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Preface

These are the proceedings of Crypto 2005, the 25th Annual International Cryp-
tology Conference. The conference was sponsored by the International Associa-
tion for Cryptologic Research (IACR) in cooperation with the IEEE Computer
Science Technical Committee on Security and Privacy and the Computer Science
Department of the University of California at Santa Barbara. The conference was
held in Santa Barbara, California, August 14–18, 2005.

The conference received 178 submissions, out of which the program committee
selected 33 for presentation. The selection process was carried out by the program
committee via an “online” meeting. The authors of selected papers had a few
weeks to prepare final versions of their papers, aided by comments from the
reviewers. However, most of these revisions were not subject to any editorial
review.

This year, a “Best Paper Award” was given to Xiaoyun Wang, Yiqun Lisa
Yin, and Hongbo Yu, for their paper “Finding Collisions in the Full SHA-1.”

The conference program included two invited lectures. Ralph Merkle deliv-
ered an IACR Distinguished Lecture, entitled “The Development of Public Key
Cryptography: a Personal View; and Thoughts on Nanotechnology.” Dan Boneh
gave an invited talk, entitled “Bilinear Maps in Cryptography.”

We continued the tradition of a “rump session,” featuring short, informal
presentations (usually serious, sometimes entertaining, and occasionally both).
The rump session was chaired this year by Phong Q. Nguy˜̂en.

I would like to thank everyone who contributed to the success of this con-
ference. First, thanks to all the authors who submitted papers: a conference
program is no better than the quality of the submissions (and hopefully, no
worse). Second, thanks to all the members of the program committee: it was
truly an honor to work with a group of such talented and hard working indi-
viduals. Third, thanks to all the external reviewers (listed below) for assisting
the program committee: their expertise was invaluable. Fourth, thanks to Matt
Franklin, Dan Boneh, Jan Camenisch, and Christian Cachin for sharing with
me their experiences as previous Crypto and Eurocrypt program chairs. Finally,
thanks to my wife, Miriam, and my children, Alec and Nicol, for their love and
support, and for putting up with all of this.

June 2005 Victor Shoup
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Efficient Collision Search Attacks on SHA-0
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Abstract. In this paper, we present new techniques for collision search
in the hash function SHA-0. Using the new techniques, we can find col-
lisions of the full 80-step SHA-0 with complexity less than 239 hash
operations.

Keywords: Hash functions, Collision search attacks, SHA-0, SHA-1.

1 Introduction

The hash function SHA-0 was issued in 1993 as a federal standard by NIST. A
revised version called SHA-1 was later issued in 1995 as a replacement for SHA-
0. The only difference between the two hash functions is the additional rotation
operation in the message expansion of SHA-1, which is supposed to provide more
security. Both hash functions are based on the design principles of MD4.

In 1997, Wang found an attack on SHA-0 [14] which produces a collision with
probability 2−58 by utilizing algebraic methods to derive a collision differential
path. In 1998, Chabaud and Joux [6] independently found the same differential
path through computer search. In August 2004, Joux [7] announced the first
real collision of SHA-0, which consists of four message blocks (a pair of 2048-
bit input messages). The collision search took about 80,000 hours of CPU time
(three weeks of real time) and is estimated to have a complexity of about 251

hash operations. To our knowledge, this is the best existing attack on the full
80-step SHA-0 prior to the work reported here.

The attacks in [14,6] found a differential path which is composed of certain
6-step local collisions. There is an obstacle to further improve these attacks,
as finding a differential characteristic for two consecutive local collisions cor-
responding to two consecutive disturbances in the first round turns out to be
impossible. This phenomenon makes it difficult to find a differential path which
has a smaller number of local collisions in rounds 2-4 and no consecutive local
collisions in the first round.
� Supported by the National Natural Science Foundation of China (NSFC Grant

No.90304009) and Program for New Century Excellent Talents in University.

V. Shoup (Ed.): Crypto 2005, LNCS 3621, pp. 1–16, 2005.
c© International Association for Cryptologic Research 2005



2 X. Wang, H. Yu, and Y.L. Yin

In this paper, we introduce a new cryptanalytic method to cope with this
difficulty. Our analysis includes the following techniques: Firstly, we identify an
“impossible” differential path with few local collisions in rounds 2-4 and some
consecutive local collisions in round 1. Secondly, we transform the impossible
differential path into a possible one. Thirdly, we derive a set of conditions which
guarantee that the modified differential path holds. Finally, we design message
modifications to correct all the unfulfilled conditions in the first round as well as
some such conditions in the second round. With these techniques, we can find
collisions of the full SHA-0 with at most 239 hash operations, which is a major
improvement over existing attacks. The same techniques can be used to find near
collisions of SHA-0 with complexity about 233 hash operations.

We note that the new techniques have also been proven to be effective in the
analysis of SHA-1[16].

The rest of the paper is organized as follows. In Section 2, we give a descrip-
tion of SHA-0. In Section 3, we provide an overview of the original attack on
SHA-0 [14] and subsequent improvements [15,1,2,7,3]. In Section 4, we review the
“message modification techniques” presented in [11,12,13] to break HAVA-128,
MD5, MD4 and RIPEMD, and consider their effectiveness in improving existing
attacks on SHA-0. In Section 5, we present our new collision search attacks on
SHA-0. In Section 6, we give an example of real collision of SHA-0 found by
computer search using the new techniques. We conclude the paper in Section 7.

2 Description of SHA-0

The hash function SHA-0 takes a message of length less than 264 bits and pro-
duces a 160-bit hash value. The input message is padded and then processed
in 512-bit blocks in the Damg̊ard/Merkle iterative structure. Each iteration in-
vokes a so-called compression function which takes a 160-bit chaining value and
a 512-bit message block and outputs another 160-bit chaining value. The initial
chaining value (called IV) is a set of fixed constants, and the final chaining value
is the hash of the message.

In what follows, we describe the compression function of SHA-0. For each 512-
bit block of the padded message, divide it into 16 32-bit words, (m0, m1, ...., m15).
The message words are first expanded as follows: for i = 16, ..., 79,

mi = mi−3 ⊕mi−8 ⊕mi−14 ⊕mi−16.

The expanded message words are then processed in four rounds, each consisting
of 20 steps. The step function is defined as follows.

For i = 1, 2, ..., 80,

ai = (ai−1 << 5) + fi(bi−1, ci−1, di−1) + ei−1 + mi−1 + ki

bi = ai−1

ci = bi−1 << 30
di = ci−1

ei = di−1
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The initial chaining value IV = (a0, b0, c0, d0, e0) is defined as:

(0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0)

Each round employs a different Boolean function fi and constant ki, which
is summarized in Table 1.

Table 1. Boolean functions and constants in SHA-0

rounds steps Boolean function fi constant ki

1 1 − 20 IF: (x ∧ y) ∨ (¬x ∧ z) 0x5a827999
2 21 − 40 XOR: x ⊕ y ⊕ z 0x6ed6eba1
3 41 − 60 MAJ: (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) 0x8fabbcdc
4 61 − 80 XOR: x ⊕ y ⊕ z 0xca62c1d6

3 Previous Attacks on SHA-0

In this section, we first describe the original collision attack on SHA-0 given by
Wang in 1997 [14]. This sets up the basic framework for introducing our new
techniques later on. For other independent attacks on SHA-0 the reader may
wish to refer to [15,6,1,7,3].

3.1 Local Collisions of SHA-0

Informally, a local collision is a collision within a few steps of the hash function.
A simple yet very important observation is that SHA-0 has a 6-step local collision
that can start at any step i, and this type of local collision is the basic component
in constructing full collisions.

Suppose a message difference in bit j first occurs in Step i (e.g., ∆mi−1,j = 1.)
The difference will affect the chaining variables a, b, c, d, e consecutively in the
next five steps. In order to offset these differences and reach a local collision, more
message differences are introduced in subsequent message words. In Table 2, we
illustrate the differential path of such a local collision. The chaining variable
conditions under which the local collisions hold were given in [14,15].

The probability associated with the above local collision depends on the
Boolean function, the bit position j, and some conditions on the message bits.
The differential attack in [14] and [6] chooses j = 2 so that j + 30 becomes
the MSB1 to eliminate the carry effect in the last three steps. In addition, the
following condition

mi,2 = ¬mi+1,7

1 Throughout this paper, we label the bit positions in a 32-bit word as
32, 31, 30, ..., 3, 2, 1, where bit 32 is the most significant bit and bit 1 is the least
significant bit. Please note that this is different from the convention of labelling bit
positions from 31 to 0.
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Table 2. A 6-step local collision of SHA-0 starting at step i. The measure of difference
is ⊕. Addition in the exponents is modulo 32. “nc” stands for no carry. ∆f is the
output difference of the Boolean function

step ∆m ∆a ∆b ∆c ∆d ∆e Conditions

i 2j 2j nc

i + 1 2j+5 2j

i + 2 2j 2j+30 nc, ∆f = 2j

i + 3 2j+30 2j+30 nc, ∆f = 2j+30

i + 4 2j+30 2j+30 nc, ∆f = 2j+30

i + 5 2j+30 nc

helps to offset completely the chaining variable difference in the second step of
the local collision, where xi,j (x = m) denotes the j-th bit of message word xi.

The message condition in round 3

mi,2 = ¬mi+2,2

helps to offset the difference caused by the non-linear function in the third step
of the local collision.

3.2 Differential Paths of SHA-0

At a high level, the differential path used in [14] is a sequence of local collisions
joined together with possible overlaps. To construct such a path, we need to find
a set of appropriate starting step for each local collision. We can use an 80-bit
0-1 vector x = (x0, ..., x79) to specify these starting steps, and the vector is called
a disturbance vector. It is easy to show that the disturbance vector satisfies the
same recursion defined by the message expansion. That is, for i = 16, ...79,

xi = xi−3 ⊕ xi−8 ⊕ xi−14 ⊕ xi−16.

For the 80 variables xi, any 16 consecutive ones determine the rest. So there are
16 free variables to be set for a total of 216 possibilities.

In order for the disturbance vector to lead to a possible collision, several
conditions on the disturbance vectors need to be imposed, and they are discussed
in details in [14]. These conditions are summarized in Table 3.

From [15], we know condition 1 in Table 3 holds if and only if the following
equations hold:

x11 = x3 + x8

x12 = x4 + x9

x13 = x5 + x10

x14 = x0 + x3 + x6 + x8

x15 = x1 + x4 + x7 + x9
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Table 3. Conditions on disturbance vectors for SHA-0 with t steps

Condition Purpose

1 xi = 0 for i = 75, 76, 77, 78, 79 to produce a collision
in the last step 5

2 xi = 0 for i = −5, ..., −1 to avoid truncated local
collisions in first few steps

3 no consecutive ones to avoid an impossible
in the first 17 variables collision path due to

a property of IF

Condition 2 in Table 3 holds if and only if

x6 = x0 + x1 + x2 + x4

x7 = x0 + x4

x8 = x0 + x1 + x5

x9 = x4

x10 = x0 + x5

We can also search for a disturbance vector using (x0, ..., x15) as the 16 vari-
ables. After imposing Conditions 1 and 2, there are 6 free variables remaining:
(x0, ..., x5). With Condition 3, only 3 choices are left for the 6 free variables,
namely (001000) and (000100) and (000101), the first of which corresponds to
the differential path given in [14].

We remark that the Hamming weight of the disturbance vector is closely
related to the complexity of the attack. Given a disturbance vector x, we define
hwr+(x) as the Hamming weight of x from step r to 80. To minimize the com-
plexity, the Hamming weight hw17+(x) should as small as possible (although
there are other more subtle conditions). The corresponding vector used in [14]
have hw17+ = 27, and the complexity of collision search attack is about 258.

3.3 Existing Techniques for Improving the Attack

In the past year, there have been some major advances in the analysis of SHA-0.
These latest attacks are built upon the differential attack by Chaband and Joux,
while introducing new ideas for significant improvements. We summarize these
techniques below.

– Neutral bit techniques [1]. This allows the collision search to start at a step
i > 17. 2 Biham and Chen showed how to start the collision search of SHA-0
at step i = 22 [1] and reduce complexity of finding full collisions to 256.

More interestingly, they were able to find near collisions of SHA-0 with
complexity 240, and this provides a basis for finding multi-block collisions.

2 Since the first 16 message words are independent, in general one can bypass the first
16 steps and start the search at i = 17.
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Since a near collision does not require the first set of conditions on the
disturbance vector, vectors with much lower Hamming weight can be found.

– Multi-block collision techniques [2,7,12]. The idea is to use near collisions in
several message blocks to produce a collision. Using this technique together
with the neutral bit technique, Joux reported the first real collision of the full
80-step SHA-0. The search complexity is estimated to be 251 hash operations.

4 Message Modification Techniques and SHA-0

At the Rump Session of Crypto’04, Wang [10] announced collisions of several
hash functions, including MD4, MD5, RIPEMD, and HAVEL-128. The collision
search attacks on these hash functions [11,12,13] adopt a three-step approach:
find a differential path leading to possible collisions, derive a set of sufficient
conditions for the differential path to hold, and modify the message words to
satisfy all conditions in the first round (as well as most conditions in the second
round) so that the success probabilities can be greatly enhanced.

The“message modification”employed in the last step is a major innovation
that makes these collision search attacks feasible. Message modification tech-
niques have been introduced in attacking HAVAL-128, MD5, MD4, RIPEMD
[11,12,13] and SHA-0 [15] (not gave the precise description in [15]). However,
the more sophisticated hash functions such as SHA-0 and SHA-1 pose consider-
able new challenges, and require more powerful message modification techniques
in their attack. We shall discuss various components of the message modifica-
tion approach which, when suitably combined, can yield an effective attack. Full
details will be omitted in this presentation.

4.1 Message Modification Techniques

In what follows, we provide a description of the more complicated message mod-
ification techniques for SHA-0. Following the terminology in [12], we also cate-
gorize the techniques into basic techniques and advanced techniques.

For the MD4-family of hash functions, including SHA, the step function F
has the form of

ai = F (input chaining variables, mi−1),

where ai is the output chaining variable and mi−1 is the message word applied in
step i. Given a differential path that may lead to possible collisions, it is not hard
to derive a set of sufficient conditions on ai. The conditions are of the following
forms:

– ai,j = 0 or ai,j = 1.
– ai,j = ai′,j′ or ai,j = ¬ai′,j′ , for i′ < i.

In fact, all these conditions can be combined into one general form:

ai,j = v,
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where v is a bit value that is fixed to be 0/1 or has been computed before step i
(since i′ < i). Therefore, we can treat them uniformly.

The main idea of the “‘basic modification technique”is simply to set ai,j to
the correct bit by modifying the corresponding bit of mi−1. More specifically,
the following operation is performed for each derived condition ai,j = v.

– If ai,j �= v, then set mi−1 = mi−1 ± 2j−1 to correct the condition.

If there is a condition on mi−1,j in the collision differential path, the above
modification isn’t available. So, it needs to modify some message bits in the
previous steps (maybe only one message bit of the previous step is modified)
to correct the condition of ai,j . These message modification techniques can be
applied to a hash function up to the first 16 steps.

If the message word mi is dependent on one or more of the earlier message
words, then “advanced modification technique”are needed to deal with the com-
plication. Roughly, a change in mi will cause a change in mt for some t < 16
and hence a change in at+1. The advanced technique can “correct” this change
within the next few steps during which each of the chaining variables are up-
dated once. Effectively, the correction process is the same as constructing a local
collision. The process works if and only if modification of the message words in
those steps does not affect any existing conditions on the chaining variables.

4.2 Application to SHA-0

Given a differential path of SHA-0 in any existing attacks, we can easily derive
a set of sufficient conditions on the chaining variables by analyzing each local
collision separately. Using the basic modification techniques, we can make all
the conditions in the first 16 steps to hold in a systematic way.

The advanced modification techniques, however, do not seem to be directly
applied to SHA-0 as in the cases of MD4, HAVAL-128 and MD5 etc. The ef-
fectiveness largely depends on how the conditions are “distributed” after step
16. For MD5, the conditions are very concentrated in steps 17 and 18, while for
SHA-0 the conditions are spread out due to the local collisions. Another reason
is the use of message expansion in SHA-0. As a result, the advanced modification
techniques in [11,12,13] can only help to make a few conditions satisfied in steps
i > 16. This would improve over the original attack on SHA-0 [14]. Given the
neutral bit techniques [1] which already allow the bypass of the first 22 steps,
the modification techniques, as they were used in MD5, are difficult to offer
additional improvements over the best existing attacks on SHA-0. Therefore,
new ideas are required in order to launch a more practical attack on SHA-0 and
especially for extending the attack to SHA-1.

5 New Techniques for Searching Collisions in SHA-0

In this section, we present our new techniques for collision search in SHA-0.
The techniques are quite effective for SHA-0 and can also be extended to attack
SHA-1 [16].
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5.1 Overview

The first key idea in our new techniques is to remove both Condition 2 and
Condition 3 (see Table 3) on the disturbance vectors. Such relaxation provides
a larger search space and allows us to find disturbance vectors whose hamming
weights are much lower than those used in existing attacks, thereby greatly
decreasing the complexity of the attack.

The cost, though, is much more complicated differential paths in the first
round. In particular, the disturbance vector consists of consecutive ones in the
first 16 steps as well as truncated local collision. We introduce several new tech-
niques to construct a valid differential path given such a disturbance vector. This
is the most difficult yet crucial part of the new analysis, without which it would
be impossible to produce a real collision.

We also present a variation of the basic modification technique to deal with
conditions in steps 17 through 20, effectively starting the collision search at
step 21. Combining all these new techniques and some simple implementa-
tion tricks, we are able to reduce the collision search complexity of SHA-0 to
below 240.

5.2 Finding Disturbance Vectors with Low Hamming Weight

In existing attacks, the difficulty of finding disturbance vectors of low Hamming
weights is largely due to the following difference between the IF and XOR func-
tion: when c and d both change, the output of IF always changes, while the
output of XOR never changes. For MAJ, the output changes with probability
1/2. This motivates us to treat the first round differently so that Condition 3
can be relaxed.

We only impose Condition 1 in the search for good disturbance vectors. By
doing so, we obtain many vectors with very small Hamming weights. Since we
can use modification techniques to make all conditions in the first round to hold,
we focus on vectors with small Hamming weight in rounds 2-4. Among the 216

choices that satisfy Condition 1, about 30 of them have 17 ≤ hw21+ ≤ 19, and
four of which have Hamming weight 3 in the third round. We then picked the
following one from the four candidates as the disturbance vector.

Table 4. A disturbance vector for producing a collision of SHA-0

step vector
-5...-1 0 0 1 1 1
1...20 0 1 1 1 1 0 0 1 0 1 0 0 1 0 1 0 1 0 0 0
21...40 0 1 1 0 0 0 1 0 0 0 1 0 1 1 1 0 0 0 0 0
41...60 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
61...80 1 1 0 0 1 1 0 1 0 1 1 1 0 1 0 0 0 0 0 0
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5.3 New Analysis Techniques

As we can see from the chosen vector, there are four consecutive 1s in the first 16
steps. In addition, there are three truncated local collisions since x−3 = x−2 =
x−1 = 1. The corresponding message differences for the first 16 steps are given
in Table 8 in the appendix. The most difficult part is to derive a differential path
for the first 16 steps given the irregular message difference.

There are several techniques that we used to construct a valid differential
path. Before diving into the details, we first present a few general ideas.

– Use “subtraction” instead of “exclusive-or” as the measure of difference to
facilitate the precision of the analysis.

– Take advantage of special differential properties of IF. In particular, if there
is a bit difference in one of the three inputs, the output will have a difference
with probability 1/2. In addition, when the bit does flip, it can maintain
or change the sign of the difference. Therefore, the function can either pre-
serve or absorb an input difference, giving good flexibility for constructing
differential paths.

– Take advantage of the carry effect. Since 2j = −2j − 2j+1...− 2j+k−1 + 2j+k

for any k, a single bit difference j can be expanded into several bits. This
property makes it possible to introduce extra bit differences. To use the
idea in a more sophisticated way, we can combine two sets of differences to
produce one difference.

– Regroup the message differences. Some differences in local collisions shall
remain unchanged to guarantee that the local collisions hold. Some other
differences in a local collision will be reset to cancel out certain changed
chaining variable bits – especially those bits produced by the message dif-
ferences in the truncated collisions, and those arising from two consecutive
local collisions.

5.4 Constructing the Specific Path

We first introduce some notation. Let ai,j denote the jth bit of variable ai and
∆ai = a′

i−ai denote the difference. Note that we use subtraction difference rather
than exclusive-or difference since keeping track of the signs is important in the
analysis. Following the notation introduced in [11,12,13], we use ai[j] to denote
ai[j] = ai +2j−1 with no bit carry, and ai[−j] to denote those ai[−j] = ai−2j−1

with no bit carry.
To construct a valid differential path, it is important to control the propaga-

tion of the differences in each chaining variables. At a high level, differences in
b, c, d are mostly absorbed by the Boolean function IF. The differences in a and e
need to be carefully controlled, and most of them are offset by using appropriate
differences in b, c, d.

The complete differential path for the first 16 steps is given in Table 8 in
the appendix. It may look quite complicated at a first glance, and so we pro-
vide a more concise description below which better illustrates the idea. Based
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Table 5. Differences in a. The entries list the bit positions of the differences and their
signs. For example, the difference 2j is listed as j +1 and −2j as −(j +1). Bit positions
in bold are expanded using the carry effect in the complete differential path given in
Table 8

∆a I II III IV

a1 −2,7, −32

a2 −7,12, −5
a3 −12,17, −10 2

a4 20 9

a5 25 4
a6 2 −10,15
a7 2 −17

a8 −12
a10 2

a11 10

a13 2

a15 −2

on the step function of SHA-0, it is not hard to see that the differences in the
chaining values are fully determined by the differences in a, which is given in
Table 5 below. Bit differences that are expanded using the carry effect is shown
in bold, and the expanded bits are not shown. The bit differences in a can be
categorized into four groups as follows, and their rationale can then be better
understood.

– Group I: differences due to ∆m0:
These are message differences due to the “truncated” local collisions. Hence
they are inherent from the chosen path and cannot be changed. They cause
differences in e5, e6, e7 that need to be cancelled. Most of them can be can-
celled with existing differences in that step, except e5[−30], e6[−5],and e7[15].

– Group II: differences due to disturbance.
These result in the usual 6-step local collisions.

– Group III: differences introduced to cancel e5[−30] and e7[15].
Note that only a6[15] is for cancelling e7[15], and the rest are all for cancelling
e5[30]. This part is where the expansion using the carry effect is needed.

– Group IV: differences used for additional adjustments.
These are a4[9] for producing e8[7] in order to cancel m9[−7] and a5[4] for
both producing e9[2] to introduce the disturbance equivalent to m10[2] and
producing b6[5] to cancel out e6[−5].

This is the most difficult yet crucial part of the new analysis, without which it
would be impossible to produce a real collision. Furthermore, the analysis demon-
strates some unexpected weaknesses in the design of the step update function.
In particular, certain properties of Boolean function (x ∧ y) ∨ (¬x ∧ z) and the
carry effect actually facilitate, rather than prevent, differential attacks.
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5.5 Deriving Conditions on mi and ai

As we discussed in Section 3, for each local collision starting at step i, the follow
conditions on m should hold.

mi+1,7 = ¬mi,2 (1)
mi+2,2 = ¬mi,2 (For round 3) (2)

The condition on the disturbance vector given in Table 4, there are a total of
19 disturbances in Rounds 2, 3 and 4. So equation (1) yields 19 conditions on
message words. From 3 disturbances in round 3, there are another 3 conditions
on message word corresponding to equation (2). From Table 8, there are another
9 necessary conditions on message word position bit 2 and 7. There are total 31
conditions on message positions 2 and 7, and by a straightforward search of the
232 choices for two positions of m0,2, ..., m15,2 it turns out that several choices
satisfy all the conditions.

After the conditions on the message words are determined, we can derive
a set of sufficient conditions on ai given the differential path. The derivation
uses differential properties of the three Boolean functions as well as the carry
propagation pattern of addition. The complete description of the conditions is
given in Table 9 in the appendix.

5.6 A Variation of the Modification Techniques

There are a total of 45 conditions from step 17 to step 80. Here we introduce a
variation of the message modification techniques to deal with the three conditions
in step 17 through 20, and hence reducing the number of conditions to 42. The
idea is better explained using an example, say the condition on a17,32. Instead
of modifying m16, which is dependent on four earlier message words, we modify
m15 in a way that will flip the bit a16,27, which in turn flips the bit a17,32 in
step 17. The other two conditions are handled similarly.

5.7 Complexity Analysis

In this section, we analyze the complexity of our collision search attack. Since
there are a total of 42 conditions after applying message modification, a straight-
forward implementation would yield a complexity of 242 hash operations.

There are several simple techniques that we can use to further improve the
efficiency of the attack. The idea is that we only need to compute a small num-
ber of steps of the 80-step hash operation. First, we can precompute a set of
“good” message words that make all conditions satisfied in the first 14 steps
and only leave the last two message words as free variables. Second, we can use
an “early stopping technique”. More specifically, we only need to carry out the
computation until step 23 and then test whether the four conditions in steps 21
through 24 are satisfied. On average only a fraction of 2−4 of the messages will
pass the test. Overall, we only need to compute from step 15 to 24, for a total of
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10 steps. This immediately gives a factor of 80/10 = 8 improvements in search
complexity. Hence, the complexity of finding a full collision is at most 239 hash
operations.

Our analysis can also be used to find near collisions with much lower com-
plexity. For near collisions, we have found quite a few disturbance vectors with
hw21+ = 14, and an example is given in Table 6. For this vector, the total
number of conditions in Rounds 2-4 is (14 − 4) × 2 + 4 × 4 = 36. Using early
stopping techniques, we estimate that near collisions of SHA-0 can be found with
complexity about 233.

Table 6. A disturbance vector for near collision of SHA-0

step vector
1...20 1 0 0 1 1 0 1 1 1 1 1 0 1 0 1 1 0 1 1 1
21...40 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0
41...60 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
61...80 1 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0

Finally, we remark that using the multi-block technique for attacking MD5
[12], we can use near collisions to construct multi-block collisions with about
the same complexity. Therefore, we expect multi-block collisions of SHA-0 can
potentially be found with about 233 hash operations.

6 A Collision Example of SHA-0

The two messages that collide are (M0, M1) and (M0, M
′
1), where

h1 = compress(h0, M0)
h2 = compress(h1, M1) = compress(h1, M

′
1)

Note that the first message block M0 is the same, and it is for producing
an intermediate chaining value h1 that satisfies the 14 conditions on a0, b0. (See
Table 9). M0 can be found with complexity 214. After that, the pair (M1, M

′
1)

can be found with complexity 239.
We remark that we can adjust the differential path under the conditions of

the original initial value h0 to find a one-block message collision differential path.

7 Conclusions

In this paper, we present a new collision search attack on SHA-0 with complexity
239 hash operations. Compared with existing attacks on SHA-0, our method is
much more efficient and real collisions can be found quickly on a typical PC.

The techniques developed in our analysis of SHA-0 are also applicable to
SHA-1. As SHA-0 may be viewed as simpler variant of SHA-1, the analysis
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Table 7. A collision of 80-step SHA-0. Padding rules are not applied to the input
messages

h0: 67452301 efcdab89 98badcfe 10325476 c3d2e1f0
M0: 65c24f5c 0c0f89f6 d478de77 ef255245 83ae3a1f 2a96e508 2c52666a 0d6fad5a

9d9f90d9 eb82281e 218239eb 34e1fbc7 5c84d024 f7ad1c2f d41d1a14 3b75dc18
h1: 39f3bd80 c38bf492 fed57468 ed70c750 c521033b
M1: 474204bb 3b30a3ff f17e9b08 3ffa0874 6b26377a 18abdc01 d320eb93 b341ebe9

13480f5c ca5d3aa6 b9f3bd88 21921a2d 4085fca1 eb65e659 51ac570c 54e8aae5
M ′

1: c74204f9 3b30a3ff 717e9b4a 3ffa0834 6b26373a 18abdc43 5320eb91 3341ebeb
13480f1c 4a5d3aa6 39f3bdc8 a1921a2f 4085fca3 6b65e619 d1ac570c d4e8aaa5

h2: 2af8aee6 ed1e8411 62c2f3f7 3761d197 0437669d

presented here serves to verify effectiveness of these new techniques for other
SHA variants.

Our analysis demonstrates some weaknesses in the step updating function of
SHA-0 and SHA-1. In particular, because of the simple step operation structure,
certain properties of the Boolean function (x ∧ y) ∨ (¬x ∧ z) combined with the
carry effect actually facilitate, rather than inhibit, differential attacks. We hope
that these insights can be useful in the design of more secure hash functions in
the future.
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A The Differential Path and Derived Conditions

In Table 8 we describe the details of the differential path that leads to a full
collision of SHA-0. In Table 9, we list a set of sufficient conditions on the chaining
variables ai for the given differential path.

For the first 20 steps, since there are many conditions for each ai, we use a
compact representation for the conditions so that they can be easily visualized.
More specifically, for the condition ai,j = v we put one symbol w in the row for
ai under bit position j, where w is defined as follows:

– If v = 0, then w = 0.
– If v = 1, then w = 1.
– If v = ai−1,j , then w = a.
– If v = ¬ai−1,j , then w = a.
– If no condition on ai,j , then w = -.
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Table 8. A differential path for the first round of SHA-0. For ease of notation, the
entries list the bit positions of the differences and their signs. For example, the difference
2j is listed as (j + 1) and −2j as −(j + 1)

step i xi−1 ∆mi−1 ∆ai ∆bi ∆ci ∆di ∆ei

1 0 −2, 7, 32 −2
−7, −8, 9
−32

2 1 7, 8, −9
−12, ..., −21, 22
5, −6 ∆a1

3 1 2, 7, 32 −12
−17, −18, 19
−10
2 ∆a2 ∆a�30

1

4 1 −7 −20, ..., −24, 25
9 ... ∆a�30

2 ∆a�30
1

5 1 −7 25
−4, 5 ... ∆a�30

2 ∆a�30
1

6 0 2, 7 2
10, 11, −12
−15, 16 ... ∆a�30

2

7 0 −2, 32 2
−17 ...

8 1 2, 32 12, ..., 22, −23
...

9 0 −7
...

10 1 32 2
...

11 0 7, 32 10
... ...

12 0 2, 32
∆a11 ...

13 1 2 2
∆a�30

11 ...

14 0 −7, 32
∆a13 ∆a�30

11 ...

15 1 32 −2
∆a�30

13 ∆a�30
11

16 0 −7, 32
∆a15 ∆a�30

13

The rest of the path consists of 19 6-step local collisions. The starting step of these
collisions is specified by the disturbance vector given in Table 4.
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Table 9. A set of sufficient conditions on ai for the differential path given in Table 8

chaining conditions on bits
variable 32 − 25 24 − 17 16 − 9 8 − 1

a0 -------- 1-1100-1 --1--1-1 10------
b0 -------- -------- ------a- ----a-a-
a1 1------- 0a0011a0 aa1-10a0 11----1-
a2 0-0----- --011111 111111-1 0010a---
a3 1-1--aaa aa0-0011 0010101- -010100-
a4 1----a-0 11111000 --1111-0 110011--
a5 0------0 -0001001 00100-0- 01-01---
a6 -------0 -1011110 010-100- -0--100-
a7 0------1 a1011111 0100--00 0----10-
a8 -------- -1000000 00000-11 1---1---
a9 1------- ---00000 0011001- ----0---
a10 -------- ---11111 1111111- ------0-
a11 0------- -------- ------0- ----1---
a12 0------- -------- -------- 0---0---
a13 -------- -------- -------- 1---0-0-
a14 1------- -------- -------- ----1---
a15 0------- -------- -------- ----1-1-
a16 1------- -------- -------- ----0---
a17 0------- -------- -------- ------1-
a18 1------- -------- -------- --------
a19 -------- -------- -------- --------
a20 -------- -------- -------- --------

The conditions for the 19 local collisions in Rounds 2-4 are derived as follows. Note
that the conditions depend on the bit mi,2 which has been pre-determined.

– XOR rounds:

ai−1,4 = ¬ai−2,4 (or ai−1,4 = ai−2,4)

ai,2 = mi,2.

– MAJ round:

ai−1,4 = ¬ai−2,4

ai,2 = mi,2

ai+1,32 = ¬ai−1,2

ai+2,32 = ¬ai+1,2
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1 Introduction

The hash function SHA-1 was issued by NIST in 1995 as a Federal Information
Processing Standard [5]. Since its publication, SHA-1 has been adopted by many
government and industry security standards, in particular standards on digital
signatures for which a collision-resistant hash function is required. In addition
to its usage in digital signatures, SHA-1 has also been deployed as an important
component in various cryptographic schemes and protocols, such as user authen-
tication, key agreement, and pseudorandom number generation. Consequently,
SHA-1 has been widely implemented in almost all commercial security systems
and products.

In this paper, we present new collision search attacks on SHA-1. We introduce
a set of strategies and corresponding techniques that can be used to remove some
major obstacles in collision search for SHA-1. Firstly, we look for a near-collision
differential path which has low Hamming weight in the “disturbance vector”
where each 1-bit represents a 6-step local collision. Secondly, we suitably adjust
the differential path in the first round to another possible differential path so
as to avoid impossible consecutive local collisions and truncated local collisions.
Thirdly, we transform two one-block near-collision differential paths into a two-
block collision differential path with twice the search complexity. We show that,
by combining these techniques, collisions of SHA-1 can be found with complexity
less than 269 hash operations. This is the first attack on the full 80-step SHA-1
with complexity less than the 280 theoretical bound.
� Supported by the National Natural Science Foundation of China (NSFC Grant
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In the past few years, there have been significant research advances in the
analysis of hash functions. The techniques developed in these early works pro-
vide an important foundation for the attacks on SHA-1 presented in this pa-
per. In particular, our analysis is built upon the original differential attack on
SHA-0 [14], the near collision attack on SHA-0 [1], the multi-block collision tech-
niques [12], as well as the message modification techniques used in the collision
search attacks on HAVAL-128, MD4, RIPEMD and MD5 [11,13,12].

Our attack naturally is applied to SHA-0 and all reduced variants of SHA-1.
For SHA-0, the attack is so effective that we are able to find real collisions of
the full SHA-0 with less than 239 hash operations [16]. We also implemented the
attack on SHA-1 reduced to 58 steps and found real collisions with less than 233

hash operations. In a way, the 58-step SHA-1 serve as a simpler variant of the full
80-step SHA-1 which help us to verify the effectiveness of our new techniques.
Furthermore, our analysis shows that the collision complexity of SHA-1 reduced
to 70 steps is less than 250 hash operations.

The rest of the paper is organized as follows. In Section 2, we give a descrip-
tion of SHA-1. In Section 3, we provide an overview of previous work on SHA-0
and SHA-1. In Section 4, we present the techniques used in our new collision
search attacks on SHA-1. In Section 5, we elaborate on the analysis details us-
ing the real collision of 58-step SHA-1 as a concrete example. We discuss the
implication of the results in Section 6.

2 Description of SHA-1

The hash function SHA-1 takes a message of length less than 264 bits and pro-
duces a 160-bit hash value. The input message is padded and then processed
in 512-bit blocks in the Damgard/Merkle iterative structure. Each iteration in-
vokes a so-called compression function which takes a 160-bit chaining value and
a 512-bit message block and outputs another 160-bit chaining value. The initial
chaining value (called IV) is a set of fixed constants, and the final chaining value
is the hash of the message.

In what follows, we describe the compression function of SHA-1.
For each 512-bit block of the padded message, divide it into 16 32-bit words,

(m0, m1, ...., m15). The message words are first expanded as follows: for i =
16, ..., 79,

mi = (mi−3 ⊕mi−8 ⊕mi−14 ⊕mi−16)� 1.

The expanded message words are then processed in four rounds, each con-
sisting of 20 steps. The step function is defined as follows.

For i = 1, 2, ..., 80,

ai = (ai−1 � 5) + fi(bi−1, ci−1, di−1) + ei−1 + mi−1 + ki

bi = ai−1

ci = bi−1 � 30
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di = ci−1

ei = di−1

The initial chaining value IV = (a0, b0, c0, d0, e0) is defined as:

(0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0)

Each round employs a different Boolean function fi and constant ki, which is
summarized in Table 1.

Table 1. Boolean functions and constants in SHA-1

round step Boolean function fi constant ki

1 1 − 20 IF: (x ∧ y) ∨ (¬x ∧ z) 0x5a827999
2 21 − 40 XOR: x ⊕ y ⊕ z 0x6ed6eba1
3 41 − 60 MAJ: (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) 0x8fabbcdc
4 61 − 80 XOR: x ⊕ y ⊕ z 0xca62c1d6

3 Previous Work on SHA-0 and SHA-1

In 1997, Wang [14] presented the first attack on SHA-0 based on an algebraic
method, and showed that collisions can be found with complexity 258. In 1998
Chabaud and Joux independently found the same collision differential path for
SHA-0 by the differential attack. In the present work, as well as in the SHA-0 at-
tack by [16], the algebraic method (see also Wang [15]) again plays an important
role, as it is used to deduce message conditions both on SHA-0 and SHA-1 that
should hold for a collision (or near-collision) differential path and be handled in
advance.

3.1 Local Collisions of SHA-1

Informally, a local collision is a collision within a few steps of the hash function.
A simple yet very important observation made in [14] is that SHA-0 has a 6-step
local collision that can start at any step i. A kind of local collision can be referred
to [16], and the chaining variable conditions for a local collision were taken from
Wang [14].

The collision differential path on SHA-0 chooses j = 2 so that j + 30 = 32
becomes the MSB 1 to eliminate the carry effect in the last three steps. In
addition, the following condition

mi,2 = ¬mi+1,7

1 Throughout this paper, we label the bit positions in a 32-bit word as
32, 31, 30, ..., 3, 2, 1, where bit 32 is the most significant bit and bit 1 is the least
significant bit. Please note that this is different from the convention of labelling bit
positions from 31 to 0.
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helps to offset completely the chaining variable difference in the second step of
the local collision, where mi,j denotes the j-th bit of message word mi.

The message condition in round 3

mi,2 = ¬mi+2,2

helps to offset the difference caused by the non-linear function in the third step
of the local collision.

Since the local collision of SHA-0 does not depend on the message expansion,
it also applies to SHA-1. Hence, this type of local collision can be used as the
basic component in constructing collisions and near collisions of the full 80-step
SHA-0 and SHA-1.

3.2 Differential Paths of SHA-1

We start with the differential path for SHA-0 given in [14,15]. At a high level, the
path is a sequence of local collisions joined together. To construct such a path,
we need to find appropriate starting steps for the local collisions. They can be
specified by an 80-bit 0-1 vector x = (x0, ..., x79) called a disturbance vector. It
is easy to show that the disturbance vector satisfies the same recursion defined
by the message expansion.

For the 80 variables xi, any 16 consecutive ones determine the rest. So there
are 16 free variables to be set for a total of 216 possibilities. Then a “good”
vector satisfying certain conditions can be easily searched with complexity 216.

In [2,9], the method for constructing differential paths of SHA-0 is naturally
extended to SHA-1. In the case of SHA-1, each entry xi in the disturbance vector
is a 32-bit word, rather than a single bit. The vectors thus defined satisfy the
SHA-1 message expansion.

That is, for i = 16, ..., 79,

xi = (xi−3 ⊕ xi−8 ⊕ xi−14 ⊕ xi−16) � 1.

In order for the disturbance vector to lead to a possible collision, several
conditions on the disturbance vectors need to be imposed, and they are discussed
in details in [15] [6]. These conditions also extend to SHA-1 in a straightforward
way, and we summarize them in Table 2.

In the case of SHA-0, 3 vectors are found among the 216 choices, and two of
them are valid when all three conditions are imposed.

In the case of SHA-1, it becomes more complicated to find a good disturbance
vector with low Hamming weight due to large search space. Biham and Chen [2]
used clever heuristics to search for such vectors for reduced step variants and
they were able to find real collisions of SHA-1 up to 40 steps. They estimated
that collisions of SHA-1 can be found up to 53-round reduced SHA-1 with about
248 complexity, where the reduction is to the last 53 rounds of SHA-1. Rijmen
and Osward [9] did a more comprehensive search using methods from coding
theory, and their estimates on the complexity are similar.
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Table 2. Conditions on disturbance vectors for SHA-1 with t steps

Condition Purpose

1 xi = 0 for i = t − 5, ..., t − 1 to produce a collision
in the last step t

2 xi = 0 for i = −5, ..., −1 to avoid truncated local
collisions in first few steps

3 no consecutive ones to avoid an impossible
in same bit position collision path due to
in the first 16 variables a property of IF

Overall, since the Hamming weight of a valid disturbance vector grows quickly
as the number of steps increases, it seems that finding a collision of the full 80-
step SHA-1 is beyond the 280 theoretical bound with existing techniques.

4 New Collision Search Attacks on SHA-1

In this section, we present our new techniques for search collisions in SHA-1. The
techniques used in the attack on SHA-1 are largely built upon our new analysis
of SHA-0 [16], in which we showed how to greatly reduces the search complexity
to below the 240 bound.

4.1 Overview

As we have seen in existing analysis of SHA-1, finding a disturbance vector with
low Hamming weight is a necessary step in constructing valid differential paths
that can lead to collision. On the other hand, the three conditions imposed
on disturbance vectors seem to a major obstacle. There have been attempts to
remove some of the conditions. For example, finding multi-block collisions using
near collisions effectively relax the first condition, and finding collisions for SHA-
1 without the first round effectively relax the second condition (although it is
no longer SHA-1 itself). Even with both relaxation, the Hamming weight of the
disturbance vectors is still too high to be useful for the full 80-step SHA-1.

A key idea of our new attack is to relax all the conditions on the disturbance
vectors. In other words, we impose no condition on the vectors other than they
satisfy the message expansion recursion. This allows us to find disturbance vec-
tors whose Hamming weights are much lower than those used in existing attacks.

We then present several new techniques for constructing a valid differential
path given such disturbance vectors. The resulting path is very complex in the
first round due to consecutive disturbances as well as truncated local collisions
that initiate from steps −5 through −1. This is the most difficult yet crucial
part of new analysis, without which it would be impossible to produce a real
collision.

Once a valid differential path is constructed, we apply the message modifica-
tion techniques, first introduced by Wang et. al in breaking MD5 and other hash
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functions [15,11,12,13], to further reduce the search complexity. Such extension
requires carefully deriving the exact conditions on the message words and chain-
ing variables, which is much more involved in the case of SHA-1 compared with
SHA-0 and other hash functions.

Besides the above techniques, we also introduce some new methods that are
tailored to the SHA-1 message expansion. Combining all these techniques and
a simple “early stopping” trick when implementing the search, we are able to
present an attack on SHA-1 with complexity less than 269. These techniques are
presented in more detail in Sections 4 and 5.

4.2 Finding Disturbance Vectors with Low Hamming Weight

Finding good disturbance vectors is the first important step in our analysis.
Without imposing any conditions other than the message expansion recursion,
the search becomes somewhat easier. However, since there are 16 32-bit free
variables, the search space can be as large as 2512. Instead of searching the
entire space for a vector with minimum weight, we use heuristics to confine our
search within a subspace that most likely contains good vectors.

We note that the 80 disturbance vectors x0, ..., x79 can be viewed as an 80-by-
32 matrix where each entry is a single 0/1 bit. A simple observation is that for a
matrix with low hamming weight, the non-zero entries are likely to concentrate
in several consecutive columns of the matrix. Hence, we can first pick two entries
xi,j−1 and xi,j in the matrix and let two 16-bit columns starting at xi,j−1 and
xi,j to vary through all 232 possibilities. There are 64 choices for i (i = 0, 1, ..., 63)
and 32 choices for j (j = 1, 2, ..., 32). In fact, with the same i, different choices
of j produce disturbance vectors that are rotations of each other, which would
have the same Hamming weight. By setting j = 2, we can minimize the carry
effect as discussed in Section 3.1. Overall, the size of the search space is at most
64× 232 = 238.

Using the above strategy, we first search for the best vectors predicting one-
block collisions. For the full SHA-1, the best one is obtained by setting x64,2 = 1
and xi,2 = 0 for i = 65, .., 79. The resulting disturbance vector is given in Table 5.
The best disturbance vectors for SHA-1 reduced to t-step is the same one with
the first 80− t vectors omitted. For SHA-1 variants up to 75 steps, the Hamming
weight is still small enough up to allow an attack with complexity less than 280,
and Table 7 summarizes the results for these variants.

In order to break the 280 barrier for the full SHA-1, we continue to search for
good disturbance vectors that predict near collisions and two-block collisions.
To do so, we compute more vectors after step 80 using the same SHA-1 message
expansion formula (also listed in Table 5).

Then we search all possible 80-vector intervals [xi, ..., xi+79]. Any set of 80
vectors with small enough Hamming weight can be used for constructing a near
collision. In fact, we found a total of 12 good sets of vectors, and this gives us
some freedom to pick the one that achieves the best complexity when taking into
account other criteria and techniques (other than just the Hamming weight).
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Table 3. Hamming weights (for Rounds 2-4) of best disturbance vectors for SHA-1
variants found by experiments. The comparison is made among different subsets of
conditions listed in Table 2. The notation 1BC denotes one-block collision, 2BC is
two-block collision, and NC implies near collision.

Existing results Our new results
SHA-1 SHA-1 w/o Round 1 SHA-1

conditions conditions conditions
1,2,3 2,3 1,2 2 1 -

step 1BC NC,2BC 1BC NC,2BC 1BC NC,2BC

47 26 12 24 12 5 5
53 42 20 16 16 10 7
54 39 24 36 16 10 7

60 14 11
70 14 17
75 26 21
80 31 25

Finally, we compare the minimal Hamming weight of disturbance vectors
found by experiments when different conditions are imposed. In Table 3, the last
two columns are obtained from our new analysis and other data are from [2].
Provided that the average probability in 2-4 rounds is 2−3, a valid disturbance
vector should have a Hamming weight less than a threshold 27, because the
corresponding collision (or near-collision) differential has the probability higher
than 2−80 which can result in an attack faster than the 280 theoretical bound. In
the table, we mark the step in bold for which this threshold is reached. It is now
easy to see that removing all the conditions has a significant effect in reducing
the Hamming weight of the disturbance vectors.

4.3 Techniques for Constructing Differential Paths

In this section, we present our new techniques for constructing a differential path
given a disturbance vector with low Hamming weight. Since the vector no longer
satisfies the seemly required conditions listed in Table 2, constructing a valid
differential path that leads to collisions becomes more difficult. Indeed, this is
the most complicated part of our new attacks on SHA-1. It is also a crucial part
of the analysis, since without a concrete differential path, we would not be able
to search for real collisions.

Below, we describe the high-level ideas in these new analysis techniques.

– Use “subtraction” instead of “exclusive-or” as the measure of difference to
facilitate the precision of the analysis.

– Take advantage of special differential properties of IF. In particular, when
an input difference is 1, the output difference can be 1,−1 or 0. Hence,
the function can preserve, flip or absorb an input difference, giving good
flexibility for constructing differential paths.
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– Take advantage of the carry effect. Since 2j = −2j − 2j+1...− 2j+k−1 + 2j+k

for any k, a single bit difference j can be expanded into several bits. This
property makes it possible to introduce extra bit differences.

– Use different message differences for the 6-step local collision. For example,
(2j , 2j+5, 0, 0, 0, 2j+30) is a valid message differences for a local collision in
the first round.

– Introduce extra bit differences to produce the impossible bit-differences in
the consecutive local collisions corresponding to the consecutive disturbances
in the first 16 steps, or to offset the bit differences of chaining variables
produced by truncated local collisions.

A near-collision differential path for the first message block is given in
Table 11.

4.4 Deriving Conditions

Given a valid differential path for SHA-1 or its reduced variants, we are ready
to derive conditions on messages and chaining variables. The derivation method
was originally introduced in [14] for breaking SHA-0, and can be applied to SHA-
1 since SHA-0 and SHA-1 have the same step update function. Most details can
be found in our analysis of SHA-0 [16], and hence are omitted. Here we focus on
the differences between SHA-0 and SHA-1 and discuss a new technique that is
tailored to SHA-1.

Due to the extra shift operation in the message expansion of SHA-1, a dis-
turbance can occur in bit positions other than bit 2 of the message words (as
can be seen from Table 5), while for SHA-0, all disturbances initiate in bit 2. If
this happens in the XOR rounds (round 2 and 4), the number of conditions will
increase from 2 to 4 for each local collision. This can blow up the total number
of conditions if not handled properly.

We describe a useful technique for utilizing two sets of message differences
corresponding to two consecutive disturbances within the same step i to produce
one 6-step local collision. For example, if there is a disturbance in both bit 1 and
bit 2 of xi, we can set the signs of the message differences ∆mi to be opposite in
those two bits. This way, the actual message difference can be regarded as one
difference bit in position 1, since 21 − 20 = 20. Hence the number of conditions
can be reduced from 4 + 2 = 6 to 4.

The conditions for the near-collision path in Table 11 are given in Table 12.

4.5 Message Modification Techniques

Using the basic message modification techniques in [11,12,13], we can modify an
input message so that all conditions on the chaining variables can hold in the
first 16 steps. With some additional effort, we can modify the messages so that
all conditions in step 17 to 22 also hold.

Note that message modification should keep all the message conditions to
hold in order to satisfy the differential path. All the message conditions can
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be expressed as equations of bit variables in m0, m1, ....m15 (message words
before message expansion). Because of the 1-bit shift in message recursion, all the
equations aren’t contradictory. Suppose we would like to correct 10 conditions
from step 17 to 22 by modifying the last 6 message words m10, m11, ...m15. From
Table 12, we know there are 32 chaining variable conditions, together with total
47 message equations from step 11 to step 16, the total number of conditions is
79 in step 11-16. Intuitively, this leaves a message space of size 2113, which is
large enough for modifying some message bits to correct 10 conditions.

4.6 Picking the Best Disturbance Vector

Once the conditions are derived and message modifications are applied, we can
analyze the complexity in a very precise way, by counting the remaining num-
ber of conditions in Rounds 2 to 4. The counting rules depend on the Boolean
function and locations of the disturbances occur in each round, and local colli-
sions across boundaries of rounds need to be handled differently. The details are
summarized in Table 8 in the appendix.

Given the disturbance vectors in Table 5, we find that for an 80-step near
collision, the minimum Hamming weight is 25 using the 80 vectors with index
[15,94]. However, the minimum number of conditions is 71 using the 80 vectors
with index [17,96]. This is because the conditions in step 79 and 80 can be ignored
for the purpose of near collisions, and the condition in step 21 can be made to
hold (see Section 4.5). The step-by-step counting for the number of conditions
for this vector is given in Table 9.

Using minimum number of conditions as the selection criteria, we pick the
vectors with index [17,96] as the disturbance vectors for constructing an 80-step
near collision.

4.7 Using Near Collisions to Find Collisions

Using the idea of multi-block collisions in [7,2,3,12], we can construct two-block
collisions using near collisions. For MD5 [12], the complexity of finding the first
block near-collision is higher than those of the second block near-collision because
of the determination for the bit-difference positions and signs in the last several
steps. Here we show that by keeping the bit-difference positions and the signs as
free variables in the last two steps, we can maintain essentially twice the search
complexity while moving from near collisions to two-block collisions. This idea
is also applicable to MD5 to further improve its collision probability from 2−37

to 2−32.
Let M0 and M ′

0 be the two message blocks and ∆h1 = h′
1−h1 be the output

difference for the 80-step near collision. If we look closely at the disturbance
vectors that we have chosen, there are 4 disturbances in the last 5 steps that
will propagate to ∆h1, which become the input differences in the initial values
for the second message block.

There are two techniques that we use to construct the differential path for the
second message blocks M1 and M ′

1. First, we apply the techniques described in
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Section 4.3 so that ∆h1 can be “absorbed” in the first 16 steps of the differential
paths. Second, we set the conditions on M1 so that the output difference ∆h2 will
have opposite signs for each of the differences in ∆h1. In other words, we set the
signs so that ∆h2+∆h1 = 0, meaning a collision after the second message block.
We emphasize that setting these conditions on the message does not increase the
number of conditions on the resulting differential path, and hence it does not
affect the complexity.

To summarize, the near collision on the second message block can be found
with the same complexity as the near collision for the first message block. There-
fore, there is only a factor of two increase in the overall complexity for getting a
two-block full collision.

4.8 Complexity Analysis and Additional Techniques

Using the modification techniques described in this section, we can correct the
conditions of steps 17-22. Furthermore, message modification will not result in
increased complexity if we use suitable implementation tricks such as “precom-
putation”. First, we can precompute and fix a set of messages in the first 10
steps and leave the rest as free variables. By Table 9, we know that there are 70
conditions in steps 23-77. For three conditions in steps 23-24, we use the “early
stopping technique”. That is, we only need to carry out the computation up to
step 24 and then test whether three conditions in steps 23-24 hold. This needs
about 12 step operations including message modification for correcting condi-
tions of steps 17-22. This is equivalent to about two SHA-1 operations. Hence,
the total complexity of finding the near-collision for the full SHA-1 is about 268

computations. Considering the complexity of finding the second near-collision
differential path, the total complexity of finding a full SHA-1 collision is thus
about 269.

The results for SHA-1 reduced variants are summarized in Table 6 and Ta-
ble 7 in the appendix.

5 Detailed Analysis: a 58-Step Collision of SHA-1

When t = 58, our analysis suggests that collisions can be found with about 233

hash operations, which is within the reach of computer search. In this section,
we describe some details on how to find a real collision for this SHA-1 variant.
The collision example is given in Table 4.

5.1 Constructing the Specific Differential Path

We first introduce some notation. Let ai,j denote the jth bit of variable ai and
∆ai = a′

i − ai denote the difference. Note that we use subtraction difference
rather than exclusive-or difference since keeping track of the signs is important
in the analysis. Following the notation introduced in [12], we use ai[j] to denote
ai[j] = ai + 2j−1 with no bit carry, and ai[−j] to denote that ai[−j] = ai− 2j−1

with no bit carry.
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Table 4. A collision of SHA-1 reduced to 58 steps. Note that padding rules are not
applied to the messages, and compress(h0, M0) = compress(h0, M

′
0) = h1.

h0: 67452301 efcdab89 98badcfe 10325476 c3d2e1f0
M0: 132b5ab6 a115775f 5bfddd6b 4dc470eb 0637938a 6cceb733 0c86a386 68080139

534047a4 a42fc29a 06085121 a3131f73 ad5da5cf 13375402 40bdc7c2 d5a839e2
M ′

0: 332b5ab6 c115776d 3bfddd28 6dc470ab e63793c8 0cceb731 8c86a387 68080119
534047a7 e42fc2c8 46085161 43131f21 0d5da5cf 93375442 60bdc7c3 f5a83982

h1: 9768e739 b662af82 a0137d3e 918747cf c8ceb7d4

We use step 23 to step 80 of the disturbance vector in Table 5 to construct a
58-step differential path that leads to a collision. The specific path for the first
16 steps is given in Table 10, and the rest of the path consists of the usual local
collisions.

As we discussed before, there are two major complications that we need to
deal with in constructing a valid differential path in the first 16 steps. In what
follows, we describe high-level ideas as how to deal with the above two problems,
and some technical details are omitted.

1. Message differences from a disturbance initiated in steps −5 to −1. These
differences are m0[30], m1[−5, 6,−30, 31], m2[−1, 30,−31].

2. Consecutive disturbances in the same bit position in the first 16 steps. There
are two such sequences: (1) x1,2, x2,2, x3,2 and (2) x8,2, x9,2, x10,2.

It is more instructive to focus on the values of ∆ai without carry expansion,
which is the left column for ∆ai in Table 10. We first consider the propagation
of the difference m1[−5, 6]. It produces the following differences:

a2[5]→ a3[10]→ a4[15]→ a5[20]→ a6[25].

These differences in a propagate through b, c, d to the following differences
in the chaining variable e:

e6[3]→ e7[8]→ e9[13]→ e9[18]→ e10[23].

The differences in b, c, d are easy to deal with since they can be absorbed
by the Boolean function. So we only need to pay attention to variables a and
e. The difference a6[25] as well as the five differences in ei are cancelled in the
step immediately after the step in which they first occur. This way, they will not
propagate further. The cancellation is done using either existing differences in
other variables or extra differences from the carry effect. For example, we expand
a8[−18] to a8[18, 19, ...,−26] so that a8[25,−26] can produce the bit difference
c10[23,−24] to offset e10[23], and a8[−26] produce b9[−26] to cancel out e9[26].

The consecutive disturbances are handled in different ways. For the first
sequence, the middle disturbance m2[2] is combined with m2[1] so that the dis-
turbance is shifted from bit 2 to bit 1. For the second sequence, the middle
disturbance m9[2] is offset by c9[2], which comes from the difference a7[4].
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One might get too swamped with the technicality for deriving such a compli-
cated differential path. It is helpful to summarize the flow in the main approach:
(1) analyze the propagation of differences, (2) identify wanted and un-wanted
differences, and (3) use the Boolean function and the carry effect to introduce
and absorb these differences.

5.2 Deriving Conditions on ai and mi

The method for deriving conditions on the chaining variables is essentially the
same as in our analysis of SHA-0 [16], and so the details are omitted here.

The method for deriving conditions on the messages is more complicated
since it involves more bit positions in the message words. To simplify the analy-
sis, we first find a partial message (the first 12 words) that satisfies all the
conditions in the first 12 steps. This can be done using message modification
techniques in a systematic way. This leaves us with four free variables, namely
m12, m13, m14, m15. Next we can write each mi (i ≥ 16) as a function of the four
free variables using the message expansion recursion. Conditions on these mi

then translate to conditions on m12, m13, m14, m15, and these bits will be fixed
during the collision search.

6 Conclusions

In this paper, we present the first attack on the full SHA-1 with complexity less
than 269 hash operations. This attack is also available to find one-block collisions
for the SHA-1 reduced variants less than 76 rounds. For example, we can find a
collision of 75-round SHA-1 with complexity 278, and find a collision of 70-round
SHA-1 with complexity 268.

Some strategies of the attack can be utilized to further improve the attacks
on MD5 and SHA-0 etc. For example, applying the new technique of combining
near-collision paths into a collision path, we can improve the successful proba-
bility of the attack on MD5 from 2−37 to 2−32.

At this point, it is worth comparing the security of the MD4 family of hash
functions against the best known attacks today. We can see that more com-
plicated message preprocessing does provide more security. However, even for
SHA-1, the message expansion does not seem to offer enough avalanche effect
in terms of spreading the input differences. Furthermore, there seem to be some
unexpected weaknesses in the structure of all the step updating functions. In
particular, because of the simple step operation, the certain properties of some
Boolean functions combined with the carry effect actually facilitate, rather than
prevent, differential attacks.

We hope that the analysis on SHA-1 as well as other hash functions will
provide useful insight on design criteria for more security hash functions. We
anticipate that the design and analysis of new hash functions will be an impor-
tant research topic in the coming years.
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A Appendix: Tables

Table 5. Disturbance vectors of SHA-1. The 96 vectors xi (i = 0, ..., 95) satisfy the
SHA-1 message expansion recursion, but no other conditions. The second italicized
index is only needed for numbering the 80 vectors that are chosen for constructing the
best 80-step near collision.

index index vector index index vector index index vector
i xi−1 i xi−1 i xi−1

1 e0000000 33 17 80000002 65 49 2
2 2 34 18 0 66 50 0
3 2 35 19 2 67 51 0
4 80000000 36 20 0 68 52 0
5 1 37 21 3 69 53 0
6 0 38 22 0 70 54 0
7 80000001 39 23 2 71 55 0
8 2 40 24 2 72 56 0
9 40000002 41 25 1 73 57 0
10 2 42 26 0 74 58 0
11 2 43 27 2 75 59 0
12 80000000 44 28 2 76 60 0
13 2 45 29 1 77 61 0
14 0 46 30 0 78 62 0
15 80000001 47 31 0 79 63 0
16 0 48 32 2 80 64 0

17 1 40000001 49 33 3 81 65 4
18 2 2 50 34 0 82 66 0
19 3 2 51 35 2 83 67 0
20 4 80000002 52 36 2 84 68 8
21 5 1 53 37 0 85 69 0
22 6 0 54 38 0 86 70 0
23 7 80000001 55 39 2 87 71 10
24 8 2 56 40 0 88 72 0
25 9 2 57 41 0 89 73 8
26 10 2 58 42 0 90 74 20
27 11 0 59 43 2 91 75 0
28 12 0 60 44 0 92 76 0
29 13 1 61 45 2 93 77 40
30 14 0 62 46 0 94 78 0
31 15 80000002 63 47 2 95 79 28
32 16 2 64 48 0 96 80 80
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Table 6. Search complexity for near collisions (NC) and two-block collisions (2BC)
of SHA-1 reduced to t steps. “Start & end index” refers to the index for disturbance
vectors in Table 5. The complexity estimation takes into account the speedup using
early stopping techniques (see Section 4.8), and the estimation for 78-80 steps also
takes into accounts the speedup by advanced modification techniques (see Section 4.5).

t-step start & end HW # conditions complexity
SHA-1 index of DV in ro.2-4 in ro.2-4 NC 2BC

80 17, 96 27 71 268 269

79 17, 95 26 71 268 269

78 17, 94 24 71 268 269

77 16, 92 23 71 268 269

76 19, 94 22 69 266 267

75 20, 94 21 65 262 263

74 21, 94 20 63 260 261

73 20, 92 20 61 258 259

72 23, 94 19 59 256 257

71 24, 94 18 55 252 253

70 25, 94 17 52 249 250

69 26, 94 16 50 248 249

68 27, 94 16 48 246 247

67 28, 94 16 45 243 244

66 29, 94 15 41 239 240

65 30, 94 13 40 238 239

64 29, 92 14 37 235 236

63 32, 94 12 35 233 234

62 33, 94 11 34 232 233

61 32, 92 11 31 229 230

60 29, 88 12 29 227 228

59 30, 88 10 28 226 227

58 29, 86 11 25 223 224

57 32, 88 9 23 221 222

56 33, 88 8 22 220 221

55 32, 86 8 19 217 218

54 33, 86 7 18 216 217

53 34, 86 7 18 216 217

52 32, 83 7 15 213 214

51 33, 83 6 14 212 213

50 34, 83 6 14 212 213
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Table 7. Search complexity for one-block collisions of SHA-1 reduced to t steps. Ex-
planation of the table is the same as that for 6.

SHA-1 reduced start & end HW # conditions search
to t steps point of DV in rounds 2-4 in rounds 2-4 complexity

80 1, 80 31 96 293

79 2, 80 30 95 292

78 3, 80 30 90 287

77 4, 80 28 88 285

76 5, 80 27 83 280

75 6, 80 26 81 278

74 7, 80 25 79 276

73 8, 80 25 77 274

72 9, 80 25 77 274

71 10, 80 24 74 271

70 11, 80 24 71 268

69 12, 80 22 68 266

68 13, 80 21 62 260

67 14, 80 19 58 256

66 15, 80 19 55 253

65 16, 80 18 51 249

64 17, 80 18 48 246

63 18, 80 16 48 246

62 19, 80 16 45 243

61 20, 80 15 41 239

60 21, 80 14 39 237

59 22, 80 13 38 236

58 23, 80 13 35 233

57 24, 80 12 31 229

56 25, 80 11 28 226

55 26, 80 10 26 224

54 27, 80 10 24 222

53 28, 80 10 21 219

52 29, 80 9 17 215

51 30, 80 7 16 214

50 31, 80 7 14 212
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Table 8. Rules for counting the number of conditions in rounds 2-4

step disturb in bit 2 disturb in other bits comments

19 0 1 For a21

20 0 2 For a21, a22

21 1 3 Condition a20 is “truncated”
22-36 2 4
37 3 4

38-40 4 4

41-60 4 4

61-76 2 4
77 2 3 Conditions are “truncated”
78 2 2 starting at step 77.
79 (1) (1) Conditions for step 79,80
80 (1) (1) can be ignored in analysis

Special counting rules:

1. If two disturbances start in both bit 2 and bit 1 in the same step, then they only
result in 4 conditions (see Section 4.8).

2. For Round 3, two consecutive disturbances in the same bit position only account
for 6 conditions (rather than 8). This is due to the property of the MAJ function.

Table 9. Example: Counting the number of conditions for the 80-step near collision.
The “index” refers to the second italicized index in Table 5.

index number of conditions comments

21 4 − 1 − 1 = 2 4 cond’s: a20, a21, a22, a23

− a20 due to truncation
− a21 using modification

23,24,27,28
32,35,36 2 × 7 = 14

25,29,33,39 4 × 4 = 16
43,45,47,49 4 × 4 = 16

65,68,71,73,74 4 × 5 = 20

77 3 Truncation
79 0 2 conditions ignored
80 0 1 condition ignored

Total 71
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Table 10. The differential path for the 58-step SHA-1 collision. Note that xi (i = 0..15)
are the disturbance vector for the first 16 steps, which correspond to the 16 vectors
indexed by 23 through 38 in Table 5. The ∆ entries list the positions of the differences
and their signs. For example, the difference 2j is listed as (j + 1) and −2j as −(j + 1).

∆ai

step no with
i xi−1 ∆mi−1 carry carry ∆bi ∆ci ∆di ∆ei

1 80000001 30 30 −30, 31

2 2 −2 2 −2, 3
−5, 6 5 5
−30 −30 −30
31 31 −31, 32 ∆a1

3 2 −1, −2 1 1
−7 10 10
30, −31 ∆a2 ∆a�30

1

4 2 −7 −2 2, −3
30 15 −15, 16

−5 5, −6 ... ∆a�30
2 ∆a�30

1

5 0 −2, 7 20 −20, 21
30, 31 28 −28, 29
32 −1 −1

−10 10, 11, −12 ... ∆a�30
2 ∆a�30

1

6 0 −2 25 25
−30, −31 15 −15, 16

... ∆a�30
2

7 1 1, 32 1 1
8 −8, −9, 10
4, −21 4, −21 ...

8 0 −6 −18 18, ..., −26
...

9 80000002 1, 2 −2, 32 −2, 32
−9 9, ..., −19 ...

10 2 −2
−5, 7
31 ...

11 80000002 7, 31 2, −32 2, −32
9 9 ... ...

12 0 −2
−5, −7
−30
31, −32 ∆a11 ...

13 2 −30, −32 −2 −2
∆a�30

11 ...

14 0 7, 32
∆a13 ∆a�30

11 ...

15 3 1, 30 1 1
∆a�30

13 ∆a�30
11

16 0 −6, −7
30 ∆a15 ∆a�30

13
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Table 11. The differential path for the 80-step SHA1 collision. Note that xi (i = 0..19)
are the disturbance vector for the first 20 steps, which correspond to the 20 vectors
indexed by 1 through 20 in Table 5. The ∆ entries list the positions of the differences
and their signs. For example, the difference 2j is listed as (j + 1) and −2j as −(j + 1).

∆ai

step no with
i xi−1 ∆mi−1 carry carry ∆bi ∆ci ∆di ∆ei

1 40000001 30 30, 31 30, 31

2 2 −2, −4 2 −2, 3
6 6 −6, −7, 8
−30, −31, 32 30 −30, −31, 32 ∆a1

3 2 1, 2 −1 −1
−7 4 4
30 11 −11, −12, −13, 14 ∆a2 ∆a�30

1

4 80000002 7 −2, 9 −2, 9
29, −30 16 −16, −17, −18, 19
−32 −32 −32 ... ∆a�30

2 ∆a�30
1

5 1 1, −2 −5 5, −6
−5, 7 21 −21, 22
29, 31, 32 28 28 ... ∆a�30

2 ∆a�30
1

6 0 −2, −6 11 −11, −12, 13
29, 31 16 −16, 17
32 26 −26, 27 ... ∆a�30

2

7 80000001 30 1 1
−4, −6 −4, 6, −7
32 32 ...

8 2 −2, −5, −6 −19 19, ..., −26
30, 31 ...

9 2 1, −2, −7 −2 −2
−30, −31 −10 10, ..., −20 ...

10 2 7 2 2
−30 ...

11 0 2, −7 9 −9, 10
−30, 31, −32 ... ...

12 0 2 −4 −4
−30, −31 ...

13 1 1 1 1
32 ...

14 0 −6
...

15 80000002 −1, 2 −32 −32

16 2 2, 5, −7 2 2
−31 ∆a15

17 80000002 −7 −2 −2
31 32 32 ∆a16 ∆a�30

15

18 0 −2, −5, 7
30, 31, 32 ∆a�30

16 ∆a�30
15

19 2 30 2 2
32 ∆a�30

16 ∆a�30
15

20 0 −7
32 ∆a19 ∆a�30

16
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Table 12. A set of sufficient conditions on ai for the differential path given in Table 11.
The notation ‘a’ stands for the condition ai,j = ai−1,j and ‘b’ denotes the condition
a19,30 = a18,32.

chaining conditions on bits
variable 32 − 25 24 − 17 16 − 9 8 − 1

a1 a00----- -------- 1-----aa 1-0a11aa
a2 01110--- ------1- 0aaa-0-- 011-001-
a3 0-100--- -0-aaa0- --0111-- 01110-01
a4 10010--- a1---011 10011010 10011-10
a5 001a0--- --01-000 10001111 -010-11-
a6 1-0-0011 1-1001-0 111011-1 a10-00a-
a7 0---1011 1a0111-- 101--010 -10-11-0
a8 -01---10 000000aa 001aa111 ---01-1-
a9 -00----- 10001000 0000000- ---11-1-
a10 0------- 1111111- 11100000 0-----0-
a11 -------- ------10 11111101 1-a--0--
a12 0------- -------- -------- 10--11--
a13 -------- -------- -------- 11----10
a14 -0------ -------- -------- ----0-1-
a15 10------ -------- -------- ----1-0-
a16 --1----- -------- -------- ----0-0-
a17 0-0----- -------- -------- ------1-
a18 --1----- -------- -------- ----a---
a19 --b----- -------- -------- ------0-
a20 -------- -------- -------- -----a--
a21 -------- -------- -------- -------1
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Abstract. We investigate methods for providing easy-to-check proofs
of computational effort. Originally intended for discouraging spam,
the concept has wide applicability as a method for controlling denial
of service attacks. Dwork, Goldberg, and Naor proposed a specific
memory-bound function for this purpose and proved an asymptotically
tight amortized lower bound on the number of memory accesses any
polynomial time bounded adversary must make. Their function requires
a large random table which, crucially, cannot be compressed.

We answer an open question of Dwork et al. by designing a compact
representation for the table. The paradox, compressing an incompressible
table, is resolved by embedding a time/space tradeoff into the process
for constructing the table from its representation.

1 Introduction

In 1992 Dwork and Naor proposed that e-mail messages be accompanied by
easy-to-check proofs of computational effort in order to discourage junk e-mail,
now known as spam [12], and suggested specific CPU-bound functions for this
purpose1. Noting that memory access speeds vary across machines much less than
do CPU speeds, Abadi, Burrows, Manasse, and Wobber [1] initiated a fascinating
new direction: replacing CPU-intensive functions with memory-bound functions,
an approach that treats senders more equitably.

Memory-bound functions were further explored by by Dwork, Goldberg, and
Naor [11], who designed a class of functions based on pointer chasing in a large
shared random table, denoted T . We may think of T as part of the definition
of their functions. Using hash functions modelled as truly random functions
(i.e. ‘random oracles’), they proved lower bounds on the amortized number of
memory accesses that an adversary must expend per proof of effort, and gave a
concrete implementation in which the size of the proposed table is 16MB.
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There are two drawbacks to the use of a large random table in the definition
of the function. If the proof-of-effort software is distributed bundled with
other software, then the table occupies a large footprint. In addition, for
users downloading the function (or a function update, possibly necessitated
by a substantial growth in cache sizes), downloading such a large table might
require considerable connect time, especially if the download is done on a
common telephone line. Connection fees, i/o-boundedness, and the possibility
of transmission errors suggest that five minutes of local computation, to be done
once and for all (at least, until the next update), is preferable to five minutes of
connect time. Thus a compact representation of T allows for easy distribution
and frequent updates.

These considerations lead to the question of whether there might be a succinct
representation of T . In other words, is it possible to distribute a short program
for constructing T while still maintaining the lower bound on the amortized
number of memory accesses? The danger is that the adversary (spammer) might
be able to use the succinct description of T to generate elements in cache and
on the fly, whenever they are needed, only rarely going to memory.

Roughly speaking, our approach is to generate T using a memory-bound
process. Sources for such processes are time/space tradeoffs, such as those offered
by graph pebbling, defined below, and sorting. We will use both of these: we
exploit known dramatic time/space tradeoffs for pebbling in constructing a
theoretical solution, with provable complexity bounds; the solution uses a hash
function, modeled by a random oracle in the proof. We also describe a heuristic
based on sorting. A very nice property of an algorithm whose most complex
part is sorting is that it is easy to program, reducing a common source of
implementation errors.

We will focus most of our discussion on the pebbling results. The heuristic
based on sorting is described in Section 6. Although our work does not rely on
computational assumptions, we nonetheless assume the adversary is restricted
to polynomial time, or in any event that a spamming approach that requires
superpolynomially many cpu cycles is not lucrative. This raises an interesting
observation:

Remark 1. If the adversary were not restricted to polynomial time, then the
proof of effort would have to be long. Otherwise, by Savitch’s Theorem
(relativized to a random oracle), the adversary could find the proof using space
at most the square of the length of the proof (since guessing the proof has non-
deterministic space complexity bounded by the proof length), which may be
considerably smaller than the cache size.

Pebbling can be described as a game played on a directed acyclic graph
D(V, E) be with a set S ⊂ V of inputs (nodes of indegree 0) and a set T ⊂ V
of outputs (nodes of outdegree 0). (Eventually we will identify the outputs of D
with the elements of the table T .) The player has s pebbles. A pebble may be
placed on an input at any time. A pebble may be placed on a node v ∈ V \ S
if and only if every vertex u such that (u, v) ∈ E currently has a pebble. That
is, a non-input may be pebbled if and only if all its immediate predecessors
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hold pebbles. Finally, a pebble may be removed from the graph at any time.
Typically, the goal of the player is to pebble outputs using few moves and using
few simultaneous pebbles; that is, efficiently and in such a way that at any time
there are few pebbles on the graph.

Pebbling has been the subject of deep and extensive research, and it is in the
context of proving lower bounds for computation on random access machines
superconcentrators were invented (see [18]). These are graphs with large flow:
for every set A of inputs and every set B of outputs of the same size, there are
vertex-disjoint paths connecting A to B. Valiant [18] showed that every circuit for
computing a certain type of transform contains a superconcentrator. Although
these did not directly yield lower bounds, they eventually yielded time-space
tradeoffs, via pebbling arguments.

Pebbling intends to capture time and space requirements for carrying out a
particular computation, defined by the graph – we can think of a non-input as
being associated with a function symbol, such as “+” or “ ×”. For example, a
sum can be computed if its summands – as represented by the node’s immediate
predecessors – have been computed. We can think of placing a pebble on a
node as tantamount to storing a (possibly newly computed) value in a register.
Time/space tradeoffs for specific computation graphs are obtained by showing
that no (time efficient) pebbling strategy exists that uses few simultaneous
pebbles. Time/space tradeoffs for problems are obtained by showing that every
computation graph for the problem yields a tradeoff.

As noted, in our case, the outputs of the graph will correspond to elements
of T . If an output cannot be pebbled (in reasonable time) using few pebbles, i.e.,
little space, we would like to conclude that considerable time or memory accesses
were devoted to finding the value associated with the corresponding output of
the graph computation. But perhaps there is a different computation that yields
the same outputs – a computation unrelated to the computation determined by
the dag. In this case obtaining a function output does not imply that significant
resources have been expended.

We force the adversary to adhere to the computation schema described by
the graph by associating a random oracle with each node. That is, we label each
non-input with the value obtained by applying the hash function to the labels of
the predecessor vertices. (The inputs are numbered 1 through N , and the label
of input i is the hash of i.) Using this we show, rigorously, how to convert the
adversary’s behavior to a pebbling.

Although this intuition is sound, our situation is more challenging: while we
associate placing a pebble with storing a value in cache, our adversary is not
limited to cache memory, but may use main memory as well; moreover, main
memory is very large. How can we adapt the classical time/space tradeoffs to
this setting?

We address this by constructing a dag D that, in addition to being hard to
pebble, remains hard to pebble even when many nodes and their incident edges
are removed. Roughly speaking, given the cache contents, we “knock out” those
nodes whose labels can be (mostly) determined by the cache contents, together
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with their incident edges. We need that the “surviving” graph is still hard to
pebble. We will also introduce the concept of spontaneously generated pebbles to
capture memory reads. We show that pebbling remains hard unless the number
of spontaneously generated pebbles is large.

We must ensure that no cut in the graph is knocked out. Intuitively, knocking
out a cut in the graph corresponds to reducing the depth of the graph, and
therefore reducing the difficulty of pebbling the graph. This leads us to a graph
with slightly special structure: it is the concatenation of two pieces. The first is
a stack of wide (no small cut) superconcentrators (by stack we mean a sequence
of DAGs where the outputs of one are the inputs of the next DAG in the
sequence). The description of the second is quite technical, and we defer it until
the requirements have been better motivated (Section 4).

2 Complete Description of Our Abstract Algorithm

We now describe our algorithm, Compact MBound, postponing the construction
of the graph D to Section 4. The algorithm adds a table generation phase to
Algorithm MBound of [11]. Thus the two algorithms are identical except that
in the new algorithm the table T is generated by the procedure outlined below,
while in the original algorithm the table T is completely random. For the concrete
implementation, we use a heuristic for generating the table T , described in
Section 6. We then combine this with the concrete implementation of Algorithm
MBound proposed in [11].

Algorithm Compact Mbound uses a collection of hash functions H′ =
{H0, H1, H2, H3, H4}. The function H4 has been described in the Introduction;
its role is to force the adversary to adhere to a computation defined by the
graph D, and its output is w bits long, where w is the word size. The remaining
hash functions are those used in the original Algorithm MBound. In our analysis,
we will treat each hash function as a random oracle.

2.1 Building Table T

Both the (legitimate) sender and the receiver must build the table T , but this is
done only once and the table T is then stored in main memory. After the table
has been built, proofs of effort are constructed and checked using the algorithms
of Dwork, Goldberg, and Naor [11], reproduced in Section 2.2 for completeness.
We will provide an explicit construction of the graph D used in building T . This
means that we may incorporate the algorithm for computing D (and thus T )
into the proof-of-effort software.

The algorithm for constructing T first computes the graph D which has N
inputs, N outputs and constant indegree d, and then numbers the input vertices
1, 2, . . . , N and the output vertices N +1, N +2, . . . , 2N . Next, each vertex of V
is labeled with a w-bit string in an inductive fashion, beginning with the input
vertices:
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1. Input i is labeled H4(i), for 1 ≤ i ≤ N .
2. For vertex j /∈ [N ], let vertices i1 < · · · < id be the predecessors of vertex j.

Then vertex j is labeled H4(label (i1), . . . , label (id), j).

The entries of T correspond to the labels of the output vertices, namely:

T [i] = label(N + i), i = 1, 2, . . . , N.

Once the table T has been computed and stored, the graph D and the node
labels may be discarded.

2.2 Computing and Checking Proofs of Effort

The algorithm described here is due to [11]. It uses a modifiable array A,
initialized for each trial. The adversary’s model, described in Section 2.3, restricts
the size of A: if w is the size of a memory word and b is the number of bits in
a memory block (or cache line), then the algorithm requires that |A|w > b bits.
A word on notation: For arrays A and T , we denote by |A| (respectively, |T |)
the number of elements in the array. Since each element is a word of w bits, the
numbers of bits in these arrays are |A|w and |T |w, respectively.

At a high level, the algorithm is designed to force the sender of a message to
take a random walk “through T ,” that is, to make a series of random-looking
accesses to T , each subsequent location determined, in part, by the contents of
the current location. Such a walk is called a path. Typically, the sender will have
to explore many different paths until a path with certain desired characteristics
is found. Such a path is called successful, and each path exploration is called
a trial. Once a successful path has been identified, information enabling the
receiver to check that a successful path has been found is sent along with the
message.

The algorithm for computing a path in a generic trial is specified by two
parameters � (path length) and e (effort), and takes as input a message m,
sender’s name (or address) S, receiver’s name (or address) R, and date d,
together with a trial number k:

Initialization:
A = H0(m, R, S, d, k)

Main Loop: Walk for � steps (� is the path length):
c ← H1(A)
A← H2(A, T [c])

Success occurs if after � steps the last e bits of H3(A) are all zero.

A legitimate proof of effort is a 5-tuple (m, R, S, d, k) along with the value
H3(A) for which success occurs. This may be verified with O(�) work by just
exploring the path specified by k and checking that the reported hash value
H3(A) is correct and ends with e zeroes. The value of H3(A) is added to prevent
the adversary from simply guessing k, which has probability 1/2e of success.
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An honest sender computes a proof of effort by repeating path exploration
for k = 1, 2, . . . until success occurs. The probability of success for each trial is
1/2e, so the expected amount of work for the honest sender is O(2e�). The main
technical component in [11] is showing that Ω(2e�) work is also necessary (for a
random T ).

2.3 The Adversary’s Model

We assume an adversary’s computational model as in [11]. The adversary is
assumed to be limited to a “standard architecture” as specified below:

1. There is a large memory, partitioned into m blocks (also called cache lines)
of b bits each;

2. The adversary’s cache is small compared to the memory. The cache contains
at most s (for “space”) words; a cache line typically contains a small number
(for example, 16) of words;

3. Although the memory size is large compared to the cache, we assume that
m is still only polynomial in the largest feasible cache size s;

4. Each word contains w bits (commonly, w = 32);
5. To access a location in the memory, if a copy is not already in the cache (a

cache miss occurs), the contents of the block containing that location must
be brought into the cache – a fetch; every cache miss results in a fetch;

6. We charge one unit for each fetch of a memory block. Thus, if two adjacent
blocks are brought into cache, we charge two units (there is no discount for
proximity at the block level);

7. Computation on data in the cache is essentially free. By not (significantly)
charging the adversary for this computation, we are increasing the power of
the adversary; this strengthens the lower bound.

3 Pebbling

The goal in pebbling is to find a strategy to pebble all the outputs while using
only a few pebbles simultaneously and not too many steps (pebble placements).
Pebbling has received much attention, in particular in the late seventies and early
eighties, as a model for space bounded computation (as well as other applications,
such as the relative power of programming languages) [9,13,14,16].

A directed acyclic graph with bounded indegree, N inputs, and N outputs
is an N -superconcentrator if for any 1 ≤ k ≤ N and any sets S′ of inputs and
T ′ of outputs, both of size k, there are k vertex-disjoint paths connecting S′ to
T ′. Thus, superconcentrators are graphs with excellent flow. (Note that we do
not assume the need to specify which input is connected to which output.)

The following classical results are relevant to our work. Here m denotes the
number of vertices in the graph.

– Stacks of superconcentrators yield graphs with a very sharp tradeoffs: To
pebble all the outputs of these graphs with fewer than N pebbles requires
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time exponential in the depth, independent of the initial configuration of the
pebbles [13].

– Constant-degree constructions of linear-sized superconcentrators of small
depth were given in [18,15,10]. The construction of minimum known density
is by Alon and Capalbo [4].

The Basic Lower Bound Argument. Many proofs of pebbling results rely on the
following so-called Basic Lower Bound Argument [16,13]. The claim of the Basic
Lower Bound Argument is that to pebble s + 1 outputs of a superconcentrator
with any initial placement of at most s pebbles requires the pebbling of N − s
inputs, independent of the initial configuration of the s pebbles.

To see this, suppose that fewer than N − s inputs are pebbled. Then
there exists a set S′′ of s + 1 inputs that do not receive pebbles. By the
superconcentrator property these s + 1 inputs are connected via vertex-disjoint
paths to the target set of s+1 outputs that should be pebbled. Every one of these
paths must at some point receive a pebble, else not all the target outputs can
be pebbled. Since a node cannot be pebbled without pebbling all its ancestors,
it follows that every input in our set of size s + 1 must receive a pebble at some
point, contradicting the assumption.

3.1 Converting the Adversary’s Moves to a Pebbling

The adversary does not define its operation in terms of pebbling but instead
we assume that we (the provers of the lower bound) can follow its memory
accesses and the applications of the functions of H′ and in particular H4. We
now describe how the adversary’s actions yield a pebbling of the graph. The
pebbling is determined by an off-line inspection of the adversary’s moves, i.e.,
following an execution of the adversary it is possible to describe the pebbling
that occurred. Hence we call it ex post facto pebbling:

Placing Initial Pebbles. If H4 is applied with label (j′) as an argument, and
label(j′) was not computed via H4, then we consider j′ to have a pebble in an
initial configuration. We sometimes refer to these as spontaneously generated
pebbles.

Placing a Pebble. If H4 is applied to i for some 1 ≤ i ≤ N , then place a
pebble on node i (recall the inputs are vertices 1, . . . , N , so node i in this case is
an input vertex). Let j be a non-input vertex (so j > N), and let i1 < · · · < id
be the predecessors of vertex j. If H4 is applied to (label (i1), . . . , label (id), j),
where label(ib) is the correct label of vertex ib, 1 ≤ b ≤ d, then place a pebble
on vertex j.

Removing a Pebble. A pebble is removed as soon as it is not needed
anymore. Here we use our clairvoyant capabilities and remove the pebble on
node j′ right after a call for H4 with the correct value of label(j′) as one of the
arguments if (i) label(j′) is not used anymore or (ii) label(j′) is computed again
before it is used as an argument to H4. That is, before the next time label (j′)
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appears as an argument to H4 it also appears as the result of computing H4
(the output of H4).

We may relate the ex post facto pebbling strategy to the adversary’s strategy
as follows:

– Placing a pebble corresponds to making an oracle call to H4. Hence, a lower
bound on the number of (placement) moves in the pebbling game yields a
lower bound on the number of oracle calls and thus the amount of work done
by the adversary.

– The initial (spontaneously generated) pebbles correspond to the values
of H4 that the adversary “learns” without invoking H4. Intuitively, this
information must come from the cache contents and memory fetches.
Therefore, we would expect that if the adversary has a cache of s words
and fetches z bits from memory, then the adversary is limited to at most
s + z/w initial pebbles, since each pebble corresponds to a w-bit string.

The following lemma formalizes our intuition relating the number of pebbles
used in the ex post facto pebbling to the cache size of the adversary and the
number of bits the adversary fetches from memory. It says that with very high
probability the ex post fact pebbling uses only s + z/w simultaneous pebbles.
The intuition is that if more pebbles are used, then somehow the sw bits in
the cache and the additional z bits obtained from memory are being used to
reconstruct s + z/w + 1 labels, or sw + z + w bits.

Lemma 1. Consider an adversary that operates for a certain number of steps
and where:

– the adversary is using a standard architecture as specified in Section 2.3 with
a cache of s words of size w; and

– the adversary brings from memory at most z bits.

Then with probability at least 1 − 2−w the maximum number of pebbles at any
given point in the ex post facto pebbling is bounded by s + z/w. The probability
is over H′.

Proof. We need the following simple observation:

Claim 1. Let b1 . . . bu be independent unbiased random bits and let k ≤ u.
Suppose we have a (randomized) reconstruction procedure that, given a hint of
length B < k (which may be based on the value of b1 . . . bu), produces a subset
S ⊂ {1, . . . u} of k indices and a guess of the values of {bi | i ∈ S}. Then the
probability that all k guesses are correct is at most 2B/2k, where the probability
is over the random variables and the coin flips of the hint generation and the
reconstruction procedures.

Proof (of claim). Fix an arbitrary sequence of random choices for the reconstruc-
tion procedure. Each fixed hint yields a choice of S and a guess of the bits of S.
For any fixed hint, the probability, over choice of b1, . . . , bu, that all the guessed
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values are consistent with the values of the elements of S is 2−k. Therefore, by
summing over all hints, the probability that there exists a hint yielding a guess
consistent with the actual value of b1, . . . , bu is 2B−k. �

Suppose there are s + z/w + 1 pebbles at some point in the ex post facto
pebbling. We apply the claim to bound the probability that this occurs, as
follows: the independent unbiased random bits b1, . . . , bu are from the truth
table of H′; the hint consists of three parts:

1. The cache contents C ∈ {0, 1}sw

2. The bits brought from main memory (at most z)
3. The values of the functions in H′ needed to simulate the adversary except

those values of H4 corresponding to the initial pebbles.

The output of the reconstruction procedure is all the values of the functions
in H′ given in the hint, plus the labels of the s + z/w + 1 pebbled nodes. The
reconstruction procedure works by simulating the adversary (up to the point
where there are s + z/w + 1 pebbles) and outputting the labels of the pebbled
nodes as the values are generated. The difference between the length of the
output (in bits) and the length of the hint (in bits) is w, so the probability is
bounded above by 2−w. �

4 Description of Our Graphs

Call our graph D and let it be composed from two pieces D1 and D2. We are
interested in a graph with a small number of nodes and edges, since each node
corresponds to an invocation of H4 and the number of edges corresponds to the
total size of inputs in the H4 calls. We are less concerned with the depth of the
graph.

The dag D has N = |T | inputs and outputs. It is constructed from two dags
D1 and D2 via concatenation; that is:

– Inputs of D1 are the inputs of D.
– The outputs of D1 are the inputs of D2.
– Outputs of D2 are the outputs of D.

The properties we require from the two dags are different. In particular we
allow the spammer more pebbles for the D1 part. For each of D1 and D2 we
first describe the properties needed (in terms of pebbling) and then mention
constructions of graphs that satisfy these requirements.

The Dag D1 = (V1, E1): We require an almost standard pebbling lower bound
property: for a certain β to be determined later, pebbling any m > s + 2βb/w
outputs of D1 is either impossible or at the very least requires exponential (in
the depth of D1) time (making it infeasible) provided we are constrained to:
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1. start from any initial setting of at most s′ = s+2βb/w pebbles. The number
of pebbles in the initial configuration comes from two sources: the cache
size in words (s) and the bits brought from memory during a given interval,
divided by the word size w. In Section 5 the number of blocks brought from
memory will be denoted 2β, containing a total of 2βb bits. (In the language
of Lemma 1, z = 2βb.) Hence s′ = s + 2βb/w.

2. use at most s pebbles during the pebbling itself; that is, of the initially placed
pebbles, some are designated as permanent, and do not move. Only s pebbles
may be moved, and these s may be moved repeatedly.

Constructing D1: One way to obtain such a graph is to consider a stack of
�1 ∈ ω(log |T |) N -superconcentrators (that is, N inputs and N outputs). Then
following the work of [13] (Section 4) we know that D1 has the desired property:
independent of the initial configuration, the time to pebble m > s′ outputs
requires time at least exponential in the depth, hence, superpolynomial in |T |.
This means that when we consider in Section 5 an interval of computation by
the spammer, then by appealing to Lemma 1 we can argue that either (i) fewer
than m outputs of D1 were pebbled or (ii) at least mw− 2βb bits were brought
from main memory during this interval (which suffices to show high amortized
memory accesses). This follows from the randomness of the labels of V1 (that is,
the randomness of H4), as discussed above.

Since there are linear-sized superconcentrators [18,15,4], this means the size
of V1 can be some function in ω(|T | log |T |). Also these constructions are explicit,
so we have an explicit construction of D1.

Remark 2. An alternative graph to the stack of superconcentrators is that of
Paul, Tarjan and Celoni [14], where the number of nodes is O(N log N).

The Dag D2 = (V2, E2): The property needed for D2 is that even if a significant
fraction of the vertices fail it should be very hard to disconnect small sets of
surviving outputs from the surviving inputs. (For now, think of a failed node as
one whose label is largely determined by the cache contents.)

The vertices V2 are partitioned into layers L1, L2, . . . L�2 of size N . Suppose
that nodes in V2 fail but we are guaranteed that from each layer Li at least a δ
fraction of nodes survives. The condition on the surviving graph can be expressed
as follows: There exists a set S′ of the inputs and a set T ′ of the outputs both
of size Ω(N), such that, for any set U ⊂ T ′ of x outputs, where the bound x is
derived from the proof of Algorithm Mbound, to completely disconnect U from
all of S′ by removing nodes requires either cutting Ω(x) vertices in some level
not including the input, or cutting Ω(N) inputs.

Constructing D2: One way to construct D2 is using a stack of bipartite expanders
on N nodes, where we identify the left set of one expander with the right set
of the other, except for the inputs and outputs of D2, which are identified with
the leftmost and rightmost sets respectively; the orientation of the edges is from
the inputs to the outputs. Expanders are useful for us for two reasons: (i) they
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do not have small cuts and (ii) they have natural fault tolerance properties. In
particular, Alon and Chung [5] have shown that in any good enough expander
if up to some constant (related to the expansion) fraction of nodes are deleted,
then one can still find a smaller expander (of linear size) in the surviving graph
(see also Upfal [17]).

Consider now the dag obtaining by stacking �2 = O(log |T |) bipartite
expanders where each side has N = |T | nodes. We give here an intuitive
explanation of why disconnecting a relatively small set U of surviving outputs
from the surviving inputs requires deleting |U |/2 vertices at some level. Following
the argument in [5], there exists a subgraph F of the surviving graph with the
following property: every layer of F contains δN/2 vertices, and the bipartite
graph induced by any two consecutive layers in F satisfies a vertex expansion
property (in the direction from the output nodes towards the input nodes) with
expansion factor 2 for subsets of size at most δN/16, say. Consider any set U
of size o(N) outputs in F . Clearly, by deleting U we can disconnect it from the
inputs. Suppose we delete at most |U |/2 output vertices in F . Then, there are
at least |U |/2 vertices left amongst the output nodes, which are connected to at
least |U | vertices in level �2 − 1 in F . Again, if we delete at most |U |/2 output
vertices in level �2− 1, then U must be connected to at least |U | vertices in level
�2 − 2. Continuing this argument, we may deduce that U must be connected
to at least |U |/2 input nodes in F , unless we delete at least |U |/2 nodes at
some level. To ensure that disconnecting |U | inputs is insufficient we use an
additional property of D2: the surviving subgraph D′

2 contains a substantial
superconcentrator. Restricting out attention to output sets U of the surviving
superconcentrator suffices for our lower bound proof.

We conclude that the total number of nodes in V2 can be O(|T | log |T |) and
thus the dominating part is D1. Also we have explicit construction of expanders
and hence of D2.

5 An Amortized Lower Bound on Cache Misses

In this section we prove that any spammer limited to a standard architecture
(as specified in Section 2.3) and trying to generate many different proofs of
computational efforts according to Algorithm Compact Mbound presented in
Section 2 (i.e. the verifier follows the algorithm there, while the spammer is free
to apply any algorithm), will, with high probability over choices of the random
oracles and the choices made by the adversary, have a large amortized number
of cache misses.

5.1 The Lower Bound

We are now ready to state the main theorem:

Theorem 1. Fix an adversary spammer A. Consider an arbitrarily long but
finite execution of A’s program – we don’t know what the program is, only that
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A is constrained to use an architecture as described in Section 2 and that its
computation of H1 and H2 has to be via oracle calls.

Under the following additional conditions, the expectation, over choice of
the hash functions H′, and the coin flips of A, of the amortized complexity of
generating a proof of effort that will be accepted by a verifier is Ω(2e�). Note
that in [11], “choice of T” meant choice of the random table T . In our case,
“choice of T” means choice of the hash function H4.

– |T | ≥ 2s (recall that the cache contains s words of w bits each)
– |A|w ≥ bs1/5 (recall that b is the block size, in bits).
– � > 8|A|
– The total amount of work by the spammer (measured in oracle calls) per

successful path is no more than 2o(w)2e� and no more than 2�1 , where �1 is
the depth of the dag D1.

– � is large enough so that the spammer cannot call the oracle 2� times.

The amortized cost of a proof of effort is the sum of the costs of the individual
proofs divided by the number of proofs. The theorem says that

EH′,A[amortized cost of proof of effort] = Ω(2e�) (1)

Remark 3. As noted in [11], if (for some reason) it must be the case that |A| ≤
O(b/w), then the lower bound obtained is Ω(2e�/ log s). Also, as noted in [11],
the theorem holds if expected amortized cost (over H′ and flips) is replaced with
“with high probability.”

Our proof follows the structure of the proof in [11]; naturally, however, we
must make several modifications since T is no longer random. We will describe
the key lemma in the original proof, and sketch the proof given in [11]. We will
then state and sketch the proof of the new version of the key lemma, yielding a
proof of Theorem 1. We start with a simple lemma from [11]:

Lemma 2 ([11]). The expected amortized number of calls to H1 and H2 per
proof of effort that will be accepted by a verifier is Ω(2e�). The expectation is
taken over T , A, and H = H′ \ {H4}.

In our case an analogous lemma holds (with exactly the same proof). This
time, the expectation is taken over A and H′ (recall that in the current work T
is defined by H4 and the dag D).

The execution is broken into intervals in which, it will be shown, the adversary
is forced to learn a large number of elements of T . That is, there will be a large
number of scattered elements of T which the adversary will need in order to make
progress during the interval, and very little information about these elements is
in the cache at the start of the interval. The proof holds even if the adversary is
allowed during each interval, to remember “for free” the contents of all memory
locations fetched during the interval, provided that at the start of the subsequent
interval the cache contents are reduced to sw bits once again.
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For technical reasons the proof focuses on the values of A only in the second
half of a path. Recall that A is modified at each step of the Main Loop; intuitively,
since these modifications require many elements of T , these “mature” A’s cannot
be compressed. The definition of an interval allows focusing on progress on paths
with “mature” A’s.

A progress call to H1 is a call in which the arguments have not previously
been given to H1 in the current execution. Let n = s/|A|. A progress call is
mature if it is the jth progress call of the path, for j > �/2 (recall that � is the
length of a path).

Let k be a constant determined in [11]. An interval is defined by fixing an
arbitrary starting point in an execution of the adversary’s algorithm (which may
involve the simultaneous exploration of many paths), and running the execution
until kn mature progress calls (spread over any number of paths) have been
made to oracle H1.

At any point in the computation, the view of the spammer is T together with
the parts of the oracles H that the spammer has explicitly invoked. Intuitively,
the view contains precisely that information which can have affected the memory
of the spammer. Since T is (when T is random, and in any case, could be) stored
in memory, we consider it part of the view.

We now state the key lemma from [11]; recall that in that setting T is random.

Lemma 3. There is a constant k ≥ 1 where the following is true. Fix any integer
i, the “interval number”. Choose T and H, and coin flips for the spammer. Run
the spammer’s algorithm, and consider the ith interval. The expected number
of memory accesses made during this interval is Ω(n), where the expectation is
taken over the choice of T , the functions H, and the coin flips of the spammer.
That is,

ET,H,A[number of memory accesses] = Ω(n) (2)

Note that between intervals the adversary is allowed to store whatever it
wishes into the cache, taking into account all information it has seen so far, in
particular, the table T and the calls it has made to the hash functions.

It is an easy consequence of this lemma that the amortized number of memory
accesses to find a successful path is Ω(2e�). This is true since by Lemma 2, success
requires an expected Ω(2e�) mature progress calls to H1, and the number of
intervals is the total number of mature progress calls to H1 during the execution,
divided by kn, which is Ω(2e�/n). (Note that we have made no attempt to
optimize the constants involved.)

5.2 Sketch of Proof of Key Lemma for Random T

We give here a slightly inaccurate but intuitive sketch of the key steps of the
proof in [11] of Lemma 3.

The spammer’s problem is that of asymmetric communication complexity
between memory and the cache. Only the cache has access to the functions H1
and H2 (the arguments must be brought into cache in order to carry out the
function calls). The goal of the (spammer’s) cache is to perform any kn mature
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progress calls. Since by definition the progress calls to H1 are calls in which the
arguments have not previously been given to H1 in the current execution, we can
assume the values of H1’s responses on these calls are uniform over 1, . . . , |T |
given all the information currently in the system (memory and cache contents
and queries made so far). The cache must tell the memory which blocks are
needed for the subsequent call to H2. The cache sends the memory β log m bits
to specify the block numbers (which is by assumption o(n log m) bits), and gets
in return βb bits altogether from the memory. The key to the proof is, intuitively,
that the relatively few possibilities in requesting blocks by the cache imply that
many different elements of T specified by the indices returned by the kn mature
calls to H1 must be derived using the same set of blocks. This is shown to imply
that more than s elements of T can be reconstructed from the cache contents
alone, which is a contradiction given the randomness of T .

It is first argued that a constant δ fraction of elements of T are largely
undetermined by the contents of the cache. This is natural, since T is random
and the cache can hold at most half the bits needed to represent T . For simplicity,
assume that elements that are largely undetermined are in fact completely
undetermined, that is, there is simply no information about these in the cache.
Call these completely undetermined elements T ′.

Simplifying slightly, it is next argued that, for a constant k to be determined
later, if one fixes any starting point in the execution of the spammer’s algorithm,
and considers all oracle calls from the starting point until the knth call to H1,
there will be at least 5n pairs of calls to H1 and H2 on the same path; that is,
H2 is called on the index determined by the call to H1.

Intuitively, this observation implies that, since the calls to H1 return random
indices into T , many of the elements of T selected by these invocations will be
in T ′. That is, there will be no information about them in the cache, and the
spammer will have to go to memory to resolve them.

Let β be the average number of blocks sent by the main memory to the cache
during an interval. Assume for the sake of contradiction that for at least half
the kn-tuples of elements selected by H1, the spammer makes only 2β = o(n)
memory accesses, even though it needs Ω(n) elements in T ′ and about which it
has no knowledge.

Unfortunately, this assumption of o(n) memory accesses does not yield
a contradiction: as a memory access fetches an entire block, which contains
multiple words, the total number of bits retrieved (βb) is not necessarily less
than the total number of bits needed (at least nw). Indeed, if β ≥ nw/b there is
no contradiction, and it is not assumed that w/b is a fixed constant.

The contradiction is derived by using the fact that some set of 2β blocks
suffices to reconstruct many different possible kn-tuples. This is immediate from
a pigeonhole argument (since there are roughly |T |kn kn-tuples and mβ = |T |O(β)

choices of β blocks, since we assume that the memory contains poly(|T |) words).
Let G′ denote the largest such set of kn-tuples.

Let Σ denote the union over tuples in G′, of the set of elements in the tuple.
That is, Σ contains every element that appears in G′. It is possible to show that
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|Σ| is large, i.e. when the entries are measured in terms of the missing bits, then
the total number is ω(βb).

Note that if G′ is known to the cache party, then intuitively, by sending the
2β blocks the memory transmits all p ∈ Σ to the cache: to reconstruct any given
p, the cache chooses any kn-tuple in G′ containing p, acts as if the calls to H1
returned the indices (in T ) of the elements in this tuple, and runs the spamming
program, extracting p in the process. However, G′ is not known to the cache,
since it may depend on the full memory content.

At this point, [11] argues that there is a small collection of “mighty” tuples,
with the property that each tuple in the collection enables the transmission of
“too many” elements in Σ. That is, there exists a too large set U of elements
reconstructible from too few mighty tuples. This yields an information-theoretic
argument that too many bits are obtained from too few. In the sequel, we let x =
|U |. In [11] it is shown that setting x = 4βb/w yields the desired contradiction.
We do not repeat that proof here, but we use the same proof, and so, the same
value of x.

This concludes the high-level sketch of the proof in [11] for the key lemma in
the case that T is random.

5.3 Lower Bound When T Has a Compact Representation

The new key lemma for the lower bound proof is given below. We then sketch
those aspects of the proof germane to the case of the compact representation of
T . We let s = |S|. This is the size of the cache, in words.

Lemma 4. There is a constant k ≥ 1 where the following is true. Fix any
integer i, the “interval number”. Choose H′ and coin flips for the spammer. Run
the spammer’s algorithm, and consider the ith interval. The expected number
of memory accesses made during this interval is Ω(n), where the expectation is
taken over the choice of H′ and the coin flips of the spammer. That is,

EH′,A[number of memory accesses] = Ω(n) (3)

Consider an ex post facto pebbling on D induced by the adversary’s execution
during an interval, obtained as described in Section 3.1.

Either Ω(N) of the nodes at the level common to D1 and D2 been pebbled
during the interval or not. In the first case, i.e., the case in which a constant
fraction of the nodes at this level have been pebbled, by the discussion in
Section 4, many blocks must be brought from memory. So if we are at an
execution of a good tuple (one for which the adversary goes to memory at most
2βb/w times) we can conclude that this did not happen.

In the second case, i.e., the case in which o(N) inputs of D2 are pebbled, we
will use the fault-tolerant flow property of D2 to show that much information
will have to be brought from memory for some layer of D2.

As in the previous section, fix the cache contents C and consider the large
set G′ of tuples all utilizing the same set of of blocks from memory. The next
claim (proved using Sauer’s Lemma) guarantees that in each layer of D2, there
is a constant fraction δ of nodes for each which the label is mostly unknown:
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Claim 2. Fix cache contents C ∈ {0, 1}sw. For any 1 ≤ j ≤ �2, for γ, δ ≥ 0,
consider the event that there exists a subset of the entries of Lj, called L′

j, of
size at least δ|T |, such that for each node i in L′

j there is a set Si of 2γw possible
values for label(i) and all the Si’s are mutually consistent with the cache contents
C. Then there exist constants γ, δ > 0 such that the probability of this event, over
choice of the hash functions H′, is high.

Note that we applied the Lemma for each level individually and we cannot
assume that the missing labels of different layers are necessarily independent of
each other. To derive a contradiction we need to argue that there is some level
where it is possible learn too many undetermined values from too few hints.

The fault tolerance property of D2 tells us that even if we delete the remaining
(1−δ) fraction of nodes (whose values may be determined from the cache contents
and without access to H4) from each layer, the surviving graph contains a large
surviving superconcentrator, call it F , with excellent flow: to disconnect any set
X of x outputs from all the inputs requires removing Ω(x) vertices at some level
other than the input level to F , or disconnecting Ω(N) nodes from the input
level (in the latter case we appeal to the properties of D1).

The set X of outputs is obtained as in Section 5.2, from the union of the
collection of mighty tuples in G′. The collection covers a set X of unknown entries
in T , and that X contains more bits than the 2βb bits of information brought
from memory, (|X | = x is roughly the size of |Σ|). Since each element in X is
covered by some tuple in the collection, when the spammer A is initiated with
that tuple, the ex post facto pebbling process must place a pebble on all paths
from the inputs of F to that node. Therefore the union of the pebbles placed
by A on all tuples in the collection disconnects X from the inputs F . By the
properties of D2 this means that Ω(x) spontaneously generated pebbles were
placed at some level. A careful choice of x, following the argument in [11], yields
a contradiction: too many bits from too few.

6 A Heuristic Based on Sorting

We now present an alternative construction of the table T , designed with an eye
toward simplicity of definition. Our concrete heuristic is based, intuitively, on
the known time/space lower bound tradeoff for sorting of Borodin and Cook [8].
However, as opposed to the pebbling results which we were able to convert into
lower bound proofs, here we are left with a scheme with a conjectured lower
bound only.

1. T is initialized to T [i] = H4(i), 1 ≤ i ≤ N .
2. Repeat m times:

Sort T .
T [i] := H4(i, T [i]).

Inserting i guarantees that collisions do not continue to be mapped to the same
value (otherwise the number of distinct values in T could dwindle in successive
applications).
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The number of iterations m of the loop should be as large as possible while
the loop can still be considered to take a “reasonable” amount of time on a
relatively slow machine. Given current technology, to defeat a 16MB cache, we
take the number of elements in T to be n = 223, where each element is a single
32-bit word. Thus T requires 225 bytes = 32MB.

Note that after applying H4(i, T [i]) we have a pretty good idea where this
this value will end up after the next sorting phase, up to

√
|T | roughly. However

without actually sorting there does not seem to be a way to find the exact
location, and we conjecture that the uncertainty increases with the number
of iterations. We would therefore like the number of iterations of the loop
to well exceed log2 |T |, say 40 for a 32MB table. The hash function H4 may
be instantiated with whichever function is considered ‘secure’ at the time of
deployment. If this is considered too costly, then the “best” function that will
allow 40 iterations in the desired running time should be used (in general we
prefer more iterations than a more secure function).

It would be very interesting to see whether the time/space lower bounds
known for sorting [8] and recent advances in space lower bounds [2,3,7] can be
applied for the sorting heuristic in order to obtain lower bounds on the spammer’s
work.
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Abstract. We study the question whether the sequential or parallel
composition of two functions, each indistinguishable from a random func-
tion by non-adaptive distinguishers is secure against adaptive distin-
guishers. The sequential composition of F(.) and G(.) is the function
G(F(.)), the parallel composition is F(.) � G(.) where � is some group
operation. It has been shown that composition indeed gives adaptive se-
curity in the information theoretic setting, but unfortunately the proof
does not translate into the more interesting computational case.

In this work we show that in the computational setting composition
does not imply adaptive security: If there is a prime order cyclic group
where the decisional Diffie-Hellman assumption holds, then there are
functions F and G which are indistinguishable by non-adaptive poly-
nomially time-bounded adversaries, but whose parallel composition can
be completely broken (i.e. we recover the key) with only three adaptive
queries. We give a similar result for sequential composition. Interestingly,
we need a standard assumption from the asymmetric (aka. public-key)
world to prove a negative result for symmetric (aka. private-key) systems.

1 Sequential and Parallel Composition

We continue to investigate the question whether composition of (pseudo) random
functions yields a function whose security is in some sense superior to any of it’s
components. The two most natural ways to compose functions is to either apply
them sequentially or in parallel. For two function F and G we denote by G◦F the
sequential composition: G◦F(x) def= G(F(x)). And by F	G the parallel composition:
F 	 G(x) def= F(x) 	 G(x) where 	 is some group operation defined on the range of
F and G.

In the information theoretic model one considers computationally unbounded
adversaries and only bounds the number of queries they are allowed to make. In
this model Vaudenay [9] shows that if a permutation F cannot be distinguished
from random with advantage more than ε by any adaptive (resp. non-adaptive)1

distinguisher making q queries, then the sequential composition of k such permu-
tations has security 2k−1εk against adaptive (resp. non-adaptive) distinguishers.

� Supported by the Swiss National Science Foundation, project No. 200020-103847/1.
1 Adaptive means that the distinguisher can choose the (i+1)’th query after seeing the

output to the i’th query. A non-adaptive distinguisher must decide which q queries
he wants to make beforehand.

V. Shoup (Ed.): Crypto 2005, LNCS 3621, pp. 55–65, 2005.
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The same holds for parallel composition where F can be a function and doesn’t
have to be a permutation. For the computational case, where one considers poly-
nomially time-bounded adversaries a similar amplification result was proven by
Luby and Rackoff [3].2 So if we have a function with some security against adap-
tive (resp. non-adaptive) distinguishers we can amplify this security for the same
class of distinguishers in both models.

Another question is whether we always get adaptive security by the compo-
sition of non-adaptively secure functions. This is in fact true in the information
theoretic model: Maurer and Pietrzak [4] show that if F and G both have secu-
rity ε against non-adaptive distinguishers, then F 	 G has security 2ε(1 + ln ε−1)
against adaptive distinguishers (the same holds for G◦F if F and G are permuta-
tions). But no such result is known for the computational case. In fact, Myers [6]
showed that there is an oracle relative to which non-adaptively secure permuta-
tions exist, but their sequential composition is not adaptively secure. This means
that if it was indeed true that composition would always imply adaptive secu-
rity, no relativizing proof for that does exist. As only very few non-relativizing
proofs are known (not only in cryptography, but in complexity theory in gen-
eral), Myers argues that this might be the reason for the lack of formal evidence
that composition increases security even though this belief is shared by many
cryptographers (including myself until recently).

Here we show that composition does not imply adaptive security in general
if there is a group where the decisional Diffie-Hellman assumption holds. We
will construct functions F and G which are indistinguishable by non-adaptive
(polynomial time) distinguishers if the DDH assumption holds. But where a
simple adaptive strategy exists to get the whole key out of F 	 G with only
three adaptive queries. We then construct F and G such that the same holds
for G ◦ F.

1.1 Notation and Definitions

Efficient/Negligible/Indistinguishable. We denote by κ ∈ N our security
parameter. An efficient algorithm is an algorithm whose running time is poly-
nomial in κ. A function µ : N → [0, 1] is negligible if for any c > 0 there is an
n0 such that µ(n) ≤ 1/nc for all n ≥ n0. Two families of distributions (indexed
with κ) are indistinguishable if any efficient algorithm has negligible advantage
(over a random guess) in distinguishing those distributions.

The DDH Assumption. The DDH assumption for a prime order cyclic group
G = G(κ) states that for a generator g of G and random x, y the triplet gx, gy, gxy

2 Unlike in Vaudenay’s information theoretic result, where k, the number of compo-
nents in the cascade, can be arbitrary (in particular any function of n), the compu-
tational amplification proven in [3] requires k to be a constant and independent of
the security parameter. Myers [5] proves a stronger amplification for PRFs (which
unlike [3] allows to turn a weak PRF into a strong one) for a construction which is
basically parallel composition with some extra random values XOR-ed to the inputs.
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is indistinguishable from random. We denote the maximal advantage of any
algorithm A running in time t for the DDH problem as

AdvDDH(t) def= max
A
|Prx,y[A(gx, gy, gxy) → 1]− Pra,b,c[A(ga, gb, gc) → 1]|

For example the DDH assumption is believed to be true for the following groups:
Let Q be a prime such that Q−1 = rP for some large prime P (say log(P ) ≥ κ).
Let h be a generator of Z∗

Q, then g = hr is a generator of the subgroup G def= 〈g〉
of order P . In G any a �= 1 is a generator, here 1 denotes the identity element.

The El-Gamal Cryptosystem. Let G, g, P be like above. The El-Gamal
public-key cryptosystem [2] over G with generator g is defined as follows: The
private-key is a random x ∈ ZP , and the public key is gx. To encrypt m ∈ G
with the public key gx we choose r ∈ ZP at random and compute the ciphertext
in G2 as

Encgx(m, r) = (mgxr, gr)

The decryption of a ciphertext (a, b) with secret key x goes as

Decx(a, b) = a/bx

This scheme has some nice properties we will use. It is multiplicative homomor-
phic: Given an encryption (mgxr, gr) = Encgx(m, r) of m we can compute an
encryption of �m as (�mgxr, gr) = Encgx(�m, r) even without knowing m or even
the public key gx. In particular given an encryption (mgxr, gr) = Encgx(m, r)
of a known message m we can compute (gxr, gr) = Encgx(1, r) = Encgx(1, r),
an encryption of 1, without even knowing the public key gx. And further we
can rerandomise this encryption by exponentiating with some random r′ as
(gxrr′

, grr′
) = Encgx(1, rr′).3

Distinguisher. By distinguisher we denote an efficient oracle algorithm which
at the end of the computation outputs a decision bit. A distinguisher is non-
adaptive if he generates all his queries before reading any inputs.

A function R : K × X → Y is pseudorandom if for a random key k ∈ K the
function Rk(.) def= R(k, .) is indistinguishable from a random function R : X → Y.
We denote the distinguishing advantage for R form R of any distinguisher which
runs in time t and makes at most q queries by

AdvR(q, t) def= max
A
|Prk[ARk(.) → 1]− Pr[AR(.) → 1]|

We write Advnon−adaptive
R (q, t) if the maximum is only taken over all non-

adaptive distinguishers.

3 This is not the standard way of randomising El-Gamal encryptions, where one
multiplies (mgxr, gr) with (gxr′

, gr′
) for a random r′ to get (mgx(r+r′), gr+r′

) =
Encgx(m, r + r′). This randomisation works for any encrypted message (not just for
m = 1), but it requires knowledge of the public key and because of that is not useful
for our purpose.
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1.2 Some Intuition

For the counterexamples to the conjecture that parallel (resp. sequential) com-
position does imply adaptive security we will define functions F and G whose
output looks random with high probability for any fixed sequence of queries.
But if we can query F 	 G (reps. G ◦ F) adaptively we can somehow “con-
vince” F and G of the fact that they are queried adaptively. We then define
F, G such that they output their key when they are convinced. We achieve this
by letting F and G “communicate” using a semantically secure public-key cryp-
tosystem. The El-Gamal cryptosystem has all the additional features we will
need.

The Parallel Composition Counterexample. We will now sketch our
counterexample of two non-adaptively secure functions F, G where F 	 G can be
broken with three adaptive queries. The full proof is given in Section 2. Let R be
any adaptively secure pseudorandom function. The keyspace of F is a (El-Gamal)
public/secret-key pair (pkF, skF) and a key kF for R (G’s key is (pkG, skG), kG).
The first thing F/G do on any input is to run it through RkF/RkG to produce
some pseudorandomness.

We define F and G such that on one particular input α they output their
public keys. So if we query F 	 G with α we get pkFpkG.

α→
{

F→ pkF
G→ pkG

}
→ pkFpkG

We further define F and G such that for some fixed β on all inputs of the form
(u, β) F computes pk = u/pkF and then outputs the encryption (using the ran-
domness generated by R) of some fixed value γ under pk. G does the same thing.
So if we now feed the output from the first query back into F 	 G we get

(pkFpkG, β) →
{

F→ EncpkG(γ, r)
G→ EncpkF(γ, r′)

}
→ EncpkG(γ, r)EncpkF(γ, r′)

And finally on general input (u, v) we define F as follows: First F divides v by
the output it would have produced on input (u, β). If this value is an encryption
of γ under pkF, F is “convinced” that it is in an adaptive setting and outputs his
key, otherwise F just outputs some pseudorandom stuff. G does the same thing.
Let’s see what happens if our third query consists of the outputs from the two
first queries we made, i.e. (pkFpkG, EncpkG(γ, r)EncpkF(γ, r′)). Here F checks if
the value computed as

EncpkG(γ, r)EncpkF(γ, r′)
EncpkG(γ, r) ← F(pkFpkG, β)

= EncpkF(γ, r′)

is an encryption of γ, as is the case here F outputs its key, and so will G. To
prove the non-adaptive security of F and G, we first observe that for a fixed
input the above check will fail almost certainly. So we must only care about
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the α query, which gives the random pkF and queries of the form (u, β) where
we get Encu/pkF(γ, r). We show that if (given pkF) we could distinguish such
Encu/pkF (γ, r) from random, then DDH cannot be hard in G.

The Sequential Composition Counterexample. We will now sketch our
counterexample of two non-adaptively secure functions F, G where G ◦ F can be
broken with three adaptive queries. The full proof is given in Section 3. As in the
previous section, let R be an adaptively secure pseudorandom function. Again,
F’s key is (pkF, skF), kF and G’s key is (pkG, skG), kG.

We define F such that it outputs his public key on some special input α. G
first checks if the input is an encryption of 1 (using skG): if this is the case G is
“convinced” and outputs his key. Otherwise the output is simply an encryption
of the input. If the first query we make to G ◦ F is α then

α
F→ pkF

G→ EncpkG(pkF, r)

except in the unlikely case where by chance pkF happens to be an encryption of
1 under skG.

F on inputs u �= α “treats” u as if it was Encpk(pkF, r), i.e. an encryption of
his public key pkF under some key pk. Now (as described earlier in this section)
F computes Encpk(1, rr′), an encryption of 1 with some fresh randomness rr′. If
we now feed back the output of the first query into G ◦ F

EncpkG(pkF, r) F→ EncpkG(1, rr′) G→ G’s key (skG, kG)

and we get G’s key. With the third query, which we will not sketch here we then
can get F’s key as well. Again the non-adaptive indistinguishability of F and G
can be shown under the DDH assumption.

2 Parallel Composition Does Not Imply Adaptive
Security

In this section we prove that there are two functions F and G, both K×G3 → G3

(K denotes the keyspace) which are indistinguishable from a random function
G3 → G3 by any non-adaptive distinguisher if the DDH-assumption is true in G.
But the parallel composition F 	G can be completely broken (i.e. we recover the
keys of F and G) with only 3 adaptive queries.

The systems F and G are almost identically defined, we first define F and
then make a small change to get G. Let R : KR×G3 → Z3

P be any pseudorandom
function with keyspace KR. The keyspace of F and G is KR × ZP .

There is one annoying technicality we must consider; Because we do not only
want to distinguish F	G from a random function in the adaptive case, but recover
the keys of F and G, we must somehow encode the keys (KR×ZP )2 into the range
G3 of F 	 G. For simplicity we will simply assume that this is possible, i.e. there



60 K. Pietrzak

are two mappings φ1, φ2 : KR×ZP → G3 such that from φ1(k1, x1)φ2(k2, x2) we
can recover k1, k2, x1, x2.4

F with key (x ∈ ZP , kF ∈ KR) on input (u, v, w) first computes some pseudo-
random values.

(r1, r2, r3)← RkF(u, v, w) (1)

Now the output is computed as (we set the values α, β and γ as described in
Section 1.2 to α = (1, 1, 1), β = (1, 1) and γ = 1)

F(1, 1, 1)→ (gx, gr2, gr3)
F(u �= 1, 1, 1)→ ((u/gx)r1 , gr1, gr3)

F(u �= 1, v �= 1, w �= 1)→ (a, b, c) where
(d, e, f)← F(u, 1, 1) (2)
if (v/d) = (w/e)x then (3)
(a, b, c) = φ1(kF, x) (4)

otherwise (a, b, c) = (gr1 , gr2 , gr3)
F( all other cases ) → (gr1 , gr2 , gr3)

G with key (y, kG) is defined similarly, but with (x, kF) replaced with (y, kG) and
(4) replaced with

(a, b, c) = φ2(kG, y)

2.1 Breaking F � G With 3 Adaptive Queries

We will now describe how to get the key out of F	G with 3 adaptive queries. The
attack below is successful with probability almost 1. It only fails if by chance
P divides one of the random values which appear in the exponent of g below.
Below we denote with r(i,j) the pseudorandom value ri computed by F in step
(1) on the j’th input. We define s(i,j)

def=gr(i,j) . Similarly the r′, s′ are defined for
G. We will use s and s′ for uninteresting terms whose only raison d’être is to
pad the output to the right length. The first query we make is (1, 1, 1)

(1, 1, 1)→
{

F→ (gx, s(2,1), s(3,1))
G→ (gy, s′(2,1), s

′
(3,1))

}
→ {gx+y, s(2,1)s

′
(2,1), s(3,1)s

′
(3,1))

Four our second query we use the first value from the above output.

(gx+y, 1, 1)→{
F→ (gyr(1,2) , gr(1,2) , s(3,2))
G→ (gxr′

(1,2) , gr′
(1,2) , s′(3,2))

}
→ (gyr(1,2)+xr′

(1,2) , gr(1,2)+r′
(1,2) , s(3,2)s

′
(3,2))

4 One could also easily solve this problem without this assumption by simply extending
the range of F, G and R with a term {0, 1}2� for an � such that ZP ×KR can be encoded
with � bits (the group operation on this term is bitwise XOR). If F or G must output
their key, they encode it into this term (F into the first, and G into the second half). In
all other cases this term is simply filled with a pseudorandom value generated by R.
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Our last query is a combination of the two outputs we have seen.

(gx+y, gyr(1,2)+xr′
(1,2) , gr(1,2)+r′

(1,2))) →
{

F→ φ1(kF, x)
G→ φ2(kG, y)

}
→ φ1(kF, x)φ2(kG, y)

Thus we learn the whole key! Let’s see what happened in the last query. F on
this input first by (2) simulated itself on the input (gx+y, 1, 1), which was exactly
the input in the second query.

(gyr(1,2) , gr(1,2) , s(3,2))← F(gx+y, 1, 1)

Next by (3) F checked whether

gyr(1,2)+xr′
(1,2)/gyr(1,2) = (gr(1,2)+r′

(1,2)/gr(1,2))x

and as this is true, F proceeds with (4) and outputs its key φ1(kF, x). Similarly
G outputs its key φ2(kG, y).

2.2 Non-adaptive Indistinguishability of F and G

We will prove that

Advnon−adaptive
F (q, t) ≤ AdvR(q, t′) +

2q

P
+ qAdvDDH(t′) (5)

Where t′ = t + poly(logP, q) for some polynomial poly which accounts for the
overhead implied by the reduction we make. The same bound holds for G. Below
we will treat RkF as if it was a truly random function, the AdvR(q, t′) term in
(5) does account for this inaccuracy.

Assume that the non-adaptive distinguisher A chooses to make q queries
(ui, vi, wi) for i = 1, . . . , q. We must only consider inputs of the form (u, 1, 1)
and (u �= 1, v �= 1, w �= 1) as in all other cases the output is simply computed by
RkF and thus is random.

If we make a (u �= 1, v �= 1, w �= 1) query the output is also computed by
RkF , except when (v/d) = (w/e)x for random d, e, x (here and below we say an
element is random if its distribution is uniform over his domain. So here e, f are
uniform over G and x over ZP ). Now

Prd,e,x[(v/d) = (w/e)x] ≤ 2P−1

holds. To see this first note that we have Pr[w/e = 1] = Pr[e = w] = P−1. Now
as in G any element except 1 is a generator, conditioned on w �= e the (w/e)x is
random and thus equal to v/d with probability P−1.

So probability that for any of the t ≤ q queries of the form (u �= 1, v �=
1, w �= 1) will satisfy (v/e) = (w/f)x is at most 2tP−1, the 2qP−1 term in (5)
does account for this probability.

Now we must only consider the case where all q queries of the from (ui, 1, 1).
We make a deal with A: he will only make queries where ui �= 1 for all 1 ≤ i ≤ q
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but for this we allow A a (q + 1)’th query which must be (1, 1, 1), clearly this
can only help A.

Moreover we assume that A knows the discrete logarithm zi of all his ui’s
(i.e. gzi = ui). Of course this can not be guaranteed, but not knowing them can
only decrease A’s advantage in the analysis below. So the output A gets on his
query (gz1 , 1, 1), . . . , (gzq , 1, 1), (1, 1, 1) is

(g(z1−x)r1 , gr1 , ∗), . . . , (g(zq−x)rq , grq , ∗), (gx, ∗, ∗) (6)

where the ∗’s denote random values which are independent of all the other terms.
Now distinguishing (6) from random is equivalent to distinguishing

(gx, gr1x, gr1), . . . , (gx, grqx, grq) (7)

for random x, r1, . . . , rq from

(a, b1, c1), . . . , (a, bq, cq) (8)

where a, b1, . . . , bq, c1, . . . , cq are random. To see this consider the (randomised)
mapping τ (here ∗ are random values)

τ [(α, β1, γ1), . . . , (α, βq , γq)]→ [(γz1
1 β−1

1 , γ1, ∗), . . . , (γzq
q β−1

q , γq, ∗), (α, ∗, ∗)]

We get the distribution (6) if we apply τ to (7) and the uniform distribution
over (G3)q if we apply τ to (8).

So assume A could distinguish (7) from (8) with probability ε, then we can
construct an algorithm A′ which can distinguish (gx, gxr, gr) from a random
(a, b, c) with advantage ε/q using a hybrid argument. The distribution of the
i’th hybrid is

(gx, gr1x, grq), . . . , (gx, grix, gri), (gx, bi+1, ci+1), . . . , (gx, bq, cq)

for random x, r1, . . . , rq, bi+1, . . . , bq, ci+1, . . . , cq. Our A′ on input (α, β, γ)
chooses a random i, 1 ≤ i ≤ q and generates the distribution

(α, αr1 , gr1), . . . , (α, αri−1 , gri−1), (α, β, γ), (α, bi+1, ci+1), . . . , (α, bq, cq)

whose distribution is equal to the i’th hybrid if (α, β, γ) was generated as
(gx, gxr, gr) for random x, r, and equal to the i − 1’th hybrid if (α, β, γ) are
three random values.

3 Sequential Composition Does Not Imply Adaptive
Security

We will define two functions F and G, both K × G3 → G3 which are indistin-
guishable from a random function G3 → G3 by any non-adaptive distinguisher
if the DDH-assumption is true in G. But the sequential composition G ◦ F can
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be completely broken (i.e. we recover the keys of F and G) with only 3 adap-
tive queries. Unlike in the previous section, here F and G are defined somewhat
differently.

Let R : KR×G3 → Z3
P be any adaptively secure pseudorandom function. The

keyspace of F and G is KR×ZP . Let φ : KR×ZP → G2 be some encoding of the
keyspace of G into a subset of the range of G ◦ F.

F with key (x ∈ ZP , kF ∈ KR) on input (u, v, w) first computes the pseudo-
random values

(r1, r2, r3)← RkF(u, v, w)

Then the output is computed as (we set the value α as described in Section 1.2
to (1, 1, 1))

F(1, 1, 1)→ (gx, gr2 , gr3)
F(u �= 1, v �= 1, w) → if u = gx then (v, φ(kF, x))

else ((u/gx)r1 , vr1 , gr3)
F( all other cases ) → (gr1 , gr2, gr3)

G with key (y ∈ ZP , kG ∈ KR) on input (u, v, w) first computes the pseudorandom
values

(r1, r2, r3) ← RkG(u, v, w)

Then the output is computed as

G(u �= 1, v �= 1, w) → if u = gy then (u, v, w)
elseif u = vy then (φ(kG, y), 1)
else (ugyr1 , gr1, gr3)

G( all other cases ) → (gr1 , gr2 , gr3)

3.1 Breaking G ◦ F With 3 Adaptive Queries

We will now describe how to get the key out of G◦F with three adaptive queries.
The attack below is successful with probability almost 1. It only fails if by chance
P divides one of the random values which appears in the exponent of g below.
Let r, r′, s, s′ be like in the previous section. The first query we make is (1, 1, 1)

(1, 1, 1) F→ (gx, s(2,1), s(3,1))
G→ (gxgyr′

(1,1) , gr′
(1,1) , s′(3,1))

For the next query we use the first two terms of this output

(gxgyr′
(1,1) , gr′

(1,1) , 1) F→ (gyr′
(1,1)r(1,2) , gr′

(1,1)r(1,2)) G→ (φ(kG, y), 1)

And we get G’s key. Now with the y we just learned and the first output we can
compute gx = gxgyr′

(1,1)/(gr′
(1,1))y and get F’s key with the query

(gx, gy, 1) F→ (gy, φ(kF, x)) G→ (gy, φ(kF, x))
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3.2 Non-adaptive Indistinguishability of F and G

The security of F and G can be reduced to the indistinguishability of R and the
hardness of the DDH problem in G as in section 2.2, i.e.

Advnon−adaptive
F (q, t) ≤ AdvR(q, t′) +

2q

P
+ qAdvDDH(t′) (9)

And the same holds for G. Again we will treat RkF as if it was a truly random
function, the AdvR(q,t′) term in (9) does account for that.

A query to G of the form (u, v, w) where u = 1 or v = 1 will just produce
a random output. If the i’th query is of the form (ui �= 1, vi �= 1, wi) we get as
output (uig

yri , gri , ∗) (again ∗ stands for a random value which is independent of
all other terms) unless ui = vy

i or ui = gy for some i, the probability of each such
event is exactly P−1 as y is random. With the union bound over all i, 1 ≤ i ≤ q
we get an upper bound 2qP−1 for the probability that any such event happens.

Thus we can assume that the queries are all of the form (ui �= 1, vi �= 1, wi)
for i = 1, . . . , q and the output on the i’th query is (uig

yri , gri, ∗) for some
random ri. The distinguisher must now distinguish those (uig

yri , gri) from se-
quence of random pairs (bi, ci) for i = 1, . . . , q. Or equivalently (as the ui’s are
known values) he must distinguish the sequence (gyri , gri) from random. We are
generous and give gy to the distinguisher. Now we can state that problem as
distinguishing a sequence (gy, gyri, gri) from (gy, bi, ci) for i = 1, . . . , q, those are
exactly the sequences (7) and (8) for which we already proved that they cannot
be distinguished with advantage more than qAdvDDH(t′).

Similarly the non-adaptive security of F can be reduced to the task of dis-
tinguishing (uri

i g−xri , vri

i ) for i = 1, . . . , q from random given gx. We can as-
sume that the adversary knows si = logvi

(g), ti = logvi
(ui). Then he can map

those tuples to (gx, gxri, gri) = (gx, (uri

i g−xri/(vri

i )ti)−1, (vri

i )si). So again this
is equivalent to distinguish the distribution (7) from (8).

4 Conclusions and Further Work

We showed that the sequential or parallel composition of pseudorandom func-
tions with non-adaptive security is not adaptively secure in general if the DDH
assumption is true in any group. Some interesting remaining question we’re cur-
rently looking at are the following:

– Can we prove the same thing with pseudorandom permutations, ideally for
efficiently invertible ones. This would show that cascading non-adaptively
secure block-ciphers will not give adaptive security in general.

– We only gave counterexamples for the composition of two functions. How
does this scale to the composition of n > 2 functions? This question has been
partially answered in [8], where a non-adaptively secure PRF is constructed
(under an assumption which is implied by the DDH-assumption) such that
the sequential composition of any number of this PRFs can be distinguished
with 2 adaptive queries with high probability. Unfortunately the approach
used there seems not to generalise to parallel composition.
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– Can we give this result under weaker assumptions or even unconditionally?
Of course we may always assume that one-way functions exist (they imply
pseudorandomness and vice-versa) as otherwise there’s nothing to prove.
We give a negative result in this direction in [7]. There we show that if a
non-adaptively secure PRF exists where the sequential composition can be
distinguished with two queries (as constructed in this paper5), then a secure
key-agreement protocol exists. Thus any construction of such PRFs must
either assume or unconditionally prove the existence of key-agreement (the
DDH-assumption we use is know to imply key agreement [1]).

– The domain and the range for our counterexamples is a product of subgroups
of Z∗

Q. This is not what one usually does, can we adapt this such that the
range and domain are {0, 1}�, ideally with standard bitwise XOR as group
operation for parallel composition.
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Abstract. Using a recent idea of Gaudry and exploiting rational repre-
sentations of algebraic tori, we present an index calculus type algorithm
for solving the discrete logarithm problem that works directly in these
groups. Using a prototype implementation, we obtain practical upper
bounds for the difficulty of solving the DLP in the tori T2(Fpm) and
T6(Fpm) for various p and m. Our results do not affect the security of
the cryptosystems LUC, XTR, or CEILIDH over prime fields. However,
the practical efficiency of our method against other methods needs fur-
ther examining, for certain choices of p and m in regions of cryptographic
interest.

1 Introduction

The first instantiation of public key cryptography, the Diffie-Hellman key agree-
ment protocol [5], was based on the assumption that discrete logarithms in finite
fields are hard to compute. Since then, the discrete logarithm problem (DLP)
has been used in a variety of cryptographic protocols, such as the signature and
encryption schemes due to ElGamal [6] and its variants. During the 1980’s, these
schemes were formulated in the full multiplicative group of a finite field Fp. To
speed-up exponentiation and obtain shorter signatures, Schnorr [24] proposed
to work in a small prime order subgroup of the multiplicative group F×

p of a
prime finite field. Most modern DLP-based cryptosystems, such as the Digital
Signature Algorithm (DSA) [9], follow Schnorr’s idea.

Lenstra [15] showed that by working in a prime order subgroup G of F×
pm ,
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� The work described in this paper has been supported in part by the European Com-

mission through the IST Programme under Contract IST-2002-507932 ECRYPT.
The information in this document reflects only the authors’ views, is provided as is
and no guarantee or warranty is given that the information is fit for any particular
purpose. The user thereof uses the information at its sole risk and liability.

V. Shoup (Ed.): Crypto 2005, LNCS 3621, pp. 66–85, 2005.
c© International Association for Cryptologic Research 2005



On the Discrete Logarithm Problem on Algebraic Tori 67

speed-up. Furthermore, Lenstra proved that when |G| | Φm(p) with Φm(x) the
m-th cyclotomic polynomial and |G| > m, the minimal surrounding field of G
truly is Fpm and not a proper subfield. Lacking any knowledge to the contrary,
the security of this cryptosystem has been based on two assumptions: firstly,
the group G should be large enough such that square root algorithms [18] are
infeasible and secondly, the minimal finite field in which G embeds should be
large enough to thwart index calculus type attacks [18]. In these attacks one
does not make any use of the particular form of the minimal surrounding finite
field, i.e., Fpn , but only its size and the size of the subgroup of cryptographic
interest.

More recent proposals, such as LUC [25], XTR [16] and CEILIDH [22], im-
prove upon Schnorr’s and Lenstra’s idea, the latter two working in a subgroup
G ⊂ F×

q6 with |G| | Φ6(q) = q2 − q + 1, where q is a prime power. Brouwer,
Pellikaan and Verheul [2] were the first to give a cryptographic application of
effectively representing elements in G using only two Fq-elements, instead of six,
effectively reducing the communication cost by a factor of three.

Rubin and Silverberg [22] showed how to interpret and generalise the above
cryptosystems using the algebraic torus Tn(Fq) which is isomorphic to the sub-
group Gq,n ⊂ F×

qn of order Φn(q). For “rational” tori, elements of Tn(Fq) can be
compactly represented by ϕ(n) elements of Fq, obtaining a compression factor
of n/ϕ(n) over the field representation.

In this paper we develop an index calculus algorithm that works directly on
rational tori Tn(Fq) and consequently show that the hardness of the DLP can
depend on the form of the minimal surrounding finite field. The algorithm is
based on the purely algebraic index calculus approach by Gaudry [10] and ex-
ploits the compact representation of elements of rational tori. The very existence
of such an algorithm shows that the lower communication cost offered by these
tori, may also be exploited by the cryptanalyst.

In practice, the DLP in T2 and T6 are most important, since they determine
the security of the cryptosystems LUC [25], XTR [16], CEILIDH [22], and MNT
curves [19]. We stress that when defined over prime fields Fp, the security of these
cryptosystems is not affected by our algorithm. Over extension fields however,
this is not always the case. In this paper, we provide a detailed description of our
algorithm for T2(Fqm) and T6(Fqm). Note that this includes precisely the systems
presented in [17], and also those described in [28,27] via the inclusion of Tn(Fp) in
T2(Fpn/2) and T6(Fpn/6) when n is divisible by two or six, respectively, which for
efficiency reasons is always the case. Our method is fully exponential for fixed m
and increasing q. From a complexity theoretic point of view, it is noteworthy that
for certain very specific combinations of q and m, for example when m! ≈ q, the
algorithms run in expected time Lqm(1/2, c), which is comparable to the index
calculus algorithm by Adleman and DeMarrais [1]. However, our focus will be
on parameter ranges of practical cryptographic interest rather than asymptotic
results.

A complexity analysis and prototype implementation of these algorithms,
show that they are faster than Pollard-Rho in the full torus T2(Fqm) for m ≥ 5
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and in the full torus T6(Fqm) for m ≥ 3. However, in cryptographic applications
one would work in a prime order subgroup of Tn(Fqm) of order around 2160; in
this case, our algorithm is only faster than Pollard-Rho for larger m.

From a practical perspective, our experiments show that in the cryptographic
range, the algorithm for T6(Fqm) outperforms the corresponding algorithm for
T2(Fq3m) and that it is most efficient when m = 4 or m = 5. Furthermore, for
m = 5, both algorithms in practice outperform Pollard-Rho in a subgroup of
T6(Fq5) of order 2160, for q30 up to and including the 960-bit scheme based in
T30(Fp) proposed in [27]. Compared to Pollard ρ our method seems to achieve in
practice a 1000 fold speedup; its practical comparison with Adleman-DeMarrais
is yet to be explored. Our experiments show that it is currently feasible to solve
the DLP in T30(Fp) with �log2 p� = 20, where we assume that a computation of
around 245 seconds is feasible.

The remainder of this paper is organised as follows. In Section 2 we briefly
review algebraic tori and the notion of rationality. In Section 3 we present the
philosophy of our algorithm and explain how it is related to classical index
calculus algorithms. In Sections 4 and 5 we give a detailed description of the
algorithm for T2(Fqm) and T6(Fqm) respectively. Finally, we conclude and give
pointers for further research in Section 6.

2 Discrete Logs in Extension Fields and Algebraic Tori

Extension fields possess a richer algebraic structure than prime fields, in particu-
lar those with highly composite extension degrees. This has led some researchers
to suspect that such fields may be cryptographically weak. For instance, in
1984 Odlyzko stated that fields with a composite extension degree ‘may be very
weak’ [21]. The main result of this paper shows that these concerns may indeed
be valid. A naive attempt to exploit the available subfield structure of extension
fields in solving discrete logarithms, naturally leads one to consider the DLP on
algebraic tori, as we show below.

2.1 A Simple Reduction of the DLP

Let k = Fq and let K = Fqn be an extension of k of degree n > 1. Assume that
g ∈ K is a generator of K× and let h = gs with 0 ≤ s < qn − 1 be an element
we wish to find the discrete logarithm of with respect to g.

Then by applying to g and h the norm maps NK/kd
with respect to each

intermediate subfield kd of K, and solving the resulting discrete logarithms
in these subfields, a simple argument shows that one can determine s mod
lcm{Φd(q)}d|n,d �=n, where Φd(q) is the d-th cyclotomic polynomial evaluated at q.
Modulo a cryptographically negligible factor, the remaining modular informa-
tion required to determine the full discrete logarithm comes from the order Φn(q)
subgroup of K×. As observed by Rubin and Silverberg [22], this subgroup is pre-
cisely the algebraic torus Tn(Fq).
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2.2 The Algebraic Torus

In their CRYPTO 2003 paper [22], Rubin and Silverberg introduced the notion
of torus-based cryptography. Their central idea was to interpret the subgroups
of K× as algebraic tori, and by exploiting birational maps from these groups to
affine space, they obtained an efficient compression mechanism for elements of
extension fields. Along with the existing public key cryptosystems XTR [16] and
LUC [25], their method provides a reduction in bandwidth requirements for finite
field discrete logarithm based protocols, which is becoming increasingly relevant
as key-size recommendations become larger in order to maintain security levels.

Definition 1. Let k = Fq and let K = Fqn be an extension of k of degree n > 1.
We define the algebraic torus Tn(Fq) as

Tn(Fq) = {α ∈ K | NK/kd
(α) = 1 for all subfields k ⊆ kd � K}.

Strictly speaking, Tn(Fq) refers only to the Fq-rational points on the affine alge-
braic variety Tn, rather than the torus itself (see [22] for the exact construction).

Note that since Tn(Fq) is simply a subgroup of F×
qn , the group operation

can be realised as ordinary multiplication in the field Fqn . The dimension of the
variety Tn is φ(n) = deg(Φn(x)), with φ(·) the Euler totient function.

Let Gq,n denote the subgroup of F×
qn of order Φn(q). The following lemma

from [22] provides some useful properties of Tn.

Lemma 1.

1. Tn(Fq) ∼= Gq,n and hence #Tn(Fq) = Φn(q).
2. If h ∈ Tn(Fq) is an element of prime order not dividing n, then h does not

lie in a proper subfield of Fqn/Fq.

It follows that Tn(Fq) may be regarded as the ‘primitive’ subgroup of F×
qn ,

since by Lemma 1 it does not embed into a proper subfield. Hence in practice, one
always uses a subgroup of Tn(Fq) in cryptographic applications, since otherwise
a given DLP embeds into a proper subfield of Fqn (see also [15]). In fact, using
the decomposition

xn − 1 =
∏
d|n

Φd(x)

in Z[x], the group F×
qn can be seen to be almost the same as the direct product∏

d|n Tn(Fq). Hence finding an efficient algorithm to solve the DLP on algebraic
tori enables one to solve DLPs in extension fields, as well as vice versa.

2.3 Rationality of Tori over Fq

In order to compress elements of the variety Tn, we make use of rationality,
for particular values of n. The rationality of Tn means there exists a birational
map from Tn to φ(n)-dimensional affine space Aφ(n). This allows one to represent
nearly all elements of Tn(Fq) with just φ(n) elements of Fq, providing an effective
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compression factor of n/φ(n) over the embedding of Tn(Fq) into Fqn . Since Tn has
dimension φ(n), this compression factor is optimal. Tn is known to be rational
when n is either a prime power, or is a product of two prime powers, and is
conjectured to be rational for all n [22].

Formally, rationality can be defined as follows.

Definition 2. Let Tn be an algebraic torus over Fq of dimension d = φ(n), then
Tn is said to be rational if there is a birational map ρ : Tn → Aφ(n) defined over
Fq.

This means that there are subsets W ⊂ Tn and U ⊂ Aφ(n), and rational func-
tions ρ1, . . . , ρφ(n) ∈ Fq(x1, . . . , xn) and ψ1, . . . , ψn ∈ Fq(y1, . . . , yφ(n)) such that
ρ = (ρ1, . . . , ρφ(n)) : W → U and ψ = (ψ1, . . . , ψn) : U → W are inverse isomor-
phisms. Furthermore, the differences T \W and Aφ(n) \ U should be algebraic
varieties of dimension ≤ (d − 1), which implies that W (resp. U) is ‘almost the
whole’ of T (resp. Aφ(n)).

The public key cryptosystem CEILIDH [22] is based on the algebraic torus T6,
which achieves a compression factor of three over the extension field representa-
tion. Rationality whilst useful, is not essential, since Van Dijk and Woodruff [28]
showed that one can obtain key-agreement, signature and encryption schemes
with bandwidth compressed by this factor asymptotically with the number of
keys/signatures/messages, without relying on the conjecture stated above. In-
deed, their result applies to any torus Tn, which helps explain the recent and
increasing interest in torus-based cryptography.

3 Algorithm Philosophy

The algorithm as presented in Sections 4 and 5 is based on an idea first proposed
by Gaudry [10], in reference to the DLP on general abelian varieties. While
Gaudry’s method is in principle an index calculus algorithm, the ingredients are
very algebraic: for instance one need not rely on unique factorisation to obtain
a notion of ‘smoothness’, as in finite field discrete logarithm algorithms.

As an introduction, in this section we consider Gaudry’s idea in the context
of computing discrete logarithms in F×

qm , and show how it is related to classical
index calculus.

3.1 Classical Method

Let Fqm = Fq[t]/(f(t)) for some monic irreducible degree m polynomial and let
the basis be {1, t, . . . , tm−1}. Let g be a generator of F×

qm and let h ∈ 〈g〉 be
an element we are to compute the logarithm of w.r.t. g. Suppose also, for this
example, that we are able to deal with a factor base of size q.

Classically, one would first reduce the problem to considering only monic
polynomials, i.e., one considers the quotient F×

qm/F×
q , and defines a factor base

F = {t + a : a ∈ Fq}.
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Then for random j, k ∈ Z/((qm − 1)/(q− 1))Z one computes r = gjhk and tests
whether r/lc(r) decomposes over F , with lc(r) the leading coefficient of r. This
occurs with probability approximately 1/(m− 1)! for large q since the set of all
products of m − 1 elements of F generates roughly qm−1/(m − 1)! elements of
F×

qm/F×
q .

Computing more than q such relations allows one to compute loggh mod
(qm − 1)/(q − 1) as usual with a linear algebra elimination (and one applies the
norm NFqm/Fq

to g and h and solves the corresponding DLP in F×
q to recover

the remaining modular information).

3.2 Gaudry’s Method

Two essential points taken for granted in the above description are that there
exist efficient procedures to compute:

– whether a given r decomposes over F ; this happens precisely when r ∈ Fq[t]
splits over Fq or equivalently when gcd(tq − t, r/lc(r)) = r/lc(r),

– the actual decomposition of r, i.e., to compute the roots of r ∈ Fq[t] in Fq.

One may equivalently consider the following problem: determine whether the
system of equations obtained by equating powers of t in the equality

m−1∏
i=1

(t + ai) = r/lc(r) = r0 + r1t + · · ·+ rm−2t
m−2 + tm−1, (1)

has a solution (a1, . . . , am−1) ∈ Fm−1
q and if so, to compute one such solution. Of

course, in this trivial example the roots ai can be read off from the factorisation
of r/lc(r). However, one obtains a non-trivial example if the group operation
on the left is more sophisticated than polynomial multiplication, such as elliptic
curve point addition, which was Gaudry’s original motivation for developing the
algorithm. In this case the decomposition of a group element over the factor base
can become more sophisticated, but the principle remains the same.

The central benefit of this perspective is that it can be applied in the absence
of unique factorisation, since with a suitable choice of factor base, or more accu-
rately a decomposition base, one can simply induce relations algebraically. For
example, approaching the above problem from this slightly different perspective
gives an algorithm for working directly in F×

qm , which is perhaps more natural
than the stated quotient, F×

qm/F×
q . Define a decomposition base

F = {1 + at : a ∈ Fq},

and again associate to the equality

m∏
i=1

(1 + ait) ≡ r ≡ r0 + r1t + · · ·+ rm−1t
m−1 (mod f(t)), (2)

the algebraic system obtained by equating powers of t.
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Note that in (2) one must multiply m elements of F in order to obtain
a probability of 1/m! for obtaining a relation, rather than the m − 1 elements
(and probability 1/(m−1)!) of (1). The reason these probabilities differ is simply
that the algebraic groups F×

qm/F×
q and F×

qm over Fq are m−1 and m-dimensional
respectively.

Ignoring for the moment that F essentially consists of degree one polynomi-
als, and assuming that we want to solve this system without factoring r/lc(r), we
are faced with finding a solution to a non-linear system, which would ordinarily
require a Gröbner basis computation to solve. However writing out the left hand
side in the polynomial basis {1, . . . , tm−1} gives

m∏
i=1

(1 + ait) = 1 + σ1t + · · ·+ σmtm

≡ 1 + σ1t + · · ·+ σm−1t
m−1 + σm(tm − f(t)) (mod f(t)),

with σi the i-th elementary symmetric polynomial in the ai. Equating powers
of t then gives a linear system of equations in the σi for i = 1, . . . , m. Given
a solution (σ1, . . . , σm) to this system of equations, r will decompose over F
precisely when the polynomial

p(x) := xm − σ1x
m−1 + σ2x

m−2 − · · ·+ (−1)mσm

splits over Fq. Thus exploiting the symmetry in the construction of the algebraic
system makes solving it much simpler. Although in this contrived example, solv-
ing the system directly and solving it using its symmetry are essentially the
same, in general the latter makes infeasible computations feasible.

Following from this example, a simple observation is that for an algebraic
group over Fq whose representation is m-dimensional, then using a decompo-
sition base F of q elements, one must multiply m elements of F to obtain a
constant probability of decomposition 1/m!. Therefore, we conclude that the
more efficient the representation of the group is, the higher the probability of
obtaining a relation, and thus the corresponding index calculus algorithm will
be more efficient.

In the following two sections, we apply this idea to rational representations
of algebraic tori, and show that the above probability of 1/m! can be reduced
significantly to 1/(m/2)! when m is divisible by 2 and to 1/(m/3)! when m is
divisible by 6.

4 An Index Calculus Algorithm for T2(Fqm ) ⊂ F×
q2m

For q any odd prime power, we describe an algorithm to compute discrete loga-
rithms in T2(Fqm).

4.1 Setup

With regard to the extension Fq2m/Fqm , by Lemma 1 we know that

#T2(Fqm) = Φ2(qm) = qm + 1,
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and hence we presume the DLP we consider is in the subgroup of this order.
By applying the reduction of the DLP via norms as in Section 2, it is clear that
the hard part actually is T2m(Fq) � T2(Fqm). Since in this section we use the
properties of T2 rather than T2m, we only consider T2(Fqm), or more accurately
(ResFqm /Fq

T2)(Fq), where here Res denotes the Weil restriction of scalars (see
also [22]).

Let Fqm ∼= Fq[t]/(f(t)) with f(t) ∈ Fq[t] an irreducible monic polynonmial
of degree m and take the polynomial basis {1, t, . . . , tm−1}. Assuming that q is
an odd prime power, we let Fq2m = Fqm [γ]/(γ2 − δ) with basis {1, γ}, for some
non-square δ ∈ Fqm \ Fq. Then using Definition 1, we see that

T2(Fqm) = {(x, y) ∈ Fqm × Fqm : x2 − δy2 = 1}.

This representation uses two elements of Fqm to represent each point. The torus
T2 is one-dimensional, rational, and has the following equivalent affine represen-
tation:

T2(Fqm) =
{

z − γ

z + γ
: z ∈ Fqm

}
∪ {O}, (3)

where O is the point at infinity.
Here a point g = g0 + g1γ ∈ T2(Fqm) in the Fq2m representation has a

corresponding representation as given above by the rational function z = −(1 +
g0)/g1 if g1 �= 0, whilst the elements −1 and 1 map to z = 0 and z = O
respectively. The representation (3) thus gives a compression factor of two for
the elements of Fq2m that lie in T2(Fqm). Furthermore since T2(Fqm) has qm + 1
elements, this compression is optimal (since for this example, including the point
at infinity, we really have a map from T2(Fqm)→ P1(Fqm)).

4.2 Decomposition Base

As with any index calculus algorithm, we need to define a factor base, or in the
case of Gaudry’s algorithm, a decomposition base. Let

F =
{

a− γ

a + γ
: a ∈ Fq

}
⊂ T2(Fqm),

which contains q elements, since the map, given above, is a birational isomor-
phism from T2 to A1. Note that if δ ∈ Fq, then F would lie in the subvariety
T2(Fq) and would not aid in our attack, which is why we ensured that δ ∈ Fqm\Fq

during the setup.

4.3 Relation Finding

Writing the group operation additively, let P be a generator, and let Q ∈ 〈P 〉
be a point we wish to find the discrete logarithm of with respect to P . For a
given R = [j]P + [k]Q, we test whether it decomposes as a sum of m points in
the decomposition base:

P1 + · · ·+ Pm = R, (4)
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with P1, . . . , Pm ∈ F . From the representation we have chosen for T2 we may
equivalently write this as

m∏
i=1

(
ai − γ

ai + γ

)
=

r − γ

r + γ
,

where the ai are unknown elements in Fq, and r ∈ Fqm is the affine representation
of R. Note that the left hand side is symmetric in the ai. Upon expanding the
product for both the numerator and denominator, we obtain two polynomials of
degree m in γ whose coefficients are just plus or minus the elementary symmetric
polynomials σi(a1, . . . , am) of the ai:

σm − σm−1γ + · · ·+ (−1)mγm

σm + σm−1γ + · · ·+ γm
=

r − γ

r + γ
.

Therefore, when we reduce modulo the defining polynomial of γ, we obtain an
equation of the form

b0(σ1, . . . , σm)− b1(σ1, . . . , σm)γ
b0(σ1, . . . , σm) + b1(σ1, . . . , σm)γ

=
r − γ

r + γ
,

where b0, b1 are linear in the σi and have coefficients in Fqm . More explicitly,
since γ2 = δ ∈ Fqm , these polynomials are given by

b0 =
�m/2�∑
k=0

σm−2kδk and b1 =
�(m−1)/2�∑

k=0

σm−2k−1δ
k ,

where we define σ0 = 1.
In order to obtain a simple set of algebraic equations amongst the σi, we first

reduce the left hand side to the affine representation (3) and obtain the equation

b0(σ1, . . . , σm)− b1(σ1, . . . , σm)r = 0.

Since the unknowns σi are elements of Fq, we express the above equation on the
polynomial basis of Fqm to obtain m linear equations over Fq in the m unknowns
σi ∈ Fq. This gives an m×m matrix M over Fq such that

– the (m− 2k)-th column contains the coefficients of δk,
– the (m− 2k − 1)-th column contains the coefficients of −rδk.

Furthermore, let V be the m× 1 vector containing the coefficients of rδ(m−1)/2

when m is odd or −δm/2 when m is even, then Σ = (σ1, . . . , σm)T is a solution
of the linear system of equations

MΣ = V .

If there is a solution Σ, to see whether this corresponds to a solution of (4) we
test whether the polynomial

p(x) := xm − σ1x
m−1 + σ2x

m−2 − · · ·+ (−1)mσm

splits over Fq by computing g(x) := gcd(xq − x, p(x)). If g(x) = p(x), then the
roots a1, . . . , am will be the affine representation of the elements of the factor
base which sum to R and we have found a relation.
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4.4 Complexity Analysis and Experiments

The number of elements of T2(Fqm) generated by all sums of m points in F is
roughly qm/m!, assuming no repeated summands and that most points admit a
unique factorisation over the factor base. Hence the probability of obtaining a
relation is approximately 1/m!. Therefore in order to obtain q relations we must
perform roughly m!q such decompositions. Each decomposition consists of the
following steps:

– computing the matrix M and vector V takes O(m3) operations in Fq, using
a naive multiplication routine,

– solving for Σ also requires O(m3) operations in Fq,
– computing the polynomial g(x) requires O(m2 log q) operations in Fq,
– if the polynomial p(x) splits over Fq, then we have to find the roots a1, . . . , am

which requires O(m2 log m(log q + log m)) operations in Fq.

Note that the last step only has to be executed O(q) times. The overall com-
plexity to find O(q) relations is therefore

O(m! · q · (m3 + m2 log q)) .

operations in Fq.
Since in each row of the final relations matrix there will be O(m) non-zero

elements, we conclude that finding a kernel vector using sparse matrix tech-
niques [13] requires O(mq2) operations in Z/(qm + 1)Z or about O(m3q2) oper-
ations in Fq. This proves the following theorem.

Theorem 1. The expected running time of the T2-algorithm to compute DLOGs
in T2(Fqm) is

O(m! · q · (m3 + m2 log q) + m3q2)

operations in Fq.

Note that when m > 1 and the q2 term dominates, by reducing the size of the
decomposition base, the complexity may be reduced to O(q2−2/m) for q → ∞
using the results of Thériault [26], and a refinement reported independently by
Gaudry and Thomé [11] and Nagao [20].

The expected running time of the T2-algorithm is minimal when the relation
stage and the linear algebra stage take comparable time, i.e. when m! · q · (m3 +
m2 log q) � m3q2 or m! � q. The complexity of the algorithm then becomes
O(m3q2), which can be rewritten as

O(m3q2) = O
(
exp(3 log m + 2 log q)

)
= O

(
exp(2(log q)1/2(log q)1/2)

)
= O

(
exp(2(m log m)1/2(log q)1/2)

)
= O

(
Lqm(1/2, c)

)
with c ∈ R>0. Note that for the second and third equality we have used that
m! � q, and thus by taking logarithms log q � m logm.
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To assess the practicality of the T2 algorithm, we ran several experiments
using a simple Magma implementation, the results of which are given in Ta-
ble 1. This table should be read as follows: the size of the torus cardinality,
i.e., log2(q

m), is constant across each row; for a given qm, the table contains for
m = 1, . . . , 15, the log2 of the expected running times in seconds for the entire
algorithm, i.e. both relation collection stage and linear algebra. For instance, for
qm ∼= 2300 and m = 15, the total time would be approximately 251 seconds on one
AMD 1700+ using our Magma implementation. For the fields where the torus
is less than 160 bits in size, we use the full torus otherwise we use a subgroup of
160 bits to estimate the Pollard ρ costs.

Note that Table 1 does not take into account memory constraints imposed
by the linear algebra step; since the number of relations is approximately q, we
conclude that the algorithm is currently only practical for q ≤ 223. Assuming
that 245 seconds, which is about 1.1 × 106 years, is feasible and assuming it is
possible to find a kernel vector of a sparse matrix of dimension 223, Table 1
contains, in bold, the combinations of q and m which can be handled using our
Magma implementation.

Table 1. log2 of expected running times (s) of the T2-algorithm and Pollard-Rho in a
subgroup of size 2160

m
log2 |Fq2m | log2 |T2(Fqm)| ρ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

200 100 34 88 40 52 36 26 20 16 17 18 21 23 26 31 33 37
300 150 59 138 66 87 62 48 38 31 26 25 26 28 31 34 37 40
400 200 65 188 92 121 88 68 55 46 39 34 32 33 35 38 41 44
500 250 66 238 117 155 114 89 73 61 52 45 40 38 40 42 44 47
600 300 66 289 142 189 139 110 90 76 65 57 51 45 44 46 48 51
700 350 66 339 168 223 165 130 107 91 78 69 61 55 50 50 52 54
800 400 66 389 193 256 190 150 124 105 91 80 71 64 58 56 55 58
900 450 68 439 219 290 215 171 141 120 104 92 82 74 67 62 61 62
1000 500 69 489 244 324 241 191 158 134 117 103 92 83 76 69 66 67

4.5 Comparison with Other Methods

In this section we compare the T2-algorithm with the Pollard-Rho and index
calculus algorithms.

Pollard-Rho in the Full Torus. Using the Pohlig-Hellman reduction, the
overall running time is determined by executing the Pollard-Rho algorithm in
the subgroup of T2(qm) of largest prime order l. Since #T2(qm) = qm + 1, we
have to analyse the size of the largest prime factor l. Note that the factorisation
of xm + 1 over Z[x] is given by

xm + 1 =
x2m − 1
xm − 1

=

∏
d|2m Φd(x)∏
d|m Φd(x)

=
∏

d|2m,d�m

Φd(x) ,
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which implies that the maximum size of the prime l is O(qφ(2m)), since the
degree of Φ2m(x) is φ(2m). The overall worst case complexity of this method is
therefore O(qφ(2m)/2) operations in Fq2m or O(m2 · qφ(2m)/2) operations in Fq.

From a complexity theoretic point of view, we therefore conclude that for
m! ≤ q, our algorithm is as fast as Pollard-Rho whenever m ≥ 5, since then
φ(2m)/2 > 2. As a consequence, we note that the T2 algorithm does not lead to
an improvement over existing attacks on LUC [25], XTR [16] or CEILIDH [22]
over Fp. Furthermore, also the security of MNT curves [19] defined over Fp,
where p is a large prime remains unaffected.

Pollard-Rho in a Subgroup of Prime Order � 2160. In cryptographic
applications however, one would work in a subgroup of T2(Fqm) of prime order l
with l � 2160. To this end, we measured the average time taken for one multipli-
cation for the various fields in Magma, and multiplied this time by the expected
280 operations required by the Pollard-Rho algorithm. The results can be found
in the third column of Table 1. The column for m = 15 is especially interesting
since this determines the security of the T30 cryptosystem introduced in [27]. In
this case, the T2 is always faster than Pollard-Rho, and the matrices occurring
in the linear algebra step would be feasible up to 700-bit fields.

Adleman/Demarrais in F×
q2m. The alternative approach would be to embed

T2(Fqm) into F×
q2m and to apply a subexponential algorithm, which for all m and q

can attain a complexity of Lq2m(1/2, c) as shown by Adleman and Demarrais [1].
Clearly, using the T2 algorithm this is only possible for certain combinations of
m and q, e.g. for q � m!, which is also indicated by Table 1. Of course, when
q = pn for p a prime, then we can choose a different m̄ with m̄|n ·m such that
m̄! � pnm/m̄. We do not know how the Adleman-DeMarrais algorithms performs.

Remark 1. The linearity of the decomposition method in fact holds for any torus
Tpr . However the savings are optimal for T2r , since pr/φ(pr) is maximal in this
case. When one considers Tn for which n is divisible by more than one distinct
prime factor, the rational parametrisation becomes non-linear, and hence so does
the corresponding decomposition, as we see in the following section.

5 An Index Calculus Algorithm for T6(Fqm ) ⊂ F×
q6m

In this section we detail our algorithm to compute discrete logarithms in T6(Fqm).
The main difference with the T2-algorithm is the non-linearity of the equations
involved in the decomposition step.

5.1 Setup

Again, let Fqm ∼= Fq[t]/(f(t)), with f(t) an irreducible polynomial of degree
m and where we use the polynomial basis {1, t, t2, . . . , tm−1}. Since T6 is two-
dimensional and rational, it is an easy exercise to construct a birational map
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from T6 to A2 for a given representation of Fq6m . For the following exposition
we make use of the the CEILIDH field representation and maps, as described
in [22].

