
Balanced Aspect Ratio Trees Revisited

Amitabh Chaudhary1 and Michael T. Goodrich2

1 Department of Computer Science & Engineering,
University of Notre Dame, Notre Dame IN 46556, USA

Amitabh.Chaudhary.1@nd.edu
2 Department of Computer Science,

Bren School of Information & Computer Sciences,
University of California, Irvine CA 92697, USA

goodrich@acm.org

Abstract. Spatial databases support a variety of geometric queries on
point data such as range searches, nearest neighbor searches, etc. Bal-
anced Aspect Ratio (BAR) trees are hierarchical space decomposition
structures that are general-purpose and space-efficient, and, in addition,
enjoy a worst case performance poly-logarithmic in the number of points
for approximate queries. They maintain limits on their depth, as well as
on the aspect ratio (intuitively, how skinny the regions can be). BAR
trees were initially developed for 2 dimensional spaces and a fixed set
of partitioning planes, and then extended to d dimensional spaces and
more general partitioning planes. Here we revisit 2 dimensional spaces
and show that, for any given set of 3 partitioning planes, it is not only
possible to construct such trees, it is also possible to derive a simple
closed-form upper bound on the aspect ratio. This bound, and the re-
sulting algorithm, are much simpler than what is known for general BAR
trees. We call the resulting BAR trees Parameterized BAR trees and em-
pirically evaluate them for different partitioning planes. Our experiments
show that our theoretical bound converges to the empirically obtained
values in the lower ranges, and also make a case for using evenly oriented
partitioning planes.

1 Introduction

Spatial databases for scientific applications need efficient data structures to solve
a variety of geometric queries. Consider, e.g., the Sloan Digital Sky Survey
(SDSS) [16, 17], a scientific application with which we have direct experience.
It stores light intensities for over a 100 million celestial objects as points on a
two-dimensional sphere, and needs support for geometric queries like the near-
est neighbor queries, proximity queries, and general range queries (not just axis
orthogonal). Similar needs arise in geographical information systems.

There are many access methods based on the hierarchical space decomposi-
tion data structures that are useful in solving geometric queries on point data.
Quad trees and k-d trees are widely popular examples (e.g., see Samet [18, 19]).
In these data structures two properties, depth and aspect ratio, play a crucial role

F. Dehne, A. López-Ortiz, and J.-R. Sack (Eds.): WADS 2005, LNCS 3608, pp. 73–85, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

74 A. Chaudhary and M.T. Goodrich

in determining their efficiency in solving queries. The depth of a tree character-
izes the number of nodes that have to be visited to find regions of interest. The
aspect ratio of a tree (intuitively, how “skinny” a region can be) characterizes the
number of wasteful nodes that can be in any particular region of interest. Most
queries require both of these values to be small for them to be solved efficiently.

Unfortunately, both quad trees and k-d trees optimize one of these properties
at the expense of the other. Quad trees produce regions with optimal aspect
ratios, but they can have terrible depth. K-d trees, on the other hand, have
optimal (logarithmic) depth, but they often produce lots of long-and-skinny
regions, which slow query times.

Balanced Aspect Ratio (BAR) trees are hierarchical space decomposition
data structures that have logarithmic depth and bounded aspect ratios. As a
result they have a worst case performance poly-logarithmic in the number of
points for approximate queries such as the approximate nearest neighbor, ap-
proximate farthest neighbor, approximate range query, etc. They were initially
developed for 2 dimensional spaces [12] for a particular fixed set (0, π/4, π/2)
of partitioning planes. Then [10], they were extended to d dimensional spaces,
and the partitioning planes could be chosen flexibly as long as certain condi-
tions were met. These conditions when applied to small dimensional spaces give
bounds that are known to be very loose. For instance, in d dimensional spaces, as
long as d of the partitioning planes are axis orthogonal, the aspect ratio (we give
a precise definition later) is bounded by 50

√
d+55. In 2 dimensional spaces, the

aspect ratio is bounded by a number very close to 6. In this paper, we are inter-
ested in developing simpler conditions for choosing partitioning planes flexibly in
BAR trees for small dimensions. This will allow us to derive tighter bounds for
the aspect ratio, and discover the best set of partitioning planes for a particular
application.

