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Abstract. In this paper we study the time-space complexity of implicit
priority queues supporting the decreasekey operation. Our first result
is that by using one extra word of storage it is possible to match the
performance of Fibonacci heaps: constant amortized time for insert and
decreasekey and logarithmic time for deletemin. Our second result is
a lower bound showing that that one extra word really is necessary.
We reduce the decreasekey operation to a cell-probe type game called
the Usher’s Problem, where one must maintain a simple data structure
without the aid of any auxiliary storage.

1 Introduction

An implicit data structure on N elements is one whose representation consists
simply of an array A[0..N − 1], with one element stored in each array location.
The most well known implicit structure is certainly Williams’s binary heap [26],
which supports the priority queue operations insert and delete-min in logarith-
mic time. Although the elements of Williams’s heap are conceptually arranged
in a fragment of the infinite binary tree, the tree edges are not explicitly rep-
resented. It is understood that the element at A[i] is the parent of A[2i + 1]
and A[2i + 2]. The practical significance of implicit data structures is that they
are, in certain circumstances, maximally space efficient. If the elements can be
considered atomic then there is no better representation than a packed array.

A natural suspicion is that by insisting on an implicit representation one may
be sacrificing asymptotic time optimality. After 40 years of sporadic research
on implicit structures [26, 17, 21, 27, 20, 5, 8, 7, 28, 9, 10, 15] we can say that this
suspicion is almost completely misguided. In various dictionary & priority queue
problems, for instance, there are either optimal implicit structures or ones that
can be made optimal with a couple extra words of storage.
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In this paper we study the complexity of implicit priority queues that support
the decrease-key operation. Our main positive result is that given one extra
word of storage there is an implicit priority queue matching the performance
of Fibonacci heaps. It supports delete-min in logarithmic time and insert and
decrease-key in constant time, all amortized. That one extra word obviously has
no practical consequences but it is a thorn in our side. We propose a variation
on our data structure that uses no additional storage and supports decrease-key
in O(log∗ n) time, without affecting the other operations. This O(log∗ n) bound
is a theoretical burden. Is it natural? We prove that it is, in the following sense:
if any implicit priority queue uses zero extra space and supports decrease-key
in o(log∗ n) amortized time then the amortized cost of insert/delete-min jumps
dramatically, from logarithmic to Ω(n1/ log(k) n), for any k.

We reduce the decrease-key operation to the Absent Minded Usher’s Problem,
a game played in a simplified cell-probe model. Imagine an usher seating indis-
tinguishable theater patrons one-by-one in a large theater. The usher is equipped
with two operations: he can probe a seat to see if it is occupied or not and he can
move a given patron to a given unoccupied seat. (Moving patrons after seating
them is perfectly acceptable.) The catch is this: before seating each new pa-
tron we wipe clean the usher’s memory. That is, he must proceed without any
knowledge of which seats are occupied or the number of patrons already seated.
We prove that any deterministic ushering algorithm must seat m patrons with
Ω(m log∗ m) probes and moves, and that this bound is asymptotically tight.

Our lower bound proof attacks a subtle but fundamental difficulty in implicit
data structuring, namely, orchestrating the movement of elements within the
array, given little auxiliary storage. In its present form the ushering problem is
limited to proving small time-space tradeoffs. However it is likely that general-
izations of the ushering method could yield more impressive lower bounds.
Organization. In the remainder of this section we define what an implicit pri-
ority queue is, survey previous work and discuss our contributions. In Section 2
we present our new data structure. Section 3 is devoted to the Usher’s Problem
and its relationship with implicit priority queues.
Implicit Priority Queues. We first give a specification for an abstract implicit pri-
ority queue which is suitable for theoretical analysis but impractical. We then pro-
pose a particularly space efficient method for implementing such a data structure.