Let qm ≡ 2 or 5 mod 9, and for (r, q) = 1 let ζr denote a primitive r-th root
of unity in Fqm . Define x = ζ3 and let y = ζ9 + ζ−1

9 , then clearly x2 + x + 1 = 0
and y3 − 3y + 1 = 0. Let Fq3m = Fqm(y) and Fq6m = Fq3m(x), then the bases
we use are {1, y, y2− 2} for the degree three extension and {1, x} for the degree
two extension.

Let V (f) be the zero set of f(α1, α2) = 1−α2
1−α2

2 +α1α2 in A2(Fqm), then
we have the following inverse birational maps:

– ψ : A2(Fqm) \ V (f) ∼−−→ T6(Fqm) \ {1, x2}, defined by

ψ(α1, α2) =
1 + α1y + α2(y2 − 2) + (1− α2

1 − α2
2 + α1α2)x

1 + α1y + α2(y2 − 2) + (1− α2
1 − α2

2 + α1α2)x2 , (5)

– ρ : T6(Fqm) \ {1, x2} ∼−−→ A2(Fqm) \ V (f), which is defined as follows: for
β = β1 + β2x, with β1, β2 ∈ Fq3m , let (1 + β1)/β2 = u1 + u2y + u3(y2 − 2),
then ρ(β) = (u2/u1, u3/u1).

5.2 Decomposition Base

In this case the decomposition base consists of ψ(at, 0), where a runs through
all elements of Fq and t generates the polynomial basis, i.e.

F =
{

1 + (at)y + (1 − (at)2)x
1 + (at)y + (1− (at)2)x2 : a ∈ Fp

}
which clearly contains q elements, for much the same reason as given in Section
4. The reason for considering ψ(at, 0) instead of ψ(a, 0) is that the minimal
polynomials of x and y are defined over Fq. Note that this implies that ψ(a, 0) ∈
T6(Fq) for a ∈ Fq and so does not generate a fixed proportion of T6(Fqm), as is
needed.

5.3 Relation Finding

Since (ResFqm/Fq
T6)(Fq) is 2m-dimensional, we need to solve

P1 + · · ·+ P2m = R , (6)

with P1, . . . , P2m ∈ F . Assuming that R is expressed in its canonical form, i.e.
R = ψ(r1, r2), we get

2m∏
i=1

(
1 + (ait)y + (1− (ait)2)x
1 + (ait)y + (1 − (ait)2)x2

)
=

1 + r1y + r2(y2 − 2) + (1− r2
1 − r2

2 + r1r2)x
1 + r1y + r2(y2 − 2) + (1 − r2

1 − r2
2 + r1r2)x2 .
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After expanding the product of the numerators and denominators, the left hand
side becomes the fairly general expression

b0 + b1y + b2(y2 − 2) +
(
c0 + c1y + c2(y2 − 2)

)
x

b0 + b1y + b2(y2 − 2) + (c0 + c1y + c2(y2 − 2))x2 (7)

with bi, ci polynomials over Fqm of degree 4m in a1, . . . , a2m. In general, these
polynomials are rather huge and thus difficult to work with.

Example 1. For m = 5, the number of terms in the bi (resp. ci) is given by
B = [35956, 30988, 25073] (resp. C = [35946, 31034, 24944]) for finite fields of
large characteristic.

However, note that these polynomials are by construction symmetric in the
a1, . . . , a2m so we can rewrite the bi and ci in terms of the 2m elementary sym-
metric polynomials σj(a1, . . . , a2m) for j = 1, . . . , 2m. This has quite a dra-
matic effect on the complexity of these polynomials, i.e., the degree is now only
quadratic and the number of terms is much lower, since the maximum number
of terms in a quadratic polynomial in 2m variables is 4m +

(2m
2

)
+ 1.

Example 2. For m = 5, when we rewrite the equations using the symmetric
functions σi, the number of terms of the polynomials bi and ci reduces to B =
[16, 19, 18] and C = [20, 16, 16].

Note that the polynomials bi and ci only have to be computed once and can be
reused for each random point R.

To generate the system of non-linear equations, we use the embedding of
T6(Fqm) into T2(Fq3m) and consider the Weil restriction of the following equality:

b0 + b1y + b2(y2 − 2)
c0 + c1y + c2(y2 − 2)

=
1 + r1y + r2(y2 − 2)
1− r2

1 − r2
2 + r1r2

.

The above equation leads to 3 non-linear equations over Fqm or equivalently,
to 3m non-linear equations over Fq in the 2m unknowns σ1, . . . , σ2m. Note that
amongst the 3m equations, there will be at least m dependent equations, caused
by the fact that we only considered the embedding in T2 and not strictly in T6.

The efficiency with which one can find the solutions of this system of non-
linear equations depends on many factors such as the multiplicities of the zeros
or the number of solutions at infinity. For each random R, the resulting system
of equations has the same structure, since only the value of some coefficients
changes, but for finite fields of large enough characteristic, not the degrees nor the
numbers of terms. To determine the properties of these systems of equations we
computed the Gröbner basis w.r.t. the lexicographic ordering using the Magma
implementation of the F4-algorithm [7] and concluded the following:

– The ideal generated by the system non-linear equations is zero-dimensional,
which implies that there is only a finite number of candidates for the σi.

– After homogenizing the system of equations, we concluded that there is only
a finite number of solutions at infinity. This property is quite important,
since we can then use an algorithm by Lazard [14] with proven complexity.
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– The Gröbner basis w.r.t. the lexicographic ordering satisfies the so called
Shape Lemma, i.e. the basis has the following structure:

σ1 − g1(σ2m), σ2 − g2(σ2m), . . . , σ2m−1 − g2m−1(σ2m), g2m(σ2m) ,

where gi(σ2m) is a univariate polynomial in σ2m for each i. By reducing
modulo g2m we can assume that deg(gi) < deg(g2m) and by Bezout’s theo-
rem we have deg(g2m) ≤ 22m, since the non-linear equations are quadratic.
However, our experiments show that in all cases we have deg(g2m) = 3m.

– The polynomial g2m(σ2m) is squarefree, which implies that the ideal is in
fact a radical ideal.

To test if a random point decomposes over the factor base, we first find the
roots of g2m(σ2m) in Fq, and then substitute these in the gi to find the values
of the σi for i = 1, . . . , 2m − 1. For each such 2m-tuple, we then test if the
polynomial

p(x) := x2m − σ1x
2m−1 + σ2x

2m−2 − · · ·+ (−1)2mσ2m

splits completely over Fq. If it does, then the roots ai for i = 1, . . . , 2m lead to
a possible relation of the form (6).

5.4 Complexity Analysis and Experiments

The probability of obtaining a relation is now 1/(2m)! and since the factor base
again consists of q elements, we need to perform (2m)!q decompositions. Each
decomposition consists of the following steps:

– Since the polynomials bi and ci only need to be computed once, generating
the system of non-linear equations requires O(1) multiplications of multi-
variate polynomials with O(m2) terms with an Fqm -element. Using a naive
multiplication routine, the overall time to generate one such system is there-
fore O(m4) operations in Fq.

– Computing the Gröbner basis using the F5-algorithm algorithm [8] requires
O(

(4m
2m

)ω
) operations in Fq, with ω the complexity of matrix multiplication,

i.e. ω = 3 using a naive algorithm. Using the fact that(
2n

n

)
∼=
√

π

2
(2n)−1/222n ∈ O(22n)

we obtain a complexity of O(212m) operations in Fq.
– Since deg(g2m) = 3m, computing gcd(g2m(z), zq − z) requires O(32m log q)

operations in Fq. On average, the polynomial will have one root in Fq, so
finding the actual roots takes negligible time.

– Testing if the polynomial p(x) has roots in Fq requires O(m2 log q) operations
in Fq. Since this only happens with probability 1/(2m)!, when it does split,
finding the actual roots is negligible.
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The overall time complexity to generate sufficient relations therefore amounts to

O
(
(2m)! · q · (212m + 32m log q)

)
operations in Fq.

Finding an element in the kernel of a matrix of dimension q with 2m non-
zero elements per row requires O(mq2) operations in Z/(Φ6(qm)Z), which finally
justifies the following complexity estimate:

Run Time Heuristic 1. The expected running time of the T6-algorithm to
compute DLOGs in T6(Fqm) is

O((2m)! · q · (212m + 32m log q) + m3q2)

operations in Fq.

Again, the results of [26,11,20] imply that the complexity can be reduced to
O(q2−1/m) as q →∞, since in this case the dimension is 2m.

The expected running time of the T6-algorithm is minimal precisely when the
relation collection stage takes about the same time as the linear algebra stage,
i.e. when (2m)! · 212m � q. Note that for such q and m, the term 32m log q is
negligible compared to 212m. The overall running time then again becomes

O(m3q2) = O
(
exp(3 log m + 2 log q)

)
= O

(
exp(2(log q)1/2(log q)1/2)

)
= O

(
exp(2(2m log 2m + 12m)1/2(log q)1/2)

)
= O

(
Lqm(1/2, c)

)
with c ∈ R>0. Note that for the second and third equality we have used log q �
2m logm + 12m log 2.

The practicality of the T6-algorithm clearly depends on the efficiency of the
Gröbner basis computation. Note that for small m, the complexity of the Gröbner
basis computation is greatly overestimated by the O(212m) operations in Fq.

Due to the use of the symmetric polynomials, the input polynomials are only
quadratic instead of degree 4m. As one can see from Table 2, this makes the
algorithm quite practical. The table should be interpreted as for Table 1, i.e.,
the torus size is constant across each row and for a given size qm, the table
contains for m = 1, . . . , 5, the log2 of the expected running times in seconds
for the entire algorithm. Taking into account the memory restrictions on the
matrix, i.e., the dimension should be limited by 223, the timings given in bold
are feasible with the current Magma implementation.

Remark 2. Note that the column for m = 5 provides an upper bound for the
hardness of the DLP in T30(Fq), since this can be embedded in T6(Fq5 ). This
group was recently proposed [27] and also in [15] for cryptographic use where
keys of length 960 bits were recommended, i.e., with q of length 32 bits. The
above table shows that even with a Magma implementation it would be feasible
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Table 2. log2 of expected running times (s) of the T6-algorithm and Pollard-Rho in a
subgroup of size 2160

m
log2 |Fp6m | log2 |T6(Fpm)| ρ 1 2 3 4 5

200 67 18 25 18 14 20 29
300 100 34 42 36 21 24 32
400 134 52 59 54 32 29 36
500 167 66 75 71 44 33 39
600 200 66 93 88 55 40 42
700 234 66 109 105 67 48 46
800 267 66 127 122 78 57 51
900 300 68 144 139 90 65 56
1000 334 69 161 156 101 74 60

to compute discrete logarithms in T30(Fp) with p a prime of around 20 bits.
The embedding in T2(Fp15) is about 210 times less efficient as can be seen from
the column for m = 15 in Table 1. In light of this attack, the security offered
by the DLP in finite fields of the form Fq30 should be completely reassessed.
Note that by simply comparing the complexities given in Theorem 1 and the
above run time heuristic, it is a priori not clear that the T6-algorithm is in fact
faster than the corresponding T2-algorithm. This phenomenon is caused by the
overestimating the complexity of the Gröbner basis computation.

5.5 Comparison with Other Methods

In this section we compare the T6-algorithm with the Pollard-Rho and index
calculus algorithms.

Pollard-Rho in the Full Torus. Since the size of T6(Fqm) is given by Φ6(qm) �
q2m, we conclude that the Pollard-Rho algorithm takes, in the worst case, O(qm)
operations in T6(Fqm) or O(m2qm) operations in Fq. If we assume that q is
large enough such that the term q2 determines the overall running time, i.e.,
(2m)!212m ≤ q, then the T6-algorithm will be at least as fast as Pollard-Rho
whenever m ≥ 3. Again we note that the T6 algorithm does not lead to an
improvement over the existing attacks on LUC [25], XTR [16], CEILIDH [22]
or MNT curves [19] as long as these systems are defined over Fp. However, the
security of XTR over extension fields, as proposed in [17] or of the recent proposal
that works in T30(Fp) [27], needs to be reassessed as shown below.

Pollard-Rho in a Subgroup of Prime Order � 2160. As for the T2-
algorithm, the third column of Table 2 contains the expected running time of the
Pollard-Rho algorithm in a subgroup of T6(Fqm) of prime order l with l � 2160.
In this case, the column for m = 5 gives an upper bound of the security of the
T30 cryptosystem introduced in [27]. As is clear from Table 2, for m = 5, our
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algorithm is always faster than Pollard-Rho, and the matrices occurring in the
linear algebra step would be feasible up to 700-bit fields.

Adleman/Demarrais in F×
q6m. Using the embedding of T6(Fqm) into F×

q6m

one can apply the subexponential algorithm of Adleman-Demarrais [1] which
runs, for all m and q, in time Lq6m(1/2, c). Using the T6 algorithm, it is possible
to obtain a complexity of Lqm(1/2, c′), but only when m and q grow according
to a specific relation such as (2m)!212m � q. Again, when q = pn with p a prime,
we could choose a different m̄ with m̄|n ·m such that (2m̄)!212m̄ � pmn/m̄.

However, as was the case for the T2-algorithm, the importance of Table 2 is
that it contains the first practical upper bounds for the hardness of the DLP in
extension fields F×

q6m , since there are no numerical experiments available based
on the existing subexponential algorithms.

6 Conclusion and Future Work

In this paper we have presented an index calculus algorithm, following ideas
of Gaudry, to compute discrete logarithms on rational algebraic tori. Our algo-
rithm works directly in the torus and depends fundamentally on the compression
mechanisms previously used in a constructive context for systems such as LUC,
XTR and CEILIDH.

We have also provided upper bounds for the difficulty of solving discrete
logarithms on the tori T2(Fqm) and T6(Fqm) for various q and m in the crypto-
graphic range. These upper bounds indicate that if the techniques in this paper
can be made fully practical and optimized, then they may weaken the security
of practical systems based on T30.

In the near future we wish to investigate the approach by Diem [4], who
allows a larger decomposition base when necessary. The disadvantage of this
approach is that it destroys the symmetric nature of the polynomials defining the
decomposition of a random element over the factor base, which makes Gröbner
basis techniques virtually impossible.

It is clear that the Magma implementations described in this paper are not
optimised and many possible improvements exist. Two factors mainly determine
the running time of the algorithm: first of all, the probability that a random
element decomposes over the factor base and secondly, the time it takes to solve
a system of non-linear equations over a finite field. The first factor could be
influenced by designing some form of sieving, if at all possible, whereas the
second factor could be improved by exploiting the fact that many very similar
Gröbner bases have to be computed.

In addition the method needs to be compared in practice to the method of
Adleman and DeMarrais.
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Abstract. In this paper we present a practical heuristic attack on the
Ko, Lee et al. key exchange protocol introduced at Crypto 2000 [11].
Using this attack, we were able to break the protocol in about 150 min-
utes with over 95% success rate for typical parameters. One of the ideas
behind our attack is using Dehornoy’s handle reduction method as a
counter measure to diffusion provided by the Garside normal form, and
as a tool for simplifying braid words. Another idea employed in our at-
tack is solving the decomposition problem in a braid group rather than
the conjugacy search problem.

1 Introduction

Braid group cryptography has attracted a lot of attention recently due to several
suggested key exchange protocols (see [1], [11]) using braid groups as a platform.
We refer to [2], [6] for more information on braid groups.

Here we start out by giving a brief description of the Ko, Lee et al. key
exchange protocol (subsequently called just the Ko-Lee protocol).

Let B2n be the group of braids on 2n strands and x1, . . . , x2n−1 its standard
generators. Define two subgroups Ln and Rn of B2n as follows:

Ln = 〈x1, . . . , xn−1〉

and
Rn = 〈xn+1, . . . , x2n−1〉.

Clearly, Ln and Rn commute elementwise. The Ko-Lee protocol [11] is the fol-
lowing sequence of operations:
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(0) One of the parties (say, Alice) publishes a random element w ∈ B2n (the
“base” word).

(1) Alice chooses a word a as a product of generators of Ln and their inverses.
The word a is Alice’s private key.

(2) Bob chooses a word b as a product of generators of Rn and their inverses.
The word b is Bob’s private key.

(3) Alice sends a normal form of the element a−1wa to Bob and Bob sends a
normal form of the element b−1wb to Alice.

(4) Alice computes a normal form of

Ka = a−1b−1wba

and Bob computes a normal form of

Kb = b−1a−1wab.

Since ab = ba in B2n, the normal forms of Ka and Kb coincide. Thus Alice and
Bob have the same normal form called their shared secret key.

We note that a particular normal form used in [11] is called the Garside
normal form (see our Section 2).

Initially, the security of this problem was claimed to depend on the complex-
ity of the conjugacy search problem in B2n which is the following: for a given
pair of words w1, w2 such that w1 is conjugate to w2 in B2n, find a particular
conjugator, i.e. a word x such that w1 = x−1w2x. However, it was shown in
[13] that solving the conjugacy search problem is not necessary to break the
Ko-Lee protocol. More precisely, it was shown that for an adversary to get the
shared secret key, it is sufficient to find a pair of words a1, a2 ∈ Ln such that
w1 = a1wa2. Then Ka = Kb = a1b

−1wba2, where the element b−1wb is public
because it was transmitted at step 3. The latter problem is usually called the
decomposition problem. The fact that it is sufficient for the adversary to solve
the decomposition problem to get the shared secret key was also mentioned, in
passing, in the paper [11], but the significance of this observation was down-
played there by claiming that solving the decomposition problem does not really
give a computational advantage over solving the conjugacy search problem.

In this paper, we show (experimentally) that a particular heuristic attack on
the Ko-Lee protocol based on solving the decomposition problem is, in fact, by
far more efficient than all known attacks based on solving the conjugacy search
problem. With the running time of 150 minutes (on a cluster of 8 PCs with
2GHZ processor and 1GB memory each), the success rate of our attack program
was over 96%; see Section 5 for more details.

We note that there is a polynomial-time deterministic attack on the Ko-Lee
protocol based on solving a variant of the conjugacy search problem [3], but the
authors of [3] acknowledge themselves that their attack is not practical and, in
fact, has not been implemented.
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Another idea employed in our attack is using Dehornoy’s forms [4] for re-
covering words from Garside normal forms and for solving the decomposition
problem. In the Ko-Lee protocol, Garside’s algorithm for converting braid words
into normal forms plays the role of a diffusion algorithm. We show (experimen-
tally) that Dehornoy’s algorithm can be used to weaken the diffusion and make
the protocol vulnerable to a special kind of length based attack (see [7], [8], [9]
for different versions of length based attacks).

To conclude the introduction, we note that several other, less efficient, attacks
on the Ko-Lee protocol were suggested before; we refer to [5] for a comprehensive
survey of these attacks as well as for suggestions on countermeasures.

Acknowledgments. We are grateful to R. Haralick for making a computer cluster
in his lab available for our computer experiments.

2 Converting Garside Normal Forms to Words

The Garside normal form of an element a ∈ Bn is the pair (k, (ξ1, . . . , ξm)),
where k ∈ Z and (ξ1, . . . , ξm) is a sequence of permutations (permutation braids)
satisfying certain conditions (see [6] for more information). The braid a can be
recovered from its normal form (k, (ξ1, . . . , ξm)) as a product of the kth power
of the half twist permutation braid ∆ and permutation braids ξ1, . . . , ξm:

a = ∆kξ1 . . . ξm.

In this section we describe an algorithm which, given a Garside normal form
of an element a, tries to find a geodesic braid word representing a. (A geodesic
braid word of a given braid is a braid word of minimum length representing this
braid.) Since all information transmitted by Alice and Bob is in Garside normal
forms, we need this algorithm for our attack.

Note that for permutation braids it is easy to find geodesic braid words.
Therefore, to convert a given Garside normal form (k, (ξ1, . . . , ξm)) to a word,
one can find geodesic braid words w∆, wξ1 , . . . , wξm for ∆ and ξ1, . . . , ξm, respec-
tively, and compose a word

w = wk
∆wξ1 . . . wξm

which represents the same word as the given normal form. The length of the
obtained word w is

|k||w∆|+ |wξ1 |+ . . . + |wξm | = |k|n(n− 1)
2

+ |wξ1 |+ . . . + |wξm |.

If k ≥ 0 then the given braid a is positive and the word w is geodesic in the
Cayley graph of Bn.

Before we proceed in the case k < 0, recall one property of the elemet ∆ (see
[2]). For any braid word w = xε1

i1
. . . xεk

ik
, one has

∆−1w∆ = xε1
n−i1

. . . xεk

n−ik
.
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The result of conjugation of w by ∆ will be denoted by w∆.
Consider now the case k < 0. Denote −k by p. One can rewrite the normal

form ∆−pξ1ξ2 . . . ξm in the following way:

∆1−p(∆−1ξ1)∆p−1 ·∆2−p(∆−1ξ2)∆p−2 ·∆3−p(∆−1ξ3)∆p−3 · . . . (1)

Depending on the values of k and m the obtained decomposition (1) will end up
either with ∆m−p(∆−1ξm)∆p−m when p > m or with ξm when p ≤ m.

Note that the expressions ∆−1ξi in brackets are inverted permutation braids
and the length of a geodesic for ∆−1ξi is |∆|−|ξi|. Compute a geodesic braid word
wi for each ∆−1ξi in (1). Since ∆2 generates the center of Bn, the conjugation by
∆i−p either does not change the word (when i− p is even) or acts the same way
as the conjugation by ∆ does. We have mentioned above that the conjugation
by ∆ does not increase the length of the word. Finally, conjugate the obtained
words w1, . . . , wk by powers of ∆ and denote the results by w′

1, . . . , w
′
k. Clearly,

the product
w′ = w′

1 . . . w′
k

defines the same element of Bn as the given normal form does, but the word w′

is shorter than w:

|w′| =


|k|n(n−1)

2 −
∑m

i=1 |wξi |, if − k > m

|k|n(n−1)
2 −

∑|k|
i=1 |wξi |+

∑m
i=|k|+1 |wξi | if − k ≤ m

We performed a series of experiments in which we generated words of length
l in generators of Bn and computed their Garside normal forms (k, (ξ1, . . . , ξm)).
In the experiments, l was chosen to be sufficiently greater than n, e.g. l > n2. In
all cases k was approximately − 3l

4n while m was approximately 3l
2n . Thus, almost

in all cases the word w is longer than w′.

3 Minimization of Braids

Let Bn be the group of braids on n strands and let

〈x1, . . . , xn−1 ; [xi, xj ] = 1 (where |i− j| > 1), xixi+1xi = xi+1xixi+1〉

be its standard presentation. Let w be a word in generators of Bn and their
inverses. The problem of computing a geodesic word for w in B∞ was shown to
be NP-complete in [12]. It is known however (see e.g. [10], [15]) that many NP-
complete problems have polynomial time generic- or average-case solutions, or
have good approximate solutions. In this section we present heuristic algorithms
for approximating geodesics of braids and cyclic braids.

By Dehornoy’s form of a braid we mean a braid word without any “han-
dles”, i.e. a completely reduced braid word in the sense of [4]. The procedure
that computes Dehornoy’s form for a given word chooses a specific (“permit-
ted”) handle inside of the word and removes it. This can introduce new handles
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but the main result about Dehornoy’s forms states that any sequence of han-
dle reductions eventually terminates. Of course, the result depends on how one
chooses the handles at every step. Let us fix any particular strategy for selecting
handles. For a word w = w(x1, . . . , xn−1) we denote by D(w) the corresponding
Dehornoy’s form (i.e., the result of handle reductions where handles are chosen
by the fixed strategy).

The following algorithm tries to minimize the given braid word. It exploits the
property of Dehornoy’s form that for a “generic” braid word one has |D(w)| <
|w|.

Algorithm 1 (Minimization of braids)
Signature. w′ = Shorten(w).
Input. A word w = w(x1, . . . , xn−1) in generators of the braid group Bn.
Output. A word w′ such that |w′| ≤ |w| and w′ = w in Bn.
Initialization. Put w0 = w and i = 0.
Computations.

A. Increment i.
B. Put wi = D(wi−1).
C. If |wi| < |wi−1| then

1) Put wi = w∆
i .

2) Goto A.
D. If i is even then output w∆

i+1.
E. If i is odd then output wi+1.

The following simple example illustrates why the idea with conjugation by ∆
works. Consider the braid word w = x−1

2 x1x2x1. This braid is in Dehornoy’s
form, but the geodesic for the corresponding braid is x1x2, hence w is not
geodesic. Now, the word w∆ = x−1

1 x2x1x2 is not in Dehornoy’s form. It con-
tains one handle, removing of which results in the word x2x1 which is shorter
than the initial word. If we call handles introduced by Dehornoy left handles and
define right handles as subwords symmetric to left handles with respect to the
direction of a braid, then the computation of Dehornoy’s form of a word con-
jugated by ∆ and conjugating the obtained result by ∆ is essentially a process
of removing right handles. We note that removing left handles might introduce
right handles and vice versa, and the existence of forms without both left and
right handles is questionable.

We would like to emphasize practical efficiency of Algorithm 1. We performed
a series of experiments to test it; one of the experiments was the following se-
quence of steps:

1) generate a random freely reduced braid word w ∈ B100 of length 4000;
2) compute its Garside normal form ξ;
3) transform ξ back into a word w′ as described in Section 2;
4) apply Algorithm 1 to w′. Denote the obtained word by w′′.
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In all experiments the length of the obtained words w′′ varied in the interval
[2500, 3100]. Thus, the result was shorter than the input. It is possible that for
a longer initial word w we would not get the same results, but the length 4000
is more than is used in the Ko-Lee protocol anyway.

The next algorithm is a variation of Algorithm 1 for cyclic braid words.

Algorithm 2 (Minimization of cyclic braids)
Signature. w′ = CycShorten(w).
Input. A word w = w(x1, . . . , xn−1) in generators of the braid group Bn.
Output. A word w′ such that |w′| ≤ |w| and w′ = w in Bn.
Initialization. Put w0 = w and i = 0.
Computations.

A. Increment i.
B. Put wi = wi−1.
C. If |D(wi)| < |wi| then put wi = D(wi).
D. If wi = w′

i ◦ w′′
i (where |w′

i| − |w′′
i | ≤ 1) and |D(w′′

i w′
i)| < |wi| then put

wi = D(w′′
i w′

i).
E. If |wi| < |wi−1| then Goto A.
F. Output wi.

4 The Attack

In this section we describe a heuristic algorithm for solving the decomposition
problem for a pair of words w1 and w2 as in the Ko-Lee protocol.

First we describe two auxiliary algorithms. The first algorithm decomposes a
given word w into a product usv, where u, v ∈ Ln, trying to to make s as short
as possible.

Algorithm 3 (Decomposition 1)
Input. A braid word w = w(x1, . . . , xn−1).
Output. A triple of words (u, s, v) such that u, v ∈ Ln, |s| ≤ |w|, and usv = w
in Bn.
Initialization. Put u0 = v0 = ε and s0 = w and i = 0.
Computations.

A. Increment i.
B. Put ui = ui−1, si = si−1, and vi = vi−1.
C. For each j = 1, . . . , n− 1 check:

1) If |D(xjsi)| < |si| then
– put ui = uix

−1
j ;

– put si = D(xjsi);
– goto A.

2) If |D(x−1
j si)| < |si| then

– put ui = uixj;
– put si = D(x−1

j si);
– goto A.
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3) If |D(sixj)| < |si| then
– put vi = x−1

j vi;
– put si = D(sixj);
– goto A.

4) If |D(six
−1
j )| < |si| then

– put vi = xjvi;
– put si = D(six

−1
j );

– goto A.
D. Output the triple (ui, si, vi).

The next algorithm decomposes two given braid words w1 and w2 into prod-
ucts us1v and us2v, respectively, where u, v ∈ Rn, trying to make s1 and s2 as
short as possible.

Algorithm 4 (Decomposition 2)
Input. Braid words w1 and w2.
Output. A quadruple of words (u, s, t, v) such that u, v ∈ Rn, |s| ≤ |w1|, |t| ≤
|w2|, utv = w2 in Bn, and usv = w1 in Bn.
Initialization. Put u0 = v0 = ε, s0 = w1, t0 = w2, and i = 0.
Computations.

A. Increment i.
B. Put ui = ui−1, si = si−1, ti = ti−1, and vi = vi−1.
C. For each j = n + 1, . . . , 2n− 1 check:

1) If |D(xjsi)| < |si| and |D(xjti)| < |ti| then
– put ui = uix

−1
j ;

– put si = D(xjsi);
– put ti = D(xjti);
– goto A.

2) If |D(x−1
j si)| < |si| and |D(x−1

j ti)| < |ti| then
– put ui = uixj;
– put si = D(x−1

j si);
– put ti = D(x−1

j ti);
– goto A.

3) If |D(sixj)| < |si| and |D(tixj)| < |ti| then
– put vi = x−1

j vi;
– put si = D(sixj);
– put ti = D(tixj);
– goto A.

4) If |D(six
−1
j )| < |si| and |D(tix−1

j )| < |ti| then
– put vi = xjvi;
– put si = D(six

−1
j );

– put ti = D(tix−1
j );

– goto A.
D. Output (ui, si, ti, vi).
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Now let w1, w2 be braid words in B2n for which there exist words a1, a2 in
Ln such that w1 = a1w2a2 in B2n. Denote by S(w1,w2) the solution set for the
decomposition problem for the pair (w1, w2), i.e.,

S(w1,w2) = {(q1, q2) ∈ Ln × Ln | q1w1q2 = w2} in B2n.

Let the triple (ui, si, vi) be the result of applying Algorithm 3 to the word
wi (where i = 1, 2) and (u, s, t, v) the result of applying Algorithm 4 to the pair
(s1, s2). We will say that the pair (s, t) is a simplified pair of (w1, w2).

Lemma 1. For a simplified pair (s, t) of (w1, w2) the following holds:

S(w1,w2) = {(u2q1u
−1
1 , v−1

1 q2v2) | (q1, q2) ∈ S(s,t)}.

Proof. We have s = u−1u−1
1 w1v

−1
1 v−1 and t = u−1u−1

2 w2v
−1
2 v−1, where u1, u2,

v1, v2 ∈ Ln and u, v ∈ Rn. By the definition of S(s,t), one has (q1, q2) ∈ S(s,t) if
and only if q1sq2 =B2n t in B2n, or if and only if

q1u
−1u−1

1 w1v
−1
1 v−1q2 = u−1u−1

2 w2v
−1
2 v−1.

Since q1, q2 ∈ Ln and u, v ∈ Rn, the last equality holds if and only if

q1u
−1
1 w1v

−1
1 q2 = u−1

2 w2v
−1
2 ,

or if and only if
u−1

2 q1u
−1
1 w1v

−1
1 q2v

−1
2 = w2,

or if and only if (u−1
2 q1u

−1
1 , v−1

1 q2v
−1
2 ) ∈ S(w1,w2).

Now represent the set of possible solutions S = S(w1,w2) of the decomposition
problem for (w1, w2) as a directed graph with the vertex set

V = Ln × Ln

and the edge set E containing edges of the following two types:

– (q1, q2) → (q3, q4) if q1 = q3 and q4 = q′2 ◦ xε
j ◦ q′′2 (where q2 = q′2 ◦ q′′2 ,

j ∈ {1, . . . , n− 1}, and ε = ±1);
– (q1, q2) → (q3, q4) if q2 = q4 and q3 = s′1 ◦ xε

j ◦ q′′1 (where q1 = q′1 ◦ q′′1 ,
j ∈ {1, . . . , n− 1}, and ε = ±1).

Define a function ω : S → N as follows:

(q1, q2)
ω�→ |CycShorten(q1w1q2w

−1
2 )|.

(cf. our Algorithm 2).
Let w1 be the base word in the Ko-Lee protocol and w2 a word representing

the normal form ξ = a−1w1a transmitted by Alice. In this notation we can formu-
late the problem of finding Alice’s keys as a search problem in S(w1,w2). Clearly

S(w1,w2) = {(q1, q2) ∈ S(w1,w2) | ω(q1, q2) = 0}

and, therefore, the problem is to find a pair of braid words (q1, q2) such that
ω(q1, q2) = 0.
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We want to stress that in some cases the set S(w1,w2) can be reduced. For
example, let m be the smallest index of a generator in both words w1 and w2.
Then we can impose a restriction j ∈ {m, . . . , n−1} and solve the search problem
in a smaller space. This situation where m > 1 was very often the case in our
computations.

The next algorithm is an attack on Alice’s private key. The input of the al-
gorithm is the base word w and the Garside normal form ξ of the braid word
a−1wa transmitted by Alice. The algorithm finds a pair of words (α, β) in gen-
erators of Ln such that αwβ = u in B2n, where u is a braid word with the
Garside normal form ξ. At step A, the algorithm transforms ξ into a word w. At
steps B and C, it computes a simplified pair (s, t) for (w, w). At steps D-F, the
algorithm performs a heuristic search in the key space S(s,t). The search starts
at the point (ε, ε), where ε is the empty word. In each iteration we choose an
unchecked vertex with the minimum ω value and construct its neighborhood.
The search stops when the point with zero ω value is found.

Algorithm 5 (Attack on Alice’s key)
Input. A braid word w and a Garside normal form ξ corresponding to a braid
u for which there exists a ∈ Ln such that a−1wa = u in B2n.
Output. A pair of words α, β ∈ Ln such that αwβ = u in B2n.
Initialization. Put u0 = v0 = ε, s0 = w1, and i = 0.
Computations.

A. Convert a normal form ξ to a word w.
B. Apply Algorithm 1 to words w and w.
B. Let (u1, s1, v1) be the result of applying Algorithm 3 to the word w and

(u2, s2, v2) the result of applying Algorithm 3 to the word w.
C. Let (u, s, t, v) be the result of applying Algorithm 4 to the pair of words

(s1, s2).
D. Let Q = {(ε, ε)} ⊂ S(s,t).
E. Choose an unchecked pair (q1, q2) from the set Q with the minimum ω value.
F. For each edge (q1, q2)→ (q′1, q

′
2) ∈ S(s,st) add a pair (q′1, q

′
2) to Q. If ω-value

of some new pair (q′1, q
′
2) is 0, then output (u2q

′
1u

−1
1 , v−1

1 q′2v2). Otherwise
goto E.

5 Experiments and Conclusions

We have performed numerous experiments of two types. Experiments of the first
type tested security of the original Ko-Lee protocol, whereas experiments of the
second type tested security of a protocol similar to that of Ko-Lee, but based on
the decomposition problem.

An experiment of the first type is the following sequence of steps:

1) Fix the braid group B100.
2) Randomly generate a base word w as a freely reduced word of length 2000

in the generators of B100.
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3) Randomly generate a word a = a(x1, . . . , x49) as a freely reduced word of
length 1000 in the generators of B100.

4) Compute Garside normal forms ρ1 and ρ2 of w and a−1wa, respectively.
5) Transform normal forms back into words w1 and w2 (see Section 2).
6) Apply Algorithm 1 to words w1 and w2.
7) Finally, apply Algorithm 5 to the pair (w1, w2).

We say that an experiment is successful if all of the above steps were per-
formed in a reasonable amount of time (we allowed 150 minutes); otherwise we
stopped the program. We performed 2466 such experiments and had success in
2378 of them, which means the success rate was 96.43%.

Experiments of the second type have different steps 3) and 4). They are as
follows:

3’) Randomly generate two words a1 = a1(x1, . . . , x49) and a2 = a2(x1, . . . , x49)
as freely reduced words of length 1000.

4’) Compute Garside normal forms ρ1 and ρ2 of w and a1wa2, respectively.

We performed 827 experiments of the second type and had success in 794 of
them. This gives the success rate of 96.00%, so that the difference in the success
rates of two types of experiments is statistically insignificant.

The conclusion therefore is that we were able to break the Ko-Lee protocol
in about 150 minutes with over 95.00% success rate for typical parameters.

Finally, we note that there are several ways to improve the success rate. The
easiest way is simply to increase the time allocated to experiments. Also, one
can improve the algorithms themselves, in particular, Algorithm 1. With a better
minimization algorithm the attack is likely to be more efficient. One can also
somewhat narrow down the search space, etc.

6 Suggestions on Improving the Key Exchange Protocol

In this section, we briefly sketch a couple of ideas that may help to enhance
security of the Ko-Lee protocol and, in particular, make it less vulnerable to the
attack described in the previous sections.

1) Either increase the length of the private keys and the base or decrease the
rank of the group. With the parameters suggested in [11], transmitted braids
are sort of “sparse” which allows the adversary to simplify the initial braids
substantially. The lengths of the transmitted braids should be at least on
the order of n2 (where n is the rank of the braid group) to prevent fast
reconstruction of a short braid word from its normal form.

We note however that increasing the key length is a trade-off between
security and efficiency. By comparison, the current key size used in the RSA
cryptosystem is 512 bits, whereas to store a braid word of length l from the
group Bn, l�log2(2n)� bits are required. This number is approximately 8000
for l = 1000 and n = 100.
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2) Choosing a “base” word w requires special attention. It might be a good
idea to generate w as a geodesic in the Cayley graph of B2n starting and
terminating with the generator xn or its inverse (the one which does not
belong to Ln or Rn) such that any other geodesic representing w starts and
terminates with x±1

n . Observe that for such w Algorithm 3 stops with the
result (ε, w, ε). Also, for such w and an arbitrary braid word w′, Algorithm
4 applied to (w, w′) stops with the result (ε, w, w′, ε).

3) Choose different commuting subgroups instead of Ln and Rn. This looks like
the most promising suggestion at the moment; we refer to [14] for more details.
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Intenet, September 2002, Tunis, Tunisia. http://www.storagetek.com/hughes/

10. I. Kapovich, A. Myasnikov, P. Schupp and V. Shpilrain, Average-case complexity
for the word and membership problems in group theory, Advances in Math. 190
(2005), 343–359.

11. K. H. Ko, S. J. Lee, J. H. Cheon, J. W. Han, J. Kang, C. Park, New public-key
cryptosystem using braid groups, Advances in cryptology—CRYPTO 2000 (Santa
Barbara, CA), 166–183, Lecture Notes in Comput. Sci. 1880, Springer, Berlin, 2000.

12. M. S. Paterson, A. A. Razborov, The set of minimal braids is co-NP-complete, J.
Algorithms 12 (1991), 393–408.

13. V. Shpilrain and A. Ushakov, The conjugacy search problem in public key cryptog-
raphy: unnecessary and insufficient, Applicable Algebra in Engineering, Commu-
nication and Computing, to appear. http://eprint.iacr.org/2004/321/

14. V. Shpilrain and G. Zapata, Combinatorial group theory and public key cryptog-
raphy, Applicable Algebra in Engineering, Communication and Computing, to ap-
pear. http://eprint.iacr.org/2004/242

15. J. Wang, Average-case computational complexity theory, Complexity Theory Ret-
rospective, II. Springer-Verlag, New York, 1997, 295–334.



The Conditional Correlation Attack:

A Practical Attack on Bluetooth Encryption

Yi Lu1, Willi Meier2, and Serge Vaudenay1

1 EPFL, CH-1015 Lausanne, Switzerland
http://lasecwww.epfl.ch

2 FH Aargau, CH-5210 Windisch, Switzerland
meierw@fh-aargau.ch

Abstract. Motivated by the security of the nonlinear filter generator,
the concept of correlation was previously extended to the conditional
correlation, that studied the linear correlation of the inputs conditioned
on a given (short) output pattern of some specific nonlinear function.
Based on the conditional correlations, conditional correlation attacks
were shown to be successful and efficient against the nonlinear filter
generator. In this paper, we further generalize the concept of conditional
correlations by assigning it with a different meaning, i.e. the correla-
tion of the output of an arbitrary function conditioned on the unknown
(partial) input which is uniformly distributed. Based on this general-
ized conditional correlation, a general statistical model is studied for
dedicated key-recovery distinguishers. It is shown that the generalized
conditional correlation is no smaller than the unconditional correlation.
Consequently, our distinguisher improves on the traditional one (in the
worst case it degrades into the traditional one). In particular, the distin-
guisher may be successful even if no ordinary correlation exists. As an
application, a conditional correlation attack is developed and optimized
against Bluetooth two-level E0. The attack is based on a recently de-
tected flaw in the resynchronization of E0, as well as the investigation of
conditional correlations in the Finite State Machine (FSM) governing the
keystream output of E0. Our best attack finds the original encryption key
for two-level E0 using the first 24 bits of 223.8 frames and with 238 com-
putations. This is clearly the fastest and only practical known-plaintext
attack on Bluetooth encryption compared with all existing attacks. Cur-
rent experiments confirm our analysis.

Keywords: Stream Ciphers, Correlation, Bluetooth, E0.

1 Introduction

In stream ciphers, correlation properties play a vital role in correlation attacks
(to name a few, see [7,8,9,15,18,19,26,27,30]). For LFSR-based1 keystream gen-
erators, such as the nonlinear filter generator or the combiner, correlation com-
monly means a statistically biased relation between the produced keystream and
1 LFSR refers to Linear Feedback Shift Register, see [28] for more.

V. Shoup (Ed.): Crypto 2005, LNCS 3621, pp. 97–117, 2005.
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the output of certain LFSR sequences. In [1,21,22], the concept of (ordinary)
correlations was further extended to the conditional correlation to describe the
linear correlation of the inputs conditioned on a given (short) output pattern
of a nonlinear function (with small input size). Based on conditional correla-
tions, the conditional correlation attack received successful studies towards the
nonlinear filter generator in [1,21,22]. In this paper, we assign a different mean-
ing to conditional correlations, i.e. the correlation of the output of an arbitrary
function (with favorable small input size) conditioned on the unknown (partial)
input which is uniformly distributed. This might be viewed as the generalized
opposite of [1,21,22]. As a useful application of our conditional correlations,
imagine the attacker not only observes the keystream, but also has access to an
intermediate computation process controlled partly by the key, which outputs a
hopefully biased sequence for the right key and (presumably) unbiased sequences
for wrong keys. If such side information is available, the conditional correlation
attack may become feasible, which exploits correlations of the intermediate com-
putation output conditioned on (part of) the inputs. In general, as informally
conjectured in [22], conditional correlations are different and often larger than
ordinary (unconditional) correlations, which effects reduced data complexity of
conditional correlation attacks over ordinary correlation attacks.

Our first contribution consists of extracting a precise and general statisti-
cal model for dedicated key-recovery distinguishers based on the generalized
conditional correlations. This framework deals with a specific kind of smart dis-
tinguishers that exploit correlations conditioned on the (partial) input, which is
not restricted to keystream generators and is also applicable to other scenarios
(e.g. side channel attacks like fault attacks in [4]). As the ordinary correlation
serves as the criterion for the data complexity of the traditional distinguisher
(that only exploits ordinary correlations), our result based on the sound theory of
traditional distinguisher [5] tells that the conditional correlation serves similarly
as the criterion for the data complexity of the smart distinguisher. The construc-
tion of the smart distinguisher also solves the unaddressed problem in [1,21,22]
on how to make the best use of all the collected data, which can be transformed
in the context of [1,21,22]. We prove that the smart distinguisher improves on
the traditional one (in the worst case the smart distinguisher degrades into the
traditional one), because our generalized conditional correlation is no smaller
than the unconditional correlation. In particular, the smart distinguisher can
still work efficiently even though the traditional one fails thoroughly. Meanwhile,
we also study the computational complexity of the deterministic smart distin-
guisher for a special case, in which the essence of the major operation done by
the distinguisher is identified to be nothing but the regular convolution. Thanks
to Fast Walsh Transform2 (FWT), when the key size is not too large, the smart
distinguisher is able to achieve the optimal complete information set decoding
and becomes a very powerful computing machine. Nonetheless, in general, with
a very large key size, it is unrealistic to use the deterministic distinguisher as

2 Note that most recently FWT was successfully applied in [9,23] to optimize different
problems in correlation attacks.
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complete information set decoding is impractical; many other efficient decoding
techniques (e.g. the probabilistic iterative decoding) such as introduced in the
previous conditional correlation attacks [22] or the correlation attacks will also
apply to our smart distinguisher.

As a second contribution, we apply our smart distinguisher to a conditional
correlation attack3 on two-level E0, the keystream generator that is used in the
short-range wireless technology Bluetooth [6]. The attack exploits the resynchro-
nization flaw recently detected in [24]. Whereas in [24], this flaw is used for a
traditional distinguisher based on results [12,16,17,23] of ordinary correlations,
our conditional correlation attack relies on the systematic investigation of corre-
lations conditioned on the inputs to the FSM in E0. These correlations extend a
specific conditional correlation found in [23], which relates to one of the largest
known biases in E0 as proved in [23]. The time complexity of our attack is op-
timized as the smart distinguisher works particularly well in this favorable case.
Our best attack recovers the original encryption key for two-level E0 using the
first 24 bits of 223.8 frames after 238 computations. Note that the number of
necessary frames is below the maximum number 226 of resynchronizations with
the same user key as specified by Bluetooth [6]. Compared with all existing at-
tacks [13,14,16,20,24,29] on two-level E0, our attack is clearly the fastest and
only practical resynchronization attack4 so far. Note that the resynchronization
attacks on one-level E0 were well studied in [3,14,24] to be much more efficient.

The rest of the paper is structured as follows. In Section 2 we introduce
some notations and give preliminaries. In Section 3, based on the generalized
conditional correlation, the practical statistical model on smart distinguishers
with side information is formalized and analyzed. In Section 4 we review the
description of Bluetooth two-level E0 as well as the resynchronization flaw. In
Section 5, correlations conditioned on input weights of E0 FSM are investigated.
In Section 6, a key-recovery attack on two-level E0 is developed and optimized
together with experimental results. Finally, we conclude in Section 7.

2 Notations and Preliminaries

Given the function f : E → GF (2)�, define the distribution Df of f(X) with X
uniformly distributed, i.e. Df (a) = 1

|E|
∑

X∈E 1f(X)=a for all a ∈ GF (2)�. Fol-
lowing [5], recall that the Squared Euclidean Imbalance (SEI) of the distribution
Df is defined by

∆(Df ) = 2�
∑

a∈GF (2)�

(
Df (a)− 1

2�

)2

. (1)

3 For the conditional correlation attack related to the previous work [1,21,22] on Blue-
tooth E0, see [16].

4 A resynchronization attack on stream cipher (a.k.a. the related-key attack) refers to
the one that needs many frames of keystreams produced by different IVs (i.e. the
public frame counter) and the same key in order to recover the key given the IVs.
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For � = 1, it’s easy to see that ∆(Df ) is closely related to the well known term
correlation5 ε(Df ) by ∆(Df ) = ε2(Df ). For brevity, we adopt the simplified
notations ε(f), ∆(f) to denote ε(Df), ∆(Df ) respectively hereafter. From the
theory of hypothesis testing and Neyman-Pearson likelihood ratio (see [5]), ∆(f)
tells us that the minimum number n of samples for an optimal distinguisher to
effectively distinguish a sequence of n output samples of f from (2L − 1) truly
random sequences of equal length is

n =
4L log 2
∆(f)

. (2)

Note that the result in Eq.(2) with � = 1 has long been known up to a constant
factor 1

2 in the theory of channel coding. In fact, correlation attacks has been
very successful for almost two decades to apply the distinguisher that analyzes
the biased sample of a single bit (i.e. the case � = 1) in order to reconstruct
the L-bit key (or subkey), where only the right key can produce a biased se-
quence while all the wrong keys produce unbiased sequences. More recently, on
the sound theoretical basis [5] of the generalized distinguisher, it was shown that
this generalized distinguisher helps to improve the correlation attack when con-
sidering multi-biases simultaneously (for details see the key-recovery attack [23]
on one-level E0 which halves the time and data complexities).

3 A Smart Distinguisher with Side Information

Given a function f : GF (2)u × GF (2)v → GF (2)r, let fB(X) = f(B, X) for
B ∈ GF (2)u and X ∈ GF (2)v, where the notation fB(·) is used to replace f(·)
whenever B is given. Consider such a game between a player and an oracle.
Each time the oracle secretly generates B, X independently and uniformly to
compute fB(X); the player, in turn, sends a guess on the current value of the
partial input B. Only when he guesses correctly, the oracle would output the
value of fB(X), otherwise, it would output a random and uniformly distributed
Z ∈ GF (2)r. Suppose the player somehow manages to collect 2L sequences of n
interaction samples with the following characteristics: one sequence has n sam-
ples (fBK

i
(Xi),BK

i ) (i = 1, . . . , n) where BK
i ’s and Xi’s are independently and

uniformly distributed; the remaining (2L−1) sequences all consist of n indepen-
dently and uniformly distributed random variables (ZK

i ,BK
i ) (i = 1, . . . , n) for

K �= K. One interesting question to the player is how to distinguish the biased
sequence from the other sequences using the minimum number n of samples.

Note that the above problem is of special interest in key-recovery attacks,
including the related-key attacks, where BK

i ’s are the key-related material (i.e.
computable with the key and other random public parameters) and the oracle
can be viewed as an intermediate computation process accessible to the attacker
with only a limited number of queries. Thus, when the attacker knows the right

5 Correlation is commonly defined by Df (1) = 1
2 +

ε(Df )
2 ; and |ε(Df )| ≤ 1 by this

definition.
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key K he can collect n (hopefully biased) samples of f ; on the other hand, if he
uses the wrong key, he will only collect an unbiased sequence.

From Section 2, we know that the minimum number n of samples for the
basic distinguisher which doesn’t use the partial input Bi’s is n = 4L log 2/∆(f).
When the samples are incorporated with the Bi’s, we can prove the following
stronger result.

Theorem 1. The smart distinguisher (in Algorithm 1) solves our above problem
with

n =
4L log 2
E[∆(fB)]

(3)

and the time complexity O(n · 2L), where the expectation is taken over all the
uniformly distributed B. Moreover, the distinguisher can achieve the optimal time
complexity O(n + L · 2L+1) with precomputation O(L · 2L) when BK

i ’s and ZK
i ’s

can be expressed by:

BK
i = L(K)⊕ ci , (4)

ZK
i = L′(K)⊕ c′i ⊕ g(BK

i ) , (5)

for all L-bit K and i = 1, 2, . . . , n, where g is an arbitrary function, L,L′ are
GF (2)-linear functions, and ci’s, c′i’s are independently and uniformly distributed
which are known to the distinguisher.

Algorithm 1. The smart distinguisher with side information
Parameters:
1: n set by Eq.(3)
2: DfB for all B ∈ GF (2)u

Inputs:
3: uniformly and independently distributed u-bit BK

1 , . . . , BK
n for all L-bit K

4: ZK
1 , . . . , ZK

n = fBK
1

(X1), . . . , fBK
n

(Xn) for one fixed L-bit K with uniformly and
independently distributed v-bit vectors X1, . . . , Xn

5: uniformly and independently distributed sequences ZK
1 , ZK

2 , . . . , ZK
n for all L-bit

K such that K �= K
Goal: find K
Processing:
6: for all L-bit K do
7: G(K) ← 0
8: for i = 1, . . . , n do
9: G(K) ← G(K) + log2

(
2r · DfBK

i

(ZK
i )

)
10: end for
11: end for
12: output K that maximizes G(K)

Remark 2. Our smart distinguisher (Algorithm 1) turns out to be a derivative of
the basic distinguisher in [5] and the result Eq.(3) for the simple case r = 1 was
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already pointed out (without proof) in [16] with a mere difference of a negligible
constant term 2 log 2 ≈ 20.47. Also note that the quantity E[∆(fB)] in Eq.(3)
measures the correlation of the output of an arbitrary function conditioned on the
(partial) input which is uniformly distributed and unknown6. In contrast, prior
to our work, the conditional correlation, that refers to the linear correlation of
the inputs conditioned on a given (short) output pattern of a nonlinear function,
was well studied in [1,21,22] based on a different statistical distance other than
SEI. Highly motivated by the security of the nonlinear filter generator, their
research focused on the case where the nonlinear function is the augmented
nonlinear filter function (with small input size) and the inputs are the involved
LFSR taps. Obviously, the notion of our conditional correlation can be seen as
the generalized opposite of [1,21,22], that addresses the issue of how to make
the most use of all the data for the success. In Section 6, Theorem 1 is directly
applied to Bluetooth two-level E0 for a truly practical attack.

Proof (sketch). Let us introduce a new distribution D over GF (2)r+u from DfB
defined by

D(B, Z) =
1
2u

DfB (Z), (6)

for all B ∈ GF (2)u, Z ∈ GF (2)r. We can see that our original problem is trans-
formed into that of the basic distinguisher to distinguish D from uniform dis-
tribution. According to Section 2, we need minimum n = 4L log 2/∆(D). So we
compute ∆(D) by Eq.(1,6):

∆(D) = 2r+u
∑

B∈GF (2)u

∑
Z∈GF (2)r

(
D(B, Z)− 1

2r+u

)2

= 2r+u
∑

B∈GF (2)u

∑
Z∈GF (2)r

(
1
2u

DfB(Z)− 1
2r+u

)2

= 2−u
∑

B∈GF (2)u

2r
∑

Z∈GF (2)r

(
DfB(Z)− 1

2r

)2

= E[∆(fB)]. (7)

Meanwhile, the best distinguisher tries to maximize the probability
∏n

i=1 D(Bi,
Zi), i.e. the conditioned probability

∏n
i=1 DfBi

(Zi). As the conventional ap-
proach, we know that this is equivalent to maximize G =

∑n
i=1 log2(2r ·DfBi

(Zi))
as shown in Algorithm 1. The time complexity of the distinguisher7 is obviously
O(n · 2L).

6 According to the rule of our game, it’s unknown to the distinguisher whether the
sample B is the correct value used for the oracle to compute fB(X) or not.

7 In this paper, we only discuss the deterministic distinguisher. For the probabilistic
distinguisher, many efficient and general decoding techniques (e.g. the probabilistic
iterative decoding), which are successful in correlation attacks, were carefully pre-
sented in the related work [22] and such techniques also apply to our distinguisher.
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Now, to show how to optimize the time complexity of the smart distinguisher
when BK

i ’s and ZK
i ’s exhibit the special structure of Eq.(4, 5) for the second

part of the theorem, let us first introduce two functions H,H′:

H(K) =
n∑

i=1

1L(K)=ci and L′(K)=c′
i

(8)

H′(K) = log2
(
2r ·DfL(K) (L′(K)⊕ g (L(K)))

)
(9)

for K ∈ GF (2)L. We can see that G(K) computed in Line 7 to 10, Algorithm 1
is nothing but a simple convolution (denoted by ⊗) between H and H′:

G(K) = (H⊗H′)(K) def=
∑

K′∈GF (2)L

H(K ′)H′(K ⊕K ′), (10)

for all K ∈ GF (2)L. It’s known that convolution and Walsh transform (denoted
by the hat symbol) are transformable, so we have

G(K) =
1
2L

̂̂H⊗H′ (K) =
1
2L
Ĥ′′(K), (11)

where H′′(K) = Ĥ(K) · Ĥ′(K). This means that after computing H and H′, the
time complexity of our smart distinguisher would be dominated by three times
of FWT, i.e. Ĥ, Ĥ′, Ĥ′′ in O(3L · 2L). Moreover, since only ci’s, c′i’s may vary
from one run of the attack to another, which are independent of H′, we can also
precompute Ĥ′ and store it in the table; finally, the real-time processing only
takes time O(n + L · 2L+1). �

Property 3. We have
E[∆(fB)] ≥ ∆(f),

where equality holds if and only if (iff) DfB is independent of B.

For r = 1, this can be easily shown as follows. From Section 2, we have E[∆(fB)]
= E[ε2(fB)] ≥ E2[ε(fB)] = ε2(f) = ∆(f) where equality holds iff ε(fB) is in-
dependent of B. In Appendix, we give the complete proof for the general case
E[∆(fB)] ≥ ∆(f).

Remark 4. As E[∆(fB)], ∆(f) measures the conditional correlation and the un-
conditional correlation respectively, this property convinces us that the former
is no smaller than the latter. This relationship between the conditional corre-
lation and the unconditional correlation was informally conjectured in [22]. We
conclude from Eq.(3) that the smart distinguisher having partial (or side) infor-
mation (i.e. B herein) about the biased source generator (i.e. fB herein) always
works better than the basic distinguisher governing no knowledge of that side
information, as long as the generator is statistically dependent on the side infor-
mation. Our result verifies the intuition that the more the distinguisher knows
about the generation of the biased source, the better it works. In particular,
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Property 3 implies that even if the fact that ∆(f) = 0 causes the basic distin-
guisher to be completely useless as it needs infinite data complexity, in contrast,
the smart distinguisher would still work as long as DfB is dependent on B, i.e.
E[∆(fB)] > 0. In Section 5, we give two illustrative examples E[∆(fB)] on the
core of Bluetooth E0 to be compared with their counterparts ∆(f).

4 Review on Bluetooth Two-Level E0

The core (Fig. 1) of Bluetooth keystream generator E0 (also called one-level E0)
consists of four regularly-clocked LFSRs of a total 128 bits and a Finite State
Machine (FSM) of 4 bits. Denote Bt ∈ GF (2)4 the four output bits of LFSRs at
time instance t, and Xt ∈ GF (2)4 the FSM state at time instance t. Note that
Xt contains the bit c0

t as well as the bit c0
t−1 (due to the effect of a delay cell

inside the FSM). Also note that the computation of the FSM next state Xt+1
only depends on its current state Xt together with the Hamming weight w(Bt) of
Bt. At each time instance t, the core produces one bit st = (w (Bt) mod 2)⊕c0

t ,
and then updates the states of LFSRs and FSM.

FSM
LSB

c0
t

LFSR4

LFSR3

LFSR2

LFSR1

st

Σ

Fig. 1. The core of Bluetooth keystream generator E0

According to the Bluetooth standard [6], this core is used with a two-level ini-
tialization scheme to produce the keystream for encryption. That is, after a first
initialization of LFSRs by an affine transformation of the effective encryption
key K and the public nonce8 P i for the i-th frame, E0 runs at level one, whose
last 128 output bits are permuted into LFSRs at level two for reinitialization;
then E0 runs at level two to produce the final keystream zi

t′ for t′ = 1, 2, . . . , 2745
(for clarity, we refer the time instance t and t′ to the context of E0 level one and
E0 level two respectively).

In order to review the reinitialization flaw discovered in [24], we first intro-
duce some notations. Define the binary vector γ = (γ0, γ1, . . . , γ�−1) of length
|γ| = � ≥ 3 with γ0 = γ�−1 = 1 and let γ̄ = (γ�−1, γ�−2, . . . , γ0) represent
the vector in reverse order of γ. Given � and t, for the one-level E0, we de-
fine Bt+1 = Bt+1Bt+2 . . . Bt+�−2 and Ct = (c0

t , . . . , c
0
t+�−1). Then, the function

8 Pi includes a 26-bit counter and some user-dependent constant.
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hγ
Bt+1

: Xt+1 �→ γ · Ct is well defined9 for all t, where the dot operator between
two vectors represents the inner GF (2)-product. Now, we let (Bi

t+1, X
i
t+1) (resp.

(Bi
t′+1, X

i
t′+1)) control the FSM to compute Ci

t (resp. Ci
t′) at E0 first (resp. sec-

ond) level for the i-th frame. Note that initialization of LFSRs at E0 level one
by an affine transformation of K,P i can be expressed by

Bi
t = Gt(K) ⊕ G′

t(P i), (12)

where Gt,G′
t are public linear functions (which are dependent on � but omitted

from notations for simplicity). Moreover, we let Zi
t′ = (zi

t′ , . . . , zi
t′+�−1). Then,

as pointed out and detailed in [24], the critical reinitialization flaw of Bluetooth
two-level E0 can be expressed as

γ̄ · (Zi
t′ ⊕ Lt′(K) ⊕ L′

t′(P i)) =
4⊕

j=1

(γ · Ci
tj

)⊕ (γ̄ · Ci
t′), (13)

for any i and γ of length � such that 3 ≤ � ≤ 8, and t′ ∈
⋃2

k=0{8k + 1, . . . , 8k +
9 − �}, where t1, . . . , t4 are functions10 in terms of t′ only, and Ci

t1 , . . . , C
i
t4

share no common coordinate, and Lt′ ,L′
t′ are fixed linear functions which can

be expressed by t′, � from the standard. By definition of h, Eq.(13) can be put
equivalently as:

γ̄ · (Zi
t′ ⊕ Lt′(K) ⊕ L′

t′(P i)) =
4⊕

j=1

hγ
Bi

tj+1
(X i

tj+1)⊕ hγ̄
Bi

t′+1
(X i

t′+1), (14)

for any i, any γ with 3 ≤ � ≤ 8 and t′ ∈
⋃2

k=0{8k + 1, . . . , 8k + 9 − �}. Note
that the usage of the bar operator actually reflects the fact that the loading of
LFSRs at E0 level two for reinitialization is in reverse order of the keystream
output at E0 level one.

5 Correlations Conditioned on Input Weights of FSM

Recall it has been observed in [23] that if w(Bt)w(Bt+1)w(Bt+2)w(Bt+3) = 2222
is satisfied, then, we always have

c0
t ⊕ c0

t+1 ⊕ c0
t+2 ⊕ c0

t+3 ⊕ c0
t+4 = 1. (15)

Let αt = γ · Ct with γ = (1, 1, 1, 1, 1) and � = 5. Thus αt is the sum on
the left-hand side of Eq.(15). From Section 4 we know that given Bt+1 =
Bt+1Bt+2Bt+3 ∈ GF (2)12, the function hγ

Bt+1
: Xt+1 �→ αt is well defined for all

9 Because c0
t , c

0
t+1 are contained in Xt+1 already and we can compute c0

t+2, . . . , c
0
t+�−1

by Bt+1, Xt+1. Actually, the prerequisite γ0 = γ�−1 = 1 on γ is to guarantee that
knowledge of Bt+1, Xt+1 is necessary and sufficient to compute γ · Ct.

10 Additionally, given t′, the relation t1 < t2 < t3 < t4 always holds that satisfies
t2 − t1 = t4 − t3 = 8 and t3 − t2 ≥ 32.
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t. Let W (Bt+1)
def= w(Bt+1)w(Bt+2) · · ·w(Bt+�−2). Thereby, we deduct from [23]

that αt = 1 whenever W (Bt+1) = 222. In contrast to the (unconditional) corre-
lation as mentioned in Section 2, we call it a conditional correlation11, i.e. the
correlation ε(hγ

Bt+1
) = 1 conditioned on W (Bt+1) = 222.

This motivates us to study the general correlation ε(hγ
Bt+1

) conditioned on
Bt+1, or more precisely W (Bt+1), when Xt+1 is uniformly distributed. All the
non-zero conditional correlations ε(hγ

Bt+1
) are shown in Table 1 in descending

order of the absolute value, where |Bt+1| denotes the cardinality of Bt+1 admit-
ting any weight triplet in the group. As the unconditioned correlation ε(hγ) of
the bit αt always equals the mean value12 E[ε(hγ

Bt+1
)] over the uniformly dis-

tributed Bt+1, we can use Table 1 to verify ε(hγ) = 25
256 (denote this value13

by λ). Let fB = hγ
Bt+1

with γ = (1, 1, 1, 1, 1). Now, to verify Property 3 in
Section 3 we compute E[∆(fB)] = 544

212 ≈ 2−2.9, which is significantly larger
than ∆(f) = λ2 ≈ 2−6.67. As another example, consider now fB = hγ

Bt+1
with

γ = (1, 1, 0, 1) and u = 8, v = 4, r = 1. Similarly, the conditioned correlation
of the corresponding sum c0

t ⊕ c0
t+1 ⊕ c0

t+3 (denoted by α′
t) is shown in Table 2.

From Table 2, we get a quite large E[∆(fB)] = 2−3 as well; in contrast, we can
check that as already pointed out in Section 3, the unconditional correlation14

∆(f) = 0 from Table 2.

6 Key-Recovery Attack on Bluetooth Two-Level E0

6.1 Basic Idea

Given the binary vector γ (to be determined later) with 3 ≤ � ≤ 8, for all
B ∈ GF (2)4(�−2) such that ε(hγ

B) �= 0, define the function

gγ(B) =
{

1, if ε(hγ
B) > 0

0, if ε(hγ
B) < 0

to estimate the effective value of hγ
B(X) (defined in Section 4) for some unknown

X ∈ GF (2)4. For a fixed t′ ∈
⋃2

k=0{8k + 1, . . . , 8k + 9 − |γ|}, let us guess the

11 Note that earlier in [16], correlations conditioned on keystream bits (both with and
without one LFSR outputs) were well studied for one-level E0, which differ from our
conditional correlations and do not fit in the context of two-level E0 if the initial
state of E0 is not recovered level by level.

12 Note that E[ε(hγ
Bt+1

)] is computed by an exhaustive search over all possible Xt+1 ∈
GF (2)4, Bt+1 ∈ GF (2)12 and thus does not depend on t.

13 This unconditional correlation was discovered by [12,16] and proved later on by [23]
to be one of the two largest unconditioned correlations up to 26-bit output sequence
of the FSM.

14 Note that on the other hand the unconditional correlation ε(hγ) = 2−4 with γ =
(1, 0, 1, 1) (denote this value by λ′), shown first in [17], was proved by [23] to be the
only second largest unconditioned correlations up to 26-bit output sequence of the
FSM.
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Table 1. Weight triplets to generate the biased bit αt with γ = (1, 1, 1, 1, 1) and � = 5

bias of αt weight triplet(s) cardinality
ε(hγ

Bt+1
) W (Bt+1) |Bt+1|

-1 220, 224 72

1 222 216

-0.5 120, 124, 210, 214 192
230, 234, 320, 324

0.5 122, 212, 322, 232 576

110, 111, 114, 130
-0.25 131, 134, 310, 311 384

314, 330, 331, 334

0.25 112, 113, 132, 133 640
312, 313, 332, 333

Table 2. Weight pairs to generate the biased bit α′
t with γ = (1, 1, 0, 1) and � = 4

bias of α′
t weight pairs cardinality

ε(hγ
Bt+1

) W (Bt+1) |Bt+1|
-1 01, 43 8

1 03, 41 8

-0.5 11, 33 32

0.5 13, 31 32

subkey K1
def= (Gt1 (K), . . . ,Gt4(K)) of 16(�−2) bits by K̂1 and the one-bit subkey

K2
def= γ̄ ·Lt′(K) by K̂2. We set K = (K1, K2), K̂ = (K̂1, K̂2). As P i’s are public,

for every frame i, we can use Eq.(12) to compute the estimate B̂i
tj+1 for Bi

tj+1

for j = 1, . . . , 4 with K̂1. Denote

Bi = (Bi
t1+1,Bi

t2+1,Bi
t3+1,Bi

t4+1),

X i = (X i
t1+1, X

i
t2+1, X

i
t3+1, X

i
t4+1, X

i
t′+1,Bi

t′+1, K̂).

Define the probabilistic mapping Fγ
Bi(X i) to be a truly random bit with uniform

distribution for all i such that
∏4

j=1 ε(hγ

B̂i
tj+1

) = 0; otherwise, we let

Fγ
Bi(X i) =

4⊕
j=1

(
hγ
Bi

tj+1
(X i

tj+1)⊕ gγ(B̂i
tj+1)

)
⊕ hγ̄(Bi

t′+1, X
i
t′+1). (16)

Note that given K̂2, Fγ
Bi(X i) is accessible in the latter case as we have

Fγ
Bi(X i) = γ̄ ·

(
Zi

t′ ⊕ L′
t′(P i)

)
⊕ K̂2 ⊕

4⊕
j=1

gγ(B̂i
tj+1),
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for all i such that
∏4

j=1 ε(hγ

B̂i
tj+1

) �= 0 according to Eq.(14). With the correct

guess K̂ = K, Eq.(16) reduces to

Fγ
Bi(X i) =

4⊕
j=1

(
hγ

Bi
tj+1

(X i
tj+1)⊕ gγ(Bi

tj+1)
)
⊕ hγ̄(Bi

t′+1, X
i
t′+1), (17)

for all i such that
∏4

j=1 ε(hγ
Bi

tj+1
) �= 0. As the right-hand side of Eq.(17) only in-

volves the unknown X i = (X i
t1+1, X

i
t2+1, X

i
t3+1, X

i
t4+1, X

i
t′+1,Bi

t′+1), we denote
the mapping in this case by fγ

Bi(X i). With appropriate choice of γ as discussed
in the next subsection, we can have E[∆(fγ

Bi)] > 0. With each wrong guess
K̂ �= K, however, as shown in Appendix, we estimate Fγ

Bi(X i) to be uniformly
and independently distributed for all i (i.e. E[∆(Fγ

Bi)] = 0).
As we are interested in small � for low time complexity, e.g. |�| < 6 as

explained immediately next, we can assume from this constraint15 that X i’s
are uniformly distributed and that all X i’s, Bi’s are independent. Submitting
2L sequences of n pairs (Fγ

Bi(X i), B̂i) (for i = 1, 2, . . . , n) to the distinguisher,
we can fit in the smart distinguisher of Section 3 with L = 16(� − 2) + 1, u =
16(� − 2), v = 20 + 4(� − 2), r = 1 and expect it to successfully recover L-bit
K with data complexity n sufficiently large as analyzed later. Note that the
favourable L < 64 necessitates that � < 6.

6.2 Complexity Analysis and Optimization

From Eq.(3) in Section 3, the smart distinguisher needs data complexity

n =
4L log 2

E
[
∆
(
fγ
Bi

)] . (18)

To compute n, we introduce another probabilistic mapping f
′γ
Bi similar to fγ

Bi :

f
′γ
Bi(X i) def=

4⊕
j=1

hγ
Bi

tj+1
(X i

tj+1)⊕ hγ̄(Bi
t′+1, X

i
t′+1). (19)

Theorem 5. For all Bi = (Bi
t1+1,Bi

t2+1,Bi
t3+1,Bi

t4+1) ∈ GF (2)16(�−2), we al-
ways have

∆(fγ
Bi) = ∆(f

′γ
Bi).

15 However, the assumption does not hold for � = 7, 8: with � = 8, we know that Xi
t2+1

is fixed given Xi
t1+1 and Bi

t1+1 as we have t2 = t1 +8 from Section 4; with � = 7, two
bits of Xi

t2+1 are fixed given Xi
t1+1 and Bi

t1+1. Similar statements hold concerning
Xi

t3+1, Bi
t3+1 and Xi

t4+1.
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Proof. This is trivial for the case where
∏4

j=1 ε(hγ

Bi
tj+1

) = 0, because by definition

Dfγ

Bi
is a uniform distribution and so is D

f
′γ

Bi

by the famous Piling-up lemma

(see [25]). Let us discuss the case where
∏4

j=1 ε(hγ
Bi

tj+1
) �= 0. In this case we know

that given Bi,
⊕4

j=1 gγ(Bi
tj+1) is well-defined and it is a fixed value that doesn’t

depend on the unknown X i. Consequently, we have ∆(fγ
Bi) = ∆(f

′γ
Bi ⊕ const.) =

∆(f
′γ
Bi). �

We can use Theorem 5 to compute 4L log 2
n from Eq.(18) as 4L log 2

n =E[∆(fγ
Bi)]

= E[∆(f
′γ
Bi)]. Next, the independence of Bi’s allows us to apply Piling-up Lemma

[25] to continue as follows,

4L log 2
n

= E

∆(hγ̄)
4∏

j=1

∆

(
hγ
Bi

tj+1

) = ∆(hγ̄)
4∏

j=1

E
[
∆

(
hγ
Bi

tj+1

)]
.

Because we know from Section 5 that E[∆(hγ
Bi

t+1
)] does not depend on t and i,

we finally have
4L log 2

n
= ∆(hγ̄) · E4

[
∆
(
hγ
Bt+1

)]
. (20)

As we want to minimize n, according to Eq.(18), we would like to find some
γ (3 ≤ |γ| < 6) such that E[∆(fγ

Bi)] is large, and above all, strictly positive.
In order to have E[∆(fγ

Bi)] > 0, we must have ∆(hγ̄) > 0 first, by Eq.(20).
According to results of [16,17,12,23], only two aforementioned choices satisfy
our predefined prerequisite about γ (i.e. both the first and last coordinates of γ
are one): either γ = (1, 1, 1, 1, 1) with ∆(hγ̄) = λ2 ≈ 2−6.71, or γ = (1, 1, 0, 1)
with ∆(hγ̄) = λ′2 = 2−8. For γ = (1, 1, 1, 1, 1), from last section, we know
that E[∆(hγ

Bt+1
)] ≈ 2−2.9. So we conclude from Eq.(20) that n ≈ 225.4 frames

of keystreams generated by the same key K suffice to recover the L = 49-bit
subkey K. Analogously, for γ = (1, 1, 0, 1), we have E[∆(hγ

Bt+1
)] = 2−3 from last

section. And it results in n ≈ 226.5 frames to recover L = 33-bit subkey.
Let us discuss the time complexity of the attack now. For all J = (J1, J2) ∈

GF (2)L−1 × GF (2), and let J1 = (J1,1, . . . , J1,4) where J1,i ∈ GF (2)4(�−2), we
define H,H′:

H(J) =
∑n

i=1 1G′
t1

(Pi),...,G′
t4

(Pi)=J1 and γ̄·(Zi
t′⊕L′

t′ (Pi))=J2
,

H′(J) =

{
0, if

∏4
i=1 ε(hγ

J1,i
) = 0

log 2r ·DJ1

(
J2 ⊕

⊕4
i=1 gγ (J1,i)

)
, otherwise

where DJ1 = Dhγ
J1,1

⊗ Dhγ
J1,2

⊗ Dhγ
J1,3

⊗ Dhγ
J1,4

. Let H′′(K) = Ĥ(K) · Ĥ′(K).

By Theorem 1 in Section 3, we have G(K) = 1
2L Ĥ′′(K). This means that af-

ter precomputing Ĥ′ in time O(L · 2L), our partial key-recovery attack would
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be dominated by twice FWT, i.e. Ĥ, Ĥ′′ with time O(L · 2L+1). Algorithm 2
illustrates the above basic partial key-recovery attack. Note that without the
optimization technique of Theorem 1, the deterministic smart distinguisher has
to perform O(n · 2L) operations otherwise, which makes our attack impractical.

Algorithm 2. The basic partial key-recovery attack on two-level E0
Parameters:
1: γ, t′, t1, t2, t3, t4, L
2: n set by Eq.(20)

Inputs:
3: Pi for i = 1, 2, . . . , n
4: Zi

t′ for i = 1, 2, . . . , n
Preprocessing:
5: compute H ′, Ĥ ′

Processing:
6: compute H, Ĥ
7: compute H ′′ = Ĥ · Ĥ ′ and Ĥ ′′

8: output K with the maximum Ĥ ′′(K)

Furthermore, by Table 2, we discovered a special property

ε(hγ
Bt+1Bt+2

) ≡ ε(hγ

Bt+1Bt+2
) ≡ −ε(hγ

Bt+1Bt+2
) ≡ −ε(hγ

Bt+1Bt+2
) (21)

for all Bt+1 = Bt+1Bt+2 ∈ GF (2)8 with γ = (1, 1, 0, 1), where the bar operator
denotes the bitwise complement of the 4-bit binary vector. This means that for
our 33-bit partial key-recovery attack, we always have 44 = 256 equivalent key
candidates16 (see Appendix for details), which helps to decrease the computation
time on Ĥ ′′ (see [23]) from 33 × 233 ≈ 238 to 25 × 225 ≈ 230. In total we have
the running time 238 + 230 ≈ 238 for Algorithm 2.

We have implemented the full Algorithm 2 with γ = (1, 1, 0, 1), t′ = 1, n = 226

frames (slightly less than the theoretical estimate 226.5) on the Linux platform,
2.4G CPU, 2G RAM, 128GB hard disk. It turned out that after one run of a
37-hour precomputation (i.e. Line 5 in Algorithm 2 which stores a 64GB table in
the hard disk), of all the 30 runs tested so far, our attack never fails to success-
fully recover the right 25-bit key in about 19 hours. Computing H, Ĥ, H ′′, Ĥ ′′

takes time 27 minutes, 18 hours, 45 minutes and 20 seconds respectively. The
running time is dominated by FWT17 Ĥ , which only takes a negligible portion
of CPU time and depends dominantly on the performance of the hardware, i.e.
the external data transfer rate18 between the hard disk and PC’s main memory.

Inspired by the multi-bias analysis on the traditional distinguisher in [23],
the advanced multi-bias analysis (see Appendix) which is an extension of this
16 The term “equivalent key candidate” is exclusively used for our attack, which doesn’t

mean that they are equivalent keys for the Bluetooth encryption.
17 The result is stored in a 32GB table in the hard disk.
18 In our PC it is 32MB/s, which is common in the normal PC nowadays.
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section allows us to reach the data complexity n ≈ 223.8 frames with the same
time complexity. Once we recover the first (33 − 8) = 25-bit subkey, we just
increment (or decrement) t′ by one and use the knowledge of those subkey bits
to reiterate Algorithm 2 to recover more key bits similarly as was done in [24].
Since only 17 new key bits are involved, which reduce to the 13-bit equivalent
key, it’s much faster to recover those key bits. Finally, we perform an exhaustive
search over the equivalent key candidates in negligible time, whose total number
is upper bounded by 2

8|K|
32 = 2

|K|
4 . The final complexity of the complete key-

recovery attack is bounded by one run of Algorithm 2, i.e. O(238). Table 3
compares our attacks with the best known attacks [13,14,16,24] on two-level E0
for effective key size |K| = 128. Note that with |K| = 64, Bluetooth key loading
at E0 level one makes the bits of the subkey K linearly independent for all
t′ ∈

⋃2
k=0{8k + 1, . . . , 8k + 5}. Therefore, the attack complexities remain to be

on the same order.

Table 3. Comparison of our attacks with the best attacks on two-level E0 for |K| = 128

Attack Precomputation Time Frames Data Memory

Fluhrer-Lucks [13] - 273 - 243 251

Fluhrer [14] 280 265 2 212.4 280

Golić et al. [16] 280 270 45 217 280

Lu-Vaudenay [24] - 240 235 239.6 235

Our basic 238 238 226.5 231.1 233

Attacks advanced 238 238 223.8 228.4 233

7 Conclusion

In this paper, we have generalized the concept of conditional correlations in
[1,21,22] to study conditional correlation attacks against stream ciphers and
other cryptosystems, in case the computation of the output allows for side in-
formation related to correlations conditioned on the input. A general framework
has been developed for smart distinguishers, which exploit those generalized con-
ditional correlations. In particular, based on the theory of the traditional distin-
guisher [5] we derive the number of samples necessary for a smart distinguisher
to succeed. It is demonstrated that the generalized conditional correlation is
no smaller than the unconditional correlation. Consequently, the smart distin-
guisher improves on the traditional basic distinguisher (in the worst case the
smart distinguisher degrades into the traditional one); the smart distinguisher
could be efficient even if no ordinary correlations exist. As an application of
our generalized conditional correlations, a conditional correlation attack on the
two-level Bluetooth E0 is developed and optimized. Whereas the analysis in [24]
was based on a traditional distinguishing attack using the strongest (uncondi-
tional) 5-bit correlation, we have successfully demonstrated the superiority of
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our attack over [24] by showing a best attack using 4-bit conditional correla-
tions, which are not suitable for the attack in [24] as the corresponding ordinary
correlations are all zeros. Our best attack fully recovers the original encryption
key using the first 24 bits of 223.8 frames and with 238 computations. Compared
with all existing attacks [13,14,16,20,24,29], this is clearly the fastest and only
practical known-plaintext attack on Bluetooth encryption so far. It remains to
be an interesting challenge to investigate the redundancy in the header of each
frame for a practical ciphertext-only attack on Bluetooth encryption.
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Appendix

Proof for E[∆(fB)] ≥ ∆(f)

By Eq.(7), we have

E[∆(fB)] = 2r
∑

A∈GF (2)r

E

[(
DfB(A) − 1

2r

)2
]

, (22)

where the expectation is taken over uniformly distributed B for the fixed A. On
the other hand, since Df (A) = E[DfB(A)] for any fixed A, we have

∆(f) = 2r
∑

A∈GF (2)r

(
Df (A)− 1

2r

)2

(23)

= 2r
∑

A∈GF (2)r

(
E [DfB(A)] − 1

2r

)2

(24)

= 2r
∑

A∈GF (2)r

E2
[
DfB(A) − 1

2r

]
, (25)

by definition of Eq.(1), with all the expectation taken over uniformly distributed
B for the fixed A. As we know from theory of statistics that for any fixed A,

0 ≤ Var
[
DfB(A)− 1

2r

]
= E

[(
DfB(A)− 1

2r

)2
]
− E2

[
DfB(A) − 1

2r

]
(26)

always holds, where equality holds iff DfB (A) is independent of B. �
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Approximation of Distribution of Fγ
Bi(X i) for Wrong Keys

Firstly, with K̂1 �= K1, the reason that we estimate Fγ
Bi(X i) to be uniformly

and independently distributed for all i can be explained as follows for the
cases19 when

∏4
j=1 ε(hγ

Bi
tj+1

) �= 0. Assuming that P i’s are uniformly and in-

dependently distributed, we deduct by Eq.(12) that so are B̂i’s for every K̂,
where B̂i = (B̂i

t1+1, . . ., B̂i
t4+1). Hence, we estimate gγ(B̂i

tj+1) for j = 1, . . . , 4
are also uniformly and independently distributed, which allows to conclude by
Eq.(16) that DFγ

Bi
can be approximated by a uniformly distributed sequence.

Secondly, in the remaining one case of wrong guess such that K̂1 = K1 and
K̂2 �= K2, Fγ

Bi(X i) is no longer uniformly distributed ; but it is more favourable to
us, because we have Fγ

Bi(X i) = fγ
Bi(X i)⊕1 for all i such that

∏4
j=1 ε(hγ

Bi
tj+1

) �= 0,

whose distribution has larger Kullback-Leibler distance (see [11]) to Dfγ

Bi
than

a uniform distribution does according to [5].
In all, we can pessimistically approximate DFγ

Bi
by a uniform distribution

for each wrong guess K̂ �= K.

Advanced Application

Having studied how to apply Section 3 with r = 1 (namely the uni-bias-based
approach) for an attack to E0 in Section 6, we wonder the possibility of improve-
ment based on multi-biases in the same spirit as in [23], which are utilized by
the traditional distinguisher.

For the reason of low time complexity of the attack, we still focus on analysis
of 4-bit biases; additionally, we restrict ourselves to bi-biases analysis (i.e. r =
2) to simplify the presentation, which will be shown later to be optimal. Let
Γ = (γ1, γ2), where γ1 is fixed to (1, 1, 0, 1) and γ2 with length �2

def= |γ2| = 4
remains to be determined later such that the data complexity is lowered when
we analyze the characteristics of bi-biases simultaneously for each frame instead
of conducting the previous uni-bias-based analysis.

Recall that gγ1(B) : GF (2)8 → GF (2) in Section 6 was defined to be the
most likely bit of hγ1

B (X) for a uniformly distributed X ∈ GF (2)4 if it exists (i.e.
ε(hγ

B) �= 0). We extend gγ1(B) : GF (2)8 → GF (2) to gΓ (B) : GF (2)8 → GF (2)2

over all B ∈ GF (2)8 such that ε(hγ1
B ) �= 0, and let gΓ (B) be the most likely 2-bit

binary vector β = (β1, β2). Note that we can always easily determine the first
bit β1 because of the assumption ε(hγ1

B ) �= 0; with regards to determining the
second bit β2 in case that a tie occurs, we just let β2 be a uniformly distributed
bit. Let

hΓ
B (X) = (hγ1

B (X), hγ2
B (X)), (27)

hΓ̄ (B, X) = (hγ̄1(B, X), hγ̄2(B, X)). (28)

19 By definition of Fγ

Bi , this is trivial for the cases when
∏4

j=1 ε(hγ

Bi
tj+1

) = 0.
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Note that hΓ
B(X) outputs the two bits which are generated by the same unknown

X given B; by contrast, hΓ̄ (B, X) outputs the two bits which are generated by
the unknown X and B. We can extend Fγ1

Bi (X i) in Eq.(16) to FΓ
Bi(X i) by letting

FΓ
Bi(X i)

=

(
4⊕

j=1

hγ1
Bi

tj+1
(Xi

tj+1) ⊕ hγ̄1(Bi
t′+1, X

i
t′+1),

4⊕
j=1

hγ2
Bi

tj+1
(Xi

tj+1) ⊕ hγ̄2(Bi
t′+1, X

i
t′+1)

)

⊕gΓ (B̂i
tj+1), (29)

if
∏4

j=1 ε(hγ1

B̂i
tj+1

) �= 0; otherwise, we let it be a uniformly distributed two-bit

vector. Similarly, we denote FΓ
Bi(X i) corresponding to the correct guess by fΓ

Bi .
It’s easy to verify the assumption holds to apply Section 3 that says DFΓ

Bi
can

still be approximated by a uniform distribution for each wrong guess on the key
K̂ �= K. Moreover, by introducing the extended f

′Γ
Bi from f

′γ1
Bi in Eq.(19) as

f
′Γ
Bi (X i) def= (f

′γ1
Bi (X i), f

′γ2
Bi (X i)) (30)

=

 4⊕
j=1

hγ1

Bi
tj+1

(X i
tj+1)⊕ hγ̄1(Bi

t′+1, X
i
t′+1),

4⊕
j=1

hγ2

Bi
tj+1

(X i
tj+1)⊕ hγ̄2(Bi

t′+1, X
i
t′+1)

 .

Theorem 5 can be extended to the generalized theorem below

Theorem 6. For all Bi = (Bi
t1+1,Bi

t2+1,Bi
t3+1,Bi

t4+1) ∈ GF (2)32, we always
have

∆(fΓ
Bi) = ∆(f

′Γ
Bi ).

Similar computation yields the same formula for data complexity we need as in
Eq.(20)

4L log 2
n

= ∆(hΓ̄ ) · E4
[
∆
(
hΓ
Bt+1

)]
. (31)

Experimental result shows that with γ1 = (1, 1, 0, 1), γ2 = (1, 0, 1, 1), we achieve
optimum ∆(hΓ

Bt+1
) ≈ 2−2.415 (in comparison to ∆(hγ1

Bt+1
) = 2−3 previously),

though ∆(hΓ̄ ) always equals ∆(hγ̄1) regardless of the choice of γ2; additionally,
∆(hΓ̄ ) ≡ 0 if γ1, γ2 �= (1, 1, 0, 1). Therefore, we have the minimum data com-
plexity n ≈ 223.8 frames. And the time complexity remains the same according
to Theorem 1 in Section 3.

Equivalent Keys

Recall that in Subsection 6.1 we have the 33-bit key K = (K1, K2), with K1 =
(Gt1(K), . . . ,Gt4(K)). For simplicity, we let K1,i = Gti(K). Define the following
8-bit masks (in hexadecimal):
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mask0 = 0x00, mask1 = 0xff, mask2 = 0x0f, mask3 = 0xf0.

Then for any K, we can replace K1,i by K1,i⊕maskj for any i = 1, 2, . . . , 4 and
j ∈ {0, 1, 2, 3} and replace K2 by K2 ⊕ � j

2�. Denote this set containing 44 = 28

elements by 〈K〉. We can easily verify that the Walsh coefficients Ĥ′′ of the
element in the set equals by following the definition of convolution between H
and H′:

H⊗H′(K) =
∑
K′
H(K ′)H′(K ⊕K ′). (32)

Since if R ∈ 〈K〉 then R ⊕ K ′ ∈ 〈K ⊕ K ′〉 for all K ′. And H′ maps all the
elements of the same set to the same value from Section 6, we conclude the set
defined above form an equivalent class of the candidate keys. Thus, we have 28

equivalent 33-bit keys.
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Abstract. Non-interactive zero-knowledge (NIZK) proofs have been in-
vestigated in two models: the Public Parameter model and the Secret
Parameter model. In the former, a public string is “ideally” chosen ac-
cording to some efficiently samplable distribution and made available to
both the Prover and Verifier. In the latter, the parties instead obtain
correlated (possibly different) private strings. To add further choice, the
definition of zero-knowledge in these settings can either be non-adaptive
or adaptive.

In this paper, we obtain several unconditional characterizations of
computational, statistical and perfect NIZK for all combinations of these
settings. Specifically, we show:

In the secret parameter model, NIZK =NISZK =NIPZK =AM.
In the public parameter model,


 for the non-adaptive definition, NISZK ⊆ AM ∩ coAM,

 for the adaptive one, it also holds that NISZK ⊂ BPP/1,

 for computational NIZK for “hard” languages, one-way functions are

both necessary and sufficient.

From our last result, we arrive at the following unconditional charac-
terization of computational NIZK in the public parameter model (which
complements well-known results for interactive zero-knowledge):

Either NIZK proofs exist only for “easy” languages (i.e., languages
that are not hard-on-average), or they exist for all of AM (i.e., all
languages which admit non-interactive proofs).

1 Introduction

A zero-knowledge proof system is a protocol between two parties, a Prover, and
a Verifier, which guarantees two properties: a malicious Prover cannot convince
the Verifier of a false theorem; a malicious Verifier cannot learn anything from
an interaction beyond the validity of the theorem.

Non-interactive zero-knowledge (NIZK) was proposed by Blum, Feldman, and
Micali [BFM88] to investigate the minimal interaction necessary for zero-
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knowledge proofs. To achieve the absolute minimal amount of interaction —that is,
a singlemessage fromtheProver to theVerifier—some setup assumptions are prov-
ably necessary [GO94]. These setup assumptions can be divided into two groups:

1. Public Parameter Setup. The originally proposed setup is the Common
Random String Model in which a uniformly random string is made available
to both the Prover and Verifier. Many NIZK schemes have been implemented
in this model [SMP87, BFM88, FLS90, DMP88, BDMP91, KP98, DCO+01].
A slight relaxation of this model is the Public Parameter model, also known
as the Common Reference String Model, in which a string is “ideally” cho-
sen according to some polynomial-time samplable distribution and made
available to both the Prover and Verifier. Such a setup can be used to se-
lect —say— safe primes, group parameters, or public keys for encryption
schemes, etc. See for example [Dam00, CLOS02].

2. Secret Parameter Setup. Cramer and Damg̊ard [CD04] explicitly intro-
duce the Secret Parameter setup model in which the Prover and Verifier
obtain correlated (possibly different) private information.
More generally, the secret parameter model encompasses the Pre-processing
Model in which the Prover and Verifier engage in an arbitrary interactive
protocol, at the end of which, both Prover and Verifier receive a private
output. (This follows because any arbitrary protocol for pre-processing can
be viewed as a polynomial-time sampler from a well-defined distribution.)
Such a setup model is studied in [KMO89, DMP88, Dam93].

The above setup models can be implemented in a variety of ways, which may
or may not require their own independent assumptions (For example, secure
two-party computations protocols can be used to pick a random string.) In this
paper we defer the discussion of how trusted setups are implemented, and choose
instead to focus on the relative power of the models.

We restrict our study to the simplest setting in which only a single theorem
is proven. Also, we consider security against unbounded provers. (That is, we
consider proof systems as opposed to argument systems.) Following similar stud-
ies in the interactive setting —see for example [Vad99, SV03, Vad04]— we allow
the honest prover algorithm to be inefficient (although some of our constructions
have efficient prover algorithm for languages in NP).

Our investigation also considers both adaptive and non-adaptive definitions of
zero-knowledge for non-interactive proofs. Briefly, the difference between these
two is that the adaptive variant guarantees that the zero-knowledge property
holds even if the theorem statement is chosen after the trusted setup has finished,
whereas the non-adaptive variant does not provide this guarantee.

1.1 Our Results

Secret Parameter Model. One suspects that the secret-parameter setup is
more powerful than its public-parameter counterpart. Indeed, in game theory, a
well-known result due to Aumann [Aum74] states that players having access to
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correlated secret strings can achieve a larger class of equilibria, and in particular,
better payoffs, than if they only share a common public string. As we shall see,
this intuition carries over in a strong way to the cryptographic setting. But first,
we show that,

Informal Theorem [Upper bound]. In the secret parameter model, non-
interactive perfect zero-knowledge proofs exist unconditionally for all lan-
guages in AM.

This result is obtained by combining the work of [FLS90] with an adaptation of
Kilian’s work on implementing commitments using oblivious transfer [Kil88].

Previously, for general NP languages, only computational NIZK proof sys-
tems were known in the secret-parameter setup model [DMP88, FLS90, KMO89,
DFN05]. Furthermore, these systems relied on various computational assump-
tions, such as the existence of one-way permutations. Recently, Cramer and
Damg̊ard [CD04] constructed statistical NIZK proofs in this model for specific
languages related to discrete logarithms. (On the other hand, their results apply
to an unbounded number of proofs, whereas ours do not.)

As a corollary of our result, we obtain a complete characterization of com-
putational, statistical and perfect NIZK in the secret parameter model. Namely,
we show that NIP = NIZK = NISZK = NIPZK = AM, where NIP denotes
the class of languages having non-interactive proofs, and NIZK, NISZK and
NIPZK denotes the classes of languages having non-interactive computational,
statistical and perfect zero-knowledge proofs.

Public Parameter Model: Statistical NIZK. We next turn our attention
to the public parameter model, and show that, in contrast to the Secret Para-
meter model, statistical NIZK proofs for NP-complete languages are unlikely to
exist.1

Informal Theorem [Lower bound]. In the public parameter model, non-
interactive statistical (non-adaptive) zero-knowledge proof systems only exist
for languages in AM ∩ coAM.

Previously, Aiello and H̊astad [AH91] showed a similar type of lower bound for
interactive zero-knowledge proofs. Although their results extend to the case of
NIZK in the common random string model, they do not extend to the general
public parameter model.2 Indeed, our proof relies on different (and considerably
simpler) techniques.
In the case of statistical adaptive NIZK, we present a stronger result.

1 This follows because unless the polynomial hierarchy collapses, NP is not contained
in AM ∩ coAM [BHZ87].

2 This follows because the definition of zero-knowledge requires the simulator to output
the random coins of the Verifier, and this is essential to the result in [AH91]. In
contrast, the definition of NIZK in the Public Parameter model does not require
the Simulator to output the random coins used by the trusted-party to generate the
public parameter.
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Informal Theorem [Lower bound]. Non-interactive statistical adaptive
zero-knowledge proof systems only exist for languages in BPP/1 (i.e., the
class of languages decidable in probabilistic polynomial time with one bit of
advice, which depends only on the length of the instance).

By an argument of Adleman, this in particular means that all languages which
have statistical adaptive NIZK in the public-parameter model can be decided by
polynomial-sized circuits.

We note that a similar strengthening for the non-adaptive case is unlikely,
as statistical non-interactive zero-knowledge proof systems for languages which
are conjectured to be “hard” are known (e.g., see [GMR98]).

Public Parameter Model: Computational NIZK. Due to the severe lower
bounds for statistical NIZK, we continue our investigation by considering com-
putational NIZK in the public parameter model. We first show that one-way
functions are both necessary and sufficient in the public parameter model.

Informal Theorem [Upper bound]. If (non-uniform) one-way functions
exist, then computational NIZK proof systems in the public parameter model
exist for every language in AM.

Informal Theorem [Lower bound]. The existence of computational NIZK
systems in the public parameter model for a hard-on-average language im-
plies the existence of (non-uniform) one-way functions.

Our upper bound, which applies to the stronger adaptive definition, improves
on the construction of Feige, Lapidot, and Shamir [FLS90] which uses one-way
permutations (albeit in the common random string model, whereas our con-
struction requires a public parameter). Our lower bound, which applies to the
weaker non-adaptive definition, was only known for interactive zero-knowledge
proofs [OW93]. We therefore present a (quite) different and relatively simple
direct proof for the case of NIZK in the public parameter model.

As a final point, by combining our last two theorems, we obtain the follow-
ing unconditional characterization of computational NIZK proofs in the public
parameter model:

Either NIZK proofs exist only for “easy” languages (i.e., languages that are
not hard-on-average), or NIZK proofs exist unconditionally for every lan-
guage in AM (i.e., for every language which admits a non-interactive proof).

This type of “all-or-nothing” property was known for interactive zero-knowledge
proofs, but not for NIZK since prior constructions of NIZK relied on one-way
permutations.

Additional Contributions. As already mentioned, some proofs in this pa-
per extend previously known results for interactive zero-knowledge proofs to the
non-interactive setting. We emphasize that our proofs are not mere adaptations
of prior results — indeed the results of Aiello and H̊astad and of Ostrovsky and
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Wigderson are complicated and technically challenging. In contrast, in the non-
interactive setting, we obtain equivalent results in a much simpler way. This sug-
gests the use of non-interactive zero-knowledge as a “test-bed” for understanding
the (seemingly) more complicated setting of interactive zero-knowledge.

1.2 Other Related Work

In terms of understanding NIZK, two prior works, [DCPY98] and [GSV99], offer
complete problems for non-interactive statistical zero-knowledge. Both of these
works apply to the non-adaptive definition and only the common random string
model. We emphasize that these results do not directly extend to the more
general public parameter model. In particular, complete problems for NISZK in
the public parameter model are not known (see the remarks following Thm. 4).

As mentioned earlier, many prior works, e.g. [AH91, Oka96, SV03, GV98,
Vad99], address the problem of obtaining unconditional characterizations of sta-
tistical zero-knowledge in the interactive setting. More recently, Vadhan [Vad04]
also obtains unconditional characterizations of computational zero-knowledge.

Open Questions. While our NIZK proof system in the secret parameter model
has an efficient prover strategy, our proof system in the public parameter model
does not. Indeed, resolving whether one-way functions suffice for efficient-prover
NIZK systems is a long-standing open question with many important implica-
tions. A positive answer to this question would, for example, lead to the con-
struction of CCA2-secure encryption schemes from any semantically-secure en-
cryption scheme.

2 Definitions

We use standard notation for probabilistic experiments introduced in [GMR85],
and abbreviate probabilistic polynomial time as p.p.t.

2.1 Non-interactive Proofs in the Trusted Setup Model

In the trusted setup model, every non-interactive proof system has an associated
distribution D over binary strings of the form (sV , sP ). During a setup phase,
a trusted party samples from D and privately hands the Prover sP and the
Verifier sV . The Prover and Verifier then use their respective values during the
proof phase. We emphasize that our definition only models single-theorem proof
systems (i.e., after setup, only one theorem of a fixed size can be proven).3

Definition 1 (Non-interactive Proofs in the Secret/Public Parameter
Model). A triple of algorithms, (D, P, V ), is called a non-interactive proof system
in the secret parameter model for a language L if the algorithm D is probabilistic
polynomial-time, the algorithm V is a deterministic polynomial-time and there
exists a negligible function µ such that the following two conditions hold:
3 While our definition only considers single-theorem proof systems, all of our results

extend also to proof systems for an a priori bounded number of fixed-size statements.
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– Completeness: For every x ∈ L

Pr
[
(sV , sP )← D(1x); π ← P (x, sP ) : V (x, sV , π) = 1

]
≥ 1− µ(|x|)

– Soundness: For every x /∈ L, every algorithm B

Pr
[
(sV , sP )← D(1x); π′ ← B(x, sP ) : V (x, sV , π′) = 1

]
≤ µ(|x|)

If D is such that sV is always equal to sP then we say that (D, P, V ) is in the
public parameter model.

Remark 1. In our definition, as with the original one in [BFM88], the Verifier is
modeled by a deterministic polynomial time machine. By a standard argument
due to Babai and Moran [BM88], this choice is without loss of generality since
a probabilistic Verifier can be made to run deterministically through repetition
and the embedding of the Verifier’s random coins in the setup information.

Let NIP denote the class of languages having non-interactive proof systems. For
the rest of this paper, we distinguish the secret parameter model from the public
parameter model using the superscripts sec and pub respectively. We start by
observing that NIPpub and NIPsec are equivalent. The proof appears in the
full version.

Lemma 1. AM = NIPpub = NIPsec

2.2 Zero Knowledge

We next introduce non-interactive zero-knowledge proofs. In the original non-
adaptive definition of zero-knowledge from [BFM88], there is one simulator,
which, after seeing the statement to be proven, generates both the public string
and the proof at the same time. In a later adaptive definition from [FLS90],
there are two simulators— the first of which must output a string before seeing
any theorems. The stronger adaptive definition guarantees zero-knowledge even
when the statements are chosen after the trusted setup has finished.4 Here, we
choose to present a weaker (and simpler) adaptive definition similar to the one
used in [CD04]. The main reasons for this choice are that (a) a weaker definition
only strengthens our lower bounds and (b) our definition is meaningful also for
languages outside of NP, whereas the definitions of [FLS90, Gol04] only apply
to languages in NP. Nevertheless, we mention that for languages in NP, our up-
per bounds (and of course the lower bounds) also hold for the stricter adaptive
definitions of [FLS90, Gol04].

Definition 2 (Non-interactive Zero-Knowledge in the Secret/Public
Parameter Model). Let (D, P, V ) be an non-interactive proof system in the
secret (public) parameter model for the language L. We say that (D, P, V ) is non-
adaptively zero-knowledge in the secret (public) parameter model if there exists
4 One might also study an adaptive notion of soundness for non-interactive proofs. We

do not pursue this line since every sound non-interactive proof system can be made
adaptively sound via parallel repetition.
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a p.p.t. simulator S such that the following two ensembles are computationally
indistinguishable by polynomial-sized circuits (when the distinguishing gap is a
function of |x|)

{(sV , sP )← D(1n); π ← P (sP , x) : (sV , π) }x∈L

{((s′V , π′)← S(x) : (s′V , π′) }x∈L

We say that (D, P, V ) is adaptively zero-knowledge in the secret (public) parame-
ter model if there exists two p.p.t. simulators S1, S2 such that the following two
ensembles are computationally indistinguishable by polynomial-sized circuits.

{(sV , sP )← D(1n); π ← P (sP , x) : (sV , π) }x∈L

{(s′V , aux) ← S1(1n); π′ ← S2(x, aux) : (s′V , π′) }x∈L

We furthermore say that (D, P, V ) is perfect (statistical) zero-knowledge if the
above ensembles are identically distributed (statistically close).

For notation purposes, we will use NIZK, NISZK, and NIPZK to denote the
class of languages having computational, statistical, and perfect non-interactive
zero-knowledge proof systems respectively.

3 The Hidden Bits Model

In order to prove our main theorems, we first review the “hidden bits” model
described in [FLS90]. In this model, the Prover and Verifier share a hidden string
R, which only the Prover can access. Additionally, the Prover can selectively
reveal to the Verifier any portion of the string R. Informally, a proof in the
hidden bits model consists of a triplet (π, RI , I) where I is a sequence of indicies,
I ⊆ {1, 2, ..., |R|} representing the portion of R that the prover wishes to reveal
to the verifier, RI is the substring of R indexed by I, and π is a proof string. For
a formal definition of this model, see Goldreich [Gol01] from which we borrow
notation.

The following theorem is shown by Feige, Lapidot and Shamir.

Theorem 1 ([FLS90]). There exists a non-interactive perfect zero-knowledge
proof system in the hidden bits model for any language in NP.

We extend their result to any language in AM by using the standard tech-
nique of transforming an AM proof into the NP statement that “there exists a
short Prover message which convinces the polynomial-time Verifier.”

Theorem 2. There exists a non-interactive perfect zero-knowledge proof system
in the hidden bits model for any language in AM.

Looking ahead, in Sect. 4 we extend Thm. 2 to show that the class of non-
interactive perfect zero-knowledge proofs in the hidden bits model is in fact
equivalent to AM.
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4 The Secret Parameter Model

Feige, Lapidot and Shamir show how to implement the hidden-bits model with
a one-way permutation in the public parameter model. Their implementation,
however, degrades the quality of zero-knowledge — in particular, the resulting
protocol is only computational zero-knowledge. Below, we show how to avoid
this degradation in the secret parameter model.

Lemma 2. Let (P, V ) be a non-interactive perfect zero-knowledge proof system
for the language L in the hidden bits model. Then, there exists a non-interactive
perfect adaptive zero-knowledge proof system (P ′, V ′) for the language L in the
secret parameter model. Furthermore if, (P, V ) has an efficient prover, then
(P ′, V ′) has one as well.

Proof Sketch. We implement the hidden bits model by providing the Prover and
Verifier correlated information about each bit of the hidden string. In particular,
each bit is split into shares using a simple secret sharing scheme. The Prover
is given all of the shares, while the Verifier is only given a random subset of
them (which is unknown to the Prover). This is done in such a way that the
Verifier has no information about the bit, but nonetheless, the Prover cannot
reveal the bit in two different ways except with exponentially small probability.
We note that this technique is reminiscent to the one used in [Kil88] to obtain
commitments from oblivious transfer and to the one in [KMO89] to obtain NIZK
with pre-processing (we remark that their resulting NIZK still requires additional
computational assumptions, even when ignoring the assumptions necessary for
their pre-processing). Our protocol is described in Fig. 1 and a complete proof
is given in the full version. �

Armed with this Lemma, we can now prove our main theorem concerning
non-interactive zero-knowledge in the secret parameter model.

Theorem 3. NIPsec = NIZKsec = NISZKsec = NIPZKsec = AM

Proof. NIPZKsec ⊆ NISZKsec ⊆ NIZKsec ⊆ NIPsec follows by definition.
Lemma 1 shows that NIPsec = AM, therefore, it suffices to show that AM ⊆
NIPZKsec. This follows by combining Lemma 2 and Thm. 2. �

Related Characterizations. We note that Lemma 2 also gives an upper
bound on the class of perfect zero-knowledge proofs in the hidden bits model.
As a corollary, we obtain the following characterization.

Corollary 1. The class of perfect zero-knowledge proofs in the hidden bits model
equals AM.

5 The Public Parameter Model - Statistical NIZK

In this section we present severe lower bounds for the class of statistical NIZK
in the public parameter model. (This stands in stark contrast to the secret
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Proof System (D, P ′, V ′) – NIZK in the Secret Parameter model

Common Input: an instance x of a language L with witness relation RL and 1n:
security parameter.

Private-output set-up: D(1n) → (sP , sV ) proceeds as follows on input 1n:
1. (Pick a random string) Sample m random bits, σ = σ1, . . . , σm.
2. (Generate XOR shares) For i ∈ [1, m] and j ∈ [1, n], sample a random

bit τ j
i . Let τ j

i = σi ⊕ τ j
i . (Notice that the n pairs (τ j

i , τ j
i ) for j ∈ [1, n] are

n random “XOR shares” of the bit σi.)
3. (Select half of each share) For i ∈ [1, m] and j ∈ [1, n], sample a random

bit bj
n. Let ρj

i as follows:

ρj
i =

{
τ j

i , if bj
i = 0

τ j
i otherwise

(In other words, the values {ρj
i } are randomly selected “halves” from each

of the n XOR shares for σi.)
4. The private output sP is the set of nm pairs (τ j

i , τ j
i ) for i, j ∈ [1, m]× [1, n].

Note that the string σ is easily derived from sP .
5. The private output sV is the set of nm pairs {(ρj

i , b
j
i )} for i, j ∈ [1, m]×[1, n].

Prover algorithm: On input (x, sP ),
1. Compute R = σ1, . . . , σm by setting σi = τ 1

i ⊕ τ 1
i .

2. Run the algorithm (π, RI , I) ← P (x,R). Recall that the set RI consists of
bits {ri | i ∈ I} and I consists of indices in [1, m].

3. Output (π, RI , I, {oi | i ∈ I}) where oi denotes the opening of bit σi. That
is, for all i ∈ I , oi consists of all n shares ((τ 1

i , τ 1
i ), . . . , (τ

n
i , τn

i )) of σi.
Verifier algorithm: On input (x, sV , π,RI , I, {oi|i ∈ I}),

1. Verify that each opening in RI is consistent with oi and with sV . That is,
for i ∈ I , inspect the n pairs, (τ 1

i , τ1
i ), . . . , (τ

n
i , τn

i ) in oi, and check that for
all j ∈ [1, n], ρj

i is equal to either τ j
i or τ j

i (depending on whether bj
i = 0

or 1 respectively). If any single check fails, then reject the proof. Finally,
check that ri = τ 1

i ⊕ τ 1
n.

2. Verify the proof by running V (x, RI , I, π) and accept if and only if V ac-
cepts.

Fig. 1. NIZK in the Secret Parameter model

parameter model, where statistical NIZK can be obtained for all of AM.) We
first present a lower bound for statistical NIZK under the non-adaptive definition
of zero-knowledge. We thereafter sharpen the bound under the more restrictive
adaptive definition.

5.1 The Non-adaptive Case

In analogy with the result by [AH91] for interactive zero-knowledge, we show
that only languages in the intersection of AM and coAM have statistical NIZK
proof systems in the public parameter model.



Unconditional Characterizations of Non-interactive Zero-Knowledge 127

Theorem 4. If L has a statistical non-adaptive NIZK proof system in the public
parameter model, then L ⊆ AM ∩ coAM.
Proof Sketch. Let (D, P, V ) be a statistical NIZK proof system in the public
parameter for the language L with simulator S. We show that L ∈ AM and that
L ∈ coAM. The former statement follows directly from Lemma 1. To prove the
latter one, we present a two-round proof system for proving x /∈ L. (Note that
by the results of [GS86, BM88] it is sufficient to present a two-round private coin
proof system.)
Verifier Challenge:

1. Run the simulator (σ0, π
′) ← S(x) and the sampling algorithm σ1 ← D(1|x|)

to generate public parameter strings σ0 and σ1.
2. Run V on input (σ0, π

′) to check if the honest verifier accepts the simulated
proof. If V rejects, then output “accept” and halt.

3. Otherwise, flip a coin b ∈ 0, 1 and send α = σb to the prover.

The Prover response:
1. Upon receiving an input string α, check if there exists a proof π which the

honest verifier V accepts (i.e., V (x,α, π) = 1).
2. If so, output β = 0; otherwise, output β = 1.

The Verifier acceptance condition:
1. Upon receiving string β, output “accept” if β = b, and reject otherwise.

Completeness. We show that if x /∈ L, then the Prover (almost) always con-
vinces the Verifier. If the Verifier sent the string σ0, the Prover always responds
with β = 0, which makes the Verifier always accept. This follows since the Veri-
fier only sends σ0 if the simulated proof was accepting, which implies that there
is at least one accepting proof of x ∈ L for (P, V ). If the Verifier sent the string
σ1, then by the soundness of (P, V ), the probability (over the coins of the Ver-
ifier) that there exists a proof for x ∈ L is negligible. Therefore, except with
negligible probability, the Prover responds with β = 1 and the Verifier accepts.

Soundness. Intuitively, this protocol relies on the same logic as the graph non-
isomorphism protocol. If x ∈ L, then the (exponential time) Prover cannot
distinguish whether α was generated by the simulator or by the sampler D,
and therefore can only convince the Verifier with probability 1/2. This follows
from the statistical zero-knowledge property of (P, V ). It only remains to show
that the probability (over the random coins of the Verifier) that the Verifier
accepts statements x ∈ L in step (2), without further interaction, is negligible.
This follows from the zero-knowledge (and completeness) property of (P, V ).
Otherwise, V would distinguish between simulated proofs and real ones (since
by completeness, the honest prover P succeeds with high probability.) �
Remark 2. Using techniques from the proof of Thm. 4, one can show that the
class NISZKpub reduces to the problem of Statistical Difference, which is com-
plete for SZK [SV03]5. Thus, an alternative way to prove this theorem would be
to present such a reduction and then invoke the results of [AH91].
5 This should be contrasted with Statistical Difference from Random and Image Density,

which are the complete problems for NISZK in the Common Random String model.
These problems are not known to be reducible to Statistical Difference.



128 R. Pass and a. shelat

5.2 The Adaptive Case

In this section we sharpen our results from the previous section when instead
considering the adaptive variant of zero-knowledge.

Theorem 5. If L has a non-interactive adaptive statistical zero-knowledge proof
in the public parameter model, then L ⊂ BPP/1.

Proof Sketch. Let (D, P, V ) be a non-interactive adaptive statistical zero-
knowledge proof system for L with simulators S1 and S2.

We first observe that by the statistical zero-knowledge property, for every
n for which L contains an instance of length n, the output of S1(1n) must be
statistically close to the output of D(1n). This follows because the output of
S1(1n) is independent of the theorem statement.

This observation suggests the following probabilistic polynomial time decision
procedure D(x) for L, which obtains a one-bit non-uniform advice indicating
whether L contains any instances of length |x|.

On input an instance x,
1. If the non-uniform advice indicates that L contains no instances of length
|x|, directly reject.

2. Otherwise, run (σ′, aux)← S1(1|x|) to generate a public parameter.
3. Run π′ ← S2(x, aux) to produce a putative proof.
4. Run V (x, σ′, π′) and accept iff V accepts.

Note that when x ∈ L, then D accepts with overwhelming probability due to
the completeness and zero-knowledge property of (D, P, V ). If x /∈ L and there
are no instances of length |x| in L, then D always rejects due to the non-uniform
advice. It remains to show that when x /∈ L, and there exists instances of length
|x| in L, then D rejects with high probability.

Assume, for sake of reaching contradiction, that there exists a polynomial
p(·) such that for infinitely many lengths n, L contains instances of length n yet
there exists an instance x /∈ L of length n, such that

Pr
[
(σ′, aux)← S1(1|x|); π′ ← S2(x, aux) : V (x, σ′, π′) = 1

]
≥ 1

p(n)
(1)

We show how this contradicts the fact that the output of S1 and D are statisti-
cally close (when L contains instances of length n). By the soundness of (D, P, V ),
there exists a negligible function µ such that for any unbounded prover P ∗,

Pr
[
σ ← D(1|x|); π′ ← P ∗(x, σ) : V (x, σ, π′) = 1

]
≤ µ(|x|) (2)

Consider an exponential time non-uniform distinguisher C, which on input σ′′

(and advice x), enumerates all proof strings π′ to determine if any of them
convince V to accept x. If so, C outputs 0, and otherwise outputs 1.

If σ′′ is generated by S1, then by (1), such a proof string π′ exists with no-
ticeable probability. On the other hand, if σ′′ comes from D, then by (2), such
a proof string only exists with negligible probability. We conclude that C dis-
tinguishes the output of S1 from that of D with a non-negligible advantage. �
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6 The Public Parameter Model - Computational NIZK

In this section we show that one-way functions are sufficient and necessary
for computational NIZK for languages that are hard-on-average. Combining
these two results, we obtain the following unconditional characterization : Either
NIZKpub only contains “easy” languages (i.e., languages that are not hard-on-
average), or it “hits the roof”, (i.e., contains all of AM).

Preliminaries. Let us first define one-way functions and hard-on-average lan-
guages. As is standard in the context of zero-knowledge proofs, we define hard-
ness in terms of infeasability for non-uniform p.p.t.

Definition 3 (One-way function). A function f : {0, 1}∗ → {0, 1}∗ is called
one-way if the following two conditions hold:

– Easy to compute: There exists a (deterministic) polynomial-time algorithm
E such that on input x, E outputs f(x).

– Hard to invert: For every non-uniform p.p.t. algorithm A, every sufficiently
large integer n, and every polynomial p(·),

Pr [x ← {0, 1}n; y ← A(f(x)) : f(y) = f(x)] <
1

p(n)

Definition 4 (Hard-on-average language). A language L is hard-on-average
if there exists a p.p.t. sampling algorithm G such that for every non-uniform
p.p.t. algorithm A, every polynomial p(·), and every sufficiently large n,

Pr [x← G(1n) : A(x) correctly decides whether x ∈ L] <
1
2

+
1

p(n)

6.1 OWFs Are Sufficient

We show how to implement the hidden bits model in the public-parameter model
based on a one-way function. Recall that [FLS90] implements the hidden bits
model using a one-way permutation and a hard-core predicate. The reason for
using a one-way permutation is to give the Prover a short certificate for opening
each bit in only one way (the certificate being the pre-image of the one-way
permutation). A similar technique fails with one-way functions since a string
may have either zero or many pre-images, and therefore a malicious Prover may
be able to open some hidden bits as either zero or one.

Another approach would be to use a one-way function in order to construct a
pseudo-random generator [HILL99], and then to represent a 0 value as a pseudo-
random string and a 1 as a truly random string (in some sense, this technique is
reminiscent of the one used by Naor for bit commitment schemes from pseudo-
random generators [Nao91]). The Prover can thus open a 0 value by revealing
a seed to the pseudo-random string. However, there is no way for the Prover to
convince a Verifier that a string is truly random.
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We overcome this problem by forming a reference string consisting of pairs
of 2k-bit strings, (α, β) in which exactly one of the two strings is pseudo-random
while the other is truly random. More precisely, the 0-value is encoded as a pair
in which α is generated pseudo-randomly by expanding a k bit seed into a 2k
bit string, while β is chosen uniformly at random from {0, 1}2k. The 1-value is
encoded the opposite way: α is chosen randomly, while β is generated pseudo-
randomly. The Prover can now reveal a 0 or a 1 by revealing the seed for either
α or β.

Lemma 3. Assume the existence of one-way functions. Let (P, V ) be a non-
interactive (adaptive) zero-knowledge proof system for the language L ∈ NP
in the hidden bits model. If P is an efficient prover, then, there exists a non-
interactive (adaptive) zero-knowledge proof system (P ′, V ′) for the language L
in the public parameter model.

Proof Sketch. Let (P, V ) be an NIZK proof system in the hidden bits model,
let G : {0, 1}k → {0, 1}2k be a pseudo-random generator and let L ∈ NP be
a language with witness relation RL. Consider protocol (P ′, V ′) described in
Fig. 2.

Completeness. Completeness follows from the corresponding completeness of
(P, V ) and the fact that P ′ aborts only with negligible probability.

Soundness. Assume for the moment that a cheating prover P ′∗ is only able
to open R in one manner. In this case, the soundness of (P, V ) carries over to
(P ′, V ′) in the same way as in Lemma 2. All that remains is to show that R
can only be opened in one way. Below, we argue that this happens with high
probability.

Note that there are a maximum of 2n pseudo-random strings in G’s support.
On the other hand, there are 22n strings of length 2n. Therefore, a randomly
sampled length-2n string will be pseudo-random with probability at most 2−n.
Thus, for any pair (ai, bi), the probability that both values are pseudo-random
is at most 2−n. By the union bound, the probability that there is one such pair
in s is upper-bounded by n2−n.

Zero-Knowledge. We present a simulator S′ = S′
1, S

′
2 for (D, P ′, V ′) which

uses the simulator S for (P, V ) as a subroutine. First, (s, aux) ← S′
1(1

n) gener-
ates s as a sequence of pairs (α′

i, β
′
i) in which both α′

i and β′
i are pseudo-random.

The aux value contains all of the seeds, ui, wi, for the pseudo-random values
α′

i and β′
i respectively. The simulator S′

2 works by running simulator S(x) to
generate (π′, R′

I , I) ← S(x) and then outputting (π′, R′
I , I, {v′i | i ∈ I}) where

v′i equals ui if ri = 0 and wi otherwise. In order to show the validity of the
simulation, consider the following four hybrid distributions.

– Let H1 denote the ensemble (s, π) in which the honest Prover runs on a
string s generated according to D.

– Let H2 denote the output of the above experiment with the exception that D
provides all pre-images {vi} to an efficient prover algorithm Peff, which also
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Proof System (D, P ′, V ′) – NIZK in the Public Parameter model

Common Input: an instance x ∈ L and a security parameter 1n

Public Parameter set-up: D(1n) → s, where D proceeds as follows :
1. Select m random bits σ = σ1, . . . , σm.
2. For each i ∈ [1, m], generate two strings αi and βi as follows:

αi ← G(vi) where vi is a uniformly chosen string of length k.
βi ←r {0, 1}2k

3. Let τi =

{
(αi, βi) if σi = 1
(βi, αi) otherwise

4. Output s = τ1, . . . , τm.
Prover’s algorithm: On input x, s,

1. Compute R = σ1, . . . , σm from s by the following procedure. Parse s into m
pairs (a1, b1), . . . , (am, bm). For each pair (ai, bi), determine (in exponential
time) which of either ai or bi are pseudo-random (i.e, in the range of G). In
the former case, set σi = 0, and in the latter, σi = 1, and let vi denote the
seed used to generate the pseudo-random value. If both ai and bi are in the
range of G, then output abort.

2. Compute the lexographically first witness w satisfying RL(x, w).
3. Run the Prover algorithm (π,RI , I) ← P (x,w, R). Recall that the set RI

consists of bits {ri | i ∈ I} and I consists of indices in [1, m].
4. Output (π,RI , I, {vi | i ∈ I}).

Verifier’s algorithm: On input (x, π,RI , I, {vi | i ∈ I})
1. Verify each opening in RI is consistent with s and vi. Parse s into m pairs

(a1, b1), . . . , (am, bm). For each i ∈ I , run t ← G(vi) and if t = ai, set σi = 1,
if t = bi, then set σi = 0 (if neither or both conditions are met, then reject
the proof). Finally, verify that ri = σi.

2. Run the Verifier algorithm V (x, π, RI , I) and accept iff V accepts.

Fig. 2. NIZK in the Public Parameter model

receives the lexographically first witness w for x and then only runs Step 3
and 4 of P ′’s algorithm.

– Let H3 denote the output of the second experiment with the exception that
s is generated by S′

1(1
n), and that furthermore, S′

1(1
n) gives either ui or wi

(randomly chosen) to Peff for all i ∈ [1, m].
– Let H4 denote the output of the third experiment with the exception that

π is generated by S′
2(x, aux) and ui, wi in aux is given to Peff. Notice that

this distribution corresponds exactly to the output of S′.

In the full version we show that the above hybrid distributions are all indis-
tinguishable, which concludes the proof. �

Remark 3. Note that we explicitly require two properties from the NIZK proof
system (P, V ) in the hidden bits model: first, that P is an efficient Prover, and
secondly, that the zero-knowledge property is defined for non-uniform distin-
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guishers. Both of these requirements stem from the fact that the Prover in our
new protocol is unbounded, which creates complications in the hybrid arguments.

Theorem 6. If (non-uniform) one-way functions exist, then for both adaptive
and non-adaptive definitions of zero-knowledge, NIZKpub = NIPpub = AM.

Proof. By Thm. 1 and Lemma 3, NP ⊆ NIZKpub. Using techniques from the
proof of Thm. 2, we can extend this result to show that AM ⊆ NIZKpub. By
definition, NIZKpub ⊆ NIPpub. Finally, by Lemma 1, NIPpub = AM. �

6.2 OWFs Are Necessary

We proceed to show that (non-uniform) one-way functions are necessary for non-
interactive zero-knowledge for “hard” languages. This stands in contrast to the
secret parameter model where unconditional results are possible.

Theorem 7. If there exists a non-adaptive NIZK proof system for a hard-on-
average language L, then (non-uniform) one-way functions exist.

Proof Sketch. Let (D, P, V ) be a non-adaptive NIZK system for L in the public
parameter model and let S be the simulator for (P, V ). Furthermore, suppose
that L is hard-on-average for the polynomial-time samplable distribution G.
Now, consider the following two distributions:

{(sV , sP ) ← D(1n), x ← G(1n) : x, sV } (3)
{(s′V , π) ← S(x, 1n), x ← G(1n) : x, s′V } (4)

We show that the above distributions are (non-uniformly) computationally
indistinguishable, but statistically “far”. By a result of Goldreich [Gol90] (relying
on [HILL99]) the existence of such distributions implies the existence of (non-
uniform) one-way functions. �

Claim. The distributions (3) and (4) are computationally indistinguishable.

Proof Sketch. We start by noting that conditioned on x being a member of
language L, the above distributions are computationally indistinguishable by
the zero-knowledge property of (P, V ). It then follows from the hardness of L
that the above distributions must be computationally indistinguishable, even
without this restriction. �

Claim. The distributions (3) and (4) are not statistically indistinguishable.

Proof Sketch. We show that the distributions (3) and (4) are statistically “far”
conditioned on instances x /∈ L. It then follows from the fact that L is roughly
balanced over G (due the hard-on-average property of L over G) that (3) and
(4) are statistically “far” apart.

Note that on instances x /∈ L, the soundness property of (P, V ) guarantees
that very few strings generated by D have proofs which are accepted by the
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Verifier (otherwise, a cheating prover can, in exponential time, find such proofs
and thereby violate the soundness condition). On the other hand, since L is
hard-on-average, and since S runs in polynomial time, most of the strings sV

generated by S have proofs which are accepted by V (otherwise, S can be used
to decide L). Therefore, the distributions (3) and (4) are statistically far apart,
conditioned on instances x /∈ L. �
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Abstract. In this paper, we continue the study of the round complexity
of black-box zero knowledge in the bare public-key (BPK, for short) model
previously started by Micali and Reyzin in [11]. Specifically we show the
impossibility of 3-round concurrent (and thus resettable) black-box zero-
knowledge argument systems with sequential soundness for non-trivial
languages. In light of the previous state-of-the-art, our result completes
the analysis of the round complexity of black-box zero knowledge in the
BPK model with respect to the notions of soundness and black-box zero
knowledge.

Further we give sufficient conditions for the existence of a 3-round
resettable zero-knowledge proof (in contrast to argument) system with
concurrent soundness for NP in the upperbounded public-key model
introduced in [14].

1 Introduction

The classical notion of a zero-knowledge proof system has been introduced in
[1]. Roughly speaking, in a zero-knowledge proof system a prover can prove to a
verifier the validity of a statement without releasing any additional information.
Recently, starting with the work of Dwork, Naor, and Sahai [2], the concur-
rent and asynchronous execution of zero-knowledge protocols has been consid-
ered. In this setting, several concurrent executions of the same protocol take
place and a malicious adversary controls the verifiers and the scheduling of the
messages.

Motivated by considerations regarding smart cards, the notion of resettable
zero knowledge (rZK, for short) was introduced in [3]. An rZK proof remains
“secure” even if the verifier is allowed to tamper with the prover and to re-
set the prover in the middle of a proof to any previous state, then asking dif-
ferent questions. It is easy to see that concurrent zero knowledge is a special
case of resettable zero knowledge and, currently, rZK is the strongest notion of
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zero knowledge that has been studied when security against malicious verifiers
is considered. Unfortunately, in the plain model, if we only consider black-box
zero knowledge, constant-round concurrent (and therefore resettable) zero know-
ledge is possible only for trivial languages (see [4]). Moreover, the existence of
a constant-round non-black-box concurrent zero-knowledge argument system is
currently an open question (see [5] for the main results on non-black-box zero
knowledge). An almost constant-round non-black-box concurrent zero-knowledge
argument system has been recently given in [6] by assuming the existence of only
one (stateful) prover.

Such negative results have motivated the introduction of the bare public-key
model [3] (BPK, for short). Here each possible verifier deposits a public key pk
in a public file and keeps private the associated secret information sk. From
then on, all provers interacting with such a verifier will use pk and the verifier
can not change pk from proof to proof. Note that in the BPK model there is no
interactive preprocessing stage, no trusted third party or reference string and the
public file can be completely under the control of the adversary. Consequently
the BPK model is considered a very weak set-up assumption compared to some
previously proposed models [2,7,8,9,10]. In this model, however, the notion of
soundness is more subtle. This was first noted in [11], where the existence of four
distinct and increasingly stronger notions of soundness: one-time, sequential,
concurrent and resettable soundness is shown. Moreover it was pointed out that
the constant-round rZK argument system in the BPK model of [3] did not seem
to be concurrently sound.

In [11], a 3-round one-time sound black-box rZK argument system and a
4-round sequentially sound black-box rZK argument system for NP in the BPK
model are given. Moreover it is shown that in the BPK model neither zero know-
ledge in less than 3 rounds nor black-box zero-knowledge with resettable sound-
ness are possible for non-trivial languages. Two main problems were left open
in [11] (see page 553 of [11] and page 13 of [12]).

The first open problem, namely the existence of a constant-round rZK ar-
gument system with concurrent soundness in the BPK model has been recently
solved in [13] where an (optimal) 4-round protocol is presented. Before this
result, a 3-round resettable zero-knowledge argument system with concurrent
soundness has been presented by Micali and Reyzin in [14] in the upperbounded
public-key (UPK, for short) model, where the verifier has a counter and his public
key can be used only an a-priori fixed polynomial number of times.

The second open problem, namely the existence of a 3-round {resettable,
concurrent, sequential} zero-knowledge argument with sequential soundness in
the BPK, has been very partially addressed in [13] where a 3-round sequentially
sound sequential zero-knowledge argument system has been presented.

The most interesting open problem in the BPK model is therefore the exis-
tence of a 3-round resettable (or even only concurrent) zero-knowledge argument
system with sequential soundness for NP .

Our Contribution. In this paper we show that 3-round black-box concurrent (and
therefore resettable) zero-knowledge argument systems with sequential sound-
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ness in the BPK model exist only for trivial languages. As a consequence, we have
that in the BPK model, sequential soundness in 3 rounds can be achieved for
non-trivial languages only when no more than black-box sequential zero know-
ledge is required. This is in contrast to both one-time soundness and concurrent
soundness where 3 rounds and 4 rounds respectively, have been shown to be both
necessary and sufficient for sequential, concurrent and resettable zero knowledge.
Our result closes the analysis on the round complexity of the BPK model with
respect to notions of soundness and zero knowledge, see Fig. 1.

The intuition behind our impossibility result goes as follows. In the impossi-
bility proof of 3-round black-box zero knowledge given in [15] by Goldreich and
Krawczyk (on which our result is based) a deciding machine runs the simulator
to determine if x is in L. In case the simulator outputs an accepting transcript
even when x �∈ L, the work of the simulator can be used by an adversarial prover
that violates the soundness of the protocol. The translation in [11] of this proof
to the BPK model works when the proof system is sound against concurrent
malicious provers (because a rewind can be simulated with a new concurrent
session). The proof in this paper observes that for 3-round black-box concurrent
zero knowledge, there is at least one proof that the simulator does not rewind
and therefore sequential soundness will suffice.

We also give some sufficient conditions for achieving 3-round resettable zero-
knowledge proof (in contrast to argument) systems with concurrent soundness
in the UPK model. Moreover, our construction does not use assumptions with
respect to superpolynomial-time algorithms (i.e., complexity leveraging).

3-Round OTS 3-Round SS 4-Round CS
sZK [MR Crypto 01] [DPV Crypto 04] Folklore
cZK [MR Crypto 01] Impossible [This Paper] [DPV Crypto 04]
rZK [MR Crypto 01] Impossible [This Paper] [DPV Crypto 04]

Fig. 1. The round complexity of black-box zero knowledge in the BPK model

2 The Public-Key Models

Here we describe the BPK and the UPK models that we consider for our results. We
give the definitions of zero-knowledge proof and argument systems with respect
to the notions of soundness and zero knowledge that we use in the paper. For
further details, see [11,14,12].

The BPK model assumes that: 1) there exists a polynomial-size collection of
records associating identities with public keys in the public file F ; 2) an (honest)
prover is an interactive deterministic polynomial-time algorithm that takes as
input a security parameter 1k, F , an n-bit string x, such that x ∈ L where L is
an NP-language, an auxiliary input y, a reference to an entry of F and a random
tape; 3) an (honest) verifier V is an interactive deterministic polynomial-time
algorithm that works in the following two stages: 1) in a first stage on input a
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security parameter 1k and a random tape, V generates a key pair (pk, sk) and
stores it’s identity associated with pk in an entry of the file F ; 2) in the second
stage, V takes as input sk, a statement x ∈ L and a random string, V performs
an interactive protocol with a prover, and outputs “accept” or “reject”; 4) the
first interaction of a prover and a verifier starts after all verifiers have completed
their first stage.

Definition 1. Given an NP-language L and its corresponding relation RL, we
say that a pair of probabilistic polynomial-time algorithms 〈P, V 〉 is complete
for L, if for all n-bit strings x ∈ L and any witness y such that (x, y) ∈ RL, the
probability that V on input x when interacting with P on input x and y, outputs
“reject” is negligible in n.

Malicious Provers and Attacks in the BPK Model. Let s be a positive polynomial
and P � be a probabilistic polynomial-time algorithm that takes as first input 1n.

P � is an s-sequential malicious prover if it runs in at most s(n) stages in the
following way: in stage 1, P � receives a public key pk and outputs an n-bit string
x1. In every even stage, P � starts from the final configuration of the previous
stage, sends and receives messages of a single interactive protocol on input pk
and can decide to abort the stage in any moment and to start the next one.
In every odd stage i > 1, P � starts from the final configuration of the previous
stage and outputs an n-bit string xi.

P ∗ is an s-concurrent malicious prover if on input a public key pk of V , it
can perform the following s(n) interactive protocols with V : 1) if P ∗ is already
running i protocols 0 ≤ i < s(n) it can start a new protocol with V choosing a
new statement to be proved; 2) it can output a message for any running protocol,
receive immediately the response from V and continue.

Given an s-sequential malicious prover P � and an honest verifier V , a se-
quential attack is performed in the following way: 1) the first stage of V is
run on input 1n and a random string so that a pair (pk, sk) is obtained; 2)
the first stage of P � is run on input 1n and pk and x1 is obtained; 3) for
1 ≤ i ≤ s(n)/2 the 2i-th stage of P � is run letting it interact with V which
receives as input sk, xi and a random string ri, while the (2i + 1)-th stage of
P � is run to obtain xi.

Given an s-concurrent malicious prover P ∗ and an honest verifier V , a con-
current attack is performed in the following way: 1) the first stage of V is run on
input 1n and a random string so that a pair (pk, sk) is obtained; 2) P ∗ is run on
input 1n and pk; 3) whenever P ∗ starts a new protocol choosing a statement, V
is run on inputs the new statement, a new random string and sk.

Definition 2. Given a complete pair 〈P, V 〉 for an NP-language L in the BPK
model, then 〈P, V 〉 is a concurrently (resp., sequentially) sound interactive
argument system for L if for all positive polynomials s, for all s-concurrent
(resp., s-sequential) malicious provers P � and for any false statement “x ∈ L”
the probability that in an execution of a concurrent (resp. sequential) attack, V
outputs “accept” for such a statement is negligible in n.
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In the definition above, if the malicious prover P � is computationally un-
bounded, then 〈P, V 〉 is a proof (and not only an argument) system.

Definition 3. Let 〈P, V 〉 be an interactive proof or argument system for a lan-
guage L. We say that a probabilistic polynomial-time adversarial verifier V � is
a concurrent adversary in the BPK model if on input polynomially many
values x̄ = x1, . . . , xPOLY(n), it first generates the public file F with POLY(n)
public keys and then concurrently interacts with POLY(n) number of independent
copies of P (each with a valid witness for the statement), with common input x̄
and without any restrictions over the scheduling of the messages in the different
interactions with P . Moreover we say that the transcript of such a concurrent
interaction consists of x̄ and the sequence of prover and verifier messages ex-
changed during the interaction. We refer to viewP

V �(x̄) as the random variable
describing the content of the random tape of V � and the transcript of the con-
current interactions between P and V �.

Definition 4. Let 〈P, V 〉 be an interactive argument or proof system for a lan-
guage L in the BPK model. We say that 〈P, V 〉 is black-box concurrent zero
knowledge if there exists a probabilistic polynomial-time algorithm S such that
for each polynomial-time concurrent adversary V �, let SV �(x̄) be the output of
S on input x̄ and black-box access to V �, then if x1, . . . , xPOLY(n) ∈ L, the en-
sembles {viewP

V �(x̄)} and {SV �(x̄)} are computationally indistinguishable.

Definition 5. An interactive argument system 〈P, V 〉 in the BPK model is
black-box resettable zero knowledge if there exists a probabilistic polynomial-
time algorithm S such that for all probabilistic polynomial time adversaries
V ∗, for all pairs of polynomials (s, t) and for all xi ∈ L where |xi| = n and
i = 1, . . . , s(n), V � runs in at most t(n) steps and the following two distribu-
tions are indistinguishable:

1. the output of V � that generates F with s(n) entries and interacts (even
concurrently) a polynomial number of times with each P (xi, yi, j, rk, F ) where
yi is a witness for xi ∈ L, |xi| = n, j is the index (i.e. associated identity)
of the public key of V � in F and rk is a random tape for 1 ≤ i, j, k ≤ s(n);

2. the output of S given black-box access to V ∗ on input x1, . . . , xs(n).

Moreover we define such an adversarial verifier V ∗ as an (s, t)-resetting ma-
licious verifier.

The definitions in the UPK model are very similar to the ones given for the
BPK model. The only interesting difference is the attack of the malicious prover.
Indeed, in the UPK model there is a bound on the number of sessions that the
malicious prover can open in order to prove a false statement. Indeed, the verifier
only uses his public key an a-priori fixed polynomial number of times and he uses
a counter (a value that is persistent between the sessions) to verify that his key
is not yet expired. For details see [12].
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3 3-Round Sequentially Sound cZK in the BPK Model

In this section we will concentrate entirely on the proof of the following theorem.

Theorem 1. Any black-box concurrent zero-knowledge argument system satis-
fying sequential soundness in the BPK model for a language L outside of BPP
requires at least 4 rounds.

3.1 Techniques for Achieving the Result

In [11,12], it has been proven that in the BPK model concurrent soundness can
not be achieved in less than 4 rounds. That proof mainly follows the proof of
the following theorem by Goldreich and Krawczyk in [15]: “In the plain model,
any black-box zero-knowledge argument system for a language outside of BPP
requires at least 4 rounds”. Indeed, the proof given in [15], crucially uses the
fact that if there exists a simulator M , then the work of M can be used either
to decide the language or to violate the soundness of the protocol. Indeed, in
case the simulator outputs an accepting transcript for a false statement, an
adversarial prover can prove the same false statement by emulating the rewinds of
the simulator by means of concurrent sessions. Also in [11,12], the same analysis
is carefully repeated by using a concurrent malicious prover, thus proving that
black-box zero knowledge with concurrent soundness needs at least 4 rounds for
non-trivial languages in the BPK model.

However, when the prover can only open sequential sessions, the previously
discussed approach does not work anymore. Actually, only sequential soundness
and zero knowledge are not enough to prove the impossibility result. Indeed,
in [13], it has been shown that in the BPK model a 3-round sequential black-box
zero-knowledge argument system with sequential soundness exists. It is there-
fore vital to use the concurrent black-box zero-knowledge property along with
sequential soundness in order to obtain the desired claim. Note that the black-
box concurrent zero-knowledge property (i.e., the existence of a strong simulator
that works in an hostile setting) has been previously used in [16,17,4] to show
that black-box concurrent zero knowledge can not be achieved respectively in 4,
7 and finally in a constant number of rounds in the plain model. However these
previous results do not help at all in the BPK model, since constant-round black-
box concurrent (and even resettable) zero knowledge has been achieved in the
BPK model. In particular only 3 rounds are necessary for one-time soundness [11]
and 4 rounds for concurrent soundness [13].

Our proof of Theorem 1 therefore exploits a joined use of techniques for
proving impossibility results for 3-round black-box zero knowledge as well as
impossibility results for black-box concurrent zero knowledge in the plain model.

High-Level Overview. For the sake of simplifying the presentation, we now only
consider conversation-based protocols, i.e., protocols where at the end of each
proof the verifiers decides to accept or to not accept the proof without using
private data. Therefore, in a conversation-based protocol, by simply looking at
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the transcript of the protocol it is possible to efficiently decide whether the
verifier accepts or not.

We will show that for any language L with a 3-round sequentially sound
black-box concurrent zero knowledge argument system Π = 〈P, V 〉 in the BPK
model , we can use the simulator M for concurrent zero knowledge as a black
box to design an efficient deciding machine D for L.

More precisely, instead of only working with the honest verifier (in contrast
to the proofs of [11,15]) we will first design a concurrent adversarial verifier
V � (as well as a useful variant Ṽ �) which D will let interact with M on input
“x ∈ L” in order to decide x ∈ L. Specifically D runs M against V � and decides
the language based on whether M outputs an accepting transcript. To show the
correctness of D we design a V � which opens nested sessions (which we refer to
as levels), each corresponding to a different public key. To be precise the behavior
of V � is the following:

1. Upon receiving the first message of a session at level i, V � initiates a new
session at level i + 1 by using the (i + 1)-th entry of the public file, until
i = POLY(k) (for some fixed polynomial POLY()) and only continues with the
session at level i once level i + 1 has been successfully completed.

2. Before sending the second message in the 3-round protocol V � uses a family
of pseudorandom functions indexed by its random tape and evaluated upon
V �’s entire view of the current interaction with M (including all levels) in
order to generate a new value to be used as a source of randomness for
computing its response message for a given session.

In order to keep things as simple as possible during the proof, we will also
describe a variant of V � called Ṽ � which acts just as V � except at level j (where
the value of j is specified as input at Ṽ �’s startup). For this special level Ṽ �

outputs all messages received from the simulator (i.e., its complete view of the
interaction at all levels with M thus far) to its output tape and responds with
messages read on its input tape. In other words Ṽ � acts as a proxy for an external
algorithm at level j. We will use Ṽ � to contradict the soundness of Π in case of
failure of D with a polynomially related probability.

Next we will define two mutually exclusive categories of executions of a sim-
ulator such that any possible execution of a concurrent simulator M must fall
into precisely one of the two categories. In the proof we will show that although
D only works for one of the two categories, the other can be simply ignored
as such executions would need exponential time (in the security parameter k)
and therefore can happen only with negligible probability (since the expected
running time of the simulator is polynomial in k).

D decides whether x is in the language as follows: if M outputs an accepting
transcript, D will accept x otherwise D will reject x. Notice that if x ∈ L, then
by the fact that M is a simulator for concurrent zero knowledge, it follows that D
will accept x with overwhelming probability. The case x �∈ L is more complex. We
will design a cheating sequential prover P � which runs Ṽ � against M , using Ṽ � as
a proxy for sessions with an honest verifier V . Then we show that for any x �∈ L,
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the probability that P � succeeds in cheating an honest verifier V is polynomially
related to the probability of M outputting an accepting transcript for x. Here
“convinces” refers to the prover convincing the verifier of the theorem x ∈ L
in some session and ≈poly stands for polynomially related. Thus by soundness,
M will only successfully prove a false statement with a negligible probability.
Therefore we can conclude that D is a deciding machine for L contradicting the
assumption that L /∈ BPP.

Now we shall begin the detailed discussion by describing the aforementioned
adversary V �.

3.2 The Adversarial Verifier V �

In general V � acts exactly as the honest verifier V would except for a few special
deviations.

Initialization Phase. Let POLY() be some fixed polynomial. V � (honestly and in-
dependently) generates p = POLY(k) public-private key pairs {(pki, ski)}i for i ∈
{1, 2, .., p} placing all public keys pk = {pki}i≤p in the public file F . That is V �

simply runs V ’s initialization algorithm p times, each time with a new uniformly
and independently chosen random string, publishing all (public) output.

Interactive Phase. V � maintains an internal counter i which is initialized to 1.
The counter is used to keep track of the current level, i.e. the index of the public
key in F which is to be used for that level.

We denote with a triple (ai, bi, ci) a 3-round protocol played at level i, where
ai denotes the first message of the prover to the verifier, bi the second message
of the verifier to the prover, and ci denotes the last message of the prover to the
verifier.

Upon receiving ai for i < p, V � initiates a new session in a concurrent fashion,
at level i + 1 requesting a proof of the same statement “x ∈ L”. Only once this
new level has been successfully completed, does it continue execution at level i.
(If i = p then V � continues execution of the current session without initiating
any new levels.) See Fig. 2.

At level i, once V � has received ai but before initiating the next level (and
thus before choosing and sending bi), V � sets the string r′i = fri(viewV �) where:

1. ri is V �’s random tape for this session.
2. viewV �

i
is V �’s view of the entire interaction at all levels so far up to level i.

3. fri ∈ {PRFr}r∈R is the pseudorandom function with the index ri where R
is the set of all possible random tapes with which V � can be initialized.

Now for the rest of this session, V � uses r′i as its random tape. Once the new
random string has been defined, V � continues as the honest verifier does until
the end of the session.

The Ṽ � Variation. For reasons of simplicity and overview we will now describe
a related verifier algorithm Ṽ �. The only difference between V � and Ṽ � is that
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Fig. 2. The randomness used by V � for each reply depends on his view

the latter, on initialization, reads an integer j along with a key pk, on its input
tape. Ṽ � generates the public file just as V � does, except for substituting (V, pk)
for the identity j. Further whenever Ṽ � must send bj , it writes its entire view
viewṼ �

j
to its output tape1, and pauses execution until a value for bj is written

to its input tape which it forwards to the prover as its message. Finally, upon
receiving cj , it writes cj and the same view viewṼ �

j
it outputted when getting bj

at the beginning of this session. (Ṽ � will later be run as a subroutine by another
algorithm which will tell it which messages to use for level j but let it act just
as V � would at all other levels. viewṼ �

j
can be seen as an identifier for a given

session.)

3.3 The Executions of the Simulator

Next we consider two (mutually exclusive) categories of executions of a simulator.

Definition 6. Let M be the simulator that is guaranteed to exists for a black-
box concurrent zero knowledge protocol Π = 〈P, V, 〉 and let V � be a probabilistic
polynomial-time interactive algorithm. Then when M interacts with V �, if there
exists a level j, j ≤ p with the following properties:

1 This view (which includes the random tape assigned by M) is the exact same view
which V � uses as the argument to its pseudorandom function when creating r′

j .
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1. Let {V iewsV �
j
} be the set of all of views seen so far by V � during the entire

interaction when at level j. Then viewV �
j
, the view of V � just before playing

bj (at level j), is a new one, i.e. viewV �
j

/∈ {V iewsV �
j
}. Notice that the view

at level j includes all messages ai at levels i for i ≤ j (see Fig. 2).
2. From when bj has been sent until when cj has been sent, V � never has a

new view view′
V �

j
/∈ {V iewsV �

j
}. In other words after receiving bj but before

sending cj for a given session at level j, M does not request a rewind such
that V � reaches a point where it sends a b′j such that it has a view view′

V �
j

which it has never had before.

then we call this execution of M a j-deciding execution for V �.

Comments:

– If we consider a simulator M running against the adversarial verifier V �

specified above then the views considered in the definition are exactly those
used as arguments to the pseudorandom function when setting r′j .

– We use the term “j-deciding” because the simulator’s j-th session will help
to prove that it can be used to decide that language efficiently.

Definition 7. Let M and V � be as above. If there exists no j as above (that
is, in order to complete every session resulting in an accepting view of V �, M
requires at least one sequence of events (including a rewind) resulting in a new
V iew′

V � at level j) then we call this execution of M a hard execution for V �.

Comments and Examples. First we note that it is clear from the definition that
given an execution of M , it must be either a j-deciding or hard for V � but
never both since either at least one such j exists or not. In order to clarify the
two definitions we now give a simple example of a V � with only one level of
interaction with M .

Suppose A = (a, b, c) and B = (a′, b′, c′) are the accepting transcripts of two
different sessions (of the same protocol) and let R stand for “M rewinds V �”.
Now suppose M and V � interact as follows:

(a, b, R, a′, b′, R, a, b, c) = (m1, m2, m3, m4, m5, m6, m7, m8, m9)

In this case the triple (a, b, c) does not fulfill the requirement to make this ex-
ecution of M a 1-deciding execution for V � because although (m1, m2, m9) is
an accepting transcript, between m2 and m9 being received by V �, M rewinds
V � and causes it to have a new view (with messages m3,m4 and m5) which
violates the second point of the definition. Further although (m7, m8, m9) is a
transcript started and successfully completed without any rewind at all, this
sequence violates the first point of the definition of a j-deciding execution since
before playing m8, V � now has an old view: specifically that which it had before
playing m2. Therefore this is an hard execution for V �. If, on the other hand, the
interaction began only with m4, or if the last message were a message m6′ = c′

instead of m6 then M would be a 1-deciding simulator for V �.
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The intuition behind the crucial part of the proof is to show that if an
execution of M when interacting with a specially designed adversarial verifier
is a hard execution then M must perform an exponential number of rewinds in
order to finish which implies that all hard executions with this verifier can only
happen with negligible probability. If however they are j-deciding then in case
the execution resulted in a false proof (i.e. if x /∈ L) then the execution can be
used by a specially designed malicious prover to break soundness. This is used
to establish the correctness of a deciding machine which uses the simulator and
an adversarial verifier as subroutines.

We now have all tools we need and can begin with the main proof.

3.4 The Proof of Theorem 1

Proof. Assume, by contradiction, there exists a language L /∈ BPP with a 3-
round black-box concurrent zero-knowledge argument system 〈P, V 〉 in the BPK
model enjoying sequential soundness, and let V � and Ṽ � be the adversarial
verifiers as defined above. Then by the concurrent zero-knowledge property of
〈P, V 〉, there exists an expected polynomial-time simulator M which, given oracle
access to any concurrent verifier V � will, for any true statement x ∈ L, output a
transcript indistinguishable from that of V � interacting with the honest prover P .

In order to reach the contradiction we construct an efficient deciding algo-
rithm D which, on input x, decides membership in the language L which would
imply L ∈ BPP. To decide whether x is in L, D runs M while simulating V � to
it. If M outputs an accepting transcript, D will output x ∈ L, otherwise D will
output x /∈ L. Thus we will need to prove that with overwhelming probability
M will output an accepting transcript if and only if x ∈ L.

Proposition 1. If x ∈ L then D will accept the proof with overwhelming prob-
ability.

Proof. A session with a verifier using a pseudorandom tape looks the same as
one with a verifier using a random tape, otherwise it is possible to break the
randomness property of PRF . Since V �, after setting its random tape, uses the
same algorithm as V for the rest of the interaction, V � would, by completeness
of 〈P, V 〉, when interacting with P , accept for any given session at any level.
Since there are only polynomially many sessions, but each has an overwhelming
probability of resulting in an accepting view of V �, with overwhelming proba-
bility they will all result in an accepting view of V �. Thus with overwhelming
probability V � will accept when interacting with P . Therefore by the concurrent
zero-knowledge property of 〈P, V 〉, given a true statement as common input M
will, with overwhelming probability, outputs an accepting view.

Proposition 2. Given x �∈ L then D will reject x with overwhelming probability.

Proof. To show this we will design a malicious prover P � which can use M to
prove any statement with a polynomially related probability to the probability
of M outputting an accepting transcript for the same statement. We can then
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conclude that M outputs an accepting transcript for x �∈ L with negligible
probability since otherwise the soundness of 〈P, V 〉 is violated. However P � will
only work for j-deciding executions, so we will also show that an execution of
M can be hard for V � only with negligible probability.

We define P � to be a polynomial-time algorithm with black-box access to
M . Given x as input, P � interacts with the honest verifier V with the goal of
convincing V of the false statement “x ∈ L”. It does this by running Ṽ � with a
random guess j′ for j and the public key produced by V on its input, against
M with the statement “x ∈ L”. P � then acts as a man-in-the-middle between
Ṽ � and V for all interaction at level j, and maintains a set of pairs: the views
outputted by Ṽ � and the corresponding response supplied by V . If Ṽ � outputs a
previously seen view then P � does not forward the query to V , instead it simply
answers by using the response previously stored in his memory. Further whenever
P � initiates a session with V (in order to get a response bj for a session), P �

stores in a registry the view given in the output by Ṽ �. Thus when M outputs
the message cj of a session along with a view, P � checks the value of the registry
to see whether cj corresponds to the currently open session with V . If this is the
case then P � forwards cj to V thereby completing its current interaction with
V . In other words the registry is used to store what is in essence, a unique ID
for a session, namely the view which V � would use as an argument when setting
its pseudorandom tape r′. For a detailed description of P � see Fig. 3.

Lemma 1. When interacting with P �, M will act as when interacting with V �

with overwhelming probability.

Proof. We must show that M can not tell the difference between interacting with
V � and with P �. Since P � has oracle access to Ṽ � it has complete control over
its input including its random tape and can, in particular, perform all necessary
rewinds and secret key operations. Thus it suffices to consider level j′. Because
V and V � follow the same algorithm in deciding the message b, apart from what
they use as a random tape, the only concerns are rewinds and the fact that V ’s
tapes are truly random and not chosen depending on any variables such as its
view. Specifically:

1. M noticing that V is not being rewound when M requests a rewind to an
old view.

2. M noticing that V is not being rewound when M requests a rewind to a new
view (but in fact V simply uses a new random tape).

3. M noticing that V is not basing its randomness on the entire view at all
levels.

The first concern is easily taken care of by pointing out in such a case P �

responds from memory, i.e. exactly as it did last time, as is expected, thus main-
taining M ’s view. For the second concern, if M were able to tell the difference
between P � and V � in such a situation, this would imply that it can tell the dif-
ference between a new random tape being used and a new pseudorandom tape.
However such an M could then be used as a black box to create a distinguishing
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Common input: security parameter k, public key pk and “x ∈ L”.
P � Setup:

1. P � chooses a random j′ ← [1, p = POLY(k)].
2. P � initializes Ṽ � with j′ and pk on its input tape.
3. P � initializes M with the public file generated by Ṽ �. Further P � con-

nects the communication tapes of M and Ṽ � so that they interact with
each other.

4. During the entire interaction P � will maintain the set S =
{V iewṼ � , bj′} of views given in output by Ṽ � at level j′ and the corre-
sponding responses written back by V . This set is initialized as empty.

5. During the entire interaction P � will maintain the registry V iew which
is initialized as empty. (This will be used to keep track of the defining
properties of the current open session with V .)

6. P � initiates Ṽ � with the statement “x ∈ L” all the while proxying
between V and Ṽ �.

P � Interaction:

– If Ṽ � outputs a view V iewṼ � (we denote by aj′ the most recent first
round for level j′ of V iewṼ �) then P � checks if the view is already in
S:

• TRUE: Respond with the corresponding bj′ from S.
• FALSE: Close any open session with V and begin a new one. Set the

registry V iew = V iewṼ � . Send aj′ to V receiving bj′ in response.
Append (V iewṼ � , bj′) to S. And finally write bj′ to Ṽ �’s input tape.

– If Ṽ � outputs (cj′ , V iewṼ �), then if (aj′ , bj′ , cj′) is not an accepting
transcript then P � sends back an abort to Ṽ �; otherwise P � checks if
V iew = V iewṼ � :

• TRUE: Forward cj′ to V thus completing the session with V .
• FALSE: Drop cj′ .

Fig. 3. Using M as a black box to convince V of a false statement

algorithm for the PRF family which contradicts the families randomness prop-
erty. This leaves the third concern which is dealt with by pointing out that a new
session with V (where V will thus have a new random tape) resulting in a new
response b is only requested by P � upon receiving a new view. In other words the
random tape used in generating the response b which M receives for a session, is
created new only if the view at the beginning of a session is new. If the view is
old then the old response (stored in memory by P �) is used, which implies (from
M ’s point of view) that the same random tape was used to generate b. Thus
the random tape used to produce the message received by M depends only and
completely upon the view before playing b.
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As we will show below P � will succeed in its goal if and only if the execution
of M is j-deciding for V � and if it guesses the value of j correctly.

Lemma 2. An execution of M is j-deciding for V � with overwhelming proba-
bility.

Proof. Suppose, by contradiction, that an execution of M is hard for V �. In this
case we will show through analysis of the interaction between M and V � that
this execution of M needs exponential time. Specifically we show, by induction
on the level i, that M must perform exponentially (in k) many rewinds.

By definition of a hard execution for V �, M must perform at least one rewind
for each session it solves when interacting with V �. In particular this means that
for any new session at level i = p, M must rewind. The same holds true at level
i−1. Now since this is a hard simulator, for every level at least one of the rewinds
leads to a new view upon receiving ai−1. This implies that when V � initiates a
session at level i it will also have a new view, compared to all previous sessions
at level i, and thus will use a new random string r′i. In other words this will be
a new session and will therefore require M to rewind again since this is a hard
execution for V �.

Again since this is a hard execution for V �, there must be a rewind after bi−1
has been received which leads to a new view at level i− 1, which means at least
2 new sessions at level i will need to be solved. Therefore at least 2 rewinds are
required to solve all sessions at level i. The first rewind being used to solve the
first session which must be successfully completed before bi−1 is sent, and the
second rewind being used to solve the new session (with the new view) created
after the rewind at level i− 1.

Thus by induction M must perform at least:
∑p

i=1 2i−1 = 2p − 1 rewinds.
Since the expected polynomial-time of M is polynomial in k and p = POLY(k), a
hard execution for V � can only happen with negligible probability.

Result. Since by Lemma 2, the execution of M is j-deciding for V � and by
lemma 1, M essentially acts the same when interacting with P � in the setup
described in P �’s definition, we can conclude that an execution of M is j-deciding
for P � as well with overwhelming probability.

Now P � has a (non-negligible) probability 1
p of correctly guessing j′ = j and

in such a case, by the definition of a j-deciding execution there will be at least one
session where M causes no new view between beginning and end of (aj , bj , cj)
when it is solved for the first time. (Specifically there will be at least one session
where Ṽ � outputs (cj′ , viewṼ �) such that the registry V iew = viewṼ � .) This
means that P � will successfully complete at least one session with V . Therefore
by soundness of 〈P, V 〉 we have shown that on input a false statement, M will
with overwhelming probability output a reject transcript.

To conclude that we have now a deciding algorithm D we need to first deal
with the small matter of M running in expected polynomial-time rather then
strict polynomial-time. This is dealt with in the same way as in [15] (remark
6.1), namely D simply terminates the execution of M after a fixed polynomial
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number of steps, chosen in such a way that M has a good chance of simulating
the conversation.

Thus with proposition 1 and proposition 2 we have shown the efficient al-
gorithm D will, with overwhelming probability, decide correctly contradicting
L /∈ BPP.

Extension. As we have pointed out, the proof presented in this paper only applies
to conversation-based argument systems. We remark that all argument systems
known to us are indeed conversation-based. We remark though that our proof
can be extended to cover all argument systems by considering an adversarial
verifier V � that imposes a more sophisticated schedule and rejects with some
non-negligible probability the interactions.

4 3-Round RZK Proofs in the UPK Model

In this section we present the first 3-round rZK proof (in contrast to argu-
ment) system with concurrent soundness for all NP in the UPK model. More-
over, our construction does not need hardness assumptions with respect to
superpolynomial-time algorithms (i.e., complexity leveraging). Similarly to the
constant-round zero-knowledge proofs in the plain model of [18], we use at the
beginning (i.e., in our case the construction of the public file) an uncondition-
ally hiding commitment scheme. Obviously this can be implemented in one
round (therefore in the UPK model) under the assumption that non-interactive
unconditionally-hiding commitments exist. This is a strong assumption since so
far no construction of non-interactive unconditionally-hiding commitments has
been given in the plain model. Therefore, according to the current state-of-the-
art, some variations of the model have to be considered. For instance a two-round
interactive preprocessing allows to commit with unconditional hiding. This can
be alternatively implemented by requiring first a non-interactive set-up stage
performed by the provers, then a non-interactive set-up stage performed by the
verifiers on input the output of the stage of the provers.

Notice that the hash-based commitment scheme used in the preprocessing
stage in [14] actually is a non-interactive unconditionally hiding commitment
scheme. However such a scheme can only achieve security with respect to uniform
adversarial verifiers [19]. In our construction by using hash-based commitments
we obtain the same security achieved in [14].

We stress that the 3-round rZK argument system with concurrent soundness
presented in [14] is not a proof system since the verifier sends to the prover a non-
interactive zero-knowledge proof of knowledge that is only computational zero
knowledge. Moreover, if the proof system of [18] is implemented in 3 rounds in
the UPK model, the adversarial verifier can play the second round by choosing one
of the polynomially bounded number of public keys and therefore the simulator
can not complete the proof with the same probability of the honest prover.

High-Level Overview. The main idea of the previous constructions of resettable
zero-knowledge argument systems in the public-key models, is that the simula-
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tor obtains (by means of rewinds) the secret key (or at least the output of a
computation that needs the secret key) of the verifier and then can perform a
straight-line simulation. However, when the adversarial prover is computation-
ally unbounded, on input the public key of the verifier, the prover can compute
the secret key and then he could succeed in proving a false statement. We there-
fore use a different technique. We assume that the verifier generates a public
key that corresponds to a super-polynomial number of secret keys each with
the same probability. Moreover, we assume that no polynomial-time adversarial
verifier can compute more than a bounded polynomial-number of secret keys. A
good candidate for this component is a non-interactive unconditionally hiding
commitment scheme. Indeed, in this case a commitment corresponds to any pos-
sible message of the corresponding message space. This guarantees that even an
unbounded prover, by simply looking at the public key of the verifier, does not
get any information about the secret key of the verifier. Moreover the binding
property guarantees that the polynomial-time adversarial verifier does not find
a pair of messages that correspond to the same commitment. This is important
for the zero-knowledge property since we will use the fact that the simulator
and the verifier will know the same secret key. Indeed, the mere possession of
one valid secret key does not work since the unbounded prover can compute
any secret and therefore could use it for proving false statements. It is therefore
necessary to formalize that only knowledge of the specific secret key known by
the verifier allows one to simulate the proof without knowledge of the witness
for the statement on input.

We formalize this idea by requiring that the prover commits to the wit-
ness by means of an unconditionally binding commitment scheme, the verifier
sends his secret key and then the prover uses a one-round resettable witness-
indistinguishable proof system (e.g., using a ZAP [20], by assuming that the
verifier puts in his public key also the first message of the ZAP) for proving that
the committed witness, is either a witness for “x ∈ L” or is precisely the secret
key sent by the verifier so far (here we use the FLS-paradigm [21]). Intuitively,
the protocol is sound with respect to an unbounded prover since when the prover
commits to the witness, he has only seen an unconditionally hiding commitment.
Therefore he has no advantage for guessing the specific secret key known to the
verifier in the set of all possible secret keys. However, notice that the verifier can
not use more than once a public key. The protocol is zero-knowledge because
the simulator extracts the only secret key that the adversarial verifier knows.
Moreover, the fact that the simulator uses a different witness with respect to the
one used by the prover in the last proof is not detected by a polynomial-time
resetting adversarial verifier since the use of a different witness is plugged in a
resettable witness indistinguishable proof system.

The formal protocol considers a bounded polynomial number of public keys
since the protocol works in the upperbounded (UPK) public-key model. Since in
each session the verifier uses a different secret key, we obtain also concurrent
soundness with only 3 rounds.