1.1 Related Prior Work

In this subsection, we briefly review some known general-purpose hierarchical
spatial decomposition trees for a set of points, S.
The Binary Space Partitioning (BSP) Trees. The BSP tree [14, 13] is a re-
cursive subdivision of space into regions by means of half-planes. Each node u in
the tree represents a convex region and the points from S lying in it. Initially, the
root node r of the tree represents a bounding region of the point set S. At each
node u, an associated line partitions the region of u, Ru, into two disjoint regions
Rl and Rr. The node u then has two child nodes l and r representing Rl and Rr

respectively. If the number of points from S in Ru is less than some constant,
u is not partitioned and becomes a leaf. These structures satisfy our condition
of being general-purpose, but without further restricting how the cutting lines
are chosen, these structures are inefficient. Thus, much work has been done on
methods for specializing BSP trees to be more efficient, which we review next.hfil

The k-d Tree. This structure was introduced by Bentley [3, 4, 5] and has been
extensively studied. It is a special class of the BSP tree: the partitioning line

Balanced Aspect Ratio Trees Revisited 75

is orthogonal to one of the axes and such that it divides the set of points at
the node in half by cardinality. This guarantees that the depth of the tree is
O(log n). So point location queries, which take time proportional to the depth,
can be answered efficiently. But, since there are no guarantees on the aspect
ratio of the regions produced, with some exceptions [9], the running times of
queries can nevertheless be poor.
The Quadtree. The quadtree (e.g., see [18, 19]) is another special class of the
BSP tree. The point set S is initially bounded by a square, and the partitions are
such that a square region is divided into four smaller squares of equal area. (This
notion can be extended to d dimensional space, giving rise to a structure called
the octree.) The aspect ratios of regions in quadtrees is bounded by a constant,
but these trees can have unbounded depth. So even basic point location queries
can take unbounded time. If the point set is uniformly distributed, however, then
the depth is bounded, and in those situations quadtrees perform well for some
geometric queries.
Balanced Box Decomposition Trees. In [1, 2], Arya et al. describe a relative
of a binary-space partitioning tree called the Balanced Box Decomposition (BBD)
tree. This structure is based on the fair-split tree of Callahan and Kosaraju [6, 7]
and is defined such that its depth is O(log n) and all of the associated regions
have low combinatorial complexity and bounded aspect ratio. Arya et al. show
how BBD trees guarantee excellent performance in approximating general range
queries and nearest-neighbor queries. (Approximate queries are like the regular
exact versions, except they allow an error. See [10] for formal definitions.) The
aspect ratio bound on each region allows them to bound the number of nodes
visited during various approximate query searches by limiting the number of
nodes that can be packed inside a query region. However, since these trees rely
on using hole cuts during construction, they produce non-convex regions and
thus are not true BSP trees. This is also a drawback with respect to several
applications in computer graphics and graph drawing, where convexity of the
partitioned regions is desirable (e.g., see [12, 15]).
Balanced Aspect Ratio Trees. Duncan et al. [12, 11] introduced the Balanced
Aspect Ratio (BAR) trees. These are similar to k-d trees in 2-dimensional space,
except that instead of allowing only axis-orthogonal partitions, they also allow a
third partition orthogonal to a vector at a π/4 angle to the axes. This extra cut
allows them to find partitions that not only divide the point set in a region evenly,
but also ensure that the child regions have good (bounded) aspect ratio. In [10],
Duncan extended BAR trees to d dimensions. He showed that if a certain set of
conditions is satisfied, BAR trees with bounded aspect ratio can be constructed.
He also proved bounds on the running time of approximate queries. The (1+ ε)-
nearest neighbor query and the (1− ε)-farthest neighbor query can be answered
in O(log n + (1/ε) log(1/ε)) time, where n is the number of points. The ε-range
query and the ε-proximity query can be answered in O(log n + (1/ε) + k) time,
where k is the size of the output.

76 A. Chaudhary and M.T. Goodrich

1.2 Our Contributions

In this paper, we introduce the Parameterized Balanced Aspect Ratio (PBAR)
trees in 2 dimensions, which take any three vectors as the partitioning planes.
They enjoy all the advantages of BAR trees: general pupose, space efficient,
logarithmic depth, bounded aspect ratio, poly-logarithmic worst case bounds
for approximate versions of spatial queries. In addition, they have a bound on
the aspect ratio which is a simple closed-form function of the given partitioning
planes. The proofs used are significantly different from those for earlier BAR
trees: they use the advantages of 2 dimensional spaces and yet work of any given
set of partitioning vectors.

