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Abstract. We present a space-efficient algorithm for reporting all k in-
tersections induced by a set of n line segments in the place. Our algorithm
is an in-place variant of Balaban’s algorithm and runs in O(n log2

2 n+ k)
time using O(1) extra words of memory over and above the space used
for the input to the algorithm.

1 Introduction

Researchers have studied space-efficient algorithms since the early 70’s. Exam-
ples include merging, (multiset) sorting, and partitioning problems; see [8, 9, 11].
Brönnimann et al. [5] were the first to consider space-efficient geometric algo-
rithms and showed how to compute the convex hull of a planar set of n points in
O(n log2 h) time using O(1) extra space, where h denotes the size of the output.
Recently, Brönnimann et al. [4] developed some space-efficient data structures
and used them to solve a number of geometric problems such as convex hull,
Delaunay triangulation and nearest neighbor queries. Bose et al. [3] developed
a general framework for geometric divide-and-conquer algorithmus and derived
space-efficient algorithms for the nearest neighbor, bichromatic nearest neighbor,
and orthogonal line segment intersection problems, and Chen and Chan [7] pre-
sented an algorithm for the general line segment intersection problem: to report
all k intersections induced by a set of n line segments in the plane.

The Model. The goal is to design algorithms that use very little extra space over
and above the space used for the input to the algorithm. The input is assumed
to be stored in an array A of size n, thereby allowing random access. We assume
that a constant size memory can hold a constant number of words. Each word
can hold one pointer, or an O(log2 n) bit integer, and a constant number of words
can hold one element of the input array. The extra memory used by an algorithm
is measured in terms of the number of extra words. In certain cases, the output
may be much larger than the size of the input. For example, given a set of n line
segments, the number k of intersections may be as large as Ω(n2). We consider
the output memory to be write-only space that is usable for output but cannot
be used as extra storage space by the algorithm. This model has been used
by Chen and Chan [7] for variable size output, space-efficient algorithms and
accurately models algorithms that have output streams with write-only buffer
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space. In the space-efficient model, an algorithm is said to work in-place iff it
uses O(1) extra words of memory.

Related Work. There is a large number of algorithms for the line segment in-
tersection problem that are not in-place, and we refer the reader to the recent
survey by Mount [12]. In the space-efficient model of computation, Bose et al. [3]
have presented an optimal in-place algorithm for the restricted setting when the
input consists of only horizontal and vertical segments. Their algorithm runs in
O(n log2 n + k) time and uses O(1) words of extra memory. Chen and Chan [7]
modified the well-known algorithm of Bentley and Ottmann [2] and obtained a
space-efficient algorithm that runs in O((n + k) log2

2 n) time and uses O(log2
2 n)

extra words of memory.1 We will improve these bounds to O(n log2
2 n + k) time

and O(1) extra space thus making the algorithm in-place and establishing an
optimal linear dependency on the number k of intersections reported.

2 The Algorithm

Our algorithm is an in-place version of the optimal O(n log2 n + k) algorithm
proposed by Balaban [1]. Balaban obtained this complexity by first developing
an intermediate algorithm with running time O(n log2

2 n + k) and then applying
the well-known concept of fractional cascading [6]. As fractional cascading relies
on explicitly maintained copies of certain elements, this concept can only applied
with O(n) extra space which is prohibitive for an in-place algorithm. Thus, we
build upon the (suboptimal) intermediate algorithm.

2.1 Divide-and-Conquer and the Recursion Tree

Balaban’s intermediate algorithm is a clever combination of plane-sweeping and
divide-and-conquer; the plane is subdivided into two vertical strips each con-
taining the same number of segment endpoints, and each strip is (recursively)
processed from left to right—see Figure 1. While doing so, the algorithm main-
tains the following invariants:

Invariant 1: Prior to processing a strip, all segments crossing the left strip
boundary are vertically ordered at the x-coordinate of the left strip bound-
ary.

Invariant 2: During the sweep over a strip, all intersections inside the strip are
reported.

Invariant 3: After having processed a strip, the segments crossing the right
strip boundary are rearranged such that they are vertically ordered at the
x-coordinate of the right strip boundary.

The base of recursion is the case when a set L of line segments spans a
vertical strip 〈b, e〉 := [b, e]×IR that does not contain any endpoint of a segment.