Impossibility and Feasibility Results for Zero Knowledge with Public Keys 151

References

1. Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive
Proof Systems. SIAM J. on Computing 18 (1989) 186–208

2. Dwork, C., Naor, M., Sahai, A.: Concurrent Zero-Knowledge. Proc. of STOC ’98,
ACM (1998) 409–418

3. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable Zero-Knowledge.
Proc. of STOC ’00, ACM (2000) 235–244

4. Canetti, R., Kilian, J., Petrank, E., Rosen, A.: Black-Box Concurrent Zero-
Knowledge Requires ω(log n) Rounds. Proc. of STOC ’01, ACM (2001) 570–579

5. Barak, B.: How to Go Beyond the Black-Box Simulation Barrier. Proc. of FOCS
’01, (2001) 106–115

6. Persiano, G., Visconti, I.: Single-Prover Concurrent Zero Knowledge in Almost
Constant Rounds. Proc. of ICALP ’05. LNCS, Springer Verlag (2005)

7. Dwork, C., Sahai, A.: Concurrent Zero-Knowledge: Reducing the Need for Timing
Constraints. Proc. of Crypto ’98. Vol. 1462 of LNCS. (1998) 442–457

8. Goldreich, O.: Concurrent Zero-Knowledge with Timing, Revisited. Proc. of STOC
’02, ACM (2002) 332–340

9. Damgard, I.: Efficient Concurrent Zero-Knowledge in the Auxiliary String Model.
Proc. of Eurocrypt ’00. Vol. 1807 of LNCS (2000) 418–430

10. Blum, M., De Santis, A., Micali, S., Persiano, G.: Non-Interactive Zero-Knowledge.
SIAM J. on Computing 20 (1991) 1084–1118

11. Micali, S., Reyzin, L.: Soundness in the Public-Key Model. Proc. of Crypto ’01.
Vol. 2139 of LNCS (2001) 542–565

12. Reyzin, L.: Zero-Knowledge with Public Keys. PhD thesis, Massachusetts Institute
of Technology (2001)

13. Di Crescenzo, G., Persiano, G., Visconti, I.: Constant-Round Resettable Zero
Knowledge with Concurrent Soundness in the Bare Public-Key Model. Proc. of
Crypto ’04. Vol. 3152 of LNCS (2004) 237–253

14. Micali, S., Reyzin, L.: Min-Round Resettable Zero-Knowledge in the Public-key
Model. Proc. of Eurocrypt ’01. Vol. 2045 of LNCS (2001) 373–393

15. Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems.
SIAM J. on Computing 25 (1996) 169–192

16. Kilian, J., Petrank, E., Rackoff, C.: Lower Bounds for Zero Knowledge on the
Internet. Proc. of FOCS ’98. (1998) 484–492

17. Rosen, A.: A Note on the Round-Complexity of Concurrent Zero-Knowledge. Proc.
of Crypto ’00. Vol. 1880 of LNCS (2000) 451–468

18. Goldreich, O., Kahan, A.: How to Construct Constant-Round Zero-Knowledge
Proof Systems for NP. Journal of Cryptology 9 (1996) 167–190

19. Reyzin, L.: Personal communication (2005)
20. Dwork, C., Naor, M.: Zaps and their Applications. Proc. of FOCS ’00. (2000)

283–293
21. Feige, U., Lapidot, D., Shamir, A.: Multiple Non-Interactive Zero Knowledge

Proofs Under General Assumptions. SIAM J. on Computing 29 (1999) 1–28



Communication-Efficient Non-interactive

Proofs of Knowledge with Online Extractors

Marc Fischlin�

Institute for Theoretical Computer Science,
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Abstract. We show how to turn three-move proofs of knowledge into
non-interactive ones in the random oracle model. Unlike the classical
Fiat-Shamir transformation our solution supports an online extractor
which outputs the witness from such a non-interactive proof instanta-
neously, without having to rewind or fork. Additionally, the communi-
cation complexity of our solution is significantly lower than for previous
proofs with online extractors. We furthermore give a superlogarithmic
lower bound on the number of hash function evaluations for such online
extractable proofs, matching the number in our construction, and we also
show how to enhance security of the group signature scheme suggested
recently by Boneh, Boyen and Shacham with our construction.

1 Introduction

The Fiat-Shamir transformation [17] is a well-known technique to remove in-
teraction from proofs of knowledge and to derive signature schemes from such
proofs. The starting point is a three-move proof between a prover, holding a wit-
ness w to a public value x, and a verifier. The prover sends a commitment com,
then receives a random challenge ch from the verifier and finally replies with
resp. For the non-interactive version the prover computes the challenge himself
by applying a hash function H to the commitment. The security of this trans-
formation has later been analyzed under the idealized assumption that the hash
function behaves as a random oracle [8,27], and has led to security proofs for
related signature schemes.

Limitations. In the interactive case, all common knowledge extractors work by
repeatedly rewinding the prover to the step after having sent com and completing
the executions with independent random challenges. This eventually yields two
valid executions (com, ch, resp), (com, ch′, resp′) for different challenges ch �= ch′

from which the extractor can compute the witness w. The same technique is
reflected in the security proofs of the non-interactive version: The extractor

� This work was supported by the Emmy Noether Programme Fi 940/1-1 of the Ger-
man Research Foundation (DFG).

V. Shoup (Ed.): Crypto 2005, LNCS 3621, pp. 152–168, 2005.
c© International Association for Cryptologic Research 2005
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continuously rewinds to the point where the prover has asked the random oracle
H about com and completes the executions with independent hash values to find
two valid executions (called “forking” in [27]).

The notable fact above is that, although the proof is non-interactive, the
extractor still works by rewinding. As pointed out by [29] for example, this causes
problems for some cryptographic schemes. Consider for example the ElGamal
encryption (R, C) = (gr, pkr · m) for messages m. One attempt to make this
scheme secure against chosen-ciphertext attacks is to append a non-interactive
proof of knowledge for r = log R to the ciphertext. The idea is that, giving such
a proof, any party generating a ciphertext would already “know” r and therefore
m = C · pk−r. In other words, decryption queries in a chosen-ciphertext attack
should be simulatable with the help of the knowledge extractor. However, this
intuition cannot be turned into a proof, at least not with the rewinding extractor.
Consider for example an adversary which sequentially puts n hash queries for the
proofs of knowledge and then asks a decryption oracle for ciphertexts involving
these hash queries in reverse order. Then, to answer each decryption query the
extractor would have to rewind to the corresponding hash query. By this, it
destroys all previously simulated decryption queries and must redo them from
scratch, and the overall running time would become exponential in n.

We remark that the rewinding strategy also causes a loose security reduction.
The results in [27] show that, if the adversary makes Q queries to the random or-
acle and forges, say, Schnorr signatures in time T with probability ε, then we can
compute discrete logarithms in expected time QT/ε with constant probability.
Hence, the number of hash queries enters multiplicatively in the time/success ra-
tio. In contrast, for RSA-PSS and similar schemes [11,12,21] tight reductions are
known. For other schemes like discrete-logarithm signatures different approaches
relying on potentially stronger assumptions have been taken to get tight security
results [18].

Constructing Online Extractors. The solution to the problems above is to use
extractors which output the witness immediately, i.e., without having to rewind.
Following the terminology of [29], where this problem was discussed but circum-
vented differently, we call them online extractors.1 Informally, such an extractor
is given the value x, a valid proof π produced by a prover and all hash queries
and answers the prover made for generating this proof (i.e., even queries which
are later ignored in the proof). The extractor then computes the witness w with-
out further communication with the prover. Note that here we use the fact that
we work in the random oracle model, where the extractor sees the hash queries.

One known possibility to build such online extractors is to use cut-and-choose
techniques combined with hash trees [26,22]. That is, one limits the challenge
space to logarithmically many bits and repeats the following atomic protocol
sufficiently often in parallel. The prover computes the initial commitment com
of the interactive protocols and computes the answers for all possible challenges.
Since there are only polynomially many challenges and answers, the prover can

1 Sometimes such extractors are also called straight-line extractors in the literature.
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build a binary hash tree with all answers at the leaves. Then he computes the
actual challenge as the hash value over com and the root of the tree, and opens
only the corresponding answer and all siblings on the path up to the root as a
proof of correctness. For reasonable parameters these revealed hash values easily
add about 10, 000 to 25, 000 bits to the non-interactive proof for all executions
together, and thus cause a significant communication overhead.

Here we propose a different approach to build online extractors, producing
much shorter proofs than the tree-based solution while having comparable ex-
traction error and running time characteristics. In this introduction we provide a
simplified description of our solution, omitting some necessary modifications. We
also start with a polynomially bounded challenge space and a non-constant num-
ber of parallel executions. For each execution i the prover first computes comi

but now tries all polynomially many challenges chi = 0, 1, 2, . . . and answers
respi = respi(chi) till it finds one for which a predetermined (at most logarith-
mic) number of least significant bits of H(x,

⇀
com, i, chi, respi) are all zero. The

prover outputs the vector ( ⇀
com,

⇀

ch,
⇀

resp), no further hash values need to be in-
cluded, and the verifier now also checks in all executions that the lower bits of
the hash values are zero.

The honest prover is able to find a convincing proof after a polynomial num-
ber of trials for each execution (except with negligible probability which can be
adapted through parameters). It is also clear that any prover who probes at most
one valid challenge-response pair for each execution most likely does not find a
hash value with zero-bits.2 If, on the other hand, the prover tries at least two
samples, then the knowledge extractor can find them in the list of hash queries
and compute the witness. It follows that the (online) extraction probability is
negligibly close to the verifier’s acceptance probability.

Our construction, outlined above, still requires a non-constant number of
parallel repetitions in order to decrease the soundness error from polynomial
to negligible. However, for proofs which are already based on small challenges,
such as RSA with small exponents or “more quantum-resistant” alternatives
like the recently proposed lattice-based proofs with bit challenges [24], several
repetitions have to be carried out anyway, and our construction only yields an
insignificant overhead in such cases. For other scenarios, like proofs of knowledge
for discrete logarithms, the repetitions may still be acceptable, e.g., if the proof is
only executed occasionally as for key registration. Alternatively, for the discrete
logarithm for example, the prover can precompute the commitments comi = gri

offline and the verifier is able to use batch verification techniques [6] to reduce
the computational cost.

A Lower Bound. Both the hash-tree construction and our solution here require
a non-constant number of repetitions of the atomic protocol. An interesting
question is if one can reduce this number. As a step towards disproving this

2 We presume that it is infeasible to find distinct responses to a single challenge.
Indeed, this requirement is not necessary for the Fiat-Shamir transformation, yet all
proofs we know of have this additional property.
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we show that the number of hash function evaluations for the prover must be
superlogarithmic in order to have an online extractor (unless finding witnesses is
trivial, of course).3 While this superlogarithmic bound would be straightforward
if we restrict the hash function’s output size to a few bits, our result holds
independently of the length of hash values.

The proof of our lower bound requires that the knowledge extractor does
not have the ability to choose the hash values. If we would allow the extractor
to program the random oracle then we could apply the hash function to gen-
erate a common random string and run a non-interactive zero-knowledge proof
of knowledge in the standard model (based on additional assumptions, though)
[16]. For unrestricted (but polynomial) output length a single hash function eval-
uation for both the prover and verifier would then suffice. For non-programming
extractors the number of hash function evaluations in our construction and the
hash-tree solution are optimal with respect to general protocols.

A Word About Random Oracles. Our solution is given in the random oracle
model, and a sequence of works [10,20,23,4] has shown that constructions in
this model may not yield a secure scheme in the real world when the oracle is
instantiated by some function. It is therefore worthwhile to take a look at the
way we utilize the random oracle. In our transformation we essentially use the
random oracle as a predicate with the following properties: The only way to
evaluate this predicate is by computing it explicitly (thus “knowing” the input),
that predicate outcomes are well distributed (i.e., random), the predicate values
for related inputs are uncorrelated.

In comparison to the Fiat-Shamir transformation our construction somewhat
“decouples” the hash function from the protocol flow. Indeed, the dependency
of the answer and the hash function in the Fiat-Shamir transformation is ex-
ploited by Goldwasser and Tauman [20] to prove insecurity of the random oracle
approach for the transformation. Because of the aforementioned separation of
the protocol flow and the hash function in our solution, the counterexample in
[20] does not seem to carry over (yet, similar results may hold here as well). The
point is that our solution is provided as an alternative to the Fiat-Shamir trans-
formation, given one accepts the random oracle model as a viable way to design
efficient non-interactive proofs. Finding truly efficient non-interactive proofs of
knowledge without random oracles is still open.

Applications. Clearly, proofs of knowledge with online extractors are especially
suitable for settings with concurrent executions such as key registration steps.
As another, more specific example, we show that our method can be used to
enhance security of the Boneh et al. group signature scheme [5]. Roughly, a group
signature scheme allows a set of users to sign messages such that a signature does
not reveal the actual signer, yet a group manager holding a secret information

3 To be more precise, we give a slightly stronger result relating the number of hash
queries of the verifier and the prover. This stronger result shows for example that
hard relations cannot have efficient provers if the verifier only makes a constant
number of hash function queries to verify proofs.



156 M. Fischlin

can revoke this anonymity and identify the true signer. A stringent formalization
of these two properties, called full anonymity and full traceability, has been put
forth by Bellare et al. [7].

Although achieving strong traceability guarantees the protocol by Boneh et
al. only realizes a slightly weaker anonymity notion. In the original definition
[7] anonymity of a signer of a message should hold even if an adversary can
request the group manager to open identities for other signatures (thus resem-
bling chosen-ciphertext attacks on encryption schemes). In the weaker model
such open queries are not allowed, and this property is consequently called CPA-
full-anonymity in [5].

Without going into technical details we remark that the weaker anonymity
property in [5] originates from the underlying (variation of the) ElGamal encryp-
tion scheme and its CPA-security. A promising step towards fully anonymous
group signature is therefore to turn the ElGamal encryption into a CCA-secure
scheme. As explained before, standard Fiat-Shamir proofs of knowledge for the
randomness used to generate ciphertexts do not work because of the rewinding
problems. And although there is a very efficient method to secure basic ElGa-
mal against chosen-ciphertexts in the random oracle model [1], this technique
inherently destroys the homomorphic properties of the ciphertexts. But this ho-
momorphic property is crucial to the design of the group signature scheme as it
allows to efficiently prove relations about the encrypted message.

Proofs of knowledge with online extractors provide a general solution. How-
ever, since one of the initial motivations of [5] was to design a scheme with
short signatures of a couple of hundred bits only, the aforementioned hash-tree
based constructions with their significant communication overhead, for exam-
ple, are prohibitively expensive. We show that with our protocol we obtain a
fully-anonymous scheme and for reasonable parameters the length of signatures
increases from 1, 500 to about 5, 000 bits. In comparison, the RSA-based group
signature scheme in [2], presumably one of the most outstanding group signa-
ture schemes, still requires more than 10, 000 bits. Based on implementation
results about elliptic curves [15], and the fact that the signer in the scheme by
Ataniese et al. [2] cannot apply Chinese-Remainder techniques to compute the
exponentiations with 1, 000 and more bits, we estimate that our variation of
the Boneh group signature is still more efficient, despite the repetitions for the
proof of knowledge. This is especially true for the verifier who can apply batch
verification techniques on top.

Organization. In Section 2 we give the basic definitions of three-move Fiat-
Shamir proofs of knowledge and non-interactive ones with online extractors in
the random oracle model. The main part of the paper, Section 3, presents our
construction and the lower bound. Some of the proofs and the construction of
secure signature schemes from our solution have been omitted due to lack of
space. Section 4 finally presents our enhancement of the Boneh et al. group
signature scheme.
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2 Definitions

A security parameter k in our setting is an arbitrary string describing general
parameters. In the most simple case k = 1κ describes the length κ of the cryp-
tographic primitives in unary. More generally, k can for example consist of the
description of a group G of prime order q and generator g of that group, i.e.,
k = (G, q, g). The security parameter also describes a sequence of efficiently
verifiable relations W = (Wk)k.

A (possibly negative) function f(k) is called negligible if f(k) ≤ 1/p(k) for
any polynomial p(k) and all sufficiently large k’s. A function which is not negli-
gible is called noticeable. For two functions f, g we denote by f >∼ g the fact that
g − f is negligible. Accordingly, f ≈ g stands for f >∼ g and g >∼ f . A function f
with f >∼ 1 is called overwhelming.

We usually work in the random oracle model where parties have access to a
random function H with some domain and range depending on k. We note that
we do not let the relation W depend on the random oracle H in order to avoid
“self-referencing” problems. We occasionally let an algorithm “output a random
oracle”, H ← A, meaning that A generates a description of a (pseudo)random
function H .

We require some additional properties of the underlying Fiat-Shamir proof
to make our transformation work. First, we need that the prover’s initial com-
mitment com has nontrivial entropy. This can be achieved easily by appending
a superlogarithmic number of public random bits to com if necessary. Second,
we need that the verifier sends a uniform bit string as the challenge ch; all com-
mon proofs have this property. Third, we require that the prover’s response is
quasi unique, i.e., it should be infeasible to find another valid response resp′

to a proof (com, ch, resp), even if one knows the witness. This holds for ex-
ample if resp is uniquely determined by x, com, ch, e.g., as for the protocols
by Guillou-Quisquater [19] and Schnorr [28], but also for Okamoto’s witness-
indistinguishable variations these protocols [25] (if the parameter k contains the
system parameters like the RSA modulus N with unknown factorization).

Definition 1. A Fiat-Shamir proof of knowledge (with �(k)-bit challenges) for
relation W is a pair (P, V ) of probabilistic polynomial-time algorithms P =
(P0, P1), V = (V0, V1) with the following properties.

[Completeness.] For any parameter k, any (x, w) ∈ Wk, any (com, ch, resp) ←
(P (x, w), V0(x)) it holds V1(x, com, ch, resp) = 1.

[Commitment Entropy.] For parameter k, for any (x, w) ∈ Wk, the min-entropy
of com← P0(x, w) is superlogarithmic in k.

[Public Coin.] For any k, any (x, w) ∈ Wk any com ← P0(x, w) the challenge
ch ← V0(x, com) is uniform on {0, 1}�(k).

[Unique Responses.] For any probabilistic polynomial-time algorithm A, for pa-
rameter k and (x, com, ch, resp, resp′) ← A(k) we have, as a function of k,

Prob[V1(x, com, ch, resp) = V1(x, com, ch, resp) = 1 ∧ resp �= resp′] ≈ 0.
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[Special Soundness.] There exists a probabilistic polynomial-time algorithm K,
the knowledge extractor, such that for any k, any (x, w) ∈ Wk, any pairs
(com, ch, resp), (com, ch′, resp′) with V1(x, com, ch, resp) = V1(x, com,
ch′, resp′) = 1 and ch �= ch′, for w′ ← K(x, com, ch, resp, ch′, resp′) it holds
(x, w′) ∈Wk.

[Honest-Verifier Zero-Knowledge.] There exists a probabilistic polynomial-time
algorithm Z, the zero-knowledge simulator, such that for any pair of proba-
bilistic polynomial-time algorithms D = (D0, D1) the following distributions
are computationally indistinguishable4:
– Let (x, w, δ) ← D0(k), and (com, ch, resp)← (P (x, w), V0(x)) if (x, w) ∈

Wk, and (com, ch, resp)← ⊥ otherwise. Output D1(com, ch, resp, δ).
– Let (x, w, δ) ← D0(k), and (com, ch, resp) ← Z(x,yes) if (x, w) ∈ Wk,

and (com ch, resp)← Z(x,no) otherwise. Output D1(com, ch, resp, δ).

Below we sometimes use a stronger kind of zero-knowledge property which
basically says that the simulator is able to generate proofs for a specific challenge,
as long as this challenge is given in advance. To formalize this let V ch

0 be a verifier
which on input x, ch merely outputs ch. Then a Fiat-Shamir proof of knowledge
(with �(k)-bit challenges) is special zero-knowledge if the following holds:

[Special Zero-Knowledge.] There exists a probabilistic polynomial-time algo-
rithm Z, the special zero-knowledge simulator, such that for any pair of
probabilistic polynomial-time algorithms D = (D0, D1) the following distri-
butions are computationally indistinguishable:
– Let (x, w, ch, δ) ← D0(k), and (com, ch, resp) ← (P (x, w), V ch

0 (x, ch)) if
(x, w) ∈Wk, and (com, ch, resp)← ⊥ else. Output D1(com, ch, resp, δ).

– Let (x, w, ch, δ)← D0(k), and (com, ch, resp)← Z(x, ch,yes) if (x, w) ∈
Wk, and (com, ch, resp)← Z(x, ch,no) else. Output D1(com, ch, resp, δ).

We note that all common protocols obey this special zero-knowledge property.
In fact, it is easy to see that any Fiat-Shamir proof of knowledge is special zero-
knowledge if the challenge size �(k) = O(log k) is logarithmic (which holds for
our transformation in the next section). The idea is to simply run many copies of
the (regular) zero-knowledge simulator to find a transcript including a matching
challenge.

We next define non-interactive proofs of knowledge with online extractors.
We note that, in the random oracle model, it is easy to see that the verifier can
be assumed wlog. to be deterministic.

Definition 2. A pair (P, V ) of probabilistic polynomial-time algorithms is called
a non-interactive zero-knowledge proof of knowledge for relation W with an on-
line extractor (in the random oracle model) if the following holds.

[Completeness.] For any oracle H, any (x, w) ∈Wk and any π ← PH(x, w) we
have Prob

[
V H(x, π) = 1

]
>∼ 1.

4 Meaning that the probability that D1 outputs 1 is the same in both experiments,
up to a negligible difference.
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[Zero-Knowledge.] There exist a pair of probabilistic polynomial-time algorithms
Z = (Z0, Z1), the zero-knowledge simulator, such that for any pair of proba-
bilistic polynomial-time algorithms D = (D0, D1) the following distributions
are computationally indistinguishable:
– Let H be a random oracle, (x, w, δ) ← DH

0 (k), and π ← PH(x, w) if
(x, w) ∈Wk, and π ← ⊥ otherwise. Output DH

1 (π, δ).
– Let (H0, σ) ← Z0(k), (x, w, δ) ← DH0

0 (k), and (H1, π) ← Z1(σ, x,yes)
if (x, w) ∈Wk, and (H1, π) ← Z1(σ, x,no) otherwise. Output DH1

1 (π, δ).
[Online Extractor.] There exist a probabilistic polynomial-time algorithm K, the

online extractor, such that the following holds for any algorithm A. Let H
be a random oracle, (x, π) ← AH(k) and QH(A) be the sequence of queries
of A to H and H’s answers. Let w ← K(x, π,QH(A)). Then, as a function
of k,

Prob
[
(x, w) /∈Wk ∧ V H(x, π) = 1

]
≈ 0.

Note that we allow the zero-knowledge simulator to program the random
oracle, but only in two stages. Namely, Z0 generates H0 for D0 and then Z1
selects H1 for the find-stage of D1. Since the adversary D0 in the first stage
can pass on all interactions with H0 to D1 through the state information δ, the
simulator Z1 must guarantee that H1 is consistent with H0. However, Z1 now
has the opportunity to adapt oracle H1 with respect to the adversarial chosen
theorem x. Simulator Z1 also gets the information whether x is in the language
or not (in which case the simulator can simply set π ← ⊥).

3 Constructions

Our starting point are interactive Fiat-Shamir proofs with logarithmic challenge
length �. Note that such proofs can be easily constructed from proofs with smaller
challenge length l by combining ��/l� parallel executions. It is easy to verify
that all required properties are preserved by these parallel executions, including
unique responses and honest-verifier zero-knowledge. Analogously, we can go the
other direction and limit the challenge size to at most � bits while conserving
the properties.

3.1 Generic Construction

Recall the idea of our construction explained in the introduction. In each of the
r repetitions we let the prover search through challenges and responses to find a
tuple (com, ch, resp) whose b least significant bits of the hash are 0b for a small
b. From now on we assume for simplicity that H only has b output bits; this can
always be achieved by cutting off the leading bits.

Instead of demanding that all r hash values equal 0b we give the honest prover
more flexibility and let the verifier accept also proofs (comi, chi, respi)i=1,2,...,r

such that the sum of the r hash values H(x,
⇀

com, i, chi, respi) (viewed as nat-
ural numbers) does not exceed some parameter S. With this we can bound the
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prover’s number of trials in each execution by 2t for another parameter t, slightly
larger than b, and guarantee that the prover terminates in strict polynomial time.

For sake of concreteness the reader may think of b = 9 (output length of the
hash function), t = 12 (challenge size), r = 10 (number of repetitions) and S =
10 = r (maximum sum). For these values the probability of the honest prover
failing to find a valid proof is about 2−60, and the knowledge extractor will obtain
the witness whenever the proof is valid, except with probability approximately
Q · 2−70 where Q denotes the number of hash queries the prover makes.

Construction 1. Let (PFS, VFS) be an interactive Fiat-Shamir proof of knowl-
edge with challenges of � = �(k) = O(log(k)) bits for relation W . Define the
parameters b, r, S, t (as functions of k) for the number of test bits, repetitions,
maximum sum and trial bits such that br = ω(log k), 2t−b = ω(log k), b, r, t =
O(log k), S = O(r) and b ≤ t ≤ �. Define the following non-interactive proof
system for relation W in the random oracle model, where the random oracle
maps to b bits.

[Prover.] The prover PH on input (x, w) first runs the prover PFS(x, w) in r in-
dependent repetitions to obtain r commitments com1, . . . , comr. Let ⇀

com=
(com1, . . . , comr). Then PH does the following, either sequentially or in
parallel for each repetition i. For each chi = 0, 1, 2, . . . , 2t − 1 (viewed as
t-bit strings) it lets PFS compute the final responses respi = respi(chi) by
rewinding, until it finds the first one such that H(x,

⇀
com, i, chi, respi) = 0b;

if no such tuple is found then PH picks the first one for which the hash
value is minimal among all 2t hash values. The prover finally outputs π =
(comi, chi, respi)i=1,2,...,r.

[Verifier.] The verifier V H on input x and π = (comi, chi, respi)i=1,2,...,r accepts
if and only if V1,FS(x, comi, chi, respi) = 1 for each i = 1, 2, . . . , r, and if∑r

i=1 H(x,
⇀

com, i, chi, respi) ≤ S.

Note that for common iterated hash functions like SHA-1 the prover and the
verifier can store the intermediate hash value of the prefix (x,

⇀
com) and need not

compute it from scratch for each of the r repetitions.
Our protocol has a small completeness error. For deterministic verifiers this

error can be removed in principle by standard techniques, namely, by letting the
prover check on behalf of the verifier that the proof is valid before outputting it;
if not the prover simply sends the witness to the verifier. In practice, in case of
this very unlikely event, the prover may just compute a proof from scratch.

Theorem 2. Let (PFS, VFS) be an interactive Fiat-Shamir proof of knowledge
for relation W . Then the scheme (P, V ) in Construction 1 is a non-interactive
zero-knowledge proof of knowledge for relation W (in the random oracle model)
with an online extractor.

Proof. (Sketch) We show that completeness, zero-knowledge and online extrac-
tion according to the definition are satisfied.
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Completeness. For the completeness we show that the prover fails to convince
the verifier with negligible probability only. For this let si be the random value
H(x,

⇀
com, i, chi, respi) associated to the output of the i-th execution. Then,

Prob[∃i : si > S] ≤ r ·
(
1− (S + 1)2−b

)2t

≤ r · e−(S+1)2t−b

because in each of the at most 2t tries the prover gets a random hash value of at
most S with probability at least (S + 1)2−b, and all hash values are independent.
The probability of having a value larger than S in one execution is thus negligible
as r is logarithmic and 2t−b is superlogarithmic. Hence, the sum of all r values
exceeds rS with negligible probability only, and we from now on we can condition
on the event that the sum of all si is at most rS. We also presume r ≥ 2 in the
sequel, else the claim already follows.

In order for the honest prover to fail the sum T of the r values s1, . . . , sr ≥ 0
must be larger than S. For any such T = S + 1, S + 2, . . . , rS there are at most(
T+r−1

r−1

)
ways to split the sum T into r non-negative integers s1, . . . , sr. This is

upper bounded by(
T + r − 1

r − 1

)
≤
(

e(rS + r − 1)
r − 1

)r−1

≤ (e(2S + 1))r−1 ≤ er ln(e(2S+1))

On the other hand, the probability of obtaining such a sum for a given partition,
s1 = s1, . . . , sr = sr, is at most

r∏
i=1

Prob[ si = si] ≤
r∏

i=1

Prob[ si ≥ si] ≤
r∏

i=1

(
1− si2−b

)2t

≤
r∏

i=1

e−si2t−b

= e−(
∑

si)2t−b

= e−T2t−b ≤ e−(S+1)2t−b

By choice of the parameters the probability of getting a sum T with S < T ≤ rS
is therefore limited by exp(r ln(e(2S+1))−(S+1)2t−b). Since ln(2S+1) ≤ S+1,
r = O(log k) and 2t−b = ω(log k) this is negligible.

Zero-Knowledge. The zero-knowledge simulator Z = (Z0, Z1) in the first stage
simply lets H0 be a (pseudo)random oracle. For the second stage, Z1 defines H1
to be consistent with H0 on previous queries. For any other query to H1 simulator
Z1, on input x (and yes, the case no is trivial), first samples 2t random b-bit
strings for each i and assigns them to the t-bit challenges chi ∈ {0, 1}t. Let
τi : {0, 1}t → {0, 1}b describe this assignment. Let chi be the first one (in
lexicographic order) obtaining the minimum over all these 2t values. Z1 next
runs the (wlog.) special zero-knowledge simulator ZFS of the underlying Fiat-
Shamir proof r times on x and each chi to obtain r tuples (comi, chi, respi).
It then defines the hash function H1 for any query (x,

⇀
com, i, ch∗i , resp

∗
i ) with

V1,FS(x, comi, ch
∗
i , resp

∗
i ) = 1 to be the value τi(ch∗i ). All other values of H1 are

chosen (pseudo)randomly. The simulator outputs π = (comi, chi, respi)i=1,2,...,r

as the proof. Zero-knowledge of the simulator above follows from the special
zero-knowledge property of the Fiat-Shamir protocol (together with a hybrid
argument).
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Online Extraction. We present a knowledge extractor K(x, π,QH(A)) that, ex-
cept with negligible probability over the choice of H , is able to output a wit-
ness w to x for an accepted proof π = (comi, chi, respi)i=1,2,...,r. Algorithm K
browses through the list of queries and answers QH(A) and searches for a query
(x,

⇀
com, i, chi, respi) as well another query (x,

⇀
com, i, ch′i, resp

′
i) for a different

challenge chi �= ch′i but such that VFS(x, comi, ch
′
i, resp

′
i) = 1. If it finds two such

queries it runs the knowledge extractor KFS of the Fiat-Shamir proof on these
values and copies its output; if there are no such queries then K outputs ⊥. It
is clear that K succeeds every time it finds two valid queries for the same prefix
(x,

⇀
com, i). On the other hand, by the choice of parameters the probability of

making the verifier accept while probing at most one challenge-response pair is
negligible. �

We remark that the upper bounds derived on the number of representations
of T with r integers, for completeness and extraction, have not been optimized.
Moreover, we providently note that our knowledge extractor only needs the hash
queries in QH(A) with prefix (x,

⇀
com) to extract the witness for theorem x; all

other queries are irrelevant to K.

Comparison to Hash-Tree Construction. We compare our construction with on-
line extractors based on hash tress. Recall that, for the hash tree construction, in
each of the r repetitions the prover computes the commitment com and all possi-
ble responses resp(ch) for challenges ch ∈ {0, 1}b. Hash values of all 2b responses
are placed as leaves in a hash tree, and a binary tree of depth b is computed. This
requires altogether 2b + 2b − 1 ≈ 2b+1 hash function evaluations. The challenge
is computed as the hash value over all commitments and tree roots, and in each
tree the corresponding leaf is opened together with the siblings on the path.

To compare the efficiency of the two approaches, we set b = 9, t = 12,
r = 10 and S = 10 for our construction and b′ = 8 and r′ = 10 for the hash-
tree construction. Then the total number of hash function evaluations is roughly
r · 29 in both cases, and the number of executions of the underlying protocol are
identical. In favor of the hash tree construction it must be said that our solution
requires twice as many response computations on the average, though.

We have already remarked that the communication complexity of the hash-
tree construction is significantly larger than for our construction, i.e., the partly
disclosed hash trees add br = 90 hash values (typically of 160 or more bits) to
the proof, while our solution does not add any communication overhead. As for
the extraction error, the exact analysis for our construction with the given para-
meters shows that the extractor fails with probability at most Q · 2−72 where Q
is the maximal number of hash queries (assuming that finding distinct responses
is beyond feasibility). The extraction for the hash-tree construction basically
fails only if one manages to guess all r challenges in advance and to put only
one correct answer in each tree. This happens with probability approximately
Q/2br = Q · 2−80 and is only slightly smaller than for our construction. Yet,
extraction in the hash-tree construction also requires that no collisions for the
hash function are found. Finally, we note that the honest prover always man-
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ages to convince the honest verifier for the hash-tree construction whereas our
protocol has a small completeness error.

Properties. Concerning the type of zero-knowledge, if there is a unique response
for each x, com, ch, then our transformation converts an honest-verifier perfect
zero-knowledge protocol into a statistical zero-knowledge one (against malicious
verifiers). The small error is due to the negligible collision probability of com-
mitments and applies to the standard Fiat-Shamir transformation as well.

As for proving logical combinations, given two interactive Fiat-Shamir proto-
cols for two relations W 0, W 1 it is known [13,9,14] how to construct three-move
proofs showing that one knows at least one of the witnesses to x0, x1 (i.e., prove
OR), or one can also show that one knows both witnesses (i.e., prove AND). Since
the derived protocols in both cases preserve the zero-knowledge and extraction
property, and therefore constitute themselves Fiat-Shamir proofs of knowledge,
our conversion can also be carried out for proving such logical statements.

Simulation Soundness and Secure Signatures. Our proof system even achieves
the stronger notion of simulation soundness, i.e., even if the zero-knowledge sim-
ulator has simulated several proofs for adversarial chosen theorems, the online
extractor can still extract the witness from the adversarial proof for a valid
theorem (as long as either the theorem or the proof is new). It is then straight-
forward to construct a secure signature scheme from this simulation sound proof
of knowledge, with a tight security reduction. The formal description is omitted.

3.2 Lower Bound for Hash Queries of Online Extractors

In this section we show our superlogarithmic lower bound on the number of
hash function evaluations for non-programming online extractors. For notational
convenience we let f(k) = OK(log k) or f(k) = polyK(k) refer to a function f(k)
which grows only logarithmically or polynomially, restricted to all k ∈ K, i.e.,
there is a constant c such that f(k) ≤ c log k or f(k) ≤ kc for all k ∈ K. For any
k /∈ K the function f might exceed these bounds.

For our result we assume that the underlying relation W of the proof of
knowledge is accompanied by an efficiently samplable, yet hard to invert pro-
cedure generating (x, w). For example, for the discrete-logarithm problem and
parameter k = (G, q, g) this procedure picks w ← Zq and computes x ← gw.
More formally, we say that the relation W has a one-way instance generator
I if for any parameter k algorithm I returns in probabilistic polynomial-time
(x, w) ∈ Wk, but such that for any probabilistic polynomial-time algorithm I,
for (x, w) ← I(k) and w′ ← I(x) the probability Prob[ (x, w′) ∈Wk] is negligible
(as a function of k).

Proposition 1. Let (P, V ) be a non-interactive zero-knowledge proof of knowl-
edge for relation W with an online extractor K in the random oracle model.
Let ρ = ρ(k) and ν = ν(k) be the maximum number of hash oracle queries the
prover P resp. the verifier V makes to generate and to check a proof π. Then
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maxv=0,1,...,ν

(
ρ
v

)
= polyK(k) for an infinite set K implies that W does not have

a one-way instance generator I.
Clearly,

(
ρ
v

)
obtains its maximum at

(
ρ

�ρ/2�
)
, where �ρ/2� is the rounded-

off integer of ρ/2, and if ρ = OK(log k) for an infinite set K, then
(

ρ
�ρ/2�

)
≤

(2e)�ρ/2� = polyK(k) for the same set K, and the requirements of the proposition
are satisfied. This implies that ρ = ω(log k) must grow superlogarithmically
for a one-way instance generator. Similarly, if the verifier only makes a constant
number of hash function queries then the prover must perform a superpolynomial
number of hash function evaluations, or else the instance generator cannot be
one-way.

Proof. (Sketch) The high level idea of the proof is that, under the assumption
that maxv

(
ρ
v

)
= polyK(k) is polynomial, we can imagine that the prover tries

to guess in advance the verifier’s queries (among the ρ queries) and only makes
those queries. This strategy will succeed with sufficiently large probability by as-
sumption. Then, replacing the hash queries QH(P ) the prover makes to generate
the proof π by the queries QH(V ) the verifier makes to verify the proof suffices
to extract the witness. Specifically, we prove that K(x, π,QH(V )) then returns
a witness w with noticeable probability. Replacing the original proof by an in-
distinguishable one from the zero-knowledge simulator Z(x) (without access to
w) and running K(x, π,QH(V )) on this proof implies that we can compute the
witness w with noticeable probability from x alone. �

Optimality of the Bound. Our lower bounds make essential use of the fact that
the extractor cannot program the random oracle. In fact, if K was allowed to
choose oracle values, then the oracle H (with unrestricted output length) could
be defined to generate a sufficiently large common reference string and to run a
non-interactive zero-knowledge proof of knowledge with online extractor in the
standard model [16]. A single hash function evaluation would then suffice.

Also, the superlogarithmic bound cannot be improved for non-programming
extractors. Namely, if we run the hash-tree construction or an easy modifica-
tion of our solution for binary challenges and superlogarithmic r, then we get a
negligible extraction error and make only O(r) hash function queries.

4 Application to Group Signatures

In this section we show how to lift the CPA-anonymous group signature scheme
by Boneh et al. [5] to a fully anonymous one. As explained in the introduction,
the idea is to append a non-interactive proof of knowledge with online extractor
for an ElGamal-like encryption. Although we give a brief introduction to group
signatures we refer the reader to the work by Bellare et al. [7] for a comprehensive
overview about (the security of) group signatures. Recall from the introduction
that the two important security properties are full anonymity, the impossibility
of identifying the author of a signature, and full traceability, the impossibility
of generating a signature which cannot be traced to the right origin.
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Very roughly, a group signature scheme consists of a (fixed) set of users, each
user receiving a secret through an initial key generation phase carried out by a
trusted third party. In addition, a public group key is established in this phase.
Each user can run the sign protocol to generate a signature on behalf of the
group. This signature is verifiable through the group’s public key, yet outsiders
remain oblivious about the actual signer. Only the group manager can revoke
this anonymity and open the signature through an additional secret key.

The original scheme by Boneh works over bilinear group pairs (G1, G2)
where deciding the Diffie-Hellman problem is easy. That is, for groups G1, G2 of
prime order q generated by g1, g2 there is an efficiently computable isomorphism
ψ : G2 → G1 with ψ(g2) = g1, and an efficiently computable non-degenerated
bilinear mapping e with e(ua, vb) = e(u, v)ab for all u ∈ G1, v ∈ G2 and a, b ∈ Zq.

For the security of the scheme it is assumed that the q-strong Diffie-Hellman
problem —given (g1, g2, g

γ
2 , g

(γ2)
2 , . . . , g

(γq)
2 find (gγ+x

1 , x) for any x ∈ Z∗
q— is

intractable. See [3] for more details. It is also presumed that the decision lin-
ear assumption in G1 holds, namely that it is infeasible to distinguish tuples
(u, v, h, ua, vb, ha+b) and (u, v, h, ua, vb, hc) for u, v, h ← G1 and a, b, c ∈ Zq. This
assumption implies that ElGamal-like encryptions (ua, vb, ha+b ·m) of messages
m under public key (u, v, h) are semantically secure.

In the original scheme of Boneh et al. [5] the group’s public key contains
a value w = gγ

2 and each user receives a pair (Ai, xi) with Ai = g
1/(γ+xi)
1

as the secret key. In addition, the group manager’s public key consists of a
public encryption key (u, v, h) such that uξ1 = vξ2 = h for secret key ξ1, ξ2.
To sign a message m the user encrypts Ai with the manager’s public key as
T1 ← ua, T2 ← vb and T3 ← Aih

a+b for random a, b ← Zq. In addition, the
signer also computes a non-interactive proof τ (in the random oracle model)
that (T1, T2, T3) encrypts such an Ai with e(Ai, wgxi

2 ) = e(g1, g2). The details
of this zero-knowledge proof are irrelevant for our discussion here, we merely
remark that the message m enters in this proof and that an independent random
oracle is needed for this part. To verify a signature one verifies this proof τ . To
revoke anonymity the group manager verifies the signatures and then decrypts
Ai = T3/T ξ1

1 T ξ2
2 and recovers the user’s identity through Ai.

We now augment the original scheme by our proof of knowledge for the
ElGamal encryption:

Construction 3. Define the following group signature scheme:

[Key Generation.] Compute the public key as before by picking a bilinear group
pair G = (G1, G2) and generators g1, g2, h. Sample ξ1, ξ2, γ ← Z∗

q and let
uξ1 =vξ2 =h and w = gγ

2 . The public key gpk consists of (G, g1, g2, h, u, v, w).
Each of the n users obtains some xi ← Z∗

q and Ai = g
1/(γ+xi)
1 as the secret

key. The group manager receives (ξ1, ξ2, A1, . . . , An) as the secret key.
[Signing.] To sign a message m ∈ {0, 1}∗ under a secret key (Ai, xi) the user

takes the group key gpk = (G, g1, g2, h, u, v, w) and does the following:
– As in the original scheme pick a, b← Zq and encrypt Ai under the group

manager’s public key, T1 ← ua, T2 ← vb and T3 ← Aih
a+b.
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– Compute as before a non-interactive proof τ that Ai = g
1/(γ+xi)
1 is en-

crypted in (T1, T2, T3) for some xi ∈ Zq, involving the message m.
– Additionally, compute a non-interactive zero-knowledge proof of knowl-

edge π for α, β, i.e., run PH on (gpk, T1, T2, T3, τ, m, α, β) for relation
Wk =

{
((gpk, T1, T2, T3, τ, m), (α, β))

∣∣ uα = T1, v
β = T2

}
to obtain π.

– Output (T1, T2, T3, π, τ) as the signature to m.
[Verification.] To verify a signature (T1, T2, T3, π, τ) for a message m run the

original verifier of the signature scheme and also run the verifier V H of
the non-interactive proof of knowledge on (gpk, (T1, T2, T3, τ, m), π). Accept
if both verifications succeed.

[Open.] To reveal the identity of a signer for a signature (T1, T2, T3, τ, π) the
group manager first verifies the validity of the signature (including the proof
π). If correct, then the manager decrypts as in the original scheme to recover
some A = T3/(T ξ1

1 T ξ2
2 ) and compares this value to the list of Ai’s to find the

user index i.

For system parameters suggested in [5], namely, |q| = 170 bits and |G1| = 171
bits, the original signature length is 1, 533 bits. If we use the same values
b = 9, r = S = 10, t = 12 as in the previous section for our proof system,
then our scheme adds about 2r · 170 + rt = 3, 520 bits to signatures through the
r repetitions of the atomic protocol for proving the AND of the two discrete log-
arithms. This proof requires 2r answers in Zq (as usual in the discrete logarithm
case, the commitments are not included in the proof π) and r challenges of t
bits. Although the communication complexity of this new scheme is significantly
larger, it is still superior to RSA-based group signatures where signatures easily
exceed 10, 000 bits [2].

Interestingly, we still expect our version of the group signature scheme to be
more efficient than the RSA-based scheme in [2], where half a dozen exponenti-
ations with large exponents of more than thousand bits have to be carried out
without Chinese Remainder. According to implementation results in [15] a single
exponentiation for elliptic curves is estimated to be about ten times faster than
such RSA exponentiations; the exact figures of course depend on implementation
details. The proof of the following proposition is omitted for space reasons.

Proposition 2. Under the Decision Linear Diffie-Hellman and the q-strong
Diffie-Hellman assumption the group signature scheme in Construction 3 is a
fully anonymous and fully traceable group signature scheme in the random ora-
cle model.
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Abstract. Anonymous channels are necessary for a multitude of
privacy-protecting protocols. Onion routing is probably the best known
way to achieve anonymity in practice. However, the cryptographic as-
pects of onion routing have not been sufficiently explored: no satisfactory
definitions of security have been given, and existing constructions have
only had ad-hoc security analysis for the most part.

We provide a formal definition of onion-routing in the universally
composable framework, and also discover a simpler definition (similar to
CCA2 security for encryption) that implies security in the UC frame-
work. We then exhibit an efficient and easy to implement construction
of an onion routing scheme satisfying this definition.

1 Introduction

The ability to communicate anonymously is requisite for most privacy-preserving
interactions. Many cryptographic protocols, and in particular, all the work on
group signatures, blind signatures, electronic cash, anonymous credentials, etc.,
assume anonymous channels as a starting point.

One means to achieve anonymous communication are mix-networks [6]. Here,
messages are wrapped in several layers of encryption and then routed through in-
termediate nodes each of which peels off a layer of encryption and then forwards
them in random order to the next node. This process is repeated until all layers
are removed. The way messages are wrapped (which determines their path
through the network) can either be fixed or can be chosen by each sender for
each message.

The former case is usually preferred in applications such as e-voting where
one additionally want to ensure that no message is dropped in transit. In that
case, each router is required to prove that it behaved correctly: that the messages
it outputs are a permutation of the decryption of the messages it has received.
The communication model suitable for such a protocol would have a broadcast
channel or a public bulletin board; this is not considered efficient in a standard
point-to-point network.

In the latter case, where the path is chosen on a message-by-message basis,
one often calls the wrapped messages onions and speaks of onion routing [12,10].

V. Shoup (Ed.): Crypto 2005, LNCS 3621, pp. 169–187, 2005.
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An onion router is simply responsible for removing a layer of encryption and
sending the result to the next onion router. Although this means that onion
routing cannot provide robustness (a router may drop an onion and no one will
notice), the simplicity of this protocol makes it very attractive in practice. In fact,
there are several implementations of onion routing available (see Dingledine et
al. [10] and references therein). Unfortunately, these implementations use ad-hoc
cryptography instead of provably secure schemes.

The only prior attempt to formalize and construct a provably secure onion
routing scheme is due to Möller [16]. Contrary to his claimed goals, it is not hard
to see that his definition of security does not guarantee that the onion’s distance
to destination is hidden from a malicious router. Additionally, his definition does
not consider adaptive attacks aimed to break the anonymity properties of onion
routing. Thus, although his work represents a first step in the right direction, it
falls short of giving a satisfactory definition. His construction does not seem to
meet our definition, but has some similarity to our construction.

Alternative means of achieving anonymous communications include Chaum’s
dining cryptographer networks [7,8] and Crowds [18].

Onion Routing: Definitional Issues. The state of the literature on anony-
mous channels today is comparable to that on secure encryption many years ago.
While there is a good intuitive understanding of what functionality and security
properties an anonymous channel must provide, and a multitude of constructions
that seek to meet this intuition, there is a lack of satisfactory definitions and, as
a result, of provably secure constructions. Indeed, realizing anonymous channels
— and constructions aside, simply reasoning about the degree of anonymity a
given routing algorithm in a network can provide — remains a question still
largely open to rigorous study.

This paper does not actually give a definition of an anonymous channel.
We do not know how to define it in such a way that it is, on the one hand,
realizable, and, on the other hand, meets our intuitive understanding of what
an anonymous channel must accomplish. The stumbling block is that, to re-
alize anonymous channels, one must make non-cryptographic assumptions on
the network model. The fact that a solution is proven secure under one set of
assumptions on the network does not necessarily imply that it is secure under
another set of assumptions.

For example, if one is trying to obtain anonymous channels by constructing
a mix network [6], one must make the assumption that (1) there is a dedicated
mix network where at least one server is honest; and, more severely, (2) everyone
sends and receives about equal amount of traffic and so one cannot match senders
to receivers by analyzing the amount of traffic sent and received. In fact, that
second assumption on the network was experimentally shown to be crucial — it
is known how to break security of mix networks using statistics on network usage
where the amount of traffic sent and received by each party is not prescribed to
be equal, but rather there is a continuous flow of traffic [14,9,23].

In cryptography, however, this is a classical situation. For example, seman-
tic security [13] was introduced to capture what the adversary already knows
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about the plaintext (before the ciphertext is even formed) by requiring that a
cryptosystem be secure for all a-priori distributions on the plaintext, even those
chosen by the adversary. Thus, the cryptographic issue of secure encryption,
was separated from the non-cryptographic modelling of the adversary’s a-priori
information. We take a similar approach here.

An onion routing scheme can provide some amount of anonymity when a
message is sent through a sufficient number of honest onion routers and there is
enough traffic on the network overall. However, nothing can really be inferred
about how much anonymity an onion routing algorithm provides without a
model that captures network traffic appropriately. As a result, security must be
defined with the view of ensuring that the cryptographic aspects of a solution
remain secure even in the worst-case network scenario.

Our Results. Armed with the definitional approach outlined above, we give
a definition of security of an onion routing scheme in the universally compos-
able framework [4]. We chose this approach not because we want onion routing
to be universally composable with other protocols (we do, but that’s a bonus
side effect), but simply because we do not know how to do it in any other way!
The beauty and versatility of the UC framework (as well as the related reac-
tive security framework [17,1]) is that it guarantees that the network issues are
orthogonal to the cryptographic ones — i.e., the cryptographic aspects remain
secure under the worst-case assumptions on the network behavior. (Similarly to
us, Wikström [22] gives a definition of security in the UC framework for general
mix networks.)

Definitions based on the UC-framework, however, can be hard to work with.
Thus we also give a cryptographic definition, similar to CCA2-security for en-
cryption [11]. We show that in order to satisfy our UC-based definition, it is
sufficient to give an onion routing scheme satisfying our cryptographic defini-
tion.

Finally, we give a construction that satisfies our cryptographic definition.

Overview of Our Definition and Solution. Our ideal functionality does not
reveal to an adversarial router any information about onions apart from the
prior and the next routers; in particular, the router does not learn how far a
given message is from its destination. This property makes traffic analysis a lot
harder to carry out, because now any message sent between two onion routers
looks the same, even if one of the routers is controlled by the adversary, no
matter how close it is to destination [2]. It is actually easy to see where this
property comes in. Suppose that it were possible to tell by examining an onion,
how far it is from destination. In order to ensure mixing, an onion router that
receives an onion O that is h hops away from destination must buffer up several
other onions that are also h hops away from destination before sending O to
the next router. Overall, if onions can be up to N hops away from destination,
each router will be buffering Θ(N) onions, a few for all possible values of h. This
makes onion routing slow and expensive. In contrast, if an onion routing scheme
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hides distance to destination, then a router may just buffer a constant number
of onions before sending them off.

However, achieving this in a cryptographic implementation seems challeng-
ing; let us explain why. In onion routing, each onion router Pi, upon receipt of
an onion Oi, decrypts it (“peels off” a layer of encryption) to obtain the values
Pi+1 and Oi+1, where Pi+1 is the identity of the next router in the chain, and
Oi+1 is the data that needs to be sent to Pi+1.

Suppose that the outgoing onion Oi+1 is just the decryption of the incoming
onion Oi. Semantic security under the CCA2 attack suggests that, even under
active attack from the adversary, if Pi is honest, then the only thing that the
incoming onion Oi reveals about the corresponding outgoing onion Oi+1 is its
length.

In the context of encryption, the fact that the length is revealed is a necessary
evil that cannot be helped. In this case, however, the problem is not just that
the length is revealed, but that, in a secure (i.e., probabilistic) cryptosystem, the
length of a plaintext is always smaller than the length of a ciphertext.

One attempt to fix this problem is to require that Pi not only decrypt the
onion, but also pad it so |Oi| = |Oi+1|. It is clear that just padding will not work:
|Oi+1| should be formed in such a way that even Pi+1 (who can be malicious),
upon decrypting Oi+1 and obtaining the identity of Pi+2 and the data Oi+2, still
cannot tell that the onion Oi+1 was padded, i.e., router Pi+1 cannot tell that he
is not the first router in the chain. At first glance, being able to pad the onion
seems to contradict non-malleability: if you can pad it, then, it seems, you can
form different onions with the same content and make the scheme vulnerable to
adaptive attacks.

Our solution is to use CCA2 encryption with tags (or labels) [21,19,3], in
combination with a pseudorandom permutation (block cipher). We make router
Pi pad the onion is such a way that the next router Pi+1 cannot tell that it was
padded; and yet the fact this is possible does not contradict the non-malleability
of the scheme because this padding is deterministic. The onion will only be
processed correctly by Pi+1 when the tag that Pi+1 receives is correct, and the
only way to make the tag correct is if Pi applied the appropriate deterministic
padding. To see how it all fits together, see Section 4.1.

2 Onion Routing in the UC Framework

Setting. Let us assume that there is a network with J players P1, . . . , PJ . For
simplicity, we do not distinguish players as senders, routers, and receivers; each
player can assume any of these roles. In fact, making such a distinction would
not affect our protocol at all and needs to be considered in its application only.
We define onion routing in the public key model (i.e., in the hybrid model where
a public-key infrastructure is already in place) where each player has an appro-
priately chosen identity Pi, a registered public key PKi corresponding to this
identity, and these values are known to each player.
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In each instance of a message that should be sent, for some (s, r), we have a
sender Ps (s stands for “sender”) sending a message m of length �m (the length
�m is a fixed parameter, all messages sent must be the same length) to recipient
Pr (r stands for “recipient”) through n < N additional routers Po1 , . . . , Pon (o
stands for “onion router”), where the system parameter N−1 is an upper bound
on the number of routers that the sender can choose. How each sender selects
his onion routers Po1 , . . . , Pon is a non-cryptographic problem independent of
the current exposition. The input to the onion sending procedure consists of the
message m that Ps wishes to send to Pr, a list of onion routers Po1 , . . . , Pon ,
and the necessary public keys and parameters. The input to the onion routing
procedure consists of an onion O, the routing party’s secret key SK, and the
necessary public keys and parameters. In case the routing party is in fact the
recipient, the routing procedure will output the message m.

Definition of Security. The honest players are modelled by imagining that
they obtain inputs (i.e., the data m they want to send, the identity of the re-
cipient Pr, and the identities of the onion routers Po1 , . . . , Pon) from the envi-
ronment Z, and then follow the protocol (either the ideal or the cryptographic
one). Similarly, the honest players’ outputs are passed to the environment.

Following the standard universal composability approach (but dropping most
of the formalism and subtleties to keep presentation compact), we say that an
onion routing protocol is secure if there exists a simulator (ideal-world adversary)
S such that no polynomial-time in λ (the security parameter) environment Z
controlling the inputs and outputs of the honest players, and the behavior of
malicious players, can distinguish between interacting with the honest parties
in the ideal model through S, or interacting with the honest parties using the
protocol.

We note that the solution we present is secure in the public-key model, i.e.,
in the model where players publish the keys associated with their identities in
some reliable manner. In the proof of security, we will allow the simulator S to
generate the keys of all the honest players.

The Ideal Process. Let us define the ideal onion routing process. Let us assume
that the adversary is static, i.e., each player is either honest or corrupted from
the beginning, and the trusted party implementing the ideal process knows which
parties are honest and which ones are corrupted.

Ideal Onion Routing Functionality: Internal Data Structure.

– The set Bad of parties controlled by the adversary.
– An onion O is stored in the form of (sid , Ps, Pr, m, n,P , i) where: sid is the

identifier, Ps is the sender, Pr is the recipient, m is the message sent through
the onion routers, n < N is the length of the onion path, P = (Po1 , . . . , Pon) is
the path over which the message is sent (by convention, Po0 = Ps, and Pon+1 =
Pr), i indicates how much of the path the message has already traversed
(initially, i = 0). An onion has reached its destination when i = n + 1.
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– A list L of onions that are being processed by the adversarial routers.
Each entry of the list consists of (temp, O, j), where temp is the tem-
porary id that the adversary needs to know to process the onion, while
O = (sid , Ps, Pr, m, n,P , i) is the onion itself, and j is the entry in P where
the onion should be sent next (the adversary does not get to see O and j).
Remark: Note that entries are never removed from L. This models the replay
attack: the ideal adversary is allowed to resend an onion.

– For each honest party Pi, a buffer Bi of onions that are currently be-
ing held by Pi. Each entry consists of (temp′, O), where temp′ is the tem-
porary id that an honest party needs to know to process the onion and
O = (sid , Ps, Pr, m, n,P , i) is the onion itself (the honest party does not get
to see O). Entries from this buffer are removed if an honest party tells the
functionality that she wants to send an onion to the next party.

Ideal Onion Routing Functionality: Instructions. The ideal process is activated
by a message from router P , from the adversary S, or from itself. There are four
types of messages, as follows:

(Process New Onion, Pr, m, n,P). Upon receiving such a message from Ps,
where m ∈ {0, 1}�m ∪ {⊥}, do:

1. If |P| ≥ N , reject.
2. Otherwise, create a new session id sid , and let O = (sid , P, Pr, m, n,P , 0).

Send itself message (Process Next Step, O).

(Process Next Step, O). This is the core of the ideal protocol. Suppose
O = (sid , Ps, Pr, m, n,P , i). The ideal functionality looks at the next part
of the path. The router Poi just processed1 the onion and now it is being
passed to Poi+1 . Corresponding to which routers are honest, and which ones are
adversarial, there are two possibilities for the next part of the path:

I) Honest next. Suppose that the next node, Poi+1 , is honest. Here, the ideal
functionality makes up a random temporary id temp for this onion and sends to
S (recall that S controls the network so it decides which messages get delivered):
“Onion temp from Poi to Poi+1 .” It adds the entry (temp, O, i+1) to list L. (See
(Deliver Message, temp) for what happens next.)
II) Adversary next. Suppose that Poi+1 is adversarial. Then there are two
cases:
– There is an honest router remaining on the path to the recipient. Let Poj be the

next honest router. (I.e., j > i is the smallest integer such that Poj is honest.)
In this case, the ideal functionality creates a random temporary id temp for
this onion, and sends the message “Onion temp from Poi , routed through
(Poi+1 , . . . , Poj−1) to Poj ” to the ideal adversary S, and stores (temp, O, j) on
the list L.

1 In case i = 0, processed means having originated the onion and submitted it to the
ideal process.
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– Poi is the last honest router on the path; in particular, this means that Pr

is adversarial as well. In that case, the ideal functionality sends the message
“Onion from Poi with message m for Pr routed through (Poi+1 , . . . , Pon)” to
the adversary S. (Note that if Poi+1 = Pr, the list (Poi+1 , . . . , Pon) will be
empty.)

(Deliver Message, temp). This is a message that S sends to the ideal process
to notify it that it agrees that the onion with temporary id temp should be
delivered to its current destination. To process this message, the functionality
checks if the temporary identifier temp corresponds to any onion O on the list
L. If it does, it retrieves the corresponding record (temp, O, j) and update the
onion: if O = (sid , Ps, Pr, m, n,P , i), it replaces i with j to indicate that we have
reached the j’th router on the path of this onion. If j < n + 1, it generates
a temporary identifier temp′, sends “Onion temp′ received” to party Poj , and
stores the resulting pair (temp′, O = (sid , Ps, Pr, m, n,P , j)) in the buffer Boj

of party Poj . Otherwise, j = n + 1, so the onion has reached its destination: if
m �= ⊥ it sends “Message m received” to router Pr; otherwise it does not deliver
anything2.
(Forward Onion, temp′). This is a message from an honest ideal router Pi

notifying the ideal process that it is ready to send the onion with id temp′ to
the next hop. In response, the ideal functionality

– Checks if the temporary identifier temp′ corresponds to any entry in Bi. If it
does, it retrieves the corresponding record (temp′, O).

– Sends itself the message (Process Next Step, O).
– Removes (temp′, O) from Bi.

This concludes the description of the ideal functionality. We must now explain
how the ideal honest routers work. When an honest router receives a message of
the form “Onion temp′ received” from the ideal functionality, it notifies environ-
ment Z about it and awaits instructions for when to forward the onion temp′ to
its next destination. When instructed by Z, it sends the message “Forward Onion
temp′” to the ideal functionality.

It’s not hard to see that Z learns nothing else than pieces of paths of onions
formed by honest senders (i.e., does not learn a sub-path’s position or relations
among different sub-paths). Moreover, if the sender and the receiver are both
honest, the adversary does not learn the message.

2.1 Remarks and Extensions

Mixing Strategy. It may seem that, as defined in our ideal functionality,
the adversary is too powerful because, for example, it is allowed to route just
one onion at a time, and so can trace its entire route. In an onion routing

2 This is needed to account for the fact that the adversary inserts onions into the
network that at some point do not decrypt correctly.
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implementation however, the instructions for which onion to send on will not
come directly from the adversary, but rather from an honest player’s mixing
strategy. That is, each (honest) router is notified that an onion has arrived and
is given a handle temp to that onion. Whenever the router decides (under her
mixing strategy) that the onion temp should be sent on, she can notify the ideal
functionality of this using the handle temp. A good mixing strategy will limit the
power of the adversary to trace onions in the ideal world, which will translate
into limited capability in the real world as well. What mixing strategy is a good
one depends on the network. Additionally, there is a trade-off between providing
more anonymity and minimizing latency of the network. We do not consider
any of these issues in this paper but only point out that our scheme guarantees
the maximum degree of security that any mixing strategy can inherently provide.

Replay Attacks. The definition as is allows replay attacks by the adversary.
The adversary controls the network and can replay any message it wishes.
In particular, it can take an onion that party Pi wants to send to Pj and
deliver it to Pj as many times as it wishes. However, it is straightforward
to modify our security definition and our scheme so as to prevent replay
attacks. For instance, we could require that the sender inserts time stamps
into all onions. I.e., a router Pi, in addition to the identity of the next router
Pi+1, will also be given a time time and a random identifier oidi (different
for each onion and router). An onion router will drop the incoming onion
when either the time time + t∆ (where t∆ is a parameter) has passed or
it finds oidi in its database. If an onion is not dropped, the router will
store oidi until time time + t∆ has passed. It is not difficult to adapt our
scheme and model to reflect this. We omit details to keep this exposition focused.

Forward Security. Forward secrecy is a desirable property in general, and
in this context in particular [5,10]. Our scheme can be constructed from any
CCA2-secure cryptosystem, and in particular, from a forward-secure one.

The Response Option. Another desirable property of an onion routing scheme
is being able to respond to a message received anonymously. We address this after
presenting our construction.

3 A Cryptographic Definition of Onion Routing

Here we give a cryptographic definition of an onion routing scheme and show
why a scheme satisfying this definition is sufficient to realize the onion routing
functionality described in the previous section.

Definition 1 (Onion routing scheme I/O). A set of algorithms (G,
FormOnion, ProcOnion) satisfies the I/O spec for an onion routing scheme for
message space M(1λ) and set of router names Q if:

– G is a key generation algorithm, possibly taking as input some public parame-
ters p, and a router name P : (PK,SK) ← G(1λ, p, P ).
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– FormOnion is a probabilistic algorithm that on input a message m ∈ M(1λ),
an upper bound on the number of layers N , a set of router names (P1, . . . ,
Pn+1) (each Pi ∈ Q, n ≤ N), and a set of public keys corresponding to these
routers (PK1, . . . ,PKn+1), outputs a set of onion layers (O1, . . . , On+1). (As
N is typically a system-wide parameter, we usually omit to give it as input to
this algorithm.)

– ProcOnion is a deterministic algorithm that, on input an onion O, identity P ,
and a secret key SK, peels off a layer of the onion to obtain a new onion O′

and a destination P ′ for where to send it: (O′, P ′) ← ProcOnion(SK, O, P ).

Definition 2 (Onion evolution, path, and layering). Let (G, FormOnion,
ProcOnion) satisfy the onion routing I/O spec. Let p be the public parame-
ters. Suppose that we have a set Q, ⊥ /∈ Q, consisting of a polynomial num-
ber of (honest) router names. Suppose that we have a public-key infrastruc-
ture on Q, i.e., corresponding to each name P ∈ Q there exists a key pair
(PK(P ),SK(P )), generated by running G(1λ, p, P ). Let O be an onion received
by router P ∈ Q. Let E(O, P ) = {(Oi, Pi) : i ≥ 1} be the maximal or-
dered list of pairs such that P1 = P , O1 = O, and for all i > 1, Pi ∈ Q,
and (Oi, Pi) = ProcOnion(SK(Pi−1), Oi−1, Pi−1). Then E(O, P ) is the evolution
of onion O starting at P . Moreover, if E(O, P ) = {(Oi, Pi)} is the evolution of
an onion, then P(O, P ) = {Pi} is the path of the onion, while L(O, P ) = {Oi}
is the layering of the onion.

Onion-correctness is the simple condition that if an onion is formed correctly
and then the correct routers process it in the correct order, then the correct
message is received by the last router Pn+1.

Definition 3 (Onion-correctness). Let (G, FormOnion, ProcOnion) satisfy
the I/O spec for an onion routing scheme. Then for all settings of the public
parameters p, for all n < N , and for all Q with a public-key infrastructure
as in Definition 2, for any path P = (P1, . . . , Pn+1),P ⊆ Q, for all messages
m ∈M(1λ), and for all onions O1 formed as

(O1, . . . , On+1)← FormOnion(m, N, (P1, . . . , Pn+1), (PK(P1), . . . ,PK(Pn+1)))

the following is true: (1) correct path: P(O1, P1) = (P1, . . . , Pn+1); (2) cor-
rect layering: L(O1, P1) = (O1, . . . , On+1); (3) correct decryption: (m,⊥) =
ProcOnion(SK(Pn+1), On+1, Pn+1).

Onion-integrity requires that even for an onion created by an adversary, the
path is going to be of length at most N .

Definition 4 (Onion-integrity). (Sketch) An onion routing scheme satisfies
onion-integrity if for all probabilistic polynomial-time adversaries, the probability
(taken over the choice of the public parameters p, the set of honest router names
Q and the corresponding PKI as in Definition 2) that an adversary with adaptive
access to ProcOnion(SK(P ), ·, P ) procedures for all P ∈ Q, can produce and send
to a router P1 ∈ Q an onion O1 such that |P(O1, P1)| > N , is negligible.
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Our definition of onion security is somewhat less intuitive. Here, an adver-
sary is launching an adaptive attack against an onion router P . It gets to send
onions to this router, and see how the router reacts, i.e., obtain the output of
ProcOnion(SK(P ), ·, P ). The adversary’s goal is to distinguish whether a given
challenge onion corresponds to a particular message and route, or a random mes-
sage and null route. The unintuitive part is that the adversary can also succeed
by re-wrapping an onion, i.e., by adding a layer to its challenge onion.

Definition 5 (Onion-security). (Sketch) Consider an adversary interacting
with an onion routing challenger as follows:

1. The adversary receives as input a challenge public key PK, chosen by the
challenger by letting (PK,SK)← G(1λ, p), and the router name P .

2. The adversary may submit any number of onions Oi of his choice to the
challenger, and obtain the output of ProcOnion(SK, Oi, P ).

3. The adversary submits n, a message m, a set of names (P1, . . . , Pn+1), and
index j, and n key pairs 1 ≤ i ≤ n + 1, i �= j, (PKi,SKi). The challenger
checks that the router names are valid3, that the public keys correspond to the
secret keys, and if so, sets PKj = PK, sets bit b at random, and does the
following:

– If b = 0, let

(O1, . . . , Oj , . . . , On+1)← FormOnion(m, (P1, . . . , Pn+1), (PK1, . . . ,PKn+1))

– Otherwise, choose r ←M(1λ), and let

(O1, . . . , Oj)← FormOnion(r, (P1, . . . , Pj), (PK1, . . . ,PKj))

4. Now the adversary is allowed get responses for two types of queries:
– Submit any onion Oi �= Oj of his choice and obtain ProcOnion(SK, Oi, P ).
– Submit a secret key SK′, an identity P ′ �= Pj−1, and an onion O′ such

that Oj = ProcOnion(SK′, O′, P ′); if P ′ is valid, and (SK′, O′, P ′) satisfy
this condition, then the challenger responds by revealing the bit b.

5. The adversary then produces a guess b′.

We say that a scheme with onion routing I/O satisfies onion security if for all
probabilistic polynomial time adversaries A of the form described above, there is
a negligible function ν such that the adversary’s probability of outputting b′ = b
is at most 1/2 + ν(λ).

This definition of security is simple enough, much simpler than the UC-based
definition described in the previous section. Yet, it turns out to be sufficient. Let
us give an intuitive explanation why. A simulator that translates between a real-
life adversary and an ideal functionality is responsible for two things: (1) creating
some fake traffic in the real world that accounts for everything that happens in
3 In our construction, router names are formed in a special way, hence this step is

necessary for our construction to satisfy this definition.
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the ideal world; and (2) translating the adversary’s actions in the real world into
instructions for the ideal functionality.

In particular, in its capacity (1), the simulator will sometimes receive a
message from the ideal functionality telling it that an onion temp for hon-
est router Pj is routed through adversarial routers (P1, . . . , Pj−1). The sim-
ulator is going to need to make up an onion O1 to send to the adversar-
ial party P1. But the simulator is not going to know the message contained
in the onion, or the rest of the route. So the simulator will instead make
up a random message r and compute the onion so that it decrypts to r
when it reaches the honest (real) router Pj . I.e, it will form O1 by obtaining
(O1, . . . , Oj)← FormOnion(r, (P1, . . . , Pj), (PK1, . . . ,PKj)). When the onion Oj

arrives at Pj from the adversary, the simulator knows that it is time to tell the
ideal functionality to deliver message temp to honest ideal Pj .

Now, there is a danger that this may cause errors in the simulation as far as
capacity (2) is concerned: the adversary may manage to form another onion Õ,
and send it to an honest router P̃ , such that (Oj , P ) ∈ E(Õ, P̃ ). The simulator
will be unable to handle this situation correctly, as the simulator relies on its
ability to correctly decrypt and route all real-world onions, while in this case,
the simulator does not know how to decrypt and route this “fake” onion past
honest router Pj . A scheme satisfying the definition above would prevent this
from happening: the adversary will not be able to form an onion O′ �= Oj−1 sent
to an honest player P ′ such that (Pj , Oj) = ProcOnion(SK(P ′), O′, P ′).

In the full version of this paper, we give a formal proof of the following
theorem:

Theorem 1. An onion routing scheme (G, FormOnion, ProcOnion) satisfying
onion-correctness, integrity and security, when combined with secure point-to-
point channels, yields a UC-secure onion routing scheme.

4 Onion Routing Scheme Construction

Tagged Encryption. The main tool in our construction is a CCA2-secure cryp-
tosystem (Gen ,E ,D) that supports tags. Tags were introduced by Shoup and
Gennaro [21]. The meaning of a tagged ciphertext is that the tag provides the
context within which the ciphertext is to be decrypted. The point is that an
adversary cannot attack the system by making the honest party under attack
decrypt this ciphertext out of context. The input to E is (PK, m, T ), where T
is a tag, such that D(SK, c, T ′) should fail if c ← E (PK, m, T ) and T ′ �= T .
In the definition of CCA2-security for tagged encryption, the adversary is, as
usual, given adaptive access to the decryption oracle D throughout its attack; it
chooses two messages (m0, m1) and a tag T and is given a challenge ciphertext
c ← E (PK, mb, T ) for a random bit b. The adversary is allowed to issue further
queries (c′, T ′) �= (c, T ) to D . The definition of security stipulates that the ad-
versary cannot guess b with probability non-negligibly higher than 1/2. We omit
the formal definition of CCA2-security with tags, and refer the reader to prior
work.
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Pseudorandom Permutations. We also use pseudorandom permuta-
tions (PRPs). Recall [15] that a polynomial-time algorithm p(·)(·) de-
fines a pseudorandom permutation family if for every key K ∈ {0, 1}∗,
pK : {0, 1}�(|K|) �→ {0, 1}�(|K|) (where the function �(·) is upper-bounded
by a polynomial, and is called the “block length” of p) is a permutation
and is indistinguishable from a random permutation by any probabilistic
poly-time adversary A with adaptive access to both pK and p−1

K . We have
the same key K define a set of simultaneously pseudorandom permutations
{pi

K : 1 ≤ i ≤ �(|K|)}, where i is the block length for a permutation pi
K .

(This can be obtained from any standard pseudorandom permutation family by
standard techniques. For example, let Ki = FK(i), where F is a pseudorandom
function, and let pi

K = pi
Ki

.)

Notation. In the sequel, we will denote pi
K by pK because the block length is

always clear from the context. Let {m}K denote p
|m|
K (m). Let {m}K−1 denote

(p−1)|m|
K (m). By ‘◦’ we denote concatenation.

Parameters. Let λ be the security parameter. It guides the choice of �K which
is the length of a PRP key, and of �C , which is the upper bound on the length
of a ciphertext formed using the CCA2 secure cryptosystem (Gen,E ,D) when
the security parameter is λ. Let �m be the length of a message being sent. Let
�H = �K + �C .

Non-standard Assumption on the PRP. We assume that, if P1 and P2 are
two strings of length 2�K chosen uniformly at random, then it is hard to find N
keys K1, . . . , KN and a string C of length �C such that

{{. . . {P1 ◦ 0�C}K−1
1

. . .}K−1
N−1

}K−1
N
∈ {P1 ◦ C, P2 ◦ C}

In the random-oracle model, it is easy to construct a PRP with this property:
if p is a PRP, define p′ as p′K = pH(K) where H is a random oracle. If this
assumption can hold in the standard model, then our construction is secure in
the plain model as well.

4.1 Construction of Onions

We begin with intuition for our construction. Suppose that the sender Ps would
like to route a message m to recipient Pr = Pn+1 through intermediate routers
(P1, . . . , Pn). For a moment, imagine that the sender Ps has already established
a common one-time secret key Ki with each router Pi, 1 ≤ i ≤ n + 1. In that
setting, the following construction would work and guarantee some (although
not the appropriate amount of) security:

Intuition: Construction 1. For simplicity, let N = 4, n = 3, so the sender is
sending message m to P4 via intermediate routers P1, P2 and P3. Send to P1 the
onion O1 formed as follows:
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O1 = ({{{{m}K4}K3}K2}K1 , {{{P4}K3}K2}K1 , {{P3}K2}K1 , {P2}K1)

Upon receipt of this O1 = (M (1), H
(1)
3 , H

(1)
2 , H

(1)
1 ), P1 will remove a layer of

encryption using key K1, and obtain

({M (1)}K−1
1

, {H(1)
3 }K−1

1
, {H(1)

2 }K−1
1

, {H(1)
1 }K−1

1
) =

({{{m}K4}K3}K2 , {{P4}K3}K2 , {P3}K2}, P2)

Now P1 knows that P2 is the next router. It could, therefore, send to P2 the set
of values ({M (1)}K−1

1
, {H(1)

3 }K−1
1

, {H(1)
2 }K−1

1
). But then the resulting onion O2

will be shorter than O1, which in this case would make it obvious to P2 that he
is only two hops from the recipient; while we want P2 to think that he could
be up to N − 1 hops away from the recipient. Thus, P1 needs to pad the onion
somehow. For example, P1 picks a random string R1 of length |P1| and sets:

(O2, P2) = ProcOnion(K1, O1, P1)

= (({M (1)}K−1
1

, R1, {H(1)
3 }K−1

1
, {H(1)

2 }K−1
1

), {H(1)
1 }K−1

1
)

= (({{{m}K4}K3}K2 , R1, {{P4}K3}K2 , {P3}K2}), P2)

Upon receipt of this O2 = (M (2), H
(2)
3 , H

(2)
2 , H

(2)
1 ), P2 will execute the same

procedure as P1, but using his key K2, and will obtain onion O3 and the identity
of router P3. Upon receipt of O3, P3 will also apply the same procedure and
obtain O4 and the identity of the router P4. Finally, P4 will obtain:

(O5, P5) = ProcOnion(K4, O4, P4)

= (({M (4)}K−1
4

, R4, {H(4)
3 }K−1

4
, {H(4)

2 }K−1
4

), {H(4)
1 }K−1

4
)

= ((m, R4, {R3}K−1
4

, {{R2}K−1
3
}K−1

4
), {{{R1}K−1

2
}K−1

3
}K−1

4
)

How does P4 know that he is the recipient? The probability over the choice of
K4 that P5 obtained this way corresponds to a legal router name is negligible.
Alternatively, P4 may be able to tell if, by convention, a legal message m must
begin with k 0’s, where k is a security parameter.

Intuition: Construction 2. Let us now adapt Construction 1 to the public-
key setting. It is clear that the symmetric keys Ki, 1 ≤ i ≤ n + 1, need to be
communicated to routers Pi using public-key encryption. In Construction 1, the
only header information H

(i)
1 for router Pi was the identity of the next router,

Pi+1. Now, the header information for router Pi must also include a public-
key ciphertext Ci+1 = E (PKi+1, Ki+1, Ti+1), which will allow router Pi+1 to
obtain his symmetric key Ki+1. We need to explain how these ciphertexts are
formed. Let us first consider C1. Tag T1 is used to provide the context within
which router P1 should decrypt C1. C1 exists in the context of the message part
and the header of the onion, and therefore the intuitive thing to do is to set
T1 = H(M (1), H(1)), where H is a collision-resistant hash function. Similarly,
Ti = H(M (i), H(i)), because router Pi uses the same ProcOnion procedure as
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router P1. Therefore, to compute C1, the sender first needs to generate the keys
(K1, . . . , Kn+1), then compute (C2, . . . , Cn+1). Then the sender will have enough
information to obtain the tag T1 and to compute C1.

So, let us figure out how to compute O2. Consider how P1 will process O1
(adapting Construction 1):

(O2, P2) = ProcOnion(SK(P1), O1, P1)
= (M (2), H(2), C2, P2)

= ({M (1)}K−1
1

, (R1, {H(1)
3 }K−1

1
, {H(1)

2 }K−1
1

), {H(1)
1 }K−1

1
)

= ({{{m}K4}K3}K2 , (R1, {{C4, P4}K3}K2 , {C3, P3}K2}), C2, P2)

We need to address how the value R1 is formed. On the one hand, we have already
established (in Construction 1) that it needs to be random-looking, as we need to
make sure that P2 does not realize that R1 is a padding, rather than a meaningful
header. On the other hand, consider the ciphertext C2 ← E (PK(P2), K2, T2),
where, as we have established T2 = H(M (2), H(2)). So, as part of the header
H(2), the value R1 needs to be known to the sender at FormOnion time, to
ensure that the ciphertext C2 is formed using the correct tag T2. Thus, let us
set R1 pseudorandomly, as follows: R1 = {P1 ◦ 0�C}K−1

1
, where recall that �C

is the number of bits required to represent the ciphertext C1. Similarly, Ri =
{Pi ◦ 0�C}K−1

i
. (Why include the value Pi into the pad? This is something we

need to make the proof of security go through. Perhaps it is possible to get rid
of it somehow.)

Now we can explain how FormOnion works (still using N = 4, n = 3): pick
symmetric keys (K1, K2, K3, K4). Let Ri = {Pi ◦ 0�C}K−1

i
for 1 ≤ i ≤ 4. First,

form the innermost onion O4, as follows:

O4 = ({m}K4 , (R3, {R2}K−1
3

, {{R1}K−1
3
}K−1

2
), C4 ← E (PK(P4), K4, T4))

where recall that T4 = H(M (4), H(4)). Now, for 1 < i ≤ 4, to obtain Oi−1 from
Oi = (M (i), (H(i)

3 , H
(i)
2 , H

(i)
1 ), Ci), let

M (i−1) = {M (i)}Ki−1 H
(i−1)
3 = {H(i)

2 }Ki−1

H
(i−1)
2 = {H(i)

1 }Ki−1 H
(i−1)
1 = {Ci, Pi}Ki−1

Ti−1 = H(M (i−1), H(i−1)) Ci−1 ← E (PK(Pi−1), Ki−1, Ti−1)

It is easy to verify that the onions (O1, O2, O3, O4) formed this way will satisfy
the correctness property (Definition 3).

We are now ready to describe our construction more formally. Note that
without the intuition above, the more formal description of our construction
may appear somewhat terse.

Setup. The key generation/setup algorithm G for a router is as follows: run
Gen(1k) to obtain (PK,SK). Router name P must be a string of length 2�K ,
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chosen uniformly at random by a trusted source of randomness; this needs to
be done so that even for a PK chosen by an adversary, the name P of the
corresponding router is still a random string. (In the random oracle model, this
can be obtained by querying the random-oracle-like hash function on input
PK.) Register (P,PK) with the PKI.

Forming an Onion. On input message m ∈ {0, 1}�m, a set of router names
(P1, . . . , Pn+1), and a set of corresponding public keys (PK1, . . . ,PKn+1), the
algorithm FormOnion does:

1. (Normalize the input). If n + 1 < N , let Pi = Pn+1, and let PKi = PKn+1
for all n + 1 < i ≤ N .

2. (Form inner layer). To obtain the inner onion ON , choose symmetric keys
Ki ← {0, 1}�K , for 1 ≤ i ≤ N . Let Ri = {Pi ◦ 0�C}K−1

i
. Let M (N) =

{m}KN . As for the header, H
(N)
N−1 = RN−1, H

(N)
N−2 = {RN−2}K−1

N−1
, and,

in general, H
(N)
i = {. . . {Ri}K−1

i+1
. . .}K−1

N−1
for 1 ≤ i < N − 1. Let

TN = H(M (N), H
(N)
N−1, . . . , H

(N)
1 ). Finally, let CN ← E (PKN , KN , TN ). Let

ON = (M (N), H
(N)
N−1, . . . , H

(N)
1 , CN ).

3. (Adding a layer). Once Oi = (M (i), H
(i)
N−1, . . . , H

(i)
1 , Ci) is computed for any

1 < i ≤ N , compute Oi−1 as follows: M (i−1) = {M (i)}Ki−1 ; H
(i−1)
j =

{H(i)
j−1}Ki−1 for 1 < j ≤ N ; H

(i−1)
1 = {Pi, Ci}Ki−1 . Let Ti−1 = H(M (i−1),

H
(i−1)
N−1 , . . . , H

(i−1)
1 ). Finally, let Ci−1 ← E (PKi−1, Ki−1, Ti−1). The resulting

onion is Oi−1 = (M (i−1), H
(i−1)
N−1 , . . . , H

(i−1)
1 , Ci−1).

Processing an Onion. On input a secret key SK, an onion O = (M, HN , . . . ,
H1, C), and the router name P , do: (1) compute tag T = H(M, HN , . . . , H1); (2)
let K = D(SK, C, T ); if K = ⊥, reject; otherwise (3) let (P ′, C′) = {H1}K−1 ;
(4) if P ′ does not correspond to a valid router name, output ({M}K−1,⊥) (that
means that P is the recipient of the message m = {M}K−1); otherwise (5) send
to P ′ the onion O′ = ({M}K−1, {P ◦ 0�C}K−1 , {HN}K−1 , . . . , {H2}K−1 , C′)

Theorem 2. The construction described above is correct, achieves integrity, and
is onion-secure in the PKI model where each router’s name is chosen as a uni-
formly random string of length 2�K, and assuming that (1) (Gen ,E ,D) is a
CCA-2 secure encryption with tags; (2) p is a PRP simultaneously secure for
block lengths �M and �H for which the non-standard assumption holds, and (3)
hash function H is collision-resistant.

Proof. (Sketch) Correctness follows by inspection. Integrity is the consequence
of our non-standard assumption: Suppose that our goal is to break the non-
standard assumption. So we are given as input two strings P ′

1 and P ′
2. We set

up the the set of honest players Q, together with their key pairs, as in Defin-
ition 2, giving each player a name chosen at random and assigning the strings
P ′

1 and P ′
2 as names for two randomly chosen routers. Note that as our reduc-

tion was the one to set up all the keys for the honest routers, it is able to
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successfully answer all ProcOnion queries on their behalf, as required by Defin-
ition 4. Suppose the adversary is capable of producing an onion whose path is
longer than N . With probability 1/|Q|, this onion O1 is sent to router P1 = P ′

1.
Let {(P1, O1, K1), . . . , (Pi, Oi, Ki), . . .} be the evolution of this onion augmented
by the symmetric keys (K1, . . . , Ki, . . .) that router Pi obtains while running
ProcOnion(SK(Pi), Oi, Pi). According to our ProcOnion construction, the value
(if any) that router PN obtains as a candidate for (PN+1 ◦ CN+1) is the string
{H(N)

1 }K−1
N

= {{. . .{P1 ◦ 0�C}K−1
1

. . .}K−1
N−1

}K−1
N

= P ◦C. For this to be a valid
onion ON+1, P must be a valid router name. If P = P1, then we have broken
our assumption. Otherwise P �= P1, but then with probability at least 1/|Q|,
P = P ′

2 and so we also break the non-standard assumption.
It remains to show onion-security. First, we use a counting argument to show

that, with probability 1 − 2−�K+Θ(log |Q|) over the choice of router names, the
adversary cannot re-wrap the challenge onion.

Suppose that the challenger produces the onion layers (O1, . . . , Oj). Consider
the header H

(j)
N−1 of the onion Oj . By construction, H

(j)
N−1 = R(j−1) = {Pj−1 ◦

0�C}K−1
j−1

. Also by construction, any SK, O′ = (M ′, H ′, C′) and P ′ such that

Oj = ProcOnion(SK, O′, P ′) must satisfy {P ′ ◦ 0�C}(K′)−1 = H
(j)
N−1, where K ′ is

the decryption of C′ under key SK. Thus, to re-wrap the onion, the adversary
must choose Pj−1, P ′ and K ′ such that {Pj−1 ◦ 0�C}K−1

j−1
= {P ′ ◦ 0�C}(K′)−1 .

Let P be a router name, and let K be a key for the PRP p. Let

Bad(P, K) = {P ′ : ∃K ′ such that P ′ �= P ∧ {P ◦0�C}K−1 = {P ′◦0�C}(K′)−1} .

As there are at most 2�K choices for K ′, and p is a permutation, for all
(P, K), |Bad(P, K)| ≤ 2�K . Let Bad(Q, K) = {P ′ : ∃P ∈ Q such that P ′ ∈
Bad(P, K)}. Then |Bad(Q, K)| ≤ |Q|maxP |Bad(P, K)| ≤ |Q|2�K .

Assume without loss of generality that the key Kj−1 is fixed.
Thus, for this onion to be “re-wrappable,” it must be the case
that there exists some P ′ ∈ Bad(Q, Kj−1) that corresponds to a
valid router name, i.e. Q ∩ Bad(Q, Kj−1) �= ∅. As any P ′ ∈ Q
is chosen uniformly out of a set of size 22�K , while |Bad(Q, Kj−1)|
≤ 2�K+log |Q|, it is easy to see that the probability over the choice of Kj−1
and the router names for the set Q that the onion is “re-wrappable,” is only
2−�K+Θ(log |Q|).

It remains to show that no adversary can guess the challenger’s bit b, pro-
vided (as we have shown) that it cannot re-wrap the onion. This proof follows the
standard “sequence of games” [20] argument. Suppose that we set up the follow-
ing experiments. In experiment (1), the challenger interacts with the adversary
as in Definition 5 when b = 0, using FormOnion. In experiment (2), the challenger
departs from the first experiment in that it deviates from the usual FormOnion
algorithm in forming the ciphertext Cj as Cj ← E (PK, K ′, Tj), where K ′ �= Kj

is an independently chosen key. It is easy to see that distinguishing experiments
(1) and (2) is equivalent to breaking either the CCA2 security of the underlying
cryptosystem, or the collision-resistance property of H.
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In experiment (3), the challenger forms Oj as follows: Choose keys
K1, . . .Kj−1, and K ′. Let Ri = {Pi ◦ 0�C}K−1

i
for 1 ≤ i < j. M (j) ← {0, 1}�m,

H
(j)
i = {. . . {Ri}K−1

i+1
. . .}K−1

j−1
for 1 ≤ i < j, H

(j)
i ← {0, 1}�H for j ≤ i ≤ N − 1.

Finally, Cj ← E (PK, K ′, Tj). The other onions, Oj−1 through O1, are formed
using the “adding a layer” part of the FormOnion construction. It can be shown
(omitted here for lack of space) that an adversary who can distinguish experi-
ments (2) and (3) can distinguish pKj from a random permutation. The intuition
here is that in experiment (3), everything that’s supposed to be the output of
pKj or p−1

Kj
is random.

In experiment (4), the onion is formed by running FormOnion(r, (P1, . . . , Pj),
(PK1, . . . ,PKj)), except that Cj is formed as Cj ← E (PK, K ′, Tj). Telling (3)
and (4) apart is also equivalent to distinguishing p from a random permutation.
The intuition here is that in experiment (4) the first j− 1 parts of the header of
onion Oj are formed as in experiment (3), while the rest are formed differently,
and permuted using key Kj .

Finally, experiment (5) does what the challenger would do when b = 1. It
is easy to see that distinguishing between (4) and (5) is equivalent to breaking
CCA2 security of the cryptosystem or collision-resistant of H.

4.2 Response Option

Suppose that Ps wants to send an anonymous message m to Pr and wants Pr

to be able to respond. Our construction allows for that possibility (however we
omit the definition and proof of security).

The sender chooses a path (P ′
1, . . . , P

′
n) for the return onion, (so P ′

0 = Pr,
and P ′

n+1 = Ps). Next, the sender forms (O′
1, . . . , O

′
n+1) = FormOnion(ε, (P ′

1, . . . ,
P ′

n+1), (PK(P ′
1), . . . ,PK(P ′

n+1))). It then chooses a symmetric authentication
and encryption key a and remembers all the keys (K ′

1, . . . , K
′
n+1) used during

FormOnion. Finally, it forms its message as m′ = m ◦ a ◦ O′
1 ◦ P ′

1, and forms its
actual onion in the usual way, i.e., chooses intermediate routers (P1, . . . , Pn) and
sets (O1, . . . , On+1) ← FormOnion(m′, (P1, . . . , Pn, Pr), (PK(P1), . . . ,PK(Pn),
PK(Pr))).

Upon receipt of m′ = (m, a, O′
1, P

′
1), Ps responds as follows. Suppose his

response is M . He encrypts and authenticates M using a, forming a ciphertext
c1. He then sends (c1, O

′
1) to P ′

1, with the annotation that this is a response
onion. A router P receiving a message (c, O′) with the annotation that this is
a response onion, applies ProcOnion to onion O′ only, ignoring c. Recall that
as a result of this, P ′ obtains (O′′, P ′′) (what to send to the next router and
who the next router is) and the key K ′. It then sends the values ({c}K′ , O′′)
to P ′′, also with the annotation that this is a response onion. Eventually, if all
goes well, the tuple ({. . . {c1}K′

1
. . .}K ′

n, O′
n+1) reaches Ps, who, upon processing

O′
n+1 recognizes that he is the recipient of this return onion, and is then able

to obtain c1 using the keys K ′
1, . . . , Kn it stored, and to validate and decrypt c1

using the key a. Note that, due to the symmetric authentication step using the
key a, if Pr is honest, then no polynomial-time adversary can make Ps accept
an invalid response.
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Abstract. A simple and efficient shuffling scheme containing two
protocols is proposed. Firstly, a prototype, Protocol-1 is designed, which
is based on the assumption that the shuffling party cannot find a linear
relation of the shuffled messages in polynomial time. As application of
Protocol-1 is limited, it is then optimised to Protocol-2, which does not
need the assumption. Both protocols are simpler and more efficient than
any other shuffling scheme with unlimited permutation. Moreover, they
achieve provable correctness and ZK privacy.

Keywords: Shuffling, permutation, correctness, privacy, zero knowl-
edge.

1 Introduction

Shuffling is a very important cryptographic primitive. In a shuffling, a party
re-encrypts and shuffles a number of input ciphertexts to the same number of
output ciphertexts and publicly proves the validity of his operation. Its most
important application is to build up anonymous channels used in e-voting [13],
anonymous email [4] and anonymous browsing [7] etc. It is also employed in
other cryptographic applications like multiparty computation [17] and electronic
auction [18]. Two properties must be satisfied in a shuffling. The first property is
correctness, which requires the shuffling party’s validity proof to guarantee that
the plaintexts of the outputs are a permutation of the plaintexts of the inputs.
The second property is privacy, which requires the validity proof of the shuffling
to be zero knowledge.

Recently, several shuffling schemes [1,2,6,13,8,19,15] have been proposed.
Among them, [2] is a slight modification of [1]; [15] is a Paillier-encryption-
based version of [6]; a similar idea is used in [13] and [8]. Except [19], all of
them employ complicated proof techniques to prove correctness of the shuffling.
The shuffling in [1] and [2] employs a large and complex shuffling circuit; [6] and
[15] explicitly deal with a n × n matrix (n is the number of inputs); [13] and
[8] employ proof of equality of product of exponents. Complexity of the proof
causes several drawbacks. Firstly, correctness of the shuffling is not always strict.
More precisely, in [8], if an input is shuffled to its minus (gq = −1 mod 2q + 1

V. Shoup (Ed.): Crypto 2005, LNCS 3621, pp. 188–204, 2005.
c© International Association for Cryptologic Research 2005
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where q and 2q +1 are primes and the order of g modulo 2q +1 is 2q), the proof
can be accepted with a probability no smaller than 0.5. Secondly, some details
of the proof (for example, the efficiency optimisation mechanism in [8]) are too
complex to be easily understood or strictly analysed. Thirdly, the proofs in [6],
[13] and [15] are not honest-verifier zero knowledge as pointed out in [10], [15]
and [14]. So their privacy cannot be strictly and formally guaranteed. Finally,
the proof is inefficient in all of them except [19]. Especially, the computational
cost in [1] and [2] are linear in n log n while [13] and [8] need seven rounds of
communication.

Although [19] is simple and very efficient, it has two drawbacks. Firstly, only
a fraction of all the possible permutations are permitted. Secondly, it needs an
assumption called linear ignorance assumption in this paper.

Definition 1. Let D() be the decryption function for an encryption scheme with
plaintext space {0, 1, . . . , q − 1}. Suppose an adversary A is given a set of n
valid ciphertexts c1, c2, . . . , cn. A succeeds if it outputs integers l1, l2, . . . , ln, not
all zero, such that

∑n
i=1 liD(ci) = 0 mod q. The linear ignorance assumption

states that there is no efficient adversary that can succeed with non-negligible
probability.

In [19], linear ignorance assumption is used against the shuffling party, who re-
ceives some ciphertext to shuffle and acts as the adversary. It is assumed in [19]
that given the ciphertexts to shuffle, the probability that the shuffling party can
efficiently find a linear relation about the messages encrypted in them is negligi-
ble. When the encryption scheme is semantically secure and the distribution of
D(c1), D(c2), . . . , D(cn) is unknown, this assumption is reasonable. However, if
some party with some information about D(c1), D(c2), . . . , D(cn) collude with
the shuffling party, this assumption fails.

In this paper, two correct and private shuffling protocols, denoted as
Protocol-1 and Protocol-2, are proposed. Protocol-1 is a prototype and needs the
linear ignorance assumption against the shuffling party. So the shuffling party’s
knowledge of the shuffled messages is strictly limited in Protocol-1. Therefore,
Protocol-1 is not suitable for applications like e-voting, where the shuffling party
(tallier) may get some information about the shuffled messages from some mes-
sage providers (colluding voters). Protocol-2 is an optimization of Protocol-1.
It requires slightly more computation than Protocol-1, but concretely realises
linear ignorance of the shuffling party in regard to the ciphertexts to shuffle.
Namely, in Protocol-2, linear ignorance of the shuffling party in regard to the
ciphertexts is not an assumption but a provable fact, which is an advantage over
[19] and Protocol-1. As a result, Protocol-2 does not need the linear ignorance
assumption, so is suitable for a much wider range of applications than Protocol-
1. Both the new shuffling protocols are honest-verifier zero knowledge and more
efficient than [1,2,6,13,8,15]. Moreover, neither of them limits the permutation,
which is an advantage over [19].
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2 The Shuffling Protocol

Let n be the number of inputs. An additive homomorphic semantically-secure en-
cryption scheme1 like Paillier encryption [16] is employed where E(m, r) stands
for encryption of message m using random integer r, RE(c, r) stands for re-
encryption of ciphertext c using random integer r and D(c) stands for decryp-
tion of ciphertext c. Additive homomorphism of the encryption scheme implies
RE(c, r) = cE(0, r). Let q be the modulus of the message space, which has no
small factor. Any computation in any matrix or vector is modulo q in this paper.
In encryption or re-encryption the random factor r is chosen from a set Q de-
pendent on the encryption algorithm. |m| stands for the bit length of an integer
m. L is a security parameter, such that 2L is no larger than the smallest factor
of q.

M ′ stands for the transpose matrix of a matrix M . A matrix is called a
permutation matrix if there is exactly one 1 in every row and exactly one 1 in
every column in this matrix while the other elements in this matrix are zeros.
ZP ( x1, x2, . . . , xk | f1, f2, . . . , fl ) stands for a ZK proof of knowledge of secret
integers x1, x2, . . . , xk satisfying conditions f1, f2, . . . , fl. ExpCost(x) stands for
the computational cost of an exponentiation computation with a x bit expo-
nent. In this paper, it is assumed that ExpCost(x) equals 1.5x multiplications.
ExpCostn(x) stands the computational cost of the product of n exponentiations
with x-bit exponents. Bellare et al. [3] showed that ExpCostn(x) is no more
than n + 0.5nx multiplications.

In a shuffling, ciphertexts c1, c2, . . . , cn encrypting messages m1, m2, . . . , mn

are sent to a shuffling party, who shuffles the ciphertexts into c′1, c
′
2, . . . , c

′
n

and has to prove that D(c′1), D(c′2), . . . , D(c′n) is a permutation of
D(c1), D(c2), . . . , D(cn). Batch verification techniques in [17] indicate that if

n∑
i=1

siD(ci) =
n∑

i=1

sπ(i)D(c′i) mod q (1)

can be satisfied with a non-negligible probability where s1, s2, . . . , sn are ran-
domly chosen and π() is a permutation, the shuffling is correct and D(c′i) =
D(cπ(i)) for i = 1, 2, . . . , n. However, direct verification of Equation (1) requires
knowledge of π(). To protect privacy of the shuffling, π() must not appear in
the verification. Groth’s shuffling scheme [8] shows that to prove Equation (1)
without revealing π() is complicated and inefficient. In the new shuffling scheme
a much simpler method is employed. Firstly, it is proved that the shuffling party
knows t1, t2, . . . , tn such that

n∑
i=1

siD(ci) =
n∑

i=1

tiD(c′i) mod q (2)

1 An encryption algorithm with encryption function E() is additive homomorphic if
E(m1)E(m2) = E(m1 +m2) for any messages m1 and m2. An encryption algorithm
is semantically-secure if given a ciphertext c and two messages m1 and m2, such that
c = E(mi) where i = 1 or 2, there is no polynomial algorithm to find out i.
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where it is not required to prove that t1, t2, . . . , tn are a permutation of
s1, s2, . . . , sn. This proof does not reveal the permutation, but is not strong
enough to guarantee validity of the shuffling. Actually, Equation (2) only
implies that under the linear ignorance assumption against the shuffling
party there exists a matrix M such that (D(c′1), D(c′2), . . . , D(c′n)) · M =
(D(c1), D(c2), . . . , D(cn)). As M need not be a permutation matrix, this
proof only guarantees that D(c1), D(c2), . . . , D(cn) is a linear combination
of D(c′1), D(c′2), . . . , D(c′n) under the linear ignorance assumption against the
shuffling party. However, repeating this proof in a non-linear manner can
guarantee M is a permutation matrix under the linear ignorance assumption
against the shuffling party. In Protocol-1, given random integers si and s′i from
{0, 1, . . . , 2L−1} for i = 1, 2, . . . n, the shuffling party has to prove that he knows
secret integers ti and t′i from Zq for i = 1, 2, . . . n, such that

n∑
i=1

siD(ci) =
n∑

i=1

tiD(c′i) mod q

n∑
i=1

s′iD(ci) =
n∑

i=1

t′iD(c′i) mod q

n∑
i=1

sis
′
iD(ci) =

n∑
i=1

tit
′
iD(c′i) mod q

Note that sis
′
i and tit

′
i in the third equation breaks the linear relation among

the three equations. Under the linear ignorance assumption against the shuffling
party, the three equations above can guarantee correctness of the shuffling with
an overwhelmingly large probability. In Protocol-2, every input to be shuffled
is randomly distributed into two inputs, each in one of two input sets. Then
the two sets of inputs are shuffled separately using the same permutation. As
the distribution is random, the input messages in both shufflings are random
and are unknown even to the original message providers. So it is impossible
for the shuffling party to find any linear relation of the input messages in either
shuffling as the employed encryption algorithm is semantically secure. As the two
shufflings are identical, their outputs can be combined to be the final shuffled
outputs.

2.1 Protocol-1

In Protocol-1, it is assumed that the shuffling party cannot find a linear relation
of m1, m2, . . . , mn in polynomial time. Protocol-1 is as follows.

1. The shuffling party randomly chooses π(), a permutation of {1, 2, . . . , n},
and integers ri from Q for i = 1, 2, . . . n. He then outputs c′i = RE(cπ(i), ri)
for i = 1, 2, . . . n while concealing π().

2. A verifier randomly chooses and publishes si from {0, 1, . . . , 2L − 1} for
i = 1, 2, . . . n. The shuffling party chooses r′i from Q for i = 1, 2, . . . n and
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publishes c′′i = c′
ti

i E(0, r′i) for i = 1, 2, . . . n where ti = sπ(i). The shuffling
party publishes ZK proof

ZP ( ti, r
′
i | c′′i = c′

ti

i E(0, r′i) ) for i = 1, 2, . . . n (3)

and

ZP ( ri, ti, r
′
i for i = 1, 2, . . . , n |

n∏
i=1

csi

i

n∏
i=1

(E(0, ri))tiE(0, r′i) =
n∏

i=1

c′′i ) (4)

3. The verifier randomly chooses and publishes s′i from {0, 1, . . . , 2L − 1} for
i = 1, 2, . . . n. The shuffling party sets t′i = s′π(i) for i = 1, 2, . . . n and
publishes ZK proof

ZP ( ri, ti, r
′
i, t

′
i for i = 1, 2, . . . n |

n∏
i=1

c
s′

i
i

n∏
i=1

(E(0, ri))t′
i =

n∏
i=1

c′
t′
i

i ,

n∏
i=1

c
sis

′
i

i

n∏
i=1

(E(0, ri))tit
′
i(E(0, r′i))

t′
i =

n∏
i=1

c′′
t′
i

i ) (5)

If the shuffling party is honest and sets ti = sπ(i) and t′i = s′π(i), he can
pass the verification as

∑n
i=1 tiD(c′i) =

∑n
i=1 sπ(i)D(cπ(i)) =

∑n
i=1 siD(ci);∑n

i=1 t′iD(c′i) =
∑n

i=1 s′π(i)D(cπ(i)) =
∑n

i=1 s′iD(ci) and
∑n

i=1 tit
′
iD(c′i) =∑n

i=1 sπ(i)s
′
π(i)D(cπ(i)) =

∑n
i=1 sis

′
iD(ci). Theorem 1 shows that if the shuffling

party can pass the verification with a non-negligible probability, his shuffling is
correct.

Theorem 1. If the verifier chooses his challenges si and s′i randomly and the
shuffling party in Protocol-1 can provide ZK proofs (3), (4) and (5) with a prob-
ability larger than 2−L, there exists a n × n permutation matrix M such that
(m′

1, m
′
2, . . . , m

′
n)M = (m1, m2, . . . , mn) under the linear ignorance assumption

against the shuffling party.

To prove Theorem 1, the following lemmas are proved first.

Lemma 1. If given random integers si from {0, 1, . . . , 2L−1} for i = 1, 2, . . . , n,
a party can find in polynomial time integers ti from Zq for i = 1, 2, . . . , n with
a probability larger than 2−L, such that

∑n
i=1 simi =

∑n
i=1 tim

′
i mod q, then

he can find in polynomial time a matrix M such that (m′
1, m

′
2, . . . , m

′
n)M =

(m1, m2, . . . , mn).

Proof: Given any integer k in {1, 2, . . . , n} there must exist integers
s1, s2, . . . , sk−1, sk+1, . . . , sn in {0, 1, . . . , 2L − 1} and two different integers sk

and ŝk in {0, 1, . . . , 2L − 1} such that given s1, s2, . . . , sn and ŝk, the party can
find in polynomial time ti and t̂i from Zq for i = 1, 2, . . . , n to satisfy the follow-
ing two equations.

n∑
i=1

simi =
n∑

i=1

tim
′
i mod q (6)
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(
k−1∑
i=1

simi)ŝkmk

n∑
i=k+1

simi =
n∑

i=1

t̂im
′
i mod q (7)

Otherwise, for any s1, s2, . . . , sk−1, sk+1, . . . , sn there is at most one sk to satisfy
equation

∑n
i=1 simi =

∑n
i=1 tim

′
i mod q. This deduction implies that among the

2nL possible combinations of s1, s2, . . . , sn, the party can find in polynomial time
ti for i = 1, 2, . . . , n to satisfy

∑n
i=1 simi =

∑n
i=1 tim

′
i mod q for at most 2(n−1)L

combinations. This conclusion leads to a contradiction: given random integers si

from {0, 1, . . . , 2L − 1} for i = 1, 2, . . . , n the party can find in polynomial time
ti for i = 1, 2, . . . , n to satisfy

∑n
i=1 simi =

∑n
i=1 tim

′
i mod q with a probability

no larger than 2−L.
Subtracting (7) from (6) yields

(sk − ŝk)mk =
n∑

i=1

(ti − t̂i)m′
i mod q

Note that sk ∈ {0, 1, . . . , 2L − 1}, ŝk ∈ {0, 1, . . . , 2L − 1}, sk �= ŝk and 2L is
no larger than the smallest factor of q. So sk − ŝk �= 0 mod q. Namely, given
a non-zero integer sk − ŝk, the party can find in polynomial time ti − t̂i for
i = 1, 2, . . . , n such that (sk − ŝk)mk =

∑n
i=1(ti − t̂i)m′

i mod q. So, for any k in
{1, 2, . . . , n} the party knows a vector Vk = ( (t1− t̂1)/(sk − ŝk), (t2− t̂2)/(sk −
ŝk), . . . , (tn − t̂n)/(sk − ŝk) )′ such that mk = (m′

1, m
′
2, . . . , m

′
n)Vk. Therefore,

the party can find in polynomial time a matrix M such that (m1, m2, . . . , mn) =
(m′

1, m
′
2, . . . , m

′
n)M where M = (V1, V2, . . . , Vn). �

Lemma 2. If a party can find in polynomial time a n × n singular matrix M
such that (m′

1, m
′
2, . . . , m

′
n)M = (m1, m2, . . . , mn) where (m1, m2, . . . , mn) and

(m′
1, m

′
2, . . . , m

′
n) are two vectors, then he can find in polynomial time a linear

relation about m1, m2, . . . , mn.

Proof: Suppose M = (V1, V2, . . . , Vn). Then mi = (m′
1, m

′
2, . . . , m

′
n)Vi.

As M is singular and the party can find in polynomial time M , he can find in
polynomial time integers l1, l2, . . . , ln and k such that

∑n
i=1 liVi = (0, 0, . . . , 0)

where 1 ≤ k ≤ n and lk �= 0 mod q. So

n∑
i=1

limi =
n∑

i=1

li(m′
1, m

′
2, . . . , m

′
n)Vi = (m′

1, m
′
2, . . . , m

′
n)

n∑
i=1

liVi = 0

Namely, the party can find in polynomial time l1, l2, . . . , ln to satisfy∑n
i=1 limi = 0 where 1 ≤ k ≤ n and lk �= 0 mod q. �

Lemma 3. If a party can find a n × n non-singular matrix M and inte-
gers l1, l2, . . . , ln and k in polynomial time such that (m′

1, m
′
2, . . . , m

′
n) =

(m1, m2, . . . , mn)M ,
∑n

i=1 lim
′
i = 0, 1 ≤ k ≤ n and lk �= 0 mod q where

(m1, m2, . . . , mn) and (m′
1, m

′
2, . . . , m

′
n) are two vectors, then he can find a linear

relation about m1, m2, . . . , mn in polynomial time.
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Proof: As (m′
1, m

′
2, . . . , m

′
n) = (m1, m2, . . . , mn)M and

∑n
i=1 lim

′
i = 0,

n∑
i=1

li(m1, m2, . . . , mn)Vi = 0 where M = (V1, V2, . . . , Vn)

So

(m1, m2, . . . , mn)
n∑

i=1

liVi = 0

Note that
∑n

i=1 liVi �= (0, 0, . . . , 0) as M is non-singular, 1 ≤ k ≤ n and lk �=
0 mod q. Therefore, the party can find a linear relation about m1, m2, . . . , mn in
polynomial time. �

Lemma 4. If given random integers si from {0, 1, . . . , 2L − 1} for i =
1, 2, . . . , n, a party can find a n × n non-singular matrix M and integers ti
from Zq for i = 1, 2, . . . , n in polynomial time such that (m1, m2, . . . , mn) =
(m′

1, m
′
2, . . . , m

′
n)M and

∑n
i=1 simi =

∑n
i=1 tim

′
i mod q where (m1, m2, . . . , mn)

and (m′
1, m

′
2, . . . , m

′
n) are two vectors, then (s1, s2, . . . , sn)M = (t1, t2, . . . , tn)

under the linear ignorance assumption against the shuffling party.

Proof:
(m1, m2, . . . , mn) = (m′

1, m
′
2, . . . , m

′
n)M

implies
mi = (m′

1, m
′
2, . . . , m

′
n)Vi for i = 1, 2, . . . , n

where M = (V1, V2, . . . , Vn).
So

n∑
i=1

simi =
n∑

i=1

tim
′
i mod q

implies

(m′
1, m

′
2, . . . , m

′
n)

n∑
i=1

siVi = (m′
1, m

′
2, . . . , m

′
n)


t1
t2
...
tn


So given random integers si from {0, 1, . . . , 2L − 1} for i = 1, 2, . . . , n, the party
can find matrix M = (V1, V2, . . . , Vn) and integers ti from Zq for i = 1, 2, . . . , n
in polynomial time such that

(m′
1, m

′
2, . . . , m

′
n)(

n∑
i=1

siVi −


t1
t2
...
tn

) = 0 (8)
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As M is non-singular,

(m′
1, m

′
2, . . . , m

′
n) = (m1, m2, . . . , mn)M−1

So

n∑
i=1

siVi −


t1
t2
...
tn

 =


0
0
...
0


otherwise according to Lemma 3 the party can find a linear relation about
m1, m2, . . . , mn in polynomial time, which is contradictory to the linear igno-
rance assumption against the shuffling party. So

n∑
i=1

siVi =


t1
t2
...
tn

 and thus M ′


s1
s2
...

sn

 =


t1
t2
...
tn


Namely,

(s1, s2, . . . , sn)M = (t1, t2, . . . , tn) �

Lemma 5. If
∑n

i=1 yisi = 0 mod q with a probability larger than 2−L for ran-
dom integers s1, s2, . . . , sn from {0, 1, 2, . . . , 2L − 1}, then yi = 0 mod q for
i = 1, 2, . . . , n.

Proof: Given any integer k in {1, 2, . . . , n}, there must exist integers
s1, s2, . . . , sk−1, sk+1, . . . , sn in {0, 1, . . . , 2L − 1} and two different integers sk

and ŝk in {0, 1, . . . , 2L − 1} such that the following two equations are correct.

n∑
i=1

yisi = 0 mod q (9)

(
k−1∑
i=1

yisi) + ykŝk +
n∑

i=k+1

yisi = 0 mod q (10)

Otherwise, for any s1, s2, . . . , sk−1, sk+1, . . . , sn there is at most one sk to sat-
isfy equation

∑n
i=1 yisi = 0 mod q. This deduction implies among the 2nL pos-

sible combinations of s1, s2, . . . , sn, equation
∑n

i=1 yisi = 0 mod q is correct
for at most 2(n−1)L combinations. This conclusion leads to a contradiction:
given random integers si from {0, 1, . . . , 2L − 1} for i = 1, 2, . . . , n, equation∑n

i=1 yisi = 0 mod q is correct with a probability no larger than 2−L.
Subtracting (10) from (9) yields

yk(sk − ŝk) = 0 mod q
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Note that GCD(sk − ŝk, q) = 1 as 2L is no larger than the smallest fac-
tor of q, sk �= ŝk and sk,ŝk are L-bit integers. So, yk = 0 mod q. Note that
k can be any integer in {1, 2, . . . , n}. Therefore yi = 0 mod q for i = 1, 2, . . . , n. �

Proof of Theorem 1:
According to additive homomorphism of the employed encryption algorithm, ZK
proofs (3), (4) and (5) guarantee that the shuffling party can find integers ti and
t′i for i = 1, 2, . . . , n to satisfy

n∑
i=1

simi =
n∑

i=1

tim
′
i mod q (11)

n∑
i=1

s′imi =
n∑

i=1

t′im
′
i mod q (12)

n∑
i=1

sis
′
imi =

n∑
i=1

tit
′
im

′
i mod q (13)

where m′
i = D(c′i) and si and s′i for i = 1, 2, . . . , n are randomly chosen by the

verifier.
According to Lemma 1, the shuffling party knows a matrix M such that

(m′
1, m

′
2, . . . , m

′
n)M = (m1, m2, . . . , mn) (14)

According to Lemma 2, M is non-singular under the linear ignorance as-
sumption against the shuffling party.

According to Lemma 4, Equations (14) together with Equations (11), (12)
and (13) implies

(s1, s2, . . . , sn)M = (t1, t2, . . . , tn) (15)
(s′1, s

′
2, . . . , s

′
n)M = (t′1, t

′
2, . . . , t

′
n) (16)

(s1s
′
1, s2s

′
2, . . . , sns′n)M = (t1t′1, t2t

′
2, . . . , tnt′n) (17)

under the linear ignorance assumption against the shuffling party.
Equation (15), Equation (16) and Equation (17) respectively imply

(s1, s2, . . . , sn)V1 = t1 (18)
(s′1, s

′
2, . . . , s

′
n)V1 = t′1 (19)

(s1s
′
1, s2s

′
2, . . . , sns′n)V1 = t1t

′
1 (20)

where M = (V1, V2, . . . , Vn).
Equation (18) and Equation (19) imply

(s′1, s
′
2, . . . , s

′
n)V1(s1, s2, . . . , sn)V1 = t1t

′
1 (21)

Equation (20) and Equation (21) imply

(s′1, s
′
2, . . . , s

′
n)V1(s1, s2, . . . , sn)V1 = (s1s

′
1, s2s

′
2, . . . , sns′n)V1
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So

(s′1, s
′
2, . . . , s

′
n)V1(s1, s2, . . . , sn)V1 = (s′1, s

′
2, . . . , s

′
n)


v1,1s1
v1,2s2

...
v1,nsn



where V1 =


v1,1
v1,2
...

v1,n


under the linear ignorance assumption against the shuffling party.

Note that s′1, s
′
2, . . . , s

′
n are randomly chosen by the verifier. So according to

Lemma 5,

V1(s1, s2, . . . , sn)V1 =


v1,1s1
v1,2s2

...
v1,nsn


under the linear ignorance assumption against the shuffling party. So

(s1, s2, . . . , sn)V1v1,i = v1,isi for i = 1, 2, . . . , n

under the linear ignorance assumption against the shuffling party.
Note that V1 �= (0, 0, . . . , 0) as M is non-singular. So there must exist integer

k such that 1 ≤ k ≤ n and vi,k �= 0 mod q. So

(s1, s2, . . . , sn)V1 = sk

under the linear ignorance assumption against the shuffling party. Namely,

s1v1,1 + s2v1,2 + . . . + snv1,n = sk mod q

and thus

s1v1,1+s2v1,2+. . .+sk−1v1,k−1+(sk−1)v1,k+sk+1v1,k+1+. . .+snv1,n = 0 mod q

under the linear ignorance assumption against the shuffling party.
Note that s1, s2, . . . , sn are randomly chosen by the verifier. So according to

Lemma 5, v1,1 = v1,2 = . . . = v1,k−1 = v1,k+1 = . . . = v1,n = 0 and v1,k = 1
under the linear ignorance assumption against the shuffling party. Namely, V1
contains one 1 and n − 1 0s under the linear ignorance assumption against the
shuffling party.

For the same reason, Vi contains one 1 and n− 1 0s for i = 2, 3, . . . , n under
the linear ignorance assumption against the shuffling party. Note that M is
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non-singular. Therefore, M is a permutation matrix under the linear ignorance
assumption against the shuffling party. �

In some applications of shuffling like [17], only semantically encrypted cipher-
texts c1, c2, . . . , cn are given to the shuffling party while no information about
m1, m2, . . . , mn is known. So the linear ignorance assumption against the shuf-
fling party (the shuffling party cannot find a linear relation about m1, m2, . . . , mn

in polynomial time) is satisfied. Therefore, the shuffling by Protocol-1 is correct
in these applications according to Theorem 1.

2.2 Protocol-2

In Protocol-1, the linear ignorance assumption is necessary. That means
Protocol-1 cannot guarantee correctness of the shuffling if someone with knowl-
edge of any shuffled message colludes with the shuffling party. For example,
when the shuffling is used to shuffle the votes in e-voting, some voters may col-
lude with the shuffling party and reveal their votes. Then the shuffling party can
tamper with some votes without being detected. So Protocol-1 is upgraded to
Protocol-2, which can guarantee the linear ignorance and thus correctness of the
shuffling without any assumption. The upgrade is simple. The input ciphertexts
c1, c2, . . . , cn are divided into two groups of random ciphertexts d1, d2, . . . , dn

and e1, e2, . . . , en such that ci = eidi for i = 1, 2, . . . , n. Then Protocol-1 can
be applied to shuffle d1, d2, . . . , dn and e1, e2, . . . , en using an identical permuta-
tion. After the shuffling, the two groups of outputs are combined to recover the
re-encrypted permutation of c1, c2, . . . , cn. Protocol-2 is as follows.
1. The shuffling party calculates di = h(ci) for i = 1, 2, . . . , n where h() is a

random oracle query implemented by a hash function from the ciphertext
space of the employed encryption algorithm to the same ciphertext space.
Thus two groups of ciphertexts di for i = 1, 2, . . . , n and ei = ci/di for
i = 1, 2, . . . , n are obtained.

2. The shuffling party randomly chooses π(), a permutation of {0, 1, . . . , n}
and integers ri and ui from Q for i = 1, 2, . . . n. He then outputs d′i =
RE(dπ(i), ri) and e′i = RE(eπ(i), ui) for i = 1, 2, . . . n while concealing π().

3. The verifier randomly chooses and publishes si from {0, 1, . . . , 2L − 1} for
i = 1, 2, . . . n. The shuffling party chooses r′i from Q for i = 1, 2, . . . n and
publishes d′′i = d′

ti

i E(0, r′i) for i = 1, 2, . . . n where ti = sπ(i). The shuffling
party publishes ZK proof

ZP ( ti, r
′
i | d′′i = d′

ti

i E(0, r′i) ) for i = 1, 2, . . . n (22)

and

ZP ( ri, ui, ti, r
′
i for i = 1, 2, . . . , n |

n∏
i=1

dsi

i

n∏
i=1

(E(0, ri))tiE(0, r′i) =
n∏

i=1

d′′i , (23)

n∏
i=1

esi

i

n∏
i=1

(E(0, ui))ti =
n∏

i=1

e′
ti

i )
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4. The verifier randomly chooses and publishes s′i from {0, 1, . . . , 2L − 1} for
i = 1, 2, . . . n. The shuffling party sets t′i = s′π(i) for i = 1, 2, . . . n and
publishes ZK proof

ZP ( ri, ti, r
′
i, t

′
i for i = 1, 2, . . . n |

n∏
i=1

d
s′

i

i

n∏
i=1

(E(0, ri))t′
i =

n∏
i=1

d′
t′
i

i ,

n∏
i=1

d
sis

′
i

i

n∏
i=1

(E(0, ri))tit
′
i(E(0, r′i))

t′
i =

n∏
i=1

d′′
t′
i

i ) (24)

5. If the proofs above are verified to be valid, the outputs of the shuffling are
c′i = d′ie

′
i for i = 1, 2, . . . n.

Just like in Protocol-1, if the shuffling party is honest and sets ti = sπ(i) and
t′i = s′π(i), he can pass the verification in Protocol-2. Theorem 2 shows that if
the shuffling party can pass the verification in Protocol-2 with a non-negligible
probability, his shuffling is correct even without the linear ignorance assumption.

Theorem 2. If the verifier chooses his challenges si and s′i randomly and
the shuffling party in Protocol-2 can provide ZK proofs (22), (23) and
(24) with a probability larger than 2−L, then there is an identical per-
mutation from D(d1), D(d2), . . . , D(dn) to D(d′1), D(d′2), . . . , D(d′n) and from
D(e1), D(e2), . . . , D(en) to D(e′1), D(e′2), . . . , D(e′n).

Proof: According to additive homomorphism of the employed encryption, ZK
proofs (22), (23) and (24) guarantee that the shuffling party can find integers ti
and t′i for i = 1, 2, . . . , n to satisfy

n∑
i=1

siD(di) =
n∑

i=1

tiD(d′i) mod q (25)

n∑
i=1

siD(ei) =
n∑

i=1

tiD(e′i) mod q (26)

n∑
i=1

s′iD(di) =
n∑

i=1

t′iD(d′i) mod q (27)

n∑
i=1

sis
′
iD(di) =

n∑
i=1

tit
′
iD(d′i) mod q (28)

where si and s′i for i = 1, 2, . . . , n are randomly chosen by the verifier.
Note that d1, d2, . . . , dn are produced by the hash function h(), which

is regarded as a random oracle. So to find a linear relation about
D(d1), D(d2), . . . , D(dn) is equivalent to repeatedly querying a random oracle
for a vector of n random ciphertexts and then finding a linear relation on the
plaintexts corrresponding to one of these vectors. This is infeasible as the em-
ployed encryption algorithm is semantically secure. So the probability that the
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shuffling party can find any linear relation about D(d1), D(d2), . . . , D(dn) is neg-
ligible. For the same reason, the probability that the shuffling party can find any
linear relation about D(e1), D(e2), . . . , D(en) is negligible.

According to Theorem 1, Equations (25), (27) and (28) imply that there
exists a permutation matrix M such that

(D(d′1), D(d′2), . . . , D(d′n))M = (D(d1), D(d2), . . . , D(dn))

So according to Lemma 4,

(s1, s2, . . . , sn)M = (t1, t2, . . . , tn) (29)

According to Lemma 1 and Lemma 4, Equation (26) implies that there exists
a matrix M̂ such that

(D(e′1), D(e′2), . . . , D(e′n))M̂ = (D(e1), D(e2), . . . , D(en))

and

(s1, s2, . . . , sn)M̂ = (t1, t2, . . . , tn) (30)

Subtracting (30) from (29) yields

(s1, s2, . . . , sn)(M − M̂) = (0, 0, . . . , 0)

According to Lemma 5, every column vector in matrix M − M̂ contains
n zeros. So M = M̂ . Therefore there is an identical permutation (ma-
trix) from D(d1), D(d2), . . . , D(dn) to D(d′1), D(d′2), . . . , D(d′n) and from
D(e1), D(e2), . . . , D(en) to D(e′1), D(e′2), . . . , D(e′n). �

According to Theorem 2, D(d1)D(e1), D(d2)D(e2), . . . , D(dn)D(en)
is permuted to D(d′1)D(e′1), D(d′2)D(e′2), . . . , D(d′n)D(e′n). Namely,
D(c′1), D(c′2), . . . , D(c′n) is a permutation of D(c1), D(c2), . . . , D(cn) even
in the absence of the linear ignorance assumption.

3 Implementation and Cost

The additive homomorphic semantically secure encryption employed in Protocol-
1 may be the modified ElGamal encryption [11,12] or Paillier encryption [16].
The implementation details and computational cost are slightly different with
different encryption schemes. For example, the following Paillier encryption al-
gorithm can be employed. N = p1p2, p1 = 2p′1 + 1, p2 = 2p′2 + 1 where p1, p2,
p′1 and p′2 are large primes and GCD(N, p′1p

′
2) = 1. Integers a, b are randomly

chosen from Z∗
N and g = (1 + N)a + bN mod N . The public key consists of N

and g. The private key is βp′1p
′
2 where β is randomly chosen from Z∗

N . A message
m ∈ ZN is encrypted to c = gmrN mod N2 where r is randomly chosen from
Z∗

N . The modulus of the message space is N . If Paillier encryption is employed,
Protocol-1 can be implemented as follows.
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1. The shuffling party randomly chooses integers ri from Z∗
N for i = 1, 2, . . . n.

He then outputs c′i = cπ(i)r
N
i mod N2 for i = 1, 2, . . . n.

2. After the verifier publishes si from {0, 1, . . . , 2L − 1} for i = 1, 2, . . . n,
the shuffling party chooses r′i from Z∗

N for i = 1, 2, . . . n and publishes
c′′i = c′

ti

i r′
N
i mod N2 for i = 1, 2, . . . n where ti = sπ(i). The shuffling party

publishes ZK proof

ZP ( ti, r
′
i | c′′i = c′

ti

i r′
N
i mod N2 ) for i = 1, 2, . . . n (31)

and

ZP ( R1 | RN
1 = C1 mod N2 ) (32)

where R1 =
∏n

i=1 rti

i r′i mod N2 and C1 =
∏n

i=1 c′′i /
∏n

i=1 csi

i mod N2.
3. After the verifier publishes s′i from {0, 1, . . . , 2L − 1} for i = 1, 2, . . . n, the

shuffling party sets t′i = s′π(i) for i = 1, 2, . . . n and publishes ZK proof

ZP ( R2, R3, t
′
i for i = 1, 2, . . . n | C2R

N
2 =

∏n
i=1 c′

t′
i

i mod N2,

C3R
N
3 =

∏n
i=1 c′′

t′
i

i mod N2 ) (33)

where R2 =
∏n

i=1 r
t′
i

i mod N2, R3 =
∏n

i=1 r
tit

′
i

i r′
t′
i

i mod N2, C2 =∏n
i=1 c

s′
i

i mod N2 and C3 =
∏n

i=1 c
sis

′
i

i mod N2.

Non-interactive implementation of ZK proof (31), (32) and (33) can be im-
plemented as follows.

1. The shuffling party randomly chooses W1 ∈ Z∗
N , W2 ∈ Z∗

N , W3 ∈ Z∗
N ,

vi ∈ ZN for i = 1, 2, . . . , n, v′i ∈ ZN for i = 1, 2, . . . , n and xi ∈ Z∗
N for

i = 1, 2, . . . , n. He calculates ai = c′
vi

i xN
i mod N2 for i = 1, 2, . . . , n, f =

WN
1 mod N2, a = (

∏n
i=1 c′

v′
i

i )/WN
2 mod N2 and b = (

∏n
i=1(c

′′v′
i)/WN

3 mod
N2.

2. The shuffling party calculates c = H(f, a, b, a1, a2, . . . , an) where H() is a
random oracle query implemented by a hash function with a 128-bit output.

3. The shuffling party calculates z1 = W1R
c
1 mod N2, z2 = W2/Rc

2 mod N2,
z3 = W3/Rc

3 mod N2, αi = xir
c
i mod N2 for i = 1, 2, . . . , n, γi = vi +

cti mod N for i = 1, 2, . . . , n and γ′
i = ct′i − v′i mod N for i = 1, 2, . . . , n.

4. The shuffling party publishes z1, z2, z3, α1, α2, . . . , αn, γ1, γ2, . . . , γn, γ′
1, γ

′
2,

. . . , γ′
n. Anyone can verifiy that

c = H( zN
1 /Cc

1, Cc
2/(zN

2
∏n

i=1 c′
γ′

i

i ), Cc
3/(bzN

3
∏n

i=1 c′′
γ′

i

i ),
c′

γi

i αN
i /c′′i

c for i = 1, 2, . . . , n ) (34)

This implementation is a combination of ZK proof of knowledge of logarithm
[20], ZK proof of equality of logarithms [5] and ZK proof of knowledge of
root [9]. All the three proof techniques are correct and specially sound, so this
implementation guarantees Equations (3), (4) and (5). All of the three proof
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techniques are honest-verifier zero knowledge. So if the hash function can be
regarded as a random oracle query, this implementation is zero knowledge.
Therefore, ZK privacy is achieved in Protocol-1. In this implementation, the
computational cost of shuffling is n full length exponentiations2; the cost of
proof is 3nExpCost(|N |)+2ExpCostn(|N |)+nExpCost(L)+3ExpCostn(L)+
ExpCostn(2L) + (n + 3)ExpCost(128) + 3, which is approximately equal to
11n/3 + 8nL/(3|N |) + 128(n + 3)/|N |+ 3 full length exponentiations.

ZK proofs (22), (23) and (24) in Protocol-2 can be implemented similarly.
When Paillier encryption is employed, the computational cost of shuffling is 2n
full length exponentiations; the cost of proof is approximately equal to 11n/3 +
11nL/(3|N |) + 128(n + 4)/|N |+ 3 full length exponentiations. It is well known
[11,12] that ElGamal encryption can be modified to be additive homomorphic. If
the additional DL search in the decryption function caused by the modification is
not an efficiency concern (e.g. when the messages are in a known small set), the
modified ElGamal encryption can also be applied to our shuffling. An ElGamal-
based shuffling only uses ZK proof of knowledge of logarithm [20] and ZK proof of
equality of logarithms [5]. Note that in the ElGamal-based shuffling each output
ciphertext must be verified to be in the ciphertext space. When a prime p is the
multiplication modulus, the ciphertext space is the cyclic subgroup G with order
q where q is a prime and p = 2q+1. If an output is in Z∗

p−G, Proofs (3), (4), (5)
cannot guarantee correctness of the shuffling. The implementation and cost of
the ElGamal-based shuffling are similar to those of Paillier-based shuffling in
both Protocol-1 and Protocol-2.

In summary, both protocols can be efficiently implemented with either Paillier
encryption or ElGamal encryption to achieve correctness and privacy in the
shuffling.

4 Conclusion

Two new shuffling protocols are proposed in this paper. The first protocol is a
prototype and based on an assumption. The second one removes the assump-
tion and can be applied to more applications. Both protocols are simple and
efficient, and achieve all the desired properties of shuffling. In Tables 1, the new
shuffling protocols based on Paillier encryption are compared against the ex-
isting shuffling protocols. It is demonstrated in Table 1 that Protocol-2 is the
only shuffling scheme with strict correctness, unlimited permutation, ZK pri-
vacy and without the linear ignorance assumption. In Table 1 the computational
cost is counted in terms of full-length exponentiations (with 1024-bit exponent)
where L = 20. It is demonstrated that the new shuffling protocols are more
efficient than the existing shuffling schemes except [19], which is not a complete
shuffling.

2 An exponentiation is called full length if the exponent can be as long as the order
of the base.
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Table 1. Comparison of computation cost in full-length exponentiations

Correctness Permutation Privacy Linear ignor- Computation cost Communication

-ance assumption (shuffling and proof) Rounds

[1,2] strict unlimited ZK unnecessary ≥ 16(n log2 n − 2n + 2) 3

[6,15] strict unlimited not ZK unnecessary 10n 3

[13] strict unlimited not ZK unnecessary 12n 7

[8]a not strict unlimited ZK unnecessary 8n + 3n/κ + 3 7

[19]b strict limited ZK necessary 2n + k(4k − 2) 3

Protocol-1 strict unlimited ZK necessary n + 369
96 n + 27

8 < 5n 3

Protocol-2 strict unlimited ZK unnecessary 2n + 3077
768 n + 3.5 ≈ 6n 3

a κ is a chosen parameter.
b k is a small parameter determined by the flexibility of permutation and strength of

privacy.
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Abstract. We identify and fill some gaps with regard to consistency (the
extent to which false positives are produced) for public-key encryption
with keyword search (PEKS). We define computational and statistical
relaxations of the existing notion of perfect consistency, show that the
scheme of [7] is computationally consistent, and provide a new scheme
that is statistically consistent. We also provide a transform of an anony-
mous IBE scheme to a secure PEKS scheme that, unlike the previous
one, guarantees consistency. Finally we suggest three extensions of the
basic notions considered here, namely anonymous HIBE, public-key en-
cryption with temporary keyword search, and identity-based encryption
with keyword search.

1 Introduction

There has recently been interest in various forms of “searchable encryption”
[18,7,12,14,20]. In this paper, we further explore one of the variants of this goal,
namely public-key encryption with keyword search (PEKS) as introduced by

V. Shoup (Ed.): Crypto 2005, LNCS 3621, pp. 205–222, 2005.
c© International Association for Cryptologic Research 2005
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Boneh, Di Crescenzo, Ostrovsky and Persiano [7]. We begin by discussing con-
sistency-related issues and results, then consider the connection to anonymous
identity-based encryption (IBE) and finally discuss some extensions.

1.1 Consistency in PEKS

Any cryptographic primitive must meet two conditions. One is of course a se-
curity condition. The other, which we will here call a consistency condition,
ensures that the primitive fulfills its function. For example, for public-key en-
cryption, the security condition is privacy. (This could be formalized in many
ways, eg. IND-CPA or IND-CCA.) The consistency condition is that decryption
reverses encryption, meaning that if M is encrypted under public key pk to re-
sult in ciphertext C, then decrypting C under the secret key corresponding to
pk results in M being returned.

PEKS. In a PEKS scheme, Alice can provide a gateway with a trapdoor tw
(computed as a function of her secret key) for any keyword w of her choice. A
sender encrypts a keyword w ′ under Alice’s public key pk to obtain a ciphertext
C that is sent to the gateway. The latter can apply a test function Test to tw ,
C to get back 0 or 1. The consistency condition as per [7] is that if w = w ′

then Test(tw , C) returns 1 and if w �= w ′ it returns 0. The security condition
is that the gateway learn nothing about w ′ beyond whether or not it equals
w . (The corresponding formal notion will be denoted PEKS-IND-CPA.) The
application setting is that C can be attached to an email (ordinarily encrypted
for Alice under a different public key), allowing the gateway to route the email
to different locations (eg. Alice’s desktop, laptop or pager) based on w while
preserving privacy of the latter to the largest extent possible.

Consistency of BDOP -PEKS . It is easy to see (cf. Proposition 1) that the
main construction of [7] (a random oracle model, BDH-based PEKS-IND-CPA
secure PEKS scheme that we call BDOP -PEKS ) fails to meet the consistency
condition defined in [7] and stated above. (Specifically, there are distinct key-
words w ,w ′ such that Test(tw , C) = 1 for any C that encrypts w ′.) The potential
problem this raises in practice is that email will be incorrectly routed.

New notions of consistency. It is natural to ask if BDOP -PEKS meets
some consistency condition that is weaker than theirs but still adequate in prac-
tice. To answer this, we provide some new definitions. Somewhat unusually for a
consistency condition, we formulate consistency more like a security condition,
via an experiment involving an adversary. The difference is that this adversary
is not very “adversarial”: it is supposed to reflect some kind of worst case but
not malicious behavior. However this turns out to be a difficult line to draw,
definitionally, so that some subtle issues arise. One advantage of this approach
is that it naturally gives rise to a hierarchy of notions of consistency, namely
perfect, statistical and computational. The first asks that the advantage of any
(even computationally unbounded) adversary be zero; the second that the ad-
vantage of any (even computationally unbounded) adversary be negligible; the
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third that the advantage of any polynomial-time adversary be negligible. We
note that perfect consistency as per our definition coincides with consistency as
per [7], and so our notions can be viewed as natural weakenings of theirs.

An analogy. There is a natural notion of decryption error for encryption
schemes [13, Section 5.1.2]. A perfectly consistent PEKS is the analog of an
encryption scheme with zero decryption error (the usual requirement). A statis-
tically consistent PEKS is the analog of an encryption scheme with negligible
decryption error (a less common but still often used condition [2,10]). However,
computational consistency is a non-standard relaxation, for consistency condi-
tions are typically not computational. This is not because one cannot define
them that way (one could certainly define a computational consistency require-
ment for encryption) but rather because there has never been any motivation to
do so. What makes PEKS different, as emerges from the results below, is that
computational consistency is relevant and arises naturally.

Consistency of BDOP -PEKS , revisited. The counter-example showing that
BDOP -PEKS is not perfectly consistent extends to show that it is not statisti-
cally consistent either. However, we show (cf. Theorem 4) that BDOP -PEKS is
computationally consistent. In the random-oracle model, this is not under any
computational assumption: the limitation on the running time of the adversary
is relevant because it limits the number of queries the adversary can make to
the random oracle. When the random oracle is instantiated via a hash function,
we would need to assume collision-resistance of the hash function. The implica-
tion of this result is that BDOP -PEKS is probably fine to use in practice, in
that incorrect routing of email, while possible in principle, is unlikely to actually
happen.

A statistically consistent PEKS scheme. We provide the first construc-
tion of a PEKS scheme that is statistically consistent. The scheme is in the RO
model, and is also PEKS-IND-CPA secure assuming the BDH problem is hard.

The motivation here was largely theoretical. From a foundational perspective,
we wanted to know whether PEKS was an anomaly in the sense that only com-
putational consistency is possible, or whether, like other primitives, statistical
consistency could be achieved. However, it is also true that while computational
consistency is arguably enough in an application, statistical might be preferable
because the guarantee is unconditional.

1.2 PEKS and Anonymous IBE

BDOP -PEKS is based on the Boneh-Franklin IBE (BF -IBE) scheme [8]. It is
natural to ask whether one might, more generally, build PEKS schemes from IBE
schemes in some blackbox way. To this end, a transform of an IBE scheme into
a PEKS scheme is presented in [7]. Interestingly, they note that the property of
the IBE scheme that appears necessary to provide PEKS-IND-CPA of the PEKS
scheme is not the usual IBE-IND-CPA but rather anonymity. (An IBE scheme is
anonymous if a ciphertext does not reveal the identity of the recipient [3].) While
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[7] stops short of stating and proving a formal result here, it is not hard to verify
that their intuition is correct. Namely one can show that if the starting IBE
scheme IBE meets an appropriate formal notion of anonymity (IBE-ANO-CPA,
cf. Sect. 3) then PEKS = bdop-ibe-2-peks(IBE) is PEKS-IND-CPA.

Consistency in bdop-ibe-2-peks. Unfortunately, we show (cf. Theorem 6) that
there are IBE schemes for which the PEKS scheme output by bdop-ibe-2-peks is
not even computationally consistent. This means that bdop-ibe-2-peks is not in
general a suitable way to turn an IBE scheme into a PEKS scheme. (Although
it might be in some cases, and in particular is when the starting IBE scheme is
BF -IBE , for in that case the resulting PEKS scheme is BDOP -PEKS .)

new-ibe-2-peks. We propose a randomized variant of the bdop-ibe-2-peks trans-
form that we call new-ibe-2-peks, and prove that if an IBE scheme IBE is
IBE-ANO-CPA and IBE-IND-CPA then the PEKS scheme new-ibe-2-peks(IBE)
is PEKS-IND-CPA and computationally consistent. We do not know of a trans-
form where the resulting PEKS scheme is statistically or perfectly consistent.

Anonymous IBE schemes. The above motivates finding anonymous IBE
schemes. Towards this, we begin by extending Halevi’s condition for
anonymity [15] to the IBE setting. Based on this, we are able to give a sim-
ple proof that the (random-oracle model) BF -IBE scheme [8] is IBE-ANO-CPA
assuming the BDH problem is hard (cf. Theorem 8). (We clarify that a proof of
this result is implicit in the proof of security of the BF -IBE based BDOP -PEKS
scheme given in [7]. Our contribution is to have stated the formal definition of
anonymity and provided a simpler proof via the extension of Halevi’s condition.)
Towards answering the question of whether there exist anonymous IBE schemes
in the standard (as opposed to random oracle) model, we present in [1] an attack
to show that Water’s IBE scheme [19] is not IBE-ANO-CPA.

1.3 Extensions

Anonymous HIBE. We provide definitions of anonymity for hierarchical IBE
(HIBE) schemes. Our definition can be parameterized by a level, so that we can
talk of a HIBE that is anonymous at level l. We note that the HIBE schemes of
[11,6] are not anonymous, even at level 1. (That of [16] appears to be anonymous
at both levels 1 and 2 but is very limited in nature and thus turns out not to be
useful for our applications.) We modify the construction of Gentry and Silverberg
[11] to obtain a HIBE that is (HIBE-IND-CPA and) anonymous at level 1. The
construction is in the random oracle model and assumes BDH is hard.

PETKS. In a PEKS scheme, once the gateway has the trapdoor for a certain
period, it can test whether this keyword was present in any past ciphertexts or
future ciphertexts. It may be useful to limit the period in which the trapdoor
can be used. Here we propose an extension of PEKS that we call public-key
encryption with temporary keyword search (PETKS) that allows this. A trap-
door here is created for a time interval [s..e] and will only allow the gateway to
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test whether ciphertexts created in this time interval contain the keyword. We
provide definitions of privacy and consistency for PETKS, and then show how
to implement it with overhead that is only logarithmic in the total number of
time periods. Our construction can use any HIBE that is anonymous at level 1.
Using the above-mentioned HIBE we get a particular instantiation that is secure
in the random-oracle model if BDH is hard.

IBEKS. We define the notion of an identity-based encryption with keyword
search scheme. This is just like a PEKS scheme except that encryption is per-
formed given only the identity of the receiver and a master public-key, just like
in an IBE scheme. We show how to implement IBEKS given any level-2 anony-
mous HIBE scheme. However no suitable implementation of the latter is known,
so we have no concrete implementation of IBEKS.

1.4 Remarks

Limited PEKS schemes. Boneh et. al. [7] also present a couple of PEKS
schemes that are what they call limited. In the first scheme, the public key has
size polynomial in the number of keywords that can be used. In the second
scheme, the key and ciphertext have size polynomial in the number of trapdoors
that can be securely issued to the gateway. Although these schemes are not very
interesting due to their limited nature, one could ask about their consistency.
In the full version of this paper [1] we extend our definitions of consistency to
this limited setting and then show that the first scheme is statistically consistent
while the second scheme is computationally consistent, and statistically consis-
tent under some conditions.

Consistency of other searchable encryption schemes. Of the other pa-
pers on searchable encryption of which we are aware [18,12,14,20], none formally
define or rigorously address the notion of consistency for their respective types
of searchable encryption schemes. Goh [12] and Golle, Staddon, and Waters [14]
define consistency conditions analogous to BDOP’s “perfect consistency” con-
dition, but none of the constructions in [12,14] satisfy their respective perfect
consistency condition. Song, Wagner, and Perrig [18] and Waters et al. [20] do
not formally state and prove consistency conditions for their respective search-
able encryption schemes, but they, as well as Goh [12], do acknowledge and
informally bound the non-zero probability of a false positive.

2 Consistency in PEKS

PEKS. A public key encryption with keyword search (PEKS) scheme [7] PEKS =
(KG, PEKS, Td, Test) consists of four polynomial-time algorithms. Via (pk , sk) $←
KG(1k), where k ∈ N is the security parameter, the randomized key-generation
algorithm produces keys for the receiver; via C $← PEKSH(pk ,w) a sender en-
crypts a keyword w to get a ciphertext; via tw

$← TdH(sk ,w) the receiver



210 M. Abdalla et al.

computes a trapdoor tw for keyword w and provides it to the gateway; via
b ← TestH(tw ,C ) the gateway tests whether C encrypts w , where b is a bit
with 1 meaning “accept” or “yes” and 0 meaning “reject” or “no”. Here H is a
random oracle whose domain and/or range might depend on k and pk . (In con-
structs we might use multiple random oracles, but since one can always obtain
these from a single one [5], definitions will assume just one.)

Consistency. The requirement of [7] can be divided into two parts. First,
Test(tw ,C ) always accept when C encrypts w . More formally, for all k ∈ N
and all w ∈ {0, 1}∗ we ask that Pr[TestH(TdH(sk ,w), PEKSH(pk ,w)) = 1] = 1,
where the probability is taken over the choice of (pk , sk) $← KG(1k), the random
choice of H , and the coins of all the algorithms in the expression above. Since we
will always require this too, it is convenient henceforth to take it as an integral
part of the PEKS notion and not mention it again, reserving the term “consis-
tency” to only refer to what happens when the ciphertext encrypts a keyword
different from the one for which the gateway is testing. In this regard, the re-
quirement of [7], which we will call perfect consistency, is that Test(tw ′ ,C ) always
reject when C doesn’t encrypt w ′. More formally, for all k ∈ N and all distinct
w ,w ′ ∈ {0, 1}∗, we ask that Pr[TestH(TdH(sk ,w ′), PEKSH(pk ,w)) = 1] = 0,
where the probability is taken over the choice of (pk , sk) $← KG(1k), the random
choice of H , and the coins of all the algorithms in the expression above. (We
note that [7] provide informal rather than formal statements, but it is hard to
interpret them in any way other than what we have done.)

Privacy. Privacy for a PEKS scheme [7] asks that an adversary should not
be able to distinguish between the encryption of two challenge keywords of its
choice, even if it is allowed to obtain trapdoors for any non-challenge keywords.
Formally, let A be an adversary and let k be the security parameter. Below, we
depict an experiment, where b ∈ {0, 1} is a bit, and also the oracle provided to
the adversary in this experiment.

Experiment Exppeks-ind-cpa-b
PEKS,A (k)

WSet ← ∅ ; (pk , sk)
$← KG(1k)

Pick random oracle H

(w0,w1, st)
$← ATrapd(·),H(find, pk)

C
$← PEKSH(pk ,wb)

b′ $← ATrapd(·),H(guess,C , st)
If {w0,w1} ∩ WSet = ∅ then return b′ else return 0

Oracle Trapd(w)

WSet ← WSet ∪ {w}
tw

$← TdH(sk , w)
Return tw

The PEKS-IND-CPA-advantage Advpeks-ind-cpa
PEKS ,A (k) of A is defined as

Pr
[
Exppeks-ind-cpa-1

PEKS ,A (k) = 1
]
− Pr

[
Exppeks-ind-cpa-0

PEKS ,A (k) = 1
]

.
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KG(1k)

(G1, G2, p, e)
$← G(1k) ; P

$← G∗
1 ; s

$← Z∗
p

pk ← (G1, G2, p, e, P, sP ) ; sk ← (pk , s)
Return (pk , sk)

PEKSH1,H2(pk ,w)
Parse pk as (G1, G2, p, e, P, sP )

r
$← Z∗

p ; T ← e(H1(w), sP )r

C ← (rP, H2(T )) ; Return C

TdH1(sk , w)
Parse sk as (pk = (G1, G2, p, e, P, sP ), s)
tw ← (pk , sH1(w)) ; Return tw

TestH1,H2(tw ,C )
Parse tw as ((G1, G2, p, e, P, sP ), X)
Parse C as (U, V ) ; T ← e(X,U)
If V = H2(T ) then return 1
Else return 0

Fig. 1. Algorithms constituting the PEKS scheme BDOP -PEKS . G is a pairing param-
eter generator and H1: {0, 1}∗ → G1 and H2: G2 → {0, 1}k are random oracles.

A scheme PEKS is said to be PEKS-IND-CPA-secure if the advantage is a
negligible function in k for all polynomial-time adversaries A.

Parameter generation algorithms and the BDH problem. All pairing
based schemes will be parameterized by a pairing parameter generator. This is a
randomized polynomial-time algorithm G that on input 1k returns the descrip-
tion of an additive cyclic group G1 of prime order p, where 2k < p < 2k+1, the
description of a multiplicative cyclic group G2 of the same order, and a non-
degenerate bilinear pairing e: G1 × G1 → G2. See [8] for a description of the
properties of such pairings. We use G∗

1 to denote G1 \ {0}, i.e. the set of all
group elements except the neutral element. We define the advantage Advbdh

G,A(k)
of an adversary A in solving the BDH problem relative to a pairing parameter
generator G as the probability that, on input (1k, (G1, G2, p, e), P, aP, bP, cP )
for randomly chosen P

$← G∗
1 and a, b, c

$← Z∗
p, adversary A outputs e(P, P )abc.

We say that the BDH problem is hard relative to this generator if Advbdh
G,A is a

negligible function in k for all polynomial-time adversaries A.

Consistency of BDOP -PEKS . Figure 1 presents the BDOP -PEKS scheme.
It is based on a pairing parameter generator G.

Proposition 1. The BDOP -PEKS scheme is not perfectly consistent.

Proof. Since the number of possible keywords is infinite, there will certainly exist
distinct keywords w ,w ′ ∈ {0, 1}∗ such that H1(w) = H1(w ′). The trapdoors for
such keywords will be the same, and so TestH1,H2(Td(sk ,w), PEKSH1,H2(pk ,w ′))
will always return 1. �

It is tempting to say that, since H1 is a random oracle, the probability of a
collision is small, and thus the above really does not matter. Whether or not
this is true depends on how one wants to define consistency, which is the issue
we explore next.

New notions of consistency. The full version of this paper [1] considers var-
ious possible relaxations of perfect consistency and argues that the obvious ones
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are inadequate either because BDOP -PEKS continues to fail them or because
they are too weak. It then motivates and explains our approach and definitions.
In this extended abstract we simply state our definitions, referring the reader to
[1] for more information.

Definition 2. Let PEKS = (KG, PEKS, Td, Test) be a PEKS scheme. Let U
be an adversary and let k be the security parameter. Consider the following
experiment:

Experiment Exppeks-consist
PEKS ,U (k)

(pk , sk) $← KG(1k) ; Pick random oracle H

(w ,w ′) $← UH(pk ) ; C $← PEKSH(pk ,w) ; tw ′
$← TdH(sk ,w ′)

If w �= w ′ and TestH(tw ′ ,C ) = 1 then return 1 else return 0

We define the advantage of U as

Advpeks-consist
PEKS ,U (k) = Pr

[
Exppeks-consist

PEKS ,U (k) = 1
]

.

The scheme is said to be perfectly consistent if this advantage is 0 for all (com-
putationally unrestricted) adversaries U , statistically consistent if it is negligible
for all (computationally unrestricted) adversaries, and computationally consis-
tent if it is negligible for all polynomial-time adversaries.

We have purposely re-used the term perfect consistency, for in fact the above
notion of perfect consistency coincides with the one from [7] recalled above.

Consistency of BDOP -PEKS , revisited. Having formally defined the statis-
tical and computational consistency requirements for PEKS schemes, we return
to evaluating the consistency of BDOP -PEKS . We first observe that Proposi-
tion 1 extends to show:

Proposition 3. The BDOP -PEKS scheme is not statistically consistent.

The proof is in [1]. On the positive side, the following, proved in [1], means that
BDOP -PEKS is probably just fine in practice:

Theorem 4. The BDOP -PEKS scheme is computationally consistent in the
random oracle model.

A statistically consistent PEKS scheme. We present the first PEKS
scheme that is (PEKS-IND-CPA and) statistically consistent. To define the
scheme, we first introduce the function f(k) = klg(k). (Any function that is
super-polynomial but sub-exponential would suffice. This choice is made for
concreteness.) The algorithms constituting our scheme PEKS -STAT are then
depicted in Fig. 2. We are denoting by |x| the length of a string x. The scheme
uses ideas from the BDOP -PEKS scheme [7] as well as from the BF -IBE scheme
[8], but adds some new elements. In particular the random choice of “session”
key K, and the fact that the random oracle H2 is length-increasing, are im-
portant. The first thing we stress about the scheme is that the algorithms are
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KG(1k)

(G1, G2, p, e)
$← G(1k) ; P

$← G∗
1

s
$← Z∗

p ; pk ← (1k, P, sP, G1, G2, p, e)
sk ← (pk , s) ; Return (pk , sk)

PEKSH1,H2,H3,H4(pk ,w)

Parse pk as (1k, P, sP, G1, G2, p, e)
If |w | ≥ f(k) then return w

r
$← Z∗

p ; T ← e(sP, H1(w))r

K1 ← H4(T ) ; K2 ← H2(T )

K
$← {0, 1}k ; c ← K1 ⊕ K

t ← H3(K||w)
Return (rP, c, t,K2)

TdH1(sk ,w)

Parse sk as (pk = (1k, P, sP, G1, G2, p, e), s)
tw ← (pk , sH1(w),w)
Return tw

TestH1,H2,H3,H4(tw ,C )
Parse tw as

((1k, P, sP, G1, G2, p, e), sH1(w),w)
If |w | ≥ f(k) then

If C = w then return 1 else return 0
If C cannot be parsed as (rP, c, t, K2)

then return 0
T ← e(rP, sH1(w))
K ← c ⊕ H4(T )
If K2 �= H2(T ) then return 0
If t = H3(K||w) then return 1 else return 0

Fig. 2. Algorithms constituting the PEKS scheme PEKS -STAT . Here f(k) = klg(k),
G is a pairing parameter generator and H1 : {0, 1}∗ → G1, H2 : G2 → {0, 1}3k , H3 :
{0, 1}∗ → {0, 1}k, and H4 : {0, 1}∗ → {0, 1}k are random oracles. In implementations
we require that the lengths of the encodings of (rP, c, t, K2) be polynomial in k.

polynomial-time. This is because polynomial time means in the length of the
inputs, and the input of (say) the encryption algorithm includes w as well as 1k,
so it can test whether |w | ≥ f(k) in polynomial time. Now the formal statement
of our result is the following:

Theorem 5. The PEKS -STAT scheme is statistically consistent in the random
oracle model. Further, PEKS -STAT is PEKS-IND-CPA-secure in the random
oracle model assuming that the BDH problem is hard relative to generator G.

We refer to [1] for the proof, and provide a little intuition here. Privacy when
the adversary is restricted to attacking the scheme only on keywords of size at
most f(k) can be shown based on techniques used to prove IBE-IND-CPA of the
BF -IBE scheme [8] and to prove anonymity of the same scheme (cf. Theorem 8).
When the keyword has length at least f(k) it is sent in the clear, but intuitively
the reason this does not violate privacy is that the adversary is poly(k) time and
thus cannot even write down such a keyword in order to query it to its challenge
oracle. More interesting is the proof of statistical consistency. The main issue
is that the computationally unbounded consistency adversary U can easily find
any collisions that exist for the random-oracle hash functions. The scheme is
designed so that the adversary effectively has to find a large number of collisions
to win. It uses the fact that H2 is with high probability injective, and then uses
a counting argument based on an occupancy problem bound.



214 M. Abdalla et al.

3 PEKS and Anonymous IBE

IBE. An identity-based encryption (IBE) scheme [17,8] IBE = (Setup, KeyDer,

Enc, Dec) consists of four polynomial-time algorithms. Via (pk ,msk) $←Setup(1k)
the randomized key-generation algorithm produces master keys for security pa-
rameter k ∈ N; via usk [id ] $← KeyDerH(msk , id) the master computes the secret
key for identity id ; via C $← EncH(pk , id , M) a sender encrypts a message M to
identity id to get a ciphertext; via M ← DecH(usk ,C ) the possessor of secret
key usk decrypts ciphertext C to get back a message. Here H is a random oracle
with domain and range possibly depending on k and pk . (In constructs we might
use multiple random oracles, but since one can always obtain these from a single
one [5], definitions will assume just one.) Associated to the scheme is a message
space MsgSp where for MsgSp(k) ⊆ {0, 1}∗ for every k ∈ N. For consistency, we
require that for all k ∈ N, all identities id and messages M ∈ MsgSp(k) we have
Pr[DecH(KeyDerH(msk , id), EncH(pk , id , M)) = M ] = 1, where the probability
is taken over the choice of (pk ,msk) $← Setup(1k), the random choice of H , and
the coins of all the algorithms in the expression above. Unless otherwise stated,
it is assumed that {0, 1}k ⊆ MsgSp(k) for all k ∈ N.

Privacy and anonymity. Privacy (IBE-IND-CPA) follows [8] while anonymity
(IBE-ANO-CPA) is a straightforward adaptation of [3] to IBE schemes. Let
IBE = (Setup, KeyDer, Enc, Dec) be an IBE scheme. Let A be an adversary and
let k be the security parameter. Now consider the following experiments, where
b ∈ {0, 1} is a bit:

Experiment Expibe-ind-cpa-b
IBE,A (k)

IDSet ← ∅ ; (pk ,msk)
$← Setup(1k)

Pick random oracle H

(id , M0, M1, st)
$← AKeyDer,H(find, pk)

C
$← EncH(pk , id , Mb)

b′ $← AKeyDer,H(guess,C , st)
If {M0, M1} �⊆ MsgSp(k) then return 0
If id �∈ IDSet and |M0| = |M1|
Then return b′ else return 0

Experiment Expibe-ano-cpa-b
IBE,A (k)

IDSet ← ∅ ; (pk ,msk)
$← Setup(1k)

Pick random oracle H

(id0, id1, M, st)
$← AKeyDer,H(find, pk)

C
$← EncH(pk , idb, M)

b′ $← AKeyDer,H(guess,C , st)
If M �∈ MsgSp(k) then return 0
If {id0, id1} ∩ IDSet = ∅
Then return b′ else return 0

where the oracle KeyDer(id) is defined as

IDSet ← IDSet ∪ {id} ; usk [id ] $← KeyDerH(msk , id) ; Return usk [id ]

For prop ∈ {ind, ano}, we define the advantage Advibe-prop-cpa
IBE ,A (k) of A in the

corresponding experiment as

Pr
[
Expibe-prop-cpa-1

IBE ,A (k) = 1
]
− Pr

[
Expibe-prop-cpa-0

IBE,A (k) = 1
]

.
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IBE scheme IBE is said to be IBE-IND-CPA-secure (resp., IBE-ANO-CPA-
secure) if Advibe-ind-cpa

IBE ,A (resp., Advibe-ano-cpa
IBE ,A ) is a negligible function in k for

all polynomial-time adversaries A.

bdop-ibe-2-peks. The bdop-ibe-2-peks transform [7] takes input an IBE scheme
IBE = (Setup, KeyDer, Enc, Dec) and returns the PEKS scheme PEKS = (KG,
Td, PEKS, Test) where KG(1k) = Setup(1k), Td(sk ,w) = KeyDer(sk ,w),
PEKS(pk ,w) = Enc(pk ,w , 0k), and Test(tw ,C ) returns 1 iff Dec(tw ,C ) = 0k.
Since BF -IBE is anonymous (Theorem 8), since BDOP -PEKS is exactly
BF -IBE transformed via bdop-ibe-2-peks, and since BDOP -PEKS is not sta-
tistically consistent (Proposition 3), we can conclude that the bdop-ibe-2-peks
transformation does not necessarily yield a statistically consistent PEKS scheme.
The following theorem strengthens this result, showing that, under the minimal
assumption of the existence of an IBE-IND-CPA- and IBE-ANO-CPA-secure
IBE scheme, there exists an IBE scheme such that the resulting PEKS scheme
via bdop-ibe-2-peks fails to be even computationally consistent.

Theorem 6. For any IBE-ANO-CPA-secure and IBE-IND-CPA-secure IBE
scheme IBE , there exists another IBE-ANO-CPA-secure and IBE-IND-CPA-
secure IBE scheme IBE such that the PEKS scheme PEKS derived from IBE
via bdop-ibe-2-peks is not computationally consistent.

The full proof can be found in the full version [1]; here we sketch the main idea.
Given IBE scheme IBE , consider the following IBE scheme IBE . The public
key includes a normal public key for IBE and a random string R of length k.
A message M is encrypted by encrypting M‖R under IBE . When decrypting a
ciphertext C , the result is parsed as M‖R′. If R′ = R, then M is returned as the
plaintext, otherwise the decryption algorithm returns 0k. The resulting Test al-
gorithm will return 1, except with negligible probability, regardless of what trap-
door is being used. This is because the decryption algorithm returns 0k whenever
the last k bits of the plaintext are not equal to R. Intuitively, this should hap-
pen with all but negligible probability since, if IBE is IBE-IND-CPA-secure, a
portion of a string encrypted to one identity should not correctly decrypt with
the secret key for a different identity.

Fixing the bdop-ibe-2-peks transformation. The negative result in Theo-
rem 6 raises the question: Does the existence of IBE schemes imply the existence
of computationally consistent PEKS schemes? We answer that in the affirma-
tive by presenting a revision to the BDOP transformation, called new-ibe-2-peks,
that transforms any IBE-IND-CPA- and IBE-ANO-CPA-secure IBE scheme into
a PEKS-IND-CPA-secure and computationally consistent PEKS scheme. Our
new new-ibe-2-peks transform, instead of always encrypting the same message
0k, chooses and encrypts a random message R and appends R in the clear to
the ciphertext. Thus, given IBE scheme IBE = (Setup, KeyDer, Enc, Dec), the
PEKS scheme PEKS = new-ibe-2-peks(IBE) = (KG, Td, PEKS, Test) is such that
KG(1k) = Setup(1k), Td(sk ,w) = KeyDer(sk ,w), PEKS(pk ,w) = (Enc(pk ,w , R),
R) where R

$← {0, 1}k, and Test(tw ,C = (C1,C2)) returns 1 iff Dec(tw ,C1)
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returns C2. Intuitively, this construction avoids the problem of oddly-behaving
Dec algorithms by making sure that the only way to ruin the consistency of
the PEKS scheme is by correctly guessing the value encrypted by a ciphertext,
using the secret key of a different identity, which should not be possible for an
IBE-IND-CPA-secure IBE scheme. Hence, the consistency of the resulting PEKS
scheme is due to the data privacy property of the IBE scheme, while the data
privacy property of the PEKS scheme comes from the anonymity of the IBE
scheme. We prove the theorem statement below in the full version [1].

Theorem 7. Let IBE be an IBE scheme and let PEKS be the PEKS scheme
built from IBE via new-ibe-2-peks. If IBE is IBE-IND-CPA-secure, then PEKS
is computationally consistent. Further, if IBE is IBE-ANO-CPA-secure, then
PEKS is PEKS-IND-CPA-secure.

Anonymous IBE schemes. Theorem 7 motivates a search for IBE-ANO-CPA-
secure IBE schemes. The following shows that the Boneh-Franklin BasicIdent
IBE scheme, BF -IBE , is anonymous. The proof is simple due to our use of an
extension to Halevi’s technique for proving the anonymity of public key encryp-
tion schemes [15]. This extension and the proof can be found in [1].

Theorem 8. The BF -IBE scheme is IBE-ANO-CPA-secure in the random ora-
cle model assuming that BDH is hard relative to the underlying pairing generator.

4 Extensions

We propose three extensions of concepts seen above, namely anonymous HIBEs,
public-key encryption with temporary keyword search, and identity-based PEKS.

4.1 Anonymous HIBE

HIBEs. A hierarchical identity-based encryption (HIBE) scheme [16,11,6] is a
generalization of an IBE scheme in which an identity is a vector of strings id =
(id1, . . . , id l) with the understanding that when l = 0 this is the empty string ε.
The number of components in this vector is called the level of the identity and is
denoted |id |. If 0 ≤ i ≤ l then id |i = (id1, . . . , id i) denotes the vector containing
the first i components of id (this is ε if i = 0). If |id ′| ≥ l+1 (l ≥ 0) and id ′|l = id
then we say that id is an ancestor of id ′, or equivalently, that id ′ is a descendant
of id . If the level of id ′ is l +1 then id is a parent of id ′, or, equivalently, id ′ is a
child of id . For any id with |id | ≥ 1 we let par(id) = id ||id |−1 denote its parent.
Two nodes id = (id1, . . . , id l) and id ′ = (id ′

1, . . . , id
′
l) at level l are said to be

siblings iff id |l−1 = id ′|l−1. Moreover, if id l < id ′
l in lexicographic order, then id

is a left sibling of id ′ and id ′ is a right sibling of id . An identity at level one or
more can be issued a secret key by its parent. (And thus an identity can issue
keys for any of its descendants if necessary.)