Our motivation for introducing PBAR trees comes from our experience with
the Sloan Digital Sky Survey (SDSS) [16, 17]. Because objects in the SDSS are
indexed by their positions on the night sky, the data can be viewed at a first
level of indexing as two-dimensional points on a sphere. To allow for efficient
access, astronomers overlay a quasi-uniform triangular “grid” on this sphere, to
reduce the curvature of each “leaf” triangle to be “almost” planar and to re-
duce the number of points in each such triangle to a few hundred thousand. The
difficulty is that when these leaf triangles are mapped to a projection plane to
allow for fast queries via a secondary data structure, there are many different
side angles that must be dealt with. A data structure like PBAR trees can con-
veniently use the given angles of a bounding triangle as its possible partitioning
directions. Without this convenience, we would get poorly-shaped regions near
the boundaries of these triangles.

The bounds on the running times for approximate queries, in [10], depend
only on the fact that both BBD and BAR trees have O(log n) depth and ensure
a constant bound on the aspect ratio of all their regions. These two conditions
are satisfied by PBAR trees as well. So the same bounds hold for PBAR trees as
well. We present empirical results for the (1 + ε)-nearest neighbor query using
PBAR trees with various different partitioning planes using artificial data as well
as real datasets from the SDSS. Our experiments also indicate that our bound
is tight in some respects.

In the next section we give the foundations and definition for PBAR trees.
In Section 3 we describe the algorithm for constructing PBAR trees and prove
its correctness. In the last section we present our empirical results. We include
details for the pseudo-code and proofs of correctness in an optional appendix in
this extended abstract.

2 Parameterizing BAR Trees

PBAR trees are for point data in 2-dimensional space. The distance δ(p, q) be-
tween two points p = (p1, p2) and q = (q1, q2) is

√
(p1 − q1)2 + (p2 − q2)2. Ex-

tending this notion, the distance between two sets of points P and Q is

δ(P,Q) = min
p∈P,q∈Q

δ(p, q).

Balanced Aspect Ratio Trees Revisited 77

S is the set of n points given as input. The size |R| of region R is the number of
points from S in R.

Partitioning Vectors. We use vectors from R
2 to specify partitioning directions.

Note that partitioning vectors l and −l are equivalent. The angle θlm between
two partitioning vectors l and m is the angle from l to m in the counterclockwise
direction, except that we take into account that m and −m are equivalent. In
the context of trigonometric functions, we shall prefer to use, for example, the
short sin(lm) instead of sin(θlm).

To construct a PBAR tree, we use the 3 partitioning vectors from the given
set V = {λ, µ, ν}. We make all partitions by taking a region R and dividing it
into two subregions, R1 and R2, with a line c′l, called a cut, orthogonal to some
l ∈ V . A cut orthogonal to l is also called an l-cut. Note that if R is convex, both
R1 and R2 are convex too. We divide the set of points in R, call it S, between
R1 and R2 in the natural fashion. For points in S that are on cl, we assign each
of them to either R1 or R2 as per convenience.

Let the sequence (λ, µ, ν) be in the counterclockwise order. All the 3 sequences
in the set P(V) = {(λ, µ, ν), (µ, ν, λ), (ν, λ, µ)} are equivalent for our purpose.
So, often, we shall speak in terms of the general (l,m, n), where (l,m, n) ∈ P(V).

�����

�����
�����

�����

�����
�����

�����

�����

�

�

��

�����

�

�	

Fig. 1. The names used for the sides and the diameters

Canonical Regions and Canonical Aspect Ratios. We assume that the given set
of points S has an initial convex bounding region with sides that are orthogonal
to λ, µ, or ν. Since in constructing PBAR trees we make all partitions with lines
orthogonal to these 3 partitioning vectors, the regions we construct are always
hexagons with sides orthogonal to λ, µ, or ν. Some sides may be degenerate, that
is, of length 0. We call these hexagonal regions canonical regions. See Figure 1.
In a canonical region R, bl(R) and cl(R) are the two unique opposing sides
orthogonal to the partitioning vector l. The diameter dl(R) of R with respect to
the partitioning vector l is the distance δ(bl(R), cl(R)). The maximum diameter
of R is dmax(R) = maxl∈V dl(R), and the minimum diameter of R is dmin(R) =
minl∈V dl(R). When the region is understood from the context we drop the
argument in the above notations and use, for example, bl instead of bl(R). A

78 A. Chaudhary and M.T. Goodrich

canonical trapezoidal region is of special interest, and is a canonical region that
is quadrilateral and has exactly one pair of parallel sides.