An implicit priority queue of size n consists of an array A[0..n − 1] (plus,
possibly, a little extra storage) where A[0], . . . , A[n−1] contain distinct elements
(or keys) from a total order. We also use A to denote the set of elements in the
priority queue. The following operations are supported.

insert(κ) : A := A ∪ {κ}
deletemin() : Return min A and set A := A\{min A}
decreasekey(i, κ) : Set A[i] := min{A[i], κ}
An operation decides what to do based on the auxiliary information and any

comparisons it makes between elements. Before returning it is free to alter the
auxiliary information and permute the contents of A, so long as its n elements
lie in A[0, . . . , n − 1]. We assume that “n” is known to all operations.
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The definition above sweeps under the rug a few issues that are crucial to an
efficient and useful implementation. First, applications of priority queues store
not only elements from a total order but objects associated with those elements.
For example, Dijkstra’s shortest path algorithm repeatedly asks for the vertex
with minimum tentative distance; the tentative distance alone is useless. Any
practical definition of a priority queue must take the application’s objects into
account. The second issue relates to the peculiar arguments to decreasekey. The
application must tell decreasekey the index in A of the element to be decreased,
which is necessarily a moving target since the data structure can permute the
elements of A at will.

We propose a priority queue interface below that addresses these and other is-
sues. Let us first sketch the normal (real world) interaction between application
and priority queue. To insert the object v the application passes the priority queue
an identifier id(v) of its choosing, together with key(v), drawn from some total or-
der. In return the priority queue gives the application a pq id(v), also of its choos-
ing, which is used to identify v in later calls to decreasekey. When v is removed
from the queue, due to a deletemin, the application receives both id(v) and key(v).

In our interface we give the data structure an extra degree of freedom, without
placing any unreasonable demands on the governing application. Whereas the
standard interface forces the data structure to assign pq ids once and for all, we
let the data structure update pq ids as necessary. We also let the application
maintain control of the keys. This is for two reasons, both concerning space.
First, the application may not want to explicitly represent keys at all if they
can be deduced in constant time. Second, the application can now use the same
key in multiple data structures without producing a copy for each one. Below Q
represents the contents of the data structure, which is initially empty. (Observe
that this interface is modular. Neither the application nor the data structure
needs to know any details about the other.)

The priority queue implements:

insert(id(v)) : Sets Q := Q∪ {id(v)} and returns a pq id(v)
deletemin() : Return, and remove from Q, the id(v) minimizing

key(v)
decreasekey(pq id(v)) : A notification that key(v) has been reduced

The application implements:
update(id(v), x) : Set pq id(v) := x
compare(id(v), id(w)) : True iff key(v) < key(w)

Using this interface it is simple to implement an abstract implicit priority
queue. The data structure would consist of an array of ids and we maintain,
with appropriate update operations, that pq id(v) indexes the position of id(v)
in A. For example, if we implemented a d-ary heap [17] with this interface every
priority queue operation would end with at most logd n calls to update, which
is the maximum number of elements that need to be permuted in A.

Our interface should be contrasted with a more general solution formalized
by Hagerup and Raman [14], in which pq ids would be fixed once and for all.
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In their schema the application communicates with the data structure through
an intermediary quasidictionary, which maps each pq id (issued by the quasidic-
tionary) to an identifier that can be updated by the data structure. Since saving
space is one of the main motivations for studying implicit data structures we
prefer our interface to one based on a quasidictionary.

Defining “Extra Storage.” All the priority queues cited in this paper store n ids
and n keys, and if decreasekey is supported, n pq ids as well. We consider any
further storage extra. For the sake of simplicity we ignore temporary space used
by the individual operations and any overhead involved in memory allocation.
Here “memory allocation” means simulating the array A, whose length varies as
elements are inserted and deleted. Brodnik et al. [3] proved that the standard
solution—array doubling/halving—can be improved so that only Θ(

√
n) extra

words of space are used, where n is the current size of the array. In pointer-based
structures (like Fibonacci heaps) the cost of memory allocation is more severe.
There is a measurable overhead for each allocated block of memory.

Previous work. Much of the work on implicit data structures has focussed on
the dictionary problem, in all its variations. The study of dynamic implicit dic-
tionaries in the comparison model was initiated by Munro & Suwanda [21]. They
gave a specific partial order (à la Williams’s binary heap) that allowed inserts,
deletes, and searches in O(

√
n) time, and showed, moreover, that with any par-

tial order Ω(
√

n) time is necessary for some operation. Munro [20] introduced
a novel pointer encoding technique and showed that all dictionary operations
could be performed in O(log2 n) time, a bound that stood until just a few years
ago. After a series of results Franceschini & Grossi [9] recently proved that all
dictionary operations could be performed in worst-case logarithmic time with
no extra storage. Franceschini & Grossi [10] also considered the static dictionary
problem, where the keys consist of a vector of k characters. Their implicit rep-
resentation allows for searches in optimal O(k + log n) time, which is somewhat
surprising because Andersson et al. [1] already proved that optimal search is
impossible if the keys are arranged in sorted order.

