefore, combining multiresolution and semantic caching could greatly im-
prove the performance of spatial queries in mobile environments. However, the
structure and semantic description of multiresolution spatial data (MSD) is much
more complex than standard data, which raises the issues in the caching mecha-
nism, including caching granularity, query trimming strategy, cache replacement
policy, etc. To the best of our knowledge, there has been no significant research
in this direction to date.

In this paper, we deploy MSD in semantic cache by introducing Multiresolu-
tion Semantic Caching (MSC) to improve the performance of spatial queries in
mobile environments. We analyze the characteristics of MSD and MSD queries
and their impact on the semantic caching mechanism, then propose MSC in-
spired from the analysis. In traditional semantic caching, query processing di-
vides the relationship between the query and the cache into three categories:
1) exact match - the query is fully answered by the cache; 2) partial match -
the query is partially answered by the cache; and 3) no match - the query is
not answerable from the cache. And different operations are designed toward
different categories. Incorporating the characteristics of MSD, MSC enriches the
relationship by two more categories: Assumable Exact Match and Approximate
Match. The motivation is to provide the user acceptable query results as soon
as possible. MSC improves the performance in three ways: 1) by reducing the
amount and complexity of the remainder queries, and further reducing the re-
trieval time in the database server; 2) by avoiding the redundant transmission
of spatial data that have already existed in the client cache; and 3) by provid-
ing satisfactory answers before 100% of the results have been transmitted to the
client. Our extensive experiment results confirm the effectiveness of our methods
for spatial query processing in mobile environments.

The remainder of this paper is organized as follows. In Section 2, we discuss
previous work on semantic caching and multiresolution. In Section 3, some pre-
liminary work is presented, followed by MSC query processing in Section 4. An
extensive performance study is reported in Section 5. Finally, we conclude our
paper in Section 6.
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2 Related Work

One research area that is directly related to this paper is that of semantic caching,
especially semantic caching in mobile environments. The other part of relevant
work concerns multiresolution spatial data. In this section, we review previous
works from these two fields.

2.1 Semantic Caching

The semantic caching technique was first proposed in [4] to contrast with page
caching and tuple caching. The client maintains the results of previous queries as
well as their semantic descriptions in its cache, which allows the tuples available
locally not to be fetched from the database again. A value function based on se-
mantic locality was also proposed in this paper, named as ‘Manhattan distance’.
Later, this technique was widely studied in centralized systems, OLAP, LDAP,
WWW, and heterogeneous systems [10]. Semantic caching in mobile computing
environments has also received extensive attentions. [3] proposed a semantic
caching scheme for handling both projection and selection in a mobile environ-
ment. [9] discussed how to use semantic caching to manage location dependent
data in mobile computing and extended Manhattan Distance to a new replace-
ment policy FAR (Furthest Away Replacement). In [14], DBMS was proposed
in mobile units to manage caches. Recently, processing spatial queries has begun
to occur in this field, such as [15], [6]. Because mobile clients are often roam-
ing, [15] identified the problem of the validity of previous queries and proposed
the corresponding algorithms to handle neighbour and window queries. In [6],
a proactive caching model, which caches the result objects as well as their R-
tree index nodes, was proposed to improve the utility of local caches. However,
both spatial object and location information discussed in the above papers is
concerned with Point data. It is also the reason why [6] thought that a new
query could be answered only by the cached data of the same query type. Our
work differs from these previous research in that we focus on Polygon data, for
example we focus on how to cache MSD to dynamically generalize digital maps
in mobile environments.

2.2 Multiresolution

The main goal of multiresolution (also called multiscale) systems is to be able to
retrieve objects with different representations to satisfy different requests from
users. As different details of a particular feature are distinguishable at different
scales, a geometry object should be treated as a collection of spatial elements.
In [1] multiple representations of spatial objects are pre-generated and stored
in the database. Queries on different scale access different representations. This
technology is also known as ‘multirepresentation’. Its main disadvantage is the
much higher storage overhead than normal. In addition, by using pre-computed
representations with a large amount of redundant data, this scheme is not capa-
ble of supporting a desirable form of data caching. Later work by [8] focused on
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the concept of indexing objects by not only their spatial location, but also a scale
value. With the scale in the index, I/O cost can be significant reduced during
retrieval. However, the approach is too simplistic and only supports graphical
and content zoom. An improvement was achieved in [13], which assigns each
vertex of an object to a set of map scales and vertices that share similar or
equivalent scales are grouped into ‘vertex layers’. The vertices in each layer form
a representation of the object at a particular scale. This idea is similar to our
multiresolution data structure – ‘Bit-map’. However, they did not point out how
to assign scales to vertices, which is a lengthy process if done manually. Later,
they extended their work in [16], which proposed that the control on spatial
generalization should be multi-dimensional with spatial resolution as one dimen-
sion and various types of generalisation style metrics as the other dimensions.
However, they did not provide detailed algorithms or a performance study.

3 Preliminary Work

This section firstly introduces the multiresolution spatial data structure used in
the remainder of the paper, then presents the constraint formula of the semantic
region of MSC.

3.1 Multiresolution Spatial Databases

A spatial object O can be considered as a set of points: {p1, p2, ..., pn}, where if
O is a point, n = 1; if O is a line, n = 2; if O is a simple polygon (without hole),
n ≥ 3 and each point pair (pa, pa+1) forms a line on the object boundary. In tra-
ditional spatial databases, the spatial elements (points) of the object are opaque
to applications and have to be accessed together. That is why only one fixed res-
olution can be provided by such systems. A simple method to overcome this flaw
is to store and process spatial objects based on points. However, point-based data
structures create undesirable overheads due to the large amount of tuples and
expensive calculation required to reconstruct representations. Hence, the mul-
tiresolution spatial data structure (MSDS) is proposed to produce constituent
representations effectively. A proper MSDS in mobile environments should take
the following four aspects into account.

Firstly, the MSDS should make it feasible to build representation-derivation
into the query process of multiresolution systems to avoid time-consuming post
retrieval. Thus, when processing a query, the multiresolution database system
can choose a proper resolution level and retrieve only necessary data to satisfy
this resolution.

Secondly, different representations derived from the same MSD should be
consistent with each other. More precisely, spatial relationships should remain
the same or at least similar between different representations. Here, spatial re-
lationships could be topological, directional or metrical.

Thirdly, different representations are convertible to each other. That is, low
resolution representations can be derived from high resolution representations
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and high resolution representations can be produced by low resolution represen-
tations plus additional information. This characteristic is especially important
for semantic caching as it can largely improve the utilization of cached data. For
example, suppose that all polygons overlapping window w at resolution l1 are
cached and the most recent query is ‘to find all polygons overlapping window w
at resolution l2’ (l2 > l1), if representations are convertible, only the additional
data between l1 and l2 need to be retrieved and transmitted to the mobile client.
Otherwise, the data cached would not be ussful in answering this query.

Finally, as the bandwidth is so scarce in mobile environments, MSD should
be well compressed before transmission in mobile severs efficiently and decom-
pressed in mobile clients.

3.2 MSDS – Bit map

In the remainder of this paper, we use Bit map as our MSDS. The basic idea
of Bit map is to group points based on scales, then abstract the data of every
group to a tuple. This method avoids the opacity of organizing data based on
polygon and the high overhead of organizing data based on points.

There are three important functions in Bit map scheme.
One is Scale Value Function, which is used to group points. This function

assigns a scale value to each point, denoted as Delta(p). Points holding the
same value belong to the same resolution level. Thus, with scale value function,
a spatial object is broken into disjointed parts: O = {On, On+1, ...Om}, where
n = min(Delta(p)) and m = max(Delta(p)) and Oi = {p|Delta(p) = i}(n ≤
i ≤ m). As n is the lowest scale of representations users may be interested in, it
is named as Base Level.

The second function is Abstract Compression Function, which is used to
abstract information from grouped points and compress it to a tuple. Using
this function, we get {Abst(On), Abst(On+1), ...Abst(Om)}. Here, Abst(On) is
different from other Abst(). As it includes the data equal to or less than Base
Level, we denote it as blData. Whereas Abst(Oi)(n+1 ≤ i ≤ m) only includes the
additional information to refine O from scale i−1 to scale i, denoted as aDatai.
Then, spatial object O is organized as (ObjectID, BLData, AData, delta) in
databases, where delta denotes the scale level and each O includes m − n + 1
tuples as (Oid, blData, ∅, n), (Oid, ∅, aDatan+1, n + 1), ..., (Oid, ∅, aDatam, m).

The last function is Reconstruction Function. After retrieving data at specific
resolution, Recon() will reconstruct them to a specific representation of objects.
In more details, when l = n, Reconstruction Function is Recon(blData); When
l > n, it is Recon(blData, aDatan+1, ...aDatal).

Both Scale Value Function and Abstract Compression Function utilize the
iterative decomposition property of Z-ordering. Interested readers could refer
to [11], [12] for more detailed algorithms. Bit map defeats the overhead prob-
lem and expensive reconstruction in point-based data structures and avoids the
accessing and processing of unnecessary data.
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3.3 MSC Region

A semantic cache is a collection of semantic regions, each of which groups to-
gether semantically related tuples and maintains the semantic description of
these tuples. As semantic regions are created dynamically based on the queries
submitted at the client [4], we need to define multiresolution spatial queries
before discussing the semantic description of semantic regions. (All definitions
in our model are based on Bit map, however these definitions can also be easily
extended to other multiresolution data structures). In this paper, our work only
focuses on the multiresolution window query, the most common query in mul-
tiresolution spatial databases. Processing more complex multiresolution spatial
queries with the framework of semantic caching is a potential direction for future
research.

Definition 1. (Multiresolution Window Query MWQ) Given a MSD relation
R( ObjectID, BLData, AData, delta ) and a window W , a MWQ finds all objects
O having at least one point in common with W at resolution r from R,

MWQ(W, r) = {Re(O, r)|Re(W, r) ∩Re(O, r) �= ∅},
where Re(O, r) is the representation of O at resolution r and r should not be

less than the base level n.

Multiresolution window query is a window query with resolution constraints.
For the sake of describing semantic region, now we extend the concept of MWQ
to be more general.

Definition 2. (Part Multiresolution Window Query PMWQ) Given a window
W and two resolution level r1 and r2, where n ≤ r1 ≤ r2 ≤ m, a PMWQ
finds all objects O satisfying MWQ(W, r2) and only fetch their data between
resolution r1 and resolution r2.

Part multiresolution window query denotes ‘select ObjectID, blData, aData,
delta from R where Re(O, r2) ∈ MWQ(W, r2), delta ≥ r1 and delta ≤ r2’.
Obviously, MWQ is a special kind of PMWQ when r1 = n. The conception of
PMWQ is important in MSC as it records the result of MSC query trimming.
Further, MSC region can be described as S(W, r1, r2), a cached PMWQ query.
And the whole cache can be described as

∑
S(W, r1, r2)

4 MSC Query Processing

In this section, we initially analyze the characteristics of MSD and MWQ. Ap-
proaches incorporating these characteristics are then proposed to improve the
performance of query processing.

4.1 Caching MSD vs. Caching Traditional Multi-dimensional Data

As mentioned in Section 2.1, there are some related works about caching stan-
dard data and point data in previous research. Then, what are the differences
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between caching MSD and caching those data? Specious answer is that MSD is
multi-dimensional data. But point data are also 2D and queries are frequently
multi-dimensional in OLAP systems as each of which covers more than one table
and one attribute [5].

Then, what are the essential differences between caching MSD and caching
traditional multi-dimensional data? The obvious differences of MSD from tra-
ditional data include large size, complex structures and operations etc., which
have been extensively studied. Now we will analyze the characteristics of MSD
which can be utilized to improve query performance.

One characteristic is that spatial objects have extensions. A spatial object
may intersect two or more disjointed windows at the same time. Hence, the
results of two disjointed window queries may overlap and caching these results
may cause redundancy. The characteristic also causes another situation. Figure
1 (a) shows a window query and its result; figure 1 (b) is the results of two other
small window queries. We can see that although the windows of the two small
queries do not wholly cover the window of the first large query, their data can
still fully answer it. That is because the window query finds all polygons having
at least one point in common with the window and there is no polygon fully
contained in the shadow area. Thus, given a window query and a cache, there are
two kinds of full answer. One is Full Window Answer, which is that the area
of cache fully covers the window of the query. Another is Full Data Answer,
which is that the data set of cache fully contains the result of the query. A Full
Window Answer must be a Full Data Answer, but the reverse is not tenable. As
the constraint formula of MSC region is (W, r1, r2), query trimming can only
find out Full Window Answer. Finding the Full Data Answer is a key factor in
improving the performance.

(a) A Large Window Query

Q1 Q3Q2 Q4

(b) Two Small Window Queries (C) A Smaller Window Query

Fig. 1. The Extension of Spatial Objects

Another characteristic is that resolution is not a normal axial dimension
where [a, b] ∩ [c, d] = ∅ (a < b < c < d). To different resolutions, MSD at b
includes MSD at a and MSD at a has a general feeling of MSD at b. In particular,
because the data distribution on resolution is nonlinear, the difference between
two consecutive high resolutions is not apparent.

Finally, as all spatial data are the digitized approximations of real world
objects, spatial queries can not be well specified. For example, although the query
window in figure 1 (c) is a bit smaller than that in figure 1(a), it does not matter
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greatly to most users. The other example is that users who querying resolution
18 usually can still be satisfied with a map with hybrid resolution (most area
at resolution 18 and few places at resolution 17). Hence, the data do not fully
answer a query, but it can satisfy the user who submitted the query. We name
this case as Approximate Satisfaction.

As most spatial queries are not isolated to each other, Full Data Answer
and Approximate Satisfaction occur quite often in MSD cache. Taking them
into account when processing MWQ can reduce the amount of remainder queries
posted to the database and response to the users before full answers transmitted
to the client.