The canonical aspect ratio casp(R) of canonical region R is the ratio of
dmax(R) to dmin(R). In this paper, we use the terms aspect ratio and canon-
ical aspect ratio synonymously

PBAR Trees, One-Cuts, and Two-Cuts. Given a balancing factor α, R is α-
balanced or has a balanced aspect ratio if casp(R) ≤ α. R is critically balanced if
casp(R) = α. A cut cl orthogonal to l ∈ V that divides an α-balanced region R
into R1 and R2 is feasible if both R1 and R2 are α-balanced.

Given a set S of n points in 2-dimensional space, a set of 3 partitioning
vectors V = {λ, µ, ν}, a balancing factor α, α ≥ 1, and a reduction factor β,
0.5 ≤ β < 1, a Parameterized Balanced Aspect Ratio tree T is a BSP tree on S
such that

1. All partitions are made with cuts orthogonal to the vectors in V ;
2. The canonical aspect ratio of each region is at most α;
3. The number of points in each leaf cell of T is a constant with respect to n.
4. The depth of T is O(log1/β n).

Given a balancing factor α and reduction factor β, an α-balanced region R
is one-cuttable if there is a cut c, called a one-cut, orthogonal to a vector in V
that divides R into two canonical subregions R1 and R2 such that

1. c is feasible;
2. |R1| ≤ β|R| and |R2| ≤ β|R|.

(Note that if there is a continuum of feasible cuts that cover the entire region
R, then R is one-cuttable, as at least one of these cuts will satisfy 2 above.)
A region R is two-cuttable if there is a cut c, called a two-cut, orthogonal to a
vector in V that divides R into two canonical subregions R1 and R2 such that

1. c is feasible;
2. |R1| ≤ β|R|;
3. |R2| ≤ β|R| or R2 is one-cuttable.

Shield Regions. Let R be an α-balanced canonical region and let xl be a side of
R, x ∈ {b, c}, l ∈ V . Now sweep a cut x′

l starting from the side opposite to xl

toward xl. Let P be the subregion formed between xl and x′
l. In the beginning,

casp(P) ≤ α. Sweep x′
l toward xl and stop when P is critically balanced. P

is called the shield region shieldxl
(R) of R with respect to xl. x′

l is the cut for
shieldxl

(R). R has two shield regions for each l ∈ V , shieldbl
(R) and shieldcl

(R).
Note that R has a feasible l-cut if and only if shieldbl

(R) ∩ shieldcl
(R) = ∅.

For a given l ∈ V , the maximal shield region maxshieldl(R) of R with respect
to l is one among shieldbl

(R) and shieldcl
(R) that has the maximum size. (Re-

member, the size of a region is the number of points in it.) Note that R has a
one-cut orthogonal to l only when |maxshieldl(R)| ≤ β|R|.

Balanced Aspect Ratio Trees Revisited 79

3 The PBAR Tree Algorithm

In this section we present the PBAR tree algorithm that, given a set of parti-
tioning vectors V = {λ, µ, ν}, a reduction factor β, and a balancing factor α,
constructs a PBAR tree on any set S of n points in 2-dimensional space; as long
as 0.5 ≤ β < 1, and α is at least

f(V) =
4.38

sin(θmin) sin(λµ) sin(µν) sin(νλ)
,

where θmin is the minimum among the angles (λµ), (µν), (νλ).
The PBAR tree algorithm takes an initial α-balanced canonical region R that

bounds S and recursively subdivides it by first searching for a one-cut, and if no
such cut exists, by searching for a two-cut. For details see [8].

The algorithm for searching for a one-cut, OneCut, considers each partition-
ing vector in turn. For a partitioning vector l, a one-cut orthogonal to it exists
if and only if the shield regions with respect to l don’t overlap and the maximal
shield region contains at most β|R| points. Details are in [8].