Yao [27] considered a static version of the dictionary problem where the keys
are integers in the range {1, . . . , m}. He proved that if m is sufficiently large
relative to n then no implicit representation can support o(log n) time queries. In
the same paper Yao proved that one-probe queries are possible if m ≤ 2n−2. Fiat
et al. [8, 7] gave an implicit structure supporting constant time queries for any
universe size, provided only O(log n+log log m) bits of extra storage. Zuckerman
[28], improving a result of [8, 7], showed that O(1) time queries are possible with
zero extra storage, for m slightly superpolynomial in n. In the integer-key model
we need to qualify the term “extra storage.” An implicit representation occupies
n �log m� bits, which is roughly n log n more than the information bound of
I =

⌈
log

(
m
n

)⌉
bits. See [4, 22, 23, 24] for I + o(I) space dictionaries.

Implicit Priority Queues. Williams’s binary heap [26] uses zero extra storage and
supports inserts and deletemins in worst-case logarithmic time. It was general-
ized by Johnson [17] to a d-ary heap, which, for any fixed d, supports inserts and
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decreasekeys in O(logd n) time and deletemins in O(d logd n) time. Carlsson et
al.’s implicit binomial heap [5] supports inserts in constant time and deletemins
in logarithmic time, both worst case. Their data structure uses O(1) extra words
of storage. Harvey and Zatloukal’s postorder heap [15] also supports insert in
O(1) time; the time bound is amortized but they use zero extra storage. Their
data structure can be generalized to a postorder d-ary heap.

General Priority Queues. The d-ary implicit heap has an undesirable tradeoff
between decreasekeys and deletemins. In many applications of priority queues the
overall performance depends crucially on a fast decreasekey operation. Fredman
and Tarjan’s Fibonacci heap [13] supports all operations in optimal amortized
time: O(log n) for deletemin and O(1) for the rest. Aside from the space taken
for keys, ids, and pq ids, Fibonacci heaps require 4n pointers and n(log log n+2)
bits. Each node keeps a (log log n + 1)-bit rank, a mark bit, and references its
parent, child, left sibling, and right sibling. Kaplan and Tarjan [18] shaved the
space requirements of Fibonacci heaps by n pointers and n bits. The Pairing heap
[12] can be represented with 2n pointers though it does not handle decreasekeys
in constant time [11].

Our Contributions. In this paper we show that it is possible to match the per-
formance of Fibonacci heaps using one extra word of storage, and that no deter-
ministic implicit priority queue can achieve the same bounds without one extra
word; see Figure 1. Our data structure may be of separate interest because it
uses a completely new method for supporting decreasekeys in constant amor-
tized time. Whereas Fibonacci-type heaps [13, 6, 18, 25] organize the elements
in heap-ordered trees and link trees based on their ranks, our priority queue is
conceptually composed of a set of unordered lists, whose elements adhere to a
particular partial order. We do not tag elements with ranks. The primitives of
our data structure are simply the concatenation of lists and the division of lists,
using any linear-time selection algorithm [2].

Decreasekey Deletemin Extra Storage Ref
Fibonacci O(1) O(log n) 4n ptrs, n(log log n + 2) bits [13]
Thin O(1) O(log n) 3n ptrs, n(log log n + 1) bits [18]

Ω(log log n) [11]
Pairing

O(log n)
O(log n) 2n ptrs, n bits

[16]

Post. d-ary O(logd n) O(d logd n) zero [15]
New O(1) O(log n) 1 ptr
New O(log∗ n) O(log n) zero
New l.b. if o(log∗ n) Ω(n1/ log(k) n) zero

Fig. 1. All priority queues support inserts in amortized constant time. The Fibonacci
& Thin Heaps support amortized constant time melds. See [19] for results on worst-case
bounds
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Our lower bounds reinforce a theme in implicit data structures [27, 5, 8, 15],
that it takes only a couple extra words of storage to alter the complexity of a
problem. Although our results depend on small amounts of extra memory, the
ushering technique is new and abstract enough to be applied elsewhere.

