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Preface

The papers in this volume were presented at the 9th Workshop on Algorithms
and Data Structures (WADS 2005). The workshop took place during August
15 – 17, 2005, at the University of Waterloo, Waterloo, Canada. The workshop
alternates with the Scandinavian Workshop on Algorithm Theory (SWAT), con-
tinuing the tradition of SWAT and WADS starting with SWAT 1988 and WADS
1989. From 90 submissions, the Program Committee selected 37 papers for pre-
sentation at the workshop. In addition, invited lectures were given by the fol-
lowing distinguished researchers: Allan Borodin and Max J. Egenhofer.

On behalf of the Program Committee, we would like to express our sincere ap-
preciation to the many persons whose effort contributed to making
WADS 2005 a success. These include the invited speakers, members of the steer-
ing and Program Committees, the authors who submitted papers, and the many
referees who assisted the Program Committee. We are indebted to Robert Kane
for installing and modifying the submission software, maintaining the submission
server and interacting with authors as well as for helping with the preparation
of the program.

August 2005 Frank Dehne, Alejandro López-Ortiz, and Jörg-Rüdiger Sack
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Jörg-Rüdiger Sack Carleton University, Canada

Conference Chair
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Rolf Klein, Günter Rote . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

Orthogonal Subdivisions with Low Stabbing Numbers
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Towards a Theory of Algorithms

Allan Borodin

Department of Computer Science,
University of Toronto

Abstract. Undergraduate (and graduate) algorithms courses and texts
often organize the material in terms of “algorithmic paradigms”, such
as greedy algorithms, backtracking, dynamic programming, divide and
conquer, local search, primal-dual, etc. (but not etc. etc.). We seem to
be able to intuitively describe what we have in mind when we discuss
these classes of algorithms but rarely (if ever) do we attempt to define
precisely what we mean by such terms as greedy, dynamic programming,
etc. Clearly, a precise definition is required if we want to defend a state-
ment such as “This is a difficult optimization problem.... in particular,
there is no greedy algorithm that provides a good approximation for this
problem”.

In the context of combinatorial search and optimization problems,
I will present precise models for some common basic paradigms. In a
sense what we would really like to have are algorithmic models (e.g.
for a greedy optimization algorithm) that are as widely accepted as the
Church-Turing definition for “computable function”. While this goal is
probably much too ambitious, we would at least like to have models that
capture most of the algorithms that fit within these common paradigms.

This talk is based on results from a number of papers. In particular, I
will present precise definitions for greedy and greedy-like algorithms [2],
simple dynamic programming and backtracking [3], and basic primal-
dual/local ratio algorithms [1].

References

1. A. Borodin, D. Cashman, and A. Magen. How well can primal dual and local ra-
tio algorithims perform? In Proceedings of the 32nd International Colloquium on
Automata, Languages and Programming, 2005.

2. A. Borodin, M. N. Nielsen, and Rackoff. (Incremental) priority algorithms. In Pro-
ceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, 2002.

3. M. Alekhnovich, A. Borodin, J. Buresh-Oppenheim, R. Impagliazzo, A. Magen, and
T. Pitassi. Toward a model for backtracking and dynamic programming. Unpublished
manuscript, 2004.

F. Dehne, A. López-Ortiz, and J.-R. Sack (Eds.): WADS 2005, LNCS 3608, p. 1, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Abstract. The restricted rotation distance dR(S, T ) between two binary
trees S, T of n vertices is the minimum number of rotations by which S

can be transformed into T , where rotations can only take place at the
root of the tree, or at the right child of the root. A sharp upper bound
dR(S, T ) ≤ 4n − 8 is known, based on the word metric of Thompson’s
group. We refine this bound to a sharp dR(S, T ) ≤ 4n−8−ρS−ρT , where
ρS and ρT are the numbers of vertices in the rightmost vertex chains
of the two trees, by means of a very simple transformation algorithm
based on elementary properties of trees. We then generalize the concept
of restricted rotation to k-restricted rotation, by allowing rotations to
take place at all the vertices of the highest k levels of the tree. For
k = 2 we show that not much is gained in the worst case, although the
classical problem of rebalancing an AVL tree can be solved efficiently, in
particular rebalancing after vertex deletion requires O(log n) rotations as
in the standard algorithm. Finding significant bounds and applications
for k ≥ 3 is open.

1

We consider rooted binary trees of n vertices, simply called trees in the following.
These trees are relevant in different fields of computing, in particular they are
used as search trees storing n keys at the vertices in infix order, i.e. the keys in
the left (respectively, right) subtree of each vertex v precede (respectively, follow)
the key in v according to a given ordering [3]. Although completely general the
following considerations are carried out having search trees in mind.

Rotations are well known local changes in the tree structure, preserving key
ordering in search trees. A right rotation at a vertex y raises its left child x to

k-Restricted Rotation with an Application to
Search Tree Rebalancing

Alejandro Almeida Ruiz1, Fabrizio Luccio2, Antonio Mesa Enriquez3,
and Linda Pagli4

1 Universidad de Matanzas, Cuba
alejandro.almeida@umcc.cu

2 Università di Pisa, Italy
luccio@di.unipi.it

3 Universidad de la Habana, Cuba
tonymesa@matcom.uh.cu

4 Università di Pisa, Italy
pagli@di.unipi.it

Keywords: Rotation, Rotation distance, Binary tree, Search tree, AVL
tree, Rebalancing, Data structures, Design of algorithms.

Tree Transformation via Rotations

F. Dehne, A. López-Ortiz, and J.-R. Sack (Eds.): WADS 2005, LNCS 3608, pp. 2–13, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



reconstructs the original tree. Rotations maintain the infix ordering of the keys,
and are used to keep search trees balanced. That is, the height of a tree, hence
the search time for a key, remains of O(log n) after insertions or deletions of
vertices [3].

The rotation distance d(S, T ) between two trees S, T of n vertices is the
minimum number of rotations by which S can be transformed into T , where
the rotations can take place at any vertex. As right and left rotation are one
the inverse of the other, we have d(S, T ) = d(T, S). In a scholarly paper [9],
Sleator, Tarjan, and Thurston proved that d(S, T ) ≤ 2n − 6 for any pair S,
T using hyperbolic geometry, and that this bound is sharp for large values of
n. Mäkinen [6] showed that slightly weaker results can be obtained by simple
arguments, and Luccio and Pagli [4] then gave an elementary constructive proof
for the upper bound of [9]. No polynomial-time algorithm is known to compute
d(S, T ), but estimates of this value were given by Pallo [7] and Rogers [8].

The new restricted rotation distance dR(S, T ) was introduced by Cleary [1],
where rotations can take place only at the root of the tree, or at the right child
of the root. Cleary and Taback [2] then strongly improved the results of [1],
proving a sharp upper bound dR(S, T ) ≤ 4n−8 for any pair S, T , and a stricter
lower bound if S and T satisfy a special condition. Both these works are based
on the word metric of Thompson’s group.

The works of Cleary and Taback are remarkable for several reasons. First,
the upper bound for dR(S, T ) is only about twice the one for d(S, T ) “despite of
the fact that it may take many rotations to move a vertex to one of the places
where rotations are allowed” [1]. Second, the properties of an abstract algebric
structure are transferred into the theory of data structures with brillant results.
Finally, and important from an information processing point of view, allowing
rotations only at selected vertices is relevant for example in handling distributed
files where only a fraction of the vertices reside in a location (e.g., a server)
where data can be updated.

Given an arbitrary tree T , let the left arm (respectively, right arm) of a vertex
v be the longest sequence of vertices reached from v when descending T via left
(respectively, right) edges only. The arms of the root will be simply called the
left and right arm of T , and the number of vertices in such arms will be denoted
by λT and ρT , respectively (see figure 1). The union of the left arm, the right
arm, and the root, is called the border of T . In this work we do the following:

1. We refine the upper bound dR(S, T ) ≤ 4n−8 of [2] to dR(S, T ) ≤ 4n−8−
ρS − ρT , and prove that the new bound is sharp. The bound of [2] can then be
seen as a special case of the new one. The two bounds coincide for ρS = ρT = 0,
but we shall see in the next section that the probability of this case to occur goes
to zero for increasing n, and is strictly equal to zero for balanced search trees.

This bound was anticipated in [5] without a matching lower bound.

the place of y while y becomes the right child of x, and the original right child
of x becomes the left child of y (the rest of the tree remains unchanged). A
left rotation is symmetrical. If applied to vertex x, after the right rotation, it

k-Restricted Rotation with an Application to Search Tree Rebalancing 3
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ρ T
λ T

λ T'

T

T'

Fig. 1. The left and right arms of a tree T , of lengths λT and ρT . T ′ is a subtree of T ,
with left arm of length λT ′

large files. We study the new distance for k = 2, that is the rotations are allowed
only at the root and at both its children, showing that not much is necessarily
gained over the previous case. The case k ≥ 3 will be left substantially open.

3. We finally show how restricted rotations are sufficient for rebalancing AVL
trees efficiently, giving an insertion and a deletion algorithms that use rotations
at the highest k = 2 levels only.

For brevity the proofs not crucial for following the development of our argu-
ments are omitted.

2

To present our rotation algorithm we pose:

Definition 1 A tree T is an (i,j)-chain, with i, j ≥ 0 and i + j + 1 = n, if all
the vertices of T lie on the border, with λT = i and ρT = j.

First we give a basic algorithm to transform any given tree into a fixed reference
tree R consisting of an (n-3,2)-chain. As the transformation process can be re-
verted by exchanging right and left rotations, transforming S into T will amount
to transforming both S and T into R, then reverting the second transformation
to get S → R → T .

Let rot1-right, rot1-left respectively denote the right and left rotation at the
root, and let rot2-right, rot2-left denote the same rotations at the right child of
the root. We have:

Algorithm 1 Transforming a tree T with n ≥ 3 into an (n-3,2)-chain. T ′ is the

subtree rooted at the right child of the root of T (see figure 1). T and T
′

denote
the trees generated at each step of the transformation, starting with T = T and

T
′

= T ′.

We underline that the new upper bound is the result of a very simple algorithm
to transform S into T , based on elementary properties of trees.

2. The concept of restricted rotation is generalized by performing rotations at
all the vertices in the highest k levels of the tree, as motivated by searching into

The Basic Algorithm

4
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while λ
T

> 0 do rot1-right;

while T
′

�= (0,1)-chain do

if λ
T

′ > 0 then rot2-right else rot1-left.

Theorem 1 Algorithm 1 transforms any tree T with n ≥ 3 into an (n-3,2)-
chain performing 2n − 4 − ρT rotations. (Proof omitted.)

A tree S can be transformed into another tree T by applying algorithm 1 to
transform S into an (n-3,2)-chain R, then transforming R into T by reverting
the rotations of algorithm 1 that would transform T into R. We have:

Corollary 1 For two arbitrary trees S, T with n ≥ 3 we have: dR(S, T ) ≤
4n − 8 − ρS − ρT .

The upper bound of corollary 1 coincides with the one of [2] for ρS = ρT = 0,
that is the roots of the two trees have no right descendants. In fact, this is
the only condition under which the bound of [2] is sharp, and is very unlikely
or even impossible to occur. For trees built at random, the probability P0 of
having ρS = ρT = 0 decreases exponentially with n. For search trees the major
distinction is between trees built by random key insertions from the root, and
balanced trees. In the first case we have P0 = 1/n2, as this corresponds to
having the maximum key being inserted as the first item in both trees. For AVL
balanced trees [3] it can be easily shown that both ρS and ρT must fall into the
positive interval [h/2, h− 1], where h is the index of the h-th Fibonacci number
Fh such that Fh ≤ n + 1 < Fh+2. Then we have the stricter upper bound:
dR(S, T ) ≤ 4n − 8 − Ω(lg n).

Due to the result of [2], the bound of Corollary 1 is sharp because, for any
n, there are trees with ρS = ρT = 0. However we shall proof that the bound is
also sharp for arbitrary values of ρS and ρT . To this end we start with a basic
result. Identify the vertices of a tree S with the integers 1 to n in infix order,
and let ΠS(v) be the sequence of vertices in the path from the root to a vertex
v. We have:

Lemma 1. Let S, T be two trees to be transformed into one another. And let v,
w = v + 1 be two vertices such that v ∈ ΠS(w) and w ∈ ΠT (v). The transfor-
mation process must pass through an intermediate tree whose border contains v
and w. (Proof omitted.)

It is interesting to note that the only way of inverting the relative ordering
of v and w in a path Π, as required in the transformation of S into T , is passing
through an intermediate tree Q with v and w on the border, where either v is
the root, w is the right child of v, and rot1-left is applied to Q; or v is the right
child of the root, w is the right child of v, and rot2-left is applied to Q.

We now prove that the bound of Corollary 1 is sharp for arbitrary values of
ρS and ρT . We have:

k-Restricted Rotation with an Application to Search Tree Rebalancing 5
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Theorem 2 For any n ≥ 3 there are trees S, T with arbitrary values of ρS, ρT

such that dR(S, T ) = 4n − 8 − ρS − ρT .

Proof For n = 3 the proof trivially goes by exhaustion. For n ≥ 4, consider
the two trees S, T of figure 2, with arbitrary values ρS = s and ρT = t. The
two vertices n− 2, n− 1 are in the same condition as v, w of Lemma 1 because
(n− 2) ∈ ΠS(n− 1) and (n− 1) ∈ ΠT (n− 2). Therefore S must be transformed
into an intermediate tree Q with both n − 2 and n − 1 on the border. Since the
subsequent rotations for transforming Q into T can be inverted, dR(S, T ) can be
computed as the minimum number of rotations for transforming both S and T
into the same Q.

For bringing vertex n − 1 to the border of S, this vertex must be lifted at
least up to level 3. This requires an initial sequence of at least ρS − 1 rot1-left
rotations to lift the chain s + 1, s + 2, . . . , n − 1, bringing s + 1 at level 3. The
vertices of the chain can be moved from it, one after the other, only if the chain
itself resides in the right subtree of the root, and a rot2-right rotation is applied
to each of its vertices. For each vertex x in s + 1, s + 2, . . . , n− 2 such a rotation
must be followed by at least one rot1-left, because rot2-right does not lift the
vertices following x in the chain which are attached to the new right child of x.
As there are n − ρS − 2 vertices in s + 1, s + 2, . . . , n− 2, at least 2(n − ρS − 2)
rotations are needed to bring vertex n − 1 at level 3, and a final rot2-right is
needed to bring n−1 into the right arm, thus obtaining a tree with n−2 and n−1
on the border. The total number of rotations mentioned above is 2n − ρS − 4.
If only these rotations are performed, an (n-3,2)-chain Q1 is obtained from S,
that is the tree at minimum distance from S with the vertices n − 2 and n − 1
on the border.

A similar reasoning holds for bringing vertex n−2 to the border of T . Only one
rot2-right is now required for vertex n−1 as this lifts the chain t+1, t+2, . . . , n−2
one level up. After 2n − ρT − 3 rotations T is then transformed into an (n-4,3)-
chain Q2, that is the tree at minimum distance from T with vertices n − 2 and
n− 1 on the border. Another rotation is now required to transform Q1 into Q2,
for a total number of 4n − 8 − ρS − ρT rotations.

3

Allowing rotations only at selected vertices may be relevant for handling very
large files that mainly reside in secondary storage, while the root, and the vertices
in its neighborhood, are brought into main memory where the rotations are
performed. We then introduce the k-restricted rotation distance dk−R(S, T ) with
k ≥ 2, where rotations (now called “k-restricted”) can take place at the highest
k levels of the tree.

For k = 2, that is the rotations are allowed only at the root and at both
its children. In addition to the notation rot1-right, rot1-left, rot2-right, rot2-
left introduced before, we shall denote by rot3-right, rot3-left the right and left
rotation at the left child of the root. The transformation process can now be

Rotating at Different Tree Levels
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Fig. 2. Two trees for which the bound of Theorem 2 is met

refined by first transferring all the vertices to the right subtree of the root as in
Algorithm 1, then inserting all the vertices into the border, with the leaves not
already in the border brought into the left arm by only one rot3-left rotation.
The algorithm is as follows:

Algorithm 2 Transforming a tree T with n ≥ 3 into an (n-3,2)-chain, using 2-
restricted rotations. T ′ is the right subtree of the root of T . T ′′ is the left subtree

of the root of T ′. Start with T = T , T
′

= T ′, T
′′

= T ′′.

while λ
T

> 0 do rot1-right;

while (T
′

�= (0,1)-chain and T
′

�= (1,0)-chain and T
′

�= (1,1)-chain) do

if T
′′

= empty then rot1-left else

if T
′′

= leaf then (rot1-left, rot3-left) else rot2-right;

if (T
′

= (1,0)-chain then rot2-right;

if (T
′

= (1,1)-chain then (rot2-right, rot1-left).

For a given tree T , let FT be the set of leaves not in the border of T , and let
φT = |FT |. We have:

Theorem 3 Algorithm 2 transforms any tree T with n ≥ 3 into an (n-3,2)-chain
performing at most 2n − ρT − φT − 3 2-restricted rotations. (Proof omitted.)

Algorithm 2 admits a symmetric version requiring 2n−λT−φT−3 2-restricted
rotations for transforming T into a (2,n-3)-chain. To transform a tree S into
T , one or the other intermediate chain may be chosen whichever requires less
rotations. We then have:

Corollary 2 For two arbitrary trees S, T with n ≥ 3, we have: d2−R(S, T ) ≤
4n − μ − φS − φT − 6, where μ = max(λS + λT , ρS + ρT ).

k-Restricted Rotation with an Application to Search Tree Rebalancing 7
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Fig. 3. Two opposite trees A, B for the set {1, 2, ..., 8}

Corollary 2 gives an upper bound of d2−R(S, T ) ≤ 4n − φS − φT − 7 since
μ ≥ 1. Not much is gained with the introduction of the new rotations if FS

and FT are small, in fact we now prove a lower bound for 2-restricted rotation,
showing that only marginal room for improvement remains over the result of
Corollary 2 in the worst case. First note that Lemma 1 holds unchanged since
its proof can be immediately extended to the new allowed rotations. We also
have:

Lemma 2. Let a tree T contain a subtree C whose root is not in the border of
T . Let C contain m vertices, of which c ≥ 0 have two children. Then at least
m + c 2-restricted rotations are needed to move all the vertices of C into the
border of T . (Proof omitted.)

To apply Lemma 1 and 2 to large portions of the trees we pose:

Definition 2 Two opposite trees A, B are built as search trees on a set of
consecutive integers {h, h + 1, ..., h + 2r − 1}, with r ≥ 1, such that A has vertex
h + 2r − 1 at the root, and the other integers of the set follow, arranged in a
complete binary tree; and B has vertex h+2r−1 at the root of a complete binary
tree containing all the integers of the set, except for h+1 that is displaced in the
(r + 1)-th level.

Figure 3 shows two opposite trees for the set {1, 2, ..., 8}, that is for h = 1
and r = 3. Due to Lemma 1, if two opposite trees A, B are respectively part of
two trees to be transformed into one another, all the vertices of A and B must
be brought into the border of the tree under transformation. This consideration
allows to define two trees S, T for which a significant lower bound on d2−R(S, T )
can be found. We have:

Theorem 4 For any n ≥ 7 there are two trees S, T with non-empty arms such
that d2−R(S, T ) ≥ 4n − λS − λT − ρS − ρT − φS − φT − 12.
Proof Let A1, B1 and A2, B2 be two pairs of opposite trees containing m1

and m2 vertices, respectively. Note that m1/2−1 and m2/2−1 of these vertices
have two children, and m1/2 and m2/2 are leaves. Let S, T be two trees of
n ≥ m1 + m2 + 3 vertices (i.e., n ≥ 7), composed of a border with non-empty
arms, with A1, B1 attached to the right of the extremes of the left arms of S
and T , and A2, B2 attached to the left of the extremes of the right arms of S
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and T . Note that vertices 1 and n are respectively the extremes of the left and
the right arms, and all the vertices of A1, B1, A2, B2 are not in the borders of
S, T and must be brought into such borders by Lemma 1. By Lemma 2 this
requires a total of at least 2(m1 +m1/2−1)+2(m2 +m2/2−1) = 3m1 +3m2−4
2-restricted rotations. To start such rotations, however, the roots of A1, B1, A2,
B2 must be brought to level 3, requiring at least λS −1+λT −1+ρS −1+ρT −1
rotations. Since n = m1 + m2 + λS + ρS + 1 = m1 + m2 + λT + ρT + 1, and
φS = φt =(m1 + m2)/2, the result follows with straightforward calculations.

The lower bound of Theorem 4 is not sharp, however, the difference with the
upper bound of Corollary 2 depends only on the values of the arm lengths, besides
a constant, and is independent of n. In the limit case λS = ρS = λT = ρT = 1
we have: 4n − φS − φt − 16 ≤ d2−R(S, T ) ≤ 4n − φS − φt − 8, i.e. the difference
between the bounds is a constant 8.

For k ≥ 3 the situation is much more complex. For example, for k = 3 the
left and the right subtrees of the root can be transfored independently, making
use of the 2-restricted rotations in their upper two levels where the case k = 2
applies (note, however, that S and T must have the same root). Such a divide
and conquer approach can then be extended to greater values of k. The study
of (k ≥ 3)-restricted rotation is fully open, some ideas can be found in [5].

4

A natural question arises under the restricted rotations model, namely, can a
balanced search tree, unbalanced after insertion or deletion of a vertex, be re-
balanced efficiently? The answer is postive at least for AVL trees, in fact we
will show how rebalancing one such a tree after vertex insertion or deletion with
O(log n) 2-restricted rotations.

Consider rebalancing after insertion. While the standard algorithm performs
a unique (simple or double) rotation around the critical vertex, the key idea in
the restricted rotation model is lifting the critical vertex up to the root with a
sequence of rotations in the two highest levels of the tree, then performing the
required AVL rotation at the root to rebalance the subtree locally unbalanced,
and then moving this subtree down to its original position. In fact, when the
critical vertex is at the root, simple and double AVL rotations can be expressed
in terms of restricted rotations. In particular a simple right rotation and a simple
left rotation correspond to rot1-right and rot1-left, respectively; a double right
rotation corresponds to rot3-left followed by rot1-right; and a double left rotation
corresponds to rot2-right followed by rot1-left.

In an AVL tree T , let Π = a0, a1, ..., ak+1 be a subsequence of vertices en-
countered in the search path for insertion of a vertex. Π starts with the root a0

of T , reaches the critical vertex ak−1 and its child ak, and ends with the child

The same result can be obtained with rotations at the root and at one of its children
only, using a slightly more complicated procedure.

Rebalancing AVL Trees
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ak+1 of ak. Note that ak−1 and ak enter in a simple AVL rotation, while ak−1,
ak, and ak+1 enter in a double AVL rotation. For performing at the root the
required AVL rotation, all the vertices in Π, starting from a1 and up to ak (for
simple rotation) or to ak+1 (for double rotation) are lifted to the root one after
the other, then the AVL rotation is done, and then the vertices are moved down
to their original postitions. These up and down movements are better expressed
with an ad hoc notation.

