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Abstract. Consider a directed rooted tree T' = (V, E) representing a
collection V' of n web pages connected via a set E of links all reachable
from a source home page, represented by the root of T'. Each web page i
carries a weight w; representative of the frequency with which it is visited.
By adding hotlinks, shortcuts from a node to one of its descendents, we
are interested in minimizing the expected number of steps needed to visit
pages from the home page. We give the first linear time algorithm for
assigning hotlinks so that the number of steps to accede to a page i from
the root of the tree reaches the entropy bound, i.e. is at most O(log wml)
where W = 7. . w;. The best previously known algorithm for this
task runs in time O(n?). We also give the first efficient data structure
for maintaining hotlinks when nodes are added, deleted or their weights
modified, in amortized time O(log wﬂ) per update. The data structure
can be made adaptative, i.e. reaches the entropy bound in the amortized
sense without knowing the weights w; in advance.

1 Introduction

Since the discovery of the Internet by the general public, the growth of the World
Wide Web reached an incredible speed and the quantity of information available
for all became extraordinary large. By this fact, many inherent problems for con-
sulting of this mass of data appeared, and methods were developed to facilitate
and accelerate the search on the web, such as promoting and demoting pages,
highlighting links, and clustering related pages in an adaptive fashion depending
on user access patterns [I5,6]. In this article we consider the strategy of adding
hotlinks, i.e. shortcuts from web pages to popular pages accessible from them.

A web site can be modeled as a directed graph G = (V, E') where the nodes
V' correspond to the web pages and the edges E represent the links. Each node
carries a weight representative of its access frequency. We assume that all web
pages are reached starting from the homepage r. Our goal in adding hotlinks
(directed edges from a node to one accessible from it) is to minimize the expected
number steps to reach a page from the homepage 7.

The idea of hotlinks was suggested by Perkowitz and Etzioni [15] and studied
later by Bose et al. [2] who proved that finding the optimal hotlink assignment
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for a DAG is NP-hard, and analyzed several heuristics for assigning hotlinks.
More recently, a 2-approximation algorithm for the archivable gain running in a
polynomial time was presented by Matichin and Peleg [13].

The problem might become easier when the graph considered is a rooted tree.
Kranakis, Krizanc and Shende [12] give a quadratic time algorithm for assigning
one hotlink per node so that the expected number of steps to search a node
from the root of the tree attain the entropy bound. Several results on adding
hotlinks to nodes of d-regular complete trees are also reported by Fuhrmann
et al. [8]. Recently, Gerstel et al.[I0], and A.A. Pessoa et al. [16] independently
discovered a polynomial time dynamic programming algorithm for finding the
optimal placement of hotlinks on a tree whose depth is logarithmic in the number
of nodes. Experimental results showing the validity of the hotlinks approach are
given in [5], and a software tool to structure websites efficiently by automatic
assignment of hotlinks has been developed [I1].

The concept of hotlinks can be applied to other problems than that of web
structuring. For instance, Bose et al.[3] use hotlink assignments to design efficient
asymmetric communication protocols. Hotlinks can also be used to design data
structures as was demonstrated by Bronnimann, Cazals and Durand [4] with their
Jumplist dynamic dictionary data structure. The jumplist structure can be seen
as randomized hotlink assignment on a list, and is meant as a simplification of
the skiplist structure [I7]. A detreministic version of the randomized jumplist of
Brnnimann was developed by Elmasry [7].

In this article, we consider rooted directed trees T° with n nodes and maxi-
mum degree d. Every node ¢ in T is associated with a weight w; representative
of its access frequency, and W = 3. w;. Following the greedy user model as-
sumption, we assume that the user always takes the hotlink from a node that
leads him to a closer point on the path to the desired destination. Due to that,
we consider that the assignment of one hotlink which points to a node ¢ can be
see as the deletion of any other hyperlink that ends in i. Let T4 be the tree
resulting from an assignment A of hotlinks. A measure of the average access
time to the nodes is E[T4,p] = Y7, da(i)pi, where d4(i) is the distance of the
node ¢ from the root, and p =< p; = w;/W : i = 1,...,n > is the probability
distribution on the nodes of the original tree T. We are interested in finding an
assignment A which minimizes E[T*,p].