2 A New Priority Queue

In this section we design an abstract implicit priority queue. We cover the high-
level invariants of the structure, some very low-level encoding issues, then sketch
the operational “flow” of the priority queue. Many details are omitted; see [19].

Encoding Bits. We encode bits using the standard technique: for two given in-
dices i, j we equate A[i] < A[j] with zero and A[j] < A[i] with one. In this way
we can encode small integers and pointers with O(log n) elements.

Junk Elements. All elements are tagged either normal or junk, where the tags
are represented implicitly. We divide the entire array A into consecutive triplets.
The first two elements of any triplet are junk, and their relative order encodes
whether the third element is junk or normal. A junk (normal) triplet is one whose
third element is junk (normal). We maintain the invariant that the minimum
element in the queue is normal.

L-lists and I-lists. At a high level the data structure consists of a sequence of
O(log n) L-lists and a set of O(log2 n) I-lists, each of which is associated with
a distinct interval of L-lists. For any list T we let T � denote the set of normal
elements in T and |T | its length in triplets, including junk triplets. The relation
S < T holds when maxS� < min T �, or if either S� or T � is empty.

The list Lij belongs in slot j of zone i, where i ∈ [0, log4 n], j ∈ [0, 6], and the
length of Lij is roughly exponential in i. The L-lists are internally unordered but,
as a whole, in sorted order. That is, if ij < kl (lexicographically) then Lij < Lkl.
Loosely speaking, the list Iij,kl contains elements that, were they to be included
in L-lists, could be assigned to some list in the interval Lij , . . . , Lkl. We let Ls(ij)

and Lp(ij) be the non-empty successor and predecessor of list Lij , respectively.
The L- and I-lists obey the following order and size invariants. Some invariants
refer to parameters N ≥ n, ω = �log N log log N� and γ = log4 N . In addition
to L- and I-lists there is a buffer B which is discussed later.

Inv. O1 If ij < kl then Lij < Lkl.
Inv. O2 If ij ≤ kl then Lp(ij) < Iij,kl < Ls(kl).
Inv. S1 |Lij | ∈ [γ4i, 2γ4i] and |Lij | is a multiple of ω. |Lij | is non-empty only

if Li0, . . . , Li(j−1) are also non-empty, i.e., L-lists are packed in each zone.
Inv. S2 For ij > 00,

∣∣L�
ij

∣∣ ≥ 1
2 |Lij |.

Inv. S3 For any ij ≤ kl, |Iij,kl| is a multiple of ω and Iij,kl is non-empty only
if Lij and Lkl are also non empty. I00,kl is empty for all kl.

Inv. S4 |B| = |L00| = 2γ, and |L�
00| ≥ 1.

Assuming that the minimum element is normal, it follows from Invariants O1,
O2, S3, and S4 that the minimum always lies in L00 or B. In our data structure
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L00 and B are treated as fixed size mini priority queues that support findmin
in constant time, deletemin in O(log n) time, and decreasekey in either O(1) or
O(log∗ n) time, depending on whether we are allowed to store one extra pointer.

Periodic Rebuilding. We use a few mechanisms to guarantee that min A is nor-
mal. First, any element that is inserted or decreasekey’d is made normal. Every
insertion takes two otherwise unused junk elements to form a normal triplet and
every decreasekey can require up to three unused junk elements. Our data struc-
ture rebuilds itself whenever there may be a shortage of unused junk elements.
First it finds the n/6 smallest elements, designates them normal, and assigns
them to triplets. The remaining n/2 junk elements constitute the junk reservoir.
We maintain an implicit operation counter that is initially set to n/6. Every oper-
ation decrements the counter and when it reaches zero (i.e, when the junk reser-
voir may be empty) the data structure is rebuilt in linear time. It follows that the
minimum element is always normal. We charge the cost of rebuilding the struc-
ture to the n/6 preceeding operations. Some parameters are w.r.t. an N ≥ n.
Upon rebuilding we let N = 2�log(7n/6)�. Since n (the size of the queue) does not
uniquely determine N we dedicate two junk triplets to indicate the correct value.