For a vertex x residing in level 2 or 3 of the tree we define UP (x) as the
operation of lifting x up to the root, and UP−1(x) as the one of moving x
from the root down to its original position. UP (x) must be performed before
UP−1(x), and both operations depend on the position of x in the tree when
UP (x) is performed. However, since the two operations may be separated by
several time steps during which the tree may change, the actions taken by UP (x)
must be recorded for later execution of UP−1(x). The two operations are defined
as follows:

if x is the left child of the root then UP (x)=rot1-right, UP−1(x) = rot1-lef;
if x is the right child of the root then UP (x)=rot1-left, UP−1(x)=rot1-right;
if x is the left child of the right child of the root then

UP (x)= rot2-right, rot1-left, UP−1(x)=rot1-right, rot2-left;
if x is the right child of the left child of the root then

UP (x)= rot3-left, rot1-right, UP−1(x)=rot1-left, rot3-right.

Note that UPs are equivalent to the AVL rotations executed in the upper two
levels of the tree, and UP−1s are their inverses.

We now define the rebalancing algorithm, whose functioning can be followed
on the example of figure 4 (integer keys not in the range 1 : n). Recall that
Π = a0, a1, ..., ak+1 is the search sequence. Note that the vertices in Π get
‘marked’.

Algorithm 3 Rebalancing an AVL tree after insertion, using 2-restricted rota-
tions. In the search sequence, A = ak−1 is the critical vertex, B = ak is the child
of A, and C = ak+1 is the child of B.

if an AVL simple rotation on A is required then

1. mark a0;
for i = 1 to k do mark ai, UP (ai);

2. if A is the left-child of B and the left-child of A is marked then rot3-
right;
if A is the right-child of B and the right-child of A is marked then rot2-
left;
ak−1 ← B;

3. for i = k − 1 downto 1 do UP−1(ai);

if an AVL double rotation on A is required then

1. mark a0;
for i = 1 to k + 1 do mark ai, UP (ai);
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2. if the left-child of the left-child of C is marked then rot3-right;
if the right-child of the right-child of C is marked then rot2-left;
ak−1 ← C;

3. for i = k − 1 downto 1 do UP−1(ai).

We have:

Theorem 5 Algorithm 3 correctly rebalances an AVL tree, unbalanced after ver-
tex insertion, with O(log n) 2-restricted rotations. (Proof omitted.)

In AVL trees rebalancing after deletion is more complicated than for in-
sertion, because the height of the subtree rooted at the critical vertex always
decreases by one after rebalancing at that vertex, thus possibly unbalancing the
parent of the critical vertex. The unbalancing can then propagate up to the root
so that O(log n) rotations are required in the worst case. However we can detect
in advance the vertices on the search path requiring a rotation, called candidates,
as the ones whose balance factor is different from zero and is of opposite sign
with respect to the search path [3].

The stategy for rebalancing a tree after deletion, using a restricted set of
rotations, is similar to that of insertion. As before all the vertices of the critical
path are lifted one by one to the root. In addition, when each such a vertex is
lifted, it is also rotated if satisfies the candidate condition. A rebalancing after
deletion algorithm can then be derived with minor modifications from Algo-
rithm 3, still requiring O(log n) rotations. This result seems to be interesting
because the same number of rotations, in order of magnitude, is required by the
standard AVL deletion algorithm where rotations are performed at all levels.

As before a0, . . . , ak−1 is the search subsequence from the root to the critical
vertex. Unlike for insertion, ak is now the child of ak−1 not in the search path,
and ak+1 is the left child (respectively, right child) of ak if ak is the right child
(respectively, left child) of ak−1. The rebalancing algorithm is as follows. As
usual we assume that the candidate vertices have already been detected during
the search for the node to be deleted.

Algorithm 4 Rebalancing an AVL tree after deletion, using 2-restricted rota-
tions. In the search sequence, A = ak−1 is the critical vertex, B = ak is the child
of A, and C = ak+1 is the child of B.

if an AVL simple rotation on A is required then

1. for i = 0 to k do

if ai is a candidate then

if ai+1 is the left-child of ai then let bi = right-child of ai;
if ai+1 is the right-child of ai then let bi = left-child of ai;
mark bi, UP (bi);

mark ai, if i �= 0 then UP (ai);

k-Restricted Rotation with an Application to Search Tree Rebalancing 11
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2. if A is the left-child of B and the left-child of A is marked then

rot3-right;

if A is the right-child of B and the right-child of A is marked then

rot2-left;

ak−1 ← B;

3. for i = k − 1 downto 0 do

if i �= 0 then UP−1(ai);

if ai is a candidate then UP−1(bi);

if an AVL double rotation on A is required then

1. for i = 0 to k + 1 do

if ai is a candidate then

if ai+1 is the left-child of ai then let bi = right-child of ai;

if ai+1 is the right-child of ai then let bi = left-child of ai;

mark bi, UP (bi);

mark ai, if i �= 0 then UP (ai);

2. if the left-child of the left-child of C is marked then rot3-right;

if the right-child of the right-child of C is marked then rot2-left;

ak−1 ← C;

3. for i = k − 1 downto 0 do

if i �= 0 then UP−1(ai);

if ai is a candidate then UP−1(bi).

We then have the following corollary as a simple extension of Theorem 5:

Corollary 3 Algorithm 4 rebalances an AVL tree after vertex deletion with
O(log n) 2-restricted rotations.

5

Much work has to be done to complete this work. First, a sharp lower bound
and/or a better algorithm for 2-restricted rotation have yet to be found. More-
over the present study is directed to worst case performance, while an efficient
transformation algorithm for the average case is still unknown. (k ≥ 3)-restricted
rotations open a promising new line of investigation. More importantly, other ap-
plications of restricted rotations should be studied besides the AVL rebalancing
problem.

Another interesting approach for further studies could be investigating the
relationship between group theory and our new results, along the line opened
by Cleary and Taback. Not only this could lead to improve the bounds, but new
significant interpretations of tree distance could possibly arise in group theory.

Concluding Remarks
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Fig. 4. Rebalancing an AVL tree after the insertion of the unbalancing vertex 25 (simple
rotation), using 2-restricted rotations,. We have: Π = a0, a1, a2, a3 = 16, 30, 20, 22 and
k = 3, ak−1 = A = 20 (critical vertex), B = 22. Step 1 of Algorithm 3 makes:
UP (a1 = 30) = rot1-left; UP (a2 = 20) = rot3-left, rot1-right; UP (a3 = 22) = rot2-
right, rot1-left. Step 2 makes: rot3-right, a2 = 22. Step 3 makes: UP−1(a2 = 22) =
rot1-left, rot3-right; UP−1(a1 = 30) = rot1-right
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Abstract. We consider the lower bound for building a heap in the worst
case and the upper bound in the average case. We will prove that the
supposedly fastest algorithm in the average case[2] does not attain its
claimed bound and indeed is slower than that in [6]. We will then prove
that the adversarial argument for the claimed best lower bound in the
worst case[1] is also incorrect and the adversarial argument used yields
a bound which is worse than that in [5] given by an information theory
argument. Finally, we have proven a lower bound of 1.37n + o(n) for
building a heap in the worst case.

1 Introduction

Heaps are a classical and commonly used implementation of priority queues.
They are so fundamental that computer science students typically learn about
them in their first year of university study. In this paper, we discuss bounds on
building heaps.

We will prove that the supposedly fastest algorithm in the average case[2]
does not attain its claimed bound and indeed is slower than that in [6]. We will
then prove that the adversarial argument for the claimed best lower bound in
the worst case[1] is also incorrect and the adversarial argument used yields a
bound which is worse than that in [5] given by an information theory argument.
Finally, we have proven a lower bound of 1.37n + o(n)for building a heap in the
worst case. Forthwith the details.

A heap [7, 4, 3] is a binary tree in each node of which we have stored a key.
The tree has a special shape. All of its levels are full except the last one. The
nodes on the last level are all as much to the left of the tree as possible. A
min-heap has the property that every node has value less than or equal to its
children. All heaps in this paper are min-heaps. A perfect heap is a heap whose
last level is full.

The height of a tree is defined as the number of arcs of the longest path from
the root to a leaf. Therefore, a perfect heap of height k has 2k+1 − 1 nodes.

One of the attractive features of heaps is that they can be implemented using
an array where the children of a node at A[i] are located at A[2i] and A[2i+1].

We will only consider building heaps in the comparisons model. That is,
at each step, an algorithm chooses two keys and compares them to determine

F. Dehne, A. López-Ortiz, and J.-R. Sack (Eds.): WADS 2005, LNCS 3608, pp. 14–23, 2005.
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which is bigger. Since we are dealing with min-heaps, we will call the winner of
a comparison the key that is smaller and the loser of a comparison the key that
is bigger.

The first heap-building algorithm due to Williams [7] runs in O(n log(n)) by
inserting the keys one by one. More precisely, it’s worst case running time is∑n−1

i=1 �log(i + 1)�. The key is added in a new leaf node so that the tree remains
heap-shaped and “bubbled up” the tree until the heap order is restored.

A classical algorithm of Floyd [4] for building heaps from the bottom up yields
an upper bound of 2n comparisons. This algorithm builds a heap on n = 2k − 1
nodes by first recursively builds 2 heaps of size 2k−1 − 1. It then “trickle down”
another node to merge these two heaps. An information theory lower bound
of 1.364n comparisons to build a heap on n keys is shown in [5]. An algorithm
which uses 1.521n comparisons on average is developed in [6] by combining ideas
from Floyd’s and Williams algorithm. Faster algorithms for building heaps in the
worst case were developed with the aid of binomial trees.

The binomial tree of size 1 (height 0) is a single node. A binomial tree of
height k is defined as follows: It has a root that has k children. The subtrees
rooted at the children of the root are binomial trees of each of heights 1 to k−1.
As in the min-heap, every node has a key whose value less or equal to that of
its children. Clearly a binomial tree of height k has 2k nodes.

A binomial tree on 2k nodes can be built recursively using 2k−1 comparisons
by first building two binomial trees of 2k−1 nodes and then comparing the keys
at their roots. This is clearly best possible since we know that the root contains
the min, any key that has not lost at least once could still be the min and each
comparison can only make one key, that has not yet lost, lose.

Faster algorithms for building heaps on 2k elements first build a binomial tree
and then recursively convert this into a heap. As discussed in [5], this approach
can be used to build a heap on n nodes in 1.625n + o(n) comparisons in the
worst case.

The contributions of this paper are threefold:

1. The algorithm shown in [2] claims to have an average case running time of
1.5n + o(n) or faster. We will show that the analysis gives a lower bound of
43
28n + o(n) which is slower than the algorithm shown in [6].

2. The authors of [1] claim that their adversary yields a lower bound of 1.5n +
o(n) comparisons in the worst case. We will show that this adversary yields
a lower bound which is at best 5

4n + o(n) comparisons. This is worse than
that of the information theory lower bound of 1.364n comparisons [5].

3. We have proven a new lower bound of 1.3701 . . . n+ o(n) for building heaps.

In what follows, we consider only heaps of size 2k and 2k − 1. This is not
really a restriction. For example, to build a heap with 23 elements,we can first
build the 15 element heap rooted at the left child of the root, then build the 7
elements heap rooted at the right child of the root and then “trickle down” the
remaining element from the root using 2 log(n) comparisons (see [3]) to construct
our heap. In the same vein, if we can construct heaps of size n = 2k − 1 in
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αn+o(n) comparisons for all k, then we can build heaps of any size in αn+o(n)
comparisons.

A pseudo-binomial tree is a binomial tree with one leaf missing somewhere
in the tree.

2 Average Case Algorithm

The algorithm described by Carlsson and Chen [2] is as follows:

1. To build a perfect heap of size n = 2k − 1, first build a binomial trees of
height i for i = 1, 2, 4, . . . , 2k−1.

2. Repeatedly compare the keys of the roots of two smallest trees until a pseudo-
binomial tree of size 2k − 1 is created. Note that these first two steps take
n − 1 comparisons in total.

3. Let T̄ (2k −1) denote the number of comparisons required on average by this
algorithm to transform a pseudo-binomial tree of size 2k − 1 into a heap.
Note that T̄ (1) = T̄ (3) = 0 since these pseudo-binomial trees are heaps.
Note that the subtree rooted at the children of the root are all binomial
trees except for one which is a pseudo-binomial tree. If k < 2 then we have
constructed the desired heap. otherwise we proceed depending on where the
missing leaf is:
Case 1. If the largest subtree of the root is the pseudo binomial tree, recurse

on it. Then compare the keys of the roots of the other subtrees of the
root to create a pseudo-binomial tree (i.e.:same as step 2) and recurse
on it.
This takes T̄ (2k−1 − 1) + k − 2 + T̄ (2k−1 − 1) comparisons. It happens
only if the min was in the largest binomial tree (before step 2) and this
occurs n+1

2n of the time as discussed in [2].
Case 2. Otherwise, transform the largest subtree, T , of the root R, which is

now a binomial tree, into a heap plus an extra element x. We do this as
follows: The root r of T will be the root of the heap. The subheap rooted
at the right child of r will be formed from the union of the elements of
the subtrees rooted at the children of r except for the largest. The largest
subtree of T rooted at the left child of r will be used to form the subheap
rooted at the left child of r (and will yield an extra element). To form
the right subheap, we build a pseudo-binomial tree from the union of
the trees under consideration and we recursively apply this algorithm
starting at step 2. To form the subheap rooted at the left child of r, we
recursively apply the procedure described in this paragraph.
At this point, we have built a heap on T − x. We now need to build a
heap on the elements not in T −x+ r. To do so, we consider x as a child
of R. Recurse on the children of R, excluding T but including x, starting
from step 2.
According to Carlsson and Chen, this takes

∑k−2
i=2

(
(i − 1) + T̄ (2i − 1)

)
+

k − 1 + T̄ (2k−1 − 1) comparisons on average. Since T̄ (3) = 0 this is just
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2 +
∑k−1

i=3

(
(i − 1) + T̄ (2i − 1)

)
comparisons. This happens n−1

2n of the
time.

4. Stop the recursion at the heaps of size 7 and build them in 9
7 comparisons

as discussed in [2].

It seems to us that Carlsson and Chen’s analysis is faulty as they ignore impor-
tant conditioning on x. We show now that their analysis is faulty even assuming
their conditioning assumptions are correct. Accepting their hypothesis, we have:

Theorem 1. For the algorithm in [2], T̄ (2k − 1) ≥ 15
282k − k ∀k ≥ 3

Proof. First note that T̄ (7) = 9
7 ≥ 15

282k − k for this algorithm.
If T̄ (2i − 1) ≥ 15

282i − i for i = 3, . . . , k − 1 and k ≥ 4 then

T̄ (2k − 1) =
n − 1
2n

(
2 +

k−1∑
i=3

(
(i − 1) + T̄ (2i − 1)

))

+
n + 1
2n

(
T̄ (2k−1 − 1) + k − 2 + T̄ (2k−1 − 1)

)
=

n − 1
2n

(
2 +

k−1∑
i=3

(
(i − 1) + T̄ (2i − 1)

))

+
n + 1
2n

(
k − 2 + 2T̄ (2k−1 − 1)

)
≥ n − 1

2n

(
2 +

k−1∑
i=3

(
(i − 1) +

15
28

2i − i

))

+
n + 1
2n

(
k − 2 + 2

(
15
28

2k−1 − k + 1
))

=
n − 1
2n

(
2 +

15
28

(
2k − 8

)
− (k − 3)

)

+
n + 1
2n

(
15
28

2k − k

)

=
n − 1
2n

(
15
28

2k − k +
5
7

)
+

n + 1
2n

(
15
28

2k − k

)

≥ n − 1
2n

(
15
28

2k − k

)
+

n + 1
2n

(
15
28

2k − k

)

=
15
28

2k − k

∴ T̄ (2k − 1) ≥ 15
282k − k

By induction, T̄ (2k − 1) ≥ 15
282k − k ∀k ≥ 3

Note that this implies that the algorithm in [2] is worse than the algorithm in
[6].
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3 Worst Case Adversary

The adversary described by Carlsson and Chen [1] does the following: For all
keys x, define Up(x) = {y|y < x} and Down(x) = {y|y ≥ x}. When comparing
two keys x and y, the adversary will answer as follows:

If x ∈ Up(y), we must answer x < y. If y ∈ Up(x), we must answer y < x.
If x /∈ Up(y) and y /∈ Up(x) then answer x < y according to the first rule

that can apply:

Rule 1. If ‖Down(x)‖ > ‖Down(y)‖ then x is the winner, otherwise
Rule 2. if ‖Up(x)‖ < ‖Up(y)‖ then x is the winner.
Rule 3. For all other cases, answer x < y.

We will now show a counter-example for which the adversarial argument given
in [1] fails to attain the claimed bound of 1.5n.

Theorem 2. Given a complete heap H of height k ≥ 2, in which the key at
its leaves have never won, a key Loser which has never won, and a set S of
2k+1+2k+2 keys which have not yet been compared, we can build in 5

4 (2k+1+2k+2)
comparisons, against this adversary, a heap H ′ of height k + 2 containing S and
all the nodes of H such that no leaf of H ′ contains a key which has won a
comparison.

We proceed in the following way: We consider a node P with both children
being leaves. We call the key at the left child L and the key at the right child R.

P

L R

It is enough to prove the theorem for heaps of size 7 as we can treat the 2k−2

heaps of size 7 at the bottom of H separately. In order to add 12 nodes to this
heap, we will do the following:

Step 1. – Compare Loser to P. Loser will lose since ‖Down(Loser)‖=1 (and
‖Down(Loser)‖ remains 1 after this comparison).

P

L R

LoserB

A
1

4

2
3

A number n on an edge is the nth comparison that we are making.
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Step 2. – Compare two keys in S and call the winner A and the loser B.
– Compare B to L. B will win since ‖Down(L)‖ = ‖Down(B)‖ = 1 and

‖Up(L)‖ ≥ 2 while ‖Up(B)‖ = 1.
– Compare P to A. P will win since ‖Down(P )‖ ≥ 4 and ‖Down(A)‖ = 3.

We can redraw the tree to record the current information:

P

R

Loser

A

B

L

– Compare two more keys in S and call the winner C and the loser D.
– Compare C to A. C will lose since ‖Down(C)‖=2 and ‖Down(A)‖=3.
– Compare a key N1 in S to B and a key N2 in S to C. The new keys will lose

since ‖Down(B)‖=2, ‖Down(C)‖=2 and ‖Down(N1)‖=‖Down(N2)‖=1.

P

R
Loser

A

B

N DL

C

78 5

6

N1 2

Step 3. Do step 2 on R and P instead of L and P.

NN

A

B

NL

C

P

Loser

A’

C’

RND’

B’

D

9
13

1412

11

1015

1 2 3 4

We have taken 15 comparisons to add 12 keys (Loser doesn’t count as an
added key). We can repeat this process using the same Loser key.
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Note that we did not use the fact that the adversary chooses arbitrarily if
both ‖Up‖ and ‖Down‖ are equal.

Also note that the only property that we used was that ‖Down(L)‖ = 1 (and
‖Down(R)‖ = 1), ‖Up(L)‖ > 1 (and ‖Up(R)‖ > 1) and ‖Down(P )‖ ≥ 2). These
properties are kept for the keys on the last two levels after we have inserted the
new keys.

Here is a possible way of building the initial 7 nodes heap:

1

24

7

6 5

3

Note that we put the winner of the 3rd comparison at the root. This allows
us to build perfect heaps of odd height. To build perfect heaps of even height,
we can just start with a heap of 15 nodes instead.

Here is a possible way of building the 15 nodes heap:

1

24

7

6 5

3

9

10

11
12

13

14

1816

8

15

17

Now we can use Gonnet and Munro’s algorithm [5] to build heaps of any
height from perfect heaps.

Therefore, the lower bound that the adversary provides is at most 5
4n +

O(log2 n) which is worse than the information theory lower bound of 1.362n.

4 A Simple Adversary

We now describe an adversary which yields a lower bound of 1.3701 . . . n + o(n)
comparisons for building a heap H on 2k − 1 elements.

Since we are dealing with min-heaps, we will call the winner of a comparison
the key that is smaller and the loser of a comparison the key that is bigger.

The adversary decides how to answer comparisons by looking at the first loss
graph. This is a directed acyclic graph which contains, for every node x which
has lost, an edge from x to the first node to which it lost. These are the only
edges of the graph. Note that each component of this graph is a tree all of whose
edges are directed towards some root. Note further that this graph changes as the
algorithm progresses. Initially, it is empty and when the algorithm terminates,
it has n − 1 edges.

There are n − 1 comparisons which are first losses and hence correspond to
edges of the final first loss graph. We bound the number of comparisons used in
building the heap which are not part of the final first loss graph. If in the final
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first loss graph, everybody but the minimum lost to the minimum, then since all
but the top three nodes of the heap lose to somebody who is not the minimum,
there must be at least n − 3 such extra comparisons in total.

More generally, our approach is to try to ensure that there are many vertices
of large indegree high up (i.e. close to the root) in the final first loss graph.

Ideally, we would like the indegree in the first loss tree of a node to be less
than the corresponding value for its parent. This is difficult to ensure as the
indegree of x may increase after its first loss. So instead, we colour an edge xy
of the first loss graph red if x lost to y before y had lost and blue otherwise. We
let a(x) be the red indegree of x. We note that a(x) can only increase during
the heap building process and that after x loses, a(x) does not change. So if we
insist that:

1. When comparing two nodes, the node with the higher a value wins
2. If the two nodes have equal a value then the node which has not yet lost

wins.

then the a(x) value of any node is indeed strictly less than that of its parent in
the final first loss tree.

We use b(x) to denote a(y) where y is the parent of x in the first loss graph.
If x has not yet lost, b(x) is undefined.

We analyze this adversary using a LP. We define some variables such as
p0 = ‖{x|a(x) = 0}‖/n and p(0,i) = ‖{x|a(x) = 0, b(x) = i}‖/n by looking at
the first loss graph. We also define variables depending on the shape of the final
heap that is built. They includes q(0,1) = ‖{x|a(x) = 0, b(x) = 1 and x is a
leaf }‖/n as well as q(0,1,4,5,2,3) = ‖{x|a(x) = 4, b(x) = 5, x is not a leaf, x has
children c1, c2 and a(c1) = 0, b(c1) = 1, a(c2) = 2, b(c2) = 3}‖/n. Our LP has a
total of 4099 variables.

Recall that we consider only heaps on n = 2k − 1 nodes. Thus every internal
vertex has two children.

With these variables, we define some constraints by simply counting the
nodes. An example of such constraint is

∑
pi = 1. We also have constraints due

to the structure of a heap such as
∑

q(i,j) = 0.5+ 1
2n since there are 2k−1 leaves in

a heap on 2k−1 elements. We note that instead of an equation with RHS = 0.5+
1
2n , we use two inequalities which this implies. One with RHS ≤ 1

2 and the other
with RHS ≥ 1

2 + ε for a small but fixed ε. Our final analysis uses 209 constraints.
To give a flavour of the LP, we close this section by proving here a lower

bound of (1 + 1
13 )n − 1 on the number of comparisons needed to build a heap.