Formally a HIBE scheme HIBE = (Setup, KeyDer, Enc, Dec) consists of four
polynomial-time algorithms. Via (pk ,msk = usk [ε]) $← Setup(1k), where k ∈ N is
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a security parameter, the randomized key-generation algorithm produces master
keys, with the secret key being associated to the (unique) identity at level 0; via
usk [id ] $← KeyDerH(usk [par(id)], id) the parent of an identity id with |id | ≥ 1
can compute a secret key for id ; via C $← EncH(pk , id , M) a sender encrypts a
message M to identity id to get a ciphertext; via M ← DecH(usk [id ],C ) the
identity id decrypts ciphertext C to get back a message. Here H is a random
oracle with domain and range possibly depending on k and pk . (In constructs we
might use multiple random oracles, but since one can always obtain these from a
single one [5], definitions will assume just one.) Associated to the scheme is a mes-
sage space MsgSp where for MsgSp(k) ⊆ {0, 1}∗ for every k ∈ N. For consistency,
we require that for all k ∈ N, all identities id with |id | ≥ 1 and all messages
M ∈ MsgSp(k), Pr[DecH(KeyDerH(usk [par(id)], id), EncH(pk , id , M)) = M ] =
1, where the probability is taken over the choice of (pk , usk [ε]) $← Setup(1k), the
random choice of H , and the coins of all the algorithms in the expression above.
Unless otherwise stated, it is assumed that {0, 1}k ⊆ MsgSp(k) for all k ∈ N.

Privacy and anonymity. Let d: N → N be a maximum depth parameter.
The notion of privacy, denoted HIBE-IND-CPA[d(k)], is analogous to that for
IBE schemes (IBE-IND-CPA) but using identity vectors rather than identity
strings and where the adversary is not allowed to query the KeyDer ora-
cle for the secret key of any ancestor of the identity under attack, and all
identities id (in queries or challenges) must have |id | ≤ d(k). For anonymity,
we define the notion of the scheme being anonymous at level l ≥ 1, denoted
HIBE-ANO-CPA[l, d(k)]. (Stronger notions are possible, but not needed here.)
It is analogous to IBE-ANO-CPA except that the identities returned by the ad-
versary must differ only in the l-th component. The adversary can ask the key
derivation oracle KeyDer for the secret keys of all identities except for those of
the challenge identities or any of their ancestors, and all identities id (in queries
or challenges) must have |id | ≤ d(k). The definitions are provided in full in [1].

Construction. The HIBE scheme of [16] appears to be anonymous, but sup-
ports only two levels of identities, and is only resistant against limited collusions
at the second level, and hence is not usable for our constructions that follow.
Since the HIBE of [11] (here denoted GS -HIBE ) is equivalent to the (provably
anonymous as per Theorem 8) Boneh-Franklin IBE scheme [8] when restricted
to the first level, one could hope that GS -HIBE is level-1 anonymous, but this
turns out not to be true, and the HIBE of [6] is not level-1 anonymous either.
We suggest a modified version of GS -HIBE called mGS -HIBE . It is depicted in
Fig. 3. The following, proved in [1], implies in particular that mGS -HIBE is the
first full HIBE scheme providing any anonymity at all. The restriction on d is
inherited from [11].

Theorem 9. The mGS -HIBE scheme is HIBE-ANO-CPA[1, d(k)]-secure and
HIBE-IND-CPA[d(k)]-secure for any d(k) = O(log(k)) in the random oracle
model assuming the BDH problem is hard relative to the generator G.
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Setup(1k)

(G1, G2, p, e)
$← G(1k) ; P

$← G∗
1

s0
$← Z∗

p ; S0 ← 0 ; Q0 ← s0P
pk ← (G1, G2, p, e, P, Q0)
msk ← (pk , ε, S0, s0)
Return (pk ,msk)

KeyDerH1,1,...,H1,l(usk , id)
Parse id as (id1, . . . , id l+1)
Parse usk as (pk , id |l, Sl, Q1, . . . , Ql−1, sl)
Parse pk as (G1, G2, p, e, P, Q0)
Sl+1 ← Sl + slH1,l+1(id l+1)

Ql ← slP ; sl+1
$← Z∗

p

Return (pk , id , Sl+1, Q1, . . . , Ql, sl+1)

EncH1,1,...,H1,l,H2(pk , id , m)
Parse pk as (G1, G2, p, e, P, Q0)
Parse id as (id1, . . . , id l)

r
$← Z∗

p ; C1 ← rP
For i = 2, . . . , l do Ci ← rH1,i(id i)
Cl+1 ← m ⊕ H2(e(rH1,1(id1), Q0))
Return (C1, . . . ,Cl+1)

DecH2(usk ,C )
Parse usk as (pk , id , Sl, Q1, . . . , Ql−1, sl)
Parse id as (id1, . . . , id l)
Parse pk as (G1, G2, p, e, P, Q0)
Parse C as (C1, . . . , Cl+1)

κ ← e(Sl,C1) · ∏l
i=2 e(Qi−1, Ci)

−1

Return Cl+1 ⊕ H2(κ)

Fig. 3. Algorithms of the mGS -HIBE scheme mGS -HIBE . G is a pairing parameter
generator and H1,i: {0, 1}∗ → G∗

1 and H2: G2 → {0, 1}k are random oracles.

4.2 Temporarily Searchable Encryption

PETKS. Public-key encryption with temporary keyword search (PETKS) is a
generalization of PEKS in which a trapdoor can be issued for any desired window
of time rather than forever. Formally, the scheme PETKS = (KG, Td, PETKS,
Test, N) consists of four polynomial-time algorithms and a polynomially bounded
function N : N → N. Via (pk , sk) $← KG(1k), the randomized key-generation
algorithm produces keys for the receiver; via C $← PETKSH(pk ,w , i) a sender
encrypts a keyword w in time period i ∈ [0..N(k) − 1] to get a ciphertext; via
tw

$← TdH(sk ,w , s, e) the receiver computes a trapdoor tw for keyword w in
period [s..e] where 0 ≤ s ≤ e ≤ N(k) − 1, and provides it to the gateway; via
b ← TestH(tw ,C ) the gateway tests whether C encrypts w , where b is a bit with
1 meaning “accept” or “yes” and 0 meaning “reject” or “no”. Here H is a random
oracle whose domain and/or range might depend on k and pk . (In constructs
we might use multiple random oracles, but since one can always obtain these
from a single one [5], definitions will assume just one.) We require that for all
k ∈ N, all s, e, i with 0 ≤ s ≤ i ≤ e ≤ N(k) − 1, and all w ∈ {0, 1}∗, we have
Pr[TestH(TdH(sk ,w , s, e), PEKSH(pk ,w , i)) = 1] = 1, where the probability is
taken over the choice of (pk , sk) $← KG(1k), the random choice of H , and the
coins of all the algorithms in the expression above.

Consistency. Computational, statistical and perfect consistency can be defined
analogously to the way they were defined for PEKS. For details, see [1].

Privacy. Privacy for a PETKS scheme asks that an adversary should not be
able to distinguish between the encryption of two challenge keywords of its choice
in a time period i ∈ [0..N(k) − 1] of its choice, even if it is allowed not only to
obtain trapdoors for non-challenge keywords issued for any time interval, but
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also is allowed to obtain trapdoors for any keywords (even the challenge ones),
issued for time intervals not containing i. A formal definition of the notion of
privacy, which we denote PETKS-IND-CPA, is in [1].

Constructions with linear complexity. PETKS is reminiscent of forward-
security [4,9], and, as in these works, there are straightforward solutions with
keys of length linear in N . One such solution is to use a standard PEKS scheme
and generate a different key pair (pk i, sk i) for each time period i ∈ [0..N(k)−1].
Let pk = (pk0, . . . , pkN(k)−1) be the PETKS public key and sk = (sk0, . . . ,
skN(k)−1) be the PETKS secret key. During time period i, the sender encrypts
a keyword by encrypting under pk i using the PEKS scheme. The trapdoor for
interval [s..e] consists of all PEKS trapdoors of periods s, . . . , e. A somewhat
more efficient solution is to let the PETKS master key pair be a single key pair
for the standard PEKS scheme, and append the time period to the keyword
when encrypting or computing trapdoors. This scheme achieves O(N) public
and secret key length, but still has linear trapdoor length, because the PETKS
trapdoor still contains PEKS trapdoors for all time periods s, . . . , e.

A construction with O(log(N)) complexity. We now present a transforma-
tion hibe-2-petks of a HIBE scheme into a PETKS scheme that yields a PETKS
scheme with complexity logarithmic in N for all parameters. The construction
is very similar to the generic construction of forward-secure encryption from
binary-tree encryption [9]. The number of time periods is N(k) = 2t(k) for some
t(k) = O(log(k)). If i ∈ [0..N(k)− 1], then let i1 . . . it(k) denote its binary repre-
sentation as a t(k)-bit string. Intuitively, our construction instantiates a HIBE
of depth t(k)+1 with keywords as the first level of the identity tree and the time
structure on the lower levels. The trapdoor for keyword w and interval of time
periods [s..e] consists of the user secret keys of all identities from (w , s1, . . . , st(k))
to (w , e1, . . . , et(k)), but taking advantage of the hierarchical structure to include
entire subtrees of keys.

More precisely, let HIBE = (Setup, KeyDer, Enc, Dec) be a HIBE scheme.
Then we associate to it a PETKS scheme PETKS = hibe-2-petks(HIBE , t(k)) =
(KG, Td, PETKS, Test, N) such that N(k) = 2t(k), KG(1k) = Setup(1k) and
PETKS(pk ,w , i) = (i,C1,C2) where C1

$← {0, 1}k and C2 ← Enc(pk , (w , i1,
. . . , it(k)),C1). The trapdoor algorithm Td(sk ,w , s, e) first constructs a set T of
identities as follows. Let j be the smallest index so that sj �= ej . Then T is the
set containing (w , s1, . . . , st(k)), (w , e1, . . . , et(k)), the right siblings of all nodes
on the path from (w , s1, . . . , sj+1) to (w , s1, . . . , st(k)), and the left siblings of
all nodes on the path from (w , e1, . . . , ej+1) to (w , e1, . . . , et(k)). If j does not
exist, meaning s = e, then T ← {(w , s1, . . . , st(k))}. The trapdoor tw is the set
of tuples ((w , i1, . . . , ir), KeyDer(sk , (w , i1, . . . , ir))) for all (i1, . . . , ir) ∈ T . To
test a ciphertext (i,C1,C2), the Test algorithm looks up a tuple ((w , i1, . . . , ir),
usk [(w , i1, . . . , ir)]) in tw , derives usk [(w , i1, . . . , it(k))] using repetitive calls to
the KeyDer algorithm, and returns 1 iff Dec(usk [(w , i1, . . . , it(k))],C2) = C1. The
proof of the following is in [1]:
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Theorem 10. Let HIBE be a HIBE scheme, and let PETKS = hibe-2-petks
(HIBE , t(k)) where t(k) = O(log(k)). If HIBE is HIBE-ANO-CPA[1, t(k) +
1]-secure, then PETKS is PETKS-IND-CPA-secure. Furthermore, if HIBE is
HIBE-IND-CPA[t(k) + 1]-secure, then PETKS is computationally consistent.

Since the mGS -HIBE has user secret keys and ciphertexts of size linear in the
depth of the tree, our resulting PETKS scheme has public and secret keys of size
O(1), ciphertexts of size O(log N) and trapdoors of size O(log2 N). We note that
in this case a user can decrypt ciphertexts intended for any of its descendants
directly, without needing to derive the corresponding secret key first. This makes
the call to the KeyDer algorithm in the Test algorithm superfluous, thereby
improving the efficiency of Test.

4.3 ID-Based Searchable Encryption

In this section, we show how to combine the concepts of identity-based encryption
and PEKS to obtain identity-based encryption with keyword search (IBEKS).
Like in IBE schemes, this allows to use any string as a recipient’s public key for
the PEKS scheme.

IBEKS. An identity-based encryption with keyword search scheme IBEKS =
(Setup, KeyDer, Td, Enc, Test) is made up of five algorithms. Via (pk ,msk) $←
Setup(1k), where k ∈ N is the security parameter, the randomized setup algo-
rithm produces master keys; via usk [id ] $← KeyDerH(msk , id), the master com-
putes the secret key for identity id ; via C $← EncH(pk , id ,w), a sender encrypts
a keyword w to identity id to get a ciphertext; via tw

$← TdH(usk [id ],w), the
receiver computes a trapdoor tw for keyword w and identity id and provides it
to the gateway; via b← TestH(tw ,C ), the gateway tests whether C encrypts w ,
where b is a bit with 1 meaning “accept” or “yes” and 0 meaning “reject” or “no”.
As usual H is a random oracle whose domain and/or range might depend on k
and pk . For consistency, we require that for all k ∈ N, all identities id , and all
w ∈ {0, 1}∗, we have Pr[TestH(TdH(KeyDerH(msk , id),w), EncH(pk , id ,w)) =
1] = 1, where the probability is taken over the choice of (pk ,msk) $← Setup(1k),
the random choice of H , and the coins of all algorithms in the expression above.

Consistency and privacy. Computational, statistical and perfect consistency
can be defined analogously to the way they were defined for PEKS. A privacy
notion (denoted IBEKS-IND-CPA) can be obtained by appropriately combining
ideas of the definitions of privacy for PEKS and IBE. For details, see [1].

Construction. We now propose a generic transformation, called hibe-2-ibeks,
to convert any HIBE scheme with two levels into an IBEKS scheme. Given a
HIBE scheme HIBE = (Setup, KeyDer, Enc, Dec) with two levels, hibe-2-ibeks
returns the IBEKS scheme IBEKS = (Setup, KeyDer, Enc, Td, Test) such that
KeyDer(msk , id) = (usk , id) where usk $← KeyDer(msk , id), Enc(pk , id ,w) =
(C1,C2) where C1

$← {0, 1}k and C2 = Enc(pk , (id ,w),C1), Td(usk = (usk , id),
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w) = KeyDer(usk , (id ,w)) and Test(tw , (C1,C2)) returns 1 iff Dec(tw ,C2) = C1.
The proof of the following is in [1]:

Theorem 11. Let HIBE be a HIBE scheme and IBEKS =hibe-2-ibeks(HIBE ).
If HIBE is HIBE-IND-CPA[2]-secure, then IBEKS is computationally consis-
tent. Furthermore, if HIBE is HIBE-ANO-CPA[2, 2]-secure, then IBEKS is
IBEKS-IND-CPA-secure.

We know of no HIBE scheme that is anonymous at level 2, and thus we have no
concrete instantiations of the above. (We exclude the scheme of [16] because it
is not secure against a polynomial number of level-2 key extractions, as required
for HIBE-ANO-CPA[2,2]-security and in particular for our construction.)
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Abstract. In this paper, we consider the problem of private searching
on streaming data. We show that in this model we can efficiently imple-
ment searching for documents under a secret criteria (such as presence
or absence of a hidden combination of hidden keywords) under vari-
ous cryptographic assumptions. Our results can be viewed in a variety
of ways: as a generalization of the notion of a Private Information Re-
trieval (to the more general queries and to a streaming environment as
well as to public-key program obfuscation); as positive results on privacy-
preserving datamining; and as a delegation of hidden program computa-
tion to other machines.

Keywords: Code Obfuscation, Crypto-computing, Software security,
Database security, Public-key Encryption with special properties, Pri-
vate Information Retrieval, Privacy-Preserving Keyword Search, Secure
Algorithms for Streaming Data, Privacy-Preserving Datamining, Secure
Delegation of Computation, Searching with Privacy, Mobile code.

1 Introduction

DATA FILTERING FOR THE INTELLIGENCE COMMUNITY. As our
motivating example, we examine one of the tasks of the intelligence commu-
nity: to collect “potentially useful” information from huge streaming sources of
data. The data sources are vast, and it is often impractical to keep all the data.
Thus, streaming data is typically sieved from multiple data streams in an on-
line fashion, one document/message/packet at a time, where most of the data is
immediately dismissed and dropped to the ground, and only some small fraction
of “potentially useful” data is retained. These streaming data sources, just to
give a few examples, include things like packet traffic on some network routers,
on-line news feeds (such as Reuters.com), some internet chat-rooms, or poten-
tially terrorist-related blogs or web-cites. Of course, most of the data is totally
innocent and is immediately dismissed except for some data that raises “red
flags” is collected for later analysis “on the inside”.
� For the full version of this paper, see the IACR E-Print Archive.
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In almost all cases, what’s “potentially useful” and raises a “red flag” is
classified, and satisfies a secret criteria (i.e., a boolean decision whether to keep
this document or throw it away). The classified “sieving” algorithm is typically
written by various intelligence community analysts. Keeping this “sieving” algo-
rithm classified is clearly essential, since otherwise adversaries could easily avoid
their messages from being collected by simply avoiding criteria that is used to
collect such documents in the first place. In order to keep the selection criteria
classified, one possible solution (and in fact the one that is used in practice) is
to collect all streaming data “on the inside” —in a secure environment— and
then filter the information, according to classified rules, throwing away most of
it and keeping only a small fraction of data-items that are interesting according
to the secret criteria, such as a set of keywords that raise a red-flag. While this
certainly keeps the sieving information private, this solution requires transfer-
ring all streaming data to a classified environment, adding considerable cost,
both in terms of communication cost and a potential delay or even loss of data,
if the transfer to the classified environment is interrupted or dropped in transit.
Furthermore, it requires considerable cost of storage of this (un-sieved) data in
case the transfer to the classified setting is delayed.

Clearly, a far more preferable solution, is to sieve all these data-streams at
their sources (even on the same computers or routers where the stream is gen-
erated or arrives in the first place). The issue, of course, is how can we do it
while keeping sieving criteria classified, even if the computer where the sieving
program executes falls into enemy’s hands? Perhaps somewhat surprisingly, we
show how to do just that while keeping the sieving criteria provably hidden from
the adversary, even if the adversary gets to experiment with the sieving exe-
cutable code and/or tries to reverse-engineer it. Put differently, we construct a
“compiler” (i.e. of how to compile sieving rules) so that it is provably impossi-
ble to reverse-engineer the classified rules from the executable complied sieving
code. Now, we state our results in a more general terms, that we believe are of
independent interest:

PUBLIC-KEY PROGRAM OBFUSCATION: Very informally, given a pro-
gram f from a complexity class C, and a security parameter k, a public-key
program obfuscator compiles f into (F, Dec), where F on any input computes
an encryption of what f would compute on the same input. The decryption algo-
rithm Dec decrypts the output of F . That is, for any input x, Dec(F (x)) = f(x),
but given code for F it is impossible to distinguish for any polynomial time ad-
versary which f from complexity class C was used to produce F . We stress that
in our definition, the program encoding length |F | must polynomially depend
only on |f | and k, and the output length of |F (x)| must polynomially depend
only on |f(x)| and k. It is easy to see that Single-Database Private Information
Retrieval (including keyword search) can be viewed as a special case of public-key
program obfuscator.

OBFUSCATING SEARCHING ON STREAMING DATA: We consider
how to public-key program obfuscate Keyword Search algorithms on streaming
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data, where the size of the query (i.e. complied executable) must be independent
of the size of stream (i.e., database), and that can be executed in an on-line
environment, one document at a time. Our results also can be viewed as im-
provement and a speedup of the best previous results of single-round PIR with
keyword search of Freedman, Ishai, Pinkas and Reingold [10]. In addition to the
introduction of the streaming model, this paper also improves the previous work
on keyword PIR by allowing for the simultaneous return of multiple documents
that match a set of keywords, and also the ability to more efficiently perform
different types of queries beyond just searching for a single keyword. For exam-
ple, we show how to search for the disjunction of a set of keywords and several
other functions.

OUR RESULTS: We consider a dictionary of finite size (e.g., an English dic-
tionary) D that serves as the universe for our keywords. Additionally, we can
also have keywords that must be absent from the document in order to match it.
We describe the various properties of such filtering software below. A filtering
program F stores up to some maximum number m of matching documents in an
encrypted buffer B. We provide several methods for constructing such software
F that saves up to m matching documents with overwhelming probability and
saves non-matching documents with negligible probability (in most cases, this
probability will be identically 0), all without F or its encrypted buffer B re-
vealing any information about the query that F performs. The requirement that
non-matching documents are not saved (or at worst with negligible probability)
is motivated by the streaming model: in general the number of non-matching
documents will be vast in comparison to those that do match, and hence, to use
only small storage, we must guarantee that non-matching documents from the
stream do not collect in our buffer. Among our results, we show how to execute
queries that search for documents that match keywords in a disjunctive manner,
i.e., queries that search for documents containing one or more keywords from a
keyword set. Based on the Paillier cryptosystem, [18], we provide a construction
where the filtering software F runs in O(l ·k3) time to process a document, where
k is a security parameter, and l is the length of a document, and stores results
in a buffer bounded by O(m · l ·k2). We stress again that F processes documents
one at a time in an online, streaming environment. The size of F in this case
will be O(k · |D|) where |D| is the size of the dictionary in words. Note that in
the above construction, the program size is proportional to the dictionary size.
We can in fact improve this as well: we have constructed a reduced program
size model that depends on the Φ-Hiding Assumption [5]. The running time of
the filtering software in this implementation is linear in the document size and
is O(k3) in the security parameter k. The program size for this model is only
O(polylog(|D|)). We also have an abstract construction based on any group ho-
momorphic, semantically secure encryption scheme. Its performance depends on
the performance of the underlying encryption scheme, but will generally perform
similarly to the above constructions. As mentioned above, all of these construc-
tions have size that is independent of the size of the data stream. Also, using
the results of Boneh, Goh, and Nissim [2], we show how to execute queries that
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search for an “AND” of two sets of keywords (i.e., the query searches for docu-
ments that contain at least one word from K1 and at least one word from K2 for
sets of keywords K1, K2), without asymptotically increasing the program size.

Our contributions can be divided into three major areas: Introduction of the
streaming model; having queries simultaneously return multiple results; and the
ability to extend the semantics of queries beyond just matching a single keyword.

COMPARISON WITH PREVIOUS WORK: A superficially related topic is
that of “searching on encrypted data” (e.g., see [3] and the references therein).
We note that this body of work is in fact not directly relevant, as the data (i.e.
input stream) that is being searched is not encrypted in our setting.

The notion of obfuscation was considered by [1], but we stress that our setting
is different, since our notion of public-key obfuscation allows the output to be
encrypted, whereas the definition of [1] demands the output of the obfuscated
code is given in the clear, making the original notion of obfuscation much more
demanding.

Our notion is also superficially related to the notion of “crypto-computing”
[19]. However, in this work we are concerned with programs that contain loops,
and where we cannot afford to expand this program into circuits, as this will
blow-up the program size.

Our work is most closely related to the notion of Single-database Private
Information Retrieval (PIR), that was introduced by Kushilevitz and Ostrovsky
[13] and has received a lot of subsequent attention in the literature
[13,5,8,17,14,4,20,15,10]. (In the setting of multiple, non-communicating
databases, the PIR notion was introduced in [7].) In particular, the first PIR
with poly-logarithmic overhead was shown by Cachin, Micali and Stadler [5],
and their construction can be executed in the streaming environment. Thus the
results of this paper can be viewed as a generalization of their work as well. The
setting of single-database PIR keyword search was considered in [13,6,12] and
more recently by Freedman, Ishai, Pinkas and Reingold [10]. The issue of multi-
ple matches of a single keyword (in a somewhat different setting) was considered
by Kurosawa and Ogata [12].

There are important differences between previous works and our work on
single-database PIR keyword search: in the streaming model, the program size
must be independent of the size of the stream, as the stream is assumed to be an
arbitrarily polynomially-large source of data and the complier does not need to
know the size of the stream when creating the obfuscated query. In contrast, in
all previous non-trivial PIR protocols, when creating the query, the user of the
PIR protocol must know the upper bound on the database size while creating
the PIR query. Also, as is necessary in the streaming model, the memory needed
for our scheme is bounded by a value proportional to the size of a document as
well as an upper bound on the total number of documents we wish to collect,
but is independent of the size of the stream of documents. Finally, we have
also extended the types of queries that can be performed. In previous work on
keyword PIR, a single keyword was searched for in a database and a single
result returned. If one wanted to query an “OR” of several keywords, this would
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require creating several PIR queries, and then sending each to the database.
We however show how to intrinsically extend the types of queries that can be
performed, without loss of efficiency or with multiple queries. In particular, all of
our systems can efficiently perform an “OR” on a set of keywords and its negation
(i.e. a document matches if certain keyword is absent from the document). In
addition, we show how to privately execute a query that searches for an “AND”
of two sets of keywords, meaning that a document will match if and only if it
contains at least one word from each of the keyword sets without the increase
in program (or dictionary) size.

2 Definitions and Preliminaries

2.1 Basic Definitions

For a set V we denote the power set of V by P(V ).

Definition 1. Recall that a function g : N → R+ is said to be negligible if for
any c ∈ N there exists Nc ∈ Z such that n ≥ Nc ⇒ g(n) ≤ 1

nc .

Definition 2. Let C be a class of programs, and let f ∈ C. We define a public
key program obfuscator in the weak sense to be an algorithm

Compile(f, r, 1k) �→ {F (·, ·), Decrypt(·)}

where r is randomness, k is a security parameter, and F and Decrypt are algo-
rithms with the following properties:

– (Correctness) F is a probabilistic function such that ∀x, PrR,R′
[
Decrypt

(F (x, R′)) = f(x)
]
≥ 1− neg(k)

– (Compiled Program Conciseness) There exists a constant c such that |f | ≥
|F (·,·)|

(|f |+k)c

– (Output Conciseness) There exists a constant c such that For all x, R |f(x)|
≥ |F (x,R)|

kc

– (Privacy) Consider the following game between an adversary A and a chal-
lenger C:
1. On input of a security parameter k, A outputs two functions f1, f2 ∈ C.
2. C chooses a b ∈ {0, 1} at random and computes Compile(fb, r, k) =
{F, Decrypt} and sends F back to A.

3. A outputs a guess b′.
We say that the adversary wins if b′ = b, and we define the adversary’s
advantage to be AdvA(k) = |Pr(b = b′)− 1

2 |. Finally we say that the system
is secure if for all A ∈ PPT , AdvA(k) is a negligible function in k.

We also define a stronger notion of this functionality, in which the decryption
algorithm does not give any information about f beyond what can be learned
from the output of the function alone.
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Definition 3. Let C be a class of programs, and let f ∈ C. We define a pub-
lic key program obfuscator in the strong sense to be a triple of algorithms
(Key-Gen, Compile, Decrypt) defined as follows:

1. Key-Gen(k): Takes a security parameter k and outputs a public key and a
secret key Apublic, Aprivate.

2. Compile(f, r, Apublic, Aprivate): Takes a program f ∈ C, randomness r and
the public and private keys, and outputs a program F (·, ·) that is subject to
the same Correctness and conciseness properties as in Definition 2.

3. Decrypt(F (x), Aprivate): Takes output of F and the private key and recovers
f(x), just as in the correctness of Definition 2.

Privacy is also defined as in Definition 2, however in the first step the adver-
sary A receives as an additional input Apublic and we also require that Decrypt
reveals no information about f beyond what could be computed from f(x): For-
mally, for all adversaries A ∈ PPT and for all history functions h there exists
a simulating program B ∈ PPT that on input f(x) and h(x) is computationally
indistinguishable from A on input (Decrypt, F (x), h(x)).

Now, we give instantiations of these general definitions to the class of pro-
grams C that we show how to handle: We consider a universe of words W =
{0, 1}∗, and a dictionary D ⊂ W with |D| = α < ∞. We think of a document
just to be an ordered, finite sequence of words in W , however, it will often be
convenient to look at the set of distinct words in a document, and also to look
at some representation of a document as a single string in {0, 1}∗. So, the term
document will often have several meanings, depending on the context: if M is
said to be a document, generally this will mean M is an ordered sequence in
W , but at times, (e.g., when M appears in set theoretic formulas) document
will mean (finite) element of P(W ) (or possibly P(D)), and at other times still,
(say when one is talking of bit-wise encrypting a document) we’ll view M as
M ∈ {0, 1}∗. We define a set of keywords to be any subset K ⊂ D. Finally, we
define a stream of documents S just to be any sequence of documents.

We will consider only a few types of queries in this work, however would
like to state our definitions in generality. We think of a query type, Q as a
class of logical expressions in ∧,∨, and ¬. For example, Q could be the class of
expressions using only the operation ∧. Given a query type, one can plug in the
number of variables, call it α for an expression, and possibly other parameters
as well, to select a specific boolean expression, Q in α variables from the class
Q. Then, given this logical expression, one can input K ⊂ D where K = {ki}α

i=1
and create a function, call it QK : P(D) → {0, 1} that takes documents, and
returns 1 if and only if a document matches the criteria. QK(M) is computed
simply by evaluating Q on inputs of the form (ki ∈M). We will call QK a query
over keywords K.

We note again that our work does not show how to privately execute arbitrary
queries, despite the generality of these definitions. In fact, extending the query
semantics is an interesting open problem.
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Definition 4. For a query QK on a set of keywords K, and for a document M ,
we say that M matches query QK if and only if QK(M) = 1.

Definition 5. For a fixed query type Q, a private filter generator consists of the
following probabilistic polynomial time algorithms:

1. Key-Gen(k): Takes a security parameter k and generates public key Apublic,
and a private key Aprivate.

2. Filter-Gen(D, QK , Apublic, Aprivate, m, γ): Takes a dictionary D, a query QK

∈ Q for the set of keywords K, along with the private key and generates
a search program F . F searches any document stream S (processing one
document at a time and updating B) collects up to m documents that match
QK in B, outputting an encrypted buffer B that contains the query results,
where |B| = O(γ) throughout the execution.

3. Filter-Decrypt(B, Aprivate): Decrypts an encrypted buffer B, produced by F
as above, using the private key and produces output B∗, a collection of the
matching documents from S.

Definition 6. (Correctness of a Private Filter Generator)
Let F = Filter-Gen(D, QK , Apublic, Aprivate, m, γ), where D is a dictionary, QK

is a query for keywords K, m, γ ∈ Z+ and (Apublic, Aprivate) = Key-Gen(k). We
say that a private filter generator is correct if the following holds:

Let F run on any document stream S, and set B = F (S).
Let B∗ = Filter-Decrypt(B, Aprivate). Then,

– If |{M ∈ S | QK(M) = 1}| ≤ m then

Pr
[
B∗ = {M ∈ S | QK(M) = 1}

]
> 1− neg(γ)

– If |{M ∈ S | QK(M) = 1}| > m then

Pr
[
(B∗ ⊂ {M ∈ S | QK(M) = 1}) ∨ (B∗ = ⊥)

]
> 1− neg(γ)

where ⊥ is a special symbol denoting buffer overflow, and the probabilities
are taken over all coin-tosses of F , Filter-Gen and of Key-Gen.

Definition 7. (Privacy) Fix a dictionary D. Consider the following game be-
tween an adversary A, and a challenger C. The game consists of the following
steps:

1. C first runs Key-Gen(k) to obtain Apublic, Aprivate, and then sends Apublic to
A.

2. A chooses two queries for two sets of keywords, Q0K0
, Q1K1

, with K0, K1 ⊂
D and sends them to C.

3. C chooses a random bit b ∈ {0, 1} and executes Filter-Gen(D, QbKb
,

Apublic, Aprivate, m, γ) to create Fb, the filtering program for the query QbKb
,

and then sends Fb back to A.
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4. A(Fb) can experiment with code of Fb in an arbitrary non-black-box way
finally output b′ ∈ {0, 1}.

The adversary wins the game if b = b′ and loses otherwise. We define the
adversary A’s advantage in this game to be AdvA(k) =

∣∣∣Pr(b = b′) − 1
2

∣∣∣ We
say that a private filter generator is semantically secure if for any adversary
A ∈ PPT we have that AdvA(k) is a negligible function, where the probability is
taken over coin-tosses of the challenger and the adversary.

2.2 Combinatorial Lemmas

We require in our definitions that matching documents are saved with over-
whelming probability in the buffer B (in terms of the size of B), while non-
matching documents are not saved at all (at worst, with negligible probability).
We accomplish this by the following method: If the document is of interest to
us, we throw it at random γ times into the buffer. What we are able to guar-
antee is that if only one document lands in a certain location, and no other
document lands in this location, we will be able to recover it. If there is a colli-
sion of one or more documents, we assume that all documents at this location
are lost (and furthermore, we guarantee that we will detect such collisions with
overwhelming probability). To amplify the probability that matching documents
survive, we throw each γ times, and we make the total buffer size proportional
to 2γm, where m is the upper bound on the number of documents we wish to
save. Thus, we need to analyze the following combinatorial game, where each
document corresponds to a ball of different color.

Color-Survival Game: Let m, γ ∈ Z+, and suppose we have m different colors,
call them {colori}m

i=1, and γ balls of each color. We throw the γm balls uniformly
at random into 2γm bins, call them {binj}2γm

j=1 . We say that a ball “survives” in
binj, if no other ball (of any color) lands in binj. We say that colori “survives”
if at least one ball of color colori survives. We say that the game succeeds if all
m colors survive, otherwise we say that it fails.

Lemma 1. The probability that the color-survival game fails is negligible in γ.

Proof. See full version.
Another issue is how to distinguish valid documents in the buffer from colli-

sions of two or more matching documents in the buffer. (In general it is unlikely
that the sum of two messages in some language will look like another message in
the same language, but we need to guarantee this fact.) This can also be accom-
plished by means of a simple probabilistic construction. We will append to each
document k bits, where exactly k/3 randomly chosen bits from this string are set
to 1. When reading the buffer results, we will consider a document to be good
if exactly k/3 of the appended bits are 1’s. If a buffer collision occurs between
two matching documents, the buffer at this location will store the sum of the
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messages, and the sum of 2 or more of the k-bit strings. 1 We need to analyze
the probability that after adding the k-bit strings, the resulting string still has
exactly k/3 bits set to 1, and show that this probability is negligible in k. We will
phrase the problem in terms of “balls in bins” as before: let Bins = {binj}k

j=1
be distinguishable bins, and let T (Bins) denote the process of selecting k/3 bins
uniformly at random from all

(
k

k/3

)
choices, and putting one ball in each of these

bins. For a fixed randomness, we can formalize T as a map T : Zk → Zk such
that for any v = (v1, ..., vk) ∈ Zk, 0 ≤ (T (v)j − vj) ≤ 1 for all j ∈ {1, ..., k}, and∑k

j=1(T (v)j −vj) = k/3. Let N(binj) be the number of balls in binj. Now, after
independently repeating this experiment with the same bins, which were initially
empty, we will be interested in the probability that for exactly 2k/3 bins, the
number of balls inside is 0 mod n, for n > 1. I.e., after applying B twice, what
is Pr[ |{j | N(binj) ≡ 0 mod n}| = 2k/3]?

Lemma 2. Let Bins = {binj}k
j=1 be distinguishable bins, all of which are

empty. Let Bins = T 2(Bins). Then for all n > 1,

Pr
[
|{j ∈ {1, ..., k} | N(binj) ≡ 0 mod n}| = 2k/3

]
is negligible in k.

Proof. See full version.

2.3 Organization of the Rest of This Paper

In what follows, we will give several constructions of private filter generators,
beginning with our most efficient construction using a variant of the Paillier
Cryptosystem [18],[9]. We also show a construction with reduced program size
using the Cachin-Micali-Stadler PIR protocol [5], then we give a construction
based on any group homomorphic semantically secure encryption scheme, and
finally a construction based on the work of Boneh, Goh, and Nissim [2] that
extends the query semantics to include a single “AND” operation without in-
creasing the program size.

3 Paillier-Based Construction

Definition 8. Let (G1, ·), (G2, ∗) be groups. Let E be the probabilistic encryp-
tion algorithm and D be the decryption algorithm of an encryption scheme with
plaintext set G1 and ciphertext set G2. The encryption scheme is said to be group
homomorphic if the encryption map E : G1 → G2 has the following property:

∀ a, b ∈ G1, D(E(a · b)) = D(E(a) ∗ E(b))
1 If a document does not match, it will be encrypted as the 0 message, as will its

appended string of k bits, so nothing will ever be marked as a collision with a non-
matching document.
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Note that since the encryption is probabilistic, we have to phrase the homo-
morphic property using D, instead of simply saying that E is a homomorphism.
Also, as standard notation when working with homomorphic encryption as just
defined, we will use idG1 , idG2 to be the identity elements of G1, G2, respectively.

3.1 Private Filter Generator Construction

We now formally present the Key-Gen, Filter-Gen, and Buffer-Decrypt algorithms.
The class Q of queries that can be executed is the class of all boolean expressions
using only ∨. By doubling the program size, it is easy to handle an ∨ of both
presence and absence of keywords. For simplicity of exposition, we describe how
to detect collisions separately from the main algorithm.

Key-Gen(k) Execute the key generation algorithm for the Paillier cryptosystem to find an
appropriate RSA number, n and its factorization n = pq. We will make one additional
assumption on n = pq: we require that |D| < min{p, q}. (We need to guarantee that any
number ≤ |D| is a unit mod ns.) Save n as Apublic, and save the factorization as Aprivate.

Filter-Gen(D, QK , Apublic, Aprivate, m, γ) This algorithm outputs a search program F for
the query QK ∈ Q. So, QK(M) =

∨
w∈K(w ∈ M).

We will use the Damg̊ard-Jurik extension [9] to construct F as follows. Choose an integer
s > 0 based upon the size of documents that you wish to store so that each document can
be represented as a group element in Zns . Then F contains the following data:

– A buffer B consisting of 2γm blocks with each the size of two elements of Z∗
ns+1 (so,

we view each block of B as an ordered pair (v1, v2) ∈ Z∗
ns+1 × Z∗

ns+1). Furthermore,
we will initialize every position to (1, 1), two copies of the identity element.

– An array D̂ = {d̂i}|D|
i=1 where each d̂i ∈ Z∗

ns+1 such that d̂i is an encryption of 1 ∈ Zns

if di ∈ K and is an encryption of 0 otherwise. (Note: We of course use re-randomized
encryptions of these values for each entry in the array.)

F then proceeds with the following steps upon receiving an input document M from the
stream:

1. Construct a temporary collection M̂ = {d̂i ∈ D̂ | di ∈ M}.
2. Compute

v =
∏

d̂i∈M̂

d̂i

3. Compute vM and multiply (v, vM ) into γ random locations in the buffer B, just as in
our combinatorial game from section 2.2.

Note that the private key actually is not needed. The public key alone will suffice for
the creation of F .

Buffer-Decrypt(B, Aprivate) First, this algorithm simply decrypts B one block at a time
using the decryption algorithm for the Paillier system. Each decrypted block will contain
the 0 message (i.e., (0, 0)) or a non-zero message, (w1, w2) ∈ Zns × Zns . Blocks with the
0 message are discarded. A non-zero message (w1, w2) will be of the form (c, cM ′) if no
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collisions have occurred at this location, where c is the number of distinct keywords from
K that appear in M ′. So to recover M ′, simply compute w2/w1 and add this to the array
B∗. Finally, output B∗.

In general, the filter generation and buffer decryption algorithms will make use of
Lemma 2, having the filtering software append an extra r bits to each document,
with exactly r/3 bits equal to 1, and then having the buffer decryption algorithm
save documents to the output B∗ if and only if exactly r/3 of the extra bits are
1. In any of our constructions, this can be accomplished by adding r extra blocks
the size of the security parameter to an entry in the buffer to represent the bits.
However, this is undesirable in our Paillier-based construction, as this would
cause an increase (by a factor of r/2) to the size of the buffer.

Lemma 3. With O(k) additional bits added to each block of B, we can detect
all collisions of matching documents with probability > 1− neg(k).

Proof. Since log(|D|) is much smaller than the security parameter k, we can
encode the bits from Lemma 2 using O(k) bits. For further details, see the full
version of this paper.

3.2 Correctness

We need to show that if the number of matching documents is less than m, then

Pr
[
B∗ = {M ∈ S | QK(M) = 1}

]
> 1− neg(γ)

and otherwise, we have that B∗ is a subset of the matching documents (or
contains the overflow symbol, ⊥). Provided that the buffer decryption algorithm
can distinguish collisions in the buffer from valid documents (see above remark)
this equates to showing that non-matching documents are saved with negligible
probability in B and that matching documents are saved with overwhelming
probability in B. These two facts are easy to show.

Theorem 1. Assuming that the Paillier (and Damg̊ard-Jurik) cryptosystems
are semantically secure, then the private filter generator from the preceding con-
struction is semantically secure according to Definition 7.

Proof. Denote by E the encryption algorithm of the Paillier/Damg̊ard-Jurik
cryptosystem. Suppose that there exists an adversary A that can gain a non-
negligible advantage ε in our semantic security game from Definition 7. Then
A could be used to gain an advantage in breaking the semantic security of the
Paillier encryption scheme as follows: Initiate the semantic security game for the
Paillier encryption scheme with some challenger C. C will send us an integer
n for the Paillier challenge. For messages m0, m1, we choose m0 = 0 ∈ Zns

and choose m1 = 1 ∈ Zns . After sending m0, m1 back to C, we will receive
eb = E(mb), an encryption of one of these two values. Next we initiate the pri-
vate filter generator semantic security game with A. A will give us two queries
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Q0, Q1 in Q for some sets of keywords K0, K1, respectively. We use the public
key n to compute an encryption of 0, call it e0 = E(0). Now we pick a random
bit q, and construct filtering software for Qq as follows: we proceed as described
above, constructing the array D̂ by using re-randomized encryptions, E(0) of 0
for all words in D\Kq, and for the elements of Kq, we use E(0)eb, which are ran-
domized encryptions of mb. Now we give this program back to A, and A returns
a guess q′. With probability 1/2, eb is an encryption of 0, and hence the program
that we gave A does not search for anything at all, and in this event clearly A’s
guess is independent of q, and hence the probability that q′ = q is 1/2. However,
with probability 1/2, eb = E(1), hence the program we’ve sent A is filtering
software that searches for Qq, constructed exactly as in the Filter-Gen algorithm,
and hence in this case with probability 1/2 + ε, A will guess q correctly, as our
behavior here was indistinguishable from an actual challenger. We determine our
guess b′ as follows: if A guesses q′ = q correctly, then we will set b′ = 1, and
otherwise we will set b′ = 0. Putting it all together, we can now compute the
probability that our guess is correct: Pr(b′ = b) = 1

2

(
1
2

)
+ 1

2

(
1
2 + ε

)
= 1

2 + ε
2

and hence we have obtained a non-negligible advantage in the semantic security
game for the Paillier system, a contradiction to our assumption. Therefore, our
system is secure according to Definition 7.

4 Reducing Program Size Below Dictionary Size

In our other constructions, the program size is proportional to the size of the
dictionary. By relaxing our definition slightly, we are able to provide a new
construction using Cachin-Micali-Stadler PIR [5] which reduces the program
size. Security of this system depends on the security of [5] which uses the Φ-
Hiding Assumption.2

The basic idea is to have a standard dictionary D agreed upon ahead of time
by all users, and then to replace the array M̂ in the filtering software with PIR
queries that execute on a database consisting of the characteristic function of
M with respect to D to determine if keywords are present or not. The return
of the queries is then used to modify the buffer. This will reduce the size of
the distributed filtering software. However, as mentioned above, we will need to
relax our definition slightly and publish an upper bound U for |K|, the number
of keywords used in a search.

4.1 Private Filter Generation

We now formally present the Key-Gen, Filter-Gen, and Buffer-Decrypt algorithms
of our construction. The class Q of queries that can be executed by this protocol
is again just the set of boolean expressions in only the operator ∨ over presence
or absence of keywords, as discussed above. Also, an important note: for this
2 It is an interesting open question how to reduce the program size under other cryp-

tographic assumptions.
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construction, it is necessary to know the set of keywords being used during key
generation, and hence what we achieve here is only weak public key program
obfuscation, as in Definition 2. For consistency of notation, we still present this
as 3 algorithms, even though the key generation could be combined with the filter
generation algorithm. For brevity, we omit the handling of collision detection,
which is handled using Lemma 2.

Key-Gen(k, K, D) The CMS algorithms are run to generate PIR queries, {qj} for the key-
words K, and the resulting factorizations of the corresponding composite numbers {mj}
are saved as the key, Aprivate, while Apublic is set to {mj}.

Filter-Gen(D, QK , Apublic, Aprivate, m, γ) This algorithm constructs and outputs a pri-
vate filter F for the query QK , using the PIR queries qj that were generated in the
Key-Gen(k, K, D) algorithm. It operates as follows.
F contains the following data:

– The array of CMS PIR queries, {qj}U
j=1 from the first algorithm, which are designed to

retrieve a bit from a database having size equal to the number of words in the agreed
upon dictionary, D. Only |K| of these queries will be meaningful. For each w ∈ K,
there will be a meaningful query that retrieves the bit at index corresponding to w’s
index in the dictionary. Let {pj,l}|D|

l=1 be the primes generated by the information in qj ,
and let mj be composite number part of qj . The leftover U − |K| queries are set to
retrieve random bits.

– An array of buffers {Bj}U
j=1, each indexed by blocks the size of elements of Z∗

mj
, with

every position initialized to the identity element.

The program then proceeds with the following steps upon receiving an input document M :

1. Construct the complement of the characteristic vector for the words of M relative
to the dictionary D. I.e., create an array of bits D̄ = {d̄i} of size |D|, such that
d̄i = 0 ⇔ di ∈ M . We’ll use this array as our database for the PIR protocols.

Next, for each j ∈ {1, 2, ..., U}, do the following steps:
2. Execute query qj on D̄ and store the result in rj .
3. Bitwise encrypt M , using rj to encrypt a 1 and using the identity of Z∗

mj
to encrypt

a 0.
4. Take the jth encryption from step 3 and position-wise multiply it into a random location

in buffer Bj γ-times, as described in our color-survival game from section 2.

Buffer-Decrypt(B, Aprivate) Simply decrypts each buffer Bj one block at a time by in-
terpreting each group element with pj,ith roots as a 0 and other elements as 1’s, where i

represents the index of the bit that is searched for by query qj . All valid non-zero decryptions
are stored in the output B∗.

4.2 Correctness of Private Filter

Since CMS PIR is not deterministic, it is possible that our queries will have the
wrong answer at times. However, this probability is negligible in the security
parameter. Again, as we’ve seen before, provided that the decryption algorithm
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can distinguish valid documents from collisions in buffer, correctness equates to
storing non-matching documents in B with negligible probability and matching
documents with overwhelming probability. These facts are easy to verify.

Theorem 2. Assume the Φ-Assumption holds. Then the Private Filter Gener-
ator from the preceding construction is semantically secure according to Defini-
tion 2.

Proof. (Sketch) If an adversary can distinguish any two keyword sets, then the
adversary can also distinguish between two fixed keywords, by a standard hybrid
argument. This is precisely what it means to violate the privacy definition of [5].

5 Eliminating the Probability of Error

In this section, we present ways to eliminate the probability of collisions in the
buffer by using perfect hash functions. Recall the definition of perfect hash func-
tion. For a set S ⊂ {1, ..., m}, if a function h : {1, ..., m} → {1, ..., n} is such
that h|S (the restriction of h to S) is injective, then h is called a perfect hash
function for S. We will be concerned with families of such functions. We say
that H is an (m, n, k)-family of perfect hash functions if ∀S ⊂ {1, ..., m} with
|S| = k, ∃h ∈ H such that h is perfect for S.

We will apply these families in a very straightforward way. Namely, we define
m to be the number of documents in the stream and k to be the number of
documents we expect to save. Then, since there exist polynomial size (m, n, k)-

families of perfect hash functions H , e.g., |H | ≤
⌈ log(m

k )
log(nk)−log(nk−k!(n

k))

⌉
[16],

then our system could consist of |H | buffers, each of size n documents, and our
protocol would just write each (potential) encryption of a document to each of
the |H | buffers once, using the corresponding hash function from H to determine
the index in the buffer. Then, no matter which of the

(
m
k

)
documents were of

interest, at least one of the functions in H would be injective on that set of
indexes, and hence at least one of our buffers would be free of collisions.

6 Construction Based on Any Homomorphic Encryption

We provide here an abstract construction based upon an arbitrary homomorphic,
semantically secure public key encryption scheme. The class of queries Q that
are considered here is again, all boolean expressions in only the operation ∨,
over presence or absence of keywords, as discussed above. This construction is
similar to the Paillier-based construction, except that since we encrypt bitwise,
we incur an extra multiplicative factor of the security parameter k in the buffer
size. However, both the proof and the construction are somewhat simpler and
can be based on any homomorphic encryption.
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6.1 Construction of Abstract Private Filter Generator

Throughout this section, let PKE = {KG(k), E(p),D(c)} be a public key en-
cryption scheme. Here, KG, E ,D are key generation, encryption, and decryption
algorithms, respectively for any group homomorphic, semantically secure en-
cryption scheme, satisfying Definition 8. We describe the Key-Gen, Filter-Gen,
and Buffer-Decrypt algorithms. We will write the group operations of G1 and
G2 multiplicatively. (As usual, G1, G2 come from a distribution of groups in
some class depending on the security parameter, but to avoid confusion and un-
necessary notation, we will always refer to them simply as G1, G2 where it is
understood that they are actually sampled from some distribution based on k.)

Key-Gen(k) Execute KG(k) and save the private key as Aprivate, and save the public
parameters of PKE as Apublic.

Filter-Gen(D, QK , Apublic, Aprivate, m, γ) This algorithm constructs and outputs a fil-
tering program F for QK , constructed as follows.
F contains the following data:

– A buffer B(γ) of size 2γm, indexed by blocks the size of an element of G2 times the
document size, with every position initialized to idG2 .

– Fix an element g ∈ G1 with g �= idG1 . The program contains an array D̂ = {d̂i}|D|
i=1

where each d̂i ∈ G2 such that d̂i is set to E(g) ∈ G1 if di ∈ K and it is set to E(idG1)
otherwise. (Note: we are of course re-applying E to compute each encryption, and not
re-using the same encryption with the same randomness over and over.)

F then proceeds with the following steps upon receiving an input document M :

1. Construct a temporary collection M̂ = {d̂i ∈ D̂ | di ∈ M}.
2. Choose a random subset S ⊂ M̂ of size �|M̂ |/2� and compute

v =
∏
s∈S

s

3. Bitwise encrypt M using encryptions of idG1 for 0’s and using v to encrypt 1’s to
create a vector of G2 elements.

4. Choose a random location in B, take the encryption of step 3, and position-wise
multiply these two vectors storing the result back in B at the same location.

5. Repeat steps 2-4
(

c
c−1

)
γ times, where in general, c will be a constant approximately

the size of G1.

Buffer-Decrypt(B,Aprivate) Decrypts B one block at a time using the decryption algorithm
D to decrypt the elements of G2, and then interpreting non-identity elements of G1 as 1’s
and idG1 as 0, storing the non-zero, valid messages in the output B∗.

7 Construction for a Single AND

7.1 Handling Several AND Operations by Increasing Program Size

We note that there are several simple (and unsatisfactory) modifications that
can be made to our basic system to compute an AND. For example a query
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consisting of at most a c AND operations can be performed simply by changing
the dictionary D to a dictionary D′ containing all |D|c c-tuples of words in
D, which of course comes at a polynomial blow-up3 of program size.4 So, only
constant, or logarithmic size keyword sets can be used in order to keep the
program size polynomial.

7.2 Executing a Single AND Without Increasing Program Size

Using the results of Boneh, Goh, and Nissim [2], we can extend the types of
queries that can be privately executed to include queries involving a single AND
of an OR of two sets of keywords without increasing the program size. This
construction is very similar to the abstract construction, and hence several details
that would be redundant will be omitted from this section. The authors of [2]
build an additively homomorphic public key cryptosystem that is semantically
secure under this subgroup decision problem. The plaintext set of the system is
Zq2 , and the ciphertext set can be either G or G1 (which are both isomorphic
to Zn). However, the decryption algorithm requires one to compute discrete
logs. Since there are no known algorithms for efficiently computing discrete logs
in general, this system can only be used to encrypt small messages. Using the
bilinear map e, this system has the following homomorphic property. Let F ∈
Zq2 [X1, ..., Xu] be a multivariate polynomial of total degree 2 and let {ci}u

i=1 be
encryptions of {xi}u

i=1, xi ∈ Zq2 . Then, one can compute an encryption cF of
the evaluation F (x1, ..., xu) of F on the xi with only the public key. This is done
simply by using the bilinear map e in place of any multiplications in F , and then
multiplying ciphertexts in the place of additions occurring in F . And once again,
note that decryption is feasible only when the xi are small, so one must restrict
the message space to be a small subset of Zq2 . (In our application, we will always
have xi ∈ {0, 1}.) Using this cryptosystem in our abstract construction, we can
easily extend the types of queries that can be performed.

7.3 Construction of Private Filter Generator

More precisely, we can now perform queries of the following form, where M is a
document and K1, K2 ⊂ D are sets of keywords:

(M ∩K1 �= ∅) ∧ (M ∩K2 �= ∅)

3 Asymptotically, if we treat |D| as a constant, the above observation allows a log-
arithmic number of AND operations with polynomial blow-up of program size. It
is an interesting open problem to handle more than a logarithmic number of AND
operations, keeping the program size polynomial.

4 A naive suggestion that we received for an implementation of “AND” is to keep
track of several buffers, one for each keyword or set of keywords, and then look for
documents that appear in each buffer after the buffers are retrieved, however this
will put many non-matching documents in the buffers, and hence is inappropriate
for the streaming model. Furthermore, it really just amounts to searching for an OR
and doing local processing to filter out the difference.
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We describe the Key-Gen, Filter-Gen, and Buffer-Decrypt algorithms below.

Key-Gen(k) Execute the key generation algorithm of the BGN system to produce Apublic =
(n, G, G1, e, g, h) where g is a generator, n = q1q2, and h is a random element of order
q1. The private key, Aprivate is the factorization of n. We make the additional assumption
that |D| < q2.

Filter-Gen(D, QK1,K2 , Apublic, Aprivate, m, γ) This algorithm constructs and outputs a
private filter F for the query QK1,K2 , constructed as follows, where this query searches for
all documents M such that (M ∩ K1 �= ∅) ∧ (M ∩ K2 �= ∅).
F contains the following data:

– A buffer B(γ) of size 2γm, indexed by blocks the size of an element of G1 times the
document size, with every position initialized to the identity element of G1.

– Two arrays D̂l = {d̂l
i}|D|

i=1 where each d̂l
i ∈ G, such that d̂l

i is an encryption of 1 ∈ Zn

if di ∈ Kl and an encryption of 0 otherwise.

F then proceeds with the following steps upon receiving an input document M :

1. Construct temporary collections M̂l = {d̂l
i ∈ D̂l | di ∈ M}.

2. For l = 1, 2, compute
vl =

∏
d̂l

i
∈M̂l

d̂l
i

and
v = e(v1, v2) ∈ G1

3. Bitwise encrypt M using encryptions of 0 in G1 for 0’s and using v to encrypt 1’s to
create a vector of G1 elements.

4. Choose γ random locations in B, take the encryption of step 3, and position-wise
multiply these two vectors storing the result back in B at the same location.

Buffer-Decrypt(B, Aprivate) Decrypts B one block at a time using the decryption algo-
rithm from the BGN system, interpreting non-identity elements of Zq2 as 1’s and 0 as 0,
storing the non-zero, valid messages in the output B∗.5

Theorem 3. Assuming that the subgroup decision problem of [2] is hard, then
the Private Filter Generator from the preceding construction is semantically se-
cure according to Definition 7.
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Abstract. In many important applications, a collection of mutually dis-
trustful parties must perform private computation over multisets. Each
party’s input to the function is his private input multiset. In order to
protect these private sets, the players perform privacy-preserving com-
putation; that is, no party learns more information about other parties’
private input sets than what can be deduced from the result. In this pa-
per, we propose efficient techniques for privacy-preserving operations on
multisets. By building a framework of multiset operations, employing the
mathematical properties of polynomials, we design efficient, secure, and
composable methods to enable privacy-preserving computation of the
union, intersection, and element reduction operations. We apply these
techniques to a wide range of practical problems, achieving more effi-
cient results than those of previous work.

1 Introduction

Private computation over sets and multisets is required in many important ap-
plications. In the real world, parties often resort to use of a trusted third party,
who computes a fixed function on all parties’ private input multisets, or forgo the
application altogether. This unconditional trust is fraught with security risks;
the trusted party may be dishonest or compromised, as it is an attractive target.
We design efficient privacy-preserving techniques and protocols for computation
over multisets by mutually distrustful parties: no party learns more information
about other parties’ private input sets than what can be deduced from the result
of the computation.

For example, to determine which airline passengers appear on a ‘do-not-fly’
list, the airline must perform a set-intersection operation between its private pas-
senger list and the government’s list. This is an example of the Set-Intersection
problem. If a social services organization needs to determine the list of people
on welfare who have cancer, the union of each hospital’s lists of cancer patients
must be calculated (but not revealed), then an intersection operation between
the unrevealed list of cancer patients and the welfare rolls must be performed.
This problem may be efficiently solved by composition of our private union and
set-intersection techniques. Another example is privacy-preserving distributed
network monitoring. In this scenario, each node monitors anomalous local traf-
fic, and a distributed group of nodes collectively identify popular anomalous
behaviors: behaviors that are identified by at least a threshold t number of mon-
itors. This is an example of the Over-Threshold Set-Union problem.

V. Shoup (Ed.): Crypto 2005, LNCS 3621, pp. 241–257, 2005.
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Contributions. In this paper, we propose efficient techniques for privacy-preserv-
ing operations on multisets. By building a framework of set operations using
polynomial representations and employing the mathematical properties of poly-
nomials, we design efficient methods to enable privacy-preserving computation
of the union, intersection, and element reduction1 multiset operations.

An important feature of our privacy-preserving multiset operations is that
they can be composed, and thus enable a wide range of applications. To demon-
strate the power of our techniques, we apply our operations to solve specific
problems, including Set-Intersection (Section 5) and Over-Threshold Set-Union
(Section 6). We also discuss a number of other applications in Section 7, such
as constructing protocols for the composition of multiset operations, computing
Threshold Set-Union and Cardinality Set-Intersection, and determining the Sub-
set relation. Due to space constraints, we describe utilization of our techniques
for efficiently and privately evaluating CNF boolean functions in [18].

Our protocols are more efficient than the results obtained from previous work.
General multiparty computation is the best previous result for most of the prob-
lems that we address in this paper. Only the private Set-Intersection problem
and two-party Cardinality Set-Intersection problem have been previously stud-
ied [12]. However, previous work only provides protocols for 3-or-more-party
Set-Intersection secure only against honest-but-curious players; it is not obvi-
ous how to extend this work to achieve security against malicious players. Also,
previous work focuses on achieving results for the Set-Intersection problem in
isolation – these techniques cannot be used to compose set operations. In con-
trast, we provide efficient solutions for private multi-party Set-Intersection secure
against malicious players [18], and our multiset intersection operator can be eas-
ily composed with other operations to enable a wide range of efficient private
computation over multisets.

Our protocols are provably secure in the PPT-bounded adversary model. We
consider both standard adversary models: honest-but-curious adversaries (HBC)
and malicious adversaries. We prove the security of each of our protocols in the
full version of this paper [18].

We discuss related work in Section 2. In Section 3, we introduce our adversary
models, as well as our cryptographic tools. We describe our privacy-preserving
set operation techniques in in Section 4. Section 5 gives a protocol and security
analysis for the Set-Intersection problem, and Section 6 gives a protocol and
security analysis for the Over-Threshold Set-Union problem. We discuss several
additional applications of our techniques in Section 7.

2 Related Work

For most of the privacy-preserving set function problems we address in this pa-
per (except for the Set-Intersection problem), the best previously known results
1 The element reduction by d, Rdd(A), of a multiset A is the multiset composed of the

elements of A such that for every element a that appears in A at least d′ > d times,
a is included d′ − d times in Rdd(A).
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are through general multiparty computation. General two-party computation
was introduced by Yao [25], and general computation for multiple parties was
introduced in [1]. In general multiparty computation, the players share the val-
ues of each input, and cooperatively evaluate the circuit. For each multiplication
gate, the players must cooperate to securely multiply their inputs and re-share
the result, requiring O(n) communication for honest-but-curious players and
O(n2) communication for malicious players [15]. Recent results that allow non-
interactive private multiplication of shares [7] do not extend to our adversary
model, in which any c < n players may collude. Our results are more efficient
than the general MPC approach; we compare communication complexity in [18].

The most relevant work to our paper is by Freedman, Nissim, and Pinkas
(FNP) [12]. They proposed protocols for the problems related to Set-Intersection,
based on the representation of sets as roots of a polynomial [12]. Their work
does not utilize properties of polynomials beyond evaluation at given points. We
explore the power of polynomial representation of multisets, using operations on
polynomials to obtain composable privacy-preserving multisets operations.

Much work has been done in designing solutions for privacy-preserving com-
putation of different functions. For example, private equality testing is the prob-
lem of set-intersection for the case in which the size of the private input sets
is 1. Protocols for this problem are proposed in [9,21,19], and fairness is added
in [2]. We do not enumerate the works of privacy-preserving computation of
other functions here, as they address drastically different problems and cannot
be applied to our setting.

3 Preliminaries

In this section, we describe our adversary models and the cryptographic tools
used in this paper.

3.1 Adversary Models

In this paper, we consider two standard adversary models: honest-but-curious
adversaries and malicious adversaries. Due to space constraints, we only provide
intuition and informal definitions of these models. Formal definitions of these
models can be found in [15].

Honest-But-Curious Adversaries. In this model, all parties act according to their
prescribed actions in the protocol. Security in this model is straightforward: no
player or coalition of c < n players (who cheat by sharing their private informa-
tion) gains information about other players’ private input sets, other than what
can be deduced from the result of the protocol. This is formalized by considering
an ideal implementation where a trusted third party (TTP) receives the inputs
of the parties and outputs the result of the defined function. We require that
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in the real implementation of the protocol—that is, one without a TTP—each
party does not learn more information than in the ideal implementation.

Malicious Adversaries. In this model, an adversary may behave arbitrarily. In
particular, we cannot hope to prevent malicious parties from refusing to par-
ticipate in the protocol, choosing arbitrary values for its private input set, or
aborting the protocol prematurely. Instead, we focus on the standard security
definition (see, e.g., [15]) which captures the correctness and the privacy issues
of the protocol. Informally, the security definition is based on a comparison be-
tween the ideal model and a TTP, where a malicious party may give arbitrary
input to the TTP. The security definition is also limited to the case where at
least one of the parties is honest. Let Γ be the set of colluding malicious parties;
for any strategy Γ can follow in the real protocol, there is a translated strategy
that it could follow in the ideal model, such that, to Γ , the real execution is
computationally indistinguishable from execution in the ideal model.

3.2 Additively Homomorphic Cryptosystem

In this paper we utilize a semantically secure [16], additively homomorphic
public-key cryptosystem. Let Epk(·) denote the encryption function with pub-
lic key pk. The cryptosystem supports the following operations, which can be
performed without knowledge of the private key: (1) Given the encryptions of
a and b, Epk(a) and Epk(b), we can efficiently compute the encryption of a + b,
denoted Epk(a + b) := Epk(a) +h Epk(b); (2) Given a constant c and the en-
cryption of a, Epk(a), we can efficiently compute the encryption of ca, denoted
Epk(c · a) := c ×h Epk(a). When such operations are performed, we require that
the resulting ciphertexts be re-randomized for security. In re-randomization, a
ciphertext is transformed so as to form an encryption of the same plaintext,
under a different random string than the one originally used. We also require
that the homomorphic public-key cryptosystem support secure (n, n)-threshold
decryption, i.e., the corresponding private key is shared by a group of n players,
and decryption must be performed by all players acting together.

In our protocols for the malicious case, we require: (1) the decryption protocol
be secure against malicious players, typically, this is done by requiring each player
to prove in zero-knowledge that he has followed the threshold decryption protocol
correctly [14]; (2) efficient construction of zero-knowledge proofs of plaintext
knowledge; (3) optionally, efficient construction of certain zero-knowledge proofs,
as detailed in [18].

Note that Paillier’s cryptosystem [23] satisfies each of our requirements: it is
additively homomorphic, supports ciphertexts re-randomization and threshold
decryption (secure in the malicious case) [10,11], and allows certain efficient
zero-knowledge proofs (standard constructions from [5,3], and proof of plaintext
knowledge [6]).

In the rest of this paper, we simply use Epk(·) to denote the encryption
function of the homomorphic cryptosystem which satisfies all the aforementioned
properties.
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4 Techniques and Mathematical Intuition

In this section, we introduce our techniques for privacy-preserving computation
of operations on multisets.

Problem Setting. Let there be n players. We denote the private input set of player
i as Si, and |Si| = k (1 ≤ i ≤ n). We denote the jth element of set i as (Si)j . We
denote the domain of the elements in these sets as P , (∀i∈[n],j∈[k] (Si)j ∈ P ).

Let R denote the plaintext domain Dom(Epk(·)) (in Paillier’s cryptosystem,
R is ZN). We require that R be sufficiently large that an element a drawn
uniformly from R has only negligible probability of representing an element
of P , denoted a ∈ P . For example, we could require that only elements of
the form b = a || h(a) could represent an element in P , where h(·) denotes a
cryptographic hash function [20]. That is, there exists an a of proper length such
that b = a || h(a). If |h(·)| = lg

( 1
ε

)
, then there is only ε probability that a′ ← R

represents an element in P .
In this section, we first give background on polynomial representation of mul-

tisets, as well as the mathematical properties of polynomials that we use in this
paper. We then introduce our privacy-preserving (TTP model) set operations
using polynomial representations, then show how to achieve privacy in the real
setting by calculating them using encrypted polynomials. Finally, we overview
the applications of these techniques explored in the rest of the paper.

4.1 Background: Polynomial Rings and Polynomial Representation
of Sets

The polynomial ring R[x] consists of all polynomials with coefficients from R. Let
f, g ∈ R[x], such that f(x) =

∑deg(f)
i=0 f [i]xi, where f [i] denotes the coefficient of

xi in the polynomial f . Let f + g denote the addition of f and g, f ∗ g denote
the multiplication of f and g, and f (d) denote the dth formal derivative of f .
Note that the formal derivative of f is

∑deg(f)−1
i=0 (i + 1)f [i + 1]xi.

Polynomial Representation of Sets. In this paper, we use polynomials to repre-
sent multisets. Given a multiset S = {Sj}1≤j≤k, we construct a polynomial rep-
resentation of S, f ∈ R[x], as f(x) =

∏
1≤j≤k(x−Sj). On the other hand, given

a polynomial f ∈ R[x], we define the multiset S represented by the polynomial
f as follows: an element a ∈ S if and only if (1) f(a) = 0 and (2) a represents an
element from P . Note that our polynomial representation naturally handles mul-
tisets: The element a appears in the multiset b times if (x−a)b | f ∧ (x−a)b+1 � | f .

Note that previous work has proposed to use polynomials to represent sets
[12] (as opposed to multisets). However, to the best of our knowledge, previ-
ous work has only utilized the technique of polynomial evaluation for privacy-
preserving operations. As a result, previous work is limited to set intersection
and cannot be composed with other set operators. In this paper, we propose a
framework to perform various set operations using polynomial representations
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and construct efficient privacy-preserving set operations using the mathemat-
ical properties of polynomials. By utilizing polynomial representations as the
intermediate form of representations of sets, our framework allows arbitrary
composition of set operators as outlined in our grammar.

4.2 Our Techniques: Privacy-Preserving Set Operations

In this section, we construct algorithms for computing the polynomial repre-
sentation of operations on sets, including union, intersection, and element re-
duction. We design these algorithms to be privacy-preserving in the following
sense: the polynomial representation of any operation result reveals no more
information than the set representation of the result. First, we introduce our
algorithms for computing the polynomial representation of set operations union,
intersection, and element reduction (with a trusted third party). We then ex-
tend these techniques to encrypted polynomials, allowing secure implementation
of our techniques without a trusted third party. Note that the privacy-preserving
set operations defined in this section may be arbitrarily composed (see Section 7),
and constitute truly general techniques.

Set Operations Using Polynomial Representations. In this section, we in-
troduce efficient techniques for set operations using polynomial representations.
In particular, let f, g be polynomial representations of the multisets S, T . We
describe techniques to compute the polynomial representation of their union,
intersection, and element reduction by d. We design our techniques so that the
polynomial representation of any operation result reveals no more information
than the set representation of the result. This privacy property is formally stated
in Theorems 1, 2, and 3, by comparing to the ideal model.

Union. We define the union of multisets S∪T as the multiset where each element
a that appears in S bS ≥ 0 times and T bT ≥ 0 times appears in the resulting
multiset bS + bT times. We compute the polynomial representation of S ∪ T as
follows, where f and g are the polynomial representation of S and T respectively:

f ∗ g.

Note that f ∗ g is a polynomial representation of S ∪ T because (1) all elements
that appear in either set S or T are preserved: (f(a) = 0) ∧ (g(b) = 0) →
((f ∗g)(a) = 0)∧((f ∗g)(b) = 0); (2) as f(a) = 0⇔ (x−a) | f , duplicate elements
from each multiset are preserved: (f(a) = 0)∧ (g(a) = 0)→ (x− a)2 | (f ∗ g). In
addition, we prove that, given f ∗ g, one cannot learn more information about S
and T than what can be deduced from S ∪T , as formally stated in the following
theorem:

Theorem 1. Let TTP1 be a trusted third party which receives the private input
multiset Si from player i for 1 ≤ i ≤ n, and then returns to every player the
union multiset S1 ∪ · · · ∪ Sn directly. Let TTP2 be another trusted third party,
which receives the private input multiset Si from player i for 1 ≤ i ≤ n, andthen:
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(1) calculates the polynomial representation fi for each Si; (2) computes and
returns to every player

∏n
i=1 fi.

There exists a PPT translation algorithm such that, to each player, the results
of the following two scenarios are distributed identically: (1) applying translation
to the output of TTP1; (2) returning the output of TTP2 directly.

Proof. Theorem 1 is trivially true. (This theorem is included for completeness.)

Intersection. We define the intersection of multisets S ∩T as the multiset where
each element a that appears in S bS > 0 times and T bT > 0 times appears in
the resulting multiset min{bS, bT } times. Let S and T be two multisets of equal
size, and f and g be their polynomial representations respectively. We compute
the polynomial representation of S ∩ T as:

f ∗ r + g ∗ s

where r, s ← Rdeg(f)[x], where Rb[x] is the set of all polynomials of degree 0, . . . , b

with coefficients chosen independently and uniformly from R: r =
∑β

i=0 r[i]xi

and s =
∑β

i=0 s[i]xi, where ∀0≤i≤β r[i]← R, ∀0≤i≤β s[i]← R.
We show below that f ∗ r + g ∗ s is a polynomial representation of S ∩ T . In

addition, we prove that, given f ∗ r + g ∗ s, one cannot learn more information
about S and T than what can be deduced from S ∩ T , as formally stated in
Theorem 2.

First, we must prove the following lemma:

Lemma 1. Let f̂ , ĝ be polynomials in R[x] where R is a ring, deg(f̂) = deg(ĝ) =
α, and gcd(f̂ , ĝ) = 1. Let r =

∑β
i=0 r[i]xi, and s =

∑β
i=0 s[i]xi, where ∀0≤i≤β r[i]

← R, ∀0≤i≤β s[i]← R (independently) and β ≥ α.
Let û = f̂ ∗ r + ĝ ∗ s =

∑α+β
i=0 u[i]xi. Then ∀0≤i≤α+β û[i] are distributed

uniformly and independently over R.

We give a proof of Lemma 1 in Appendix A.
By this lemma, f ∗ r + g ∗ s = gcd(f, g) ∗ u, where u is distributed uniformly

in Rγ [x] for γ = 2 deg(f) − |S ∩ T |. Note that a is a root of gcd(f, g) and
(x−a)�a | gcd(f, g) if and only if a appears �a times in S∩T . Moreover, because
u is distributed uniformly in Rγ [x], with overwhelming probability the roots of u
do not represent any element from P (as explained in the beginning of Section 4).
Thus, the computed polynomial f∗r+g∗s is a polynomial representation of S∩T .
Note that this technique for computing the intersection of two multisets can be
extended to simultaneously compute the intersection of an arbitrary number of
multisets in a similar manner. Also, given f ∗ r + g ∗ s, one cannot learn more
information about S and T than what can be deduced from S ∩ T , as formally
stated in the following theorem:

Theorem 2. Let TTP1 be a trusted third party which receives the private input
multiset Si from player i for 1 ≤ i ≤ n, and then returns to every player the
intersection multiset S1 ∩ · · · ∩ Sn directly. Let TTP2 be another trusted third
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party, which receives the private input multiset Si from player i for 1 ≤ i ≤ n,
and then: (1) calculates the polynomial representation fi for each Si; (2) chooses
ri ← Rk[x]; (3) computes and returns to each player

∑n
i=1 fi ∗ ri.

There exists a PPT translation algorithm such that, to each player, the results
of the following two scenarios are distributed identically: (1) applying translation
to the output of TTP1; (2) returning the output of TTP2 directly.

Proof (Proof sketch). Let the output of TTP1 be denoted T . The translation
algorithm operates as follows: (1) calculates the polynomial representation g of
T ; (2) chooses the random polynomial u← R2k−|T |[x]; (3) computes and returns
g ∗ u.

Element Reduction. We define the operation of element reduction (by d) of
multiset S (denoted Rdd(S)) as follows: for each element a that appears b times
in S, it appears max{b− d, 0} times in the resulting multiset. We compute the
polynomial representation of Rdd(S) as:

f (d) ∗ F ∗ r + f ∗ s

where r, s ← Rdeg(f)[x] and F is any polynomial of degree d, such that ∀a∈P F (a)
�= 0. Note that a random polynomial of degree d in R[x] has this property with
overwhelming probability.

To show that formal derivative operation allows element reduction, we require
the following lemma:

Lemma 2. Let f ∈ R[x], where R is a ring, d ≥ 1.

1. If (x− a)d+1 | f , then (x− a) | f (d).
2. If (x− a) | f and (x− a)d+1 � | f , then (x− a) � | f (d).

Lemma 2 is a standard result [24]. By this lemma and gcd(F, f) = 1, an
element a is a root of gcd(f (d), f) and (x − a)�a | gcd(f (d), f) if and only if a
appears �a times in Rdd(S). By Lemma 1, f (d) ∗ F ∗ r + f ∗ s = gcd(f (d), f) ∗ u,
where u is distributed uniformly in Rγ [x] for γ = 2k − |Rdd(S)|. Thus, with
overwhelming probability, any root of u does not represent any element from
P . Therefore, f (d) ∗ F ∗ r + f ∗ s is a polynomial representation of Rdd(S), and
moreover, given f (d) ∗ F ∗ r + f ∗ s, one cannot learn more information about
S than what can be deduced from Rdd(S), as formally stated in the following
theorem:

Theorem 3. Let F be a publicly known polynomial of degree d such that ∀a∈P

F (a) �= 0. Let TTP1 be a trusted third party which receives a private input
multiset S, and then returns the reduction multiset Rdd(S) directly. Let TTP2
be another trusted third party, which receives a private input multiset S, and then:
(1) calculates the polynomial representation f of S; (2) chooses r, s ← Rk[x];
(3) computes and returns f (d) ∗ F ∗ r + f ∗ s.

There exists a PPT translation algorithm such that the results of the following
two scenarios are distributed identically: (1) applying translation to the output
of TTP1; (2) returning the output of TTP2 directly.
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Proof (Proof sketch). Let the output of TTP1 be denoted T . The translation
algorithm operates as follows: (1) calculates the polynomial representation g of
T ; (2) chooses the random polynomial u← R2k−|T |[x]; (3) computes and returns
g ∗ u.

Operations with Encrypted Polynomials. In the previous section, we prove
the security of our polynomial-based multiset operators when the polynomial
representation of the result is computed by a trusted third party (TTP2). By
using additively homomorphic encryption, we allow these results to be imple-
mented as protocols in the real world without a trusted third party (i.e., the
polynomial representation of the set operations is computed by the parties col-
lectively without a trusted third party). In the algorithms given above, there
are three basic polynomial operations that are used: addition, multiplication,
and the formal derivative. We give algorithms in this section for computation of
these operations with encrypted polynomials.

For f ∈ R[x], we represent the encryption of polynomial f , Epk(f), as the
ordered list of the encryptions of its coefficients under the additively homomor-
phic cryptosystem: Epk(f [0]), . . . , Epk(f [deg(f)]). Let f1, f2, and g be polyno-
mials in R[x] such that f1(x) =

∑deg(f1)
i=0 f1[i]xi, f2(x) =

∑deg(f2)
i=0 f2[i]xi, and

g(x) =
∑deg(g)

i=0 g[i]xi. Let a, b ∈ R. Using the homomorphic properties of the
homomorphic cryptosystem, we can efficiently perform the following operations
on encrypted polynomials without knowledge of the private key:

– Sum of encrypted polynomials: given the encryptions of the polynomial
f1 and f2, we can efficiently compute the encryption of the polynomial
g := f1 + f2, by calculating Epk(g[i]) := Epk(f1[i]) +h Epk(f2[i]) (0 ≤ i ≤
max{deg(f1), deg(f2)})

– Product of an unencrypted polynomial and an encrypted polynomial: given
a polynomial f2 and the encryption of polynomial f1, we can efficiently com-
pute the encryption of polynomial g := f1 ∗ f2, (also denoted f2 ∗h Epk(f1))
by calculating the encryption of each coefficient
Epk(g[i]) := (f2[0] ×h Epk(f1[i])) +h . . . +h (f2[i] ×h Epk(f1[0])) (0 ≤ i ≤
deg(f1) + deg(f2)).

– Derivative of an encrypted polynomial: given the encryption of polynomial
f1, we can efficiently compute the encryption of polynomial g := d

dxf1, by cal-
culating the encryption of each coefficient Epk(g[i]) := (i + 1) ×h Epk(f1[i +
1]) (0 ≤ i ≤ deg(f1)− 1).

– Evaluation of an encrypted polynomial at an unencrypted point: given the
encryption of polynomial f1, we can efficiently compute the encryption of
a := f1(b), by calculating
Epk(a) := (b0 ×h Epk(f1[0])) +h . . . +h (bdeg(f) ×h Epk(f1[deg(f1)])).

It is easy to see that with the above operations on encrypted polynomials, we
can allow the computation of the polynomial representations of set operations
described in Section 4.2 without the trusted third party (TTP2) while enjoying
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the same security. As an example, we design in Section 5, a protocol for the Set-
Intersection problem, and discuss several other selected applications in Section 7.

5 Application I: Private Set-Intersection

Problem Definition. Let there be n parties; each has a private input set Si

(1 ≤ i ≤ n) of size k. We define the Set-Intersection problem as follows: all
players learn the intersection of all private input multisets without gaining any
other information; that is, each player learns S1 ∩ S2 ∩ · · · ∩ Sn.

We design a protocol, secure against a coalition of honest-but-curious adver-
saries, in Section 5.1. We then describe variations of the problem and how to
extend this protocol to be secure against malicious adversaries in Section 7.

5.1 Set-Intersection Protocol

Our protocol for the honest-but-curious case is given in Fig. 1. In this protocol,
each player i (1 ≤ i ≤ n) first calculates a polynomial representation fi ∈ R[x]
of his input multiset Si. He then encrypts this polynomial fi, and sends it to

Protocol: Set-Intersection-HBC
Input: There are n ≥ 2 honest-but-curious players, c < n dishonestly colluding,
each with a private input set Si, such that |Si| = k. The players share the secret
key sk, to which pk is the corresponding public key to a homomorpic cryptosys-
tem.

1. Each player i = 1, . . . , n
(a) calculates the polynomial fi = (x − (Si)1) . . . (x − (Si)k)
(b) sends the encryption of the polynomial fi to players i + 1, . . . , i + c
(c) chooses c + 1 polynomials ri,0, . . . , ri,c ← Rk[x]
(d) calculates the encryption of the polynomial φi = fi−c ∗ri,i−c + · · ·+fi−1∗

ri,i−1 + fi ∗ ri,0, utilizing the algorithms given in Sec. 4.2.
2. Player 1 sends the encryption of the polynomial λ1 = φ1, to player 2
3. Each player i = 2, . . . , n in turn

(a) receives the encryption of the polynomial λi−1 from player i − 1
(b) calculates the encryption of the polynomial λi = λi−1 + φi by utilizing

the algorithms given in Sec. 4.2.
(c) sends the encryption of the polynomial λi to player i + 1 mod n

4. Player 1 distributes the encryption of the polynomial p = λn =
∑n

i=1 fi ∗(∑c
j=0 ri+j,j

)
to all other players.

5. All players perform a group decryption to obtain the polynomial p.
6. Each player i = 1, . . . , n determines the intersection multiset: for each a ∈ Si,

he calculates b such that (x − a)b|p ∧ (x − a)b+1 � |p. The element a appears
b times in the intersection multiset.

Fig. 1. Set-Intersection protocol for the honest-but-curious case
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c other players i + 1, . . . , i + c. For each encrypted polynomial Epk(fi), each
player i + j (0 ≤ j ≤ c) chooses a random polynomial ri+j,j ∈ Rk[x]. Note
that at most c players may collude, thus

∑c
j=0 ri+j,j is both uniformly dis-

tributed and known to no player. They then compute the encrypted polynomial(∑c
j=0 ri+j,j

)
∗h Epk(fi). From these encrypted polynomials, the players com-

pute the encryption of p =
∑n

i=1 fi ∗
(∑c

j=0 ri+j,j

)
. All players engage in group

decryption to obtain the polynomial p. Thus, by Theorem 2, the players have
privately computed p, a polynomial representing the intersection of their private
input multisets. Finally, to reconstruct the multiset represented by polynomial
p, the player i, for each a ∈ Si, calculates b such that (x−a)b|p ∧ (x−a)b+1 � |p.
The element a appears b times in the intersection multiset.

Security Analysis. We show that our protocol is correct, as each player learns the
appropriate answer set at its termination, and secure in the honest-but-curious
model, as no player gains information that it would not gain when using its input
in the ideal model. A formal statement of these properties is as follows:

Theorem 4. In the Set-Intersection protocol of Fig. 1, every player learns the
intersection of all players’ private inputs, S1 ∩ S2 ∩ · · · ∩ Sn, with overwhelming
probability.

Theorem 5. Assuming that the additively homomorphic, threshold cryptosys-
tem Epk(·) is semantically secure, with overwhelming probability, in the Set-
Intersection protocol of Fig. 1, any coalition of fewer than n PPT honest-but-
curious players learns no more information than would be gained by using the
same private inputs in the ideal model with a trusted third party.

We provide proof sketches for Theorems 4 and 5 in [18].

6 Application II: Private Over-Threshold Set-Union

Problem Definition. Let there be n players; each has a private input set Si

(1 ≤ i ≤ n) of size k. We define the Over-Threshold Set-Union problem as follows:
all players learn which elements appear in the union of the players’ private input
multisets at least a threshold number t times, and the number of times these
elements appeared in the union of players’ private inputs, without gaining any
other information. For example, assume that a appears in the combined private
input of the players 15 times. If t = 10, then all players learn a has appeared 15
times. However, if t = 16, then no player learns a appears in any player’s private
input. This problem can be computed as Rdt−1(S1 ∪ · · · ∪ Sn).

In Section 6.1, we design a protocol for the Over-Threshold Set-Union prob-
lem, secure against honest-but-curious adversaries. This protocol is significantly
more efficient than utilizing general multiparty computation (the best previous
solution for this problem). We describe a variation of the problem and security
against malicious adversaries in Section 7.
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6.1 Over-Threshold Set-Union Protocol

We describe our protocol secure against honest-but-curious players for the Over-
Threshold Set-Union problem in Fig. 2. In this protocol, each player i (1 ≤ i ≤ n)
first calculates fi, the polynomial representation of its input multiset Si. All play-
ers then compute the encryption of polynomial p =

∏n
i=1 fi, the polynomial rep-

resentation of S1∪· · ·∪Sn. Players i = 1, . . . , c+1 then each chooses random poly-
nomials ri, si, and calculates the encryption of the polynomial F ∗p(t−1)∗ri+p∗si

as shown in Fig. 2. All players then calculate the encryption of the polynomial
Φ = F ∗ p(t−1) ∗

(∑c+1
i=1 ri

)
+ p ∗

(∑c+1
i=1 si

)
and perform a group decryption to

obtain Φ. As at most c players may dishonestly collude, the polynomials
∑c+1

i=1 ri,

Protocol: Over-Threshold Set-Union-HBC
Input: There are n ≥ 2 honest-but-curious players, c < n dishonestly collud-
ing, each with a private input set Si, such that |Si| = k. The players share the
secret key sk, to which pk is the corresponding public key for a homomorphic
cryptosystem. The threshold number of repetitions at which an element appears
in the output is t. F is a fixed polynomial of degree t − 1 which has no roots
representing elements of P .

1. Each player i = 1, . . . , n calculates the polynomial fi = (x − (Si)1) . . . (x −
(Si)k)

2. Player 1 sends the encryption of the polynomial λ1 = f1 to player 2
3. Each player i = 2, . . . , n

(a) receives the encryption of the polynomial λi−1 from player i − 1
(b) calculates the encryption of the polynomial λi = λi−1 ∗ fi by utilizing

the algorithm given in Sec. 4.2.
(c) sends the encryption of the polynomial λi to player i + 1 mod n

4. Player 1 distributes the encryption of the polynomial p = λn =
∏n

i=1 fi to
players 2, . . . , c + 1

5. Each player i = 1, . . . , c + 1
(a) calculates the encryption of the t − 1th derivative of p, denoted p(t−1),

by repeating the algorithm given in Sec. 4.2.
(b) chooses random polynomials ri, si ← Rnk[x]
(c) calculates the encryption of the polynomial p ∗ si + F ∗ p(t−1) ∗ ri and

sends it to all other players.
6. All players perform a group decryption to obtain the polynomial Φ = F ∗

p(t−1) ∗ (∑c+1
i=1 ri

)
+ p ∗ (∑c+1

i=1 si

)
.

7. Each player i = 1, . . . , n, for each j = 1, . . . , k
(a) chooses a random element bi,j ← R
(b) calculates ui,j = bi,j × Φ((Si)j) + (Si)j

8. All players distribute/shuffle the elements ui,j (1 ≤ i ≤ n, 1 ≤ j ≤ k) such
that each player learns all of the elements, but does not learn their origin.
Each element a ∈ P that appears b times in the shuffled elements is an element
in the threshold set that appears b times in the players’ private inputs.

Fig. 2. Over-Threshold Set-Union protocol for the honest-but-curious case
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i=1 si are uniformly distributed and known to no player. By Theorem 3, Φ is

a polynomial representation of Rdt−1(S1 ∪ · · · ∪ Sn).
Each player i = 1, . . . , n then chooses bi,j ← R and computes ui,j = bi,j ×

Φ((Si)j)+(Si)j (1 ≤ j ≤ k). Each element ui,j equals (Si)j if (Si)j ∈ Rdt−1(S1∪
· · ·∪Sn), and is otherwise uniformly distributed over R. The players then shuffle
these elements ui,j , such that each player learns all of the elements, but does not
learn which player’s set they came from. The shuffle can be easily accomplished
with standard techniques [4,17,8,13,22], with communication complexity at most
O(n2k). The multiset formed by those shuffled elements that represent elements
of P is Rdt−1(S1 ∪ · · · ∪ Sn).

Security Analysis We show that our protocol is correct, as each player learns the
appropriate answer set at its termination, and secure in the honest-but-curious
model, as no player gains information that it would not gain when using its
input in the ideal model with a trusted third party. A formal statement of these
properties is as follows:

Theorem 6. In the Over-Threshold Set-Union protocol of Fig. 2, with over-
whelming probability, every honest-but-curious player learns each element a
which appears at least t times in the union of the n players’ private inputs,
as well as the number of times it so appears.

Theorem 7. Assuming that the additively homomorphic, threshold cryptosys-
tem Epk(·) is semantically secure, with overwhelming probability, in the Over-
Threshold Set-Union protocol of Fig. 2, any coalition of fewer than n PPT
honest-but-curious players learns no more information than would be gained by
using the same private inputs in the ideal model with a trusted third party.

We provide proof sketches for Theorems 6 and 7 in [18].

7 Other Applications

Using the encrypted polynomial techniques of Section 4, we may construct effi-
cient protocols for functions composed of multiset intersection, union, and ele-
ment reduction. These functions are described by the following grammar:

Υ ::= s | Rdd(Υ ) | Υ ∩ Υ | s ∪ Υ | Υ ∪ s,

where s represents any multiset held by some player, and d ≥ 1. Note that
any monotone function on multisets can be expressed using the grammar above,
and thus our techniques for privacy-preserving set operations are truly general.
Additional techniques allow arbitrary composition of multiset operations are
described in [18].

We design a protocol for Cardinality Set-Intersection, using polynomial eval-
uation. We describe a protocol for the Threshold Set-Union problem, a variant of
Over-Threshold Set-Union. We also design protocols for several more variations
on the Over-Threshold Set-Union problem, determining the subset relation, and
for evaluation of boolean CNF formulas using our techniques; constructions and
proofs are given in [18].
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7.1 Cardinality Set-Intersection

We may use the technique of polynomial evaluation to design protocols for vari-
ants on the multiset functions previously described; this is closely related to tech-
niques utilized in [12]. In the Cardinality Set-Intersection problem, each player
learns |S1 ∩ · · · ∩ Sn|, without learning any other information. Our protocol for
Cardinality Set-Intersection on sets proceeds as our protocol for Set-Intersection,
given in Section 5, until the point where all players learn the encryption of p,
the polynomial representation of S1 ∩ · · · ∩ Sn. Each player i = 1, . . . , n then
evaluates this encrypted polynomial at each unique element a ∈ Si, obtaining
βa, an encryption of p(a). He then blinds each encrypted evaluation p(a) by cal-
culating β′

a = ba ×h βa. All players then distribute and shuffle the ciphertexts
β′

a constructed by each player, such that all players receive all ciphertexts, with-
out learning their source. The players then decrypt these ciphertexts, finding
that nb of the decryptions are 0, implying that there are b unique elements in
S1 ∩ · · · ∩ Sn. Due to space constraints, we describe the details of our protocols
for this problem in [18].

7.2 Threshold Set-Union

Using our techniques, we design efficient solutions to variations of the Over-
Threshold Set-Union problem, including the Threshold Set-Union problem,
where each player learns which elements appear in Rdt−1(S1 ∪ · · · ∪Sn) without
gaining any other information. Note that this differs from the Over-Threshold
Set-Union problem in that the players do not learn the number of times any ele-
ment appears in Rdt−1(S1∪· · ·∪Sn). Our protocol for the Threshold Set-Union
problem follows our protocol for Over-Threshold Set-Union until all players have
learned the encryption of the polynomial Φ, the polynomial representation of
Rdt−1(S1 ∪ · · · ∪ Sn). Each player i = 1, . . . , n then evaluates this encrypted
polynomial at each element a = (Si)j , obtaining Ui,j , an encryption of Φ(a).
He then chooses bi,j ← R, and calculates U ′

i,j = bi,j ×h Ui,j +h (Si)j . Each
element U ′

i,j is an encryption of (Si)j if (Si)j ∈ Rdt−1(S1 ∪ · · · ∪ Sn), and is
otherwise uniformly distributed over R. All players then shuffle and distribute
U ′

i,j (1 ≤ i ≤ n, 1 ≤ j ≤ k), such that all players receive all ciphertexts, with-
out learning their source. Shuffling can be easily accomplished with standard
techniques [4,17,8,13,22], with communication complexity at most O(n2k). The
players then perform a calculation so that if any two shuffled ciphertexts are
encryptions of the same plaintext, one will reveal the correct plaintext element,
and the other will yield a uniformly distributed element of R. Thus each element
of Rdt−1(S1 ∪ · · · ∪ Sn) is revealed exactly once. Due to space constraints, we
describe the details of our protocols for the Threshold Set-Union problem and
several other variants in [18].

7.3 Private Subset Relation

Problem Statement. Let the set A be held by Alice. The set B may be the
result of an arbitrary function over multiple players’ input sets (for example
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as calculated using the grammar above). The Subset problem is to determine
whether A ⊆ B without revealing any additional information.

Let λ be the encryption of the polynomial p representing B. Note that A ⊆
B ⇔ ∀a∈A p(a) = 0. Alice thus evaluates the encrypted polynomial λ at each
element a ∈ A, homomorphically multiplies a random element by each encrypted
evaluation, and adds these blinded ciphertexts to obtain β′. If β′ is an encryption
of 0, then A ⊆ B. More formally:

1. For each element a = Aj (1 ≤ j ≤ |A|), the player holding A:
(a) calculates βj = λ(a)
(b) chooses a random element bj ← R, and calculates β′

j = bj ×h βj

2. The player holding A calculates β′ = β′
1 +h . . . +h β′

|A|
3. All players together decrypt β′ to obtain y. If y = 0, then A ⊆ B.

This protocol can be easily extended to allow the set A to be held by multiple
players, such that A = A1∪· · ·∪Aν , where each set Ai is held by a single player.

7.4 Security Against Malicious Parties

We can extend our Set-Intersection protocol in Figure 1, secure against honest-
but-curious players, to one secure against malicious adversaries by adding
zero-knowledge proofs or using cut-and-choose to ensure security. By adding
zero-knowledge proofs to our Over-Threshold Set-Union and Cardinality Set-
Intersection protocols secure against honest-but-curious adversaries, we extend
our results to enable security against malicious adversaries. Due to space con-
straints, we provide details of these protocols, as well as security analysis, in [18].
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A Proof of Lemma

Theorem 1. Let f, g be polynomials in R[x] where R is a ring, deg(f) =
deg(g) = α, and gcd(f, g) = 1. Let r =

∑β
i=0 r[i]xi and s =

∑β
i=0 s[i]xi, where

∀0≤i≤β r[i]← R, ∀0≤i≤β s[i]← R (independently) and β ≥ α.
Let u = f ∗ r + g ∗ s =

∑α+β
i=0 u[i]xi. Then ∀0≤i≤α+β u[i] are distributed

uniformly and independently over R.
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Proof. For clarity, we give a brief outline of the proof before proceeding to the
details. Given any fixed polynomials f, g, u, we calculate the number z of r, s pairs
such that f ∗ r + g ∗ s = u. We may then check that, given any fixed polynomials
f, g, the total number of possible r, s pairs, divided by z, is equal to the number
of possible result polynomials u. This implies that, if gcd(f, g) = 1 and we choose
the coefficients of r, s uniformly and independently from R, the coefficients of
the result polynomial u are distributed uniformly and independently over R.

We now determine the value of z, the number of r, s pairs such that f ∗
r + g ∗ s = u. Let us assume that there exists at least one pair r̂, ŝ such that
f ∗ r̂ + g ∗ ŝ = u. For any pair r̂′, ŝ′ such that f ∗ r̂′ + g ∗ ŝ′ = u, then

f ∗ r̂ + g ∗ ŝ = f ∗ r̂′ + g ∗ ŝ′

f ∗ (r̂ − r̂′) = g ∗ (ŝ′ − ŝ)

As gcd(f, g) = 1, we may conclude that g|(r̂− r̂′) and f |(ŝ′− ŝ). Let p∗g = r̂− r̂′

and p∗f = ŝ′− ŝ. We now show that each polynomial p, of degree at most β−α,
determines exactly one unique pair r̂′, ŝ′ such that f ∗ r̂′ + g ∗ ŝ′ = u. Note that
r̂′ = r̂ − g ∗ p, ŝ′ = ŝ + f ∗ p; as we have fixed f, g, r̂, ŝ, a choice of p determines
both r̂′, ŝ′ . If these assignments were not unique, there would exist polynomials
p, p′ such that either r̂′ = r̂ − g ∗ p = r̂ − g ∗ p′ or ŝ′ = ŝ + f ∗ p = ŝ + f ∗ p′;
either condition implies that p = p′, giving a contradiction. Thus the number of
polynomials p, of degree at most β − α, is exactly equivalent to the number of
r, s pairs such that f ∗ r + g ∗ s = u. As there are |R|β−α+1 such polynomials p,
z = |R|β−α+1.

We now show that the total number of r, s pairs, divided by z, is equal to
the number of result polynomials u. There are |R|2β+2 r, s pairs. As |R|2β+2

z =
|R|2β+2

|R|β−α+1 = |R|α+β+1, and there are |R|α+β+1 possible result polynomials, we
have proved the theorem true.
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Abstract. We describe two new public key broadcast encryption sys-
tems for stateless receivers. Both systems are fully secure against any
number of colluders. In our first construction both ciphertexts and pri-
vate keys are of constant size (only two group elements), for any subset of
receivers. The public key size in this system is linear in the total number
of receivers. Our second system is a generalization of the first that pro-
vides a tradeoff between ciphertext size and public key size. For example,
we achieve a collusion resistant broadcast system for n users where both
ciphertexts and public keys are of size O(

√
n) for any subset of receivers.

We discuss several applications of these systems.

1 Introduction

In a broadcast encryption scheme [FN93] a broadcaster encrypts a message for
some subset S of users who are listening on a broadcast channel. Any user in
S can use his private key to decrypt the broadcast. However, even if all users
outside of S collude they can obtain no information about the contents of the
broadcast. Such systems are said to be collusion resistant. The broadcaster can
encrypt to any subset S of his choice. We use n to denote the total number of
users.

Broadcast encryption has several applications including access control in en-
crypted file systems, satellite TV subscription services, and DVD content protec-
tion. As we will see in Section 4 we distinguish between two types of applications:

– Applications where we broadcast to large sets, namely sets of size n − r
for r � n. The best systems [NNL01, HS02, GST04] achieve a broadcast
message containing O(r) ciphertexts where each user’s private key is of size
O(log n).

– Applications where we broadcast to small sets, namely sets of size t for
t � n. Until now, the best known solution was trivial, namely encrypt
the broadcast message under each recipient’s key. This broadcast message
contains t ciphertexts and each user’s private key is of size O(1).
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In this paper we construct fully collusion secure broadcast encryption sys-
tems with short ciphertexts and private keys for arbitrary receiver sets. Our
constructions use groups with an efficiently computable bilinear map. Our first
construction provides a system in which both the broadcast message and user
private keys are of constant size (a precise statement is given in the next sec-
tion). No matter what the receiver set is, our broadcast ciphertext contains only
two group elements. Each user’s private key is just a single group element. Thus,
when broadcasting to small sets our system generates far shorter ciphertexts
than the trivial solution discussed above. However, the public key size in this
system is linear in the number of recipients. This is not a large problem in ap-
plications such as encrypted file systems where the receivers have access to a
large shared storage medium in which the public key can be stored. For other
applications, such as content protection, we need to minimize both public key
and ciphertext size.

Our second system is a generalization of the first that enables us to tradeoff
public key size for ciphertext size. One interesting parametrization of our scheme
gives a system where both the public key and the ciphertext are of size O(

√
n).

This means that we can attach the public key to the encrypted broadcast and
still achieve ciphertext size of O(

√
n). Consequently, we obtain a fully collusion

secure broadcast encryption scheme with O(
√

n) ciphertext size (for any subset
of users) where the users have a constant size private key.

In Section 2 we define our security model and the complexity assumption we
use. In Section 3 we describe our systems and prove their semantic security. In
Section 4 we discuss in detail several applications for these systems. Finally, in
Section 5 we describe how to make our systems chosen-ciphertext secure.

1.1 Related Work

Fiat and Naor [FN93] were the first to formally explore broadcast encryption.
They presented a solution for n users that is secure against a collusion of t users
and has ciphertext size of O(t log2 t log n).

Naor et al. [NNL01] presented a fully collusion secure broadcast encryption
system that is efficient for broadcasting to all but a small set of revoked users.
Their scheme is useful for content protection where broadcasts will be sent to all
but a small set of receivers whose keys have been compromised. Their scheme
can be used to encrypt to n − r users with a header size of O(r) elements and
private keys of size O(log2 n). Further improvements [HS02, GST04] reduce the
private key size to O(log n). Dodis and Fazio [DF02] extend the NNL (subtree
difference) method into a public key broadcast system for a small size public
key.

Other broadcast encryption methods for large sets include Naor and Pinkas
[NP00] and Dodis and Fazio [DF03] as well as [AMM99, TT01]. For some fixed
t all these systems can revoke any r < t users where ciphertexts are always
of size O(t) and private keys are constant size. By running log n of these sys-
tems in parallel, where the revocation bound of the i’th system is ti = 2i (as
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in [YJCK04]), one obtains a broadcast encryption system with the same pa-
rameters as [GST04]. Private key size is O(log n) and, when revoking r users,
ciphertext size is proportional to 2�log2 r = O(r). This simple extension to the
Naor and Pinkas system gives a broadcast system with similar parameters as
the latest NNL derivative.

Wallner et al. [WHA97] and Wong [WGL98] independently discovered the
logical-key-hierarchy scheme (LKH) for multicast group key management. Us-
ing these methods receivers maintain state and remain connected to receive
key-update messages. The parameters of these schemes are improved in later
work [CGI+99, CMN99, SM03]. Our broadcast system also gives a group key
management method with short key update messages.

The security of our broadcast encryption relies on computational assump-
tions. Several other works [Sti97, ST98, SW98, GSY99, GSW00] explore broad-
cast encryption and tracing from an information theoretic perspective.

Boneh and Silverberg [BS03] show that n-linear maps give the ultimate fully
collusion secure scheme with constant public key, private key, and ciphertext size.
However, there are currently no known implementations of cryptographically
useful n-linear maps for n > 2. Our results show that we can come fairly close
using bilinear maps alone.

2 Preliminaries

We begin by formally defining public-key broadcast encryption systems. For
simplicity we define broadcast encryption as a key encapsulation mechanism.
We then state the complexity assumption needed for our proof of security.

2.1 Broadcast Encryption Systems

A broadcast encryption system is made up of three randomized algorithms:

Setup(n). Takes as input the number of receivers n. It outputs n private keys
d1, . . . , dn and a public key PK.

Encrypt(S, PK). Takes as input a subset S ⊆ {1, . . . , n}, and a public key PK.
It outputs a pair (Hdr, K) where Hdr is called the header and K ∈ K is a
message encryption key chosen from a finite key set K. We will often refer
to Hdr as the broadcast ciphertext.
Let M be a message to be broadcast that should be decipherable precisely
by the receivers in S. Let CM be the encryption of M under the symmetric
key K. The broadcast consists of (S, Hdr, CM ). The pair (S, Hdr) is often
called the full header and CM is often called the broadcast body.

Decrypt(S, i, di, Hdr, PK). Takes as input a subset S ⊆ {1, . . . , n}, a user id
i ∈ {1, . . . , n} and the private key di for user i, a header Hdr, and the public
key PK. If i ∈ S, then the algorithm outputs a message encryption key
K ∈ K. Intuitively, user i can then use K to decrypt the broadcast body
CM and obtain the message body M .
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As usual, we require that the system be correct, namely that for all subsets
S ⊆ {1, . . . , n} and all i ∈ S,

if (PK, (d1, . . . , dn)) R← Setup(n) and (Hdr, K) R← Encrypt(S, PK)
then Decrypt(S, i, di, Hdr, PK) = K.

We define chosen ciphertext security of a broadcast encryption system against
a static adversary. Security is defined using the following game between an attack
algorithm A and a challenger. Both the challenger and A are given n, the total
number of users, as input.

Init. Algorithm A begins by outputting a set S∗ ⊆ {1, . . . , n} of receivers
that it wants to attack.

Setup. The challenger runs Setup(n) to obtain a public key PK and private
keys d1, . . . , dn. It gives A the public key PK and all private keys dj for
which j �∈ S∗.

Query phase 1. Algorithm A issues decryption queries q1, . . . , qm adap-
tively where a decryption query consists of (u, S, Hdr) where S ⊆ S∗

and u ∈ S. The challenger responds with Decrypt(S, u, du, Hdr, PK).
Challenge. The challenger runs algorithm Encrypt to obtain (Hdr∗, K) R←

Encrypt(S, PK) where K ∈ K. Next, the challenger picks a random
b ∈ {0, 1}. It sets Kb = K and picks a random K1−b ∈ K. It then gives
(Hdr∗, K0, K1) to algorithm A.

Query phase 2. Algorithm A adaptively issues more decryption queries
qm+1, . . . , qqD where qi = (u, S, Hdr) with S ⊆ S∗ and u ∈ S. The only
constraint is that Hdr �= Hdr∗. The challenger responds as in phase 1.

Guess. Algorithm A outputs its guess b′ ∈ {0, 1} for b and wins the game
if b = b′.

Let AdvBrA,n denote the probability that A wins the game when the challenger
and A are given n as input.

Definition 1. We say that a broadcast encryption system is (t, ε, n, qD) CCA
secure if for all t-time algorithms A that make a total of qD decryption queries,
we have that |AdvBrA,n − 1

2 | < ε.

The game above models an attack where all users not in the set S∗ collude
to try and expose a broadcast intended for users in S∗ only. The set S∗ is chosen
by the adversary. Note that the adversary is non-adaptive; it chooses S∗, and
obtains the keys for users outside of S∗, before it even sees the public key PK. An
adaptive adversary could request user keys adaptively. We only prove security of
our system in the non-adaptive settings described above. It is an open problem to
build a broadcast encryption system with the performance of our system which
is secure against adaptive adversaries. We note that similar formal definitions
for broadcast encryption security were given in [BS03, DF03].

As usual, we define semantic security for a broadcast encryption scheme by
preventing the attacker from issuing decryption queries.
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Definition 2. We say that a broadcast encryption system is (t, ε, n) semanti-
cally secure if it is (t, ε, n, 0) CCA secure.

In Section 3 we first construct semantically secure systems with constant
ciphertext and private key size. We come back to chosen ciphertext security in
Section 5.

2.2 Bilinear Maps

We briefly review the necessary facts about bilinear maps and bilinear map
groups. We use the following standard notation [Jou00, JN03, BF01]:

1. G and G1 are two (multiplicative) cyclic groups of prime order p;
2. g is a generator of G.
3. e : G×G → G1 is a bilinear map.

Let G and G1 be two groups as above. A bilinear map is a map e : G×G → G1
with the following properties:

1. For all u, v ∈ G and a, b ∈ Z, we have e(ua, vb) = e(u, v)ab, and
2. The map is not degenerate, i.e., e(g, g) �= 1.

We say that G is a bilinear group if the group action in G can be computed
efficiently and there exists a group G1 and an efficiently computable bilinear
map e : G × G → G1 as above. Note that e(, ) is symmetric since e(ga, gb) =
e(g, g)ab = e(gb, ga).

2.3 Complexity Assumptions

Security of our system is based on a complexity assumption called the bilinear
Diffie-Hellman Exponent assumption (BDHE). This assumption was previously
introduced in [BBG05].

Let G be a bilinear group of prime order p. The �-BDHE problem in G is
stated as follows: given a vector of 2� + 1 elements(

h, g, gα, g(α2), . . . , g(α�), g(α�+2), . . . , g(α2�)
)
∈ G2�+1

as input, output e(g, h)(α
�+1) ∈ G1. Note that the input vector is missing the

term g(α�+1) so that the bilinear map seems to be of little help in computing the
required e(g, h)(α

�+1).
As shorthand, once g and α are specified, we use gi to denote gi = g(αi) ∈ G.

An algorithm A has advantage ε in solving �-BDHE in G if

Pr [A (h, g, g1, . . . , g�, g�+2, . . . , g2�) = e(g�+1, h)] ≥ ε

where the probability is over the random choice of generator g in G, the random
choice of h in G, the random choice of α in Zp, and the random bits used by A.



Collusion Resistant Broadcast Encryption 263

The decisional version of the �-BDHE problem in G is defined analogously.
Let yg,α,� = (g1, . . . , g�, g�+2, . . . , g2�). An algorithm B that outputs b ∈ {0, 1}
has advantage ε in solving decision �-BDHE in G if∣∣∣∣Pr

[
B
(
g, h, yg,α,�, e(g�+1, h)

)
= 0

]
− Pr

[
B
(
g, h, yg,α,�, T

)
= 0

] ∣∣∣∣ ≥ ε

where the probability is over the random choice of generators g, h in G, the
random choice of α in Zp, the random choice of T ∈ G1, and the random bits
consumed by B. We refer to the distribution on the left as PBDHE and the
distribution on the right as RBDHE .

Definition 3. We say that the (decision) (t, ε, �)-BDHE assumption holds in G
if no t-time algorithm has advantage at least ε in solving the (decision) �-BDHE
problem in G.

Occasionally we drop the t and ε and refer to the (decision) �-BDHE in G.
We note that the �-BDHE assumption is a natural extension of the bilinear-DHI
assumption previously used in [BB04, DY05]. Furthermore, Boneh et al. [BBG05]
show that the �-BDHE assumption holds in generic bilinear groups [Sho97].

3 Construction

We are now ready to present our broadcast encryption system. We first present
a special case system where ciphertexts and private keys are always constant
size. The public key grows linearly with the number of users. We then present a
generalization that allows us to balance the public key size and the ciphertext
size. Private keys are still constant size. We prove security of this general system.

3.1 A Special Case

We begin by describing a broadcast encryption system for n users where the
ciphertexts and private keys are constant size. The public key grows linearly in
the number of users.

Setup(n): Let G be a bilinear group of prime order p. The algorithm first picks
a random generator g ∈ G and a random α ∈ Zp. It computes gi = g(αi) ∈ G
for i = 1, 2, . . . , n, n + 2, . . . , 2n. Next, it picks a random γ ∈ Zp and sets
v = gγ ∈ G. The public key is:

PK = (g, g1, . . . , gn, gn+2, . . . , g2n, v) ∈ G2n+1

The private key for user i ∈ {1, . . . , n} is set as: di = gγ
i ∈ G.

Note that di = v(αi). The algorithm outputs the public key PK and the n
private keys d1, . . . , dn.
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Encrypt(S, PK): Pick a random t in Zp and set K = e(gn+1, g)t ∈ G1.
The value e(gn+1, g) can be computed as e(gn, g1). Next, set

Hdr =

gt, (v ·
∏
j∈S

gn+1−j)t

 ∈ G2

and output the pair (Hdr, K).
Decrypt(S, i, di, Hdr, PK): Let Hdr = (C0, C1) and recall that di ∈ G. Then,

output
K = e(gi, C1) / e(di ·

∏
j∈S
j �=i

gn+1−j+i, C0)

Note that a private key is only one group element in G and the ciphertext,
Hdr, is only two group elements. Furthermore, since e(gn+1, g) can be precom-
puted, encryption requires no pairings. Nevertheless, the system is able to broad-
cast to any subset of users and is fully collusion resistant. We prove security in
Section 3.3 where we discuss a more general system.

We verify that the system is correct — i.e., that the decryption algorithm
works correctly — by observing that, for any i ∈ S, the quotient of the terms

e(gi, C1) = e(g, g)αi·t(γ+
∑

j∈S αn+1−j) = e(g, g)t(γαi+
∑

j∈S αn+1−j+i) and

e(C0, di ·
∏
j∈S
j �=i

gn+1−j+i) = e(g, g)t·(γαi+
∑ j∈S

j �=i αn+1−j+i)

is K = e(gn+1, g)t = e(g, g)tαn+1
, as required.

Efficient Implementation. For any large number of receivers, decryption
time will be dominated by the |S| − 2 group operations needed to compute∏j∈S

j �=i gn+1−j+i. However, we observe that if the receiver had previously com-

puted the value w =
∏j∈S′

j �=i gn+1−j+i for some receiver set S′ that is similar to
S then, the receiver can compute

∏j∈S
j �=i gn+1−j+i with just δ group operations

using the cached value w, where δ is the size of the set difference between S and
S′.

This observation is especially useful when the broadcast system is intended
to broadcast to large sets, i.e. sets of size n − r for r � n. The private key di

could include the value
∏j∈[1,n]

j �=i gn+1−j+i ∈ G which would enable the receiver
to decrypt using only r group operations. Furthermore, user i would only need
r elements from the public key PK.

We note that computation time for encryption will similarly be dominated
by the |S|−1 group operations to compute

∏
j∈S gt

n+1−j
and similar performance

optimizations (e.g. precomputing
∏n

j=1 gn+1−j) apply. We also note that in the
secret key settings (where the encryptor is allowed to keep secret information)
the encryptor need only store (g, v, α) as opposed to storing the entire public
key vector.
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3.2 A General Construction

Next, we present a more general broadcast encryption system. The idea is to run
A parallel instances of the system in the previous section where each instance
can broadcast to at most B < n users. As a result we can handle as many
as n = AB users. However, we substantially improve performance by sharing
information between the A instances. In particular, all instances will share the
same public key values g, g1, . . . , gB, gB+2, . . . , g2B.

This generalized system enables us to tradeoff the public key size for cipher-
text size. Setting B = n gives the system of the previous section. However,
setting B = �

√
n� gives a system where both public key and ciphertext size are

about
√

n elements. Note that either way, the private key is always just one
group element.

For fixed positive integer B, the B-broadcast encryption system works as
follows:

SetupB(n): The algorithm will set up A = � n
B � instances of the scheme. Let

G be a bilinear group of prime order p. The algorithm first picks a random
generator g ∈ G and a random α ∈ Zp. It computes gi = g(αi) ∈ G for
i = 1, 2, . . . , B, B + 2, . . . , 2B. Next, it picks random γ1, . . . , γA ∈ Zp and
sets v1 = gγ1 , . . . , vA = gγA ∈ G. The public key is:

PK = (g, g1, . . . , gB, gB+2, . . . , g2B, v1, . . . , vA) ∈ G2B+A

The private key for user i ∈ {1, . . . , n} is defined as follows: write i as
i = (a − 1)B + b for some 1 ≤ a ≤ A and 1 ≤ b ≤ B (i.e. a = �i/B� and
b = i mod B). Set the private key for user i as:

di = gγa

b ∈ G (note that di = v(αb)
a )

The algorithm outputs the public key PK and the n private keys d1, . . . , dn.
Encrypt(S, PK): For each � = 1, . . . , A define the subsets Ŝ� and S� as

Ŝ� = S∩{(�−1)B+1, . . . , �B}, S� = {x−�B+B | x ∈ Ŝ�} ⊆ {1, . . . , B}

In other words, Ŝ� contains all users in S that fall in the �’th interval of
length B and S� contains the indices of those users relative to the beginning
of the interval. Pick a random t in Zp and set K = e(gB+1, g)t ∈ G1. Set

Hdr =

gt, (v1 ·
∏

j∈S1

gB+1−j)t, . . . , (vA ·
∏

j∈SA

gB+1−j)t

 ∈ GA+1

Output the pair (Hdr, K). Note that Hdr contains A + 1 elements.
Decrypt(S, i, di, Hdr, PK): Let Hdr = (C0, C1, . . . , CA) and recall that di ∈ G.

Write i as i = (a− 1)B + b for some 1 ≤ a ≤ A and 1 ≤ b ≤ B. Then

K = e(gb, Ca) / e(di ·
∏

j∈Sa

j �=b

gB+1−j+b, C0)
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Verifying that the decryption algorithm works correctly is analogous to the
calculation in the previous section. We note that when B = n then A = 1 and
we obtain the system of the previous section.

Efficiency. A user’s private key size again will only consist of one group element.
The ciphertext consists of A + 1 group elements and the public key is 2B + A
elements. Our choice of B depends on the application. As we will see, in some
cases we want B = n to obtain the smallest possible ciphertext. In other cases
we want B =

√
n to minimize the concatenation of the ciphertext and public

key.
The decryption time for user i = (a−1)B+b will be dominated by |Sa|−2 < B

group operations. Similar caching techniques to those described in the end of
Section 3.1 can be used to improve performance.

3.3 Security

We now prove the semantic security of the general system of Section 3.2.

Theorem 1. Let G be a bilinear group of prime order p. For any positive in-
tegers B, n (n > B) our B-broadcast encryption system is (t, ε, n) semantically
secure assuming the decision (t, ε, B)-BDHE assumption holds in G.

Proof. Suppose there exists a t-time adversary, A, such that AdvBrA,n > ε for
a system parameterized with a given B. We build an algorithm, B, that has
advantage ε in solving the decision B-BDHE problem in G. Algorithm B takes
as input a random decision B-BDHE challenge (g, h, yg,α,B , Z), where yg,α,B =
(g1, . . . , gB, gB+2, . . . , g2B) and Z is either e(gB+1, h) or a random element of G1

(recall that gi = g(αi) for all i). Algorithm B proceeds as follows.

Init. Algorithm B runs A and receives the set S of users that A wishes to be
challenged on.

Setup. B needs to generate a public key PK and private keys di for i �∈ S. The
crux of the proof is in the choice of v1, . . . , vA. Algorithm B chooses random
ui ∈ Zp for 1 ≤ i ≤ A. We again define the subsets Ŝi and Si as

Ŝi = S∩{(i−1)B +1, . . . , iB} and Si = {x− iB +B | x ∈ Ŝi} ⊆ {1, . . . , B}

For i = 1, . . . , A algorithm B sets vi = gui

(∏
j∈Si

gB+1−j

)−1
. It gives A

the public key

PK = (g, g1, . . . , gB, gB+2, . . . , g2B, v1, . . . , vA) ∈ G2B+A

Note that since g, α and the ui values are chosen uniformly at random, this
public key has an identical distribution to that in the actual construction.
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Next, the adversary needs all private keys that are not in the target set S.
For all i �∈ S we write i as i = (a− 1)B + b for some 1 ≤ a ≤ A and 1 ≤ b ≤ B.
Algorithm B computes di as

di = gui

b ·
∏

j∈Sa

(gB+1−j+b)−1

Indeed, we have that di = (gui
∏

j∈Sa
(gB+1−j)−1)(α

b) = v
(αb)
a as required.

The main point is that since i /∈ S we know that b /∈ Sa and hence the product
defining di does not include the term gB+1. It follows that algorithm B has all
the necessary values to compute di.

Challenge. To generate the challenge, B computes Hdr as (h, hu1 , . . . , huA). It
then randomly chooses a bit b ∈ {0, 1} and sets Kb = Z and picks a random
K1−b in G1. It gives (Hdr, K0, K1) as the challenge to A.

We claim that when Z = e(gB+1, h) (i.e. the input to B is a B-BDHE tuple
sampled from PBDHE) then (Hdr, K0, K1) is a valid challenge to A as in a real
attack. To see this, write h = gt for some (unknown) t ∈ Zp. Then, for all
i = 1, . . . , A we have

hui = (gui)t = (gui(
∏
j∈Si

gB+1−j)−1(
∏
j∈Si

gB+1−j))t = (vi

∏
j∈Si

gB+1−j)t

Therefore, by definition, (h, hu1 , . . . , huA) is a valid encryption of key e(gB+1, g)t.
Furthermore, e(gB+1, g)t = e(gB+1, h) = Z = Kb and hence (Hdr, K0, K1) is a
valid challenge to A.

On the other hand, when Z is random in G1 (i.e. the input to B is sampled
from RBDHE) then K0, K1 are just random independent elements of G1.

Guess. The adversary, A outputs a guess b′ of b. If b′ = b the algorithm B
outputs 0 (indicating that Z = e(gB+1, h)). Otherwise, it outputs 1 (indicating
that Z is random in G1).

We see that Pr[B(g, h, yg,α,B , Z) = 0] = 1
2 if (g, h, yg,α,B , Z) is sampled from

RBDHE . If (g, h, yg,α,B , Z) is sampled from PBDHE then |Pr[B(g, h, yg,α,B , Z)
= 0] − 1

2 | = AdvBrA,n ≥ ε. It follows that B has advantage at least ε in solving
decision B-BDHE in G. This concludes the proof of Theorem 1. �

Note that the proof of Theorem 1 does not use the random oracle model.
The system can be proved secure using the weaker computational B-BDHE as-
sumption (as opposed to decision B-BDHE), using the random oracle model. In
that case the advantage of the simulator is at least ε/q, where q is the maximum
number of random oracle queries made by the adversary.

4 Applications

We describe how our system can be used for a number of specific applications.
The first application, file sharing in encrypted file systems, is an example of
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broadcasts to small sets. The second application, encrypted email for large mail-
ing lists, shows that the majority of the public key can be shared by many
broadcast systems so that the public key for a new broadcast system is constant
size. The third application, DVD content protection, is an example of broadcasts
to large sets.

4.1 File Sharing in Encrypted File Systems

Encrypted file systems let users encrypt files on disk. For example, Windows
EFS encrypts the file contents using a file encryption key KF and then places an
encryption of KF in the file header. If n users have access to the file, EFS encrypts
KF under the public keys of all n users and places the resulting n ciphertexts
in the file header. Related designs can be found in the SiRiUS [GSMB03] and
Plutus [KRS+03] file systems.

Abstractly, access control in an encrypted file system can be viewed as a
broadcast encryption problem. The file system is the broadcast channel and the
key KF is broadcast (via the file header) to the subset of users that can access
file F . Many encrypted file systems implement the straightforward broadcast
system where the number of ciphertexts in the file header grows linearly in the
number of users that can access the file. As a result, there is often a hard limit
on the number of users that can access a file. For example, the following quote
is from Microsoft’s knowledge base:

“EFS has a limit of 256KB in the file header for the EFS metadata.
This limits the number of individual entries for file sharing that may be
added. On average, a maximum of 800 individual users may be added to
an encrypted file.”

A natural question is whether we can implement file sharing in an encrypted
file system without resorting to large headers. Remarkably, there is no known
combinatorial solution that performs better than the straightforward solution
used in EFS. The broadcast system of Section 3.1 performs far better and pro-
vides a system with the following parameters:

– The public key (whose size is linear in n) is stored on the file system. Even
for a large organization of 100,000 users this file is only 4MB long (using a
standard security parameter where each group element is 20 bytes).

– Each user is given a private key that contains only one group element.
– Each file header contains ([S], C) where [S] is a description of the set S of

users who can access F and C is a fixed size ciphertext consisting of only
two group elements.

Since S tends to be small relative to n, its shortest description is simply an
enumeration of the users in S. Assuming 32-bit user ID’s, a description of a set
S of size r takes 4r bytes. Hence, the file header grows with the size of S, but
only at a rate of 4 bytes per user. In EFS the header grows by one public key
ciphertext per user. For comparison, we can accommodate sharing among 800
users using a header of size 4 × 800 + 40 = 3240 bytes which is far less than
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EFS’s header size. Even if EFS were using short ElGamal ciphertexts on elliptic
curves, headers would grow by 44 bytes per user which would result in headers
that are 11 times bigger than headers in our system.

Our system has a few more properties that make it especially useful for cryp-
tographic access control. We describe these next.

1. Incremental sharing. Suppose a file header contains a ciphertext C =
(C0, C1) which is the encryption of KF for a certain set S of users. Let C0 = gt

and C1 = (v ·
∏

j∈S gn+1−j)t. Suppose the file owner wishes to add access rights
for some user u ∈ {1, . . . , n}. This is easy to do given t. Simply set C1 ←
C1 · gt

n+1−u. Similarly, to revoke access rights for user u set C1 ← C1/gt
n+1−u.

This incremental sharing mechanism requires the file owner to remember the
random value t ∈ Zp for every file. Alternatively, the file owner can embed a
short nonce TF in every file header and derive the value t for that file by setting
t ← PRFk(TF ) where k is a secret key known only to the file owner. Hence,
changing access permissions can be done efficiently with the file owner only hav-
ing to remember a single key k. Note that when access rights to a file F change
it is sometimes desirable to re-encrypt the file using a new key Knew

F . Modifying
the existing header to encrypt a new Knew

F for the updated access list is just as
easy.

2. Incremental growth of the number of users. In many cases a broadcast
encryption system must be able to handle the incremental addition of new users.
It is desirable to have a system that does not a-priori restrict the total number of
users it can handle. Our system supports this by slowly expanding the public key
as the number of users in the system grows. To do so, at system initialization the
setup algorithm picks a large value of n (say n = 264) that is much larger than the
maximum number of users that will ever use the system. At any one time if there
are j users in the system the public key will be gn−j+1, . . . , gn, gn+2, . . . , gn+j .
Whenever a new user joins the system we simply add two more elements to the
public key. Note that user i must also be given gi as part of the private key and
everything else remains the same.

4.2 Sending Encrypted Email to Mailing Lists

One interesting aspect of our broadcast encryption system is that the public
values yg,α,n = (g1, . . . gn, gn+2, . . . , g2n) can be shared among many broadcast
systems and α can be erased. Suppose this yg,α,n is distributed globally to a large
group of users (for example, imagine yg,α,n is pre-installed on every computer).
Then creating a new broadcast system is done by simply choosing a random
γ ∈ Zp, setting v = gγ , and assigning private keys as di = gγ

i . Since all broadcast
systems use the same pre-distributed yg,α,n, the actual public key for this new
broadcast system is just one element, v. Theorem 1 shows that using the same
yg,α,n for many broadcast systems is secure.

We illustrate this property with an example of secure mailing lists. Sending
out encrypted email to all members of a mailing list is an example of a broadcast
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encryption system. Suppose the global public vector yg,α,n is shipped with the
operating system and installed on every computer. We arbitrarily set n = 50, 000
in which case the size of yg,α,n is about 2MB.

For every secure mailing list, the administrator creates a separate broadcast
encryption system. Thus, every mailing list is identified by its public key v = gγ .
We assume the maximum number of members in a mailing list is less than
n = 50, 000 (larger lists can be partitioned into multiple smaller lists). Each
time a new user is added onto the list, the user is assigned a previously unused
index i ∈ {1, . . . , n} and given the secret key di = gγ

i . The broadcast set S is
updated to include i and all mailing list members are notified of the change in
S. Similarly, if a user with index j is removed from the list, then j is removed
from the set S and all members are notified. We note that any member, i,
does not need to actually store S. Instead, member i need only store the value∏

j∈Sj �=i gn+1−j+i needed for decryption. The member updates this value every
time a membership update message is sent. To send email to a mailing list with
public key v the server simply does a broadcast encryption to the current set of
members S using (yg,α,n, v) as the public key.

In this mail system, the header of an email message sent to the list is con-
stant size. Similarly, membership update messages are constant size. A mailing
list member only needs to store two group elements for each list he belongs to
(although we have to keep in mind the cost of storing yg,α,n which is amortized
over all mailing lists). It is interesting to compare our solution to one using an
LKH scheme [WHA97, WGL98]. In LKH email messages are encrypted under a
group key. Using this type of a system each update message contains O(log(m))
ciphertexts, and private keys are of size O(log(m)) (per system), where m is the
current group size. In our system, update messages and private user storage are
much smaller.

4.3 Content Protection

Broadcast encryption applies naturally to protecting DVD content, where the
goal is to revoke compromised DVD players. Recall that the public key in our
system is needed for decryption and hence it must be embedded in the header of
every DVD disk. Consequently, we are interested in minimizing the total length
of the header and public key, namely minimize |Hdr|+ |PK|.

Let n be the total number of DVD players (e.g. n = 232) and let r be the
number of revoked players. Let �id = log2 n (e.g. �id = 32) and let k̄ be the size
of a group element (e.g. k̄ = 160 bits). Then using our

√
n-broadcast system

(B =
√

n) we can broadcast to sets of size n− r using the following parameters:

priv-key-size = 4k̄, and |Hdr|+ |PK|+ |S| = 4k̄�
√

n�+ r�id

In comparison, the NNL system [NNL01] and its derivatives [HS02, GST04] can
broadcast to sets of size n− r using:

priv-key-size = O(k log n), and header-size = O((k + �id) · r)
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where k is the length of a symmetric key (e.g. k = 128 bits). Note that the
broadcast header grows by O(k + �id) bits per revoked player. With our system
the broadcast header only grows by �id bits per revoked player.

Example. Plugging in real numbers we obtain the following. When n = 232, k̄ =
20 bytes, and �id = 4 bytes, header size in our system is 5.12mb and each
revocation adds 4 bytes to the header. In NNL-like systems, using k = 128-bit
symmetric keys, each revocation adds about 40 bytes to the header, but there is
no upfront 5mb fixed cost.

The best system is obtained by combining NNL with our system (using NNL
when r <

√
n and our system when r >

√
n). Thus, as long as things are stable,

DVD disk distributors use NNL. In case of a disaster where, say, a DVD player
manufacturer loses a large number of player keys, DVD disk distributors can
switch to our system where the header size grows slowly beyond O(

√
n).

5 Chosen Ciphertext Secure Broadcast Encryption

We show how to extend the system of Section 3.1 to obtain chosen ciphertext
security. The basic idea is to compose the system with the IBE system of [BB04]
and then apply the ideas of [CHK04]. The resulting system is chosen ciphertext
secure without using random oracles.

We need a signature scheme (SigKeyGen,Sign,Verify). We also need a colli-
sion resistant hash function that maps verification keys to Zp. Alternatively, we
can simply assume (as we do below) that signature verification keys are encoded
as elements of Zp. This greatly simplifies the notation.

As we will see, security of the CCA-secure broadcast system for n users is
based on the (n+1)-BDHE assumption (as opposed to the n-BDHE assumption
for the system of Section 3.1). Hence, to keep the notation consistent with Sec-
tion 3.1 we will describe the CCA-secure system for n− 1 users so that security
will depend on the n-BDHE assumption as before. The system works as follows:

Setup(n− 1): Public key PK is generated as in Section 3.1. The private key
for user i ∈ {1, . . . , n− 1} is set as: di = gγ

i ∈ G. The algorithm outputs
the public key PK and the n− 1 private keys d1, . . . , dn−1.

Encrypt(S, PK): Run the SigKeyGen algorithm to obtain a signature signing
key KSIG and a verification key VSIG. Recall that for simplicity we assume
VSIG ∈ Zp. Next, pick a random t in Zp and set K = e(gn+1, g)t ∈ G1. Set

C =
(

gt,
(
v · gVSIG

1 ·
∏
j∈S

gn+1−j

)t
)
∈ G2, Hdr =

(
C,Sign(C, KSIG), VSIG

)
and output the pair (Hdr, K). Note that the only change to the ciphertext
from Section 3.1 is the term gVSIG

1 and the additional signature data.
Decrypt(S, i, di, Hdr, PK): Let Hdr =

(
(C0, C1), σ, VSIG

)
.

1. Verify that σ is a valid signature of (C0, C1) under the key VSIG. If invalid,
output ‘?’.
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2. Otherwise, pick a random w ∈ Zp and compute

d̂0 =
(

di·gVSIG
i+1 ·

∏
j∈S
j �=i

gn+1−j+i

)
·
(

v·gVSIG
1 ·

∏
j∈S

gn+1−j

)w

and d̂1 = gig
w

3. Output K = e(d̂1, C1)/e(d̂0, C0).

Correctness can be shown with a similar calculation to the one in Section 3.1.
Note that private key size and ciphertext size are unchanged.

Unlike the system of Section 3.1, decryption requires a randomization value
w ∈ Zp. This randomization ensures that for any i ∈ S the pair (d̂0, d̂1) is chosen
from the following distribution(

g−1
n+1 ·

(
v · gVSIG

1 ·
∏
j∈S

gn+1−j

)r
, gr

)
where r is uniform in Zp. Note that this distribution is independent of i implying
that all members of S generate a sample from the same distribution. Although
this randomization slows down decryption by a factor of two, it is necessary for
the proof of security.

We briefly recall that a signature scheme (SigKeyGen,Sign,Verify) is (t, ε, qS)
strongly existentially unforgeable if no t-time adversary who makes at most qS

signature queries is able to produce some new (message,signature) pair with
probability at least ε. A complete definition is given in, e.g., [CHK04]. The
following theorem proves chosen ciphertext security.

Theorem 2. Let G be a bilinear group of prime order p. For any positive integer
n, the broadcast encryption system above is (t, ε1 + ε2, n − 1, qD) CCA-secure
assuming the decision (t, ε1, n)-BDHE assumption holds in G and the signature
scheme is (t, ε2, 1) strongly existentially unforgeable.

We give the proof of Theorem 2 in the full version of the paper [BGW05].
The proof does not use the random oracle model implying that the system is
chosen-ciphertext secure in the standard model.

We also note that instead of the signature-based method of [CHK04] we
could have used the more efficient MAC-based method of [BK05]. We chose to
present the construction using the signature method to simplify the proof. The
MAC-based method would also work.

6 Conclusions and Open Problems

We presented a fully collusion resistant broadcast encryption scheme with con-
stant size ciphertexts and private keys for arbitrary receiver sets. In Section 5
we built a chosen-ciphertext secure broadcast system with the same parameters.
A generalization of our basic scheme gave us a tradeoff between public key size
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and ciphertext size. With the appropriate parametrization we achieve a broad-
cast encryption scheme with O(

√
n) ciphertext and public key size. We discussed

several applications such as encrypted file systems and content protection.
We leave as an open problem the question of building a public-key broadcast

encryption system with the same parameters as ours which is secure against
adaptive adversaries. We note that any non-adaptive scheme that is (t, ε, n)
secure is also (t, ε/2n, n) secure against adaptive adversaries. However, in practice
this reduction is only meaningful for small values of n.

Another problem is to build a tracing traitors system [CFN94] with the
same parameters as our system. Ideally, one could combine the two systems to
obtain an efficient trace-and-revoke system. Finally, it is interesting to explore
alternative systems with similar performance that can be proved secure under a
weaker assumption.
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Abstract. Broadcast encryption schemes allow a message sender to
broadcast an encrypted data so that only legitimate receivers decrypt it.
Because of the intrinsic nature of one-to-many communication in broad-
casting, transmission length may be of major concern. Several broad-
cast encryption schemes with good transmission overhead have been pro-
posed. But, these broadcast encryption schemes are not practical since
they are greatly sacrificing performance of other efficiency parameters to
achieve good performance in transmission length.

In this paper we study a generic transformation method which trans-
forms any broadcast encryption scheme to one suited to desired applica-
tion environments while preserving security. Our transformation reduces
computation overhead and/or user storage by slightly increasing trans-
mission overhead of a given broadcast encryption scheme. We provide
two transformed instances. The first instance is comparable to the re-
sults of the “stratified subset difference (SSD)” technique by Goodrich
et al. and firstly achieves O(log n) storage, O(log n) computation, and
O( log n

log log n
r) transmission, at the same time, where n is the number of

users and r is the number of revoked users. The second instance out-
performs the “one-way chain based broadcast encryption” of Jho et al.,
which is the best known scheme achieving less than r transmission length
with reasonable communication and storage overhead.

1 Intoduction

In recent years broadcast encryption schemes have been intensively studied for
lots of applications such as satellite-based commerce, multicast communication,
secure distribution of copyright-protected material and DRM(Digital Rights
Management), etc. Broadcast encryption (BE) schemes are one-to-many com-
munication methods in which a message sender can broadcast an encrypted
data to a group of users over an insecure channel so that only legitimate re-
ceivers decrypt it. Especially, a stateless BE scheme has a useful property that
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any legitimate receiver with its initial set-up can obtain the current group ses-
sion key only from the current transmission without the history of past trans-
missions. One of main security concerns in the stateless broadcast encryption
schemes is how to efficiently exclude illegal (revoked) users from a privileged
set, that is, how to ensure that only legal users decrypt a encrypted broadcast
message.

Various BE schemes have been designed to improve efficiency. Efficiency of
BE schemes is mainly measured by three parameters: the length of transmis-
sion messages, user storage, and computational overhead at a user device. The
ultimate goal would be to achieve the best efficiency of all three parameters si-
multaneously. But it seems, to date, that there exists no BE scheme achieving
this goal. As an alternative treatment, a trade-off between the parameters has
been considered. In fact, schemes with a various efficiency trade-off fit into many
real applications and moreover support the creation of potential application sce-
narios. Since a message sender in BE schemes broadcasts a message to possible
huge number of users, efficiency in transmission overhead has been considered as
a critical measure by service providers. Therefore, reducing storage or computa-
tion overhead without greatly sacrificing transmission overhead is important.

In most practical applications of BE, a group of users may be quite huge
and BE schemes should basically provide scalability, i.e., suitability for a large
number of group users. But, unfortunately, most of transmission-efficient BE
schemes are not scalable since they requires large storage or computation at a
user device. Especially, these schemes are not suitable to wireless networks where
users are holding strictly resource-restricted mobile devices.

Our Contributions. In the paper we study a modular approach to transform
an arbitrary BE scheme to a scalable one efficiently while preserving the security
of the underlying scheme. We construct a compiler of which resulting scheme, for
a large number of group users, maintains transmission overhead of the original
scheme asymptotically but gains reduction in users storage and/or computation
overhead. Hence, by applying our compiler to a known transmission-efficient BE
scheme which is impractical due to large computation or user storage for keys,
we can inexpensively construct an efficient and scalable solution regardless of
the structure of the underlying BE scheme.

To illustrate our transformation, we concretely present two compiled in-
stances which provide a good performance in various aspects, in fact, outperform
the previously known schemes:

- Goodrich et al. [9] proposed the stratified subset difference (SSD) method,
which achievesO(r) transmission andO(n

1
d ) computation andO(log n) stor-

age overhead per user, where n is the number of users, r is the number of re-
voked users, and d is a predefined constant. This is the best scheme achieving
O(r) transmission and O(log n) storage overhead simultaneously. But under
O(log n) computation restriction, the scheme needs O( 1

log(log n) log2 n) stor-
age, which is closer to O(log2 n) storage overhead per user. This should
be undesirable in memory-constrained environments. Our first example is a
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BE scheme which achieves O( log n
log(log n)r) transmission, O(log n) computation

overhead, and O(log n) (precisely log n + 1) user storage, at the same time.
- Very recently, Jho et al. [14] proposed the “one-way chain based broadcast

encryption schemes” of which one is the best scheme achieving less than r
transmission messages with user computation overhead proportional to n at
the worst case. But their scheme is still considered non-scalable because of
excessive storage requirement, i.e., for a predetermined constant k,

(
n − 1

k

)
keys storage at a user device. The second example is a BE scheme in which
the number of transmission messages is less than r only except for a small
number of revoked users, i.e., 0.75 % of n, while user storage and computation
overhead are in a reasonable bound.

Related Work. Since the first formal work of BE by Fiat and Naor [8], many
researches [12] have been done to improve the efficiency in various aspects by
using various trade-off methods and design approaches, i.e., combinatorial de-
signs, logical key trees, algebraic approaches such as secret sharing, multi-linear
mapping, and cryptographic tools such one-way accumulator.

Some BE schemes based on combinatorial design are suggested to provide
information-theoretical security [10,11,17,18].

Based on a logical key tree structure, a number of broadcast encryption
schemes [20,19,1,2,16,13,9] have been suggested. Significant works among them
are the Subset Difference (SD) scheme [16] by Naor et al. and its improvement,
the layered SD scheme [13] by Halevi and Shamir. These schemes achieve O(r)
transmission complexity while maintaining O(log n) computation overhead and
O(log2 n) key storage per user. Recently Goodrich et al. [9] firstly proposed the
stratified subset difference (SSD) method which satisfies O(log n) keys storage
per user (this is called the log-key restriction) and O(r) transmission overhead
simultaneously but requires O(n

1
d ) computation overhead where d is a prede-

termined constant. Their security depends on the existence of pseudo-random
sequence number generator.

To achieve more efficient transmission overhead, some schemes have used al-
gebraic properties such as secret-sharing [15,3]. But these schemes have to broad-
cast at least r transmission messages in order to expose the shares of revoked
users. Recently, a notable work based on a one-way accumulator was suggested
by Attrapadung et al. to achieveO(1) transmission complexity [2]. Their method
uses a trade-off between security against collusion and non-secret storage size.
However, despite of constant transmission complexity, their scheme is considered
as impractical in the case of large number of users because of massive require-
ment in non-secret keys and computation cost at user side. Boneh and Silverberg
[6] proposed a zero-message BE scheme which requires only constant amount of
non-secret storage by using n-linear maps of which construction seems to be
very difficult for n > 2. Very recently, Boneh et. al. [5] proposed a (public-key)
BE scheme using bilinear maps where transmission length is O(

√
n), user key

storage is a constant size and computation overhead is O(
√

n). Security of their
scheme is based on the so-called Bilinear Diffie-Hellman Exponent assumption.
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Organization. The rest of this paper is organized as follows. We review and
define some notions of broadcast encryption in Section 2 and construct our com-
piler and analyze its efficiency in Section 3. We illustrate two compiled instances
of our compiler in Section 4. We compare the resulting schemes with the SD [16],
LSD [13], SSD [9], one-way chain based BE [14] schemes in Section 5. Finally,
we conclude with some remarks on other issues in Section 6.

2 Broadcast Encryption

In this section we briefly review and define the notion of broadcast encryption.
Generally BE schemes are classified into two types: symmetric key and public
key based BE schemes. In the symmetric key setting, the only trusted group
center GC can generate a broadcast message to users while, in the public key
setting, any users are allowed to broadcast a message. We denote by U the set of
users and by R ⊂ U the set of revoked users. The following is a formal definition
of a symmetric key based BE scheme.

Broadcast Encryption Scheme. A BE scheme B is a triple of polynomial-
time algorithms (SetUp, BEnc, Dec), i.e., setup, broadcast encryption, and de-
cryption:

– SetUp, the randomized algorithm takes as input a security parameter 1λ

and user set U . It generates private information SKEYu for user u ∈ U .
Private information of group center GC is defined as the set SKEYU of private
information of all users.

– BEnc, the randomized algorithm takes as input a security parameter 1λ,
private information SKEYU of GC, a set R of revoked users, and a mes-
sage M to be broadcast. It first generates a session key GSK and outputs
(HdrR,CGSK,M ) where a header Hdr is information for a privileged user to
compute GSK and CGSK,M is a ciphertext of M encrypted under the sym-
metric key GSK.

Broadcast message consists of [R, HdrR, CGSK,M ]. The pair (R,HdrR)
and CGSK,M are often called the full header and the body, respectively.

– Dec, the (deterministic) algorithm takes as input a user index indu, private
information SKEYu of u, the set of revoked users R, and a header HdrR. If
u ∈ U\R then it outputs the session key GSK.

In public key broadcast encryption, the setup algorithm additionally generates
the public keys PKU of users and PKU instead of the private information SKEYU
of GC is taken as input in the algorithms BEnc and Dec.

Input terms in the above description may be extended by allowing additional
input terms such as a revocation threshold value, i.e., the maximum number of
users that can be revoked.

In [16] Naor et. al. presented the so-called Subset-Cover framework. The
idea of this abstract method is to define a specific subset and associate each
subset with a (subset) key SK, which is made available only to the users of
the given subset. To cover the set U\R of privileged users, U\R are partitioned
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into collection of such pre-defined subsets and the (subset) keys SKi associated
to the subsets are used to encrypt a session key GSK. In this case the header
consists of ciphertexts of GSK, i.e., HdrR=[ESK1(GSK), ..., ESKt(GSK)] where E
is a symmetric encryption scheme.

Efficiency. Let n and r be the numbers of total users and revoked users for a
given BE scheme B, respectively. Efficiency of BE schemes is mainly measured
by three parameters: transmission overhead, user storage, and computational
overhead.

- TOB(r, n): Transmission overhead is defined as the total length (number
of bits) of a header in a broadcast message transmitted. We exclude the
information of indices of revoked users and the body from the transmission
overhead since the information are equivalently needed for all BE schemes.

- SOB(n): User storage overhead is defined as the maximum number of private
keys initially given to a user.

- COB(n): Computational overhead is defined as the maximum number of
basic computation done by a user device.

Security. Basically a BE scheme should provide resiliency to collusion of any
set of revoked users. According to the capabilities of an adversary and security
goal, we can formally define several types of the security notion of broadcast
encryption. Here we briefly present the so-called CCA1-security [4] (chosen ci-
phertext security in the pre-processing mode [7]) of broadcast encryption, which
is believed to be sufficient for most applications. Especially we note that the
Subset-Cover framework of [16] in which computationally independent keys are
used as a message encryption key, is suitable to this notion.

To measure the CCA1-security of a BE scheme B we consider the following
game between an adversary A and a challenger which models adaptive adver-
sarial actions, user corruption and chosen ciphertext attack, etc:

- Setup. The challenger runs SetUp(1λ, U) algorithm and generates private
information of users u ∈ U .

- Adversarial Action. A corrupts any user u′ to obtain private information
SKEYu′ and asks to any (non-corrupted) user to decrypt a ciphertext C
created by A. A also gets the encryption of a message M selected by itself
when it chooses a set R of revoked users.

- Challenge. As a challenge,A outputs a message CM and a setR′ of revoked
users including all ones corrupted by A. The challenger selects a random bit
b∈{0, 1}. If b=1 the challenger runs BEnc with R′ to obtain C=(HdrR′ ,
CGSK,CM ). Otherwise it computes C=(Hdr′R′ , CGSK′,RM ) where RM is a
random message whose length is similar to that of the message CM . Then
it gives C to A.

- Guess. A outputs its guess b′∈{0, 1}.

Let CGues denote the event that the adversary correctly guesses the bit b in
the above game. The advantage of an adversary A is defined as AdvA,B(λ)=|2 ·
Pr[CGues]− 1| where Pr[CGues] is the probability of CGues. We say that a BE
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scheme B is CCA1-secure if for any probabilistic polynomial time adversary A,
the advantage AdvA,B(λ) is negligible.

3 Generic Transformation for Scalable Broadcast
Encryption

In this section we present a compiler transforming a broadcast encryption scheme
impractical due to computation overhead or user storage for huge number of
users to a scalable one. We assume that the number of group users is denoted
by n=ws. The variables w and s are to be defined to reduce user storage or
computation overhead in advance.

We first provide an overview of our construction intuitively. The main idea
of our method is to apply a given broadcast encryption scheme B to a relatively
small subset in a hierarchical and independent manner. To implement such a
concept, we use a complete w-ary tree with height s, where each user is associated
with a leaf. In the tree the root is labeled with a special symbol b0=e. If a node
at depth less than s is labeled with β then its bi-th child is labeled with βbi

where bi ∈ {1, . . . , w}. That is, vb0b1···bk−1 is a node in level k where b0b1 · · · bk−1
is the concatenation of all indices on the path from the root to the node. Let
sibling set Sb0b1···bj be a set of nodes with a same parent vb0b1···bj in the tree.
The BE scheme B is applied to each sibling set Sb0b1···bj independently, as if
nodes in Sb0b1···bj are users for an independent BE scheme. To revoke a user, by
considering all nodes on the path from the revoked leaf (i.e., user) to the root
as revoked nodes, we independently apply the revocation method of B to each
sibling set including a node along in the path from the root to the revoked leaf.

3.1 Our Compiler

Given any BE scheme B = (SetUp, BEnc, Dec), our compiler constructs a BE
scheme B = (SetUp, BEnc, Dec) as follows:

- SetUp: For given security parameter 1λ and a set U of group users, the
algorithm performs the following:
• First SetUp makes a complete w-ary tree T|w| in which each leaf is associ-

ated to each user. Next, (if necessary) SetUp constructs a user structure
for each sibling set in T|w| according to B.

• Independently running SetUp of B on each sibling set Sb0b1···bj , (0≤j≤s-
1), SetUp assigns keys to each node (including an interior node). For
distinction we denote the BE scheme B and its SetUp applied to Sb0b1···bj

by Bb0b1···bj and B.SetUpb0b1···bj
, respectively. That is, each node (which

is not actually a user in the tree) in Sb0b1···bj is assigned user keys
by Bb0b1···bj . Let Kb0b1···bjbj+1 be the set of keys assigned to a node
vb0b1···bjbj+1 in Sb0b1···bj . SetUp then provides each leaf vb0b1···bs (i.e., user)
with a set

UKvb0b1···bs
=Kb0 ∪ Kb0b1 ∪ · · · ∪ Kb0b1···bs ,

where Kb0 is a singleton set of an initial session key.
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- BEnc: For given message M and a set R of r revoke users, it performs the
followings to generate a broadcast message: it first makes the Steiner Tree
ST induced by R, that is, the minimal subtree of T|w| which connects the
root of T|w| to all leaves in R. Starting from ST as an initial tree, it recur-
sively removes leaves from ST until ST becomes a single node.

1. Find a sibling set S consisting of leaves of ST .
2. If |S|=w, then it removes from ST all leaves in S and makes their parent

node a leaf.
3. Otherwise, it applies revocation method of BEnc to S and generates ci-

phertexts of a group session key. Then it removes all leaves in S from
ST and makes their parent node a leaf.

- Dec: For given legal user vb0b1···bs ∈ U\R, it first finds the user’s ances-
tor vb0b1···bt in the lowest level such that vb0b1···btct+1···cs is a revoked user.
To decrypt a group session key, it uses a key assinged to revoke a node
vb0b1···btct+1···cs from Sb0b1···bt .

As an example shown in Figure 1, we consider a complete 5-ary tree with
height 3 for a set of 125 users U={u1,· · · , u125}. A leaf ve235, which is associated
with user u40, receives a set of keys UKve235=Ke ∪ Ke2 ∪ Ke23 ∪ Ke235 where
Ke is a singleton set of an initial group session key, Ke2 is a set of keys assigned
to a node ve2 in sibling set Se2 by B.SetUpe2, Ke23 is a set of keys assigned to a
node vε23 in sibling set Se23 by B.SetUpe23 and Ke235 is a set of keys assigned
to a node ve235 in the sibling set Se235 by B.SetUpe235, as in Figure 1.

To revoke {ve125, ve434}, as in Figure 2, consider the minimal subtree ST
which connects the root to the leaves ve125 and ve434. Taking all nodes with a
same parent in ST revoked in their sibling set Sα, we apply revocation method
of Bα to the sibling set Sα. Revocation methods of Be12, Be43, Be1, Be4, Be are
sequentially applied to the sibling sets Se12, Se43, Se1, Se4, Se in a bottom-up
manner, respectively.

In the construction of our compiler, a single broadcast encryption scheme
are independently applied to each sibling set in T|w|. But the construction allows

Fig. 1. Key assignment in our compiler : a complete 5-ary tree
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Fig. 2. Revocation in our compiler

that different broadcast encryption schemes are applied to different sibling sets,
in order to provide flexibility depending on the resource restriction of client
devices. We observe that nodes in the higher level (i.e., closer to the root) become
useless more quickly as revoked users are uniformly distributed. Utilizing this
observation, we can use a BE scheme assigning less keys per node at a higher
level, which will increase the number of transmission messages slightly during
initial period. This must be a good trade-off because the initial transmission
overhead is relatively small.

Basically the security of our modular method is based on the security of a
given BE scheme and the independence usage of the scheme. By using a standard
hybrid argument, we can prove the following lemma. The proof will appear in
the full version of the paper.

Lemma 1. The compiled scheme preserves the security of the underlying broad-
cast encryption scheme.

3.2 Performance Analysis

We analyze efficiency of the presented compiler with respect to three efficiency
parameters: transmission overhead, user storage overhead, computational over-
head at a user device.

User Storage Overhead. In a compiled BE scheme, the number of keys
that a user should store is |UKvb0b1b2···bs

| = |Kb0 |+|Kb0b1 |+· · ·+|Kb0b1···bs |=
1+s·SOB(n1/s). BE schemes satisfying O(log n) storage restriction have been
considered important [9] since they are well suited to low-memory devices in
wireless mobile networks. We note that the compiled BE scheme B̄ preserves
O(log n) key restriction of the underlying BE scheme B. Concretely, SOB̄(n) is
O(log n) since 1 + s · SOB(n1/s) ≤ 1 + s·(c·logw n

1
s +1) = 1 + (c + 1)·logw n ≤

1 + (c + 1)·log2 n where c is a constant factor. If storage size in the underlying
scheme is less than logw n such as a constant then storage size in the compiled
scheme increases up to logw n which is still satisfyingO(log n) storage restriction.
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Computation Overhead. In a compiled BE scheme, the maximum number of
the basic operations which a user should perform is COB(n1/s)(=COB(n

1
logw n ))

since the size of each sibling set at each level is n1/s. If s= logw n
logw(logw n) then

n1/s=logw n. If t different BE schemes Bi (1 ≤ i ≤ t) are used for sibling sets in
the setup algorithm then COB(n)= Max {COBi

(n1/s)|1 ≤ i ≤ t}.

Transmission Overhead. Generally it is not easy to analyze the asymptotic
behavior of transmission overhead in compiled BE schemes since BE schemes
show various transmission overhead. However we assume that transmission over-
head in a given BE scheme is monotone increasing (possibly non-decreasing)
as the number of revoked users increases. In this case, transmission overhead
TOB(r, n) in a compiled BE scheme is upper-bounded by s·TOB(r, n1/s).

In particular, if a given BE scheme satisfies the Subset-Cover framework we
can concretely show that TOB(r, n) is recursively described as follows:

r(s− i− 1)TOB(1, ω)+(r mod ωi)TOB(1 + � r−ωi

ωi �, ω) if ωi ≤ r < ωiγ,
+ (ωi − (r mod ωi))TOB(� r−ωi

ωi �, ω)
r(s− i− 1)TOB(1, ω) + (ωi+1 − r) if ωiγ ≤ r < ωi+1.

where ω=n1/s and γ is a number such that the maximum number of transmis-
sion ciphertexts in B for γ revoked users is n−γ. The concrete analysis appears
in Appendix.

4 Compiled Instances

We apply our compiler to several transmission-efficient schemes, which have
inefficiency in computational overhead or user keys storage for huge number of
users, to gain scalable and efficient BE schemes. The transformation provides
reduction in user storage and/or computation overhead by slightly increasing
transmission overhead of a given BE scheme.

4.1 Broadcast Encryption Scheme for User Devices with
Low-Resource

In this section we present a BE scheme which achieves O(log n) user storage,
O(log n) computation overhead, and O( log n

log(log n)r) transmission overhead at the
same time. To achieve this goal, we first construct a BE scheme B1 which requires
2r transmission messages and only 1+log2 n key storage per user, but n opera-
tions per user. Next, by applying the compiler to B1, we gain the desired scheme.

Broadcast Encryption Scheme B1. As a structure of B1 scheme we consider
a segment of the number line L where numbers are linearly ordered by their
magnitude. For any points i and j (≥i), we denote the set {k|i ≤ k ≤ j}, called
as a closed interval, by S[i,j]. For example, S[2,6]={2,3,4,5,6}.
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We define two one-way chains, C+
[i,j] and C−[i,j] associated with S[i,j], and, for

a given function F : {0, 1}� → {0, 1}�, chain-values corresponding to them as
follows:

- C+
[i,j] is a one-way chain such that starts from i and positively goes through

i + 1,· · · , j − 1 and then ends at j. For a given sdi∈{0, 1}�, the chain-value
of C+

[i,j] is F |j−i|(sdi).
- C−[i,j] is a one-way chain such that starts from j and negatively goes through

j − 1,· · · , i + 1 and then ends at i. For a given sdj∈{0, 1}�, the chain-value
of C−[i,j] is F |j−i|(sdj).

F d(sd) is computed by repeatedly applying the function F to sd d times.

SetUp. For a given security parameter 1λ and a set U of users, the algorithm
SetUp performs the following: First it arranges all users in U on a segment of
the number line L linearly by the magnitude. A point i in L is associated with
a user ui. Next, to give a user a set of private keys, it executes the following key
assignment.

Starting from S[1,n] as an initial closed interval SetUp performs the following
recursively: For a given closed interval S[i,j] for 1 ≤ i < j ≤ n, SetUp selects
random and independent labels sdi and sdj , and assigns these to users ui and
uj . SetUp computes chain-values by consecutively applying F to labels sdi

and sdj , respectively. Then SetUp assigns F k−i(sdi) and F j−k(sdj) to a user
uk. Next SetUp divides the closed interval S[i,j] to get two sub-intervals S[i,m]

and S[m+1,j] where m= i+j−1
2 . While a sub-interval is not a singleton, SetUp

applies the above assignment method to the sub-intervals repeatedly. The
label sdi (sdj), which is assigned to the previous closed interval, is reused in
a sub-interval S[i,m] (S[m+1,j]) and label sdm (sdm+1) is newly selected and
assigned to a user um(um+1, respectively).

By using the above method, SetUp provides a user with 1+log2 n keys
since 1+log2 n closed intervals including the user are gained from the above
binary division and, for each interval, only one key value is newly assigned
to the user.

For an example, for U={u1,· · · , u32}, SetUp provides a user u6 with 6
(=1+log2 25) keys, i.e., chain-values F 5(sd1), F 26(sd32), F 10(sd16), F 2(sd8),
F (sd5), and sd6 associated to 4 closed intervals, S[1,32], S[1,16], S[1,8], S[5,8]
and S[5,6], as in Figure 3.

Broadcast Encryption. The revocation method of B1 is based on the following
singleton revocation: For a given closed interval S[i,j] of L, to revoke a user
ut, that is, a point t∈S[i,j], the remaining users are covered by two one-way
chains C+

[i,t−1] and C−[t+1,j], which proceed from each end point toward opposite
directions. The use of these two chains obviously excludes a point t in a subset
S[i,j]. The keys associated with C+

[i,t−1] and C−[t+1,j] are F t−i(sdi) and F j−t(sdj),
respectively.
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Fig. 3. Key assignment to u6 in B1

Fig. 4. Revocation in B1

For given r revoked users, BEnc applies the above single revocation method
to each disjoint sub-interval including one with one revoked user. In order to
apply the method systematically BEnc uses a binary division. That is, for a
given set of revoked points R={ui1 ,...,uir}, BEnc finds a division point di firstly
separating each pair of consecutive revoked nodes uij and uij+1 by performing a
binary search on L. BEnc then partitions L so that L = S[d0,d1]∪S[d1+1,d2]∪· · · ∪
S[dr−1+1,dr] where ij∈S[dj−1,dj], d0=1 and dr=n. Finally BEnc covers each subset
by using the above single revocation method.

For example, as shown in Figure 4, for U={u1, · · · , u32} and R={u5, u11},
the set U\R of remaining users is partitioned as follows:

L\{5, 11}=S[1,8]∪S[9,32]= (C+
[1,4]∪C

−
[6,8]) ∪(C+

[9,10]∪C
−
[12,32]).

Then four keys F 3(sd1), F 2(sd6), F 1(sd9), and F 20(sd32) are assigned to four
one-way chains, C+

[1,4], C
−
[6,8], C

+
[9,10], and C−[12,32], respectively.

After construction of cover sets, BEnc applies another one-way function F ′

to the chain-values and then uses the resulting values as keys to encrypt a group
session key.

Decryption. For given legal user uk ∈ U\R, the decryption algorithm Dec first
finds two consecutive revoked users uij and uij+1 such that k∈S[ij ,ij+1]. Next,
by using a binary search, Dec finds the division point d which firstly separates
two points ij and ij+1. If d ≥ k then it computes F k−ij (F d−k(sdd))=F d−ij (sdd).
Otherwise, it computes F ij+1−k(F k−d−1(sdd+1)) =F ij+1−d−1(sdd+1).

Security. We can easily show the correctness of B1 that every privileged user
can decrypt an encrypted group session key. Revoked users are excluded by one-
wayness of one-way chain and so cannot obtain useful information to decrypt
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an encrypted group session key. Formally, we show that B1 scheme is resilient
to collusion of any set of revoked users by using the following lemma and the
similar idea in [16]. In the lemma we assume that F and F ′ are pseudo random
permutations in the sense that no probabilistic polynomial-time adversary can
distinguish the output of F (and F ′) on a randomly selected input from a truly
random string of similar length with non-negligible probability.

Lemma 2. The above key assignment satisfies the key-indistinguishability con-
dition [16] under the pseudo-randomness of given functions F and F ′.

We can prove the lemma by using a hybrid argument on the length of one-
way chains, i.e., showing that the gap between true randomness and pseudo-
randomness is negligible.

Efficiency. In the presented scheme, at most two ciphertexts of a group ses-
sion key per revoked user are generated. Hence the number of total ciphertexts
consisting of a header Hdr is at most 2·r for r revoked users. But computation
overhead is proportional to n.

When we apply the compiler to B1 scheme, in the resulting scheme B1, the
compiled BE scheme B1 satisfies O(log n) key restriction since user keys storage
in the original BE scheme B1 is 1 + log2 n. However, we can show that user
storage overhead does not change, i.e., 1 + log2 n since one private node key
assigned to the parent node of a given node can be deleted and so 1 − s +
s·(log2 n

1
s +1) = 1 + log2 n.

Computation overhead is reduced to O(n
1
s ) for s=logw n. If we choose the

variables w=n
log2(log2 n)

log2 n and s= log2 n
log2(log2 n) then we also reduce O(n

1
s ) computa-

tion overhead to O(log n). However transmission overhead slightly increases by
at most a factor of s from 2r. More precisely, transmission overhead is described
by the recursive formula in Session 3.2 since B1 satisfies the Subset-Cover frame-
work.

Remark. Based on a similar approach using one-way chains, Goodrich et al.
[9] presented the SSD (stratified subset difference) scheme for low-memory de-
vices. But, unlike the work in [9], our method does not use a tree structure.
This eliminates the cost for traversing internal nodes in the tree, which causes
increase in computation overhead. In addition, with respect to efficiency, the
SSD scheme achieves O(log n), more precisely 2d log2 n, user storage overhead
and O(r) transmission overhead, but O(n

1
d ) computation overhead where d is

a predetermined constant. When O(log n) computation restriction is strictly re-
quired, the constant d should be as large as log2 n

log2(log2 n) and user storage overhead
also becomes, rather than O(log n), closer to O(log2 n), which is relatively heavy
and so undesirable in memory-constrained environments.

4.2 Transmission-Efficient Broadcast Encryption Schemes

In this section, to construct a scalable transmission-efficient BE schemes, we fur-
ther apply our compiler to a previously known transmission-efficient BE scheme,
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but inefficient in computation cost and user storage size for a huge number of
users.

Recently, Jho et al. [14] have presented BE schemes where the number of
transmission messages is less than the number of revoked users r, i.e., 1

k · r for a
predetermined constant k. To bring the number of transmission messages down,
they used a fine strategy to cover several subsets of privileged users by using only
one key. Their basic scheme requires O(nk) user storage overhead and O(n)
computation overhead. To reduce storage and computation overhead further,
they presented interval or partition-based construction to deal with relatively
small number of users. Unfortunately, in their methods, user storage overhead
is still heavy or initial transmission length is relatively large.

By applying our compiler to their schemes, we construct a scalable BE scheme
B2, which has 1

2 · r transmission messages (except only for a small number of
revoked users) with a reasonable user storage and computation overhead. As
the underlying schemes for our compiler, we apply two different BE schemes
in [14] at different depth of a w-ary tree. One is the BE scheme using simple
one-way ring where the number of transmission messages is r. This scheme is
applied to every sibling set not in the bottom level. The other is the BE scheme
based on a so-called HOC(2,[m,2]), which is a combination of HOC(2:m) with
simple hierarchical ring with depth 2 and OFBE(m:2) using 1-jump one-way
chain. HOC(2,[m,2]) has � 1

2r�+1 transmission ciphertexts and relatively low user
storage compared to that of the one-way chain-based scheme. This scheme is
applied to every sibling set in the bottom level, i.e., sibling set consisting of
leaves in the tree. The efficiency for B2 is as shown in Table 1.

Table 1. Efficiency of B2

T OB2(r, n) SOB2(n) COB2(n)

B2 ≤ 1
2 r+n

s−1
s (s − 1)n1/s+ (n1/s)2−2n1/s+24

8 −s O(n
1
s )

We note that, for w(=n1/s)=100, n(s−1)/s is less than 1% of n. The com-
piled scheme B2 provides similar (or less) transmission overhead, compared to
the schemes in [14] while gains reasonably low user storage and computation
overhead. For comparison between the schemes, refer to Session 5.

Similarly applying our compiler to other BE schemes such as BE schemes
based on a secret sharing [3,15], one-way accmulators [2], or complicated oper-
ations etc., gives scalable transformations of these BE schemes under different
security assumptions in information theoretical or computational aspects.