The algorithm for searching for a two-cut, TwoCut, considers very few cuts as
potential two-cuts. Only cuts for the maximal shield regions for the 3 partitioning
vectors are considered as potential two-cuts. This is sufficient as long as α ≥ f(V)
— that this is true is our main result and we prove it in the rest of the section.
Details for TwoCut are in [8].

Theorem 1 (Main Result). Given a set S of n points in 2-dimensional space,
a set of 3 partitioning vectors V = {λ, µ, ν}, a balancing factor α, α ≥ f(V),
and a reduction factor β, 0.5 ≤ β < 1, the PBAR tree algorithm constructs a
PBAR tree on S in O(n log n) time.

We first prove some preliminary lemmas. For all of these we shall assume
that 0.5 ≤ β < 1 and α ≥ f(V).

Lemma 1. Given a set of partitioning vectors V , a balancing factor α, and a
reduction factor β, if every α-balanced region R is two-cuttable, then a PBAR
tree can be constructed for every set S of n points.

Proof. Start with any initial α-balanced canonical region that bounds S. Since
this region is two-cuttable, divide it into a maximum of 3 α-balanced subregions
such that each contains less than βn points. Repeat this process for each of the
resulting subregions until each of the final leaf regions has at most a constant
number of points. The process, along any path of subregions, cannot be repeated
more than O(log1/β n) times.

Lemma 2. A canonical region R that is a triangle is always α-balanced.

Due to lack of space, proofs for the lemmas are in the full version of the paper[8].

Lemma 3. Let (l,m, n) ∈ P(V). Let R be an α-balanced canonical region that
is not critically balanced. If P is a critically balanced subregion created by parti-
tioning R with an l-cut, then the minimum diameter of P is dl(P).

80 A. Chaudhary and M.T. Goodrich

Corollary 1. For a critically balanced canonical region R that is a trapezoid, if
bl and cl are the two parallel sides, then the minimum diameter of R is dl.

Lemma 4. Let (l,m, n) ∈ P(V), and let R be an α-balanced region that has no
feasible l-cut. Let S be the region formed by extending R such that bn(S) is of
length 0. If P is shieldcm

(S), then cl(P) ≤ cl(R).

Lemma 5. Let (l,m, n) ∈ P(V). If an α-balanced region R has no feasible l-cut,
then it has a feasible m-cut and a feasible n-cut.

Corollary 2. Let (l,m, n) ∈ P(V). If an α-balanced region R has no one-cut
and no feasible l-cut, then the maximal shield regions with respect to m and n
intersect.

Lemma 6. A critically balanced region R that is a trapezoidal is one-cuttable.

Lemma 7. Let (l,m, n) ∈ P(V). If an α-balanced region R has no one-cut and
no feasible l-cut, then R has a two-cut.

Lemma 8. Let (l,m, n) ∈ P(V). If an α-balanced region R does not have a
one-cut and yet there are feasible cuts along all 3 partitioning vectors l, m, and
n, then R has a two-cut.

Proof of Theorem 1. The PBAR tree algorithm recursively subdivides the
initial bounding region by first searching for a one-cut, and if no such cut exists,
by searching for a two-cut. By Lemma 1, if it always succeeds in finding a one-cut
or a two-cut, it constructs a PBAR tree. It is easy to see that when the algorithm
does not find a one-cut, no such cut exists. In such a situation, the algorithm
searches for a two-cut by checking if any of the 3 maximal shield regions are
one-cuttable. The proofs for Lemmas 7 and 8 show that at least one of these
shield regions is one-cuttable, and so the algorithm always succeeds in finding
either a one-cut or a two-cut. For the time analysis see proof in [8]. ��

4 Empirical Tests

In this section we present the preliminary empirical results we have obtained
and analyze them. We look at measures like number of nodes created, the depth
of the tree, and the number of leaves visited instead of the actual time or space
requirements. This is because the time and space measures are dependent on
the efficiency of the implementation, the load on the machine during testing,
etc. The other measures are not as dependent on the kind of testing carried
out. In addition, the number of nodes visited is the dominant term if the data
structure is stored in external memory (as is the case in SDSS).

We took 2 data sets and varied the partitioning planes in small increments
and for each we found the best aspect ratio that can be obtained. First, we
present plots that summarize the results of this experiment. Later, we present
detailed results for 6 different data sets in which we compare BAR trees with
(0, π/4, π/2) partitioning angles with 2 instances of PBAR trees.