We actually consider the number of comparisons not in the first loss graph. We
denote this number by Extra. We also use p∗1 to denote ‖{x|a(x) = 1, x has a
unique child in the first loss graph}‖/n

Now, consider a node y with a(y) ≥ 1. When a(y) increases from 0 to 1, y
won a comparison against a node x. Since y won, a(x) had value 0. Since a(y)
increased, x had not yet lost and xy is a red edge of the first loss graph. It follows
that for all i, p(0,i) ≥ pi. Thus, p0 ≥ 1

2 and more strongly

p0 ≥ 1
2

+
1
2
(p(0,i) − pi) (1)
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If y has a(y) ≥ 2 then for a(y) to become 2, it either has to have at least two
children in the first loss graph with a value 0, or one child with a value 0 and
another with a value 1. It follows easily that:

p0 + p∗1 ≥ 3
5

(2)

p0 + p∗1 ≥ 2
3
− 1

3
(p(0,1) − p1) (3)

Now, if a vertex x with a(x) = 0 is a non-leaf of the heap, then x must win
a comparison and this is not a comparison of the first loss graph. If a vertex x
with a(x) = 1 which has a unique child z in the first loss graph, is a non-leaf of
the heap, then one of z or x must win a comparison which is not a comparison
of the first loss graph. Since there are at most n

2 + 1
2 leaves, amortizing over x

and z in the second case, we have:

Extra ≥ 1
2
(p0n + p∗1n − (

n

2
+

1
2
)) (4)

Combining this with (2) gives

Extra ≥ n

20
− 1

4
(5)

The point of our LP is that we can combine one such argument with others.
For example, if we consider only x with a(x) = 0, for each such x which is not a
leaf in the heap, each child y of x in the heap has a(x) = 0, and must have lost
twice so we have:

Extra ≥ 2(p0n − n

2
− 1

2
) (6)

Combining (3) with (4) gives:

Extra ≥ n

12
− 1

6
(p(0,1) − p1)n − 1

4
(7)

Combining (6) with (1) gives:

Extra ≥ (p(0,1) − p1)n − 1 (8)

Finally, combining (7) and (8) which arise via two similar but different argument
give

Extra ≥ n

13
− 1 (9)

Our LP of course involves much more sophisticated arguments and many
more than two of them. Details can be found at

www.cs.mcgill.ca/~zli47/heaps.html
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5 Conclusions

We have shown that the analysis of the average case running time of algorithm
[2] is incorrect. We have also shown that the lower bound on heap building from
[1] is incorrect. The full proof of our adversary which yields a lower bound of
1.37n + o(n) is available at www.cs.mcgill.ca/~zli47/heaps.html .
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Abstract. Let G = (V, E) be a graph with a non-negative edge length lu,v for
every (u, v) ∈ E. The vertices of G represent locations at which transmission
stations are positioned, and each edge of G represents a continuum of demand
points to which we should transmit. A station located at v is associated with a set
Rv of allowed transmission radii, where the cost of transmitting to radius r ∈ Rv

is given by cv(r). The multi-radius cover problem asks to determine for each
station a transmission radius, such that for each edge (u, v) ∈ E the sum of the
radii in u and v is at least lu,v , and such that the total cost is minimized.

In this paper we present LP-rounding and primal-dual approximation al-
gorithms for discrete and continuous variants of multi-radius cover. Our algo-
rithms cope with the special structure of the problems we consider by utilizing
greedy rounding techniques and a novel method for constructing primal and dual
solutions.

1 Introduction

1.1 Problem Definition

In this paper we consider the following generalization of the vertex cover problem. Let
G = (V,E) be a graph with a non-negative edge length lu,v for every (u, v) ∈ E.
The vertices of G represent locations at which transmission stations are positioned,
and each edge of G represents a continuum of demand points to which we should
transmit. A station located at v is associated with a set of allowed transmission radii
Rv = {rv

0 , . . . , rv
kv
}, 0 = rv

0 < · · · < rv
kv

, where the cost of transmitting to radius
rv
i is cv,i. Without loss of generality, 0 = cv,0 < · · · < cv,kv

for every v ∈ V . The
multi-radius cover problem (MRC) asks to determine for each station a transmission
radius, such that for each edge (u, v) ∈ E the sum of the radii in u and v is at least lu,v ,
and such that the total cost is minimized.

When all edges are of unit length and the set of transmission radii from each station
is {0, 1}, MRC reduces to the vertex cover problem. Therefore, hardness results regard-
ing vertex cover extend to MRC. In particular, it is NP-hard to approximate MRC to
within any factor smaller than 1.3606 [4]. We note that the currently best approxima-
tion guarantee for vertex cover in general graphs is 2 − o(1) [2, 6].

The MRC problem introduces two new difficulties when compared to the vertex
cover problem. Consider an edge (u, v) ∈ E. The first difficulty in MRC is the depen-
dence between the transmission radii we choose for u and v, as their sum must be at

F. Dehne, A. López-Ortiz, and J.-R. Sack (Eds.): WADS 2005, LNCS 3608, pp. 24–35, 2005.
c©Springer-Verlag Berlin Heidelberg 2005
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least lu,v . In vertex cover, the edge (u, v) is covered if we pick one of its endpoints,
regardless of whether or not we pick the other. The second difficulty in MRC is that un-
like vertex cover, in which we either pick a vertex or not, there are several “degrees” to
which we can pick each vertex, corresponding to the set of allowed transmission radii.

We also study the expensive-cheap vertex cover problem (EC-VC). Given a graph
G = (V,E), at each vertex v we can locate an expensive facility with cost βv , or a
cheap facility with cost αv . An edge (u, v) is said to be covered if an expensive facility
is located at u or at v, or if cheap facilities are located at both u and v. The objective is
to locate expensive and cheap facilities with minimum total cost, such that all edges of
G are covered.

EC-VC is a special case of MRC that is obtained when all edges are of unit length,
and for each v ∈ V we have Rv =

{
0, 1

2 , 1
}

with costs αv and βv for transmitting
to radii 1

2 and 1, respectively. Even this restricted problem is a generalization of vertex
cover, since when αv = βv for every v ∈ V there is no motivation to locate a cheap
facility at any vertex.

We also discuss the piecewise linear multi-radius cover problem (PL-MRC), a con-
tinuous variant of MRC in which the set of allowed transmission radii is R+, and we
are given a transmission cost function cv : R+ → R+ for each station v. Each cv is a
non-decreasing piecewise linear function, and we assume that it is given by specifying
the pairs 〈r, cv(r)〉 for every r ∈ BPv, where BPv is the set of breakpoints of cv .

1.2 Our Results

In Section 2 we present an LP-rounding algorithm for EC-VC. It uses the optimal frac-
tional solution to identify a special set of vertices, at which facilities are located. It then
determines the type of facility to locate at each special vertex based on a greedy rule:
Always locate a cheap facility, unless it would lead to an infeasible solution. We prove
that by applying this simple rule, the algorithm constructs a feasible solution whose cost
is at most twice the optimum.

We then develop in Section 3 a linear time primal-dual algorithm with a similar
approximation guarantee. This algorithm simultaneously constructs an integral primal
solution and a feasible dual solution, so that their values are provably close to each other.
We prove that the total cost of the solution we obtain is at most twice the optimum, by
showing how to separately charge the cost of locating cheap and expensive facilities to
the dual variables. A crucial property of the algorithm, that guarantees a linear run time,
is that in each step we locate an expensive facility or a pair of cheap facilities that cover
at least one edge.

We proceed in Section 4 to provide an LP-relaxation of the MRC problem, in which
the covering constraint is specified in terms of vertices and transmission radii. Our for-
mulation hides the actual lengths of edges and radii using a special indexing scheme.
We present a primal-dual algorithm that is guaranteed to obtain a feasible integral solu-
tion whose cost is at most twice that of the optimal fractional solution. Our algorithm
initially transmits to radius rv

0 from each station v, and in each step it slightly increases
the transmission radius of at least one station. This process eventually results in a fea-
sible solution, and is guided by a novel method for constructing the primal and dual
solutions. This method enables us to easily analyze the algorithm, although it appears
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to be relatively challenging to ensure that feasibility of the dual solution is maintained
in each step.

Finally, in Section 5 we discuss the hardness of approximating PL-MRC, and in
particular prove that this problem is as hard to approximate as vertex cover. We then
present a polynomial time (2 + ε)-approximation algorithm for every fixed ε > 0. This
algorithm is based on a polynomial time reduction to MRC by constructing a discrete set
of transmission radii for each station, that depends on the cost function, ε, and additional
parameters. This immediately gives the stated result, by using the primal-dual algorithm
in Section 4 and guessing the remaining parameters.

2 An LP-Rounding Algorithm for EC-VC

In this section we first describe a natural LP-relaxation of the EC-VC problem. We then
present an algorithm that rounds the optimal fractional solution to a feasible integral
solution, while increasing the cost by a factor of at most 2.

2.1 A Linear Program

We suggest the following LP-relaxation of EC-VC1:

minimize
∑
v∈V

αvzv +
∑
v∈V

βvyv (LP)

subject to zv ≥ xe ∀ e ∈ E, v ∈ e (2.1)

yu + yv + xe ≥ 1 ∀ e = (u, v) ∈ E (2.2)

xe, yv, zv ≥ 0 ∀ e ∈ E, v ∈ V (2.3)

In an integral solution, the variable zv indicates whether a cheap facility is located at v,
and the variable yv indicates whether an expensive facility is located at v. In addition,
the variable xe indicates whether the edge e is covered by cheap facilities located at its
endpoints. Constraint (2.1) ensures that no edge is covered by cheap facilities unless we
indeed locate them. Constraint (2.2) ensures that each edge (u, v) is covered by locating
an expensive facility at u or at v, or by locating cheap facilities at both u and v.

2.2 The Algorithm

Let (x∗, y∗, z∗) be an optimal fractional solution to (LP). We can assume without loss
of generality that for each (u, v) ∈ E we have x∗

u,v = min{z∗u, z∗v}. We identify a
special set of vertices S =

{
v ∈ V : y∗

v + z∗v ≥ 1
2

}
, and locate facilities as follows. For

each v ∈ S, we locate a cheap facility at v if and only if N(v) ⊆ S, and otherwise we
locate an expensive facility there. We do not locate a facility at any v /∈ S.

In Lemma 1 and Theorem 2 we show that the solution constructed by the algorithm
is feasible, and prove that its cost is at most twice the optimum of (LP), which is a lower
bound on the cost of any feasible solution to the EC-VC problem.

1 Although EC-VC can be formulated as an integer covering LP, we prefer to use the current
formulation to simplify the presentation.
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Lemma 1. The facilities located by the LP-rounding algorithm cover all edges.

Proof. We first prove that S is a vertex cover in G. Suppose that there is an edge (u, v) ∈
E such that u, v /∈ S. By definition of S, y∗

u + z∗u < 1
2 and y∗

v + z∗v < 1
2 . It follows that

y∗
u + y∗

v + x∗
u,v = y∗

u + y∗
v + min{z∗u, z∗v} ≤ (y∗

u + z∗u) + (y∗
v + z∗v) < 1 ,

and (x∗, y∗, z∗) is not a feasible solution to (LP), a contradiction.
Now consider an edge (u, v) ∈ E. Since we locate a facility at each vertex in S, this

edge is clearly covered if u, v ∈ S. Otherwise, since S is a vertex cover, we can assume
without loss of generality that u ∈ S. As v /∈ S, we locate an expensive facility at u,
and (u, v) is covered. ��

Theorem 2. The cost of the solution constructed by the LP-rounding algorithm is at
most 2 · OPT(LP).

Proof. Let v ∈ S. We claim that the cost of the facility we locate at v is at most twice
the cost of the optimal fractional facilities located at v. There are two cases:

1. N(v) ⊆ S. In this case the cost of the cheap facility we locate at v is

αv ≤ 2αv(z∗v + y∗
v) ≤ 2(αvz∗v + βvy∗

v) .

2. N(v) � S, that is, there is a vertex u ∈ N(v) such that u /∈ S. Since (x∗, y∗, z∗)
is feasible for (LP),

1 ≤ y∗
u + y∗

v + x∗
u,v = y∗

u + y∗
v + min{z∗u, z∗v} ≤ y∗

u + y∗
v + z∗u ,

and y∗
v ≥ 1− (y∗

u +z∗u) > 1
2 . Therefore, the cost of the expensive facility we locate

at v is

βv ≤ 2βvy∗
v ≤ 2(αvz∗v + βvy∗

v) .

This implies that the combined cost of the facilities we locate is

∑
v∈S:

N(v)⊆S

αv +
∑
v∈S:

N(v)�S

βv ≤ 2
∑
v∈S

(αvz∗v + βvy∗
v) ≤ 2 · OPT(LP) . ��

3 A Primal-Dual Algorithm for EC-VC

In this section we present a linear time primal-dual algorithm with an approximation
ratio of 2. Our algorithm is based on the vertex cover primal-dual algorithm due to
Bar-Yehuda and Even [1]. However, it departs from their approach, as we use the linear
program (LP) and its dual, that do not form a covering-packing pair.
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3.1 The Dual Program

The dual of the linear program (LP) is:

maximize
∑
e∈E

te (DLP)

subject to
∑

e∈δ(v)

se,v ≤ αv ∀ v ∈ V (3.1)

∑
e∈δ(v)

te ≤ βv ∀ v ∈ V (3.2)

te − se,u − se,v ≤ 0 ∀ e = (u, v) ∈ E (3.3)

se,v, te ≥ 0 ∀ e ∈ E, v ∈ e (3.4)

By weak duality, the cost of any feasible solution to (DLP) provides a lower bound
on the cost of the optimal solution to (LP), which is a lower bound on the cost of the
EC-VC problem.

3.2 The Algorithm

Given a feasible dual solution (s, t), a vertex v is called α-tight if
∑

e∈δ(v) se,v = αv ,
and β-tight if

∑
e∈δ(v) te = βv . We define an associated primal solution by locating

expensive facilities at β-tight vertices and cheap facilities at α-tight remaining vertices.
Therefore, the primal solution covers an edge (u, v) if at least one of u and v is β-tight,
or if both u and v are α-tight.

We begin with the trivial dual solution s = t = 0. We then consider the edges of
G in an arbitrary order, and for each edge e = (u, v) we perform a maximal increment
step. The goal of this step is to increase the value of te, which is currently 0, as much
as possible. If we increase te by ε > 0, to maintain feasibility we also have to increase
se,u + se,v by at least ε. Therefore, there are two limiting bounds:

1. In addition to (3.3), the variable te appears twice in (3.2):
∑

e′∈δ(u) te′ ≤ βu and∑
e′∈δ(v) te′ ≤ βv , since e ∈ δ(u) ∩ δ(v). This implies that we cannot increase te

by more than ε1 = min{βu −
∑

e′∈δ(u) te′ , βv −
∑

e′∈δ(v) te′}.

2. In addition to (3.3), the variable se,u appears once in (3.1),
∑

e′∈δ(u) se′,u ≤ αu,
and we cannot increase se,u by more than ε2 = αu −

∑
e′∈δ(u) se′,u. Similarly,

for se,v we have
∑

e′∈δ(v) se′,v ≤ αv , and we cannot increase se,v by more than
ε3 = αv −

∑
e′∈δ(v) se′,v .

Let ε = min{ε1, ε2 + ε3}. We increase te by ε, and balance this by increasing se,u by
ε′2 and se,v by ε′3, for some ε′2, ε

′
3 ≥ 0 that satisfy ε′2 ≤ ε2, ε′3 ≤ ε3 and ε′2 + ε′3 = ε.

Let (s′, t′) be the final dual solution, and let (x′, y′, z′) be the indicator vector of
the associated primal solution: y′

v = 1 and z′v = 0 for every β-tight vertex; y′
v = 0

and z′v = 1 for every α-tight remaining vertex; y′
v = z′v = 0 for all other vertices;

x′
e = min{z′u, z′v} for every e = (u, v) ∈ E.
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3.3 Analysis

In the following we first prove that the integral primal solution we obtained is indeed
feasible for (LP). We then suggest a charging scheme that specifies how the cost of the
facilities we locate is paid for using the dual variables. Specifically, we show that the
cost of these facilities can be paid for, such that no edge e ∈ E is charged more than
twice the value of its dual variable t′e. It follows that the approximation ratio of our
algorithm is 2.

Lemma 3. (x′, y′, z′) is a feasible solution to (LP).

Proof. By definition of (x′, y′, z′), the constraints (2.1) and (2.3) are clearly satisfied.
Suppose that the constraint (2.2) is not satisfied for some edge e = (u, v), that is,
y′

u + y′
v + x′

e < 1. Since the solution is integral, y′
u = y′

v = x′
e = 0. By defini-

tion of y′, we have
∑

e′∈δ(u) t′e′ < βu and
∑

e′∈δ(v) t′e′ < βv . Let ε′1 = min{βu −∑
e′∈δ(u) t′e′ , βv −

∑
e′∈δ(v) t′e′} > 0. By definition of x′, x′

e = min{z′u, z′v} = 0,
and we assume without loss of generality that z′u = 0. Finally, by definition of z′ and
since y′

u = 0, we have
∑

e′∈δ(u) s′e′,u < αu. Let ε′2 = αu −
∑

e′∈δ(u) s′e′,u > 0 and
ε′3 = αv −

∑
e′∈δ(v) s′e′,v ≥ 0.

Since the values of the dual variables never decrease during the construction of
the dual solution, it follows that te could have been further increased in the maximal
increment step of e by at least min{ε′1, ε′2 + ε′3} > 0. This contradicts the fact that te
was maximally increased. ��

In Theorem 4 we separately charge the cost of locating cheap and expensive facil-
ities to the dual variables. We remark that the dual solution (s′, t′) satisfies constraint
(3.3) with equality, for every e ∈ E. This follows from observing that in each maxi-
mal increment step we increase te and se,v + se,u by exactly the same value, and these
variables are not changed later.

Theorem 4. The primal-dual algorithm constructs in linear time a solution whose cost
is at most 2 · OPT(LP).

Proof. Let A = {v ∈ V : z′v = 1} and B = {v ∈ V : y′
v = 1} be the sets of vertices

at which we locate cheap and expensive facilities, respectively. Clearly, A and B are
disjoint. The combined cost of the cheap and expensive facilities we locate is∑

v∈V

αvz′v +
∑
v∈V

βvy′
v =

∑
v∈A

αv +
∑
v∈B

βv

=
∑
v∈A

∑
e∈δ(v)

s′e,v +
∑
v∈B

∑
e∈δ(v)

t′e

≤
∑
v∈A

∑
e=(u,v)∈δ(v)

(s′e,v + s′e,u) +
∑
v∈B

∑
e∈δ(v)

t′e

=
∑
v∈A

∑
e∈δ(v)

t′e +
∑
v∈B

∑
e∈δ(v)

t′e ,

where the second equality holds since each v ∈ A is α-tight and each v ∈ B is β-tight,
and the last equality holds since the dual solution (s′, t′) satisfies constraint (3.3) with
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equality. Since each dual variable te appears at most twice in the right-hand-side of this
inequality, ∑

v∈V

αvz′v +
∑
v∈V

βvy′
v ≤ 2

∑
e∈E

t′e ≤ 2 · OPT(LP) ,

where the last inequality holds since (s′, t′) is a feasible dual solution, and its cost is a
lower bound on OPT(LP).

Our algorithm runs in time O(|V | + |E|), since it consists of exactly |E| maximal
increment steps. By keeping track of the sums in each constraint of (DLP), we can
compute the ε’s and update the variables in a single step by performing a constant
number of operations. ��

4 A Primal-Dual Algorithm for MRC

In this section we suggest an asymmetric LP-relaxation of the MRC problem. In con-
trast with the relaxation of EC-VC, in which the covering constraint is symmetric with
respect to the endpoints of each edge, here we make use of a relaxation in which the cov-
ering constraint is specified in terms of vertices and transmission radii. We then present
a primal-dual algorithm that is guaranteed to obtain a feasible integral solution whose
cost is at most twice that of the optimal fractional solution. Our algorithm is based
on a novel method for constructing the primal and dual solutions. This method shifts
the effort in the analysis from proving the approximation guarantee of the algorithm to
ensuring that feasibility of the dual solution is maintained in each step.

4.1 A Linear Program and Its Dual

Our formulation is based on the following observation. Suppose we transmit to radius
rv
i from the station located at v. This covers all demand points on the edges adjacent

to v that are within distance of at most rv
i from v. Therefore, from each u ∈ N(v) we

must transmit to radius at least lu,v − rv
i . This enables us to hide the actual lengths of

edges and radii in the linear program by using a special indexing scheme.
For every v ∈ V , i = 0, . . . , kv and u ∈ N(v), if we transmit from v to radius rv

i , we
must transmit from u to radius ru

j , j ≥ Iv
u(i), where Iv

u(i) = min{j : ru
j ≥ lu,v − rv

i }
if there exists some 0 ≤ j ≤ ku such that ru

j ≥ lu,v − rv
i , and Iv

u(i) = ∞ otherwise.
Note that if Iv

u(i) = ∞, we cannot transmit from v to radius rv
i . In addition, we assume

that ru
ku

+ rv
kv

≥ lu,v for every (u, v) ∈ E, or otherwise there is no feasible solution.
Using this notation, we suggest the following LP-relaxation of MRC:

minimize
∑
v∈V

kv∑
i=0

cv,ixv,i (LP′)

subject to
kv∑
i=0

xv,i ≥ 1 ∀ v ∈ V (4.1)
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ku∑
j=Iv

u(i)

xu,j ≥
i∑

j=0

xv,j ∀ v ∈ V, i = 0, . . . , kv, u ∈ N(v) (4.2)

xv,i ≥ 0 ∀ v ∈ V, i = 0, . . . , kv (4.3)

In an integral solution, the variable xv,i indicates whether we transmit to radius rv
i

from v. Constraint (4.1) ensures that we choose at least one radius for each vertex.
Clearly, there is no motivation to choose multiple radii. Constraint (4.2) ensures that if
we transmit from v to radius at most rv

i , then we transmit from u ∈ N(v) to radius at
least ru

Iv
u(i). The dual of the linear program (LP′) is:

maximize
∑
v∈V

yv (DLP′)

subject to yv +
∑

u∈N(v)
i:t≥Iuv (i)

zu,v,i −
∑

u∈N(v)
i:i≥t

zv,u,i ≤ cv,t
∀ v ∈ V,

t = 0, . . . , kv
(4.4)

yv, zv,u,t ≥ 0
∀ v ∈ V,

t = 0, . . . , kv,
u ∈ N(v)

(4.5)

4.2 The Algorithm

The High-Level Idea. Suppose (y, z) is a feasible dual solution. For every v ∈ V , let
T (v) be the set of indices t for which the constraint (4.4) is tight:

T (v) =

⎧⎪⎨
⎪⎩t : yv +

∑
u∈N(v)

i:t≥Iuv (i)

zu,v,i −
∑

u∈N(v)
i:i≥t

zv,u,i = cv,t

⎫⎪⎬
⎪⎭ .