5 Efficiency Comparison Between Proposed Schemes

In this section we compare the efficiency between our compiled BE schemes with
SD [16], LSD [13], SSD [9], (1,100)-π1 [14] schemes. In the following we assume
that the size of a key is 128 bits, which is considered reasonably secure currently.
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Table 2. Comparison between B1, B2, SD[16], LSD[13], and SSD[9] for n=108

Scheme Transmission Overhead User Storage Overhead Computation Overhead

SD [16] ≤ 2r − 1 368 (5.74Kbyte) 27

LSD [13] ≤ 4r 143 (2.24Kbyte) 27

SSD [9] ≤ 2sr(s = 4) 213 (3.33Kbyte) 100

(1,100)-π1[14] ≤ 2r+0.01n 5274 (82.4Kbyte) 100

B1 ≤ 2r+0.01n 27 (0.422Kbyte) 100

B2 ≤ 0.5r+0.01n 1528 (23.875Kbyte) 100

Fig. 5. Transmission and storage overhead for n=108 for the worst case

The number of computations means the number of basic operations needed to
compute a key encrypting a group session key.

For a specific example, we consider the case of n=108 users and w=100. As
we show in Figure 5, the number of transmission ciphertexts of B2 is similar to
that of the SD scheme at initial interval where the number r of revoked users is
smaller than 0.75 % of the total users. But, except this interval, the number of
transmission messages of B2 becomes, at worst case, about 1

4 of the number of
transmission messages of the SD scheme. The number of keys stored by a user
in B2 is about 4 times as many as that of the SD scheme. But this difference is
acceptable in many applications.

In particular, B1 satisfies log-key restriction strictly, and suitable to low-
memory applications where the memory is less 1 Kbyte such as a smart card.
This allows a message sender to revoke any r users with transmission overhead
being similar to that of the SD scheme [16].

In Table 2. ”≤” in the first column means upper-bound of the number of
transmission ciphertexts of a group session key. Since the original BE schemes
B1 and B2 are defined in Subset-Cover framework transmission overheads in the
compiled schemes B1 and B2 are described by the recursive formula in Section
3.2. More concretely, if 10−4n ≤ r ≤ 10−2n then TOB1(r, n) ≤ 4r+10−4n and
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TOB2(r, n) ≤ r+10−4n. Else 10−6n ≤ r ≤ 10−4n then TOB1(r, n) ≤ 6r+10−4n
and TOB2(r, n) ≤ 1.5r+10−4n.

6 Conclusion

We have presented a modular method transforming broadcast encryption
schemes, which are impractical due to computation complexity or user keys stor-
age for huge number of users, to scalable ones. As concrete examples, we have
presented some compiled instances: The first is a BE scheme achieving O(log n)
user storage, O(log n) computation overhead, and O( log n

log log n · r) transmission
overhead at the same time. The second is a transmission-efficient BE scheme
with a reasonably low user storage and computation overhead.

For all schemes based on the Subset-Cover framework, our compiler provides
a traitor tracing method by using a similar method in [16]. Further study would
be a method to apply our modular approach to other traitor tracing methods.
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A Analysis of Transmission Efficiency of Our Compiler

Let ω=n1/s and γ be a number satisfying TOB(γ, ω)=ω−γ. To analyze trans-
mission efficiency, we use the following observations: The worst case occurs when
revoked users have the least number of common ancestors. If there is no revoked
user, then GC uses an initial group session key to cover all users and hence there
is no transmission messages (ciphertext of the group session key). If r = 1, we
obtain the formula (1) since there is one revoked node in each level and so total s
sibling sets to be covered, and TOB(1, ω) transmission messages for each sibling
set are required. If 2 ≤ r < ω, then there is r revoked nodes in each level and
total r(s − 1) sibling sets should be covered. In this case, if γ < r, then ω − r
transmission messages are transmitted for the first level. Therefore, we obtain
the formula (2) and (3) for 2 ≤ r < ω. If ω ≤ r < ωγ, then we do not need to
consider nodes in the first level since all nodes in the first level are revoked. In
level 2, (r mod ω) sibling sets have 1+� r−ω

ω � revoked nodes and ω−(r mod ω)
sibling sets have � r−ω

ω � revoked node. In level j (3 ≤ j ≤ s), r(s − 2) messages
should be transmitted to cover r(s−2) sibling sets since one revoked node exists
in r sibling sets in level j (1 ≤ j ≤ s− 2). Hence we obtain the formula (4).

Now we can easily generalize the formula (3) and (4) to the formula (5) and
(6), and again the formula (5) and (6) to get the formula (7), (8), (9) inductively.
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r = 1, sTOB(1, ω) (1)
2 ≤ r < γ, r(s− 1)TOB(1, ω) + TOB(r, ω) (2)
γ ≤ r < ω, r(s− 1)TOB(1, ω) + (ω − r) (3)

ω ≤ r < ωγ, r(s− 2)TOB(1, ω) + (r mod ω)TOB(1 + � r−ω
ω �, ω)

+ (ω − (r mod ω))TOB(� r−ω
ω �, ω) (4)

...
...

ωi−1γ ≤ r < ωi, r(s− i)TOB(1, ω) + (ωi − r) (5)
ωi ≤ r < ωiγ, r(s− i− 1)TOB(1, ω)

+ (r mod ωi)TOB(1 + � r−ωi

ωi �, ω)
+ (ωi−(r mod ωi))TOB(� r−ωi

ωi �, ω) (6)
...

...
ωs−2γ ≤ r < ωs−1, rTOB(1, ω) + (ωs−1 − r) (7)
ωs−1 ≤ r < ωs−1γ, (r mod ωs−1)TOB(1 + � r−ωs−1

ωs−1 �, ω)
+ (ωs−1−(r mod ωs−1))TOB(� r−ωs−1

ωs−1 �, ω) (8)
ωs−1γ ≤ r < n, n− r (9)
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Abstract. Forgery and counterfeiting are emerging as serious security
risks in low-cost pervasive computing devices. These devices lack the
computational, storage, power, and communication resources necessary
for most cryptographic authentication schemes. Surprisingly, low-cost
pervasive devices like Radio Frequency Identification (RFID) tags share
similar capabilities with another weak computing device: people.

These similarities motivate the adoption of techniques from human-
computer security to the pervasive computing setting. This paper ana-
lyzes a particular human-to-computer authentication protocol designed
by Hopper and Blum (HB), and shows it to be practical for low-cost
pervasive devices. We offer an improved, concrete proof of security for
the HB protocol against passive adversaries.

This paper also offers a new, augmented version of the HB protocol,
named HB+, that is secure against active adversaries. The HB+ proto-
col is a novel, symmetric authentication protocol with a simple, low-cost
implementation. We prove the security of the HB+ protocol against ac-
tive adversaries based on the hardness of the Learning Parity with Noise
(LPN) problem.

Keywords: Authentication, HumanAut, Learning Parity with Noise
(LPN), pervasive computing, RFID.

1 Introduction

As low-cost computing devices become more pervasive, counterfeiting may be-
come a more serious security threat. For example, the security of access control or
payment systems will rely on the authenticity of low-cost devices. Yet in many
settings, low-cost pervasive devices lack the resources to implement standard
cryptographic authentication protocols. Low-cost Radio Frequency Identifica-
tion (RFID) tags exemplify such resource-constrained devices. Viewing them as
possible beneficiaries of our work, we use RFID tags as a basis for our discussions
of the issues surrounding low-cost authentication.

Low-cost RFID tags in the form of Electronic Product Codes (EPC) are
poised to become the most pervasive device in history [10]. Already, there are
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billions of RFID tags on the market, used for applications like supply-chain man-
agement, inventory monitoring, access control, and payment systems. Proposed
as a replacement for the Universal Product Code (UPC) (the barcode found on
most consumer items), EPC tags are likely one day to be affixed to everyday
consumer products.

Today’s generation of basic EPC tags lack the computational resources for
strong cryptographic authentication. These tags may only devote hundreds of
gates to security operations. Typically, EPC tags will passively harvest power
from radio signals emitted by tag readers. This means they have no internal
clock, nor can perform any operations independent of a reader.

In principle, standard cryptographic algorithms – asymmetric or symmet-
ric – can support authentication protocols. But implementing an asymmetric
cryptosystem like RSA in EPC tags is entirely infeasible. RSA implementations
require tens of thousands of gate equivalents. Even the storage for RSA keys
would dwarf the memory available on most EPC tags.

Standard symmetric encryption algorithms, like DES or AES, are also too
costly for EPC tags. While current EPC tags may have at most 2,000 gate
equivalents available for security (and generally much less), common DES im-
plementations require tens of thousands of gates. Although recent light-weight
AES implementations require approximately 5,000 gates [11], this is still too
expensive for today’s EPC tags.

It is easy to brush aside consideration of these resource constraints. One
might assume that Moore’s Law will eventually enable RFID tags and similar
devices to implement standard cryptographic primitives like AES. But there is
a countervailing force: Many in the RFID industry believe that pricing pressure
and the spread of RFID tags into ever more cost-competitive domains will mean
little effective change in tag resources for some time to come, and thus a pressing
need for new lightweight primitives.

Contribution. This paper’s contribution is a novel, lightweight, symmetric-key
authentication protocol that we call HB+. HB+ may be appropriate for use in
today’s generation of EPC tags or other low-cost pervasive devices. We prove
the security of this protocol against both passive eavesdroppers and adversaries
able to adaptively query legitimate tags. We also offer an improved, concrete
security reduction of a prior authentication protocol HB that is based on the
same underlying hardness problem.

Organization. In Section 2, we describe the basic “human authentication” or
“HumanAut” protocol, due to Hopper and Blum (HB), from which we build an
authentication protocol appropriate for RFID tags that is secure against passive
eavesdroppers. We discuss the underlying hardness assumption, the “Learning
Parity with Noise” (LPN) problem, in Section 3. Section 4 offers our new, en-
hanced variant of the HB protocol, HB+, that is secure against adversaries able
to query legitimate tags actively. Section 5 presents an improved, concrete reduc-
tion of the LPN problem to the security of the HB protocol, and shows a concrete
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reduction of security from the HB protocol to the HB+ protocol. Finally, Section
6 states several open problems related to this work.

Many details – and our proofs in particular – are omitted from this version of
the paper due to lack of space. A more complete version of the paper is available
at www.ari-juels.com or crypto.csail.mit.edu/∼sweis.

1.1 The Problem of Authentication

It seems inevitable that many applications will come to rely on basic RFID tags
or other low-cost devices as authenticators. For example, the United States Food
and Drug Administration (FDA) proposed attaching RFID tags to prescription
drug containers in an attempt to combat counterfeiting and theft [13].

Other RFID early-adopters include public transit systems and casinos. Sev-
eral cities around the world use RFID bus and subway fare cards, and casinos are
beginning to deploy RFID-tagged gambling chips and integrated gaming tables.
Some people have even had basic RFID tags with static identifiers implanted in
their bodies as payment devices or medical-record locators [37].

Most RFID devices today promiscuously broadcast a static identifier with
no explicit authentication procedure. This allows an attacker to surreptitiously
scan identifying data in what is called a skimming attack. Besides the implicit
threat to privacy, skimmed data may be used to produce cloned tags, exposing
several lines of attack.

For example, in a swapping attack, a thief skims valid RFID tags attached to
products inside a sealed container. The thief then manufactures cloned tags, seals
them inside a decoy container (containing, e.g., fraudulent pharmaceuticals), and
swaps the decoy container with the original. Thanks to the ability to clone a tag
and prepare the decoy in advance, the thief can execute the physical swap very
quickly. In the past, corrupt officials have sought to rig elections by conducting
this type of attack against sealed ballot boxes [34].

Clones also create denial-of-service issues. If multiple, valid-looking clones
appear in a system like a casino, must they be honored as legitimate? Or must
they all be rejected as frauds? Cloned tags could be intentionally designed to cor-
rupt supply-chain databases or to interfere with retail shopping systems. Denial
of service is especially critical in RFID-based military logistics systems.

Researchers have recently remonstrated practical cloning attacks against real-
world RFID devices. Mandel, Roach, and Winstein demonstrated how to read
access control proximity card data from a range of several feet and produce
low-cost clones [24] (despite the fact that these particular proximity cards only
had a legitimate read range of several inches). A team of researchers from Johns
Hopkins University and RSA Laboratories recently elaborated attacks against
a cryptographically-enabled RFID transponder that is present in millions of
payment and automobile immobilization systems [6]. Their attacks involved ex-
traction of secret keys and simulation of target transponders; they demonstrated
an existing risk of automobile theft or payment fraud from compromise of RFID
systems.
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Example EPC Specifications

Storage: 128-512 bits of read-only storage.
Memory: 32-128 bits of volatile read-write memory.

Gate Count: 1000-10000 gates.
Security Gate Count Budget: 200-2000 gates.

Operating Frequency: 868-956 MHz (UHF).
Scanning Range: 3 meters.

Performance: 100 read operations per second.
Clock Cycles per Read: 10,000 clock cycles.

Tag Power Source: Passively powered by Reader via RF signal.
Power Consumption: 10 microwatts.

Features: Anti-Collision Protocol Support
Random Number Generator

Fig. 1. Example specification for a 5-10 low-cost RFID tag

1.2 Previous Work on RFID Security

As explained above, securing RFID tags is challenging because of their limited
resources and small physical form. Figure 1 offers specifications that might be
realistic for a current EPC tag. Such limited power, storage, and circuitry, make
it difficult to implement traditional authentication protocols. This problem has
been the topic of a growing body of literature.

A number of proposals for authentication protocols in RFID tags rely on the
use of symmetric-key primitives. The authors often resort to a hope for enhanced
RFID tag functionality in the future, and do not propose use of any particular
primitive. We do not survey this literature in any detail here, but refer the reader
to, e.g., [15, 29, 32, 33, 36, 39].

Other authors have sought to enforce privacy or authentication in RFID sys-
tems while avoiding the need for implementing standard cryptographic primitives
on tags, e.g., [12, 18, 19, 21, 20, 29].

Feldhofer, Dominikus, and Wolkerstorfer [11] propose a low-cost AES imple-
mentation, potentially useful for higher-cost RFID tags, but still out of reach for
basic tags in the foreseeable future.

1.3 Humans vs. RFID Tags

Low-cost RFID tags and other pervasive devices share many limitations with
another weak computing device: human beings. The target cost for a EPC-
type RFID tag is in the US 0.05-0.10 (5-10 ) range. The limitations imposed at
these costs are approximated in Figure 1. We will see that in many ways, the
computational capacities of people are similar.

Like people, tags can neither remember long passwords nor keep long calcu-
lations in their working memory. Tags may only be able to store a short secret
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of perhaps 32-128 bits, and be able to persistently store 128-512 bits overall. A
working capacity of 32-128 bits of volatile memory is plausible in a low-cost tag,
similar to how most human beings can maintain about seven decimal digits in
their immediate memory [28].

Neither tags nor humans can efficiently perform lengthy computations. A
basic RFID tag may have a total of anywhere from 1000-10000 gates, with only
200-2000 budgeted specifically for security. (Low-cost tags achieve only the lower
range of these figures.) As explained above, performing modular arithmetic over
large fields or evaluating standardized cryptographic functions like AES is cur-
rently not feasible in a low-cost device or for many human beings.

Tags and people each have comparative advantages and disadvantages. Tags
are better at performing logical operations like ANDs, ORs and XORs. Tags are
also better at picking random values than people – a key property we rely on for
the protocols presented here. However, tag secrets can be completely revealed
through physical attacks, such as electron microscope probing [1]. In contrast,
physically attacking people tends to yield unreliable results.

Because of their similar sets of capabilities, this paper considers adopting
human authentication protocols in low-cost pervasive computing devices. The
motivating human-computer authentication protocols we consider were designed
to allow a person to log onto an untrusted terminal while someone spies over
his/her shoulder, without the use of any scratch paper or computational devices.
Clearly, a simple password would be immediately revealed to an eavesdropper.

Such protocols are the subject of Carnegie Mellon University’s HumanAut
project. Earlier work by Matsumoto and Imai [26] and Matsumoto [25] propose
human authentication protocols that are good for a small number of authenti-
cations [38]. Naor and Pinkas describe a human authentication scheme based on
“visual cryptography” [30]. However, this paper will focus primarily on the the
human authentication protocols of Hopper and Blum [16, 17].

2 The HB Protocol

We begin by reviewing Hopper and Blum’s secure human authentication protocol
[16, 17], which we will refer to as the HB protocol. We then place it in the RFID
setting. The HB protocol is only secure against passive eavesdroppers – not active
attackers. In Section 4, we augment the HB protocol against active adversaries
that may initiate their own tag queries.

Suppose Alice and a computing device C share an k-bit secret x, and Alice
would like to authenticate herself to C. C selects a random challenge a ∈ {0, 1}k

and sends it to Alice. Alice computes the binary inner-product a · x, then sends
the result back to C. C computes a · x, and accepts if Alice’s parity bit is correct.

In a single round, someone imitating Alice who does not know the secret
x will guess the correct value a · x half the time. By repeating for r rounds,
Alice can lower the probability of näıvely guessing the correct parity bits for all
r rounds to 2−r.
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HB Protocol Round

Reader(x) Tag(x, η)

a ∈R {0, 1}k ν ∈ {0, 1|Prob[ν = 1] = η}

a

Challenge
�

z = (a · x) ⊕ ν

� z

Response

Accept if a · x = z

Fig. 2. A single round of the HB authentication protocol

Of course, an eavesdropper capturing O(k) valid challenge-response pairs
between Alice and C can quickly calculate the value of x through Gaussian
elimination. To prevent revealing x to passive eavesdroppers, Alice can inject
noise into her response. Alice intentionally sends the wrong response with con-
stant probability η ∈ (0, 1

2 ). C then authenticates Alice’s identity if fewer than
ηr of her responses are incorrect.

Figure 2 illustrates a round of the HB protocol in the RFID setting. Here,
the tag plays the role of the prover (Alice) and the reader of the authenticat-
ing device C. Each authentication consists of r rounds, where r is a security
parameter.

The HB protocol is very simple to implement in hardware. Computing the
binary inner product a · x only requires bitwise AND and XOR operations that
can be computed on the fly as each bit of a is received. There is no need to
buffer the entire value a. The noise bit ν can be cheaply generated from physical
properties like thermal noise, shot noise, diode breakdown noise, metastability,
oscillation jitter, or any of a slew of other methods. Only a single random bit
value is needed in each round. This can help avoid localized correlation in the
random bit stream, as occurs in chaos-based or diode breakdown random number
generators.

Remark: The HB protocol can be also deployed as a privacy-preserving identi-
fication scheme. A reader may initiate queries to a tag without actually knowing
whom that tag belongs to. Based on the responses, a reader can check its data-
base of known tag values and see if there are any likely matches. This preserves
the privacy of a tag’s identity, since an eavesdropper only captures an instance
of the LPN problem, which is discussed in the Section 3.
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3 Learning Parity in the Presence of Noise

Suppose that an eavesdropper, i.e., a passive adversary, captures q rounds of
the HB protocol over several authentications and wishes to impersonate Alice.
Consider each challenge a as a row in a matrix A; similarly, let us view Alice’s
set of responses as a vector z. Given the challenge set A sent to Alice, a natural
attack for the adversary is to try to find a vector x′ that is functionally close to
Alice’s secret x. In other words, the adversary might try to compute a x′ which,
given challenge set A in the HB protocol, yields a set of responses that is close
to z. (Ideally, the adversary would like to figure out x itself.)

The goal of the adversary in this case is akin to the core problem on which
we base our investigations in this paper. This problem is known as the Learning
Parity in the Presence of Noise, or LPN problem. The LPN problem involves
finding a vector x′ such that |(A · x′)⊕ z| ≤ ηq, where |v| represents the Ham-
ming weight of vector v. Formally, it is as follows:

Definition 1 (LPN Problem). Let A be a random q× k binary matrix, let x
be a random k-bit vector, let η ∈ (0, 1

2 ) be a constant noise parameter, and let ν
be a random q-bit vector such that |ν| ≤ ηq. Given A, η, and z = (A · x) ⊕ ν,
find a k-bit vector x′ such that |(A · x′)⊕ z| ≤ ηq.

The LPN problem may also be formulated and referred to as as the Min-
imum Disagreement Problem [9], or the problem of finding the closest vector
to a random linear error-correcting code; also known as the syndrome decod-
ing problem [2, 23]. Syndrome decoding is the basis of the McEliece public-key
cryptosystem [27] and other cryptosystems, e.g., [8, 31]. Algebraic coding theory
is also central to Stern’s public-key identification scheme [35]. Chabaud offers
attacks that, although infeasible, help to establish practical security parameters
for error-correcting-code based cryptosystems [7].

The LPN problem is known to be NP-Hard [2], and is hard even within an
approximation ratio of two [14]. A longstanding open question is whether this
problem is difficult for random instances. A result by Kearns proves that the
LPN is not efficiently solvable in the statistical query model [22]. An earlier
result by Blum, Furst, Kearns, and Lipton [3] shows that given a random k-bit
vector a, an adversary who could weakly predict the value a · x with advantage
1
kc could solve the LPN problem. Hopper and Blum [16, 17] show that the LPN
problem is both pseudo-randomizable and log-uniform.

The best known algorithm to solve random LPN instances is due to Blum,
Kalai, and Wasserman, and has a subexponential runtime of 2O( k

log k ) [4]. Based
on a concrete analysis of this algorithm, we discuss estimates for lower-bounds
on key sizes for the HB and HB+ protocols in the full version of the paper.

As mentioned above, the basic HB protocol is only secure against passive
eavesdroppers. It is not secure against an active adversary with the ability to
query tags. If the same challenge a is repeated Ω((1 − 2η)−2) times, an adver-
sary can learn the error-free value of a · x with very high probability. Given
Ω(k) error-free values, an adversary can quickly compute x through Gaussian
elimination.
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HB+ Protocol Round

Reader(x, y) Tag(x, y, η)

a ∈R {0, 1}k b ∈R {0, 1}k

ν ∈ {0, 1|Prob[ν = 1] = η}

� b

Blinding Factor

a

Challenge
�

z = (a · x) ⊕ (b · y) ⊕ ν

� z

Response

Accept if (a · x) ⊕ (b · y) = z

Fig. 3. A single round of the HB+ protocol

4 Authentication Against Active Adversaries

In this section, we show how to strengthen the HB protocol against active adver-
saries. We refer to the improved protocol as HB+. HB+ prevents corrupt readers
from extracting tag secrets through adaptive (non-random) challenges, and thus
prevents counterfeit tags from successfully authenticating themselves. Happily,
HB+ requires marginally more resources than the “passive” HB protocol in the
previous section.

4.1 Defending Against Active Attacks: The HB+ Protocol

The HB+ protocol is quite simple, and shares a familiar “commit, challenge,
respond” format with classic protocols like Fiat-Shamir identification. Rather
than sharing a single k-bit random secret x, the tag and reader now share an
additional k-bit random secret y.

Unlike the case in the HB protocol, the tag in the HB+ protocol first generates
random k-bit “blinding” vector b and sends it to the reader. As before, the reader
challenges the tag with an k-bit random vector a.

The tag then computes z = (a · x) ⊕ (b · y) ⊕ ν, and sends the response z
to the reader. The reader accepts the round if z = (a · x) ⊕ (b · y). As before,
the reader authenticates a tag after r rounds if the tag’s response is incorrect in
less than ηr rounds. This protocol is illustrated in Figure 3.
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One reason that Hopper and Blum may not have originally proposed this
protocol improvement is that it is inappropriate for use by humans. It requires
the tag (playing the role of the human), to generate a random k-bit string b
on each query. If the tag (or human) does not generate uniformly distributed b
values, it may be possible to extract information on x or y.

To convert HB+ into a two-round protocol, an intuitive idea would be to have
the tag transmit its b vector along with its response bit z. Being able to choose
b after receiving a, however, may give too much power to an adversarial tag. In
particular, our security reduction in Section 5.4 relies on the tag transmitting
its b value first. It’s an open question whether there exists a secure two-round
version of HB+. Another open question is whether security is preserved if a and
b are transmitted simultaneously on a duplex channel.

Beyond the requirements for the HB protocol, HB+ only requires the gen-
eration of k random bits for b and additional storage for an k-bit secret y. As
before, computations can be performed bitwise; there is no need for the tag to
store the entire vectors a or b. Overall, this protocol is still quite efficient to im-
plement in hardware, software, or perhaps even by a human being with a decent
randomness source.

4.2 Security Intuition

As explained above, an active adversary can defeat the basic HB protocol and
extract x by making adaptive, non-random a challenges to the tag. In our aug-
mented protocol HB+, an adversary can still, of course, select a challenges to
mount an active attack.

By selecting its own random blinding factor b, however, the tag effectively
prevents an adversary from actively extracting x or y with non-random a chal-
lenges. Since the secret y is independent of x, we may think of the tag as initi-
ating an independent, interleaved HB protocol with the roles of the participants
reversed. In other words, an adversary observing b and (b · y)⊕ ν should not be
able to extract significant information on y.

Recall that the value (b · y)⊕ν is XORed with the the output of the original,
reader-initiated HB protocol, a · x. This prevents an adversary from extracting
information through non-random a challenges. Thus, the value (b · y)⊕ ν effec-
tively “blinds” the value a · x from both passive and active adversaries.

This observation underlies our proof strategy for the security of HB+. We
argue that an adversary able to efficiently learn y can efficiently solve the LPN
problem. In particular, an adversary that does not know y cannot guess b · y,
and therefore cannot learn information about x from a tag response z.

The blinding therefore protects against leaking the secret x in the face of
active attacks. Without knowledge of x or y, an adversary cannot create a fake
tag that will respond correctly to a challenge a. In other words, cloning will
be infeasible. In Section 5, we will present a concrete reduction from the LPN
problem to the security of the HB+ protocol. In other words, an adversary with
some significant advantage of impersonating a tag in the HB+ protocol can be
used to solve the LPN problem with some significant advantage.
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5 Security Proofs

We will first present concrete security notation in Section 5.1. Section 5.2 reviews
key aspects of the Blum et al. proof strategy that reduces the LPN problem to the
security of the HB protocol [3]. We offer a more thorough and concrete version
of the Blum et al. reduction in Section 5.3. In Section 5.4, we present a concrete
reduction from the HB protocol to the HB+ protocol. Finally, in Section 5.5, we
combine these results to offer a concrete reduction of the LPN problem to the
security of the HB+ protocol.

5.1 Notation and Definitions

We define a tag-authentication system in terms of a pair of probabilistic functions
(R, T ), namely a reader function R and a tag function T .

The tag function T is defined in terms of a noise parameter η, a k-bit secret
x, and a set of q random k-bit vectors {a(i)}q

i=1 that we view for convenience as
a matrix A. Additionally, T includes a k-bit secret y for protocol HB+. We let
q be the maximum number of protocol invocations on T in our experiments.

For protocol HB, we denote the fully parameterized tag function by Tx,A,η.
On the ith invocation of this protocol, T is presumed to output (a(i), (a(i) · x)⊕
ν). Here ν is a bit of noise parameterized by η. This models a passive eavesdrop-
per observing a round of the HB protocol. Note that the oracle Tx,A,η takes no
input and essentially acts as an interface to a flat transcript. For this protocol,
the reader Rx takes as input a pair (a, z). It outputs either “accept” or “reject”.

For protocol HB+, we denote a fully parameterized tag function as Tx,y,η.
This oracle internally generates random blinding vectors b. On the ith invocation
of T for this protocol, the tag outputs some random b(i), takes a challenge vector
a(i) (that could depend on b(i)) as input, and outputs z = (a(i) · x)⊕(b(i) · y)⊕
ν. This models an active adversary querying a tag in a round of the HB+ protocol.
For this protocol, the reader Rx,y takes as input a triple (a, b, z) and outputs
either “accept” or “reject”.

For both protocols HB and HB+, we consider a two-phase attack model
involving an adversary comprising a pair of functions A = (Aquery ,Aclone), a
reader R, and a tag T . In the first, “query” phase, the adversarial function
Aquery has oracle access to T and outputs some state σ.

The second, “cloning” phase involves the adversarial function Aclone. The
function Aclone takes as input a state value σ. In HB+, it outputs a blinding
factor b′ (when given the input command “initiate”). In both HB and HB+,
when given the input command “guess”, Aclone takes the full experimental state
as input, and outputs a response bit z′.

We presume that a protocol invocation takes some fixed amount of time (as
would be the case, for example, in an RFID system). We characterize the total
protocol time by three parameters: the number of queries to a T oracle, q; the
computational runtime t1 of Aquery ; and the computational runtime t2 of Aclone.

Let D be some distribution of q× k matrices. We let R← denote uniform random
assignment. Other notation should be clear from context.
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Experiment ExpHB−attack
A,D [k, η, q]

x
R← {0, 1}k;

A
R← D

σ ← AT x,A,η
query ;

a′ R← {0, 1}k;
z′ ← Aclone(σ, a′, “guess”);
Output Rx(a′, z′).

Experiment ExpHB+−attack
A [k, η, q]

x, y
R← {0, 1}k;

σ ← ATx,y,η
query ;

b′ ← Aclone(σ, “initiate”);
a′ R← {0, 1}k;
z′ ← Aclone(σ, a′, b′, “guess”);
Output Rx,y(a′, b′, z′).

Consider A’s advantage for key-length k, noise parameter η, over q rounds.
In the case of the HB-attack experiment, this advantage will be over matrices A
drawn from the distribution D:

AdvHB−attack
A,D (k, η, q) =

∣∣∣∣Pr
[
ExpHB−attack

A,D [k, η, q] = “accept”
]
− 1

2

∣∣∣∣
Let T ime(t1, t2) represent the set of all adversaries A with runtimes t1 and

t2, respectively. Denote the maximum advantage over T ime(t1, t2):

AdvHB−attack
D (k, η, q, t1, t2) = max

A∈Time(t1,t2)
{AdvHB−attack

A,D (k, η, q)}

The definitions for Adv are exactly analogous for HB+-attack, except that
there is no input distribution D, as adversarial queries are active.

5.2 Blum et al. Proof Strategy Outline

Given an adversary A that achieves the advantage AdvHB−attack
A,U (k, q, η, t1, t2) =

ε, Blum et al. [3] offer a proof strategy to extract bits of x, and thus solve the
LPN problem. If ε is a non-negligible function of k, then x can be extracted by
their reduction in polynomial time.

To extract the ith bit of the secret x, the Blum et al. reduction works as
follows. The reduction takes a given LPN instance (A, z) and randomly modifies
it to produce a new instance (A′, z′).

The modification involves two steps. First, a vector x′ is chosen uniformly
at random and z′ = (z ⊕ A) · x′ = (A · (x ⊕ x′))⊕ ν is computed. Note that
thanks to the random selection of x′, the vector (x ⊕ x′) is uniformly distrib-
uted. Second, the ith column of A is replaced with random bits. To view this
another way, denote the subspace of matrices obtained by uniformly randomiz-
ing the ith column of A as RA

i . The second step of the modification involves
setting A′ R← RA

i . Once computed as described,the modified problem instance
(A′, z′) is fed to an HB adversary Aquery .

Suppose that the ith bit of (x ⊕ x′), which we denote (x ⊕ x′)i, is a binary
‘1’. In this case, since A is a randomly distributed matrix (because HB challenges
are random), and the secret x is also randomly distributed, the bits of z′ are
random. In other words, thanks to the ‘1’ bit, the randomized ith row of A′
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“counts” in the computation of z′, which therefore comes out random. Hence
z′ contains no information about the correct value of A · (x ⊕ x′) or about the
secret x. Since Aquery cannot pass any meaningful information in σ to Aclone

in this case, Aclone can do no better than random guessing of parity bits, and
enjoys no advantage.

In contrast, suppose that (x ⊕ x′)i, is a binary ‘0’. In this case, the ith
row of A′ does not “count” in the computation of z′, and does not have a
randomizing effect. Hence z′ may contain meaningful information about the
secret x in this case. As a result, when Aclone shows an advantage over modified
problem instances (A′, z′) for a particular fixed choice of x′, it is clear for those
instances that (x⊕ x′)i = 0, i.e. xi = x′

i.
In summary then, the Blum et al. reduction involves presentation of suitably

modified problem instances (A′, z′) to HB adversary A. By noting choices of
x′ for which A demonstrates an advantage, it is possible in principle to learn
individual bits of the secret x. With presentation of enough modified problem
instances to A, it is possible to learn x completely with high probability.

5.3 Reduction from LPN to HB-Attack

We will show a concrete reduction from the LPN problem to the HB-attack
experiment. This is essentially a concrete version of Blum et al.’s asymptotic
reduction strategy from [3] and is an important step in proving Theorem 1.

Unfortunately, the original Blum et al. proof strategy does not account for
the fact that while A’s advantage may be non-negligible over random matrices,
it may actually be negligible over modified (A′, z′) values, i.e., over the distrib-
ution RA

i . Matrices are not independent over this distribution: Any two sample
matrices are identical in all but one column. Thus, it is possible in principle that
A loses its advantage over this distribution of matrices and that the reduction
fails to work. This is a problem that we must remedy here.

We address the problem by modifying a given sample matrix only once. A mod-
ified matrix A′ in our reduction is uniformly distributed. This is because it is cho-
sen uniformly from a random RA

i subspace associated with a random matrix A.
Additionally, since we use a fresh sample for each trial, our modified matrices are
necessarily independent of each other. The trade-off is that kL times as many sam-
ple matrices are needed for our reduction, where L is the number of trials per bit.

This is an inefficient solution in terms of samples. It is entirely possible that
the adversary’s advantage is preserved when, for each column j, samples are
drawn from the R

Aj

i subspace for a matrix Aj . It might even be possible to
devise a rigorous reduction that uses a single matrix A for all columns. We leave
these as open questions.

Lemma 1. Let AdvHB−Attack
U (k, η, q, t1, t2) = ε, where U is a uniform distrib-

ution over binary matrices Zq×k
2 , and let A be an adversary that achieves this

ε-advantage. Then there is an algorithm A′ with running time t′1 ≤ kLt1 and
t′2 ≤ kLt2, where L = 8(lnk−ln ln k)

(1−2η)2ε2 , that makes q′ ≤ kLq + 1 queries that can
correctly extract all k bits of x with probability ε′ ≥ 1

k .
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5.4 Reduction from HB-Attack to HB+-Attack

We show that an HB+-attack adversary with ζ-advantage can be used to build
an HB-attack adversary with advantage ζ3

4 −
ζ3+1
2k . We provide concrete costs of

this reduction that will be used for Theorem 1.

Lemma 3. If AdvHB+−Attack
U (k, η, q, t1, t2) = ζ, then

AdvHB−Attack
U (k, η, q′, t′1, t

′
2) ≥

ζ3

4
− ζ3 + 1

2k
,

where q′ ≤ q(2 + log2 q), t′1 ≤ kq′t1, t′2 ≤ 2kt2, and k ≥ 9.

(Lemma 2, a technical lemma, is omitted here. For consistency, however, we
retain the numbering of lemmas from the full version of this paper.)

Lemma 3 is the main technical core of the paper, but its proof must be omit-
ted here due to lack of space. It is worth briefly explaining the proof intuition.
The proof naturally involves a simulation where the HB-attack adversary A
makes calls to the furnished HB+-attack adversary, which we call A+. In other
words, A simulates the environment for ExpHB+−attack

A+ . The goal of A is to use
A+ to compute a correct target response w to an HB challenge vector a that A
itself receives in an experiment ExpHB−attack

A .
A makes its calls to A+ in a special way: It “cooks” transcripts obtained from

its own HB oracle before passing them to A+ during its simulation of the query
phase of ExpHB+−attack. The “cooked” transcripts are such that the target value
w is embedded implicitly in a secret bit of the simulated HB+ oracle.

In its simulation of the cloning phase of ExpHB+−attack, the adversary A ex-
tracts the embedded secret bit using a standard cryptographic trick. After A+

has committed a blinding value b, A rewindsA+ to as to make two different chal-
lenges a(0) and a(1) relative to b. By looking at the difference in the responses,
A can extract the embedded secret bit and compute its own target response w.

There are two main technical challenges in the proof. The first is finding
the right embedding of w in a secret bit of the simulated HB+-oracle. Indeed,
our approach is somewhat surprising. One might intuitively expect A instead to
cause A+ to emit a response equal to w during the simulation; after all, w itself
is intended to be a tag response furnished by A, rather than a secret bit. (We
could not determine a good way to have w returned as a response.) The second
challenge comes in the rewinding and extraction. There is the possibility of a
non-uniformity in the responses of A+. An important technical lemma (Lemma
2) is necessary to bound this non-uniformity. The statement and proof of Lemma
2 are omitted here, but provided in the full version of the paper.

5.5 Reduction of LPN to HB+-Attack

By combining Lemmas 1 and 3, we obtain a concrete reduction of the LPN prob-
lem to the HB+-attack experiment. Given an adversary that has an ε-advantage
against the HB+-attack experiment within a specific amount of time and queries,
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we can construct an adversary that solves the LPN problem within a concrete
upper bound of time and queries. The following theorem follows directly from
Lemmas 1 and 3.

Theorem 1. Let AdvHB+−Attack(k, η, q, t1, t2) = ζ, where U is a uniform dis-
tribution over binary matrices Zq×k

2 , and let A be an adversary that achieves this
ζ-advantage. Then there is an algorithm that can solve a random q′×k instance of
the LPN problem in time (t′1, t

′
2) with probability 1

k , where t′1 ≤ k2Lq(2+log2 q)t1,

t′2 ≤ 2k2Lt2, q′ ≤ kLq(2 + log2 q), and L = 128k4(ln k−ln ln k)
(1−2η)2(ζ3(k−2)+2)2 .

To put this in asymptotic terms, the LPN problem may be solved by an
adversary where AdvHB+−Attack(k, η, q, t1, t2) = ζ in time O( (k5 log k)(q log q) t

(1−2η2)ζ6 ),
where t = t1 + t2.

6 Conclusion and Open Questions

In summary, this paper presents a new authentication protocol named HB+

that is appropriate for low-cost pervasive computing devices. The HB+ protocol
is secure in the presence of both passive and active adversaries and should be
implementable within the tight resource constraints of today’s EPC-type RFID
tags. The security of the HB+ protocol is based on the LPN problem, whose
hardness over random instances remains an open question.

It is also open question whether the two-round variant of HB+ that was briefly
mentioned in Section 4.1 is secure. The security of concurrent executions of the
HB+ protocol is also unknown. Our security proof uses a rewinding technique
that would be take time exponential in the number of concurrent rounds.

Our results here do not offer direct practical guidance for parameterization in
real RFID tags. It would be desirable to see a much tighter concrete reduction than
we give here. One avenue might be improvement to the Blum et al. reduction. As
mentioned in Section 5.3, the efficiency of the modified concrete version of Blum et
al. reduction [3] maybe improved.Our versionuses sample values only once. It may
bepossible touse a single sample to generate several trials per column, or perhaps to
generate trials for every column. This lowers the concrete query costs. It is unclear,
however, whether the reduction holds over non-uniform input distributions.

Finally, there is second human authentication protocol by Hopper and Blum,
based on the “Sum of k Mins” problem and error-correcting challenges [5, 17].
Unlike the HB protocol, this protocol is already supposed to be secure against
active adversaries. However, the hardness of the “Sum of k Mins” has not been
studied as much as the LPN problem, nor is it clear whether this protocol can ef-
ficiently be adapted for low-cost devices. These remain open avenues of research.
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Abstract. We propose a way to establish peer-to-peer authenticated communi-
cations over an insecure channel by using an extra channel which can authen-
ticate very short strings, e.g. 15 bits. We call this SAS-based authentication as
for authentication based on Short Authenticated Strings. The extra channel uses a
weak notion of authentication in which strings cannot be forged nor modified, but
whose delivery can be maliciously stalled, canceled, or replayed. Our protocol is
optimal and relies on an extractable or equivocable commitment scheme.

This approach offers an alternative (or complement) to public-key infrastruc-
tures, since we no longer need any central authority, and to password-based au-
thenticated key exchange, since we no longer need to establish a confidential
password. It can be used to establish secure associations in ad-hoc networks. Ap-
plications could be the authentication of a public key (e.g. for SSH or PGP) by
users over the telephone, the user-aided pairing of wireless (e.g. Bluetooth) de-
vices, or the restore of secure associations in a disaster case, namely when one
remote peer had his long-term keys corrupted.

1 On Building Secure Communications

One of the key issue of modern cryptography is the problem of establishing a secure
peer-to-peer communication over an insecure channel. Assuming that we can establish
a private and authenticated key, standard tunneling techniques can achieve it. In the
seminal work of Merkle [32] and Diffie and Hellman [18], the private and authenticated
key establishment problem was reduced to establishing a communication in which mes-
sages are authenticated. Public key cryptosystems such as RSA [39] further reduce to
the establishment of an authenticated public key. Note that the seed authentication is
also a limiting factor for quantum cryptography [10].

Another major step was the notion of password-based authenticated key agreement
which was first proposed by Bellovin and Merritt [8,9] and whose security was proven
by Bellare, Pointcheval, and Rogaway [5] in the random oracle model. Another pro-
tocol, provably secure in the standard model, was proposed by Katz, Ostrovsky, and
Yung [29]. Here, we assume that a private and authenticated short password was set up
prior to the protocol. The key agreement protocol is such that no offline dictionary attack
is feasible against the password so that the threat model restricts to online password-
guessing attacks which are easily detectable.1 When compared to the above approach,
we thus reduce the size of the initial key, but we require its confidentiality again.

1 See Chapter 7 of [12] for a survey on password-based authenticated key agreement.
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3-party models offer other solutions. The Needham-Schroeder model [34] assumes
that everyone has a private authenticated key with a Trusted Third Party (TTP). Ker-
beros [30] is a popular application. The authenticated (only) key model is achieved
with the notion of certificate by a Certificate Authority (CA). TLS [19] typically uses
X.509 [27] certificates. Note that TLS authenticates the server to the client (which is
enough to open a secure tunnel), but that the client authentication is typically based on
a (short) password through the tunnel. Finally, fully password-based 3-party authenti-
cated key agreement was studied by Abdalla, Fouque, and Pointcheval [3].

Ah-hoc networks cannot assume the availability of a central third party and set-
ting up a secure network is a real challenge. Networks which are not attended by a
human operator (e.g. sensor networks) can use a pragmatic solution such as the “resur-
recting duckling” paradigm of Stajano and Anderson [40]. Smaller networks which are
attended by a human operator such as networks of personal mobile devices (laptops,
cell phones, PDAs, headsets, ...) can use the human operator as a third party, but must
minimize his job. A familiar example is the Bluetooth [2] pairing: the operator picks
a random PIN code and types it on devices to be associated, and a pairing protocol is
run through a wireless link to establish a 128-bit private authenticated key. Operator-
to-device transmissions is assumed to be secure (i.e. confidential and authenticated).
However, as shown by Jakobsson and Wetzel [28], the standard Bluetooth pairing pro-
tocol is insecure unless we assume that either the radio communications in the pairing
protocol are confidential as well, or the PIN code is long enough.

long key short key
A + C channel symmetric-key cryptography password-based authenticated key

agreement
A channel public-key cryptography SAS-based authentication

Fig. 1. Two-Party Private and Authenticated Key Establishment Paradigms

Solutions to the secure communications over insecure channels therefore seem to
go to two opposite directions (which further translate in a 3-party model): remove the
confidential channel (and use public keys) or use short passwords rather than long secret
keys. A natural additional step consists of combining the two approaches: using an extra
channel which only provides authentication and which is limited to the transmission of
short bitstrings. A straightforward solution consists of authenticating every message of
a regular key agreement protocol such as the Diffie-Hellman protocol [18] as suggested
by Balfanz et al. [4]. The size of messages is typically pretty high, but can be reduced
by authenticating only the hashed values of the messages. By using a collision resistant
hash function, the number of bits to authenticate typically reduces to 160 bits, but a
160-bit string is still pretty long: by using the encoding rules of the RFC 1760 [23]
standard we can represent 160 bits in a human friendly way by using 16 small English
words. A second solution by Hoepman [25,26] can significantly reduce this number. It
is based on special purpose hash functions. However, the security proof is incomplete
and no hash functions with the required properties happen to exist. Another approach
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by Gehrmann, Mitchell, and Nyberg [21] (dedicated to the Bluetooth pairing problem)
called MANA I (as for Manual Authentication), based on a universal hash function
family, can perform a message authentication. They however require a stronger notion
of authentication channel. Interestingly, those protocols were proposed to replace the
current insecure Bluetooth pairing protocol and are now suggesting new solutions in
more traditional secure communication standards, e.g. IKEv2 (see Nyberg [35]).

In this paper, we study solutions which can achieve message authentication by using
the (weak) authentication of a short bitstring. We call them SAS-based schemes as for
“Short Authenticated Strings”. A typical application is the pairing problem in wireless
networks such as Bluetooth. Another application is secure peer-to-peer communication:
if two persons who know each other want to set up a secure communication they can
exchange SAS on a postcard, by fax, over a phone call, a voice message, or when they
physically encounter.

The other MANA protocols [21,22], as well as the extension of the Hoepman pro-
tocols by Peyrin and Vaudenay [38], can be seen as a 3-party translation called the
“User-Aided Key Exchange (UAKE)”. The user becomes a real participant in the pro-
tocol who does simple computations like comparing strings or picking a random one.
The security proof in the present paper could equally apply to these cases.

2 Preliminaries

2.1 Communication and Adversarial Models

We consider a communication network with (insecure but cheap) broadband commu-
nication channels and narrowband channels which can be used to authenticate short
messages. Authenticated channels are related to a node identity ID. An illustration for
this model is the location-limited channel of Balfanz et al. [4]. For instance, a user
A working on his laptop in an airport lounge would like to print a confidential docu-
ment on a laser printer B through a wireless link. The user reading a message on the
LCD screen of B and typing it on the laptop keyboard is an authenticated channel from
the identified printer to the laptop. A SAS-based authentication protocol can be used
to transmit and authenticate the public key of the printer by keeping small the trans-
mission over the authenticated channel. Another example is when Bob would like to
authenticate the PGP public key of Alice in his key ring. If he can recognize her voice,
she can spell a SAS on his voice mail. If he can recognize her signature, she can send a
signed SAS to him by fax or even on a postcard.

Adversarial Model. Except for the authentication channels, we assume that the ad-
versary has full control on the communication channels. In particular, she can prevent a
message from being delivered, she can delay it, replay it, modify it, change the recipient
address, and of course, read it. We adopt here the stronger security model of Bellare-
Rogaway [6,7] which even assumes that the adversary has full control on which node
launches a new instance of a protocol, and on which protocol instance runs a new step
of the protocol. Bellare-Rogaway [6,7] considered protocols for access control or key
agreement which basically have no input. Here, protocols do have inputs and we assume
that the adversary can choose it. Namely, we assume that the adversary has access to a
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launch(n,r,x) oracle in which n is a node of the network, r is a character (i.e. a role to
play in the protocol), and x is the input of the protocol for this character. This oracle re-
turns a unique instance tag πi

n. Since a node can a priori run concurrent protocols, there
may be several instances related to the same node n. To simplify we restrict ourselves
to 2-party protocols so that there are only two characters Alice and Bob in the protocol.
Any node can play any of these characters. A q-shot adversary is an adversary limited
to q launch(·,Alice, ·) queries and q launch(·,Bob, ·) queries. The adversary also has
access to the oracle send(πi

n,m) which sends a message m to a given instance and re-
turns an m′ message which is meant to be sent to the other participant. For example, a
protocol with input x and y respectively can be run on node A and B by

1. πa ← launch(A,Alice,x)
2. πb ← launch(B,Bob,y)
3. m1 ← send(πa, /0)
4. m2 ← send(πb,m1)
5. m3 ← send(πa,m2)
6. ...

until a message is a termination message. Note that the Bellare-Rogaway model [6,7]
considers additional oracles reveal(πi

n) (which reveals the output from a protocol in-
stance), corrupt(n,x) (which corrupts the collection of instances related to the node n
and forces their private states to become x), and test (which is specific to the semantic
security of key agreement protocols). These oracles are not relevant here since we never
use long-term secrets and the output of the protocols is not secret.

Authentication Channel. The authentication channels provide to the recipient of a mes-
sage the insurance on whom sent it as is. In particular the adversary cannot modify it
(i.e. integrity is implicitly protected). On the other hand she can stall it, remove it, or
replay it. We stress that those channels are not assumed to provide confidentiality. For-
mally, an authentication channel from a node n refers to the identifier IDn. The send
oracle maintains an unordered set of authenticated messages in all authenticated chan-
nels from the node n. Only send oracles with a πi

n instance can insert a new message x
in this set. Later, when a send oracle is queried with any instance tag and a message of
form authenticateIDn(x), it is accepted by the oracle only if x is in the set. Note that con-
current or successive instances related to the same node write in the same set: messages
from the node are authenticated, but the connection to the right instance is not. Authen-
ticated channels can typically be implemented, e.g. by human telephone conversations,
voice mail messages, handwritten postcards, etc.

Stronger Authentication Channel. We can also consider strong authentication channels,
namely authenticated channels which provide an additional security property. We list
here a few possible properties in an informal way.

Stall-free transmission: from the time an authenticated message is released by a send
oracle to the time it is given as input to a send oracle query, no other oracle query
can be made. Hence, either the message is treated by the immediately following
oracle query, or it is never used.
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Transmission with acknowledgment: messages are released together with a destination
node identifier, and the sending instance is given a way to check whether at least
one instance related to this node has received the message or not.

Listener-ready transmission: similarly, the sending instance can check if an instance
related to the destination node is currently listening to the authenticated channel.

Face-to-face conversations achieve all properties. Telephone conversations achieve the
last two properties: Alice starts talking to Bob when she is aware that Bob is listening,
and subtle human senses assure her that Bob has heard her message. Less interactive
communications such as voice mail messages do not provide these properties: Bob may
not even be aware that Alice wants to send him a message, and Alice has neither way
to know when Bob has received it, nor insurance that her message was recorded.

Message Authentication Protocol. Our message authentication protocols have input
m on the side of the claimant Alice and output I||m̂ on the side of the verifier Bob.
Intuitively, they should be such that I = IDA and m̂ = m, meaning that m̂ coming to
node B was authenticated as sent by IDA, the identifier of Alice.

On a global perspective, several launch(Ak,Alice,mk) and launch(B�,Bob, /0) are
queried, which creates several πik

Ak
instances of Alice (authentication claims) and several

π j�
B�

instances of Bob (authentication verifications). If no attack occurs then we have a
perfect matching between the k’s and �’s, related instances have matching conversations
which fully follow the protocol specifications, and the π j�

B�
ends with output IDAk ||mk for

the matching k. In any other case we say that an attack occurred. We say that an attack is
successful if there exists at least an instance π j�

B�
which terminated and output I||m̂ such

that there is no k for which I = IDAk and m̂ = mk. Note that many protocol instances can
endlessly stay in an unterminated state or turn in an abort state. In particular, we do not
consider denial-of-services attacks.

2.2 Commitment Schemes

Our protocols are based on commitment schemes. They are used to commit on an ar-
bitrary non-hidden message m together with a hidden k-bit string r. We formalize them
by three algorithms.

setup which generates a random parameter KP (which is used by all other algorithms
and omitted from notations for simplicity reasons) and a secret key KS.

commit(m,r) which takes a message x = m||r and produces two strings: a commit value
c and a decommit value d. Here, we consider that x includes a part m which is not
meant to be hidden and a part r which is a hidden k-bit string. We can call m a tag
for the commitment so that we have a tag-based commitment to r. Note that this
algorithm is typically non deterministic.

open(m,c,d) which takes m, c, and d and yields a message r or an error signal. We
require this algorithm to be deterministic and to be such that whenever there exists
r such that (c,d) is a possible output for commit(m,r), open(m,c,d) yields r.

Note that the setup plays no real role so far. It is used in extensions of commitment
schemes. We keep it anyway to have definitions well suited to all kinds of commitment
schemes that will be used. Commitment schemes have two security properties.
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– (T,ε)-hiding: no algorithm A bounded by a time complexity T can win the follow-
ing game by interacting with a challenger C with a probability higher than 2−k + ε.
1. C runs setup and sends KP to A .
2. A selects a tag m and sends it to C .
3. C picks a random r, runs commit on (m,r), gets (c,d), and sends c to A .
4. A yields r′ and wins if r = r′.

When T = +∞ and ε = 0, we say that the scheme is perfectly hiding.
– (T,ε)-binding: no algorithm A bounded by a time complexity T can win the follow-

ing game by interacting with a challenger C with a probability higher than 2−k + ε.
1. C runs setup and sends KP to A .
2. A selects a tag m and sends it to C .
3. A selects a c and sends it to C .
4. C picks a random r and sends it to A .
5. A computes a d and wins if (m,c,d) opens to r.

When T = +∞ and ε = 0, we say that the scheme is perfectly binding.

Commitment schemes can be relative to an oracle, in which case all algorithms and
adversaries have access to the oracle. However, they have no access to the complete
history of oracle calls. Extensions of commitment schemes have extra algorithms which
do have access to this history.

Extractable Commitment. In this extension of commitment schemes, there is an addi-
tional deterministic algorithm extractKS(m,c) which yields r when there exists d such
that (m,c,d) opens to r. When using oracles, this algorithm is given the history of oracle
queries. Clearly, extractable commitments are perfectly binding. Adversaries playing
the hiding game can make oracle calls to extract, except on the committed m tag.

Equivocable Commitment. In this extension of commitment schemes, there are two al-
gorithms simcommitKS(m) and equivocateKS

(m,c,r,ξ). simcommit returns a fake com-
mit value c and an information ξ, and equivocate returns a decommit value d such that
(m,c,d) opens to an arbitrary r for (c,ξ) obtained from simcommit. For any KP||KS

and any m, the distribution of fake commit values is assumed to be identical to the
distribution of real commit values to any r with tag m. From this we deduce that the
commitment is perfectly hiding. Adversaries playing the binding game can make oracle
calls to simcommit and equivocate, except on the committed m tag, and are assumed
not to see ξ. Namely, the equivocate oracle works only if there was a matching oracle
call to simcommit before, and gets ξ directly from the history. In our paper, we further
assume that adversaries are limited to a single query to simcommit and equivocate.
This is a quite restrictive assumption, but it will be enough for our purpose.

Example 1 (Ideal commitment model). A first commitment scheme model which can
be used is the ideal commitment model. Here, we assume that the network includes a
trusted third party (TTP) with whom anyone can communicate in a perfectly secure
way. The commit algorithm consists of securely sending a message x to the TTP. The
TTP attaches it to a nonce value c which is returned to the sender and inserts (c,x) in an
archive with a protection flag set. There is no decommit value, but the same sender can
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replace the disclosure of it by a decommit call to the TTP. Then, the TTP clears the pro-
tection flag of the (c,x) entry which becomes readable by anyone. Obviously we obtain
a perfectly binding and hiding scheme. Note that it is extractable and equivocable.

Example 2 (Extractable commitment based on a random oracle). We take an easy com-
mitment scheme which was already mentioned in Pass [37]. Here, we use a random
oracle H which upon a query d returns a random value c ← H(d) in {0,1}�c. The
commit(m,r) algorithm simply picks a random value e in {0,1}�e, takes d = r||e, and
calls c ← H(m||d). The open(m,c,d) algorithm simply extracts r from d and checks
that c = H(m||d). When all oracle queries to H produce no collision on m||c, commit-
ments can trivially be extracted form the history. When the number of queries is q, this
is the case, except with probability less than q2.2−�c−1. We prove that the best strategy
for an adversary to play the hiding game is to look for r||e exhaustively by trying it with
H. Actually, if for each r the adversary has queried qr values H(m||r||e) on the commit-
ted tag m, the probability of success when answering r is one if the right r||e was found,
which happens with probability 2−�e−k ∑s qs, and (2�e−qr)/(2�e+k−∑s qs) in the other
case. Hence, the overall probability of success is 2−k + 2−�e−k(∑s qs− qr) which is at
most 2−k + q.2−�e−k. Hence, when H is limited to q accesses, the commitment scheme
is (+∞,q.2−�e−k)-extractable with probability at least 1− q2.2−�c−1. So with �c = 2�e

and �e = 80, the scheme is pretty safe until the complexity reaches a number of oracle
calls within the order of magnitude of 280−k.

Example 3 (Equivocable commitment based on a signature scheme). One can easily
prove (see Appendix B) that the notion SSTC(2) of simulation-sound trapdoor commit-
ment as defined in MacKenzie-Yang [31], where the adversary is given two equivocate
oracle calls, provides equivocable commitments following our definition. Hence, from
[31] we get a nice equivocable commitment scheme based on DSA [1] and another one
based on the Cramer-Shoup signature scheme [14]. We can also use the stronger notion
of non-malleable commitments [15,16,20], and in particular the Damgård-Groth com-
mitment scheme [17] based on the strong RSA assumption in the common reference
string (CRS) model.

Introducing a public key may look paradoxical since the purpose of our work is to
get rid of any a priori authenticated public key. This is the puzzling aspect of the CRS
model: we assume usage of a public key for which a secret key exists, but that nobody
can use it. We can even rely on the uniform random string (URS) model (see [17]) in
which the public key is a uniformly distributed reference bitstring.

2.3 Previous Work

The Gehrmann-Mitchell-Nyberg MANA I [21] protocol is depicted in Fig. 2.2 By con-
vention we put a hat on received messages which are not authenticated since they can
differ from sent messages in the case of an active attack. MANA protocols are designed
for two devices attended by a user who can do simple operations. We described MANA I

2 Note that the original MANA I protocol is followed by an authenticated acknowledgment.
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with a passive user who only forwards messages. MANA I uses a universal hash func-
tion family H. Proposed constructions lead to 16–20 bit long SAS values. Although
MANA I is essentially non-interactive, the security requires a stronger authentication
channel. Otherwise, one can run the following attack.

1. πa ← launch(A,Alice,m)
2. πb ← launch(B,Bob, /0)
3. m← send(πa, /0)
4. authenticateAlice(K||µ)← send(πa, /0)
5. find m̂ �= m such that HK(m̂) = µ by random search
6. send(πb,m̂)
7. send(πb,authenticateAlice(K||µ))

MANA I is nevertheless secure when using an authentication channel which provides
stall-free transmission or listener-ready transmission as defined in Section 2.1.

Alice Bob
input: m

pick K ∈U {0,1}k m−−−−−−−−−−−−−−−−→
µ← HK(m)

authenticateAlice(K||µ)−−−−−−−−−−−−−−−−→ check µ = HK(m̂)
output: Alice, m̂

Fig. 2. The MANA I Protocol

The Hoepman authenticated key agreement protocol [25] is depicted in Fig. 3. It
consists of a commitment exchange and an authentication exchange, followed by a
regular Diffie-Hellman protocol [18].3 The protocol is based on the decisional Diffie-
Hellman problem in a group G. It works with the hypothesis that H1 and H2 are two
hash functions such that H2 is balanced from G to {0,1}k, and given a uniformly dis-
tributed X in G, the two random variables H1(X) and H2(X) are independent. Although
no example which meet these criteria is provided in [25]4, Hoepman provided a sketch
of security proof for the complete protocol5 in the Bellare-Rogaway model.

3 Non-interactive Message Authentication

We first present a solution based on a collision resistant hash function inspired by Bal-
fanz et al. [4]. Since the result is quite straightforward, the proof is omitted.

3 Note that first committing to the Diffie-Hellman values was already suggested by Mitchell-
Ward-Wilson [33].

4 One can note that the criterion on H2 seemingly suggests that the order of G should be a
multiple of 2k which is not the case in classical Diffie-Hellman groups so (H1,H2) instances
may not exist at all.

5 Fig. 3 presents a simplified version of the protocol. The complete protocol is followed by a key
confirmation and a key derivation based on the leftover hash lemma [24] (see Boneh [11]).
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Alice Bob
pick xA ∈U {0, . . . , |G|−1} pick xB ∈U {0, . . . , |G|−1}

yA ← gxA yB ← gxB

hA ← H1(yA) hA−−−−−−−−−−−−−−−−→
hB←−−−−−−−−−−−−−−−− hB ← H1(yB)

SASA ← H2(yA)
authenticateAlice(SASA)−−−−−−−−−−−−−−−−→
authenticateBob(SASB)←−−−−−−−−−−−−−−−− SASB ← H2(yB)

yA−−−−−−−−−−−−−−−−→ check ĥA,SASA

check ĥB,SASB
yB←−−−−−−−−−−−−−−−−

kA ← (ŷB)xA kB ← (ŷA)xB

output: Bob,kA output: Alice,kB

Fig. 3. The Hoepman Authenticated Key Agreement Protocol

Theorem 4. Let µ be the overall time complexity of the message authentication proto-
col in Fig. 4. Given an adversary of time complexity T , number of launch oracle queries
Q, and probability of success p, we can find collisions on H within a complexity T +µQ
and same probability.

One advantage of this protocol is that it is non-interactive. Collision resistance requires
the number of authenticated bits to be at least 160 which is still quite large. We can
actually half this number by using the Pasini-Vaudenay protocol [36] based on a hash
function resisting to second preimage attacks (a.k.a. weakly collision resistant hash
function).6 Note that the MANA I protocol requires less bits, but a stronger authentica-
tion channel which renders the protocol “less non-interactive”.

Alice Bob
input: m

m−−−−−−−−−−−−−−−−→
h← H(m)

authenticateAlice(h)−−−−−−−−−−−−−−−−→ check h = H(m̂)
output: Alice, m̂

Fig. 4. Message Authentication using a Collision Resistant Hash Function

4 SAS-Based Message Authentication

In Fig. 5 is depicted a SAS-based message authentication protocol. Basically, Alice first
commits on her (non-hidden) input message m together with a hidden random string RA.
After reception of m and the commit value c, Bob picks a random string RB and gives
it to Alice. Alice then opens her commitment by sending a d and sends SAS = RA⊕RB

through her authenticated channel. Bob can finally check the consistency of this string

6 This protocol consists of sending m||c||d||authenticate(H(c)) where (c,d) is obtained from
m by using a trapdoor commitment.
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with the commitment. This protocol can be used to authenticate in both directions and
henceforth for authenticated key agreement as detailed in Appendix A.

With weak authentication channels, the adversary can run as follows:

– impersonate Bob and start the protocol with Alice with m,c, R̂B,d,
– stall the SAS message,
– launch several Bob’s and impersonate Alice with m̂, ĉ, d̂ until Alice’s SAS matches,
– deliver the SAS and complete the protocol.

This attack works within a number of trials around 2k. Note that the attack is not dis-
crete on Bob’s side since many protocols abort. Similarly, the adversary can launch
many instances of Alice and make a catalog of Alice’s SAS messages. After Alice has
performed quite a lot of protocols, the catalog can be close to the complete catalog of 2k

messages. With this collection, the adversary can impersonate Alice. Note that the at-
tack is pretty discrete here. We can further trade the number of instances of Bob against

the number of instances of Alice and have a birthday paradox effect. Namely, with 2
k
2

concurrent runs of Alice and Bob we have fair chances of success.

Alice Bob
input: m

pick RA ∈U {0,1}k pick RB ∈U {0,1}k

c||d ← commit(m||RA)
m||c−−−−−−−−−−−−−−−−→
RB←−−−−−−−−−−−−−−−−
d−−−−−−−−−−−−−−−−→ R̂A ← open(m̂, ĉ, d̂)

SAS← RA⊕ R̂B
authenticateAlice(SAS)−−−−−−−−−−−−−−−−→ check SAS = R̂A⊕RB

output: Alice, m̂

Fig. 5. SAS-based Message Authentication

Theorem 5. We consider one-shot adversaries against the message authentication pro-
tocol in Fig. 5. We denote by T and p their time complexity and probability of success,
respectively. We assume that the commitment scheme is either (TC,ε)-extractable or
(TC,ε)-equivocable. There exists a (small) constant µ such that for any adversary, we
have either p≤ 2−k + ε or T ≥ TC−µ.

Our results seemingly suggest that for any secure commitment scheme the success prob-
ability of practical one-shot attacks is bounded by 2−k + ε where ε is negligible. Our
results are pretty tight since adversaries with a probability of success 2−k clearly exist.

Proof. Due to the protocol specifications, a successful adversary must perform the fol-
lowing sequences of steps to interact with Alice and Bob. The way the adversary inter-
leaves the two sequences is free.

1. select m, πa ← launch(·,Alice,m)
2. c← send(πa, /0)
3. select R̂B, d ← send(πa, R̂B)

1. πb ← launch(·,Bob, /0)
2. select m̂||ĉ, RB ← send(πb,m̂||ĉ)
3. select d̂, send(πb, d̂)
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A B C
KP←− KP←−
m−→ m−→
c←− c←−

R̂B−→ pick R
R−→

d←− RA ← open(m,c,d) d←−
m̂||ĉ−→ R̂A ← extract(m̂, ĉ)
RB←− pick RB
d̂−→

Case 1

A B C
KP←− KP←−
·· ·
m−→ m−→
c←− c←−
·· ·
m̂||ĉ−→ R̂A ← extract(m̂, ĉ)
RB←− pick RB
· · ·
R̂B−→ RA ← R̂A⊕RB⊕ R̂B

RA−→
d←− d←−
·· ·
d̂−→

Case 2

Fig. 6. Reduction with Extractable Commitments

The attack runs like a game for the adversary A who wins if (m,c,d) (resp. (m̂, ĉ, d̂))
opens to RA (resp. R̂A) such that RA⊕ R̂B = R̂A⊕RB. The game starts by receiving the
selected public parameter KP (if any) for the commitment scheme. We can make A play
with a simulator for Alice and Bob. Note that an attack implies that m �= m̂.

Extractable Commitments. We construct from A an adversary B who plays an aug-
mented hiding game with the help of one query to the extract oracle. The augmented
hiding game consists of the regular one followed by C sending the right decommit
value d. Obviously, an adversary playing this augmented game can be transformed into
an adversary playing the regular game with the same winning probability. As depicted
in Fig. 6, B first receives KP and sends it to A . Then, he simulates Alice and Bob to
A . Whenever A sends m to Alice, B submits it in the augmented hiding game. Then, B
receives a challenge c which is sent back to A (i.e., Alice does not compute any com-
mitment but rather uses the challenge). Whenever A sends m̂||ĉ to Bob, B can extract
R̂A by calling extract(m̂, ĉ). When A sends R̂B to Alice, we distinguish two cases.

Case 1. If A did not send m̂||ĉ to Bob yet, there is essentially one way to interleave the
two sequences which consists in first playing with Alice, then playing with Bob. Here,
B answers a random R to the challenge and wins with probability 2−k. B continues the
simulation and plays with A by receiving d and sending it from Alice to A . Then, A
sends m̂||ĉ to Bob from which B extracts R̂A. Bob’s simulation picks a random RB, but
RA, R̂A, and R̂B are fixed. So, A wins with probability 2−k. Hence, A and B win their
respective game with the same probability in this case.

Case 2. If now A has sent m̂||ĉ to Bob, B can compute RA = R̂A⊕RB⊕ R̂B and answer
RA. B receives d and sends it to A . A typical example is depicted on Fig. 6. Here, A
and B win or loose at the same time, thus win with the same probability.

We observe that the simulation by B is perfect and that the extraction is legitimate since
m �= m̂. We deduce that we can win the hiding game with the same probability as the
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A B C
KP←− KP←−
m−→
c←− c← simcommit(m)

R̂B−→ pick RA
d←− d ← equivocate(m,c,RA)

m̂||ĉ−→ m̂||ĉ−→
RB←− RB ← RA⊕ R̂A⊕ R̂B

R̂A←−
d̂−→ d̂−→

Case 1

A B C
KP←− KP←−
·· ·
m−→
c←− c← simcommit(m)
· · ·
m̂||ĉ−→ m̂||ĉ−→
RB←− pick RB

R̂A←−
·· ·
R̂B−→ RA ← R̂A⊕RB⊕ R̂B
d←− d ← equivocate(m,c,RA)
· · ·
d̂−→ d̂−→

Case 2

Fig. 7. Reduction with Equivocable Commitments

attack. Let µ be the complexity of the protocol plus one oracle call. The complexity of
B is essentially the complexity of A plus µ. The success probability of the attack is thus
at most 2−k + ε.

Equivocable Commitments. From A we construct an adversary B who plays the bind-
ing game with the help of one query to the simcommit and equivocate oracles. (See
Fig. 7.) Namely, B runs A and first forwards KP. Whenever B receives m̂ and ĉ from
A , he submits it in the binding game. Whenever B must send c to A , he launches the
simcommit oracle to get c. When A sends R̂B to Bob, we distinguish two cases.

Case 1. If A did not send m̂||ĉ to Bob yet, there is essentially one way to interleave the
two sequences. Here, B picks a random RA and equivocate his commitment by calling
equivocate(m,c,RA) so that he can send d to A . When receiving the challenge R̂A, B
chooses RB = RA⊕ R̂A⊕ R̂B and send it to A .

Case 2. If now A has sent m̂||ĉ to Bob, B has already answered some random RB to A
and received some challenge R̂A. He can thus compute RA = R̂A⊕RB⊕ R̂B and equiv-
ocate his commitment by calling equivocate(m,c,RA). A typical example is depicted
on Fig. 6.

Here, A and B win or loose at the same time, thus win with the same probability so we
conclude as for the extractable commitments. �

5 On the Selection of the SAS Length

We now study the security in a multiparty and concurrent setting.

Lemma 6. We consider a message authentication protocol with claimant Alice and
verifier Bob in which a single SAS is sent. We denote by µA (resp. µB) the complexity of
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Alice’s (resp. Bob’s) part. We consider adversaries such that the number of instances
of Alice (resp. Bob) is at most QA (resp. QB). We further denote by T0 and p0 their time
complexity and probability of success, respectively. There is a generic transformation
which, for any QA, QB, and any adversary, transforms it into a one-shot adversary with
complexity T ≤ T0 + µAQA + µBQB and probability of success p ≥ p0/QAQB.

The lemma tells us that once we proved that a protocol resists one-shot adversaries
up to a probability of success of p, then it resists to adversaries up to a probability
of success which is close to QAQB p. With the protocol in Fig. 5, this probability is
basically QAQB.2−k. This bound is tight as shown by the attacks in Section 4.

Proof. Let us consider an adversary A . We number every instance of Alice and every
instance of Bob by using two separate counters. We say that an instance πa of Alice is
compatible with an instance πb of Bob if πb succeeded and received an authenticated
message which was sent by πa. The number of possible compatible pairs of instances
is upper bounded by K = QAQB. When an attack is successful, it yields a random pair
(I,J) of compatible instances of Alice and Bob.

We transform A into a one-shot adversary B as follows: we run A and simulate
launch and send oracle calls. We pick a random pair (I∗,J∗) with uniformly distrib-
uted I∗ ∈ {1, . . . ,QA} and J∗ ∈ {1, . . . ,QB}. When A queries launch(·,Alice, ·) for the
I∗th time, B forwards the query to the real launch oracle. send queries to the related
instance are also forwarded to the real send oracle. The same holds for the J∗th query
launch(·,Bob, ·). Clearly, the attack succeeds with probability p0/QAQB on the only
non-simulated instances. It runs with complexity T0 + µAQA + µBQB. �

For applications, we assume that the number of network nodes is N ≈ 220, and that
the number of protocol runs per node is limited to R≈ 210. Actually, the protocols are
not meant to be run so many times: only for seed authentication. Indeed, they can be
used to authenticate a public key, and authentication can later be done using the public
key itself so the protocol is no longer useful. We target a probability of success limited
to p≈ 2−10. Using Th. 5 and the previous lemma tells us that we can take k≥ log2

QAQB
p .

When considering the probability of success at large over the network, i.e. the
probability that an attack occurs somewhere in the network, we have the constraint
QA + QB ≤ NR. Thus we have QAQB ≤ N2R2/4 for our message authentication pro-

tocol. Thus we can take k = log2
N2R2

4p = 68 which is already shorter than the solution
based on hash functions.

When considering the probability of success against a target verifier node, i.e. the
probability that a given user will accept a forged message, we take QB ≤ R as an addi-
tional constraint. Thus we have QAQB ≤ NR2 which leads us to k = log2

NR2

p = 50. By
using the encoding rules of the RFC 1760 [23] standard, this represents five 4-character
human-friendly (or at least English) words.

Credit cards ATM use 4-digit PIN codes which are confidential and quite strongly
authenticated. Protocols are also limited to three trials. In our settings, this translates
into a 3-shot 2-party model: N = 2, R = 3, and p = 3 · 10−4. To reach the same se-
curity level with weak authentication and no confidentiality, we need a SAS of size
k = log2

NR2

4p ≈ 15 bits, i.e. a 5-digit PIN code.
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6 Conclusion

We have shown how to achieve authentication over an insecure channel by using a nar-
rowband authentication channel. The later channel is used to authenticate a short string:
the SAS. Using weak authentication, we can obtain high security level in a multiparty
setting by using 50-bit SAS. Note that in a 3-shot 2-party adversarial model, a 15-bit
SAS (i.e. a 5-digit PIN code) is enough. This is similar to the MANA I protocol, except
that we no longer require a strong notion of authentication. SAS channels are widely
available for human beings: they can transmit SAS by fax, voice mail, type them on
mobile devices, etc.

Our protocol is well suited to ad-hoc message authentication. It can be used for PKI-
less public key transmission or to run a key agreement protocol. It can also be used to
restore a secure association in disaster cases when two remote peers have compromised
their secret keys or a PKI is badly broken. Another application could be a Bluetooth-
like pairing between physically identified wireless devices with higher security: we no
longer rely on the secrecy of a PIN code but on the authentication through a human user
of a short string.

Our protocol relies on a commitment scheme and is provably secure in the strongest
security model so far, namely the Bellare-Rogaway model, by using extractable or
equivocable commitment schemes. They can be constructed in the ideal commitment
model, in the random oracle commitment model, and in the CRS model.
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A Message Cross-Authentication

We consider protocols which perform message authentication in both directions at the
same time. These protocols have inputs mA on the side of Alice and mB on the side
of Bob, and outputs IB||m̂B on the side of Alice and IA||m̂A on the side of Bob. They
should be such that they achieve message authentication in both directions. In Fig. 8 is
a message cross-authentication protocol. It requires k authenticated bits in both ways.
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Obviously, an adversary against this protocol transforms into an adversary against the
message authentication protocol in Fig. 5. So Theorem 5 holds for this new protocol
as well. This protocol can be used e.g. to run the Diffie-Hellman authenticated key
agreement protocol [18] with mA = gxA and mB = gxB . This is essentially the protocol
called DH-SC in [13].

Alice Bob
input: mA input: mB

pick RA ∈U {0,1}k pick RB ∈U {0,1}k

cA||dA ← commit(0||mA||RA)
mA||cA−−−−−−−−−−−−−−−−→
mB||cB←−−−−−−−−−−−−−−−− cB||dB ← commit(1||mB||RB)

dA−−−−−−−−−−−−−−−−→ R̂A ← open(0||m̂A, ĉA, d̂A)

R̂B ← open(1||m̂B, ĉB, d̂B) dB←−−−−−−−−−−−−−−−−
SASA ← RA⊕ R̂B

authenticateAlice(SASA)−−−−−−−−−−−−−−−−→ SASB ← R̂A⊕RB

check SASA = SASB
authenticateBob(SASB)←−−−−−−−−−−−−−−−− check SASA = SASB

output: Bob, m̂B output: Alice, m̂A

Fig. 8. SAS-based Cross Authentication

B Using Simulation-Sound Trapdoor Commitments

MacKenzie-Yang [31] defines SSTC commitments by five algorithms setup′, commit′,
verify′, simcommit′, and equivocate′. The only syntaxic difference with our definition
is in the verify′ algorithm which replaces open, but without message recovery. Namely,
commit′(m,r) yields a pair (c,e) and verify′(m,c,r,e) = true whenever (c,e) is a pos-
sible output of commit′(m,r). Obviously, by letting d = r||e, we define a commitment
scheme in our sense.

In [31], the hiding game is restricted to a 2-fold game. Namely, the adversary yields
r0 and r1 together with c, and the challenger picks r equal to one of these two values.
The adversary should have a probability of success less than 1

2 +ε. The following lemma
proves that such a commitment scheme is 2ε-hiding in our sense.

Lemma 7. There exists a (small) constant ν such that for any T and ε, a (T + ν,ε)-2-
fold-hiding commitment scheme is a (T,2ε)-hiding commitment scheme.

Proof. Let A be an adversary of complexity at most T which plays our 2k-fold hiding
game. We construct an adversary B for the 2-fold hiding game as follows.

1. B receives KP and forwards it to A .
2. A sends m to B .
3. B picks two random different r0 and r1 and plays m,r0,r1.
4. B receives a challenge c which commits to either r0 or r1 and forwards it to A .
5. A answers to the challenge by a string r.
6. If r = rb, B answers b. Otherwise, B picks a random bit b and answers b.
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We let ν be the complexity of B without A . Obviously, B perfectly simulates a chal-
lenger for the 2k-fold game to A . Let p′ = 2−k + ε′ be the probability of success of
A . When A is successful, so is B . When A is not successful and r �∈ {r0,r1}, B suc-
ceeds with probability 1

2 . When A is not successful and r ∈ {r0,r1}, B fails. Hence, the
probability that B answers correctly to the 2-fold game is

p = p′+
1− p′

2

(
1− 1

2k−1

)
=

1
2

+ p′
2k

2(2k−1)
− 1

2(2k−1)

=
1
2

+ ε′
2k

2(2k−1)

Since we must have p− 1
2 ≤ ε, we deduce ε′ ≤ 2ε(1−2−k)≤ 2ε. �

In [31], our binding game is replaced by the ability to produce a collision, namely a
(m,c,d,d′) quadruplet such that (m,c,d) and (m,c,d′) successfully open to two differ-
ent values. Following the simulation-sound binding property definition, the adversary
has access to simcommit′ and equivocate′ like in our definition. Namely, they do not see
ξ and cannot decommit values which are not issued by simcommit′. By usual rewind-
ing techniques, we show that from an adversary who wins our binding property with
probability 2−k +ε in time T and one simcommit query we can make an adversary who
finds collisions with probability 2−2kε in time 2T and two simcommit queries.
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Abstract. Error correcting codes and matroids have been widely used
in the study of ordinary secret sharing schemes. In this paper, we study
the connections between codes, matroids and a special class of secret
sharing schemes, namely multiplicative linear secret sharing schemes.
Such schemes are known to enable multi-party computation protocols
secure against general (non-threshold) adversaries.

Two open problems related to the complexity of multiplicative LSSSs
are considered in this paper.

The first one deals with strongly multiplicative LSSSs. As opposed to
the case of multiplicative LSSSs, it is not known whether there is an ef-
ficient method to transform an LSSS into a strongly multiplicative LSSS
for the same access structure with a polynomial increase of the complex-
ity. We prove a property of strongly multiplicative LSSSs that could be
useful in solving this problem. Namely, using a suitable generalization
of the well-known Berlekamp-Welch decoder, we show that all strongly
multiplicative LSSSs enable efficient reconstruction of a shared secret in
the presence of malicious faults.

The second one is to characterize the access structures of ideal multi-
plicative LSSSs. Specifically, we wonder whether all self-dual vector space
access structures are in this situation. By the aforementioned connection,
this in fact constitutes an open problem about matroid theory, since it
can be re-stated in terms of representability of identically self-dual ma-
troids by self-dual codes. We introduce a new concept, the flat-partition,
that provides a useful classification of identically self-dual matroids. Uni-
form identically self-dual matroids, which are known to be representable
by self-dual codes, form one of the classes. We prove that this prop-
erty also holds for the family of matroids that, in a natural way, is the
next class in the above classification: the identically self-dual bipartite
matroids.
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1 Introduction

Two open problems on multiplicative linear secret sharing schemes are studied
in this paper. Our results deal with the connections between linear codes, rep-
resentable matroids and linear secret sharing schemes. Some facts about these
connections are recalled in Section 1.2. The reader is referred to [22] for a general
reference on Matroid Theory and to [5,19,28,29] for more information about the
relation between secret sharing schemes and matroids.

1.1 Multiplicative Linear Secret Sharing Schemes and General
Secure Multi-party Computation

In a K -linear secret sharing scheme (K -LSSS) on the set of players P ={1, . . . , n},
the share of every player i ∈ P is a vector in Ei, a vector space of finite dimension
over the finite field K , and is computed as a fixed linear function of the secret
value k ∈ K and some other randomly chosen elements in K .

More formally, any sequence Π = (π1, . . . , πn, πn+1) of surjective linear map-
pings πi : E → Ei, where E and Ei are vector spaces of finite dimension over K
and En+1 = K , defines a K -linear secret sharing scheme Σn+1(Π) on the set of
players P = {1, . . . , n}. For any vector x ∈ E, the values (πi(x))1≤i≤n are shares
of the secret value k = πn+1(x) ∈ K . The access structure, Γn+1(Π) of this
scheme, that is, the family of qualified subsets, consists of all subsets A ⊂ Pn+1
such that

⋂
i∈A kerπi ⊂ kerπn+1.

Linear secret sharing schemes are usually defined in a more general way by
considering that the vector space En+1 corresponding to the secret value is not
necessarily equal to K . We are not going to consider such LSSSs in this paper.

The complexity of a LSSS Σ is defined as λ(Σ) =
∑n

i=1 dimEi ≥ n, which
corresponds to the total number of field elements that are distributed. The
schemes with complexity λ(Σ) = n are called ideal . For any finite field K and
for any access structure Γ , there exists a K -LSSS for Γ [14]. We notate λK(Γ )
for the minimum complexity of the K -LSSSs with access structure Γ . If there
exists an ideal K -LSSS for Γ , that is, if λK(Γ ) = n, we say that Γ is a K -vector
space access structure.

Linear secret sharing schemes were first considered, only in the ideal case,
in [4]. General Linear secret sharing schemes were introduced by Simmons [27],
Jackson and Martin [15] and Karchmer and Wigderson [16] under other names
such as geometric secret sharing schemes or monotone span programs.

In a LSSS, any linear combination of the shares of different secrets results
in shares for the same linear combination of the secret values. Because of that,
LSSSs are used as a building block of multi-party computation protocols. Nev-
ertheless, if we require protocols computing any arithmetic circuit, a similar
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property is needed for the multiplication of two secrets, that is, the LSSS must
be multiplicative.

We illustrate the multiplicative property of LSSSs by analyzing the Shamir’s
(d, n)-threshold scheme [26]. In this scheme, the secret k ∈ K and the shares ki ∈
K , where i = 1, . . . , n, are the values of a random polynomial with degree at most
d− 1 in some given points. The secret is recovered by Lagrange interpolation. If
n ≥ 2d − 1, the product kk′ of the two secret values is a linear combination of
any 2d−1 values ci = kik

′
i. This linear combination is obtained by interpolating

the product of the two random polynomials that were used to distribute the
shares. This multiplicative property of the Shamir’s scheme is used in [3,8,9,11] to
construct multi-party computation protocols that are secure against a threshold-
based adversary.

In order to obtain efficient multi-party computation protocols for a gen-
eral adversary structure, a generalization of the multiplicative property of the
Shamir’s scheme to any linear secret sharing scheme is proposed in [10].

Specifically, a linear secret sharing scheme over the finite field K is said to
be multiplicative if every player i ∈ P can compute, from his shares ki, k

′
i of two

shared secrets k, k′ ∈ K , a value ci ∈ K such that the product kk′ is a linear
combination of all the values c1, . . . , cn. We say that a secret sharing scheme is
strongly multiplicative if, for any subset A ⊂ P such that P −A is not qualified,
the product kk′ can be computed using only values from the players in A.

Observe that the Shamir’s (d, n)-secret sharing scheme is multiplicative if
and only if n ≥ 2d− 1, and it is strongly multiplicative if and only if n ≥ 3d− 2.
An access structure is said to be Q2, or Q3, if the set of players is not the union of
any two, or, respectively, three, unqualified subsets. In general, as a consequence
of the results in [10,13], an access structure Γ can be realized by a multiplicative
LSSS if and only if it is Q2, and Γ admits an strongly multiplicative LSSS if and
only if it is Q3.

Cramer, Damg̊ard and Maurer [10] presented a method to construct, from any
K -MLSSS Σ with Q2 access structure Γ , an error-free multi-party computation
protocol secure against a passive adversary which is able to corrupt any set of
players B /∈ Γ and computing any arithmetic circuit C over K . The complexity
of this protocol is polynomial in the size of C, log |K | and λ(Σ). They prove
a similar result for an active adversary. In this case, the resulting protocol is
perfect with zero error probability if the LSSS is strongly multiplicative, with a
Q3 access structure Γ .

One of the key results in [10] is a method to construct, from any K -LSSS Σ
with Q2 access structure Γ , a multiplicative K -LSSS Σ′ with the same access
structure and complexity λ(Σ′) = 2λ(Σ). That is, if µK(Γ ) denotes the minimum
complexity of all K -MLSSSs with access structure Γ , the above result means that
µK(Γ ) ≤ 2λK(Γ ) for any finite field K and for any Q2 access structure Γ .

Therefore, in the passive adversary case, the construction of efficient multi-
party computation protocols can be reduced to the search of efficient linear secret
sharing schemes. Specifically, a multi-party computation protocol computing any
arithmetic circuit C over K and secure against a passive adversary which is able
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to corrupt any set of players B /∈ Γ can be efficiently constructed from any LSSS
whose access structure Γ ′ is Q2 and Γ ′ ⊂ Γ .

This is not the situation when an active adversary is considered, because it is
not known whether it is possible to construct, for any Q3 access structure Γ , a
strongly multiplicative LSSS whose complexity is polynomial on the complexity
of the best LSSS for Γ .

Nevertheless, the active adversary case is also solved in [10] if an exponen-
tially small error probability is allowed. A construction is given in [10] for the
active adversary case that efficiently provides, from any LSSS with Q3 access
structure Γ , a multiparty computation protocol with exponentially small error
probability, secure against an active adversary which is able to corrupt any set
of players not in Γ .

1.2 Codes, Matroids and Secret Sharing Schemes

Let us take Q = {1, . . . , n, n + 1} and Pi = Q−{i} for any i ∈ Q. This notation
will be used all through the paper. From now on, vectors appearing in matrix
operations will be considered as one-row matrices.

Let Π = (π1, . . . , πn, πn+1) be a sequence of surjective linear mappings
πi : E → K , that is, non-zero vectors in the dual space E∗. We are going to
suppose always that those vectors span E∗. Observe that Π can be seen as a
linear mapping Π : E → Kn+1 and, once a basis of E is fixed, it can be rep-
resented by the d × (n + 1) matrix M = M(Π) such that Π(x) = xM for all
x ∈ E. Observe that rank(M) = d and that the i-th column of M corresponds
to the linear form πi.

The matrix M is a generator matrix of a [n + 1, d ]-linear code C = C(Π).
The columns of M define a K -representable matroid M = M(Π) on the set
of points Q. This matroid depends only on the code C, that is, it does not
depend on the choice of the generator matrix M . In this situation, we say that
M is the matroid associated to the code C and also that the code C is a K -
representation of the matroidM. Observe that different codes can represent the
same matroid. Important properties about the weight distribution of a linear
code can be studied from its associated matroid. Several results on this relation
between matroids and codes are given in [1,6,7,12] and other works.

Besides, the code C defines an ideal linear secret sharing scheme Σi(Π) for
every i ∈ Q. Every codeword of C is in the form (π1(x), . . . , πi(x), . . . , πn+1(x))
and can be seen as a distribution of shares for the secret value πi(x) ∈ K among
the players in Pi = Q−{i}. Observe that the access structure Γi(Π) of the scheme
Σi(Π), which is a K -vector space access structure, consists of all subsets A ⊂ Pi

such that πi ∈ 〈πj : j ∈ A〉. Therefore, A ⊂ Pi is a minimal qualified subset in
that structure if and only if A∪{i} is a circuit of the matroidM(Π). As a conse-
quence, the access structures Γi(Π) are determined by the matroidM(Π). This
connection between ideal secret sharing schemes and matroids, which applies to
non-linear schemes as well, was discovered by Brickell and Davenport [5] and has
been studied afterwards by several authors [2,19,20,21,28,29,30]. It plays a key
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role in one of the main open problems in secret sharing: the characterization of
the access structures of ideal secret sharing schemes.

Actually, non-ideal linear secret sharing schemes can also be represented as
linear codes. In the general case, several columns of the generator matrix are
assigned to every player.

Error correction in linear codes is related to an important property of secret
sharing schemes: the possibility of reconstructing the shared secret value even if
some shares are corrupted.

The different notions of duality that are defined for codes, for matroids and
for access structures are closely related.

Let N be a parity check matrix for the code C = C(Π). That is, N is a
(n−d+1)× (n+1) matrix with rank(N) = n−d+1 and MN� = 0, where N�

denotes the transpose of N . The matrix N is a generator matrix of a [n + 1, n−
d + 1]-linear code C⊥, which is called the dual code of the code C. The code C is
said to be self-dual if C⊥ = C. In this case, 2d = n + 1 and MM� = 0 for every
generator matrix M .

If the linear code C defines a (not necessarily ideal) LSSS with access structure
Γ , then the dual code C⊥ defines a LSSS for the dual access structure Γ ∗ = {A ⊂
P : P −A /∈ Γ}. As a consequence of this fact, λK(Γ ∗) = λK(Γ ) for every access
structure Γ and for every finite field K .

The matroid N associated to the dual code C⊥ is the dual matroid of the
matroid M corresponding to C, that is, the family of bases of N = M∗ is
B(M∗) = {B ⊂ Q : Q−B ∈ B(M)}, where B(M) is the family of bases of M.

Moreover, for every i ∈ Q, if Γi and Γ ′
i are the access structures on the set Pi

that are determined, respectively, by the matroids M and M∗, then Γ ′
i = Γ ∗

i .
Therefore, the dual of a K -representable matroid is also K -representable and
the same applies to K -vector space access structures.

Observe that the matroid M associated to a self-dual code is identically
self-dual, that is, M = M∗. Nevertheless, it is not known whether every repre-
sentable identically self-dual matroid can be represented by a self-dual code.

Duality plays an important role in the study of the multiplicative property
of LSSSs. First of all, an access structure Γ is Q2 if and only if Γ ∗ ⊂ Γ . This
fact and the aforementioned relation between duality in codes and LSSSs are
the key points in the proof of the bound µK(Γ ) ≤ 2λK(Γ ) given in [10]. Besides,
the ideal LSSS defined by a self-dual code is multiplicative and, hence, its access
structure is such that µK(Γ ) = λK(Γ ).

2 Our Results

2.1 On Strongly Multiplicative Linear Secret Sharing Schemes

The first open problem we consider in this paper deals with the efficient con-
struction of strongly multiplicative LSSSs. As we said before, no efficient general
reductions are known for it at all, except for some upper bounds on the minimal
complexity of strongly multiplicative LSSSs in terms of certain threshold cir-
cuits. That is, the existence of a transformation that renders an LSSS strongly
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multiplicative at the cost of increasing its complexity at most polynomially is
an unsolved question.

We shed some light on that problem by proving a new property of strongly
multiplicative LSSSs. Using a suitable generalization of the well-known Berle-
kamp-Welch decoder for Reed-Solomon codes, we show Theorem 1, which is
proved in Section 4, that all strongly multiplicative LSSSs allow for efficient re-
construction of a shared secret in the presence of malicious faults. In this way, we
find an interesting connection between the problem of the strong multiplication
in LSSSs and the existence of codes with efficient decoding algorithms.

Theorem 1. Let s = (s1, . . . , sn) be a full vector of shares for a secret s ∈ K ,
computed according to a strongly multiplicative K -LSSS with access structure Γ
on n players. Let e denote the all zero vector, except where it states the errors
that a set of players A �∈ Γ have introduced in their respective shares. Define
c = s + e. Then the secret s can be recovered from c in time poly(n, log |K|).

2.2 On Ideal Multiplicative Linear Secret Sharing Schemes

The characterization of the access structures of ideal MLSSSs is the second open
problem that is studied in this work. That is, we are interested in determining
which Q2 vector space access structures can be realized by an ideal MLSSS or,
equivalently, for which Q2 access structures there exists a finite field K with
µK(Γ ) = λK(Γ ) = n.

This is a case of the more general problem of determining the cases in which
the factor 2 loss in the construction of MLSSSs given in [10] is necessary. That
is, to find out in which situations the bound µK(Γ ) ≤ 2λK(Γ ) can be improved.

The (d, n)-threshold structures with n ≥ 2d−1 are examples of access struc-
tures that can be realized by an ideal LSSS. Other examples are obtained from
self-dual codes. If the linear code C(Π) is self-dual, then, the ideal LSSSs Σi(Π),
where i ∈ Q, are multiplicative. Therefore, for every i ∈ Q, the vector space
access structure Γi = Γi(Π) is such that µK(Γi) = λK(Γi) = n. Observe that
those access structures are self-dual, that is, Γ ∗

i = Γi.
On the other hand, there exist examples of Q2 access structures Γ such that

λK(Γ ) = n for some finite field K but do not admit any ideal MLSSS over any
finite field. The arguments that are used to prove this fact do not apply if a
self-dual vector space access structure is considered. An infinite family of such
examples will be given in the full version of the paper.

Self-dual access structures coincide with the minimally Q2 access structures,
that is, with the Q2 access structures Γ such that any substructure Γ ′ � Γ is not
Q2. The results in this paper lead us to believe that any self-dual vector space
access structure can be realized by an ideal multiplicative linear secret sharing
scheme and, hence, to state the following open problem. One of the goals of this
paper is to move forward in the search of its solution.

Problem 1. To determine whether there exists, for any self-dual K -vector space
access structure Γ , an ideal multiplicative L-LSSS, being the finite field L an
algebraic extension of K.
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Since µK(Γ ) ≤ 2λK(Γ ) for any Q2 access structure Γ , to study this open
problem seems to have a limited practical interest. Nevertheless, its theoretical
interest can be justified by several reasons.

First, due to the minimality of the Q2 property, self-dual access structures
are an extremal case in the theory of MLSSSs. Moreover, self-duality seems to be
in the core of the multiplicative property. For instance, the construction in [10]
providing the bound µK(Γ ) ≤ 2λK(Γ ) is related to self-dual codes and, hence,
to ideal MLSSSs for self-dual access structures.

Besides, the interest of Problem 1 is increased by the fact that, as we pointed
out before, it can be stated in terms of an interesting open problem about the
relation between Matroid Theory and Code Theory. Namely, by studying how the
connection between codes, matroids and LSSSs applies to multiplicative LSSSs,
we prove in Section 5.1 that Problem 1 is equivalent to the following one.

Problem 2. To determine whether every identically self-dual K -representable
matroid can be represented by a self-dual linear code over some finite field L, an
algebraic extension of K .

Finally, we think that the results and techniques in this paper, and the ones
that possibly will be found in future research on that problem, can provide a
better understanding of the multiplicative property and may be useful to find
new results on the existence of efficient strongly multiplicative LSSSs. In partic-
ular, the study of the characterization of the access structures of ideal strongly
multiplicative LSSSs, which should be also attacked by using Matroid Theory,
may lead to interesting advances on that problem. For instance, one can ob-
serve a remarkable difference in the strong multiplicative case: the minimality
of the Q3 property does not imply any important matroid property comparable
to self-duality.

We say that a matroid is self-dually K -representable if it can be represented
by a self-dual code over the finite field K . Any self-dually representable matroid
is identically self-dual and representable. The open problem we consider here is
to decide whether the reciprocal of this fact is true.

The uniform matroids Ud,n and the Z2-representable matroids are the only
families of matroids for which it is known that all identically self-dual matroids
are self-dually representable.

There exist several methods to combine some given matroids into a new one.
The sum, which is defined in Section 5.3, is one of them. We show in Section 5.3
that the the sum of two self-dually representable matroids is equally self-dually
representable and that Problem 2 can be restricted to indecomposable matroids,
that is, matroids that are not a non-trivial sum of two other matroids.

In order to take the first steps in solving Problem 2, we introduce the concept
of flat-partition of a matroid, which is defined in Section 5.3. On one hand,
we use the flat-partitions to characterize in Proposition 4 the indecomposable
identically self-dual matroids. On the other hand, the number of flat-partitions
provide a useful classification of identically self-dual matroids. The identically
self-dual matroids that do not admit any flat-partition are exactly the uniform
matroids Ud,2d, which, as we said before, are self-dually representable.
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We prove in Theorem 2 that the identically self-dual matroids with exactly
one flat-partition are self-dually representable as well. These matroids are pre-
cisely the identically self-dual bipartite matroids. In a bipartite matroid , the set
of points is divided in two parts and all points in each part are symmetrical.
The access structures defined by these matroids are among the bipartite ac-
cess structures , which were introduced in [23]. As a consequence of the results
in [23], bipartite matroids are representable. Bipartite matroids have been inde-
pendently studied in [20,21], where they are called matroids with two uniform
components .

Bipartite access structures are also interesting for their applications because
they appear in a natural way in situations in which the players are divided into
two different classes. They are closely related to other families of access structures
that have practical interest as well: the hierarchical access structures [30] and
the weighted threshold access structures [2,26].

Theorem 2. Let M be an identically self-dual bipartite matroid. Then, M can
be represented by a self-dual linear code over some finite field K . Equivalently,
every self-dual bipartite vector space access structure can be realized by an ideal
MLSSS over some finite field K .

Therefore, the bipartite matroids form another family of matroids for which
all identically self-dual matroids are self-dually representable. Most of the iden-
tically self-dual matroids in this family are indecomposable. So, the existence of
self-dual codes that represent them could not be derived from other matroids
that were known to be self-dually representable.

3 Multiplicative Linear Secret Sharing Schemes

Some definitions and basic results about multiplicative linear secret sharing
schemes are given in the following.

We begin by recalling some notation and elementary facts about bilinear
forms. If α, β : E → K are linear forms, α ⊗ β denotes the bilinear form α ⊗
β : E ×E → K defined by (α⊗ β)(x,y) = α(x)β(y). These bilinear forms span
the vector space of all bilinear forms on E, which is denoted by E∗⊗E∗ and has
dimension d2, where d = dimE. Actually, if {e1, . . . , ed} is a basis of E∗, then
{ei ⊗ ej : 1 ≤ i, j ≤ d} is a basis of E∗ ⊗ E∗. Since E∗∗ = E, the vector space
of the bilinear forms on E∗ is E ⊗ E, which is spanned by {x ⊗ y : x,y ∈ E}.
Finally, observe that (E⊗E)∗ = E∗⊗E∗. This is due to the fact that any bilinear
form α⊗ β ∈ E∗ ⊗E∗ induces a linear form α⊗ β : E ⊗E → K , determined by
(α⊗ β)(x ⊗ y) = α(x)β(y).

If Σ = Σn+1(π1, . . . , πn, πn+1) is an LSSS and A ⊂ Pn+1, we notate ΣA for
the natural restriction of Σ to the players in A, that is, the scheme defined by
the linear mappings ((πi)i∈A, πn+1). The next definition deals with general (not
necessarily ideal) LSSSs.
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Definition 1. Let Σ = Σn+1(π1, . . . , πn, πn+1) be a K -LSSS with access struc-
ture Γ . The scheme Σ is said to be multiplicative if, for every i ∈ Pn+1 =
{1, . . . , n}, there exists a bilinear form φi : Ei × Ei → K such that (πn+1 ⊗
πn+1)(x1,x2) =

∑n
i=1 φi(πi(x1), πi(x2)) for any pair of vectors x1,x2 ∈ E. We

say that Σ is strongly multiplicative if the scheme ΣPn+1−A is multiplicative for
every A ⊂ Pn+1 with A /∈ Γ .

It is not difficult to check that the access structure of amultiplicativeLSSSmust
beQ2. Equally, strongly multiplicative LSSSs only exist forQ3 access structures.

Let Σ = Σn+1(Π) be an ideal LSSS. Every bilinear form φ : K×K → K can
be defined by φ(x, y) = λxy for some λ ∈ K. Therefore, Σ is multiplicative if
and only if there exist values λi ∈ K such that πn+1⊗πn+1 =

∑n
i=1 λi(πi⊗πi).

Equally, Σ is strongly multiplicative if and only if, for every A /∈ Γn+1(Π), there
exist values λi,A ∈ K such that πn+1 ⊗ πn+1 =

∑
i∈Pn+1−A λi,A(πi ⊗ πi). The

values λi or λi,A form the recombination vector introduced in [10].
Since the bilinear forms πi ⊗ πi can be seen as vectors in (E ⊗ E)∗, we can

consider the LSSS Σµ
n+1(Π) = Σn+1(π1 ⊗ π1, . . . , πn ⊗ πn, πn+1 ⊗ πn+1), which

has access structure Γ µ
n+1(Π) = Γn+1(π1 ⊗ π1, . . . , πn ⊗ πn, πn+1 ⊗ πn+1). That

is, A ∈ Γ µ
n+1(Π) if and only if πn+1⊗πn+1 is a linear combination of the vectors

{πi ⊗ πi : i ∈ A}.

Lemma 1. Let Σ = Σn+1(Π) be an ideal LSSS. Then, the following properties
hold.

1. Γ µ
n+1(Π) ⊂ Γn+1(Π).

2. Σ is multiplicative if and only if Γ µ
n+1(Π) �= ∅.

3. Σ is strongly multiplicative if and only if (Γn+1(Π))∗ ⊂ Γ µ
n+1(Π).

4 Reconstruction of a Secret in the Presence of Errors

In any LSSS with a Q3 access structure Γ , unique reconstruction of the secret
from the full set of n shares is possible, even if the shares corresponding to an
unqualified set A /∈ Γ are corrupted. Nevertheless, it is not known how to do that
efficiently. In this section we prove Theorem 1, which implies that, if the LSSS
is strongly multiplicative, there exists an efficient reconstruction algorithm.

We only consider here the ideal LSSS case. Proofs extend easily to the general
case, at the cost of some notational headaches.

First we review the familiar case of Shamir’s secret sharing scheme, where
t+1 or more shares jointly determine the secret, and at most t shares do not even
jointly contain any information about the secret. Exactly when t < n

3 , unique
reconstruction of the secret from the full set of n shares is possible, even if at
most t shares are corrupted. This can be done efficiently, for instance by the
Berlekamp-Welch decoding algorithm for Reed-Solomon codes.

Let p be a polynomial of degree at most t, and define p(0) = s. Let s be the
vector with si = p(i), i = 1, . . . , n, and let e be a vector of Hamming-weight at
most t. Write c = s + e. Given c only, compute non-zero polynomials F and E
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with deg(F ) ≤ 2t and deg(E) ≤ t, such that F (i) = ci · E(i), for i = 1, . . . , n.
This is in fact a system of linear equations in the coefficients of F and E, and it
has a non-trivial solution. Actually, for every polynomial E such that E(i) = 0
whenever the i-th share is corrupted, that is, ci �= ei, the polynomials F = pE
and E are a solution to the system. Moreover, from Lagrange’s Interpolation
Theorem, all solutions are in this form. Therefore, for all F , E that satisfy the
system, it holds that E(i) = 0 if the i-th share is corrupted. The corrupted shares
are then deleted by removing all ci with E(i) = 0 from c. All that remains are
incorrupted shares, that is, cj = sj , and there will be more than t of those left.

Below we present an efficient reconstruction algorithm for the more general
situation where the secret is shared according to a strongly multiplicative LSSS
with a Q3 access structure Γ . We do this by appropriately generalizing the
Berlekamp-Welch algorithm. Note that such generalizations cannot generally
rely on Lagrange’s Interpolation Theorem, since LSSSs are not in general based
on evaluation of polynomials.

Pellikaan [24] has previously generalized the Berlekamp-Welch algorithm and
has shown that his generalized decoding algorithm applies to a much wider class
of error correcting codes. Technically, our generalization bears some similarity
to that of [24].

Strong multiplication was first considered in [10] and was used to construct
efficient multi-party computation protocols with zero error in the active adver-
sary model. More precisely it is used in the Commitment Multiplication Protocol
to ensure that commitments for a, b and c are consistent in the sense that ab = c
with zero probability to cheat.

We now prove Theorem 1. Let Π = (π1, . . . , πn, πn+1) be a sequence of
linear forms πi : E → K such that Σ = Σn+1(Π) is a strongly multiplicative
LSSS with Q3 access structure Γ = Γn+1(Π). Let us consider also the scheme
Σµ = Σµ

n+1(Π) = Σn+1(π1⊗π1, . . . , πn⊗πn, πn+1⊗πn+1). From Lemma 1, the
access structure of this scheme, Γ µ = Γ µ

n+1(Π), is such that Γ ∗ ⊂ Γ µ.
Let us fix a basis for E and the induced basis of E ⊗ E. Let M and M̂ be

the matrices associated, respectively, to the schemes Σ and Σµ. Observe that,
if d = dimE, the matrix M has d rows and n + 1 columns while M̂ has d2 rows
and n + 1 columns.

If u,v ∈ Kk, then u ∗ v denotes the vector (u1v1, . . . , ukvk). Observe that

(x⊗ y)M̂ = ((πi ⊗ πi)(x⊗ y))1≤i≤n+1 = (πi(x)πi(y))1≤i≤n+1 = (xM) ∗ (yM)

for every pair of vectors x,y ∈ E.
Let us consider s′ = (s1, . . . , sn, sn+1) = xM . Then, s = (s1, . . . , sn) is a full

set of shares for the secret sn+1 = πn+1(x). Let A ⊂ Pn+1 be a non-qualified
subset, that is, A /∈ Γ . Let e = (e1, . . . , en) be a vector with ei = 0 for every
i /∈ A. Write c = (c1, . . . , cn) = s + e. Given only c, the secret sn+1 is recovered
efficiently as follows.

Let N̂ and N be the matrices that are obtained, respectively, from M̂ and
M by removing the last column. Observe that c = xN + e. Let us consider the
system of linear equations
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ŷN̂ = c ∗ (yN)
πn+1(y) = 1

where the unknowns are the d2 coordinates of the vector ŷ ∈ E ⊗ E and the d
coordinates of the vector y ∈ E. We claim that this system of linear equations
always has a solution and that sn+1 = (πn+1 ⊗ πn+1)(ŷ) for every solution
(ŷ,y). Therefore, the secret sn+1 can be obtained from c by solving that system
of linear equations.

This is argued as follows. Note that (ŷ,y) is a solution if and only if (ŷ −
x ⊗ y)N̂ = e ∗ (yN). Since A /∈ Γ , there exists a vector z ∈ E such that
πn+1(z) = 1 while πi(z) = 0 for every i ∈ A. Observe that (x⊗z, z) is a solution
for every vector z ∈ E in that situation. Indeed, e ∗ (zN) = 0, because zN
is zero where e is non-zero. Let (ŷ,y) be an arbitrary solution and consider
(ŷ−x⊗y)M̂ = (t1, . . . , tn, tn+1). Then, (t1, . . . , tn) are shares of the secret tn+1
according to the LSSS Σµ. Since (t1, . . . , tn) = e ∗ (yN), we get that ti = 0 for
every i ∈ Pn+1 −A and, hence, tn+1 = 0 because Pn+1 −A ∈ Γ ∗ ⊂ Γ µ. Finally,
(πn+1⊗πn+1)(ŷ−x⊗y) = tn+1 = 0 and (πn+1⊗πn+1)(ŷ) = (πn+1⊗πn+1)(x⊗
y) = πn+1(x)πn+1(y) = sn+1. �

A positive application of Theorem 1 is as follows. Using a strongly multiplica-
tive LSSS, the Commitment Multiplication Protocol (CMP) from [10] is directly
a Verifiable Secret Sharing scheme (VSS). This saves a multiplicative factor n in
the volume of communication needed, since the general reduction from VSS to
CMP is not needed in this case.

5 Ideal Multiplicative Linear Secret Sharing Schemes,
Self-dual Linear Codes and Identically Self-dual
Matroids

5.1 Equivalence Between the Two Problems

A matroid M is said to be connected if, for every two different points i, j ∈ Q,
there exists a circuit C with i, j ∈ C. In a connected access structure, every
participant is at least in a minimal qualified subset. If M(Π) is a connected
matroid, all access structures Γi(Π) are connected. Moreover, as a consequence
of [22, Proposition 4.1.2], if one of the access structures Γi(Π) is connected,
then M(Π) is connected and, hence, all the other access structures Γj(Π) are
connected.

We say that a linear code C with generator matrix M is almost self-dual if
there exists a non-singular diagonal matrix D = diag(λ1, . . . , λn, λn+1) such that
MD is a parity check matrix.

Lemma 2. Let Π = (π1, . . . π2d) be a sequence of linear forms in E∗ = (Kd)∗

such that the matroid M(Π) is identically self-dual and connected. In the space
S(E) of the symmetric bilinear forms on E, the vectors {πj ⊗ πj : j ∈ Q−{i}}



338 R. Cramer et al.

are linearly independent for any i ∈ Q. Besides, the code C(Π) is almost self-dual
if and only if the vectors {πj ⊗ πj : j ∈ Q} are linearly dependent.

Proof. Let us suppose that the vectors {πj ⊗ πj : 1 ≤ j ≤ 2d − 1} are linearly
dependent. Then, we can suppose that π1 ⊗ π1 =

∑2d−1
i=2 λi(πi ⊗ πi). The access

structure Γ1(Π) is self-dual and connected. Then, there exists a minimal qualified
subset A ⊂ P1 such that 2d ∈ A. We can suppose that A = {r+1, . . . , 2d−1, 2d}.
Since Γ1(Π) is self-dual, P1 −A = {2, . . . , r} is not qualified. Then, there exists
a vector x ∈ E such that π1(x) = 1 and πi(x) = 0 for every i = 2, . . . , r.
Therefore, π1 =

∑2d−1
i=r+1(λiπi(x))πi, a contradiction with the fact that A =

{r+1, . . . , 2d−1, 2d} is a minimal qualified subset of the access structure Γ1(Π).
Observe that

∑2d
i=1 λi(πi ⊗ πi) = 0 if and only if the diagonal matrix D =

diag(λ1, . . . , λ2d−1, λ2d) is such that MDM� = 0. �

By taking into account that a non-connected matroid can be divided into
connected components [22, Proposition 4.1.2], the equivalence between Prob-
lems 1 and 2 is an immediate consequence of the following two propositions. We
skip the proof of the first one.

Proposition 1. Let M be an identically self-dual representable connected ma-
troid on the set of points Q = {1, . . . , 2d} and let Γ2d(M) be the access structure
induced by M on the set P2d. Then Γ2d(M) can be realized by an ideal multi-
plicative K -LSSS if and only if M can be represented by an almost self-dual code
C over the field K.

Proposition 2. Let M be an identically self-dual matroid that is represented,
over the finite field K , by an almost self-dual code. Then, there exists a finite
field L , which is an algebraic extension of K , such that M is represented by a
self-dual code over L .

Proof. Let C be an almost self-dual code over a finite field K . Let M be a
generator matrix and D = diag(λ1, . . . , λ2d−1, λ2d) the non-singular diagonal
matrix such that MD is a parity check matrix. Let us consider, in an extension
field L ⊃ K , the diagonal matrix D1 = diag(

√
λ1, . . . ,

√
λ2d−1,

√
λ2d). Then, the

matrix M1 = MD1 is a generator matrix of a self-dual code C1. The matroids
associated to C and to C1 are equal. �

5.2 Known Families of Self-dually Representable Matroids

There are two families of matroids for which it is known that all identically
self-dual matroids are self-dually representable.

The uniform matroids are the first example. A uniform matroid Ud,n is iden-
tically self-dual if and only if n = 2d. The access structure Γ2d(Ud,2d) is the
threshold structure Γd,2d−1, which can be realized by an ideal multiplicative K-
LSSS for any finite field K with |K | ≥ 2d. Namely, the Shamir’s polynomial
scheme. Therefore, the matroid Ud,2d can be represented by an almost self-dual
code over any finite field K with |K | ≥ 2d.



On Codes, Matroids and Secure Multi-party Computation from LSSS 339

The second family is formed by the Z2-representable matroids. For any of
these matroids M, there exists a unique Z2-representation. That is, there ex-
ists a unique linear code C over Z2 whose associated matroid is M. If M is
an identically self-dual Z2-representable matroid, the codes C and C⊥ are Z2-
representations of M and, hence, C = C⊥. Therefore, all identically self-dual
Z2-representable matroids are self-dually Z2-representable. For instance, an iden-
tically self-dual binary matroid M on the set Q = {1, . . . , 8} is obtained from
the eight vectors in the set {(v1, v2, v3, v4) ∈ Z4

2 : v1 = 1}. All access structures
that are obtained from M are isomorphic to the access structure defined by the
Fano Plane by considering the points in the plane as the players and the lines
as the minimal qualified subsets [18]. Therefore, this access structure can be
realized by an ideal multiplicative Z2-LSSS.

5.3 Flat-Partitions and Sum of Matroids

We recall next the definition and some properties of the sum of two matroids.
More information on that topic can be found in [22, Chapter 7].

Let M1 and M2 be connected matroids on the sets Q1 and Q2, respectively.
Let B1 and B2 be their families of bases. Let us suppose that Q1 ∩ Q2 = ∅
and let us take two points q1 ∈ Q1 and q2 ∈ Q2. The sum of M1 and M2 at
the points q1 and q2, which will be denoted by M = M1 ⊕(q1,q2) M2, is the
matroid on the set of points Q = (Q1 ∪ Q2) \ {q1, q2} whose family of bases
is B = B′

1 ∪ B′
2, where B′

1 = {B1 ∪ C2 ⊂ Q : B1 ∈ B1, C2 ∪ {q2} ∈ B2} and
B′

2 = {C1 ∪B2 ⊂ Q : C1 ∪ {q1} ∈ B1, B2 ∈ B2}.
It is not difficult to check that B is the family of bases of a matroid and that

M is a connected matroid with dimM = dimM1 + dimM2 − 1. The proof of
the following proposition will be given in the full version of the paper.

Proposition 3. The matroid M = M1 ⊕(q1,q2) M2 is identically self-dual if
and only if both M1 and M2 are identically self-dual.

We say that a sum of matroids M1 ⊕M2 is trivial if one of the matroids
Mi is the uniform matroid U1,2. In this case, M1 ⊕ U1,2 ∼= M1. A matroid M
is indecomposable if it is not isomorphic to any non-trivial sum of matroids.

Let M be a matroid on a set of points Q and let (X1, X2) be a partition of
Q. We say that (X1, X2) is a flat-partition of M if X1 and X2 are flats of M.
The next proposition, which is a consequence of the results in [22, Chapter 7],
provides a characterization of indecomposable identically self-dual matroids in
terms of their flat-partitions

Proposition 4. Let M be a connected identically self-dual matroid. Then M
is indecomposable if and only if there is no flat-partition (X1, X2) of M with
rank(X1) + rank(X2) = dim(M) + 1.

As a consequence of Proposition 3 and the next two propositions, whose
proofs will be given in the full version of the paper, the search for an answer to
Problem 2 can be restricted to indecomposable matroids.



340 R. Cramer et al.

Proposition 5. LetM = M1⊕(q1,q2)M2 be a non-trivial sum of two identically
self-dual matroids. Then M is K -representable if and only if both M1 and M2
are K -representable.

Proposition 6. Let M1 and M2 be two matroids that are represented over a
finite field K by almost self-dual codes. Then, the sum M = M1⊕(q1,q2)M2 can
be represented over K by an almost self-dual code. Besides, if M1 and M2 are
self-dually K -representable, the sum M is self-dually L -representable, where L
is an algebraic extension of K with (K : L) ≤ 2.

5.4 Identically Self-dual Bipartite Matroids

It is not hard to see that the uniform matroid Ud,2d on the set Q = {1, . . . , 2d}
does not admit any flat-partition. As a direct cosequence of the next lemma, any
non-uniform identically self-dual matroid admits at least one flat partition.

Lemma 3. Let M be an identically self-dual matroid and let C ⊂ Q be a circuit
of M with rank(C) < dim(M). Let us consider the flat X1 = 〈C〉 and X2 =
Q \X1. Then, (X1, X2) is a flat-partition of M.

Proof. We have to prove that X2 is a flat. Otherwise, there exists x ∈ X1∩〈X2〉.
Since C is a circuit, there exists a basis B1 of X1 with x /∈ B1. Besides, there
exists C2 ⊂ X2 such that B = B1 ∪C2 is a basis of M. Let us consider the basis
B′ = Q \B and let us take B2 = B′ ∩X2.

We are going to prove that 〈B2〉 = X2. If not, there exists y ∈ X2 \ 〈B2〉.
Observe that y ∈ C2 and that B2 ∪ {y} is an independent set. Therefore, Q \
(B2 ∪ {y}) = X1 ∪ (C2 \ {y}) is a spanning set. Since 〈B1〉 = X1, we have that
B′′ = B1 ∪ (C2 \ {y}) is equally a spanning set, a contradiction with B′′ � B.

Therefore, x ∈ 〈B2〉, a contradiction with B2 ∪ {x} ⊂ B′. �

As said before, any identically self-dual uniform matroid Ud,2d can be repre-
sented by a self-dual code C over some finite field K . By the above observation,
this means that the identically self-dual matroids that do not admit any flat-
partition are self-dually representable.

A natural question arising at this point is whether the same occurs with
the identically self-dual matroids that admit exactly one flat-partition. Proposi-
tion 8 shows that these matroids coincide with the identically self-dual bipartite
matroids.

Definition 2. Let d, r1 and r2 be any integers such that 1 < ri < d < r1 + r2.
Let us take Q = {1, . . . , n, n+1} and a partition (X1, X2) of Q with |Xi| ≥ ri. We
define the matroid M = M(X1, X2, r1, r2, d) by determining its bases: B ⊂ Q
is a basis of M if and only if |B| = d and d − rj ≤ |B ∩ Xi| ≤ ri, where
{i, j} = {1, 2}. Observe that (X1, X2) is a flat-partition of Q with rank(Xi) = ri.
Any matroid in this form is said to be bipartite.

We skip the proof of the next proposition, which determines which bipartite
matroids are identically self-dual.
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Proposition 7. Let M = M(X1, X2, r1, r2, d) be a bipartite matroid. Then, M
is identically self-dual if and only if |Q| = 2d and |X1| = d + r1 − r2.

Proposition 8. Let M be a connected identically self-dual matroid. Then, M
is bipartite if and only if it admits exactly one flat-partition.

Proof. Let us suppose that M is bipartite, that is, M = M(X1, X2, r1, r2, d).
We have to prove that (X1, X2) is the only flat-partition of M. Let (Y1, Y2)
be a flat-partition of M. We can suppose that |Y1| ≥ d = dim(M). If |Y1 ∩
Xi| ≥ d − rj for all {i, j} = {1, 2}, there exists B ⊂ Y1 such that |B| = d
and d − rj ≤ |B ∩Xi| ≤ ri. Since Y1 does not contain any basis of M, we get
|Y1∩X1| < d−r2 or |Y1∩X2| < d−r1. Without loss of generality, we assume that
|Y1∩X2| < d−r1. Then, |Y1∩X1| > r1 because |Y1∩X1|+|Y1∩X2| ≥ d. Besides,
since d+r2−r1 = |Y1∩X2|+|Y2∩X2|, we have that |Y2∩X2| > r2. Observe that,
for i = 1, 2, any subset of ri points in Xi is independent and, hence, Xi ⊂ Yi

because Yi is a flat and contains a basis of Xi. Therefore, (X1, X2) = (Y1, Y2).
Let us suppose now that (X1, X2) is the only flat-partition of M. We are

going to prove that M is the bipartite matroid M(X1, X2, r1, r2, d), where ri =
rank(Xi) and d = dim(M). It is not difficult to check that 1 < ri < d < r1 + r2
and that d− rj ≤ |B ∩Xi| ≤ ri if B is a basis of M and {i, j} = {1, 2}. We only
have to prove that any set B ⊂ Q such that |B| = d and d− rj ≤ |B ∩Xi| ≤ ri

for {i, j} = {1, 2} is a basis of M. Let us suppose that, on the contrary, there
exists such a subset B that is not a basis. Then, there exists a circuit C ⊂ B. Let
us consider Y1 = 〈C〉 and Y2 = Q\Y1. From Lemma 3, (Y1, Y2) is a flat-partition
ofM. The proof is concluded by showing that this flat-partition is different from
(X1, X2). If Y1 = Xi for some i = 1, 2, we have C ⊂ Xi. Since |C| ≤ ri and C is
a circuit, rank(Y1) < ri, a contradiction. �

The access structures defined by bipartite matroids were first considered
in [23], where the authors proved that they are vector space access structures,
that is, they admit an ideal LSSS. As a direct consequence of this fact, any
bipartite matroid is representable.

Theorem 2 extends this result of [23] by showing that, additionally, the iden-
tically self-dual bipartite matroids are self-dually representable. This is done by a
refinement of the approach of [23] based on techniques from Algebraic Geometry.

From Propositions 4, 7 and 8, if r1 + r2 − d > 1, the identically self-dual
bipartite matroid M = M(X1, X2, r1, r2, d) is indecomposable. Therefore, we
found a new large family of identically self-dual matroids giving an affirmative
answer to Problem 2 and, hence, a new large family of self-dual vector space
access structures for which Problem 1 has a positive answer.

The proof of Theorem 2, which is quite long and involved, will be given
in the full version of the paper. In the following, we present a brief sketch of
it. Given an identically self-dual bipartite matroid M = M(X1, X2, r1, r2, d),
one has to prove the existence of a finite field K and a set of K -linear forms
{π1, . . . , π2d} satisfying two requirements: first, they must be a K -representation
of the matroidM and, second, the vectors {πi⊗πi : 1 ≤ i ≤ 2d}must be linearly
dependent.
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In order to prove the existence of those linear forms, we conveniently choose
some fixed vectors {π1, . . . , πn1} corresponding to the points in the flat X1 and
a family of vectors {w(x) : x ∈ K} ⊂ (Kd)∗ depending on one parameter.
Afterwards, we use some Algebraic Geometry to prove that there exist vectors
πn1+i = w(β−1

i ), where i = 1, . . . , n2 = |X2|, such that the vectors {π1, . . . , π2d}
have the required properties. Specifically, the second requirement above is sat-
isfied if the point (β1, . . . , βn2) is a zero of a system of polynomial equations on
n2 variables. These equations define an algebraic variety M in Z

n2

p , where Zp is
the algebraic closure of the finite field Zp. If p is large enough, the variety M
is irreducible [25]. The first requirement is verified if other polynomials on the
same variables are not zero in the point (β1, . . . , βn2). Every one of these equa-
tions defines and algebraic variety Vj in Z

n2

p . We prove that M is not a subset of
any of the varieties Vj and, since M is irreducible, this implies M �⊂

⋃
Vj [17].

Therefore there exists a point (β1, . . . , βn2) ∈ M − (
⋃

Vj) ⊂ Z
n2

p . Finally, we
take a finite field K, an algebraic extension of Zp containing all values βi, and
over that field, the linear forms πn1+i = w(β−1

i ).
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Abstract. A black-box secret sharing scheme (BBSSS) for a given access
structure works in exactly the same way over any finite Abelian group,
as it only requires black-box access to group operations and to random
group elements. In particular, there is no dependence on e.g. the structure
of the group or its order. The expansion factor of a BBSSS is the length
of a vector of shares (the number of group elements in it) divided by the
number of players n.

At CRYPTO 2002 Cramer and Fehr proposed a threshold BBSSS
with an asymptotically minimal expansion factor Θ(log n).

In this paper we propose a BBSSS that is based on a new paradigm,
namely, primitive sets in algebraic number fields. This leads to a new BB-
SSS with an expansion factor that is absolutely minimal up to an additive
term of at most 2, which is an improvement by a constant additive factor.

We provide good evidence that our scheme is considerably more ef-
ficient in terms of the computational resources it requires. Indeed, the
number of group operations to be performed is Õ(n2) instead of Õ(n3)
for sharing and Õ(n1.6) instead of Õ(n2.6) for reconstruction.

Finally, we show that our scheme, as well as that of Cramer and Fehr,
has asymptotically optimal randomness efficiency.

1 Introduction

The concept of secret sharing was introduced independently by Shamir [12] and
by Blakley [1] as a means to protect a secret simultaneously from exposure and
from being lost. It allows to share the secret among a set of n participants, in such
a way that any coalitions of at least t+1 participants can reconstruct the secret
(completeness) while any t or fewer participants have no information about it
(privacy). The work of Shamir and Blakley spawned a tremendous amount of
research [15].

Of particular interest to us is black-box secret sharing, introduced by Desmedt
and Frankel [4]. A black-box secret sharing scheme is distinguished in that it
� This author is partially supported by the EPSRC and by the Commission of Eu-

ropean Communities through the IST program under contract IST-2002-507932
ECRYPT.

V. Shoup (Ed.): Crypto 2005, LNCS 3621, pp. 344–360, 2005.
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works over any finite Abelian group and requires only black-box access to the
group operations and to random group elements. The distribution matrix and the
reconstruction vectors are defined independently of the group from which the se-
cret is sampled, and completeness and privacy are guaranteed to hold regardless
of which group is chosen. Simple cases are t = 0 where each participant is given a
copy of the secret, and t = n−1 where a straightforward additive sharing suffices.
We will henceforth assume that 0 < t < n− 1 to exclude these trivial cases.

The original motivation for looking at black-box secret sharing was their ap-
plicability to threshold RSA. Although threshold RSA can nowadays be much
more conveniently dealt with using Shoup’s threshold RSA technique [13] (or
in the proactive case using the techniques of Frankel et al. [7]), black-box se-
cret sharing still remains a useful primitive with several applications such as
black-box ring multiparty computation [3] or threshold RSA with small pub-
lic exponent (in which case Shoup’s technique fails), and it may very well be
relevant to new distributed cryptographic schemes, for instance based on class
groups. Furthermore, this problem has turned into an interesting cryptographic
problem in its own right.

The average number of group elements handed out to a participant in order
to share a single group element is known as the expansion factor. The expan-
sion factor expresses the bandwidth taken up by the scheme and is therefore an
important property of the scheme. Desmedt and Frankel [4] proposed a scheme
with expansion factor linear in the number n of participants. Their scheme is
based on finding an invertible Vandermonde determinant over a cyclotomic num-
ber field. In subsequent works some improvements to the expansion factor were
made, but all within a constant factor [5,10].

At Crypto 2002, Cramer and Fehr [2] used a new approach based on finding
pairs of co-prime Vandermonde determinants over low degree integral extensions
of Z. This results in black-box secret sharing schemes with logarithmic expansion
factor. They also show that this is asymptotically optimal by proving a tight
lower bound. In fact, they prove that the expansion factor of their scheme is
minimal up to an additive term of at most three.1

We improve these results on black-box secret sharing in several ways. We
describe a novel technique for constructing black-box secret sharing schemes, by
in a way combining the advantages of both approaches. Briefly, our approach re-
quires to find one primitive Vandermonde determinant over a low degree integral
extension of Z. A Vandermonde determinant is primitive in an integral extension
if its only rational integer divisors are −1, +1. This allows us to further reduce
the gap between the expansion factor and the lower bound by one. By using a
slight tweak which applies very generally to Shamir-like schemes, the expansion
factor drops one more in case the number of participants is a power of two.2

1 Note that Fehr [6, Corollary 4.1] incorrectly claims an additive term of at most two.
2 This tweak is interesting in its own right: it allows one to do a Shamir-like secret

sharing over a field F of size |F | ≥ n, rather than |F | > n. Yet—although we are
not aware of it being mentioned elsewhere in the literature—we dare not claim its
novelty.
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We also give evidence that the new approach not only leads to a scheme with
(slightly) improved bandwidth, but also with significantly improved computa-
tional complexity. Indeed, it appears, and we can confirm this for all practical
values of n, that sharing a group element with our scheme requires Õ(n2) and
reconstructing the secret from the shares Õ(n1.6) group operations, in contrast
to Õ(n3) respectively Õ(n2.6) or more for previous schemes. At present there is
no such proof for general n.

Finally, we address the randomness complexity of black-box secret sharing,
i.e., the number of random group elements that need to be sampled to share a
group element. We prove the lower bound Ω(t · lg n), which meets the random-
ness complexity of our (as well as the scheme from [2]) black-box secret sharing
scheme and hence shows that these schemes are also optimal with respect to
their randomness complexity. We would like to point out that recently a sim-
ilar lower bound has been proven in [9]. However, the proof given seems a bit
vague as it makes use of a better lower bound result on the expansion factor of
black-box secret sharing schemes than what can be proven.

The paper is organized as follows. In the following Section 2, we give some
definitions and known results regarding black-box secret sharing, and in Section 3
we describe a framework on which previous as well as our new black-box secret
sharing scheme are based. In Section 4, we then briefly describe the schemes
from [4] and [2], before we discuss our new approach in Section 5. Section 6 is
dedicated to the lower bound on the randomness complexity before we conclude
in Section 7.

2 Definitions and Known Results

Throughout this section let n and t < n be non-negative integers. Informally,
in a black-box secret sharing scheme the shares are computed from the secret
and from random group elements by solely using the group operations addition
and subtraction (considering the group to be additive), i.e., by taking Z-linear
combinations of the secret and random group elements. Similarly, the secret is
reconstructed by taking an appropriate Z-linear combination of the shares. Addi-
tionally, the coefficients for these linear combinations are designed independently
of and correctness and privacy hold regardless of the group to which the scheme
is applied. This leads to the following formal definition due to [2].

We first introduce the notion of a labeled matrix. A labeled matrix consists of
a matrix M ∈ Rd×e over some given ring R, together with a surjective function
ψ : {1, . . . , d} → {1, . . . , n}. We say that the j-th row of M is labeled by ψ(j). For
∅ �= A ⊆ {1, . . . , n}, MA ∈ RdA×e denotes the restriction of M to those rows that
are labeled by an i ∈ A. Similarly, for an arbitrary d-vector x = (x1, . . . , xd) (over
a possibly different domain), xA denotes the restriction of x to those coordinates
xj with ψ(j) ∈ A. In order to simplify notation, we write Mi and xi instead of
MA and xA in case A = {i}, and we typically do not make ψ explicit.

Definition 1 (Black-Box Secret Sharing). A labeled matrix M ∈ Zd×e over
the integers is a black-box secret sharing scheme for n and t if the following holds.
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For an arbitrary finite Abelian group G and an arbitrarily distributed s ∈ G let
g = (g1, . . . , ge)T ∈ Ge be drawn uniformly at random subject to g1 = s only.
Define the share vector as s = Mg (where si is given to the i-th participant).
Then, for any nonempty subset A ⊆ {1, . . . , n}:

i. (Completeness) If |A| > t then there exists λ(A) ∈ ZdA , only depending on
M and A, such that sT

A · λ(A) = s with probability 1.
ii. (Privacy) If |A| ≤ t then sA contains no Shannon information on s.

Note that a black-box secret sharing scheme is linear by definition (essentially
because a black-box group allows only linear operations).

Definition 2 (Expansion Factor and Randomness Complexity). The ex-
pansion factor η of a black-box secret sharing scheme M ∈ Zd×e for n and t is
defined by η = d/n, and the randomness complexity ρ by ρ = e− 1.

The expansion factor of a black-box secret sharing scheme measures the average
number of group elements each participant receives (and need not be integral).
For the trivial cases t = 0 and t = n− 1 the expansion factor 1 can be achieved.
The randomness complexity determines the number of random group elements
that need to be sampled to share a secret. The number of group operations
during dealing and reconstructing depends both on d and e and on the size of
the elements in the matrix M (optimizing the number of group operations given
M is essentially an addition chain problem).

Theorem 1 ([2]). Let M ∈ Zd×e be a labeled matrix. Define ε = (1, 0, . . . , 0) ∈
Ze. Then M is a black-box secret sharing scheme for n and t if and only if for
every nonempty A ⊆ {1, . . . , n} the following holds.

i. (Completeness) If |A| > t then ε ∈ im(MT
A ).

ii. (Privacy) If |A| ≤ t then there exists κ = (κ1, . . . , κe)T ∈ ker(MA) with
κ1 = 1.

Note the difference between this definition and that of monotone span programs
(which is equivalent with linear secret sharing over finite fields). Whereas in the
latter case the completeness condition and the privacy condition are character-
ized by “to span or not to span”, over Z and in the context of blackbox secret
sharing this is slightly more subtle. See [2].

In [2] the above theorem is used to prove a lower bound on the expansion
factor by looking at an instantiation of any given black-box secret sharing scheme
over the group F2 and borrowing arguments from Karchmer and Wigderson [8].
The upper bound in the theorem below follows from the explicit construction of
a black-box secret sharing scheme in [2].

Theorem 2 ([2]). The minimal expansion factor η of a black-box secret sharing
scheme for n and t with 0 < t < n− 1 satisfies

�lg n� − 1 < lg
n + 3

2
≤ η ≤ �lg(n + 1)�+ 1 = �lg n�+ 2 .

If t = 1 then it even holds that η ≥ lg n.
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3 Integral Extensions andWeak Black-Box Secret Sharing

Let R be a ring of the form R = Z[X ]/(f) where f is a monic irreducible
polynomial in Z[X ] of degree m. We call such a ring an integral extension (of
degree m).3 Note that R is a free Z-module4 with basis 1̄, X̄, . . . , X̄m−1 (the
residue classes of 1, X, . . . , Xm−1 modulo f(X)). Furthermore, let G be a finite
Abelian (additive) group. Such a group is naturally a Z-module. The fact is that
the m-fold direct sum Gm = G⊕· · ·⊕G can be regarded as an R-module. Indeed,
as a group, respectively as Z-module, Gm is isomorphic to the tensor product
R⊗Z G (with isomorphism (g1, g2, . . . , gm) �→ 1̄⊗g1 +X̄⊗g2+ · · ·+X̄m−1⊗gm);
the latter though, sometimes referred to as the extension of G over R [11], is an
R-module by “multiplication into the R-component”.

Now, since Gm is an R-module, polynomials with coefficients in Gm can be
evaluated over R. This allows us to perform a version of Shamir secret shar-
ing [12]: Given the parameters n and t as well as the secret s ∈ G, the dealer
picks uniformly at random a sharing polynomial

g(x) = r0 + · · ·+ rt−1x
t−1 + ŝxt ∈ Gm[x]

of degree t with coefficients in Gm such that its leading coefficient equals ŝ =
(s, 0, . . . , 0) ∈ Gm (we need to embed the secret s into Gm). Given n pairwise
different evaluation points αi ∈ R, known to everyone, the dealer hands out
share si = g(αi) ∈ Gm to participant i for i = 1, . . . , n.

We would like to point out that by fixing the basis 1̄, X̄, . . . , X̄m−1 for R
over Z and using standard techniques this candidate black-box secret sharing
scheme can be described by a labeled integer matrix M and thus fits into the
framework of our formal Definition 1; although, as discussed below, correctness
holds only in a weak sense. The expansion factor is obviously η = m: each share
is an element in Gm, and the randomness complexity is ρ = t ·m: the randomness
is enclosed by the t non-leading coefficients of g ∈ Gm[x].

Jointly, any t + 1 participants know t + 1 points on a polynomial of degree t.
Normally, when working over a field, this would allow them to reconstruct the
entire polynomial using Lagrange interpolation. In our setting, where divisions
cannot necessarily be done (in R), we will have to settle with a multiple ∆·ŝ ∈ Gm

of the secret, where ∆ ∈ R is some common multiple of the denominators of
the Lagrange coefficients. A possible generic choice for ∆ is the Vandermonde
determinant

∆(α1, . . . , αn) =
∏

1≤i<j≤n

(αi − αj) .

3 Using standard terminology from algebraic number theory, R is an example of an
order.

4 Loosely speaking, a module is a vector space over a ring rather than over a field, and
it is called free if it allows for a basis (which is not granted for general modules).
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Reconstruction by a set A of t+1 participants can be expressed in the following
formula:

∆ · ŝ =
∑
i∈A

(
∆ ·

∏
j∈A
j �=i

1
αi − αj

)
si .

Putting the secret into the leading coefficient as we do (rather than into the
constant coefficient) of the sharing polynomial immediately leads to privacy. Es-
sentially, for any A ⊂ {1, . . . , n} with |A| ≤ t, privacy follows from the existence
of the polynomial κ =

∏
i∈A(x − αi) ∈ R[x] of degree at most t with leading

coefficient 1 and with κ(αi) = 0 for all i ∈ A. Indeed, for any secrets s, s′ ∈ G
and any sharing polynomial g ∈ Gm[x] for s, the participants in A cannot dis-
tinguish between a sharing of s with sharing polynomial g and a sharing of s′

with sharing polynomial g′ = g + (s′ − s)κ.
Introducing the notion of a δ-weak black-box secret sharing scheme for δ ∈ R,

to be understood in that the correctness condition of a black-box secret sharing
scheme (Definition 1) only holds in that δ · ŝ (rather than s) can be reconstructed
while the privacy condition holds fully, we can summarize the observations of
this section as follows.

Theorem 3. Let R be an integral extension of degree m, and let α1, . . . , αn ∈ R
be pairwise different. Then there exists a ∆(α1, . . . , αn)-weak black-box secret
sharing scheme for n and t with expansion factor η = m and randomness com-
plexity ρ = t ·m.

Note that an additional advantage of putting the secret into the leading
coefficient of the sharing polynomial (rather than into the constant coefficient)
is that 0 may be used as evaluation point. This extra evaluation point is relevant
for the expansion factor if the number of participants is a power of 2. This
“swapping” trick, putting the secret in the leading coefficient instead of in the
constant term, is not exploited in [4] nor in [2], but it applies to their schemes
as well.

4 Previous Schemes

Based on the common framework just described, we can summarize previous
research. It all boils down to reconstructing s given ∆ · ŝ and the restriction the
scheme poses on ∆ for the reconstruction to be possible.

4.1 Using an Invertible ∆

Desmedt and Frankel [4] provide a solution for black-box secret sharing with
expansion factor O(n). They achieve this by selecting the polynomial f in such
a way that ∆ can be chosen to be a unit in R = Z[X ]/(f). A necessary and
sufficient condition for this is that there exist n evaluation points in the ring
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whose differences are all units in the ring.5 In this case, all divisions required
for Lagrange interpolation can in fact take place in the ring R, so ∆ can be
forgotten altogether.

The maximal cardinality of a subset of R such that all differences are units
is called the Lenstra constant of the ring R. If we set R = Z[X ]/(f(X)), where
f(X) ∈ Z[X ] is the p-th cyclotomic polynomial, we have a ring of degree p−1 and
with Lenstra constant p. So if we take p as the smallest prime greater than n, we
have black-box secret sharing scheme with expansion factor O(n) for n players.
Finding integral extensions for which the Lenstra constant is exponential (or
super-linear) in the degree of the ring is part of an open problem in number
theory, as far as we know

4.2 Using Two Relatively Co-prime ∆’s

Cramer and Fehr [2] propose scheme which has expansion factor �lg n�+ 2. In a
nutshell, it shares the secret twice using weak secret sharing schemes with two
different sets, say α = (α1, . . . , αn) and β = (β1, . . . , βn), of evaluation points.
This allows to reconstruct two different multiples of the secret: ∆(α) · ŝ and
∆(β) · ŝ. By ensuring that ∆(α) and ∆(β) are co-prime, standard Euclidean
techniques can be used to recover ŝ and the real secret s: let a and b be such
that a ·∆(α) + b ·∆(β) = 1, then a ·∆(α)ŝ + b ·∆(β)ŝ = ŝ = (s, 0, . . . , 0).

A small expansion factor can then be obtained by picking the αi’s in the
integers and the βi’s in a suitable integral extension R = Z[X ]/(f). A necessary
and sufficient condition for the existence of β such that ∆(α) and ∆(β) are
co-prime is that for all primes p the lowest irreducible polynomial dividing f
modulo p has degree dp such that n ≤ pdp . This can be satisfied by certain
polynomials f of degree m = �lg(n + 1)� = �lg n�+ 1, and thus results in a total
expansion factor �lg n�+ 2.

In [2] polynomials f of degree �lg n� + 1 are considered that are irreducible
modulo all the primes p ≤ n. It is then possible to set αi = i and βi to the
(residue class modulo f of the) unique polynomial of degree less than m with
coefficients in {0, 1} that evaluates to i in the point 2, in other words, whose
coefficient vector is the binary representation of i. (Note that the “swapping”
trick allows us to use a polynomial of degree m = �lg n� instead of �lg n� + 1,
although there is only a difference if n is a power of two.)

5 The New Black-Box Secret Sharing Scheme

5.1 The New Scheme: Using a Primitive ∆

As an example, consider the case t = 1, where only two participants are needed
to reconstruct the secret (for any number of participants n). If we use R =
Z[X ]/(f) with any (monic and irreducible) f of degree at least �lg n�, and

5 If the secret is embedded in the constant term, the evaluation points need to be
units themselves as well and evaluation in zero is prohibited.
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the same {0, 1}-polynomial evaluation points βi as described in Section 4.2,
then any pair (i, j), i �= j can reconstruct (βi − βj)ŝ. For concreteness, suppose
deg f = 4 and that βi − βj equals 1̄ − X̄ + X̄3. In this case we know that
(βi − βj)ŝ = (s,−s, 0, s). Indeed, as discussed in Section 3, (βi − βj)ŝ is com-
puted by associating ŝ = (s, 0, . . . , 0) with 1̄⊗ s, computing (βi − βj) · (1̄⊗ s) =
(βi − βj) ⊗ s = 1̄ ⊗ s + X̄ ⊗ (−s) + X̄3 ⊗ s, and reading out the “coefficients”.
So, (βi − βj)ŝ already contains s as a coordinate! There is no need for a second
sharing or βi − βj being a unit in R. Our choice of βi − βj is inconsequential
in this argument. If the βi’s are defined as they are as non-zero polynomials of
degree smaller than m with coefficients in {0, 1} (regardless of f), then (βi−βj)ŝ
contains at least one copy of the secret or its negative.

In general, using the weak black-box secret sharing scheme the participants
can reconstruct ∆ · ŝ. Since ŝ = (s, 0, . . . , 0), this module scalar-multiplication
equals ∆·ŝ = (∆0 ·s, . . . , ∆m−1 ·s) with integer ∆i’s such that ∆ =

∑m−1
i=0 ∆i ·X̄ i.

The secret s can be reconstructed from the ∆i’s if and only if the ∆i’s are co-
prime, by using the extended Euclidean algorithm. In essence, the ideas of [4]
(using a single weak black-box secret sharing scheme) and of [2] (recovering s
from co-prime multiples) are combined. Contrary to the scheme from [2], we do
not need a second sharing. This is where our improvement and lower expansion
factor stem from.

A prime p ∈ Z is a divisor of all ∆i’s if and only if ∆ ≡ 0 mod pR. A sufficient
and necessary condition on the set of interpolation points is that it is a primitive
set in the integral extension R, as defined below.

Definition 3 (Primitive Elements and Sets). Let R be an integral exten-
sion. Then δ ∈ R is primitive if its only rational integer divisors are 1 and −1,
i.e., if δ �≡ 0 mod pR for all primes p ∈ Z. A set {α1, . . . , αn} in R is called
primitive if its Vandermonde determinant ∆(α1, . . . , αn) is primitive.

For an arbitrary Z-basis of R, p ∈ Z dividing δ ∈ R is equivalent to p dividing
all the rational integer coordinates of δ with respect to that basis. Therefore,
δ ∈ R is primitive if and only if its coordinates have no non-trivial common
factor in Z. Note also that the required property is stronger than requiring the
αi’s to be pairwise different modulo every prime p, since not every prime p ∈ Z
is necessarily also prime in R.

For f(X) ∈ Z[X ] and for a prime p ∈ Z, define fp(X) ∈ Fp[X ] as f taken
modp, and write fp = f

εp,1
p,1 · · · f

εp,�p

p,�p
for its factorization into powers of distinct

irreducible polynomials in Fp[X ]. The degree of such fp,i is denoted dp,i. Also
define d̄p = max1≤i≤�pdp,i.

Theorem 4. Let R = Z[X ]/(f) be an integral extension of degree m > 1. If
n ≤ pd̄p for every prime p ∈ Z, then there exists a primitive set in R with
cardinality n.

This implies the existence of an integral extension of degree �lg(n)� with a prim-
itive set of size n, by taking f such that fp is irreducible for all primes p with
2 ≤ p ≤ n. Such f can for instance be constructed using the Chinese Remainder
Theorem, see also [2].
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Corollary 1. For any t, n ∈ Z with 0 < t < n− 1 there exists a black-box secret
sharing scheme M with expansion factor η = �lg(n)� and randomness complexity
ρ = t · �lg(n)�.

The computational efficiency of the scheme is discussed in Section 5.4.

5.2 Proof of Theorem 4

Let p ∈ Z be a prime. Then we have

R/pR � Fp[X ]/(f εp,1
p,1 · · · f

εp,�p

p,�p
) � Fp[X ]/(f εp,1

p,1 )× · · · × Fp[X ]/(f
εp,�p

p,�p
)

and thus we have the canonical projection

R/pR→ Fp[X ]/(fp,1)× · · · × Fp[X ]/(fp,�p) � Fpdp,1 × · · · × F
p

dp,�p

where (for any prime power q) Fq denotes the field with q elements. Hence, if
n ≤ pd̄p , then there clearly exist α1, . . . , αn ∈ R such that ∆(α1, . . . , αn) �≡
0 mod pR: choose n distinct elements from Fpd̄p and lift them arbitrarily to
elements in R. Furthermore, different solutions modulo a finite set of different
primes p can be combined to a solution modulo all primes from that set by
the Chinese Remainder Theorem. However, we are after a solution that holds
modulo all primes simultaneously.

Instead, we construct a primitive set of size n by induction: as long as the
upperbound on n as stated in the theorem is satisfied, then, given a primitive set
{α1, . . . , αn−1} ⊂ R, we can construct αn ∈ R such that {α1, . . . , αn−1, αn} ⊂ R
is a primitive set as well. For technical reasons to become clear later on, the actual
induction hypothesis corresponds to a slightly stronger claim, but we suppress
this at this point in the exposition.

Assume we are given a primitive set {α1, . . . , αn−1} ⊂ R. Consider the poly-
nomial

∆(α1, . . . , αn−1, X) = ∆(α1, . . . , αn−1) ·
∏
i<n

(αi −X) ∈ R[X ] .

Let e1 . . . , em be some fixed Z-basis of R, where m is the degree of f(X). Clearly,
there exist polynomials F1, . . . , Fm ∈ Z[X1, . . . , Xm] such that

d = (F1(x1, . . . , xm), . . . , Fm(x1, . . . , xm)) ∈ Zm

represents the coordinate-vector (w.r.t. the chosen basis) of ∆(α1, . . . , αn−1, x) ∈
R for an arbitrary x = x1e1 + · · ·+ xmem ∈ R (x1, . . . , xm ∈ Z).

Now suppose that the intersection between the ideal Î = (F1, . . . , Fm) ·
Z[X1, . . . , Xm] and Z[X1] contains a non-zero polynomial g(X1). In other words,
there exist polynomials µ1, . . . , µm ∈ Z[X1, . . . , Xm] such that

g(X1) =
m∑

i=1

µi(X1, . . . , Xm) · Fi(X1, . . . , Xm).
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Therefore, if we choose x1 ∈ Z such that g(x1) �= 0, then, no matter how
x2, . . . , xm ∈ Z are chosen, it will be the case that a given prime p ∈ Z does not
divide all Fi(x1, . . . , xm) ∈ Z, or equivalently, ∆(α1, . . . , αn−1, x) �≡ 0 mod pR,
unless perhaps when p divides g(x1).

Based on these observations the proof of the theorem essentially consists of
two main steps. First, we show the existence of g(X1). Second, with a proper
choice of x1 ∈ Z such that g(x1) �= 0, we select for each prime p ∈ Z that divides
g(x1) an element an,p ∈ R such that its first coordinate is equal to x1 mod p and
such that ∆(α1, . . . , αn−1, an,p) �≡ 0 mod pR.

The proof is then easily completed by constructing the desired αn ∈ R such
that its first coordinate is x1 and such that αn ≡ αn,p mod pR for each of those
finitely many primes p. This is by simple coordinate-wise application of the CRT.
More precisely, let αn = x1e1 + x2e2 + · · · + xmem, where x1 is as above, and
for each i ≥ 2, xi ∈ Z is such that xi is equivalent to the i-coordinate of an,p

modulo each those primes p.
We now start with the existence of g(X1). The argument utilizes the following

well-known theorem from algebraic geometry (see e.g. [11]), which we state for
convenience below.

Theorem 5 (Hilbert’s Nullstellensatz). Let K be an algebraically closed
field, let I ⊂ K[X1, . . . , Xr] be an ideal, and let Z(I) ⊂ Kr denote the algebraic
variety {(z1, . . . , zr) ∈ Kr | g(z1, . . . , zr) = 0 ∀ g ∈ I}. If h ∈ K[X1, . . . , Xr]
satisfies h(z1, . . . , zr) = 0 for every (z1, . . . , zr) ∈ Z(I), i.e., it vanishes on the
variety, then there exists a positive integer k such that hk ∈ I.

Let Q̄ denote the algebraic closure of Q, i.e., the field of all algebraic num-
bers, and let I denote the ideal (F1, . . . , Fm) · Q̄[X1, . . . , Xm]. We claim that
the algebraic variety Z(I) is finite. This is argued in two steps. Consider the
tensor-product Q̄⊗Z R, which has a natural ring structure. First, Z(I) is in one-
to-one correspondence with the solutions to the univariate polynomial equation
∆(α1, . . . , αn−1, x) = 0 with x ∈ Q̄⊗ZR, which we show below. Second, as a ring,
Q̄⊗ZR is isomorphic to a finite product of fields.6 Therefore, the univariate poly-
nomial equation has at most a finite number of solutions, and the claim follows.
One-to-one correspondence is argued as follows. The elements of Q̄⊗ZR uniquely
correspond to the expressions of the form

∑m
i=1 qi⊗ei with the qi ∈ Q̄. Using sim-

ple rewriting properties of tensor-product, it follows that ∆(α1, . . . , αn−1, x) = 0
for x ∈ Q̄⊗Z R if and only if

∑m
i=1 Fi(q1, . . . , qm)⊗ ei = 0. This happens if and

only if all Fi(q1, . . . , qm) are 0, or equivalently, (q1, . . . , qm) ∈ Z(I). Note that
some of the properties of tensor product we have used above rely on the fact
that R has a Z-basis.

Finiteness of Z(I) implies the existence of a non-zero polynomial g̃(X1) in the
intersection of I and Q̄[X1]. Indeed, the polynomial

∏
z∈Z(I)(X1 − z1) ∈ Q̄[X1]

(where z1 denotes the first coordinate of z) clearly vanishes on Z(I), and by the
6 Indeed, Q̄ ⊗Z R � Q̄[X]/(f) � ∏m

i=1 Q̄. The first isomorphism is by a standard fact
that can be found e.g. in [11], and the second follows since f factors into distinct
linear polynomials.
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Nullstellensatz some power of this polynomial is in I. In turn this implies the
existence of a non-zero polynomial g(X1) in the intersection of Î and Z[X1], as
desired. This is an immediate consequence of basic field theory.7

With the existence of g(X1) settled, we proceed with the remainder of the
proof. As a matter of terminology, for β, γ ∈ R, we will say that β = γ within
F

dp,i
p if the canonical projections of β and γ coincide in that component. Similar

for Fp[X ]/(f εp,i

p,i ).
First we make the actual induction hypothesis precise. We assume there exists

a primitive set α1, . . . , αn−1 ∈ R such that additionally for every prime p ∈ Z
with 1 < p < n it holds that ∆(α1, . . . , αn−1) is non-zero within the largest field
Fpd̄p . The induction hypothesis is clearly satisfied in case of a single element
set. If n ≤ pd̄p for every prime p ∈ Z, then we construct αn ∈ R such that
{α1, . . . , αn−1, αn} is a primitive set and such that the additional requirement
is satisfied.

Instead of selecting x1 ∈ Z arbitrarily such that g(x1) �= 0, we have to give
a special treatment to the primes p ∈ Z with 1 < p < n first, for reasons to
become clear later on. We start by choosing for every such prime p an an,p ∈ R
such that ∆(α1, . . . , αn−1, an,p) is non-zero within (the largest field) Fpd̄p . This
can be done by virtue of the induction hypothesis and using arguments as in the
beginning of the section. Then we choose x1 ∈ Z such that modulo every prime
p ∈ Z with 1 < p < n, x1 is congruent to the first coordinate of an,p, and such
that g(x1) is non-zero. Such x1 exists as g has only a finite number of zeroes.

Now fix any prime p ∈ Z with p ≥ n and p divides g(x1). We now select an,p

as required. We have ∆(α1, . . . , αn−1) �= 0 within at least one of the Fp[X ]/(f εp,i

p,i )
into which R/pR splits, by the induction hypothesis. Fix an index k for which
this is the case.

We first treat the case when fp(X) ∈ Fp[X ] is irreducible (so �p = k = 1). In
this case R/pR � Fp[X ]/(fp) � Fpm . Since p ≥ n, there are pm−1 ≥ n elements
in Fpm with first coordinate x1, and it is clearly possible to select an,p ∈ R as
required, i.e., its first coordinate is x1 and ∆(α1, . . . , αn−1, an,p) �≡ 0 mod pR.

Second, suppose that the polynomial fp(X) ∈ Fp[X ] is reducible. Since p ≥ n,
Fpdp,k (� Fp[X ]/(fp,k)) has at least n elements. So it is possible to select an,p ∈ R
such that within Fpdp,k it differs from α1, . . . , αn−1. As a consequence all an,p−αj

are invertible within Fp[X ]/(fp,k), and hence also within Fp[X ]/(f εp,k

p,k ). Thus,
∆(α1, . . . , αn−1, an,p) is non-zero within Fp[X ]/(f εp,k

p,k ), and therefore also non-
zero modulo pR.

It remains to argue that an,p may be chosen such that its first coordinate
equals x1. This is by adding a suitable rational integer multiple of a special

7 It is given that g̃ =
∑m

i=1 λiFi for some λi ∈ Q̄[X1, . . . , Xm]. There exists θ ∈ Q̄
such that each of the coefficients of each of the λi’s is in Q(θ). Note that Q(θ)
is a Q-vectorspace with basis 1, θ, . . . , θe−1 for some e. Consider the fraction field
L = Q(X1, . . . , Xm). Similarly, L(θ) is an L-vectorspace with the same basis. Now
consider an arbitrary non-zero coordinate of g̃ w.r.t. that basis. Then we have g =∑m

i=1 µiFi where g ∈ Q[X1], respectively, µi ∈ Q[X1, . . . , Xm], is this coordinate of
g̃, respectively, of λi. Clearing denominators gives the desired result.
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element δp ∈ R which has first coordinate 1 but that is 0 within Fpdp,k . We
construct it below, and this finishes the proof.

For convenience, take 1̄, X̄, . . . , X̄m−1 ∈ Z[X ]/(f) as the Z-basis e1, . . . , em

for R introduced earlier on. Let c ∈ Fp \ {0} be the constant coefficient of
the irreducible polynomial fp,k ∈ Fp[X ] and c−1 ∈ Fp its inverse. Let h(X) =
h0 + h1X + · · ·+ hdp,k

Xdp,k ∈ Z[X ] have coefficients in {0, . . . , p− 1} such that
modulo p it equals c−1fp,k(X). Since fp is reducible, h has degree smaller than
m. Moreover it has constant coefficient h0 = 1. Then define δp as h(X) ∈ R.
Indeed, its first coordinate is 1 and δp is clearly 0 within Fpdp,k . �

5.3 A Generalization of Theorem 4

It is possible to give a generalization of Theorem 4 that applies to arbitrary
orders (of non-zero discriminant), rather than only to integral extensions and
which shows that the lower bound on n is tight if we require that not only ∆ but
all powers of ∆ must have no non-trivial integral divisors. Consider for instance
f = X2 + 1 so that R � Z[i] (the Gaussian integers). Then Theorem 4 promises
a primitive set of size 2, while if fact there is a primitive set of size 3. Indeed,
∆(0, 1, i) = 1 + i has no non-trivial divisors; ∆(0, 1, i)2 = (1 + i)2 = 2i however
has.

Definition 4 (Radically Primitive Elements and Sets). A element δ in
an order R is called radically primitive if the only rational integer divisors of any
power of δ are 1 and −1, i.e., if δk �≡ 0 modulo any prime p ∈ Z, for all k > 0.
And a set {α1, . . . , αn} in R is called radically primitive if its Vandermonde
determinant ∆(α1, . . . , αn) is radically primitive.

Using similar but more general arguments as in the proof of Theorem 4, the
following can be proved.

Theorem 6. Let R be an order with discriminant ∆R/Z �= 0. For any prime
p ∈ Z let n(p) = maxp |R/p|, where p ranges over all prime ideals p ⊆ pR over p.
Then the maximal cardinality for a radically primitive set in R is minp prime n(p).

5.4 Computational Complexity

Apart from having a small expansion factor, we would also like to exhibit that
the number of black-box group operations is polynomial in the number of par-
ticipants. This requires that the entries of the sharing matrix M are small (if
we assume that d and e are sufficiently small as is the case for the constructions
above). For an integral extension R = Z[X ]/(f) this requires small coefficients
of f and small coefficients of the evaluation points αi when expressed as poly-
nomials of minimal degree.

As mentioned in Section 4.2, for the scheme from [2] one method always
works, namely picking an irreducible polynomial modulo p for every prime p <
n and using the Chinese Remainder Theorem to get a polynomial f over the
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integers. The coefficients of this polynomial are all smaller than
∏

p<n p, which
corresponds to a bitlength linear in n. We cannot hope to find polynomials with
coefficients that are much smaller than random CRT based polynomials and that
are still irreducible modulo p for all p < n. The evaluation points that are used
have minimal coefficients (either 0 or 1).

For our new construction, the set of suitable polynomials f is a proper su-
perset of those employed by [2]. This means that we could take f as constructed
above with coefficients whose sizes are linear in n. Unfortunately, the proof of
existence of a primitive set α1, . . . , αn for a suitable f does not guarantee any
reasonable bound on the size of the coefficients: the main problem in the proof
occurs around the place where Hilbert’s Nullstellensatz is invoked.

However, practical experiments indicate that f and the αi’s can in fact be
chosen in such a way that their coefficients are within {−1, 0, 1}, which makes
our scheme computationally more efficient by a factor n then the scheme from [2]
(and any other scheme). Indeed, Fig. 1 shows polynomials f of degree m up to
12, and thus suitable for n up to 212, that allow the following primitive sets:
choose α1, . . . , αn as (residue classes modulo f of) polynomials with coefficients
in {0, 1} and degree less than m such that αi evaluates to i−1 at point 2 (similar
as described in Section 4.2 for the βi’s in the scheme from [2]).

m sample f m sample f

2 X2 − X − 1 8 X8 + X4 − X3 + X − 1
3 X3 − X − 1 9 X9 + X4 − 1
4 X4 − X − 1 10 X10 − X3 + X2 + X − 1
5 X5 − X3 − X2 + X + 1 11 X11 − X5 + X3 + X2 − 1
6 X6 − X − 1 12 X12 + X6 − X5 − X4 − X3 − X + 1
7 X7 − X3 + X2 + X − 1

Fig. 1. Polynomials f that allow binary αi’s

We have been searching for suitable polynomials f with minimal residual
degree deg(f −Xm), and that the polynomials found have rather small residual
degree. This suggests that there is no shortage of suitable polynomials at all. As
an aside, if we assume the existence of a suitable {−1, 0, 1}-polynomial for every
n, then it can always be found in polynomial time.8

The best implementation of the scheme from [2] is given by Stam [14] us-
ing multi-exponentiation techniques. The achieved sharing complexity is Õ(n3)
and the reconstruction complexity Õ(n1+lg 3) group operations. It appears to be
hard to further improve the complexity of the scheme from [2], as the scheme

8 In time Õ(n3 lg 3): there are O(nlg 3) candidate polynomials f . Each candidate can be
checked by computing the product of all non-zero {−1, 0, 1}-polynomials modulo f .
There are O(nlg 3) factors in this product and the size of the coefficients in any step
is also bounded by Õ(nlg 3). Note that for n = 212 this polynomial upper bound is
already close to practically infeasible.
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seems to be bound to an f with n-bit coefficients, and thus the module scalar-
multiplication of a “small” number in R = Z[X ]/(f) (meaning represented by
a {−1, 0, 1}-polynomial of degree < m) with an element in Gm requires Θ(mn)
group operations. That is where our complexity improvement stems from: since
we can choose f with constant coefficients, a module scalar-multiplication with
a small number requires only O(m2) group operations, and we achieve a sharing
complexity of Õ(n2) and a reconstruction complexity of Õ(nlg 3) group opera-
tions.9 (The lg(n)-factors hidden by the Õ-notation have exponent at most 2).

The conclusion is that for reasonable values of n (namely for n up to 4096)
our scheme is considerably more efficient than the scheme from [2] (and any other
black-box secret sharing scheme). Furthermore, the evidence indicates that this
is true for any n.

6 A Tight Lower Bound for the Randomness

In this final section we prove that our new black-box secret sharing scheme is
not only optimal with regard to the expansion factor but also with regard to the
randomness complexity. Specifically, we prove a lower bound of t · lg(n) − O(t)
for the randomness complexity of binary linear secret sharing schemes, which
immediately implies the same bound for black-box secret sharing schemes. Recall
that the randomness complexity of our scheme is t · �lg(n)�.

Recently, King proved the lower bound lg
(
n · (n− 1) · · · (n− t + 2)

)
[9, The-

orem 12], which, using similar techniques as we do, can also be shown to be
t · lg(n)−O(t). However, the proposed proof assumes that the number of rows in
any black-box secret sharing scheme M ∈ Zd×e is lower bounded by d ≥ n lg(n),
while in fact the best known lower bound is d ≥ n lg(n+3)−n (see Theorem 2).
Note that the bound d ≥ n lg(n) used by King is widely conjectured to hold
and sharpening the known lower bound to this conjectured lower bound is an
interesting open problem.

Recall that a linear secret sharing scheme over a finite field F is defined along
the lines of Definition 1 and 2, except that Z is replaced by F and G is restricted
to G = F . In the following, e denotes the Euler number e ≈ 2.718.

Theorem 7. For arbitrary t, n ∈ Z with 0 < t < n − 1, the randomness com-
plexity ρ of any binary linear secret sharing scheme M ∈ Fd×e

2 , and thus in
particular of any black-box secret sharing scheme M ∈ Zd×e, for n and t satis-
fies ρ > t · lg n− (1 + lg e)t.

Proof. First of all, the bound for black-box secret sharing immediately follows
from the bound on binary linear secret sharing, as any black-box secret sharing
scheme M ∈ Zd×e reduced modulo 2 results in a binary linear secret sharing
scheme.
9 The exponent lg 3 results from the fact that ∆ (respectively ∆(β) in the scheme

from [2]) can be replaced by its square-free part, which is the product of distinct
polynomials of degree less than m ≈ lg n with coefficients in {−1, 0, 1}, of which
there exist 3m ≈ nlg 3.
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Consider a binary linear secret sharing scheme M ∈ Fd×e
2 for t and n as in

the claim. Without loss of generality we may assume that the rows of Mi are
linearly independent for any i. Also, by the lower bound on the expansion factor
from Theorem 2, which also applies to binary linear schemes, we may assume
that, say, Mn consists of dn ≥ �lg(n + 3)�− 1 rows (respectively dn ≥ �lg(n)� in
case t = 1). Furthermore, as t > 0, ε = (1, 0, . . . , 0) is not in the space spanned
by the rows in Mn. Altogether this implies that, essentially by a basis change, M
can be brought into a form where Mn consists of the (dn × dn)-identity-matrix
padded with zeroes to its left, while still being a binary linear secret sharing
scheme for n and t. Consider now the labeled matrix M ′ ∈ F(d−dn)×(e−dn)

2 by
removing Mn as well as the last dn columns of M (i.e. the columns that overlap
with the identity matrix embedded in Mn). The labeling (of the remaining rows)
is left unchanged. It is not hard to see that M ′ is a binary linear secret sharing
scheme for n′ = n− 1 and t′ = t− 1. This procedure can be applied iteratively t
times, resulting in a secret sharing scheme for n− t participants and threshold 0
(which may have randomness complexity 0). The total number of rows removed
during this process, and thus the randomness complexity of the original secret
sharing scheme M is ρ ≥

∑t−2
i=0

(
�lg(n + 3 − i)� − 1

)
+ �(lg(n − t + 1)�. Using

Stirling’s bounds
√

2π nn+1/2 e−n+1/(12n) < n! <
√

2π nn+1/2 e−n+1/(12n+1)

for factorials, we get

ρ ≥
t−2∑
i=0

(
�lg(n + 3− i)� − 1

)
+ �(lg(n− t + 1)�

≥
t−1∑
i=0

lg(n− i)− t + 1 = lg
t−1∏
i=0

(n− i)− t + 1 = lg
n!