Block Structure. The entire array A is divided into a sequence of blocks, each
containing ω = �log N log log N� triplets. The primary purpose of blocks is to
allow a dynamic implicit representation of L- and I-lists, which are circular and
doubly-linked. We dedicate O(log N) triplets of each block to represent successor
and predecessor pointers. Thus, given two blocks in different L- or I-lists it is
possible to splice them together in O(log N) time by altering 4 pointers. Blocks
also contain other counters and pointers; see [19].
The Structure of B and L00. Recall that both B and L00 have fixed size and
are located in A at fixed locations depending on N . We keep the normal triplets
of L00 packed together and arranged in a (log N)-ary implicit heap. Thus L00

supports deletemins in O(log N loglog N ω) = O(log N) time and decreasekeys
on elements in L�

00 in O(loglog N ω) = O(1) time. It allows bulk insertion of k
elements in O(k + log γ) time, where the log γ = O(log log N) term is the time
to determine |L�

00|. When dealing with B and L00 a deletemin accepts a junk
element to plug up the hole and an insert returns a displaced junk element.
The buffer B consists of, in this order, a triplet containing minB� followed by
fixed size mini-buffers Blog∗ N , . . . , B1, where

∣∣B1
∣∣ = Θ(γ) = Θ(log4 N) and∣∣B�

∣∣ = Θ(log(�) N). The normal triplets of each mini-buffer are packed together,
and furthermore, the normal triplets of B1 are arranged in a (log N)-ary implicit
heap. To insert the element e �∈ B into B we tag it normal, if not already. We
identify the first junk triplet of Blog∗ N and swap e with the third element of this
triplet. If e = min B we swap it with the old minimum. At this point Blog∗ N may
be full, that is, it contains only normal triplets. In general, whenever B�+1 is full
we perform a binary search to determine the first junk triplet in B�, say B�[j]. We
then swap the whole mini-buffer B�+1 with the junk triplets in B�[j..j+

∣∣B�+1
∣∣−

1], which may cause B� to be full. If � = 1 an artificial decreasekey operation is
performed on each of these elements in order to restore the heap order of B1.
The cost of relieving an overflow of B�+1 is O(

∣∣B�+1
∣∣ + log

∣∣B�
∣∣) = O(

∣∣B�+1
∣∣),
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i.e., O(1) per element. Since an element appears in each buffer at most once (per
insertion) the amortized cost of an insert is O(log∗ N). See [19] for B’s deletemin
and decreasekey routines.

If B can store an extra pointer (outside of the array A) then it can support
inserts and decreasekeys in O(1) time. We get rid of Blog∗ N , . . . , B2 and let the
pointer index the first junk triplet in B1.
Memory Layout. The array A is partitioned into five parts. The first part consists
entirely of junk and the first three occupy fixed locations depending on N .

1. Preamble. Contains a flag indicating N , the operation counter, and the free
block pointer, which points to the location of item (5), below.

2. The Buffer B and the list L00.
3. Representative blocks: one block from each L- and I-list is kept in a fixed

location. If the list is empty an all-junk block is kept in its spot. The repre-
sentative blocks contain additional statistics about their respective lists.

4. An array of blocks in use, by either L- or I-lists.
5. An array of unused blocks, a.k.a. the junk reservoir.

High-Level Operations. The priority queue operations only deal with L00 and
B. However, such an operation can induce a number of low level operations if
one of the invariants is violated, for instance, if |L�

00| reaches zero or |B| > 2γ.
The asterixes below mark places where a sequence of low level operations may
be necessary. Rebuilding the structure is considered a low level operation.

Insert(κ): Insert∗ κ into B. Put the displaced junk element at the end of the
junk reservoir. Decrement∗ the global operation counter.

Decreasekey(i, κ): If A[i] lies in B or L�
00 then perform the decreasekey there.

Otherwise insert∗ the element A[i] into B with the new key κ, changing
its status to normal if it was junk. Put the displaced junk element at A[i].
Decrement∗ the global operation counter.

Deletemin(): Return min(L�
00 ∪ min B�) using the deletemin operation∗ pro-

vided either by B or L00. Use the last junk element in the junk reservoir to
plug up the hole. Decrement∗ the global operation counter.