In the following, we investigate how to process a MWQ in MSC. We introduce
the method of trimming a query with a single MSC region first, followed by
extension to process a query with the whole MSC cache. We finally discuss how
to retrieve the remainder query, transmit the retrieval result and coalesce the
probe query and the remainder query.

4.2 Trimming a PMWQ with a MSC Region

Here, we discuss trimming PMWQ (not MWQ) with a MSC region. Given a
PMWQ(Wq, r1q, r2q) and a MSC region S(Ws, r1s, r2s), no intersection is the
simplest case, which happens when Wq ∩Ws = ∅ or r1q > r2s or r2q < r1s.
Otherwise, the PMWQ intersects the region (Wq ∩ Ws �= ∅ and [r1q, r2q] ∩
[r1s, r2s] �= ∅). In the following, we discuss how to perform trimming according
to resolution ranges in detail.

Case 1: r1q = r1s and r2q = r2s

Because PMWQ and S have the same resolution range, the trimming is
simplified to the clipping between two windows Wq and Ws. The remainder
query may be none or single or more than one sub queries. For example, in
figure 2(a), the remainder query is (W3, r1q, r2q); in figure 2(b), the remainder
query consists of two sub queries (W4, r1q, r2q) and (W5, r1q, r2q); in figure 2(c),
the window of S contains the window of PMWQ, no remainder query needs to
be submitted to the server. However the region S will be clipped into five sub-
regions.

Case 2: r1q ≤ r1s and r2q ≥ r2s

In this case, the resolution range of PMWQ contains the resolution range
of S. Thus, the PMSQ will be split into two parts Wq ∩ Ws and Wq ∩ ¬Ws

first. Then, (Wq ∩Ws, r1q, r2q) will be trimmed into three parts with disjointed
resolution ranges. They are [r1q, r1s), [r1s, r2s] and (r2s, r2q]. Notice if the query
is split by resolution first, then by window, it will cause more sub remainder
queries. Figure 3(a) is a PMWQ and a S fallen into case 2. After trimming, S
will be simply split into 4 sub-regions. To PMWQ, piece 6 is the probe query,
piece 5, 7, 8 together compose the remainder query.

Case 3: r1q ≥ r1s and r2q ≤ r2s

In this case, the resolution range of PMWQ is contained by the resolution
range of S. In contrary to case 2, S will be split by window before resolution
whereas PMWQ is just split by window. Figure 4 is an example.
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Case 4: (r1q ≥ r1s and r2q ≥ r2s) or (r1q ≤ r1s and r2q ≤ r2s)
In this case, the resolution range of PMWQ intersects the resolution range

of S. Thus, both PMWQ and S need to be split by resolution and window.
Figure 5 gives an example.

After trimming a PMWQ with a MSC region S, the PMWQ will be divided
into two parts – the probe query and the remainder query; and the S will also
be divided into two parts – the intersection part and the difference part. The
intersection part and the probe query are in fact the same.

S Q

1 2 3

S

Q1

2 3 4

5

S

Q1

2 3 4

(a) (b) (c)

5

Fig. 2. Examples of Case 1
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(a) Q intersect S (b) the split of S (c) the split of Q
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Fig. 3. Example of Case 2

4.3 Processing a MWQ with a MSC Cache

As the query usually intersects more than one region in a MSC cache, processing
a query with a MSC cache includes two steps.

1. The input query will be trimmed with all cache regions. This step produces
three outputs. One is the probe query set Qp; one is the remainder query
set Qr; and the last one is the difference of cache from the query, denoted as
Cd. Qp and Qr are two sets of sub-queries, while Cd is a set of sub-regions.
The cost of step 1 is usually linear in the number of regions [5].

2. According to the outputs of step 1, the query will be classified into a category
and the corresponding process will be handled according to the category.
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Fig. 4. Example of Case 3
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Fig. 5. Example of Case 4

Traditional query processing classifies the relationship between a query and a
cache into three categories: No Match, Partial Match and Exact Match. In order
to improve the system performance, MSC enriches them into five categories – No
Match, Exact Match, Assumable Exact Match, Approximate Match
and Partial Match. Now, we will discuss each category in detail.

Category 1: No Match
It is the simplest category and happens only when Qp = ∅. In this case, the

original query will be posted to the server to get the result.

Category 2: Exact Match
In our paper, the cache exactly matches a query if and only if Qr = ∅, which

means that the cache is a Full Window Answer to the query. In this case, the
result of Qp is the query result.

Category 3: Assumable Exact Match
As discussed in section 4.1, Full Data Answer is also a kind of full answer

to a query. However, due to the limitation of the constraint formula of region,
it can not be figured out by query trimming directly. We propose Assumable
Exact Match to solve this problem.

Before explaining Assumable Exact Match, Negligible Window needs to
be introduced. According to the analysis in section 4.1, when a window is so
small that it does not contain any whole polygon, the window can be ignored
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in point of data set because all polygons intersect this window also intersect its
neighboring windows. Thus, we can assume if the width or height of a window
is less than the average width or height of polygons in the data space, it is a
negligible window. To avoid the situations that the user is focusing on this small
window, the width and height of a negligible window should be less than the
width and height of the original query.

Definition 3. (Negligible Window) Given a MWQ (Wq , rq) and a data space
R, a window Wi is a negligible window if and only if

(W idth(Wi) < λ ∗AvgW and W idth(Wi) < W idth(Wq)) or (Height(Wi) <
λ ∗AvgH and Height(Wi) < Height(Wq)),

where W idth() and Height() are two functions to get the width and height
of a spatial object respectively; Avg(W ) and Avg(H) represent the average width
and the average height of spatial objects in the data space R respectively; and λ
is a small number to adjust the confidence of negligibility.

If the window of each sub query in the remainder query set Qr is a Negligible
Window, we classify the query into Assumable Exact Match. In other words, we
assume the query is fully data answered by local data. To answer Assumable
Exact Match, the local data make up the query result; Qr does not need to be
posted to the server.

Category 4: Approximate Match
Approximate Match happens when the data in local cache do not fully answer

a query, but it still satisfies the user who submits it. To handle Approximate
Match, the result of the probe query is represented to the user first. Then the
remainder query is posted to the server. As it is not so urgent as normal re-
mainder queries, it is assigned with a lower priority. By the chance that users
are not satisfied with Approximate Match answer, they can choose to submit a
finer query or to wait for the answer of the remainder query.

As a multiresolution window query is sensitive to two factors (window and
resolution), both aspects should be taken into account when deciding whether
a query falls into Approximate Match category. We use Algorithm 1 to make
the judgement, in which λ1 and λ2 are used to adjust the confidence of approx-
imation. Our experiments prove that when λ1 < 0.1 and λ2 < 0.2, Approximate
Match can insure the quality of results.

Category 5: Partial Match
Partial Match happens when the query does not fall into any of the above

four categories. In this case, the remainder query set is posted to the server and
its result, together with local data, answers the user’s requirement. It is worthy
of note that during the transmission of the remainder query result, data in client
side may become Approximate Match or Assumable Exact Match to the query.
The result will be shown before the completion of the transmission.

4.4 Retrieval, Transmission and Coalescence

When the database receives the remainder query set, it retrieves these sub queries
according to their window sizes and resolution ranges. The query with a larger
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Algorithm 1. Judge Approximate Match(Qr) //Qr is the remainder query set
Qwindow = ∅ {initialize two query sets}
Qresolution = ∅
while Qr �= ∅ do

q ←− any sub-query in Qr

if q.r2 = q.r1 + 1 then
Qresolution ←− q

else
Qwindow ←− q

end if
end while
SW = Sum Area(Qwindow) {Sum up the area of queries in Qwindow}
SR = Sum Area(Qresolution) {Sum up the area of queries in Qresolution}
if (SW < λ1)&(SR < λ2) then

Approximate Match
else

No Approximate Match
end if

window will be executed earlier. And the data at a lower resolution will be
accessed before the data at a higher resolution. Transmission also obeys the
same rule. The motivation is to access and transmit minimum data to achieve
Assumable Exact Match or Approximate Match in the client side. When all data
arrive at the client, they will be organized together with local data to coalesce
a new MSC region.

5 Performance Evaluation

In this section, we examine the performance of our MSC query processing scheme
through a simulation study. Before presenting the experiment results we first
introduce the simulation model.

5.1 Spatial Query Patterns in Mobile Environments

Spatial queries in mobile environments are usually not isolated to each other but
lie in typical patterns as shown in the following examples.

Example 1.1. Suppose Mike is a new international student of the University of
Queensland and he wants to make a travel plan of Australia. His typical search
process will be querying the place near his university first, then extending his
search area to the whole Australia gradually. When he finds an interesting site,
he may inquire more details of this spot and inquire about areas around it.

The above example represents a typical spatial pattern, named ‘Zoom in/
Zoom out Pattern’ in this paper. Users focus on a small area first, then they
extend their search area. At the same time, they may reduce the requirement
of precision to adapt to the limit resource in mobile environments. When they
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find their interesting place, they will refine the precision and pan around the
place. Queries belonging to ‘Zoom in/Zoom out Pattern’ usually jump in window
sizes and resolutions. Figure 6(a) gives an illustration of such queries, where the
number represents the order of query and the color represents its resolution. The
darker a window is, the more details it queries.

Example 1.2. Suppose Mike chooses a scenic spot and he is travelling there
now. Because he is not familiar with this place, he queries the map around his
location periodically.

It is an example of another typical spatial query pattern. We name it ‘Travel
Pattern’. In this pattern, a user requires dynamic map generalisation according
to his location. It is a special kind of location-dependent queries, which is de-
fined as queries with constraints on the location of the mobile unit users [7].
Queries belonging to ‘Travel Pattern’ usually focus on small windows and high
resolutions. And the resolutions of different queries are similar. Figure 6(b) is an
example, in which the lines represent the route of a moving object.
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Fig. 6. Two basic query patterns.

‘Zoom in/Zoom out Pattern’ and ‘Travel Pattern’ are two typical patterns of
spatial queries in mobile environments. Most spatial queries lie in one of the two
patterns or the union of these two patterns, which is named as ‘Hybrid Pattern’
in this paper.

5.2 Workload Specification

Based on the three typical spatial query patterns, we develop three different
workloads. And we assume the query issuing interval is 1 minute.

– Workload 1 – Zoom in/Zoom out:This workload further includes three
types. a) Short Zoom in/Zoom out. This kind of query group has 3-5 queries
and only zooms on one direction. b) Middle Zoom in/Zoom out. This kind
of query group has 6-8 queries and pans after zoom in or zoom out. c)
Long Zoom in/Zoom out. This kind of query group has 10 - 14 queries,
which includes zoom in, zoom out and panning at the same time. The query
window size is random from twenty times the average size of polygons to one
thirtieth of the whole data space.
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– Workload 2 – Travel: This workload also includes two types. a) Directed
Movement. This kind of query group has 15-25 queries. The mobile client
keeps moving in one direction with a random speed. b) Random Move-
ment. This kind of query group has 30-50 queries. The mobile unit randomly
chooses a destination and moves to it with random speed. After arrival, it
randomly chooses the next destination again. According to our daily life,
both two kinds of movement should be limited in a range. In our experi-
ment, the range varies between 0.5 percent to five percent of the whole data
space.

– Workload 3 – Hybrid: Randomly create a kind of query group in workload
1 or workload 2.

In our experiments, 100 groups of queries are randomly generated for each
workload and the workload 1 has 863 queries totally, workload 2 and workload
3 have 3,040 and 2,874 queries respectively.

5.3 Simulation Model

This simulation emulates a mobile client issuing multiresolution window queries
to a single server. Table 1 shows the main parameters of the model.

Table 1. Model Parameters and Default Settings

Parameter Description Value

ServerFrequency server clock frequency(MHz) 2800

ClientMips mobile client clock frequency(MHz) 996

DataSetSize the size of data set (MB) 455.125

ClientCache client side cache size (MB) 4

BandWidth wireless network bandwidth (Kbps) 19.2

We use a large-scale data set, Real Estates Layer, provided by the Environ-
mental Protection Agent, Queensland, Australia. This data set contains 398,464
polygons which are composed of 39,770,682 points. The simplest polygon has 4
points whereas the complex one has 275,531 points. For the experiment conve-
nience, we cast away the polygons having less than 15 points or more than 10,000
points. Our experiment data set contains 309,868 polygons which are composed
of 32,579,926 points. The average number of points of a polygon is 105. As the
storage of the data set is 455.125 MB in Bit map format, we choose 4MB as
the cache size, around 1% of the total data set size. The client has a 19.2 Kbps
wireless channel, which is standard for the mobile network.

5.4 Experiments and Results

The experiments are designed for two objectives. First, we studied the effect
of adding Assumable Exact Match to the traditional query processing. Then,
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we compared our MSC model with the traditional cache scheme. The primary
metric used was the response time, which was the elapsed time from MWQ
being issued till an acceptable query result presented in the mobile client. This is
a fairer metric than the response time for all data transmitted to the client, as
users may be satisfied with the approximate match. Other metrics, such as the
amount of queries in the remainder query set and the size of data transmitted,
were also used.