(n− t)!
− t + 1

> lg
nn+1/2 e−n+1/(12n)

(n− t)(n−t)+1/2 e−(n−t)+1/(12(n−t)+1) − t + 1

> lg
nn+1/2 e−n+1/(12n)

n(n−t)+1/2 e−(n−t)+1/(12(n−t)+1) − t + 1

= t lg n−
(
t +

1
12(n− t) + 1

− 1
12n

)
lg e− t + 1

> t lg n− (1 + lg e)t �

7 Concluding Remarks

From a practical point of view, the proposed black-box secret sharing scheme
is essentially optimal with respect to its expansion factor (and its randomness
complexity) and it is reasonably efficient for practical values of n: there seems
to be little room for improvement (besides maybe squeezing the constant in
the computational complexity). From a theoretical point of view, there are still
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a few open ends: First of all, we only have evidence but no proof that the
proposed black-box secret sharing scheme is computationally efficient for large n.
Furthermore, the question about the minimal achievable expansion factor is still
not entirely solved, there is still a gap of (at most) 2 between the expansion factor
achieved by the proposed scheme and the known lower bound; and we know that
for certain parameters our construction is not optimal: it is for instance an easy
exercise to construct a black-box secret sharing scheme for t = 1 and n = 3
with expansion factor 5/3 (in contrast to 2, achieved by the proposed generic
construction). Finally, all (reasonably good) black-box secret sharing schemes
(for arbitrary t and n) are based on the framework discussed in Section 3. It
would be interesting to discover completely new approaches.
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Abstract. In the setting of secure multiparty computation, a set of
parties wish to jointly compute some function of their inputs. Such a
computation must preserve certain security properties, like privacy and
correctness, even if some of the participating parties or an external adver-
sary collude to attack the honest parties. Until this paper, all protocols
for general secure computation assumed that the parties can communi-
cate reliably via authenticated channels. In this paper, we consider the
feasibility of secure computation without any setup assumption.

We consider a completely unauthenticated setting, where all messages
sent by the parties may be tampered with and modified by the adversary
(without the honest parties being able to detect this fact). In this model, it
is not possible to achieve the same level of security as in the authenticated-
channel setting. Nevertheless, we show that meaningful security guaran-
tees can be provided. In particular, we define a relaxed notion of what it
means to “securely compute” a function in the unauthenticated setting.
Then, we construct protocols for securely realizing any functionality in
the stand-alone model, with no setup assumptions whatsoever. In addi-
tion, we construct universally composable protocols for securely realizing
any functionality in the common reference string model (while still in an
unauthenticated network). We also show that our protocols can be used
to provide conceptually simple and unified solutions to a number of prob-
lems that were studied separately in the past, including password-based
authenticated key exchange and non-malleable commitments.

1 Introduction

In the setting of secure multiparty computation, a set of parties with private
inputs wish to jointly compute some function of their inputs in a secure way.
Loosely speaking, the security requirements are that nothing is learned from the
protocol other than the output (privacy), and that the output is distributed ac-
cording to the prescribed functionality (correctness). These security properties
must be guaranteed even when some subset of the parties and/or an external
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adversary maliciously and actively attack the protocol with the aim of compro-
mising the honest parties’ security.

Since the introduction of this problem in the 1980’s [25,17,2,10], the research
in this area has not subsided. The area has produced hundreds of papers that deal
with many aspects of the problem. Works have included the definitional issues
of secure computation, protocols with low round and communication complex-
ity, protocols that rely on a wide variety of computational assumptions, lower
bounds, security under composition and much much more.

Interestingly, one assumption that has appeared in all of the works in the
field of secure computation until now is that authenticated channels exist between
the parties. That is, it has always been assumed that the participating parties
can communicate reliably with each other, without adversarial interference. In
particular, the adversary is unable to send messages in the name of honest par-
ties, or modify messages that the honest parties send to each other. There seem
to be two main reasons that this assumption was always considered. First, the
common belief was that these channels can easily be achieved, either through
a physical designated channel connecting every pair of parties, or more realis-
tically, via the deployment of a public-key infrastructure that can be used for
implementing secure digital signatures. Second, it was assumed that no mean-
ingful security guarantees can be provided in a distributed setting, unless honest
parties can reliably communicate with each other.

Despite the above common belief, in real life the assumption that authenti-
cated channels can be easily achieved is actually very problematic. It is clear that
physical channels are generally unrealistic. In addition, a fully deployed public-
key infrastructure is also far from reach. That is, although we can typically
expect that most servers have an appropriate certificate for digital signatures,
it is unreasonable today to require every participant (client) to also have one.
This observation leads us to the following natural question:

What security can be obtained in a network without any authentication
mechanism?

As we have seen, this question has important ramifications regarding the use-
fulness of secure multiparty protocols in real-world settings. However, it is also
of great theoretical interest. In general, the theory of cryptography aims at un-
derstanding what tasks can be securely solved and under what (complexity and
other) assumptions. Considered in this light, it is most natural to examine what
security can be achieved in a setting with no setup assumptions whatsoever.
In addition to highlighting the borders of feasibility and infeasibility for secure
computation, answering this question enhances our understanding of the role of
authentication in secure computation (detailed discussion follows).
Security Without Authenticated Channels. For simplicity, we begin by
considering the important case of two-party protocols in an unauthenticated
network. An immediate but important observation is that an adversary in such
a network can simply “disconnect” the honest parties completely, and engage in
separate executions with each of the two parties. Such an attack is unavoidable
since there is no authentication between the parties. Therefore, the parties have
no way of distinguishing the case that they interact with each other from the
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case that they each interact separately with a third party (in this case, the
adversary). Given that this is an inherent limitation, our aim is to guarantee
that this is the only attack that the adversary can carry out. More specifically,
our notion of security guarantees that the adversary is limited to pursuing one
of the two following strategies:
1. Message relaying: In this strategy, the adversary honestly relays the commu-

nication between the two parties, allowing them to perform their computa-
tion as if they were communicating over an authenticated channel.

2. Independent executions: In this strategy, the adversary intercepts the commu-
nication between the parties and engages in “independent” executions with
each of them. That is, for parties A and B, the adversary can run an execu-
tion with A while playing B’s role, and an execution with B while playing A’s
role. The security guarantee here is that the adversary is unable to make one
execution depend on the other. Rather, the adversary must essentially choose
an input for each execution and then run each execution as if it was running
by itself. We remark that such “full” independence is actually impossible to
achieve because the adversary can always run a complete execution with one
of the parties, and then subsequently use the output it already received in
order to choose its input for the execution with the other party. Therefore,
our security definition guarantees that the only dependence the adversary can
achieve is due to running the executions sequentially and choosing its input
in the second execution after receiving its output from the first.

When considering the two-party case, the above security notion is a direct ex-
tension of the notion of non-malleability, introduced by Dolev, Dwork and Naor
[11]. The work of [11] considered the specific tasks of encryption, commitments
and zero-knowledge proofs. Here, we generalize these ideas to the more general
concept of two-party (and multiparty) computation.

The same line of reasoning can be applied to analyze what is possible also in
the case of multi-party protocols. Specifically, an adversary can always partition
the honest parties into disjoint subsets. Then, given this partition, the adversary
can run separate (and independent) executions with each subset in the partition,
where in an execution with a given subset of honest parties H , the adversary
plays the roles of all the parties outside of H . We guarantee that this is the only
attack the adversary can carry out. In particular, we consider an adversary who
interacts with a set of parties who are each willing to run a single execution
(with each other). Our definition then states that although the adversary can
actually run many executions with subsets of parties, it is guaranteed that:
1. The subsets of honest parties are disjoint,
2. Once a subset of honest parties is chosen, it is fixed for the duration of the

protocol, and
3. The only dependence between the executions is due to the capability of

the adversary to run the executions sequentially and choose its inputs as a
function of the outputs from executions that have already terminated.

We remark that within each subset of parties, the execution that takes place is
actually the same as when there are authenticated channels.
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1.1 The Main Result

Our main result is a general proof of feasibility for stand-alone computation
in the unauthenticated network setting. That is, we show that it is possible to
securely compute any functionality according to the above security guarantees,
even in a network with no setup assumptions whatsoever. This is in contrast
to the widely held belief that authenticated channels, or some other setup, is a
necessity for obtaining meaningful security. As an unusual step, before discussing
the definition in more detail, we will first present the high-level idea behind our
protocol. We feel that presenting the results in this order actually makes them
easier to understand, especially because our protocol is in fact very simple.

It is clear that in order to run any of the known protocols for secure computa-
tion, authenticated channels are required. Our protocol for the unauthenticated
setting is therefore comprised of two stages. In the first stage, some authenti-
cated channels are set up. Then, in the second stage, a secure protocol is run on
top of these authenticated channels. The basic idea of the protocol is:

Stage 1 – link initialization: In this stage, each party Pi generates a pair
of signing and verification keys (si, vi) and sends the signature verification key
vi to all other parties. In addition, after receiving verification keys vj from all
other parties, Pi signs on the series of all keys received (with its secret signing
key si) and sends the signature σi to all other parties. Finally, each Pi checks
that the signature it generated and all the signatures that it received refer to
the same set of verification keys.

The idea behind this step is as follows. Let Pi and Pj be honest parties,
let vi be the verification key sent by Pi to Pj , and let vj be the key sent by
Pj to Pi. Since these keys are sent over unauthenticated channels, there is no
guarantee that Pi will actually receive vi and not some v′i �= vi generated by the
adversary (and likewise for Pj). However, if Pi and Pj do receive each other’s
real keys, then they can set up a secure channel between them. In particular
Pi has a verification key vj associated with a secret signing-key known only
to Pj , and vice versa. Thus, digital signatures can be used in a standard way
in order to achieve authenticated communication between Pi and Pj . We note
that if Pi received vj (i.e., the key sent by Pj), then it will only continue if Pj

received the exact same set of keys as Pi. This is guaranteed by the fact that the
parties also sign on all the keys that they received. Thus, if Pj received different
keys than Pi, then its signature σj will not include the same keys Pi received.
When Pi receives the signature from Pj , it will therefore detect that adversarial
interference has taken place, and so will abort. (Note that by our assumption
here Pi already received vj as generated by Pj , and so the adversary cannot
hand Pi any other signature without breaking the signature scheme.)

From the above, we have that at the end of this stage, if Pi and Pj received
each other’s keys, then they have a secure bidirectional channel between them
and they received the same set of verification keys. In contrast, if this is not
the case, then we are guaranteed that their views of the verification keys are
different. As we will show, this actually defines a partition of the honest parties
so that (1) within each partition all of the honest parties hold each others’
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verification keys (and so all have mutually authenticated channels), and (2) the
honest parties in different partitions have different views of the verification keys.

Stage 2 – secure computation using the generated links: In this stage,
the parties run a protocol on top of the authenticated channels generated in the
link initialization phase. The basic idea is to force the executions of the different
subsets of honest parties, as defined by the above partition, to be independent.
In order to do this, we view the series of verification keys as a session identifier.
Then, we run a protocol for the authenticated channels model that is secure under
concurrent composition, and guarantees independence between executions with
different session identifiers. (We need security under concurrent composition, be-
cause different executions with different subsets may be run concurrently.)

As can be seen from the above protocol, and as we have discussed above, the only
power provided to the adversary here is the ability to partition the honest parties
into disjoint subsets and run separate executions with each set. (This adversarial
“attack” can be carried out on any protocol in the unauthenticated model, and is
not due to a weakness of our protocol.) We therefore model security by allowing
the adversary to carry out such an “attack” in the ideal model as well. However,
rather than modifying the standard ideal model, our basic definition of security
is actually the same as in the standard model with authenticated channels and
no honest majority. Then, the additional power awarded to the adversary here is
modeled by modifying the definition of the functionality that is to be computed.
That is, for any functionality F to be realized by two or more parties, we define
a relaxed version of F called split-F , or sF , which is an interactive functionality
and works as follows. Functionality sF lets the adversary define disjoint sets of
parties, called authentication sets. Then, a separate and independent instance of
the original functionality F is invoked for each authentication set. In an ideal
execution of F for a given authentication set, functionality sF also allows the
adversary to play the roles of all the honest parties not in the set (i.e., providing
their inputs and receiving their outputs). In the two-party case, the adversary
can either choose a single authentication set containing both parties (and then
it cannot do anything more than in the authenticated channels model), or it can
choose two authentication sets, each containing a single party (and so it must
run an independent and separate execution with each party).

Theorem 1 (unauthenticated stand-alone computation): Assume the existence
of collision-resistant hash functions and enhanced trapdoor permutations,1 and
consider the stand-alone model with no setup whatsoever. Then, for any prob-
abilistic polynomial-time multiparty functionality F there exists a protocol that
securely computes the split functionality sF , in the presence of static, malicious
adversaries.

Theorem1 holds irrespective of the number of corrupted parties. In particular, this
means that no honest majority is assumed (and therefore fairness and output de-
livery are not guaranteed, as is standard for this setting). We stress that unlike the
setting of authenticated channels, here it would not help even if we did assume that
1 See [19, Appendix C.1] for the definition of enhanced trapdoor permutations.
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a large fraction of the parties are honest. This is due to the fact that the adversary
can always choose all the subsets to be small, thereby ensuring an honest minority
in each execution (and making it impossible to prevent an adversarial early abort).

We stress that although Theorem 1 constitutes a “general feasibility result”,
the security guarantee obtained is far weaker than that of the authenticated
channels model. For example, agreement-type problems cannot be solved in this
model, and indeed the split-functionality formalization explicitly removes all
flavor of agreement (note that honest parties in different subsets run independent
executions and so clearly cannot agree on anything).
Concurrency in a Stand-Alone World. From the above informal description
of our protocol we see that the stand-alone setting with unauthenticated chan-
nels implicitly enables the adversary to run concurrent executions with different
sets of honest parties. Thus, the protocol that is used in the second stage must
be secure under concurrent composition. However, an important observation here
is that when there are n honest parties, the adversary can force at most n con-
current executions (because the sets are disjoint and each honest party runs only
once). It therefore follows that we only need security under bounded concurrency,
which is fortunately much easier to achieve. (See [21] for impossibility results
for the setting of unbounded concurrency, in contrast to the feasibility results
of [20,23] and specifically for our use [24] when the concurrency is bounded.)
Entity Authentication Versus Session Authentication. One interesting
corollary of our results is a more explicit distinction between entity authentica-
tion and session authentication. Entity authentication relates to a situation where
a party A can verify that messages that it received in the name of party B were in-
deed sent by B. In contrast, session authentication relates to the fact that a party
A establishes an authenticated channel with some other fixed party within a pro-
tocol execution or session. Party A does not know the identity of the party with
whom it holds the channel; however, it knows that if the party is honest, then the
adversary cannot interfere with any messages that are sent on the channel. This
distinction is not new, and appears already in [11]. However, our results make
it more explicit. Indeed, in the first stage of our protocol, we carry out a “ses-
sion authentication protocol”. Then, in the second stage, secure computation is
carried out on top of this. By including entity authentication into the secure pro-
tocol of the second stage (or equivalently into the functionality being computed),
we obtain an explicit separation of session authentication from entity authenti-
cation. This separation enables the entity authentication to be carried out on top
of the session authentication, and in many different ways. Specifically, within the
same execution, different parties may use different authentication mechanisms
like passwords, digital signatures, interactive authentication protocols and so on.

1.2 Additional Results and Applications
The above result is of interest due to the fact that it requires no setup assumption
whatsoever. However, it only holds for the rather limited stand-alone model. In
this section, we briefly discuss some extensions and applications of this result.
Formal statements and proofs of these results will appear in the full version of
this paper.
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UC Protocols Without Authenticated Channels. Universal composability
(UC) is a definition of security with the property that any protocol that is UC-
secure is guaranteed to remain secure under concurrent general composition [4]
(i.e., when it is run many times concurrently with arbitrary other protocols). As in
the stand-alone model, all UC-secure protocols until today assumed the existence
of authenticated channels. We therefore extend our results to this setting.

We first note that in this setting, there is no hope of succeeding without setup
assumptions. This is due to the fact that broad impossibility results for obtaining
UC security have been demonstrated, even when there are authenticated chan-
nels [5,4,7]. We therefore consider the feasibility of obtaining UC-security with-
out authenticated channels, but in the common reference string (CRS) model,
where it is assumed that all parties have access to a single string that was chosen
according to some predetermined distribution. In the CRS model and assuming
authenticated channels, it has been shown that UC-secure protocols exist for
essentially every functionality [8]. We combine our “link-initialization” protocol,
as described above, with the protocol of [8] in order to achieve UC-secure proto-
cols that compute essentially any split functionality sF in the CRS model with
unauthenticated channels.

This combination of setup assumptions may seem strange. However, first note
that at the very least, our result reduces the setup assumptions required for ob-
taining UC-security. More importantly, we argue that the assumption regarding
a CRS is incomparable to that of authenticated channels. On the one hand, the
generation of a CRS requires global trust of a stronger nature than that required
for authenticated channels. On the other hand, it requires that only one string
is generated and posted on some “secure bulletin board”. In contrast, setting up
authenticated channels essentially requires that all parties obtain a certificate for
digital signatures. We also note that a common reference string by itself does not
provide the means for parties to authenticate themselves to each other. Indeed,
it is impossible to construct authenticated channels from unauthenticated ones
even in the CRS model.

Partially Authenticated Networks. So far, we have discussed the completely
unauthenticated setting, and have contrasted it to the standard completely au-
thenticated setting. However, the most realistic setting is actually that of a
partially authenticated network, where some of the parties have authenticated
links and others do not. In addition, the authentication on these links may be
unidirectional or bidirectional. For example, consider the case that only some of
the parties have certificates for public (signature) keys as part of an implemented
public-key infrastructure. Current protocols guarantee nothing in this setting.
However, this is the real setting of the Internet today. We should be able to use
a secure auction protocol, even if the only party who has a certificate is the auc-
tioneer (in this case, all parties can obtain authenticated communication from
the auctioneer, but that is all). In the full version of this paper, we show how to
use our results in order to obtain secure computation in a partially authenticated
network, while utilizing the authenticated links that do exist.
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Password-Based Authenticated Key-Exchange. One problem that has re-
ceived much attention, and is cast in the setting without authenticated channels,
is that of password-based key exchange. Our results can also be applied to this
problem. First, note that our definitional framework provides a way of model-
ing the problem easily within the setting of secure computation. Specifically, we
define a functionality F as follows. Each party provides an input; if the inputs
are equal, then F provides each with a long random value; if the inputs are not
equal, then F hands ⊥ to each party. Of course, the inputs we are referring to
here are the parties’ secret passwords.

The functionality F , as defined, does not enable the adversary to make on-
line password guesses, which is possible in password based key-exchange schemes.
However, the transformation of F to its split functionality sF provides this exact
capability. Thus, the problem of securely computing sF is exactly the problem
of obtaining secure password-based authenticated key exchange. In particular,
if the adversary plays a message relay strategy, then the parties will succeed
in obtaining a shared secret key. In contrast, if the adversary runs independent
executions, then the adversary will obtain exactly two password guesses. Fur-
thermore, if the adversary guesses incorrectly, then the parties will obtain ⊥. We
note that this definition is essentially the same as that proposed in [6].

Our result therefore yields a conceptually simple framework and definition for
solving this problem. Furthermore, we improve on previous solutions as follows.
First, applying our first theorem we obtain secure password-based authenticated
key-exchange in a setting with no setup assumptions. The only previously-known
protocols to achieve this (without using random oracles) are [14,22]. Comparing
our result to [14,22] we have the following advantages. First, we obtain a stronger
security guarantee for the parties. Specifically, we guarantee exactly two pass-
word guesses per execution, rather than a constant or even polynomial number
of guesses. Furthermore, these guesses are explicit (see [6] for a discussion about
why this is advantageous). Second, our solution directly generalizes to password
authentication protocols for multiple parties (whereas previous solutions only
work for two parties). We note that like [14,22], our password-based protocol for
the model with no setup assumptions (beyond the passwords themselves) is only
secure if the same password is not used in concurrent executions of the protocol.

In addition to the above, we can apply our UC-secure protocol and obtain
UC-secure password-based authenticated key-exchange in the common reference
string model. This problem was previously considered by [6], who present highly
efficient protocols based on specific assumptions. In contrast, we obtain protocols
less efficient protocols, based on general assumptions. In addition, we can also
extend our result to the setting of adaptive adversaries.

Alternative Authentication Mechanisms. Passwords are just one mecha-
nism for authenticating parties. Due to the generality of our result which demon-
strates that any function can be securely computed, we can obtain secure proto-
cols for other, non-standard ways for parties to authenticate each other. The only
requirement for accommodating these methods is that they can be described by
an efficient functionality (and thus can be incorporated into stage 2 of the pro-
tocol). For example, we can accommodate “fuzzy” authentication where parties
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are authenticated if they pass at least k out of n “authentication tests”, such as
remembering the names of at least three of your childhood friends. Our solutions
can also work in the case where parties are considered authenticated if they can
perform some non-trivial computational task, like the “proof of work” in the
anti-spam work of [12]. Finally, our protocols can be used to obtain “anonymous
authentication” where two or more parties wish to authenticate themselves to
each other based on useful data which they hold, as in the case of peer-to-peer
and overlay networks.

Non-malleable Commitments. We remark that non-malleable commitments
[11] can be obtained using our results in a similarly simple manner. Namely, de-
fine F to be a non-interactive (and potentially malleable) commitment function.
Then, a protocol that securely computes sF constitutes a non-malleable com-
mitment. This protocol does not improve on other known results. Nevertheless,
it demonstrates the power of our general framework.

2 Split Functionalities

Due to the lack of space in this abstract, we will not present the definitions of
secure computation. We refer the reader to [19, Chapter 7] for motivation and
definitions. We note that we consider reactive functionalities here; see [4, Full
version] for a formal discussion of this notion. Informally, the setting of secure
computation with reactive functionalities is very similar to that of the more fa-
miliar “secure function evaluation”. In the setting of secure function evaluation,
an ideal model is defined where all parties send there inputs to a trusted party
who computes the output and sends it back. When considering reactive function-
alities, the only difference is that inputs and outputs can be provided interactively
and at different stages. Thus, the trusted party interacts with the honest parties
and the adversary multiple times, as specified by the code of the functionality.

In this section, we define what it means to realize an ideal functionality in an
unauthenticated network without any setup. Before doing so, we remark that an
unauthenticated network is formally modeled by having all communication go
via the adversary. Thus, when a party Pi wishes to send a message m to Pj , it
essentially just hands the tuple (Pi, Pj , m) to the adversary. It is then up to the
adversary to deliver whatever message it wishes to Pj . We also remark that in
the ideal model that we consider here, the communication between the honest
parties and the trusted party remains ideally private and authenticated. Thus,
the only change is to the real model.

We now proceed to the definition. As we have mentioned above, defining
security in the unauthenticated model essentially involves defining a class of
“split functionalities” that specifies the code of the trusted party in an ideal
execution.2 As we have mentioned, this class of functionalities enables the ideal-
model adversary to split the honest parties into disjoint sets, called authentication

2 As we have mentioned, this set of instructions for the trusted party could be incor-
porated into the definition of the ideal model. Equivalently, we have chosen to leave
the ideal-model unchanged, and instead modify the functionality to be realized.
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sets, in an adaptive way. The parties in each authentication set H then run a
separate ideal execution with the trusted party. However, each such execution
has the property that the adversary plays the roles of all the parties not in H (i.e.,
the parties that complete H to the full set of parties). Our specific formulation
below provides three important guarantees:
1. An authentication set must be fixed before any computation in the set begins

(and thus an authentication set cannot be chosen on the basis of the inputs
of the honest parties in that set);

2. The computation within each set is secure in the standard sense (as in the
case that authenticated channels are assumed);

3. The computation in a set is independent of the computations in other sets,
except for the inputs provided by the adversary, which can be correlated to
the outputs that it has received from computations with other authentication
sets that have already been completed.

We now proceed to formalize the above. Let F be an ideal functionality. We
define the relaxation of F , called split-F or sF , in Figure 1. We note that the
functionality is slightly more involved than what is needed for the stand-alone
case. The additional complications are included so that the same functionality
will also be useful for the UC setting.

The Split Functionality sF – Explanation. In the initialization stage of
the functionality, the adversary adaptively chooses subsets of honest parties H
(the adaptivity relates to the fact that an authentication set can be chosen and
a full execution completed, before the next authentication set is chosen). The
adversary can choose any subsets that it wishes under the following constraints:
First, the subsets must be disjoint. Second, the adversary must choose a unique
session identifier sidH for each authentication set H .

In the computation stage of the functionality sF , each set H is provided with
a different and independent copy of F . This means that each set H essentially
runs a separate ideal execution of F . In each such execution, the parties Pi ∈ H
provide their own inputs, and the adversary provides the inputs for all Pj /∈ H .
This reflects the fact that in each execution, the roles of the parties outside of
the authentication set are played by the adversary. Similarly, the parties Pi ∈ H
all receive their specified outputs as computed by their copy of F . However, the
adversary receives all of its own outputs, as well as the outputs of the parties
Pj /∈ H (as is to be expected, since it plays the role of all of these parties in
the execution). We stress that there is no interaction whatsoever between the
different copies of F run by sF .

The Functionality sF – Remarks:

1. The requirement that the authentication sets are disjoint guarantees that
all the parties in an authentication set have consistent views of the interac-
tion. In particular, each party participates in only one execution, and this is
consistent with the other parties in its set.

2. sF requires the adversary to provide a unique identifier, sidH for each au-
thentication set. This identifier is used to differentiate between the various
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Functionality sF
For parties P1, . . . , Pn and a given F , functionality sF proceeds as follows:

Initialization:

1. Upon receiving a message (Init, sid) from a party Pi, send (Init, Pi) to
the adversary.

2. Upon receiving a message (Init, sid, Pi, H, sidH) from the adversary, ver-
ify that party Pi previously sent (Init,sid), that the list H of party iden-
tities includes Pi, and that for all previously recorded sets H ′, it holds
that either (1) H and H ′ are disjoint and sidH �= sidH′ , or (2) H = H ′

and sidH = sidH′ . If any condition fails then do nothing. Otherwise,
record the pair (H, sidH), send (Init, sid, sidH) to Pi, and initialize a
new instance of the original functionality F with session identifier sidH .
Let FH denote this instance of F .

Computation:

1. Upon receiving a message (Input, sid, v) from party Pi, find the set H
such that Pi ∈ H , and forward the copy of the functionality FH the
message v from Pi. If no such H is found then ignore the message.

2. Upon receiving a message (Input, sid, H,Pj , v) from the adversary, if FH

is initialized and Pj /∈ H , then forward v to FH as if coming from party
Pj . Otherwise, ignore the message.

3. When a copy FH generates an output v for party Pi ∈ H , functionality
sF sends v to Pi. When the output is for a party Pj /∈ H or for the
adversary, sF sends the output to the adversary.

Fig. 1. The split version of ideal functionality F

copies of F . Furthermore, this identifier is outputted explicitly to all the par-
ties in this set. This is an important security guarantee: while the parties do
not know, of course, which are the authentication sets, they have “evidence”
of the set they are in. In particular, a global entity that sees the outputs
of all parties can determine the authentication sets from the outputs alone.
In a sense, this forces the adversary in the ideal process to mimic the same
partitioning to authentication sets as in the protocol execution.

3. The above formalization of sF assumes for simplicity that the number and
identities of the parties is known in advance. However, this requirement is
not essential and neither the number of parties nor their identities need to
be known in advance. Furthermore, they can be determined adaptively by
the adversary as the computation proceeds. In this case, the only difference
is that each party needs to receive the set of parties with which it should
interact as part of its first input.

3 Obtaining Split Authentication

In this section, we show how to securely implement a link initialization phase. We
proceed in two steps. First, we present an ideal functionality Fsa that captures
the property of authentication within an authentication set. Next, we present
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a simple protocol that UC-securely computes the Fsa functionality in the bare
model, without any setup. In Section 4 we will use the Fsa functionality in order
to obtain secure protocols for any split functionality sF .

3.1 The Split Authentication Functionality Fsa

The split authentication functionality Fsa is essentially a functionality that en-
ables parties in the same authentication set to communicate in a reliable way.
In particular, if the adversary wishes to deliver a message m to a party Pj with
an alleged sender Pi, then Fsa proceeds as follows:

1. If the authentication set H of Pj is not yet determined (i.e., Pj does not
appear in any set H), then the delivery request is ignored. Otherwise:

2. If Pi is not in the same authentication set as Pj , then m is delivered as
requested, regardless of whether it was actually sent by Pi.

3. If Pi and Pj are in the same authentication set, then the message is delivered
to Pj only if it was sent by Pi and not yet delivered.

Formally, Fsa is the split functionality of the functionality Fauth defined in
Figure 2 (we note that Fauth here is a “multiple-session extension” of the Fauth
functionality defined in [4]). In other words, we define Fsa = sFauth.

Functionality Fauth

Fauth interacts with an adversary and parties P1, . . . , Pn as follows:

1. Upon receiving (send, sid, Pi, Pj , m) from Pi, send (Pi, Pj , m) to the ad-
versary and add (Pi, Pj , m) to an (initially empty) list W of waiting mes-
sages. Note that the same entry can appear multiple times in the list.

2. Upon receiving (deliver, sid, Pi, Pj , m) from the adversary, if there
is a message (Pi, Pj , m) ∈ W then remove it from W and send
(received, sid, Pi, Pj , m) to Pj . Otherwise do nothing.

Fig. 2. The authentication functionality Fauth

3.2 Realizing Fsa

In this section, we present a simple protocol for securely computing Fsa in the
bare model without any setup. The protocol that we present is actually UC-
secure. This is important for two reasons. First, it is useful for achieving the
extension of our results to the UC setting. Second, it enables us to claim that
it remains secure even when run concurrently with any other protocol. This will
be important in our final protocol (presented in Section 4) where the protocol
for computing Fsa is run together with the protocol of [23].

Our protocol uses a signature scheme that is existentially unforgeable against
chosen message attacks as in [15] and is reminiscent of the technique used in
[11] to construct non-malleable encryption. On a high-level our protocol also
resembles the Byzantine Agreement protocol of [13] (although the goal and the
actual protocol is very different). The main idea of the protocol has already been
described in the introduction. We therefore proceed directly to its description.
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Protocol 1 I. Link Initialization: Upon input (Init, sid), each party Pi proceeds

as follows:

1. Pi chooses a key pair (V Ki, SKi) for the signature scheme.
2. Pi sends V Ki to all parties Pj . (Recall that in an unauthenticated network, sending

m to Pj only means that the message (Pi, Pj , m) is given to the adversary.)
3. Pi waits until it receives keys from every Pj , for j ∈ [n], j �= i. (Recall that these

keys are actually received from the adversary and do not necessarily correspond
to keys sent by other parties.) Denote by V Kij the key that Pi received from
Pj and denote V Kii = V Ki. Now, let V Ki′

1
, . . . , V Ki′

n
be the same set of keys

V Ki1 , . . . , V Kin arranged in ascending lexicographic order. If there are two keys
that are the same, then Pi halts. Otherwise, Pi defines sidi = 〈V Ki′

1
, . . . , V Ki′

n
〉.

4. Pi computes σi = SignSKi
(sidi) and sends αi = (sidi, σi) to all parties Pj .

5. Pi waits until it receives an αj message from every Pj, for j ∈ [n], j �= i. Denote by
αij = (sidij , σij ) the pair that Pi received from Pj and denote αii = αi. Then, Pi

checks that for every j, VerifyV Kij
(sidij , σij ) = 1 and that sidi1 = sidi2 = · · · =

sidin . If all of these checks pass, then Pi outputs (Init, sid, sidi).

II. Authenticating Messages:

1. Pi initializes a counter c to zero.
2. When Pi has input (send, sid, Pi, Pj , m), meaning that it wishes to send a message

m to Pj, then it signs on m together with sidi, the recipient identity, and the
counter value. That is, Pi computes σ = SignSKi

(sidi, m, Pj , c), sends (Pi, m, c, σ)
to Pj , and increments c.

3. Upon receiving a message (Pj , m, c, σ) allegedly from Pj, party Pi first verifies that
c did not appear in a message received from Pj in the past. It then verifies that
σ is a valid signature on (sidi, m, Pi, c), using the verification key V Kij . If the
verification succeeds, then it outputs (received, sid, Pj , Pi, m).

We have the following theorem:

Theorem 2 Assume that the signature scheme used in Protocol 1 is existentially
secure against chosen message attacks. Then, Protocol 1 securely computes the
Fsa functionality under the UC-definition in the presence of malicious, adaptive
adversaries, and in the bare model with no setup whatsoever.

Proof Sketch: We show that for any adversary A there exists an ideal-process
adversary (i.e., a simulator) S such that no environment Z can tell with non-
negligible probability whether it is interacting with parties running Protocol
1 and adversary A, or with Fsa and simulator S. The simulator S internally
invokes A and perfectly simulates the honest parties interacting with A. Then,
when an honest party Pi in the internal simulation by S completes its link
initialization phase and computes sidi, simulator S determines the set H of Pi

to be the set of parties for which sidi contain their “authentic” verification keys.
Next, when A delivers a signed message to some Pi, simulator S asks Fsa to
deliver the message to Pi in the ideal process only if the internally simulated
honest party would accept the signature, according to the protocol specification.
More specifically, S locally runs an interaction between A and simulated copies
of all the parties. In addition:
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1. All messages from the external Z to S are forwarded to the internal A, and
all messages that A wishes to send to Z are externally forwarded by S to Z.

2. Whenever S receives a message that an honest party Pi sent an (Init, sid)
message to Fsa, simulator S simulates the actions of an honest Pi in the
link initialization phase of Protocol 1.

3. Whenever an internally simulated party Pi completes the link initialization
phase with sidi, simulator S determines the set Hi to be the set of honest
parties Pj such that the authentic verification key sent by Pj is included in
sidi. (Recall that S internally runs all the honest parties, so it can do this.)
S then checks that for all previously computed sets H , it holds that either:
– Hi and H are disjoint and sidHi �= sidH , or
– Hi = H and sidHi = sidH .

If this holds, then S sends (Init, sid, Pi, Hi, sidi) to Fsa. Otherwise, S halts
and outputs fail1.

4. Whenever S receives a message (send, sid, Pi, Pj , m) from Fsa where Pi is
honest, simulator S simulates the actions of an honest Pi sending a message
m in the authentication phase of Protocol 1.

5. Whenever an internally simulated party Pi outputs (received, sid, Pj , Pi, m)
in the simulation, S works as follows. If Pj is corrupted, then S instructs
Pj to send an appropriate send message to Fsa. Likewise, if Pj is not in the
same authentication set as Pi, then S sends the appropriate send message to
Fsa itself. Then, S sends Fsa the message (deliver, Pj , Pi, m), instructing it
to deliver m to Pi from Pj .3 If the request is not fulfilled then S halts and
outputs fail2.

6. Whenever A corrupts a party Pi, simulator S hands A the state of the
internally simulated Pi.

It is straightforward to verify that as long as S does not output fail1 or fail2,
the view of Z in the ideal-model is identical to its view in a real execution of
Protocol 1. (This is due to the fact that unless a fail occurs, S just mimics the
actions of the honest parties. In addition, the local outputs of the honest parties
in the internal simulation correspond exactly to the outputs of the actual honest
parties in the ideal model.) It therefore suffices to show that S outputs a fail
message with at most negligible probability.

We first show that S outputs a fail1 message with at most negligible proba-
bility. Below, we refer only to honest parties in the authentication sets because S
never includes corrupted parties in these sets. There are three events that could
cause a fail1 message:

1. There exist two honest parties Pi and Pj for whom S defines sets Hi and Hj

such that Hi = Hj, and yet sidi �= sidj: In order to see that this event cannot
occur with non-negligible probability, notice that S only defines sets Hi and
Hj for parties that conclude the Link Initialization portion of the protocol
and places Pi and Pj in the same set if they received each others “authentic”

3 Note that if Pj is honest and is in the same authentication set as Pi then S does not
begin with a send message, but rather immediately sends a deliver message.
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verification keys. By the signatures sent at the end of link initialization phase,
it follows that either at least one of the parties aborts, or the adversary forged
a signature relative to either Pi or Pj ’s verification key, or Pi and Pj both
conclude with the same sid. (We note that the reduction here to the security
of the signature scheme is straightforward.)

2. There exist two sets Hi �= Hj that are not disjoint: Let Pi ∈ Hi ∩ Hj be
an honest party. Then, using the same arguments as above, except with
negligible probability, Pi must have the same sid as all the honest parties
in Hi and all the honest parties in Hj . Thus, all of the parties in Hi ∪Hj

have the same sid. Since this sid is comprised of the parties verification
keys, it must hold that all parties in Hi ∪Hj received each other’s authentic
verification keys. By the construction of S, it therefore holds that Hi = Hj .

3. There exist two sets Hi �= Hj, and yet sidi = sidj: We have already seen
that by the construction of S, if sidi = sidj then Hi = Hj .

It remains to show that S outputs fail2 with at most negligible probability. This
occurs if S sends a (deliver, Pj , Pi, m) message to Fsa where Pi is honest, and
the message is not actually delivered to Pi. By the definition of Fsa (and in
general split functionalities), this can only occur if Pj is honest, and Pi and Pj

are in the same authentication set H . (We ignore trivialities here like the case
that H is not defined.) In order to see this, notice that if Pj is corrupted, then
S first instructs it to send a send message to Fsa and so S’s deliver message
would not be ignored. The same is true in the case that Pi and Pj are not in
the same authentication set (because then S first sends the send message itself).
Now, if Pi and Pj are in the same authentication set, then they both hold each
others “authentic” verification keys (as shown above). Furthermore, the deliver
message of S is only ignored if Pj did not previously send an appropriate send
message to Fsa. This implies that S did not generate a signature on (Pi, m, c) in
the internal simulation (see step 4 of the simulation by S), and yet Pi received
a valid signature on this message. Thus, it follows that A must have forged a
signature relative to the honest Pj ’s key. As above, such an adversary can be
used to break the signature, and the actual reduction is straightforward. We
conclude that the views of Z in the two interactions are statistically close.

4 General Functionalities in the Stand-Alone Model

In this section, we prove the following theorem:

Theorem 3 (Theorem 1 – restated): Assume the existence of collision-resistant
hash functions and enhanced trapdoor permutations, and consider the stand-
alone model with no setup whatsoever. Then, for any probabilistic polynomial-
time multiparty functionality F there exists a protocol that securely computes the
split functionality sF , in the presence of static, malicious adversaries.

Theorem 3 is obtained by combining Protocol 1 for securely computing Fsa
with the protocol of [23] for securely computing any functionality in the setting of
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bounded-concurrency. Recall that in this model, there is an a priori bound on the
number of protocol executions that can take place. As we have remarked above,
in the setting considered here, we know that at most n concurrent executions
can take place in a stand-alone execution with n parties in the unauthenticated
model. Therefore, bounded concurrency suffices.

Our protocol for securely computing any n-party split functionality sF works
by first running the link initialization stage of Protocol 1, and obtaining a session
identifier sid from this phase. Then, the protocol of [23] for securely computing F
(under n-bounded concurrent composition) is executed, using the identifier sid
and authenticating all messages sent and received as described in Protocol 1.4

The intuition behind the security of this protocol is that Fsa guarantees
that all the honest parties in a given authentication set H are essentially con-
nected via pairwise authenticated channels. Thus, the execution of the protocol
of [23] in our unauthenticated setting is the same as an execution of the protocol
of [23] in the authenticated channels model, where the participating parties are
comprised of the honest parties in H and n − |H | corrupted parties. Now, in
the unauthenticated model (by the definition of sF), the adversary is allowed
to play the role of the n − |H | parties not in H . Therefore, the above protocol
suffices for securely computing the split functionality sF .

We note that the protocol of [23] relies on the existence of collision-resistant
hash functions and enhanced trapdoor permutations. Furthermore, given any
parameter m that is polynomial in the security parameter (and, in particular,
setting m to equal the number of parties n), it is possible to obtain a protocol
that remains secure for up to m concurrent executions, where in each execution
any subset of the parties may participate. We note that these subsets may overlap
in an arbitrary way, and security is still guaranteed. This point is crucial for our
above use of the protocol. Namely, in order to prove security we actually consider
a virtual network of 2n parties P1, . . . , P2n where all parties Pn+1, . . . , P2n are
corrupted. Then, for any authentication set H ⊆ {P1, . . . , Pn} we consider an
execution of the protocol of [23] with the subset of parties comprised of every
Pi ∈ H , and every Pn+j for Pj /∈ H . Note that this defines a subset of exactly n
parties, where every party not in H is controlled by the adversary, as required.
The important point to note now, however, is that some Pn+j may participate in
many different executions of the protocol of [23]. It is therefore crucial that [23]
remains secure when arbitrary subsets of parties run the protocol.
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Abstract. We present a constant-round protocol for general secure mul-
tiparty computation which makes a black-box use of a pseudorandom
generator. In particular, the protocol does not require expensive zero-
knowledge proofs and its communication complexity does not depend
on the computational complexity of the underlying cryptographic prim-
itive. Our protocol withstands an active, adaptive adversary corrupting
a minority of the parties. Previous constant-round protocols of this type
were only known in the semi-honest model or for restricted classes of
functionalities.

1 Introduction

General secure computation is often perceived as being inherently impracti-
cal. One valid reason for this perception is the fact that all current proto-
cols either require many rounds of interaction (e.g., [20, 5, 27, 35, 13, 22]),
or alternatively require only a constant number of rounds but make use of
expensive zero-knowledge proofs for each gate of the circuit being computed
(e.g., [40, 4, 28, 6, 26, 34, 25]). Indeed, in all constant-round protocols from
the literature, players need to provide zero-knowledge proofs for statements that
involve the computation of a pseudorandom generator or other cryptographic
primitives on which the “semi-honest” version of the protocol relies. Thus, these
protocols make a non-black-box use of their underlying cryptographic primitives.
We stress that this holds for all settings of secure computation with security
against malicious parties, both in the two-party and in the multi-party case.
The only exceptions to this general state of affairs are unconditionally secure
protocols that apply to restricted classes of functionalities such as NC1 [2] or
protocols that require an exponential amount of computation [3].

In this work we consider the setting of multiparty computation with an hon-
est majority, and present a general constant-round protocol that makes a black-
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box use of a pseudorandom generator.1 Similarly to all general constant-round
protocols from the literature, our protocol relies on Yao’s garbled circuit tech-
nique [40], which was later adapted to the multi-party setting by Beaver, Mi-
cali, and Rogaway [4]. The latter “BMR protocol” requires players to verifiably
secret-share seeds to a PRG as well as the outputs of the PRG on these seeds.
To ensure that this is done correctly, the protocol makes a non-black-box use of
the PRG by requiring players to prove via (distributed) zero-knowledge that the
shared seeds are consistent with the shared PRG outputs. We get around this
problem by modifying the basic structure of the BMR protocol, using “distrib-
uted symmetric encryption” and error-correction to replace the zero-knowledge
proofs. Before providing a more detailed account of our results we give some
more background to put them in context.

Black-Box Reductions in Cryptography. Most reductions between cryptographic
primitives are (fully) black box, in the sense that they implement a primitive
A by using some other primitive B as an oracle, without depending on the
implementation details of B. Moreover, the security proof of such reductions
is also black-box in the sense that an adversary breaking A can be used as
an oracle in order to break the underlying primitive B. (See [36] for a more
detailed definition and discussion.) In contrast, a non-black-box reduction can
use the “code” of B when implementing A. Most examples for non-black-box
reductions in cryptography are ones in which the construction of A requires
parties to prove in zero-knowledge statements that involve the computation of
the underlying primitive B. For instance, the construction of an identification
scheme from a one-way function [14] makes a non-black-box use of the one-way
function. A rich line of work, originating from [24], uses oracle separations to
rule out the existence of (various forms of) black-box reductions. Most notably,
it is shown in [24] that there is no black-box reduction from key agreement to a
one-way function. A common interpretation of such results is that they rule out
the existence of “practically feasible” reductions. Indeed, all known examples
for non-black-box reductions in cryptography involve a considerable overhead.
In the context of cryptographic protocols, this overhead typically involves not
only local computation but also communication: the communication complexity
of the protocol B depends on the computational complexity of the underlying
primitive A.2 Our work provides further demonstration for the usefulness of
distinguishing between the two types of reductions.

Constant-Round Secure Computation. The question of implementing secure com-
putation in a constant number of rounds has attracted a considerable amount of
attention. The first general constant-round protocol for secure two-party compu-
tation was given by Yao [40]. Yao’s original protocol considered only the case of
semi-honest parties; an extension to the case of malicious parties (equivalently,

1 Here we assume the standard model of secure point-to-point channels.
2 In some cases it is possible to reduce the communication overhead by using

communication-efficient zero-knowledge arguments (cf. [31]). However, this approach
would make the computational overhead even higher.
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an active adversary) was given by Lindell [28]. While Yao’s original protocol
makes a black-box use of the underlying primitives (a pseudorandom generator
and oblivious transfer), the protocol from [28] relies on the methodology of Gol-
dreich, Micali, ad Wigderson [20] and thus makes a non-black-box use of these
primitives. Recently, Katz and Ostrovsky obtained a two-party protocol with an
optimal exact round complexity [25].

An extension of Yao’s protocol to the case of multiparty computation with an
honest majority was given by Beaver, Micali, and Rogaway [4] (see also [37, 39]).
Similarly to the two-party case, the BMR protocol makes a black-box use of a
PRG in the semi-honest case and a non-black-box use of a PRG in the malicious
case. (Because of the honest majority assumption, the protocol does not need
to rely on OT.) Constant-round multiparty protocols withstanding a dishon-
est majority were recently obtained by Katz et al. [26] and by Pass [33]. (The
latter protocol also achieves bounded concurrent security, extending a previous
two-party protocol of Pass and Rosen [34].) These protocols are only proved
secure with respect to a non-adaptive adversary and allow the adversary to pre-
vent honest parties from receiving any output (even when corrupting a minority
of the parties). Like the two-party protocols, these protocols follow the GMW
methodology and thus make a non-black-box use of the underlying primitives.

Finally, there has also been a considerable amount of work on unconditionally
secure constant-round multiparty computation in the case of an honest major-
ity (e.g. [2, 15, 23, 9]). Unfortunately, all known protocols in this setting can
only be efficiently applied to restricted classes of functions such as NC1 or non-
deterministic logspace.

1.1 Our Results

We consider the model of computationally secure multiparty computation
against an active, adaptive adversary corrupting up to t < n/2 players. Our
default network model assumes secure point-to-point channels and the availabil-
ity of broadcast (see more on that later). As stated above, our main result is
a new “black-box feasibility” result. Specifically, we construct the first general
constant-round protocol which makes a black-box use of a PRG (equivalently,
using [21], a black-box use of a one-way function). Since much of our motiva-
tion comes from the goal of making secure computation more efficient, we also
attempt to minimize the amount of interaction and communication required by
our protocols. To this end, it is convenient to cast the protocols in the following
“client-server” framework.

The Client-Server Model. We divide the players into “input clients” who provide
inputs, “output clients” who receive outputs, and “servers” who perform the
actual computation. The security of the protocol should hold as long as at most
t servers are corrupted, regardless of the number of corrupted clients. These
three sets of players need not be disjoint, hence this is a strict generalization
of the standard MPC framework in which all parties play all three roles. It
also represents a likely scenario for applying MPC in practice, using specialized
(but untrusted) servers to perform the bulk of the work. We stress again that
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this is just a refinement of the standard model. The main advantage of this
refinement, besides conceptual clarity, is that it allows to decouple the number
of “consumers” from the required “level of security”. (The latter depends on the
number of servers and the security threshold.) For instance, we can have just two
clients and many servers (which may be viewed a distributed implementation of
two-party computation), or a very large number of clients and only few servers.
The latter might be the most realistic setting for secure computations involving
inputs from many players.

Linear Preprocessing. We present our main protocol in two stages. First, we
present a protocol in what we call the “linear preprocessing model”. In this
model, it is assumed that there is a trusted setup phase where a dealer can
provide clients and servers with linearly-correlated resources, e.g., Shamir-shares
of random secrets. Then we use standard subprotocols for emulating the trusted
setup in the plain model. The linear preprocessing model is motivated by the
pseudorandom secret-sharing technique of [11]: when the number of servers is
small, linear preprocessing can be emulated using a “once and for all” setup
phase in which (roughly

(
n
t

)
) replicated and independent seeds are given to

the players. Following this setup, the players can locally generate the required
correlated shares without further interaction.3

Our Protocols. Our main protocol in the linear preprocessing model requires only
two communication rounds when t < n/5. In the first round each input client
broadcasts its masked inputs to the servers, and in the second round the servers
send to each output client a total of O(n2|C|k) bits, where |C| is the size of the
circuit being computed and k is a security parameter. In the plain model, one
can obtain similar protocols at the cost of a higher communication complexity
and additional rounds of interaction. When t < n/5, it suffices to use 3 rounds
of interaction by relying on a VSS protocol from [17]. Alternatively, it is possible
to tolerate t < n/3 or even t < n/2 malicious servers at the expense of further
increasing the communication and the (constant) number of rounds.

In the case of computing a randomized functionality which has no inputs,
the 2-round protocol in the linear preprocessing model becomes totally non-
interactive when combined with pseudorandom secret-sharing. That is, to se-
curely compute such a functionality it suffices for each server to send a single mes-
sage to each output client, without using any broadcasts. Such non-interactive
protocols can be used to obtain efficient distributed implementations of a trusted
dealer in a wide range of applications.

On the Use of Broadcast. As in most of the MPC literature, our network model
assumes the availability of broadcast as an atomic primitive. However, using the
(expected) constant-round broadcast protocol of Feldman and Micali [16, 29],
our protocols can be turned into (expected) constant-round protocols also in
the point to point model. Concerning the communication complexity, since it is
3 The method of [11] was only proved to be secure in the case of a non-adaptive

adversary. Thus, when relying on pseudorandom secret sharing our protocol loses its
provable adaptive security.
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possible to implement our protocol so that the number of broadcasts involved is
independent of |C| (using the techniques of [22]), one can get the same (amor-
tized) communication complexity in the point-to-point model. Moreover, in the
typical scenario where the number of servers is small, even a “brute-force” sim-
ulation of the broadcasts will not have a major impact on efficiency.

Organization. The remainder of the paper is organized as follows. In Section 2 we
define our security model and preprocessing models, and present some standard
subprotocols in these models. Our main protocol and its variations are presented
in Section 3, where the underlying distributed encryption idea is highlighted in
Section 3.3. Due to our elaborate use of techniques from previous works (mostly
in the context of information-theoretic multiparty computation), we omit some
of the low-level details and assume the reader’s familiarity with standard MPC
techniques from the literature. Some discussions and extensions (e.g., the case
t < n/2) were omitted for lack of space and can be found in the full version.

2 Preliminaries

The Model. We consider a system consisting of several players, who interact
in synchronous rounds via authenticated secure point-to-point channels and a
broadcast medium. Players can be designated three different roles: input clients
who hold inputs, output clients who receive outputs, and servers who may be
involved in the actual computation. As discussed in Section 1.1, this is just a gen-
eralization of the standard model, where each party can play all three roles. We
denote the number of servers by n. The functionalities we wish to compute only
receive inputs from input clients and only provide outputs to output clients. For
simplicity we will only explicitly consider deterministic functionalities providing
all output clients with the same output, though an extension of our results to
the general case is straightforward.4 (In contrast, we will employ sub-protocols
that compute randomized functionalities and provide servers and input clients
with outputs as well.)

We assume by default an active, adaptive, rushing adversary corrupting at
most t servers. (There is no restriction on the number of corrupted clients.) We
refer the reader to, e.g., [7] for the standard definition of security in this model.

Our protocols will employ secret-sharing over a finite field K = GF(2k),
where k is a security parameter that will be used as the length of a seed to
a PRG. Slightly abusing notation, each server Pi is assigned a unique nonzero
value i ∈ K.

2.1 Linear Preprocessing

As discussed in Section 1.1, it will be convenient to describe and analyze our pro-
tocols in the linear preprocessing model, where we allow some restricted trusted
4 Standard reductions from the general case to this special case involve interaction

between output clients. This can be avoided by directly generalizing the protocol to
the randomized multi-output case.
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setup as described below. The protocols can then be converted to the plain
model, where no setup assumptions or preprocessing are allowed, at the price of
some efficiency loss.

In the linear preprocessing model, we assume a dealer who initially gives to
each player a set of values in K or in its subfield GF(2). The values distributed
by the dealer are restricted to be “linearly correlated”. Specifically, the dealer
picks a random codeword in a linear code defined over K or over GF(2), and then
hands to each player a subset of the coordinates in the codeword. It is public
which subsets are used, but the values themselves are private. This procedure
can be repeated multiple times, possibly using different linear codes.

Of course, we do not expect that such a dealer would exist in practice. This
is only a convenient abstraction, that can be formalized as an ideal functionality.
We later separately look at how such a dealer may be implemented.

Note that in Shamir’s secret sharing scheme, shares are computed as linear
functions of the secret and random elements chosen by the dealer. We may there-
fore assume that the dealer can give to players Shamir shares of a random secret
or of 0. More concretely, we assume that the following subroutines are available.
When they are called in our protocol descriptions that follow, this should be
taken to mean that the players retrieve from their preprocessed material values
as specified below.

RandSS(t) Each server Pi obtains f(i), where f is a random polynomial over
K of degree at most t.

RandSS0(t) Same as RandSS(t), except that f is subject to f(0) = 0.
RandSSbin(t) Same as RandSS(t), except that f is subject to the restriction that

f(0) is either 0 or 1. Note that this correlation pattern is linear over GF(2).
RandSSP (t) Same as RandSS(t), except that player P additionally receives f .
RandSSP

bin(t) Same as RandSSbin(t), except that P additionally receives f .

As discussed in Section 1.1, the linear preprocessing model is motivated by
the pseudorandom secret-sharing technique from [11] (see also [19]). When the
number of servers is small, a “once and for all” setup is sufficient for enabling
players to execute any number of calls to the above subroutines without having
to communicate.

One can emulate the linear preprocessing model in the plain model using
constant-round interaction between players. This is trivial for a passive adver-
sary, and can be done for an active adversary based on standard verifiable secret
sharing schemes from the literature (e.g., [5, 12, 10]). In particular, [12] shows
how to build VSS from any linear secret sharing scheme, and this can conve-
niently be used to implement RandSSbin(t) using VSS over GF(2).

Our protocols will invoke the following variants of VSS as subroutines.

VSSP (t) Player P has a value s ∈ K as private input. The goal is for each server
to receive a Shamir share of s. Using linear preprocessing, this only requires
a single round of broadcast: in the setup phase we invoke RandSSP (t). Then
the value r = f(0) can be computed by P , and P broadcasts z = s− r. Each
server Pi takes z + f(i) to be his private output.
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VSSP
bin(t) Player P has private input a value b ∈ GF(2). The goal is for each
server to receive a Shamir share of b (computed over K). This can be imple-
mented similarly to VSSP (t), replacing RandSSP (t) by RandSSP

bin(t).

2.2 Secure Computation of Low-Degree Polynomials

In the linear preprocessing model, we now show how to securely compute the
following functionality, which will be useful later.

The functionality is defined by Q(), a degree d polynomial over K in l vari-
ables x1, ..., xl. Each input client is to supply values for some of the variables,
the others are to be chosen at random by the functionality. For each server Pi

we define an index set Di; these sets are mutually disjoint and designate subsets
of the random inputs to Q(). If j ∈ Di, the functionality will output xj to Pi.
Finally, the functionality will output Q(x1, ..., xl) to the output clients, as well
as Shamir shares of this value to the servers.

The functionality is specifically designed to fit into our protocol for computing
Yao-garbled circuits to be presented later. In particular, some of the random
values xj will be used as encryptions keys. Each such key has to be known to
exactly one server, and this is the reason why the functionality outputs some
of the xj ’s to the servers. This functionality, denoted by FQ,D1,...,Dn , is more
precisely defined as follows:

1. In the first round, it receives from each honest input client the xj ’s this client
supplies. In addition, it receives from the honest input clients and servers a
set of values of the form produced in the linear preprocessing model. More
precisely, these additional inputs take the following form:

– For each xj that is supplied by input client I, a set of values for
RandSSI(t) (as determined by a polynomial fj).

– For each xj that is random, a set of values for RandSS(t) (as determined
by a polynomial fj).

– For each xj that is random and where j ∈ Di, a set of values for
RandSSPi(t) (as determined by a polynomial fj).

– A set of values for RandSS0(dt) (as determined by a polynomial f0).

The functionality computes the shares and polynomials that all the above
results in for the corrupt players and outputs this to the adversary. For
instance, for every xj supplied by corrupt input client I, this will be the
polynomial fj(). Note that, due to our assumed constraint on the number of
corrupt servers, the honest players’ information is enough to determine this
information for the corrupt players. Also, for each xj supplied by an honest
input client, it sends xj − fj(0) to the adversary. (No information is sent to
honest players in this round.)

2. In round 2, the functionality receives from each corrupt input client the xj ’s
that it is responsible for. For each j ∈ Di, the functionality will output xj to
Pi. It then outputs to each server a Shamir share of the value Q(x1, . . . , xl)



Constant-Round Multiparty Computation 385

generated by the polynomial Q(f1(), f2(), ..., fl()) + f0() (this will be a uni-
variate polynomial of degree at most dt). Finally, the functionality outputs
Q(x1, . . . , xl) to all output clients.

We securely implement the above functionality in the linear preprocessing
model using the following standard protocol:5

1. We do the following for each xj : if xj is supplied by input client I, execute
VSSI(t) where I uses xj as his private input. The communication implied
by this is the only communication in the first round.

If xj is random, execute RandSS(t). If xj is random and j ∈ Di, execute
RandSSPi(t). In all cases, a set of shares of xj is obtained. Let xj,i be the
share of xj obtained by server Pi. We execute RandSS0(dt), creating shares of
a degree dt polynomial that evaluates to 0 in 0. Let zi be the share obtained
by server Pi.

2. In the second round, each server Pi sends Q(x1,i, . . . , xl,i) + zi to each out-
put client. Each output client considers the values he receives as points
on a degree dt polynomial f , reconstructs the polynomial (applying error-
correction in the active adversary case) and outputs f(0). Each server Pi

outputs Q(x1,i, . . . , xl,i) + zi, and the values xj for which j ∈ Di.

We now show the security of this protocol using Canetti’s UC framework [8].
We only show this for environments that supply inputs of correct form as speci-
fied above. This is sufficient, since we will only use the functionality in conjunc-
tion with the linear preprocessing, which is assumed to produce values of the
right form.

Theorem 1. There exists a 2-round protocol computing FQ,D1,...,Dn, the proto-
col is secure for all environments that supply inputs for honest players as spec-
ified in the description of FQ,D1,...,Dn. Furthermore, the protocol is secure for
an adaptive adversary corrupting at most t servers and an arbitrary number of
clients. For a passive adversary, we assume dt < n, for an active adversary we
need (d + 2)t < n. The communication complexity involves each output client
receiving n field elements and each input client broadcasting its (masked) inputs.

Proof. To prove security, we describe the required simulator (ideal model adver-
sary), which as usual works by running an internal copy of the real-life adversary.
In the first round, we receive a set of polynomials and shares from the ideal func-
tionality, which we pass on to the adversary. In particular, this includes, for each
corrupt input client, a random polynomial fj() of degree at most t, for each xj

this client supplies. When the adversary broadcasts a values rj on behalf of the
client, we compute xj = fj(0)− rj and give xj as input to the ideal functional-
ity. We also received from the ideal functionality fj(0)− xj for each xj supplied
by an honest client. We use these values to simulate the broadcasts of honest
clients. Note that for each corrupt server Pi, the information received from the
5 For our purposes the degree d of Q will be no larger than 3, hence we will not

consider optimizations that apply to a larger d.
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functionality now defines a share xj,i of each xj , and that it also defines a share
zi of the degree dt sharing of 0.

In the second round, the ideal functionality sends Q(x1, ..., xl) to the simu-
lator (we assume the adversary has corrupted at least one output client, oth-
erwise the simulation becomes trivial). For each corrupt output client, we use
the value Q(x1, ..., xl) and the shares of it known by corrupt servers to inter-
polate a random polynomial f of degree at most dt with f(0) = Q(x1, ..., xl)
and f(i) = Q(x1,i, . . . , xl,i) + zi, for each corrupt Pi, where the xj,i, zi are the
previously defined values for Pi. Then for each honest server Pi, we claim f(i)
as the value sent by Pi.

To establish adaptive security, we now show how to reconstruct the history
of the players if they are corrupted after the protocol. Earlier corruptions are
handled by truncating the reconstruction procedure.

If an input client or a server is corrupted after the protocol, we learn all his
input, and pass this on to the adversary. This already determines his view of the
protocol, and is consistent with what the adversary already knows by definition
of the ideal functionality.

If an output client is corrupted after the protocol, we need not produce new
values, as all output clients receive the same set of messages from honest servers,
and these were already produced earlier.

It is straightforward to verify that this simulation leads to perfect indistin-
guishability between the real and ideal process. Namely, the only item that is
produced using different algorithms in the two is the polynomial that determines
Q(x1, ..., xl). However, it is in both cases a random polynomial of degree at most
dt under the constraints that it is consistent with corrupt servers’ shares and its
value at 0 is Q(x1, ..., xl). �

The protocol can be easily extended to secure computation in parallel of sev-
eral low-degree polynomials, on some set of inputs, where some inputs may go to
several polynomials. While it is not clear that this is implied by the composition
theorem (because of the overlapping inputs) it can be shown by a trivial exten-
sion of the above proof. One can also modify the protocol so that only shares
of Q(x1, ..., xl) are computed for the servers, and not the value itself, by simply
not sending the shares to the output clients.

3 Constant-Round MPC Using a Black-Box PRG

In this section we present our main protocol. We start in Section 3.1 by describing
a variant of Yao’s garbled circuit technique on which we rely. Then, in Section 3.2
we sketch the BMR approach for computing a garbled circuit in a distributed
way. Finally, in Sections 3.3 and 3.4 we describe our modified approach.

3.1 The Basic Garbled Circuit Technique

Loosely speaking, the garbled circuit technique allows to represent a circuit C
on � input bits by an “encrypted” circuit E(C) along with � pairs of random
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keys, such that given E(C) and the � keys corresponding to a specific input
b1, . . . , b�, one can efficiently compute the output C(b1, . . . , b�), but this is the
only information about the inputs that can be learned. Yao designed a method
for generating such encrypted circuits, and used it to obtain a general constant-
round two-party protocol for semi-honest parties. (See [30] for a formal proof
of security of Yao’s protocol and [32, 1] for other variants of this technique.)
This protocol was generalized to the multi-party case by Beaver, Micali and
Rogaway [4]. The circuit encryption process can be done in parallel for every
gate in C, yielding a constant-round protocol for secure function evaluation.

We now describe how the basic technique for garbling a circuit works, by
specifying how a trusted functionality could prepare an encrypted circuit and
input keys as above. We will later show various protocols for implementing this
functionality.

Without loss of generality, we assume the function to be computed is de-
scribed as a Boolean circuit C with 2-input NAND gates. Let the number of
wires in the circuit be W . We number the wires from 0 to W − 1. For simplicity,
we assume the circuit produces just a single output bit, to be learnt by all output
clients, where this bit corresponds to the last wire, number W − 1. Each input
wire w has a bit bw assigned to it, where each such bit is supplied by an input
client. We will be using an index 0 ≤ j ≤ 2W − 1, where the values 2w, 2w + 1
are assigned to wire w.

We assume we have available a secure secret-key encryption scheme ES(),
where S is a k-bit key. We need to assume that the cryptosystem is semantically
secure as long as each key is used on at most 2z messages, of length k + 1 bits
each, where z is the maximal fan-out in C.

To compute the garbled circuit, we get as input the bits bw for each input
wire, and then proceed as follows (see below for intuition):

– For every wire w, choose a random bit λw (masking the true value of the
wire) and random keys S2w, S2w+1.

– For every gate g in C, do the following: suppose g has input wires α, β and
output wire γ. Define the following values

a00
g = S2γ+δ00

g
; δ00

g = (λα nand λβ)⊕ λγ

a01
g = S2γ+δ01

g
; δ01

g = (λα nand λ̄β)⊕ λγ

a10
g = S2γ+δ10

g
; δ10

g = (λ̄α nand λβ)⊕ λγ

a11
g = S2γ+δ11

g
; δ11

g = (λ̄α nand λ̄β)⊕ λγ

Define Acd
g = (acd

g , δcd
g ), for c, d ∈ {0, 1}. We compute the encryptions

ES2α(ES2β
(A00

g ))
ES2α(ES2β+1(A

01
g ))

ES2α+1(ES2β
(A10

g ))
ES2α+1(ES2β+1(A

11
g ))
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– We output, for each g, the 4 encryptions as above along with the mask λW−1
of the output wire - this is the encrypted circuit which we denote by E(C).
We also output, for each input wire w, the values bw ⊕ λw and S2w+(bw⊕λw)
- these are the encrypted inputs.

A word about the underlying intuition behind this: assume we knew all the
inputs and did an ordinary computation of the circuit. This would result in
assigning a bit bw to every wire w. Instead, we get to know exactly one of the
two encryption keys that are assigned to each wire, namely the key S2w+(bw⊕λw)
and the bit bw⊕λw, and this is ensured for all input wires initially. We can think
of this information as an encrypted representation of the bit bw. This also means
that by making λW−1 public, we reveal the output bit, and only that bit.

The idea behind making the individual gates work in this scenario is to
encrypt the keys and bits that might be assigned to the gate’s output wire
under keys assigned to input wires in such a way that players will be able to
decrypt the “correct” key and bits for the output wire, and only this information.
For instance, suppose that some gate g in the circuit has input wires α, β and
output wire γ. If the information known for the input wires is S2α+c, c and
S2β+d, d for bits c, d, then the bit that should be revealed for output wire is
δcd
g = ((c ⊕ λα) nand (d ⊕ λβ)) ⊕ λγ, and so the key that should revealed is

S2γ+δcd
g

. The idea is therefore to encrypt these two values under S2α+c and
S2β+d, for all 4 values of c, d.

Anyone who is given encrypted circuit and inputs can compute the output
by the following local circuit evaluation procedure: for each input wire w, the key
S2w+(bw⊕λw) and the bit bw⊕λw are given. There will now be a number of gates,
for which a key and a bit are known for both input wires. Let g be such a gate,
say with input wires α, β and output wire γ. Since we know bα⊕λα and bβ⊕λβ ,
we know which of the encryptions associated to g we can decrypt, namely those
where both involved keys are known. We decrypt and obtain as result a key and
a bit, which are easily seen to be S2γ+(bγ⊕λγ) and the bit bγ ⊕ λγ . Continuing
this way, we will obtain a key and a bit bW−1⊕λW−1 for the output wire W −1.
Since we also know λW−1, we can compute the output bit bW−1.

3.2 The BMR Protocol

The protocol from [4] can be seen as a concrete proposal for an encryption scheme
E as required for the garbled circuit technique and a protocol for computing
E(C). Their scheme assumes a pseudorandom generator G taking as input a k-
bit seed (such a generator can be constructed from any one-way function [21]).
For a seed s, the output of G(s) is split into k-bit blocks where the j’th block is
denoted by G(s)j .

A key S in the encryption scheme consists of n subkeys S = (s1, s2, . . . , sn),
each of which is k bits long, and where initially si is known only to Pi. An
element m ∈ K is encrypted under S as ES(m) = m ⊕ G(s1)j ⊕ ... ⊕ G(sn)j ,
assuming m is the j’th k-bit string we encrypt under S.

Assuming m and each si have been secret shared among the servers, we
can securely compute the encryption by having server i locally compute and
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secret share G(si)j . We can then use linearity of the secret sharing to get shares
of ES(m), and send these shares to the output clients. This will work, and
makes only a black-box use of G, if the adversary is passive. But if he is active,
each server needs to prove in zero-knowledge that he has computed and secret
shared G(si)j correctly. In general, this requires generic zero-knowledge tech-
niques, which means we no longer make a black-box use of G, and also leads to
a major loss of efficiency.

3.3 Our Distributed Encryption Scheme

We now suggest a different encryption scheme for the garbled circuit technique,
allowing to avoid the use of zero-knowledge proofs in the case of an active ad-
versary. We assume as before a pseudorandom generator G which expands a k
bit seed. A key S consists again of n subkeys S = (s1, s2, . . . , sn) where initially
si is known only to Pi.

Consider now a situation where a message m ∈ K has been secret shared
among the n servers using a polynomial of degree d, where t ≤ d < n. Let mi

denote the share of m given to Pi. To encrypt such a message under a key S,
we will let each server encrypt the share he knows under his part of the key
(expanded by G).

We define Ej
S(m) = (G(s1)j⊕m1, ..., G(sn)j⊕mn). Having received the parts

of the ciphertext Ej
S(m) from the servers and given the key S, one can decrypt

each share and reconstruct m from the shares, where error correction6 is used
to recover m if the adversary has actively corrupted some of the servers. The
following lemma is straightforward.

Lemma 1. The above distributed encryption scheme has the following properties:

– If an adversary is given up to t of the si’s, and Ej
S is used on at most one

message m, the encryption keeps m semantically secure.
– If the adversary is passive, and an honest output client is given S and receives

Ej
S(m) from the servers, he can decrypt correctly if d < n.

– If the adversary is active, and an honest output client is given S and receives
Ej

S(m) from the servers, he can decrypt correctly if d + 2t < n.

This generalizes in a straightforward way to cases where two keys U, V are used.
We write Ei

U (Ej
V (m)) = (G(u1)i ⊕G(v1)j ⊕m1, ..., G(un)i ⊕G(vn)j ⊕mn).

In the following, we will be encrypting several elements in K under the same
key. This is done in the natural way, by using a fresh part of the output from G
for each new element.

3.4 Distributed Computation of a Garbled Circuit

We now apply the distributed encryption idea for securely computing a garbled
circuit using a black-box PRG. The protocol takes place in the linear preprocess-
6 In the case t < n/2 the subkeys and the message will be distributed using authenti-

cated shares, in which case the decryption will involve a correction of erasures rather
than errors.
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ing model, and will use the subroutines and protocols described in Sections 2.1
and 2.2.

1. In round 1, for each wire w = 0..W − 1 the servers execute RandSSbin(t) to
create shares of the secret wire masks λw’s. Also, for i = 1..n, j = 0..2W −1,
they execute RandSSPi(t) to create shares of the subkeys si

j , such that si
j

is known to Pi. Finally, for each input bit bw held by input client Ij , the
players execute VSSIj (t) (i.e., with Ij as dealer) and bw as shared secret.
Thus the only communication in round 1 consists of broadcasts done in the
VSS subroutines.

2. In round 2, the servers first do some local computation.
– For each input wire w and i = 1..n, each server locally computes a ran-

dom share of the value si
2w+(bw⊕λw). Note that since we work over a field

of characteristic 2, this value can be written as a degree 2 polynomial,
namely (1 + bw + λw)si

2w + (bw + λw)si
2w+1. We can therefore compute

shares of the value si
2w+(bw⊕λw) defined by a random degree 2t polyno-

mial and send all these shares to the output clients, using the protocol
from Section 2.2.

– For each input wire w, the servers compute shares of the value bw ⊕ λw

and send them to the output clients.
– For each gate g in the circuit, suppose the two inputs and output wire

are wires α, β, γ, respectively. Then for each i = 1..n, the servers locally
compute random shares of the values

a00,i
g = si

2γ+δ00
g

; δ00
g = (λα nand λβ)⊕ λγ

a01,i
g = si

2γ+δ01
g

; δ01
g = (λα nand λ̄β)⊕ λγ

a10,i
g = si

2γ+δ10
g

; δ10
g = (λ̄α nand λβ)⊕ λγ

a11,i
g = si

2γ+δ11
g

; δ11
g = (λ̄α nand λ̄β)⊕ λγ

Note that these values canbewritten as degree 3 polynomials in the already
shared values, for instance, a00,i

g = (λαλβ +λγ)si
2γ +(1+λαλβ +λγ)si

2γ+1.
We can therefore use the protocol from Section 2.2 to locally compute
these random shares (without sending them to the output clients).

3. Let acd
g = (acd,1

g , ..., acd,n
g ), for c, d ∈ {0, 1}. (This vector of n subkeys replaces

the single key acd
g in the basic garbled circuit construction from Section 3.1).

Define Acd
g = (Acd

g , δcd
g ). The servers can now reveal to the output clients en-

cryptions of the form ES2α+c(ES2β+d
(Acd

g )) using the distributed encryption
scheme from Section 3.3. (Note that both the data we need to encrypt and
the encryption subkeys are already shared in the required form.)

4. The output clients now apply the local circuit evaluation procedure described
in Section 3.1, replacing ordinary decryption with distributed decryption
(Section 3.3).

Theorem 2 (Black-box constant-round protocol in linear preprocess-
ing model). In the linear preprocessing model, there is a general 2-round MPC
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protocol making a black-box use of a pseudorandom generator. The protocol tol-
erates an active, adaptive adversary corrupting t < n/5 servers and an arbitrary
number of clients. 7 The communication complexity for computing a circuit C
involves O(n2|C|k) bits sent to each output client, and each input client must
broadcast its (masked) inputs to the n servers.

Proof sketch: Formally speaking, we want to prove that the above protocol
realizes a functionality FC that accepts inputs b1, ..., b� from the input clients
and then outputs C(b1, ..., b�) to all output clients.

Let Flow−degree be an extended version of FQ,D1,...,Dn, computing all polyno-
mials of degree 2, 3 and shares we compute in the protocol π as described above
(see the remarks following Theorem 1). Let πFlow−degree be the protocol we ob-
tain by replacing in the natural way steps 1 and 2 in π by a call to Flow−degree.
By Theorem 1 and the composition theorem, to show security of π, it is sufficient
to show security of πFlow−degree .

We now describe a black-box simulator for this protocol. The simulator
proceeds by running internally copies of the linear preprocessing functionality,
Flow−degree and the (initially) honest players. The internal copies of honest play-
ers are called virtual honest players. They will be given 0’s as input instead of
the real values of their bi’s (which are unknown to the simulator). Otherwise
all these internal entities proceed according to the protocol. There are only two
differences between this and the real process: When the adversary specifies input
bits to Flow−degree, this in particular fixes values of the bi’s for the corrupt play-
ers. The simulator then sends these bits to FC . Second, when we get C(b1, ..., b�)
from FC and construct the encrypted circuit, we assign a number of ciphertexts
to the output gate g, exactly one of which will be decrypted in the local evalua-
tion procedure. The simulator will put the bit λW−1 ⊕ C(b1, ..., b�) as plaintext
inside this encryption. This is done as follows: the degree 3t polynomial that
defines this bit is of the form g() + z() where z() is a random degree 3t poly-
nomial with z(0) = 0. We then change z() to a random z′()of the same degree,
but such that g(0) + z′(0) is that value we want and z′() is consistent with the
shares of corrupt players. This change introduces no inconsistencies in the view
of the virtual players, since z() is used for nothing else than randomizing g. The
simulated execution now results in output C(b1, ..., b�) which is consistent with
what the ideal functionality gives to the honest clients.

It remains to be described how the simulator handles corruptions. We de-
scribe how the simulator will reconstruct the view of a newly corrupted player.
We assume the player is corrupted after the protocol terminates. For earlier cor-
ruptions, the reconstruction procedure is truncated appropriately. The general
idea is that the simulator already has the views of the virtual honest players,
including the one the adversary now wants to corrupt. We then modify this infor-
mation so it becomes consistent with what we learn as a result of the corruption,
without changing what the adversary already knows.

7 In the full paper, we give an optimized version of Theorem 1 for the case of a passive
adversary, allowing us to prove the above theorem for t < n/2 in this case.
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If an input client is corrupted, we learn his input bit(s), say bw. We already
broadcasted a value rw related to this, and the virtual client has from the pre-
processing a polynomial fw with fw(0) = rw. We then change fw to f ′

w, so f ′
w is

random of degree at most t, subject to f ′
w(0) = bw⊕rw, and fw(c) = f ′

w(c) for all
corrupt Pc. We now want to claim that the virtual honest players used the poly-
nomial g′w() = f ′

w()+rw in the further computation, instead of gw() = fw()+rw

we used so far. Note that, to compute the garbled inputs, the protocol computes
a set of degree-2 polynomials. Consider one of them, say Q(bw, λw, s2w, s2w+1).
Say the last 3 variables are shared using polynomials g2(), g3(), g4(). Before cor-
ruption, we had Q(0, λw, s2w, s2w+1) shared using a univariate polynomial of
the form Q(gw(), g2(), g3(), g4()) + zw(), where zw() is random of degree 2t and
zw(0) = 0. Define z′w() by

Q(gw(), g2(), g3(), g4()) + zw() = Q(g′w(), g2(), g3(), g4()) + z′w()

and change zw() to z′w(). This will change honest virtual server’s shares, but not
the corrupted server’s shares, by construction of f ′

w(), g′w(). It will also preserve
the data sent to output clients. We now give to the adversary the updated view
of the virtual client.

If a server or an output client is corrupted, note that this does not result
in any new data learnt from FC . We can therefore give the current view of the
virtual output client or server to the adversary.

This concludes the description of the simulator. The intuition of the analysis
of the simulation is that all plaintext data are identically distributed in simula-
tion as in real execution, the difference lies in the data that remain encrypted,
and this cannot be detected efficiently by semantic security of the encryption. �

3.5 The Plain Model

To implement the above protocol in the plain model, we need to emulate the
procedures for generating random shared secrets. The cost of the resulting pro-
tocol is dominated by the cost of emulating O(n|C|) invocations of (different
variants of) RandSS(t). In the semi-honest case, each invocation of RandSS(t)
can be implemented in a straightforward way by letting each player distribute a
random secret and output the sum of the shares it received. (In fact, it suffices
that t + 1 players share secrets.) In the malicious case, one could use a similar
procedure based on any standard constant-round VSS protocol from the litera-
ture (e.g., the one from [5]). In fact, using the 2-round VSS protocol from [17],
one can obtain a 3-round protocol in the plain model (assuming t < n/5).

We can weaken the assumption on t in the active case to t < n/3 by replac-
ing the non-interactive polynomial evaluation protocol from Theorem 1 by an
interactive one (e.g., using [5]). The resulting protocol will have a larger (but
still constant) number of rounds and a higher communication complexity. In the
full version, we sketch how to use the VSS and multiplication protocol from [10]
to further extend the feasibility result to the case t < n/2. This is based on two
observations: first, a variant of our distributed encryption scheme can be used to
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encrypt values that have been shared under any VSS with a non-interactive re-
construction protocol. Second, by requiring that all values in the computation as
well as shares of these values are VSS’ed, we can obtain a multiplication protocol
that is guaranteed to terminate in a constant number of rounds, even for the case
of t < n/2. Thus, our main feasibility result in the plain model is the following:

Theorem 3 (Black-box constant-round protocol in plain model). In the
plain model, there is a general constant-round MPC protocol making a black-box
use of a pseudorandom generator. The protocol tolerates an active, adaptive
adversary corrupting t < n/2 servers and an arbitrary number of clients.
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Abstract. Motivated by database search problems such as partial
match or nearest neighbor, we present secure multiparty computation
protocols for constant-depth circuits. Specifically, for a constant-depth
circuit C of size s with an m-bit input x, we obtain the following types
of protocols.

– In a setting where k ≥ poly log(s) servers hold C and a client holds
x, we obtain a protocol in which the client privately learns C(x) by
communicating Õ(m) bits with each server.

– In a setting where x is arbitrarily distributed between k ≥ poly log(s)
parties who all know C, we obtain a secure protocol for evaluating
C(x) using O(m · poly(k)) communication.

Both types of protocols tolerate t = k/poly log(s) dishonest parties and
their computational complexity is nearly linear in s. In particular, the
protocols are optimal “up to polylog factors” with respect to communi-
cation, local computation, and minimal number of participating parties.

We then apply the above results to obtain sublinear-communication
secure protocols for natural database search problems. For instance, for
the partial match problem on a database of n points in {0, 1}m we get
a protocol with k ≈ 1

2 log n servers, Õ(m) communication, and nearly
linear server computation. Applying previous protocols to this problem
would either require Ω(nm) communication, Ω̃(m) servers, or super-
polynomial computation.

1 Introduction

As networking becomes a common tool and data can be accessible to all, many
applications require distributed access of clients to data servers over the web and
other network environments. Once the search is not locally performed, privacy
might become a major concern. This motivates the problem of privacy-preserving
database search, allowing clients to search a database without revealing their
search queries to the servers storing the database. Since the databases being
searched might be very large, it is desirable to obtain privacy-preserving search
protocols whose communication complexity is sublinear in the database size.
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The above problem was extensively studied within the context of private in-
formation retrieval (PIR) [11]. The goal of PIR is to allow a client to privately
retrieve the ith item (say, a bit) from a database stored in one or more servers.
PIR can be used as a building block for more complex database search opera-
tions. Using PIR to probe a data structure representing the database, one can
obtain sublinear-communication private protocols for problems such as keyword
search [10, 13] or approximate nearest neighbor search (e.g., using [21]).1 Unfor-
tunately, many natural database search problems that arise in practice are not
known to have efficient data structures, namely ones which provide the guarantee
that each query can be answered by making few probes into the data structure.
For instance, all known algorithms for the partial match problem (aka “keyword
search with wildcards”) require either the number of probes to be nearly linear in
the database size or the data structure to be exponential in the length of database
entries (see, e.g., the best algorithms known for partial match by Charikar et al.
[9] and the survey by Miltersen [22]). Hence, the generic PIR-based approach is
not useful for this problem. The same holds for many other natural and useful
search problems, including Boolean information retrieval (supporting “advanced
Google search” functionality), exact nearest neighbor search, and others.

Our point of departure is the observation that most practical database search
operations can be efficiently implemented using constant depth circuits. (By de-
fault, we allow circuits to use AND, OR, NOT, and XOR gates with unbounded
fan-in and fan-out.) That is, it is possible for the server to represent its database
as a (large) constant-depth circuit C and for the client to independently repre-
sent its query as a (small) input x, such that C(x) returns the answer to the
client’s query on the server’s database. Given this observation, it suffices to ob-
tain protocols for securely evaluating a constant-depth circuit C held by the
server on an input x held by a client, such that the communication complex-
ity of the protocol is dominated by the size of x rather than by the size of C.
Unfortunately, no protocols of this type are known. Using the current toolbox
of techniques for secure two-party computation, one can either obtain protocols
whose communication complexity is (at least) linear in the circuit size [30, 17]
or ones whose computational complexity is exponential in the input size [24].

A good solution to the above problem would imply a major breakthrough in
the theory of secure computation. (A small step in this direction, resolving the
case in which C is a 2-DNF formula, was very recently made in [6].) In the current
work we consider a relaxed setting where (few) different servers hold copies of
C, and the client’s privacy should be protected against every individual server
or collusion of servers of some bounded size t. This “data replication” scenario is
the one originally considered in the context of PIR [11]. It is arguably becoming
more and more relevant to practice, with the widespread use of peer-to-peer
networks, distributed file backup and web caching systems, and other forms
of replicated data. Moreover, in this setting it is possible to avoid the use of

1 The PIR-based approach was generalized in [24] to turn arbitrary sublinear-
communication protocols into private ones. However, the resulting protocols gen-
erally require a super-polynomial amount of computation.
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expensive “cryptographic” computations (e.g., modular exponentiations) which
would make the protocols computationally infeasible in practice. Our goal in this
setting is to simultaneously obtain nearly-optimal communication (of the order
of |x|) and local computation (of the order of |C|), while minimizing the number
of servers.

In addition to the client-servers scenario discussed above, we also consider the
complexity of evaluating constant-depth circuits in a multiparty setting, without
any data replication assumptions. Here the circuit C specifies the functionality
to be computed (hence it is known to all parties) and the input x is arbitrarily
partitioned between the parties. In this case, the best known techniques from the
multiparty computation literature would either require linear communication in
|C| [5] or an exponential amount of computation and Ω̃(|x|) parties [3]. Our
goal, as before, is to simultaneously obtain nearly optimal communication and
computation while minimizing the required number of parties (alternatively,
maximizing the security threshold).

1.1 Our Results

We obtain communication-efficient protocols for securely evaluating constant-
depth circuits in both the client-servers setting and the multiparty setting dis-
cussed above. Our main protocols are optimal “up to polylog factors” with
respect to all three parameters of interest: communication, computation, and
number of participating parties. Furthermore, the protocols typically require a
minimal amount of interaction, consisting of only two communication rounds (a
single round of queries and answers in the client-servers case). Since the number
of servers or participating parties is the most crucial resource, we also attempt to
optimize the multiplicative constants involved, as was done in the context of PIR.
In the case of depth 2 circuits (which in particular suffices for capturing general
DNF or CNF evaluation and secure partial match), the number of servers can
be as low as 1

2 log2 |C| while maintaining (essentially) optimal communication
and computation.

We now provide a more detailed account of our results. We let C denote a
circuit of size s and depth c with an m-bit input x. In the client-servers setting,
each of k servers holds C and a client who holds x should privately learn C(x).
In the multiparty setting the circuit C is known to all k parties, where x is
distributed between them, and (by default) they all privately learn C(x). Let t
denote a security threshold (t = 1 by default). We obtain the following two main
types of protocols:

– In the client-servers setting we obtain protocols where the communication
complexity and the client’s computation complexity are Õ(m) per server,
the computation complexity of each server is Õ(s), and k = O(t · logc−1(s)).

– In the multiparty setting we obtain a protocol for k = O(logc−1(s)) parties
in which the communication complexity is O(m · poly(k)), the computation
complexity of each party is Õ(s), and the protocol resists t = Ω(k/ logc−1(s))
dishonest parties.

All these protocols are secure in an information-theoretic sense.
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We then apply the above general results and optimize them to obtain efficient
secure protocols for database search problems. For instance, for the partial match
problem on a database of n points in {0, 1}m, we get a protocol with k ≈ 1

2 log n

servers, Õ(m) communication, and nearly linear server computation.

1.2 Overview of Techniques

The main technical tool we use in obtaining the above results is a compact
representation of constant-depth circuits by probabilistic low-degree multivariate
polynomials. We rely on techniques that have been part of a large body of work
proving lower bounds on the size of constant-depth circuits (originating from
[25, 27]), tailoring them to our different goals. Additional tools we employ are
ε-biased generators [23] and randomizing polynomials [19].

Randomizing polynomial provide a secure reduction of a “complex” function-
ality f(x) to a low-degree randomized functionality p(x, r). (Here r represents
“private” randomness chosen by the functionality; both x and r count towards
the degree.) Such reductions are motivated by the fact that most standard pro-
tocols for secure function evaluation can handle low-degree functionalities very
efficiently. Specifically, the main motivation for introducing randomizing poly-
nomials in [19] was the fact that evaluating low-degree polynomials requires few
rounds of interaction. The current motivation is different: We are mainly in-
terested in minimizing the communication complexity. We exploit the fact that
the amount of communication required for evaluating a vector of low-degree
polynomials is dominated by the length of the vector (i.e., the number of out-
puts), rather than by the description size of the polynomials. Thus, our goal is
to construct short vectors of low-degree randomizing polynomials representing
constant-depth circuits.

In all previous constructions of randomizing polynomials from the literature,
the output length of p is at least linear in the representation size of f , even when
f outputs only a single bit. For instance, in [19] it is shown how to construct
a vector of degree-3 randomizing polynomials whose length is quadratic in the
size of a branching program computing f . In our case, both the output length
and the amount of private randomness must be sublinear in the circuit size. To
this end we define the more general notion of a randomizing polynomials col-
lection (RPC), which introduces public randomness in addition to the private
randomness r. Specifically, an RPC is defined by a collection of polynomial vec-
tors pρ(x, r), where the “key” ρ is viewed as public randomness and thus does
not count towards the degree. We say that the RPC pρ(x, r) represents the func-
tion f if: (1) it is possible to recover f(x) from pρ(x, r) with a negligible failure
probability (over the choices of ρ and r), and (2) the output of pρ(x, r) gives
(essentially) no additional information about x, even given the knowledge of the
public randomness ρ. The usual notion of randomizing polynomials corresponds
to the special case in which ρ is empty.

An RPC representation for f naturally gives rise to secure protocols for f ,
similarly to the case of standard randomizing polynomials. Thus, our goals re-
duce to constructing “good” RPCs for constant-depth circuits. The degree of the
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RPC corresponds to the minimal number of participating parties (alternatively,
maximal security threshold), and thus serves as our main optimization goal. In
addition to minimizing the degree, we wish to optimize both the output length
and the amount of randomness, and in particular require them to be sublinear
in the circuit size.

Our main RPC construction proceeds in three stages. The first and main
stage applies a variant of the techniques of Razborov and Smolensky [25, 27]
to create a short vector of low-degree randomized polynomials that uses a large
amount of public randomness (but no private randomness) in order to reduce
the degree of f . This representation guarantees that f(x) can be reconstructed
from the outputs of the polynomials with overwhelming probability, yet these
outputs might reveal additional information about x. In the second stage we
reduce the amount of public randomness by using ε-biased generators [23, 1].
Finally, we eliminate the extra information about x revealed by the polynomi-
als using previous constructions of degree-3 randomizing polynomials [19]. This
stage introduces a small amount of private randomness and only incurs a minor
increase to the degree.

Organization. The remainder of the paper is organized as follows. In Section 2
we give some definitions, and in particular define the notion of RPCs. In Section
3 we describe our main RPC construction for constant-depth circuits and in
Section 4 we apply it to obtain secure protocols in both the client-servers setting
and the multiparty setting. Finally, Section 5 discusses applications to concrete
database search problems.

2 Preliminaries

2.1 Circuits

We represent functions using Boolean circuits with unbounded fan-in and fan-
out, as defined below. A circuit C is a labelled directed acyclic graph. The nodes
with no incoming edges are labelled with variables (xi), their negations (x̄i), or
constants (0 or 1). All other nodes are called gates and are labelled with some
operator. Our default basis of operators includes AND, OR, NOT, and XOR. The
nodes from which there are edges to a gate g are called the inputs of g. We
refer to the number of such inputs as the fan-in of g. In the full version we also
consider a generalization of XOR gates to MODpe gates, where p is prime and
e ≥ 1 is an integer. Such a gate outputs 1 iff the sum of its inputs is 0 mod pe

(for pe = 2 this is a NOT− XOR gate).
The size of a circuit is the number of edges. Its depth is the length of the

longest path from a variable node to an output node, where intermediate NOT
and XOR gates do not count towards the depth. Nodes with no outgoing edges
are called the output nodes. We denote by C(x) the output of C on input x, and
say that C computes a function f if C(x) = f(x) for all inputs x.

We will focus on the case of constant-depth circuits. By this we refer to
(polynomial-time uniform) families of circuits whose depth is bounded by some
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constant c, independently of the input length. Such circuits over the basis AND,
OR, NOT (resp., AND, OR, NOT, MODpe) correspond to the complexity class
AC0 (resp., AC0(pe)). Note that, using De-Morgan’s law, one can eliminate
AND gates without increasing the depth.

The case of depth-2 circuits will be of particular interest. An n-term DNF
formula is a depth-2 circuit computing the disjunction (OR) of n conjunctions
(AND) of literals. For instance, (x1∧x̄2)∨(x2∧x̄3∧x4) is a 2-term DNF formula.

2.2 Secure Computation

We consider two different scenarios for secure computation: a client-servers sce-
nario, which may be viewed as a distributed form of two-party computation, and
the standard multi-party scenario. We begin by recalling the latter.

Multi-party Setting. In the multi-party setting there are k parties, each hold-
ing an input xi to a functionality f . By default, we consider deterministic,
single-output functionalities; that is, the output f(x1, . . . , xk) should be learned
by all parties. Generalization to randomized, multiple-output functionalities is
straightforward.

Our protocols in this setting satisfy standard definitions for secure multi-
party computation from the literature [7, 8, 18]. In fact, all our protocols are se-
cure in an information-theoretic sense, assuming the availability of secure point-
to-point channels. More specifically, our protocols will be statistically secure,
where security is parameterized by a (statistical) security parameter σ which is
given to all parties as an additional input.

We will distinguish between security in the semi-honest model (capturing
“honest-but-curious” players or a passive adversary) and security in the mali-
cious model (capturing an active adversary). In the latter case, we assume the
availability of broadcast. In both cases, we allow the adversary to adaptively
corrupt up to t parties.

Client-Servers Setting. Our client-servers model generalizes the model for
information-theoretic PIR introduced in [11]. In this model there is a client (or
user) U who holds an input x of length m, and k servers S1, . . . ,Sk who all hold
the same input C of length s. The goal is for the client to learn the value f(C, x),
for some publicly known function f , while keeping its input x hidden from any
collusion of t servers. We will be particularly interested in the case where the
servers hold (a description of) a constant-depth circuit C and the client holds
an input x to this circuit. In this case, f will be a universal function defined by
f(C, x) = C(x).

All of our protocols in this setting will only require a single round of inter-
action in which the client sends a query to each server and receives an answer
in return. The protocol is ε-correct if the client’s output is correct except with
error probability bounded by ε. By default, ε should be exponentially small in
the security parameter σ.
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Similarly to the case of PIR, our default security requirement only considers
the privacy of the client. We say that the protocol is t-private if any collusion of
t servers can learn nothing about the client’s input x.

We will also consider enhanced client-servers protocols that additionally pro-
tect the privacy of the servers’ input. In such a protocol, the client should learn
essentially nothing about C except the output f(C, x). More specifically, the
protocol is said to be δ-server-private (with respect to f) if the view of the client
can be simulated, up to statistical distance of δ, based on its input and output
alone. (See full version for a formal definition.) We require δ(σ) = 2−Ω(σ) by
default. Following the terminology that was used in the context of PIR [16],
we refer to protocols that satisfy this additional server privacy requirement as
being symmetrically private. To enable server privacy without direct interaction
between the servers, it is required to allow the servers to share a common random
string (CRS) [16].

The above security requirements induce three levels of security for client-
servers protocols: (1) basic security, providing client-privacy only; (2) symmetric
privacy with respect to a semi-honest client; and (3) symmetric privacy with
respect to a malicious client.

2.3 Randomizing Polynomials

We generalize the notion of randomizing polynomials from [19] and consider
what we call collections of randomizing polynomials. Before describing our gen-
eralization, we review the original notion of randomizing polynomials.

Randomizing polynomials represent a function f using a vector of multivari-
ate polynomials over a finite field. (In this work, the underlying field will be
GF(2) by default.) Each polynomial has two types of inputs: ordinary inputs x
and random inputs r. A randomizing polynomials vector will usually be denoted
by p(x, r). Note that p is a vector of polynomials which all act on the same
variables x, r. The vector p(x, r) is said to represent a function f if its output
distribution is “equivalent” to the output of f in the following sense. First, given
p(x, r) it is possible to recover f(x) (without knowing r). In the other direction,
given f(x) alone it is possible to sample from the output distribution p(x, r)
induced by a uniform choice of r (without knowing x).

For the purpose of allowing more compact representations, we generalize the
notion of randomizing polynomials by considering collections of randomizing
polynomials. Let pρ(x, r) denote a collection of polynomial vectors, indexed by a
key ρ. When ρ is picked at random, we refer to it as public randomness, whereas
r is referred to as private randomness. We will say that pρ(x, r) represents a
function f(x) if the following two properties hold: (1) it is possible to recover f(x)
from the output of pρ(x, r) (except for a negligible failure probability over the
choices of ρ and r), and (2) the output of pρ(x, r) gives (essentially) no additional
information about x even given the knowledge of the public randomness ρ. These
properties guarantee that the secure computation of f can be reduced to that
of pρ, where ρ is a public random string chosen independently of the inputs.
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Definition 1. (Randomizing Polynomials Collection (RPC)). Let
pρ(x, r) = (p1ρ(x, r), p2ρ(x, r), . . . , plρ(x, r)) be a vector of l polynomials over
the input x = (x1, . . . , xm), the private random input r, and the public random
input ρ. All polynomials are over a finite field F , where F = GF(2) by default.
We say that pρ(x, r) is an ε-correct, δ-private randomizing polynomials collec-
tion (RPC) for f(x) if the following holds.

– ( ε-correctness) There exists a reconstruction algorithm R such that for every
input x, Prr,ρ[R(pρ(x, r)) �= f(x)] ≤ ε, where r and ρ are chosen uniformly
and independently. Note that reconstruction should not depend on ρ. (Intu-
itively, correctness should hold for all but a negligible fraction of the ρ’s.)

– ( δ-privacy) There exists a simulator M such that for every input x,

SD[(ρ,M(f(x))), (ρ, pρ(x, r))] ≤ δ,

where r and ρ are chosen uniformly and independently at random and SD
denotes statistical distance. Note that the simulator is not given ρ yet the
simulation should also be successful when considered jointly with ρ. This
implies that the output distribution of pρ(x, r) should be essentially the same
given almost any fixed ρ.

The length of pρ(x, r) is l. Its degree is the maximal degree of a polynomial in
the vector, taking into account only the input variables x and the private random
variables r. We refer to |ρ| as the public randomness complexity and to |r| as
the private randomness complexity.

Universal RPC. We will sometimes want to represent each function f in a class
F by an RPC, such that all RPCs in the class share the same simulator and
reconstruction algorithms. In such a case, we say that the class of RPCs is
universal for the function class F . Our main RPC construcsion will be fully
universal: the same reconstruction algorithm and simulator can be applied for
all functions f . (Of course, the RPC itself varies from one function to another.)
This feature will be useful for obtaining protocols in the client-servers model,
where a circuit held by the servers is evaluated on an input held by the client.

Polynomial Collection (PC). We will also consider RPCs which do not need
to satisfy the privacy requirement. (In fact, such collections will serve as an
intermediate step in constructing RPCs.) In this case, there is no need for private
randomness. We will refer to this relaxed type of RPC as a polynomial collection
(PC) and denote it by pρ(x). A PC of length 1 will also be referred to as a
randomized polynomial. Note that the identity function p(x) = x defines a trivial
PC with no public randomness. However, we will be interested in constructing
universal PCs (whose reconstruction algorithm does not depend on f), and in
particular ones in which the output length is sublinear in the input length.

Randomizing polynomials for branching programs. We will rely on an efficient
representation of branching programs by randomizing polynomials.
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Lemma 1. [20] Suppose f(x) can be computed by a branching program of size �.
Then, f can be represented by a vector p(x, r) of degree-3 (perfectly correct and
private) randomizing polynomials of length O(�2) and randomness complexity
O(�2). Moreover, the degree of p in the x variables is 1.

2.4 ε-Biased Generators

The communication complexity of some of our protocols will depend on the
randomness complexity of the underlying RPCs. This calls for the use of pseudo-
randomness. It turns out that the pseudo-random generators we need are only
required to fool linear distinguishers. Thus, we will rely on the following standard
notion of ε-biased generators [23].

Definition 2. (ε-biased generator) A function G : {0, 1}� → {0, 1}n(�) is an
ε-biased generator (for some bias function ε(�)) if for all sufficiently large � and
all linear functions L : GF(2)n(�) → GF(2), we have

|Pr[L(G(U�)) = 1]− Pr[L(Un(�)) = 1]| ≤ ε(�)

By default, the function ε(�) is required to be negligible.

3 Low-Degree RPCs for Constant Depth Circuits

In this section we present our main constructions of low-degree PCs and RPCs
for constant-depth circuits. The high level idea is to simulate the given circuit
in a gate-by-gate fashion, going from the inputs to the output, where each such
simulation step does not add much to the degree and does not create a big error.

For simplicity, we assume that the circuit has a single output and thus com-
putes a boolean function; a generalization to the non-boolean case is straight-
forward. We also restrict the attention to AC0(2) circuits (a generalization to
AC0(pe) circuits appears in the full version). Finally, we may assume without
loss of generality that the circuit contains only OR, XOR, NOT gates and that
the output gate is OR.

A central “gadget” in the construction is the following representation of the
OR function by a single randomized polynomial, namely a PC of length 1.

OR construction with parameter γ. Given an OR gate with t inputs, let R be a
random γ × t matrix over GF(2), and define the randomized polynomial:

pR(x1, . . . , xt) = 1−
γ∏

i=1

(1 − (
t∑

j=1

Ri,jxj)). (1)

If OR(x) = 0 then so is pR(x), while if OR(x) = 1 then the probability of every
inner product (the sum) to result in 0 or 1 is equal. Thus, pR(x) = OR(x) except
with probability 2−γ over the choice of R, and we have the following.
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Lemma 2. An OR gate with t inputs has a 2−γ-correct PC representation over
GF(2) of length 1 and degree γ.

Notice that in this case we only have a one-sided error; however, applying the
OR gadget within the general construction will generally result in a two-sided
error. We now proceed to the case of a general circuit C.

Basic construction with parameter σ. Given a circuit C of size s, we define a
randomized polynomial pg

ρ(x) for every gate g of C, so that the PC representing
the circuit is the polynomial defined for the output gate. The polynomial pg is
defined inductively as follows. An input is represented by a deterministic polyno-
mial corresponding to its straightforward arithmetization (e.g., x̄i is represented
by 1 − xi). If g is an OR gate, then pg is defined by applying the above OR
construction with γ = log s + σ to the polynomials representing its inputs. This
step introduces new public randomness. Finally, if g is a XOR or a NOT gate,
then pg is naturally defined in terms of the polynomials representing the input
gates (e.g., their summation in case of XOR). The degree of the output polyno-
mial is bounded by the maximal degree of a polynomial representing a gate (as
a function of its inputs) to the power of the depth of the circuit. Using union
bound on the error probability of the representation2 we have the following:

Lemma 3. Given a circuit C with m inputs, one output, size s and depth c, the
basic construction with parameter σ produces a 2−σ-correct PC representation
for C over GF(2) of length 1, degree at most (log s+σ)c, and public randomness
complexity O(s(log s + σ)).

The parameters of the above PC representation leave much to be desired.
First, the degree depends on σ which will generally be larger than log s; moreover,
even for depth-2 circuits (capturing the important case of DNF) the degree grows
quadratically with log s + σ. As we shall see, one can make the degree linear in
log s (and independent of σ) in the depth-2 case. Finally, the public randomness
complexity is very large.

We will start by reducing the amount of randomness via the use of ε-biased
generators. We use here the powering construction by Alon et al.:

Lemma 4. [1] There exists an efficient ε-biased generator G : {0, 1}2� → {0, 1}t

with (t− 1)2−�-bias.

We use the above generator to produce the matrix R from the OR construc-
tion (1). To ensure independence between rows, we use a separate seed for every
row. This gives the following:

Lemma 5. Let 0 < ε < 1
2 . An OR gate of t inputs has a PC representation

over GF(2) of length 1, degree γ, (1
2 + ε)γ-correctness, and public randomness

complexity 2γ�log t
ε�.

2 The random matrices of the different gates are not considered independent in this
analysis and thus the same matrix can be “recycled”.
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We turn to the question of optimizing the degree, our most crucial parameter.
The main observation is that one can reduce the error probability in the basic
construction by repeating it σ times in parallel, using independent randomness
in each copy. This will result in a universal PC of length σ from which the output
can be recovered, except with 2−Ω(σ) error probability, by applying some fixed
threshold function. We will then enhance this PC into a universal RPC at a
minor additional cost.

Improved construction with parameter σ. The improved construction is similar
to the basic construction with the following changes:

– OR gates are represented using the construction of Lemma 5.
– The output gate is assigned a special parameter γo when Lemma 5 is applied.
– The representation is repeated σ times in parallel, producing a PC of length

σ with threshold as its reconstruction function.
– If privacy is required, a randomizing polynomials representation of a thresh-

old function is applied to the σ outputs of the PC, producing an RPC.

Theorem 1. Let σ be a security parameter. Given a circuit C with m inputs,
one output, size s and depth c, the improved construction yields representations
of C by:

– a PC over GF(2) of length σ, degree dPC = �(log s + 3)�c−1, 2−Ω(σ)-
correctness, and public randomness complexity O(σ log2 s);

– an RPC over GF(2) of length O(σ4), degree dPC + 2, 2−Ω(σ)-correctness,
2−Ω(σ)-privacy, public randomness complexity O(σ log2 s), and private ran-
domness complexity O(σ4).

The above representations are universal, i.e., their reconstruction algorithm and
simulator do not depend on the circuit C.

Proof. We instantiate the improved construction outlined above with the fol-
lowing parameters. Consider first the case where no ε-biased generators are used
to reduce public randomness. In this case, we choose γ = log s + 2 and γo = 1.
By Lemma 2 each randomized polynomial representing an internal OR gate of
C errs with at most 2−γ probability. Using a union bound, the probability that
at least one of them errs is bounded by s · 2−γ ≤ 1

4 . Since γo = 1, the output
will be 1 with probability at most 1

4 ·
1
2 = 1

8 if f(x) = 0 and at least 3
4 ·

1
2 = 3

8
if f(x) = 1. (Here we assume that an independent random matrix R is used for
the top gate; this has no impact on the asymptotic complexity.)

Consider the PC obtained by concatenating σ copies of the above construc-
tion, using independent randomness in each copy. The degree remains as before.
By Chernoff’s bound, we have a (universal) 2−Ω(σ)-correct reconstruction algo-
rithm that outputs 1 if at least σ/4 out of the σ outputs evaluate to 1.

To optimize the amount of public randomness, we choose the bias parameter
to be ε = 1

s . The improved construction is then applied with parameters γ =⌈
(log s + 2)/ log 1

1
2+ε

⌉
and γo = 1. The resulting PC has degree γo·(γ)(c−1) which,
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for sufficiently large s, is bounded by �(log s+3)�c−1. The amount of randomness
for each randomized polynomial in the PC is the amount of randomness needed
for a single OR gate which, by Lemma 5, is O(γ log s

ε ) = O(log2 s).
The output of the above PC representation pρ(x) might reveal additional

information about x, other than what follow from C(x). To this end, we apply
a randomizing polynomials representation of a (σ/4)-threshold function to the
σ outputs of pρ. Since any threshold function on σ bits can be computed by
a branching program of size O(σ2), Lemma 1 guarantees a representation by
degree-3, perfectly correct and private randomizing polynomials P (x̃, r) where
both the length and the private randomness complexity are O(σ4). Moreover,
the degree in the x̃ variables is 1. Applying this construction with pρ(x) as an
input produces an RPC P̃ρ(x, r) = P (pρ(x), r) with the required parameters.

Note that the perfect simulator (resp., reconstruction algorithm) of P can
serve as a universal 2−Ω(σ)-private simulator (resp., 2−Ω(σ)-correct reconstruc-
tion algorithm) for the above RPC. This follows from the fact that the simulation
and reconstruction of P are perfect when conditioned on the event that the choice
of ρ does not lead pρ(x) to err. �

We note that above PC and RPC constructions implicitly define efficient evalu-
ation algorithms whose complexity is nearly linear in the circuit size s (defined
as the number of wires). Moreover, for the purpose of bounding the degree, one
can take s to be the number of OR gates in the circuit. Thus, for the important
special case where C is an n-term DNF formula, we get a PC (resp., RPC) of
degree log n + O(1) and length σ (resp., O(σ4)).

4 Secure Computation of Constant Depth Circuits

In this section we describe the application of low-degree representations to
communication-efficient secure computation. Combined with the results of the
previous section, we will get efficient protocols for constant-depth circuits.

We will separately consider the client-servers model and the multiparty
model, both defined in Section 2.2. In the basic client-servers setting, where
only the privacy of the client is guaranteed, it will suffice to use an underlying
PC representation of the function we wish to compute. In multi-party setting,
as well as the client-servers setting with server privacy, we will need to rely on
the stronger RPC representation.

The protocols we describe rely on standard techniques for securely evalu-
ating low-degree polynomials, previously used in the contexts of information-
theoretic secure multi-party computation [5, 2, 12, 19] and private information
retrieval [11, 16, 4]. We only sketch the high-level structure of the protocols and
the parameters they achieve. Further details can be found in the full version.

Throughout this section, assume F to be an extension field of GF(2) hav-
ing more than k elements, where k is the number of servers or parties. Most
of the protocols will employ Shamir’s secret-sharing [26] over F in order to se-
curely compute polynomials over its subfield GF(2). We let t denote a security
threshold, where t = 1 by default.
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4.1 The Client-Servers Setting

In the general definition of client-servers computation given in Section 2.2, the
client holds an input x, the servers hold an input C, and the client wishes to
learn f(C, x) for some publicly known function f . It will be convenient for our
purpose to focus on the case where C represents a circuit, x is an m-bit input
to this circuit, and f is the universal function defined by f(C, x) = C(x). We
assume that C is taken from some known class C, typically the class of depth-c,
size-s circuits. Thus, the problem we consider is that of allowing the client to
privately learn the value of a circuit C ∈ C held by the servers on its secret
input x.

We start with the case of client-privacy only. In this case, a universal degree-
d PC representation for C gives rise to the following simple protocol. Suppose
k > dt. Let pρ(x) denote be a PC representing the servers’ circuit C. The
client secret-shares each of its input bits between the servers, using the t-private
Shamir’s scheme over F . In parallel, it picks ρ at random and sends it to all k
servers. Each server replies to the client with the output of pρ on the m-tuple
of shares it received.3 The client recovers C(x) by first recovering the output
y of pρ (since k > dt, this can be done by polynomial interpolation) and then
applying the (universal) reconstruction algorithm of C. The error probability of
the protocol is the same as that of pρ. Combining the above protocol with the
representation obtained by Theorem 1 we have the following.

Theorem 2. Let f be the universal circuit evaluation function f(C, x) = C(x).
Suppose k servers hold a circuit C of size s, depth c, m inputs and a single output,
and the client holds an assignment x ∈ {0, 1}m. Then for every integer t ≥ 1
there exists a t-private client-servers protocol with the following parameters:

– The number of servers is k = t · (log s + O(1))c−1.
– The communication consists of O(m log k+σ log2 s) bits sent from the client

to each server and O(σ) bits sent in return.
– The computation of each party is nearly linear in its input length (up to

factors of σ and log k).

In the special case of n-term DNF we can substitute in the above c = 2 and s = n
(see remark following Theorem 1). Thus, we get a protocol with log n + O(1)
servers, Õ(m) communication, and Õ(mn) server computation.

Using a technique of Woodruff and Yekhanin [29], it is possible to reduce
the number of servers by a factor of 2 without substantially increasing the total
communication. Specifically, in the resulting protocol the total communication
is O(mσ log m logc−1 s) bits per server, and the computation of each server is
Õ(sm). The following is implicit in [29]:

Lemma 6. Let t ≥ 1 be an integer, and let p(x) be an m-variate polynomial of
degree d, over a field of a prime order q > dt + 1. Then, there exists a t-private
3 In fact, it suffices for each server to send back just a single bit by projecting the

answers from F back to GF(2) (cf. [4], Lemma 3).
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client-servers protocol to compute p(x) (where p is held by the servers and x by
the client), with k = �dt+1

2 � servers, queries of m field elements per server, and
answers of m + 1 field elements per server.

The protocol from [29] is similar to the basic client-servers protocol described
above, and in particular the client’s queries have the same structure. The im-
provement comes from the fact that each server replies not only with the value
of p on the point queried by the client, but also with the values of its m par-
tial derivatives. In order to apply Lemma 6 in our context, we should emulate
computation of pρ(x) over GF(2) using computation over a field of a large prime
order q. Since the value of pρ(x) when computed over the integers is bounded by
2O(logc−1 s log m), it suffices to use a prime q of the latter size. This yields the com-
munication complexity specified above. In particular, in the case of n-term DNF
we get a protocol with 1

2 log n+O(1) servers and nearly optimal communication
and computation.

Symmetrically private client-servers protocols. We now briefly discuss an exten-
sion of the above results to the case where server privacy is also a requirement.
(Further details can be found in the full version.) In this case, the stronger RPC
representation should replace the previous RP representation. If the circuit C
held by the servers is represented by a (universal) RPC pρ(x, r), the protocol
will let the client securely evaluate the polynomial vector pρ(x, r), where both
r and ρ are taken from the CRS shared by the servers. (Note that here it is
crucial that r remain hidden from the client.) Unlike the previous case of client
privacy only, here the polynomial evaluation protocol should prevent the client
from learning anything other than the output of pρ. The simple polynomial eval-
uation protocol described before fails to achieve this property. In the case of a
semi-honest client, it is easy to eliminate the extra information from the servers’
answers by masking them with (private) randomness from the CRS. The case of
a malicious client is more difficult, since the queries it sends to the servers might
not be well formed. For instance, the client might share values from F \ {0, 1}
or send shares that are not of the right degree. In the full version we describe
a client-servers protocol for fully secure polynomial evaluation that resists a
malicious client without requiring additional rounds of interaction and with a
very minor complexity overhead. The protocol relies on the conditional disclo-
sure methodology of Gertner et al. [16] and can also be used to obtain better
t-private SPIR protocols than those implied by [16]. Applying this machinery,
we get an enhanced version of Theorem 2 which provides server privacy against
a malicious client, with the main additional cost of increasing the answer size
from σ to σO(1) (reflecting the larger length of the RPC).

4.2 The Multi-party Setting

Here we consider the standard MPC setting in which an m-bit string x is parti-
tioned between k parties, who all want to learn the output of a publicly known
function f(x). Given an RPC pρ(x, r) representing f , we view pρ as a random-
ized low-degree ideal functionality in which r is a “private” random input and ρ
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is a “public” random input. Both r and ρ are independently chosen by the func-
tionality; the difference between them is that ρ is additionally revealed to the
adversary. (Recall that the separation between ρ and r is motivated by the goal
of minimizing the degree of the RPC, which in the current context will corre-
spond to the minimal required number of parties.) The reconstruction algorithm
of the RPC now defines a non-interactive reduction from f to pρ: to securely
compute f(x) the parties first securely compute pρ(x, r) and then locally apply
its reconstruction algorithm.

We turn to the question of efficiently computing the randomized functionality
induced by an RPC pρ of degree d. We require the communication complexity to
be dominated by the length of the inputs and outputs and not by the description
size of p. This can be done by using standard MPC techniques (cf. [5, 3, 15]). In
the semi-honest case, a simple two-round protocol for k > dt parties is described
in [19]. In the malicious case, we can use the following constant-round protocol
for k > (d + 2)t parties. First, the parties apply a VSS protocol (e.g., from [5])
to create degree-t shares of x along with shares of secret random values r, ρ
and shares of 0 (the latter are created by locally adding shares contributed
by different players). Using the protocol from [14] the above requires only two
rounds. One also needs to ensure that the shared values are elements of the
subfield GF(2) rather than general elements of F ; this can be done (without
additional interaction) using a method from [12]. Next, the players reveal ρ
which now defines a public polynomial vector pρ of degree d. Finally, the players
recover pρ(x, r): this is done by having each player locally evaluate pρ on its
shares of x, r, mask the resulting shares with the shares of 0 created in the first
phase, and communicate the result to all other players. The players can now
recover the output of pρ via local error-correction. Combining this protocol with
Theorem 1, we have:

Theorem 3. Let t ≥ 1 be a security threshold, and C be a circuit of size s
and depth c whose m input bits are partitioned between k ≥ Ω(t · logc−1 s) play-
ers. Then, there exists a constant-round, statistically t-secure protocol computing
C(x) with communication complexity O(m · poly(k)).

5 Constant-Depth Circuits for Search Applications

In this section we demonstrate the usefulness of our general results in the context
of database search problems. The goal is to translate the servers’ database into
a constant-depth circuit and the client’s query into a corresponding assignment
in a way that would optimize the complexity of our general constructions. For
the following problems assume the database consists of n points in {0, 1}m:

– The partial match decision problem supports queries in {0, 1, ∗}m, where the
symbol ∗ is interpreted as “don’t care”. An answer should be 1 iff there is
a point in the database that agrees with the query in all indices that are
not ∗. We encode the database as an n-term DNF over the 2m variables
x1,0, x1,1, . . . xm,0, xm,1. The DNF is constructed by assigning a term for
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every point in the database (e.g., 1011 translates into x1,1∧x2,0∧x3,1∧x4,1).
The query is then translated by applying a two-bit encoding for each symbol
(0 by 10, 1 by 01 and ∗ by 11). As noted in Section 3, for n-term DNF
we get a PC (resp., RPC) of degree log n + O(1), length σ (resp., σO(1))
and 2m variables. Using Theorem 2, we get a client-servers protocol with
log n + O(1) servers, Õ(m) communication and Õ(nm) server computation.
One can reduce the number of servers to 1

2 log n as discussed in Section 4.1.
– The partial match search problem is similar to the decision version except

that a matching point of the database should be retrieved. A naive construc-
tion gives a depth-4 circuit, paying a lot on tie breaking between matching
points. Using the Valiant-Vazirani lemma [28], the database can be trans-
lated to a (probabilistic) circuit with O(m2) inputs, Õ(m) outputs, and size
Õ(nm2).

– The nearest neighbor search problem is a problem where the point with the
smallest Hamming distance to the query should be retrieved. The database
can be translated into an AC0(p) circuit for p > m with m inputs, O(m2)
outputs, size O(nm2) and depth 3. The use of MODp enables efficient
constant-depth computation of Hamming distance.

In the full version we describe optimized constructions of constant-depth
circuits for the problems mentioned above as well as for other problems.

Acknowledgement. We would like to thank Ronny Roth for helpful comments.
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Abstract. We investigate several previously suggested scenarios of in-
stantiating random oracles (ROs) with “realizable” primitives in cryp-
tographic schemes. As candidates for such “instantiating” primitives we
pick perfectly one-way hash functions (POWHFs) and verifiable pseu-
dorandom functions (VPRFs). Our analysis focuses on the most prac-
tical encryption schemes such as OAEP and its variant PSS-E and the
Fujisaki-Okamoto hybrid encryption scheme. We also consider the RSA
Full Domain Hash (FDH) signature scheme. We first show that some
previous beliefs about instantiations for some of these schemes are not
true. Namely we show that, contrary to Canetti’s conjecture, in general
one cannot instantiate either one of the two ROs in the OAEP encryption
scheme by POWHFs without losing security. We also confirm through
the FDH signature scheme that the straightforward instantiation of ROs
with VPRFs may result in insecure schemes, in contrast to regular pseu-
dorandom functions which can provably replace ROs (in a well-defined
way). But unlike a growing number of papers on negative results about
ROs, we bring some good news. We show that one can realize one of the
two ROs in a variant of the PSS-E encryption scheme and either one of
the two ROs in the Fujisaki-Okamoto hybrid encryption scheme through
POWHFs, while preserving the IND-CCA security in both cases (still
in the RO model). Although this partial instantiation in form of sub-
stituting only one RO does not help to break out of the random oracle
model, it yet gives a better understanding of the necessary properties of
the primitives and also constitutes a better security heuristic.

1 Introduction

The random oracle (RO) model, introduced by Fiat and Shamir [15] and refined
by Bellare and Rogaway [4], has been suggested as a trade-off between provable
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security and practical requirements for efficiency. Schemes and proofs in this
nowadays well-established model make the idealized assumption that all parties
have oracle access to a truly random function. Availability of such a random
oracle often allows to find more efficient solutions than in the standard model.
In practice, it is then assumed that the idealized random function is instantiated
through a “good” cryptographic hash function, like SHA-1 or a variation thereof.

The random oracle methodology has gained considerable attention as a design
method. Numerous cryptographic schemes proven secure in the RO model have
been proposed and some of them are implemented and standardized. The best
known example is presumably the OAEP encryption scheme [5,18]. However,
even though a RO-based scheme instantiated with a “good” hash function is
usually believed to remain secure in the standard model, proofs in the RO model
do not technically guarantee this, but merely provide some evidence of security.

Moreover, several recent works [10,21,23,2,19] raised concerns by proving that
the random oracle model is not sound. Here lack of soundness refers to the sit-
uation when a scheme allows a security proof in the random oracle model but
any instantiation of the scheme with any real function family is insecure in the
standard model. Such schemes are called “uninstantiable” in [2]. While these re-
sults are certainly good reminders about the gap between the RO model and the
standard model, the defenders of the RO model and practitioners are assured by
the fact that most uninstantiable schemes involve somewhat esoteric examples,
in terms of either a construction or sometimes with respect to a security goal.

Towards Instantiating Random Oracles for Practical Schemes. In
this work we continue to study security of instantiated schemes designed in the
RO model. But unlike the aforementioned works we turn our attention to the
most practical cryptographic schemes such as OAEP encryption, the full domain
hash (FDH) signature scheme, hybrid encryption schemes obtained via Fujisaki-
Okamoto transform [17] and the PSS-E encryption scheme, an OAEP variant due
to Coron et al. [12]. Our goal is different, too. We do not show that these schemes
are uninstantiable (this would be really bad news). It also seems unrealistic to
instantiate these schemes such that they are still efficient and provably secure in
the standard model (though this would be great news). Rather, we investigate
several possible instantiation scenarios for to these practical schemes somewhere
in between.

As candidates for substituting random oracles we consider two primitives
with known constructions whose security definitions capture various strong prop-
erties of the ideal random oracles, and which have actually been suggested as
possible instantiations of random oracles [9,13]. These are the perfectly one-
way hash functions (POWHFs) [9,24] and verifiable pseudorandom functions
(VPRFs) [22].

The notion of perfectly one-way hash functions has been suggested by Canetti
[9] (and was originally named “oracle hashing”) to identify and realize use-
ful properties of random oracles. POWHFs are special randomized collision-
resistant one-way functions which hide all information about preimages. Canetti
[9], and subsequently [24,16], gave several constructions of such POWHFs, based
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on specific number-theoretic and on more general assumptions. Usually, these
POWHFs satisfy another property that requires the output look random, even
to an adversary who knows “a little” about the inputs. We will refer to such
POWHFs as pseudorandom. In [9] it is proved that a hybrid encryption scheme
of Bellare and Rogaway [4] secure against chosen-plaintext attacks (IND-CPA
secure) can be securely instantiated with a pseudorandom POWHF, and Canetti
conjectured that one could also replace one of the two random oracles in OAEP
by a POWHF without sacrificing security against chosen-ciphertext attacks
(IND-CCA security) in the RO model.

Verifiable pseudorandom functions have been proposed by Micali et al. in
[22]. They resemble pseudorandom functions in that their outputs look random.
But their outputs also include proofs that allow verifying the correctness of
the outputs with respect to a previously announced public key. In contrast to
POWHFs, which are publicly computable given the inputs, VPRFs involve a
secret key and therefore their global usage requires the participation of a third
party or a device with a tamper-proof key. It is folklore that a secure RO scheme
instantiated with a PRF implemented by a third party, will remain secure in
the standard model. As suggested in [13] an application scenario for VPRFs,
that lowers the amount of trust put on the third party, is a trusted third party
implementing a VPRF, say, through a web interface. Now the correctness of
the given image can be verified with the consistency proof, and this can be
done locally, without further interactions with the third party. We note that this
scenario is suitable mostly for digital signatures and not encryption schemes, as
the third party has to know the inputs.

Negative Results. In this work we show that the above intuition about se-
curely replacing random oracles by the aforementioned primitives may be incor-
rect. We first disprove Canetti’s [9] conjecture for the OAEP encryption scheme
[5] saying that one can instantiate one of the two RO in the OAEP scheme with-
out losing security (still in the RO model). Recall that, in the OAEP scheme
with a (partial one-way) trapdoor permutation f , a ciphertext is of the form
C = f(s||t) for s = G(r) ⊕M ||0k and t = r ⊕H(s) for random r. For the secu-
rity proof of OAEP it is assumed that both G and H are modeled as random
oracles.

We prove that, with respect to general (partial one-way) trapdoor permuta-
tions f , one cannot replace either of the two random oracles G, H in OAEP by ar-
bitrary pseudorandom POWHFs without sacrificing chosen-ciphertext security.
Our negative result follows Shoup’s idea to identify weaknesses in the original
OAEP security proof [26], and holds relative to a malleable trapdoor function
oracle from which a specific function f is derived. Yet, unlike [26], we consider
partial one-way functions f which suffice to prove OAEP to be IND-CCA in
the random oracle model [18]. Our construction also requires to come up with a
malleable yet pseudorandom POWHF. We note that our impossibility result is
not known to hold for the special case of the RSA function f : x �→ xe mod N ,
yet indicates that further assumptions about the RSA function may be necessary
to replace one of the random oracles by a POWHF.
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The idea for OAEP can be also applied to the Full Domain Hash (FDH)
signature scheme, where signatures are of the form S = f−1(H(M)). Transfer-
ring our OAEP result shows that for a specific class of trapdoor permutations
f the instantiation of the RO H through a POWHF can result in an insecure
implementation. But here we also show that FDH becomes insecure when H is
instantiated the obvious way with a VPRF, even for any trapdoor permutation
f such as RSA. By obvious we mean that the pseudorandom value H(M) and
its correctness proof π is concatenated with the signature S, such that one can
verify the signature’s validity by verifying π and checking that f(S) = H(M).
Note that VPRFs already provide secure signatures directly, so substituting the
random oracle by a VPRF in a signature scheme seems to be moot. However, our
goal is to see if VPRFs are a good instantiation in general. Second, one might
want additional properties of the signature scheme which FDH gives but not the
VPRF, e.g., if used as a sub-protocol in Chaum’s blind signature scheme [11]. We
note that, independently of our work, [14] obtained a related result about FDH
signatures, showing that any instantiation of H fails relative to a specific trap-
door function oracle f (whereas our result holds for arbitrary trapdoor functions
such as RSA but for a specific instantiation candidate).

Positive Results. Our results show that the RO model is very demanding and
even functions with extremely strong properties often cannot securely replace
random oracles. However this does not mean that no real function family can be
securely used in place of any random oracle. As mentioned, Canetti [9] for ex-
ample shows how to instantiate an IND-CPA secure encryption scheme through
POWHFs. Accordingly, we look beyond our negative results and present some
positive results, but this time for IND-CCA secure encryption schemes.

We first show the following positive results for a variation of the PSS-E
encryption scheme introduced by Coron et al. [12]. In the original PSS-E en-
cryption scheme ciphertexts are given by C = f(ω||s) for ω = H(M ||r) and
s = G(ω)⊕M ||r. The PSS transform has been originally proposed by Bellare
and Rogaway in the RSA-based signature scheme with message recovery [6].
Coron et al. showed that PSS is a universal transform in that it can also be used
for RSA-based encryption for random oracles G, H , achieving chosen-ciphertext
security as an alternative to OAEP.

Here we consider a variation PSS-I, where ciphertexts have the form (f(ω), s)
for ω = H(M ||r) and s = G(ω)⊕M ||r, i.e., where the s-part is moved outside of
the trapdoor permutation. We prove that for any trapdoor function f the random
oracle G can be instantiated (hence the name PSS-I) with a pseudorandom
POWHF such that the scheme remains IND-CCA secure (in the RO model).
Interestingly, this also comes with a weaker assumption about the function f .
While the original PSS-E scheme has been proven secure for partial one-way
trapdoor permutations, our scheme PSS-I (with the G-instantiation through a
POWHF) works for any trapdoor permutation f . A similar observation was
made in [20] for OAEP. Concerning the substitution of the H-oracle (even if G
is assumed to be a random oracle) we were neither able to prove or disprove that
this oracle can be instantiated by some primitive with known construction. We
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remark that this result about PSS-I is in sharp contrast to OAEP where neither
oracle can be replaced by such a POWHF.

As an example where we can replace two random oracles (individually)
we discuss the Fujisaki-Okamoto transformation [17] for combining asymmet-
ric and symmetric encryption schemes, where a ciphertext is given by C =
(Easym(pk, σ; H(σ, M)), Esym(G(σ), M)) for random σ. It provides an IND-CCA
secure hybrid encryption under weak security properties of the two encryption
schemes (for random oracles G, H). We show that the scheme remains IND-CCA
secure in the RO model if the oracle G is instantiated with a pseudorandom
POWHF. We also show that one can instantiate oracle H through a POWHF
(for random oracle G) but this requires a strong assumption about the joint
security of the POWHF and the asymmetric encryption scheme. Hence, for the
Fujisaki-Okamoto transformation both random oracles can be instantiated sep-
arately (albeit under a very strong assumption in case of the H oracle).

Our technical results do not mean that one scheme is “more” or “less” secure
than the other one, just because one can substitute one random oracle by a primi-
tive like POWHFs. In our positive examples there are usually two random oracles
and, replacing one, the resulting scheme is still cast in the random oracle model.
Yet, we believe that attenuating the assumption is beneficial, as substituting even
one oracle by more “down-to-earth” cryptographic primitives gives a better un-
derstanding of the required properties, and it also provides a better heuristic
than merely assuming that the hash function behaves as a random oracle.

Organization. We give the basic definitions of the two primitives, POWHFs
and VPRFs, in Section 2. In Section 3 we show our negative result about instan-
tiating one of the random oracles in OAEP through a POWHF. We then show
that in Section 4 that PSS-I admits such an instantiation for one oracle. Sec-
tion 5 presents the Fujisaki-Okamoto transformation as an example of a scheme
where we can replace both random oracles by POWHFs. The FDH scheme and
its instantiation through VPRFs are discussed in Section 6.

2 Preliminaries

If x is a binary string, then |x| denotes its length, and if n ≥ 1 is an integer, then
|n| denotes the length of its binary encoding, meaning the unique integer � such
that 2�−1 ≤ n < 2�. The string-concatenation operator is denoted “‖”. If S is a
set then x

$← S means that the value x is chosen uniformly at random from S.
More generally, if D is a probability distribution on S then x

D← S means that
the value x is chosen from set S according to D. If A is a randomized algorithm
with a single output then x

$← A(y, z, . . . ) means that the value x is assigned
the output of A for input (y, z, . . . ). We let [A(y, z, . . .)] denote the set of all
points having positive probability of being output by A on inputs y, z, etc. A
(possibly probabilistic) algorithm is called efficient if it runs in polynomial time
in the input length (which, in our case, usually refers to polynomial time in the
security parameter).



Analysis of Random Oracle Instantiation Scenarios for OAEP 417

In the full version of the paper [8] we recall the definitions of asymmetric
encryption schemes, their security against chosen-plaintext attacks (IND-CPA
security) and chosen-ciphertext attacks (IND-CCA security), of deterministic
symmetric encryption schemes, also known as data encapsulation mechanisms
or one-time symmetric encryption schemes, and their IND-CPA security (that
is a weaker notion than the standard IND-CPA security), and of digital signa-
ture schemes and their security against existential unforgeability under chosen-
message attacks. For simplicity we give all definitions in the standard model. To
extend these definitions to the random oracle model, all algorithms including the
adversary get oracle access to one or more random functions G, H, . . . , drawn
from the set of all mappings from domain Ak to some range Bk (possibly distinct
for different oracles). Here, the parameter k and therefore the domain and the
range are usually determined by the cryptographic scheme in question.

2.1 Perfectly One-Way Hash Functions

Perfectly one-way hash functions describe (probabilistic) collision-resistant hash
functions with perfect one-wayness. The latter refers to the strong secrecy of a
preimage x, even if some additional information about x besides the hash value
are known. For this purpose [9] introduces the notion of a function hint which
captures these side information. One assumes, though, that it is infeasible to
recover the entire value x from hint(x), else the notion becomes trivial. More
formally, a (possibly randomized) function hint : {0, 1}m(k) → {0, 1}n(k), where
m, n are polynomials, is uninvertible with respect to a probability distribution
X = (Xk)k∈N if for any probabilistic polynomial-time adversary I and x taken
from Xk, the probability Pr

[
I(1k, hint(x)) = x

]
is negligible in k.

In the sequel we usually restrict ourselves to efficient and sufficiently smooth
distributions. That is, a probability distribution X = (Xk)k∈N is efficient if it
can be computed in polynomial time in k; it is well-spread if the min-entropy of
X is superlogarithmic in k.

Definition 1. [Perfectly One-Way Hash Function] Let K be an efficient
key generation algorithm that takes input 1k for k ∈ N and outputs a function key
K of length l(k); let H be an efficient evaluation algorithm that takes a function
key K, input x ∈ {0, 1}m(k) and randomness r ∈ Coins(K) for some fixed poly-
nomial m(k) and returns a hash value y ∈ {0, 1}n(k); let V be an efficient verifi-
cation algorithm that takes a function key K, an input x ∈ {0, 1}m(k) and a hash
value y ∈ {0, 1}n(k) and outputs a decision bit. The tuple POWHF = (K,H,V) is
called a perfectly one-way hash function (with respect to the well-spread, efficient
distribution X = (Xk)k∈N and the uninvertible function hint) if the following
holds:

1. Completeness: For any k ∈ N, any key K ∈ [K(1k)], any r ∈ Coins(K), any
x ∈ {0, 1}m(k) we have V(K, x,H(K, x, r)) = 1.

2. Collision-resistance: For every efficient adversary C the following holds. For
k ∈ N pick K

$← K(1k) and let (x, x′, y) $← C(K). Then Pr [ V(K, x, y) = 1
∧ V(K, x′, y) = 1 ∧ x �= x′ ] is negligible in k.
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3. Perfect one-wayness (with respect to X , hint): For any efficient adversary
A with binary output the following random variables are computationally
indistinguishable:
– Let K

$← K(1k), r
$← Coins(K), x

Xk← {0, 1}m(k).
Output (K, x,A(K, hint(x), H(K, x, r))).

– Let K
$← K(1k), r

$← Coins(K), x, x′ Xk← {0, 1}m(k).
Output (K, x,A(K, hint(x), H(K, x′, r))).

The perfectly one-way hash function may have the following additional proper-
ties:

4. Public randomness: H can be written as H(K, x, r) = (r,Hpr(K, x, r)) for
another function Hpr : {0, 1}l(k)×{0, 1}m(k)×Coins(K)→ {0, 1}n(k)−|r| for
any k ∈ N, any K ∈ [K(1k)], any x ∈ {0, 1}m(k) and any r ∈ Coins(K).

5. Pseudorandomess (with respect to X , hint): The function acts a pseudoran-
dom generator such that the following random variables are computationally
indistinguishable:
– Let K

$← K(1k), r
$← Coins(K), x

Xk← {0, 1}m(k).
Output (K, hint(x),H(K, x, r)).

– Let K
$← K(1k), x

Xk← {0, 1}m(k), and U
$← {0, 1}n(k).

Output (K, hint(x), U).

As pointed out in [9] the notion of an uninvertible function is weaker than
the one of a one-way function. For example, hint(·) = 0, which reveals no infor-
mation about x, is uninvertible but not one-way. We call this function the trivial
uninvertible function. In fact, several constructions of POWHF based on the
Decisional Diffie-Hellman assumption [9] and on more general assumptions like
one-way permutations and regular hash functions [9,24,16] have been suggested
in the literature. They are provably pseudorandom POWHFs with respect to
trivial uninvertible function hint. For other uninvertible functions hint they are
conjectured to remain secure, yet a formal proof is missing.

In this paper we will mostly consider perfectly one way function families with
public randomness as this is a way to ensure correct function re-computation
on the same input by different parties, needed for some encryption schemes
functionality. All previous constructions [9,24,16] have been designed to meet
this notion. For simplicity we will often use the notation y ← HK(x, r) for
y ← H(K, x, r) and y

$← HK(x) for r
$← Coins(K), y ← H(K, x, r), and we often

define a hash function with public randomness by just specifying Hpr.

2.2 Verifiable Pseudorandom Functions

A verifiable pseudorandom function, defined in [22], is a pseudorandom function
with an additional public key allowing to verify consistency of values. Any value
for which one has not seen the proof should still look random:

Definition 2. [Verifiable Pseudorandom Function] Let K be an efficient
key generation algorithm that takes input 1k for k ∈ N and outputs a function
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key and a verification key (fk, vk); let H be an efficient evaluation algorithm
that takes the key fk, input x ∈ {0, 1}∗ and returns the output y ∈ {0, 1}n(k)

and a proof π ∈ {0, 1}l(k) for some fixed polynomials l, n; let V be an efficient
verification algorithm that takes vk, x, y and π and returns a bit. The triple
VPRF = (K,H,V) is called a verifiable pseudorandom function if the following
holds:

1. Completeness: For any (vk, fk) ∈ [K(1k)], x ∈ {0, 1}∗ and (y, π) ∈ [H(fk, x)],
V(vk, x, y, π) = 1.

2. Uniqueness: There exists a negligible function ν(·) such that for any (vk, fk) ∈
[K(1k)], any x ∈ {0, 1}∗, y0 �= y1 ∈ {0, 1}n(k), π0, π1 ∈ {0, 1}l(k) we have
Pr [ V(vk, x, yb, πb) = 1 ] ≤ ν(k) for either b = 0 or b = 1.

3. Pseudorandomness: For any efficient algorithm A that has access to an
oracle and the following experiment

Experiment Expvprf-ind
VPRF,A (1k)

b
$← {0, 1}

(fk, vk) $← K(1k)
(x, state) $← AH(fk,·) where x has never been submitted to oracle H(fk, ·)
If b = 0 then (y, π) $← H(fk, x) else y

$← {0, 1}n(k) EndIf
d

$← AH(fk,·)(y, state) where x has never been submitted to oracle H(fk, ·)

the difference Pr
[
Expvprf-ind

VPRF,A (1k) = b
]
− 1/2 is negligible in k.

3 (In)Security of OAEP Instantiations

Here we show that, for general trapdoor permutations, instantiating any of the
two random oracles in OAEP with a pseudorandom POWHF does not yield a
secure scheme.

3.1 OAEP Encryption Scheme

We first recall the OAEP encryption scheme [5]. It is parameterized by inte-
gers k, k0 and k1 (where k0, k1 are linear in k) and makes use of a trapdoor
permutation family F with domain and range {0, 1}k and two random oracles

G : {0, 1}k0 → {0, 1}k−k0 and H : {0, 1}k−k0 → {0, 1}k0

The message space is {0, 1}k−k0−k1 . The scheme OAEPG,H [F ] = (EK, E ,D) are
defined as follows:

– EK(1k) : Pick a permutation f from F at random. Let pk specify f and let
sk specify f−1.

– E(pk, M) : Compute r
$← {0, 1}k0, s ← (m‖0k1)⊕G(r) and t ← r ⊕H(s).

Output C ← f(s||t).
– D(sk, C) : Compute s‖t ← f−1(C), r ← t⊕H(s) and M ← s⊕G(r). If

the last k1 bits of M are zeros, then return the first k − k0 − k1 bits of M .
Otherwise, return ⊥.
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The encryption scheme OAEPG,H [F ] is proven to be IND-CCA secure in the
RO model if the underlying permutation family F is partial one-way [18]. Partial
one-wayness is a stronger notion than one-wayness; for the definitions see [18].

3.2 Insecurity of Instantiating the G-Oracle in OAEP with
POWHFs

We first consider the OAEP scheme where the G-oracle is instantiated with a
pseudorandom POWHF. Informally, a key specifying an instance of POWHF
becomes a part of the public key and each invocation of the G-oracle is re-
placed with the function evaluation, such that in the encryption algorithm a
new randomness for the function evaluation is picked and becomes part of the
ciphertext, and in the decryption algorithm the function is re-computed using
the given randomness. More formally:

Let POWHF = (K,G,V), where K : {1k|k ∈ N} → {0, 1}k, G : {0, 1}k ×
{0, 1}k0 × Coins(K) → {0, 1}k−k0 and V : {0, 1}k × {0, 1}k0 × {0, 1}k−k0 →
{0, 1}, be a perfectly one-way pseudorandom hash function with public ran-
domness. An instantiation of the G-oracle in the OAEPG,H [F ] encryption
scheme with POWHF = (K,G,V) results in the following encryption scheme
OAEPPOWHF,H [F ] = (EK, E ,D)

– EK(1k) : Pick a random permutation f on {0, 1}k and sample a POWHF
key K

$← K(1k). Let pk specify f and also contain K, and let sk specify f−1

and also contain K.
– E(pk, M) : Pick randomness r

$← {0, 1}k0 for encryption and rG
$← Coins(K)

for the POWHF. Compute y ← Gpr
K (r, rG), s ← (M‖0k1)⊕ y and t ←

r ⊕H(s). Let C ← f(s||t) and output (rG , C).
– D(sk, (rG , C)) : Compute s‖t← f−1(C), r ← t⊕H(s), M ← s⊕ Gpr(r, rG).

If the last k1 bits of M are zeros, then return the first k− k0− k1 bits of M .
Otherwise, return ⊥.

We note that for simplicity we assume that rG , the randomness output by
GK , is a public part of the ciphertext. If it was possible to tamper this value
rG into r′G for a given ciphertext, such that this yields the same hash value,
Gpr

K (r, rG) = Gpr
K (r, r′G), then it would be obviously easy to mount a successful

chosen-ciphertext attack. To prevent such attacks one can in principle demand
that such collisions for the hash function are infeasible to find —most known
constructions [9,24,16] have this additional property— or one can protect rG by
some other means. We do not complicate the instantiation here, as our attack
already succeeds without changing rG , e.g., the attack would even work if rG was
encrypted (separately or inside f) or authenticated.

Intuition. Before we present our results in detail we provide some intu-
ition. First we construct malleable POWHFs, i.e., for which GK(x, r) ⊕∆ =
GK(x⊕ δ, r) for some δ, ∆. We show how to construct such primitives in [8]. Our
construction assumes that one-way permutations exist and employs the pseu-
dorandom function tribe ensembles of [16] (which are one possibility to build
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POWHFs). Assume that either RO in the OAEPG,H [F ] encryption scheme is
instantiated with such a POWHF. Here F is a partial one-way trapdoor per-
mutation family. Now given the challenge ciphertext C∗ = f(s∗‖t∗) of some
message Mb where f is an instance of F , an adversary A can find δ, ∆ such that
C = f((s∗‖t∗)⊕ δ) is a valid encryption of Mb ⊕∆, and given the decryption of
this ciphertext one can easily compute Mb.

The only problem is that, although flipping bits by penetrating the POWHF
is easy by construction, how can A compute f((s∗‖t∗)⊕ δ) without knowing
s∗‖t∗? Here we use the idea of Shoup [26] about the existence of XOR-malleable
trapdoor permutations which allow such modifications. We note that the attack
is not known to work for OAEP with the RSA trapdoor family, but it nevertheless
shows that security may fail in general if a RO is instantiated with a POWHF.

Our approach is somewhat similar to the attacks Shoup used to show that
for a XOR-malleable one-way trapdoor permutation family F the encryption
scheme OAEPG,H [F ] is not IND-CCA secure in the RO model. However, Shoup’s
attack does not work if F is partial one way, and, moreover, for such F the
scheme OAEPG,H [F ] has been proven IND-CCA secure in the RO model [18].
Our attacks work even if F is partial one way.

Theorem 1. Let POWHF′ = (K′,G′,V ′) be a pseudorandom POWHF with pub-
lic randomness (with respect to the uniform distribution and some uninvertible
function hint). Then there exists a pseudorandom POWHF = (K,G,V) with pub-
lic randomness (with respect to the uniform distribution and hint) and an oracle
relative to which there is a partial one-way permutation family F , such that
OAEPPOWHF,H [F ], an instantiation of the G-oracle in the OAEPG,H [F ] encryp-
tion scheme with POWHF, is not IND-CCA in the RO model.

Recall that we can assume that POWHF is malleable in the sense that Gpr
K (x, r) ⊕

1||0n−1 = Gpr
K (x⊕ 1||0m−1, r) for all k, x, r (we show how to construct such

POWHFs form the given POWHF′ in [8] ). We now define a compliant XOR-
malleable permutation family. We slightly strengthen the original definition of
Shoup [26].

Definition 3. A permutation family F is XOR-malleable if there exists an ef-
ficient algorithm U , such that on inputs a random instance permutation f from
F with domain {0, 1}k and f(t) for random t ∈ {0, 1}k and any δ ∈ {0, 1}k,
algorithm U(f, f(t), δ) outputs f(t⊕ δ) with non-negligible probability (in k).

Even though Shoup uses a weaker definition of XOR-malleability, where U ’s
success probability is also over the random choice of δ ∈ {0, 1}k, his proof in [26]
is also valid for the stronger Definition 3 with fixed δ:

Fact 1 ([26]). There exists an oracle relative to which XOR-malleable one-way
trapdoor permutations exist.

Now we are ready to prove the theorem of the insecure instantiation of the G-
oracle in OAEP. We present the formal proof in [8]. The idea is to construct
the trapdoor permutation family F as f(s‖t) = f ′

left(s)‖f ′
right(t) for random
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instances f ′
left, f

′
right of the malleable family F ′. Then an adversary A gets a

challenge ciphertext (r∗G , C∗
left‖C∗

right) of one of two messages M0, M1, and invokes
U to modify the right part to Cright ← U(f ′

right, C
∗
right, 1‖0k0−1). Submitting the

ciphertext (r∗G , C∗
left‖Cright) to the decryption oracle is a valid ciphertext for the

message Mb ⊕ 1||0k−k0−k1−1 because for

(C∗
left||C∗

right) = (f ′
left(s

∗)||f ′
right(t

∗)), s∗=Mb||0k0 ⊕ Gpr
K (r∗, r∗G), t∗=r∗ ⊕H(s∗)

we have:

Cright = f ′
right

(
t∗ ⊕ 1‖0k0−1) = f ′

right
(
(r∗ ⊕ 1‖0k0−1)⊕H(s∗)

)
C∗

left = f ′
left(s

∗) = f ′
left

(
Mb||0k0 ⊕ Gpr

K (r∗, r∗G)
)

= f ′
left

(
(Mb||0k0 ⊕ 1||0k−k0−1)⊕ (Gpr

K (r∗, r∗G)⊕ 1||0k−k0−1)
)

= f ′
left

(
(Mb||0k0 ⊕ 1||0k−k0−1)⊕ Gpr

K (r∗ ⊕ 1‖0k0−1, r∗G)
)

The answer of the decryption oracle now allows to determine the bit b easily.

3.3 Insecurity of Instantiating the H-Oracle in OAEP with
POWHFs

For substituting the H-oracle we obtain a similar insecurity result as for the
case of G. However, the proof (presented in [8]) is slightly different as we have
to transform both ciphertext parts.

Theorem 2. Let POWHF′ = (K′,H′,V ′) be a pseudorandom POWHFs with
public randomness (with respect to the uniform distribution and some uninvert-
ible function hint). Then there exists a pseudorandom POWHF = (K,H,V) with
public randomness (with respect to the uniform distribution and hint), and there
exists an oracle relative to which there is a partial one-way permutation family
F , such that OAEPG,POWHF[F ] = (EK, E ,D), an instantiation of the H-oracle
in the OAEPG,H [F ] encryption scheme with POWHF, is not IND-CCA in the
RO model.

4 Security of PSS-I Encryption Instantiations

In this section we show a positive result, allowing to replace one of the random
oracles in our PSS-E variation, called PSS-I, by a pseudorandom POWHF. We
were unable to prove or disprove that one can replace the other oracle in PSS-I.

4.1 The PSS-I Encryption Scheme

Coron et al. [12] suggested that the transformation used by the PSS signature
scheme [6] can also be used for encrypting with RSA. Here we consider the
following variation PSS-I. This scheme is parameterized by integers k, k0 and
k1 (where k0, k1 are linear in k) and makes use of an instance of a trapdoor
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permutation family with domain and range {0, 1}k (and it can be easily adapted
for other domains like Z∗

N for the RSA permutation). The scheme also uses two
random oracles

G : {0, 1}k1 → {0, 1}k−k1 and H : {0, 1}k−k1 → {0, 1}k1 .

The message space is {0, 1}k−k0−k1 . The scheme PSS-IG,H [F ] is given by the
following algorithms:

– EK(1k) : Pick a random permutation f on {0, 1}k1. Let pk specify f and let
sk specify f−1.

– E(pk, M) : Compute r
$← {0, 1}k0, ω ← H(M‖r) and s ← G(ω)⊕ (M‖r).

Compute C ← f(ω) and output (C, s).
– D(sk, (C, s)) : Compute ω ← f−1(C), M‖r ← s⊕G(ω). If ω = H(M‖r)

then return M . Otherwise, return ⊥.

In the original PSS-E scheme [12] one computes f over both ω||s. We remark
that our version here seems to be less secure than the original scheme at first, as
the value s is now given in the clear. However, it nonetheless allows us to securely
replace oracle G by a POWHF which we were unable to do in the original scheme.
Moreover, we can prove security of our instantiation with respect to arbitrary
trapdoor permutations, whereas the original scheme required partial one-way
trapdoor permutations.

4.2 Instantiating the G-Oracle in PSS-I with POWHFs

An instantiation of the G-oracle in the PSS-IG,H [F ] encryption scheme
with a pseudorandom perfectly one-way hash function POWHF =
(K,G,V) with public randomness results in the following encryption scheme
PSS-IPOWHF,H [F ]=(EK, E ,D)

– EK(1k) : Pick a random permutation f on {0, 1}k1 and sample a POWHF
key K

$← K(1k) and randomness rG
$← Coins(K). Let pk specify f and also

contain K, rG , and let sk specify f−1 and also contain K, rG .
– E(pk, M) : Pick randomness r

$← {0, 1}k0 for the encryption algorithm and
compute ω ← H(M‖r). Compute s ← Gpr

K (ω, rG)⊕ (M‖r) and C ← f(ω).
Output (C, s).

– D(sk, (C, s)) : Compute ω ← f−1(C), M‖r ← s⊕ Gpr
K (ω, rG). If ω =

H(M‖r) then return M . Otherwise, return ⊥.

It is noteworthy that the randomness of the POWHF becomes part of the public
key and is therefore fixed for each ciphertext. While this seems strange at first, it
becomes clear in in light of the role of the randomness in POWHFs. Originally,
POWHFs were designed to meet a stronger security requirement [9,24], demand-
ing pairs (G(x, r1), G(x, r2)) for a single random x to be indistinguishable from
pairs (G(x, r1),G(x′, r2)) for independent samples x, x′. This of course requires
that the randomness r1, r2 is chosen independently for each function evaluation,
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else distinguishing would be easy. However, security of PSS-I relies on pseudo-
randomness of the corresponding function family and does not require the above
security property. Accordingly, putting the randomness for the function family
in the public key does not compromise security of the encryption scheme.

Theorem 3. Let F be a trapdoor permutation family and let POWHF =
(K,G,V) be a pseudorandom POWHF with public randomness, where pseudoran-
domness holds with respect to the uniform distribution on and the uninvertible
function hint(x) = (f, f(x)) for random f drawn from F . Then PSS-IPOWHF,H [F ]
is IND-CCA secure in the RO model.

The proof is delegated to [8]. We note that our proof does not make use the
collision-resistance of the POWHF. This is because the preimage ω of the
POWHF is uniquely determined by the additional trapdoor function value f(ω)
anyway. Hence, a pseudorandom generator for which distinguishing the output
from random is infeasible, even if given hint(ω), would actually suffice in this
setting. In particular, such a generator G can be built in combination with the
trapdoor permutation f via the Yao-Blum-Micali construction [27,7]. Namely,
let f be of the form f(x) = gn(x) for a trapdoor permutation g and define
G(x) = (hb(x), hb(g(x)), . . . ,hb(gn−1(x))) through the hardcore bits hb. Then
the output of G is still pseudorandom, even given f(x).

5 Security of Instantiating the Fujisaki-Okamoto
Transformation

Fujisaki and Okamoto [17] suggested a general construction of hybrid encryption
schemes in the random oracle model. It is based on two random oracles, G and
H . Here we show that one can replace G by a pseudorandom POWHF and
still obtain a secure scheme (for a random oracle H). We then prove, under a
somewhat non-standard assumption, that one can also replace H by a POWHF
to obtain a secure scheme for a random oracle G.

5.1 Fujisaki-Okamoto Scheme

The Fujisaki-Okamoto construction is based on an asymmetric encryption
scheme AS = (EKasym, Easym, Dasym) and a deterministic symmetric encryp-
tion scheme SS = (EKsym, Esym,Dsym), as well as two random oracles G, H .
For parameter k ∈ N let Coinsasym(k) and MsgSpasym(k) denote the set of ran-
dom strings and the message space of the asymmetric encryption scheme, and
Keyssym(k) and MsgSpsym(k) denote the key and message space of the symmetric
encryption scheme. Let

G : MsgSpasym(k) → Keyssym(k) and H : {0, 1}k × {0, 1}∗ → Coinsasym(k)

The message space is MsgSpsym(k). The encryption scheme FOG,H is given by
the following algorithms:
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– EK(1k) : Run EKasym(1k) to generate a key pair (sk, pk).
– E(pk, M) : Pick σ

$← MsgSpasym(k), compute
Casym ← Easym(pk, σ; H(σ, M)) and Csym ← Esym(G(σ), M). Output C =
(Casym, Csym).

– D(sk, C) : For C = (Casym, Csym) compute σ ← D(sk, Casym),
M ← Dsym(G(σ), Csym). Recompute c ← Easym(pk, σ; H(σ, M)) and output
M if c = Casym, else return ⊥.

Security of this conversion has been shown under the assumption that the sym-
metric encryption scheme is IND-CPA (and that the symmetric encryption al-
gorithm is deterministic), and that the public-key encryption scheme is one-way
and γ-uniform, which roughly means that ciphertexts are almost uniform. Here
we make different, yet “natural” assumptions about the encryption schemes, as
specified below.

5.2 Instantiating the G-Oracle

An instantiation of the G-oracle in the Fujisaki-Okamoto scheme through a
perfectly one-way hash function POWHF = (K,G,V) with public randomness,
denoted by FOPOWHF,H , works as follows:

– EK(1k) : Run EKasym(1k) to generate a key pair (sk, pk). Pick K
$← K(1k)

and r
$← CoinsG(k). Output ((sk, K, r), (pk, K, r)).

– E((pk, K, r), M) : Pick σ
$← MsgSpasym(k), compute Casym ← Easym(pk, σ,

H(σ, M)) and Csym← Esym(Gpr(K, σ, r), M). Output C = (Casym, Csym).
– D((sk, K, r), C) : For C = (Casym, Csym) compute σ ← Dasym(sk, Casym),

M ← Dsym(Gpr(K, σ, r), Csym). Recompute c ← Easym(pk, σ; H(σ, M)) and
output M if c = Casym, else return ⊥.

We note that we use the same trick as in the PSS-I case before and put the
randomness r of the POWHF into the public key. See the remarks there for
further discussion.

Theorem 4. Let AS and SS be IND-CPA asymmetric and symmetric encryp-
tion schemes, where Esym is deterministic. Let POWHF = (K,G,V) be a pseu-
dorandom POWHF with public randomness (with respect to the uniform distri-
bution on (MsgSpasym(k))k∈N and the trivial uninvertible function hint). Then
the instantiation of the G-oracle in the Fujisaki-Okamoto scheme, FOPOWHF,H,
is IND-CCA in the random oracle model.

The proof is in [8]. Recall that such POWHF as in the claim can be built from any
one-way permutation. We can thus instantiate the G-oracle under this condition.
In fact, the proof actually shows that regular one-wayness (instead of perfect one-
wayness) is sufficient for the pseudorandom POWHF, where for any efficient
algorithm A the probability that A returns x on input (K, hint(x),H(K, x, r))
for K

$← K(1k), r
$← Coins(K), x

Xk← {0, 1}m(k), is negligible. Clearly, perfect
one-wayness implies regular one-wayness.
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5.3 Instantiating the H-Oracle

Instantiating the H-oracle is technically more involved and requires a strong
assumption about the combination of the POWHF and the public-key encryption
scheme. Our construction also requires a stronger (yet mild) assumption about
the symmetric encryption scheme.

Before presenting our assumptions we first define the H-instantiation of
the Fujisaki -Okamoto transformation. We call the encryption scheme below
an instantiation of the H-oracle in the Fujisaki-Okamoto scheme, FOG,POWHF,
through a pseudorandom and strongly collision-resistant POWHF = (K,H,V):

– EK(1k) : Run EKasym(1k) to generate a key pair (sk, pk). Generate K
$←

K(1k) and r
$← CoinsH(k) for POWHF. Output (sk, K, r) and (pk, K, r).

– E((pk, K, r), M) : Pick σ
$← EKsym(1k), compute ω ← Hpr(K, σ||M, r)

and Casym ← Easym(pk, σ, ω) and Csym ← Esym(G(σ), M). Output C =
(Casym, Csym).

– D((sk, K, r), C) : For C = (Casym, Csym) compute σ ← D(sk, Casym),
M ← Dsym(G(σ), Csym). Recompute c ← Easym(pk, σ;Hpr(K, σ||M, r)) and
output M if c = Casym, else return ⊥.

To show that this instantiation is secure we need the following additional as-
sumption about the symmetric encryption scheme. We assume that the sym-
metric encryption scheme provides integrity of ciphertexts (INT-CTXT) [3], i.e.,
for any efficient adversary B let κ

$← EKsym(1k), C
$← BEsym(κ,·)(1k) and let

M
$← Dsym(κ, C). Then the probability that M �= ⊥ and that C has never been

submitted by B to its oracle Esym(κ, ·) is negligible. This INT-CTXT property
can be accomplished for example by the encrypt-then-MAC paradigm [3]. We
remark that this additional property, together with the IND-CPA security of the
asymmetric encryption scheme, does not necessarily imply IND-CCA security of
hybrid schemes; it is easy to construct counterexamples.

For our instantiation we also need a very strong assumption about the combi-
nation of POWHF and the public-key encryption scheme (EKasym, Easym,Dasym).
That is, we assume that the following random variables are indistinguishable for
any efficient message distributionM (which also outputs some information state
about the sampling process):

– Let (sk, pk) $← EKasym(1k), K
$← K(1k), r

$← CoinsG(k) and (M, state) $←
M(pk, K, r). Pick σ

$← MsgSpasym (k) and compute ω ← Hpr(K, σ||M, r)
and Casym ← Easym(pk, σ, ω). Output (pk, K, r, state, Casym).

– Let (sk, pk) $← EKasym(1k), K
$← K(1k), r

$← CoinsG(k) and (M, state) $←
M(pk, K, r). Pick σ

$← MsgSpasym (k) and ω
$← Coinsasym and compute

Casym ← Easym(pk, σ, ω). Output (pk, K, r, state, Casym).

We call this the POWHF-encryption assumption for POWHF and AS.
Informally, if one views the POWHFs as a pseudorandom generator, the as-

sumption basically says that encrypting the seed σ of a pseudorandom generator



Analysis of Random Oracle Instantiation Scenarios for OAEP 427

with the pseudorandom output ω is indistinguishable from an encryption of the
seed with independent randomness. Note that this assumption would be false in
general if one is also given ω in clear (which is either pseudorandom or truly ran-
dom). For example, for ElGamal encryption (gω, pkω ·σ) one could easily recover
σ if given ω (by dividing out pkω in the right part), and try to recompute ω
through the pseudorandom generator applied to σ. However, if one is not given
ω then such generic attacks (in the sense of [25]) fail.

Note also that our POWHF-encryption assumption is certainly not stronger
than assuming that the pseudorandom generator is perfect and given by a ran-
dom oracle. On the contrary, our result shows that seeing the adversary’s queries
to function H is not necessary to simulate attacks and to prove security. This
holds, of course, as long as G is still a random oracle and the simulator learns
the queries to this oracle. The proof of the following theorem is in [8]. Simi-
lar to the G-case the proof shows that regular one-wayness is enough for the
pseudorandom POWHF.

Theorem 5. Let AS and SS be IND-CPA public-key and private-key encryption
schemes where Esym is deterministic. Let POWHF = (K,H,V) be a pseudoran-
dom POWHF with public randomness (with respect to the uniform distribution
and the trivial uninvertible function). Assume further that the symmetric encryp-
tion scheme provides integrity of ciphertexts and that the POWHF-encryption
assumption holds for POWHF and AS. Then the instantiation of the H-oracle in
the Fujisaki-Okamoto transformation, FOG,POWHF, yields an IND-CCA encryp-
tion scheme in the random oracle model.

6 (In)Security of FDH Signature Scheme Instantiations

In this section we consider the Full Domain Hash (FDH) signature scheme which
is provably secure in the random oracle model if the associated permutation is
one-way. We show that replacing the random oracle by a verifiable pseudorandom
function does not necessarily yield a secure instantiation. For sake of concreteness
we explain our negative result for the RSA case. The result can be transferred,
mutatis mutandis, to other trapdoor permutations.

We note that one can easily transfer our negative result about OAEP (The-
orems 1 and 2) to show that the FDH instantiated with a POWHF is insecure
with respect to a specific trapdoor permutation oracle. But our result here for
the VPRFs works for any trapdoor permutation, including RSA for example.

Full Domain Hash Signature Scheme and Instantiation with VPRFs.
Due to lack of space we omit the formal description of the well-known Full-
domain hash (FDH) signature scheme [4] Basically, a signature S for a message
M is given as S = f−1(H(M)) and verification requires checking f(S) = H(M).
An instantiation of the FDH scheme with VPRF = (K,H,V) is the following
signature scheme FDHVPRF[F ] = (SK,S,V):

– SK(1k) : pick a random permutation f on Dk from F , pick (fk, vk) $← K(1k).
Let pk specify f and contain vk and let sk specify f−1 and contain vk.
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– SH(fk,·)(sk, M) : (y, π) $← H(fk, M), S ← f−1(y). Output (S, π, y).
– VV(fk,·)(pk, M, (S, π)) : If f(S) = y and V(vk, M, y, π) = 1 then return 1,

else return 0

It is important to note that in the attack the adversary is only given access to
the signature oracle but not to the VPRF oracle. Although the application as
a third-party web interface providing such values indicate that the adversary
can get additional VPRF values, our result even holds in the setting where the
adversary is denied such values.

On the Insecurity of RSA-FDH with VPRFs. A special case is the RSA-
FDH signature scheme (and its instantiation through a VPRF) where f, f−1 are
given by the RSA function x �→ xe mod N and its inverse y �→ yd mod N . Here
we consider the case with large prime exponents where the RSA exponent e has
to be a prime of (k + 1) bits and therefore larger than the k-bit modulus N . We
denote this function by RSAlarge-exponent. According to the recent result about
deterministic primality testing [1], this prerequisite allows to verify determinis-
tically that a pair (N, e) really constitutes a permutation. We also remark that
this RSA version is not known to be weaker than RSA with other exponents.