A lower bound on the average access time E[T*,p] was given in [2] using
information theory [I4]. Let H(p) be the entropy of the probability distribution
p, defined by H(p) = > ., pilog(1/p;), then for any assignment of at most 6
hotlinks per node the expected number of steps to reach a node from the root

of the tree is at least bHA. This bound is achieved up to a constant factor if
g(d+6)

da(i) = O(log(W/w;)). We show:

Theorem 1. Given an arbitrary weighted rooted tree with n nodes and of total
weight W. There is an algorithm that runs in O(n) time, which assigns one
hotlink per node in such a way that the expected number of steps to reach a node
i of weight w; in the tree from the root is O(log ww)
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This algorithm constitutes a considerable improvement over the previous O(n?)
time algorithm [I2]. Furthermore, we present an efficient data structure for dy-
namically maintaining hotlinks on a tree:

Theorem 2. There exists a data structure for maintaining hotlinks in a weighted
tree T, allowing the insertion and deletion of leaves of weight 1 in T, and the
incrementation or decrementation of the weight of any node of T. All updates
on a node i of weight w; run in amortized time O(log wﬂl), and the shortest path

to any node i of weight w; is O(log wﬂl) worst case, where W =", w;.

In particular, if the weight of a node is incremented every time that node
is accessed, the running time of any sequence of accesses will be bounded by
the entropy bound (amortized) without knowing the probability distribution in
advance. The proof of the two preceding theorem will be given later in this paper.
A weighted and amortized version of the Jumplist data structure is presented
in the next section, it is developed for the application of hotlinks assignment to
arbitrary trees. In section [l we give a linear time algorithm to assign hotlinks to
trees so that the number of steps to accede to a page from the root of the tree
reaches the entropy bound. In Section @] the dynamic hotlink assignment data
structure is described.

2  Jumplists

The data structure named Jumplist [4] is a linked list whose nodes are endowed
with an additional pointer, the jump pointer. Algorithms on the jumplist are
based on the jump-and-walk strategy: whenever possible use the jump pointer
to speed up the search, and walk along the list otherwise. This data structure
provides the usual dictionary operations, i.e. SEARCH, INSERT and DELETE.

To each element z of a jumplist is associated a key[x], a next[z] pointer like
an ordinary list structure and also an additional jump[z] pointer which points
to a successor of x in the list. Note that the jumplists we discuss here only allow
insertions/deletions at the end of the list. This restriction greatly simplifies the
presentation of the algorithm and is sufficient for its application to the hotlinks
problem for trees.

The original version of the jumplists developed by Brnnimann et al. did not
consider the access frequencies of the elements of a jumplist. In this paper we
develop an enhanced jumplist structure by associating a weight w, with each
element x, proportional to its access frequency, and where the access times reach
the entropy bound. In such a situation we would like that the more frequently
needed elements be accessed faster than the less frequently needed ones. A mea-
sure of the average access time for a jumplist C' is
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Fig.1. Weight distribution of a weighted jumplist

where W = 3w, is the sum of the weights of the elements in the sublists
of C' and d, is the depth in the jumplist of the element z, i.e. the minimum
number of pointers needed to reach element x. We are interested in finding an
assignment of the jump pointers for C' which minimizes the average access time.

We use the notation C' = (v, N, J) for the (sub)list C' with first element v
followed by the next sublist N, and the jump sublist J. We write |C| for the
number of elements in C, and W(C) for the sum of the weights of the elements
contained in C, i.e. W(C) = w, + W(N) + W(J). Also, W/(C) = W(C) — w,.
See figure [Tl

2.1  Jump Pointer Assignment

Lemma 1. Given an arbitrary weighted jumplist containing n elements
of weights wi,...,w,, and W = Y1 w;. There is an algorithm which in
O(n) time assigns the jump pointers for the jumplist in such a way that d; <
|log, wﬂj +1 fori=1,...,n.