Assumable Exact Match. We first studied the impact of Assumable Exact
Match to traditional schemes. We choose the amount of queries in the remainder
query set, the accuracy of the query result and the size of transmission data
as performance metrics. Our experiment results are shown in figure 7, where
x-axis represents the value of λ, to illustrate the result more visually, y-axis
is the ratio of two schemes in the above three metrics respectively. In other
words, λ = 0 represents the traditional scheme. As it is the baseline of our
comparison, it is always 100% in y-axis. Figure 7 (b) shows the accuracy of the
query result. Because Assumable Exact Match ignores Negligible Windows in the
remainder query set, it might miss some query results. With the increase in λ,
we can see that the query accuracy continues decreasing because the restriction
of Negligible Window is looser correspondingly. However, as this is insignificant
even in the worse case with a large λ value at 4.0, the lowest accuracy of the
three patterns is still higher than 93%. It proves that Assumable Exact Match is
reliable on the query accuracy. An interesting phenomena is that the accuracy
drops slightly with lower λ whilst it drops faster with higher λ. That is because
the relationship between Negligible Window and λ is nonlinear. Figure 7 (c) plots
the results in the ratio of the size of data transmitted. It is apparent that with
the increasing of the λ, the size of data transmitted from the server is reduced.
That is because Assumable Exact Match avoids redundant transmission of data
that have existed in the client cache. The ratio in the amount of remainder
queries with corresponding λ is plotted in figure 7 (a). Obviously, the curve
plunges with a great downward trend at lower λ, while when λ approaches 4 the
amount almost does not decrease. Synthesizing these three figures together, we
can determine an optimal λ value according to the users’ requirements. When
λ = 1.2, the accuracy of query results is higher than 99%, which is generally
acceptable for uses, and the number of remainder sub-queries is reduced more
than 35%. This is close to our assumption that when the width or height of a
window is less than the average width or height of polygons in the data space,
it can be ignored without affecting the accuracy of query results. The λ value
may be affected slighting by the distribution, density and size of polygons. But
it is likely close to 1. In the following experiments, we set λ = 1.2.

Comparing those curves for three different query patterns, we can see that
the influences of our method on travel queries are greater than that of Zoom
in/Zoom out queries. This is because of the essential differences between pat-
terns. Compared to queries in Zoom in/Zoom out Pattern, those in Travel Pat-
tern are generally smaller in window size and higher at resolution, which more
easily produces Negligible Windows.
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Fig. 7. Assumable Exact Match vs. λ

Five Categories vs. Three Categories. Besides Assumable Exact Match,
Approximate Match also affects the performance of query processing. In this ex-
periment, we compare the performance of three categories with five categories.
Figure 8 (a) demonstrates the average response time of three different query
patterns based on three categories and five categories. It can be seen that the re-
sponse time of five categories is always less than that of three categories despite
of the query patterns used. However the reduction in response time of five cate-
gories is greater for travel queries, which is only 73% of that of three categories.
Whilst, the improvement of Zoom in/Zoom out pattern is only 9%. Moreover,
the average response time of queries in Zoom in/Zoom out pattern is 43 seconds,
which is much more than that of queries in Travel pattern with only 14 seconds.
That is because in Zoom in/Zoom out patterns, queries are usually executed to
explore interesting areas, the average data retrieved by each query is much more
than that in Travel pattern. Figure 8 (b) and (c) display the average transmis-
sion time and retrieval time. We can see that the data transmission time is far
more than retrieval time which implies that data transmission is the dominant
factor in wireless environments (Note the different scales of y axis). As we adopt
the low transmission bandwidth, 19.2 Kbps (the standard bandwidth of mobile
environments), the average response time of less than 1 minute is considered to
be acceptable to users.
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6 Conclusion

In this paper, we have analyzed the characteristics of multiresolution spatial data
and multiresolution window queries in mobile environments and proposed a new
approach to improve the performance of query processing in our MSC model
based on their characteristics. We refined the three categories in traditional
schemes to five detailed ones and propose new processing methods against each
of them. Our experiments, that were undertaken on a large real spatial data
set show that the application of Assumable Exact Match can greatly reduce the
amount of remainder sub-queries and the size of data transmission with very
little sacrifice on the query result quality. Together with Approximate Match, it
can reduce the response time by 27%. Our future work will focus on two parts:
one is to extend this approach to more complex spatial queries, the other is to
study the replacement policies.

Acknowledgment. The work reported in this paper has been partially sup-
ported by grant DP0345710 from the Australian Research Council.
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Abstract. We study the problem of answering spatial queries in databases where
objects exist with some uncertainty and they are associated with an existential
probability. The goal of a thresholding probabilistic spatial query is to retrieve the
objects that qualify the spatial predicates with probability that exceeds a thresh-
old. Accordingly, a ranking probabilistic spatial query selects the objects with
the highest probabilities to qualify the spatial predicates. We propose adapta-
tions of spatial access methods and search algorithms for probabilistic versions
of range queries and nearest neighbors and conduct an extensive experimental
study, which evaluates the effectiveness of proposed solutions.

1 Introduction

Conventional spatial databases manage objects located on a thematic map with 100%
certainty. In real-life cases, however, there may be uncertainty about the existence of
spatial objects or events. As an example, consider a satellite image, where interesting
objects (e.g., vessels) have been extracted (e.g., by a human expert or an image segmen-
tation tool). Due to low image resolution and/or color definitions, the data extractor may
not be 100% certain about whether a pixel formation corresponds to an actual object x;
a probability Ex could be assigned to x, reflecting the confidence of x’s existence. We
call such objects existentially uncertain, since uncertainty does not refer to their loca-
tions, but to their existence. As another example of existentially uncertain data, consider
emergency calls to a police calling center, which are dialed from various map locations.
Depending on various factors (e.g., crime-rate of the caller’s district, caller’s voice, op-
erator’s experience, etc.), for each call we can generate a spatial event associated with
a potential emergency and a probability that the emergency is actual. Existential prob-
abilities are also a natural way to model fuzzy classification [1]. In this case, the class
label of a particular object is uncertain; each class label takes an existential probability
and the sum of all probabilities is 1.

We can naturally define probabilistic versions of spatial queries that apply on col-
lections of existentially uncertain objects. We identify two types of such probabilistic
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spatial queries. Given a confidence threshold t, a thresholding query returns the objects
(or object pairs, in case of a join), which qualify some spatial predicates with probabil-
ity at least t. E.g., given a segmented satellite image with uncertain objects, consider a
port officer who wishes to find a set of vessels S such that every x ∈ S is the nearest
ship to the port with confidence at least 30%. Another example is a police station ask-
ing for the emergencies in its vicinity, which have high confidence. A ranking spatial
query returns the objects, which qualify the spatial predicates of the query, in order of
their confidence. Ranking queries can also be thresholded (in analogy to nearest neigh-
bor queries) by a parameter m. For instance, the port officer may want to retrieve the
m = 10 ships with the highest probability to be the nearest neighbor of the port.

Previous work on managing spatial data with uncertainty [20,15,12,21,5] focus on
locationally uncertain objects; i.e., objects which are known to exist, but their (uncer-
tain) location is described by a probability density function. The rationale is that the
managed objects are actual moving objects with unknown exact locations due to GPS
errors or transmission delays. On the other hand, there is no prior work on existentially
uncertain spatial data, to our knowledge. In this paper, we fill this gap by proposing
indexing and querying techniques for this important class of data. Our contributions are
summarized as follows:

– We identify the class of existentially uncertain spatial data and define two intuitive
probabilistic query types on them; thresholding and ranking queries.

– Assuming that the spatial attributes of the objects are indexed by 2-dimensional
indexes (i.e., R–trees), we propose search algorithms for probabilistic variants of
spatial range queries and nearest neighbor search.

– We show how extensions of R–trees that capture information about existential prob-
abilities in non-leaf node entries can be used to answer probabilistic queries at lower
I/O cost.

The rest of the paper is organized as follows. Section 2 provides background on
querying spatial objects with rigid or uncertain locations and extents. Section 3 defines
existentially uncertain data and query types on them. In Section 4 we study the eval-
uation of probabilistic spatial queries, when they are primarily indexed on their spa-
tial attributes, or when considering existential probability as an additional dimension.
Section 5 is a comprehensive experimental study for the performance of the proposed
methods. Section 6 discusses extensions of our methods for probabilistic versions of
complex query types and other (non-spatial) types of existentially uncertain data. Fi-
nally, Section 7 concludes the paper with a discussion about future work.

2 Background and Related Work

In this section, we review popular spatial query types and show how they can be pro-
cessed when the spatial objects are indexed by R–trees. In addition, we provide related
work on modeling and querying spatial objects of uncertain location and/or extent.

2.1 Spatial Query Processing

The most popular spatial access method is the R–tree [8], which indexes minimum
bounding rectangles (MBRs) of objects. R–trees can efficiently process main spatial
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Fig. 1. Spatial queries on R–trees

query types, including spatial range queries, nearest neighbor queries, and spatial joins.
Figure 1 shows a collection R = {p1, . . . , p8} of spatial objects (e.g., points) and an
R–tree structure that indexes them. Given a spatial region W , a spatial range query
retrieves from R the objects that intersect W . For instance, consider a range query
that asks for all objects within distance 3 from q, corresponding to the shaded area
in Figure 1. Starting from the root of the tree, the query is processed by recursively
following entries, having MBRs that intersect the query region. For instance, e1.MBR
does not intersect the query region, thus no object in the subtree pointed by e1 can
contain query results. On the other hand, e2 is followed by the search algorithm and the
points in the corresponding node are examined recursively to find the query result p7.

A nearest neighbor (NN) query takes as input a query object q and returns the clos-
est object in R to q. For instance, the nearest neighbor of q in Figure 1 is p7. A popular
generalization is the k-NN query, which returns the k closest objects to q, given a pos-
itive integer k. NN (and k-NN) queries can be efficiently processed if R is indexed by
an R–tree, using the best-first (BF) algorithm of [10]. A best-first priority queue PQ,
which organizes R–tree entries based on the (minimum) distance of their MBRs to q
is initialized with the root entries. The top entry of the queue e is then retrieved; if e
is a leaf node entry, the corresponding object is returned as the next nearest neighbor
(assuming objects with no extent). Otherwise, the node pointed by e is accessed and all
entries there are inserted to PQ. The process is repeated, until k objects are found. The
BF algorithm is shown [10] to be no worse in terms of I/O than any NN algorithm that
applies on the same R–tree. In order to find the NN of q in Figure 1, BF first inserts
to PQ entries e1, e2, e3, and their distances to q. Then the nearest entry e2 is retrieved
from PQ and objects p1, p7, p8 are inserted to PQ. The next nearest entry in PQ is p7,
which is the nearest neighbor of q. In Section 4, we will show how BF can be extended
to process probabilistic versions of nearest neighbor search on existentially uncertain
data.

2.2 Locationally Uncertain Spatial Data

Recently, there is an increasing interest on the modeling, indexing, and querying of ob-
jects with uncertain location and/or extent. For instance, consider a collection of moving
objects, whose positions are tracked by GPS devices. Exact locations are unknown due
to GPS errors and transmission delays; e.g., if the object is in motion its location might
be outdated when reaching the listening server. As a result, locations are approximated
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by probability density functions (PDFs), which integrate GPS error ranges and known
moving object velocities. For instance, the uncertainty of a location can be modeled by
a 2-dimensional Gaussian function, centered at the coordinates tracked from the GPS.

In [20], objects are assumed to move and send their positions to a centralized server.
Each object o knows its last recorded location lo; given a threshold θ, if the object finds
itself θ units away from lo, it sends an update with its new position. In this way, the
server knows that objects are no more than θ away from their recorded locations. Based
on this framework, a spatial region Uo (or line segment if the object’s movement is
constrained on a line) coupled with a PDF models the set of possible locations for each
object o. The probability for o to intersect a query range W can be computed by apply-
ing the PDF to the spatial intersection of Uo and W . In this way, we can compute the
result of a probabilistic spatial range query, which includes all pairs 〈o, Po〉, where Po

is the probability that object o intersects W , and Po > 0.
Note that the probability of an object to intersect a given query range is independent

of that of other objects, a fact that makes range query processing straightforward. On the
other hand, the probability of objects to be the nearest neighbor of a reference object
q is not independent. Probabilistic nearest neighbor search for locationally uncertain
data has been studied in [5]. The algorithm proposed there first computes fast the set of
objects with Po > 0, using their (indexed) uncertainty regions Uo only. Then for each
object o in this set it integrates its probability to be closer to q than any other object,
using the PDFs, over all possible locations of o. This process can be very expensive
for arbitrary PDFs, however, [5] shows how to optimize it for basic uncertainty regions
and PDFs. [19] indexes the trajectory of an object as a cylindrical volume around the
tracked polyline (e.g., by a GPS), capturing uncertainty up to a certain distance from
the polyline. A similar approach is followed in [15], where recorded trajectories are
converted to sequences of locations connected by elliptical volumes.

[21] also models the uncertain locations of spatial objects by (circular) uncertainty
regions and discuss how to process simple and aggregate spatial range queries using the
fuzzy representations. In addition, they provide a methodology that sets the maximum
precision error given a desired guaranteed uncertainty of the query results. [12] studies
the evaluation of spatial joins between two sets of objects, for the case where the object
extents are ‘floating’ according to uncertainty distance bounds. An extension of the R–
tree that captures uncertainty in directory node entries is proposed. Both the filter and
refinement steps of RJ are then adapted to process the join efficiently.

Cheng et al. [4,6] study a problem related to probabilistic spatial range queries. The
uncertain data are not spatial, but ordinal (e.g., temperature values recorded from sen-
sors). Due to measurement/sampling errors, an actual value is modeled by a range of
possible values and a PDF that captures their probability. [6] indexes such uncertain
data for efficient evaluation of probabilistic range queries (e.g., ‘find all temperatures
between 30◦F and 40◦F together with their probability to be in this range’). [4] classi-
fies queries on such data to entity-based queries asking for the set of objects satisfying
a query predicate and value-based queries asking for a PDF describing the distribution
of a query result when it is a single aggregate value (e.g., the sum of values, the max-
imum value, etc.). This work also proposes generic query evaluation techniques and
entropy-based measures for quantifying the quality of a probabilistic query result (e.g.,
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how certain it is). Finally, [11] studies the evaluation of queries over uncertain or sum-
marized data, where the user specifies thresholds (precision, recall, laxity) regarding the
quality (i.e., accuracy) of the desired result. The query is initially applied on the uncer-
tain data and based on how accurate the retrieved result is, some of the actual objects
may be probed, in order to refine the accuracy of the result and bring its quality to the
desired levels.