Balanced Aspect Ratio Trees Revisited 81

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50
(0

,1
5,

30
)

(0
,1

5,
45

)

(0
,1

5,
60

)

(0
,1

5,
75

)

(0
,1

5,
90

)

(0
,3

0,
60

)

(0
,3

0,
75

)

(0
,3

0,
90

)

(0
,3

0,
10

5)

(0
,4

5,
90

)

(0
,4

5,
10

5)

(0
,6

0,
12

0)

f(V)
f(V) conjectured

Max aspect ratio
Average aspect ratio

Number nodes visited in near neigh

Fig. 2. Effects of varying the partitioning planes on SDSS data

4.1 Varying the Partitioning Planes

We varied the set of partitioning planes for a given dataset and found the best
possible aspect ratio that can be obtained for that dataset. We plot this best
empirical aspect ratio in Figures 2 and 3 (it is called the Maximum aspect ratio
in the figures). We also plot, alongside, the bound f(V) on the aspect ratio that
we have proved. We had conjectured that f(V) can be tightened by removing the
sin(θmin) term to obtain f(V) = 4.38/(sin(λµ) sin(µν) sin(νλ)). We plot the con-
jectured bound as well. We also plot the average aspect ratio of the nodes in tree.

The bound and the conjectured bound both decrease dramatically as the
planes become evenly oriented. But the empirically obtained values do not follow
their lead, though there is a reasonable amount of variation in the best (maxi-
mum) aspect ratio possible. The value of f(V) converges towards the empirical
value as it reduces, which indicates that it is possibly tight for the evenly ori-
ented planes. The same is true for the conjectured bound; but, if you look closely
at Figure 3 for the orientation (0, 45, 90) the conjectured value is actually lower
than the best aspect ratio obtained through experiments. This indicates that
the conjecture is wrong. We also plot the number of nodes visited during the
nearest neighbor searches (the details for these searches are described in the next
section) for the various planes. There is very slight variation in this, or in the
average aspect ratio with the change in plane orientations.

82 A. Chaudhary and M.T. Goodrich

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50
(0

,1
5,

30
)

(0
,1

5,
45

)

(0
,1

5,
60

)

(0
,1

5,
75

)

(0
,1

5,
90

)

(0
,3

0,
60

)

(0
,3

0,
75

)

(0
,3

0,
90

)

(0
,3

0,
10

5)

(0
,4

5,
90

)

(0
,4

5,
10

5)

(0
,6

0,
12

0)

f(V)
f(V) conjectured

Max aspect ratio
Average aspect ratio

Number nodes visited in near neigh

Fig. 3. Effects of varying the partitioning planes on data created uniformly at random
along a circle

4.2 Comparing BAR Trees and PBAR Trees

To compare the performance of BAR trees (with mostly axis orthogonal planes:
0, π/4, π/2) and PBAR trees we constructed PBAR trees with three different
sets of partitioning vectors V . In the first set, V is such that θλµ = π/4 and
θλν = π/2. In the second set, V is such that θλµ = π/3 and θλν = 2π/3, and in
the third set, V is such that θλµ = π/6 and θλν = π/2. Note that the partitioning
vectors in the first set are that used by BAR trees. The PBAR trees constructed
in this case closely mimic BAR trees and the performance is representative of
the performance of BAR trees. In the second case, the partitioning vectors are
more evenly oriented, while in the third case they are less evenly oriented, than
the first case. We refer to the former case as the BAR tree results and the latter
two cases as the PBAR-even tree and PBAR-uneven tree results respectively.
In all cases α is 20, β is 0.6, and the maximum points in any leaf k is 5. A
100 (1 + ε)-nearest neighbor queries were solved using each tree. For each data
set, a point q is first chosen uniformly at random from among the data points.
This is the first query point. Then a random increment is chosen and repeatedly
added to q to get 99 other query points. ε for the queries is always 0.001. The
results for BAR tree are in Figure 4, for PBAR-even tree are in Figure 5, and for
PBAR-uneven tree are in Figure 6. Of the 6 data sets data sets, 4 were chosen
rather arbitrarily, and the last two are real data from the Sloan Digital Sky
Survey(SDSS). The data sets are described in [8].