Furthermore, suppose that T (v) �= ∅ for every v ∈ V , and let tv = max T (v). We
define an associated primal solution by: From each vertex v transmit to radius rv

tv
.

The initial dual solution is y = z = 0. Note that 0 ∈ T (v) at the beginning of the
algorithm, since we have cv,0 = 0 for every v ∈ V . In each step we convert the current
solution (y, z) to a new feasible solution (y′, z′), such that

1. For every v ∈ V , T ′(v) �= ∅ and t′v ≥ tv .
2. There exists v ∈ V for which t′v > tv .

It follows that our algorithm obtains a feasible primal solution within
∑

v∈V kv steps,
since if this number of steps was already performed, we have tv = kv for every v ∈ V ,
and all edges are covered by the associated primal solution.

Implementing a Single Step. We assume that when a step begins we are given a fea-
sible dual solution (y, z) such that T (v) �= ∅ for every v ∈ V , and an edge (p, q) that is
not covered by the associated primal solution, that is, rp

tp
+ rq

tq
< lp,q . Clearly, tp < kp
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or tq < kq, since rp
kp

+ rq
kq

≥ lp,q . Without loss of generality, tp ≤ kp and tq < kq. Let

εp = min
r=tp+1,...,kp

⎧⎪⎪⎨
⎪⎪⎩cp,r −

⎛
⎜⎜⎝yp +

∑
u∈N(p)

i:r≥Iup (i)

zu,p,i −
∑

u∈N(p)
i:i≥r

zp,u,i

⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭ ,

εq = min
r=tq+1,...,kq

⎧⎪⎪⎨
⎪⎪⎩cq,r −

⎛
⎜⎜⎝yq +

∑
u∈N(q)

i:r≥Iuq (i)

zu,q,i −
∑

u∈N(q)
i:i≥r

zq,u,i

⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭ .

If tp = kp, we simply define εp = ∞. The maximality of tp and tq implies εp > 0 and
εq > 0, and we assume without loss of generality that εq ≤ εp. We also assume that εq

is attained at the constraint r of q.
We first increase yq by εq, and the constraint r of q now becomes tight. However,

it is possible that due to this increase in yq some of the constraints of q are violated.
By definition of εq, it follows that the constraints tq + 1, . . . , kq of q are still satisfied,
since the margin in these constraints was at least εq. We now increase zq,p,tq

by εq.
This variable does not appear in the constraints tq + 1, . . . , kq of q, but appears in
the constraints 1, . . . , tq (with negative sign), and therefore this increase balances the
increase in yq, and these constraints are also satisfied.

The variable zq,p,tq
also appears in some of the constraints of p (with positive sign).

Specifically, it appears in all the constraints j of p for j ≥ Iq
p(tq). We claim that Iq

p(tq) >
tp, since when the step began we had the radius rq

tq
in q and rp

tp
in p, but these radii did

not cover the edge (p, q). Since the margin in the constraints tp + 1, . . . , kp of p was at
least εp ≥ εq, these constraints are still satisfied after this increase in zq,p,tq

.
Note that T (v) does not change in this step for v �= p, q. In addition, the constraint

tp of p is still tight and therefore t′p ≥ tp. Finally, since the constraint r of q is now tight
and r > tq, we have t′q > tq.

4.3 Analysis

Let (y′, z′) be the dual solution constructed by the primal-dual algorithm. By construc-
tion, its associated primal solution is feasible. In Theorem 5 we prove that the cost of
the primal solution is at most 2

∑
v∈V y′

v . Since the cost of the dual solution is a lower
bound on the cost of any feasible primal solution, it follows that the approximation ratio
of our algorithm is 2.

Theorem 5. The primal-dual algorithm constructs a solution whose cost is at most
2 · OPT(LP′) in time O(|E|K + |V |K2), where K = maxv∈V kv .

Proof. To prove the claim, it is sufficient to show that the cost of the primal solution is
at most 2

∑
v∈V y′

v . We first observe that since the initial dual solution is y = z = 0,
and in each step we increase a single y and a single z by the same value,

∑
v∈V

y′
v =

∑
v∈V

∑
u∈N(v)

kv∑
i=0

z′v,u,i .
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Therefore, the cost of the primal solution is

∑
v∈V

cv,tv
=

∑
v∈V

⎛
⎜⎝y′

v +
∑

u∈N(v)
i:tv≥Iuv (i)

z′u,v,i −
∑

u∈N(v)
i:i≥tv

z′v,u,i

⎞
⎟⎠

≤
∑
v∈V

y′
v +

∑
v∈V

∑
u∈N(v)

kv∑
i=0

z′v,u,i

= 2
∑
v∈V

y′
v ,

where the first equality follows from the observation that since tv ∈ T (v), the dual
constraint tv of v is tight.

By keeping track of the sums in each constraint of (DLP′), the representation of
this linear program can be constructed in time O(|E|K). In addition, our algorithm
performs at most

∑
v∈V kv ≤ |V |K steps, where the number of operations in each step

is O(K). ��

5 The PL-MRC Problem

In this section we first prove that PL-MRC is as hard to approximate as vertex cover. We
then present a polynomial time (2 + ε)-approximation algorithm for any fixed ε > 0.

5.1 Hardness Results

Lemma 6. A polynomial time approximation algorithm for the PL-MRC problem with
factor α would imply a polynomial time approximation algorithm for the vertex cover
problem with the same factor.

Proof. We show how to reduce vertex cover to PL-MRC by an approximation preserv-
ing reduction. Given a vertex cover instance G = (V,E), we construct an instance of
PL-MRC on G. The length of each edge is 1 and the cost function is

c(r) =
{

2r, if r ∈ [0, 1/2)
1, if r ∈ [1/2,∞) .

Let S∗ ⊆ V be a minimum cardinality vertex cover in G. Suppose we can approxi-
mate PL-MRC to within factor α of optimum. We show how to find a vertex cover with
cardinality at most α|S∗|.

Since S∗ is a vertex cover, when we transmit from each v ∈ S∗ to radius 1 all
demand points are covered, and the cost of this transmission is |S∗|. It follows that the
cost of an optimal transmission is at most |S∗|, and we can find in polynomial time a
feasible transmission with cost at most α|S∗|. Let S be the set of vertices from which
we transmit to radius at least 1

2 . S is clearly a vertex cover, or otherwise there is an
edge (u, v) ∈ E for which the sum of transmission radii from u and v is less than 1. In
addition, |S| ≤ α|S∗|, since the cost of transmitting from S is |S| and the total cost is
at most α|S∗|. ��
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5.2 The Algorithm

Given a PL-MRC instance I and a fixed parameter ε > 0, we show how to construct
in polynomial time an instance ρ(I) of MRC such that any feasible MRC solution
for ρ(I) is also a feasible PL-MRC solution for I with identical cost, and such that
OPTMRC(ρ(I)) ≤ (1+ ε)2OPTPL(I). We immediately get a (2+ ε)-approximation,
by using the primal-dual algorithm in Section 4 and choosing an appropriate ε.

Without loss of generality, we assume that OPTPL(I) > 0, since we can easily
verify if there is a feasible solution with cost 0. We also assume that we are given an
additional parameter Δ > 0 that satisfies OPTPL(I) ≤ Δ ≤ (1+ ε)OPTPL(I), since
we can try every Δ = (1 + ε)kLB ≤ UB, where

LB = max
(u,v)∈E

min
r∈[0,lu,v]

(cu(r) + cv(lu,v − r)) ,

UB =
∑

(u,v)∈E

min
r∈[0,lu,v]

(cu(r) + cv(lu,v − r)) .

We remark that

1. 0 < LB ≤ OPTPL(I) ≤ UB.
2. Since UB

LB ≤ |E|, there are O(log1+ε |E|) values of Δ to be tested.
3. minr∈[0,lu,v] (cu(r) + cv(lu,v − r)) is attained at a breakpoint of u or v.

Let rv
max = max{lu,v : u ∈ N(v)}. Since the cost function cv is non-decreasing

and the radius rv
max is sufficient to cover all edges adjacent to v, there is no motivation

to transmit from v to a greater radius. In addition, let

rv
min =

{
max{r ∈ [0, rv

max] : cv(r) ≤ εΔ
n }, if cv(rv

max) ≥ εΔ
n

rv
max, otherwise

.

We assume that {0, rv
min, rv

max} ⊆ BPv, where BPv is the set of breakpoints of cv .
To construct an instance of MRC, we define for each v ∈ V a discrete set Rv of

transmission radii. If rv
min = rv

max, we simply define Rv = {0, rv
max}. Otherwise,

let r0, . . . , rk be the breakpoints in BPv such that rv
min = r0 < · · · < rk = rv

max.
For each interval [ri, ri+1], 0 ≤ i ≤ k − 1, we define a set of points Pv[i, i + 1] =
{r1

i , . . . , rt
i} as follows. The jth point rj

i satisfies cv(rj
i ) = (1 + ε)jcv(ri), and the

index t is the maximal integer for which cv(rt
i) = (1 + ε)tcv(ri) < cv(ri+1). Note that

t is polynomial in the input length, since t = O(log1+ε(
cv(ri+1)
cv(ri)

)). We define

Rv =

(
k−1⋃
i=0

Pv[i, i + 1]

)⋃
BPv .

Lemma 7. OPTMRC(ρ(I)) ≤ (1 + ε)2OPTPL(I).

Proof. Consider the optimal solution for the instance I of PL-MRC, and for each v ∈ V
let r∗v ∈ [0, rv

max] be the radius to which we transmit from v. Let A = {v ∈ V : r∗v ≤
rv
min} and B = V \ A. Using r∗ we define the following solution for the instance ρ(I)
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of MRC: Transmit from each v ∈ V to radius r̂v = min{r ∈ Rv : r ≥ r∗v}. Clearly,
this solution is feasible.

Let cost(A) and cost(B) be the new costs of transmitting from A and B, respec-
tively. Since for each vertex v ∈ A we have r̂v ≤ rv

min and cv(rv
min) ≤ εΔ

n ,

cost(A) =
∑
v∈A

cv(r̂v) ≤
∑
v∈A

cv(rv
min) ≤ εΔ

|A|
n

≤ εΔ ≤ ε(1 + ε)OPTPL(I) .

In addition, by construction of Rv for v such that rv
min < rv

max, it follows that cv(r̂v) ≤
(1 + ε)cv(r∗v). Therefore,

cost(B) =
∑
v∈B

cv(r̂v) ≤ (1 + ε)
∑
v∈B

cv(r∗v) ≤ (1 + ε)OPTPL(I) .

These inequalities show that the total cost of the new transmission is

cost(A)+cost(B) ≤ ε(1+ε)OPTPL(I)+(1+ε)OPTPL(I) = (1+ε)2OPTPL(I) .

��
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Abstract. Important generalizations of the Vertex Cover problem
(Connected Vertex Cover, Capacitated Vertex Cover, and Max-
imum Partial Vertex Cover) have been intensively studied in terms
of approximability. However, their parameterized complexity has so far
been completely open. We close this gap here by showing that, with
the size of the desired vertex cover as parameter, Connected Ver-
tex Cover and Capacitated Vertex Cover are both fixed-parameter
tractable while Maximum Partial Vertex Cover is W[1]-hard. This
answers two open questions from the literature. The results extend to
several closely related problems. Interestingly, although the considered
generalized Vertex Cover problems behave very similar in terms of
constant-factor approximability, they display a wide range of different
characteristics when investigating their parameterized complexities.

1 Introduction

Given an undirected graph G = (V,E), the NP-complete Vertex Cover prob-
lem is to find a set C ⊆ V with |C| ≤ k such that each edge in E has at least one
endpoint in C. In a sense, Vertex Cover could be considered the Drosophila
of fixed-parameter algorithmics [17, 25]:

1. There is a long list of continuous improvements on the combinatorial explo-
sion with respect to the parameter k when solving the problem exactly. The
currently best exponential bound is below 1.28k [8, 26, 14, 28, 12].

2. Vertex Cover has been a benchmark for developing sophisticated data
reduction and problem kernelization techniques [1, 19].

3. It was the first parameterized problem where the usefulness of interleaving
depth-bounded search trees and problem kernelization was proven [27].

4. Restricted to planar graphs, it was—besides Dominating Set—one of the
central problems for the development of “subexponential” fixed-parameter
algorithms and the corresponding theory of relative lower bounds [2, 4, 11].
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5. Vertex Cover served as a testbed for algorithm engineering in the realm
of fixed-parameter algorithms [1, 3, 13].

6. Studies of Vertex Cover led to new research directions within parameter-
ized complexity such as counting [7], parallel processing [13], or using “vertex
cover structure” as a general strategy to solve parameterized problems [30].

This probably incomplete list gives an impression of how important Vertex
Cover was and continues to be for the whole field of parameterized complexity.
However, research in this field to date appears to have neglected a closer inves-
tigation of recent significant generalizations and variants of Vertex Cover.
These appear in various application scenarios such as drug design [22] and have
so far only been studied in the context of their polynomial-time approximability.
We close this gap here by providing several first-time parameterized complexity
results, which also answers two open questions from the literature.

We are only aware of two papers that perform somewhat related research.
First, Nishimura, Ragde, and Thilikos [29] also study generalizations of Vertex
Cover. However, they follow a completely different route: Whereas we study
concrete problems such as Capacitated Vertex Cover or Maximum Par-
tial Vertex Cover on general graphs, their interest lies in recognizing general
classes of graphs with a very special case of interest being the class of graphs
with bounded vertex cover (refer to [29] for details). Second, Bläser [9] shows
that some partial covering problems are fixed-parameter tractable when the pa-
rameter is the number of objects covered instead of the size of the covering set.
(In this paper, as well as in the abovementioned studies, the parameter is always
the size of the covering set.)

We deal with a whole list of vertex covering problems, all of them possessing
constant-factor (mostly 2) polynomial-time approximation algorithms. Deferring
their formal definitions to the next section, we now informally describe the stud-
ied problems and the known and new results. In the presentation of our results, n
denotes the number of vertices and m denotes the number of edges of the input
graph. The parameter k always denotes the size of the vertex cover.

1. For Connected Vertex Cover one demands that the vertex cover set is
connected. This problem is known to have a factor-2 approximation [6]. We
show that it can be solved in O(6kn + 4kn2 + 2kn2 log n + 2knm) time. In
addition, we derive results for the closely related variants Tree Cover and
Tour Cover.

2. For Capacitated Vertex Cover, the “covering capacity” of each graph
vertex is limited in that it may not cover all of its incident edges. This problem
has a factor-2 approximation [22]. Addressing an open problem from [22], we
show that Capacitated Vertex Cover can be solved in O(1.2k2

+n2) time
using an enumerative approach. We also provide a problem kernelization.
Altogether, we thus show that Capacitated Vertex Cover—including
two variants with “hard” and “soft” capacities—is fixed-parameter tractable.

3. For Maximum Partial Vertex Cover, one only wants to cover a specified
number of edges (that is, not necessarily all) by at most k vertices. This
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Table 1. New parameterized complexity results for some NP-complete generalizations
of Vertex Cover shown in this work. The parameter k is the size of the desired vertex
cover, m denotes the number of edges, and n denotes the number of vertices

Problem Result

Connected Vertex Cover 6kn + 4kn2 + 2kn2 log n + 2knm Thm. 2
Tree Cover (2k)k · km Cor. 3
Tour Cover (4k)k · km Cor. 3
Capacitated Vertex Cover 1.2k2

+ n2 Thm. 5
Soft Capacitated Vertex Cover 1.2k2

+ n2 Thm. 10
Hard Capacitated Vertex Cover 1.2k2

+ n2 Thm. 10
Maximum Partial Vertex Cover W[1]-hard Thm. 11
Minimum Partial Vertex Cover W[1]-hard Cor. 12

problem is known to have a factor-2 approximation [10]. Answering an open
question from [5], we show that this problem appears to be fixed-parameter
intractable—it is W[1]-hard. The same is proven for its minimization version.

Summarizing, we emphasize that our main focus is on deciding between fixed-
parameter tractability and W[1]-hardness for all of the considered problems.
Interestingly, although all considered problems behave in more or less the same
way from the viewpoint of polynomial-time approximability—all have factor-2
approximations—the picture becomes completely different from a parameterized
complexity point of view: Maximum Partial Vertex Cover appears to be in-
tractable and Capacitated Vertex Cover appears to be significantly harder
than Connected Vertex Cover. Table 1 surveys all of our results.

2 Preliminaries and Previous Work

Parameterized complexity is a two-dimensional framework for studying the com-
putational complexity of problems.1 One dimension is the input size n (as in clas-
sical complexity theory) and the other one the parameter k (usually a positive
integer). A problem is called fixed-parameter tractable (fpt) if it can be solved
in f(k)·nO(1) time, where f is a computable function only depending on k. A core
tool in the development of fixed-parameter algorithms is polynomial-time pre-
processing by data reduction rules, often yielding a reduction to a problem kernel.
Here the goal is, given any problem instance x with parameter k, to transform
it into a new instance x′ with parameter k′ such that the size of x′ is bounded
by some function only depending on k, (x, k) has a solution iff (x′, k′) has a
solution, and k′ ≤ k. A formal framework to show fixed-parameter intractabil-
ity was developed by Downey and Fellows [17] who introduced the concept of
parameterized reductions. A parameterized reduction from a parameterized lan-

1 For a more detailed introduction see, e.g., [17, 19, 24].
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guage L to another parameterized language L′ is a function that, given an in-
stance (x, k), computes in time f(k) · nO(1) an instance (x′, k′) (with k′ only
depending on k) such that (x, k) ∈ L ⇔ (x′, k′) ∈ L′. The basic complexity class
for fixed-parameter intractability is W[1] as there is good reason to believe that
W[1]-hard problems are not fixed-parameter tractable [17].

In this work, we consider three directions of generalizing Vertex Cover
(VC), namely demanding that the vertices of the cover must be connected (Sec-
tion 3), introducing covering capacities for the vertices (Section 4), and relaxing
the condition that all edges in the graph must be covered (Section 5). Our cor-
responding parameterized complexity results are summarized in Table 1, the
formal definitions of the problems follow.

Connected Vertex Cover: Given a graph G = (V,E) and an inte-
ger k ≥ 0, determine whether there exists a vertex cover C for G containing
at most k vertices such that the subgraph of G induced by C is connected.

This problem is NP-complete and approximable within 2 [6]. Two variants are
derived by introducing a weight function w : E → R+ on the edges and requiring
that the cover must induce a subgraph with a certain structure and minimum
weight.

Tree Cover: Given a graph G = (V,E) with edges weighted with pos-
itive real numbers, an integer k ≥ 0, and a real number W > 0, deter-
mine whether there exists a subgraph G′ = (V ′, E′) of G with |V ′| ≤ k and∑

e∈E′ w(e) ≤ W such that V ′ is a vertex cover for G and G′ is a tree.2

The closely related problem Tour Cover differs from Tree Cover only in
that the edges in G′ should form a closed walk instead of a tree. Note that a
closed walk can contain repeated vertices and edges. Both Tree Cover and
Tour Cover were introduced in [6] where it is shown that Tree Cover is
approximable within 3.55 and Tour Cover within 5.5. Könemann et al. [23]
improved both approximation factors to 3.

Section 4 considers the Capacitated Vertex Cover (CVC) problem and
related variants. Here, each vertex v ∈ V is assigned a capacity c(v) ∈ N+ that
limits the number of edges it can cover when being part of the vertex cover.

Definition 1. Given a capacitated graph G = (V,E) and a vertex cover C for G.
We call C capacitated vertex cover if there exists a mapping f : E → C which
maps each edge in E to one of its two endpoints such that the total number of
edges mapped by f to any vertex v ∈ C does not exceed c(v).

Capacitated Vertex Cover: Given a vertex-weighted (with positive real
numbers) and capacitated graph G, an integer k ≥ 0, and a real num-
ber W ≥ 0, determine whether there exists a capacitated vertex cover C
for G containing at most k vertices such that

∑
v∈C w(v) ≤ W .

2 Tree Cover is equivalent to Connected Vertex Cover for unweighted graphs.
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The CVC problem was introduced by Guha et al. [22] who also give a factor-2
approximation algorithm. Two special flavors of CVC exist in the literature that
arise by allowing “copies” of a vertex to be in the capacitated vertex cover [22,
15, 20]. In that context, taking a vertex l times into the capacitated vertex cover
causes the vertex to have l times its original capacity. The number of such copies
is unlimited in the Soft Capacitated Vertex Cover (Soft CVC) problem
while it may be restricted for each vertex individually in the Hard Capacitated
Vertex Cover (Hard CVC) problem. For unweighted Hard CVC, the best
known approximation algorithm achieves a factor of 2 [20]. The weighted version
Hard CVC is at least as hard to approximate as Set Cover [15].

Section 5 considers a third direction of VC generalizations besides connect-
edness and capacitation. In the Maximum Partial Vertex Cover problem,
we relax the condition that all edges must be covered.

Maximum Partial Vertex Cover: Given a graph G = (V,E) and two in-
tegers k ≥ 0 and t ≥ 0, determine whether there exists a vertex subset V ′ ⊆ V
of size at most k such that V ′ covers at least t edges.

This problem was introduced by Bshouty and Burroughs [10] who showed it to
be approximable within 2. Further improvements can be found in [21]. Note that
Maximum Partial Vertex Cover is fixed-parameter tractable with respect
to the parameter t [9]. In case of Minimum Partial Vertex Cover we are
asked for a vertex subset with at least k vertices covering at most t edges.

3 Connected Vertex Cover and Variants

In this section we show that Connected Vertex Cover is fixed-parameter
tractable with respect to the size of the connected vertex cover. More precisely,
it can be solved by an algorithm running in O(6kn + 4kn2 + 2kn2 log n + 2knm)
time where n and m denote the number of vertices and edges in the input graph
and k denotes the size of the connected vertex cover. We modify this algorithm
to also show the fixed-parameter tractability for two variants of Connected
Vertex Cover, namely Tree Cover and Tour Cover.

We solve Connected Vertex Cover by using the Dreyfus-Wagner algo-
rithm as a subprocedure for computing a Steiner minimum tree in a graph [18].
For an undirected graph G = (V,E), a subgraph T of G is called a Steiner tree for
a subset K of V if T is a tree containing all vertices in K such that all leaves of T
are elements of K. The vertices of K are called the terminals of T . A Steiner
minimum tree for K in G is a Steiner tree T such that the number of edges
contained in T is minimum. Finding a Steiner minimum tree leads to an NP-
complete problem. The Dreyfus-Wagner algorithm computes a Steiner minimum
tree for a set of at most l terminals in O(3ln + 2ln2 + n2 log n + nm) time [18].