3 Existentially Uncertain Spatial Data

An object x is existentially uncertain if its existence is described by a probability Ex,
0 < Ex ≤ 1. We refer to Ex as existential probability or confidence of x. Note that
since we can have Ex = 1, we (trivially) regard a 100% known object x as existentially
uncertain. This allows us to model object collections which are mixtures of uncertain
and certain data. On the other hand, Ex = 0 corresponds to an object x that definitely
does not exist, so there is no need to store it in a database. Figure 2 shows a collection
R = {p1, p2, . . . , p8} of 8 existentially uncertain points. Next to each point label pi,
is its existential probability Epi enclosed in parentheses (e.g., Ep1 = 0.2). Given such
object collections, we are interested in answering spatial queries that take uncertainty
into account. We can easily define probabilistic versions of basic spatial query types:

Definition 1. Let R be a collection of existentially uncertain objects. A probabilistic
spatial range query takes as input a spatial region W and returns all (x, Px) pairs,
such that x ∈ R and x intersects W with probability Px > 0. A probabilistic nearest
neighbor query takes as input an object q and returns all (x, Px) pairs, such that x ∈ R
and x is the nearest neighbor of q, with probability Px > 0.

In the above definitions the output of a probabilistic query is a conventional query
result coupled with a positive probability that the item satisfies the query. The case
of probabilistic range queries is simple; Px = Ex for each object that qualifies the
spatial predicate. Consider, for instance, the shaded window W , shown in Figure 2. Two
objects p1 and p2 intersect W , with confidences Ep1 = 0.2 and Ep2 = 0.5, respectively.
Similar to locationally uncertain data, the probability of an object x to qualify a spatial
range query is independent of the locations and confidences of other objects.
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On the other hand, the probability of an object to be the nearest neighbor depends
on the locations and probabilities of other objects. Consider again Figure 2 and assume
that we want to find the potential nearest neighbor of q. The nearest point to q (i.e.,
p7) is the actual NN iff p7 exists. Thus, (p7, Ep7) is a query result. In order for the
second nearest point p6 to be the NN of q (i) p7 must not exist and (ii) p6 must exist.
Thus, (p6, (1 − Ep7) · Ep6) is another result. By continuing this way, we can explore
the whole set of points in R and assign a probability to each of them to be the NN of q.

This nearest neighbor query example not only shows the search complexity in un-
certain data, but also unveils that the result of probabilistic queries may be arbitrarily
large. For instance, the result of any NN query is as large as |R|, if Ex < 1 for all
x ∈ R. We can define practical versions of probabilistic queries with controlled out-
put by either thresholding the results of low probability to occur or ranking them and
selecting the most probable ones:

Definition 2. Let (τ, Pτ ) be an output item of a probabilistic spatial query Q. The
thresholding version of Q takes as additional input a threshold t, 0 < t ≤ 1 and re-
turns the results for which Pτ ≥ t. The ranking version of Q takes as additional input a
positive integer m and returns the m results with the highest Pτ .

For example, a thresholding range (window) query W with t = 0.6 on the objects
of Figure 2 returns ∅, whereas a ranking range query W with m = 1 returns (p2, 0.5).

4 Evaluation of Probabilistic Queries

Like spatial queries on exact data, probabilistic spatial queries can be efficiently pro-
cessed with the use of appropriate access methods. In this section, we explore alternative
indexing schemes and propose algorithms for probabilistic queries on them. We focus
on the most important spatial query types; namely, range queries and nearest neighbor
queries.

4.1 Algorithms for 2D R–Trees

The most straightforward way to index a set R of existentially uncertain spatial data is to
create a 2-dimensional R–tree on their spatial attribute. The confidences of the spatial
objects are stored together with their geometric representation or approximation (for
complex objects) at the leaves of the tree. We now study the evaluation of probabilistic
queries on top of this indexing scheme.

Range Queries. Probabilistic range queries can be easily processed in two steps; a
standard depth-first search algorithm is applied on the R–tree to retrieve the objects that
qualify the spatial predicate of the query. For each retrieved object x, Px = Ex. If the
query Q is a thresholding query, the threshold t is used to filter out objects with Px < t.1

If Q is a ranking query, a priority queue maintains the m results with the highest Px,
during search, and outputs them at the end of query processing.

1 Especially for thresholding range queries of very large thresholds t, a viable alternative could
be to use a B+–tree that indexes objects based on their probability to efficiently access the
objects x with Ex ≥ t and then filter them using the spatial query predicate.
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Nearest Neighbor Search. As discussed, NN search is more complex compared to
range queries, because the probability of an object to qualify the query depends on
the locations and confidences of other objects. Figure 3 shows an elegant and efficient
algorithm that computes the probability Px of x to be nearest neighbor of q, for all x
having Px > 0.

Algorithm PNN2D(q, 2D R–tree on R)
1. P first := 1; /*Prob. of no object before x*/
2. while P first > 0 and more objects in R do
3. x := next NN of q in R (use BF [10]);
4. Px := P first · Ex;
5. output (x,Px);
6. P first := P first · (1 − Ex);

Fig. 3. Probabilistic NN on a 2D R–tree

Algorithm PNN2D applies best-first NN-search [10] on the R–tree to incremen-
tally retrieve the nearest neighbors of q, without considering confidences. It also in-
crementally maintains a variable P first which captures the probability that no object
retrieved before the current object x is the actual NN. P first is equal to

∏
(1 − Ey),

for all objects y seen before x. Thus the probability of x to be the nearest neighbor of
q is P first · Ex. In the example of Figure 2, PNN2D gradually computes Pp7 = 0.1,
Pp6 = (1 − 0.1) · 0.1 = 0.09, Pp8 = (1 − 0.1)(1 − 0.1) · 0.2 = 0.162, Pp4 =
(1−0.1)(1−0.1)(1−0.2) ·0.5 = 0.324, etc. Note that all objects of R in this example
are retrieved and inserted to the response set. In other words, PNN2D does not termi-
nate, until an object x with Ex = 1 is found; if no such object exists, all objects have a
positive probability to be the nearest neighbor.

Thresholding and ranking. As discussed in Section 3, the user may want to restrict
the response set by thresholding or ranking. Figure 4 shows PTNN2D; the thresholding
version of PNN2D, which returns only the objects x with Px ≥ t. The only differences
with the non-thresholding version are the termination condition at line 2 and the filtering
of results having Px < t (line 5). As soon as P first < t, we know that the next objects,
even with 100% confidence cannot be the NN of q, so we can safely terminate. For
example, assume that we wish to retrieve the points in Figure 2 which are the NN of
q with probability at least t = 0.23. First p7 with Pp7 = Ep7 = 0.1 is retrieved,
which is filtered out at line 5 and P first is set to 0.9 ≥ t. Then we retrieve p6 with
Pp6 = P first · Ep6 = 0.09 (also disqualified) and set P first = 0.81 ≥ t. Next, p8 is
retrieved with Pp8 = 0.162 (also disqualified) and P first = 0.648 ≥ t. The next object
p4 satisfies Pp4 = 0.324 ≥ t, thus (p4, 0.324) is output. Then P first = 0.324 ≥ t and
we retrieve p3 with Pp3 = 0.0972 (disqualified). Finally, P first = 0.2268 < t and the
algorithm terminates having produced only (p4, 0.324).

PRNN2D (Figure 5), the ranking version of PNN2D, maintains a heap H of m
objects with the largest Px found so far. Let Pm be the m-th largest Px in H ; as soon as
P first < Pm, we know that the next objects, even with 100% confidence cannot be the
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in the set of m most probable NN of q, so we can safely terminate. For example, assume
that we wish to retrieve the point with the highest probability of being the NN of q in
Figure 2. PRNN2D progressively maintains the object with the highest Px. After each
of the first 4 object accesses, Pm becomes 0.1, 0.1, 0.162, and 0.324. The algorithm
terminates after the 4-th loop, when P first = 0.324 and Pm = Pp4 = 0.324; this
indicates that the next object can have Px at most Pp4 , thus p4 has the highest chances
among all objects to be the NN of q.

Algorithm PTNN2D(q, 2D R–tree on R, t)
1. P first := 1; /*Prob. of no object before x*/
2. while P first ≥ t and more objects in R do
3. x := next NN of q in R (use BF [10]);
4. Px := P first · Ex;
5. if Px ≥ t then output (x,Px);
6. P first := P first · (1 − Ex);

Fig. 4. Probabilistic NN on a 2D R–tree with thresholding

Algorithm PRNN2D(q, 2D R–tree on R, m)
1. P first := 1; /*Prob. of no object before x*/
2. H := ∅; /*heap of m objects with highest Px*/
3. P m := 0; /*Px of m-th object in H*/
4. while P first > P m and more objects in R do
5. x := next NN of q in R (use BF [10]);
6. Px := P first · Ex;
7. if Px > P m update H to include x;
8. P first := P first · (1 − Ex);
9. P m := m-th probability in H ;

Fig. 5. Probabilistic NN on a 2D R–tree with ranking

4.2 Using Augmented R–Trees to Improve Efficiency

We can enhance the efficiency of the probabilistic search algorithms, by augmenting
some statistical information to the R–tree directory node MBRs. A simple and intuitive
method is to store with each directory node entry e a value emaxE; the maximum Ex for
all objects x indexed under e. This value can be used to prune R–tree nodes, while pro-
cessing thresholding or ranking queries. Similar augmentation techniques are proposed
in [12,6] for locationally uncertain data.

Table 1 summarizes the conditions for pruning R-tree entries (and the correspond-
ing sub-trees) which do not point to any results, during range or NN thresholding and
ranking queries. For range queries, we can directly prune an entry e when: (i) e.MBR
does not intersect the query range, or (ii) its emaxE satisfies the condition in the table.
On the other hand, for NN search, a disqualified entry cannot be directly pruned, be-
cause the confidences of objects in the pointed subtree may be needed for computing
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the probabilities of objects with greater distances to q, but high enough probabilities to
be included in the result.

Let us assume for the moment that for each non-leaf entry e we know the exact
number of objects enum in its subtree. Figure 6 shows the thresholding NN algorithm for
the augmented 2D R-tree. BF is extended as follows. If a non-leaf entry e is de-heaped
for which P first · emaxE < t, the node where e points is not immediately loaded (as
in PTNN2D) but e is inserted into a set L of deleted entries. For objects retrieved later
from the Best-First heap, we use entries in L to compute Pmin

x and Pmax
x ; lower and

upper bounds for Px. If Pmin
x ≥ t, we know that x is definitely a result. If Pmax

x < t,
we know that x is definitely not a result. On the other hand, if Pmin

x < t ≤ Pmax
x

(Lines 6–16), we must refine the probability range for x. For this purpose, we pick an
entry e in L and load the corresponding node ne. If ne is a leaf node, we access the
objects e′ in ne. If q is nearer to e′ than x, P first is updated with the confidence of
e′. Otherwise, its confidence does not affect P first and we enqueue e′ to the Best-First
Queue. If ne is a non-leaf node, for each entry e′ ∈ ne, we enqueue e′ to the Best-First
Queue if d(q, e′) > d(q, x), or insert e′ into L otherwise. In either case, the probability
range of x shrinks. The process is repeated while the range covers t.

It remains to clarify how Pmin
x and Pmax

x for an object x are computed. Note that
L only contains entries whose minimum distance to q are smaller than d(q, x). For
an entry e in the list L, the confidence of each object in its subtree is in the range
(0, emaxE]. In addition, there exists at least one object in e whose confidence is exactly
emaxE. Thus, Pmin

x corresponds to the case where for all objects under all entries in
L are closer to q than x is and they all have the maximum possible confidences. Pmax

x

corresponds to the case, where for all e ∈ L, with maximum distance from q greater
than d(q, x), there is only one object with emaxE confidence (for all other objects under
e the confidence converges to 0):

Pmin
x = P first · Ex ·

∏
e∈L∧mindist(q,e)≤d(q,x)

(1 − emaxE)enum

(1)

Pmax
x = P first · Ex ·

∏
e∈L∧maxdist(q,e)≤d(q,x)

(1 − emaxE) (2)

In order to refine the probability range at Line 7 we must pick an entry e in L. We
can use several heuristics for determining which e to select: (i) the one with the largest
emaxE, (ii) the one with the largest emaxE ·enum, (iii) the one with the smallest d(q, e),
or (iv) by random. By experimentation, we found that heuristic (iii) achieves the best
results in most cases.

Table 1. Checking disqualified entries using augmented 2D R–trees

query type range search NN search

thresholding emaxE < t P first · emaxE < t

ranking emaxE ≤ P m P first · emaxE ≤ P m
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Algorithm PTNN2Daug(q, augmented 2D R–tree on R, t)
1. P first := 1; /*Prob. of no object before x*/
2. L := ∅; /*List of disqualified non-leaf entries*/
3. while P first ≥ t and more objects in R do
4. x := next NN of q in R (use BF [10]); /* during BF-search, each non-leaf entry

with P first · emaxE < t is removed from Best-First heap and inserted into L*/
5. compute P min

x and P max
x by using P first, L and Ex;

6. while P min
x < t ≤ P max

x do
7. pick an entry e in L;
8. remove the entry e from L, read node ne pointed by e;
9. for each entry e′ ∈ ne

10. if mindist(q, e′) > d(q,x) then
11. enheap e′ in the Best-First heap;
12. else if ne is a non-leaf node then
13. insert e′ into L;
14. else /*e′ is an object*/
15. P first := P first · (1 − Ee′);
16. compute P min

x and P max
x by using P first, L and Ex;

17. if P min
x ≥ t then output (x,P min

x ,P max
x );

18. P first := P first · (1 − Ex);

Fig. 6. Probabilistic NN on a augmented 2D R–tree with thresholding

So far, we have assumed that for each non-leaf entry e the number of objects enum

in its subtree is known (e.g., this information is augmented, or the tree is packed). We
can still apply the algorithm for the case where this information is not known, by using
an upper bound for enum: f level(e), where level(e) is the level of the entry e (leaves are
at level 0) and f is the maximum R–tree node fanout. This upper bound replaces enum

in Equation 1.
Let us now show the functionality of the PTNN2Daug algorithm by an example.