For the RSA-FDH scheme we construct a “bad” VPRF such that, when
instantiated with this VPRF, RSA-FDH becomes insecure:

Theorem 6. Suppose VPRFs exist. Then there exists a verifiable pseudorandom
function VPRF = (K,H,V) such that FDHVPRF[RSAlarge-exponent] is subject to
existential forgeries in chosen-message attacks.

The basic idea is that the “bad” VPRF (which exists if any VPRF exists) itself
will reveal signatures for free as part of the correctness proof. Thus, giving the
signature oracle the right message will force the signer to query the VPRF at
the right input which, in turn, allows to forge signatures. We prove this formally
in [8] .
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Abstract. The most common way of constructing a hash function (e.g.,
SHA-1) is to iterate a compression function on the input message. The
compression function is usually designed from scratch or made out of
a block-cipher. In this paper, we introduce a new security notion for
hash-functions, stronger than collision-resistance. Under this notion, the
arbitrary length hash function H must behave as a random oracle when
the fixed-length building block is viewed as a random oracle or an ideal
block-cipher. The key property is that if a particular construction meets
this definition, then any cryptosystem proven secure assuming H is a
random oracle remains secure if one plugs in this construction (still as-
suming that the underlying fixed-length primitive is ideal). In this paper,
we show that the current design principle behind hash functions such as
SHA-1 and MD5 — the (strengthened) Merkle-Damg̊ard transformation
— does not satisfy this security notion. We provide several constructions
that provably satisfy this notion; those new constructions introduce min-
imal changes to the plain Merkle-Damg̊ard construction and are easily
implementable in practice.

1 Introduction

Random Oracle Methodology. The random oracle model has been intro-
duced by Bellare and Rogaway as a “paradigm for designing efficient protocols”
[4]. It assumes that all parties, including the adversary, have access to a public,
truly random hash function H . This model has been proven extremely useful
for designing simple, efficient and highly practical solutions for many problems.
From a theoretical perspective, it is clear that a security proof in the random
oracle model is only a heuristic indication of the security of the system when
instantiated with a particular hash function, such as SHA-1 [16] or MD5 [18].
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In fact, many recent “separation” results [11,26,19,2,12,15] illustrated various
cryptographic systems secure in the random oracle model but completely inse-
cure for any concrete instantiation of the random oracle (even by a family of
hash functions). Nevertheless, these important separation results do not seem to
directly attack any of the concrete, widely used cryptosystems (such as OAEP
[6] and PSS [5] as used in the PKCS #1 v2.1 standard [27]) which rely on “se-
cure hash functions”. Moreover, we hope that such particular systems are in
fact secure when instantiated with a “good” hash function. In the random oracle
model, instead of making a highly non-standard (and possibly unsubstantiated)
assumption that “my system is secure with this H” (e.g., H being SHA-1), one
proves that the system is at least secure with an “ideal” hash function H (under
standard assumptions). Such formal proof in the random oracle model is believed
to indicate that there are no structural flaws in the design of the system, and
thus one can heuristically hope that no such flaws will suddenly appear with a
particular, “well designed” function H . But can we say anything about the lack
of structural flaws in the design of H itself?

Building Random Oracles. On the first glance, it appears that nothing
theoretically meaningful can be said about this question. Namely, we know that
mathematically a concrete function H is not a random oracle, so to prove that
H is “good” we need to directly argue the security of our system with this
given H . And the latter task is usually unmanageable given our current tools
(e.g., “realizable” properties of H such as collision-resistance, pseudorandomness
or one-wayness are usually not enough to prove the security of the system).
However, we argue that there is a significant gap in this reasoning. Indeed, most
systems abstractly model H as a function from {0, 1}∗ to {0, 1}n (where n is
proportional to the security parameter), so that H can be used on some arbitrary
input domain. On the other hand, in practice such arbitrary-length hash functions
are built by first heuristically constructing a fixed-length building block, such
as a fixed-length compression function or a block cipher, and then iterating
this building block in some manner to extend the input domain arbitrarily. For
example, SHA-1, MD5, as well as all the other hash function we know of, are
constructed by applying some variant of the Merkle-Damg̊ard construction to
an underlying compression function f : {0, 1}n+κ → {0, 1}n (see Figure 5):

Function H(m1, . . . , m�) :
let y0 = 0n (more generally, some fixed IV value can be used)
for i = 1 to � do yi ← f(yi−1, mi)
return y�

When the number of κ-bit message blocks � is not fixed, one essentially appends
an extra block m�+1 containing the binary representation 〈|m|〉 of the length of
the message (prepended by 1 and a string of 0’s in order to make everything a
multiple of κ; the exact details will not matter for our discussion). The fixed-
length compression function f can either be constructed from scratch or made
out of a block-cipher E via the Davies-Meyer construction (see [31] and Figure 9):
f(x, y) = Ey(x)⊕x. For example, the SHA-1 compression function was designed
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specifically for hashing, but a block-cipher can nevertheless be derived from it,
as illustrated in [20].

Our Main Question. Given such particular and “structured” design of our
hash function H ,— which is actually the design used in practice,— we argue
that there exists a missing link in the claim that no structural flaws exist in the
design of our system. Indeed, we only know that no such flaws exist when H was
modeled as a “monolithic” random oracle, and not as an iterated hash function
built from some smaller building block. As since the real implementation of H
as an iterated hash function has much more structure than a random monolithic
hash function would have, maybe this structure could somehow invalidate the
security proof in the random oracle model? To put this into a different perspec-
tive, all the ad-hoc (and hopefully “secure”) design effort for widely used hash
functions, such as SHA-1 and MD5, has been placed into the design of the fixed-
length building block f (or E). On the other hand, even if f (or E) were assumed
to be ideal, the current proofs in the random oracle model do not guarantee the
security of the resulting system when such iterated hash function H is used!

Let us illustrate our point on a well known example. A common suggestion
to construct a MAC algorithm is to simply include a secret key k as part of
the input of the hash function, and take for example MAC(k, m) = H(k‖m). It
is easy to see that this construction is secure when H is modeled as a random
oracle [4], as no adversary can output a MAC forgery except with negligible
probability. However, this MAC scheme is completely insecure for any Merkle-
Damg̊ard construction considered so far (including Merkle-Damg̊ard strengthen-
ing used in current hash functions such as SHA-1, and any of the 64 block-cipher
based variants of iterative hash-functions considered in [29,9]), no matter which
(ideal) compression function f (or a block cipher E) is used. Namely, given
MAC(k, m) = H(k‖m), one can extend the message m with any single arbitrary
block y and deduce MAC(k, m‖y) = H(k‖m‖y) without knowing the secret key
k (even with Merkle-Damg̊ard strengthening, one could still forge the MAC by
more or less setting y = 〈|m|〉, where the actual block depends on the exact
details of the strengthening). This (well known) example illustrates that the
construction of a MAC from an iterated hash function requires a specific analy-
sis, and cannot be derived from the security of this MAC with a monolithic hash
function H . On the other hand, while the Merkle-Damg̊ard transformation and
its variants have been intensively studied for many “realizable” properties such as
collision-resistance [13,25,29,9], pseudorandomness [8], unforgeability [1,24] and
randomness extraction [14], it is clear that these analyses are insufficient to argue
its applicability for the purposes of building a hash function which can be mod-
eled as a random oracle, since the latter is a considerably stronger security no-
tion (in fact unrealizable in the standard model). For a simple concrete example,
the Merkle-Damg̊ard strengthening is easily seen to preserve collision-resistance
when instantiated with a collision-resistant compression function, while we just
saw that it does not work to yield a random oracle or even just a variable-length
MAC, and this holds even if the underlying compression function is modeled as
a random oracle.
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Our Goals. Summarizing the above discussion, our goal is two-fold. First,
we would like to give a formal definition of what it means to implement an
arbitrary-length random oracle H from a fixed-length building block f or E.
The key property of this definition should be the fact that if a particular con-
struction of H from f (or E) meets this definition, then any application proven
secure assuming H is a random oracle would remain secure if we plug in our
construction (although still assuming that the underlying fixed-length primitive
f or E was ideal). In other words, we can safely use our implementation of H
as if we were using a monolithic random oracle H . We remark that this means
that our definition should not just preserve the pseudorandomness properties
of H , but also all the other “tricks” present in the random oracle model, such
as “programmability” and “extractability”. For example, we could try to set
H(x) = f(h(x)), where f is a fixed-length random oracle and h is a collision-
resistant hash function (not viewed as a random oracle). While pseudorandom,
this simple implementation is clearly not “extractable”: for example, given out-
put z = f(h(x)) for some unknown x, we can only “extract” the value h(x)
(by observing the random oracle queries made to f), but then have no way of
extracting x itself from h(x) (indeed, we will show a direct attack on this im-
plementation in Section 3.1). This shows that the security definition we need is
an interesting and non-trivial task of its own, especially if we also want it to be
simple, natural and easy to use.

Second, while the definition we seek should not be too specific to some variant
of the Merkle-Damg̊ard transformation, we would like to give secure construc-
tions which resemble what is done in practice as much as possible. Unfortunately,
we already argued that the current design principle behind hash functions such as
SHA-1 and MD5 — the (strengthened) Merkle-Damg̊ard transformation — will
not be secure for our ambitious goal. Therefore, instead of giving new and practi-
cally unmotivated constructions, our secondary goal is to come up with minimal
and easily implementable in practice changes to the plain Merkle-Damg̊ard con-
struction, which would satisfy our security definition.

Our results. First, we give a satisfactory definition of what it means to
implement an arbitrary-length random oracle H from a fixed length primitive
g (where g is either an ideal compression function f , or a an ideal block cipher
E). Our definition is based on the indifferentiability framework of Maurer et al.
[23]. This framework enjoys the desired closure property we seek, and is very
intuitive and easy to state.

Having a good security definition, we provide several provable construc-
tions. We start by giving three modifications to the (insecure) plain Merkle-
Damg̊ard construction which yield a secure random oracle H taking arbitrary-
length input, from a compression function viewed as a random oracle taking
fixed-length input. This result can be viewed as a secure domain extender for the
random oracle, which is an interesting result of independent interest. We remark
that domain extenders are well studied for such primitives as collision-resistant
hash functions [13,25], pseudorandom functions [8], MACs [1,24] and universal
one-way hash functions [7,30]. Although the above works also showed that some
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variants of Merkle-Damg̊ard yield secure domain extenders for the corresponding
primitive in question, these results are not sufficient to claim a domain extender
for the random oracle.

Our secure modifications to the plain Merkle-Damg̊ard construction are the
following. (1) Prefix-Free Encoding : we show that if the inputs to the plain MD
construction are guaranteed to be prefix-free, then the plain MD construction is
secure. (2) Dropping Some Output Bits : we show that by dropping a non-trivial
number of output bits from the plain MD chaining, we get a secure random or-
acle H even if the input is not encoded in the prefix-free manner. (3) Using
NMAC construction (see Figure 8a): we show that by applying an independent
hash function g to the output of the plain MD chaining (as in the NMAC con-
struction [8]), then once again we get a secure construction of an arbitrary-length
random oracle H , in the random oracle model for f and g. (4) Using HMAC
Construction (see Figure 8b): we show a slightly modified variant of the NMAC
construction allowing us to conveniently build the function g from the compres-
sion function f itself (as in [8] when going from NMAC to HMAC)! In this latter
variant, one implements a secure hash function H by making two black-box calls
to the plain Merkle-Damg̊ard construction (with the same fixed IV and a given
compression function f): first on (�+1)-block input 0κm1 . . . m�, getting an n-bit
output y, and then on one-block κ-bit input y′ (obtained by either truncating
or padding y depending on whether or not κ > n), getting the final output.

However, in practice most hash-function constructions are block-cipher
based, either explicitly as in [29] or implicitly as for SHA-1. Therefore, we con-
sider the question of designing an arbitrary-length random oracle H from an ideal
block cipher E, specifically concentrating on using the Merkle-Damg̊ard con-
struction with the Davies-Meyer compression function f(x, y) = Ey(x) ⊕ x,
since this is the most practically relevant construction. We show that all of
the four fixes to the plain MD chaining which worked when f was a fixed-length
random oracle, are still secure (in the ideal cipher model) when we plug in
f(x, y) = Ey(x) ⊕ x instead. Specifically, we can either use a prefix-free encod-
ing, or drop a non-trivial number of output bits (when possible), or apply an
independent random oracle g to the output of plain MD chaining, or use the
optimized HMAC construction which allows us to build this function g from the
ideal cipher itself.

2 Definitions

In this section, we introduce the main notations and definitions used throughout
the paper. Our security notion for secure hash-function is based on the notion
of indifferentiability of systems, introduced by Maurer et al. in [23]. This is an
extension of the classical notion of indistinguishability, when one or more oracles
are publicly available, such as random oracles or ideal ciphers. This notion is
based on ideas from the Universal Composition framework introduced by Canetti
in [10] and on the model of Pfitzmann and Waidner [28]. The indifferentiability
notion in [23] is given in the framework of random systems providing interfaces to
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other systems, but equivalently we use this notion in the framework of Interactive
Turing Machines (as in [10]).

We define an ideal primitive as an algorithmic entity which receives inputs
from one of the parties and deliver its output immediately to the querying party.
The ideal primitives that we consider in this paper are random oracles and ideal
ciphers. A random oracle [4] is an ideal primitive which provides a random
output for each new query. Identical input queries are given the same answer.
An ideal cipher is an ideal primitive that models a random block-cipher E :
{0, 1}κ× {0, 1}n → {0, 1}n. Each key k ∈ {0, 1}κ defines a random permutation
Ek = E(k, ·) on {0, 1}n. The ideal primitive provides oracle access to E and
E−1; that is, on query (0, k, m), the primitive answers c = Ek(m), and on query
(1, k, c), the primitive answers m such that c = Ek(m).

We now proceed to the definition of indifferentiability [23] :

Definition 1. A Turing machine C with oracle access to an ideal primitive G
is said to be (tD, tS , q, ε) indifferentiable from an ideal primitive F if there exists
a simulator S, such that for any distinguisher D it holds that :∣∣Pr

[
DC,G = 1

]
− Pr

[
DF ,S = 1

]∣∣ < ε

The simulator has oracle access to F and runs in time at most tS. The distin-
guisher runs in time at most tD and makes at most q queries. Similarly, CG is
said to be (computationally) indifferentiable from F if ε is a negligible function
of the security parameter k (for polynomially bounded tD and tS).

As illustrated in Figure 1, the role of the simulator is to simulate the ideal
primitive G so that no distinguisher can tell whether it is interacting with C and
G, or with F and S; in other words, the output of S should look “consistent”
with what the distinguisher can obtain from F . Note that the simulator does
not see the distinguisher’s queries to F ; however, it can call F directly when
needed for the simulation.

C G F S

D

Fig. 1. The indifferentiability notion: the distinguisher D either interacts with algo-
rithm C and ideal primitive G, or with ideal primitive F and simulator S. Algorithm
C has oracle access to G, while simulator S has oracle access to F

In the rest of the paper, the algorithm C will represent the construction of
an iterative hash-function (such as the Merkle-Damg̊ard construction recalled in
the introduction). The ideal primitive G will represent the underlying primitive
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used to build the hash-function. G will be either a random oracle (when the com-
pression function is modelled as a random oracle), or an ideal block-cipher (when
the compression function is based on a block-cipher). The ideal primitive F will
represent the random oracle that the construction C should emulate. Therefore,
one obtains the following setting : the distinguisher has oracle access to both the
block-cipher and the hash-function, and these oracles are implemented in one
of the following two ways: either the block-cipher E is chosen at random and
the hash-function C is constructed from it, or the hash-function H is chosen at
random and the block-cipher is implemented by a simulator S with oracle ac-
cess to H . Those two cases should be indistinguishable, that is the distinguisher
should not be able to tell whether the block-cipher was chosen at random and
the iterated hash-function constructed from it, or the hash-function was chosen
at random and the block-cipher then “tailored” to match that hash-function.

It is shown in [23] that if CG is indifferentiable from F , then CG can replace
F in any cryptosystem, and the resulting cryptosystem is at least as secure in the
G model as in the F model. For example, if a block-cipher based iterative hash
function is indifferentiable from a random oracle in the ideal cipher model, then
the iterative hash-function can replace the random oracle in any cryptosystem,
and the resulting cryptosystem remains secure in the ideal cipher model if the
original scheme was secure in the random oracle model.

C G F

P A P A'

Fig. 2. The environment E interacts with cryptosystem P and attacker A. In the G
model (left), P has oracle access to C whereas A has oracle access to G. In the F
model, both P and A′ have oracle access to F

We use the definition of [23] to specify what it means for a cryptosystem to be
at least as secure in the G model as in the F model. A cryptosystem is modelled
as an Interactive Turing Machine with an interface to an adversary A and to a
public oracle. The cryptosystem is run by an environment E which provides a
binary output and also runs the adversary. In the G model, cryptosystem P has
oracle access to C whereas attacker A has oracle access to G. In the F model,
both P and A have oracle access to F . The definition is illustrated in Figure 2.

Definition 2. A cryptosystem is said to be at least as secure in the G model
with algorithm C as in the F model, if for any environment E and any attacker
A in the G model, there exists an attacker A′ in the F model, such that
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[
E(PC ,AG) = 1

]
− Pr

[
E(PF ,A′F ) = 1

]∣∣∣
is a negligible function of the security parameter k. Similarly, a cryptosystem is
said to be computationally at least as secure, etc., if E, A and A′ are polynomial-
time in k.

The following theorem from [23] shows that security is preserved when re-
placing an ideal primitive by an indifferentiable one :

Theorem 1. Let P be a cryptosystem with oracle access to an ideal primitive
F . Let C be an algorithm such that CG is indifferentiable from F . Then cryp-
tosystem P is at least as secure in the G model with algorithm C as in the F
model.

Proof. We only provide a proof sketch; see [23] for a full proof. Let P be any
cryptosystem, modelled as an Interactive Turing Machine. Let E be any environ-
ment, and A be any attacker in the G model. In the G model, P has oracle access
to C whereas A has oracle access to ideal primitive G; moreover environment E
interacts with both P and A. This is illustrated in Figure 3 (left part).

C G F S

P A P A

D D

A'

Fig. 3. Construction of attacker A′ from attacker A and simulator S

Since CG is indifferentiable from F (see Figure 1), one can replace (C,G) by
(F , S) with only a negligible modification of the environment’s output distrib-
ution. As illustrated in Figure 3, by merging attacker A and simulator S, one
obtains an attacker A′ in the F model, and the difference in E ’s output distrib-
ution is negligible. �

3 Domain Extension for Random Oracles

In this section, we show how to construct an iterative hash-function indifferen-
tiable from a random oracle, from a compression function viewed as a random
oracle. We start with two simple and intuitive constructions that do not work.
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3.1 H(x) = f(h(x)) for Random Oracle f and Collision-Resistant
One-Way Hash-Function h

One could hope to emulate a random oracle (with arbitrary-length input) by
taking :

Cf (x) = f(h(x))

where f : {0, 1}n → {0, 1}n is modelled as a random oracle and h : {0, 1}∗ →
{0, 1}n is any collision-resistant one-way hash-function (not modelled as a ran-
dom oracle). However, we show that such Cf is not indifferentiable from a ran-
dom oracle; namely, we construct a distinguisher that can fool any simulator.

f H Sh
f

C(m)    =    f(h(m)) 

C

H(m)    =   S(h(m))

Fig. 4. The simulator cannot output H(m) since it only receives h(m) and cannot
recover m from h(m)

As illustrated in Figure 4, the distinguisher first generates an arbitrary m
and computes u = h(m). Then it queries v = f(u) to random oracle f and
queries z = Cf (m) to Cf . It then checks that z = v and outputs 1 in this
case, and 0 otherwise. It is easy to see that the distinguisher always output 1
when interacting with Cf and f , but outputs 0 with overwhelming probability
when interacting with H and any simulator S. Namely, when the distinguisher
interacts with H and S, the simulator only receives u = h(m); therefore, in order
to output v such that v = H(m), the simulator must either recover m from h(m)
(and then query H(m)) or guess the value of H(m), which can be done with
only negligible probability.

3.2 Plain Merkle-Damg̊ard Construction

We show that the plain Merkle-Damg̊ard construction (see Figure 5) fails to
emulate a random oracle (taking arbitrary-length input) when the compression
function f is viewed as a random oracle (taking fixed-length input). For simplic-
ity, we only consider the usual Merkle-Damg̊ard variant, although the discussion
easily extends to the strengthened variant which appends the message length
〈|m|〉 at the last block :

Function MDf (m1, . . . , m�) :
let y0 = 0n (more generally, some fixed IV value can be used)
for i = 1 to � do yi ← f(yi−1, mi)
return y� ∈ {0, 1}n.

where for all i, |mi| = κ and f : {0, 1}n+κ → {0, 1}n.
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IV

m1 m2

ff f
y1 y2

y�

m�

Fig. 5. The plain Merkle-Damg̊ard Construction

We have already mentioned in introduction a counter-example based on
MAC. Namely, we showed that MAC(k, m) = H(k‖m) provides a secure MAC
in the random oracle model for H , but is completely insecure when H is replaced
by the previous Merkle-Damg̊ard construction MDf , because of the message ex-
tension attack. In the following, we give a more direct refutation based on the
definition of indifferentiability, using again the message extension attack.

We consider only one-block messages or two-block messages. For such mes-
sages, we have that MDf (m1) = f(0, m1) and MDf (m1, m2) = f(f(0, m1), m2).
We build a distinguisher that can fool any simulator as follows. The distinguisher
first makes a MDf -query for m1 and receives u = MDf (m1). Then it makes a
query for v = f(u, m2) to random oracle f . The distinguisher then makes a
MDf -query for (m1, m2) and eventually checks that v = MDf (m1, m2); in this
case it outputs 1, and 0 otherwise. It is easy to see that the distinguisher always
outputs 1 when interacting with MDf and f . However, when the distinguisher
interacts with H and S (who must simulate f), we observe that S has no informa-
tion about m1 (because S does not see the distinguisher’s H-queries). Therefore,
the simulator cannot answer v such that v = H(m1, m2), except with negligible
probability.

3.3 Prefix-Free Merkle-Damg̊ard

In this section, we show that if the inputs to the plain MD construction are
guaranteed to be prefix-free, then the plain MD construction is secure. Namely,
prefix-free encoding enables to eliminate the message expansion attack described
previously. This “fix” is similar to the fix for the CBC-MAC [3], which is also
insecure in its plain form. Thus, the plain MD construction can be safely used
for any application of the random oracle H where the length of the inputs is
fixed or where one uses domain separation (e.g., prepending 0, 1, . . . to differen-
tiate between inputs from different domains). For other applications, one must
specifically ensure that prefix-freeness is satisfied.

A prefix-free code over the alphabet {0, 1}κ is an efficiently computable in-
jective function g : {0, 1}∗ → ({0, 1}κ)∗ such that for all x �= y, g(x) is not a
prefix of g(y). Moreover, it must be easy to recover x given only g(x). We provide
two examples of prefix-free encodings. The first one consists in prepending the
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message size in bits as the first block. The last block is then padded with the
bit one followed by zeroes.

Function g1(m) :
let N be the message length of m in bits.
write m as (m1, . . . , m�) where for all i, |mi| = κ

and with the last block m� padded with 10r.
let g1(m) = (〈N〉, m1, . . . , m�) where 〈N〉 is a κ-bit binary encoding of N .

An important drawback of this encoding is that the message length must be
known in advance; this can be a problem for streaming applications in which a
large message must be processed on the fly. Our second encoding g2 does not
suffer from this drawback, but requires to waste one bit per block of the message :

Function g2(m) :
write m as (m1, . . . , m�) where for all i, |mi| = κ− 1

and with the last block m� padded with 10r.
let g2(m) = (0|m1, . . . , 0|m�−1, 1|m�).

Given any prefix-free encoding g, we consider the following construction
of the iterative hash-function pf-MDf

g : {0, 1}∗ → {0, 1}n, using the Merkle-
Damg̊ard hash-function MDf : ({0, 1}κ)∗ → {0, 1}n defined previously.

Function pf-MDf
g (m) :

let g(m) = (m1, . . . , m�)
y ← MDf (m1, . . . , m�)
return y

Theorem 2. The previous construction is (tD, tS , q, ε)-indifferentiable from a
random oracle, in the random oracle model for the compression function, for
any tD, with tS = � · O(q2) and ε = 2−n · �2 · O(q2), where � is the maximum
length of a query made by the distinguisher D.

Proof. Due to lack of space, we only provide a proof sketch for a particular prefix-
free encoding which has a simpler proof; the proof for any prefix-free encoding
will be provided in the full version of this paper.

The particular prefix-free encoding that we consider consists in adding the
message-length as part of the input of f ; moreover, the index of the current
block is also included as part of the input of f , so that f can be viewed as
an independent random oracle for each block mi. Specifically, we construct an
iterative hash-function Cf : ({0, 1}κ)∗ → {0, 1}n from a compression function
f : {0, 1}n+κ+2·t → {0, 1}n as follows :

Function Cf (m1, . . . , m�) :
let y0 = 0n

for i = 1 to � do yi ← f(yi−1, mi, 〈�〉, 〈i〉)
return y�
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m1 m2 m�

fff
IV

〈1〉 〈2〉 〈�〉
〈�〉〈�〉〈�〉

Fig. 6. Merkle-Damg̊ard with a particular prefix-free encoding

where for all i, |mi| = κ. The string 〈�〉 is a t-bit binary encoding of the message
length �, and 〈i〉 is a t-bit encoding of the block index. The construction is shown
in Figure 6.

In the following, we show that Cf is indifferentiable from a random oracle, in
the random oracle model for f . Since the block-length � is part of the input of the
compression function f , we have that Cf behaves independently for messages of
different length. Therefore, we can restrict ourselves to messages of fixed length
�, i.e. it suffices to show that for all �, the construction Cf with message length
� is indifferentiable from random oracle H� : ({0, 1}κ)� → {0, 1}n.

We consider for all 1 ≤ j ≤ � the function Cf
j : ({0, 1}κ)j → {0, 1}n out-

putting the intermediate value yj in Cf . From the definition of Cf , we have for
all 2 ≤ j ≤ � :

Cf
j (m1, . . . , mj) = f(Cf

j−1(m1, . . . , mj−1), mj , 〈�〉, 〈j〉) (1)

We provide a recursive proof that for all j, the construction Cf
j is indifferentiable

from a random oracle. The result for Cf will follow for j = �. The property clearly
holds for j = 1. Assuming now that it holds for j − 1, we show that it holds for
j. We use the following lemma :

Lemma 1. Let h1 : {0, 1}a → {0, 1}n and h2 : {0, 1}n+κ → {0, 1}n. The con-
struction Rh1,h2 = h2(h1(x), y) is indifferentiable from a random oracle, in the
random oracle model for h1 and h2.

Replacing Cf
j−1 by h1 and f(·, 〈�〉, 〈j〉) by h2 in equation (1), one then obtains

that Cf
j is indifferentiable from a random oracle (see Figure 7 for an illustration).

We now proceed to the proof of lemma 1; due to lack of space, we only
provide a proof sketch. One must construct a simulator S such that interacting
with (R, (h1, h2)) is indistinguishable from interacting with (H, S), where H is
a random oracle. Our simulator is defined as follows:
Simulator S :
On h1-query x, return a random v ∈ {0, 1}n.
On h2-query (v′, y), check if v′ = h2(x′) for some previously queried x′.

In this case, query (x′, y) to H and output H(x′, y).
Otherwise return a random output.
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IV

H

f f f

m1 m2 m3

〈�〉 〈�〉 〈�〉
〈1〉 〈2〉 〈3〉

Fig. 7. The output of first two blocks is replaced by a random oracle using Lemma 1

The distinguisher either interacts with (R, (h1, h2)) or with (H, S). We denote
by F the event that a collision occurs for h1, that is h1(x) = h1(x′) for some
distinct queries x, x′. We denote by F ′ the event that the distinguisher makes
a h2-query (v′, y) such that v′ = h1(x) and (x, y) was previously queried to
R, but x was never queried directly to h1 by the distinguisher. We claim that
conditioned on the complement of F ∨F ′, the simulation of S is perfect (see the
full paper for a complete justification). The distinguishing probability is then at
most Pr[F ∨ F ′]; for a distinguisher making at most q queries, this gives:

Pr[F ∨ F ′] ≤ 2q2

2n

which shows a negligible distinguishing probability. �

3.4 The Chop Solution

In this section, we show that by removing a fraction of the output of the plain
Merkle-Damg̊ard construction MDf , one obtains a construction indifferentiable
from a random oracle. This “fix” is similar to the method used by Dodis et al. [14]
to overcome the problem of using plain MD chaining for randomness extraction
from high-entropy distributions, and to the suggestion of Lucks [22] to increase
the resilience of plain MD chaining to multi-collision attacks. It is also already
used in practice in the design of hash functions SHA-348 and SHA-224 [17] (both
obtained by dropping some output bits from SHA-512 and SHA-256). Here we
show that by dropping a non-trivial number of output bits from the plain MD
chaining, one gets a secure random oracle H even if the input is not encoded
in the prefix-free manner. For example, such dropping prevents the “extension”
attacks we saw in the MAC application, since the attacker cannot guess the value
of the dropped bits, and cannot extend the output of the MAC to a valid MAC
of a longer message.

Formally, given a compression function f : {0, 1}n+κ → {0, 1}n, the new
construction chop-MDf

s is defined as follows:
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Function chop-MDf
s (m) :

let m = (m1, . . . , m�)
y ← MDf (m1, . . . , m�)
return the first n− s bits of y.

Theorem 3. The chop-MDf
s construction is (tD, tS , q, ε) indifferentiable from a

random oracle, for any tD, with tS = � · O(q2) and ε = 2−s · �2 · O(q2). Here �
is the maximum length of a query made by the distinguisher D.

While really simple, the drawback of this method is that its exact security
is proportional to q22−s, where s is the number of chopped bits and q is the
number of oracle queries. Thus, to achieve adequate security level the value of s
has to be relatively high, which means that short-output hash functions such as
SHA-1 and MD5 cannot be fixed using this method. However, functions such as
SHA-512 can naturally be fixed (say, by setting s = 256).

3.5 The NMAC and HMAC Constructions

The NMAC construction [8], which is the basis of the popular HMAC construc-
tion, applies an independent hash function g to the output of the plain MD
chaining. It has been shown very valuable in the design of MACs [8], and re-
cently also randomness extractors [14]. Here we show that if g is modelled as
another fixed-length random oracle independent from the random oracle f (used
for the compression function), then once again one gets a secure construction
of an arbitrary-length random oracle H , even if plain MD chaining is applied
without prefix-free encoding. Intuitively, applying g gives another way to hide
the output of the plain MD chaining, and thus prevent the “extension” attack
described earlier.

Formally, given f : {0, 1}n+κ → {0, 1}n and g : {0, 1}n → {0, 1}n′
, the

function NMACf,g is defined as (see Figure 8a):

Function NMACf,g(m) :
let m = (m1, . . . , m�)
y ←MDf(m1, . . . , m�)
Y ← g(y)
return Y

Theorem 4. The construction NMACf,g is (tD, tS , q, ε) indifferentiable from
a random oracle for any tD, tS = � · O(q2) and ε = 2−min(n,n′)�2O(q2), in
the random oracle model for f and g, where � is the maximum message length
queried by the distinguisher.

To practically instantiate this suggestion, we would like to implement f and
g from a single compression function. This problem is analogous to the prob-
lem in going from NMAC to HMAC in [8], although our solution is slightly
different. One simple way for achieving this is to use domain separation: e.g., by
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prepending 0 for calls to f and 1 — for calls to g. However, with this mod-
eling we are effectively using the prefix-free encoding mapping m1m2 . . . m�

to 0m10m2 . . . 0m�10κ, which appears slightly wasteful. Additionally, this also
forces us to go into the lower-level implementation details for the compression
function, which we would like to avoid. Instead, our solution consists in apply-
ing two black-box calls to the plain Merkle-Damg̊ard construction MDf (with the
same f and IV ) : first to the input 0κm1 . . . m�, getting an n-bit output y, and
again to κ-bit y′, where y′ is defined from y as follows (see Figure 8b):

Function HMACf (m) :
let m = (m1, . . . , m�)
let m0 = 0κ

y ← MDf (m0, m1, . . . , m�)
if n < κ then y′ ← y ‖ 0κ−n

else y′ ← y|κ
Y ← MDf (y′)
return Y

Intuitively, we are almost using the NMAC construction with g(y) = f(IV, y′)
(where y′ is obtained from y as above), except we prepend a fixed block m0 = 0κ

to our message. This latter tweak is done to ensure that there are no inter-
dependencies between using the same IV on y′ and the first message block
(which would have been under adversarial control had we not prepended m0).
Indeed, it is very unlikely that “high-entropy” y′ will ever be equal to m0 = 0κ,
so the analysis for NMAC can be easily extended for this optimization.

Theorem 5. The construction HMACf is (tD, tS , q, ε) indifferentiable from a
random oracle for any tD, tS = � · O(q2) and ε = 2−min(n,κ) · �2 · O(q2), in the
random oracle model for f , where � is the maximum message length queried by
the distinguisher.

4 Constructions Using Ideal Cipher

In practice, most hash-function constructions are block-cipher based, either ex-
plicitly as in [29] or implicitly as for SHA-1. Therefore, we consider the question
of designing an arbitrary-length random oracle H from an ideal block cipher
E : {0, 1}κ × {0, 1}n → {0, 1}n, specifically concentrating on using the Merkle-
Damg̊ard construction with the Davies-Meyer compression function f(x, y) =
Ey(x)⊕x (see Figure 9), since this is the most practically relevant construction.
We notice that the question of designing a collision-resistant hash function H
from an ideal block cipher was explicitly considered by Preneel, Govaerts and
Vandewalle in [29], and latter formalized and extended by Black, Rogaway and
Shrimpton [9]. Specifically, the authors of [9] actually considered 64 block-cipher
variants of the Merkle-Damg̊ard transform (which included the Davies-Meyer
variant among them), and formally showed that exactly 20 of these variations
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Fig. 9. The Davies-Meyer Compression function

(including the Davies-Meyer variant) are collision-resistant when the block ci-
pher E is modeled as an ideal cipher. However, while our work will also model E
as an ideal cipher, our security goal is considerably stronger than mere collision-
resistance. Indeed, we already pointed out that none of the 64 variants above
can withstand the “extension” attack on the MAC application, even with the
Merkle-Damg̊ard strengthening. And even when restricting to a fixed number
of blocks � (which invalidates the “extension” attack), collision-resistance is
completely insufficient for our purposes. For example, the authors of [9] show
the collision-resistance when using the plain MD chaining with fixed IV and
compression function f(x, y) = Ey(x). On the other hand, it is easy to see
that this method does not provide a secure random oracle H according to our
definition.

From a different direction, if we could show that the Davies-Meyer compres-
sion function f(x, y) = Ey(x) ⊕ x is a secure random oracle when E is an ideal
block-cipher, then we could directly apply any of the three fixes discussed above.
Unfortunately, this is again not the case: intuitively, the above construction al-
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lows anybody to compute x from f(x, y)⊕x and y (since x = E−1
y (f(x, y)⊕x)),

which should not be the case if f was a true random oracle. Thus, we need
a direct proof to argue the security of the Davies-Meyer construction. Luckily,
using such direct proofs we indeed argue that all of the fixes to the plain MD
chaining which worked when f was a fixed-length random oracle, are still secure
when f(x, y) = Ey(x)⊕x is used instead. Namely, we can either use a prefix-free
encoding, or drop a non-trivial number of output bits, or apply an independent
random oracle g to the output of plain MD chaining. With respect to this lat-
ter fix, we also show that we can implement this independent g using the ideal
cipher itself, similarly to the case with an ideal compression function f .

Formally, given a block-cipher E : {0, 1}κ × {0, 1}n → {0, 1}n, the plain
Merkle-Damg̊ard hash-function with Davies-Meyer’s compression function is de-
fined as :

Function MDE(m1, . . . , m�) :
let y0 = 0n (more generally, some fixed IV value can be used)
for i = 1 to � do yi ← Emi(yi−1)⊕ yi−1
return y� ∈ {0, 1}n.

where for all i, |mi| = κ. The block-cipher based iterative hash-functions
pf-MDE

g , chop-MDE
s , NMACE

g and HMACE are then defined as in section 3,
using MDE instead of MDf . The proof of the following theorem is given in the
full version of this paper.

Theorem 6. The block-cipher based constructions pf-MDE
g , chop-MDE

s ,
NMACE

g and HMACE are (tD, tS , q, ε)-indifferentiable from a random oracle, in
the ideal cipher model for E, for any tD and tS = �·O(q2), with ε = 2−n·�2 ·O(q2)
for pf-MDE

g , ε = 2−s · �2 · O(q2) for chop-MDE
s , ε = 2−min(n,n′) · �2 · O(q2) for

NMACE
g and ε = 2−min(κ,n) · �2 · O(q2) for HMACE. Here � is the maximum

message length queried by the distinguisher.

5 Conclusion

In this paper, we pointed the attention of the cryptographic community to the
gap between assuming an arbitrary-length random oracle H and assuming a
fixed-length ideal building block for H such as a fixed-length compression func-
tion or a block cipher. We then provided a formal definition which suffices to
eliminate this gap, noticed that the current iterative hash functions like SHA-
1 and MD5 do not satisfy our security notion, and showed several practically
motivated, easily implementable and provably secure fixes to the plain Merkle-
Damg̊ard transformation. Specifically, one can either ensure that all the inputs
appear in the prefix-free form, or drop a nontrivial number of the output bits (if
the output of the hash function is long enough to allow it), or, — when the above
methods are not applicable — apply an independent fixed-length hash function
to the output, which, as we illustrated, can be conveniently implemented using
the corresponding building block itself.
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An interesting open problem is to provide a construction in the opposite
direction, that is, a construction that securely realizes an ideal block-cipher (or
a random permutation) from a random oracle. One could use the Luby-Rackoff
construction of a pseudo-random permutation from a pseudo-random function
[21], but the major difference is that here the adversary has oracle access to the
inner functions. One can show that at least six rounds are required to securely
realize a random permutation from a random oracle (which should be contrasted
with the secret-key case where four rounds are necessary and sufficient [21]), but
we were not able to find a proof that six or more rounds would be sufficient.
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Abstract. The Full-Domain Hash (FDH) signature scheme [3] forms
one the most basic usages of random oracles. It works with a family F
of trapdoor permutations (TDP), where the signature of m is computed
as f−1(h(m)) (here f ∈R F and h is modelled as a random oracle).
It is known to be existentially unforgeable for any TDP family F [3],
although a much tighter security reduction is known for a restrictive
class of TDP’s [10,14] — namely, those induced by a family of claw-free
permutations (CFP) pairs. The latter result was shown [11] to match the
best possible “black-box” security reduction in the random oracle model,
irrespective of the TDP family F (e.g., RSA) one might use.

In this work we investigate the question if it is possible to instantiate
the random oracle h with a “real” family of hash functions H such that
the corresponding schemes can be proven secure in the standard model,
under some natural assumption on the family F . Our main result rules
out the existence of such instantiations for any assumption on F which
(1) is satisfied by a family of random permutations; and (2) does not
allow the attacker to invert f ∈R F on an a-priori unbounded number of
points. Moreover, this holds even if the choice of H can arbitrarily depend
on f . As an immediate corollary, we rule out instantiating FDH based
on general claw-free permutations, which shows that in order to prove
the security of FDH in the standard model one must utilize significantly
more structure on F than what is sufficient for the best proof of security
in the random oracle model.

1 Introduction

Full Domain Hash. Dating back to Diffie-Hellman [13], the simplest classical
suggestion for the design of digital signature schemes is to set the signature of
the message m to be σ = f−1(m), where f comes from a family of trapdoor per-
mutations (TDP) F such RSA. Unfortunately, this simple scheme is existentially
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forgeable (even under no message attack), since any σ happens to be the signa-
ture of m = f(σ). A folklore suggestion to fix this problem, which is the basis of
several existing standards such as PKCS #1 [1], is to hash the message before
inverting f : namely, to set σ = f−1(h(m)) for a carefully chosen hash function
h. This invalidates the trivial existential forgery above and seems to work well
in practice for a “crazy” enough h, such as SHA-1. This signature scheme is
commonly called Full Domain Hash (FDH), and yields one of the simplest and
most practical signature schemes known.

From a theoretical point of view, however, one can wonder if it is possible to
formally prove the security of FDH for some TDP f and hash function h?

Random Oracle Model. Partially motivated by this question, in their seminal
paper Bellare and Rogaway [3] introduced the random oracle (RO) model as a
“paradigm for designing efficient protocols”. It mathematically models h as a
truly random function, which is freely available to all the parties including the
adversary. In particular, under this idealized assumption Bellare and Rogaway
formally confirmed the intuition of practitioners that the FDH signature scheme
is existentially unforgeable in the RO model, for any TDP family F . In fact, this
was one of the first applications of the so called “random oracle methodology”.
Namely, one first formally analyzes and proves the security of a scheme like
FDH in the RO model, and then practically instantiates this abstract scheme by
replacing the ideal hash function h by some “real” implementation (such as SHA-
1, or, more abstractly, some family of “real” functions H), heuristically hoping
that no security flaws will suddenly appear in the standard model. Therefore, it
is clearly of fundamental importance to understand under which conditions one
can provably instantiate the random oracles in the standard model. In particular,
in this work we will concentrate on the FDH signature scheme, which, as we said,
is one of the most basic and important applications of random oracles. Before
addressing it in more detail, however, let us summarize what is known about
this scheme in the RO model.

FDH in RO model. As we mentioned, Bellare and Rogaway showed that FDH
is existentially unforgeable in the RO model, for any TDP family F . On the
other hand, a much tighter security reduction in the random oracle model was
subsequently found by [10,14] for a special class of TDP’s: namely, those induced
by a family of claw-free permutation (CFP) pairs1 which luckily includes all
popular families such as RSA. Moreover, Coron [11] subsequently showed that
the above tighter reduction from CFP-induced TDP’s is optimal, as long as
the reduction treats the adversary as a “black-box” and irrespective of which
particular TDP family F is used (e.g., even with RSA one cannot find a better
black-box reduction in the RO model).

Our Goal. As we see, in the RO model very weak assumptions on the function
family F are sufficient to prove the security of FDH: in fact, a single (although

1 Such families consist of pairs of functions (f, g) for which is it infeasible to find a
“claw” (x, y) satisfying f(x) = g(y). One get an induced TDP family by taking f
and “ignoring” g.
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“ideal”) hash function h simultaneously works for all such F . Unfortunately,
it is not hard to see that previously studied “realizable” properties of random
oracles, such as collision-resistance, pseudorandomness (even verifiable; see [5])
or perfect one-wayness [9] are not sufficient in general to implement the random
oracle h, even for specific function families F (i.e., one can come up with an
artificial counter-example family H which nevertheless satisfies the given prop-
erty but for which the FDH scheme is insecure with F). On the other hand,
many practitioners strongly believe that for most “real” TDP families F there
should probably exist “good enough” hash functions like SHA-1 which would
make FDH with F secure. Therefore, our main question is to examine for which
TDP families F can we provably instantiate FDH in the standard model?

Initial Attempt. Let us make this question more precise. Given a function
family F , we are trying to design a hash familyH, such that a random h sampled
from H will make FDH secure. Clearly, H should be allowed to depend on F
(since assuming otherwise seems to place unfair restrictions on the signature
designer). In fact, we also want to allow H to depend on a specific function f
sampled from F (and whatever public information is associated with such f).
For example, if F is induced by a family of claw-free permutation pairs (which,
as we know, is very beneficial in the RO model), a random member f from F
is sampled by choosing a random pair (f, g) from the CFP family, and then
“ignoring” g. In this case it seems natural that the signature designer might
want to use both f and g in designing the hash function h. For example, setting
h = g results in a signature scheme f−1(g(m)) which is provably unforgeable
under no message attack. Although the latter task can be easily achieved by
other means (e.g., making h to be a random constant), this shows a potential
utility one might get by using g in a less obvious manner.

Thus, the ambitious question would be to characterize the TDP families F
for which one can choose an efficient H (depending of f) which would make FDH
secure. Unfortunately, this seems to be an extremely difficult question given our
current state-of-the-art knowledge. In particular, even for specific families such
as RSA we do not seem to be able to say anything more meaningful than making
a tautological assumption of the form “SHA-1 makes a good RSA-based FDH
signature scheme”.

Our Approach. Instead, we will ask a slightly more general question: which
security assumptions on F are sufficient to instantiate FDH in the standard
model. For example, can we match the RO result stating that any TDP family
can be instantiated? And, if not, maybe more restricted CFP-induced families
can? Or maybe some other elegant assumption on F will be sufficient?

While a positive answer to these kind of questions would be even harder and
more remarkable than the ambitious question asked about specific families F like
RSA, the extra generality will allow us to get a meaningful negative result, which
we believe is still very important. In particular, it will allow us to further realize
the differences between the standard and the random oracle model. For example,
we will see that being induced by a family of CFP’s by itself is insufficient to
instantiate FDH, in contrast to the RO model, where nothing beyond this prop-
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erty is likely to be of any extra advantage! Additionally, looking at the current
general proofs of security of FDH in the RO model, it seems reasonable to hope
that even in the standard model some natural and relatively general assumption
on F might be sufficient for the proof to “go through” (with an appropriately
chosen H). In this regard, our approach allows us to further understand which
security assumptions on F will certainly be insufficient (by themselves) to try
instantiating FDH. In particular, if a given set of properties of F will be con-
sistent with some assumption that we formally rule out, then more properties
are needed. For example, it easily follows from our result below that one cannot
instantiate FDH even if we assume F to be one-way against any distribution of
“super-logarithmic” entropy. This is an extremely strong assumption that might
appear quite useful for FDH upon the first look: for example, a similar assump-
tion was recently utilized by Wee [28] to successfully obfuscate “equality” queries
in the standard model, which was previously known only in the random oracle
model [24]. Yet, we show that this assumption is insufficient for FDH.

Our Modeling. A bit more formally, we will study the question if there exists
a black-box reduction (see [21]) from a given security assumption on F (such as
being one-way or induced by CFP family, etc.) to the security of FDH. This
means that all the relevant parties — adversary and “challenger” for the as-
sumption (see below), potential forger for FDH, as well as the designer of the
hash family H2 — should work given oracle access to f (and possibly even f−1;
see below). While seemingly restrictive, we believe this captures the essence of
what it means to instantiate FDH given any F satisfying a given security as-
sumption. Indeed, allowing non-black-box access to F essentially maps us back
to the original “beyond-the-reach” question, where the designer of H can use
some “extra” properties of F which do not follow from the security assumption
alone. For example, we do not know how to show the insecurity of RSA-based
FDH when the designer of the scheme chooses h to be SHA-1. In fact, most
practitioners actually hope that the resulting scheme is secure!

In our modeling, a given security assumption is formalized by a “game” G
between the adversary A and the challenger C. At the start of the game, a
random f is chosen from F (possibly with some other public information), after
which A and C engage in some protocol using oracle access to f , and the end of
which C output 1 if the adversary has won and 0 otherwise. For example, in the
one-wayness game defining plain TDP’s the challenger simply asks A to invert
f(x), for a random x of its choice. Similarly, in the “claw-free” game defining
F induced by some CFP family, C simply waits for A to provide a claw (x, y),
where A can have oracle access to both f and its “twin” permutation g. Many
other assumptions can be put in this framework as well.

Given such an abstract game G, we can look at the corresponding class of
black-box permutation families F for which no polynomial time adversary can
win with non-negligible probability. To argue a separation result for a given game
G, we must essentially (see below) show that there exist a black-box family F
such that (1) F is “black-box” secure with respect to G, but (2) F cannot be

2 As we stated, it seems very restrictive not to allow such a dependency.
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instantiated for the use in FDH, for any polynomial size circuit family H (which
is allowed to depend on F , but in a “black-box” manner).

Our Main Result. Our main result is pretty general: we show than no game
G between A and C can lead to an “instantiable” security assumption on F ,
provided that a family of truly random permutations satisfies the security of G.
Intuitively, it rules out all the assumptions involving “inverting” f on more or
less arbitrary inputs (since random permutations are very hard to invert), or
finding some inputs to f whose images satisfy some non-trivial relation (e.g., x
and y such that f(x) = f(y)⊕ 1), etc. In fact, our main results extends even to
games where the challenger is allowed to invert f to the attacker, as long as this
is done for an a-priori bounded number of times.3 To state this result differently,
any assumption on F which (1) is satisfied by a family of random permutations;
and where (2) the challenger does not invert f on an a-priori unbounded number
of points, is insufficient to instantiate FDH in the standard model.

Thus, to generically instantiate FDH one must assume a property on F which
is not satisfied by random permutations, such as being “homomorphic” or “self-
reducible”.

Other Results. As special cases, we rule out such instantiations based on
plain TDP’s, as well the sub-class of TDP’s induced by CFP’s, since both of
those are easily seen to be satisfied by random permutations. In particular, this
shows that more assumptions on F are needed in the standard model than
what is sufficient for the best reduction in the RO model, giving yet another
separation between the standard the the RO model (see related work below). As
another interesting corollary, we notice that many cryptographic primitives such
as collision-resistant hash functions, trapdoor commitments and even general
signature schemes follow — in a black-box manner — from the existence of
CFP families. Our separation result therefore shows that even assuming the
existence of all these powerful primitives is not sufficient to build an “FDH-
like” signature scheme (in a black-box manner), despite the fact that general,
“non-FDH-like” signature schemes can be built! For example, there seem to be
a “price to pay” for insisting on inverting a trapdoor permutation on the hash
of the message, as opposed to applying to it any secure signature scheme on
short messages: the latter is provably secure as long as the hash is collision-
resistant (this is the famous “hash-then-sign” paradigm), while we show that
much stronger assumptions seem to be required for the former.

We remark that our main impossibility result uses the full power of the
chosen message attack, since our FDH breaker is allowed to ask more signing
queries than the description of the hash function h. If we restrict our attention
to the class of general TDP’s (as opposed to all hard games satisfied by random
permutations), we also strengthen our separation and show that there is no
black-box reduction from the security of TDP’s to the security of FDH even as
3 Essentially, for a number of times slightly smaller than the number of signing queries

the FDH forger is allowed to make. Without this restriction, one can define games
modeling tautological assumptions of the form “SHA-1 makes FDH secure for a given
F” (which are trivially instantiable by setting h equal to SHA-1).
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a one-time signature scheme, as long as the message space is super-polynomial
in the security parameter.4

Our Techniques. In both of our results we use an elegant “two-oracle” obser-
vation of Hsiao and Reyzin [21] for showing general black-box separation results.
Applied to our setting, they show that it is sufficient to design an oracle F for
F and another “breaking” oracle G, such that G does not help the attacker to
win the game G with F, but always helps the forger to break the security of
FDH (even if H can depend of F but not on G). In both of our results we use
a family of random permutations to model the oracle F for our TDP family F .
The oracles G, however, are very different.

For our general separation result we use a novel oracle G which takes a
description of the hash function h, and will forge the FDH-like signature of a
new message only if the attacker can “prove” that he has oracle access to the
FDH signing oracle. Remarkably, the oracle G is designed in such a careful way
that its addition is literally of “no use” to the attacker in any game G! So if G
was secure with random permutations, addition of G will not change this fact.
Yet, it clearly breaks any FDH instantiation H, since the forger has a “real”
access to the signing oracle, and thus can successfully utilize G.

On the other hand, the oracle G for our TDP-specific separation is very dif-
ferent and is based on to the corresponding oracle by Simon [27] used to separate
collision-resistant hash functions from one-way permutations.5 In essence, this
oracle returns collisions for any length-decreasing function h (which could de-
pend of f), but in a careful way which does not allow the attacker to invert f . On
the other hand, any collision clearly makes FDH insecure against one-message
attack, as both of the colliding messages have the same signature. The main
technical difficulty we have to resolve here is the fact that Simon’s oracle only
covers length-decreasing function families H (in fact, it is completely useless for
most length-increasing hash families). Therefore, we have to non-trivially extend
it to allow one break FDH for arbitrary function families H, and yet without
suddenly helping the adversary to invert f at a random point.

Related Work. Our work is related to several important results [7,26,20,8,2]
showing that various schemes provably secure in the random oracle model cannot
be securely instantiated in the standard model. Canetti, Goldreich and Halevi
[7,8] gave concrete (although somewhat artificial) examples of general signature
and encryption scheme with this property. Nielsen [26] considered the question
of designing so called “non-committing encryption schemes” [6] capable of en-
crypting arbitrary number of messages, and showed that one cannot build such
scheme at all in the standard model, although simple solutions in the random
oracle model exist. Goldwasser and Tauman [20] concentrated on the soundness
of the Fiat-Shamir heuristics [15], and showed a secure (although artificial) 3-
round identification scheme which does not result in a secure signature scheme
4 Otherwise, one can of course instantiate FDH by “hardwiring” an independent ran-

dom challenge ym to be the hash of m.
5 For example, such oracle cannot be extended to cover CFP-induced TDP’s, since it

is known how to build collision-resistance hash functions from CFP’s.
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in the standard model, no matter how one implements the hash family. Finally,
Bellare, Boldyreva and Palacio [2] showed a natural ElGamal-based key encap-
sulation mechanism for hybrid encryption which is secure in the random oracle
model (for any symmetric-key component), but where for every real hash family
one can come up with (artificial) symmetric-key encryption scheme making the
overall hybrid scheme insecure.

We notice that an attractive feature of all these results as compared to our
result, is that their separations are not black-box. However, our setting appears
to be significantly more constrained as well. Intuitively, in all of the above results
the syntax of the question allowed one enough freedom to adapt the scheme after
the hash function h was chosen. While such adaptation was pretty non-trivial
in each of the above works, our setting appears to be more restrictive. Namely,
we must “commit” to a “real” TDP family F (possibly satisfying even more
constraints), and then, given an arbitrary non-black-box function h depending of
f , find some point m where we can invert h(m)! Without “reverse-engineering”
such an h, the latter task seems quite hopeless to do (even using the signing
oracle since it is hard to predict on which points it will invert f). Indeed, our
black-box assumption essentially allows us to get a weak, but luckily sufficient
“handle” to determine how h actually depends on f .

From a different perspective, our work naturally relates to a rich body of
work on various black-box separations [22,27,18,23,17,16,11,14,21]. For example,
we already pointed out how our breaking oracle for the case of general TDP’s
relates to the oracle of Simon [27], and how we use the simplified framework
of Hsiao and Reyzin [21] to get our black-box separations. To the best of our
knowledge, however, our work is the first to show a black-box separation result
with respect to instantiating random oracles in the standard model, as opposed to
separating different cryptographic assumptions from each other [22,27,18,21] or
showing lower bounds on the efficiency or exact security of various “black-box”
reductions [23,17,16,11,14].

Finally, we already mentioned a complimentary recent work of Boldyreva
and Fischlin [5], who considered the question of instantiating random oracles
in various scenarios, including FDH, by popular families of “realizable” hash
functions, such as verifiable pseudorandom functions [25] (VRFs). In particular,
they showed that such VRFs cannot generically instantiate FDH, no matter
which TDP family F is used.

2 Preliminaries

Basic Definitions and Notation. For a set X we denote by x ∈R X a value
chosen uniformly at random from X . A function µ : N → [0, 1] is negligible if for
any c > 0 there is an n0 such that µ(n) ≤ 1/nc for all n ≥ n0. We write negl(·)
as a shorthand for a negligible function.

TM is a shorthand for Turing-machine. We use the standard definition of
probabilistic polynomial-time TMs (pptTM for short) and pptTMs with oracle
access (opptTM for short). We say that something can be efficiently computed
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(relative to an oracle O) if it can be computed by a pptTM (by a opptTM with
oracle access to O).

Trapdoor permutations. A trapdoor permutation family (TDP) is a pair of
efficient algorithms (KeyGen, F ). KeyGen is probabilistic and on input 1n gen-
erates a key/trapdoor pair KeyGen(1n)→ (pk, td) where F (pk, ·) implements a
permutation fpk(.) over {0, 1}n and F (td, ·) implements its inverse f−1

pk (.).

Security of TDPs. The standard security property for TDPs is one-wayness
which says that inverting is hard without the trapdoor, i.e. for any pptTM A

PrKeyGen(1n)→(pk,td),x∈R{0,1}n [A(fpk(x), pk) = x] = negl(n).

A stronger security property is claw-freeness which says that given two indepen-
dently sampled permutations it is hard to find a collision, i.e. for any pptTM A

Pri∈{1,2}:KeyGen(1n)→(pki,tdi)[A(pk1, pk2) = (x1, x2) where fpk1(x1) = fpk2(x2)]
= negl(n).

A TDP with this property is not a standard assumption, but it implies the
following popular primitive.

Claw-free pairs of trapdoor permutations. A family of claw-free pairs of
trapdoor permutations (CFP) is a triple of efficient algorithms (KeyGen, F, G)
where KeyGen is probabilistic and on input 1n generates a key/trapdoor pair
KeyGen(1n) → (pk, td) for which F (pk, ·) and G(pk, ·) implement permutations
fpk(.) and gpk(.) over {0, 1}n respectively. F (td, ·) and G(td, ·) implement the
inverses f−1

pk (.) and g−1
pk (.). The security property for CFPs requires that for any

pptTM A

PrKeyGen(1n)→(pk,td)[A(pk) = (x1, x2) where fpk(x1) = gpk(x2)] = negl(n).

Hash-function. A family of hash-functions is a pair of efficient algorithms

(Index, H). Index is probabilistic and on input 1n generates an index i ∈ In.
For each i ∈ In, H(i, .) implements a function hi : {0, 1}∗ → {0, 1}n. A family
of hash-functions is collision resistant if

PrIndex(1n)→i[A(1n, i) = (x1, x2) where x1 �= x2 and hi(x1) = hi(x2)]
= negl(n).

Full-domain hash (FDH). The FDH signature-scheme based on a trapdoor

permutation family (KeyGenF , F ) and a family of hash functions (Index, H) is
defined as a triple of functions (KeyGenFDH , sign, verify) where for security
parameter n

– KeyGenFDH(1n) first runs KeyGenF (1n) → (pk, td) and Index(1n) → i.6

It outputs the triple (pk, td, i). The public-key of the signature scheme is
(pk, i) and the secret key is (td, i).

6 One would probably choose the randomness for Index and for KeyGenF indepen-
dent here, but we make no such assumption. In particular, (pk, td) and i can be
arbitrarily correlated.
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– sign(m, td, i), the signature of a message m ∈ {0, 1}∗ is f−1
pk hi(m) (i.e. com-

puted as F (td, H(i, m))).
– verify(σ, m, pk, i), the verification function evaluates to 1 (with the meaning

that the signature is valid) iff fpk(σ) = hi(m) and to 0 otherwise.

Security of FDH. A FDH signature scheme as above is secure against an
existential forgery in a chosen message attack if for any opptTM A

PrKeyGenF DH(1n)→(pk,td,i)[Asign(.,td,i)(pk, i)→ (m, σ) where
verify(σ, m, pk, i) = 1 and A did not make the oracle query m] = negl(n). (1)

This means that A cannot come up with a valid signature/message pair for a
message that he had not already signed by the signing oracle.

Game. A game is defined by two opptTMs, a prover A and a challenger C, which
have a common communication tape over which they can exchange messages.
The challenger finally output a decision bit. We say that A wins the game if this
bit is 1 and denote this event by 〈A, C〉 → 1.

Hard Game. An opptTM C as above defines a hard game if no opptTM A
can win the game when the oracle is instantiated with t (where t = t(n) is
implicitly defined by C and can be polynomial in n) uniform random per-
mutations π1, . . . , πt over {0, 1}n. I.e. C defines a hard game if for all
opptTM A

Pr[〈Aπ1(.),...,πt(.)(1n), Cπ1(.),...,πt(.)(1n)〉 → 1] = negl(n). (2)

A TDP (KeyGen, F ) is secure for the hard game C if (2) is satisfied even
if the random permutations are replaced with this TDP, i.e. for all pptTM
A

Pr∀i=1...t:KeyGen(n)→(pki,tdi)[〈A(pk1, . . . , pkt), CF (pk1,·),...,F (pkt,·)(1n)〉 → 1]
= negl(n).

Hard games capture many natural security properties, in particular

– one-wayness: Cf(.)(1n) samples x ∈ {0, 1}n uniformly at random and sends
f(x) to A. It outputs 1 iff it receives as the next message x.

– claw-freeness: Cf1(.),f2(.)(1n) just expects x1, x2 ∈ {0, 1}n and outputs 1 iff
f1(x1) = f2(x2).

In the next section we will show that a TDP which is secure for all hard games
cannot be black-box reduces the security of FDH. There does not exist a TDP
which is secure for all hard games in the standard model,7 but we show an im-
possibility result, and showing impossibility from such a hypothetic TDP implies
7 Consider for example a game where C expects as input a circuit and then checks

if the circuit computes the same value as its oracle on a few (n is enough) random
inputs and outputs 1 only if this is the case. In the standard model A can always
win this game by sending a circuit which computes C’s oracle F (pk, .). But this is
a hard game as if the oracle is a random permutation, it will with high probability
disagree with every polynomial size circuit on most inputs, and C will reject almost
certainly.
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impossibility for any assumption it implies. Then in section 4 we will extend the
notion of hard games and give the challenger also access to inversion oracles
π−1

i (.) which he may query at most polynomially many times (for some arbi-
trary but a priori fixed polynomial). With such games we can cover additional
natural assumptions for TDPs, which will therefore be also insufficient to get a
reduction to an FDH signature scheme.

3 No Reduction from Any Hard Game

Theorem 1. There is no black-box reduction from a trapdoor permutations
family which is secure for all hard games to a FDH signature scheme secure
against chosen-message attacks.

More precisely, given a TDP (KeyGen, F ) which is secure for all hard games
and any hash function family (Index, H), the security of the signature scheme
sign(m) = f−1

pk h(m) (where KeyGen(1n)→ (pk, sk) and Index(1n)→ i) cannot
be black-box reduced from the security of the TDP. Here the hash function
can use the TDP as a black-box and the randomness used for KeyGen and
Index can be arbitrarily correlated. Moreover, if we let s(n) = max{|hi| : i ∈
Range(Index(1n))} denote an upper bound on the size of a description of the
hash function used, then the theorem even holds if we restrict the number of
chosen message queries to s(n) and the size of the message-space of the signature
scheme to s(n) + 1.

As corollaries we get that any assumption on TDPs which can be formulated
as a hard game will not be enough to get a reduction to FDH, e.g.

Corollary 1. There is no black-box reduction from claw-free pairs of trapdoor
permutations to a FDH signature scheme secure against chosen-message attacks.

Proof (of Theorem 1). Following [21] (Lemma 1), as to rule out black-box re-
ductions, it is enough to prove that there are two oracles F and G such that the
following holds:

1. There is an opptTM D such that DF implements8 TDP.
2. There is an opptTM A such that AF,G finds a forgery for any signature scheme

of the form sign(m) = f−1(hF(m)) in a chosen message attack, where f is
the TDP implemented by DF and h is any oracle circuit.

3. There is no opptTM B where BF,G breaks the security of TDP implemented
by DF. This means that BF,G cannot win any hard game C instantiated with
this TDP with non-negligible probability.

Points 2 and 3 will follow from Lemmas 1 and 2 below. The first point is satisfied
by the definition of the oracle F we will give, which implements TDP. This F alone
is trivially a secure implementation of TDP. We then define a breaking oracle G

8 Here implement has a purely functional meaning and does not imply any security
assumptions.
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for which we will show that it can be used to break any FDH scheme based on the
TDP implemented by F but not the security of the TDP itself. The oracle G will
simply provide a forgery (for the message m = 0) to any signature scheme of the
form sign(m) = f−1(hF(m)) (where f ∈ F and h is any oracle circuit), but only if
it can be sure that the requesting party can compute those signatures herself (e.g.
because she has access to the signing oracle sign(m) = f−1(hF(m)) or knows the
trapdoor for f). For this our G expects as input the values f−1(hF(m)) for m =
1 . . . �, where � = |h|. This choice of � should make it impossible for an adversary
to hardwire the outputs of h on all the inputs requested to values where she can
invert f . However, there would still be at least two ways in which an adversary
could abuse the oracle G to break the security of TDP implemented by F.

1. She could define an h such that the output of hF collides on (some of) the
requested inputs. Say hF(i) = y for all 1 ≤ i ≤ � (where she knows f−1(y))
and hF(0) = z (where z could be a challenge in the one-wayness game). As
she can provide the requested signatures f−1(hF(i)) to G, G will output a
forgery w = f−1(hF(0)) = f−1(z) and she wins the game! To avoid this our
G will check if there is such a collision before providing the forgery. This will
not affect the usability of G to provide forgeries, as having a collision for hF

one can compute a forgery without the help of G anyway.
2. She could use f in the definition of hF in a clever way, for example by choosing

an h where hF(m) = f(m) for m �= 0 (then f−1(hF(m)) = m) and h(0) = z
(where z could be a challenge in the one-wayness game). Our G will prevent
this by checking whether in the computation of hF on any of the requested
inputs, the oracle for f is queried on an input x where f(x) = hF(i) for
i, 1 ≤ i ≤ �. Again, if this check fails we have a forgery as x = f−1(hF(i)).

We will show that the two above checks are not only necessary, but already
sufficient to guarantee that G cannot be used to break the security of TDP
implemented by F.

Definition of F (TDP secure for every hard game). The definition of the oracle F
is straight forward. For any n ∈ N choose 2n + 1 permutations f0,n, . . . , f2n−1,n

and tn at random. Now F is defined as9

– F(td2pk, n, td)→ tn(td)
– F(eval, n, pk, x)→ fpk,n(x)
– F(invert, n, td, y)→ f−1

pk,n(y)

9 With this F a TDP (KeyGen, F ) can be implemented as follows. KeyGen(1n) first
samples a random trapdoor td ∈R {0, 1}n, then computes the corresponding public-
key F(td2pk, n, td) → pk and outputs (pk, td). F (pk, .) and F (td, .) are computed
by F(eval, n, pk, .) and F(invert, n, td, .) respectively. Informally the reason that this
TDP is secure for every hard game follows from the fact that a permutation, cho-
sen at random from a set of 2n randomly chosen permutations, is computationally
indistinguishable from a truly random permutation. But if there was a hard game
that this TDP could win, we could turn it into a distinguisher.
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Definition of G (Breaking Oracle). The oracle G takes as input (n ∈ N, k ∈
{0, 1}n, h ∈ {0, 1}∗, V ) where h is (the description of) an oracle circuit.10 This
can be seen as a request for an existential forgery for the signature scheme
sign(m) = f−1

pk,n(hF(m)). The vector V = [v1, . . . , v|h|] is a “proof” that the
requesting party can compute those signatures herself. We say that G accepts
the input if the input has the correct form (as above) and

1. f−1
pk,n(hF(i)) = vi for all i = 1, . . . , |h|.

2. vi �= vj for all 1 ≤ i < j ≤ |h|.
3. {hF(1), . . . , hF(|h|)} ∩ Y h

F = ∅ where Y h
F is defined as

Y h
F = {fpk,n(x)| ∃i, 1 ≤ i ≤ |h|, hF(i) makes the query F(eval, n, pk, x)} (3)

If G accepts the input it outputs a forgery f−1
pk,n(hF(0)) and ⊥ otherwise.

G Breaks any FDH Signature Scheme. Now we will show that G breaks any FDH
signature scheme based on F.

Lemma 1. There is an opptTM A which outputs a forgery for any signature
scheme sign(m) = f−1

pk,n(hF(m)) with probability 1, i.e.

Pr[AF,G,sign(.)(n, pk, h)→ (m, s) where s = f−1
pk,n(hF(m))

and sign(.) was not queried on input m ] = 1

Proof (of Lemma). A must only check if h satisfies conditions 2 and 3. If one of
them is not satisfied, this directly gives a forgery, otherwise A can use G to get
a forgery. More formally A does the following:

– Compute hF(1), . . . , hF(|h|), doing this also compute Y h
F as in (3).

• If any of the hF(1), . . . , hF(|h|) collide we have a forgery: If say hF(i) =
hF(j), then query sign(i) and output the forgery (j, sign(i)).

• If {hF(1), . . . , hF(|h|)}∩Y h
F �= ∅, then we have found an x and an i satisfy-

ing fpk,n(x) = hF(i) and thus have a forgery as sign(i) = f−1
pk,n(hF(i)) =

x.
– If none of the above is the case, then call the oracle sign on inputs 1, . . . , |h|

and let V = [sign(1), . . . , sign(|h|)]. Now query G on input (n, pk, h, V ) to
get a forgery for the message m = 0. ♦

G does not break the security of F. In this section we will prove that F is a secure
implementation of a family of claw-free trapdoor permutations, even when given
access to G, i.e.

10 Usually the hash function h is given as a TM and not as a circuit, but a TM can
be simulated by a circuit whose size is only polynomial in the running time of the
TM. In particular for every efficient h there is an m ∈ N and a circuit hc such
that ∀i ∈ {0, 1}m : hc(i) = h(i) and |hc| < 2m, moreover such hc can be efficiently
computed and is sufficient here.
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Lemma 2. With probability 1 (over the choice of F) for any opptTM B and any
hard game C (with t = t(n) implicitly defined by C)

Pr∀i=1...t:KeyGen(n)→(pki,tdi)[(B
F,G(pk1, . . . , pkt), Cfpk1,n,...,fpkt,n(1n)) → 1]
= negl(n). (4)

Proof (Proof Sketch of Lemma). If the oracle G was not there, then (4) would
follow from the fact that for a random pk, fpk,n is computationally indistinguish-
able from a random permutation and that the randomly chosen permutation tn
is one-way (thus one cannot get the trapdoor t−1

n (pk)).
Now we must argue that the presence of the oracle G will not help to win

any hard game. This is not so obvious, after all G provides forgeries f−1
pk,n(hF(0))

for an h of our choice. But to learn such a forgery we must find an accepting
input (see the definition of G) for G. From Lemma 3 below it now follows that
B cannot find such an accepting input for a random pk and thus will not learn
anything about the fpki,n’s that he could not compute on its own.11 ♦

Lemma 3. Let f be a random permutation on {0, 1}n and c ≥ 1 be a con-
stant. For any oracle TM A which makes at most nc oracle calls, we have (the
probability is over the random permutation f)

Pr[Af → (h, x1, . . . , x|h|)] = negl(n)

where h, |h| ≤ nc is an oracle circuit and the output satisfies the conditions

1. f−1(hf (i)) = xi for all i = 1, . . . , |h|.
2. xi �= xj for all 1 ≤ i < j ≤ |h|.
3. {hf(1), . . . , hf (|h|)} ∩ Y h

f = ∅ where Y h
f is defined as

Y h
f = {f(x)| ∃i, 1 ≤ i ≤ |h|, hf (i) makes the oracle query x}

Proof (of Lemma). Consider any oracle TM A where Af makes nc oracle queries.
After having used up all his oracle queries Af must come up with an output
(h, x1, . . . , x|h|) where h satisfies conditions 2 and 3. Below we prove that with
overwhelming probability there does not even exist an h which satisfies con-
ditions 2 and 3 and where Af has made all the queries x1, . . . , x|h| satisfying
condition 1. But in this case, even when choosing an h which satisfies condi-
tions 2 and 3, Af would still have to guess at least one xi (i.e. f−1(hf (i))). The
11 To make the proof and the statement of Lemma 3 simple (i.e. purely information

theoretic), we will consider a computationally unbounded TM with oracle access to a
truly random permutation which it can access a polynomial number of times, whereas
Lemma 2 is about a opptTM and permutations chosen randomly from some family
of exponential size. But as already mentioned, considering a random permutation
is fine as a opptTM cannot distinguish a random permutation from fpk,n where
pk ∈R {0, 1}n anyway. And considering any computationally unbounded oracle TM
(instead of only opptTMs) makes the lemma only stronger.
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probability that it will guess correctly (i.e. this xi will satisfy condition 1) is
negligible.12 We must now prove the above statement, i.e. that an h satisfying
conditions 2 and 3 and where Af made all the queries x1, . . . , x|h| satisfying
condition 1 exists only with negligible probability. Let XA

f , |XA
f | = nc denote all

oracle queries made by Af , i.e.

XA
f := {x|Af makes the oracle query x}.

Now consider any fixed oracle circuit h, |h| ≤ nc which satisfies the conditions 2
and 3. Let Xh

f = {f−1(y)|y ∈ Y h
f }, i.e.

Xh
f := {x| ∃i, 1 ≤ i ≤ |h|, hf (i) makes the oracle query x}

and let
H := {f−1(hf (1)), . . . , f−1(hf (|h|))}.

Condition 3 states that f(H) ∩ f(Xh
f ) = ∅, and as f is a permutation this is

equivalent to
H ∩Xh

f = ∅.

Given Xh
f and conditioned on hf satisfying condition 3, the set H is a ran-

dom subset of {0, 1}n \ Xh
f . If condition 2 is satisfied then |H | = |h| moreover

|Xh
f | ≤ |h|2 ≤ n2c. Now the probability that H ⊆ XA

f can be upper bounded
as (here the probability is over the random permutation f and for a fixed h
conditioned on hf satisfying conditions 2 and 3)

Pr[H ⊆ XA
f ] =

|H|−1∏
i=0

|XA
f | − |XA

f ∩Xh
f | − i

2n − i− |Xh
f |

≤
(

|XA
f |

2n − nc − |Xh
f |

)|H|

=
(

nc

2n − 2n2c

)|h|
.

By taking the union bound over all oracle circuits h, |h| ≤ nc we can now upper
bound the probability that there exists an h satisfying conditions 2 and 3 and
where Af knows all xi satisfying condition 1 as

nc∑
|h|=1

2|h|
(

nc

2n − 2n2c

)|h|
≤
(

2nc

2n − 2n2c

)
= negl(n)

where in the first step we assumed that the sum takes it maximum for |h| = 1
which holds for all sufficiently large n. ♦ �
12 It can easily be upper bounded by 1/(2n − nc − n2c): given the nc oracle queries

(not containing the query xi) made by Af and additionally the ≤ n2c oracle queries
made by hf on inputs 1, . . . , |h| (which will not contain the query xi because of
condition 3), xi is a random variable with the uniform distribution over a set of size
≥ 2n − nc − n2c.
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4 Hard Games with Inversions

In the last section we have seen that a TDP which is secure for all hard games
(and thus has the one-wayness and claw-freeness security property) cannot be
black-box reduced to a FDH signature scheme. In this section we will see that
even a stronger notion of hard games does not allow for such a reduction. We
extend the definition of a hard-game and allow (a limited number of) inversion
queries.13 To motivate this let us define one more security property for TDPs
which can be modelled as such a game.

– A TDP has the one-way with q(.)-inversions security property if it is one-
way, even with an oracle for f−1

pk that can be used at most q(n) times on any
input except the challenge fpk(x), i.e.14

PrKeyGen(1n)→(pk,td),x∈R{0,1}n [Af−1
pk (.)(fpk(x), pk) = x] = negl(n).

Hard game with q(.) inversions. An opptTM C defines a hard game with
q(.) inversions if for a random permutation π and all opptTM A

Pr[〈Aπ(.)(1n), Cπ(.),π−1(.)(1n)〉 → 1] = negl(n) (5)

where C may query the π−1(.) oracle at most q(n) times. A TDP (KeyGen, F )
is secure for a hard game C with q(.) inversions if

PrKeyGen(n)→(pk,td)[〈A(pk), CF (pk,.),F (td,.)(1n)〉 → 1] = negl(n).

The one-way with q(.) inversions property is captured by such a game as follows:

– Cf(.),f−1(.)(1n) samples x ∈R {0, 1}n and sends f(x) to A. Now C answers
at most q(n) queries z ∈ {0, 1}n where z �= f(x) with f−1(z). C accepts and
outputs 1 if it receives x as the (q(n) + 1)’th message.

Lemma 2 is easily seen not to extend to hard games with q(.) inversions already
for q(n) = O(n).15 But if in the definition of the breaking oracle G we increase the
number of requested signatures from |h| to |h|+ q(n), then it is again impossible
to find an accepting input for G and Lemma 2 can be shown to hold even for
hard games with q(.) inversions (using a similar strengthening of Lemma 3).
13 For clarity of exposition we will consider the case where C expects only one permu-

tation oracle, i.e. t = 1.
14 This property directly implies some others like security for the known-target inver-

sion problem introduced in [4]. Here one gets q(n) + 1 random challenges to invert
and may use an inversion oracle on arbitrary inputs q(n) times, i.e. once less than
the number of challenges.

15 For example A could win the one-way with cn inversions game (for some constant
c) as follows. On challenge y = fpk(x) let h(x) = x ⊕ y (the c must satisfy |h| ≤ cn).
Now use the cn inversion queries to C to find an accepting input for the breaking
oracle G, which will then provide the forgery s = f−1

pk (h(0) = y). Send s = x to C
and win the game.
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Theorem 2. For any polynomially bounded function q(.), there is no black-
box reduction from a TDP family which is secure for all hard games with q(.)
inversions to a FDH signature scheme secure against chosen-message attacks.16

As corollaries we get that any assumption on TDPs which can be formulated as
such a game will not be enough to get a reduction to FDH, e.g.

Corollary 2. For any polynomially bounded function q(.), there is no black-
box reduction from a TDP satisfying the one-way with q(.) inversions security
property to a FDH signature scheme secure against chosen-message attacks.

Finally, let us remark that in Theorem 2 it is necessary to have q(.) bounded
by some fixed polynomial. As if one allows a superpolynomial q(n) ∈ nω(1) then
a TDP which is secure for all hard games with q(.) inversions can be black-
box reduced to a secure FDH signature scheme (note that this has a priori no
practical consequences as such TDPs do not exist in the standard model). The
main observation here is that the “existential forgery in a chosen message attack”
(1) can be seen as a game where the challenger plays the role of the signing oracle
sign(m, td, i)→ f−1

pk (hi(m)) and finally accepts if it receives a forgery from the
prover A. We have not yet defined which FDH signature scheme to use in the
above game. This scheme can not be arbitrary as we must make sure that this
game is actually a hard game (i.e. no efficient A can win it when the oracles
are instantiated with random permutations), but it is not difficult to construct
a secure FDH scheme from random permutations π1, π2, . . . with only the signer
having access to inversion oracles. For example, for a message space restricted
to {0, 1}n, sign(m) = π−1

1 (π2(m)) will already do it.

5 No Reduction from Trapdoor Permutations

We conclude the paper by observing that “the plain TDP assumption” implies
an extreme black-box security limitation for FDH: not even security against a
one-chosen-message attack can be achieved.17

Theorem 3. There is no black-box reduction from trapdoor permutation fami-
lies to a full-domain hash scheme secure against one-chosen-message attacks.

For space reasons, we leave the proof of this theorem to a full version of the
paper, here only discussing the key choice in the proof: that of the oracle G that
breaks FDH but not TDP (cf. the proof of Theorem 1; F is the same as before).

G is partly based on the collision-finding oracle of Simon [27]. However, his
“collision-finding” oracle only works for length-decreasing hash functions. To deal

16 Moreover, if we let s(n) = max{|hi| : i ∈ Range(Index(1n))} denote an upper bound
on the size of a description of the hash function used, then the theorem even holds
if we restrict the number of chosen message queries to s(n) + q(n) and the size of
the message-space of the signature scheme to s(n) + q(n) + 1.

17 A one-chosen-message attack is precisely an attack where at most one query to the
signing oracle is allowed.



On the Generic Insecurity of the Full Domain Hash 465

with arbitrary (potentially length-increasing) hash functions, we extend Simon’s
oracle to forge the FDH signature of a special input when no “good collision”
to h was found: But we have to make sure that the inversion of fpk,n resulting
from this forgery will not allow the attacker to invert fpk,n on its own challenge.

More specifically, G takes inputs of the form (1L, 1t, 〈h〉, pk), where 〈h〉 is
the description of a deterministic oracle TM. Such a query can be seen as a
request for a forgery to signature scheme sign(m) = f−1

pk,n(h(m)), here n = |pk|.
G first checks if the running time of hF0(x) is > �t/2� for some x ∈ {0, 1}L

and all potential choices F = F0 for the oracle F; if so, it outputs ⊥ and stops.
Otherwise, u ∈R {0, 1}L is chosen and w ≡ hF(u) is computed; then v ∈R {0, 1}L

is sampled conditioned on hF(v) = w. If u = v, |w| = n and L ≥ µ(n), where
µ(n) = log2(n), F outputs (u, v, y, f−1

pk,n(w), s, inversion), where s describes the
computations hF(u) and hF(v) (including all F-queries). Else, the output of G is
(u, v, w, s, collision), with s as above.

It is easy to see that with this oracle G one can forge sign(m) = f−1
pk,n(h(m))

for any efficient h: Just query G(1L, 1t, 〈h〉, pk) (for appropriate L, t) to obtain
u and v with h(u) = h(v). If u �= v, we can forge a signature for v by asking the
signing oracle to sign u, which will also give a signature of v. If u = v, then G
also outputs f−1

pk,n(h(u)), which is a direct forgery (with no queries to its signing
oracle).

More subtleties arise when showing that G does not help the adversary to
invert F. In particular, they motivate the need for t and the “µ-test” in G. The
former avoids that an adversary A = AF,G receives the result of more oracle
queries than she would have time to compute. As for the µ-test, it avoids that
the TDP is inverted on specific inputs, for it makes negligible the probability
that A could use G to invert some specific y of interest (e.g., the challenge in
the one-wayness game). Indeed, for this to happen (1) a random u should map
to y; and (2) a random preimage v of y (v ∈ h−1(y)) should be u again. Now, it
is easy to see that the probability of this happening is negligible indeed:

Pr[u ∈ h−1(y)]Pr[v = u | v ∈ h−1(y)] =
|h−1(y)|

2L

1
|h−1(y)| = 2−L ≤ 2−µ(n).

(6)
This simple fact turns out to be ultimately responsible for G not breaking the
TDP property. More details will be given in the full version.
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10. Jean-Sébastian Coron. On the Exact Security of Full Domain Hash. CRYPTO 00,
pp. 229–235.

11. Jean-Sébastian Coron. Optimal Security Proofs for PSS and other Signature
Schemes. EUROCRYPT 02, pp. 272–287.

12. Ivan Damg̊ard. Collision-Free Hash Functions and Public-Key Signature Schemes.
EUROCRYPT 87, pp. 203-216.

13. Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE Trans-
actions on Information Theory 22 (1976), pp. 644–654.

14. Yevgeniy Dodis and Leonid Reyzin. On the Power of Claw-Free Permutations.
SCN 02, pp. 55–73.

15. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identifi-
cation and signature problems. CRYPTO 86, pp. 186–194.

16. Rosario Gennaro, Yael Gertner and Jonathan Katz. Lower Bounds on the Efficiency
of Encryption and Digital Signature Schemes. STOC 03, pp. 417–425.

17. Rosario Gennaro and Luca Trevisan. Lower Bounds on the Efficiency of Generic
Cryptographic Constructions. FOCS 00, pp. 305–313.

18. Yael Gertner, Tal Malkin, and Omer Reingold. On the Impossibility of Basing
Trapdoor Functions on Trapdoor Predicates. FOCS 01, pp. 126–135.

19. Yael Gertner, Sampath Kannan, Tal Malkin, Omer Reingold and Mahesh
Viswanathan. The Relationship Between Public-Key Encryption and Oblivious
Transfer. FOCS 00, pp. 325–335.

20. Shafi Goldwasser and Yael Tauman. On the (In)security of the Fiat-Shamir
Paradigm. FOCS 03, pp. 102–114.

21. Chun-Yuan Hsiao and Leonid Reyzin. Finding Collisions on a Public Road, or do
Secure Hash Functions Need Secret Coins? CRYPTO 04, pp. 92–105.

22. Russell Impagliazzo and Steven Rudich. Limits on the Provable Consequences of
One-Way Permutations. STOC 89, pp. 44–61.

23. Jeong Han Kim, Daniel R. Simon and Prasad Tetali. Limits on the Efficiency of
One-Way Permutation-Based Hash Functions. FOCS 99, pp. 535–542.

24. Ben Lynn, Manoj Prabhakaran and Amit Sahai. Positive Results and Techniques
for Obfuscation. EUROCRYPT 04, pp. 20–39.

25. Silvio Micali, Michael Rabin and Salil Vadhan. Verifiable Random Functions.
FOCS 99, pp. 120–130.

26. Jesper Buus Nielsen. Separating Random Oracle Proofs from Complexity Theoretic
Proofs: The Non-Committing Encryption Case. CRYPTO 02, pp. 111–126.

27. Daniel Simon. Finding Collisions on a One-Way Street: Can Secure Hash Functions
be Based on General Assumptions? EUROCRYPT 98, pp. 334–345.

28. Hoeteck Wee. On Obfuscating Point Functions. STOC 05, pp. 523–532.



New Monotones and Lower Bounds in

Unconditional Two-Party Computation

Stefan Wolf and Jürg Wullschleger
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Abstract. Since bit and string oblivious transfer and commitment, two
primitives of paramount importance in secure two- and multi-party com-
putation, cannot be realized in an unconditionally secure way for both
parties from scratch, reductions to weak information-theoretic primi-
tives as well as between different variants of the functionalities are of
great interest. In this context, we introduce three independent mono-
tones—quantities that cannot be increased by any protocol—and use
them to derive lower bounds on the possibility and efficiency of such
reductions. An example is the transition between different versions of
oblivious transfer, for which we also propose a new protocol allowing to
increase the number of messages the receiver can choose from at the price
of a reduction of their length. Our scheme matches the new lower bound
and is, therefore, optimal.

1 Introduction, Motivation, and Main Results

The advantage of unconditional or information-theoretic security—as compared
to computational security—is that it does not depend on any assumption on
an adversary’s computing power or memory space, nor on the hardness of any
computational problem. Its disadvantage, on the other hand, is that it cannot
be realized simply from scratch. This is why reductions are of great interest
and importance in this context: Which functionality can be realized from which
other? If a reduction is possible in principle, what is the best efficiency, i.e., the
minimum number of instances of the initial primitive required per realization of
the target functionality?

Two tasks of particular importance in secure two-party computation are
oblivious transfer and bit commitment. Both primitives are known to be impos-
sible to realize from scratch in an unconditionally secure way for both parties
by any (classical or even quantum) protocol. On the other hand, they can be
realized from noisy channels [6], [7], weak versions of oblivious transfer [3], cor-
related pieces of information [18], or the assumption that one of the parties’
memory space is limited.

For the same reason, reductions between different variants of oblivious trans-
fer are of interest as well: chosen 1-out-of-2 oblivious transfer from Rabin oblivi-
ous transfer [5], string oblivious transfer from bit oblivious transfer [3], 1-out-of-n

V. Shoup (Ed.): Crypto 2005, LNCS 3621, pp. 467–477, 2005.
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oblivious transfer from 1-out-of-2 oblivious transfer, oblivious transfer from A
to B from oblivious transfer from B to A [8], [19], and so forth. A number
of lower bounds in the context of such reductions have been given, based on
information-theoretic arguments [9], [13].

With respect to information-theoretic reductions between cryptographic and
information-theoretic functionalities, quantities which never increase during the
execution of a protocol—so-called monotones [4]—are of great importance. In key
agreement, for instance, two parties A and B can start with correlated pieces
of information X and Y , respectively, and try to generate a secret key S by
public communication such that an adversary E, who initially knows a third
random variable Z, is virtually ignorant about S. It has been shown in [16] that
the intrinsic information [14] of A’s and B’s entire knowledge, given E’s, is a
monotone, i.e., cannot increase. This immediately leads to the following bound
on the size of the generated key: H(S) ≤ I(X ; Y↓Z).

The main results of our paper are the following.

Three monotones of unconditional two-party computation.
In Section 3, we define three information-theoretic quantities (the underlying
notions are introduced in Section 2) and prove them to be monotones: No
protocol allows for increasing them.

Lower bounds for oblivious-transfer reductions.
In Section 4.1, we derive a new lower bound on the efficiency of reductions
from one variant of oblivious transfer to another, and of realizing oblivious
transfer from shared correlated pieces of information.

Optimally trading message length for choice in oblivious transfer.
In Section 4.2, we present a new protocol allowing for increasing the number
of messages from which the receiver can choose at the price of a reduction
of their length. Our lower bound shows that the protocol is optimal.

New error bounds for bit commitment.
In Section 5, we show new lower bounds on the probability of failure of any
protocol for bit commitment based on correlated pieces of information.

2 Preliminaries: Common and Dependent Parts

As a preparation, we introduce two notions, namely the common part X∧Y and
the dependent parts X ↘ Y and Y ↘ X of two random variables X and Y . In the
context of cryptography, the notions have first been used in [10], [12], [18]. Both
notions have appeared previously in other information-theoretic contexts [11],
the latter under the name of sufficient statistics.

2.1 Common Part

Let X and Y be two random variables with joint distribution PXY . Intuitively,
the common part X∧Y is the maximal element of the set of all random variables
that can be generated both from X and from Y .
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Definition 1. [18] Let X and Y be random variables with (disjoint) ranges X
and Y and distributed according to PXY . Then X ∧ Y , the common part of X
and Y , is constructed in the following way:

– Consider the bipartite graph G with vertex set X ∪Y, and where two vertices
x ∈ X and y ∈ Y are connected by an edge if PXY (x, y) > 0 holds.

– Let fX : X → 2X∪Y be the function that maps a vertex v ∈ X of G to the
set of vertices in the connected component of G containing v. Let fY : Y →
2X∪Y be the function that does the same for a vertex w ∈ Y of G.

– X ∧ Y := fX(X) = fY (Y ).

Note that X ∧Y is symmetric—i.e., X ∧Y ≡ Y ∧X 1. There exist functions
fX and fY with X ∧Y = fX(X) = fY (Y ). Hence, X ∧Y can be calculated both
from X and from Y .

Lemma 1. [18] For all X, Y , and C for which there exist functions fX and
fY such that C = fX(X) = fY (Y ) holds, there exists a function g with C =
g(X ∧ Y ).

2.2 Dependent Part

Intuitively, the dependent part of X from Y , denoted X ↘ Y , is the minimal
element of the set of all random variables K that can be generated from X and
are such that X ←→ K ←→ Y is a Markov chain.

Definition 2. [10] Let X and Y be two random variables, and let f(x) =
PY |X=x. The dependent part of X from Y is defined as X ↘ Y := f(X).

Lemma 2 shows that all of X that is dependent on Y is included in X ↘ Y ,
i.e., more formally, I(X ; Y |X ↘ Y ) = 0 holds or, equivalently, X , X ↘ Y , and
Y form a Markov chain.

Lemma 2. [10] For all X and Y , X ←→ (X ↘ Y ) ←→ Y is a Markov chain.

On the other hand, there does not exist a random variable with the same prop-
erties that is “smaller” than X ↘ Y .

Lemma 3. [18] Let X, Y , and K be random variables such that there exists a
function f such that K = f(X) and X ←→ K ←→ Y hold. Then there exists a
function g with X ↘ Y = g(K).

1 We say that two random variables A and B are equivalent, denoted by A ≡ B,
if there exists a bijective function g : A → B such that B = g(A) holds with
probability 1.
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3 Three Two-Party-Protocol Monotones

In this section we show that the following three quantities are monotones, i.e.,
cannot increase during the execution of any protocol based on (noiseless) com-
munication and (lossless) processing (where X ′ and Y ′ are the random variables
summarizing the entire information accessible to A and B, respectively):

H(Y ′ ↘ X ′|X ′) ,

H(X ′ ↘ Y ′|Y ′) ,

I(X ′; Y ′|X ′ ∧ Y ′) .

We first show that local randomness generation and data processing, and
second, that noiseless bi-directional communication do not allow for increasing
any of these quantities.

3.1 Invariance Under Randomness Generation and Data Processing

Lemma 4. Let X, Y , and Z be random variables such that X ←→ Y ←→ Z is
a Markov chain. Then we have

X ↘ [Y, Z] ≡ X ↘ Y .

Proof. We have PY Z|X=x = PY |X=xPZ|Y . Therefore, for all x, x′ ∈ X , the func-
tion PY Z|X=x is different from PY Z|X=x′ if and only if PY |X=x is different from
PY |X=x′ . �

Lemma 5. Let W , X, and Y be random variables such that W ←→ X ←→ Y
is a Markov chain. Then we have

[W, X ]↘ Y ≡ X ↘ Y .

Proof. We have PY |W=w,X=x = PY |X=x. Therefore, for all w, w′ ∈ W and
x, x′ ∈ X , the function PY |W=w,X=x is different from PY |W=w′,X=x′ if and only
if PY |X=x is different from PY |X=x′ . �

Lemma 6. Let X, Y , and Z be random variables such that X ←→ Y ←→ Z is
a Markov chain. Then we have

X ∧ [Y, Z] ≡ X ∧ Y .

Proof. We have PXY Z = PXY PZ|Y . Let us look at the connection graph between
all the values x and (y, z) for which PX(x) > 0 and PY Z(y, z) > 0 hold. Then x
and (y, z) are connected if and only if PXY Z(x, y, z) > 0 holds. Since PZ|Y (z, y) >
0, this holds if and only if PXY (x, y) > 0 holds. Hence, X ∧ [Y, Z] ≡ X ∧ Y . �

Theorem 1 shows that local data processing does not increase any of the quan-
tities in question. It is a direct consequence of Lemmas 4, 5, and 6.
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Theorem 1. Let X, Y , and Z be random variables with X ←→ Y ←→ Z. Then
we have

H([Y, Z]↘ X |X) = H(Y ↘ X |X) ,

H(X ↘ [Y, Z]|[Y, Z]) = H(X ↘ Y |Y ) ,

I(X ; [Y, Z]|X ∧ [Y, Z]) = I(X ; Y |X ∧ Y ) .

3.2 No Increase by Communication

We now show that the same holds with respect to noise-free communication
between A and B. We first prove three lemmas.

Lemma 7. Let X and Y be random variables and f a function. Then

X ↘ [Y, f(X)] ≡ [X ↘ Y, f(X)] .

Proof. Let h1(X) := X ↘ [Y, f(X)] and h2(X) := [X ↘ Y, f(X)], and let F =
f(X). We have PY F |X = PY |XPF |X . For all x, x′ with h1(x) = h1(x′), we have
PY F |X=x = PY F |X=x′ , which holds exactly if PY |X=x = PY |X=x′ and f(x) =
f(x′) hold, which is equivalent to h2(x) = h2(x′). Hence, X ↘ [Y, f(X)] ≡ [X ↘
Y, f(X)]. �

Lemma 8. Let X and Y be random variables and f a function. Then there
exists a function g such that

[Y, f(X)]↘ X = g([Y ↘ X, f(X)]) .

Proof. Let h1(X, Y ) := [Y, f(X)] ↘ X and h2(X, Y ) := [Y ↘ X, f(X)]. For all
x, x′, y, and y′ with h2(x, y) = h2(x′, y′), we have PX|Y =y = PX|Y =y′ and f(x) =
f(x′). It follows PX|Y =y,f(X)=f(x) = PX|Y =y′,f(X)=f(x), and, hence, h1(x, y) =
h1(x′, y′). Therefore, there must exist a function g with h1 = g ◦ h2. �

Lemma 9. Let X, Y , and Z be random variables. There exists a function f
such that

X ∧ Y = f([X, Z] ∧ Y ) .

Proof. X ∧ Y can be calculated from X , and, hence, also from [X, Z]. The
statement now follows from Lemma 1. �

Theorem 2 states that noiseless communication between the two parties cannot
increase any of the quantities in question.

Theorem 2. Let X and Y be two random variables and f a function. Then we
have

H([Y, f(X)]↘ X |X) ≤ H(Y ↘ X |X) ,

H(X ↘ [Y, f(X)]|Y, f(X)) ≤ H(X ↘ Y |Y ) ,

I(X ; [Y, f(X)|X ∧ [Y, f(X)]) ≤ I(X ; Y |X ∧ Y ) .
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Proof. Using Lemmas 7, 8, and 9, we obtain

H([Y, f(X)]↘ X |X) ≤ H([Y ↘ X, f(X)]|X)
= H(Y ↘ X |X)

H(X ↘ [f(X), Y ]|f(X), Y ) = H([X ↘ Y, f(X)]|f(X), Y )
= H(X ↘ Y |f(X), Y )
≤ H(X ↘ Y |Y )

I(X ; [f(X), Y ]|X ∧ [f(X), Y ]) ≤ I(X ; [f(X), Y ]|f(X), X ∧ Y )
= I(X ; Y |f(X), X ∧ Y )
≤ I(X ; Y |X ∧ Y )

�

Corollary 1 is a direct consequence of Theorems 1 and 2.

Corollary 1. Let X and Y be two parties’ entire knowledge before, and X ′ and
Y ′ after the execution of a protocol including local data processing and noiseless
communication. Then we have

H(X ′ ↘ Y ′|Y ′) ≤ H(X ↘ Y |Y ) ,

H(Y ′ ↘ X ′|X ′) ≤ H(Y ↘ X |X) ,

I(X ′; Y ′|X ′ ∧ Y ′) ≤ I(X ; Y |X ∧ Y ) .

4 Oblivious Transfer: Lower Bounds and an Optimal
Reduction

4.1 New Bounds on Oblivious-Transfer Reductions

In m-out-of-n k-string oblivious transfer, denoted
(

n
m

)
-OTk, the sender inputs

n k-bit messages out of which the receiver can choose to read m, but does not
obtain any further information about the messages; the sender, on the other
hand, does not obtain any information on the receiver’s choice.

In [1], it has been shown that
(2
1

)
-OT1 is equivalent to pieces of informa-

tion with a certain distribution (in other words, oblivious transfer can be pre-
computed and stored). This result generalizes to

(
n
m

)
-OTk in a straight-forward

way. By determining the corresponding values of the three monotones derived in
Section 3 we can, thus, obtain lower bounds on the reducibility between different
variants of oblivious transfer. The bound of Theorem 4 is an improvement on an
earlier bound by Dodis and Micali [9].
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Theorem 3. Assume that there exists a protocol for realizing unconditionally
secure

(
N
M

)
-OTK from distributed random variables X and Y . Then we have

(N −M)K ≤ H(X ↘ Y |Y ) ,

log
(

N

M

)
≤ H(Y ↘ X |X) ,

MK ≤ I(X ; Y |X ∧ Y ) .

Proof. As mentioned,
(

N
M

)
-OTK can be stored. More specifically, the corre-

sponding random variables X ′ and Y ′ arise when
(

N
M

)
-OTK is executed with

random and independent inputs. We have H(X ′ ↘ Y ′|Y ′) = (N − M)K,
I(X ′; Y ′|X ′ ∧ Y ′) = MK, and H(Y ′ ↘ X ′|X ′) = log

(
N
M

)
. The assertion now

follows from Corollary 1. �

Theorem 4. Assume that there exists a protocol for realizing unconditionally
secure

(
N
M

)
-OTK from t instances of

(
n
m

)
-OTk. Then we have

t ≥ max

(
(N −M)K
(n−m)k

,
log

(
N
M

)
log

(
n
m

) ,
MK

mk

)
.

Proof. Since
(

n
m

)
-OTk is equivalent to the pieces of information obtained when

the primitive is used with random inputs, we can assume that A and B start the
protocol with such random variables Xi and Yi, respectively, for i = 1, . . . , t. (The
first step in this protocol can be to restore

(
n
m

)
-OTk from the shared information.)

We have H(Xi ↘ Yi|Yi) = (n − m)k, I(Xi; Yi|Xi ∧ Yi) = mk, and H(Yi ↘
Xi|Xi) = log

(
n
m

)
. For X = [X1, . . . , Xt] and Y = [Y1, . . . , Yt], we have H(X ↘

Y |Y ) = t(n −m)k, I(X ; Y |X ∧ Y ) = tmk, and H(Y ↘ X |X) = t log
(

n
m

)
. Now

we can apply Theorem 3, and the statement follows. �

For the special case where M = m = 1, the obtained bounds are shown in
Figure 1.

t ≥ . . . K ≥ k K < k

N ≥ n (N−1)K
(n−1)k max

(
(N−1)K
(n−1)k , log N

log n

)
N < n K

k
1

Fig. 1. The bounds for M = m = 1
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4.2 Optimally Trading Message Length for Choice

We present a protocol allowing for increasing the number of messages sent in
oblivious transfer if, at the same time, their length is reduced. The number of
calls to the original oblivious transfer equals the lower bound of Theorem 4.

Let n, k, t ∈ N, t > 1, N = nt, and K ≤ k/nt−1. Protocol 1 reduces
(

N
1

)
-OTK

to t instances of
(
n
1

)
-OTk.

Protocol 1. Let A’s inputs be x0, . . . , xN−1 ∈ {0, 1}K, whereas B’s choice is
c ∈ {0, . . . , N − 1}. Let c =

∑t−1
i=0 cin

i, ci ∈ {0, . . . , n− 1}.
1. A chooses R0

0, R
0
1, . . . , R

0
n−1, R

1
0, . . . , R

t−1
n−1 ∈R {0, 1}k.

2. A and B run
(
n
1

)
-OTk t times. In round i ∈ {0, . . . , t− 1}, A inputs Ri

0, . . . ,
Ri

n−1, and B inputs ci. B receives Yi.
3. A and B subdivide each string Ri

j and Yi into nt−1 pieces of length K =
k/nt−1: Ri

j = Ri
j(0)|| · · · ||Ri

j(n
t−1 − 1), Yi = Yi(0)|| · · · ||Yi(nt−1 − 1).

4. For every j ∈ {0, . . . , N − 1}, let j =
∑t−1

i=0 jin
i and dj =

∑t−2
i=0(ji + jt−1

mod n)ni. A sends mj = xj ⊕R0
j0(dj)⊕ · · · ⊕Rt−1

jt−1
(dj) to B.

5. B calculates dc =
∑t−1

i=0(ci + ct−1 mod n)ni and outputs y = mc⊕Y0(dc)⊕
· · · ⊕ Yt−1(dc) .

Theorem 5. Protocol 1 is a perfect reduction of
(
N
1

)
-OTK to

(
n
1

)
-OTk for N =

nt, t > 1, and K ≤ k/nt−1.

Proof. If both players are honest, we have Yi = Ri
ci

for all i ∈ {0, . . . , t − 1}.
Therefore,

y = mc ⊕ Y0(dc)⊕ · · · ⊕ Yt−1(dc)
= xc ⊕mc ⊕R0

c0
(dc)⊕ · · · ⊕Rt−1

ct−1
(dc)⊕ Y0(dc)⊕ · · · ⊕ Yt−1(dc)

= xc .

A does not receive any messages, so she does not get any information about c.
It remains to be proven that B only gets information about one value sent

by A, even if he is given all the other values. First of all, note that if two
different j and j′ take the same value d, then ji + jt−1 ≡ j′i + j′t−1 (mod n)
holds for all i ∈ {0, . . . , t− 1}. It follows jt−1 �= j′t−1, and, hence, ji �= j′i for all
i ∈ {0, . . . , t− 1}. Therefore, every Ri

j(d) is used at most once in Step 4. B has
to choose a value ci in every round, so he will always be able to reconstruct xc

for c =
∑t

i=0 cin
i. But for every other value xc′ , c′ �= c, he is missing at least one

of the Ri
c′

i
(dc′) for i ∈ {0, . . . , t− 1}. This value is a one-time pad on xc′ since it

is not used anywhere else. Therefore, B does not get any information about any
xc′ for c′ �= c, even if he is given all the other values xc′′ for c′′ �= c′. �

5 Bit and String Commitment: Tight Lower Bounds

Unlike oblivious transfer, bit commitment that is perfectly secure for both parties
is impossible to achieve even when they share correlated pieces of information
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X and Y initially. Intuitively speaking, the reason is that if the commitment
is perfectly hiding, there must exist, after the “commit message,” an “open
message” to be accepted by the receiver for any possible value one can commit
to. Theorems 6 and 7 make this precise and explicit by giving lower bounds on
the success probability of such cheating by the committer, depending on the
distribution PXY . Our bounds are improvements on similar bounds presented
in [2] and [15].

Theorem 6. Assume that a commitment protocol exists where the committer
initially knows a random variable X and the receiver knows Y . If the protocol
is perfectly hiding and the committer has committed to a value v ∈ V, then the
probability ps that she succeeds in opening the commitment to a different value
v′ �= v is at least

ps ≥ 2−H(Y ↘X|X) .

Proof. Note first that under the given assumptions, there must also exist a com-
mitment protocol with the same security properties if the parties are given X
and Y ↘ X , respectively, since the part of Y that is independent of X can be
simulated by B because X ←→ Y ↘ X ←→ Y is a Markov chain. As the pro-
tocol is perfectly hiding, there must exist, for every value v′, an opening of the
commitment to v′ that B accepts. Let y′ be the value maximizing PY |X=x. A
then opens the commitment for v′ in such a way that B accepts if his value y is
equal to y′, and this is successful if y = y′ indeed holds. The expected probability
of this event is

EX

[
2−H∞(Y ↘X|X=x)

]
≥ 2−EX [H∞(Y ↘X|X=x)]

≥ 2−EX [H(Y ↘X|X=x)]

= 2−H(Y ↘X|X) .

In the first step, we have used Jensen’s inequality. �

Theorem 7. Assume that a commitment protocol exists where the committer
initially knows a random variable X and the receiver knows Y . If the protocol
is perfectly hiding and the committer has committed to a value v ∈ V, then the
probability ps that she succeeds in opening the commitment to a different value
v′ �= v is at least

ps ≥ 2−H(X↘Y )+log(|V|−1) .

Proof. We can assume without loss of generality that the pieces of information
known to the parties are X ↘ Y and Y . Let the committer hold x and commit
to v ∈ V , and let v′ �= v. Since the protocol is perfectly hiding, there must
exist x′ ∈ X such that the commit message sent corresponds to the correct
commitment for v′. The probability of correctly guessing this value x′, maximized
over all v′, is at least

2−H∞(X↘Y )(|V|−1) ≥ 2−H(X↘Y )+log(|V|−1) . �
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Corollary 2. Assume that a commitment protocol exists where the committer
initially knows a random variable X and the receiver knows Y . If the protocol
is perfectly hiding and the committer has committed to a value v ∈ V, then the
probability ps that she succeeds in opening the commitment to a different value
v′ �= v is at least

ps ≥ max
(
2−H(Y ↘X|X) , 2−H(X↘Y )+log(|V|−1)

)
.

The commitment protocol of [17] achieves this bound: Given a prime number
q, we have H(X ↘ Y ) = 2 log q, H(Y ↘ X |X) = log q, and |V| = q. It is
perfectly hiding, and the “binding error probability” ps is

ps = 1/q = 2−H(Y ↘X|X) .

6 Concluding Remarks

We have presented three information-theoretic quantities with the property that
no two-party protocol can increase them—so-called monotones. Based on these,
we have derived new lower bounds on the possibility and efficiency of realizing
oblivious transfer and bit commitment from pieces of correlated information, as
well as on reductions between different versions of oblivious transfer. Finally, we
have proposed a new protocol for such a reduction of the latter kind which is
optimal.

We suggest as an open problem to find a general reduction of
(

N
M

)
-OTK to(

n
m

)
-OTk which attains the given lower bound for any choice of the parameters.

Furthermore, it would be interesting and useful to find similar monotones for
multi-party protocols.
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Abstract. Secret-key agreement between two parties Alice and Bob,
connected by an insecure channel, can be realized in an information-
theoretic sense if the parties share many independent pairs of correlated
and partially secure bits. We study the special case where only one-way
communication from Alice to Bob is allowed and where, for each of the
bit pairs, with a certain probability, the adversary has no information
on Alice’s bit. We give an expression which, for this situation, exactly
characterizes the rate at which Alice and Bob can generate secret key
bits.

This result can be used to analyze a slightly restricted variant of the
problem of polarizing circuits, introduced by Sahai and Vadhan in the
context of statistical zero-knowledge, which we show to be equivalent
to secret-key agreement as described above. This provides us both with
new constructions to polarize circuits, but also proves that the known
constructions work for parameters which are tight.

As a further application of our results on secret-key agreement, we
show how to immunize single-bit public-key encryption schemes from
decryption errors and insecurities of the encryption, a question posed
and partially answered by Dwork, Naor, and Reingold. Our construction
works for stronger parameters than the known constructions.

1 Introduction

Consider two parties, Alice and Bob, connected by an authentic but otherwise
fully insecure communication channel. It is well known that it is impossible for
Alice and Bob to establish information-theoretically secure private communica-
tion (see [16,11]). In particular, they are unable to generate an unconditionally
secure key. This changes dramatically if we additionally assume that Alice and
Bob have access to some correlated randomness on which an adversary has only
partial information.

The initial correlation shared by Alice and Bob can originate from various
sources. For example, Wyner [20] and, subsequently, Csiszár and Körner [3] have
� Supported by the Swiss National Science Foundation, project no. 200020-103847/1.

V. Shoup (Ed.): Crypto 2005, LNCS 3621, pp. 478–493, 2005.
c© International Association for Cryptologic Research 2005



One-Way Secret-Key Agreement and Applications 479

studied a scenario where Alice and Bob are connected by a noisy channel on
which an adversary has only limited access. Maurer [11] (cf. also [1]) proposed
to consider a setting where a satellite broadcasts uniform random bits with low
signal intensity, such that Alice, Bob, and also Eve cannot receive them perfectly.
It has been shown that, in both settings, Alice and Bob can indeed generate an
information-theoretically secure key and thus communicate secretly.

In this paper, we study one-way secret-key agreement, i.e., we assume that
only one-way communication from Alice to Bob is allowed. We fully analyze
the case where Alice and Bob hold many independent pairs of correlated bits,
and where the only secrecy guarantee is that, for each of these pairs, with a
certain probability, the adversary has no information about Alice’s value. It turns
out that this particular kind of information-theoretic secret-key agreement has
interesting applications, even in the context of computational cryptography.

1.1 Secret-Key Agreement

Previous Work: Information-theoretically secure secret-key agreement from cor-
related information has first been proposed by Maurer in [11]. He considered a
setting where Alice, Bob, and Eve hold many independent realizations of corre-
lated random variables X , Y , and Z, respectively, with joint probability distrib-
ution PXY Z . The (two-way) secret-key rate S(X ; Y |Z), i.e., the rate at which Al-
ice and Bob can generate secret-key bits per realization of (X, Y, Z), has further
been studied in [1] and later in [12], where the intrinsic information I(X ; Y ↓Z)
is defined and shown to be an upper bound on S(X ; Y |Z), which, however, is
not tight [13].

For one-way communication, it is already implied by a result in [3] and has
later been shown in [1] that the secret-key rate S→(X ; Y |Z) is given by the
supremum of H(U |ZV )−H(U |Y V ), taken over all possible random variables U
and V obtained from X .1 However, as this is a purely information-theoretic
result, it does not directly imply that there exists an efficient key-agreement
protocol.

Our Contributions: In Section 2, we show that H(U |ZV ) − H(U |Y V ) is the
exact rate at which Alice and Bob can efficiently generate a secret key. The
methods used to show this are not new, but as far as we know this result has
not appeared anywhere else in the literature.

Furthermore, we study the class of distributions PXY Z where X and Y are
random variables over {0, 1} with some bounded error Pr[X �= Y ], and where
all that is known about Z is that, with a certain probability, it does not give
any information on X .2 This class will be important for our applications. Using
novel techniques, we give an explicitly computable lower bound on the one-way

1 This result is proven with respect to a slightly different definition of the secret-key
rate than we use. For completeness, we thus provide a new proof for this.

2 As the exact distribution of the initial randomness—especially the part held by
Eve—is usually not known, it is natural to consider such classes.
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secret-key rate as well as a tight characterization of the parameters for which
one-way secret-key agreement is possible.

1.2 Circuit Polarization

Previous Work: In [17], Sahai and Vadhan introduced the promise problem
statistical difference. This problem is defined for parameters α and β, α > β
as follows: given two circuits which, on uniform random input, produce output
distributed according to C0 and C1 with the promise that the statistical distance
of the distributions is either bigger than α or smaller than β, decide which of the
two is the case. If α2 > β, Sahai and Vadhan show (cf. also [18]) how to polarize
such a pair of circuits, i.e., they give an efficient construction which takes a pair
of circuits and outputs a pair of circuits such that, if the statistical distance
of the initial pair was at least α to begin with, the statistical distance of the
resulting distributions is very high (i.e., at least 1− 2−k for an arbitrary k), and
if the statistical distance of the pair was at most β, then the resulting statistical
distance is very small (i.e., at most 2−k).

In order to achieve this only two operations are used, where one of them in-
creases the statistical distance of the distributions at hand and the other reduces
the distance. These operations share a certain similarity to operations used in
secret-key agreement protocols (cf. [11] and [19]), and indeed, in [5], Dwork et
al. note that their construction to immunize public-key encryption is inspired
by [17].

Our Contributions: In this work, we make the connection anticipated in [5] ex-
plicit by showing that one-way secret-key agreement for the class of distributions
given in Section 2.3 is equivalent to the task of circuit polarization, as long as
one is restricted to black-box constructions (i.e., the description of the circuits
given may not be used), only gives independent and uniform random inputs to
the circuits, and directly outputs the samples of the circuits. These restrictions
may seem quite strong at first, but the method given in [18] is of this form. Using
our bounds for secret-key agreement, we show that such a polarization method
does only exist if α2 > β, i.e., the bounds given in [18] are optimal for this class
of constructions.

1.3 Immunization of Public-Key Encryption

Previous Work: Assume that a public-key encryption scheme for single bits
is given, which has the property that the receiver may succeed in decrypting
correctly only with probability (1+α)/2, and also that a potential eavesdropper
Eve may have probability up to (1+β)/2 to find the message, for some constants
(or functions of a security parameter) α and β. In [5], the question was posed
whether such a scheme can be used to get a public-key encryption scheme in
the usual sense. Furthermore, the question was answered in the positive sense in
two cases: if α2 > cβ, for some absolute constant c - 1, a scheme is given. Also,
for every constant β < 1 a construction which works for some constant α < 1 is



One-Way Secret-Key Agreement and Applications 481

given. However, this construction is not very strong: for example, for β = 1/2,
the constant α is about 1 − 2−15. Note that Dwork et al. make no attempt to
optimize these constants.

In [7] a similar question was asked for key agreement where Alice and Bob
may communicate an arbitrary number of rounds.

Our Contributions: Using a lemma from [7], we improve the result of [5] and
show that, for constants α and β, immunizing such an encryption scheme is
possible if α2 > β. Furthermore we show that, in a setting which is sufficiently
black-box, this is optimal.

1.4 Notation

Throughout the paper, we use calligraphic letters (e.g. X , Y, U) to denote sets.
Uppercase letters (X , Y , U) are used to denote random variables, and lowercase
letters denote values of these random variables.

For distributions PX and PY over the same domain X , we denote by
‖PX − PX′‖ = 1

2

∑
x∈X |PX(x) − PX′(x)| the statistical distance between PX

and PX′ . If X and X ′ are the corresponding random variables we sometimes
slightly abuse notation and write ‖X −X ′‖ instead.

The min-entropy (or Rényi entropy of order ∞) of a random variable X
over X is defined as H∞(X) := − log(maxx∈X PX(x)), and the Rényi entropy of
order zero is H0(X) := log(|{x ∈ X|PX(x) > 0}). More generally, the conditional
Rényi entropies are

H∞(X |Y ) := − log
(

max
x∈X ,y∈Y

PX|Y (x|y)
)
,

H0(X |Y ) := log
(
max
y∈Y

∣∣{x ∈ X|PX|Y (x|y) > 0}
∣∣).

Additionally, we use the following smoothed versions of these entropy mea-
sures [14], which are defined for any ε ≥ 0:

Hε
∞(X) := max

PX′ :‖PX−PX′‖≤ε
H∞(X ′),

Hε
∞(X |Y ) := max

PX′Y ′ :‖PXY −PX′Y ′‖≤ε
H∞(X ′|Y ′).

For a random variable X , we write U ← X if, for any other random variable
Z, U ↔ X ↔ Z is a Markov chain. It other words, one can think of U as being
obtained from X by sending it through a channel without considering anything
else.

2 One-Way Secret-Key Agreement

2.1 Notation and Definitions

A one-way secret-key agreement protocol has three important parameters, which
are denoted by the same letters throughout the paper: the length m of the secret
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key produced, a security parameter k, and the number n of instances of the initial
random variables used. It will be convenient in applications to assume that, for
given m and k, n can be computed by a function n(k, m).

Definition 1 (Protocol). A one-way secret-key agreement (OW-SKA) proto-
col on X × Y consists of the function n(k, m) : N × N → N; a function fam-
ily, called Alice, with parameters k and m, mapping n instances of X to a bit
string SA ∈ {0, 1}m (the secret key) and a bit string Γ ∈ {0, 1}∗ (the communica-
tion); and a function family, called Bob, with parameters k and m, mapping Γ
and n instances of Y to a bit string SB ∈ {0, 1}m. The protocol is efficient
if n(k, m), Alice, and Bob can be computed by probabilistic Turing machines in
time poly(k, m). The rate of the protocol is limk→∞ limm→∞

n(k,m)
m .

The goal of secret-key agreement is to get a secure key (SA, SB), i.e., two
strings which are likely to be equal and look like a uniform random string to
Eve. We can define this as follows:

Definition 2 (Secure Key). A pair (X, Y ) over {0, 1}m× {0, 1}m of random
variables is ε-secure with respect to Z if

‖PXY Z − PUU × PZ‖ ≤ ε,

where PUU is the probability distribution over {0, 1}m × {0, 1}m given by

PUU (x, y) =

{
2−m if x = y

0 otherwise.

We say that a protocol is secure if it generates a 2−k-secure key with respect
to the information Eve has after the protocol execution, that is, the initial ran-
domness Z1, . . . , Zn and the communication Γ . In some cases it is desirable to
have a protocol which works for a class of distributions rather than for a sin-
gle distribution (since one may not know the exact distribution of the random
variables).

Definition 3 (Secure protocol). A OW-SKA protocol on X ×Y is secure on
a probability distribution PXY Z over X × Y × Z if, for any k, m ∈ N, (SA, SB)
is 2−k-secure with respect to (Z1, . . . , Zn(k,m), Γ ).

A protocol is secure on a set P = {PXY Z} of tripartite probability distribu-
tions if it is secure for every distribution PXY Z ∈ P.

This way, we can study the secret-key rate of classes of distributions, and
also of single distributions.

Definition 4 (One-way secret-key rate). The one-way secret key rate
S→(P) of a set P = {PXY Z} of probability distributions is the supremum of
the rate of any OW-SKA protocol which is secure on P.

We also write S→(X ; Y |Z) to denote the one-way secret-key rate of a single
distribution, i.e., S→(X ; Y |Z) := S→({PXY Z}).
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2.2 A General Expression for the One-Way Secret-Key Rate

In this section, we derive a simple expression for the one-way secret-key rate of
a general tripartite probability distribution. As mentioned in the introduction,
Theorem 1 has already been known to hold for general (not necessarily efficient)
protocols [3,1].

Theorem 1. Let PXY Z be a probability distribution. Then

S→(X ; Y |Z) = sup
V ←U←X

H(U |ZV )−H(U |Y V ).

Moreover, the same identity holds if only efficient secret-key agreement protocols
are considered.

For the (two-way) secret-key rate no comparable expression is known. We
prove Theorem 1 in two steps: We first give an efficient protocol for any rate
which is below supV ←U←X H(U |ZV ) −H(U |Y V ) (Theorem 2) and then show
that no protocol can achieve a higher rate (Theorem 3).

The protocol is based on the following proposition. A proof can be found in
[6]; the idea is to concatenate a random linear code with a Reed-Solomon code
such that the decoding can be done in polynomial time.

Proposition 1. For any memoryless channel and any rate s below the capacity
it is possible to design codes C : X � → Xn of growing length �→∞ with overall
complexity (construction, encoding, and decoding) of order n2 and decoding error
probability 2−cs·n where the constant cs only depends on the channel and the
rate s.

Furthermore, we use the following from [15]:

Proposition 2. Let PXY Z be a probability distribution. For any ε, ε′ ≥ 0,

Hε+ε′
∞ (X |Y ) ≥ Hε

∞(XY )−H0(Y )− log
( 1

ε′

)
Hε+ε′

∞ (XY ) ≥ Hε
∞(X) + Hε′

∞(Y |X).

More generally, the statement still holds if all entropies are conditioned on some
additional random variable Z.

Also, we use the following from [8].3

Proposition 3. Let (X1, Y1), . . . , (Xn, Yn) i.i.d. according to PXY . Then,

Hε
∞(X1, . . . , Xn|Y1, . . . , Yn) ≥ nH(X |Y )− 4

√
n log(1/ε) log(|X |).

3 Note that a non-quantitative version of this statements follows directly from the
asymptotic equipartition property (see, e.g., [4]). A slightly different quantitative
version can be found in [9].
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Also, we need the left-over hash-lemma, first given in [9] (see also [2]). The
function Ext used is a two-universal hash-function.

Proposition 4 (Left-Over Hash-Lemma). Let X be a random variable over
{0, 1}n. Let Un and Um be independent and uniform over {0, 1}n and {0, 1}m, re-
spectively. There exists an efficiently computable function Ext: {0, 1}n×{0, 1}n→
{0, 1}m such that, if H∞(X |Z) ≥m + 2 log(1/ε), then ‖(Ext(X, Un), Un, Z) −
(Um, Un, Z)‖ ≤ ε.

Lemma 1. Let PXY Z be an arbitrary tripartite probability distribution and
let r < H(X |Z) − H(X |Y ). There exists a constant dr (depending on PXY Z

and r) and an efficient OW-SKA protocol secure on PXY Z such that n ≤
max(m/r, k · dr).

Proof. Let γ be such that r + 3γ = H(X |Z)−H(X |Y ). Let ⊕ be an arbitrary
group operation over X . For the channel which maps x to a pair (X ⊕ x, Y ) (by
choosing X and Y according to PXY , this channel has capacityH0(X)−H(X |Y )),
we use Proposition 1 to get a code C with rate s := H0(X)−H(X |Y )− γ.

Choose n such that n ≥ m
r , n ≥ 32k log2 |X |

γ2 , n ≥ 2k
cs

and such that there exists
a code of this length in the family guaranteed by Proposition 1. From the code
of this length, Alice now choses a random word C = (C1, . . . , Cn) and sends, for
all i, Ci⊕Xi to Bob, who gets (Yi, Ci⊕Xi). Using the property of the code, Bob
can find the original codeword C with probability 1− 2−cs·n ≥ 1 − 2−2k. Alice
then sends a randomly chosen seed of a two-universal hash-function which maps
the codeword to a string of length m. Both parties apply the hash-function and
output SA and SB, respectively.

We show that Eve gets no information with probability 2−k. For this, we
set ε := 2−2k. From Proposition 2 and using H∞(C|Zn) = ns (which follows
from the fact that the codeword is chosen uniformly at random), we get

H2ε
∞(C|(Xn ⊕ C)Zn)

≥ H∞(C|Zn) + Hε
∞(Xn ⊕ C|CZn)−H0(Xn ⊕ C|Zn)− log(

1
ε
)

= ns + Hε
∞(Xn|Zn)− nH0(X)− 2k.

From Proposition 3 we get Hε
∞(Xn|Zn) ≥ nH(X |Z)−4 log(|X |)

√
2nk. Together,

we obtain

H2ε
∞ (C|(Xn ⊕ C)Zn)

≥ n(H(X |Z)−H(X |Y )− γ)︸ ︷︷ ︸
=n(r+2γ)

− 4 log(|X |)
√

2nk︸ ︷︷ ︸
=
√

32nk log2 |X |≤nγ

−2k

≥ nr + nγ − 2k.

From Proposition 4 we see that it is possible to extract a secret key of length
nr + nγ − 6k > nr ≥ m such that Eve gets no information except with proba-
bility 2ε + ε = 3 · 2−2k ≤ 2−k. �
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Theorem 2. Let PXY Z be an arbitrary probability distribution and let r be a
constant satisfying r < supV ←U←X H(U |ZV ) −H(U |Y V ). There exists a con-
stant dr and an efficient OW-SKA protocol which is secure on PXY Z and uses
at most max(m/r, k · dr) instances of the initial random variables.

Proof. For any random variables U and V such that V ← U ← Z, Alice can
compute an instance of U and V locally from an instance of X , and then send
V over the channel to Bob (and Eve). The result then follows from Lemma 1.

Theorem 3. Let PXY Z be a probability distribution. Then

S→(X ; Y |Z) ≤ sup
V ←U←X

H(U |ZV )−H(U |Y V ).

Proof (sketch). We show that supV ←U←X H(U |ZV ) − H(U |Y V ) does not in-
crease by any step of a one-way key-agreement protocol. More precisely, it does
not increase by local processing of either Alice or Bob, or sending a message from
Alice to Bob. Furthermore, taking n copies of X , Y , and Z at most multiplies
this quantity by n. Finally, if Alice and Bob share a secret key of length m,
then this quantity is arbitrarily close to m (depending on k). Hence, the initial
quantity is at least m. �

Proof (Theorem 1). From Theorems 2 and 3. �

2.3 The Secret Key Rate of a Class of Binary Distributions

In this section we study the one-way secret-key rate of a general class of distrib-
utions. Namely, for parameters α and β, we assume that Alice and Bob are given
binary random variables X and Y which have the property that they are equal
with probability at least (1 + α)/2 (i.e., X and Y have correlation at least α).
Furthermore, we assume that with probability 1 − β, the random variable Z
does not give any information about X . This class will also be of interest for
Sections 3 and 4.

Definition 5. Let D(α, β) be the set of probability distributions PXY Z over
{0, 1} × {0, 1} × Z satisfying

– Pr[X = 0] = Pr[X = 1] = 1
2 ,

– Pr[X = Y ] ≥ 1+α
2 ,

– there exists an event E such that H(X |ZE) = 1 and Pr[E ] ≥ 1− β.

It is not hard to see that we could similarly look at the distributions which
satisfy ‖PY |X=0−PY |X=1‖ ≥ α and ‖PZ|X=0−PZ|X=1‖ ≤ β, where Y does not
have to be binary. This condition implies that Bob can apply a function to Y
such that a distribution from D(α, β) results. Furthermore, all distributions in
D(α, β) satisfy this characterization.

Some distributions in D(α, β) have a higher secret-key rate than others, of
course. We will see that the following distribution has the lowest secret-key



486 T. Holenstein and R. Renner

rate of all distributions in D(α, β). Intuitively, this distribution gives as much
information to Eve as possible, and makes X and Y as independent as possible
under the constraints of Definition 5. For a random variable X , let4 λ(X) be
the random variable describing the output of a binary symmetric channel taking
input X , i.e., P

λ(X)|X=0(0) = P
λ(X)|X=1(1) = 1+λ

2 .

Definition 6. For fixed α, β, the characteristic distribution PXY Z of D(α, β)
is given by the following random process: we chose X ∈ {0, 1} uniformly at
random. Then, Y is given as α(X), and Z over {0, 1,⊥} is given as the output
of an erasure channel with symmetric error probability 1 − β on input X, i.e.,
Pr[Z = X ] = β, independently of X, and Pr[Z = ⊥] = 1− β.

We are now ready to formulate our main statement of this section, namely
an easily computable expression for S→(D(α, β)):

Theorem 4. For any α, β, let PXY Z be the characteristic distribution of
D(α, β). Then,

S→(D(α, β)) = max
λ

H( λ(X)|Z)−H( λ(X)|Y ). (1)

In particular, if α2 > β then S→(D(α, β)) ≥ 1
7 (α2 − β)2 and if α2 ≤ β then

S→(D(α, β)) = 0.

Since the term in the maximum of (1) only involves random variables whose
distribution is explicitly known (cf. Definition 6) we can get the following form
of it (where h(x) is the binary entropy function):

gα,β(λ) := H( λ(X)|Z)−H( λ(X)|Y )

= (1− β) + βh
(1 + λ

2

)
−h

(1 + αλ

2

)
(2)

In order to prove Theorem 4, we need a few properties of gα,β (see also
Fig. 1). As they can be obtained with standard tools from calculus, the (not
very interesting) proof is omitted.

Lemma 2. Let the function gα,β : [−1, 1] → R be as in (2). If α2 ≤ β, then
gα,β(λ) ≤ 0 for all λ ∈ [−1, 1] and gα,β is concave. If α2 > β, then gα,β has
one local minimum at λ = 0 with gα,β(0) = 0 and two local maxima at −λ+ and
λ+, λ+ ∈ (0, 1] with gα,β(−λ+) = gα,β(λ+) ≥ 1

7 (α2 − β)2. Furthermore, gα,β is
concave in [−1,−λ+] and [λ+, 1].

We first give an upper bound on S→(X ; Y |Z) for the distribution from Def-
inition 6.

Lemma 3. Let PXY Z be the characteristic distribution of D(α, β). Then,
S→(X ; Y |Z) ≤ maxλ gα,β(λ), where gα,β is defined by (2).

4 The symbol is supposed to look like a binary symmetric channel, and can be
pronounced as noise.
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Fig. 1. Plot of gα,β(λ) with α = 0.8 and β = 0.59

Proof. We know that S→(X ; Y |Z) = supV ←U←X H(U |ZV ) −H(U |Y V ) (The-
orem 1). Let PU|X and PV |U be fixed channels. It is sufficient to show that
H(U |ZV )−H(U |Y V ) ≤ maxλ gα,β(λ).

We can rewrite H(U |ZV )−H(U |Y V ) as

H(U |ZV )−H(U |Y V ) = H(UZV )−H(UY V )− (H(ZV )−H(Y V ))
= H(Z|UV )−H(Y |UV )− (H(Z|V )−H(Y |V )). (3)

Consider now a fixed pair (u, v). Setting 1+λuv

2 := Pr[X=0|U=u, V =v] and
1+λv

2 := Pr[X=0|V =v], a straightforward computation yields:

H(Z|U=u, V =v)−H(Y |U=u, V =v) = h(β) + βh
( 1+λuv

2

)
− h

( 1+αλuv

2

)
H(Z|V =v)−H(Y |V =v) = h(β) + βh

( 1+λv

2

)
− h

(1+αλv

2

)
.

Because gα,β differs from these expressions only by a constant, together with (3)
this gives

H(U |ZV )−H(U |Y V ) = E
uv

[gα,β(λuv)]−E
v
[gα,β(λv)].

Using Eu[λuv] = λv, where u is chosen according to the probability distribution
PU|V =v, we thus obtain

H(U |ZV )−H(U |Y V ) = E
v

[
E
u
[gα,β(λuv)]− gα,β(E

u
[λuv ])

]
.

For every fixed v, we can use Lemma 2 to obtain the following upper bound on
the term in the expectation:

E
u
[gα,β(λuv)]− gα,β(E

u
[λuv]) ≤ max

λ
gα,β(λ) − gα,β(0) = max

λ
gα,β(λ),

which can now be inserted in the above expression. �

Next, we show that for every distribution in D(α, β) we can achieve at least
this rate by sending X over a fixed channel. As we want a protocol which works
for every distribution in D(α, β), it is important that this processing only de-
pends on the parameters α and β.
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Lemma 4. Let α, β be fixed, PXY Z ∈ D(α, β), gα,β as in (2), λ ∈ [0, 1]. Then
H( λ(X)|Z)−H( λ(X)|Y ) ≥ gα,β(λ).

Proof. Using a simple calculation we see that H( λ(X)|Z) ≥ (1−β)+βh(1+λ
2 ).

To see that H( λ(X)|Y ) ≤ h(1+αλ
2 ), let B be a uniform random bit, which is in-

dependent of X and Y . Then we obtain H( λ(X)|Y )=H( λ(X⊕B)|Y ⊕B, B) ≤
H( λ(X ⊕B)|Y ⊕B) = h

( 1+αλ
2

)
. �

We are now ready to prove Theorem 4.

Proof (Theorem 4). From Theorem 1, Lemmata 2, 3, and 4. �
Furthermore, together with the results of the previous section, we conclude

that for any α, β with α2 > β there exists an efficient one-way secret-key agree-
ment protocol secure on D(α, β).

Corollary 1. Let α, β be constant with α2 > β. There exists an efficient one-
way secret-key agreement protocol with rate (α2 − β)2/8 which is secure on
D(α, β).

Proof. From Theorems 1 and 4.5 �

3 Circuit Polarization

3.1 Polarization and Oblivious Polarization

Circuit polarization was introduced by Sahai and Vadhan in [17] in the context
of statistical zero knowledge. It can be described as follows: assume that two
circuits are given, which on uniform random input yield output distributions C0
and C1 over {0, 1}�, respectively. We look for an efficient method to polarize the
circuits: if ‖C0 − C1‖ ≥ α, for some parameter α, the method should output
circuits which are near disjoint, if ‖C0 − C1‖ ≤ β, for some parameter β, then
the method should output circuits which produce very close distributions.

In general, such a method uses a description of the circuits given. Here, we
focus on methods which use the given circuits in a black-box manner, obliviously
and with random input only.

Definition 7. An oblivious polarization method for parameters α and β is a
randomized algorithm which, on input k and b, outputs “query bits” Q1

b, . . . , Q
n
b

and a string Rb. For two distributions C0 and C1 it satisfies:

‖C0 − C1‖ ≥ α =⇒ ‖(CQ1
0
, . . . , CQn

0
, R0)− (CQ1

1
, . . . , CQn

1
, R1)‖ ≥ 1− 2−k

‖C0 − C1‖ ≤ β =⇒ ‖(CQ1
0
, . . . , CQn

0
, R0)− (CQ1

1
, . . . , CQn

1
, R1)‖ ≤ 2−k.

The method is efficient if the algorithm runs in time polynomial in k.
5 Technically speaking, Theorem 1 only guarantees that such a protocol exists for one

single distribution, and in general the protocol will depend on the distribution at
hand. Of course the protocol cannot depend on the distribution of PZ|XY , but the
distribution PY |X can vary in D(α, β), so we have to be careful. However, since the
protocol just uses an error correcting code which is too strong for some distributions,
it is easy to see that this is not a problem.
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Note that the method given in [18] to polarize circuits is oblivious in this
sense.6 The method given to invert the statistical distance is not oblivious (and
cannot possibly be).

3.2 Equivalence of Polarization and Secret-Key Agreement

The goal of this section is to prove that an oblivious polarization method for
parameters α and β is equivalent to a secret-key agreement protocol (for a one
bit key) secure on D(α, β), as defined in Section 2.3.

Theorem 5. There exists an oblivious polarization method for parameters α
and β if and only if there exists a one-way secret-key agreement protocol secure
on D(α, β). Moreover, there exists an efficient oblivious polarization method if
and only if there exists a protocol with efficient encoding (i.e., Alice is efficient).

We prove Theorem 5 in both directions separately, and start by showing that
a polarization method implies the existence of a one-way secret-key agreement
protocol:

Lemma 5. Let an oblivious polarization method for parameters α, β be given.
Then there exists a one-way secret-key agreement protocol which is secure on
D(α, β). Furthermore, if the polarization method is efficient, then Alice is effi-
cient.

Proof. It is sufficient to show how to get a one-way secret-key agreement protocol
for m := 1 bit.

The number of random variables n := n(k, 1) the protocol uses is set to the
number of queries produced by the polarization method. Alice first simulates the
polarization method with input k and a uniform random bit b which yields Rb

and Q1
b, . . . , Q

n
b . Subsequently, Alice sends Rb as well as (X1⊕Q1

b , . . . , Xn⊕Qn
b )

as communication to Bob, and outputs b as secret bit.
We show that Bob can find b with high probability from the communication

and Y n (this may not necessarily be efficient). Since PXY Z ∈ D(α, β) the random
variables C0 := (X, Y ) and C1 := (1 ⊕ X, Y ) satisfy ‖C0 − C1‖ ≥ α. Further-
more, Y1, . . . , Yn and the communication gives Bob a sample of the distribution
(CQ1

b
, . . . , CQn

b
, Rb). The definition of the polarization method now implies that

a statistical test can find b except with probability exponentially small in k.
Also the protocol is secure against Eve: consider the random variable D0 :=

(Z, X) and the random variable D1 := (Z, X⊕1). Here, PXY Z ∈ D(α, β) implies
‖D0 −D1‖ ≤ β, and Eve sees exactly a sample of (DQ1

b
, . . . , DQn

b
, Rb), which is

independent of b except with probability exponentially small in k. �

On the other hand, a one-way secret-key agreement protocol yields a polar-
ization method:
6 In fact, R0 and R1 are empty in the method given.
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Lemma 6. Let a one-way secret-key agreement protocol secure on D(α, β) be
given. Then, there exists an oblivious polarization method for parameters α and
β using n(k, 1) copies of the given distribution. Furthermore, if Alice is efficient,
then the polarization method is efficient.

Proof. Throughout the proof we only need key agreement for one key bit and
set m := 1. On input b and k, the polarization method first chooses random
(uniform and independent) queries Q1

b , . . . , Q
n
b . Then Alice is simulated with

random variables X1 := Q1
b , . . . , Xn := Qn

b , which yields communication C, and
a secret bit S. The string Rb is then defined as Rb := (C, S ⊕ b).

We first show that ‖C0 − C1‖ ≥ α implies that ‖(CQ1
0
, . . . , CQn

0
, R0) −

(CQ1
1
, . . . , CQn

1
, R1)‖ is exponentially close to 1. For this, it is enough to show

how to find b from (CQ1
b
, . . . , CQn

b
, Rb) with probability almost 1. ‖C0−C1‖ ≥ α

implies that there exists a function y (a statistical test) such that setting Yi :=
y(CQi

b
) gives Pr[Yi = Qi

b] ≥ 1+α
2 . Thus we can use the decoding algorithm Bob

of the secret key agreement protocol to reconstruct S with very high probability.
Since S ⊕ b is also given, we can find b.

Now assume that ‖C0−C1‖ ≤ β. Consider the tripartite probability distrib-
ution PXY Z where X = Y is a uniform random bit, and Z = CX . It is not hard
to see that PXY Z ∈ D(α, β). Thus, in the one-way secret-key agreement protocol
(using this distribution) Eve will see exactly a sample of (CQ1

b
, . . . , CQn

b
, Rb) and

the value S ⊕ b. The properties of the protocol imply that this distribution is
statistically independent (with high probability) of S. Furthermore, in the con-
struction above only S ⊕ b depends on b, which implies the lemma. �

Proof (Theorem 5). Follows from Lemmata 5 and 6.

Furthermore, since we know for which parameters α and β a protocol exists, we
get:

Corollary 2. There exists an (efficient) oblivious black-box polarization method
for constant parameters α and β if and only if α2 > β.

Proof. Using Theorem 4 and Corollary 1. Additionally, we observe that if
S→(X ; Y |Z) = 0 then no one-way secret-key agreement protocol can exist, since
one could use it to get a positive rate. �

As mentioned before such a polarization method was already given in [18].
However, it was unknown that this is tight for oblivious methods.

3.3 Further Improvements

Note that instead of using the code as guaranteed in Proposition 1, we could
have used a random linear code in this application (where the code is chosen
by Alice and a description is sent as communication). In this case, the resulting
polarization method is very efficient, as only k · poly((α2 − β)−1) copies of the
circuits are needed. If this method is used in a statistical zero-knowledge proof
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system however, the prover needs additional power since he needs to decode a
random linear code.

Finally, a statistical zero knowledge proof for the promise problem statistical
difference (with parameters α and β) can be realized as follows: the two given
circuits are sampled obliviously and uniformly at random by the verifier, sending
the samples to the prover. The information which circuit was sampled is used as
random variables X1, . . . , Xn in a one-way secret-key agreement protocol, whose
communication is also sent to the prover. Now, if the given instance produces
distributions with statistical distance at least α, then the prover gets the same
information as Bob does, and he can prove this to the verifier by sending back
the secret key. If the circuits produce distributions with statistical distance at
most β, the prover gets the same information as Eve does, and cannot find the
secret key. Thus, it can be useful to use protocols which yield more than one
secret bit, as this immediately reduces the error of the zero-knowledge proof.

4 Immunizing Bit Encryption Schemes

In this section we study the implications of our work on the task of immunizing
bit encryption schemes. Thus, we assume that a public-key encryption scheme
for bits is given, which has a certain probability of being correct, and a certain
security.

Definition 8. A (α(k), β(k))-secure public-key bit encryption scheme is a triple
(G, E, D) of probabilistic polynomial time algorithms such that

– Algorithm G, on input 1k produces a pair (pk, sk).
– For a random bit b ∈ {0, 1}, Pr[Dsk(Epk(b)) = b] > 1+α(k)

2 , where the proba-
bility is over the randomness of G (giving the pair (pk, sk)), E, D, and the
choice of b.

– For any polynomial time algorithm A, and a uniform random bit b: Pr[A(pk,

Epk(b)) = b] < 1+β(k)
2 , where the probability is over the randomness of A, G,

E, and the choice of b.

If such a scheme is (α, β)-secure for every function 1− α = β ∈ 1
poly(k) , we say

that it is a secure public-key encryption scheme.

We can combine information-theoretic and computational protocols to obtain
the following:

Lemma 7. Let α, β : N → [0, 1] be noticeable and computable in time poly(k).
Let (G, E, D) be a (α, β)-secure public-key bit encryption scheme. If there exists
an efficient one-way secret-key agreement protocol secure on D(α, β), then there
exists a secure public-key encryption scheme (G′, E′, D′).

The proof of this is very similar to the corresponding Lemma in [7]. Due to space
constraints it is only sketched here.
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Proof (sketch). We only need one key bit, and therefore we will set m = 1
throughout the proof. On input 1k, algorithm G′ then does n(k, 1) invoca-
tions of algorithm G with input 1k. This gives a key pair (pk′, sk′), such that
both the public- and the secret-key are n-tuples pk′ = (pk1, . . . , pkn) and
sk′ = (sk1, . . . , skn).

To encrypt a bit b with public key pk′, Alice first encrypts n random bits
X1, . . . , Xn with the underlying scheme, i.e., Xi is encrypted with Epki

. It then
uses the information-theoretic one-way secret-key agreement protocol, where
the Xi are used as random variables. Let SA be the resulting secret bit. The
output of algorithm E′ is then the encryption of X1, . . . , Xn, the communica-
tion of the information-theoretic one-way secret key agreement protocol, and
SA ⊕ b.

It is easy to see that the communication together with the secret key suffices
to decode the encrypted bit. Furthermore, the security of the protocol can be
shown using a standard hybrid argument together with the uniform hard-core
lemma given in [7] (see also [10]).

�
Lemma 7 together with Corollary 1 implies that a (α, β)-secure public-key

cryptosystem can be used to get a secure public-key cryptosystem if α2 > β.
For a limited class of reductions this is tight: a strong black-box reduction is
a black-box reduction which allows Alice and Bob to use such a cryptosystem
only in a way such that it can be modeled by an oracle where Alice and Bob
obtain random bits X and Y , respectively, and an attacking algorithm obtains
information Z.7

Theorem 6. Let α and β be constants. There exists a strong black-box reduction
from a (α, β)-secure public-key cryptosystem to a secure public-key cryptosystem
if and only if α2 > β.

Proof. If α2 > β, this is implied by Lemma 7 and Corollary 1.
Assume now that α2 ≤ β, and assume that a reduction is given. It is easy to

see that for suitably chosen random variables X , Y and Z an attacker can break
every protocol in polynomial space from the information given. Consequently,
by giving the attacker access to a PSPACE-complete oracle we can obtain a
contradiction. �
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Abstract. Assuming an insecure quantum channel and an authenti-
cated classical channel, we propose an unconditionally secure scheme
for encrypting classical messages under a shared key, where attempts
to eavesdrop the ciphertext can be detected. If no eavesdropping is de-
tected, we can securely re-use the entire key for encrypting new messages.
If eavesdropping is detected, we must discard a number of key bits cor-
responding to the length of the message, but can re-use almost all of the
rest. We show this is essentially optimal. Thus, provided the adversary
does not interfere (too much) with the quantum channel, we can securely
send an arbitrary number of message bits, independently of the length
of the initial key. Moreover, the key-recycling mechanism only requires
one-bit feedback. While ordinary quantum key distribution with a classi-
cal one time pad could be used instead to obtain a similar functionality,
this would need more rounds of interaction and more communication.

Keywords: Quantum cryptography, key-recycling, unconditional secu-
rity, private-key encryption.

1 Introduction

It is well known that only assuming a quantum channel and an authenticated
classical channel, Quantum Key Distribution (qkd) can be used to generate an
unconditionally secure shared key between two parties. If we want to use this
key for encrypting classical messages, the simplest way is to use it as a one-time
pad. This way, an m-bit key can be used to encrypt no more than m message
bits, since re-using the key would not be secure (without extra assumptions like
in the bounded storage model[19,10,13]).

However, if we allow the same communication model for message transmission
as for key exchange — which seems quite natural — an obvious question is
whether we might gain something by using the quantum channel to transmit
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ciphertexts. The reason why this might be a good idea is that the ciphertext is
now a quantum state, and so by the laws of quantum mechanics, the adversary
cannot avoid affecting the ciphertext when trying to eavesdrop. We may therefore
hope being able to detect — at least with some probability — whether the
adversary has interacted with the ciphertext. Clearly, if we know he has not,
we can re-use the entire key. Even if he has, we may still be able to bound the
amount of information he can obtain on the key, and hence we can still re-use
part of the key. Note that the authenticated classical channel is needed in such a
scheme, in order for the receiver to tell the sender whether the ciphertext arrived
safely, and possibly also to exchange information needed to extract the part of
the key that can be re-used. Such a system is called a Quantum Key-Recycling
Scheme (qkrs).

A possible objection against qkrs is that since it requires interaction, we
might as well use qkd to generate new key bits whenever needed. However, in the
model where the authenticated classical channel is given as a black-box (i.e., not
implemented via a shared key) qkd requires at least three messages: the quantum
channel must be used, and the authenticated channel must be used in both
directions, since otherwise the adversary could impersonate one of the honest
parties. Further, each move requires a substantial amount of communication (if
N qubits were transmitted then the two classical moves require more than N
classical bits each). Finally, N is typically larger than the length of the secret-key
produced. Hence, if we can build a qkrs scheme that is efficient, particularly in
terms of how much key material can be re-used, this may be an advantage over
straightforward use of qkd.

From a more theoretical point of view, our work can be seen as a study of the
recycling capabilities of quantum ciphers in general. In particular, how many key
bits can be recycled, and how much feedback information must go from receiver
to sender in order to guarantee the security of the recycled key? How do these
capabilities differ from those of classical ciphers? In this paper we give precise
answers to these questions.

The idea behind a qkrs originates from Bennett and Brassard during the
early days of quantum cryptography[4]. Although they did not provide any fully
satisfying solution or security proof, their approach to the problem is similar to
our. More recently Leung studied recycling of quantum keys in a model where
Alice and Bob are allowed three moves of interaction[12]. In this model, however,
quantum key distribution can be applied. Leung also suggested that classical keys
can be recycled when no eavesdropping is detected. In [16], a qkrs was proposed
based on quantum authentication codes[2]. The key-recycling capabilities of their
scheme can be described in terms of 2 parameters: the message length m and
the security parameter �. The scheme uses 2m + 2� bits of key, and is based
on quantum authentication schemes that, as shown in [2], must always encrypt
the message. The receiver first checks the authenticity of the received quantum
state and then sends the result to the sender on the authenticated channel. Even
when the receiver accepts, the adversary may still have obtained a small amount
of information on the key. The receiver therefore also sends a universal hash
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function, and privacy amplification is used to extract from the original key a
secure key of length 2m + �. If the receiver rejects then a secure key of length
m + � can be extracted.

In this paper, we propose a qkrs for encrypting classical messages. Our qkrs
is based on a new technique where we append a k-bit classical authentication
tag to the message, and then encrypt the n = m + �-bit plaintext using the
Wn-quantum cipher introduced in [8]. The authentication is based on universal
hashing using an m-bit key. The cipher uses 2n = 2(m + �) bits of key, where
m+ � bits are used as a one-time pad, and m+ � bits are used to select in which
basis to send the result, out of a set of 2m+� so called mutually unbiased bases.
Thus, the entire key of the qkrs consists of 3m + 2� bits. The receiver decrypts
and checks the authentication tag. If the tag is correct, we can show that the
adversary has exponentially small information about the key, and the entire key
can therefore be recycled. If the tag is incorrect, we can still identify 2m+ � bits
of the key, about which the adversary has no information, and they can therefore
be re-used. Since this subset of bits is always the same, the receiver only needs
to tell the sender whether he accepts or not.

Being able to recycle the entire key in case the receiver accepts is of course
optimal. On the other hand, we can show that any qkrs must discard at least
m− 1 bits of key in case the receiver rejects. Since m can be chosen to be much
larger than �, discarding m + � bits, as we do, is almost optimal.

In comparison with earlier works, our technique completely eliminates the
use of privacy amplification, and hence reduces the communication on the au-
thenticated channel to a single bit. Moreover, we can recycle the entire key when
the receiver accepts the authentication tag. Hence, in scenarios where interfer-
ence from the adversary is not too frequent, our keys can last much longer than
with previous schemes, even though we initially start with a longer key.

Our results differ from those of [16], since quantum authentication based
qkrs do not guarantee the privacy of the authentication tag. Therefore, part
of the key must be discarded even if the receiver accepts. Instead of quantum
authentication, we use classical Wegman and Carter authentication codes[6] and
a quantum encryption of classical messages[8] applied to both the message and
the tag. This construction allows to recycle the entire authentication key securely.

The scheme we introduce can also be used as an authentication code for
quantum messages. However, it requires a longer secret-key than the scheme in
[2], but allows for recycling the authentication key entirely upon acceptance.

Our qkrs is composable since the security is expressed in terms of distance
from uniform. The secret-keys and plaintexts are private when, from the adver-
sary’s point of view, they look like uniformly distributed random variables. This
has been shown to provide universal composability in the quantum world[17].

We end this introduction with some remarks on the authenticated classical
channel. Having such a channel given for free as a black-box may not be a
realistic assumption, but it is well known that it can be implemented assuming
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the players initially have a (short) shared key.1 In this model, the distinction
between qkd and qkrs is not as clear as before, since we now assume an initial
shared key for both primitives. Indeed, our qkrs can be seen as an alternative
way to do qkd: we can form a message as the concatenation of new random
key bits to be output and a short key for implementing the next usage of the
authenticated channel. Having sent enough messages of this form successfully,
we can generate a much larger number of secure key bits than we started from.
Note that this is harder to achieve when using the earlier qkrs scheme since
bits of the original key are lost even in successful transmissions.

2 Preliminaries

2.1 Density Operators and Distance Measures

We denote by S(H) the set of density operators on Hilbert space H (i.e. positive
operators σ such that tr(σ) = 1). In the following, Hn denotes the 2n-dimensional
Hilbert space over C, 11n denotes the 2n× 2n identity operator, and In = 2−n11n

denotes the completely mixed state. The trace-norm distance between two quan-
tum states ρ, σ ∈ S(H) is defined as:

D(ρ, σ) =
1
2

tr (|ρ− σ|) ,

where the right-hand side denotes half the sum over the absolute value of all
eigenvalues of ρ − σ. The trace-norm distance is a metric over the set of den-
sity operators in S(H). In the following, we use the same notation as [17]. Let
(Ω, P ) be a discrete probability space. A random state ρ is a function from Ω
to S(H). This means that to ω ∈ Ω corresponds the mixed state ρ(ω). To an
observer ignorant of the randomness ω ∈ Ω, the density operator described by
ρ is given by

[ρ] =
∑
ω∈Ω

P (ω)ρ(ω).

For any event E, the density operator described by ρ conditioned on E is given by

[ρ|E] =
1

Pr (E)

∑
ω∈E

P (ω)ρ(ω).

Classical random variables can also be represented as random states. Let X
be a random variable with range X and let H be a #X-dimensional Hilbert
space with orthonormal basis {|x〉}x∈X. The random state corresponding to X
is denoted by {X} = |X〉〈X | and [{X}] =

∑
x∈X P (x)|x〉〈x| denotes its associated

density operator. Let ρ⊗{X} be a random state with a classical part {X}. The
corresponding density operator is given by

[ρ⊗ {X}] =
∑
x∈X

P (x)[ρ|X = x]⊗ |x〉〈x|.

1 Even in this case, qkd does something that is impossible classically, namely it
generates a shared key that is longer than the initial one.
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If X is independent of ρ then [ρ ⊗ {X}] = [ρ] ⊗ [{X}]. Let X be a classical
random variable with range X and let ρ be a random state. The distance to
uniform of X given ρ is defined by

d(X |ρ) = D([{X} ⊗ ρ], [{U}]⊗ [ρ]), (1)

where U is a random variable uniformly distributed over X.

2.2 Quantum Ciphers

A quantum encryption scheme for classical messages is the central part of any
qkrs. Such schemes where introduced in [1], and further studied in [8], where
their performances were analyzed against known-plaintext attacks. We adopt a
similar definition here except that we allow for the encryption to provide only
statistical instead of perfect privacy. As in [1,8], we model encryption under key
k by an appropriate unitary operator Ek acting upon the message and a possible
ancilla of any size initially in state |0〉. Decryption is simply done by applying
the inverse unitary.

For convenience we will use the notation

ρx =
∑

k∈{0,1}n

2−nEk|x〉〈x| ⊗ |0〉〈0|E†
k,

for the equal mixture of a plaintext x ∈ {0, 1}m encrypted under all possible keys
with uniform probability. A quantum cipher is private if, given a cipherstate,
almost no information can be extracted about the plaintext.

Definition 1. For a non-negative function ε(n), a ε(n)-private (n, m)-quantum
cipher is described by a set of 2n unitary encryption operators {Ek}k∈{0,1}n,
acting on a set of m-bit plaintexts and an arbitrary ancilla initially in state |0〉
such that,

(∀x, x′ ∈ {0, 1}m)[D(ρx, ρx′) < ε(n)].
If ε(n) is a negligible function of n we say that the scheme is statistically private.

The total mixture of ciphertexts associated with an ε-private (n, m)-quantum
cipher with encryption operators {Ek}k∈{0,1}n is

ξ =
∑

k∈{0,1}n

2−n
∑

x∈{0,1}m

2−mEk|x〉〈x| ⊗ |0〉〈0|E†
k. (2)

The next technical Lemma states that the total mixture of any ε-private quantum
cipher is ε-close to any plaintext encryption under a random and private key.

Lemma 1. Any ε-private (n, m)-quantum cipher satisfy that for all x ∈ {0, 1}m,
D(ξ, ρx) < ε.

Proof. Simply observe that,

D(ξ, ρx) = D

2−m
∑

y∈{0,1}m

ρy, ρx

 ≤
∑

y∈{0,1}m

2−mD(ρy, ρx) < ε,

from the convexity of D(·, ·) and the ε-privacy of the quantum cipher. �
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2.3 Mutually Unbiased Bases

A set Bn = {B1, . . . , B2t} of 2t orthonormal bases in a Hilbert space of dimension
2n is said to be mutually unbiased (we abbreviate mutually unbiased bases set
as mubs) if for all |u〉 ∈ Bi and |v〉 ∈ Bj for i �= j, we have |〈u|v〉| = 2−n/2.
Wootters and Fields[20] have shown that there are mubss of up to 2n + 1 bases
in a Hilbert space of dimension 2n, and such sets are maximum. They also give a
construction for a maximal mubs in Hilbert spaces of prime-power dimensions.
For Bn = {Bb}b∈{0,1}t a mubs, w ∈ {0, 1}n, and b ∈ {0, 1}t, we denote by |v(b)

w 〉
the w-th state in basis Bb ∈ Bn.

Lawrence, Brukner, and Zeilinger[11] introduced an alternative construction
for maximal mubss based on algebra in the Pauli group. Their construction
plays an important role in the security analysis of our qkrs. The method for
constructing a maximal mubs in Hn relies on a special partitioning of all Pauli
operators in Hn. These operators live in a vector space of dimension 4n. Let
Σ = {σx, σy, σz , σ11} (where σ11 = 111) be the set of Pauli operators in H1. This
set forms a basis for all one-qubit operators. A basis for operators on n qubits
is constructed as follows for i ∈ {0, . . . , 4n − 1}:

Oi = σ1
µ(1,i)σ

2
µ(2,i) . . . σn

µ(n,i) =
n∏

k=1

σk
µ(k,i), (3)

such that σk
µ(k,i) is an operator in Σ acting only on the k-th qubit. We use

the convention O0 = 11n. The action of Oi on the k-th qubit is σµ(k,i) where
µ(k, i) ∈ {x, y, z, 11}. The basis described in (3) is orthogonal, tr(OiOj) = 2nδi,j

where i = j means that µ(k, i) = µ(k, j) for any qubit k. Every Pauli operator
Oi is such that O2

i = 11n. Apart from the identity 11n, all Oi’s are traceless and
have eigenvalues ±1.

In [11], it is first shown how to partition the set of 4n − 1 non-trivial Pauli
operators {Oi}4

n−1
i=1 into 2n +1 subsets, each containing 2n−1 commuting mem-

bers. Second, each such partitioning is shown to define a maximal mubs. Let us
denote by P b

β = |v(b)
β 〉〈v(b)

β | the projector on the β-th vector in basis Bb. Say-
ing that Bn = {Bi}i is a mubs means that tr(P a

αP b
β) = 2−n when a �= b and

tr(P b
βP b

β′) = δβ,β′. Let (εb,β)b,β be a 2n × 2n matrix consisting of orthogonal
rows, one of which is all +1, and the remaining ones all contain as many +1 as
−1. The b-th partition contains Pauli operators {Ob

β}2
n−1

β=1 such that

Ob
β =

2n∑
α=1

εβ,αP b
α. (4)

In the following, (εβ,α)β,α will always denote the operator 2n/2H⊗n where H⊗n

is the n-qubit Hadamard transform (i.e. εβ,α = (−1)β·α).
The number of partitions {Ob

β}β defined by (4) is 2n + 1 when constructed
from a maximal mubs. Each partition contains 2n− 1 operators after discarding
the identity (they all contain the identity). Each of these operators is traceless
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and has ±1 eigenvalues as for the Pauli operators. It is easy to verify that
for a �= b,

tr
(
Oa

αOb
β

)
=
∑
µ,ν

εα,µεβ,ν tr
(
P a

µP b
ν

)
= 0. (5)

Moreover,

tr
(
Ob

βOb
β′
)

=
∑
µ,ν

εβ,µεβ′,ν tr
(
P b

µP b
ν

)
=

∑
µ

εβ,µεβ′,µ = 2nδβ,β′ . (6)

It follows from (5) and (6) that all operators in (4) are unitarily equivalent to
Pauli operators. This essentially shows that partitioning the Pauli operators the
way we want is always possible.

It remains to argue that any such partitioning defines a maximal mubs.
Notice that partition {Ob

1, . . . , O
b
2n−1} (i.e. without the identity Ob

0) defines a
unique basis {P b

β}β where

P b
β = 2−n

∑
µ

εµ,βOb
µ. (7)

It is not difficult to verify that tr(P b
βP b

β′) = δβ,β′ and for a �= b, tr(P b
βP a

α) = 2−n

thus leading to a maximal mubs.
In other words, there is a one-to-one correspondence between maximal mubss

and the partitionings {{Ob
β}β}b of the 4n − 1 Pauli operators (except the iden-

tity), acting on n qubits, into 2n + 1 partitions {Ob
β}β of 2n − 1 commuting

members. Each partition is a subgroup of the n-qubit Pauli group and is gen-
erated by n of these operators. Any Pauli operator commutes with all other
operators in the partition in which it is, and anti-commutes with exactly half
of the operators, including the identity, in all other partitions. See [11] for more
details.

2.4 The Wn-Cipher

In [8], quantum ciphers based on mubss were introduced and studied with re-
spect to their secret-key uncertainty against known-plaintext attacks. Our qkrs,
presented in Sect. 5.1, uses one of these ciphers, the Wn-cipher, as its main build-
ing block. The Wn-cipher is a (2n, n)-quantum cipher, that is, it encrypts n-bit
classical messages with the help of a 2n-bit secret-key. The Wn-cipher enjoys
perfect privacy when the secret-key is perfectly private. It is easy to verify that
the cipher is ε-private if the secret-key is only ε-close to uniform[17].

Let Bn = {Bb}b∈{0,1}n be a mubs of cardinality 2n for Hn. Remember that
|v(b)

w 〉 denotes the w-th basis state in basis Bb ∈ B. The secret-key k for the Wn-
cipher is conveniently written as k = (z, b) where z, b ∈R {0, 1}n. Encryption
according secret-key k = (z, b) of message x ∈ {0, 1}n consists in preparing the
following state:

Ek|x〉 = E(z,b)|x〉 =
∣∣∣v(b)

x⊕z

〉
∈ Bb.
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In other words, the encryption process first one-time pad message x with key z
before mapping the resulting state to basis Bb. Encryption and decryption can
be performed efficiently on a quantum computer[20,8].

3 Key-Recycling Schemes

A qkrs is an encryption scheme with authentication. In addition, there are
two key-recycling mechanisms, Rn,s

ok and Rn,t
no , allowing one to recycle part of

the secret-key shared between Alice and Bob in case where the authentication
succeeds and fails respectively. We model the recycling mechanism by privacy
amplification. That is, Rn,s

ok and Rn,t
no are classes of hashing functions mapping

the current key k ∈ {0, 1}n into a recycled key k̂ of length s and t respectively.
In order to apply privacy amplification, an authentic classical feedback chan-
nel is necessary for announcing Bob’s random recycling function R ∈R Rn,s

ok or
R ∈R Rn,t

no depending on the outcome of authentication. Alice and Bob then
compute k̂ = R(k) as their recycled secret-key. We do not allow further inter-
action between Alice and Bob since otherwise quantum key distribution could
take place between them allowing not only to recycle their secret-key but even
to increase its length. Key-recycling should be inherently non-interactive from
Bob to Alice since the authentication outcome should anyway be made available
to Alice. For simplicity, we assume that the classical feedback channel between
Bob and Alice is authenticated. In general, a small secret key could be used for
providing classical message-authentication on the feedback channel.

Definition 2. A (n, m, s, t)-qkrs is defined by a pair (Cm,n, (Rn,s
ok , Rn,t

no )) where

– Cm,n is a (m, n)-quantum cipher, and
– (Rn,s

ok , Rn,t
no ) is a key-recycling mechanism.

In this paper, the privacy of the recycled key is characterized by its distance
from uniform. In [17], it is shown that when the distance is negligible, the key
behaves as a perfectly private key except with negligible probability. It follows
that the application is composable provided the adversary is static[14,17,3].

For a qkrs to be secure, we require that even knowing the plaintext, the
function R, and the authentication outcome, the adversary’s view about the
recycled key is at negligible distance from uniform. This should hold except for a
negligible number of functions in Rn,s

ok and Rn,t
no . Security against known plaintext

attacks is an important property of good key-recycling mechanisms. Otherwise,
extra conditions on the a posteriori probability distribution over plaintexts have
to be enforced. In particular a recycled key could be compromised if a previous
plaintext gets revealed to the adversary.

The adversary’s view typically changes depending on whether the authentica-
tion succeeds or fails. Let Aok (resp. Ano) be the event consisting in a successful
(resp. unsuccessful) authentication. Conditioned on Aok, the adversary should
have access only to very limited amount of information about the secret-key.
The better the authentication scheme is, the more key material the recycling
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mechanism can handle. When Ano occurs, however, the adversary may hold the
entire cipherstate. Let K be the random variable for the secret-key. Let ρ(x)
be the random state corresponding to the adversary’s view on an encryption of
classical message x using a random key. We denote by [ρok(x)] = [ρ(x)|Aok] and
[ρno(x)] = [ρ(x)|Ano] the random state ρ(x) conditioned on the event Aok and
Ano respectively.

