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Abstract. Let G be an embedded planar graph whose edges may be
curves. The detour between two points, p and q (on edges or vertices) of
G, is the ratio between the shortest path in G between p and q and their
Euclidean distance. The supremum over all pairs of points of all these
ratios is called the geometric dilation of G. Our research is motivated by
the problem of designing graphs of low dilation. We provide a characteri-
zation of closed curves of constant halving distance (i.e., curves for which
all chords dividing the curve length in half are of constant length) which
are useful in this context. We then relate the halving distance of curves
to other geometric quantities such as area and width. Among others,
this enables us to derive a new upper bound on the geometric dilation
of closed curves, as a function of D/w, where D and w are the diameter
and width, respectively. We further give lower bounds on the geometric
dilation of polygons with n sides as a function of n. Our bounds are tight
for centrally symmetric convex polygons.

1 Introduction

Consider a planar graph G embedded in �2, whose edges are curves that do not
intersect. Such graphs arise naturally in the study of transportation networks,
like waterways, railroads or streets. For two points, p and q (on edges or vertices)
of G, the detour between p and q in G is defined as δG(p, q) = dG(p,q)

|pq| where
dG(p, q) is the shortest path length in G between p and q and |pq| denotes the
Euclidean distance. Good transportation networks should have small detour val-
ues. To measure the quality of e.g. a network of streets in a city we have to take
into account not only the vertices of the graph but all the points on its edges,
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because access to the streets is possible from everywhere. The resulting supre-
mum value is the geometric dilation of G. For example the geometric dilation of
a square, or that of a square divided into 100 congruent squares is 2.

Ebbers-Baumann et al. [5] recently considered the problem of constructing a
graph of lowest possible geometric dilation containing a given finite point set on
its edges. They pointed out that even for three points this is a difficult task and
proved that there exist point sets which require graphs with dilation at least
π/2. They conjectured that this lower bound is not best possible, which was
recently confirmed by Dumitrescu et al. in [4].

Ebbers-Baumann et al. have also shown that for any finite point set there
exists a grid-like planar graph that contains the given points and whose geomet-
ric dilation is at most 1.678, thereby improving on

√
3, the geometric dilation

obtained by embedding the points in a hexagonal grid. Their design uses a cer-
tain closed curve of constant halving distance, see Figure 4. Understanding such
curves and their properties is a key point in designing networks with a small ge-
ometric dilation and is our current focus in this paper. Due to space limitations,
some of our proofs are omitted.

2 Basic Definitions and Properties

Throughout this paper we consider finite, simple1, closed curves in the Euclidean
plane. We call them closed curves or cycles for short. For simplicity, we assume
that they are piecewise continuously differentiable, but most of the proofs work
for less restrictive differentiability conditions.

By |C| we denote the length of a closed curve. Shortest path distance dC(p, q),
detour δC(p, q) and geometric dilation δ(C) are defined like in the case of arbi-
trary graphs.

Ebbers-Baumann, Grüne and Klein [6] introduced halving pairs to facilitate
the dilation analysis of closed curves. For a given point p ∈ C, the unique
halving partner p̂ of p is given by dC(p, p̂) = |C|/2. This means that both paths
connecting p and p̂ on C have equal length. The pair (p, p̂) is called halving pair
and the connecting line segment pp̂ is a halving chord. The length of a halving
chord is the corresponding halving distance. By h and H we will denote the
minimum and maximum halving distance of a given closed curve.

Furthermore, we will consider the diameter D := max{|pq|, p, q ∈ C} of a
closed curve C and the width w of a convex cycle C which is the minimum
distance of two parallel lines enclosing C.

The following lemma is the main reason why halving pairs play a crucial role
in the dilation analysis of closed curves.

Lemma 1. [6–Lemma 11] If C is a closed convex curve, its dilation δ(C) is
attained by a halving pair, i.e. δ(C) = |C|/2h.