Proof. Constructing a jumplist from a list with weighted elements consists in
choosing the jump pointer of the header, and recursively building the next and
jump sublists. In order to reach the entropy bound, the jump pointer of the
header will point to an element splitting the list into two sublists of roughly
equal weight. In other words, the sum of the weights of the elements belonging
to the next sublist and that of the jump sublist must be at most equal to half
of the total weight of the sublists. Thus for the jumplist C = (v, N, J), the
condition of the weighted jumplists will be:

k—1 n
W(N) =) w; <W/2 and  W/(J)= ) w <W/2 (1)
=2 i=k+1

The problem is to efficiently determine a good element k that satisfies the
condition. For this, we first build a table from the jumplist, in time O(n). The
i" entry of the table will correspond to the i*" element in the jumplist and will
contain the value s; = Z;’:l wj. Thus, the table is sorted in increasing order
and has distinct elements.

Once the table built, we can use exponential search to find the k" element

satisfying the condition (). After this element is found, it will be necessary to
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reiterate the process recursively on both sublists. Note that it is not necessary
to rebuild tables for that, it is sufficient to use segments of the table built during
the first stage.

To improve the speed of the search in the table for the element satisfy-
ing the condition (l), we carry out a double exponential search in parallel
from both sides of the table, in time O(log(min {k,n —k + 1})), where k is
the position of the sought element. We can consequently express the complex-
ity of this algorithm, after construction of the table, by the recurrence ¢(n) =
O(log(min{i,n —i+1})) +t(i — 1) +t(n — i) = O(n). O

2.2 Dynamic Weighted Jumplists

One way to dynamize the weighted jumplist is to use the concept of tolerance. It
is a method which consists in requiring that any jumplist C' = (v, N, J) satisfies
the following relaxed version of condition ({I):

WN)<W/(C)1+7)/2 and  W'(J)<W(C)A+7)/2  (2)

where 0 < 7 < 1 is a constant tolerance factor. The condition of the tolerant
weighted jumplists, eq.([2l) described above will be checked recursively by the
sublists N and J.

The methods used here are similar to the ones used by Elmasry [7], except
for the fact that our structure doesn’t need extra informations to maintain the
jumplist (such as the number of elements in the next and the jump sublist of
each element in the jumplist) and the elements are weighted. The only extra
values the dynamic data structure needs to remember are W, the total weight
of the entire jumplist, and max_W, the maximal value of W since the last time
the jumplist was completely rebuilt.

Searching. The basic search algorithms on jumplist are based on the jump-and-
walk strategy: Whenever possible use the jump pointer to speed up the search,
and walk along the list otherwise (if the jumplist is ordered, it will be trivial to
determine if the jump pointer improve or not the speed of the search. Else, in the
case where all the elements are arbitrary ordered, we make the assumption that
the user knows implicitly which pointer is good to use). For a tolerant weighted
jumplist that observes the condition eq.(2]), we can determine an upper bound
to the number of steps to reach an element from the header of the jumplist.

Theorem 3. Consider an arbitrary tolerant weighted jumplist C of tolerance
factor T whose total sum of the weights of the elements is W, the number of
steps to reach an element i from the header of the jumplist is at most

[log(W/w;)/log(2/(1 +7))] + 1.

Proof. We know that the jumplist C' and all its sublists observe the condition
of the tolerant weighted jumplist. Let us define Cy = (vg, Ni, Ji) as the sublist
considered after the k" step of the search for element i. That is, Cy = C, and
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if at step k£ the element ¢ is in the next sublist then Cy = Ng_1, otherwise
Cx = Jr—1. The value of W/(C}) can be bounded as a function of W'(Ck_1)
using equation (2):

1+7
2

W/(Ne_1) < W(Ne_1) < W(Cr1) o and W (Jx_1) < W (Cro_1)

W' (Cy) < max{W'(Jx—1), W (Ni_1)} < W'(Cr—1)(1 +71)/2.

The resolution of the recurrence gives W/(Cj) < W (HTT)k Step k of the algo-

rithm will not be performed unless, w; < W/ (Cr—1) < W (H'TT)kfl. This implies
that the number of steps k is bounded by k < log(W/w;)/log(2/(14+7))+1. O

Thus, the maximum depth an element x can have in a tolerant weighted
jumplist of weight W and tolerance factor 7 is

d. (2, W) = [log(W/w,)/log(2/ (1 + 7)) + 1.