1 If the model is changed such that the input can be destroyed, the bounds can be
improved to O((n + k) log2 n) time and O(1) extra space.
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Invariant 1 implies that this set of segments is sorted according to <b, the vertical
order at x-coordinate b.

Balaban explains his algorithm based upon the
intuition that the recursive calls of a divide-and-
conquer algorithm can be modelled as a recursion
tree where each node is assigned the subproblem
to be solved in the corresponding recursive call.
The recursion starts at the root node of the re-
cursion tree T , and hence the algorithm can been
said to process the nodes (and hence the strips)
along an Euler tour of T . A closer look at the al-
gorithm will reveal that, during the execution of
the algorithm, some of the intersections detected
while processing a strip corresponding to a node
v ∈ T are found while v is being visited for the
first time whereas some of these intersections are
found while v is being visited for the last time.
This in turn implies that the algorithm follows
a divide-and-conquer strategy similar to the one
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Fig. 1. Processing the recur-
sion tree. Numbers indicate
the order in which the strips
are finished

described in Algorithm 1:

Algorithm 1. Recursive(A, b, e): Recursive divide-and-conquer [3]
1: if e − b ≤ s where s is the size of the recursion base. then
2: Base-Code(A, b, e) {Code for solving small instances}
3: else
4: Pre-Code(A, b, e) {Setup Subproblem 1 in A[b, . . . , �e/2� − 1]}
5: Recursive(A, b, �e/2�) {First recursive call}
6: Mid-Code(A, b, e) {Setup Subproblem 2 in A[�e/2�, . . . , e − 1]}
7: Recursive(A, �e/2�, e) {Second recursive call}
8: Post-Code(A, b, e) {Merge Subproblems 1 and 2 in A[b, . . . , e − 1]}

This algorithm operates on an array A[0, . . . , n − 1] and makes calls to 4
subroutines: Base-Code is used to solve small instances, Pre-Code is executed
before any recursive calls, Mid-Code is executed after the first recursive call but
before the second, and Post-Code is executed after the second recursive call.
In our previous work, we have shown that this general template can be realized
in-place [3]. In the following subsections, we will demonstrate how both the
subroutines and the partitioning of the segments to be processed can be realized
using only O(1) extra space.

2.2 The Base of Recursion

As mentioned above, the base of recursion is the case when a set L of line
segments spans a vertical strip 〈b, e〉 := [b, e] × IR that does not contain any
endpoint of a segment. By Invariant 1, the set L of segments is sorted according
to <b, the vertical order at x-coordinate b.
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Algorithm 2. The algorithm Splitb,e(L,Q,L′) [1]
Require: L = (s1, . . . , sm) is ordered by <b.
Ensure: L′ and Q are ordered by <b; Q is complete relative to 〈b, e〉.
1: Q := ∅; L′ := ∅;
2: for j = 1 to m do
3: if sj spans 〈b, e〉 and does not intersect the last segment of Q within 〈b, e〉 then
4: Q ← sj .
5: else
6: L′ ← sj .

Algorithm 2 partitions L into two sets Q and L′ =
L \ Q such that both sets are sorted according to <b,
that there are no intersections induced by the segments
in Q (Q is called a staircase), and that Q is maximal:
that is, complete relative to 〈b, e〉.
The correctness of the algorithms depends on the invari-
ant that both the staircase Q and the remaining subset
L′ remain ordered by <b. This condition cannot be en-
forced with a linear-time in-place algorithm as the only
known such algorithm for stable partitioning [11] is a
variant of {0, 1}-sorting. This implies that the algorithm
has to be able to decide for any given element whether
it should belong to Q or L′—independent of whether
the algorithm has seen any other element before and
independent of the processing order of the elements. As
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Fig. 2. Base of recur-
sion. Fat lines indicate
a maximal staircase

constructing a staircase has to be done incrementally, using this non-incremental
stable in-place partitioning is not feasible.

