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Abstract. We consider an APX-hard variant (∆-Max-ATSP) and an
APX-hard relaxation (Max-3-DCC) of the classical traveling salesman
problem. ∆-Max-ATSP is the following problem: Given an edge-weighted
complete loopless directed graph G such that the edge weights fulfill the
triangle inequality, find a maximum weight Hamiltonian tour of G. We
present a 31

40
-approximation algorithm for ∆-Max-ATSP with polyno-

mial running time. Max-3-DCC is the following problem: Given an edge-
weighted complete loopless directed graph, compute a spanning collec-
tion of node-disjoint cycles, each of length at least three, whose weight
is maximum among all such collections. We present a 3

4
-approximation

algorithm for this problem with polynomial running time. In both cases,
we improve on the previous best approximation performances. The re-
sults are obtained via a new decomposition technique for the fractional
solution of an LP formulation of Max-3-DCC.

1 Introduction

Travelling salesman problems have been studied for many decades. Classically,
one deals with minimization variants, that is, one wants to compute a shortest
(i.e., minimum weight) Hamiltonian tour. But also the corresponding maximiza-
tion variants have been investigated. At a first glance, computing a tour of
maximum weight seems to be unnatural, but this problems has its applications
for instance in maximum latency delivery problems [5] or in the computation of
shortest common superstrings [4].

1.1 Notations and Definitions

Let G = (V,E) be a complete loopless directed graph and w : E → Q≥0 be a
weight function that assigns each edge a nonnegative weight. A cycle of G is a
(strongly) connected subgraph such that each node has indegree and outdegree
one. (Since G has no loops, every cycle has length at least two.) The weight w(c)
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of a cycle c is the sum of weigths of the edges contained in it. A Hamiltonian
tour of G is a cycle that contains all nodes of G. The problem of finding a
Hamiltonian tour of minimum weight is the well-studied asymmetric traveling
salesman problem (ATSP). The problem is called asymmetric, since G is directed.
The special case that G is undirected or, equivalently, that w is symmetric has
received even more attention. But also the maximization variant—given G, find
a Hamiltonian tour of maximum weight—has been studied. This problem is for
instance used for maximum latency delivery problems [5] and as a blackbox in
shortest common superstring computations [4]. We here study the variant of
Maximum ATSP where w in addition fulfills the triangle inequality, that is,

w(u, v) + w(v, x) ≥ w(u, x) for all nodes u, v, x.

We call this problem ∆-Max-ATSP.
A cycle cover of G is a collection of node-disjoint cycles such that each node

is part of exactly one cycle. Every Hamiltonian tour is obviously a cycle cover.
We call a cycle a k-cycle if it has exactly k edges (and nodes). A cycle cover is a
k-cycle cover if each cycle in the cover has at least k edges. We call the problem
of finding a maximum weight 3-cycle cover Max-3-DCC. Note that we here do
not require w to fulfill the triangle inequality.

1.2 Previous Results

For the general Maximum ATSP, Nemhauser, Fisher, and Wolsey [6] present a
1
2 -approximation algorithm with polynomial time. Kosaraju, Park, and Stein [8],
Bläser [1], Levenstein and Sviridenko [10], and Kaplan et al. [7] improve on this
by giving polynomial time approximation algorithm with performances 38

63 , 8
13 ,

5
8 , and 2

3 , respectively. For ∆-Max-ATSP, Kostochka and Serdyukov [9] provide
a 3

4 -approximation algorithm with polynomial running time. Kaplan et al. [7]
improve on this by giving a polynomial time 10

13 -approximation algorithm.
∆-Max-ATSP is APX-hard, even if the weight function is {1, 2}-valued. This

follows basically from the hardness proof of the corresponding minization variant
given by Papadimitriou and Yannakakis [12]

The problem of computing a maximum weight 2-cycle cover is solvable in
polynomial time, see Section 2.1. But already the problem of computing max-
imum weight 3-cycle covers is APX-hard, even if w attains only two different
values [3]. Bläser and Manthey [2] give a 3

5 -approximation algorithm with poly-
nomial running time for Max-3-DCC. Kaplan et al. [7] improve on this by giving
a 2

3 -approximation algorithm with polynomial running time.

1.3 New Results

As a main technical contribution, we present a new decomposition technique for
the fractional solution of an LP for computing maximum weight 3-cycle covers.
The new idea is to ignore the directions of the edges and decompose the fractional
solution into undirected cycle covers, that means, that after ignoring directions,
the subgraph is a cycle cover. This has of course the drawback that viewed as a
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directed graph, the edges of the cycles might not point into the same direction.
The advantage, on the other hand is, that all cycles in the cycle covers obtained
have length at least three. In previous approaches such a fractional solution
always was decomposed into directed cycle covers in which every cycle could have
length two (but one had some additional knowledge about the distribution of the
2-cycles in the covers.) We apply this method to ∆-Max-ATSP and Max-3-DCC.