An element z for which the depth exceeds the value d.(z, W) will be called a
deep element. The presence of a deep element clearly implies that the jumplist
does not satisfy the condition eq.(l).

Insertion We here describe how to insert an element of weight 1 at the end of
the list. The insertion operation first uses the jump-and-walk algorithm to find
the position of the last element in the jumplist. In the following, we will consider
the search sequence (C' = Cy, C4, ..., Cy), with C; = (z;, N;, J;) and Cj11 = J;
reaching the last element xj of the jumplist in k steps (and so Ny and Jj are
empty). During an insertion of a new element z, the element is placed in Ny,
we increment W, and update max_W to the maximum of W and max_W. If
the newly inserted element is deep, i.e. k + 1 > d.(z, W), then one of the lists
C; containing it does not satisfy eq.([2)). We reassign the jump pointers of the
jumplist as follows. We climb the jumplist, examining xy, zx_1,...until we find
an element x; whose sublist C; does not satisfy the condition ([2]). Since x, is
at the end of the jumplist, W(Ny) = 1, and W(Cy) = ws, + 1. We compute
W(C}) using the formula W(C;) = ws; + W(N;) + W(Cj11), where W(N;) is
computed in time O(|N;|) by walking the list from element x; to ;1. Thus the
total cost for finding z; is O(|C;|).

We call x; the scapegoat element in reference to the lazy rebalancing schemes
for binary search trees developped independently by Andersson and Lai [I], and
by Galperin and Rivest [9]. Once the scapegoat element x; is found, we have
to verify that the reconstruction of its sublist C; will not create deep nodes. If
i <log(W/W(C;))/log(2/(1+ 7)), then the reconstruction of the jump pointers
in C; will not introduce new deep nodes since the number of links to follow
from z; to any element y will be at most log(W(C;)/wy)/log(2/(1 + 7)) in
the reconstructed structure. The jump pointers of the sublist C; can then be
reassigned in time O(|C;|) using Lemma [Il Otherwise, we continue the search
for another scapegoat node x; with ¢/ < i.
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Let us now consider a sequence of insert operations in a tolerant weighted
jumplist whose total weight is W, we wish to show that the amortized com-
plexity per insert is O(log(W/w;)). We begin by defining a nonnegative po-
tential function for the jumplist. Consider the sublist C' = (v, N, J), and let
D(v) = max(0, W(N) — W(C)/2,W(J) — W(C)/2) be the potential of the el-
ement v. We see that an element whose sublists are perfectly balanced have a
potential of 0, and an element that does not satisfy the condition eq.(2]) have a
potential of 2(W(C)). The potential of the jumplist is the sum of the potentials
of its elements.

It is easy to see that by increasing their cost by only a constant factor, the
insertion operations pay for the increase in potential of the elements. That is,
whenever we pass by an element z to insert a new element as a descendant of z,
we can pay for the increased potential in x that may be required by the resulting
increase in @(x).

The potential of the scapegoat element x;, like all the elements that do not
observe the condition eq.(@), is 2(W(C;)). Therefore, this potential is sufficient
to pay for finding the scapegoat element and reassigning the jump pointers of
the sublist of which it is the header. These two operations have complexity

O(ICi]) = O(W(Ci))-

Deletion. The deletion operation consists of removing the last element of the
jumplist, the weight of this element must be equal to 1. We will again use the
Jump-and-walk algorithm to reach this last element. Once the element removed,
we update W. Then, if W < max_W (147)/2, we reassign all the jump pointers of
the entire jumplist[C], and we reset max_-W to W. If we restate the analysis above
ignoring the deletions, the search time is at most d.(x, maz W) < d.(x, W)+ 1.

Since we perform (2(n) operations between two successive rebuilds due to
delete operations we can pay for them in the amortized sense (with n equal to
the number of elements in the jumplist). Thus for a sequence of delete operations,
the amortized complexity per deletion of the last element i of a tolerant weighted
jumplist is equal to O(log(W/w;)).