1 A curve is called simple if it has no self-intersections.
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Fig. 1. (a) Diameter D, width w, minimum and maximum halving distance h and H of
an isosceles, right-angled triangle (b) An equilateral triangle C and the derived curves
M and C∗

In [4] Dumitrescu, Grüne and Rote have introduced a decomposition of a
cycle C into two curves C∗ and M , see Figure 1(b) for an illustration. Let
c : [0, |C|) → C be an arc-length parameterization of C. Then, the two curves
are defined by the parameterizations

m(t) :=
1
2

(
c(t) + c

(
t +

|C|
2

))
, c∗(t) :=

1
2

(
c(t) − c

(
t +

|C|
2

))
(1)

The midpoint curve M is formed by the midpoints of the halving chords. It will
turn out to be useful in the analysis of curves of constant halving distance. The
curve C∗ is the result of applying the halving pair transformation (defined in [6])
to C. It is obtained by moving the midpoint of every halving chord to the origin.

3 Closed Curves of Constant Halving Distance

Closed curves of constant halving distance turn up naturally if one wants to
construct graphs of low dilation (compare to [5]). Lemma 1 shows that the
dilation of any convex curve of constant halving distance is attained by all its
halving pairs. Hence, it is difficult to improve (decrease) the dilation of such
cycles, because local changes decrease h or they increase |C|.

Theorem 21 in [6] or the proof of Lemma 1 in [4] show that only curves with
constant m(t) and constant halving distance can attain the global dilation min-
imum of π/2. It is easy to see that only circles satisfy both conditions (compare
to [6–Corollary 23], [1–Corollary 3.3], [9], [7]).

What happens if only one of the conditions is satisfied? Clearly, m(t) is
constant if and only if C is centrally symmetric. The class of closed curves
of constant halving distance is not as easy to describe. One could guess —
incorrectly — that it consists only of circles. The “Rounded Triangle” C�
shown in Figure 2 is a counterexample, and could be seen as an analogy to
the Reuleaux triangle [2], the most popular representative of curves of constant
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Fig. 2. The “Rounded Triangle”, a curve of constant halving distance

width. It seems to be a somehow prominent example, because two groups of the
authors of this paper discovered it independently.

We construct C� by starting with a pair of points p := (0, 0.5) and q :=
(0,−0.5). Next, we move p to the right along a horizontal line. Simultaneously,
q moves to the left such that the distance |pq| = 1 is preserved and both points
move with equal speed. It can be shown that these conditions lead to a differential
equation whose solution defines the path of q uniquely. We move p and q like
this until the connecting line segment pq forms an angle of 30◦ with the y-
axis. Next, we swap the roles of p and q. Now, q moves along a line with the
direction of its last movement, and p moves with equal speed on the unique
curve which guarantees |pq| = 1, until pq has rotated with another 30◦. In this
way we concatenate six straight line and six curved pieces to build the Rounded
Triangle C� depicted in Figure 2.

We have to omit the details of the differential equation and its solution. Here,
we mention only that the perimeter of C� equals 3 ln 3. By Lemma 1 this results
in

δ(C�) = |C�|/(2h(C�)) =
3
2

ln 3 ≈ 1.6479 .

The midpoint curve of C� is built from six congruent pieces that are arcs of a
tractrix, which we will discuss in the end of this section. First, we give a necessary
and sufficient condition for curves of constant halving distance.

Theorem 1. Let C be a planar closed curve, and let c : [0, |C|) → C be an
arc-length parameterization. Then, the following two statements are equivalent:

1. If c is differentiable in t and in t + |C|/2, ṁ(t) �= 0, and ċ∗(t) �= 0, then the
halving chord c(t)c(t + |C|/2) is tangent to the midpoint curve at m(t). And
if the midpoint stays at m ∈ �2 on a whole interval (t1, t2), the halving pairs
are located on the circle with radius h(C)/2 and center point m.