For ∆-Max-ATSP, this results in a 31
40 -approximation algorithm improving

on the previous best algorithm which has approximation performance 10
13 . Note

that 31
40 = 0.775 and 10

13 ≈ 0.769.
For Max-3-DCC, we get a 3

4 -approximation algorithm. This improves the
previous best algorithm which has performance 2

3 .

2 Computing Undirected 3-Cycle Covers

Let G be a complete directed graph without loops with n nodes and let w be a
weight function on the edges of G.

2.1 LP for 3-Cycle Covers

Maximum weight cycle covers can be computed by solving the following well-
known LP:

Maximize
∑

(u,v)

w(u, v)xu,v subject to

∑

u∈V

xu,v = 1 for all v ∈ V , (indegree constraints)

∑

v∈V

xu,v = 1 for all u ∈ V , (outdegree constraints)

xu,v ≥ 0 for all (u, v).

(1)

The variable xu,v is the indicator variable of the edge (u, v). The matrix cor-
responding to (1) is totally unimodular (see e.g. [11]), thus any optimum basic
solution of (1) is integer valued (indeed {0, 1} valued). When one wants to use
cycle covers as a relaxation for approximating Hamiltonian tours, the worst case
is a cycle cover that consists solely of cycles of length two, so-called 2-cycles. To
avoid this, one can add 2-cycle elimination constraints to the LP:

xu,v + xv,u ≤ 1 for all (u, v) (2-cycle elimination) (2)

These constraints are a subset of the so-called subtour elimination constraints.
If we consider the LP above as an integer LP, then the 2-cycle elimination

constraints ensure that there are no 2-cycles in a feasible solution. However,
after adding the 2-cycle elimination constraints, the basic feasible solutions of
the relaxed LP may not be integral anymore.
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2.2 Decomposition Into Directed 2-Cycle Covers

Let (x�
u,v) denote an optimal fractional solution of the relaxed LP (1) together

with (2). Let W � be its weight. Let N be the smallest common multiple of
all denominators of the x�

u,v. From (x�
u,v), we build a directed multigraph M�:

Each edge (u, v) in M� has multiplicity x�
u,v ·N . By using standard scaling and

rounding we may also assume that N is a power of two, i.e. N = 2ν for some
integer ν polynomially bounded in the input length (see the journal version of
[7] for details).

We change the solution (x�
u,v) and corresponding multigraph M� in the fol-

lowing way. Construct undirected graph H by defining an undirected edge {u, v}
if M� contains edges between vertices u and v in both directions. If H contains a
cycle C then M� contains two corresponding oppositely oriented cycles C1 and
C2 of length ≥ 3. The multiplicity of those cycles is min{x�

u,v : (u, v) ∈ C1} · N
and min{x�

u,v : (u, v) ∈ C2} ·N . W.l.o.g assume that the weight of C1 is no more
than the weight of C2. We delete min{x�

u,v : (u, v) ∈ C1} · N copies of C1 from
M� and add min{x�

u,v : (u, v) ∈ C1} ·N copies of C2. We also change the current
solution (x�

u,v) to reflect the change in M�. The new solution is also an optimal
solution of the LP (1) together with (2) since we did not decrease the value of
the solution and did not violate the LP constraints during the transformation.
Repeating the procedure O(n2) times we could guarantee that we have an opti-
mal solution (x�

u,v) such that graph M� does not have oppositely oriented cycles
of length larger than two.

Lewenstein and Sviridenko [10] showed how to compute a collection of cycle
covers C1, . . . , CN from M� with the following properties:

(P1) M� is the union of C1, . . . , CN , considered as a multigraph. Thus the total
weight of C1, . . . , CN equals N · W �.

(P2) Between any pair of nodes u and v, the total number of edges in C1, . . . , CN

between u and v is at most N .

The number N might be exponential, however, Lewenstein and Sviridenko also
gave a succinct representation consisting of at most n2 cycle covers with appro-
priate multiplicities. This will be sufficient for our algorithms.

The discussion above implies that C1, . . . , CN , fulfill the additional property:

(P3) Let H be the undirected graph that contains an edge {u, v} iff u and v are
contained in a 2-cycle in at least one of C1, . . . , CN . Then H is acyclic.