A Sketch of the Rest. Ignoring other parts of the data structure, the behavior of
our L-lists is straightforward. Whenever L�

00 becomes empty we find its successor
L′ = Ls(00). If L′ is in zone 0 we simply rename it L00 and if L′ is in zone i > 0
we divide it, with a linear-time selection algorithm, into O(i) shorter lists, which
are distributed over zones 0 through i − 1. Similarly, when L�

00 becomes full we
divide it into smaller lists, which are inserted into zone 0. In general, whenever
a zone i contains more than 7 lists (a violation) we concatenate some of the
lists to form one whose size is suitable to be inserted into zone i + 1. Our main
difficulty is filing newly inserted/decreasekey’d elements into the correct L-list.
Any direct method, like performing a binary search over the L-lists, is doomed
to take Ω(log log n) time. The purpose of the I-lists is to direct unfiled elements
to their correct L-lists, at constant amortized time per element.

Inserts and decreasekeys are directed toward the buffer B. When B is full we
divide it into geometrically increasing sets J0 < J1 < J2 . . ., with |J�+1| = 2|J�|.
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Each set J� is concatenated with the narrowest possible I-list that satisfies Invari-
ant O2. That is, we pick O(log n) normal representatives eij ∈ L�

ij and concate-
nate J� with Iij,kl such that eij < J� < ekl, where ij is maximal and kl minimal.
The procedure for dividing I-lists is identical to dividing the buffer. (We basically
consider B to be a special I-list.) In particular, whenever Iij,kl might contain the
minimum element—if Lij is the first non-empty L-list—we divide it into J-sets
of geometrically increasing size and concatenate them with the proper I-lists. It
is not obvious why this method should work. Every time an I-list is processed its
elements have a good chance of ending up in another I-list, which presumably
covers a narrower interval of L-lists. That is, it looks like we’re just implementing
binary search in slow motion. The full analysis of our data structure relies on a
complicated potential function; see [19] for the details.

3 The Absent Minded Usher’s Problem

In [19] we show that in any implicit priority queue the decreasekey operation must
be prepared to solve a version of the Absent Minded Usher’s Problem, which is the
focus of this section. Refer to [19] for the complete lower bound proof.

Let A be an array of infinite length, where each location of A can contain
a patron (indistinguishable from other patrons) or be empty. An usher is a de-
terministic program to insert a new patron into A without any knowledge of its
contents. That is, the usher does not know how many patrons it has already
inserted. The usher can probe a location of A to see if it is occupied and move
any patron to an empty location of A. We are interested in the complexity of
the best ushering program, that is, the number of probes and moves needed to
seat N patrons in an initially empty array. There exists a simple O(N log∗ N)
time usher; it is based on the same cascading buffers technique used in B from
the previous section. We prove that any usher requires Ω(N log∗ N) time.

We imagine an infinite graph whose vertices are layed out in a grid. The x-
axis corresponds to time (number of insertions) and the y-axis corresponds to the
array A. An usher is partially modeled as a set of x-monotone paths through the
grid, with each path representing where a particular patron was at each moment
in time. We assign each edge a cost, which represents in an amortized sense the
time taken to bring that patron to its current position. By reasoning about the
usher’s decision tree we are able to derive a recurrence relation describing the
costs of edges. The solution to this recurrence is then used to lower bound the
complexity of the ushering problem.

We put the patron to be inserted in the artificial position A[−1]. The usher’s
algorithm is modeled as a binary decision tree. At each internal node is an array
position to be probed and at each leaf is a list of pairs of the form (j1, j2),
indicating that the patron at A[j1] should be moved to A[j2]. Each leaf is called
an operation and the cost of executing an operation o is its depth in the decision
tree, d(o), plus the number of patron moves, m(o).

Consider an infinite graph with vertex set {Ai[j] : i ≥ 0, j ≥ −1}, where Ai[j]
represents A[j] after i insertions. There exists an edge (Ai−1[j1], Ai[j2]) exactly
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Fig. 2. This (infinite) two dimensional grid depicts the flow of patrons over time for
a particular ushering algorithm. Probes made by the algorithm are not represented.
Solid edges are fresh, dashed ones leftover

when Ai−1[j1] and Ai[j2] contain the same patron. Note that the graph is com-
posed exclusively of paths. An edge is leftover if it is of the form (Ai−1[j], Ai[j])
and fresh otherwise, i.e., fresh edges correspond to patron movements and left-
over edges correspond to unmoved patrons; see Figure 2. Let pred(Ai−1[j1], Ai[j2])
denote the edge (Ai−2[j3], Ai−1[j1]) if such an edge exists.