Reweighting. The reweighting operation allows to increment or decrement the
weight of an element by one unit. To find the element to be modified, we again use
the jump-and-walk algorithm. Then, for incrementing, we use the same technique
as during an insertion: We modify the weight of the element, we check that it does
not become deep. If it does, we seek the scapegoat element and we reassign the
jump pointers of its sublists. For decrementing, we act as during a deletion: We
modify the weight of the element, we update W. Then, if W < max W (1+7)/2,
we reassign all the jump pointers of the jumplist, and we reset maz_W to W.
The reweight operation is based on the operation of insertion and deletion.
We have by this fact same complexities as those, i.e. an amortized complexity per
reweight of an element i of a tolerant weighted jumplist equal to O(log(W/w;)).
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3 Hotlinks

The hotlink assignment algorithm for a tree T" will proceed by first decomposing
the tree into heavy paths (see fig. ), and then finding hotlink (jump pointers)
assignments on the paths viewed as weighted linked lists. In the following, we
write T, for the subtree of T rooted at x, W (T,) the sum of the weights of all
elements in T, and W'(T,,) = W(Ty) — wy.

> Pointers to the supperior level of heavy paths W(Tuy)
Level 0

—— Heavy paths b Iy

v
uy [

Level 2 W(Tw,) lf) o

Level 1 W(Ty,)

v

W(T, o oo
( U *\> e V-1
Level k W(Tuy) U'Z —

Level k — 1

Fig.2. Example of decomposition of a Fig.3. Example of search into heavy
tree into heavy paths paths of a tree

3.1 Decomposition into Heavy Paths

Following the classical heavy path decomposition scheme [I8], we connect each
node to its heaviest child, i.e., we pick next[z] among the children of x if

W (Thewtz) = W(T,) Vy child of z. (3)

In particular, this implies W(T,) < W'(T,)/2 Vy # next[z] child of z. The
chosen edges (x, next[x]) naturally decompose the tree into paths. This method
of determination of lists is realized in time O(n) with n the number of elements
in the tree T, because that decomposition can be done in a single bottom-up
tranversal, at the same time as computing the weight of all subtrees.

3.2 Hotlink Assignment

Once the tree is decomposed into heavy paths, we must just apply Lemma [I]
to assign the hotlinks (jump pointers) to the paths viewed as jumplists. The
weight z, of an element z in a heavy path will be equal to the weight w, of the
node associated to it plus the sum of the nodes contained in all the subtrees
indicated by the children of x except next[z] i.e. z, = W(Ty) — W(Tpept[a))-
The weighted jumplist assignment algorithm is applied on each list using the
weights z,,. This method is linear in the number of elements present in each list,
so the sum of the assignment complexity for all heavy paths in the tree is O(n).
Theorem ] in the next section shows that this hotlink assignment achieves the
entropy bound.
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4 Dynamic Hotlinks

In this section we present a data structure for maintaining hotlinks in a weighted
tree when leaves are added or deleted and weights modified. Like in the previous
section, the tree will be decomposed into paths, and each path will be managed
like a jumplist. These jumplists will be managed dynamically using the structure
described in section 2l The dynamic determination of the paths in the tree will
require some extra work. Indeed, a sequence of update operations can lead the
tree to stop satisfying condition ([B]). Similarily as for the tolerant jumplists, we
will use a relaxed version of condition (3):

W(T,) < W'(T:)(1+7)/2 Vy # next[x] child of z, (4)
where 0 < 7 < 1 is the tolerance factor.

Lemma 2. The tolerant method of decomposition of the tree T into heavy paths
guarantee that maximum number of paths visited during a search for node x is
at most |log(W/w;)/log(2/(1+7))] .