2. The closed curve C is a cycle of constant halving distance.
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Proof. “2. ⇒ 1.”
Let C have constant halving distance. If c is differentiable in t and t + |C|/2,

c∗ and m are differentiable in t. And due to |c∗| ≡ h(C)/2 it follows that ċ∗(t)
must be orthogonal to c∗(t) which can be shown by

0 =
d
dt

|c∗(t)|2 =
d
dt

〈c∗(t), c∗(t)〉 = 2 〈c∗(t), ċ∗(t)〉 . (2)

On the other hand, by using the linearity of the scalar product and |ċ(t)| = 1,
we obtain

〈ṁ(t), ċ∗(t)〉 (1)
=

1
4

〈
ċ(t) + ċ

(
t +

|C|
2

)
, ċ(t) − ċ

(
t +

|C|
2

)〉
(3)

=
1
4

(
|ċ(t)|2 −

∣∣∣∣ċ
(

t +
|C|
2

)∣∣∣∣
2
)

=
1
4
(1 − 1) = 0.

The derivative vectors ṁ(t) and ċ∗(t) are orthogonal. Hence, ṁ(t) �= 0 �= ċ∗(t)
implies ṁ(t) ‖ c∗(t) and the first condition of 1. is proven. The second condition
follows trivially from c(t) = m(t) + c∗(t).

“1. ⇒ 2.”
Let us assume that both conditions of 1. hold. We have to show that |c∗(t)|

is constant.
First, we consider an interval (t1, t2) ⊆ [0, |C|), where m(t) is constant (= m)

and the halving pairs are located on a circle with radius h(C)/2 and center m.
This immediately implies that |c∗| is constant on (t1, t2).

If (t1, t2) ⊆ [0, |C|) denotes an interval where |c∗(t)| = 0, then obviously |c∗|
is constant.

Now, let (t1, t2) ⊆ [0, |C|) be an open interval where c(t) and c
(
t + |C|

2

)
are

differentiable and ṁ(t) �= 0 and ċ∗(t) �= 0 for every t ∈ (t1, t2). We follow the
proof of “2. ⇒ 1.” in the opposite direction. Equation (3) shows that ċ∗(t) ⊥ ṁ(t)
and the first condition of 1. gives c∗(t) ‖ ṁ(t). Combining both statements results
in ċ∗(t) ⊥ c∗(t) which by (2) yields that |c∗(t)| is constant.

The range [0, |C|/2) can be divided into countably many disjoint intervals
[ti, ti+1) where m and c∗ are differentiable on the open interval (ti, ti+1), and
one of the three conditions ṁ(t) = 0, ċ∗(t) = 0 or ṁ(t) �= 0 �= ċ∗(t) holds for
the whole interval (ti, ti+1). We have shown that |c∗| must be constant on all
these open intervals. Thus, due to c∗ being continuous on [0, |C|/2), |c∗| must
be globally constant. �
The theorem shows that curves of constant halving distance can consist of three
types of parts; parts where the halving chords lie tangentially to the midpoint
curve, circular arcs of radius h(C)/2, and parts where ċ∗(t) = 0 and the halving
pairs are only moved by the translation due to m, i.e., for every τ1 and τ2 within
such a part we have c(τ2)−c(τ1) = c(τ2 + |C|/2)−c(τ1 + |C|/2) = m(τ2)−m(τ1).
For convex cycles of constant halving distance, the translation parts cannot
occur:
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Lemma 2. Let C be a closed convex curve of constant halving distance. Then
there exists no non-empty interval (t1, t2) ⊂ [0, |C|) such that c∗ is constant on
(t1, t2).