Consider the augmented R–tree of Figure 7 that indexes the pointset of Figure 2 and
assume that we want to find the points that are the NN of q with probability at least
t = 0.23. First, the entries in the root are enheaped in the Best-First heap. Next, the
entry e2 is dequeued. Since it disqualifies the query (P first · emaxE

2 = 0.2 < t),
it is inserted into the list L. Then, the entry e3 is dequeued. Its objects p4, p5, p6 are
enheaped in the Best-First Queue. The nearest object p6 is dequeued. From Equations
1 and 2, we derive a probability range for Pp6 by using P first and L. p6 is disqualified
as Pmax

p6
= Ep6 = 0.1 < t. Then, P first = 0.9 ≥ t and we retrieve p4. Since

Pmin
p4

= 0.9 · 0.5 · (1 − 0.2)3 = 0.2304 ≥ t, p4 is a result. Next, P first = 0.45 ≥ t
and the next entry retrieved from the priority queue of the BF algorithm is e1. We do
not access the node pointed by e1, since we know that for each object x indexed under
e1, Px ≤ emaxE

1 ·P first = 0.225 < t. Thus, e1 is inserted into L. Next, p5 is dequeued
and discarded as Pmax

p5
= 0.45 · 0.5 · (1 − 0.2) · (1 − 0.5) < t. Now, the Best-First

heap becomes empty and the algorithm terminates. Note that the PTNN2D algorithm
accesses all nodes of the tree in this example, whereas PTNN2Daug saves two leaf node
accesses.
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Fig. 7. Example of augmented 2D R–tree

The ranking NN algorithm that operates on the augmented R–tree is shown in Figure
8. It has several differences from the thresholding NN algorithm. A heap H is employed
to organize objects o by their Pmin

o . Pm denotes the m-th highest Pmin
o in the heap.

Observe that more complicated techniques are used for updating H , as the accesses to
L may affect the order of objects in H . Each object o in H maintains P first

o , which
is the value of P first when o is enheaped (line 21). At Lines 18–19, P first

o (for some
entries in H) is updated for each object e′ found no further than o from q. The new
P first

o value is used to update Pmin
o and potentially the order of objects in H at lines

23–24. Note that H may store more than m entries, since there may be objects o in
it satisfying Pmax

o ≥ Pm ≥ Pmin
o . However, entries o are removed from H once

Pmax
o < Pm. The algorithm does not need to access any more objects from the Best-

First heap as soon as P first < Pm. In case H has more than m objects at that point,
we need to refine the probability ranges of the objects in H (by processing entries in
L) until we have the best m objects. In this case, entries e are removed from L once
mindist(q, e) > max{d(q, o) : o ∈ H} because such entries cannot be used to refine
the probability ranges of the objects in H .

We provide some insight for the space/time complexity of thresholding NN queries
for the augmented tree approach. The worst case is that, for all disqualified entries (if
any), their child nodes are accessed for refining the probability range of the objects
seen. Therefore, the value of k estimated in Section 4.1 can be used as the upper bound
in this case. The list L stores disqualified non-leaf entries in the tree and the cost of
refining the probability range of an object is directly proportional to the size of L. Thus,
the space/time complexity depends on the size of L. As the minimum distance of all
entries in L from the query point is at most the distance of the last object seen (in BF-
search), the maximum size of L can be estimated by using the value of k. In practice,
the average size of L is quite small (10–100) and the space/time required is much less
than that in the worst case.

4.3 Evaluation of Probabilistic Queries Using 3D R–Trees

An alternative method for indexing existentially uncertain data is to model the confi-
dences Ex of objects x as an additional dimension and use a 3D R–tree to index the
objects. Now, each non-leaf entry e in the tree, apart from the spatial dimensions, has
a range [eminE , emaxE ] within which the existential probabilities of all objects in its
subtree fall. Since every entry e still stores an emaxE, the methods discussed in Section
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Algorithm PRNN2Daug(q, augmented 2D R–tree on R, m)
1. P first := 1; /*Prob. of no object before x*/
2. L := ∅; /*List of disqualified non-leaf entries*/
3. H := ∅; /*heap of objects, organized by P min

o */
4. P m := 0; /*P min of m-th object in H*/
5. while P first > P m and more objects in R do
6. x := next NN of q in R (use BF [10]); /* during BF-search, each non-leaf entry

with P first · emaxE < t is removed from Best-First heap and inserted into L*/
7. compute P min

x and P max
x by using P first, L and Ex;

8. while P min
x < P m ≤ P max

x do
9. pick an entry e in L;
10. remove the entry e from L, read node ne pointed by e;
11. for each entry e′ ∈ ne

12. if mindist(q, e′) > d(q,x) then
13. enheap e′ on Best-First heap;
14. else if ne is a non-leaf node then
15. insert e′ into L;
16. else /*e′ is an object*/
17. P first := P first · (1 − Ee′);
18. for each entry o ∈ H such that d(q, e′) ≤ d(q, o)

19. P first
o := P first

o · (1 − Ee′);
20. compute P min

x and P max
x by using P first, L and Ex;

21. if P min
x > P m then enheap(H ,(x,P first

x :=P first,P min
x ,P max

x ));
22. if H is changed then
23. recompute, for each o ∈ H , P min

o and P max
o by using P first

o , L and Eo;
24. P m := m-th P min in H ;
25. remove entries o from H with P max

o < P m;
26. P first := P first · (1 − Ex);
27. while |H | > m and |L| > 0 do
28. repeat Lines 9–19;
29. repeat Lines 22–25;
30. remove e from L with mindist(q, e) > max{d(q, o) : o ∈ H};

Fig. 8. Probabilistic NN on a augmented 2D R–tree with ranking

4.2 for the augmented 2D R–tree can be directly applied for the 3D R–tree. Moreover,
we can utilize eminE to derive tighter probability ranges:

P min
x = P first · Ex ·

∏
e∈L∧mindist(q,e)≤d(q,x)

(1 − eminE)(1 − emaxE)(e
num−1) (3)

P max
x = P first · Ex ·

∏
e∈L∧maxdist(q,e)≤d(q,x)

(1 − eminE)(e
num−1)(1 − emaxE) (4)

If the exact number enum of object in the subtree pointed by e is not known, we can
use the fanout f and the minimum node utilization (0.4 for R*–trees) and replace enum

by f level(e) in Equation 3 and by (0.4 · f)level(e) in Equation 4.
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5 Experimental Evaluation

In this section, we evaluate the efficiency of the proposed techniques. All algorithms
were implemented in C++. Experiments were run on a PC with a Pentium 4 CPU of
2.3GHz. In all experiments, the page size was set to 1Kb, unless otherwise stated. No
memory buffers are used for caching disk pages between different queries; the number
of node accesses directly reflects the I/O cost.

We compare the performances of five indexes and their corresponding algorithms
for thresholding and ranking range queries and nearest neighbor search. The five in-
dexes are (i) a simple 2D R–tree (denoted by 2D), (ii) a 2D R–tree, where each non-leaf
entry e is augmented with emaxE (denoted by 2D AUG), (iii) a 2D R–tree, where each
non-leaf entry e is augmented with emaxE and enum (i.e., the number of objects in the
subtree indexed by it), denoted by 2D AUG COUNT, (iv) a 3D R–tree (denoted by 3D),
and (v) a 3D R–tree, where each non-leaf entry e is augmented with enum (denoted
by 3D COUNT). When comparing the indexes note that (i) captures minimum informa-
tion in non-leaf entries and occupies the least space, whereas index (v) is at the other
end (entries capture maximum information and the index occupies the most space). For
each experiment, the measured I/O cost is the average cost of 20 queries with the same
parameter values (but with different locations randomly chosen from the dataset).

5.1 Description of Data

For our experiments, we used various real datasets of different sizes and object distri-
butions, described in Table 2. The datasets TG and SF are obtained from [2] while the
other datasets are obtained from the R–tree Portal (www.rtreeportal.org).

Due to the lack of a real spatial dataset with objects having existential probabilities,
we generated probabilities for the objects, using the following methodology. First we
generated K = 20 anchor points randomly on the map, following the data distribution.
These points model locations around which there is large certainty for the existence of
data (e.g., they could be antennas of receivers close to which information is accurate).
For each point x of the dataset, we (i) find the closest anchor a and (ii) assign an ex-
istential probability proportional to 1

(c·dist(x,a))θ . Thus, the distribution of probabilities
around the anchors is a Zipfian one. The probabilities are normalized (using c) with
respect to the maximum probability (1) corresponding to the anchor point. By changing
θ (default value: 1) we can control the skew.

5.2 Experimental Results

Table 2 shows the performances of the five indexes for thresholding and ranking NN
queries on different datasets. We fix t = 0.002 for thresholding NN queries and m = 10
for ranking NN queries.2 Observe that the augmented and 3D R–trees perform better
than the 2D R–tree, even though they are larger in size. The algorithms of Figures 6 and
8 manage to prune a large number of nodes that do not contain query results, which are

2 A small value for t is necessary in order to observe difference between the indexes. Larger
values for t will be tested in a subsequent experiment.
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otherwise visited in the simple 2D R–tree index. The cost of 2D R–tree variants (i.e.,
methods {2D, 2D AUG, 2D AUG COUNT} does not change much with the database size.
By the analysis in Section 4.1, the number of points to be examined is independent of
the data size for 2D R–trees. The analysis in [18] shows that the cost increases slowly as
the data size increases. On the other hand, the I/O costs of 3D R–tree variants increase
slowly as the database size increases. This is due to the fact that 3D R–trees group
entries using both spatial and probability dimensions, but the query algorithms mainly
search for objects based on spatial dimensions.

Table 2. I/O cost of thresholding/ranking NN on different datasets, t = 0.002, m = 10

Dataset Size 2D 2D AUG 2D AUG COUNT 3D 3D COUNT

(TG) San Joaquin roads 18623 122.7/116.7 45.2/41.0 37.3/34.2 36.5/32.9 35.4/31.6
(GR) Greece roads 23268 115.3/108.2 40.5/34.8 34.2/29.8 37.0/31.9 32.8/28.5
(LB) Long Beach roads 53145 107.5/100.1 37.3/32.7 32.4/28.2 44.7/41.1 42.0/38.0
(LA) LA streets 131461 135.4/132.3 43.1/42.3 38.1/36.9 48.4/47.4 45.6/45.2
(SF) San Francisco roads 174956 131.5/129.3 42.1/42.4 37.0/37.1 46.0/45.6 41.4/41.7
(TS) Tiger streams 194971 130.7/129.2 40.5/40.4 36.0/35.8 50.6/48.6 45.4/44.7

Figure 9 shows the I/O performance of the indexes for thresholding and ranking
queries on the SF dataset. Methods {2D AUG, 2D AUG COUNT, 3D, 3D COUNT} per-
form much better than the simple 2D R–tree for all tested values of t and m. For
t ≥ 0.02, less than 5 accesses are required to find the query result when using the
four advanced indexes and the algorithms of Figures 6 and 8. When comparing these
indexes, we observe that augmenting enum is not a good idea; using the fanout f gives
accurate enough estimations of Pmin and Pmax. Thus the extra space (translated to
extra accesses) required for augmenting enum does not pay off. In addition, the aug-
mented R–tree performs better than the 3D R–tree. First, the 3D R–tree occupies more
space (the capacity of each non-leaf node is smaller) and results in more accesses, since
the extra space is not compensated by tighter Pmin and Pmax (see Equations 3 and 4).
Second, since the 3D R–tree groups entries to nodes using the existential probabilities
as well as spatial dimensions, it does not achieve as good partitionings as the one using
the spatial dimensions only; however, search is performed primarily using the spatial
dimensions.

In the next experiment, we compare the performances of the indexes by varying the
skewness θ of existential probability distribution of the objects (using the SF dataset).
Figure 10 shows the experimental results for this case. We fix t = 0.002 and m = 10
for thresholding and ranking queries, respectively. The cost of the 2D R–tree increases
much faster than the other trees when θ increases. For large θ there are a few, high
probabilities around the anchors and the rest are very small. Thus, most points have
low existential probabilities and the distances of the results from the query increase,
causing an increase in the cost of 2D; only spatial information is used in the algorithms
of Figures 4 and 5. On the other hand, the advanced NN algorithms on the augmented
and 3D structures manage to prune disqualified directory nodes early.
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Fig. 10. Queries on the SF dataset, varying θ

We also study the effect of page size on the performances of the indexes. As Figure
11 shows, the I/O costs of all indexes are inversely proportional to the page size. This
is expected, due to the decrease of the number of nodes and heights of the trees.

Finally, we examine the performances of range queries on the indexes, using the SF
dataset. For range queries, we use an additional parameter len, which is the extent of
the query window in each dimension. The default value of len is set to 5% of values
range (domain) at each dimension. Figure 12a and 12b show the cost of thresholding
and ranking queries as a function of t and m respectively. Except for the simple 2D R–
tree, all indexes follow similar trends as in probabilistic nearest neighbor queries. The
cost of range queries on the 2D R–tree is independent of t and m as all points within the
spatial range are retrieved. Observe that for very small t, the augmented and 3D indexes
may perform worse than the 2D R–tree because (i) they prune no or very few directory
entries that have lower emaxE than t and (ii) they are larger in size than the simple 2D
R–tree. Similarly, Pm decreases with m, affecting the costs of the advanced methods.
The 3D R–tree performs worse than the augmented 2D R–tree also for range queries.
Figure 12c shows the cost of thresholding queries as a function of len, at t = 0.002.
As expected, the costs of all methods increase linearly with len2. In summary, in most
cases of probabilistic NN and range queries, a 2D R–tree with augmented emaxE non-
leaf entries achieves the best performance.
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6 Discussion

We have defined and studied in detail probabilistic range and nearest neighbor queries
on existentially uncertain spatial data. In this section, we briefly discuss probabilistic
versions of other spatial query types and queries on other (non-spatial) existentially
uncertain data.