Proof. To determine the maximum number of levels of paths in the decompo-
sition of a tolerant hotlink tree, we must count the maximum number of times
k that we can pass from a list to another. Let C; be the 3" list visited during
a search. Every time we follow a link from a node = from one list C; to the
head y of another list C;11, i.e. y is a child of & but y # next[z], we know from
condition @) that W (Cit1) = W(Ty) < W/(Tp)(1+7)/2 < W(C;)(1 +1)/2.
The recurrence solves to: W(Cy) < W (HTT)k and w, < W(Cy). O

Searching. An implicit assumption underlying the common hierarchical ap-
proach is that at any node along the search in the tree, the user is able to select
the correct link leading towards the desired node. When hotlinks are added,
there will exist multiple alternative paths for certain destinations. Again, an un-
derlying assumption at the basis of hotlink idea is that faced with a hotlink in
the current node, the user will be able to tell whether or not this hotlink may
lead it to a closer point on the path to the desired destination. This has been
referred to as the greedy user model. Otherwise, we can remark that with the
clairvoyant user model, we make the assumption that the user somehow knows
the topology of the enhanced structure. So, he will always choose the shortest
path to reach the desired destination. But, with the method used in this paper,
the two models will lead to the same choice of links because no two hotlinks will
ever cross. We can now bound the maximum number of steps during a search
operation:

Theorem 4. Consider an arbitrary weighted rooted tree T with W the sum of
weights of all its nodes. If one hotlink per node is assigned using a tolerant path
decomposition and tolerant jumplists with tolerance 0 < 7 < 1, then there is
a constant a; so that the number of steps to reach an element x is at most
d (x,W) < a;log(W/w,).
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Proof. The search of an node in a tree, can be seen as a succession of search
operations in multiple heavy paths composing the tree. The complexity of a
search operation in the heavy paths is given by theorem [Bl Consider a search
entering the 7*" path at node u;, and leaving it at node v; to enter the (i + 1)*?
path at node u;y1, with ug being the root of T' and vy = « is the element we
are looking for. See Fig[3l Then number of links followed on the i*" path is at
most [Log(W(T\,,)/2,)/ 10g(2/(1 +7))] + 1 and 2,, = W(Ts,) = W (Tpepipn) >

W(Ty,,,)- So the total number of links followed along heavy paths and hotlinks
is at most:
W(Ty, W (T, wW(T.,
tgk—l—[logg-l—log%—l—---—l—log ( k)}/log(2/(1+7'))
V1 V2 Vi
<k + [log + log 2=+ .-+ log 221/ log(2/(1+ 7))
W(Tu,) W(Tu,) Wy

=k +log(W/w,)/log(2/(1+ 7)).

We must still add to that the number of links between the lists, which is also
bounded by k=|log(W/w,)/log(2/(1+ 7))] (see lemma B)). Thus &, (z, W) <
2k + log(W/wy)/log(2/(1 + 7)) = a;log(W/wy). where a, = 3/log(2/(1 +
T)). O

To allow update operations, we must store in each node x of the tree an integer
between 1 and the outdegree of the node to identify next[z]. We furthermore
maintain the global value W which is the sum of the weight of the nodes present
in the all tree and maxz_W which is the maximal value of W since the last time
that the hotlinks structure was completely rebuilt.

Inserting. We give in this section an algorithm to insert a leaf z of weight
w, = 1. The shortest path xg, ...,z from the root to the leaf to be inserted
is a succession of k hotlinks, heavy tree links, and non-heavy tree links. After
finding the shortest path to the parent of the leaf to be inserted, we create the
leaf and we check if it is deep, that is, if & > d’_(z, W). If it is, then there must be
some node on the path that does not satisfy one of the equations (2) or {#). We
then walk up the path verifying those conditions. When walking up from node
x;y1 to node x; with ;411 = next[z;] (heavy tree link) or when z; 11 = jumplz;)
(hotlink) we verify eq.(2]), and otherwise (non heavy tree link) we verify eq.(H).
To verify condition (), we must first find the end of the sublist starting at x;.
Let j be the largest integer < ¢ such that ;41 # jump(z;]. If ;41 = next[z;],
then the sublist starting at z; can be constructed by following the next pointers
from z; until the element jumplx;] is found (see figure M). Otherwise, x;41 is
the head of the heavy path containing z;, and the sublist starting at x; can
be constructed by following the next pointers until a leaf is reached. Once the
path constructed, the weights of the sublists can be computed by exploring
exhaustively the subtrees of their elements. To verify condition [@l), we explore
the subtrees of the children of ;. Once the scapegoat (node not satisfying one of
the conditions) z; is found, we can consider reconstructing a sublist containing
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77N Hotlinks
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= Non-heavy tree links
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Fig. 4. How to find the end of a sublist Fig. 5. Determination of the subtree to
reconstruct

it. The sublist to reconstruct is the sublist starting at x; in the first two cases
(jumplist violations). We still have to verify that for all next pointers in that
sublist, eq.( ) is satisfied. If it is the case, only the jump pointers in that sublist
will have to be reassigned. Otherwise, we are in the last case.