Let us for the moment, however, assume that such an in-place partitioning
algorithm exists, and let us see how it can be used as a subroutine. Algorithm 3
recursively uses Split to partition a set L of segments spanning 〈b, e〉 and sorted
by <b such that the set Intb,e(L) of intersections induced by L and falling into
the strip 〈b, e〉 can be found easily using a synchronized scan over the staircase
Q and the set L′, both of which are ordered by <b. As a side effect, Algorithm 3
reorders the segments in L such that they are sorted according to <e. This
implies that, in the process of sweeping the plane, L can be used as the input
for processing an adjacent strip 〈b′, e′〉, i.e. a strip 〈b′, e′〉 for which b′ = e.

The running time of Algorithm 3 is linear in the number of segments in
L and the number of intersections reported. To see this, note that Steps 1,
3, and 7 run in time linear in |L| and that Step 5 runs in time linear in |L|
plus the number of intersections reported. For the recursive calls, observe that
a segment is not assigned to a staircase (during the executing of Algorithm 2)
hence being processed in a recursive call iff there exists at least one intersection
with a staircase. The effects of the recursive calls to Split are reverted by the
repeated calls to Merge (Line 7 of Algorithm 3). This operation is a linear-time
operation as both Q and R′ are ordered by <e, and using the algorithm by
Geffert et al. [9], it can also be performed in-place.
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Algorithm 3. The algorithm SearchInStripb,e(L,R) [1]
Require: L = (s1, . . . , sk) is ordered by <b; each si spans 〈b, e〉.
Ensure: R = (sπ(1), . . . , sπ(k)) is ordered by <e.
1: Splitb,e(L,Q,L′). {Partition L into (a staircase) Q and L′ = L \ Q.}
2: if L′ = ∅ then
3: R := Q. {Base of recursion: No intersections within L; R is ordered by <b.}
4: else
5: Find all intersections of Q and L′ inside 〈b, e〉 using a synchronized scan.
6: SearchInStripb,e(L′,R′). {Recursively find intersections within L′.}
7: R := Mergee(Q,R′). {Both Q and R′ are ordered by <e.}

We have noted [3] that, due to the use of a recursion stack, algorithms that
use recursion generally are not in-place. However, if we assume the existence of
an in-place partitioning algorithm InPlaceSplit(A, b, e, �b, �e) that partitions
L := A[�b, . . . , �e − 1] into L′ := A[�b, . . . , �c − 1] and Q := A[�c, . . . , �e − 1]
and returns the split index �c, Algorithm 3, can be made in-place using this
subroutine inside a simple repeat-until-loop (see Algorithm 4):

Algorithm 4. Algorithm InPlaceSearchInStrip(A, b, e, �b, �e)
Require: A[�b, . . . , �e − 1] is ordered by <b; each si spans 〈b, e〉.
Ensure: A[�b, . . . , �e − 1] is ordered by <e.
1: Let �c := �e.
2: repeat
3: Let � := �c.
4: �c := InPlaceSplit(A, b, e, �b, �) {L′ = A[�b, . . . , �c − 1];Q = A[�c, . . . , � − 1]}
5: if �c > �b then
6: Find all intersections of Q and L′ inside 〈b, e〉 using a synchronized scan.
7: until �c = �b

8: Repeatedly identify and merge staircases into R = A[�b, . . . , �e − 1].

Because Algorithm InPlaceSplit partitions the set L (that is the subarray
A[�b, . . . , �e−1]) such that the elements of the non-staircase set L′ always appear
in the front of the subarray, Algorithm 4 only needs to maintain the following
pointers: one pointer to the beginning and the end of the original set L, say �b

and �e, and one pointer � to the end of the current set L. The final merging
step is implemented as follows: starting from � and advancing towards at most
�e, we find the index �′ denoting the end of the next staircase to be merged
by exploiting the fact that each staircase is sorted according to <e. We then
merge the staircases A[�b, . . . , � − 1] and A[�, . . . , �′ − 1] according to <e using
an in-place merging algorithm [9], update � with the value of �′, and repeat the
merging process as long as � < �e. By the argument used above, the overall
runtime for merging all staircases is linear in |L| + |Intb,e(L)|.

Let us now come back to the problem of finding a stable in-place partitioning
of L = L′ + Q. In order to still obtain both sets in sorted order, we proceed as
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follows: we implement InPlaceSplit such as to use the approach of Algorithm
SortedSubsetSelection [3] to stably move the non-stairs, i.e. the set L′ to
the front of L. We can do so incrementally, as we only need to keep track of the
(position of the) topmost stair in order to decide whether the next segment in
question can be added to the staircase or not. We then sort the segments in Q
using an in-place sorting algorithm, e.g. heapsort [8].