2.3 Decomposition Into Undirected 3-Cycle Covers

For our algorithms, we now redistribute the edges of C1, . . . , CN . Each copy of
an edge (u, v) in M� appears in exactly one of the C1, . . . , CN . Color an edge
of M� red, if it occurs in a 2-cycle in the particular Ci. Otherwise color it blue.
Note that by (P3), red edges cannot form a cycle of length strictly larger than
two.

Lemma 1. Let U be an undirected 2N -regular multigraph that has at most N
copies of any edge where N = 2ν is a power of two. Then there are undirected
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3-cycle covers D1, . . . , DN such that U is the union of D1, . . . , DN . This decom-
position can be performed in polynomial time.

Proof. The proof is by induction on N : If N = 1, then U is a 3-cycle cover.
Assume that N > 1. We will now decompose U into two N -regular multigraph

U1 and U2, each of them containing at most N/2 copies of each edge. By the
induction hypothesis, these multigraphs can be decomposed into N/2 3-cycle
covers each. This proves the lemma.

Let e be an edge of U and let m be its multiplicity. We move �m/2� copies to
U1 and �m/2� to U2. If m is even, this distributes all copies of e between U1 and
U2. If m is odd, then one copy remains, that is, the multigraph U ′ that remains
after treating all edges in this way is indeed a graph. Since U is 2N -regular and
we remove an even number of copies of each edge, the degree of each node in U ′

is even. Therefore, each connected component of U ′ is Eulerian. For each such
component, we compute an Eulerian tour. We take the edges of each component
of U ′ in the order induced by the Eulerian tour and move them in an alternating
fashion to U1 and U2. In this way, the degree at each node in U ′ is “halved”,
therefore both U1 and U2 are N -regular.

It remains to show that every edge in U1 and U2, respectively, has multiplicity
at most N/2. This is clearly true if the multiplicity m of an edge e in U was even.
If m is odd, then m < N , since N is even. Thus U1 and U2 get �m/2� < N/2
copies. The last copy is then either moved to U1 or U2, but in both cases, the
multiplicity is thereafter ≤ N/2. �	

Let W2 be the average weight of all 2-cycles and W3 be the average weight
of all cycles of length at least three in C1, . . . , CN .

We now consider M� as an undirected graph. It is 2N -regular and by (P2),
there are at most N edges between any pair of nodes. By Lemma 1, we can
decompose M� into undirected 3-cycle covers D1, . . . , DN . As already mentioned,
none of the cycles in D1, . . . , DN solely consists of red edges. Now we view
D1, . . . , Dn as directed graphs again. They may not be directed cycle covers
anymore, since the cycles may not be directed cycles. For all i and for any
red edge in Di, we add the other edge of the corresponding 2-cycle to Di. Let
D̂1, . . . , D̂N be the resulting graphs. The average weight of D̂1, . . . , D̂N is

w(D̂1) + · · · + w(D̂N )
N

= 2W2 + W3, (3)

because every edge in a 2-cycle was added a second time.

3 Metric Maximum ATSP

Throughout this section, we assume that w fulfills the triangle inequality, i.e.,

w(u, v) + w(v, x) ≥ w(u, x) for all nodes u, v, x.

Our goal is to find a Hamiltonian tour of maximum weight.
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3.1 First Algorithm

By exploiting an algorithm due to Kostochka and Serdyukov [9], Kaplan et al.
[7] show how to compute a Hamiltonian tour of weight at least 3

4W2 + 5
6W3.

Theorem 1. There is an algorithm with polynomial running time that given
C1, . . . , CN , computes a Hamiltonian tour of weight 3

4W2 + 5
6W3. �	

This will be the first algorithm that we use. It is favorable if W2 is small.
Next we design an algorithm that works well if W2 is large.

3.2 Second Algorithm

Lemma 2. Let K be a connected component of D̂i. After deleting one blue edge
of K, we can construct in polynomial time two node-disjoint directed paths P1

and P2 such that

1. P1 and P2 span the same nodes as K,
2. P1 can be transformed into P2 by reversing all directions of its edges and

vice versa,
3. except the discarded blue edge, all edges of K are in P1 ∪ P2, and
4. the discarded edge connects the two end-points of P1 and P2, respectively.