For the last case, eq.( ), we will have to reconstruct an entire subtree. Let j
be the largest integer < i such that (z;,x;+1) is a non-heavy tree link, and let
Jj' be the smallest integer j < j' < i such that ;1 = next[z; ] if it exists, and
otherwise j = i. That is,  is the first element in the heavy path of z; for which
the next pointer is used, if it exists (See the figure Bl). The subtree to reconstruct
in this case is the subtree starting at x;,. This is to ensure that no jump pointer
will point to elements no longer in the same heavy path after the reconstruction.
It is easy to see that in this case the weight of the subtree to reconstruct is no
more than roughly twice the weight under the scapegoat element. Indeed, we
know that the element jump[z;/] is a descendant of the node z;, thus the jump
sublist of z;» has a smaller weight than the weight under the scapegoat element.
As the weighted jumplists guarantee a balance between the weight of the jump
and the next sublists, we can conclude that the weight of the jumplist defined
by z; (equal to W(T; ,)) is no more than roughly 2W(73,).

Let C; be the jump sublist or subtree starting at z; we want to reconstruct.
Before reconstructing it, we have to verify that its reconstruction will not leave
deep nodes in its subtree. If i < a, log(W/W(C;)), then we know the reconstruc-
tion of the sublist will guarantee that no nodes be deep after the reconstruction,
since the length of a search for z in the reconstructed sublist/subtree will be at
most a, log(W(C;)/w,). Otherwise, we know there is another scapegoat element
higher along the path to the root and we can afford to continue looking for it.

Let us now consider a sequence of insert operations beginning with a tree
whose total weight is W, we wish to show that the amortized complexity per
insert is O(log W). We begin by defining a nonnegative potential function for the
hotlinks tree T'. Let @(x) = @1 + @2 be the potential of the element z. Where ¢
is the potential function relative to the reassignation of hotlinks in heavy paths
(see section 22)) and 9 is the potential function relative to the reassignation of
hotlinks in subtree. Thus let y1,...,y; be the children of x and let its potential
be equal to @2 (z) = max(0, max W (Ty,)—W'(Ty)/2). Thus a node that indicates

the heaviest tree as its next element has a potential of 0, and a node that does
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not satisfy the condition eq.(@)) has a potential of 2(W’'(T,)). The potential of
the tree is the sum of the potential of its nodes.

It is easy to see that by increasing their cost by only a constant factor,
the insertion operations pay for the increase in potential of the nodes. That is,
whenever we pass by an element x to insert a new node as a descendant of =, we
can pay for the increased potential in x that may be required by the resulting
increase in @(z). The potential of the scapegoat node z;, like all the nodes that
do not observe the condition eq. ), is @(W'(T,,)). Therefore, this potential is
sufficient to pay for finding the scapegoat element and reassigning the hotlinks
of the sublist or subtree that has to be reconstructed. These operations have
complexity O(size(x;)) < O(W(x;)) (where size is the number of elements in a
sublist or a subtree).

Deletion. The deletion operation consists of removing a leaf node x of the tree
of weight 1. We first search the node x in the tree then we removed it, and we
update W[C]. Then, if W < maxz_W/2, we reassign all the hotlinks of the tree,
and we reset max_W to W. This method does not affect the search time t by
much: a, log(max W/w,) < ar(log(W/wy) + 1).

Since we perform {2(n) operations between two successive rebuilds due to
delete operations we can pay for them in the amortized sense (with n equal to
the number of elements in the tree). Thus for a sequence of delete operations, the
amortized complexity per deletion of a leaf node ¢ with the dynamic assignment
method is equal to O(log(W/w;,)).

Reweighting. This operation is exactly the same as the insertion and the dele-
tion except that we do not actually insert or delete a node. See section
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