Our algorithm for Connected Vertex Cover consists of two steps:

1. Enumerate all minimal vertex covers with at most k vertices. If one of the
enumerated minimal vertex covers is connected, then output it and terminate.
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2. Otherwise, for each of the enumerated minimal vertex covers C, use the
Dreyfus-Wagner algorithm to compute a Steiner minimum tree with C as
the set of terminals. If one minimal vertex cover has a Steiner minimum
tree T with at most k − 1 edges, then return the vertex set of T as output;
otherwise, there is no connected vertex cover with at most k vertices.

Theorem 2. Connected Vertex Cover can be solved in O(6kn + 4kn2 +
2kn2 log n + 2knm) time.

Proof. The first step of the algorithm is correct since each connected vertex cover
(covc) contains at least one minimal vertex cover. For a given graph, there are
at most 2k minimal vertex covers with at most k vertices. We can enumerate
all such minimal vertex covers in O(2k ·m) time. Then, the running time of the
first step is O(2k · m).

The correctness of the second step follows directly from the following easy
to prove observation: For a set of vertices C, there exists a connected subgraph
of G with at most k vertices which contains all vertices in C iff there exists
a Steiner tree in G with C as the terminal set and at most k − 1 edges. By
applying the Dreyfus-Wagner algorithm on G with C as the terminal set, we
can easily find out whether there are k − |C| vertices from V \ C connecting C
and, hence, whether there is a covc with at most k vertices and containing C.
Since |C| < k, the second step can be done in O(2k·(3kn+2kn2+n2 log n+nm)) =
O(6kn + 4kn2 + 2kn2 log n + 2knm) time. ��

The algorithm for Connected Vertex Cover can be modified to solve
Tree Cover and Tour Cover. The proof is omitted.

Corollary 3. Tree Cover and Tour Cover can be solved in O((2k)k · km)
and O((4k)k · km) time, respectively.

4 Capacitated Vertex Cover and Variants

In this section we present fixed-parameter algorithms for the CVC problem
and its variants Hard CVC and Soft CVC. In the case of CVC, the easiest
way to show its fixed-parameter tractability is to give a reduction to a problem
kernel. This is what we begin with here, afterwards complementing it with an
enumerative approach for further improving the overall time complexity.

Proposition 4. Given an n-vertex graph G = (V,E) and an integer k ≥ 0 as
part of an input instance for CVC, then it is possible to construct an O(4k ·k2)-
vertex graph G̃ such that G has a size-k solution for CVC iff G̃ has a size-k
solution for CVC. In the special case of uniform vertex weights, G̃ has only
O(4k · k) vertices. The construction of G̃ can be performed in O(n2) time.

Proof. We first assume uniform vertex weights, generalizing the approach to
weighted graphs at the end of the proof.
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Let u, v ∈ V , u �= v, and {u, v} �∈ E. The simple observation that lies at
the heart of the data reduction rule needed for the kernelization is that if the
open neighborhoods of u and v coincide (i.e., N(u) = N(v)) and c(u) < c(v),
then u is part of a minimum capacitated vertex cover only if v is as well. We
can generalize this finding to a data reduction rule: Let {v1, v2, . . . , vk+1} ⊆ V
with the induced subgraph G[{v1, v2, . . . , vk+1}] being edgeless, and N(v1) =
N(v2) = · · · = N(vk+1). Call this the neighbor set. Then delete from G a vertex
vi ∈ {v1, v2, . . . , vk+1} which has minimum capacity. This rule is correct because
any size-k capacitated vertex cover C containing vi can be modified by replacing
vi with a vertex from {v1, v2, . . . , vk+1} which is not in C.

Based on this data reduction rule, G̃ can be computed from G as claimed by
the following two steps:

1. Use the straightforward linear-time factor-2 approximation algorithm to find
a vertex cover S for G of size at most 2k′ (where k′ is the size of a minimum
vertex cover for G and hence k′ ≤ k). If |S| > 2k, then we can stop because
then no size-k (capacitated) vertex cover can be found. Note that V \ S
induces an edgeless subgraph of G.

2. Examining V \S, check whether there is a subset of k + 1 vertices that fulfill
the premises of the above rule. Repeatedly apply the data reduction rule until
it is no longer applicable. Note that this process continuously shrinks V \ S.

The above computation is clearly correct. The number of all possible neighbor
sets can be at most 22k (the number of different subsets of S). For each neigh-
bor set, there can be at most k neighboring vertices in V \ S; otherwise, the
reduction rule would apply. Hence, in the worst case we can have at most 22k · k
vertices in the remaining graph G̃. The generalization to non-uniform vertex
weights works as follows: We have |S| ≤ 2k. Hence, the vertices in V \ S may
have maximum vertex degree 2k and the capacity of a vertex in V \ S greater
than 2k without any harm can be replaced by capacity 2k. Therefore, with-
out loss of generality, one may assume that the maximum capacity of vertices
in V \S is 2k. We then have to modify the reduction rule as follows. If there are
vertices v1, v2, . . . , v2k2+1 ∈ V with N(v1) = N(v2) = . . . = N(v2k2+1), partition
them into subsets of vertices with equal capacity. There are at most 2k of these
sets. If such a set contains more than k vertices, delete the vertex with maximum
weight. Altogether, we thus end up with a problem kernel of 22k ·2k2 = O(4k ·k2)
vertices.

It remains to justify the polynomial running time. First, note that the trivial
factor-2 approximation algorithm runs in time O(|E|) = O(n2). Second, exam-
ining the common neighborhoods can be done in O(n2) time by successively
partitioning the vertices in V \ S according to their neighborhoods.

��

Clearly, a simple brute-force search within the reduced instance (with a size
of only O(4k · k2) vertices) already yields the fixed-parameter tractability of
CVC, albeit in time proportional to

(4k·k2

k

)
. As the next theorem shows, we can

do much better concerning the running time.
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Theorem 5. The CVC problem can be solved in O(1.2k2
+ n2) time.

The theorem is proved by first giving an algorithm to solve Capacitated Ver-
tex Cover and then proving its running time. The basic idea behind the algo-
rithm is as follows: We start with a minimal vertex cover C = {c1, . . . , ci} ⊆ V
for the input graph G = (V,E). Due to lack of capacities, C is not necessarily
a capacitated vertex cover for G. Hence, if C is not a capacitated vertex cover,
we need to add some additional vertices from V \ C to C in order to provide
additional capacities. More precisely, since for each vertex v ∈ (V \ C) all of
its neighbors are in C, adding v can be seen as “freeing” exactly one unit of
capacity for as many as c(v) neighbors of v. The algorithm uses an exhaustive
search approach based on this observation by enumerating all possible patterns
of capacity-freeing and for each pattern computing the cheapest set of vertices
from V \ C (if one exists) that matches it.

Definition 6. Given a graph G = (V,E) and a vertex cover C = {c1, . . . , ci} ⊆
V for G. A capacity profile of length i is a binary string s = s[1] . . . s[i] ∈ {0, 1}i.
A vertex w ∈ V \C is said to match a capacity profile s if it is incident to each
vertex cj ∈ C with s[j] = 1 and its capacity is at least the number of ones in s.

Using Definition 6, the following pseudocode gives an algorithm for CVC.

Algorithm: Capacitated Vertex Cover
Input: A capacitated and vertex-weighted graph G = (V,E), k ∈ N+, W ∈ R+

Output: “Yes” if G has a capacitated vertex cover of size at most k
with weight ≤ W ; “No” otherwise

01 Perform the kernelization from Proposition 4 on G
02 for every minimal vertex cover C of G with size i ≤ k do
03 if C is a cap. vertex cover with weight ≤ W then return “Yes”
04 for every multiset M of (k − i) capacity profiles of length i do
05 remove the all-zero profiles from M

06 find the cheapest set Ĉ ⊆ (V \ C) so that there exists a
bijective mapping f : Ĉ → M where each ĉ ∈ Ĉ matches
the capacity profile of f(ĉ). Set Ĉ ← ∅ if no such set exists

07 if Ĉ �= ∅, the weight of Ĉ is ≤ W , and C ∪ Ĉ is a
capacitated vertex cover for G then return “Yes”

08 return “No”

Lemma 7. The given algorithm for Capacitated Vertex Cover is correct.

Proof. Preprocessing the graph in line 01 is correct according to Proposition 4.
Since a capacitated vertex cover for a graph G = (V,E) is also a vertex cover,
its vertices can be partitioned into two sets C and Ĉ such that C is a minimal
vertex cover for G. Each vertex in Ĉ gives additional capacity to a subset of the
vertices in C, i.e., for every ĉ ∈ Ĉ, we can construct a capacity profile sĉ where
sĉ[j] = 1 if and only if ĉ uses its capacity to cover the edge to the j-th vertex
in C. The correctness of the algorithm follows from its exhaustive nature: It tries
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all minimal vertex covers, all possible combinations of capacity profiles and for
each combination determines the cheapest possible set Ĉ such that C ∪ Ĉ is a
capacitated vertex cover for G. ��

Lemma 8. The given algorithm for CVC runs in O(1.2k2
+ n2) time.

Proof. The preprocessing in line 01 can be carried out in O(n2) time according
to Proposition 4. This leads to a new graph containing at most ñ = O(4k · k2)
vertices. Line 02 of the algorithm can be executed in O(2k)·ñO(1) time and causes
the subsequent lines 03–07 to be called at most 2k times. Due to [15–Lemma 1],
we can decide in ñO(1) time whether a given vertex cover is also a capacitated
vertex cover (lines 03 and 07). For line 04, note that for a given 0 ≤ i ≤ k
there exist 2i different capacity profiles of that length. Furthermore, it is well-
known that given a set A where |A| = a, there exist exactly

(
a+b−1

b

)
b-element

multisets with elements drawn from A. Hence, line 04 causes lines 05–07 to be
executed

(2i+(k−i)−1
k−i

)
times. The delay between enumeration of two multisets

can be kept constant. As it will be shown in Lemma 9, line 06 takes ñO(1) time.
Overall, the running time of the algorithm is bounded from above by

O(n2) + 2k · max
1≤i≤k

(
2i + (k − i) − 1

k − i

)
· ñO(1).

With some effort, we can bound this number by O(n2 + 1.2k2
). ��

It remains to show the running time for line 06 of the algorithm.

Lemma 9. Given a weighted, capacitated graph G = (V,E), a vertex cover C
of G of size i ≤ k for G, and a multiset M of k − i capacity profiles of length i.
Then, it takes nO(1) time to find the cheapest set Ĉ ⊆ (V \C) so that there exists
a bijective mapping f : Ĉ → M where each ĉ ∈ Ĉ matches the capacity profile
of f(ĉ) or determine that no such set Ĉ exists.

Proof. Finding Ĉ is equivalent to finding a minimum weight maximum bipartite
matching on the bipartite graph G′ = (V ′

1 , V ′
2 , E′) where each vertex in V ′

1
represents a capacity profile from M , V ′

2 = V \C, and two vertices v ∈ V ′
1 , u ∈ V ′

2
are connected by an edge in E′ if and only if the vertex represented by u matches
the profile represented by v (the weight of the edge is w(u)). Finding such a
matching is well-known to be solvable in polynomial time [16]. ��

It is possible to solve Soft CVC and Hard CVC by adapting the above
algorithm for CVC: Observe that if we choose multiple copies of a vertex into
the cover, each of these copies will have its own individual capacity profile.
Thus, only line 06 of the CVC algorithm has to be adapted to solve Soft CVC
and Hard CVC. The proof is omitted.

Corollary 10. Soft CVC and Hard CVC are solvable in O(1.2k2
+n2) time.
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5 Maximum and Minimum Partial Vertex Cover

All the Vertex Cover variants we studied in the previous sections are known
to have a polynomial-time constant-factor approximation (mostly factor 2). All
of them were shown to be fixed-parameter tractable. By way of contrast, we now
present a result where a variant that has a polynomial-time factor-2 approxima-
tion is shown to be fixed parameter intractable. More precisely, we show that
Maximum Partial Vertex Cover (MaxPVC) is W[1]-hard with respect to
the size k of the partial vertex cover by giving a parameterized reduction from
the W[1]-complete Independent Set problem [17] to MaxPVC. With the so-
lution size as parameter, we also show the W[1]-hardness of its minimization
version MinPVC by a reduction from Clique.

Independent Set: Given a graph G = (V,E) and an integer k ≥ 0, deter-
mine whether there is a vertex subset I ⊆ V with at least k vertices such
that the subgraph of G induced by I contains no edge.

An independent set in a graph is a set of pairwise nonadjacent vertices.

Theorem 11. Maximum Partial Vertex Cover is W[1]-hard with respect
to the size of the cover.

Proof. We give a parameterized reduction from Independent Set to Max-
PVC. Given an input instance (G = (V,E), k) of Independent Set. For
every vertex v ∈ V , let deg(v) denote the degree of v in G. We construct a
new graph G′ = (V ′, E′) in the following way: For each vertex v ∈ V we in-
sert |V | − deg(v) new vertices into G and connect each of these new vertices
with v. In the following, we show that a size-k independent set in G one-to-one
corresponds to a size-k partial vertex cover in G′ which covers t := k · |V | edges.

Firstly, a size-k independent set in G also forms a size-k independent set
in G′. Moreover, each of these k vertices has exactly |V | incident edges. Then,
these k vertices form a partial vertex cover covering k · |V | edges. Secondly, if we
have a size-k partial vertex cover in G′ which covers k · |V | edges, then we know
that none of the newly inserted vertices in G′ can be in this cover. Hence, this
cover contains k vertices from V . Moreover, a vertex in G′ can cover at most |V |
edges and two adjacent vertices can cover only 2|V | − 1 edges. Therefore, no
two vertices in this partial vertex cover can be adjacent, which implies that this
partial cover forms a size-k independent set in G. ��

In Minimum Partial Vertex Cover (MinPVC), we wish to choose at
least k vertices such that at most t edges are covered. Through a parameterized
reduction from the W[1]-complete Clique problem [17], it is possible to show
analogously to MaxPVC that MinPVC is also W[1]-hard. This reduction works
in a similar way as the reduction in the proof above. The proof is omitted.

Corollary 12. Minimum Partial Vertex Cover is W[1]-hard with respect
to the size of the cover.
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6 Conclusion

We extended and completed the parameterized complexity picture for natural
variants and generalizations of Vertex Cover. Notably, whereas the fixed-
parameter tractability of Vertex Cover immediately follows from a simple
search tree strategy, this appears not to be the case for all of the problems stud-
ied here. Table 1 in Section 2 summarizes our results, all of which, to the best
of our knowledge, are new in the sense that no parameterized complexity re-
sults have been known before for these problems. Our fixed-parameter tractabil-
ity results clearly generalize to cases where the vertices have real weights ≥ c
for some given constant c > 0 and the parameter becomes the weight of the
desired vertex cover (see [28] for corresponding studies for Vertex Cover).
Our work also complements the numerous approximability results for these
problems. It is a task for future research to significantly improve on the pre-
sented worst-case running times (exponential factors in parameter k). In par-
ticular, it would be interesting to learn more about the amenability of the con-
sidered problems to problem kernelization by (more) efficient data reduction
techniques.

Besides the significant interest (with numerous applications behind) in the
studied problems on their own, we want to mention one more feature of our
work that lies a little aside. Adding our results to the already known large
arsenal of facts about Vertex Cover, this problem can be even better used
and understood as a seed problem for parameterized complexity as a whole: New
aspects now related to vertex covering by means of our results are issues such as
enumerative techniques or parameterized reduction. This might be of particular
use when learning or teaching parameterized complexity through basically one
natural and easy to grasp problem—Vertex Cover—and its “straightforward”
generalizations.

Acknowledgment. We are grateful to an anonymous referee of WADS 2005 for
spotting a flaw in a previous proof of the fixed-parameter tractability of Con-
nected Vertex Cover.
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Abstract. In this paper we study the time-space complexity of implicit
priority queues supporting the decreasekey operation. Our first result
is that by using one extra word of storage it is possible to match the
performance of Fibonacci heaps: constant amortized time for insert and
decreasekey and logarithmic time for deletemin. Our second result is
a lower bound showing that that one extra word really is necessary.
We reduce the decreasekey operation to a cell-probe type game called
the Usher’s Problem, where one must maintain a simple data structure
without the aid of any auxiliary storage.

1 Introduction

An implicit data structure on N elements is one whose representation consists
simply of an array A[0..N − 1], with one element stored in each array location.
The most well known implicit structure is certainly Williams’s binary heap [26],
which supports the priority queue operations insert and delete-min in logarith-
mic time. Although the elements of Williams’s heap are conceptually arranged
in a fragment of the infinite binary tree, the tree edges are not explicitly rep-
resented. It is understood that the element at A[i] is the parent of A[2i + 1]
and A[2i + 2]. The practical significance of implicit data structures is that they
are, in certain circumstances, maximally space efficient. If the elements can be
considered atomic then there is no better representation than a packed array.

A natural suspicion is that by insisting on an implicit representation one may
be sacrificing asymptotic time optimality. After 40 years of sporadic research
on implicit structures [26, 17, 21, 27, 20, 5, 8, 7, 28, 9, 10, 15] we can say that this
suspicion is almost completely misguided. In various dictionary & priority queue
problems, for instance, there are either optimal implicit structures or ones that
can be made optimal with a couple extra words of storage.
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F. Dehne, A. López-Ortiz, and J.-R. Sack (Eds.): WADS 2005, LNCS 3608, pp. 49–60, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



50 C.W. Mortensen and S. Pettie

In this paper we study the complexity of implicit priority queues that support
the decrease-key operation. Our main positive result is that given one extra
word of storage there is an implicit priority queue matching the performance
of Fibonacci heaps. It supports delete-min in logarithmic time and insert and
decrease-key in constant time, all amortized. That one extra word obviously has
no practical consequences but it is a thorn in our side. We propose a variation
on our data structure that uses no additional storage and supports decrease-key
in O(log∗ n) time, without affecting the other operations. This O(log∗ n) bound
is a theoretical burden. Is it natural? We prove that it is, in the following sense:
if any implicit priority queue uses zero extra space and supports decrease-key
in o(log∗ n) amortized time then the amortized cost of insert/delete-min jumps
dramatically, from logarithmic to Ω(n1/ log(k) n), for any k.

We reduce the decrease-key operation to the Absent Minded Usher’s Problem,
a game played in a simplified cell-probe model. Imagine an usher seating indis-
tinguishable theater patrons one-by-one in a large theater. The usher is equipped
with two operations: he can probe a seat to see if it is occupied or not and he can
move a given patron to a given unoccupied seat. (Moving patrons after seating
them is perfectly acceptable.) The catch is this: before seating each new pa-
tron we wipe clean the usher’s memory. That is, he must proceed without any
knowledge of which seats are occupied or the number of patrons already seated.
We prove that any deterministic ushering algorithm must seat m patrons with
Ω(m log∗ m) probes and moves, and that this bound is asymptotically tight.

Our lower bound proof attacks a subtle but fundamental difficulty in implicit
data structuring, namely, orchestrating the movement of elements within the
array, given little auxiliary storage. In its present form the ushering problem is
limited to proving small time-space tradeoffs. However it is likely that general-
izations of the ushering method could yield more impressive lower bounds.
Organization. In the remainder of this section we define what an implicit pri-
ority queue is, survey previous work and discuss our contributions. In Section 2
we present our new data structure. Section 3 is devoted to the Usher’s Problem
and its relationship with implicit priority queues.
Implicit Priority Queues. We first give a specification for an abstract implicit pri-
ority queue which is suitable for theoretical analysis but impractical. We then pro-
pose a particularly space efficient method for implementing such a data structure.

An implicit priority queue of size n consists of an array A[0..n − 1] (plus,
possibly, a little extra storage) where A[0], . . . , A[n−1] contain distinct elements
(or keys) from a total order. We also use A to denote the set of elements in the
priority queue. The following operations are supported.

insert(κ) : A := A ∪ {κ}
deletemin() : Return min A and set A := A\{min A}
decreasekey(i, κ) : Set A[i] := min{A[i], κ}
An operation decides what to do based on the auxiliary information and any

comparisons it makes between elements. Before returning it is free to alter the
auxiliary information and permute the contents of A, so long as its n elements
lie in A[0, . . . ,n − 1]. We assume that “n” is known to all operations.



The Complexity of Implicit and Space Efficient Priority Queues 51

The definition above sweeps under the rug a few issues that are crucial to an
efficient and useful implementation. First, applications of priority queues store
not only elements from a total order but objects associated with those elements.
For example, Dijkstra’s shortest path algorithm repeatedly asks for the vertex
with minimum tentative distance; the tentative distance alone is useless. Any
practical definition of a priority queue must take the application’s objects into
account. The second issue relates to the peculiar arguments to decreasekey. The
application must tell decreasekey the index in A of the element to be decreased,
which is necessarily a moving target since the data structure can permute the
elements of A at will.

We propose a priority queue interface below that addresses these and other is-
sues. Let us first sketch the normal (real world) interaction between application
and priority queue. To insert the object v the application passes the priority queue
an identifier id(v) of its choosing, together with key(v), drawn from some total or-
der. In return the priority queue gives the application a pq id(v), also of its choos-
ing, which is used to identify v in later calls to decreasekey. When v is removed
from the queue, due to a deletemin, the application receives both id(v) and key(v).

In our interface we give the data structure an extra degree of freedom, without
placing any unreasonable demands on the governing application. Whereas the
standard interface forces the data structure to assign pq ids once and for all, we
let the data structure update pq ids as necessary. We also let the application
maintain control of the keys. This is for two reasons, both concerning space.
First, the application may not want to explicitly represent keys at all if they
can be deduced in constant time. Second, the application can now use the same
key in multiple data structures without producing a copy for each one. Below Q
represents the contents of the data structure, which is initially empty. (Observe
that this interface is modular. Neither the application nor the data structure
needs to know any details about the other.)

The priority queue implements:

insert(id(v)) : Sets Q := Q∪ {id(v)} and returns a pq id(v)
deletemin() : Return, and remove from Q, the id(v) minimizing

key(v)
decreasekey(pq id(v)) : A notification that key(v) has been reduced

The application implements:
update(id(v), x) : Set pq id(v) := x
compare(id(v), id(w)) : True iff key(v) < key(w)

Using this interface it is simple to implement an abstract implicit priority
queue. The data structure would consist of an array of ids and we maintain,
with appropriate update operations, that pq id(v) indexes the position of id(v)
in A. For example, if we implemented a d-ary heap [17] with this interface every
priority queue operation would end with at most logd n calls to update, which
is the maximum number of elements that need to be permuted in A.

Our interface should be contrasted with a more general solution formalized
by Hagerup and Raman [14], in which pq ids would be fixed once and for all.
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In their schema the application communicates with the data structure through
an intermediary quasidictionary, which maps each pq id (issued by the quasidic-
tionary) to an identifier that can be updated by the data structure. Since saving
space is one of the main motivations for studying implicit data structures we
prefer our interface to one based on a quasidictionary.