Definition 3. A key-recycling mechanism (Rn,s
ok , Rn,t

no ) is (δok, δno)-indistinguish-
able if for all x ∈ {0, 1}m:

1. d(R(K)|ρok(x) ⊗ {R}) ≤ δok (where R ∈R Rn,s
ok ), and

2. d(R(K)|ρno(x)⊗ {R}) ≤ δno (where R ∈R Rn,t
no ).

For δok,δno negligible functions of n, we say that the key-recycling mechanism is
statistically indistinguishable. The class of key-recycling functions Rn,s

ok or Rn,t
no

is said to be δ-indistinguishable if condition 1 or 2 respectively holds relative
to δ.

Finally, a qkrs is secure if it is a private encryption scheme together with a
statistically indistinguishable key-recycling mechanism. In general,

Definition 4. A (n, m, s, t)-qkrs defined by (Cm,n, (Rn,s
ok , Rn,t

no )) is (ε, δok, δno)-
secure if

1. Cm,n is ε-private,
2. when no eavesdropping occurs the key-recycling mechanism Rn,s

ok is used, and
3. (Rn,s

ok , Rn,t
no ) is a (δok, δno)-indistinguishable key-recycling mechanism.

If the scheme is such that ε, δok, and δno are all negligible functions of n then we
say that the scheme is statistically secure.

The efficiency of a qkrs is characterized by n, s and t. When authentication
succeeds n−s bits of secret-key must be thrown away while, when authentication
fails, n−t have to be discarded. Clearly, any purely classical key-recycling scheme
must have s, t ≤ n − m. This does not have to hold for quantum schemes.
However, we show next that quantum schemes suffer the same restrictions as
classical ciphers when authentication fails.

4 Upper Bound on Key-Recycling

In this section, we show that any statistically secure qkrs must discard as many
key-bits as the length of the plaintext (minus one bit) when the authentication
fails. In other words, when authentication fails no qkrs does better than the
classical one-time-pad.

When authentication fails, the adversary may have kept the entire ciphertext
and may know the plaintext x ∈ {0, 1}m. On the other hand, condition 2 in
Definition 3 requires that the key-recycling mechanism satisfies d(R(K)|ρno(x)⊗
{R}) ≤ δ(n) where δ(n) is negligible and R ∈R Rn,t

no . Using (1), it follows that

D([{R(K)} ⊗ ρno(x)⊗ {R}], [{U}]⊗ [ρno(x) ⊗ {R}]) ≤ δ(n). (8)
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The density operator ρno(k̂, x, R) = [ρno(x)|R(K) = k̂] corresponds to the ad-
versary’s view when the plaintext is x, the recycled key is k̂ ∈ {0, 1}t, and the
privacy amplification function is R ∈ Rn,t

no . We have that,

ρno(k̂, x, R) =
∑

k:R(k)=k̂

1

#R−1(k̂)
Ek|x〉〈x| ⊗ |0〉〈0|E†

k. (9)

For convenience, we define ρno(k̂, x) = 1
#Rn,t

no

∑
R∈Rn,t

no
ρno(k̂, x, R)⊗ |R〉〈R|. If a

key-recycling scheme is statistically indistinguishable then for a negligible func-
tion δ(n),

δ(n) ≥ d(R(K)|ρno(x)⊗ {R}) (10)

= D

∑
k̂

pK̂(k̂)
∣∣∣k̂〉〈k̂

∣∣∣⊗ ρno(k̂, x), It ⊗
∑

k̂

pK̂(k̂)ρno(k̂, x)

 (11)

≥ 1
#Rn,t

no

∑
R

∑
k̂

2−n#R−1(k̂)D(ρno(k̂, x, R), ρx), (12)

where (10) follows by definition of statistical indistinguishability, and (11) is
obtained using (8) and (9). The last step follows from the fact that D(ρ, σ) =
max{Em}m

D(p(m), q(m)) where the maximum is computed over all POVMs
{Em}m and p(m) = tr(ρEm), q(m) = tr(σEm) are probability distributions for
the outcomes of {Em}m when applied to ρ and σ respectively (see for example
Theorem 9.1 in [15]). In order to get (12) from (11) one only has to consider
a POVM that first measures R and k̂ before performing the POVM {E′

m}m

(depending on R and k̂) on the residual state that satisfies D(ρno(k̂, x, R), ρx) =
d(p′(m), q′(m)).

It can be shown that for t ≥ n−m+2, (12) implies the existence of R ∈ Rn,t
no

and k̂0 ∈ {0, 1}t such that #R−1(k̂0) ≤ 2m−1 and D(ρno(k̂0, x, R), ρx) ≤ c for
any constant 0 < c ≤ 1. Moreover, since the cipher is statistically private, there
exists a negligible function ε(n) such that,

D(ρno(k̂0, x, R), ξ) ≤ D(ξ, ρx) + D(ρx, ρno(k̂0, x, R)) ≤ ε(n) + c. (13)

On the other hand, an argument along the lines of the proof of Lemma IV.3.2
in [5] allows us to conclude that when #R−1(k̂0) ≤ 2m−1, D(ρno(k̂0, x, R), ξ) ≥
1/2 which contradicts (13) when c < 1/2 and ε(n) is negligible (see Lemma 3 in
[9]). Next Theorem, proven in [9], follows:

Theorem 1 (Key-Recycling Bound). Any statistically secure (n, m, s, t)-
qkrs is such that t ≤ n−m + 1.

We believe that a more careful analysis would show that statistically secure
(n, m, s, t)-qkrs must satisfy t ≤ n − m. Theorem 1 implies that in order to
recycle more secret-key bits than any classical scheme, quantum ciphers must
provide authentication. It is only when the authentication succeeds that a qkrs
may perform better than classical ones.
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5 A Near Optimal Quantum Key-Recycling Scheme

We introduce a qkrs, called WnCm, that recycles an almost optimal amount
of key material. Moreover, the key-recycling mechanism does not use privacy
amplification. Deterministic functions are sufficient to guarantee the statistical
indistinguishability of the recycled key. The scheme is introduced in Sect. 5.1.
In Sect. 5.2 we present an EPR-version of the scheme and we prove it secure. In
Sect. 5.3 we reduce the security of WnCm to that of the EPR-version.

5.1 The Scheme

The WnCm-cipher encrypts a message together with its Wegman-Carter one-time
authentication tag[6] using the Wn-cipher[8]. We need an authentication code
constructed from xor-universal classes of hash-functions:

Definition 5 ([6]). An xor-universal family of hash-functions is a set of func-
tions Hm,µ = {hu : {0, 1}m → {0, 1}µ}u such that for all a �= b ∈ {0, 1}m and
all x ∈ {0, 1}µ, #{h ∈ Hm,µ|h(a)⊕ h(b) = x} = #Hm,µ

2µ .

There exists an xor-universal class of hash-functions H⊕
m,µ (for any m ≥ µ) that

requires only m bits to specify and such that picking a function at random can
be done efficiently.

For the transmission of m-bit messages, WnCm requires Alice and Bob to
share a secret-key of size N = 2n + m bits where n = m + �(m), and �(m) ∈
Ω(m) is the size of the Wegman-Carter authentication tag. We denote secret-
key k by the triplet: k = (z, b, u) where z, b ∈ {0, 1}n is the key for the Wn-
cipher and u ∈ {0, 1}m is the description of a random function hu ∈ H⊕

m,�(m).
Encrypting message x ∈ {0, 1}m is performed by first computing the Wegman-
Carter one-time authentication tag hu(x). The message (x, hu(x)) ∈ {0, 1}n is
then encrypted using the Wn-cipher with secret-key (z, b). Bob decrypts the
Wn-cipher and verifies that a message of the form (x, hu(x)) is obtained. Bob
announces to Alice the outcome of the authentication using the authenticated
feedback channel. When it is successful, Alice and Bob recycle the whole secret-
key. If the authentication fails then Alice and Bob throw away the one-time-pad
z. The remaining part (b, u) is entirely recycled. In other words, RN,s

ok is the
identity with s = N and RN,t

no is deterministic with t = N −n = N −m− �(m).
It is almost straightforward to show that our key-recycling function is per-

fectly indistinguishable when authentication fails.

Lemma 2. Let N = 2n + m where n = m + �(m),�(m) > 0 be the key-length
used in WnCm and let R(z, b, u) = (b, u) for z, b ∈ {0, 1}n and u ∈ {0, 1}m. The
key-recycling mechanism RN,N−n

no = {R} is 0-indistinguishable.

Proof. Since ρno((b, u), x, R) = In = ρno((b′, u′), x, R) for all (b, u),(b′, u′), and
x, it easily follows that d(R(K)|ρno(x) ⊗ {R}) = 0. �
Since WnCm encrypts m-bit messages and recycles N −n bits of key, the scheme
is sub-optimal according Theorem 1. In the next sections, we see that WnCm

remains statistically secure for any �(m) ∈ Ω(m). It follows that although sub-
optimal, WnCm is nearly optimal.
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Private-Key: (z, b, u) ∈R {0, 1}2n+m where n = m + �(m).

1. Alice creates the message c = (x, hu(x)) where hu ∈ H⊕
m,�(m). She then

encrypts this message with key (z, b) according to the Wn-cipher.
2. Bob decodes the received Wn-cipher with key (z, b) and gets c′ = (x′, t′).

He then verifies the authentication tag t′ = hu(x′). Bob sends the result
of the test to Alice through a classical authentic channel.

3. [Key-Recycling] If Bob accepts then Alice and Bob recycle the entire
key (b, z, u). If Bob rejects then Alice and Bob recycle (b, u) and throw
away z ∈ {0, 1}n.

Fig. 1. The WnCm

5.2 An EPR Variant of WnCm

We establish the security of the key-recycling mechanism in WnCm when the au-
thentication is successful. We prove this case using a Shor-Preskill argument[18]
similar to the ones invoked in [16] and [2] for key-recycling and quantum au-
thentication respectively.

We first define a variant of WnCm, called epr-WnCm, using EPR-pairs and
having access to an additional authenticated and private classical channel. The
key-recycling mechanism of epr-WnCm can be proven secure more easily since
it has access to more powerful resources. Second, we show that the security of
WnCm follows from the security of epr-WnCm.

In epr-WnCm, Alice and Bob initially share an n-bit key b, and an m-bit
key u. They agree on 2n mutually unbiased bases in Hn, and a family of xor-
universal hash-functions H⊕

m,µ = {hu}u∈{0,1}m . As for WnCm, the key b is used
to select in which of the bases of the mubs the encryption will take place. The
key u indicates the selection of the hash-function for authentication. The key
z in epr-WnCm is not shared beforehand but will be implicitly generated by
measuring the shared EPR-pairs. This corresponds to refreshing z before each
round of epr-WnCm.

In order for Alice to send classical message x ∈ {0, 1}m to Bob, Alice and
Bob proceeds as described in Fig. 2. The key-recycling mechanism of epr-WnCm

only takes place when authentication succeeds. The quantum transmission in
WnCm is replaced by transmitting half of a maximally entangled state consisting
of n EPR-pairs.

|Ψ〉 =
∑

x∈{0,1}n

2−n/2|x〉A|x〉B =
∑

x∈{0,1}n

2−n/2
∣∣∣ξ(b)

x

〉A∣∣∣v(b)
x

〉B

, (14)

for some orthonormal basis {|ξ(b)
x 〉}x.
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Private-Key: (b, u) ∈R {0, 1}n+m.

1. Alice prepares the n EPR-pairs in state |Ψ〉AB .
2. Alice sends the B-register to Bob.
3. Bob acknowledges receiving the state using the classical authentic feedback

channel.
4. Alice measures her A-register in basis {|ξ(b)

c 〉}c∈{0,1}n (See (14)). On clas-
sical outcome c, she computes z := c ⊕ (x, hu(x)).

5. Alice sends z to Bob through the additional private and authenticated
classical channel.

6. Bob measures his B-register in the b-th basis of the mubs, gets outcome c′,
and computes (x′, t′) = c′ ⊕ z. Bob verifies that t′ = hu(x′) and announces
the result to Alice through the classical authenticated feedback channel.

7. If Bob accepts, Alice and Bob recycle the whole key (b, u).

Fig. 2. The epr-WnCm-cipher using an extra private and authentic classical channel

Any trace-preserving operator the adversary can apply to Bob’s half EPR-
pairs can be described in terms of the 4n Pauli operators,

ρ̂ = E(|Ψ〉〈Ψ |) =
4n−1∑
i=0

4n−1∑
j=0

cicj(11n ⊗Oi)|Ψ〉〈Ψ |(11n ⊗Oj)†, (15)

where O0 = 11n. We can split (15) into the case where the error leaves the state
untouched, and the case where the state is changed

ρ̂ = |c0|2|Ψ〉〈Ψ |+ (1− |c0|2)ρb,u
E , (16)

where ρb,u
E =

∑
(i,j) �=(0,0)

cicj

(1−|c0|2) (11n ⊗ Oi)|Ψ〉〈Ψ |(11n ⊗ Oj)†, and |c0|2 is the
probability that the state is left unchanged by E.

The idea behind the security of the key-recycling mechanism is that an eaves-
dropper, performing any non-trivial action upon Bob’s system, will fail authen-
tication with high probability. Any eavesdropping strategy that remains unde-
tected with a not too small probability is such that |c0|2 is at negligible distance
from 1. This means that the ciphertext will be left untouched with probability
essentially 1. In other words the probability of being detected is closely related
to 1− |c0|2.

The probability that Bob will accept the authentication tag, when Alice and
Bob share key (b, u) can be expressed by the observable projecting onto the space
of states where Alice has her untouched EPR-halves, and Bob has anything that
passes the authentication test:

Πb,u
Acc =

∑
z∈{0,1}n

∑
x̂∈{0,1}m

∣∣∣ξ(b)
ez,u(x)

〉〈
ξ
(b)
ez,u(x)

∣∣∣⊗ ∣∣∣v(b)
ez,u(x̂)

〉〈
v
(b)
ez,u(x̂)

∣∣∣, (17)
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where ez,u(x) = z⊕ (x, hu(x)). The probability that Bob will accept the authen-
tication, when using key (b, u), is pb,u

Acc = tr(Πb,u
Accρ̂).

As mentioned in Sect. 2.3, all 4n− 1 Pauli operators (excluding the identity)
are partitioned into 2n + 1 sets, each containing 2n − 1 commuting members.
Each operator, Oi, appearing in (15), will be in one of the 2n + 1 partitions
(i.e. which each forms a subgroup). In the partition or basis where an error
operator Oi belongs, its action will leave all cipherstates unchanged. For each
other 2n basis b, Oi will anti-commute with exactly half the operators (including
the identity). This means that in basis b, the action of Oi permutes the basis
vectors. Since this permutation is independent of the authentication code, we
can show that the probability for Oi to remain undetected is negligible when the
class of Wegman-Carter authentication functions is xor-universal. Let ρ̂b,u

Acc be
the normalized state conditioned on Aok defined as,

ρ̂b,u
Acc =

Πb,u
Accρ̂Πb,u

Acc

tr
(
Πb,u

Accρ̂
) . (18)

We are going to estimate the average fidelity2 of ρ̂b,u
Acc to the ideal state |Ψ〉〈Ψ |.

To do so we split ρ̂ according to (16) and use the concavity of the fidelity,
F (ρ̂b,u

Acc, |Ψ〉〈Ψ |) ≥
|c0|2

pb,u
Acc

. Applying (16) to pb,u
Acc, gives us

F (ρ̂b,u
Acc, |Ψ〉〈Ψ |) ≥

|c0|2

|c0|2 + (1− |c0|2) tr
(
Πb,u

Accρ
b,u
E

) .

To lower bound the average fidelity,
∑

b,u 2−n−mF (ρ̂b,u
Acc, |Ψ〉〈Ψ |). We split the

sum into keys (bases and authentication keys) for which tr(Πb,u
Accρ

b,u
E ) is small,

and keys for which this probability is large. We know from the previous argument,
that the probability of accepting a non-trivial error will be small in most bases,
and indeed the terms with tr(Πb,u

Accρ
b,u
E ) negligible compared to |c0|2 give the

main contribution to the fidelity.
In summary, an undetected attack is almost always trivial since it corresponds

to the case where no eavesdropping occurred. Next Theorem, proven in [9], gives
the desired result.

Theorem 2. For all adversary strategies for which pAcc ≥ 2−(n−m−2)/2+1,∑
b∈{0,1}n

∑
u∈{0,1}m

2−n−mF
(
ρ̂b,u
Acc, |Ψ〉〈Ψ |

)
≥ 1− 2−

n−m−2
4 +1,

provided n is sufficiently large.

Let ρepr
ok (x) be the random state corresponding to the adversary’s view in

epr-WnCm given Aok. Let K = (B, U, Z) be the random variable describing the

2 Where the fidelity F (ρ̂b,u
Acc, |Ψ〉〈Ψ |) = 〈Ψ |ρ̂b,u

Acc|Ψ〉.
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key (b, u) ∈ {0, 1}n × {0, 1}m, and z ∈ {0, 1}n computed from the measurement
outcome. Using the same line of arguments as [3] (for completeness, the proof
can be found in [9]), Theorem 2 implies that:

Theorem 3. For all adversary strategies for which pAcc ≥ 2−(n−m−2)/2+1,

d(K|ρepr
ok (x)⊗ {R}) ≤ 2−

(n−m−2)
8 +1,

provided n is sufficiently large.

5.3 Back to WnCm

We now show that Theorem 3 also applies to WnCm. Similarly to other Shor-
Preskill arguments[18,2,16], we transform epr-WnCm into WnCm by simple mod-
ifications leaving the adversary’s view unchanged.

In Step 4 of epr-WnCm, Alice measures her part of the entangled pair in
order to extract c ∈ {0, 1}n. Instead, she could have measured already in Step 1
since the measurement commutes with everything the adversary and Bob do
up to Step 4. Measuring half the EPR-pairs immediately after creating them is
equivalent to Alice preparing c ∈R {0, 1}n before sending |v(b)

c 〉 in Step 2.
Instead of picking c ∈R {0, 1}n in Step 1, Alice could choose z ∈R {0, 1}n

at random before sending |v(b)
z⊕(x,hu(x))〉 to Bob. All these modifications change

nothing to the adversary’s view.
Now, sending z through the private and authenticated classical channel in

Step 5 becomes unnecessary if Alice and Bob share z before the start of the
protocol (thus making z part of the key). We have now removed the need for the
private and authenticated classical channel.

The resulting protocol is such that Bob first acknowledges receiving the ci-
pher, then measures it, and finally replies with either accept or reject. The ac-
knowledgment of Step 3 is unnecessary and can safely be postponed to Bob’s
announcement in Step 6. The epr-WnCm-cipher has now been fully converted
into the WnCm-cipher without interfering with the eavesdropper’s view. It follows
directly that Theorem 3 also applies to WnCm.

Theorem 3 shows that one use of the WnCm-cipher leaves the secret-key at
negligible distance from uniform when it was initially 0-indistinguishable. In
general, if a random variable K is at distance no more than ε from uniform then
K behaves exactly like a uniform random variable except with probability at
most ε[17]. Our main result follows:

Theorem 4 (Main Result). Let n = m + �(m). For all adversary strategies
the WnCm-cipher used with an initial ε-indistinguishable private-key satisfies,

1. either d(K|ρok(x) ⊗ {R}) ≤ ε + 2−
�(m)−2

8 +1 or pAcc ≤ 2−(�(m)−2)/2+1,
2. d(K|ρno(x)⊗ {R}) ≤ ε,

provided n is sufficiently large.
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In other words, the key-recycling mechanism is statistically indistinguishable
when �(m) ∈ Ω(m). It follows that, when starting from a statistically indis-
tinguishable secret-key, key-recycling can take place exponentially many times
without compromising the statistical indistinguishability of the resulting key.
As mentioned in Sect. 3, Theorem 4 and the discussion in [17] imply that the
WnCm-cipher is universally composable against static adversaries.

6 Conclusion and Open Questions

We have shown that the WnCm-cipher is an almost optimal key-recycling cipher
with one-bit feedback. There are many possible improvements of our scheme.
In this paper, we assume noiseless quantum communication. This is of course
an unrealistic assumption. Our scheme can easily be made resistant to noise by
encoding the quantum cipher using a quantum error-correcting code. Since a
quantum error-correcting code is also a secret-sharing[7], it can be shown that
when authentication succeeds almost no information about the cipherstate is
available to the eavesdropper. On the other hand, if the eavesdropper gains
information about the cipherstate then authentication will fail similarly to the
case where no error-correction is used.

It would be interesting to show that the key recycling bound(i.e. Theorem
1) can be improved to t ≤ n−m (instead of n−m + 1) as for classical schemes.
It is an open question whether there exists a qkrs achieving this upper bound.

It is also possible to allow for more key-recycling mechanisms associated to
different output values for the authentication process. Such a generalized scheme
would allow to recycle key-material as a function of the adversary’s available
information but would require more than one-bit feedback.

It is easy to see that the WnCm-cipher can be used as a re-usable quantum
authentication scheme when authentication succeeds. Our construction (using
mubss) is different than the ones based on purity testing codes[2] and may be
of independent interest.
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Abstract. At Eurocrypt ’03, Goh and Jarecki showed that, contrary
to other signature schemes in the discrete-log setting, the EDL signa-
ture scheme has a tight security reduction, namely to the Computational
Diffie-Hellman (CDH) problem, in the Random Oracle (RO) model. They
also remarked that EDL can be turned into an off-line/on-line signature
scheme using the technique of Shamir and Tauman, based on chameleon
hash functions.

In this paper, we propose a new signature scheme that also has a tight
security reduction to CDH but whose resulting signatures are smaller
than EDL signatures. Further, similarly to the Schnorr signature scheme
(but contrary to EDL), our signature is naturally efficient on-line: no ad-
ditional trick is needed for the off-line phase and the verification process
is unchanged.

For example, in elliptic curve groups, our scheme results in a 25% im-
provement on the state-of-the-art discrete-log based schemes, with the
same security level. This represents to date the most efficient scheme of
any signature scheme with a tight security reduction in the discrete-log
setting.

Keywords: Public-key cryptography, signature schemes, discrete loga-
rithm problem, Diffie-Hellman problem, EDL.

1 Introduction

In a signature scheme, a party, called signer, generates a signature using his own
private key so that any other party, called verifier, can check the validity of the
signature using the corresponding signer’s public-key. Following the IEEE P1363
standard [P1363], there are two main settings commonly used to build signature
schemes: the integer factorization setting and the discrete logarithm setting.

A signature scheme should protect against impersonation of parties and alter-
ation of messages. Informally, the security is assessed by showing that if an adver-
sary can violate one of the two previous properties then the same adversary can
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also break the underlying cryptographic problem — for example, the integer fac-
torization problem, the RSA problem [RSA78], the discrete logarithm problem or
the Diffie-Hellman problem [DH76]. As the cryptographic problem is supposed to
be intractable, no such adversary exists. This methodology for assessing the se-
curity is called security reduction. The “quality” of the reduction is given by the
success probability of the adversary against a signature scheme to break the un-
derlying intractable problem. A security reduction is said tight when this success
probability is close to 1; otherwise it is said close or loose [MR02]. This notion of
tightness is very important, and allows to distinguish between asymptotic security
and exact security, the first one meaning that a scheme is secure for sufficiently
large parameters, while the second one means that the underlying cryptographic
problem is almost as hard to solve as the scheme to break.

The first efficient signature scheme tightly related to the RSA problem is
due to Bellare and Rogaway [BR96]. The security stands in the Random Ora-
cle (RO) model [BR93] where hash functions are idealized as random oracles.
Their scheme, called RSA-PSS, appears in most recent cryptographic standards.
Other RSA-based signature schemes shown to be secure in the standard model
include [GHR99] and [CS00].

Amongst the signature schemes based on the discrete logarithm problem
(or on the Diffie-Hellman problem), we quote the ElGamal scheme [ElG85], the
Schnorr scheme [Sch91], and the Girault-Poupard-Stern scheme [Gir91, PS98].
The security of these schemes is assessed (in the RO model) thanks to the forking
lemma by Pointcheval and Stern [PS96]. Basically, the idea consists in running
the adversary twice with different hash oracles so that it eventually gets two
distinct valid forgeries on the same message. The disadvantage of the forking
lemma technique is that the so-obtained security reductions are loose.

Even if the security reductions are loose, those signature schemes present
the nice feature that there are very efficient on-line [FS87] compared to RSA-
based signature schemes. In the off-line phase, the signer precomputes a quantity
(independent of the message) called a coupon that will be used in the on-line
phase to produce very quickly a signature on an arbitrary message.

To date, the only signature scheme whose security is tightly related to the
discrete logarithm problem or to the Diffie-Hellman problem (in the RO model)
is EDL, a scheme independently considered in [CP92] and [JS99]. Indeed, at
Eurocrypt ’03, Goh and Jarecki [GJ03] showed that the security of EDL can
be reduced in a tight way to the Computational Diffie-Hellman (CDH) problem.
Its on-line version as suggested in [GJ03] requires the recent technique by Shamir
and Tauman [ST01] based on chameleon hash functions [KR00] and so is not as
efficient as the aforementioned signature schemes: the resulting signatures are
longer and the verification is slower.

It is to note that EDL was recently modified by Katz and Wang [KW03]
into a scheme with shorter signatures and a tight security reduction but on a
stronger assumption, namely the Decisional Diffie-Hellman (DDH) assumption.
In the same paper, Katz and Wang also proposed an improvement to EDL, that
uses a single bit instead of a long random, and which has a tight reduction to
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the CDH problem. The cost of this nice improvement is simply a decrease of the
security parameter of one bit.

To finalize the related work part, we stress that the shortest signature scheme
that is known today is a scheme of Boneh, Lynn and Shacham [BLS04]. This
scheme is loosely related to the CDH problem, but gives very short signatures,
as it consists in only one single group element. However, this scheme is limited
to certain elliptic and hyper-elliptic curve groups, and so less general than EDL.
Furthermore, the on-line version of the Boneh-Lynn-Shacham signature scheme
requires the technique by Shamir and Tauman, which doubles the size of the
signature, and hence is less interesting.

Our Contribution. In this paper, we firstly review the definition of EDL,
its proof by Goh and Jarecki, and the scheme of Katz and Wang. Secondly,
we propose a new signature scheme which, similarly to EDL, features a tight
security reduction relatively to the CDH problem but whose resulting signatures
are smaller than EDL signatures. Furthermore, contrary to EDL, no additional
trick is needed to turn our signature scheme in an off-line/on-line version.

Notably, in elliptic curve settings, our scheme supersedes other discrete loga-
rithm based schemes with same security level, as it uses signatures that are 25%
smaller.

Organization of the Paper. The rest of this paper is organized as follows.
In the next section, we give some background on signature schemes and provide
a brief introduction to “provable” security. Then, in Section 3, we review the
EDL signature scheme and its proof by Goh and Jarecki. Section 4 is the core of
our paper. We describe our signature scheme, prove that its security is tightly
related to CDH in the RO model and show how it outperforms EDL. Finally,
we conclude in Section 5.

2 Definitions

In this section, we remind some background on signature schemes and on their
security. We also define the Diffie-Hellman and the discrete logarithm problems.
We then provide a brief introduction to provable security. Finally, we review the
concept of on-the-fly signatures.

2.1 Signature Schemes

A signature scheme Sig = (GenKey,Sign,Verify) is defined by the three
following algorithms:

– The key generation algorithm GenKey. On input 1k, algorithm GenKey
produces a pair (pk, sk) of matching public (verification) and private (signing)
keys.

– The signing algorithm Sign. Given a message m in a set of messages M
and a pair of matching public and private keys (pk, sk), Sign produces a
signature σ. The signing algorithm can be probabilistic.
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– The verification algorithm Verify. Given a signature σ, a message m ∈M
and a public key pk, Verify tests whether σ is a valid signature of m with
respect to pk.

Several security notions have been defined about signature schemes, mainly
based on the seminal work of Goldwasser, Micali and Rivest [GMR84, GMR88].
It is now customary to ask for the impossibility of existential forgeries, even
against adaptive chosen-message adversaries:

– An existential forgery is a new message-signature pair, valid and generated
by the adversary. The corresponding security notion is called existential un-
forgeability (EUF).

– The verification key is public, including to the adversary. But more infor-
mation may also be available. The strongest kind of information is definitely
formalized by the adaptive chosen-message attacks (CMA), where the at-
tacker can ask the signer to sign any message of its choice, in an adaptive
way.

As a consequence, we say that a signature scheme is secure if it prevents existen-
tial forgeries, even under adaptive chosen-message attacks (EUF-CMA). This is
measured by the following success probability, which should be negligibly small,
for any adversary A which outputs a valid signature σ on a message m that
was never submitted to the signature oracle, within a “reasonable” bounded
running-time and with at most qs signature queries to the signature oracle:

Succeuf−cma
Sig (A, qs) = Pr

[
(pk, sk) ← GenKey(1k), (m, σ) ← ASign(sk;·)(pk) :

Verify(pk; m, σ) = True

]
.

In the random oracle model [BR93], adversary A has also access to a hash
oracle: A is allowed to make at most qh queries to the hash oracle.

2.2 The Diffie-Hellman and the Discrete Logarithm Problems

The security of signature schemes relies on problems that are supposed in-
tractable, such as the Diffie-Hellman problem [DH76] or the discrete logarithm
problem.

Let G be a (multiplicatively written) abelian group. Given an element g ∈ G
of prime order q, we let Gg,q ⊆ G denote the cyclic group generated by g, i.e.,
Gg,q = {gi, i ∈ Zq}.

Let x be a random number in Zq. Define y = gx. Being given (g, y), the
discrete logarithm problem in Gg,q is defined as finding the value of x. In this
paper, the discrete logarithm of y w.r.t. g will be denoted as DLg(y) = x. On
the other hand, being given (g, y, ga), for an unknown random number a in Zq,
the (computational) Diffie-Hellman problem is defined as returning gax = ya.

For cryptographic applications, group Gg,q is chosen so that the problems are
(supposed) hard. A classical example is to choose Gg,q ⊆ Fp

∗, where q divides
(p− 1). Another widely used group family is the one of elliptic curves over finite
fields [Mil85, Kob87, BSS99].
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There are plenty of such signature schemes, including the schemes by ElGa-
mal [ElG85], Girault-Poupard-Stern [Gir91, PS98], Schnorr [Sch91], and particu-
lary the one we are interested in this paper, the EDL scheme [CP92, JS99, GJ03].

2.3 Security Reduction and Provable Security

Today, schemes are “proved” secure, using what is called a reduction. For this rea-
son, some authors prefer to use the term of reductionist security (e.g., [KM04])
instead of provable security.

Basically, the idea is to prove that a scheme is secure by exhibiting a machine
(the so-called reduction) that uses a chosen-message attacker on a given signature
scheme, in order to solve a hard cryptographic problem. In the standard model,
the attacker is used by simulating signature queries on qs chosen-messages. In
addition, in the random oracle mode, the simulator also simulates hash queries
on qh chosen data.

Two classes of provably secure signature schemes can be distinguished. The
first class of provable signature schemes proposes reductions that are said loose,
as they can turn an attacker into a machine to solve the cryptographic problem
asymptotically. The second class of provable signature schemes features so-called
tight reductions, using the attacker to solve the problem with almost the same
probability.

Of course, tightly secure schemes are the preferred ones, but there are just
few of them. Notably, RSA-PSS and its derivatives are tightly related to the
RSA problem [RSA78, BR96, Cor02], and Rabin-PSS is equivalent to the fac-
torisation problem [Rab79]. For a long time, no tightly secure schemes were
known, based on the Diffie-Hellman or discrete logarithm problems, but only
loosely secure schemes, as their security was shown thanks to the forking lemma
technique by Pointcheval and Stern [PS96]. Proved recently at Eurocrypt ’03,
the EDL scheme is the first tight secure scheme, based on the computational
Diffie-Hellman problem.

2.4 Signature with Coupons

Some signature schemes have the nice feature that one can precompute (off-line)
some quantities, independent from the messages, called coupons, and use them
in a very fast way to generate signatures once the message is received [FS87].
Such signature schemes are also known as on-the-fly signature schemes.

This coupon technique is very useful, especially in constrained environments
such as smart cards and finds numerous applications. Most signature schemes
based on discrete logarithm or Diffie-Hellman problems allow the use of coupons.
However, as previously explained, they do not offer a tight security reduction. To
our knowledge, the only exception is the EDL signature scheme using a technique
proposed by Shamir and Tauman, based on chameleon hashes by Krawczyk and
Rabin [ST01, KR00]. However, this use of chameleon hashes is at the price of
a slower verification, as the verifier must compute chameleon hashes (which are
multi-exponentiations) before verifying the signature.
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3 The EDL Signature

3.1 The Scheme

The EDL signature scheme, independently proposed in [CP92, JS99], is defined
as follows.

Global set-up: Let �p, �q, and �r denote security parameters.1 Let also a cyclic
group Gg,q of order q, generated by g, where q is a �q-bit prime and the
representation of the elements of Gg,q is included in {0, 1}�p. Finally, let two
hash functions, H :M×{0, 1}�r → Gg,q and G : (Gg,q)6 → Zq.

Key generation: The private key is a random number x ∈ Zq. The correspond-
ing public key is y = gx.

Signature: To sign a message m ∈ M, one first randomly chooses r ∈ {0, 1}�r ,
and computes h = H(m, r) and z = hx. Follows a proof of logarithm equality
that DLh(z) = DLg(y): for a random number k ∈ Zq, one computes u = gk,
v = hk, c = G(g, h, y, z, u, v) and s = k + cx mod q. The signature on m is
σ = (z, r, s, c).

Verification: To verify a signature σ = (z, r, s, c) ∈ Gg,q×{0, 1}�r× (Zq)2 on a
message m ∈ M, one computes h′ = H(m, r), u′ = gs y−c and v′ = h′s z−c.
The signature σ is accepted iff c = G(g, h′, y, z, u′, v′).

In EDL, the only quantity that can be precomputed in off-line signature
phase is u. The on-line part is so two hash function evaluations plus two modular
exponentiations.

3.2 Security of EDL

In this section, we just remind that the security of EDL reduces to the security
of the computational Diffie-Hellman problem. The proof basically shows that
the EDL scheme is a proof that DLh(z) = DLg(y) = x. We refer to [GJ03] or
to the full version of this paper [Che05] for more details.

Theorem 1 ([GJ03]). Let A be an adversary which can produce, with
success probability ε, an existential forgery under a chosen-message attack
within time τ , after qh queries to the hash oracles and qs queries to the
signing oracle, in the random oracle model. Then the computational Diffie-
Hellman problem can be solved with success probability ε′ within time τ ′,
with

ε′ ≥ ε− qs

(
qs + qh

q2 +
qs + qh

2�r

)
−qh

q

and
τ ′ � τ + (6qs + qh)τ0

where τ0 is the time for an exponentiation in Gg,q.

1 For normal use-cases, �r ≤ �q.
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3.3 Features of the EDL Signature

The EDL signature scheme is proven secure relatively to the computational
Diffie-Hellman problem, with a tight reduction. Hence, its security is a strong
point.

The scheme yields signatures of (�p+2�q+�r) bits. This may appear somewhat
long but actually it is not, given such a strong security.2

In its classical use, the scheme cannot be used with coupons, but, as noted by
Goh and Jarecki, one can use the technique of [ST01] based on chameleon hash
functions [KR00] to transform this signature into a signature with coupons, what
we will call EDL-CH in the sequel. Producing a EDL-CH signature forgery is
equivalent to produce a signature forgery in the regular EDL signature scheme, or
to find a collision in the chameleon hash function. Hence, the natural way to get a
signature with coupons and with a tight security reduction to the computational
Diffie-Hellman problem is to use a chameleon hash function whose collision-
resistance is also based on discrete logarithm or Diffie-Hellman problem (e.g.,
H(m, r) = H0(gm yr), where H0 : Gg,q → Gg,q is a hash function). But the
cost of this way to create coupons is a slower verification. Further, using the
chameleon hash H(m, r) = H0(gm yr) implies that one needs to define random
number r ∈ Zq (and not in {0, 1}�r). This makes the EDL-CH signatures slightly
longer: (�p + 3�q) bits.

3.4 Katz-Wang Signature Scheme

In [KW03], Katz and Wang proposed two modifications of EDL, one which
consists in a scheme with short signatures tightly based on the DDH assumption,
and one another that uses signature shorter than EDL but keeps tightly related
to the CDH problem. In this section, we briefly remind the second scheme.

The idea of Katz and Wang is to remove the randomness of r, and to replace
it by unpredictability. Namely, r is replaced by a bit b that can only be computed
by the signer (e.g., b is the result of a PRF, under a secret key included in the
signing key):3 the signatures are then (z, s, c, b), and so are shorter than EDL
signatures by 110 bits. The proof of EDL is then slightly modified for Katz-Wang
scheme.

This modification gives a signature scheme with a signature length of (�p +
2�q+1) bits, and which is just one bit less secure than EDL when taking identical
parameters. Unfortunately, in this scheme, only u can be computed off-line, and
so the on-line part of the signature is two modular exponentiations in Gg,q.

2 In [GJ03], the authors estimate that if the discrete logarithm problem is supposed
to be infeasible for 1000-bit primes, the forking lemma’s technique tells that Schnorr
signatures are secure in a field modulo a 8000-bit prime.

3 In other words, in EDL, signing few times the same message would result in different
random numbers r, while doing the same with Katz-Wang scheme would give always
the same bit b.
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4 Our Signature Scheme

Looking at the description of EDL, we can see that basically two random values
are used: k is used to generate a proof of knowledge of the discrete logarithm
while r is used to ensure that the attacker cannot predict the value of h, that
will be used during simulations.

More precisely, in EDL, h is taken equal to H(m, r), with a sufficiently large
random number r. As RSA-PSS does in a certain sense, the goal is to avoid,
with overwhelming probability, that the attacker requests the value of H(m, r)
with a random number r that will afterwards appear during signature queries
on m. Indeed, we want to build the H(m, r)’s involved in signature simulations
in a certain form and the H(m, r)’s returned to direct queries (and susceptible
to be used in the final forgery) in another form (see [GJ03] or [Che05] for more
detail).

Our first idea is the following: Why not trying to put the randomness of k
inside H(m, ·) instead of using another random number r that increases the size
of the signature? Clearly, one cannot use H(m, k) directly, but H(m, u) looks
promising (and appears to be secure, as proven in the full version of this paper).
As a result, the size of the so-constructed signature is reduced.

Our second idea is the following: Would it be possible to put m inside G(·)
rather than in H(·), as done in [Sch91] or in [KW03]? The goal here is to allow
as many precomputations as possible. This trick does not apply to EDL, but
when combined with the previously suggested technique, the answer appears to
be positive.

Intuitively, using z = H(r)x and putting m in G(·) in EDL is insecure because
an attacker could easily reuse a z returned by the signer, and so a simulator
would not solve a CDH problem. On the contrary, in our construction, we will
show that using z = H(u)x remains secure, as an attacker could not reuse an
H(u)x returned by the signer, unless the discrete logarithm is revealed: indeed,
u satisfies a certain relation (u = gs y−c) that cannot be given for two different
c’s for the same u without revealing the discrete logarithm.

In this section, we describe more formally our scheme and prove strictly the
intuition that we have just given.

4.1 Description

Our scheme goes as follows:

Global set-up: Let �p and �q denote security parameters. Let also a cyclic
group Gg,q of order q, generated by g, where q is a �q-bit prime and the
representation of the elements of Gg,q is included in {0, 1}�p. Finally, let two
hash functions, H : Gg,q → Gg,q and G :M× (Gg,q)6 → Zq.

Key generation: The private key is a random number x ∈ Zq. The correspond-
ing public key is y = gx.

Signature: To sign a message m ∈ M, one first randomly chooses k ∈ Zq, and
computes u = gk, h = H(u), z = hx and v = hk. Next, one computes c =
G(m, g, h, y, z, u, v) and s = k+cx mod q. The signature on m is σ = (z, s, c).
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Verification: To verify a signature σ = (z, s, c) ∈ Gg,q × (Zq)2 on a message
m ∈ M, one computes u′ = gs y−c, h′ = H(u′), and v′ = h′s z−c. The
signature σ is accepted iff c = G(m, g, h′, y, z, u′, v′).

As an advantage, our signatures are smaller than the EDL’s ones: they are
only (�p+2�q)-bit long. We still have to prove that the scheme is tightly related to
the computational Diffie-Hellman problem, which is done in the next section —
but assuming this for the moment, we can see that, using the numerical values
of [GJ03], our scheme leads to a gain of �r = 111 bits per signature.

4.2 Security of the Proposed Scheme

In this section, we reduce the security of the proposed scheme to the security of
the computational Diffie-Hellman problem. The proof consists in showing that
the proposed scheme is a proof that DLh(z) = DLg(y) = x.

Theorem 2. Let A be an adversary which can produce, with success prob-
ability ε, an existential forgery under a chosen-message attack within time
τ , after qh queries to the hash oracles and qs queries to the signing ora-
cle, in the random oracle model. Then the computational Diffie-Hellman
problem can be solved with success probability ε′ within time τ ′, with

ε′ ≥ ε− 2qs

(
qs + qh

q

)
and

τ ′ � τ + (6qs + qh)τ0

where τ0 is the time for an exponentiation in Gg,q.

Proof. We are given a group Gg,q and a CDH challenge (g, gx, ga). We will use
an attacker A against our signature scheme to solve this challenge, i.e., to find
gax. Our attacker A, after qH (resp. qG) hash queries to H (resp. G) oracle and
qs signature queries, is able to produce a signature forgery with probability ε
within time τ . We let qh = qH + qG .

Attacker A is run with the following simulation:

Initialization: A is initialized with public key y = gx and public parameters
(g, q, Gg,q).

Answering new G(m, g, h, y, z, u, v) query: The simulator returns a ran-
dom number in Zq.

Answering new H(u) query: The simulator generates a random number d ∈
Zq, and returns (ga) gd. All queries u are stored in a list called U-List.

Answering signatures query on m ∈ M: The simulator randomly gener-
ates (κ, s, c) ∈ (Zq)3. Then, it computes u = gs y−c. IfH(u) is already set, the
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simulator stops (Event 1). Else, the simulator sets h = H(u) = gκ and com-
putes z = (gx)κ — remark that DLh(z) = DLg(y)(= x). Finally, the simula-
tor computes v = hs z−c. If G(m, g, h, y, z, u, v) is already set, the simulator
stops and fails (Event 2). Else, the simulator sets G(m, g, h, y, z, u, v) = c,
and returns the valid signature (z, s, c). All u’s computed during signature
queries are stored in a list called Υ -List

As we can see, this simulator is valid and indistinguishable from an actual
signer, except for some events:

– Event 1: As u is a random number in Gg,q, the probability that the H(u)
is already set is less than qs+qH

q , for one signature query. For qs signature

queries, the failure probability is thus upper bounded by qs·(qs+qH)
q .

– Event 2: From the simulation, the input tuples to the G oracle are of the
form (m, g, h, y, z, u, v) = (m, g, gκ, y, yκ, gk, gκk) for k ∈ Zq and κ which
is determined by the relation h = H(gk) = gκ; but as Event 1 did not
happened, h is absolutely unknown for the attacker, and so κ is a random
integer of Zq. Then, the probability that G(m, g, h, y, z, u, v) is already set
is less than qs+qG

q2 . For qs signature queries, the failure probability is thus

upper bounded by qs·(qs+qG)
q2 ≤ qs·(qs+qG)

q .

As a conclusion, except with a probability smaller than δsim = qs

(
qh+2qs

q

)
,

the simulation is successful.
In other words, with a probability εsim ≥ ε − δsim, the attacker A is able

to return a valid signature forgery (ẑ, ŝ, ĉ) on a message m̂ ∈ M that was never
submitted to the signature oracle. The simulator deduces from this forgery the
corresponding tuple (û, v̂, ĥ), by the following computations: û = gŝ y−ĉ, ĥ =
H(û), and v̂ = ĥŝ ẑ−ĉ. Notably, if H(û) has not been queried to the H oracle
by the attacker or set by the signature oracle, the simulator queries it to the H
oracle itself. Hence, û is a member of U-List or a member of Υ -List.

Solving the CDH Challenge (g, gx, ga). At this step, once the forgery is
returned by the attacker, there are two cases, contrary to the proof of EDL.

In the first case, û is a member of U-List. This is the case that corresponds
to the only case of the proof of EDL. As in EDL, we write û = gk, v̂ = ĥk′

and ẑ = ĥx′
, and we get, as the signature is valid, k = ŝ − ĉx mod q and

k′ = ŝ − ĉx′ mod q. Then, if x �= x′, we have ĉ = G(m̂, g, ĥ, y, ĥx′
, gk, ĥk′

) =
k−k′
x′−x mod q. As the message m̂ is new, G(m̂, g, ĥ, y, ĥx′

, gk, ĥk′
) was not set during

a signature query, and so we know that DLĥ(ẑ) = DLg(y)(= x), except with
a probability qG

q . Apart this error, the simulator receives from the attacker a

signature with ẑ = ĥx, and it knows d such that ĥ = H(û) = (ga) gd. Then the
simulator can return the solution to the CDH challenge, which is ẑ (gx)−d. In
this first case, the forgery is successfully used to solve the CDH challenge, except
with a probability smaller than δ1 = qh

q .
In the second case, û is not a member of U-List, and so is a member of Υ -List.

This case can happen, contrary to the EDL signature scheme, as there is no
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message in the input of H, and so we can imagine that the attacker reuse a
u that corresponds to a u of a signature given by the signature oracle. Then,
the simulator can recover from its log files all quantities that correspond to this
u = û, i.e., h, v, z, s, c and m.

At this moment, we can see that we have u = gs y−c = û = gŝ y−ĉ. It
is exactly the kind of hypothesis that is used by the forking lemma to prove a
(loose) security. But here, this equality is not obtained by restarting the attacker
(as it is done in the forking lemma), but just by construction. More precisely,
we can recover easily the private key x, as far as ĉ �= c mod q.

As the message m̂ is new, c �= ĉ or a collision on G function happened,
between a G returned the signature simulation and a G returned by a direct G
query, which occurs with a probability smaller than qs·qG

q . Hence, except an error
with a probability smaller than δ2 = qs·qG

q , we have ĉ �= c, and so we can recover
the private key x: equation s− xc = ŝ− xĉ mod q gives x = s−ŝ

c−ĉ mod q. We can
see that this second case gives not only the solution to the CDH challenge, but
also the solution to the discrete logarithm.

As a conclusion, we can see that in both cases, our simulator can transform
the forgery given by the attacker into the solution to the CDH challenge.

Putting all together, the success probability ε′ of our reduction satisfies ε′ ≥
ε− δsim −max(δ1, δ2), which gives, using qH + qG = qh,

ε′ ≥ ε− 2qs

(
qs + qh

q

)
and the running time τ ′ satisfies

τ ′ � τ + (6qs + qh)τ0 .

As we can see, our scheme is tight, as far as qs·qh

q ≤ ε
4 . �

4.3 Our Proposed Scheme with Coupons

Interestingly, our scheme allows what we call a cost-free use of coupons. By this,
we mean that the signer is free to choose to use coupons or not: this choice of
the signer does not affect the verifier as the verification step remains unchanged.

This is done in a very natural way: the signature step (cf. Section 4.1) is
simply split into two steps.

Off-line signature: To create a new coupon, one randomly chooses k ∈ Zq and
computes u = gk, h = H(u), z = hx and v = hk. The coupon is the tuple
(u, v, h, z, k).

On-line signature: To sign a message m ∈ M, one uses a fresh coupon (u, v,
h, z, k) and just computes c = G(m, g, h, y, z, u, v) and s = k + cx mod q.
The signature on m is σ = (z, s, c).

The verification step remains the same. This property is very useful as it al-
lows the signer to precompute coupons and to sign on-line very quickly, namely,
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by just performing one hash function evaluation followed by one modular mul-
tiplication.4

As previously described, our scheme features a coupon size of (4�p + �q) bits.
This size can be reduced to (3�p + �q) bits by not storing the value of h, i.e., a
coupon is defined as (u, v, z, k). Then, h = H(u) is evaluated in the on-line step.
This option turns out useful for memory constrained devices like smart cards.

An even more sophisticated solution that minimizes the size of the coupon
is described in the full version of this paper [Che05].

4.4 Size of Parameters

In this section, we show how to set the values of �q and �p to attain a security
level of 2κ. Our analysis basically follows Goh and Jarecki’s for EDL. Assuming
we take the best (qh, qs, τ, ε)-attacker against our scheme, he can find a forgery
in an average time of τ

ε . Letting τ = 2n and ε = 2−e, we get log2(
τ
ε ) = n+e = κ,

by definition of the security level of our scheme.
Furthermore, we can use this attacker, as shown in the proof of Section 4.2,

to solve the CDH problem in a time of τ ′
ε′ . We let 2κ′

denote the security level
of the CDH in the subgroup Gg,q. By definition, we have κ′ ≤ log2(

τ ′
ε′ ). Because

of the O(
√

q) security for the discrete logarithm in Gg,q, we have �q ≥ 2κ′.
We use the cost of the evaluation of a hash function as the unit of time.

Hence, qh ≤ 2n. We suppose that τ0 (the time for an exponentiation in Gg,q) is
100 times the time of a hash function evaluation. So, using qs ≤ qh, we obtain
that τ ′ � 2n+7 and ε′ � ε − 4qs·qh

q . As long as qs ≤ 2�q−e−3−n = 2�q−κ−3

(e.g., κ = 80, qs ≤ 280, qh ≤ 280 and �q ≥ 176), we have ε′ � 2−e−1. Then,
log2(

τ ′
ε′ ) � n + 7 + e + 1 = κ + 8. We finally obtain κ ≥ κ′ − 8.

For example, if the targeted security level is κ = 80, it is sufficient to use
κ′ = 88 (and hence �q ≥ 176). It proves that our scheme is very efficient in terms
of signature size, as we can use the same subgroup Gg,q as the one used by
Goh and Jarecki for EDL and have the same security. One can remark that our
scheme remains secure even if we limit qs to 280, while in EDL, qs was limited
to 230, or the random number r was made appropriately longer.

4.5 Detailed Comparison with EDL, the Katz-Wang Scheme and
Other Schemes

In this paragraph, we sum up the advantages of our scheme. Compared to EDL,
our scheme features

4 This is comparable to the fastest off-line/on-line signature schemes of Schnorr,
Girault-Poupard-Stern or Poupard-Stern [Sch91, Gir91, PS98, PS99]. One would
remark that Girault-Poupard-Stern scheme does not require a reduction modulo the
group order, but yields longer signatures: this elegant technique can also be used
in our scheme, to get an even faster on-line signature scheme at the price of longer
signatures.
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1. faster signatures with a cost-free use of coupons: the on-line part only re-
quires one hash function evaluation followed by one modular multiplication
in Zq, while in EDL, this phase consists of two hash function evaluations
and two modular exponentiations in Gg,q;

2. same verification step efficiency;
3. shorter signatures of �r ≥ 111 bits: in a subgroup of Fp

∗, taking �p = 1024
and �q = 176, this represents an improvement of 7%. In the elliptic curve
setting, the gain is even more sensible, as z can be represented with a length
around �q = 176, resulting in an improvement of 17%.

Compared to the Katz-Wang scheme, our scheme features

1. faster signatures with a cost-free use of coupons: the on-line part only re-
quires one hash function evaluation followed by one modular multiplication
in Zq, while in Katz-Wang signature scheme, this phase consists of two hash
function evaluations and two modular exponentiations in Gg,q;

2. same verification step efficiency;
3. less significantly, shorter signatures of 1 bit and a security parameter greater

of 1 bit;
4. smaller key size, as computing b by a PRF or in another way require an

additional key, that should better not be related to the private key x.

Furthermore, as noticed in [KW03], the computation of an hash H : Gg,q →
Gg,q can be very long, namely it costs an exponentiation of (�p− �q) bits, which
is much longer than the two exponentiations in Gg,q. In our scheme, this hash
computation is done off-line, contrary to EDL and Katz-Wang schemes.

Compared to the off-line/on-line version of EDL, EDL-CH, the off-line/on-
line version of our scheme presents

1. faster and unchanged verification step (remember that EDL-CH relies on
chameleon hashes, which requires additional exponentiations);

2. shorter signatures, i.e., �q ≥ 176 bits less than EDL-CH ; again, in a subgroup
of Fp

∗, taking �p = 1024 and �q = 176, this represents an improvement of
11% and of 25% in the elliptic curve setting.

Finally, owing to its security tightness, our scheme fulfills or even improves
most of the advantages of EDL that were presented by Goh and Jarecki, by
comparison with other discrete-logarithm schemes, such as Schnorr signature,
with same security level.

On the one hand, using our scheme in Gg,q ⊆ Fp
∗, we can use a field 8 times

smaller and a subgroup of order twice smaller than in other discrete-logarithm
schemes (as in EDL). Notably, it means that public keys are smaller by a factor
of 8, private keys are smaller by a factor of 2. In this case, our signatures are
about twice as long as other discrete-logarithm schemes.

On the other hand, in the elliptic curve setting, our public and private keys
are smaller by a factor of 2 and our signatures are 25% smaller than in previously
known schemes.

This clearly shows the advantages of the proposed scheme.
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5 Conclusion

At Eurocrypt ’03, Goh and Jarecki gave a proof that the security of EDL is
tightly related to the CDH problem, in the random oracle model. They also
proposed to use the technique of Shamir and Tauman, based on chameleon hash
functions, to get a version of EDL scheme with coupons: EDL-CH.

In this paper, we have proposed a new signature scheme which, similarly
to EDL, features a tight security reduction relatively to the CDH problem but
whose resulting signatures are smaller: if coupons are not used, we gain �r bits
compared to EDL signatures; in the off-line/on-line version, we gain �q bits
compared to EDL-CH signatures. Furthermore, contrary to EDL, no additional
trick is needed to turn our signature scheme in an off-line/on-line version.

Our scheme represents to date the most efficient scheme of any signature
scheme with a tight security reduction in the discrete-log setting.

Acknowledgements

The author would like to thank his careful PhD advisor, David Pointcheval, as
well as Marc Joye for his attention and support in our research. Anonymous
referees are also thanked for their precious remarks, and notably for corrections
on our previous proofs.

The author thanks Jean-François Dhem, David Naccache and Philippe
Proust, as well as Dan Boneh and Jonathan Katz for their comments.

References

[BR93] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In ACM Conference on Computer and Com-
munications Security, pages 62–73. ACM Press, 1993.

[BR96] M. Bellare and P. Rogaway. The exact security of digital signatures: How to
sign with RSA and Rabin. In U. Maurer, editor, Advances in Cryptology –
EUROCRYPT ’96, volume 1070 of Lecture Notes in Computer Science, pages
399–416. Springer-Verlag, 1996.

[BLS04] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing.
Journal of Cryptology, 17(4):297–319, 2004.

[BSS99] I. Blake, G. Seroussi, and N.P. Smart. Elliptic Curves in Cryptography.
Cambridge University Press, 1999.

[Che05] B. Chevallier-Mames. An Efficient CDH-based Signature Scheme
With a Tight Security Reduction. Full version available from
http://eprint.iacr.org/2005/035.

[Cor02] J.-S. Coron. Optimal security proofs for PSS and other signature schemes. In
L.R. Knudsen, editor, Advances in Cryptology – EUROCRYPT 2002, volume
2332 of Lecture Notes in Computer Science, pages 272–287. Springer-Verlag,
2002.

[CP92] D. Chaum and T.P. Pedersen. Wallet databases with observers. In E. Brick-
ell, editor, Advances in Cryptology – CRYPTO ’92, volume 740 of Lecture
Notes in Computer Science, pages 89–105. Springer-Verlag, 1992.



An Efficient CDH-Based Signature Scheme with a Tight Security Reduction 525

[CS00] R. Cramer and V. Shoup. Signature scheme based on the strong RSA as-
sumption. ACM Transactions on Information and System Security, 3(3):161–
185, 2000.

[DH76] W. Diffie and M.E. Hellman. New directions in cryptography. IEEE Trans-
actions on Information Theory, IT-22(6):644–654, 1976.

[ElG85] T. ElGamal. A public key cryptosystem and a signature scheme based on dis-
crete logarithms. IEEE Transactions on Information Theory, IT-31(4):469–
472, 1985.

[FS87] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In A.M. Odlyzko, editor, Advances in
Cryptology – CRYPTO ’86, volume 263 of Lecture Notes in Computer Sci-
ence, pages 186–194. Springer-Verlag, 1987.

[GHR99] R. Gennaro, S. Halevi, and T. Rabin. Secure hash-and-sign signatures with-
out the random oracle. In M. Bellare, editor, Advances in Cryptology – EU-
ROCRYPT ’99, volume 1592 of Lecture Notes in Computer Science, pages
123–139. Springer-Verlag, 1999.

[Gir91] M. Girault. An identity-based identification scheme based on discrete loga-
rithms modulo a composite number. In I.B. Damg̊ard, editor, Advances in
Cryptology – EUROCRYPT ’90, volume 473 of Lecture Notes in Computer
Science, pages 481–486. Springer-Verlag, 1991.

[GJ03] E.-J. Goh and S. Jarecki. A signature scheme as secure as the Diffie-Hellman
problem. In E. Biham, editor, Advances in Cryptology – EUROCRYPT 2003,
Lecture Notes in Computer Science, pages 401–415. Springer-Verlag, 2003.

[GMR84] S. Goldwasser, S. Micali, and R. Rivest. A “paradoxical” solution to the
signature problem. In Proceedings of the 25th FOCS, pages 441–448. IEEE,
1984.

[GMR88] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme se-
cure against adaptive chosen message attacks. SIAM Journal of Computing,
17(2):281–308, 1988.

[JS99] M. Jakobsson and C.P. Schnorr. Efficient oblivious proofs of correct expo-
nentiation. In B. Preneel, editor, Communications and Multimedia Security
– CMS ’99, volume 152 of IFIP Conference Proceedings, pages 71–86. Kluver,
1999.

[Kob87] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, vol.
48, pp. 203-209, 1987.

[KM04] N. Koblitz and A. Menezes. Another look at “provable security”. Cryptology
ePrint Archive, Report 2004/152, 2004. http://eprint.iacr.org/.

[KR00] H. Krawczyk and T. Rabin. Chameleon signatures. In Symposium on Net-
work and Distributed System Security – NDSS 2000, pages 143–154. Internet
Society, 2000.

[KW03] J. Katz and N. Wang. Efficiency improvements for signature schemes with
tight security reductions. In ACM Conference on Computer and Communi-
cations Security, pages 155–164. ACM Press, 2003.

[MR02] S. Micali and L. Reyzin. Improving the exact security of digital signatre
schemes. Journal of Cryptology, 15(1):1–18, 2002.

[Mil85] V. Miller. Use of elliptic curves in cryptography. In H. C. Williams, editor,
Advances in Cryptology – CRYPTO ’85, Lecture Notes in Computer Science,
pages 417–426. Springer-Verlag, 1986.

[P1363] IEEE P1363. IEEE Standard Specifications for Public-Key Cryptography.
IEEE Computer Society, August 2000.



526 B. Chevallier-Mames

[PS96] D. Pointcheval and J. Stern. Security proofs for signature schemes. In
U. Maurer, editor, Advances in Cryptology – EUROCRYPT ’96, volume 1070
of Lecture Notes in Computer Science, pages 387–398. Springer-Verlag, 1996.

[PS98] G. Poupard and J. Stern. Security analysis of a practical “on the fly” au-
thentication and signature generation. In K. Nyberg, editor, Advances in
Cryptology – EUROCRYPT ’98, volume 1403 of Lecture Notes in Computer
Science, pages 422–436. Springer-Verlag, 1998.

[PS99] G. Poupard and J. Stern. On the fly signatures based on factoring. In ACM
Conference on Computer and Communications Security, pages 37–45. ACM
Press, 1999.

[Rab79] M.O. Rabin. Digital signatures and public-key functions as intractable as fac-
torization. Technical Report MIT/LCS/TR-212, MIT Laboratory for Com-
puter Science, January 1979.

[RSA78] R.L. Rivest, A. Shamir, and L.M. Adleman. A method for obtaining digi-
tal signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126, 1978.

[Sch91] C.-P. Schnorr. Efficient signature generation by smart cards. Journal of
Cryptology, 4(3):161–174, 1991.

[ST01] A. Shamir and Y. Tauman. Improved online/offline signature schemes. In
J. Kilian, editor, Advances in Cryptology – CRYPTO 2001, Lecture Notes in
Computer Science, pages 355–367. Springer-Verlag, 2001.



Improved Security Analyses for CBC MACs

Mihir Bellare1, Krzysztof Pietrzak2, and Phillip Rogaway3

1 Dept. of Computer Science & Engineering, University of California San Diego,
9500 Gilman Drive, La Jolla, CA 92093, USA

mihir@cs.ucsd.edu
www-cse.ucsd.edu/users/mihir

2 Dept. of Computer Science, ETH Zürich, CH-8092 Zürich Switzerland
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Abstract. We present an improved bound on the advantage of any
q-query adversary at distinguishing between the CBC MAC over a ran-
dom n-bit permutation and a random function outputting n bits. The
result assumes that no message queried is a prefix of any other, as is the
case when all messages to be MACed have the same length. We go on
to give an improved analysis of the encrypted CBC MAC, where there is
no restriction on queried messages. Letting m be the block length of the
longest query, our bounds are about mq2/2n for the basic CBC MAC
and mo(1)q2/2n for the encrypted CBC MAC, improving prior bounds
of m2q2/2n. The new bounds translate into improved guarantees on the
probability of forging these MACs.

1 Introduction

Some definitions. The CBC function CBCπ associated to a key π: {0, 1}n →
{0, 1}n takes as input a message M = M1 · · ·Mm that is a sequence of n-bit
blocks and returns the n-bit string Cm computed by setting Ci = π(Ci−1 ⊕M i)
for each i ∈ [1..m], where C0 = 0n. Consider three types of attacks for an
adversary given an oracle: atk = eq means all queries are exactly m blocks long;
atk = pf means they have at most m blocks and no query is a prefix of any
another; atk = any means the queries are arbitrary distinct strings of at most m
blocks. Let Advatk

CBC(q, n, m) denote the maximum advantage attainable by any
q-query adversary, mounting an atk attack, in distinguishing whether its oracle
is CBCπ

n for a random permutation π on n bits, or a random function that
outputs n bits. We aim to upper bound this quantity as a function of n, m, q.

Past work and our results on CBC. Bellare, Kilian and Rogaway [2]
showed that Adveq

CBC(q, n, m) ≤ 2m2q2/2n. Maurer reduced the constant 2 to 1
and provided a substantially different proof [13]. Petrank and Rackoff [15] showed

V. Shoup (Ed.): Crypto 2005, LNCS 3621, pp. 527–545, 2005.
c© International Association for Cryptologic Research 2005
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Construct atk Previous bound Our bound

CBC pf m2q2/2n [2,13,15] mq2/2n · (12 + 8m3/2n)

ECBC any 2.5 m2q2/2n [7] q2/2n · (d′(m) + 4m4/2n)

Fig. 1. Bounds on Advpf
CBC(q, n, m) and Advany

ECBC(q, n, m), assuming m ≤ 2n/2−1

that the same bounds hold (up to a constant) for Advpf
CBC(q, n, m). In this

paper we show that Advpf
CBC(q, n, m) ≤ 20mq2/2n for m ≤ 2n/3. (The result

is actually a little stronger. See Fig. 1.) This implies the same bound holds for
Adveq

CBC(q, n, m).

Context and discussion. When π = E(K, ·), where K ∈ K is a random
key for blockcipher E: K × {0, 1}n → {0, 1}n, the function CBCπ is a popular
message authentication code (MAC). Assuming E is a good pseudorandom per-
mutation (PRP), the dominant term in a bound on the probability of forgery
in an atk-type chosen-message attack is Advatk

CBC(q, n, m), where q is the sum of
the number of MAC-generation and MAC-verification queries made by the ad-
versary (cf. [1]). Thus the quality of guarantee we get on the security of the MAC
is a function of how good an upper bound we can prove on Advatk

CBC(q, n, m).
It is well known that the CBC MAC is insecure when the messages MACed

have varying lengths (specifically, it is forgeable under an any-attack that uses
just one MAC-generation and one MAC-verification query, each of at most two
blocks) so the case atk = any is not of interest for CBC. The case where all
messages MACed have the same length (atk = eq) is the most basic one, and
where positive results were first obtained [2]. The case atk = pf is interesting
because one way to get a secure MAC for varying-length inputs is to apply
a prefix-free encoding to the data before MACing it. The most common such
encoding is to include in the first block of each message an encoding of its length.

We emphasize that our results are about CBCπ for a random permutation
π: {0, 1}n → {0, 1}n, and not about CBCρ for a random function ρ: {0, 1}n →
{0, 1}n. Since our bounds are better than the cost to convert between a random
n-bit function and a random n-bit permutation using the switching lemma [2],
the distinction is significant. Indeed for the prefix-free case, applying CBC over
a random function on n bits is known to admit an attack more effective than
that which is ruled out by our bound [6].

Encrypted CBC. The ECBC function ECBCπ1,π2 associated to permutations
π1, π2 on n bits takes a message M that is a multiple of n bits and returns
π2(CBCπ1(M)). Define Advatk

ECBC(q, n, m) analogously to the CBC case above
(atk ∈ {any, eq, pf}). Petrank and Rackoff [15] showed that Advany

ECBC(q, n, m)
≤ 2.5 m2q2/2n. A better bound, Adveq

ECBC(q, n, m) ≤ q2/2n · (1 + cm2/2n +
cm6/22n) for some constant c, is possible for the atk = eq case based on a
lemma of Dodis et al. [9], but the point of the ECBC construction is to achieve
any-security. We improve on the result of Petrank and Rackoff to show that
Advany

ECBC(q, n, m) ≤ q2/2n · (d′(m) + 4m4/2n) where d′(m) is the maximum,
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over all m′ ≤ m, of the number of divisors of m′. (Once again see Fig. 1.) Note
that the function d′(m) ≈ m1/ ln ln(m) grows slowly.

The MAC corresponding to ECBC (namely ECBCπ1,π2 when π1 = E(K1, ·)
and π2 = E(K2, ·) for random keys K1, K2 ∈ K of a blockcipher E: K×{0, 1}n →
{0, 1}n) was developed by the RACE project [5]. This MAC is interesting as a
natural and practical variant of the CBC MAC that correctly handles messages
of varying lengths. A variant of ECBC called CMAC was recently adopted as a
NIST-recommended mode of operation [14]. As with the CBC MAC, our results
imply improved guarantees on the forgery probability of the ECBC MAC under
a chosen-message attack, but this time of type any rather than merely pf, and
with the improvement being numerically more substantial.

More definitions. The collision-probability CPatk
n,m of the CBC MAC is the

maximum, over all pairs of messages (M1, M2) in an appropriate atk-dependent
range, of the probability, over random π, that CBCπ(M1) = CBCπ(M2). For
atk = any the range is any pair of distinct strings of length a positive multiple
of n but at most mn; for atk = pf it is any such pair where neither string is a
prefix of the other; and for atk = eq it is any pair of distinct strings of exactly mn
bits. The full collision probability FCPatk

n,m is similar except that the probability
is of the event Cm2

2 ∈ {C1
1 , . . . , Cm1

1 , C1
2 , . . . , Cm2−1

2 } where, for each b ∈ {1, 2},
we have Ci

b = π(Ci−1
b ⊕M i

b) for mb = |Mb|/n and i ∈ [1..mb] and C0
b = 0n. Note

that these definitions do not involve an adversary and in this sense are simpler
than the advantage functions considered above.

Reductions to FCP and CP. By viewing ECBC as an instance of the
Carter-Wegman paradigm [18], one can reduce bounding Advatk

ECBC(q, n, m) (for
atk ∈ {any, eq, pf}) to bounding CPatk

n,m (see [7], stated here as Lemma 3). This
simplifies the analysis because one is now faced with a combinatorial problem
rather than consideration of a dynamic, adaptive adversary.

The first step in our analysis of the CBC MAC is to provide an analo-
gous reduction (Lemma 1) that reduces bounding Advpf

CBC(q, n, m) to bounding
FCPpf

n,m. Unlike the case of ECBC, the reduction is not immediate and does
not rely on the Carter-Wegman paradigm. Rather it is proved directly using the
game-playing approach [4,16].

Bounds on FCP and CP. Black and Rogaway [7] show that CPany
n,m ≤ 2(m2 +

m)/2n. Dodis, Gennaro, H̊astad, Krawczyk, and Rabin [9] show that CPeq
n,m ≤

2−n + cm2/22n + cm3/23n for some absolute constant c. (The above-mentioned
bound on Adveq

ECBC(q, n, m) is obtained via this.) We build on their techniques
to show (cf. Lemma 4) that CPany

n,m ≤ 2d′(m)/2n + 8m4/22n. Our bound on
Advany

ECBC(q, n, m) then follows. We also show that FCPpf
n,m ≤ 8m/2n+8m4/22n.

Our bound on Advpf
CBC(q, n, m) then follows.

We remark that the security proof of RMAC [11] had stated and used a
claim that implies CPany

n,m ≤ 12m/2n, but the published proof was wrong. Our
Lemma 4 both fixes and improves that result.
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Further related work. Other approaches to the analysis of the CBC MAC
and the encrypted CBC MAC include those of Maurer [13] and Vaudenay [17],
but they only obtain bounds of m2q2/2n.

2 Definitions

Notation. The empty string is denoted ε. If x is a string then |x| denotes its
length. We let Bn = {0, 1}n. If x ∈ B∗

n then |x|n = |x|/n denotes the number
of n-bit blocks in it. If X ⊆ {0, 1}∗ then X≤m denotes the set of all non-empty
strings formed by concatenating m or fewer strings from X and X+ denotes
the set of all strings formed by concatenating one or more strings from X . If
M ∈ B∗

n then M i denotes its i-th n-bit block and M i→j denotes the string
M i ‖ · · · ‖M j, for 1 ≤ i ≤ j ≤ |M |n. If S is a set equipped with some probability
distribution then s

$← S denotes the operation of picking s from S according to
this distribution. If no distribution is explicitly specified, it is understood to be
uniform.

We denote by Perm(n) the set of all permutations over {0, 1}n, and by
Func(n) the set of all functions mapping {0, 1}∗ to {0, 1}n. (Both these sets are
viewed as equipped with the uniform distribution.) A blockcipher E (with block-
length n and key-space K) is identified with the set of permutations {EK : K ∈
K} where EK : {0, 1}n → {0, 1}n denotes the map specified by key K ∈ K. The
distribution is that induced by a random choice of K from K, so f

$←E is the
same as K

$←K, f ← EK .

Security. An adversary is a randomized algorithm that always halts. LetAatk
q,n,m

denote the class of adversaries that make at most q oracle queries, where if
atk = eq, then each query is in Bm

n ; if atk = pf, then each query is in B≤m
n and

no query is a prefix of another; and if atk = any then each query is in B≤m
n . We

remark that the adversaries considered here are computationally unbounded. In
this paper we always consider deterministic, stateless oracles and thus we will
assume that an adversary never repeats an oracle query. We also assume that
an adversary never asks a query outside of the implicitly understood domain of
interest.

Let F : D → {0, 1}n be a set of functions and let A ∈ Aatk
q,n,m be an adversary,

where atk ∈ {eq, pf, any}. By “Af⇒1” we denote the event that A outputs 1 with
oracle f . The advantage of A (in distinguishing an instance of F from a random
function outputting n bits) and the advantage of F are defined, respectively, as

AdvF (A) = Pr[f $← F : Af ⇒ 1]− Pr[f $← Func(n) : Af ⇒ 1] and
Advatk

F (q, n, m) = max
A∈Aatk

q,n,m

{AdvF (A) } .

Note that since Aeq
q,n,m ⊆ Apf

q,n,m ⊆ Aany
q,n,m, we have

Adveq
F (q, n, m) ≤ Advpf

F (q, n, m) ≤ Advany
F (q, n, m) . (1)



Improved Security Analyses for CBC MACs 531

Cbc and Ecbc. Fix n ≥ 1. For M ∈ Bm
n and π: Bn → Bn then define CBCM

π [i]
inductively for i ∈ [0..m] via CBCM

π [0] = 0n and CBCM
π [i] = π(CBCM

π ⊕M i)
for i ∈ [1..m]. We associate to π the CBC MAC function CBCπ: B+

n → Bn de-
fined by CBCπ(M) = CBCM

π [m] where m = |M |n. We let CBC = {CBCπ: π ∈
Perm(n)}. This set of functions has the distribution induced by picking π uni-
formly from Perm(n).

To functions π1, π2: Bn → Bn we associate the encrypted CBC MAC func-
tion ECBCπ1,π2 : B+

n → Bn defined by ECBCπ1,π2(M) = π2(CBCπ1(M)) for all
M ∈ B+

n . We let ECBC = {ECBCπ1,π2 : π1, π2 ∈ Perm(n)}. This set of functions
has the distribution induced by picking π1, π2 independently and uniformly at
random from Perm(n).

Collisions. For M1, M2 ∈ B∗
n we define the prefix predicate pf(M1, M2) to be

true if either M1 is a prefix of M2 or M2 is a prefix of M1, and false otherwise.
Note that pf(M, M) = true for any M ∈ B∗

n. Let

Meq
n,m = {(M1, M2) ∈ Bm

n ×Bm
n : M1 �= M2},

Mpf
n,m = {(M1, M2) ∈ B≤m

n ×B≤m
n : pf(M1, M2) = false}, and

Many
n,m = {(M1, M2) ∈ B≤m

n ×B≤m
n : M1 �= M2} .

For M1, M2 ∈ B+
n and atk ∈ {eq, pf, any} we then let

CPn(M1, M2) = Pr[π $← Perm(n) : CBCπ(M1) = CBCπ(M2)]
CPatk

n,m = max
(M1,M2)∈Matk

n,m

{CPn(M1, M2) } .

For M1, M2 ∈ B+
n we let FCPn(M1, M2) (the full collision probability) be the

probability, over π
$← Perm(n), that CBCπ(M2) is in the set

{CBCM1
π [1], . . . ,CBCM1

π [m1], CBCM2
π [1], . . . ,CBCM2

π [m2 − 1]}

where mb = |Mb|n for b = 1, 2. For atk ∈ {eq, pf, any} we then let

FCPatk
n,m = max

(M1,M2)∈Matk
n,m

{ FCPn(M1, M2) } .

3 Results on the CBC MAC

We state results only for the atk = pf case; results for atk = eq follow due
to (1). To bound Advpf

CBC(q, n, m) we must consider a dynamic adversary that
adaptively queries its oracle. Our first lemma reduces this problem to that of
bounding a more “static” quantity whose definition does not involve an adver-
sary, namely the full collision probability of the CBC MAC. The proof is in
Section 5.

Lemma 1. For any n, m, q,

Advpf
CBC(q, n, m) ≤ q2 · FCPpf

n,m +
4mq2

2n
.
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The next lemma bounds the full collision probability of the CBC MAC. The
proof is given in Section 8.

Lemma 2. For any n, m with m2 ≤ 2n−2,

FCPpf
n,m ≤ 8m

2n
+

8m4

22n
.

Combining the above two lemmas we bound Advpf
CBC(q, n, m):

Theorem 1. For any n, m, q with m2 ≤ 2n−2,

Advpf
CBC(q, n, m) ≤ mq2

2n
·
(

12 +
8m3

2n

)
.

4 Results on the Encrypted CBC MAC

Following [7], we view ECBC as an instance of the Carter-Wegman paradigm [18].
This enables us to reduce the problem of bounding Advatk

ECBC(q, n, m) to bound-
ing the collision probability of the CBC MAC, as stated in the next lemma. A
proof of the following is provided in [3].

Lemma 3. For any n, m, q ≥ 1 and any atk ∈ {eq, pf, any},

Advatk
ECBC(q, n, m) ≤ q(q − 1)

2
·
(
CPatk

n,m +
1
2n

)
.

Petrank and Rackoff [15] show that

Advany
ECBC(q, n, m) ≤ 2.5 m2q2/2n . (2)

Dodis et al. [9] show that CPeq
n,m ≤ 2−n + cm2 · 2−2n + cm6 · 2−3n for some

absolute constant c. Combining this with Lemma 3 leads to

Adveq
ECBC(q, n, m) ≤ q2

2n
·
(

1 +
cm2

2n
+

cm6

22n

)
.

However, the case of atk = eq is not interesting here, since the point of ECBC is
to gain security even for atk = any. To obtain an improvement for this, we show
the following, whose proof is in Section 7:

Lemma 4. For any n, m with m2 ≤ 2n−2,

CPany
n,m ≤ 2d′(m)

2n
+

8m4

22n

where d′(m) is the maximum, over all m′ ≤ m, of the number of positive numbers
that divide m′.
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The function d′(m) grows slowly; in particular, d′(m) < m0.7/ln ln(m) for all suf-
ficiently large m [10, Theorem 317]. We have verified that d′(m) ≤ m1.07/ ln ln m

for all m ≤ 264 (and we assume for all m), and also that d′(m) ≤ lg2 m for all
m ≤ 225.

Combining the above with Lemma 3 leads to the following:

Theorem 2. For any n, m, q with m2 ≤ 2n−2,

Advany
ECBC(q, n, m) ≤ q2

2n
·
(

d′(m) +
4m4

2n

)
.

5 Bounding FCP Bounds CBC (Proof of Lemma 1)

The proof is by the game-playing technique [2,4]. Let A be an adversary that asks
exactly q queries, M1, . . . , Mq ∈ B≤m

n , where no queries Mr and Ms, for r �= s,
share a prefix in B+

n . We must show that AdvCBC(A) ≤ q2 ·FCPpf
n,m+4mq2/2n.

Refer to games D0–D7 as defined in Fig. 2. Sets Dom(π) and Ran(π) start off
as empty and automatically grow as points are added to the domain and range
of the partial function π. Sets Dom(π) and Ran(π) are the complements of these
sets relative to {0, 1}n. They automatically shrink as points join the domain and
range of π. We write boolean values as 0 (false) and 1 (true), and we sometimes
write then as a colon. The flag bad is initialized to 0 and the map π is initialized
as everywhere undefined. We now briefly explain the sequence.

D1: Game D1 faithfully simulates the CBC MAC construction. Instead of
choosing a random permutation π up front, we fill in its values as-needed, so
as to not to create a conflict. Observe that if bad = 0 following lines 107–108
then Ĉms

s = Cms
s and so game D1 always returns Cms

s , regardless of bad . This
makes clear that Pr[AD1 ⇒ 1] = Pr[π $← Perm(n) : ACBCπ ⇒ 1]. D0: Game D0
is obtained from game D1 by omitting line 110 and the statements that immedi-
ately follow the setting of bad at lines 107 and 108. Thus this game returns the
random n-bit string Cms

s = Ĉms
s in response to each query Ms, so Pr[AD0⇒1] =

Pr[ρ $← Func(n) : Aρ ⇒ 1]. Now games D1 and D0 have been defined so as to
be syntactically identical except on statements that immediately follow the set-
ting of bad to true or the checking if bad is true, so the fundamental lemma of
game-playing [4] says us that Pr[AD1 ⇒ 1] − Pr[AD0 ⇒ 1] ≤ Pr[AD0 sets bad ].
As AdvCBC(A) = Pr[ACBCπ ⇒ 1]− Pr[Aρ ⇒ 1] = Pr[AD1 ⇒ 1]− Pr[AD0 ⇒ 1],
the rest of the proof bounds AdvCBC(A) by bounding Pr[AD0 sets bad ].

D0→D2: We rewrite game D0 as game D2 by dropping the variable Ĉms
s

and using variable Cms
s in its place, as these are always equal. We have that

Pr[AD0 sets bad ] = Pr[AD2 sets bad ]. D2→D3: Next we eliminate line 209 and
then, to compensate, we set bad any time the value Xms

s or Cms
s would have been

accessed. This accounts for the new line 303 and the new disjunct on lines 310.
To compensate for the removal of line 209 we must also set bad whenever Ci

s,
chosen at line 204, happens to be a prior value Cmr

r . This is done at line 306. We
have that Pr[AD2 sets bad ] ≤ Pr[AD3 sets bad ]. D3→D4: Next we remove the
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On the sth query F (Ms) Game D1
100 ms ← |Ms|n, C0

s ← 0n

101 for i ← 1 to ms − 1 do
102 Xi

s ← Ci−1
s ⊕M i

s

103 if Xi
s ∈ Dom(π) then Ci

s ← π(Xi
s)

104 else π(Xi
s) ← Ci

s
$← Ran(π)

105 Xms
s ← Cms−1

s ⊕Mms
s

106 Ĉms
s ← Cms

s
$← {0, 1}n

107 ifCms
s ∈Ran(π): bad←1, Cms

s
$←Ran(π)

108 ifXms
s ∈Dom(π): bad←1, Cms

s ←π(Xms
s )

109 π(Xms
s ) ← Cms

s

110 if bad then return Cms
s

111 return Ĉms
s

On the sth query F (Ms) Game D2
200 ms ← |Ms|n, C0

s ← 0n

201 for i ← 1 to ms − 1 do
202 Xi

s ← Ci−1
s ⊕M i

s

203 if Xi
s ∈ Dom(π) then Ci

s ← π(Xi
s)

204 else π(Xi
s) ← Ci

s
$← Ran(π)

205 Xms
s ← Cms−1

s ⊕ Mms
s

206 Cms
s

$← {0, 1}n

207 if Xms
s ∈ Dom(π) ∨ Cms

s ∈ Ran(π)
208 then bad ← 1
209 π(Xms

s ) ← Cms
s

210 return Cms
s

On the sth query F (Ms) Game D3
300 ms ← |Ms|n, C0

s ← 0n

301 for i ← 1 to ms − 1 do
302 Xi

s ← Ci−1
s ⊕M i

s

303 if (∃r < s)(Xi
s = Xmr

r ): bad ← 1
304 if Xi

s ∈ Dom(π) then Ci
s ← π(Xi

s)

305 else π(Xi
s) ← Ci

s
$← Ran(π),

306 if (∃r<s)(Ci
s=Cmr

r ): bad ← 1
307 Xms

s ← Cms−1
s ⊕Mms

s

308 Cms
s

$← {0, 1}n

309 if Xms
s ∈ Dom(π) ∨ Cms

s ∈Ran(π) ∨
310 (∃r<s)(Xms

s =Xmr
r ∨ Cms

s =Cmr
r )

311 then bad ← 1
312 return Cms

s

On the sth query F (Ms) Game D4
400 ms ← |Ms|n, C0

s ← 0n

401 for i ← 1 to ms − 1 do
402 Xi

s ← Ci−1
s ⊕M i

s

403 if (∃r<s)(Xi
s = Xmr

r ): bad ← 1
404 if Xi

s ∈ Dom(π) then Ci
s ← π(Xi

s)

405 else π(Xi
s) ← Ci

s
$← Ran(π)

406 Xms
s ← Cms−1

s ⊕ Mms
s

407 if Xms
s ∈Dom(π) ∨

408 (∃r<s)(Xms
s =Xmr

r ) then bad ← 1
409 Cms

s
$← {0, 1}n

410 return Cms
s

500 for s ← 1 to q do Game D5
501 C0

s ← 0n

502 for i ← 1 to ms − 1 do
503 Xi

s ← Ci−1
s ⊕ Mi

s

504 if (∃r < s)(Xi
s = Xmr

r ): bad ← 1
505 if Xi

s ∈Dom(π) then Ci
s ←π(Xi

s)

506 else π(Xi
s) ← Ci

s
$← Ran(π)

507 Xms
s ← Cms−1

s ⊕ Mms
s

508 if (∃r < s) (Xms
s ∈ Dom(π) ∨

509 Xms
s = Xmr

r ) then bad ← 1

600 π
$← Perm(n) Game D6

601 for s ∈ [1 .. q] do
602 C0

s ← 0n

603 for i ← 1 to ms − 1 do
604 Xi

s ← Ci−1
s ⊕ Mi

s

605 Ci
s ← π(Xi

s)
606 Xms

s ← Cms−1
s ⊕ Mms

s

607 bad ← (∃(r, i) �= (s, ms)) [Xi
r = Xms

s ]

700 π
$← Perm(n) Game D7

701 C0
1 ← C0

2 ← 0n

702 for i ← 1 to m1 do
703 Xi

1 ← Ci−1
1 ⊕ Mi

1, Ci
1 ← π(Xi

1)
704 for i ← 1 to m2 do
705 Xi

2 ← Ci−1
2 ⊕ Mi

2, Ci
2 ← π(Xi

2)
706 bad ← Xm2

2 ∈ {X1
1 , . . . , Xm1

1 ,

707 X1
2 , . . . , Xm2−1

2 }

Fig. 2. Games D0–D7 used in the proof of Lemma 1
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test (∃r<s)(Ci
s =Cmr

r ) at line 306, the test if Cms
s ∈ Ran(π) at line 309, and the

test for Cms
s = Cmr

r at line 310, bounding the probability that bad gets set due to
any of these three tests. To bound the probability of bad getting set at line 306:
A total of at most mq times we select at line 305 a random sample Ci

s from a
set of size at least 2n −mq ≥ 2n−1. (We may assume that mq ≤ 2n−1 since the
probability bound given by our lemma exceeds 1 if mq > 2n−1.) The chance that
one of these points is equal to any of the at most q points Cmr

r is thus at most
2mq2/2n. To bound the probability of bad getting set by the Cms

s ∈ Ran(π) test
at line 309: easily seen to be at most mq2/2n. To bound the probability of bad
getting set by the Cms

s = Cmr
r test at line 310: easily seen to be at most q2/2n.

Overall then, Pr[AD3 sets bad ] ≤ Pr[AD4 sets bad ] + 4mq2/2n.
D4→D5: The value Cms

s returned to the adversary in response to a query
in game D4 is never referred to again in the code and has no influence on the
game and the setting of bad . Accordingly, we may think of these values as being
chosen up-front by the adversary who, correspondingly, makes an optimal choice
of message queries M1, . . . , Mq so as to maximize the probability that bad gets
set in game D4. Queries M1, . . . , Mq ∈ B≤m

n are prefix-free (meaning that no two
strings from this list share a prefix P ∈ B+

n ) and the strings have block lengths
of m1, . . . , mq, respectively, where each mi ≤ m. We fix such an optimal vector of
messages and message lengths in passing to game D5, so that Pr[AD4 sets bad ] ≤
Pr[D5 sets bad ]. The adversary has effectively been eliminated at this point.

D5→D6: Next we postpone the evaluation of bad and undo the “lazy defin-
ing” of π to arrive at game D6. We have Pr[D5 sets bad ] ≤ Pr[D6 sets bad ].
D6→D7: Next we observe that in game D6, some pair r, s must contribute at
least an average amount to the probability that bad gets set. Namely, for any
r, s ∈ [1 .. q] where r �= s define bad r,s as

(Xms
s = X i

r for some i ∈ [1 .. mr]) ∨ (Xms
s = X i

s for some i ∈ [1 .. ms − 1])

and note that bad is set at line 607 iff bad r,s = 1 for some r �= s, and so there
must be an r �= s such that Pr[D6 sets badr,s] ≥ (1/q(q − 1)) Pr[D6 sets bad ].
Fixing such an r, s and renaming M1 = Mr, M2 = Ms, m1 = mr, and m2 = ms, we
arrive at game D7 knowing that

Pr[D6 sets bad ] ≤ q2 · Pr[D7 sets bad ] . (3)

Now Pr[D7 sets bad ] = FCPn(M1, M2) ≤ FCPpf
n,m by the definition of FCP and

the fact that π is a permutation. Putting all the above together we are done.

6 A Graph-Based Representation of CBC

In this section we describe a graph-based view of CBC computations and provide
some lemmas that will then allow us to reduce the problem of upper bounding the
collision probabilities CPany

n,m and FCPpf
n,m to combinatorial counting problems.

We fix for the rest of this section a blocklength n ≥ 1 and a pair of dis-
tinct messages M1 = M1

1 · · ·Mm1
1 ∈ Bm1

n and M2 = M1
2 · · ·Mm2

2 ∈ Bm2
n where

m1, m2 ≥ 1. We let � = max(m1, m2).
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algorithm Perm2Graph(M1, M2, π) //M1 ∈ Bm1
n , M2 ∈ Bm2

n , π ∈ Perm(n)
σ(0) ← 0n, ν ← 0, E ← ∅
for b ← 1 to 2 do

v ← 0
for i ← 1 to mb do

if ∃w s.t. (v, w) ∈ E and L((v, w)) = M i
b then v ← w

else if ∃w s.t. π(σ(v)⊕ M i
b) = σ(w) then

E ← E ∪ {(v, w)}, L((v, w)) ← M i
b , v ← w

else ν ← ν + 1, σ(ν) ← π(σ(v)⊕M i
b),

E ← E ∪ {(v, ν)}, L((v, ν)) ← M i
b , v ← ν

return G ← ([0..ν], E, L)

algorithm Graph2Profs(G) //G ∈ G(M1, M2), M1 ∈ Bm1
n , M2 ∈ Bm2

n

Prof1 ← Prof2 ← Prof3 ← ( ), V ′ ← {0}, E′ ← ∅
for b ← 1 to 2 do

for i ← 1 to mb do
if ∃w ∈ V ′ s.t. V i

b (G) = w then
if b = 1 then p ← (w, i) else p ← (w, m1 + i)
Prof1 ← Prof1 ‖ p
if (V i−1

b (G), w) �∈ E′ then Prof2 ← Prof2 ‖ p
if CycleG(V ′, E′, V i−1

b (G), w) = 0 then Prof3 ← Prof3 ‖ p
V ′ ← V ′ ∪ {V i

b (G)}, E′ ← E′ ∪ {(V i−1
b (G), V i

b (G))}
return (Prof1, Prof2, Prof3)

algorithm Prof2Graph(A) //A = ((i1, t1), . . . , (ia, ta)) ∈ Prof2(M1, M2)
V ← {0}, E ← ∅, c ← 1, v1

0 ← v2
0 ← ν ← 0

for b ← 1 to 2 do
for i ← 1 to mb do

if i = tc then vb
i ← ic, c ← c + 1 else ν ← ν + 1, vb

i ← ν

E ← E ∪ {(vb
i−1, v

b
i )}, L((vb

i−1, v
b
i )) ← M i

b

return G ← ([0..ν], E, L)

Fig. 3. The first algorithm above builds the structure graph GM1,M2
π associated to

M1, M2 and a permutation π ∈ Perm(n). The next associates to G ∈ G(M1, M2) its
type-1, type-2 and type-3 collision profiles. The last algorithm constructs a graph from
its type-2 collision profile A ∈ Prof2(M1, M2).

Structure graphs. To M1, M2 and any π ∈ Perm(n) we associate the struc-
ture graph GM1,M2

π output by the procedure Perm2Graph (permutation to graph)
of Fig. 3. The structure graph is a directed graph (V, E) together with an edge-
labeling function L: E → {M1

1 , . . . , Mm1
1 , M1

2 , . . . , Mm2
2 }, where V = [0..ν] for

some ν ≤ m1 + m2 + 1. To get some sense of what is going on here, let

CM1,M2
π = {CBCM1

π [i] : 0 ≤ i ≤ m1} ∪ {CBCM2
π [i] : 0 ≤ i ≤ m2} .

Note that due to collisions the size of the set CM1,M2
π could be strictly less than

the maximum possible size of m1 + m2 + 1. The structure graph GM1,M2
π has

vertex set V = [0..η] where η = |CM1,M2
π |. Associated to a vertex v ∈ V is a label

σ(v) ∈ CM1,M2
π , with σ(0) = 0n. (This label is constructed by the code but not
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part of the final graph.) An edge from a to b with label x exists in the structure
graph iff π(σ(a)⊕ x) = σ(b).

Let G(M1, M2) = {GM1,M2
π : π ∈ Perm(n)} denote the set of all structure

graphs associated to messages M1, M2. This set has the probability distribution
induced by picking π at random from Perm(n).

We associate to G = (V, E, L) ∈ G(M1, M2) sequences V 0
b , . . . , V mb

b ∈ V that
for b = 1, 2 are defined inductively as follows: set V 0

b = 0 and for i ∈ [1..mb] let
V i

b be the unique vertex w ∈ V such that there is an edge (V i−1
b , w) ∈ E with

L(e) = M i
b . Note that this defines the following walks in G:

0 = V 0
1

M1
1� V 1

1
M2

1� V 2
1 � · · · � V m1

1
Mm1

1 � V m1
1 and

0 = V 0
2

M1
2� V 1

2
M2

2� V 2
2 � · · · � V m2−1

2
Mm2

2 � V m2
2 .

If G = GM1,M2
π then observe that σ(V i

b ) = CBCM1,M2
π [i] for i ∈ [0..mb] and

b = 1, 2, where σ(·) is the vertex-labeling function defined by Perm2Graph(π).
We emphasize that V i

b depends on G (and thus implicitly on M1 and M2), and
if we want to make the dependence explicit we will write V i

b (G).

Collisions. We use the following notation for sequences. If s = (s1, . . . , sk) is a
sequence then |s| = k; y ∈ s iff y = si for some i ∈ [1..k]; s ‖ x = (s1, . . . , sk, x);
and ( ) denotes the empty sequence. For G = (V, E) ∈ G, E′ ⊆ E, V ′ ⊆ V
and a, b ∈ V we define CycleG(V ′, E′, a, b) = 1 if adding edge (a, b) to graph
G′ = (V ′, E′) closes a cycle of length at least four with directions of edges on
the cycle alternating. Formally, CycleG(V ′, E′, a, b) = 1 iff there exists k ≥ 2
and vertices a = v1, v2, . . . , v2k−1, v2k = b ∈ V ′ such that (v2i−1, v2i) ∈ E′ for
all i ∈ [1..k], (v2i+1, v2i) ∈ E′ for all i ∈ [1..k − 1], and (b, a) ∈ E. To a graph
G ∈ G we associate sequences Prof1(G), Prof2(G), Prof3(G) called, respectively,
the type-1, type-2 and type-3 collision profiles of G. They are returned by the
algorithm Graph2Profs (graph to collision profiles) of Fig. 3 that refers to the
predicate CycleG we have just defined. We say that G has a type-a (i, t)-collision
(a ∈ {1, 2, 3}) if (i, t) ∈ Profa(G). Type-3 collisions are also called accidents,
and type-1 collisions that are not accidents are called induced collisions. We let
coli(G) = |Profi(G)| for i = 1, 2, 3.

Lemma 5. Let n ≥ 1, M1 ∈ Bm1
n , M2 ∈ Bm2

n , � = max(m1, m2). Let H ∈
G(M1, M2) be a structure graph. Then

Pr[G $←G(M1, M2) : G = H ] ≤ 1
(2n −m−m′)col3(H) ≤ 1

(2n − 2�)col3(H) .

The lemma builds on an unpublished technique from [8,9]. A proof is given in
[3]. For i = 1, 2, 3 let Profi(M1, M2) = {Profi(G) : G ∈ G(M1, M2)}. Note that if
A = ((w1, t1), . . . , (wa, ta)) ∈ Prof2(M1, M2) then 1 ≤ t1 < · · · < ta ≤ m1 + m2
and wi < ti for all i ∈ [1..a]. Algorithm Prof2Graph (collision profile to graph) of
Fig. 3 associates to A ∈ Prof2(M1, M2) a graph in a natural way. We leave the
reader to verify the following:
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Lemma 6. Prof2Graph(Prof2(G)) = G for any G ∈ G(M1, M2).

This means that the type-2 collision profile of a graph determines it uniquely.
Now for i = 1, 2, 3 and an integer a ≥ 0 we let Ga

i (M1, M2) = {G ∈ G(M1, M2) :
coli(G) = a} and Profai (M1, M2) = {A ∈ Profi(M1, M2) : |A| = a}

Lemma 7. Let n ≥ 1, M1 ∈ Bm1
n , M2 ∈ Bm2

n , � = max(m1, m2), and assume
�2 ≤ 2n−2. Then

Pr[G $←G(M1, M2) : col3(G) ≥ 2] ≤ 8�4

22n
.

Proof. By Lemma 5

Pr[G $←G(M1, M2) : col3(G) ≥ 2]

=
�∑

a=2

∑
H∈Ga

3 (M1,M2)

Pr[G $←G(M1, M2) : G = H ]

≤
�∑

a=2

|Ga
3 (M1, M2)|
(2n − 2�)a

.

Since every type-3 collision is a type-2 collision, |Ga
3 (M1, M2)| ≤ |Ga

2 (M1, M2)|.
By Proposition 6, |Ga

2 (M1, M2)| = |Profa2(M1, M2)|. Now |Profa
2(M1, M2)| ≤

(�(� + 1)/2)a ≤ �2a, so we have

�∑
a=2

|Ga
3 (M1, M2)|
(2n − 2�)a

≤
�∑

a=2

�2a

(2n − 2�)a
.

Let x = �2/(2n − 2�), and observe that the assumption �2 ≤ 2n−2 made in the
lemma statement implies that x ≤ 1/2. Thus the above is

�∑
a=2

xa = x2 ·
�−2∑
a=0

xa ≤ x2 ·
∞∑

a=0

xa ≤ 2x2 =
2�4

(2n − 2�)2
≤ 8�4

22n
,

where the last inequality used the fact that � ≤ 2n−2.

Let P denote a predicate on graphs. Then φM1,M2 [P ] will denote the set of all
G ∈ G1

3(M1, M2) such that G satisfies P . (That is, it is the set of structure graphs
G having exactly one type-3 collision and satisfying the predicate.) For example,
predicate P might be V m1

1 (·) = V m2
2 (·) and in that case φM1,M2 [V

m1
1 = V m2

2 ] is
{G ∈ G1

3 (M1, M2) : V m1
1 (G) = V m2

2 (G)}.
Note that if G has exactly one accident then Prof2(G) = Prof3(G), meaning

the accident was both a type-2 and a type-3 collision. We will use this below. In
this case when we talk of an (i, t)-accident, we mean a type-2 (i, t)-collision.

Finally, let inG(v) denote the in-degree of a vertex v in a structure graph G.
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7 Bounding CPany
n,m (Proof of Lemma 4)

In this section we prove Lemma 4, showing that CPany
n,� ≤ 2d′(�)/2n + 8�4/22n

for any n, � with �2 ≤ 2n−2, thereby proving Lemma 4.

Lemma 8. Let n ≥ 1 and 1 ≤ m1, m2 ≤ �. Let M1 ∈ Bm1
n and M2 ∈ Bm2

n be
distinct messages and assume �2 ≤ 2n−2. Then

CPany
n,�(M1, M2) ≤

2 · |φM1,M2 [V
m1
1 = V m2

2 ]|
2n

+
8�4

22n
.

Proof. With the probability over G
$←G(M1, M2), we have:

CPn(M1, M2)
= Pr [V m1

1 = V m2
2 ]

= Pr [V m1
1 = V m2

2 ∧ col3(G) = 1 ] + Pr [ V m1
1 = V m2

2 ∧ col3(G) ≥ 2 ] (4)

≤ |φM1,M2 [V
m1
1 = V m2

2 ]|
2n − 2�

+
8�4

22n
(5)

≤ 2 · |φM1,M2 [V
m1
1 = V m2

2 ]|
2n

+
8�4

22n
. (6)

In (4) above we used that Pr [V m1
1 = V m2

2 ∧ col3(G) = 0 ] = 0 as V m1
1 = V m2

2
with M1 �= M2 implies that there is at least one accident. In (5) we first used
Lemma 5, and then used Lemma 7. In (6) we used the fact that � ≤ 2n−2, which
follows from the assumption �2 ≤ 2n−2.

Next we bound the size of the set that arises above:

Lemma 9. Let n, � ≥ 1 and 1 ≤ m2 ≤ m1 ≤ �. Let M1 ∈ Bm1
n and M2 ∈ Bm2

n

be distinct messages. Then

|φM1,M2 [V
m1
1 = V m2

2 ]| ≤ d′(�) .

Putting together Lemmas 8 and 9 completes the proof of Lemma 4.

Proof (Lemma 9). Let k ≥ 0 be the largest integer such that M1, M2 have a
common suffix of k blocks. Note that V m1

1 = V m2
2 iff V m1−k

1 = V m2−k
2 . Thus,

we may consider M1 to be replaced by M1→m1−k
1 and M2 to be replaced by

M1→m2−k
2 , with m1, m2 correspondingly replaced by m1−k, m2−k respectively.

We now have distinct messages M1, M2 of at most � blocks each such that either
m2 = 0 or Mm1

1 �= Mm2
2 . (Note that now m2 could be 0, which was not true

before our transformation.) Now consider three cases. The first is that m2 ≥ 1
and M2 is a prefix of M1. This case is covered by Lemma 10. (Note in this case
it must be that m1 > m2 since M1, M2 are distinct and their last blocks are
different.) The second case is that m2 = 0 and is covered by Lemma 11. (In this
case, m1 ≥ 1 since M1, M2 are distinct.) The third case is that m2 ≥ 1 and M2
is not a prefix of M1. This case is covered by Lemma 12.
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Lemma 10. Let n ≥ 1 and 1 ≤ m2 < m1 ≤ �. Let M1 ∈ Bm1
n , M2 ∈ Bm2

n .
Assume M2 is a prefix of M1 and Mm1

1 �= Mm2
2 . Then |φM1,M2 [V

m1
1 = V m2

2 ]| ≤
d′(�).

Proof. Because M2 is a prefix of M1 we have that V m2
2 = V m2

1 , and thus
|φM1,M2 [V

m1
1 = V m2

2 ]| = |φM1,M2 [V
m2
1 = V m1

1 ]|. We now bound the latter.
Let G ∈ G1

3 (M1, M2). Then V m1
1 (G) = V m2

1 (G) iff ∃t ≥ m2 such that G has
a type-2 (t, V m2

1 (G))-collision. (This is also a type-3 (V m2
1 (G), t)-collision since

G has exactly one accident.) To see this note that since there was at most one
accident, we have inG(V i

1 (G)) ≤ 1 for all i ∈ [1..m1] except one, namely the i
such that V i

1 (G) was hit by the accident. And it must be that i = m2 since
V m2

1 (G) has in-going edges labeled Mm2
1 and Mm1

1 , and these edges cannot be
the same as Mm1

1 �= Mm2
1 .

Let c ≥ 1 be the smallest integer such that V m2+c
1 (G) = V m2

1 (G). That is,
we have a cycle V m2

1 (G), V m2+1
1 (G), . . . , V m2+c

1 (G) = V m2
1 (G). Now, given that

there is only one accident and V m2
1 (G) = V m1

1 (G), it must be that m1 = m2+kc
for some integer k ≥ 1. (That is, starting from V m2

1 (G), one traverses the cycle
k times before reaching V m1

1 (G) = V m2
1 (G).) This means that c must divide

m1−m2. But |φM1,M2 [V
m2
1 = V m1

1 ]| is at most the number of possible values of
c, since this value uniquely determines the graph. So |φM1,M2 [V

m2
1 = V m1

1 ]| ≤
d(m1 − m2), where d(s) is the number of positive integers i ≤ s such that i
divides s. But d(m1 −m2) ≤ d′(�) by definition of the latter.

Lemma 11. Let n ≥ 1 and 1 ≤ m1 ≤ �. Let M1 ∈ Bm1
n , let M2 = ε and let

m2 = 0. Then |φM1,M2 [V
m1
1 = V m2

2 ]| ≤ d′(�).

Proof. Use an argument similar to that of Lemma 10, noting that V 0
m1

(G) =
V 0

1 (G) implies that inG(V 0
1 (G)) ≥ 1.

Lemma 12. Let n ≥ 1 and 1 ≤ m2 ≤ m1 ≤ �. Let M1 ∈ Bm1
n , M2 ∈ Bm2

n .
Assume M2 is not a prefix of M1 and Mm1

1 �= Mm2
2 . Then |φM1,M2 [V

m1
1 =

V m2
2 ]| ≤ 1.

Proof. Let p ∈ [0..m2 − 1] be the largest integer such that M1→i
1 = M1→i

2 for
all i ∈ [1..p]. Then V i

1 = V i
2 for i ∈ [1..p] and V p+1

1 �= V p+1
2 . Now to have

V m1
1 = V m2

2 we need an accident. Since Mm1
1 �= Mm2

2 and there is only one
accident, the only possibility is that this is a (V m1

1 , m1 + m2)-collision. Thus,
there is only one way to draw the graph.

8 Bounding FCPpf
n,� (Proof of Lemma 2)

In this section we show that FCPpf
n,� ≤ 8�/2n + 8�4/22n for any n, � with �2 ≤

2n−2, thereby proving Lemma 2. Recall that pf(M1, M2) = false iff M1 is not a
prefix of M2 and M2 is not a prefix of M1. The proof of the following is similar
to the proof of Lemma 8 and is omitted.
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? ?

?

Fig. 4. Some shapes where the M1-path (solid line) makes a loop. In the first three
cases the M1-path passes only once through V p

1 (the dot), and we see that we cannot
draw the M2-path such that V m2

2 ∈ {V p+1
1 , . . . , V m1

1 } without a second accident in
any of those cases. In the last graph V m2

2 ∈ {V p+1
1 , . . . , V m1

1 }, but there also V p
1 ∈

{V 0
1 , . . . , V p−1

1 , V p+1
1 , . . . , V m1

1 }.

Lemma 13. Let n ≥ 1 and 1 ≤ m1, m2 ≤ �. Let M1 ∈ Bm1
n , M2 ∈ Bm2

n with
pf(M1, M2) = false. Assume �2 ≤ 2n−2. Then

FCPpf
n,�(M1, M2)≤

2 ·
∣∣φM1,M2 [V

m2
2 ∈ {V 1

1 , . . . , V m1
1 , V 1

2 , . . . , V m2−1
2 }]

∣∣
2n

+
8�4

22n
.

Next we bound the size of the set that arises above:

Lemma 14. Let n, � ≥ 1 and 1 ≤ m1, m2 ≤ �. Let M1 ∈ Bm1
n , M2 ∈ Bm2

n with
pf(M1, M2) = false. Then∣∣φM1,M2 [V

m2
2 ∈ {V 1

1 , . . . , V m1
1 , V 1

2 , . . . , V m2−1
2 }]

∣∣ ≤ 4� .

Putting together Lemmas 13 and 14 completes the proof of Lemma 2.
We denote by cpl(M1, M2) the number of blocks in the longest common

block-prefix of M1, M2. That is, cpl(M1, M2) is the largest integer p such that
M i

1 = M i
2 for all i ∈ [1..p]. Define the predicate NoLoop(G) to be true for

structure graph G ∈ G1
2(M1, M2) iff V 0

1 (G), . . . , V m1
1 (G) are all distinct and also

V 0
2 (G), . . . , V m2

2 (G) are all distinct. Let Loop be the negation of NoLoop.

Proof (Lemma 14). Let p = cpl(M1, M2). Since pf(M1, M2) = false, it must be
that p < m1, m2 and Mp+1

1 �= Mp+1
2 . Note then that V i

1 = V i
2 for all i ∈ [0..p]

but V p+1
1 �= V p+1

2 . Now we break up the set in which we are interested as

φM1,M2 [V
m2
2 ∈ {V 1

1 , . . . , V m1
1 , V 1

2 , . . . , V m2−1
2 }]

= φM1,M2 [V
m2
2 ∈ {V 1

2 , . . . , V m2−1
2 }] ∪ φM1,M2 [V

m2
2 ∈ {V p+1

1 , . . . , V m1
1 }] .

Lemma 15 implies that |φM1,M2 [V
m2
2 ∈ {V 1

2 , . . . , V m2−1
2 }]| ≤ m2 and Lemma 17

says that |φM1,M2 [V
m2
2 ∈ {V p+1

1 , . . . , V m1
1 } ∧ NoLoop]| ≤ m1. It remains to

bound |φM1,M2 [V
m2
2 ∈ {V p+1

1 , . . . , V m1
1 } ∧ Loop]|. We use a case analysis, which

is illustrated in Fig. 4. The condition Loop means that either the M1- or the
M2-path (or both) must make a loop. If the M1-path makes a loop then we can
only draw the M2-path such that V m2

2 ∈ {V p+1
1 , . . . , V m1

1 } if the loop goes twice
through V p

1 . The same argument works if only the M2-path makes a loop. Thus

φM1,M2 [V
m2
2 ∈ {V p+1

1 , . . . , V m1
1 } ∧ Loop] ⊆ S1 ∪ S2
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B
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A
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B
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B

B

A

B

B A

Fig. 5. An example for the proof of Lemma 15 with m1 = 5 and M1 = A‖B‖B‖A‖B
for distinct A,B ∈ {0, 1}n. Here we have N5 = 5 − µ1(M

5
1 ) + 1 = 5 − µ1(B) + 1 =

5 − 3 + 1 = 3 and N4 = µ1(M
5
1 ) − µ1(M

4→5
1 ) = µ1(B) − µ1(A‖B) = 3 − 2 = 1 and

N3 = µ1(M
4→5
1 )−µ1(M

3→5
1 ) = µ1(A‖B)−µ1(B‖A‖B) = 2−1 = 1 and N2 = N1 = 0.

The first three graphs show the N5 cases, the fourth and the fifth graph show the single
cases for N4 and N3.

where

S1 = φM1,M2 [V
p
1 ∈ {V 0

1 , . . . , V p−1
1 , V p+1

1 , . . . , V m1
1 }]

S2 = φM1,M2 [V
p
2 ∈ {V 0

2 , . . . , V p−1
2 , V p+1

2 , . . . , V m2
2 }] .

Lemma 16 says that |S1| ≤ m1 and |S2| ≤ m2. Putting everything together, the
lemma follows as 2(m1 + m2) ≤ 4�.

Lemma 15. Let n, m1, m2 ≥ 1. Let M1 ∈ Bm1
n , M2 ∈ Bm2

n with pf(M1, M2) =
false. Then for b ∈ {1, 2},∣∣φM1,M2 [V

mb

b ∈ V 0
b , V 1

b , . . . , V mb−1
b }]

∣∣ = mb

Proof. We prove the claim for b = 1 and then briefly discuss how to extend
the proof to b = 2. If V m1

1 ∈ {V 0
1 , . . . , V m1−1

1 } then there must be a (V i
1 , j)-

accident for some i ∈ [0..m1 − 1] and j ∈ [i + 1..m1] and then induced collisions
in steps j + 1 to m1. Thus V j+k

1 = V i+k
1 for all k ∈ [0..m1 − j]. For j ∈ [1..m1]

let Nj be the number of structure graphs G ∈ G1
2 (M1, M2) such that V m1

1 (G) ∈
{V 0

1 (G), . . . , V m1−1
1 (G)} and there is a (V i

1 (G), j)-accident for some i ∈ [0..j−1].
Then ∣∣φM1,M2 [V

m1
1 ∈ {V 0

1 , . . . , V m1−1
1 }]

∣∣ =
m1∑
j=1

Nj .

Let µ1(S) denote the number of block-aligned occurrences of the substring S
in M1. (For example, µ1(A ‖B) = 2 if M1 = A‖B ‖B ‖ ‖A‖B for some distinct
A, B ∈ {0, 1}n.) It is possible to have a (V i

1 , m1)-accident for any i ∈ [0..m1− 1]
for which M i

1 �= Mm1
1 (cf. Fig. 5) and thus Nm1 = m1 − µ1(Mm1

1 ) + 1. It is
possible to have a (V i

1 , m1 − 1)-accident and also have V m1
1 ∈ {V 0

1 , . . . , V m1−1
1 }

for any i ∈ [0..m1 − 2] for which M i
1 �= Mm1−1

1 and M i+1
1 = Mm1

1 and thus
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B
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Fig. 6. An example for the proof of Lemma 16 with m1 = 5, M1 = A‖B‖B‖A‖D and
r = 1, where A, B, D ∈ {0, 1}n are distinct. (The large dot is V r

1 = V 1
1 .) Here we have

Nr = m−r = µ2(M
1
1 ) = N1 = m1 −1−µ2(M

1
1 ) = 5−1−µ2(A) = 5−1−1 = 3. Those

cases correspond to the first three graphs in the figure. The fourth graph corresponds
to Nr−1 = N0 = µ2(� ‖ M1→r

1 ) = µ2(� ‖ A) = 1.

Nm1−1 = µ1(Mm1
1 ) − µ1(Mm1−1→m1

1 ). In general for j ∈ [1..m1 − 1] we have
Nj = µ1(M

j+1→m1
1 ) − µ1(M

j→m1
1 ). Using cancellation of terms in the sum we

have
m1∑
j=1

Nj = m1 + 1− µ1(M1→m1
1 ) = m1

which proves the lemma for the case b = 1. For b = 2 we note that we can
effectively ignore the part of the graph related to M since it must be a straight
line, and thus the above counting applies again with the (V i

1 , j)-accident now
being a (V i

2 , m1 + j)-accident and M1, m1 replaced by M2, m2 respectively.

Next we have a generalization of Lemma 15.

Lemma 16. Let n, m1, m2 ≥ 1. Let M1 ∈ Bm1
n , M2 ∈ Bm2

n with pf(M1, M2) =
false. Then for b ∈ {1, 2} and any r ∈ [0..mb],∣∣φM1,M2 [V

r
b ∈ {V 0

b , . . . , V r−1
b , V r+1

b , . . . , V mb

b }]
∣∣ ≤ mb .

Proof. We prove it for the case b = 1. (The case b = 2 is analogous.) By
Lemma 15 we have |φM1,M2 [V r

1 ∈ {V 0
1 , . . . , V r−1

1 })| = r. It remains to show
that ∣∣φM1,M2 [V

r
1 ∈ {V r+1

1 , . . . , V m1
1 } ∧ V r

1 �∈ {V 0
1 , . . . , V r

1 }]
∣∣ ≤ m1 − r .

We may assume that V i
1 �= V j

1 for all 0 ≤ i < j ≤ r− 1, as otherwise we have al-
ready used up our accident and there’s no way to get V r

1 ∈ {V r+1
1 , . . . , V m1

1 } any
more. If V ∈

r {V r+1
1 , . . . , V m1

1 } then there is a (V j
1 , i)-accident for some 0 ≤ j ≤

r < i. For j ∈ [0..r] let Nj be the number of structure graphs G ∈ G1
2 (M1, M2)

such that V r
1 (G) ∈ {V r+1

1 (G), . . . , V m1
1 (G)}, V r

1 (G) �∈ {V 0
1 (G), . . . , V r

1 (G)} and
there is a (V j

1 , i)-accident for some i ∈ [r + 1..m1]. Then

∣∣φM1,M2 [V
r
1 ∈ {V r+1

1 , . . . , V m1
1 } ∧ V r

1 �∈ {V 0
1 , . . . , V r

1 }]
∣∣ =

r∑
j=0

Nj .
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Let µ2(S) be the number of block-aligned occurrences of the substring S in
M r+1→m1

1 , and adopt the convention that µ2(M0
1 ) = 0. Since we can only have

an (V r
1 , j)-accident when M j

1 �= M r
1 we have Nr = m− r − µ2(M r

1 ). For i > r,
a (V r

1 , i)-accident is possible and will result in V r
1 ∈ {V r+1

1 , . . . , V m1
1 } only if

M i→i+1
1 = X‖Mr for some X �= M r−1

1 . Now with 	 being a wildcard standing
for an arbitrary block we have Nr−1 = µ2(	 ‖M r

1 )−µ2(M r−1→r
1 ). In general, for

j ∈ [1..r−1] we have Nj = µ2(	 ‖M j+1→r
1 )−µ2(M

j→r
1 ) and N0 = µ2(	 ‖M1→r

1 ).
Now, as µ2(	 ‖ S) ≤ µ2(S) for any S, we get

r∑
j=0

Nj ≤ m1 − r .

The proof of the following is in [3].

Lemma 17. Let n, m1, m2 ≥ 1. Let M1 ∈ Bm1
n , M2 ∈ Bm2

n with pf(M1, M2) =
false. Let p = cpl(M1, M2). Then∣∣∣φM1,M2 [V

m2
2 ∈ {V p+1

1 , . . . , V m1
1 } ∧NoLoop]

∣∣∣ ≤ m1 .
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Abstract. The MQV protocol of Law, Menezes, Qu, Solinas and Van-
stone is possibly the most efficient of all known authenticated Diffie-
Hellman protocols that use public-key authentication. In addition to
great performance, the protocol has been designed to achieve a remark-
able list of security properties. As a result MQV has been widely stan-
dardized, and has recently been chosen by the NSA as the key exchange
mechanism underlying “the next generation cryptography to protect US
government information”.

One question that has not been settled so far is whether the protocol
can be proven secure in a rigorous model of key-exchange security. In
order to provide an answer to this question we analyze the MQV proto-
col in the Canetti-Krawczyk model of key exchange. Unfortunately, we
show that MQV fails to a variety of attacks in this model that invalidate
its basic security as well as many of its stated security goals. On the
basis of these findings, we present HMQV, a carefully designed variant
of MQV, that provides the same superb performance and functional-
ity of the original protocol but for which all the MQV’s security goals
can be formally proved to hold in the random oracle model under the
computational Diffie-Hellman assumption.

We base the design and proof of HMQV on a new form of “challenge-
response signatures”, derived from the Schnorr identification scheme,
that have the property that both the challenger and signer can compute
the same signature; the former by having chosen the challenge and the
latter by knowing the private signature key.

1 Introduction

The classic Diffie-Hellman (DH) key-exchange protocol that marked the birth of
modern cryptography has since been one of the main pillars of both theory and
practice of cryptography. While the basic protocol as originally proposed (i.e.,
two parties Â and B̂ exchange values gx and gy, and compute a secret shared
key as gxy) is believed to be secure against an eavesdropping-only attacker, the
� This is a very partial and informal version of the full paper available at
http://eprint.iacr.org/2005/

V. Shoup (Ed.): Crypto 2005, LNCS 3621, pp. 546–566, 2005.
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quest for an “authenticated Diffie-Hellman” protocol that resists active, man-in-
the-middle, attacks has resulted in innumerable ad-hoc proposals, many of which
have been broken or shown to suffer from serious weaknesses. Fortunately, with
the development of rigorous security models for key exchange in the last years,
we are now in a much better position to judge the security of these protocols as
well as to develop designs that provably withstand realistic active attacks.

In addition to the need for sound security, the many practical applications of
key exchange have driven designers to improve on the performance cost associ-
ated with authentication mechanisms, especially those based on public key. One
ambitious line of investigation, initiated by Matsumoto, Takashima and Imai in
1986 [31], is to design DH protocols whose communication is identical to the
basic DH protocol (i.e., no explicit authentication added except for the possible
transmission of PK certificates), yet they are implicitly authenticated by the sole
ability of the parties to compute the resultant session key (i.e., rather than agree-
ing on the key gxy, the parties would agree on a key that combines gx, gy with
their public/private keys). Not only can this approach generate protocols that are
very efficient communication-wise, but the combination of authentication with
the key derivation procedure can potentially result in significant computational
savings. For these reasons, several of these “implicitly authenticated” protocols
have been standardized by major national and international security standards.

Of these protocols, the most famous, most efficient and most standardized
is the MQV protocol of Law, Menezes, Qu, Solinas and Vanstone [33,30]. This
protocol has been standardized by many organizations, e.g. [2,3,20,21,35], and
has recently been announced by the US National Security Agency (NSA) as the
key exchange mechanism underlying “the next generation cryptography to pro-
tect US government information” (which includes the protection of “classified
or mission critical national security information”) [36]. Indeed, MQV appears
to be a remarkable protocol that not only is the most efficient and versatile au-
thenticated DH protocol in existence, but it has also been designed to satisfy an
impressive array of security goals.

Yet, in spite of its attractiveness and success, MQV has so far eluded any
formal analysis in a well-defined model of key exchange. The present work was
initially motivated by the desire to provide such an analysis. Our findings, how-
ever, have been disappointing: we found that when formally studied virtually
none of the stated MQV goals can be shown to hold (specifically, we carried
this study in the computational key exchange model of Canetti and Krawczyk
[11]). This raises clear concerns about the security of the protocol and triggers
a natural question: Do we have a replacement for MQV with the same superb
performance and versatility but for which the MQV security goals can be guar-
anteed in a well analyzed, provable way?

The main contribution of this paper is in identifying the various analytical
shortcomings of the MQV design and proposing a “hashed variant” of the proto-
col, which we call HMQV, that provides the same (almost optimal) performance
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Key Computation in the MQV and HMQV Protocols

Both protocols: Â and B̂ exchange X = gx, Y = gy (via a basic DH run)

Â computes σÂ = (Y Be)x+da, B̂ computes σB̂ = (XAd)y+eb

Both parties set K = H(σÂ) = H(σB̂)

MQV: d = X̄, e = Ȳ (X̄ and Ȳ are defined in the text)

HMQV: d = H̄(X, B̂), e = H̄(Y, Â)

Fig. 1. Computation of the session key K in each of the two protocols

(A = ga and B = gb are Â’s and B̂’s public keys, respectively.)

of MQV but also delivers, in a provable way, the original security goals of MQV
(and even more).

Organization. Due to space limitations most of this proceedings version is
devoted to a high-level informal description of our results (Sections 2 and 3).
The full version of the paper [28] contains a detailed presentation of our results
and their proofs. The only technical section in this extended abstract is Section 4
which presents XCR signatures, the main technical tool developed here as a basis
for the proof of the HMQV protocol (see the end of that section for a 1-paragraph
rationale of HMQV’s design). We end with some discussion of related work in
Section 5 and concluding remarks in Section 6.

Note on Groups and Notation. All the protocols and operations discussed
in this paper assume a cyclic group G of prime order q generated by a generator
g. We denote by |q| the bit length of q (i.e., |q| = �log2 q�), and use this quantity
as an implicit security parameter. The parameters G, g and q are assumed to be
fixed and known in advance to the parties (this is usually the case in practice,
e.g., [19]; alternatively, one could include these values in certificates, etc.).
We use the multiplicative representation of group operations but our treatment
is equally applicable to additive (prime order) groups such as elliptic curves.
In our protocols, public keys (denoted by upper case letters) are elements in the
group G, and the private keys (denoted by the corresponding lower case letters)
are elements in Zq. For example, to a public key A = ga corresponds a private
key a. The party having A as its public key will be denoted by Â (in general,
the “hat notation” is used to denote the identities of parties in the protocol,
possibly including the party’s PK certificate).

2 The MQV Protocol and Its Security Shortcomings

The communication in the MQV protocol is identical to the basic unauthenti-
cated DH protocol except that the identities Â, B̂ may include a public-key cer-
tificate. The computation of the session key is shown in Figure 1 where: party Â
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possesses a long-term private key a ∈ Zq and corresponding public key A = ga,
B̂’s private/public key pair is (b, B = gb), and the ephemeral DH values ex-
changed in the protocol are X = gx, Y = gy (x, y chosen by Â, B̂, respectively).
The computation of the session key also uses the values d = X̄ and e = Ȳ , where
X̄ =2�+ (X mod 2�) and Ȳ =2�+ (Y mod 2�) for � = |q|/2. The computation of
the session key by Â (and similarly by B̂) involves the exponentiations X = gx,
Be, and (Y Be)x+da. Note, however, that e is of length |q|/2 and hence Be counts
as “half exponentiation” (i.e. half the number of modular multiplication relative
to a regular exponentiation of g). Also, note that X = gx can be pre-computed.
This sums up to an impressive performance: same communication as the basic
DH protocol and just half exponentiation more than the basic protocol, i.e. a
mere 25% increase in computation to achieve an authenticated exchange! This
is significantly better than any of the proven DH protocols that rely on digital
signatures or public key encryption for authentication (which involve more ex-
pensive operations and increased bandwidth), and is also the most efficient of
the implicitly-authenticated DH protocols (the closest are the “Unified Model”
protocols [8,23] that require three full exponentiations and offer substantially
less security features – see Section 5).

2.1 Stated Security Goals of the MQV Protocol

The designers of MQV clearly, albeit informally, stated the security goals be-
hind the MQV design (see [33,30] and related publications). This includes the
resistance to a variety of explicit attack strategies such as guessing attacks, im-
personation attacks, known-key attacks, key-compromise impersonation (KCI)
attacks, and the provision of perfect forward secrecy (PFS).

While resistance to guessing attacks and impersonation attacks are basic
and obvious security requirements, it is worth expanding on the meaning of the
other attacks. They all represent realizations of the same fundamental security
principle: a good security system is not one that denies the possibility of failures
but rather one designed to confine the adverse effects of such failures to the
possible minimum.

In the case of known key attacks, one is concerned with the realistic possibility
that some session-specific information, such as a session key (or the ephemeral
secrets that led to the computation of that key), will leak to an attacker. This can
happen in a variety of ways ranging from the simple mishandling of information
to a temporary break-in into a computer system or the malicious action of an
insider. In this case, one does not expect the exposed session to remain secure,
but a well-designed key-exchange protocol needs to guarantee that such a failure
will only affect the specific compromised session. Other sessions, by the same or
other parties, should not be endangered by this leakage. The resistance to known-
key attacks enforces other basic security principles as well; most importantly,
that keys from different sessions should be fully “computationally independent”
(i.e., from learning one session key nothing can be implied about the value of
other session keys).



550 H. Krawczyk

The properties of PFS and KCI resistance are also concerned with limiting
the effects of eventual failures, in this case the disclosure of long-term keys.
Clearly, the discovery by an attacker M of the long-term authentication key of
party Â allows M to impersonate Â and establish its own sessions in the name
of Â. A protocol is said to have PFS if session keys established (and deleted from
memory) before the compromise of the long-term key cannot be recovered (even
with the use of this key). In the case of KCI, the question is whether the knowl-
edge of Â’s private key allows M not only to impersonate Â to others but also
to impersonate other, uncorrupted, parties to Â. A protocol that prevents this
form of “reverse impersonation” is said to resist KCI attacks. In other words,
in such a protocol the only way M can take advantage of the knowledge of Â’s
private key is by active impersonation of Â. Any session established by Â, with-
out being actively controlled by M, remains secure. Resistance to KCI attacks
is a very significant security property that has added much to the attractiveness
of MQV as it is not offered by other implicitly-authenticated protocols, such as
the unified-model protocols of [8,23] (see Section 5), that use the static DH key
gab for authentication (this key functions as a long-term shared key and hence
cannot resist a KCI attack).

2.2 Weaknesses of the MQV Protocol

In spite of the ambitious security goals described above, it turns out that when
casting these goals in a well-defined formal setting as the one in [11], the MQV
protocol falls short of delivering most of its intended security. Due to page lim-
itations we only present a summary of these findings here; please refer to [28]
for a detailed account (which also includes a succinct description of the formal
model from [11]).

Group Representation Attacks. We first observe that MQV’s security is strongly
susceptible to the specific way the group elements are represented in the protocol.
We show how some representations render the protocol totally insecure. While
ordinary group representations may not have such an extreme effect on the
security of the protocol, this result shows that any attempt at proving MQV
would need to involve restricted group representations. Moreover, the inherent
weaknesses of the protocol discussed below show that the protocol cannot be
proven secure even for specific groups.

UKS Attacks. We study the vulnerability of the protocol to “unknown key share”
(UKS) attacks which were also listed as a security consideration in MQV. A
successful UKS attack [16] is one in which two parties compute the same session
key but have different views of who the peer to the exchange was (this attack
represents both an authentication failure as well as a vulnerability to known-key
attacks). Originally, it was thought that MQV (at least when the registrants of
public keys are required to prove “possession” of the corresponding private keys)
was immune to these attacks; later it was shown by Kaliski [24] that even with
such proofs of possession MQV fails to a UKS attack. Since then it has been
believed that augmenting the protocol with a “key confirmation” step (which



HMQV: A High-Performance Secure Diffie-Hellman Protocol 551

adds a third message to the protocol) would solve the problem. Here we show
that this is not the case. Indeed, the 3-message variant of MQV is still vulnerable
to this form of attack if the attacker can access ephemeral secret session-state
information for sessions other than the session being attacked.

Lack of PFS. MQV does not provide Perfect Forward Secrecy (PFS). This,
however, is not just a failure of MQV but it’s an inherent limitation of implicitly-
authenticated 2-message protocols based on public-key authentication. Indeed no
such protocol can provide PFS. We present a generic attack against any such
protocol where an active attacker M causes the establishment of a session key
K at party Â with peer B̂ such that a later corruption of B̂ (even after K was
erased) allows M to find K.

KCI Attacks. Since MQV is susceptible to basic authentication attacks even
when the private key of the victim is not known to the attacker, then KCI re-
sistance cannot be satisfied. Yet, it is interesting to see explicit KCI attacks
that take advantage of the knowledge of such private key. We show such an
attack against MQV in the case that the attacker has access to the ephemeral
values σ from which the session key is computed. This serves to motivate two
design principles in HMQV: (i) the essential role of the hashing of σ for ses-
sion key derivation (in MQV this hashing is recommended but separated from
the core specification of the protocol [30])1; and (ii) the care required in han-
dling ephemeral information (that may be learned by the attacker in some
situations).

Prime-Order Checks. Our description in Figure 1 omitted an element from the
session-key computation in MQV: In case where the group G generated by g
is a subgroup of a larger group G′ (which is the case in typical mod p and
elliptic curve groups), MQV specifies that the key be computed as K = H(σ)
for σ = (σÂ)h = (σB̂)h (σÂ and σB̂ as defined in Figure 1) where h is the co-
factor |G′|/|G|. This measure is used to ensure that the value σ belong to the
group G, and has been added to MQV as a safeguard against potential attacks
resulting from the lack of explicit authentication of the DH values, e.g., small-
group attacks. We note, however, that this addition is of no help against the
vulnerabilities mentioned above (and as we will see is not needed to provide
security in HMQV). Moreover, lacking a proof that the above counter-measure
really works, several standards defining MQV, as well as various descriptions
of the protocol in the literature, often specify (or at least recommend) that
the parties to MQV explicitly check that the DH value presented by the peer
is of prime order q. This adds a costly extra exponentiation to each peer and
takes significantly from the almost-optimal performance of MQV. As we will see,
HMQV “provably dispenses” of the need for this costly check.

1 The MQV paper is somewhat ambiguous about the need to hash σ (see the end of
Sections 1 and 5 in [30]). In particular, this hashing is not viewed as essential to the
security of the protocol but as a possible safeguard against potential weak bits in σ
(which is not the source of weakness here, but rather the malleability of σ is.)
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3 The HMQV Protocol and Its Proven Security

The HMQV protocol (“H” is for Hash) is a simple but powerful variant of MQV.
As in MQV, its communication is identical to the basic DH exchange with the
possible addition of certificates. The computation of the session key, shown in
Figure 1, differs from MQV’s in the computation of the values d and e which
involves the hashing of the party’s own DH value and the peer’s identity. The
output of this hash is � = |q|/2 bits. In addition, HMQV mandates the hashing
of the values σÂ = σB̂ into k-bit keys where k is the length of the desired session
key. We denote the hash function with � bits of output by H̄ and the one with k
bits by H . In practice the same hash function can be used with different output
lengths. (As a mnemonic, the bar in H̄ indicates that the output of the function
is used as an exponent).

From this description one can see that HMQV preserves the outstanding
performance of MQV (both in terms of communication and computation). At
the same time, HMQV overcomes all the mentioned security shortcomings of
MQV to the largest possible extent in a 2-message protocol. We prove that in the
random oracle model [5], and under the Computational Diffie-Hellman (CDH)
assumption [15], the protocol is secure in the Canetti-Krawczyk security model
[11]. In particular, this establishes the security of the protocol against imper-
sonation attacks, known-key attacks, and UKS attacks. We also prove the re-
sistance of HMQV to KCI attacks (which we formally define) under the same
assumptions.

Furthermore, HMQV enjoys an additional performance advantage in that it
provably dispenses of the need for costly prime-order tests on the DH values
transmitted in the protocol. Indeed, our proof shows that the only way an at-
tacker can benefit from the choice of rogue DH values is by choosing these to be
zero, and thus a simple non-zero check is all is required (hence, there is no need
for prime-order tests or for the co-factor h used in MQV).

Regarding forward secrecy, we said earlier that PFS cannot be achieved by
any implicitly authenticated 2-message protocol, including HMQV. Yet, the fol-
lowing limited forward secrecy property holds for HMQV: any session key estab-
lished without the active intervention of the attacker (except for eavesdropping
the communication) is guaranteed to be irrecoverable by the attacker once the
session key is erased from memory. This is the case even if the attacker knew
the private keys of both peers when the session was established.

For applications that require full PFS we present a 3-message variant of
HMQV which adds a third message and a MAC computation by each party
and guarantees full PFS. This 3-message protocol, called HMQV-C, also provides
“key confirmation” to both parties, i.e., the assurance that the assumed peer
indeed participated in the protocol and that it computed the same session key.
Another advantage of HMQV-C is that it can be proven secure in the stronger
universally composable (UC) KE security model of [13] which ensures the security
of key-exchange protocols when run concurrently with other applications. We
note that while HMQV-C requires an extra message, its computational cost is
essentially the same as HMQV as the MAC computation is negligible relative to
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the exponentiation cost. On the other hand, [23] note that 2-message symmetric
protocols such as the basic HMQV allow for simultaneous initiation of a session
by both Â and B̂, a desirable property in some network settings.

Another variant of HMQV is a one-pass authenticated key-exchange protocol
in which Â sends a single message to B̂ after which both parties share a secret
key. We show also this protocol to be secure (under CDH and in the random
oracle model) in a security model adapted from [11] to one-pass protocols (the
only difference is that we cannot prevent the adversarial replay of a message from
Â to B̂ and, of course, cannot provide PFS). In particular, this one-pass protocol
provides the functionality of public-key based deniable authentication as well as
an authenticated CCA encryption scheme (in the random oracle model) in a
more efficient way than existing alternatives.

An important security consideration not discussed by the authors of MQV is
the resilience of the protocol to the disclosure of the secret exponent x cor-
responding to an ephemeral (session-specific) DH value X = gx. This is a
prime concern for any Diffie-Hellman protocol since many applications will boost
protocol performance by pre-computing ephemeral pairs (x, X = gx) for later
use in the protocol (this may apply to low-power devices as well as to high-
volume servers). In this case, however, these stored pairs are more vulnerable to
leakage than long-term static secrets (the latter may be stored in a hardware-
protected area while the ephemeral pairs will be typically stored on disk and
hence more available to a temporary break or to a malicious user of the system).
We prove that HMQV’s security is preserved even in the presence of the leakage
of ephemeral secret DH exponents (see Section 5 for comparison to other work).
For this property (and only for it) we need to resort to two strong assumptions:
Gap Diffie-Hellman [37] and Knowledge of Exponent (KEA1) [14,18,4]; in return
we get a guarantee that not even the session key computed using the exposed
exponent is compromised by this leakage.

We end by noting an important property of our analysis: all results in this
paper hold under a strong adversarial model in which the attacker is allowed to
register arbitrary public key for all corrupted parties (and at any time during the
protocol). This may include a public key that is identical, or related, to the public
key of another (possibly uncorrupted) party; in particular, the attacker may
not know the private key corresponding to the public key it chose. In practical
terms this means that the security of our protocols does not depend on the
certification authority requiring registrants of public keys to prove knowledge
of the corresponding private keys. This is important since in many practical
settings such “proofs of possession” are not required or performed by the CA
(for contrast, see the comparison with [23] in Section 5).

4 Exponential Challenge-Response Signatures

Here we introduce the Exponential Challenge-Response (XCR) Signature Scheme
which is the main building block used in the design and analysis of the HMQV
protocol. As in a regular digital signature scheme, in a challenge-response signa-
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ture scheme a signer has a pair of private and public keys used for generation
and verification, respectively, of signatures. However, in contrast to regular sig-
natures, challenge-response signatures are inherently interactive and require the
recipient (i.e., the verifier) of a signature to issue a challenge to the signer before
the latter can generate the signature on a given message. A secure challenge-
response signature scheme needs to guarantee that no one other than the legit-
imate signer be able to generate a signature that will convince the challenger
to accept it as valid (in particular, a signature is not only message-specific but
also challenge-specific). On the other hand, we are only interested to ensure ver-
ifiability of the signature by the challenger, and thus we make no assumptions
or requirements regarding the transferability, or verifiability by a third party, of
the signature. Moreover, in the scheme described below the party that chooses
the challenge can always generate a signature, on any message, which is valid
with respect to that particular challenge. What is even more important for our
application (and differentiates our scheme from other interactive signatures) is
the fact that the verifier can compute, using the challenge, the same signature
string as the signer.

While the above description may serve as a basis for a general definition of
challenge-response signatures, we omit here such a general treatment in favor of
a more focused description of the specific challenge-response signature used in
this work. In particular, the definition of security is simplified by tailoring it to
this specific scheme.

As before, we use g to denote a generator of a group G of prime order q,
and H̄ to denote a hash function that outputs � = |q|/2 bits. Our results require
the following assumption (our treatment of polynomial-time, asymptotics, etc.
is very informal, and uses |q| as an implicit security parameter).

The CDH Assumption. For two elements U = gu, V = gv in G we denote
by CDH(U, V ) the result of applying the Diffie-Hellman computation (wrt to
generator g) to U and V , i.e., CDH(U, V ) = guv. An algorithm is called a CDH
solver for G if it takes as input pairs of elements (U, V ) in G and a generator g
of G and outputs the Diffie-Hellman result CDH(U, V ) wrt g. We say that the
Computational Diffie-Hellman (CDH) assumption holds in the group G = 〈g〉 if
for all probabilistic polynomial-time CDH solvers for G, the probability that on
a pair (U, V ), for U, V ∈R G, the solver computes the correct value CDHg(U, V )
is negligible.

4.1 Definition of the XCR Signature Scheme

Definition 1. The exponential challenge-response (XCR) signature scheme. The
signer in a XCR scheme, denoted by B̂, possesses a private key b ∈R Zq and a
public key B = gb. A verifier (or challenger), denoted Â, provides a message m
for signature by B̂ together with a challenge X which Â computes as X = gx for
x ∈R Zq (x is chosen, and kept secret, by Â). The signature of B̂ on m using
challenge X is defined as a pair (Y, Xy+H̄(Y,m)b), where Y = gy and y ∈R Zq is
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chosen by B̂. The verifier Â accepts a signature pair (Y, σ) as valid (for message
m and with respect to challenge X = gx) if and only if it holds that Y �= 0 and
(Y BH̄(Y,m))x = σ).

Notation: For message m, challenge X, and value Y we define XSIGB̂(Y, m, X)
def= Xy+H̄(Y,m)b (i.e., XSIGB̂ denotes the second element in an XCR signature
pair).

Relation Between XCR and Schnorr’s Scheme. The main motivation for
introducing the XCR scheme comes from its use in our design and analysis of
the HMQV protocol [28]. By now, however, it may be illustrative to motivate
this scheme via its relation to the Schnorr’s identification scheme from which
the XCR scheme is derived. We sketch this relation next. Schnorr’s (interactive)
identification scheme consists of a proof of knowledge of the discrete logarithm b
for a given input B = gb. Let B̂ denote the prover in this scheme (that possesses
b) and Â the verifier (that is given the input B). The basic Schnorr’s identification
consists of three messages: (i) B̂ chooses y ∈R Zq and sends Y = gy to Â; (ii) Â

responds with a random value e ∈R Zq; and (iii) B̂ sends Â the value s = y + eb.
Â accepts if and only if gs = Y Be holds. This protocol is a Arthur-Merlin zero-
knowledge proof of knowledge (of b) for an honest verifier Â (i.e., one that chooses
e uniformly at random). Therefore, it can be transformed via the Fiat-Shamir
methodology into a signature scheme, namely sigB̂(m) = (Y, y+H̄(Y, m)b), that
is provably secure in the random oracle model [38].

Now consider the following 4-message variant of Schnorr’s protocol in which
a first message from Â to B̂ is added. In this first message Â sends to B̂ a
value X = gx. Then the 3 messages from Schnorr’s scheme follow, except that
in message (iii) (the fourth message in the modified protocol) rather than send-
ing s = y + eb to Â, B̂ sends S = Xs. Â accepts if and only if S = (Y Be)x.
It can be shown that this protocol is a proof of the “ability” of B̂ to compute
CDH(B, X) for any value X ∈ G. Moreover, the protocol is zero-knowledge
against a verifier Â that chooses e at random (while X may be chosen arbitrar-
ily). Now, note that applying the Fiat-Shamir transformation to this protocol
one obtains the challenge-response signature XCR.2 This also explains why we
use the term “exponential” in naming the XCR scheme: it refers to the replace-
ment of s = y + eb in the Schnorr scheme with Xs in the last message of the
protocol.

Next we establish our security requirement from the XCR scheme.

Definition 2. Security of the XCR signature scheme. We say that the XCR
challenge-response signature scheme is secure if no polynomial-time machine
F can win the game in Figure 2 with non-negligible probability.
2 Note that if in Schnorr’s protocol one chooses e in {0, 1}� (rather than from Zq)

the protocol remains valid except that the soundness is limited by 2−�. This is the
basis for our choice of � = |q|/2 as the output length of H̄(Y, m), namely, a trade-off
between efficiency and security. See Remark 1 for a more accurate discussion.
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Forger F in Definition 2

1. F is given values B, X0 where B, X0 ∈R G.
2. F is given access to a signing oracle B̂ (representing a signer B̂ with

private key b and public key B) which on query (X, m) outputs a pair
(Y,XSIGB̂(Y,m, X)) where Y = gy, y ∈R Zq , is chosen by B̂ afresh with
each query.

3. F is allowed a polynomial number of queries to B̂ where the queries are
chosen (possibly adaptively) by F .

4. F halts with output “fail” or with a guess in the form of a triple
(Y0, m0, σ).

F ’s guess is called a (successful) forgery if the following two conditions
hold:
(a) The pair (Y0, σ) is a valid XCR signature of B̂ on message m0 with

respect to challenge X0 (i.e., Y0 �= 0 and σ = XSIGB̂(Y0, m0, X0);
also note that the value of X0 is the one received by F as input).

(b) The pair (Y0, m0) did not appear in any of the responses of B̂ to
F ’s queries.

We say that F wins the game (or simply forges) if it outputs a successful
forgery.

Fig. 2. Forgery Game for XCR Signatures

Remarks on Definition 2

1. Note that in order to be successful the forger has to use the input X0 in
its forgery. This captures the fact that XCR signatures are only unforgeable
with respect to a challenge not chosen by the attacker.

2. According to our definition, if B̂ outputs a signature (Y, σ) on a message m
wrt challenge X , and the forger can find a signature (Y ′, σ′) for the same m
wrt the same challenge X but with Y ′ �= Y , then we consider F successful
(namely, finding a second signature for the same message is considered a
valid forgery). In some sense, we look at these signatures as signing both m
and Y . This property may not be essential in other applications of challenge-
response signatures but it is crucial for the application to HMQV security
in this paper.

3. We do not ask that F will always output good forgeries; it can output “fail”
or even invalid triples. The only requirement is that with non-negligible
probability (over the distribution of inputs to F , the choices by the random
oracle H̄, the coins of F , and the coins of B̂) F output a successful forgery.

4. Note that we only restricted Y0 to be non-zero. In particular, we require no
check that Y0 be of prime order q (only that it represents a non-zero element
for which the group operation is defined). This is an important aspect of XCR
signatures. In particular, the requirement to run a prime-order test would
translate into an additional exponentiation for each party in the HMQV
protocol, thus degrading significantly the “almost optimal” performance of
the protocol.
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4.2 Proof of Unforgeability for the XCR Signature Scheme

The following theorem states the security of the XCR scheme in the random
oracle model under the CDH assumption; it constitutes the basis for the proof
of security of protocol HMQV.

Theorem 1. Under the CDH assumption, the XCR signature scheme is secure
(according to Definition 2) in the random oracle model.

Proof. Given an efficient and successful forger F against the XCR signature
scheme (i.e., F wins the forgery game from Definition 2 with non-negligible
probability), we build an efficient solver C for the CDH problem, namely, C gets
as input a pair of random elements U, V in G, and outputs the value CDH(U, V )
with non-negligible probability. Unsuccessful runs of C may end with “fail” or
just the wrong value of CDH(U, V ). Using results by Maurer and Wolf [32]
and Shoup [40] such a “faulty CDH solver” can be transformed, using the self-
reducibility properties of the CDH problem, into an efficient algorithm that
solves CDH for every input U, V with only negligible probability of error.

Algorithm C is presented in Figure 3, and it follows a mostly standard ar-
gument for Fiat-Shamir type signatures. The idea is that if F can succeed in
forging a signature with a pair (Y0, m0) and a given value H̄(Y0, m0) output
by the function H̄ , then F is likely to succeed also when H̄(Y0, m0) is set to
a different random value. Using this property, we construct C such that after
running F twice, C obtains (with non-negligible probability) two forgeries with
the same pair (Y0, m0) but different values of H̄(Y0, m0). Now, using these two
forgeries C is able to compute CDH(U, V ).

Examining the specification of C in more detail, first note that in the run of
F by C all queries to the signer B̂ are answered by C without knowledge of the
private key b, and without access to an actual signing oracle for B̂. Instead all
these answers are simulated by C in steps S1-S3. It is easy to see that this is a
perfect simulation of the XCR signature generation algorithm under private key
b except for the following deviation that happens with negligible probability: In
step S3 of the simulation, C does not complete the run of F if the value (Y, m)
was queried earlier from H̄. However, since the value Y , as generated by C, is
distributed uniformly over G and chosen independently of previous values in the
protocol, then the probability that the point (Y, m) was queried earlier from H̄
is at most Q/q where Q is an upper bound on the number of queries to H̄ that
occur in a run of C.

Therefore, the probability of F outputting a successful forgery in the run un-
der C is the same, up to a negligible difference, as in a real run of F , and therefore
non-negligible. In particular, when such a successful forgery is output by F then
conditions F1 and F2 checked by C necessarily hold. Condition F3 also holds ex-
cept for probability 2−�, i.e., the probability that F ’s forgery is correct when it
did not query H̄(Y0, m0). To see this, note that if one fixes the pair (Y0, m0) and
the challenge X0, then the signature produced with e = H̄(Y0, m0) is necessarily
different than the signature produced with e′ = H̄(Y0, m0) if e �= e′ (mod q).
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Building a CDH solver C from an XCR forger F

Setup. Given a successful XCR-forger F we build an algorithm C to solve
the CDH problem. The inputs to C are random values U = gu, V = gv in G.
C’s goal is to compute CDH(U, V ) = guv.

C’s actions. C sets B = V and X0 = U , and runs the forger F on input
(B, X0) against a signer B̂ with public key B. C provides F with a random
tape and provides random answers to the H̄ queries generated in the run (if
the same H̄ query is presented more than once C answers it with the same
response as in the first time).

Each time F queries B̂ for a signature on values (X, m) chosen by F ,
C answers the query for B̂ as follows (note that C does not know b):

S1. Chooses s ∈R Zq, e ∈R {0, 1}�.
S2. Sets Y = gs/Be.
S3. Sets H̄(Y, m) = e (if H̄(Y, m) was defined by a previous query to H̄,

C aborts its run and outputs “fail”).
C responds to F ’s query with the signature pair (Y, Xs)

When F halts C checks whether the three following conditions hold:

F1. F output a guess (Y0, m0, σ), Y0 �= 0.
F2. The pair (Y0, m0) was not used as the (Y,m) pair in any of the

signatures generated by B̂.
F3. The value H̄(Y0, m0) was queried from the random oracle H̄.

If the three conditions hold, then C proceeds to the “repeat experiment”
below; in all other cases C halts and outputs “fail”.

The repeat experiment. C runs F again for a second time under the same
input (B,X0) and using the same coins for both C and F . The difference
between the two runs is in the way in which C answers the H̄ queries during
the second run. Specifically, all queries to H̄ performed before the H̄(Y0, m0)
query are answered identically as in the first run. The query H̄(Y0, m0),
however, is answered with a new independent value e′ ∈R {0, 1}�. Subsequent
queries to H̄ are also answered at random from {0, 1}�, independently of the
responses provided in the first run.

Output. If at the end of the second run, F outputs a guess (Y0, m0, σ
′)

(with same (Y0, m0) as in the first run) and e �= e′, then C computes the

value W = (σ/σ′)(e−e′)−1
and outputs W as its guess for CDH(U, V );

otherwise C outputs “fail”.

Fig. 3. Proof of Theorem 1: Reduction from CDH to XCR forgeries

Hence, the probability that F will guess the right signature without querying
H̄(Y0, m0) is at most as the probability of guessing the value of H̄(Y0, m0), i.e.,
2−�. Since conditions F1-F3 determine the run of the ”repeat experiment” then
the simultaneous probability that F outputs a correct forgery in a run under C
AND that C executes the “repeat experiment” in that run is non-negligible.
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Now, using the Forking Lemma from [38] (our setting differs slightly from
[38] in the use of a challenge, yet this does not affect the validity and applicability
of the lemma), we obtain that the probability that in the “repeat experiment”
F will output a correct forgery for the pair (Y0, m0) given that F did so in the
first run is non-negligible. Moreover, in such a case we are guaranteed that the
forgeries in the first and second runs use different values e, e′ of H̄(Y0, m0).

We now proceed to show that in the case that both the first run and the
repeat experiment end up with two valid forgeries for the same pair (Y0, m0),
and e �= e′ (which happens with probability 1−2−�), then the value W computed
by C equals CDH(X0, B). Indeed, a simple computation shows that, if Y0 �= 0
as necessary for a valid forgery, then writing X0 = gx0 we have:

W =
( σ

σ′

) 1
e−e′

=
(

(Y Be)x0

(Y Be′ )x0

) 1
e−e′

= (B(e−e′)x0)
1

e−e′ = Bx0 = CDH(X0, B).

Now, since X0 and B are, respectively, the inputs U and V provided to C, then
we get that in this case (which happens with non-negligible probability) C has
successfully computed CDH(U, V ). �

Remark 1. (Number of bits in H̄(Y, m)). Let � be the number of bits in the
output of H̄(Y, m). Clearly, the smaller � the more efficient the signature scheme
is; on the other hand, a too small � implies a bad security bound (since once
the exponent H̄(Y, m) is predictable the signature scheme is insecure). But how
large a � do we need for security purposes? Here we see that setting � = 1

2 |q|, as
we specified for XCR signatures (and for its application to the HMQV protocol),
provides the right performance-security trade-off. In order to assess the level of
security that � provides to the XCR signatures (and consequently to HMQV), we
note that there are two places in the above proof where this parameter � enters
the analysis. One is when bounding the probability that the attacker could forge
a signature with parameters (Y0, m0) without querying H̄ on this pair. As we
claimed the probability in this case is 2−� (or 1/

√
q using the fact that we

defined � = |q|/2). The other use of � is in the proof of the Forking Lemma by
Pointcheval and Stern [38]. When written in terms of XCR signatures Lemma
9 and Theorem 10 from [38] show that given a forger against XCR signatures
that works time T , performs Q queries to H̄ and forges with probability ε, one
can build a CDH solver that runs expected time cQ

ε T provided that ε ≥ c′Q
2�

(c, c′ are constants). Now, since we know how to build CDH solvers that run
time

√
q (e.g., Shanks algorithm) then the above analysis tells us something

significant only when cQ
ε T <<

√
q, in particular Q/ε <<

√
q. From this and

the condition ε ≥ c′Q/2� we get that we need Q/ε < min{√q, 2�}. Since this
is the only constraint on � we see that choosing � such that 2� >

√
q does not

add to the security of the scheme, and therefore setting � = 1
2 |q| provides the

best trade-off between security and performance. (Note that the same length
consideration applies to the parameter e in the modified Schnorr’s identification
scheme described following Definition 1). We also comment, independently from
the above considerations on �, that the above constraint Q < ε

√
q also guarantees
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that the simulation error in step S3 of Figure 3 (which we showed in the proof
of Theorem 1 to be at most Q/q) is no more than 1/

√
q.

Remark 2. (A non-interactive XCR variant.) XCR signatures can be made non-
interactive, but verifier-specific, by putting X = A, where A is a public key of the
verifier. In this case the signature will be a pair (Y, t) where t is a MAC tag com-
puted on the signed message using a key derived by hashing XSIGÂ(Y, “Â”, A).
This provides for a very efficient non-interactive verifier-specific deniable au-
thentication mechanism. It does not provide for a universally-verifiable non-
repudiable signature.

Remark 3. (HCR and DSS signatures.) We do not know whether XCR signa-
tures remain secure if the exponent y corresponding to a value Y used by B̂ in
a signature is revealed to the forger (note that in this case the simulation steps
S1-S3 in Figure 3 do not work). On the other hand, if one modifies the definition
of XCR such that the XSIGB̂ component is replaced with a hash of this value
(note that the signature is still verifiable by the challenger) then one obtains a
signature scheme in which revealing y does not help the forger. More precisely,
in [28] we study these signatures, which we call HCR, in detail and show that
under the Gap Diffie-Hellman and KEA1 assumptions they are unforgeable in
the random oracle model even if y is revealed to the attacker. As a result, HCR
signatures provide for a more secure alternative to DSS signatures as they re-
solve the main DSS vulnerability by which the disclosure of a single ephemeral
exponent (i.e., k in the component r = gk of a DSS signature) suffices to reveal
the signature key. On the other hand, HCR signatures are verifier-specific and
require interaction (or the possession of a public key by the verifier as in Re-
mark 2), and do not provide for third-party verifiability (a property that may
be a bug or a feature of HCR depending on the application).

4.3 Dual XCR Signatures (DCR)

An important property of XCR signatures is that the challenger (having chosen
the challenge) can compute the signature by itself. Here we show how to take
advantage of this property in order to derive a related challenge-response signa-
ture scheme (which we call the “dual XCR scheme”, or DCR for short) with the
property that any two parties, Â, B̂, can interact with each other with the dual
roles of challenger and signer, and each produce a signature that no third party
can forge. Moreover, and this is what makes the scheme essential to the HMQV
protocol, the resultant signatures by Â and by B̂ have the same value. (More
precisely, they have the same XSIG component.)

Definition 3. The dual (exponential) challenge-response (DCR) signature
scheme. Let Â, B̂ be two parties with public keys A = ga, B = gb, respectively.
Let m1, m2 be two messages. The dual XCR signature (DCR for short) of Â and
B̂ on messages m1, m2, respectively, is defined as a triple of values: X, Y and
DSIGÂ,B̂(m1, m2, X, Y ) def= g(x+da)(y+eb), where X = gx, Y = gy are challenges
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chosen by Â and B̂, respectively, and the symbols d and e denote H̄(X, m1) and
H̄(Y, m2), respectively.

As said, a fundamental property of a DCR signature is that after exchanging
the values X and Y (with x and y chosen by Â and B̂, respectively), both Â and
B̂ can compute (and verify) the same signature DSIGÂ,B̂(m1, m2, X, Y ). This
can be seen from the identities:

DSIGÂ,B̂(m1, m2, X, Y ) = g(x+da)(y+eb) = (Y Be)x+da = (XAd)y+eb

Moreover, as shown next the attacker cannot feasibly compute this signature.

The Security of DCR Signatures. Roughly speaking, a dual signature is an
XCR signature by Â on message m1, under challenge Y Be, and at the same time
an XCR signature by B̂ on message m2, under challenge XAd. More precisely,
since the values d and e are determined during the signature process (via the
possibly adversarial choice of messages m1, m2), then we will say that a DCR sig-
nature of B̂ is secure (with respect to A) if no efficient attacker can win, with non-
negligible probability, the game of Figure 2 with the following modifications. In
step 2, the queries to B̂ are of the form (X, m, m1) and the signature by B̂ is the
pair (Y, XSIGB̂(Y, m, XAd)) where Y is chosen by B̂ and d = H̄(X, m1). A suc-
cessful forgery is a quadruple (Y0, m0, m1, σ) where σ = XSIGB̂(Y0, m0, X0A

d),
Y0 �= 0, the pair (Y0, m0) satisfies the validity requirement (b) from Figure 2,
and m1 is an arbitrary message chosen by F . We say that the dual signature of
B̂ is secure if it is secure with respect to any value A = ga not chosen by the
attacker.

Theorem 2. Let Â, B̂ be two parties with public keys A = ga, B = gb, resp.
Under the CDH assumption, the DCR signature of B̂ with respect to A is secure
even if the forger is given the private key a of Â (but not the private key of B̂).

Proof. The same proof of unforgeability of XCR (Theorem 1) works here with
a modified computation of W as specified below. First note that since the DCR
signature of B̂ now involves the value d = H̄(X0, m1), where m1 is a message
that F may choose at will, then the value of m1 chosen by F before the repeat
experiment may differ from the value of m1 chosen during the repeat experiment.
In this case we get two different values, d, d′, used in the σ and σ′ signatures.
Also, note that even with a single value of d the specification of W in the proof
of Theorem 1 would result in the value (XAd)b rather than Xb (as required in
order to solve the CDH problem on inputs U = X, V = B). We deal with these
two issues by redefining W as follows (here we use the fact that a, the private
key of Â, is known to C):

W =
(

σ/(Y Be)da

σ′/(Y Be′)d′a

) 1
e−e′

(1)

The rest of the proof remains unchanged. �
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HMQV in a Nutshell. The HMQV protocol consists of an exchange between
parties Â and B̂ of DH values X = gx and Y = gy that serve as challenges from
which both parties compute the dual XCR signature DSIGÂ,B̂(“Â”, “B̂”, X, Y ) =
g(x+da)(y+eb). The session key is then derived by hashing this value. In this way
the signature itself need not be transmitted: it is the uniqueness of the signature
that ensures a common derived value for the session key, and it is the ability
to compute the key (equivalently, the signature) that provides for a proof that
the exchange was carried by the alleged parties Â and B̂. Moreover, since the
messages m1, m2 on which the signature is computed are the identities of the
peers, both parties get assurance that the key they computed is uniquely bound
to the correct identities (this is essential to avoid some authentication failures
such as the UKS attacks). We end by noting that while the casting of the HMQV
design in terms of DCR signatures is the main conceptual contribution of our
work, showing that this idea indeed works for proving the security of the protocol
turns out to be technically challenging (see [28] for the gory details).

5 Related Work

Implicitly-authenticated DH protocols were first studied in the work of Mat-
sumoto, Takashima and Imai [31] in 1986. Since then this line of research gener-
ated many protocols, many of which suffer from various weaknesses. See [9,34,7,8]
for some surveys which also include the discussion of desirable security goals for
these protocols as well as some of the shortcomings of specific proposals. Two
works that study such protocols in a formal model are those of Blake-Wilson
et al [8] and Jeong et al [23]. They both treat very similar protocols referred
to in the literature as the “unified model”. In these protocols, parties Â and B̂
use their public keys ga, gb to generate a shared key gab that they then use to
authenticate a DH exchange (c.f., [26]).

The variant studied in [8] is shown to be open to interleaving and known-key
attacks and hence insecure (unfortunately, this variant has been widely stan-
dardized [2,3,20]). One main flaw of this protocol is that it does not explicitly
authenticate (or includes under the key derivation hashing) the ephemeral DH
values exchanged by the parties. [23] studies the version in which the DH values
are included under the key derivation and shows this protocol to be secure in
the random oracle model. However, the protocol does not provide resistance to
KCI and is open to a UKS attack if the CA does not enforce a proof-of-posession
check at time of certificate issuance.3 Lack of KCI is one aspect of a more sub-
stantial drawback of these protocols, namely, the use of the keys gab as long-term
shared keys between the parties; these keys become particularly vulnerable when
cached for efficiency.
3 In [23], this protocol is also claimed to enjoy perfect forward secrecy (PFS), but

what they actually show is a weaker and non-standard notion (see Section 3) where
PFS holds only for sessions created without active intervention by the attacker.
As we pointed out, lack of (full) PFS is an inherent limitation of any 2-message
implicitly-authenticated DH exchange, including the 2-message protocols from [23].
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In contrast, HMQV is a significantly stronger protocol which, in particular,
does not use gab as a long-term key, does not require (even for efficiency) to
cache this value, and even if the value of gab is ever learned by the attacker it is
of no help for impersonating either Â or B̂, or for learning anything about their
session keys. On top of all its security advantages (which hold without relying
on proofs of possession performed by CAs or prime-order tests performed by the
parties), HMQV is more efficient than the unified model protocols that take 3
exponentiations per-party.

Finally, we mention the works of Shoup [41] and Jeong et al [23] that present
2-message authenticated DH exchanges with explicit authentication (via signa-
tures and MAC, respectively) that they show to satisfy the security definitions
from [41,6] in the standard (non-random-oracle) model. In these protocols, how-
ever, it is sufficient for the attacker to learn a single ephemeral exponent x of a
DH value gx exchanged between parties Â and B̂ to be able to impersonate Â to
B̂ indefinitely, and without ever having to learn Â’s or B̂’s private keys. This is
a serious security weakness which violates the basic principle that the disclosure
of ephemeral session-specific information should not compromise other sessions.
The reason that these protocols could be proven secure in [41,23] is that the
models of key exchange security considered in these works do not allow the at-
tacker to find any session-specific information beyond the session key itself. The
above vulnerability, however, indicates that such models are insufficient to cap-
ture some realistic attack scenarios. In contrast, the model of [11], used as the
basis for our analysis, captures such attacks via state-reveal queries (see [28]).

6 Concluding Remarks

The results in this paper show vulnerabilities of MQV to known-key and other
attacks (in the case of the 3-message variant of MQV some of these vulnerabilities
depend on the ability of the attacker to access ephemeral state information for
incomplete sessions). The extent to which these weaknesses are exploitable in
practice depends of course on the application, the computing and communication
environment, threat model, etc. These results do not mean that applications
already using MQV are necessarily insecure in their specific environments. At
the same time, the identified weaknesses should not be dismissed as theoretical
only, especially when considering that MQV has been (and is being) standardized
as a key-exchange protocol for use in heterogeneous and unknown scenarios
(including the highly sensitive applications such as those announced by the NSA
[36]). This is particularly true when, as shown here, these weaknesses are not
inherent to the problem being solved nor to the formal analytical setting.

Indeed, HMQV provides the same functionality with the same (or even bet-
ter) performance of MQV while enjoying a full proof of security.4 Two caveats
regarding this proof are the use of the idealized random oracle methodology and

4 We hope that standard bodies will take into account provability of protocols when
selecting or revising protocols for standardization.
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the significant (though polynomially bounded) reduction cost. Other proven pro-
tocols (such as SKEME [26], ISO [22,11] and SIGMA [27,12]), while less efficient,
enjoy less expensive reductions and do not directly require random oracles. We
note, however, that dispensing of random oracles in these protocols requires the
use of the more expensive (and seldom used in practice) signature and encryp-
tion schemes that do not rely on random oracles, and also requires the stronger
DDH assumption. Certainly, coming up with a protocol that offers the many
attractive security and performance properties of HMQV and does not rely on
the random oracle model in its analysis is an important open question.

We end by stressing that in spite of the weaknesses demonstrated here,
the MQV protocol contains some remarkable ideas without which the design
of HMQV would have not been possible. Nor would this design have been possi-
ble without the rigorous examination of these ideas in a formal framework such
as the one in [11]. The design of HMQV is a demonstration of the strength of
“proof-driven designs” which guide us in choosing the necessary design elements
of the protocol while dispensing of unnecessary “safety margins”. As a result,
one obtains solutions that are not only cryptographically sound but are also
more efficient.
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