Lemma 1. Algorithm InPlaceSplit, when invoked at a node v of the recur-
sion tree T , runs in time O(|L|+|Intb,e(L)|+Hv) where

∑
v∈T Hv ∈ O(n log2 n).

Proof. Selecting the non-stairs can be done in-place in linear time using Sor-
tedSubsetSelection, and each segment not added to a staircase and thus
considered in another pass can be charged to (at least) one intersection with the
topmost stair. Each segment appears in a staircase exactly once, so the overall
running time of sorting all staircases is in O(n log2 n).

2.3 The “Divide” and “Conquer” Phases

The main concept of Balaban’s algorithm is to report a pair (s, t) of intersecting
segment at the highest node v in the recursion tree where one of the segments,
say s, is part of the staircase Qv spanning the strip 〈b, e〉 assigned to v and where
the intersection point lies within 〈b, e〉. The other segment t cannot be part of
the staircase at v because segments in the same staircase do not intersect. There
are three possible situations: (1) t crosses the left boundary of 〈b, e〉, (2) t lies
completely within 〈b, e〉, or (3) t crosses the right boundary of 〈b, e〉.2

Invariant 1 implies that, upon entering a node v, all segments intersecting
the left boundary of the strip 〈b, e〉 are available in the form of an ordered
set Lv that is sorted according to <b. Similarly, Invariant 3 requires the exis-
tence of an ordered set Rv (which, in the parameter list of Balaban’s algorithm
(Algorithm 5) is a reference parameter to be modified by the algorithm) that
contains the segments crossing the right strip boundary—again in sorted order.
The unordered set Iv contains all segments that lie completely within the strip
〈b, e〉. Handling Situations (1)–(3) then consists of computing Intb,e(Qv,Lv),
Intb,e(Qv, Iv), and Intb,e(Qv,Rv), the sets of intersections inside 〈b, e〉 and in-
duced by segments in the staircase Qv and in the sets Lv, Iv, and Rv, respec-
tively. The intersections inside 〈b, e〉 that do not involve any s ∈ Qv are found
recursively.

To obtain a logarithmic depth of recursion, Balaban subdivides the set of
segments that are not part of the staircase at the current node in such a way
that the same number of endpoints is processed in each of the recursive call.
Under the simplifying assumption that the x-coordinates of the segments are the

2 There might be segments appearing both in Situation (1) and Situation (3); we
can detect (and skip) those segments when handling Situation (3) because these
segments are exactly the segments crossing both strip boundaries.
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integers [1 . . . 2n],3 this corresponds to subdividing with respect to the median
c := �(b + e)/2�, and the Balaban’s algorithm can be stated as follows (LSON(v)
and RSON(v) denote the left and right child of v, respectively):

Algorithm 5. The algorithm TreeSearch(Lv, Iv, b, e,Rv) [1]
1: if e − b = 1 then
2: SearchInStripb,e(Lv,Rv);
3: else
4: Splitb,e(Lv,Qv,LLSON(v)); {Compute staircase.}
5: Compute Intb,e(Qv,LLSON(v)). {Handle Situation (1).}
6: c := �(b + e)/2�;
7: Construct ILSON(v) and IRSON(v) from Iv;

8: TreeSearch(LLSON(v), ILSON(v), b, c,RLSON(v));

9: Construct LRSON(v) from RLSON(v) by insertion/deletion;

10: TreeSearch(LRSON(v), IRSON(v), c, e,RRSON(v));

11: Compute Intb,e(Qv,RRSON(v)). {Handle Situation (3).}
12: Compute Loc(Qv, {s}) for each s ∈ Iv.

13: Compute Int(Qv, Iv) based upon Loc(Qv, Iv). {Handle Situation (2).}
14: Rv := Mergee(Qv,RRSON(v)); {Establish Invariant (3).}

There are several issues that complicate making this algorithm in-place: First
of all, like in any recursive algorithm that has to be transformed into an in-place
algorithm, one has to keep track of the subarrays processed in each recursive
call. It is not feasible to keep the start and end indices on a stack as this would
result in using Ω(log2 n) extra words of memory. The second issue to be resolved
is how to partition the data prior to “going into recursion”. Whereas algorithms
working on point data can easily subdivide the data based upon, say, the x-
coordinate by first sorting and then halving the point set, subdividing a set of
segments such that the same number of endpoints appear on each side of the
dividing line, seems impossible to do without splitting or copying the segments.
Both splitting and copying, however, is infeasible in an in-place setting.