Balanced Aspect Ratio Trees Revisited 83

Data Nodes Depth Avg. casp(·) Nodes visited Leaves visited
Set in tree of tree of regions during query during query

Set 1 4615 12 9.70 57.2 11.74

Set 2 4719 13 8.78 73.64 13.97

Set 3 4709 12 9.08 148.51 30.97

Set 4 4631 12 7.84 16.47 2.49

Set 5 4749 12 8.98 13.49 1.60

Set 6 2079 11 9.13 21.84 3.68

Fig. 4. Results for (1 + ε)-nearest neighbor queries on BAR trees. (Number of nodes
and leaves visited during query are averaged over a 100 queries.)

Data Nodes Depth Avg. casp(·) Nodes visited Leaves visited
Set in tree of tree of regions during query during query

Set 1 4647 12 9.93 21.5 3.66

Set 2 4791 12 8.78 22.61 4.38

Set 3 4741 12 9.36 13.7 1.48

Set 4 4641 12 8.14 15.59 2.23

Set 5 4673 12 8.41 32.44 5.91

Set 6 2067 11 8.77 21.19 3.49

Fig. 5. Results for (1 + ε)-nearest neighbor queries on PBAR-even trees; V such that
θλµ = π/3 and θλν = 2π/3. (Number of nodes and leaves visited during query are
averaged over a 100 queries.)

Data Nodes Depth Avg. casp(·) Nodes visited Leaves visited
Set in tree of tree of regions during query during query

Set 1 4635 12 9.64 58.04 12.03

Set 2 4697 13 8.58 76.32 14.91

Set 3 4655 12 8.86 152.81 31.62

Set 4 4629 12 7.44 15.96 2.37

Set 5 4683 12 8.57 13.48 1.6

Set 6 2077 11 8.82 21.21 3.51

Fig. 6. Results for (1 + ε)-nearest neighbor queries on PBAR-uneven trees; V such
that θλµ = π/6 and θλν = π/2. (Number of nodes and leaves visited during query are
averaged over a 100 queries.)

The number of nodes in the tree are about the same, for the first 5 data
sets, irrespective of V . This is expected as the number of data points and the
maximum size of a leaf are the same in all cases. The depth of the trees are
about the same too, irrespective of the data set. This, again, is expected as the
β values are the same, and we don’t except too many regions that require two-
cuts. Set 6 has far fewer points and so has much fewer nodes. Surprisingly, the

84 A. Chaudhary and M.T. Goodrich

average values of the canonical aspect ratio are not very different in the three
trees for the different data sets. Neither is one of the trees always better than
the other. Such is not the case for number of nodes and number of leaves vis-
ited during query processing. PBAR-even trees almost always visit fewer nodes
and fewer leaves and in one particular case the difference with both BAR and
PBAR-uneven trees is a factor of 10. That PBAR-even trees perform better at
approximate nearest neighbor searches may be expected given the theoretical
results, it is surprising that this should be the case when the canonical aspect
ratio values are about the same. For Set 5, which is real data set from the SDSS,
however, PBAR-even trees are not the best. For this set, both BAR trees and
PBAR-uneven trees perform better, with PBAR-uneven slightly ahead of BAR.
For the other real data, Set 6, again PBAR-even is the best.

In conclusion, our experiments show that the flexibility of PBAR trees can
help in increasing the efficiency of approximate nearest neighbor searches.

5 Conclusion and Future Work

In this paper we revisited BAR trees in 2 dimensional spaces and developed the
Parameterized Balanced Aspect Ratio (PBAR) trees. These allow any given set
of 3 partitioning planes and yet retain all the advantages of BAR trees — general
purpose data structures, space efficient, logarithmic depth, bounded aspect ratio,
and poly-logarithmic approximate query processing. These are the first known
“BAR-type” trees in which the aspect ratio can be bounded by a simple closed-
form function (it depends on the orientation of the partitioning planes). We
conducted empirical tests that show that in many instances the evenly oriented
partitioning planes are better than the mostly axis orthogonal planes that have
been mostly studied prior to this. In addition, our experiments indicate that
our bound is tight in some respects: it converges to empirical values for evenly
oriented planes, and that a natural modification to tighten it (our conjecture
that sin(θmin) factor can be removed) is wrong.

Having bounds on the aspect ratio can be useful in ways other than solving
queries faster. For example, PBAR trees can be used to efficiently compute the
density of a region around a given point. This can be useful in detecting density
based outliers. We want to explore this and other possible applications of PBAR
trees in spatial data mining.