Proof. Assume that c∗ is constant on (t1, t2) and choose s1, s2 with t1 < s1 <
s2 < t2 and s2 < s1 + |C|/2. If the four points p1 = C(s1), p2 = C(s2),
p3 = C(s2 + |C|/2), p4 = C(s1 + |C|/2) don’t lie on a line, they form a parallel-
ogram in which p1p4 and p2p3 are parallel sides. However, these points appear
on C in the cyclic order p1p2p4p3, which is different from their convex hull order
p1p2p3p4 (or its reverse), a contradiction. The case when the four points lie on
a line � can be dismissed easily (convexity of C implies that the whole curve
C would have to lie on �, but then C could not be a curve of constant halving
distance). �

CT

M

Fig. 3. CT consists of transla-
tion parts and circular arcs

60◦

CF

M r R

h(CF )
2

R

Fig. 4. The “Flower” from [5] is a non-convex
cycle of constant halving distance

Figures 3 and 4 show examples of non-convex cycles of constant halving
distance. The first one, CT , demonstrates that such closed curves can indeed
include translation parts. The second one, CF , was used in [5] to build a grid of
low dilation. It turned out that the non-convex parts were useful for this purpose
although the dilation of this “Flower” is2 δ(CF ) = 1.6787 . . ., which is somewhat
larger than the dilation of the Rounded Triangle.

Now we show that the midpoint curve of the Rounded Triangle C� is built
from six tractrix pieces. The tractrix is illustrated in Figure 5. A watch is placed
on a table, say at the origin (0, 0) and the end of its watchchain of length 1 is
pulled along the horizontal edge of the table starting at (0, 1), either to the left
or to the right. As the watch is towed in the direction of the chain, the chain is
always tangential to the path of the watch, the tractrix. There are several known

2 Of course, the dilation of the “Flower” depends on the values of r and R. The radii
chosen in [5] result in the cited dilation value.
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Fig. 5. The tractrix, the curve of a watch on a table town with its watchchain (the
curve is symmetric about the y-axis)

parameterizations. We will use one of them in the end of section 4.1 to calculate
the area of C�.

From the definition it is clear that the midpoint curve of the cycle C� consists
of such tractrix pieces, scaled by 1/2, because by definition and Theorem 1 its
halving chords are always tangential to the midpoint curve, always one of the
points of these pairs is moving on a straight line, and its distance to the midpoint
curve stays 1/2.

4 Relating Halving Distance to Other Geometric
Quantities

One of the most important topics in convex geometry is the relation between
different geometric quantities of convex bodies like area A and diameter D. Scott
and Awyong [10] give a short survey of basic inequalities in �2. For example, it
is known that 4A ≤ πD2, and equality is attained only by circles, the so-called
extremal set of this inequality.

In this context the minimum and maximum halving distance h and H give rise
to some new interesting questions, namely the relation to other basic quantities.
As the inequality h ≤ w is immediate from definition, the known upper bounds
on w hold for h as well. However, not all of them are tight for h. One counter-
example (A ≥ w2/

√
3 ≥ h2/

√
3) will be discussed in the following subsection.

4.1 Minimum Halving Distance and Area

Here, we consider the relation between the minimum halving distance h and the
area A (for convex cycles). Clearly, the area can get arbitrarily big while h stays
constant. For instance this is the case for a rectangle of smaller side length h
where the bigger side length tends to infinity.

How small the area A can get for a given minimum halving distance h? A
first answer A ≥ h2/

√
3 is easy to prove, because it is known [11–ex. 6.4, p.221]

that A ≥ w2/
√

3, and we combine this with w ≥ h. This bound is not tight since
the equilateral triangle is the only closed curve attaining A = w2/

√
3 and its
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3/2 ≈ 0.866 than the circle (π/4 ≈ 0.785)

C
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Fig. 7. By decreasing x
we can make the area of
this closed curve arbitrarily
small while h stays bounded
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Fig. 8. The midpoint curve of a rounded pentagon,
constructed analogously to C� of Figure 2, contains
regions with winding number 2 and regions with
winding number 1

width w =
√

3/2 ≈ 0.866 (for side length 1) is strictly bigger than its minimum
halving distance h = 3/4 = 0.75.