To guarantee both the correctness of the algorithm and the property that
is uses only O(1) extra space, we will require the following invariants to be
established at each invocation InPlaceTreeSearch(A, b, e, �b, �e):

Invariant A: All segments that cross the left boundary of 〈b, e〉 are stored in
sorted <b order at the front of A[�b, . . . , �e − 1] (see Invariant (1)).

Invariant B: A[�b, . . . , �e − 1] contains all segments in A that have at least one
endpoint inside 〈b, e〉.

Additionally, we will require the following invariants to be established when-
ever we return from a call to InPlaceTreeSearch(A, b, e, �b, �e):

3 This assumption is impossible to make in an in-place setting as one would need an
extra lookup-table for translating the integer i to the x-coordinate with rank i.
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Invariant C: The strip boundaries 〈b′, e′〉 of the “parent strip” are known.
Invariant D: There exists an integer i ∈ {0, . . . �b − �e} such that all segments

of A[�b, �e − 1] that do not cross the right strip boundary are stored in
A[�b, . . . , �b+i−1] and that all other segments are stored in A[�b+i, . . . , �e−1]
sorted according to <e (see Invariant (3)).

Establishing Invariant (C) in-place is one of the most crucial steps of the algo-
rithm. We will establish this invariant as follows: Prior to “going into recursion”,
we select the segments qb and qe whose endpoints define the strip boundary and
move it (using a linear number of swaps) to the front of the staircase Qv. When
moving these segments, however, it is important to keep in mind that they might
be part of the staircase (Fig. 3 (a)), part of Lv and/or Rv (Fig. 3 (b)), identical
(Fig. 3 (c)), or not intersecting the interior of 〈b, e〉 at all (Fig. 3 (d)), and that
qb and qe need to be handled accordingly when looking for intersections.

(a) (b) (c) (d)

Fig. 3. Some of the configurations of segments whose endpoints define 〈b, e〉

Any combination of these configurations is possible, but as the overall number
of combinations is constant, a constant number of bits is sufficient to encode the
specific combination. Thus a “configuration” stack C of O(log2 n) bits, i.e. using
O(1) extra space, can be used to store the information necessary to recover the
subset(s) into which qb and qe have to be reinserted when returning from the
“recursive” calls.

We first use Algorithm InPlaceSplit to compute the staircase Qv and in-
terchange the subarrays containing L′ and Qv

4 such that the subarray looks as
follows:

. . . qb qe Qv L′ Iv ∪Rv . . .
�b �e

We also maintain a “staircase” stack S of depth O(log2 n) to indicate whether
Qv contains zero, one, or more segments in addition to (qb ∪ qe) ∩ Qv. This
information can be encoded using O(1) bits per entry, i.e. using O(1) extra space
in total. We then establish Invariant (A) by shifting Qv in front of qb, and prior
to going into the “left recursion” we also prepare for establishing Invariant (C):

4 Interchanging two blocks A[x0, . . . , x1 − 1] and A[x1, . . . , x2 − 1] can be done in-place
and in linear time by first using swaps to revert the order of the elements in each
of the blocks separately and by then reverting the order of A[x0, . . . , x2 − 1] again
using swaps. Katajainen and Pasanen [11] attribute this to “computer folklore”.
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We determine the segment qc whose endpoint induces the right boundary of
the left subslab (see Section 2.4 for the details of how to do this in-place) and
shift the segments qe, qb, and qc in front of LLSON(v) := L′. We then establish
Invariant (B) by moving all elements in ILSON(v) ∪ RLSON(v) to immediately
behind LLSON(v) using simple swaps (we use Nv to denote the set of segments
not moved). We also update �b to point to the first element in LLSON(v) and
update �e to point to the first segment not in ILSON(v) ∪RLSON(v):