Acknowledgment

The authors will like to thank Breno de Medeiros for many helpful suggestions,
including helping tighten the bounds in Lemma 7 and Christian Duncan for
helpful discussions.

Balanced Aspect Ratio Trees Revisited 85

References

1. S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu. An optimal
algorithm for approximate nearest neighbor searching. In Proc. 5th ACM-SIAM
Sympos. Discrete Algorithms, pages 573–582, 1994.

2. Sunil Arya and David M. Mount. Approximate range searching. In Proc. 11th
Annu. ACM Sympos. Comput. Geom., pages 172–181, 1995.

3. J. L. Bentley. Multidimensional binary search trees used for associative searching.
Commun. ACM, 18(9):509–517, September 1975.

4. J. L. Bentley. Multidimensional binary search trees in database applications. IEEE
Trans. Softw. Eng., SE-5:333–340, 1979.

5. J. L. Bentley. K-d trees for semidynamic point sets. In Proc. 6th Annu. ACM
Sympos. Comput. Geom., pages 187–197, 1990.

6. P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point
sets with applications to k-nearest-neighbors and n-body potential fields. J. ACM,
42:67–90, 1995.

7. Paul B. Callahan and S. Rao Kosaraju. Algorithms for dynamic closest-pair and
n-body potential fields. In Proc. 6th ACM-SIAM Sympos. Discrete Algorithms,
pages 263–272, 1995.

8. A. Chaudhary and M.T. Goodrich. Balanced aspect ratio trees revisited.
http://www.cse.nd.edu/˜achaudha/research. Full version of the paper.

9. M. Dickerson, C. A. Duncan, and M. T. Goodrich. K-D trees are better when cut
on the longest side. In Proc. 8th European Symp. on Algorithms, volume 1879 of
Lecture Notes Comput. Sci., pages 179–190. Springer-Verlag, 2000.

10. C. Duncan. Balanced Aspect Ratio Trees. PhD thesis, The Johns Hopkins Univer-
sity, Baltimore, Maryland, Sep 1999.

11. C. A. Duncan, M. T. Goodrich, and S. Kobourov. Balanced aspect ratio trees:
combining the advantages of k-d trees and octrees. In Proc. 10th Annu. ACM-
SIAM Sympos. Discrete Alg., pages 300–309, 1999.

12. C. A. Duncan, M. T. Goodrich, and S. G. Kobourov. Balanced aspect ratio trees
and their use for drawing very large graphs. In Graph Drawing, Lecture Notes in
Computer Science, pages 111–124. Springer-Verlag, 1998.

13. H. Fuchs, G. D. Abrams, and E. D. Grant. Near real-time shaded display of rigid
objects. Comput. Graph., 17(3):65–72, 1983. Proc. SIGGRAPH ’83.

14. H. Fuchs, Z. M. Kedem, and B. Naylor. On visible surface generation by a priori
tree structures. Comput. Graph., 14(3):124–133, 1980. Proc. SIGGRAPH ’80.

15. David Luebke and Carl Erikson. View-dependent simplification of arbitrary polyg-
onal environments. In Turner Whitted, editor, SIGGRAPH 97 Conference Pro-
ceedings, Annual Conference Series, pages 199–208. ACM SIGGRAPH, Addison
Wesley, August 1997. ISBN 0-89791-896-7.

16. Robert Lupton, F. Miller Maley, and Neal Young. Sloan digital sky survey.
http://www.sdss.org/sdss.html.

17. RobertLupton,F.MillerMaley, andNealYoung. Data collection for theSloanDigital
Sky Survey—A network-flow heuristic. Journal of Algorithms, 27(2):339–356, 1998.

18. H. Samet. Spatial Data Structures: Quadtrees, Octrees, and Other Hierarchical
Methods. Addison-Wesley, Reading, MA, 1989.

19. H. Samet. Applications of Spatial Data Structures: Computer Graphics, Image
Processing, and GIS. Addison-Wesley, Reading, MA, 1990.

	Introduction
	Related Prior Work
	Our Contributions

	Parameterizing BAR Trees
	The PBAR Tree Algorithm
	Empirical Tests
	Varying the Partitioning Planes
	Comparing BAR Trees and PBAR Trees

	Conclusion and Future Work