Defining “Extra Storage.” All the priority queues cited in this paper store n ids
and n keys, and if decreasekey is supported, n pq ids as well. We consider any
further storage extra. For the sake of simplicity we ignore temporary space used
by the individual operations and any overhead involved in memory allocation.
Here “memory allocation” means simulating the array A, whose length varies as
elements are inserted and deleted. Brodnik et al. [3] proved that the standard
solution—array doubling/halving—can be improved so that only Θ(

√
n) extra

words of space are used, where n is the current size of the array. In pointer-based
structures (like Fibonacci heaps) the cost of memory allocation is more severe.
There is a measurable overhead for each allocated block of memory.

Previous work. Much of the work on implicit data structures has focussed on
the dictionary problem, in all its variations. The study of dynamic implicit dic-
tionaries in the comparison model was initiated by Munro & Suwanda [21]. They
gave a specific partial order (à la Williams’s binary heap) that allowed inserts,
deletes, and searches in O(

√
n) time, and showed, moreover, that with any par-

tial order Ω(
√

n) time is necessary for some operation. Munro [20] introduced
a novel pointer encoding technique and showed that all dictionary operations
could be performed in O(log2 n) time, a bound that stood until just a few years
ago. After a series of results Franceschini & Grossi [9] recently proved that all
dictionary operations could be performed in worst-case logarithmic time with
no extra storage. Franceschini & Grossi [10] also considered the static dictionary
problem, where the keys consist of a vector of k characters. Their implicit rep-
resentation allows for searches in optimal O(k + log n) time, which is somewhat
surprising because Andersson et al. [1] already proved that optimal search is
impossible if the keys are arranged in sorted order.

Yao [27] considered a static version of the dictionary problem where the keys
are integers in the range {1, . . . , m}. He proved that if m is sufficiently large
relative to n then no implicit representation can support o(log n) time queries. In
the same paper Yao proved that one-probe queries are possible if m ≤ 2n−2. Fiat
et al. [8, 7] gave an implicit structure supporting constant time queries for any
universe size, provided only O(log n+log log m) bits of extra storage. Zuckerman
[28], improving a result of [8, 7], showed that O(1) time queries are possible with
zero extra storage, for m slightly superpolynomial in n. In the integer-key model
we need to qualify the term “extra storage.” An implicit representation occupies
n �log m� bits, which is roughly n log n more than the information bound of
I =

⌈
log

(
m
n

)⌉
bits. See [4, 22, 23, 24] for I + o(I) space dictionaries.

Implicit Priority Queues. Williams’s binary heap [26] uses zero extra storage and
supports inserts and deletemins in worst-case logarithmic time. It was general-
ized by Johnson [17] to a d-ary heap, which, for any fixed d, supports inserts and



The Complexity of Implicit and Space Efficient Priority Queues 53

decreasekeys in O(logd n) time and deletemins in O(d logd n) time. Carlsson et
al.’s implicit binomial heap [5] supports inserts in constant time and deletemins
in logarithmic time, both worst case. Their data structure uses O(1) extra words
of storage. Harvey and Zatloukal’s postorder heap [15] also supports insert in
O(1) time; the time bound is amortized but they use zero extra storage. Their
data structure can be generalized to a postorder d-ary heap.

General Priority Queues. The d-ary implicit heap has an undesirable tradeoff
between decreasekeys and deletemins. In many applications of priority queues the
overall performance depends crucially on a fast decreasekey operation. Fredman
and Tarjan’s Fibonacci heap [13] supports all operations in optimal amortized
time: O(log n) for deletemin and O(1) for the rest. Aside from the space taken
for keys, ids, and pq ids, Fibonacci heaps require 4n pointers and n(log log n+2)
bits. Each node keeps a (log log n + 1)-bit rank, a mark bit, and references its
parent, child, left sibling, and right sibling. Kaplan and Tarjan [18] shaved the
space requirements of Fibonacci heaps by n pointers and n bits. The Pairing heap
[12] can be represented with 2n pointers though it does not handle decreasekeys
in constant time [11].

Our Contributions. In this paper we show that it is possible to match the per-
formance of Fibonacci heaps using one extra word of storage, and that no deter-
ministic implicit priority queue can achieve the same bounds without one extra
word; see Figure 1. Our data structure may be of separate interest because it
uses a completely new method for supporting decreasekeys in constant amor-
tized time. Whereas Fibonacci-type heaps [13, 6, 18, 25] organize the elements
in heap-ordered trees and link trees based on their ranks, our priority queue is
conceptually composed of a set of unordered lists, whose elements adhere to a
particular partial order. We do not tag elements with ranks. The primitives of
our data structure are simply the concatenation of lists and the division of lists,
using any linear-time selection algorithm [2].

Decreasekey Deletemin Extra Storage Ref
Fibonacci O(1) O(log n) 4n ptrs, n(log log n + 2) bits [13]
Thin O(1) O(log n) 3n ptrs, n(log log n + 1) bits [18]

Ω(log log n) [11]
Pairing

O(log n)
O(log n) 2n ptrs, n bits

[16]

Post. d-ary O(logd n) O(d logd n) zero [15]
New O(1) O(log n) 1 ptr
New O(log∗ n) O(log n) zero
New l.b. if o(log∗ n) Ω(n1/ log(k) n) zero

Fig. 1. All priority queues support inserts in amortized constant time. The Fibonacci
& Thin Heaps support amortized constant time melds. See [19] for results on worst-case
bounds
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Our lower bounds reinforce a theme in implicit data structures [27, 5, 8, 15],
that it takes only a couple extra words of storage to alter the complexity of a
problem. Although our results depend on small amounts of extra memory, the
ushering technique is new and abstract enough to be applied elsewhere.

2 A New Priority Queue

In this section we design an abstract implicit priority queue. We cover the high-
level invariants of the structure, some very low-level encoding issues, then sketch
the operational “flow” of the priority queue. Many details are omitted; see [19].

Encoding Bits. We encode bits using the standard technique: for two given in-
dices i, j we equate A[i] < A[j] with zero and A[j] < A[i] with one. In this way
we can encode small integers and pointers with O(log n) elements.

Junk Elements. All elements are tagged either normal or junk, where the tags
are represented implicitly. We divide the entire array A into consecutive triplets.
The first two elements of any triplet are junk, and their relative order encodes
whether the third element is junk or normal. A junk (normal) triplet is one whose
third element is junk (normal). We maintain the invariant that the minimum
element in the queue is normal.

L-lists and I-lists. At a high level the data structure consists of a sequence of
O(log n) L-lists and a set of O(log2 n) I-lists, each of which is associated with
a distinct interval of L-lists. For any list T we let T � denote the set of normal
elements in T and |T | its length in triplets, including junk triplets. The relation
S < T holds when maxS� < min T �, or if either S� or T � is empty.

The list Lij belongs in slot j of zone i, where i ∈ [0, log4 n], j ∈ [0, 6], and the
length of Lij is roughly exponential in i. The L-lists are internally unordered but,
as a whole, in sorted order. That is, if ij < kl (lexicographically) then Lij < Lkl.
Loosely speaking, the list Iij,kl contains elements that, were they to be included
in L-lists, could be assigned to some list in the interval Lij , . . . , Lkl. We let Ls(ij)
and Lp(ij) be the non-empty successor and predecessor of list Lij , respectively.
The L- and I-lists obey the following order and size invariants. Some invariants
refer to parameters N ≥ n, ω = �log N log log N� and γ = log4 N . In addition
to L- and I-lists there is a buffer B which is discussed later.

Inv. O1 If ij < kl then Lij < Lkl.
Inv. O2 If ij ≤ kl then Lp(ij) < Iij,kl < Ls(kl).
Inv. S1 |Lij | ∈ [γ4i, 2γ4i] and |Lij | is a multiple of ω. |Lij | is non-empty only

if Li0, . . . , Li(j−1) are also non-empty, i.e., L-lists are packed in each zone.
Inv. S2 For ij > 00,

∣∣L�
ij

∣∣ ≥ 1
2 |Lij |.

Inv. S3 For any ij ≤ kl, |Iij,kl| is a multiple of ω and Iij,kl is non-empty only
if Lij and Lkl are also non empty. I00,kl is empty for all kl.

Inv. S4 |B| = |L00| = 2γ, and |L�
00| ≥ 1.

Assuming that the minimum element is normal, it follows from Invariants O1,
O2, S3, and S4 that the minimum always lies in L00 or B. In our data structure
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L00 and B are treated as fixed size mini priority queues that support findmin
in constant time, deletemin in O(log n) time, and decreasekey in either O(1) or
O(log∗ n) time, depending on whether we are allowed to store one extra pointer.

Periodic Rebuilding. We use a few mechanisms to guarantee that min A is nor-
mal. First, any element that is inserted or decreasekey’d is made normal. Every
insertion takes two otherwise unused junk elements to form a normal triplet and
every decreasekey can require up to three unused junk elements. Our data struc-
ture rebuilds itself whenever there may be a shortage of unused junk elements.
First it finds the n/6 smallest elements, designates them normal, and assigns
them to triplets. The remaining n/2 junk elements constitute the junk reservoir.
We maintain an implicit operation counter that is initially set to n/6. Every oper-
ation decrements the counter and when it reaches zero (i.e, when the junk reser-
voir may be empty) the data structure is rebuilt in linear time. It follows that the
minimum element is always normal. We charge the cost of rebuilding the struc-
ture to the n/6 preceeding operations. Some parameters are w.r.t. an N ≥ n.
Upon rebuilding we let N = 2�log(7n/6)�. Since n (the size of the queue) does not
uniquely determine N we dedicate two junk triplets to indicate the correct value.

Block Structure. The entire array A is divided into a sequence of blocks, each
containing ω = �log N log log N� triplets. The primary purpose of blocks is to
allow a dynamic implicit representation of L- and I-lists, which are circular and
doubly-linked. We dedicate O(log N) triplets of each block to represent successor
and predecessor pointers. Thus, given two blocks in different L- or I-lists it is
possible to splice them together in O(log N) time by altering 4 pointers. Blocks
also contain other counters and pointers; see [19].
The Structure of B and L00. Recall that both B and L00 have fixed size and
are located in A at fixed locations depending on N . We keep the normal triplets
of L00 packed together and arranged in a (log N)-ary implicit heap. Thus L00
supports deletemins in O(log N loglog N ω) = O(log N) time and decreasekeys
on elements in L�

00 in O(loglog N ω) = O(1) time. It allows bulk insertion of k
elements in O(k + log γ) time, where the log γ = O(log log N) term is the time
to determine |L�

00|. When dealing with B and L00 a deletemin accepts a junk
element to plug up the hole and an insert returns a displaced junk element.
The buffer B consists of, in this order, a triplet containing minB� followed by
fixed size mini-buffers Blog∗ N , . . . , B1, where

∣∣B1
∣∣ = Θ(γ) = Θ(log4 N) and∣∣B�

∣∣ = Θ(log(�) N). The normal triplets of each mini-buffer are packed together,
and furthermore, the normal triplets of B1 are arranged in a (log N)-ary implicit
heap. To insert the element e �∈ B into B we tag it normal, if not already. We
identify the first junk triplet of Blog∗ N and swap e with the third element of this
triplet. If e = min B we swap it with the old minimum. At this point Blog∗ N may
be full, that is, it contains only normal triplets. In general, whenever B�+1 is full
we perform a binary search to determine the first junk triplet in B�, say B�[j]. We
then swap the whole mini-buffer B�+1 with the junk triplets in B�[j..j+

∣∣B�+1
∣∣−

1], which may cause B� to be full. If  = 1 an artificial decreasekey operation is
performed on each of these elements in order to restore the heap order of B1.
The cost of relieving an overflow of B�+1 is O(

∣∣B�+1
∣∣ + log

∣∣B�
∣∣) = O(

∣∣B�+1
∣∣),
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i.e., O(1) per element. Since an element appears in each buffer at most once (per
insertion) the amortized cost of an insert is O(log∗ N). See [19] for B’s deletemin
and decreasekey routines.

If B can store an extra pointer (outside of the array A) then it can support
inserts and decreasekeys in O(1) time. We get rid of Blog∗ N , . . . , B2 and let the
pointer index the first junk triplet in B1.
Memory Layout. The array A is partitioned into five parts. The first part consists
entirely of junk and the first three occupy fixed locations depending on N .

1. Preamble. Contains a flag indicating N , the operation counter, and the free
block pointer, which points to the location of item (5), below.

2. The Buffer B and the list L00.
3. Representative blocks: one block from each L- and I-list is kept in a fixed

location. If the list is empty an all-junk block is kept in its spot. The repre-
sentative blocks contain additional statistics about their respective lists.

4. An array of blocks in use, by either L- or I-lists.
5. An array of unused blocks, a.k.a. the junk reservoir.

High-Level Operations. The priority queue operations only deal with L00 and
B. However, such an operation can induce a number of low level operations if
one of the invariants is violated, for instance, if |L�

00| reaches zero or |B| > 2γ.
The asterixes below mark places where a sequence of low level operations may
be necessary. Rebuilding the structure is considered a low level operation.

Insert(κ): Insert∗ κ into B. Put the displaced junk element at the end of the
junk reservoir. Decrement∗ the global operation counter.

Decreasekey(i, κ): If A[i] lies in B or L�
00 then perform the decreasekey there.

Otherwise insert∗ the element A[i] into B with the new key κ, changing
its status to normal if it was junk. Put the displaced junk element at A[i].
Decrement∗ the global operation counter.

Deletemin(): Return min(L�
00 ∪ min B�) using the deletemin operation∗ pro-

vided either by B or L00. Use the last junk element in the junk reservoir to
plug up the hole. Decrement∗ the global operation counter.

A Sketch of the Rest. Ignoring other parts of the data structure, the behavior of
our L-lists is straightforward. Whenever L�

00 becomes empty we find its successor
L′ = Ls(00). If L′ is in zone 0 we simply rename it L00 and if L′ is in zone i > 0
we divide it, with a linear-time selection algorithm, into O(i) shorter lists, which
are distributed over zones 0 through i − 1. Similarly, when L�

00 becomes full we
divide it into smaller lists, which are inserted into zone 0. In general, whenever
a zone i contains more than 7 lists (a violation) we concatenate some of the
lists to form one whose size is suitable to be inserted into zone i + 1. Our main
difficulty is filing newly inserted/decreasekey’d elements into the correct L-list.
Any direct method, like performing a binary search over the L-lists, is doomed
to take Ω(log log n) time. The purpose of the I-lists is to direct unfiled elements
to their correct L-lists, at constant amortized time per element.

Inserts and decreasekeys are directed toward the buffer B. When B is full we
divide it into geometrically increasing sets J0 < J1 < J2 . . ., with |J�+1| = 2|J�|.
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Each set J� is concatenated with the narrowest possible I-list that satisfies Invari-
ant O2. That is, we pick O(log n) normal representatives eij ∈ L�

ij and concate-
nate J� with Iij,kl such that eij < J� < ekl, where ij is maximal and kl minimal.
The procedure for dividing I-lists is identical to dividing the buffer. (We basically
consider B to be a special I-list.) In particular, whenever Iij,kl might contain the
minimum element—if Lij is the first non-empty L-list—we divide it into J-sets
of geometrically increasing size and concatenate them with the proper I-lists. It
is not obvious why this method should work. Every time an I-list is processed its
elements have a good chance of ending up in another I-list, which presumably
covers a narrower interval of L-lists. That is, it looks like we’re just implementing
binary search in slow motion. The full analysis of our data structure relies on a
complicated potential function; see [19] for the details.

3 The Absent Minded Usher’s Problem

In [19] we show that in any implicit priority queue the decreasekey operation must
be prepared to solve a version of the Absent Minded Usher’s Problem, which is the
focus of this section. Refer to [19] for the complete lower bound proof.

Let A be an array of infinite length, where each location of A can contain
a patron (indistinguishable from other patrons) or be empty. An usher is a de-
terministic program to insert a new patron into A without any knowledge of its
contents. That is, the usher does not know how many patrons it has already
inserted. The usher can probe a location of A to see if it is occupied and move
any patron to an empty location of A. We are interested in the complexity of
the best ushering program, that is, the number of probes and moves needed to
seat N patrons in an initially empty array. There exists a simple O(N log∗ N)
time usher; it is based on the same cascading buffers technique used in B from
the previous section. We prove that any usher requires Ω(N log∗ N) time.

We imagine an infinite graph whose vertices are layed out in a grid. The x-
axis corresponds to time (number of insertions) and the y-axis corresponds to the
array A. An usher is partially modeled as a set of x-monotone paths through the
grid, with each path representing where a particular patron was at each moment
in time. We assign each edge a cost, which represents in an amortized sense the
time taken to bring that patron to its current position. By reasoning about the
usher’s decision tree we are able to derive a recurrence relation describing the
costs of edges. The solution to this recurrence is then used to lower bound the
complexity of the ushering problem.

We put the patron to be inserted in the artificial position A[−1]. The usher’s
algorithm is modeled as a binary decision tree. At each internal node is an array
position to be probed and at each leaf is a list of pairs of the form (j1, j2),
indicating that the patron at A[j1] should be moved to A[j2]. Each leaf is called
an operation and the cost of executing an operation o is its depth in the decision
tree, d(o), plus the number of patron moves, m(o).

Consider an infinite graph with vertex set {Ai[j] : i ≥ 0, j ≥ −1}, where Ai[j]
represents A[j] after i insertions. There exists an edge (Ai−1[j1], Ai[j2]) exactly
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A0 A1 A2 A3 A4 A5 A6
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1
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3

4
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6

Fig. 2. This (infinite) two dimensional grid depicts the flow of patrons over time for
a particular ushering algorithm. Probes made by the algorithm are not represented.
Solid edges are fresh, dashed ones leftover

when Ai−1[j1] and Ai[j2] contain the same patron. Note that the graph is com-
posed exclusively of paths. An edge is leftover if it is of the form (Ai−1[j], Ai[j])
and fresh otherwise, i.e., fresh edges correspond to patron movements and left-
over edges correspond to unmoved patrons; see Figure 2. Let pred(Ai−1[j1], Ai[j2])
denote the edge (Ai−2[j3], Ai−1[j1]) if such an edge exists.

We now define a cost function c. If the edge (u, v) does not exist then c(u, v) =
0. Any edge of the form (Ai−1[j], Ai[j]) has cost c(pred(Ai−1[j], Ai[j])): leftover
edges inherit the cost of their predecessor. Let Ci =

∑
j1,j2

c(Ai−1[j1], Ai[j2]) be
the total cost of edges into Ai, and let Pi =

∑
j1 	=j2

c(pred(Ai−1[j1], Ai[j2])) be
the cost of the predecessors of the fresh edges into Ai. Let oi be the operation
performed at the ith insertion. (For example, in the ushering algorithm partially
depicted in Figure 2, o2 = o4 = o6 and o1, o3, and o5 are distinct.) Each fresh
edge e between Ai−1 and Ai is assigned the same cost:

c(e) def= Pi+d(oi)+m(oi)
m(oi)

That is, the total cost assigned to these m(oi) fresh edges is their inherited
cost, Pi, plus the actual time of the operation oi: d(oi) + m(oi). It follows from
the definitions that Ci is exactly the time to insert i patrons. Let T (m) be the
minimum possible cost of a fresh edge associated with an operation performing m
movements. We will show T (m) = Ω(log∗ m) and that this implies the amortized
cost of N insertions is Ω(N log∗ N).

For the remainder of this section we consider the ith insertion. Suppose that
the operation oi moves patrons from locations Ai−1[j1, j2, . . . , jm(oi)]. The pa-
trons in these locations were placed there at various times in the past. Define
iq < i as the index of the insertion that last moved a patron to A[jq].

Lemma 1. Let p, q be indices between 1 and m(oi). If ip �= iq then oip
�= oiq

.

We categorize all operations in the patron’s decision tree w.r.t. m = m(oi)—
recall that i is fixed in this section. An operation o is shallow if d(o) < �log m� /2
and deep otherwise. It is thin if m(o) <

⌊√
log m

⌋
and fat otherwise.

Lemma 2.
∣∣{q : oiq

is shallow and thin}
∣∣ < 1

2

√
m log m
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Lemma 3. If (u, v) is a fresh edge, where v ∈ Ak and ok is deep and thin, then
c(u, v) ≥ 1

2

√
log m.

In summary, Lemma 2 implies that at least m −
√

m log m/2 of the fresh
edges between Ai−1 and Ai can be traced back to earlier edges that are either
in deep and thin operations or fat operations. The cost of edges in deep and
thin operations is bounded by Lemma 3 and the cost of edges in fat operations
is bounded inductively. Recall that T (m) is the minimum cost of a fresh edge
associated with an operation performing m moves.

Lemma 4. T (m) ≥ (log∗ m)/4

Proof. Let e be a fresh edge into Ai with m = m(oi) and let
β = min{1

2

√
log m, T (

√
log m), T (

√
log m + 1), . . .}. Then:

c(e) =
m(oi) + Pi + d(oi)

m(oi)
≥

m + (m − 1
2

√
m log m) · β

m

Since the only property of e that we used in the above inequalities is m(oi) = m,
any lower bound on c(e) implies the same lower bound on T (m). We assume
inductively that T (r) ≥ 1

4 log∗ r, which holds for r ≤ 216 since T (r) ≥ 1 and
log∗ 216 = 4. For m > 216 we have:

T (m) ≥ 1 +
(
1 −

√
log m/4m

)
· β ≥ 1 +

(
1 −

√
log m/4m

)
· log∗(

√
log m)

4

>
(
1 −

√
log m/4m

)( log∗ m − 2
4

+ 1
)

>
log∗ m

4

Theorem 1. Any usher seating N patrons must perform Ω(N log∗ N) opera-
tions. For some patron it must perform Ω(log N) operations.

See [19] for the proof of Theorem 1. Our lower bound on implicit priority queues
shows that the decreasekey operation can be forced to behave like an usher, seat-
ing m patrons for some m of its choosing. If the data structure has no extra storage
and if m > log(k) n (for some fixed k), then by Theorem 1 the amortized cost per
decreasekey is Ω(log∗(log(k) n)) = Ω(log∗ n−k). If m is smaller, i.e., decreasekeys
were performed quickley, then we show that a further sequence of O(m log∗ n) de-
creasekeys, inserts, and deletemins must take Ω(n1/ log(k) n) time.
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Abstract. We study a class of adaptive multi-digit tries, in which the
numbers of digits rn processed by nodes with n incoming strings are such
that, in memoryless model (with n → ∞):

rn → log n

η
(pr.)

where η is an algorithm-specific constant. Examples of known data struc-
tures from this class include LC-tries (Andersson and Nilsson, 1993),
“relaxed” LC-tries (Nilsson and Tikkanen, 1998), tries with logarithmic
selection of degrees of nodes, etc. We show, that the average depth Dn of
such tries in asymmetric memoryless model has the following asymptotic
behavior (with n → ∞):

Dn =
log log n

− log (1 − h/η)
(1 + o (1))

where n is the number of strings inserted in the trie, and h is the en-
tropy of the source. We use this formula to compare performance of
known adaptive trie structures, and to predict properties of other possi-
ble implementations of tries in this class.