Extended query types. Given two spatial datasets R and S, a probabilistic spatial join
returns all (〈r, s〉, Pr∧s) pairs, such that r ∈ R, s ∈ S, and r intersects s with proba-
bility Pr∧s > 0. We can easily define thresholding and ranking versions of this query.
Extending the well-known R–tree join algorithm [3] for probabilistic joins is straight-
forward, because Pr∧s depends solely on Er and Es (i.e., Pr∧s = Er∧s = Er ·Es) and
is independent of the probabilities of other pairs. Given two spatial datasets R and S and
a positive integer k, a closest pairs (CP) query [9,7] returns from the Cartesian product
R × S the k 〈r, s〉 object pairs with the smallest distance. The probabilistic version of
a CP query is challenging, due to the interdependence of the existential probabilities of
qualifying pairs. The problem can be solved by extending the techniques for probabilis-
tic NN queries and it is left for future work. Other interesting spatial query types for
which we can define probabilistic versions are aggregate nearest neighbor queries [13],
skyline queries [14], and reverse nearest neighbor search [17].
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Spatio-temporal and ordinal data. Our methods can be easily extended for the case,
where the objects also carry temporal attributes, i.e., they are spatio-temporal. In this
case, the queries also include the time dimension e.g.,‘find the most probable nearest
neighbor at some moment in the whole past history’. R–trees that index object tra-
jectories (e.g., [16]) can be used by our algorithms for searching. The temporal range
may also be restricted to some timestamps or time interval (e.g.,‘find the most probable
nearest neighbor at some moment in the whole past history’). Finally, although our dis-
cussion so far has been on spatial (or spatio-temporal) data, the queries and solutions
can be directly refer to ordinal data of any dimensionality (e.g., uncertain transmissions
of combinations of measures, like temperature values).

7 Conclusions

In this paper, we presented the interesting problem of evaluating spatial queries for ex-
istentially uncertain data. Variants of common spatial queries, like range and nearest
neighbor search, have probabilistic versions for this data model. We proposed algo-
rithms for these probabilistic versions and several extensions of spatial access methods
(i.e., R–trees) where these algorithms are applied. In addition, we discuss how more
complex spatial queries can be processed in our framework. Finally, we conducted ex-
tensive experiments to evaluate the search algorithms and the corresponding spatial
indexes. In most of the tested cases, the data structure that performs best is a R–tree,
where non-leaf entries are augmented with maximum existential probabilities of the
sub-tree they point at. In the future, we plan to study in detail more advanced query
types and extend our methods to apply on data that are both existentially and location-
ally uncertain, as well as results of fuzzy classifiers [1].
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Abstract. Topological predicates are an important element of database
systems that allow manipulation of spatial data. Based on the necessity
for such systems to handle uncertainty, we introduce a general mech-
anism that identifies vague topological predicates. This definition forms
part of a formal data model referred to as VASA (Vague Spatial Algebra),
in which the data types vague regions, vague lines, and vague points are
defined in terms of existing definition of crisp spatial data types. Follow-
ing this trend, the mechanism presented here identifies vague topological
predicates on the basis of well defined crisp topological predicates. An
example implementation of the mechanism for vague regions is given.

1 Introduction

Most, if not all, man-made spatial objects such as buildings, roads, pipelines and
even political divisions have a clear boundary and extension. The location of the
Eiffel tower is well known and certain, the path of the Interamerican highway
is well established and North Dakota has certainly defined boundaries and ex-
tension. These are in our words, crisp spatial objects. Current spatial database
models and GIS successfully implement such object types but lack modeling and
representation power when handling objects with not such crispness.

Spatial vagueness or indeterminacy is an inherent property of many objects
that are handled in the spatial database context. Point locations may not be
exactly known, paths or trails might fade and become uncertain at intervals.
The boundary of regions might not be certainly known or simply not be as
sharp as that of a building or a highway. Take as examples lakes (and rivers)
whose extension (and path) depends on pluvial activity, or take the location
of oil fields that in many cases can only be guessed. This inherent uncertainty
brings to light the necessity of more comprehensive models that are able to cope
with what we will refer to as vague spatial objects.

Correctly handling spatial data involves more than a good definition of the
data types. It also involves defining a complete set of operations and predicates
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that make the data objects useful in their context. Topological predicates are
proven to be very important in spatial data applications. In the case of crisp
spatial objects, topological predicates are well studied and plenty of approaches
exist for their proper definition. But this is not the case for vague spatial objects
where a well defined set of topological predicates does not exist currently. The
goal of this paper is to provide a comprehensive model for identifying topological
predicates between vague spatial objects. The predicates to be identified have
the added complexity of dealing with the vagueness present in the objects them-
selves, thus making the predicates vague in nature. The model we present here
enhances the results of preliminary work that has been part of our own research
as part of the VASA (Vague Spatial Algebra) project. The data types used are
our own vague spatial data types [5] and include vague points, vague lines and,
vague regions. A major benefit of vague spatial objects is that their is definition
expressed in terms of crisp spatial operations so that they represent executable
specifications. The same benefits are sought for topological predicates, and so we
define them for vague spatial objects in terms of the already defined topological
predicates for crisp spatial objects.

Section 2 presents related work. Section 3 introduces our vague spatial data
types upon which the topological predicates are identified. Our enhanced general
mechanism for identifying vague topological predicates is explained in Section 4
where we also draw a comparison to our previous approach. In Section 5 we
introduce a case study based on the implementation of the identification mecha-
nism on vague regions. Section 6 introduces the notions necessary to implement
the newly identified predicates as part of common database query languages.
Finally, Section 7 draws some conclusions and addresses future work.

2 Related Work

We refer to spatial vagueness as a natural feature of a spatial object. Vagueness
defines object properties as uncertain or indeterminate such that it is not possible
to assure whether certain components belong to the object or not. Three main
alternatives have been proposed as general design methods. Models based on fuzzy
sets (e.g., [15]) are all based on fuzzy set theory, allow a fine-grained modeling
of vague spatial objects but are computationally rather expensive with respect
to data structures and algorithms. Models based on rough sets (e.g., [16]) work
with lower and upper approximations of spatial objects, which is similar to our
approach. But the formal background is rather different. Models based on exact
spatial objects (e.g., [9,10]) extend data models, type systems, and concepts for
crisp spatial objects to vague spatial objects. A discussion of the differences of
these approaches can be found in [15]. Vague spatial data types [5,7] leveraged
in this paper belong to the latter category.

The basis of the latter category are crisp spatial data types (see [14] for a
survey). We assume a very general definition of these data types and call them
complex. Point objects are considered to be finite collection of points. Lines
are assumed to be finite collections of disjoint curves which may meet in single
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endpoints. Regions are finite collections of disjoint faces except for single common
points, and faces may have disjoint holes except for single common points.

Much research on spatial databases has been devoted to topological predi-
cates (like overlap, meet, or disjoint) on crisp spatial data types. The two main
solution approaches employ either spatial logic [1] or point set theory and point
set topology [12]. Our definition of vague topological predicates rests on a gen-
eralization [8,13] of the latter approach (the well known 9-intersection model
[12]) in the sense that topological predicates are defined on crisp complex spa-
tial objects and not on simple spatial objects as in the other approaches. The
difference between considering simple and complex spatial objects is important,
for example, the number of topological predicates for simple regions is 8, whereas
the number for complex regions is 33. Topological predicates for simplified vague
regions have already been studied in [9,10]. These approaches, although already
quite sophisticated, suffer from two main drawbacks. First, the crisp regions
used are simple regions, i.e., they do not allow holes and only consist of a single
component. Second, the vague regions defined are regions with “broad bound-
aries”. That is, one crisp simple region, which represents the area that definitely
belongs to the vague region, is located in another larger crisp simple region.
The geometric difference between the larger crisp region and the smaller one is
considered to be the broad, vague boundary. Operations on such simple vague
spatial objects suffer greatly from a lack of closure properties and expressiveness,
which are part of our goals. The simple approach they follow is insufficient for
our definition and goals, hence we look to define a general method with more
expressive power and that is still usable. The works in [10] and [9] have identi-
fied 44 and 46 different topological relationships, respectively. The results from
these two previous approaches are not applicable to our own vague spatial data
types because they represent only the topological relationships between so-called
concentric regions (i.e.the kernel is always surrounded by the conjecture) that
belong to a special case of our vague regions under which not all vague region
topological relationships are covered. The previous models are only defined for
vague regions and not for vague points and vague lines.

3 Vague Spatial Data Types

To motivate our definition of vague spatial data types, we illustrate an ecological
scenario that is to be considered for the development of a nature preservation
program. The program developers need to consider (among many other data)
the extension of lakes, the paths followed by rivers, and the refuges of animals
as well as their roaming routes. We can notice how the lake and river data
can be uncertain due to rain activity within a time period. Roaming routes of
some species might be only approximate as these can change slightly or it is not
possible to record the exact path for all cases. Animal refuges might be uncertain
due to their underground or cave nature. All these are examples of what we
refer to as vague spatial objects. The animal refuge locations are specifically
modeled as a vague point object where the precisely known locations are called
the kernel point object and the assumed locations are denoted as the conjecture
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Fig. 1. Examples of a (complex) vague point object (a), a (complex) vague line object
(b), and a (complex) vague region object (c). Each collection of components forms a
single vague object

point object. The roaming routes and river paths can be modeled as vague line
objects. Some routes, called kernel line objects, have been definitely identified
and are certainly part of the river or route. Other routes can only be assumed and
these are denoted as conjecture line objects. Knowledge about extension of lakes
and other areas within the ecological system can be modeled similarly with vague
regions formed by kernel and conjecture parts. Figure 1 gives some illustrations.
Grey shaded areas, straight lines, and grey points indicate kernel parts; areas
with white interiors, dashed lines, and white points refer to conjecture parts.

For the definition of vague points, vague lines, and vague regions we leverage
the well known data types point for crisp points, line for crisp lines, and region
for crisp regions [13]. These types are closed under the geometric set operations
union (⊕ : α×α→ α), intersection (⊗ : α×α→ α), difference (� : α×α→ α),
and complement (∼: α → α). The use of an exact model for constructing vague
spatial data types leads to the benefit that existing definitions, techniques, data
structures and algorithms need not be redeveloped but can simply be used or in
the worst case slightly modified or extended as necessary.

A vague spatial object is described by a pair of two crisp complex spatial
objects. Hence, the same generic definition is applicable to all vague spatial data
types. That is, the extension of a crisp spatial data type to a corresponding
vague type is given by a type constructor v as follows:

v(α) = α× α ∀α ∈ {point, line, region}

This means that for α = region we obtain v(region) = region × region, which
we also name vregion. Accordingly, the data types vline and vpoint are defined.
For a vague spatial object w = (wk, wc) ∈ v(α), the first crisp spatial object wk,
called the kernel part, describes the determinate component of w, that is, the
component that definitely belongs to the vague object. The second crisp spatial
object wc, called the conjecture part, describes the vague component of w, that
is, the component from which we cannot say with any certainty whether it or
subparts of it belong to the vague object or not. Maybe the conjecture part or
subparts of it belong to the vague object, maybe this is not the case. Since the
kernel part and the conjecture part of the same vague spatial object may not
share interior points, we define the following as a more general constraint from
the original defined in [5]:
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∀α ∈ {point, line, region} ∀w = (wk, wc) ∈ v(α) : w◦
k ∩ w◦

c = ∅

More details, in particular about the semantics of vague spatial data types
as well as the definition of vague spatial operations, can be found in [5].

4 General Mechanism for Vague Topological Predicates

The approach we present here is based on three main goals. The first goal is
to develop a formalism that works independently of the data types to which it
is applied. It is desired that the formalism can be applied to two vague points
equally as it can be applied to two vague lines or to the combination of a vague
line and a vague region. Second, we consider important to make use of existing
definitions of topological predicates for crisp spatial objects. This goal is a direct
result from the definition of vague spatial objects. As noted in Section 3, vague
spatial objects are constructed from crisp spatial objects. It is only consistent
to let vague topological predicates be constructed from existing crisp topologi-
cal predicates (see Figure 2). The final goal is to benefit from implementation
advantages in such a way that VASA as a whole can make use of a preexisting
crisp spatial algebra implementation as a simple executable specification.

The general method we propose, characterizes vague topological predicates
on the basis of conjunctions of crisp topological predicates. The crisp topolog-
ical predicates used as the underlying model are those defined in [13]. For two
vague spatial object A, B, we evaluate the conjunction of the crisp topological
predicates in the relationships between (Ak, Bk), (Ak ⊕ Ac, Bk), (Ak, Bk ⊕ Bc),
and (Ak⊕Ac, Bk⊕Bc). These relationships represent the smallest objects which
certainly exist (Ak, Bk), to the biggest possible objects represented with all un-
certain features (Ak ⊕ Ac, Bk ⊕ Bc). Given α, β ∈ {point , line, region}, let Tα,β

be the set of crisp topological predicates between the types α and β. To identify
the vague topological predicates for type-combination v(α)×v(β) we analyze all
possible |Tα,β|4 combinations for the four relationships noted above. It is possible

Fig. 2. Relations between crisp and vague spatial data models



Topological Predicates Between Vague Spatial Objects 423

VSDT
constructor

{point, line,
region}

{vpoint, vline,
vregion} validation of

permutations

cancellation rules

pre-existing model of
crisp topological

predicates

vague
topological
predicates

clustering
of vague

topological
predicates

clustering rules

pre-existing model
of crisp topological

predicates

clustered vague
topological
predicates

general mechanism for identifying vague
topological predicates

Fig. 3. General Mechanism for Identifying Vague Topological Predicates

that not all combinations are valid due to contradictions between the relation-
ships so we proceed to apply cancellation rules that validate each combination
(see Figure 3). The cancellation rules are defined on the basis of the point set
intersections that define the crisp topological relationships between each of the
components involved. This means that we do not refer to the crisp topological
predicate by name, but rather specify more general cancellation rules by simply
analyzing their point set intersections. Once all invalid combinations have been
eliminated, we can refer to the remaining combinations as the vague topological
predicates for v(α)× v(β).