We now define a cost function c. If the edge (u, v) does not exist then c(u, v) =
0. Any edge of the form (Ai−1[j], Ai[j]) has cost c(pred(Ai−1[j], Ai[j])): leftover
edges inherit the cost of their predecessor. Let Ci =

∑
j1,j2

c(Ai−1[j1], Ai[j2]) be
the total cost of edges into Ai, and let Pi =

∑
j1 �=j2

c(pred(Ai−1[j1], Ai[j2])) be
the cost of the predecessors of the fresh edges into Ai. Let oi be the operation
performed at the ith insertion. (For example, in the ushering algorithm partially
depicted in Figure 2, o2 = o4 = o6 and o1, o3, and o5 are distinct.) Each fresh
edge e between Ai−1 and Ai is assigned the same cost:

c(e) def= Pi+d(oi)+m(oi)
m(oi)

That is, the total cost assigned to these m(oi) fresh edges is their inherited
cost, Pi, plus the actual time of the operation oi: d(oi) + m(oi). It follows from
the definitions that Ci is exactly the time to insert i patrons. Let T (m) be the
minimum possible cost of a fresh edge associated with an operation performing m
movements. We will show T (m) = Ω(log∗ m) and that this implies the amortized
cost of N insertions is Ω(N log∗ N).

For the remainder of this section we consider the ith insertion. Suppose that
the operation oi moves patrons from locations Ai−1[j1, j2, . . . , jm(oi)]. The pa-
trons in these locations were placed there at various times in the past. Define
iq < i as the index of the insertion that last moved a patron to A[jq].

Lemma 1. Let p, q be indices between 1 and m(oi). If ip �= iq then oip
�= oiq

.

We categorize all operations in the patron’s decision tree w.r.t. m = m(oi)—
recall that i is fixed in this section. An operation o is shallow if d(o) < 	log m
 /2
and deep otherwise. It is thin if m(o) <

⌊√
log m

⌋
and fat otherwise.

Lemma 2.
∣∣{q : oiq

is shallow and thin}∣∣ < 1
2

√
m log m
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Lemma 3. If (u, v) is a fresh edge, where v ∈ Ak and ok is deep and thin, then
c(u, v) ≥ 1

2

√
log m.

In summary, Lemma 2 implies that at least m − √
m log m/2 of the fresh

edges between Ai−1 and Ai can be traced back to earlier edges that are either
in deep and thin operations or fat operations. The cost of edges in deep and
thin operations is bounded by Lemma 3 and the cost of edges in fat operations
is bounded inductively. Recall that T (m) is the minimum cost of a fresh edge
associated with an operation performing m moves.

Lemma 4. T (m) ≥ (log∗ m)/4

Proof. Let e be a fresh edge into Ai with m = m(oi) and let
β = min{1

2

√
log m, T (

√
log m), T (

√
log m + 1), . . .}. Then:

c(e) =
m(oi) + Pi + d(oi)

m(oi)
≥ m + (m − 1

2

√
m log m) · β

m

Since the only property of e that we used in the above inequalities is m(oi) = m,
any lower bound on c(e) implies the same lower bound on T (m). We assume
inductively that T (r) ≥ 1

4 log∗ r, which holds for r ≤ 216 since T (r) ≥ 1 and
log∗ 216 = 4. For m > 216 we have:

T (m) ≥ 1 +
(
1 −

√
log m/4m

)
· β ≥ 1 +

(
1 −

√
log m/4m

)
· log∗(

√
log m)

4

>
(
1 −

√
log m/4m

) (
log∗ m − 2

4
+ 1

)
>

log∗ m

4

Theorem 1. Any usher seating N patrons must perform Ω(N log∗ N) opera-
tions. For some patron it must perform Ω(log N) operations.

See [19] for the proof of Theorem 1. Our lower bound on implicit priority queues
shows that the decreasekey operation can be forced to behave like an usher, seat-
ing m patrons for some m of its choosing. If the data structure has no extra storage
and if m > log(k) n (for some fixed k), then by Theorem 1 the amortized cost per
decreasekey is Ω(log∗(log(k) n)) = Ω(log∗ n−k). If m is smaller, i.e., decreasekeys
were performed quickley, then we show that a further sequence of O(m log∗ n) de-
creasekeys, inserts, and deletemins must take Ω(n1/ log(k) n) time.
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