Proof. The component corresponding to K in Di is an undirected cycle. At
least one of the edges on this cycle is blue by (P3). Discard one blue edge. Let
v1, . . . , v� be the nodes of K (in this order) and assume that the edge between
v� and v1 was discarded. Between any two nodes vλ and vλ+1, there are at most
two edges and if there are two edges, then these edges are red and point into
different directions, since we added the other edge of the 2-cycles. Therefore,
the paths v1, v2, . . . , v� and v�, v�−1, . . . , v1 contain all edges of K except the one
that we discarded. �	

By applying Lemma 2 to each component of D̂i, we obtain two collections
of node-disjoint paths Pi,1 and Pi,2 such that each connected component of D̂i

corresponds to two oppositely directed paths in Pi,1 and Pi,2 respectively. Next
we are going to construct Hamiltonian tours Hi,1 and Hi,2 out of Pi,1 and Pi,2.

Lemma 3. Given Pi,1 and Pi,2, we can construct in polynomial time, two Hamil-
tonian tours Hi,1 and Hi,2 such that Hi,1 and Hi,2 contain all the weight of the
red edges and 1/2 of the weight of the blue edges of D̂i.

Proof. Let pj,1, . . . , pj,k be the paths of Pi,j for j = 1, 2. Assume that p1,κ and
p2,κ span the same nodes but have opposite directions. Let p1,κ be the path that
forms a cycle with the discarded blue edge.

We first describe a randomized algorithm. We first select paths q1, . . . , qk: qκ

is p1,κ or p2,κ, both with probability 1/2. All coin flips are independent. The
cycle Hi,1 is obtained by patching the paths together in the order q1, . . . , qk, and
the cycle Hi,2 by patching the paths together in the opposite order qk, . . . , q1.
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With the exception of the discarded blue edges in Lemma 2, an edge of D̂i is
included twice with probability 1/2, namely once in Hi,1 and once in Hi,2. Thus
we get all the weight of these edges in expectation.

We now show that we can get some weight of the discarded blue edges back
(in expectation) during the patching process. Figure 3.2 shows two discarded
blue edges e and f . There are four possibilities how the corresponding paths
can be directed. Each occurs with probability 1/4. The edges introduced by the
patching are xj and yj , respectively. The expected weight we get is

1
4 (w(x1) + w(y1) + w(x2) + w(y2) + w(x3) + w(y3) + w(x4) + w(y4)).

By the triangle inequality, we have

w(e) ≤ w(x1) + w(y2),
w(e) ≤ w(x2) + w(y1),
w(f) ≤ w(x3) + w(y1),
w(f) ≤ w(x1) + w(y3).

Thus we recover 1
4 (w(e) + w(f)) in expectation.1 But we will recover 1

4w(e)
on the lefthand side of the path of e and 1

4w(f) on the righthand side of the
path of f . Thus the total weight is 1/2 of the weight of the discarded blue edges.

The above randomized procedure can be easily derandomized by exploiting
the method of conditional expectations. �	

Theorem 2. There is an algorithm with polynomial running time that given
C1, . . . , CN , computes a Hamiltonian tour of weight at least W2 + 1

4W3.

Proof. The algorithm computes the graphs D̂1, . . . , D̂N and decomposes them
into 2N collections of paths P1,1, P1,2, . . . , PN,1, PN,2 as in Lemma 2. From each
pair Pi,1, Pi,2, it computes Hamiltonian tours Hi,1 and Hi,2 as in Lemma 3. It
then outputs the tour with the largest weight. By (3), D̂1, . . . , D̂N have weight
N ·(2W2+W3). When constructing the collections of paths, we might loose up to
weight N ·W3. But when forming the tours, we get half of it back by Lemma 3.
Altogether, there are 2N Hamiltonian tours. The heaviest of them has weight
at least W2 + 1

4W3. �	

3.3 Final Algorithm

Theorem 3. There is a 31
40 -approximation algorithm for ∆-Max-ATSP with

polynomial running time.

Proof. The algorithm runs the algorithms of Theorems 1 and 2 and outputs
the heavier tour. Balancing the approximation performances of both algorithms

1 Note that we need w(x1) and w(y1) twice, but w(x4) and w(y4) is not of any use for
us.
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Fig. 1. Two discarded blue edges e and f (drawn solid) of two consecutive path (drawn
dashed). There are four possibilities how the paths can be chosen. xj and yj are the
edges used for the patching, the xj are used when patching from left to right, the yj

when patching from right to left

yields the desired result. This is easiliy seen by the following probabilistic argu-
ment: Choose the output of the first algorithm with probability 9/10 and the
output of the second one with probability 1/10. An easy calculation shows that
the expected weight is 31

40 (W2 + W3). The weight of the heavier tour is certainly
at least as large as the expected weight. �	

4 Maximum 3-Cycle Cover

In this section, we only assume that w is nonnegative. In particular, w is not
required to fulfill the triangle inequality. Our goal is to compute a directed 3-
cycle cover of maximum weight.
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4.1 First Algorithm

Bläser and Manthey [2] show how to compute a 3-cycle cover of weight 1
2W2+W3.