It is likely that the identified vague topological predicates will constitute a
large set that could prove difficult to handle for the user. To provide for an easier
management of such large sets of predicates we implement a step of what we call
clustering. At this step, we define clustering rules which are in charge of grouping
single vague topological predicates (as identified in the previous step) into mean-
ingful clusters. Due to the involvement of the conjecture in the definition of the
topological relationship, it becomes insufficient for the predicates representing
these relationships to simply result in either true or false. As previously proposed
in [6], each cluster results in a new data type vbool = {true, false, maybe} that
extends the regular boolean type and allows handling the inherent uncertainty.
This three-valued logic can be adapted to boolean logic through a simple con-
version that extends the set of available predicates and is detailed in Section 6.

The method we just detailed, is similar to the preliminary approach we ex-
pose in [6]. Based on the experiences learned from that preliminary work, we
identified two key features that make our current approach better. First, we
only take into account four combinations instead of the nine used in the prelimi-
nary approach. We eliminated all relationships from the preliminary approach in
which the conjecture of an object might be considered alone without the kernel.
The reasoning behind this change rests on the fact that in no situation the con-
jecture of an object will be considered without considering the kernel. From the
definition of vague spatial objects, the kernel is always part of the object and the
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conjecture might not be part of it. This reasoning relates to the rough set idea
of lower approximation (Ak, A ∈ v(α)) and an upper approximation (Ak ⊕Ac),
noticing that no consideration of (Ak ⊕ Ac − Ak = Ac) is made. The second
key feature improvement lies in the specification of cancellation and clustering
rules. In the preliminary approach, we specified cancellation and clustering rules
on the basis of the named crisp topological predicates. This was possible with
a small set of easily identified predicates like those for complex points. When
dealing with a large set of crisp topological predicates, such as the 33 predicates
between complex regions and the 82 predicates between complex lines, it be-
comes unfeasible to understand the semantics of each unnamed crisp topological
predicate and define the rules this way. This is why the rules are now specified on
the basis of the point set intersections that represent the individual topological
predicates. This removes the necessity of dealing with the large unnamed set,
which reduces the probability for errors, and simplifies the set of rules.

We move on in the next section to show how the approach can be imple-
mented. This is done by using a case study involving the identification of topo-
logical predicates between vague regions.

5 Topological Predicates Between Vague Regions

In this section we use vague regions to illustrate the mechanism described in
Section 4. The example implementation shown here identifies the topological
predicates between two vague region objects. The underlying crisp topological
predicates used are those defined in [13] for two complex crisp regions. A sum-
mary of such definition follows.

5.1 Topological Predicates Between Complex Spatial Objects

Originally described in [4,12], the 9-intersection model (4-intersection model pre-
viously), defines topological predicates between simple regions on the basis of
the intersection between the parts (interior, boundary, exterior) of the regions
involved. Later the model is extended in [3] to account for simple regions with
holes and in [11] to work with regions made up of multiple components. Finally,
in [13], a comprehensive definition of topological predicates for complex regions
is proposed. Complex regions can contain both holes and multiple components.
The proposed method works by simply applying the 9-intersection model to the
point sets belonging to the complex regions.

The topological predicate definition from [13] initially analyzes all possible
3× 3 matrices (for a total of 512 matrices). Each matrix entry contains either a
1 or a 0 that represent whether that intersection is non-empty or empty respec-
tively. A type-combination dependent set of constraint rules is applied to the
original set of 512 matrices. The constraint rules are in charge of eliminating all
non-constraint satisfying matrices that represent invalid scenes. Once all invalid
matrices are eliminated, the remaining ones are considered the topological pred-
icates between objects of the type-combination in question. For the purpose of



Topological Predicates Between Vague Spatial Objects 425

this case study it is only necessary to consider complex regions, but the refer-
ence identifies topological predicates between all type combinations of complex
points, complex lines and complex regions.

In the case of complex regions, a total of nine constraint rules result in
33 possible topological predicates between two complex regions. Such a large
number of predicates presents problems of manageability for the user. This is
the reason for the clustering of topological predicates presented in [13]. So-called
topological cluster predicates are defined by means of clustering rules that are
some kind of relaxed constraint rules. The clustering rules define a cluster by
taking into account not all the nine intersections in the matrix causing a slight
generalization that results in possibly more than one of the original predicates
to form part of a single cluster. The authors define eight clustered predicates
with semantics similar to the original topological predicates for simple regions
identified by the 9-intersection model.

5.2 Cancellation Rules

Now we proceed to identify the topological predicates between vague regions.
The first step is the definition of the cancellation rules that eliminate all con-
tradictory information within the combinations explored as part of the general
mechanism detailed in Section 4. The underlying set of topological predicates
used is, as mentioned before, as shown in [13] and identifies 33 topological predi-
cates between complex regions. We originally deal with a total of 334 = 1185921
combinations. To make the formal rules more compact, we make use of variables
w ∈ {Bk, Bk ⊕Bc}, v ∈ {Ak, Ak ⊕Ac}.

Lemma 1. Any part ( interior, boundary, exterior) of a single component
(i.e. kernel or conjecture) or the union of components of the first object that in-
tersects the interior of at least one component from the second object, must also
intersect the interior of the union of components from the second object, i.e.,

Lemma 1.1 ∀p, q ∈ Tα,β :
¬(p(Ak, w) ∧ q(Ak ⊕Ac, w)) s .t .
∃ r ∈ {◦, ∂,−} :
(p(Ak, w) ⇒ A◦

k ∩ wr �= ∅ ∧
q(Ak ⊕Ac, w) ⇒
(Ak ⊕Ac)◦ ∩ wr = ∅)

Lemma 1.2 ∀p, q ∈ Tα,β :
¬(p(v, Bk) ∧ q(v, Bk ⊕Bc)) s .t .
∃ r ∈ {◦, ∂,−} :
(p(w, Bk) ⇒ B◦

k ∩ vr �= ∅ ∧
q(v, Bk ⊕Bc)⇒
(Bk ⊕Bc)◦ ∩ vr = ∅)

Proof. We know that for any vague region C, C◦
k ⊆ (Ck ⊕Cc)◦. From this fact,

we can derive that for any point set x, it is always true that C◦
k ∩ x �= ∅ ⇒

(Ck ⊕ Cc)◦ ∩ x �= ∅. Thus, Lemma 1 takes care of those combinations in which
this implication is contradicted. �

Lemma 2. Any part of a single component or the union of components of the
first object that does not intersect the exterior of at least one component from
the second object must also not intersect the exterior of the union of components
from the second object, i.e.,
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Lemma 2.1 ∀p, q ∈ Tα,β :
¬(p(Ak, w) ∧ q(Ak ⊕Ac, w)) s .t .
∃ r ∈ {◦, ∂,−} :
(p(Ak, w) ⇒ A−

k ∩ wr = ∅ ∧
q(Ak ⊕Ac, w) ⇒
(Ak ⊕Ac)− ∩wr �= ∅)

Lemma 2.2 ∀p, q ∈ Tα,β :
¬(p(v, Bk) ∧ q(v, Bk ⊕Bc)) s .t .
∃ r ∈ {◦, ∂,−} :
(p(w, Bk) ⇒ B−

k ∩ vr = ∅ ∧
q(v, Bk ⊕Bc)⇒
(Bk ⊕Bc)− ∩ vr �= ∅)

Proof. We know that for any vague region C, C−
k ⊇ (Ck⊕Cc)−. From this fact,

we can derive that for any point set x, it is always true that C−
k ∩ x = ∅ ⇒

(Ck ⊕Cc)− ∩ x = ∅. Thus, Lemma 2 takes care of those combinations in which
this implication is contradicted. �

Lemma 3. A single component or the union of components of the first object
that is not disjoint from at least one component from the second object, must
also not be disjoint from the union of both components from the second object,
i.e.,

Lemma 3.1 ∀p, q ∈ Tα,β :
¬(p(Ak, w) ∧ q(Ak ⊕Ac, w)) s .t .
∃ r, s ∈ {◦, ∂} : (p(Ak, w) ⇒
Ak

r ∩ ws �= ∅) ∧
∀ t, u ∈ {◦, ∂} :
(q(Ak ⊕Ac, w) ⇒
(Ak ⊕Ac)t ∩ wu = ∅))

Lemma 3.2 ∀p, q ∈ Tα,β :
¬(p(v, Bk) ∧ q(v, Bk ⊕Bc)) s .t .
∃ r, s ∈ {◦, ∂} : (p(v, Bk) ⇒
Bk

r ∩ vs �= ∅) ∧
∀ t, u ∈ {◦, ∂} :
(q(v, Bk ⊕Bc) ⇒
(Bk ⊕Bc)t ∩ vu = ∅))

Proof. Due to the nature of the ⊕ (geometric union) operation, any intersection
of the interiors of the complex regions a and b will remain untouched, and any
intersection between boundaries or between an interior and a boundary will
either remain untouched or be replaced by an interior-interior intersection when
the union operation is applied and instead the intersections between a⊕ d, b are
analyzed. This means that there is no possibility for any such intersection to
disappear or be replaced by an intersection with an exterior that could result in
disjointment of the objects involved. Thus, we can imply that ¬(disjoint (a, b)) ⇒
¬(disjoint ((a⊕ d), b)) where disjoint refers to the clustered predicate as defined
in [13]. �

Lemma 4. If we assume that some τ representing a component or the union
of components of the first object is not contained by a single component of the
second object but is contained by the union of components of the second object,
then τ must not contain the interior of the union of the components from the
second object, i.e.,

Lemma 4.1 ∀p, q ∈ Tα,β :
¬(p(Ak, w) ∧ q(Ak ⊕Ac, w)) s .t .
(p(Ak, w) ⇒ ∂Ak ∩ ∂w �= ∅) ∧
(q(Ak ⊕Ac, w) ⇒ ((Ak ⊕Ac)◦ ⊆ w◦)
∧ (∂(Ak ⊕Ac) ∩ ∂w = ∅))

Lemma 4.2 ∀p, q ∈ Tα,β :
¬(p(v, Bk) ∧ q(v, Bk ⊕Bc)) s .t .
(p(v, Bk)⇒ ∂Bk ∩ ∂v �= ∅) ∧
(q(v, Bk ⊕Bc) ⇒ ((Bk ⊕Bc)◦ ⊆ v◦)
∧ (∂(Bk ⊕Bc) ∩ ∂v = ∅))
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Proof. We show the first sublemma; the proof for the second sublemma is simi-
lar. Given (Ak⊕Ac)◦ ⊆ w◦ ⇒ A◦

k ⊆ w◦, then the rule represents a contradiction
because, for it to be true that ∂Ak ∩ ∂w �= ∅ ∧ ∂(Ak ⊕ Ac) ∩ ∂w = ∅, Ac

must share the same boundary with Ak as Ak shares with w, i.e.(∂Ak ∩ ∂Ac =
∂Ak ∩ ∂w). This means that Ac makes Ak grow towards the exterior of w which
in turn makes it impossible for (Ak ⊕Ac)◦ ⊆ w◦ to hold. �

Lemma 5. If some τ which represents a single component or the union of com-
ponents from the first object, is completely contained within the interior of a
single component from the second object, then the boundary of τ must not inter-
sect the boundary of the union of components from the second object, i.e.,

Lemma 5.1 ∀p, q ∈ Tα,β :
¬(p(Ak, w) ∧ q(Ak ⊕Ac, w)) s .t .
(p(Ak, w) ⇒ ∂Ak ∩ ∂w = ∅ ∧
(Ak ⊕Ac)◦ ⊇ w◦) ∧
(q(Ak⊕Ac, w) ⇒ ∂(Ak⊕Ac)∩∂w �= ∅))

Lemma 5.2 ∀p, q ∈ Tα,β :
¬(p(v, Bk) ∧ q(v, Bk ⊕Bc)) s .t .
(p(v, Bk)⇒ ∂Bk ∩ ∂v = ∅) ∧
(Bk ⊕Bc)◦ ⊇ v◦ ∧
(q(v, Bk⊕Bc)⇒ (∂(Bk⊕Bc)∩∂v �= ∅)

Proof. This case represents a similar situation to that in Lemma 4. The differ-
ence here is that the boundaries of the subsets do not intersect but, when the
conjecture is added, the boundaries intersect. Such a situation is impossible when
the first object is completely contained in the second that is being expanded by
the conjecture. The reason is that the conjecture would expand the object to-
wards the inside of its own region’s kernel which is in direct contradiction with
the definition of vague regions. �

Lemma 6. If it can be inferred that the conjecture of the first object is empty
(⊥), then it must be true that the predicates defined by the relationships between
the kernel of the first object and any component or union of the components of
the second object, and between the union of the components of the first object
and the same component or whole of the second object, are the same, i.e.,

Lemma 6.1 ∀p, q, r, s ∈ Tα,β :
¬(p(Ak, Bk) ∧ q(Ak ⊕Ac, Bk) ∧
r(Ak, Bk ⊕Bc) ∧
s(Ak ⊕Ac, Bk ⊕Bc)) s .t .
(p(Ak, Bk) ∧ q(Ak ⊕Ac, Bk)⇒
Ac = ⊥ ∧
(r(Ak, Bk⊕Bc) �= s(Ak⊕Ac, Bk⊕Bc))

Lemma 6.2 ∀p, q, r, s ∈ Tα,β :
¬(p(Ak, Bk) ∧ q(Ak ⊕Ac, Bk) ∧
r(Ak , Bk ⊕Bc) ∧
s(Ak ⊕Ac, Bk ⊕Bc)) s .t .
(p(Ak, Bk) ∧ r(Ak, Bk ⊕Bc)⇒
Bc = ⊥ ∧
(q(Ak⊕Ac, Bk) �= s(Ak⊕Ac, Bk⊕Bc))

Proof. If a conjecture is known to be empty, then it does not add any features
to the kernel of the object, in other words (Ak ⊕ Ac = Ak) for some vague
region A . Thus, any crisp topological predicates p and q of the whole object and
the kernel by itself, respectively, with some other region w must be the same
(p(Ak ⊕Ac, w) = q(Ak, w)). �

After applying all rules to the over 1.1 million original combinations, only
69682 remain valid. Such a large number is difficult to manage at any level of
usability, thus we present clustering rules to reduce the predicates to a workable
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set. We consider important to note that we have not provided a formal proof
that all the remaining combinations are valid. It is our opinion that this is a
weakness of the case study presented here but does not take any merit away
from the general mechanism for identifying vague topological predicates.