For the analogous problem considering chords bisecting the area instead of
chords halving the perimeter, Santaló conjectured3that A ≥ (π/4)h2

area (see [3–
A26, p.37]). Note that equality is attained by a circular disk. As pointed out
earlier, in the case of perimeter halving distance this inequality does not hold: the
equilateral triangle gives a counterexample, A/h2 =

√
3

4 / 9
16 ≈ 0.770 < 0.785 ≈

π
4 , see Figure 6. But we do not know if the equilateral triangle is the convex
cycle minimizing A/h2. On the other hand A/h2 can become arbitrarily small if
we drop the convexity condition, see Figure 7.

Not only the equilateral triangle attains a smaller ratio A/h2 than the circle,
so does every curve of constant halving distance.

Lemma 3. If C is a convex cycle of constant halving distance h, its area satis-
fies A = (π/4)h2−2A(M) where A(M) denotes the area bounded by the midpoint
curve M . In A(M), the area of any region encircled several times by M is counted

3 We would like to thank Salvador Segura Gomis for pointing this out.
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with the multiplicity of the corresponding winding number, see Figure 8 for an
example. In particular, A ≤ (π/4)h2.

The idea (proof omitted here) is: assuming h = 2, we consider parameterizations
c∗(α) = (cos α, sin α) and ṁ(α) = v(α)(cos α, sin α) which exist by Theorem 1
and Lemma 2. Then, we calculate A =

∫
xdy for both curves, C and M , and

take advantage of the periodicity of v.
The theorem shows that the circle is the cycle of constant halving distance

attaining maximum area. But which cycle of constant halving distance attains
minimum area? We conjecture that the answer is the Rounded Triangle C�.
Lemma 3 helps us to calculate its area A(C�). The tractrix-construction of the
midpoint curve M makes it possible to get a closed form for A(M). It results in

A(C�) = π
h2

4
− 2A(M) = (π − 2 · 0.01976 . . .)

h2

4
= 0.7755 . . . · h2.

4.2 Minimum Halving Distance and Width

In order to achieve a lower bound to h in terms of w, we examine the relation
of both quantities to the area A and the diameter D. The following inequality
was first proved by Kubota [8] in 1923 and is listed in [10].

Lemma 4 (Kubota [8]). If C is a convex curve, then A ≥ Dw/2.

We will combine this known inequality with the following new result.

Lemma 5. If C is a convex curve, then A ≤ hD.

Proof. Without loss of generality we assume that a halving chord pq of minimum
length h lies on the y-axis, p on top and q at the bottom (see Figure 9). Let
C− be the part of C with negative x-coordinate and let C+ := C \ C− be the
remainder. We have |C−| = |C+| = |C|/2 because pq is a halving chord.

h

y(x)

−x1 0 x1 x x2

�1

�2

p

q

a

b

L1

L2

C

1

z

h

w

α

x

(b)(a)

Fig. 9. (a) Proving by contradiction that y(x) ≤ h for every x in [x1, x2]. (b) In a thin
isosceles triangle h/w ↘ 1/2 if α → 0
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Let −x1 and x2 denote the minimum and maximum x-coordinate of C. Note
that x1 has a positive value. We assume that x2 > x1. Otherwise we could mirror
the situation at the y-axis. Let y(x) be the length of the vertical line segment
of x-coordinate x inside C, for every x ∈ [−x1, x2]. These definitions result in
x1 + x2 ≤ D and A =

∫ x2

−x1
y(x)dx. Furthermore, the convexity of C implies

∀x ∈ [0, x1] : y(−x) + y(x) ≤ 2h . (4)

As a next step, we want to show that

∀x ∈ [x1, x2] : y(x) ≤ h . (5)

We assume that y(x) > h. Let ab be the vertical segment of x-coordinate x inside
C, a on top and b at the bottom. Then, we consider the lines �1 through p and
a and �2 through q and b. Let L1 (L2) be the length of the piece of �1 (�2) in
the x-interval [0, x1]. By construction the corresponding lengths in the x-interval
[−x1, 0] are equal. Then, by the convexity of C, we have |C−| ≤ L1 + L2 + h <
L1 + L2 + y(x) ≤ |C+|. This contradicts to pq being a halving chord, and the
proof of (5) is completed.