. . . Qv qe qb qc LLSON(v) ILSON(v) ∪RLSON(v) Nv . . .
�b �e

By Invariant (D), we know that upon returning from the “left recursive”
call, the array has the following form (OLSON(v) denotes the segments whose
right endpoint lies inside the left subslab):

. . . Qv qe qb qc OLSON(v) RLSON(v) Nv . . .
�b �e �

We can recover qe, hence establishing Invariant (C), by simply looking at the
at most three entries in front of A[�b] (depending on the configuration encoded
by the topmost element of the configuration stack C). As doing this we have also
recovered the old value of e, the index � which corresponds to the old value of
�e prior to going into the “left recursion” can be recovered by scanning forward
from �e until we find the first segment not intersecting 〈b, e〉 (or reach the end of
the array). We interchange RLSON(v) ∪Nv and OLSON(v). Note that RLSON(v) =
LRSON(v) in our setting as these sets only differ by the segment qc which is stored
separately. Also, relative to the subslab at RSON(v), Nv = IRSON(v) ∪ RRSON(v).
We update �e to point to the first element in Ov, and shift qe, qb, and qc.

. . . Qv qb qc qe LRSON(v) IRSON(v) ∪RRSON(v) OLSON(v) . . .
�b �e �

By Invariant (D), we know that upon returning from the “right recursive”
call, the array has the following form:

. . . Qv qb qc qe ORSON(v) RRSON(v) OLSON(v) . . .
�b �e �

Again, we recover the values of b and e, and find the index � by scanning
forward from �e. Depending of whether qc crosses the right boundary of 〈b, e〉
or not, we insert qc into RRSON(v) or into ORSON(v). Scanning backward from �b

and using the information on top of the staircase stack S as well as the fact that
the segments in Qv span 〈b, e〉, are non-intersecting, and are ordered by <b, we
determine the start of the subarray in which Qv is stored. We then interchange
the blocks such that OLSON(v) and ORSON(v) as well as Qv and RRSON(v) appear
next to each other. Finally, we use an in-place merging algorithm [9] to construct
Rv(= RRSON(v))∪Qv, thus establishing Invariant (D). Note that all interchang-
ing, shifting, and scanning done so far takes time linear in |Lv ∪ Iv ∪Rv|.



Line-Segment Intersection Made In-Place 155

. . . qb qe Ov Qv ∪Rv . . .
�b �e

As all invariants can be established for the base case of the recursion, we
conclude that the invariants can be established for each “recursive call”, and
thus we have established the correctness of the following algorithm:

Algorithm 6. Algorithm InPlaceTreeSearch(A, b, e, �b, �e)
1: if 〈b, e〉 does not contain any endpoint of a segment s ∈ A[�b, . . . , �e − 1] then
2: InPlaceSearchInStrip(A, b, e, �b, �e);
3: else
4: Let �l be the index of the first segment in A[�b, . . . , �e − 1] that does not cross

the left strip boundary. {Lv = A[�b, . . . , �l − 1]}
5: �c := InPlaceSplit(A, b, e, �b, �l). {L′ = A[�b, . . . , �c − 1];Qv = A[�c, . . . , �l − 1]}
6: Stably exchange the subarrays A[�b, . . . , �c − 1] and A[�c, . . . , �l − 1].

7: Compute Intb,e(Qv,L′). {Handle Situation (1).}
8: for each segment s ∈ A[�l, . . . , �e − 1] than lies inside 〈b, e〉 do
9: Using binary search, locate the lower endpoint of s w.r.t. the stairs of Qv and

compute Intb,e(Qv, {s}). {Handle Situation (2).}
10: Find the index of the median of the endpoints inside the current strip. Let c be

the x-coordinate of this endpoint.

11: Establish Invariants (A) and (B), update �b and �e.

12: InPlaceTreeSearch(A, b, c, �b, �e);

13: Recover the old values of e and �e. Establish Invariants (A) and (B), update �b

and �e.

14: InPlaceTreeSearch(A, c, e, �b, �e);

15: Recover the old values of b and �e.

16: Compute Intb,e(Qv,R′). {Handle Situation (3); check for duplicates.}
17: Rv := Mergee(Qv,RRSON(v)); Establish Invariant (D).