5.3 Clustering Rules

Being able to identify topological predicates by name is necessary for the user.
The original names of the eight topological predicates between simple regions
(disjoint , meet , inside, contains , coveredBy , covers , equal and overlap) as de-
tailed in [12] seem to be appropriate names thus we name the clustered vague
topological predicates alike. We simply capitalize their names to differentiate
them from the original. The clusters presented here represent only one of many
ways in which the clustering of the predicates can be performed. We attempt
to define each cluster in a way so that it has similar semantics as those that
identified the topological predicates between simple regions in the 9-intersection
model. It is important that the clusters are mutually exclusive in terms of the
true results. This means that, after the cancellation rules are applied, each of the
resulting combinations should result in true for one and only one of the following
clusters.

Disjoint. Two vague regions as truly disjoint if none of their components have
intersections of interior or boundaries between each other. The vague regions are
truly not disjoint if the interiors or boundaries of their kernel parts intersect. Any
other situation leaves the topological relationship uncertain; thus the predicate
result is maybe. Formally:

– Disjoint(A, B) = true ⇔ ((Ak ⊕ Ac)◦ ∩ (Bk ⊕Bc)◦ = ∅) ∧ ((Ak ⊕ Ac)◦ ∩
∂(Bk ⊕Bc) = ∅) ∧
(∂(Ak ⊕Ac) ∩ (Bk ⊕Bc)◦ = ∅) ∧ (∂(Ak ⊕Ac) ∩ ∂(Bk ⊕Bc) = ∅)

– Disjoint(A, B) = false ⇔ (A◦
k ∩B◦

k �= ∅) ∨ (A◦
k ∩ ∂Bk �= ∅) ∨

(∂Ak ∩B◦
k �= ∅) ∨ (∂Ak ∩ ∂Bk �= ∅)

– Disjoint(A, B) = maybe ⇔ ¬(Disjoint (A, B) = true ∨ Disjoint(A, B) =
false)

Meet. Two vague regions certainly meet when the boundaries of their kernels
intersect but the interiors of all components do not intersect. They certainly do
not meet when the interiors of their kernels intersect or when they are certainly
Disjoint . Formally:

– Meet(A, B) = true ⇔ (∂Ak ∩ ∂Bk �= ∅) ∧ ((Ak ⊕Ac)◦ ∩ (Bk ⊕Bc)◦ = ∅)
– Meet(A, B) = false ⇔ (A◦

k ∩B◦
k �= ∅) ∨

(((Ak ⊕Ac)◦ ∩ (Bk ⊕Bc)◦ = ∅) ∧ ((Ak ⊕Ac)◦ ∩ ∂(Bk ⊕Bc) = ∅) ∧
(∂(Ak ⊕Ac) ∩ (Bk ⊕Bc)◦ = ∅) ∧ (∂(Ak ⊕Ac) ∩ ∂(Bk ⊕Bc) = ∅))

– Meet(A, B) = maybe ⇔ ¬(Meet(A, B) = true ∨ Meet(A, B) = false)
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Inside. A vague region is certainly inside another one if all parts from all com-
ponents of the first vague region are inside the kernel component of the second
vague region. On the other hand, a vague region is certainly not inside another
one when the interior of its kernel intersects the exterior of the second region or
their boundaries intersect. Formally:

– Inside(A, B) = true ⇔ ((Ak ⊕ Ac)◦ ∩ B◦
k �= ∅) ∧ (∂(Ak ⊕ Ac) ∩ B◦

k �=
∅) ∧ ((Ak ⊕Ac)◦ ∩B−

k = ∅) ∧
(∂(Ak⊕Ac)∩B−

k = ∅) ∧ ((Ak⊕Ac)◦∩∂Bk = ∅) ∧ (∂(Ak⊕Ac)∩∂Bk = ∅)
– Inside(A, B) = false ⇔ (A◦

k ∩ (Bk ⊕Bc)− �= ∅) ∨ (∂Ak ∩ ∂(Bk ⊕Bc) �= ∅)
– Inside(A, B) = maybe ⇔ ¬(Inside(A, B) = true ∨ Inside(A, B) = false)

Contains. The result for the Contains cluster is symmetric to Inside. Formally,
Contains(A, B) ⇔ Inside(B, A).

CoveredBy. A vague region is certainly covered by another one if all parts from
all components of the first vague region are inside the kernel component of the
second vague region and the boundary of the kernel of the first region intersects
the boundary of the kernel of the second region. On the other hand, a vague
region is certainly not covered by another one if the interior of its kernel intersects
the exterior of the second region or their boundaries do not intersect. Formally:

– CoveredBy(A, B) = true ⇔ ((Ak ⊕Ac)◦ ∩B◦
k �= ∅) ∧

(∂(Ak ⊕Ac) ∩B◦
k �= ∅) ∧ ((Ak ⊕Ac)◦ ∩B−

k = ∅) ∧
(∂(Ak⊕Ac)∩B−

k = ∅) ∧ ((Ak⊕Ac)◦∩∂Bk = ∅) ∧ (∂(Ak⊕Ac)∩∂Bk �= ∅)
∧ (∂(Ak⊕Ac)∩∂(Bk⊕Bc) �= ∅) ∧ (∂Ak∩∂Bk �= ∅) ∧ (∂Ak∩∂(Bk⊕Bc) �= ∅)

– CoveredBy(A, B) = false ⇔ (A◦
k∩(Bk⊕Bc)− �= ∅) ∨ (Inside(A, B) = true)

– CoveredBy(A, B) = maybe ⇔ ¬(CoveredBy(A, B) = true
∨ CoveredBy(A, B) = false)

Covers. The result of Covers cluster is symmetric to CoveredBy . Formally,
Covers(A, B) ⇔ CoveredBy(B, A).

Equal. The only way two vague regions are certainly equal is if their kernels are
equal and their conjectures are empty. They are definitely not equal when the
interior of one kernel touches the exterior of the other region or if one region is
contained inside the kernel of another. Formally:

– Equal(A, B) = true ⇔ (A◦
k ∩ ∂Bk = ∅) ∧ (A◦

k ∩B−
k = ∅) ∧

(∂Ak ∩B◦
k = ∅) ∧ (∂Ak ∩B−

k = ∅) ∧
(A−

k ∩ ∂Bk = ∅) ∧ (A−
k ∩B◦

k = ∅) ∧
(A◦

k ∩ ∂(Bk ⊕Bc) = ∅) ∧ (A◦
k ∩ (Bk ⊕Bc)− = ∅) ∧

(∂Ak ∩ (Bk ⊕Bc)◦ = ∅) ∧ (∂Ak ∩ (Bk ⊕Bc)− = ∅) ∧
(A−

k ∩ ∂(Bk ⊕Bc) = ∅) ∧ (A−
k ∩ (Bk ⊕Bc)◦ = ∅) ∧

((Ak ⊕Ac)◦ ∩ ∂Bk = ∅) ∧ ((Ak ⊕Ac)◦ ∩B−
k = ∅) ∧

(∂(Ak ⊕Ac) ∩B◦
k = ∅) ∧ (∂(Ak ⊕Ac) ∩B−

k = ∅) ∧
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((Ak ⊕Ac)− ∩ ∂Bk = ∅) ∧ ((Ak ⊕Ac)− ∩B◦
k = ∅) ∧

((Ak ⊕Ac)◦ ∩ ∂(Bk ⊕Bc) = ∅) ∧ ((Ak ⊕Ac)◦ ∩ (Bk ⊕Bc)− = ∅) ∧
(∂(Ak ⊕Ac) ∩ (Bk ⊕Bc)◦ = ∅) ∧ (∂(Ak ⊕Ac) ∩ (Bk ⊕Bc)− = ∅) ∧
((Ak ⊕Ac)− ∩ ∂(Bk ⊕Bc) = ∅) ∧ ((Ak ⊕Ac)− ∩

∫
(Bk ⊕Bc) = ∅)

– Equal(A, B) = false ⇔ (A◦
k ∩ (Bk⊕Bc)− �= ∅) ∨ ((Ak⊕Ac)−∩B◦

k �= ∅) ∨
(((Ak⊕Ac)◦∩B◦

k �= ∅) ∧ (∂(Ak⊕Ac)∩B◦
k �= ∅) ∧ ((Ak⊕Ac)◦∩B−

k = ∅) ∧
(∂(Ak ⊕Ac) ∩B−

k = ∅) ∧ ((Ak ⊕Ac)◦ ∩ ∂Bk = ∅)) ∨
((A◦

k∩(Bk⊕Bc)◦ �= ∅) ∧ (A◦
k∩∂(Bk⊕Bc) �= ∅) ∧ (A−

k ∩(Bk⊕Bc)◦ = ∅) ∧
(A−

k ∩ ∂(Bk ⊕Bc) = ∅) ∧ (∂Ak ∩ (Bk ⊕Bc)◦ = ∅))
– Equal(A, B) = maybe ⇔ ¬(Equal (A, B) = true ∨ Equal(A, B) = false)

Overlap. Two vague regions surely overlap if their kernel interiors intersect each
other and also intersect their whole exteriors. We can certainly say the vague
regions do not overlap if any of the other 7 clusters holds true, which leaves a
large number of possibilities for the regions to maybe overlap. Formally:

– Overlap(A, B) = true ⇔ (A◦
k ∩B◦

k �= ∅) ∧ (A◦
k ∩ Bk ⊕ B−

c �= ∅) ∧ (Ak ⊕
A−

c ∩B◦
k �= ∅)

– Overlap(A, B) = false ⇔ (Disjoint(A, B) = true) ∨ (Meet(A, B) = true) ∨
(Inside(A, B) = true) ∨
(Contains(A, B) = true) ∨ (CoveredBy(A, B) = true) ∨ (Covers(A, B) =
true) ∨
(Equal (A, B) = true)

– Overlap(A, B) = maybe ⇔ ¬(Overlap(A, B) = true ∨ Overlap(A, B) =
false)

In the next section, we show by using examples, how these clusters can be
used in common database queries.

6 Querying

Popular database query language such as SQL understand predicates as boolean
expressions. This means that the three values resulting from the clusters must
be translated to boolean logic in order to use the vague topological predicates
in SQL-like query languages. The translation is done by the following general
definition for any clustered predicate P :

True P(A, B) = true ⇒ P (A, B) = true
True P(A, B) = false ⇒ P (A, B) = maybe ∨ P (A, B) = false

Maybe P(A, B) = true ⇒ P (A, B) = maybe
Maybe P(A, B) = false ⇒ P (A, B) = true ∨ P (A, B) = false
False P(A, B) = true ⇒ P (A, B) = false
False P(A, B) = false ⇒ P (A, B) = true ∨ P (A, B) = maybe

For the sample queries, we assume a scenario (similar to that in Section 3) of
an ecological application. We define roaming areas for species as vague regions
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with sections that definitely delimit the area in which some species lives. The
representation also includes some areas for which we are not sure whether or not
the species roam around.

In the first query, we are interested in the roaming areas of all groups of
an imaginary endangered species pastuzo whose main predator is the tiger. We
need to know of all roaming areas for pastuzos, that might be contained inside
roaming areas of tigers. This would help establish whether or not the majority
of pastuzos left are in danger of being eaten by tigers.

SELECT p.id
FROM groups p, groups t
WHERE p.species = "pastuzo"
and t.species = "tiger"
and Maybe_Inside(p.area,t.area);

In the next query, we want to establish all pastuzo groups that certainly live
in areas outside those of the tigers. The purpose of this is to allocate resources
and provide reproductive help to these pastuzo groups.

SELECT p.id
FROM groups p, groups t
WHERE p.species = "pastuzo"
and t.species = "tiger"
and True_Disjoint(p.area,t.area);

7 Conclusions and Future Work

We provide a mechanism that is able to identify topological predicates between
vague spatial objects. We believe the strength of the mechanism stems from
having accomplished all three goals imposed on its design. First, the mecha-
nism described is type-independent. That is, given as input a set of cancellation
rules and a set of clustering rules the mechanism identifies all vague topologi-
cal predicates for the respective vague spatial data type combination. Second,
the mechanism makes use of existing definitions for crisp topological predicates
by defining vague topological predicates on their basis. Third, the definition of
vague spatial data types, operations and predicates can be regarded as an exe-
cutable specification based on crisp concepts. The accomplishment of these goals
is improved by the lessons learned from a preliminary approach resulting in a
mechanism that is both powerful and simple. We also showed how using the
vague topological predicates in common query languages requires only a simple
conversion that allows for common sense handling of uncertainty in spatial data
through querying.

The obvious step to follow now is the identification of topological predicates
between all type combinations of vague spatial data types. Also we consider
important to finalize this approach by a full implementation of the concepts
that are part of VASA.
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