Now we can plug everything together and get

A =

x2∫
−x1

y(x)dx =

x1∫
0

y(−x) + y(x)dx +

x2∫
x1

y(x)dx

(4),(5)

≤ x1 · 2h + (x2 − x1)h = (x1 + x2)h ≤ Dh . �
Finally, we obtain the desired inequality relating h and w.

Lemma 6. If C is a convex curve, then h ≥ w/2. This bound cannot be im-
proved.

Proof. The inequality follows directly from Lemma 4 and Lemma 5. To see
that the bound is tight, consider a thin isosceles triangle like that depicted in
Figure 9(b) and let α tend to 0. �

5 Dilation Bounds

5.1 Upper Bound on Geometric Dilation

Our Lemma 6 leads to a new upper bound depending only on the ratio D/w.
This complements the lower bound

δ(C) ≥ arcsin
( w

D

)
+

√(
D

w

)2

− 1 (6)

of Ebbers-Baumann et al.[6–Theorem 22]. The new upper bound is stated in the
following theorem.
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Theorem 2. If C is a convex curve, then

δ(C) ≤ 2

⎛
⎝D

w
arcsin

( w

D

)
+

√(
D

w

)2

− 1

⎞
⎠ .

Proof. Kubota [8] (see also [10]) showed that

|C| ≤ 2D arcsin
( w

D

)
+ 2

√
D2 − w2 . (7)

Combining this with Lemma 6 and Lemma 1 yields

δ(C) Lem.1=
|C|
2h

Lem.6≤ |C|
w

(7)

≤ 2

⎛
⎝D

w
arcsin

( w

D

)
+

√(
D

w

)2

− 1

⎞
⎠ . �

5.2 Lower Bounds on the Geometric Dilation of Polygons

In this subsection we apply the lower bound (6) of Ebbers-Baumann et al.[6] to
deduce lower bounds on the dilation of polygons with n sides (in special cases we
proceed directly). We start with the case of a triangle (and skip the easy proof):

Lemma 7. For any triangle C, δ(C) ≥ 2. This bound cannot be improved.

Note that plugging the well-known inequality D/w ≥ 2/
√

3 into (6) would
only give δ(C) ≥ π/3 + 1/

√
3 ≈ 1.624. We continue with the case of centrally

symmetric convex polygons, for which we obtain a tight bound.

Theorem 3. If C is a centrally symmetric convex n-gon (n even), then

δ(C) ≥ n

2
tan

π

n
.

This bound cannot be improved.

Proof. We adapt the proof of Theorem 22 in [6], which proves inequality (6) for
closed curves. Since C is centrally symmetric, it must contain a circle of radius
r = h/2. It can easily be shown (using the convexity of the tangent function)
that the shortest n-gon containing such a circle is a regular n-gon. Its length
equals 2rn tan π/n which further implies that

δ(C) Lemma 1=
|C|
2h

≥ 2rn tan π
n

2r
=

n

2
tan

π

n
. (8)

The bound is tight for a regular n-gon. �
In the last part of this section we address the case of arbitrary (not necessarily

convex) polygons. Let C be a polygon with n vertices, and let C ′ = conv(C).
Clearly C ′ has at most n vertices. By Lemma 9 in [6], δ(C) ≥ δ(C ′). Further on,
consider C ′′ = C′+(−C′)

2 , the convex curve obtained by central symmetrization
from C ′ (see [11, 6]). It is easy to check that C ′′ is a convex polygon, whose
number of vertices is at most twice that of C ′, therefore at most 2n. One can
now replace n by 2n in (8) to obtain a lower bound on the geometric dilation
for any polygon with n sides.
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Corollary 1. The geometric dilation of any polygon C with n sides satisfies

δ(C) ≥ n tan
π

2n
.
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