1 Introduction

Radix search trees or tries, introduced in late 1950’s by R. E. de la Briandeis [3]
and E. Fredkin [14] have long become one of the most basic and much appreciated
concepts in computer science. It is well known, that they enable access to n
variable-length strings in O(log n) time (on average), while using only O(n) of
space [15]. These fundamental properties remain in force for a large class of
statistical models [8, 5, 28], and are inherited by most of their modifications,
such as digital search trees [6, 13], Patricia tries [16], bucket tries [26, 15, 12],
and others [4]. Most of the original research on these structures has been done
in 1960s–70s.

Nevertheless, in recent years, tries have seen a resurgence of interest in con-
nection with several new modifications, allowing search operations to be executed
much faster, typically in O(log log n) time on average [1, 2, 18, 20, 10, 22, 25, 11].
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(a) Binary trie:
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(b) LC-trie:
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(c) 37.5%-sparse LC-trie: 
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(d) Logarithmic trie: 0000
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Fig. 1. Examples of tries built from 9 binary strings: s1 = 00000 . . ., s2 = 00001 . . .,
s3 = 00011 . . ., s4 = 0010 . . ., s5 = 0011 . . ., s6 = 01000 . . ., s7 = 01001 . . ., s8 =
1010 . . ., s9 = 1100 . . .

The basic technique that enables such a speed up is called adaptive multi-digit
branching [1, 22].

The best known example of such a structure is a level compressed trie (or LC-
trie) of Andersson and Nilsson [1], which simply replaces all complete subtrees
in a trie with larger multi-digit nodes1 (see Fig. 1.a,b). Other known implemen-
tations include ”sparse” LC-tries of Nilsson and Tikkanen [19, 20], which allow
the resulting multi-digit nodes to have a certain percentage of empty positions
(see Fig. 1.c), tries with logarithmic branching [22, 25], etc.

To the best of our knowledge, only LC-tries have been thoroughly analyzed
in the past. First results, suggesting that the average depth DLC

n of LC-tries in
asymmetric memoryless model is O(log log n) and only Θ(log∗ n) if model is sym-

1 It is assumed that multi-digit nodes can be represented by lookup tables, so the
time required to parse such a structure is still proportional to the number of nodes
in each particular path.
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metric, were reported by Andersson and Nilsson [1, 2]. A more refined estimate
in the symmetric case: DLC

n ∼ log∗ n has been obtained by Devroye [10]. In the
asymmetric case, Devroye and Szpankowski [11], and Reznik [24] have inde-
pendently arrived at the following expression: DLC

n = log log n
− log(1−h/h−∞) (1 + o(1))

where h and h−∞ are Shannon and Rényi entropies correspondingly [28]. Analy-
sis of the expected height (longest path length) of LC-tries in memoryless model
can be found in [10, 11].

At the same time, not much is known about other implementations of adap-
tive tries. Most relevant results in this direction include analysis of basic statistics
of multi-digit nodes [24, 25], and experimental data collected for some specific im-
plementations [19, 20]. Why useful by themselves, however, these results are not
sufficient for complete characterization of the average behavior of such structures.

In this paper, we offer a general analysis of a class of tries with adaptive
multi-digit branching in memoryless model, which, in various special cases, leads
to expressions of average depths for all above mentioned implementations. We
use these expressions to compare performance of these structures, and to predict
properties of other possible implementations of tries in this class.

2 Definitions and Main Results

Consider a set S = {s1, . . . , sn} of n distinct strings to be used for trie construc-
tion. For simplicity, we will assume that these strings contain symbols from a
binary alphabet Σ = {0, 1}.

Definition 1. A multi-digit trie with parameter r (r � 1): T (r) (S) over S is
a data structure defined recursively as follows. If n = 0, the trie is an empty
node. If n = 1 , the trie is an external node containing a pointer to a string
in S. If n > 1, the trie is an r-digit internal node containing pointers to 2r

child tries: T (r) (S 0r ) , . . . , T (r) (S1r ), constructed over sets of suffixes of strings
from S beginning with the corresponding r-digit words Sv = {uj | v uj = si ∈ S},
v ∈ Σr.

In the simplest case, when r = 1, this structure turns in to a regular binary
trie (see Fig. 1.a). When r is fixed, this structure is a 2r-ary trie, which uses
r-bits units of input data for branching. When r is variable, we say that this trie
belongs to a class of adaptive multi-digit tries. Below we define several important
implementations of such data structures.

Definition 2. An LC-trie TLC (S) over S is an adaptive multi-digit trie, in
which parameters r are selected to reach the first levels at which there is at least
one external or empty node: r = min

{
s :

∑
v∈Σs 1{|Sv| � 1} � 1

}
.

Definition 3. An ε-sparse LC-trie T ε–LC (S) over S is an adaptive multi-digit
trie, in which parameters r are selected to reach the deepest levels at which the
ratio of the number of empty nodes to the total number of nodes is not greater
than ε: r = max

{
s : 1

2s

∑
v∈Σs 1{Sv = ø} � ε

}
.
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Definition 4. A logarithmic trie T lg (S) over S is an adaptive multi-digit trie,
in which parameters r for nodes with n incoming strings are calculated using
r = �log2 n�.

Examples of the above defined types of tries are provided in Fig.1. Observe,
that all input strings s1, . . . , sn inserted in a trie can be uniquely identified by
the paths from the root node to the corresponding external nodes. The sum of
lengths of these paths C(T ) =

∑n
i=1 |si| is called an external path length of a

trie T , and the value D(T ) = C(T )/n – an average depth of this trie.
In order to study the average behavior of tries we will assume that input

strings S are generated by a binary memoryless (or Bernoulli) source [7]. In this
model, symbols of the input alphabet Σ = {0, 1} occur independently of one
another with probabilities p and q = 1− p correspondingly. If p = q = 1/2, such
source is called symmetric, otherwise it is asymmetric (or biased).

Using this model, we can now define the quantity of our main interest:

Dn := E {D (T )} =
E {C (T )}

n
, (1)

where the expectations are taken over all possible tries over n strings when
parameters of the memoryless source (p and q) are fixed. Average depths of LC-,
ε-sparse, and logarithmic tries over n strings will be denoted by DLC

n , Dε–LC
n ,

and D lg
n correspondingly.

In order to consolidate analysis of these (and possibly many other) implemen-
tations of adaptive multi-digit tries, we will assume, that in memoryless model,
the numbers of digits rn assigned to their internal nodes with n incoming strings
have the following convergence (with n → ∞):

rn → log n

η
(pr.) (2)

where η is an algorithm-specific constant.
For example, it is well known, that convergence (2) takes place for LC-

tries [21] (see also [9, 2]). In this case, the constant η becomes:

η LC = h−∞ , (3)

where h−∞ = − log min(p, q) is a special case of a Rényi’s entropy [28]. In a case
of ε-sparse LC-tries, an extension of analysis [25] suggests that: rn → log n

ηε–LC +
f(ε)

√
log n (pr.), where f(.) is a monotonic function, such that f(1/2) = 0, and

η ε–LC = hg , (4)

where hg = − log (
√

p q) is another constant depending on the probabilities of
the source. It is clear, that our model (2) is sufficient to describe ε-sparse LC-
tries with ε = 1/2. Finally, the behavior of logarithmic tries can obviously be
modelled by (2) with

η lg = log 2 . (5)

Our main result for a class of adaptive multi-digit tries is formulated in the
following theorem.
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Theorem 1. Consider a class of adaptive multi-digit tries, in which the numbers
of digits rn processed by nodes with n incoming strings, in binary memoryless
model (with n → ∞):

rn → log n

η
(pr.)

where η is a constant, such that: h < η � h−∞, where h = −p log p − q log q is
the Shannon’s entropy of the source, h−∞ = − log min(p, q), and it is assumed
that p �= q.

Then, the average depth Dn of such tries over n strings is asymptotically
(with n → ∞):

Dn =
log log n

− log (1 − h/η)
(1 + o (1)) . (6)

3 Discussion

Using the result of Theorem 1 and the values of constants η for each respective
algorithm (3-5), we can now compare them. The results of such a comparison are
presented in Fig.2. For completeness, we also show the behavior of the average
depths of regular (binary) tries Dbin

n = 1
h log n + O (1) (cf. [15, 8, 27]).

We first notice that when the source is nearly symmetric p → 1/2:

DLC
n

log log n
→ 0 ,

Dε–LC
n

log log n
→ 0 ,

D lg
n

log log n
→ 0 ,

0
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4

0.2 0.4 0.6 0.8 1p

Dbin
n

log n

DLC
n

log log n

Dε–LC
n

log log n

D lg
n

log log n

Fig. 2. Comparison of tries in binary memoryless model with Pr(0) = p. Dbin
n , DLC

n ,
Dε–LC

n , and D lg
n denote average depths of binary, LC-, ”sparse” LC-, and logarithmic

tries correspondingly
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which suggests that in a symmetric case, the average depths of these structures
should have a much smaller order. We already know that this is true for LC-tries
(whose depth in symmetric case is only O(log∗ n) [1, 10]), but now we can predict
such an effect for any adaptive trie with η → h (p → 1/2).

We next observe that behavior of LC-tries and their ”sparse” variants is
not very much different. Thus, by plugging their respective constants, it can be
shown that (with n → ∞):

2 � DLC
n

Dε–LC
n

� max
p∈[0,1]

log(1 − hg/h)
log(1 − h−∞/h)

≈ 2.165367... ,

which suggests that sparse LC-tries should be approximately twice faster than
LC-tries, and that, contrary to the intuition, this ratio cannot be influenced
much by increasing ε.

We also observe that both sparse and dense LC-tries are much more sensitive
to the asymmetry of the source than regular tries. Thus, it can be seen that
with p → 0:

DLC
n / log log n

Dbin
n / log n

→ ∞ ,
Dε–LC

n / log log n

Dbin
n / log n

→ ∞ .

At the same time, the sensitivity of logarithmic tries on the asymmetry of the
source remains similar to one of regular tries. Thus, it can be shown that with
p → 0:

D lg
n / log log n

Dbin
n / log n

→ log 2 .

As obvious, logarithmic tries are the fastest among implementations that
we have considered so far. Using the fact that the number of branches in their
nodes is approximately equal to the number of passing strings, we can conjec-
ture that the amount of space required by logarithmic tries is O(n log log n),
which is slightly larger than O(n) space used by regular tries and LC-tries
[15, 27, 2].

We conclude by pointing out that by using even larger nodes, e.g. with h <
η < log 2 in our model (2), it is possible to design tries that are faster than
logarithmic tries. However, the amount of space required by such tries becomes
Ω
(
n

log 2
η

)
, which in a practical world, might be too much of a price to be paid

for a relatively small (in this case, limited to a constant-factor) improvement in
speed.

4 Analysis

We start with deriving recurrent expressions for external path lengths of tries
with rn-digit nodes.
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Lemma 1. Parameters Cn (average external path length of adaptive multi-digit
tries over n strings) in a binary memoryless model satisfy:

Cn = n +
n∑

k=2

(
n

k

) rn∑
s=0

(
rn

s

)(
psqrn−s

)k (1 − psqrn−s
)n−k

Ck; (7)

C0 = C1 = 0.

Proof. Consider an rn-digit node processing n strings. Assuming that each of its
2rn branches have probabilities p1, . . . , p2rn , and using the standard technique
for enumeration of Cn in tries [15–6.3-3], we can write:

Cn = n +
∑

k1+...+k2rn =n

(
n

k1, . . . , k2rn

)
pk1
1 . . . pk2rn

2rn (C1 + . . . + C2rn ) ,

= n +
n∑

k=0

(
n

k

)(
pk
1 (1 − p1)

n−k + . . . + pk
2rn (1 − p2rn )n−k

)
Ck. (8)

Recall now that our strings are generated by a binary memoryless source with
probabilities p, and q = 1 − p. This means that:

pi = psiqrn−si , (9)

where si is the number of occurrences of symbol 0 in a string leading to a branch
i (1 � i � 2rn). Combining (8) and (9), we arrive at the expression (7) claimed
by the lemma. ��

In order to find a solution of (7) we will use the following, very simple tech-
nique. We already know, that for a class of our tries Dn = O(log log n), hence
we can say that Cn = ξn log log n and plug it in (7). Ultimately, this will give us
upper and lower bounds for the parameter ξ such that the recurrence (7) holds.
If these bounds are tight, then we have successfully deduced the constant factor
in the O(log log n) term.

We will need the following intermediate results. For simplicity, here and below
we use natural logarithms.

Lemma 2. Consider a sum:

f (n, θ, λ) =
n∑

k=2

(
n

k

)
θk (1 − θ)n−k

k ln(λ + ln k) , (10)

where θ ∈ (0, 1), and λ > 1 are some constants. Then, there exists 0 < ζ < ∞,
such that for any n � 2:

nθ ln(λ + ln(nθ)) − ζ � f (n, θ, λ) � nθ ln (λ + ln (1 − θ + nθ)) . (11)

Proof. We start with a representation:

f (n, θ, λ) =
n∑

k=1

(
n

k

)
θk (1 − θ)n−k

k ln(λ + ln k) − nθ(1 − θ)n−1 lnλ
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where the last term can be easily bounded by:

nθ(1 − θ)n−1 lnλ � θe−1

(θ − 1) ln(1 − θ)
lnλ =: ζ .

Next, by Jensen’s inequality for x ln(λ + lnx):

n∑
k=1

(
n

k

)
θk (1 − θ)n−k

k ln(λ + ln k)

�
(

n∑
k=1

(
n

k

)
θk (1 − θ)n−k

k

)
ln

(
λ + ln

(
n∑

k=1

(
n

k

)
θk (1 − θ)n−k

k

))

= nθ ln(λ + ln(nθ)) .

where convexity for k � 1 is assured by picking λ > 1.
To obtain an upper bound we use Jensen’s inequality for − ln(λ + ln(1 + x)):

n∑
k=1

(
n

k

)
θk (1 − θ)n−k

k ln(λ + ln k)

= nθ

n−1∑
k=0

(
n − 1

k

)
θk (1 − θ)n−1−k ln(λ + ln(1 + k))

� nθ ln

(
λ + ln

(
1 +

n−1∑
k=0

(
n − 1

k

)
θk (1 − θ)n−1−k

k

))

= nθ ln (λ + ln (1 − θ + nθ)) . ��

Lemma 3. Consider a sum:

g (n, θ, α, β) =
n∑

k=0

(
n

k

)
θk (1 − θ)n−k ln(α + βk) , (12)

where θ ∈ (0, 1), α, β > 0, and α > β. Then, for any n � 1:

ln(α − β(1 − θ) + βθn) � g (n, θ, α, β) � ln(α + βθn) . (13)

Proof. We use the same technique as in the previous Lemma. By Jensen’s in-
equality for − ln(α + βx):

g (n, θ, α, β) � ln

(
α + β

n∑
k=0

(
n

k

)
θk (1 − θ)n−k

k

)
= ln (α + βθn) .
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The lower bound follows from Jensen’s inequality for x ln(α − β + βx):

g (n, θ, α, β) =
1

θ(n + 1)

n+1∑
k=1

(
n + 1

k

)
θk (1 − θ)n+1−k

k ln (α − β + βk)

� 1
θ(n + 1)

(
n+1∑
k=1

(
n + 1

k

)
θk (1 − θ)n+1−k

k

)
×

× ln

(
α − β + β

n+1∑
k=1

(
n + 1

k

)
θk (1 − θ)n+1−k

k

)

= ln (α − β(1 − θ) + βθn) .

It is clear, that convexity and continuity in both cases is assured when α > β > 0.
��

We are now prepared to solve our recurrence (7). For simplicity we assume
that p > 1/2. Let Cn = ξn ln(λ + lnn), where λ > 1 is a constant. Then,
according to Lemma 2:

Cn = n +
rn∑

s=0

(
rn

s

) n∑
k=2

(
n

k

)(
psqrn−s

)k (1 − psqrn−s
)n−k

ξk ln(λ + ln k)

� n + nξ

rn∑
s=0

(
rn

s

)
psqrn−s ln

(
λ + ln

(
n psqrn−s + 1 − psqrn−s

))

= n + nξ

rn∑
s=0

(
rn

s

)
psqrn−s ln

(
λ+ ln

(
n psqrn−s

)
+ ln

(
1 +

1
n psqrn−s

− 1
n

))
.

Next, by our assumed property (2), we can pick ε > 0, such that the proba-
bility that ∣∣∣∣rn − lnn

η

∣∣∣∣ � ε . (14)

holds true is 1 with n → ∞. If we further assume that η � − ln q 2, then

n psqrn−s � n qrn � n q
ln n

η +ε = n1− lnq
η qε � qε .

and consequently:

ln
(

1 +
1

n psqrn−s
− 1

n

)
� ln

(
1 + q−ε − 1

n

)
< ln

(
1 + q−ε

)
= O(ε) .

2 A case when η = − ln q = h−∞ corresponds to LC-tries. Smaller η correspond to
tries with larger nodes.
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By incorporating this bound and using Lemma 3:

Cn � n + nξ

rn∑
s=0

(
rn

s

)
psqrn−s ln

(
λ + ln

(
n psqrn−s) + ln

(
1 + q−ε − 1/n

))

= n + nξ

rn∑
s=0

(
rn

s

)
psqrn−s ln

(
λ + ln n + rn ln q + s ln(p/q) + ln

(
1 + q−ε − 1/n

))
� n + nξ ln

(
λ + ln n − h rn + ln

(
1 + q−ε − 1/n

))
,

where h = −p ln p − q ln q is the entropy. Now, by applying (14), we have:

Cn � n + nξ ln
(

λ + lnn

(
1 − h

η

)
+ h ε + ln

(
1 + q−ε − 1/n

))
,

and by plugging Cn = ξn ln(λ + lnn) in the left side of the above inequality, we
finally obtain:

ξ � 1

− ln
(
1 − h

η + λ+h ε+ln(1+q−ε−1/n)
ln n

)
+ ln

(
1 + λ

ln n

)
=

1

− ln
(
1 − h

η

) (1 + O
( ε

lnn

))
. (15)

The procedure for finding a lower bound is very similar:

Cn = n +
rn∑

s=0

(
rn

s

) n∑
k=2

(
n

k

)(
psqrn−s

)k (1 − psqrn−s
)n−k

ξk ln(λ + ln k)

� n + nξ

rn∑
s=0

(
rn

s

)
psqrn−s log

(
λ + ln

(
n psqrn−s

))
− ζ

= n + nξ

rn∑
s=0

(
rn

s

)
psqrn−s ln (λ + lnn + rn ln q + s ln(p/q)) − ζ

� n + nξ ln (λ + lnn − h rn − q ln(p/q)) − ζ ,

� n + nξ ln
(

λ + lnn

(
1 − h

η

)
− hε − q ln(p/q)

)
− ζ ,

which (after plugging Cn = ξn ln(λ+lnn) in the right side) leads to the following
inequality:

ξ � 1 − ζ/n

− ln
(
1 − h

η + λ−hε−q ln(p/q)
ln n

)
+ ln

(
1 + λ

ln n

)
=

1

− ln
(
1 − h

η

) (1 + O
( ε

lnn

))
. (16)
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By combining our bounds (15) and (16) and taking into account the fact that
for any ε > 0, the probability that they both hold true is approaching 1 with
n → ∞, we can conclude that:

ξ → 1

− ln
(
1 − h

η

) (1 + o(1))

in probability.
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Abstract. Spatial databases support a variety of geometric queries on
point data such as range searches, nearest neighbor searches, etc. Bal-
anced Aspect Ratio (BAR) trees are hierarchical space decomposition
structures that are general-purpose and space-efficient, and, in addition,
enjoy a worst case performance poly-logarithmic in the number of points
for approximate queries. They maintain limits on their depth, as well as
on the aspect ratio (intuitively, how skinny the regions can be). BAR
trees were initially developed for 2 dimensional spaces and a fixed set
of partitioning planes, and then extended to d dimensional spaces and
more general partitioning planes. Here we revisit 2 dimensional spaces
and show that, for any given set of 3 partitioning planes, it is not only
possible to construct such trees, it is also possible to derive a simple
closed-form upper bound on the aspect ratio. This bound, and the re-
sulting algorithm, are much simpler than what is known for general BAR
trees. We call the resulting BAR trees Parameterized BAR trees and em-
pirically evaluate them for different partitioning planes. Our experiments
show that our theoretical bound converges to the empirically obtained
values in the lower ranges, and also make a case for using evenly oriented
partitioning planes.

1 Introduction

Spatial databases for scientific applications need efficient data structures to solve
a variety of geometric queries. Consider, e.g., the Sloan Digital Sky Survey
(SDSS) [16, 17], a scientific application with which we have direct experience.
It stores light intensities for over a 100 million celestial objects as points on a
two-dimensional sphere, and needs support for geometric queries like the near-
est neighbor queries, proximity queries, and general range queries (not just axis
orthogonal). Similar needs arise in geographical information systems.

There are many access methods based on the hierarchical space decomposi-
tion data structures that are useful in solving geometric queries on point data.
Quad trees and k-d trees are widely popular examples (e.g., see Samet [18, 19]).
In these data structures two properties, depth and aspect ratio, play a crucial role
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in determining their efficiency in solving queries. The depth of a tree character-
izes the number of nodes that have to be visited to find regions of interest. The
aspect ratio of a tree (intuitively, how “skinny” a region can be) characterizes the
number of wasteful nodes that can be in any particular region of interest. Most
queries require both of these values to be small for them to be solved efficiently.

Unfortunately, both quad trees and k-d trees optimize one of these properties
at the expense of the other. Quad trees produce regions with optimal aspect
ratios, but they can have terrible depth. K-d trees, on the other hand, have
optimal (logarithmic) depth, but they often produce lots of long-and-skinny
regions, which slow query times.

Balanced Aspect Ratio (BAR) trees are hierarchical space decomposition
data structures that have logarithmic depth and bounded aspect ratios. As a
result they have a worst case performance poly-logarithmic in the number of
points for approximate queries such as the approximate nearest neighbor, ap-
proximate farthest neighbor, approximate range query, etc. They were initially
developed for 2 dimensional spaces [12] for a particular fixed set (0, π/4, π/2)
of partitioning planes. Then [10], they were extended to d dimensional spaces,
and the partitioning planes could be chosen flexibly as long as certain condi-
tions were met. These conditions when applied to small dimensional spaces give
bounds that are known to be very loose. For instance, in d dimensional spaces, as
long as d of the partitioning planes are axis orthogonal, the aspect ratio (we give
a precise definition later) is bounded by 50

√
d+55. In 2 dimensional spaces, the

aspect ratio is bounded by a number very close to 6. In this paper, we are inter-
ested in developing simpler conditions for choosing partitioning planes flexibly in
BAR trees for small dimensions. This will allow us to derive tighter bounds for
the aspect ratio, and discover the best set of partitioning planes for a particular
application.