Due to space constraints, the above description does not explicitly contains
code for simulating the two “recursive” calls to InPlaceTreeSearch, since we
have shown previously [3] that it is possible to handle these calls using a stack
of O(log2 n) bits, that is using O(1) extra space. To do so we need to be able
to retrieve the subset to work with upon returning from a recursive call using
only O(1) extra space, and this is guaranteed by Invariant (C). We also did not
include the code for handling the segments qb, qe, and qc. We need, however, to
fill in the details of how to select the endpoint with median x-coordinate.

2.4 Selecting the Median In-Place

When selecting the median of the endpoints in line 10 of Algorithm 6, we have
to do so while maintaining the set L′ in sorted order.

To make sure that the overall cost of median-finding does not depend on
the number k of intersections reported by the algorithm, we make sure to only
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process segments not spanning 〈b, e〉. Doing so, we can guarantee that each
segment participates in O(log2 n) invocations of median-finding, namely in O(1)
such invocations on each level of the recursion tree. To make the algorithm
reflect this, we use SortedSubsetSelection to stably select the segments of
L′ spanning 〈b, e〉. The segments that have at least one endpoint in 〈b, e〉 are
then stored consecutively in A[�b + i, . . . , �e − 1] (for some i ∈ {0, . . . , �e − �b}).

Lemma 2. Given m segments and a strip 〈b, e〉, the k-th endpoint in sorted
order inside 〈b, e〉 can be found in-place in O(m log2 m) time.

Proof. We simulate a plane-sweep over the set of segments and maintain the
current x-coordinate ξ as well as the number o of endpoints inside 〈b, e〉 that
have already be swept over. The segments are maintained in-place in a heap-
based priority queue H, the priority of s being the smallest x-coordinate of s’s
endpoints that still is at least ξ. When deleting the minimal element s from H we
increment o iff ξ ∈ [b, e] and re-insert s iff the x-coordinate of its right endpoint
is larger than ξ. If o = k, we report s and ξ, else we continue. As there are at
most 2m priority queue operations, the algorithm runs in time O(m log2 m).

After we have found the median using the algorithm implied by Lemma 2, we
need to restore L′ in sorted <b order. To this end, we then select the elements
from A[�b + i, . . . , �e − 1] that cross the left strip boundary, sort them in-place
by <b, and then merge them in-place with the segments in A[�b, . . . , �b + i − 1].

Lemma 3. The global cost incurred by median-finding is O(n log2
2 n).

Proof. The median-finding algorithm considers only those segments that have
at least one endpoint in the current strip. Hence, on each level of recursion, each
segment is considered at most twice, so we can charge each segment s O(log2 n)
cost per level for median-finding (see Lemma 2). We charge s an additional
O(log2 n) cost per level for the at most one sorting step it participates in (when
restoring L′). As all other operations require only linear time per level, the global
cost incurred by median-finding is O(n log2

2 n) as claimed.

2.5 Analysis of the Running Time

For the main part of the analysis, Balaban’s results carry over. Using the notation
Sv = Lv ∪ Iv ∪Rv, the following theorem holds for the recursion tree T :

Theorem 1 (Theorem 2 in [1]).
∑

v∈T |Sv| ≤ n	4 log2 n + 5
 + 2k.

To make the algorithm in-place, we had to resort to some algorithmic tech-
niques not captured in Balaban’s analysis. The global extra cost for making the
algorithm Split in-place is O(n log2 n) (see Lemma 1). From Theorem 1 follows
that the overall extra cost for establishing the invariants is O(n log2 n + k) as
all operations performed at a node v ∈ T take time linear in |Sv|. Finally, we
had to realize the median-finding in-place and restoring the original order of the
elements. By Lemma 3, the overall cost for this is in O(n log2

2 n). The last com-
ponent of the analysis is the for-loop in Line 8 of Algorithm 4: Each iteration
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of this loop takes O(log2 |Qv|) ⊆ O(log2 n) time, and each of the n segments
can be part of Iw for O(log2 n) nodes w ∈ T . Combining this with Balaban’s
original analysis, we obtain the main result of this paper:

Theorem 2. All k intersections induced by a set of n segments in the plane can
be computed in O(n log2

2 n + k) time using O(1) extra words of memory.

We conclude with the obvious open problem: Is it possible to compute all k
intersections induced by a set of n segments in the plane in-place and in optimal
time O(n log2 n + k)?
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