Theorem 4. There is an algorithm with polynomial running time that given
C1, . . . , CN , computes a 3-cycle cover of weight 1

2W2 + W3. �	
This will be our first algorithm. In the next subsection, we design an algorithm

that is favorable if W2 is large.

4.2 Second Algorithm

Lemma 4. Let K be a connected component of D̂i. We can construct in poly-
nomial time two node-disjoint directed cycles Z1 and Z2 such that

1. Z1 and Z2 span the same nodes as K,
2. Z1 can be transformed into Z2 by reversing all directions of its edges and

vice versa,
3. all edges of K are in Z1 ∪ Z2,
4. and the length of Z1 and Z2 is at least three.

Proof. The component corresponding to K in Di is an undirected cycle of length
at least three. After possibly adding some edges to K, K consists of two oppo-
sitely oriented directed cycles of length at least three. �	
Theorem 5. There is an algorithm with polynomial running time that given
C1, . . . , CN , computes a 3-cycle cover of weight W2 + 1

2W3.

Proof. The algorithm computes the graphs D̂1, . . . , D̂N and decomposes them
into 2N collections of 3-cycle covers by treating each component as in Lemma 4.
It then outputs the 3-cycle cover with the largest weight. By (3), D̂1, . . . , D̂N

have weight N · (2W2 + W3). There are 2N 3-cycle covers. The heaviest of them
has weight at least W2 + 1

2W3. �	

4.3 Final Algorithm

Theorem 6. There is a 3
4 -approximation algorithm for Max-3-DCC with poly-

nomial running time.

Proof. The algorithm runs the algorithms of Theorems 4 and 5 and outputs
the heavier 3-cycle cover. Balancing the approximation performances of both
algorithms yields the desired result. �	
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2. Markus Bläser and Bodo Manthey. Two approximation algorithms for 3-cycle
covers. In Proc. 5th Int. Workshop on Approximation Algorithms for Combinatorial
Optimization (APPROX), volume 2462 of Lecture Notes in Comput. Sci., pages
40–50, 2002.



Metric Maximum ATSP and Maximum 3-Cycle Cover 359

3. Markus Bläser and Bodo Manthey. Approximating maximum weight cycle covers
in directed graphs with edge weights zero and one. Algorithmica, 2005.

4. Dany Breslauer, Tao Jiang, and Zhigen Jiang. Rotations of periodic strings and
short superstrings. J. Algorithms, 24:340–353, 1997.

5. P. Chalasani and R. Motwani. Approximating capacitated routing and delivery
problems. SIAM J. Comput, 28:2133–2149, 1999.

6. M. L. Fisher, L. Nemhauser, and L. A. Wolsey. An analysis of approximations for
finding a maximum weight Hamiltonian circuit. Networks, 12(1):799–809, 1979.

7. H. Kaplan, M. Lewenstein, N. Shafrir, and M. Sviridenko. Approximation algo-
rithms for asymmetric tsp by decomposing directed regular multigraphs. In Proc.
44th Ann. IEEE Symp. on Foundations of Comput. Sci. (FOCS), pages 56–65,
2003.

8. S. Rao Kosaraju, James K. Park, and Clifford Stein. Long tours and short super-
strings. In Proc. 35th Ann. IEEE Symp. on Foundations of Comput. Sci. (FOCS),
1994.

9. A. V. Kostochka and A. I. Serdyukov. Polynomial algorithms with the estimates 3
4

and 5
6

for the traveling salesman problem of the maximum. Upravlyaemye Sistemy,
26:55–59, 1985. (in Russian).

10. Moshe Lewenstein and Maxim Sviridenko. A 5/8 approximation algorithm for the
maximum asymmetric TSP. SIAM J. Disc. Math., 17(2):237–248, 2003.

11. C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms
and Complexity. Prentice-Hall, 1982.

12. C. H. Papadimitriou and M. Yannakakis. The traveling salesman problem with
distances one and two. Math. Operations Research, 18:1–11, 1993.


	Introduction
	Notations and Definitions
	Previous Results
	New Results

	Computing Undirected 3-Cycle Covers
	LP for 3-Cycle Covers
	Decomposition Into Directed 2-Cycle Covers
	Decomposition Into Undirected 3-Cycle Covers

	Metric Maximum ATSP
	First Algorithm
	Second Algorithm
	Final Algorithm

	Maximum 3-Cycle Cover
	First Algorithm
	Second Algorithm
	Final Algorithm