1.1 Related Prior Work

In this subsection, we briefly review some known general-purpose hierarchical
spatial decomposition trees for a set of points, S.
The Binary Space Partitioning (BSP) Trees. The BSP tree [14, 13] is a re-
cursive subdivision of space into regions by means of half-planes. Each node u in
the tree represents a convex region and the points from S lying in it. Initially, the
root node r of the tree represents a bounding region of the point set S. At each
node u, an associated line partitions the region of u, Ru, into two disjoint regions
Rl and Rr. The node u then has two child nodes l and r representing Rl and Rr

respectively. If the number of points from S in Ru is less than some constant,
u is not partitioned and becomes a leaf. These structures satisfy our condition
of being general-purpose, but without further restricting how the cutting lines
are chosen, these structures are inefficient. Thus, much work has been done on
methods for specializing BSP trees to be more efficient, which we review next.hfil

The k-d Tree. This structure was introduced by Bentley [3, 4, 5] and has been
extensively studied. It is a special class of the BSP tree: the partitioning line
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is orthogonal to one of the axes and such that it divides the set of points at
the node in half by cardinality. This guarantees that the depth of the tree is
O(log n). So point location queries, which take time proportional to the depth,
can be answered efficiently. But, since there are no guarantees on the aspect
ratio of the regions produced, with some exceptions [9], the running times of
queries can nevertheless be poor.
The Quadtree. The quadtree (e.g., see [18, 19]) is another special class of the
BSP tree. The point set S is initially bounded by a square, and the partitions are
such that a square region is divided into four smaller squares of equal area. (This
notion can be extended to d dimensional space, giving rise to a structure called
the octree.) The aspect ratios of regions in quadtrees is bounded by a constant,
but these trees can have unbounded depth. So even basic point location queries
can take unbounded time. If the point set is uniformly distributed, however, then
the depth is bounded, and in those situations quadtrees perform well for some
geometric queries.
Balanced Box Decomposition Trees. In [1, 2], Arya et al. describe a relative
of a binary-space partitioning tree called the Balanced Box Decomposition (BBD)
tree. This structure is based on the fair-split tree of Callahan and Kosaraju [6, 7]
and is defined such that its depth is O(log n) and all of the associated regions
have low combinatorial complexity and bounded aspect ratio. Arya et al. show
how BBD trees guarantee excellent performance in approximating general range
queries and nearest-neighbor queries. (Approximate queries are like the regular
exact versions, except they allow an error. See [10] for formal definitions.) The
aspect ratio bound on each region allows them to bound the number of nodes
visited during various approximate query searches by limiting the number of
nodes that can be packed inside a query region. However, since these trees rely
on using hole cuts during construction, they produce non-convex regions and
thus are not true BSP trees. This is also a drawback with respect to several
applications in computer graphics and graph drawing, where convexity of the
partitioned regions is desirable (e.g., see [12, 15]).
Balanced Aspect Ratio Trees. Duncan et al. [12, 11] introduced the Balanced
Aspect Ratio (BAR) trees. These are similar to k-d trees in 2-dimensional space,
except that instead of allowing only axis-orthogonal partitions, they also allow a
third partition orthogonal to a vector at a π/4 angle to the axes. This extra cut
allows them to find partitions that not only divide the point set in a region evenly,
but also ensure that the child regions have good (bounded) aspect ratio. In [10],
Duncan extended BAR trees to d dimensions. He showed that if a certain set of
conditions is satisfied, BAR trees with bounded aspect ratio can be constructed.
He also proved bounds on the running time of approximate queries. The (1+ ε)-
nearest neighbor query and the (1− ε)-farthest neighbor query can be answered
in O(log n + (1/ε) log(1/ε)) time, where n is the number of points. The ε-range
query and the ε-proximity query can be answered in O(log n + (1/ε) + k) time,
where k is the size of the output.



76 A. Chaudhary and M.T. Goodrich

1.2 Our Contributions

In this paper, we introduce the Parameterized Balanced Aspect Ratio (PBAR)
trees in 2 dimensions, which take any three vectors as the partitioning planes.
They enjoy all the advantages of BAR trees: general pupose, space efficient,
logarithmic depth, bounded aspect ratio, poly-logarithmic worst case bounds
for approximate versions of spatial queries. In addition, they have a bound on
the aspect ratio which is a simple closed-form function of the given partitioning
planes. The proofs used are significantly different from those for earlier BAR
trees: they use the advantages of 2 dimensional spaces and yet work of any given
set of partitioning vectors.

Our motivation for introducing PBAR trees comes from our experience with
the Sloan Digital Sky Survey (SDSS) [16, 17]. Because objects in the SDSS are
indexed by their positions on the night sky, the data can be viewed at a first
level of indexing as two-dimensional points on a sphere. To allow for efficient
access, astronomers overlay a quasi-uniform triangular “grid” on this sphere, to
reduce the curvature of each “leaf” triangle to be “almost” planar and to re-
duce the number of points in each such triangle to a few hundred thousand. The
difficulty is that when these leaf triangles are mapped to a projection plane to
allow for fast queries via a secondary data structure, there are many different
side angles that must be dealt with. A data structure like PBAR trees can con-
veniently use the given angles of a bounding triangle as its possible partitioning
directions. Without this convenience, we would get poorly-shaped regions near
the boundaries of these triangles.

The bounds on the running times for approximate queries, in [10], depend
only on the fact that both BBD and BAR trees have O(log n) depth and ensure
a constant bound on the aspect ratio of all their regions. These two conditions
are satisfied by PBAR trees as well. So the same bounds hold for PBAR trees as
well. We present empirical results for the (1 + ε)-nearest neighbor query using
PBAR trees with various different partitioning planes using artificial data as well
as real datasets from the SDSS. Our experiments also indicate that our bound
is tight in some respects.

In the next section we give the foundations and definition for PBAR trees.
In Section 3 we describe the algorithm for constructing PBAR trees and prove
its correctness. In the last section we present our empirical results. We include
details for the pseudo-code and proofs of correctness in an optional appendix in
this extended abstract.

2 Parameterizing BAR Trees

PBAR trees are for point data in 2-dimensional space. The distance δ(p, q) be-
tween two points p = (p1, p2) and q = (q1, q2) is

√
(p1 − q1)2 + (p2 − q2)2. Ex-

tending this notion, the distance between two sets of points P and Q is

δ(P,Q) = min
p∈P,q∈Q

δ(p, q).
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S is the set of n points given as input. The size |R| of region R is the number of
points from S in R.

Partitioning Vectors. We use vectors from R2 to specify partitioning directions.
Note that partitioning vectors l and −l are equivalent. The angle θlm between
two partitioning vectors l and m is the angle from l to m in the counterclockwise
direction, except that we take into account that m and −m are equivalent. In
the context of trigonometric functions, we shall prefer to use, for example, the
short sin(lm) instead of sin(θlm).

To construct a PBAR tree, we use the 3 partitioning vectors from the given
set V = {λ, μ, ν}. We make all partitions by taking a region R and dividing it
into two subregions, R1 and R2, with a line c′l, called a cut, orthogonal to some
l ∈ V . A cut orthogonal to l is also called an l-cut. Note that if R is convex, both
R1 and R2 are convex too. We divide the set of points in R, call it S, between
R1 and R2 in the natural fashion. For points in S that are on cl, we assign each
of them to either R1 or R2 as per convenience.

Let the sequence (λ, μ, ν) be in the counterclockwise order. All the 3 sequences
in the set P(V ) = {(λ, μ, ν), (μ, ν, λ), (ν, λ, μ)} are equivalent for our purpose.
So, often, we shall speak in terms of the general (l,m,n), where (l,m,n) ∈ P(V ).

Fig. 1. The names used for the sides and the diameters

Canonical Regions and Canonical Aspect Ratios. We assume that the given set
of points S has an initial convex bounding region with sides that are orthogonal
to λ, μ, or ν. Since in constructing PBAR trees we make all partitions with lines
orthogonal to these 3 partitioning vectors, the regions we construct are always
hexagons with sides orthogonal to λ, μ, or ν. Some sides may be degenerate, that
is, of length 0. We call these hexagonal regions canonical regions. See Figure 1.
In a canonical region R, bl(R) and cl(R) are the two unique opposing sides
orthogonal to the partitioning vector l. The diameter dl(R) of R with respect to
the partitioning vector l is the distance δ(bl(R), cl(R)). The maximum diameter
of R is dmax(R) = maxl∈V dl(R), and the minimum diameter of R is dmin(R) =
minl∈V dl(R). When the region is understood from the context we drop the
argument in the above notations and use, for example, bl instead of bl(R). A
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canonical trapezoidal region is of special interest, and is a canonical region that
is quadrilateral and has exactly one pair of parallel sides.

The canonical aspect ratio casp(R) of canonical region R is the ratio of
dmax(R) to dmin(R). In this paper, we use the terms aspect ratio and canon-
ical aspect ratio synonymously

PBAR Trees, One-Cuts, and Two-Cuts. Given a balancing factor α, R is α-
balanced or has a balanced aspect ratio if casp(R) ≤ α. R is critically balanced if
casp(R) = α. A cut cl orthogonal to l ∈ V that divides an α-balanced region R
into R1 and R2 is feasible if both R1 and R2 are α-balanced.

Given a set S of n points in 2-dimensional space, a set of 3 partitioning
vectors V = {λ, μ, ν}, a balancing factor α, α ≥ 1, and a reduction factor β,
0.5 ≤ β < 1, a Parameterized Balanced Aspect Ratio tree T is a BSP tree on S
such that

1. All partitions are made with cuts orthogonal to the vectors in V ;
2. The canonical aspect ratio of each region is at most α;
3. The number of points in each leaf cell of T is a constant with respect to n.
4. The depth of T is O(log1/β n).

Given a balancing factor α and reduction factor β, an α-balanced region R
is one-cuttable if there is a cut c, called a one-cut, orthogonal to a vector in V
that divides R into two canonical subregions R1 and R2 such that

1. c is feasible;
2. |R1| ≤ β|R| and |R2| ≤ β|R|.

(Note that if there is a continuum of feasible cuts that cover the entire region
R, then R is one-cuttable, as at least one of these cuts will satisfy 2 above.)
A region R is two-cuttable if there is a cut c, called a two-cut, orthogonal to a
vector in V that divides R into two canonical subregions R1 and R2 such that

1. c is feasible;
2. |R1| ≤ β|R|;
3. |R2| ≤ β|R| or R2 is one-cuttable.

Shield Regions. Let R be an α-balanced canonical region and let xl be a side of
R, x ∈ {b, c}, l ∈ V . Now sweep a cut x′

l starting from the side opposite to xl

toward xl. Let P be the subregion formed between xl and x′
l. In the beginning,

casp(P ) ≤ α. Sweep x′
l toward xl and stop when P is critically balanced. P

is called the shield region shieldxl
(R) of R with respect to xl. x′

l is the cut for
shieldxl

(R). R has two shield regions for each l ∈ V , shieldbl
(R) and shieldcl

(R).
Note that R has a feasible l-cut if and only if shieldbl

(R) ∩ shieldcl
(R) = ∅.

For a given l ∈ V , the maximal shield region maxshieldl(R) of R with respect
to l is one among shieldbl

(R) and shieldcl
(R) that has the maximum size. (Re-

member, the size of a region is the number of points in it.) Note that R has a
one-cut orthogonal to l only when |maxshieldl(R)| ≤ β|R|.
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3 The PBAR Tree Algorithm

In this section we present the PBAR tree algorithm that, given a set of parti-
tioning vectors V = {λ, μ, ν}, a reduction factor β, and a balancing factor α,
constructs a PBAR tree on any set S of n points in 2-dimensional space; as long
as 0.5 ≤ β < 1, and α is at least

f(V ) =
4.38

sin(θmin) sin(λμ) sin(μν) sin(νλ)
,

where θmin is the minimum among the angles (λμ), (μν), (νλ).
The PBAR tree algorithm takes an initial α-balanced canonical region R that

bounds S and recursively subdivides it by first searching for a one-cut, and if no
such cut exists, by searching for a two-cut. For details see [8].

The algorithm for searching for a one-cut, OneCut, considers each partition-
ing vector in turn. For a partitioning vector l, a one-cut orthogonal to it exists
if and only if the shield regions with respect to l don’t overlap and the maximal
shield region contains at most β|R| points. Details are in [8].

The algorithm for searching for a two-cut, TwoCut, considers very few cuts as
potential two-cuts. Only cuts for the maximal shield regions for the 3 partitioning
vectors are considered as potential two-cuts. This is sufficient as long as α ≥ f(V )
— that this is true is our main result and we prove it in the rest of the section.
Details for TwoCut are in [8].

Theorem 1 (Main Result). Given a set S of n points in 2-dimensional space,
a set of 3 partitioning vectors V = {λ, μ, ν}, a balancing factor α, α ≥ f(V ),
and a reduction factor β, 0.5 ≤ β < 1, the PBAR tree algorithm constructs a
PBAR tree on S in O(n log n) time.

We first prove some preliminary lemmas. For all of these we shall assume
that 0.5 ≤ β < 1 and α ≥ f(V ).

Lemma 1. Given a set of partitioning vectors V , a balancing factor α, and a
reduction factor β, if every α-balanced region R is two-cuttable, then a PBAR
tree can be constructed for every set S of n points.

Proof. Start with any initial α-balanced canonical region that bounds S. Since
this region is two-cuttable, divide it into a maximum of 3 α-balanced subregions
such that each contains less than βn points. Repeat this process for each of the
resulting subregions until each of the final leaf regions has at most a constant
number of points. The process, along any path of subregions, cannot be repeated
more than O(log1/β n) times.

Lemma 2. A canonical region R that is a triangle is always α-balanced.

Due to lack of space, proofs for the lemmas are in the full version of the paper[8].

Lemma 3. Let (l,m,n) ∈ P(V ). Let R be an α-balanced canonical region that
is not critically balanced. If P is a critically balanced subregion created by parti-
tioning R with an l-cut, then the minimum diameter of P is dl(P ).



80 A. Chaudhary and M.T. Goodrich

Corollary 1. For a critically balanced canonical region R that is a trapezoid, if
bl and cl are the two parallel sides, then the minimum diameter of R is dl.

Lemma 4. Let (l,m,n) ∈ P(V ), and let R be an α-balanced region that has no
feasible l-cut. Let S be the region formed by extending R such that bn(S) is of
length 0. If P is shieldcm

(S), then cl(P ) ≤ cl(R).

Lemma 5. Let (l,m,n) ∈ P(V ). If an α-balanced region R has no feasible l-cut,
then it has a feasible m-cut and a feasible n-cut.

Corollary 2. Let (l,m,n) ∈ P(V ). If an α-balanced region R has no one-cut
and no feasible l-cut, then the maximal shield regions with respect to m and n
intersect.

Lemma 6. A critically balanced region R that is a trapezoidal is one-cuttable.

Lemma 7. Let (l,m,n) ∈ P(V ). If an α-balanced region R has no one-cut and
no feasible l-cut, then R has a two-cut.

Lemma 8. Let (l,m,n) ∈ P(V ). If an α-balanced region R does not have a
one-cut and yet there are feasible cuts along all 3 partitioning vectors l, m, and
n, then R has a two-cut.

Proof of Theorem 1. The PBAR tree algorithm recursively subdivides the
initial bounding region by first searching for a one-cut, and if no such cut exists,
by searching for a two-cut. By Lemma 1, if it always succeeds in finding a one-cut
or a two-cut, it constructs a PBAR tree. It is easy to see that when the algorithm
does not find a one-cut, no such cut exists. In such a situation, the algorithm
searches for a two-cut by checking if any of the 3 maximal shield regions are
one-cuttable. The proofs for Lemmas 7 and 8 show that at least one of these
shield regions is one-cuttable, and so the algorithm always succeeds in finding
either a one-cut or a two-cut. For the time analysis see proof in [8]. ��

4 Empirical Tests

In this section we present the preliminary empirical results we have obtained
and analyze them. We look at measures like number of nodes created, the depth
of the tree, and the number of leaves visited instead of the actual time or space
requirements. This is because the time and space measures are dependent on
the efficiency of the implementation, the load on the machine during testing,
etc. The other measures are not as dependent on the kind of testing carried
out. In addition, the number of nodes visited is the dominant term if the data
structure is stored in external memory (as is the case in SDSS).

We took 2 data sets and varied the partitioning planes in small increments
and for each we found the best aspect ratio that can be obtained. First, we
present plots that summarize the results of this experiment. Later, we present
detailed results for 6 different data sets in which we compare BAR trees with
(0, π/4, π/2) partitioning angles with 2 instances of PBAR trees.
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Fig. 2. Effects of varying the partitioning planes on SDSS data

4.1 Varying the Partitioning Planes

We varied the set of partitioning planes for a given dataset and found the best
possible aspect ratio that can be obtained for that dataset. We plot this best
empirical aspect ratio in Figures 2 and 3 (it is called the Maximum aspect ratio
in the figures). We also plot, alongside, the bound f(V ) on the aspect ratio that
we have proved. We had conjectured that f(V ) can be tightened by removing the
sin(θmin) term to obtain f(V ) = 4.38/(sin(λμ) sin(μν) sin(νλ)). We plot the con-
jectured bound as well. We also plot the average aspect ratio of the nodes in tree.

The bound and the conjectured bound both decrease dramatically as the
planes become evenly oriented. But the empirically obtained values do not follow
their lead, though there is a reasonable amount of variation in the best (maxi-
mum) aspect ratio possible. The value of f(V ) converges towards the empirical
value as it reduces, which indicates that it is possibly tight for the evenly ori-
ented planes. The same is true for the conjectured bound; but, if you look closely
at Figure 3 for the orientation (0, 45, 90) the conjectured value is actually lower
than the best aspect ratio obtained through experiments. This indicates that
the conjecture is wrong. We also plot the number of nodes visited during the
nearest neighbor searches (the details for these searches are described in the next
section) for the various planes. There is very slight variation in this, or in the
average aspect ratio with the change in plane orientations.
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Fig. 3. Effects of varying the partitioning planes on data created uniformly at random
along a circle

4.2 Comparing BAR Trees and PBAR Trees

To compare the performance of BAR trees (with mostly axis orthogonal planes:
0, π/4, π/2) and PBAR trees we constructed PBAR trees with three different
sets of partitioning vectors V . In the first set, V is such that θλμ = π/4 and
θλν = π/2. In the second set, V is such that θλμ = π/3 and θλν = 2π/3, and in
the third set, V is such that θλμ = π/6 and θλν = π/2. Note that the partitioning
vectors in the first set are that used by BAR trees. The PBAR trees constructed
in this case closely mimic BAR trees and the performance is representative of
the performance of BAR trees. In the second case, the partitioning vectors are
more evenly oriented, while in the third case they are less evenly oriented, than
the first case. We refer to the former case as the BAR tree results and the latter
two cases as the PBAR-even tree and PBAR-uneven tree results respectively.
In all cases α is 20, β is 0.6, and the maximum points in any leaf k is 5. A
100 (1 + ε)-nearest neighbor queries were solved using each tree. For each data
set, a point q is first chosen uniformly at random from among the data points.
This is the first query point. Then a random increment is chosen and repeatedly
added to q to get 99 other query points. ε for the queries is always 0.001. The
results for BAR tree are in Figure 4, for PBAR-even tree are in Figure 5, and for
PBAR-uneven tree are in Figure 6. Of the 6 data sets data sets, 4 were chosen
rather arbitrarily, and the last two are real data from the Sloan Digital Sky
Survey(SDSS). The data sets are described in [8].
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Data Nodes Depth Avg. casp(·) Nodes visited Leaves visited
Set in tree of tree of regions during query during query
Set 1 4615 12 9.70 57.2 11.74
Set 2 4719 13 8.78 73.64 13.97
Set 3 4709 12 9.08 148.51 30.97
Set 4 4631 12 7.84 16.47 2.49
Set 5 4749 12 8.98 13.49 1.60
Set 6 2079 11 9.13 21.84 3.68

Fig. 4. Results for (1 + ε)-nearest neighbor queries on BAR trees. (Number of nodes
and leaves visited during query are averaged over a 100 queries.)

Data Nodes Depth Avg. casp(·) Nodes visited Leaves visited
Set in tree of tree of regions during query during query
Set 1 4647 12 9.93 21.5 3.66
Set 2 4791 12 8.78 22.61 4.38
Set 3 4741 12 9.36 13.7 1.48
Set 4 4641 12 8.14 15.59 2.23
Set 5 4673 12 8.41 32.44 5.91
Set 6 2067 11 8.77 21.19 3.49

Fig. 5. Results for (1 + ε)-nearest neighbor queries on PBAR-even trees; V such that
θλμ = π/3 and θλν = 2π/3. (Number of nodes and leaves visited during query are
averaged over a 100 queries.)

Data Nodes Depth Avg. casp(·) Nodes visited Leaves visited
Set in tree of tree of regions during query during query
Set 1 4635 12 9.64 58.04 12.03
Set 2 4697 13 8.58 76.32 14.91
Set 3 4655 12 8.86 152.81 31.62
Set 4 4629 12 7.44 15.96 2.37
Set 5 4683 12 8.57 13.48 1.6
Set 6 2077 11 8.82 21.21 3.51

Fig. 6. Results for (1 + ε)-nearest neighbor queries on PBAR-uneven trees; V such
that θλμ = π/6 and θλν = π/2. (Number of nodes and leaves visited during query are
averaged over a 100 queries.)

The number of nodes in the tree are about the same, for the first 5 data
sets, irrespective of V . This is expected as the number of data points and the
maximum size of a leaf are the same in all cases. The depth of the trees are
about the same too, irrespective of the data set. This, again, is expected as the
β values are the same, and we don’t except too many regions that require two-
cuts. Set 6 has far fewer points and so has much fewer nodes. Surprisingly, the
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average values of the canonical aspect ratio are not very different in the three
trees for the different data sets. Neither is one of the trees always better than
the other. Such is not the case for number of nodes and number of leaves vis-
ited during query processing. PBAR-even trees almost always visit fewer nodes
and fewer leaves and in one particular case the difference with both BAR and
PBAR-uneven trees is a factor of 10. That PBAR-even trees perform better at
approximate nearest neighbor searches may be expected given the theoretical
results, it is surprising that this should be the case when the canonical aspect
ratio values are about the same. For Set 5, which is real data set from the SDSS,
however, PBAR-even trees are not the best. For this set, both BAR trees and
PBAR-uneven trees perform better, with PBAR-uneven slightly ahead of BAR.
For the other real data, Set 6, again PBAR-even is the best.

In conclusion, our experiments show that the flexibility of PBAR trees can
help in increasing the efficiency of approximate nearest neighbor searches.

5 Conclusion and Future Work

In this paper we revisited BAR trees in 2 dimensional spaces and developed the
Parameterized Balanced Aspect Ratio (PBAR) trees. These allow any given set
of 3 partitioning planes and yet retain all the advantages of BAR trees — general
purpose data structures, space efficient, logarithmic depth, bounded aspect ratio,
and poly-logarithmic approximate query processing. These are the first known
“BAR-type” trees in which the aspect ratio can be bounded by a simple closed-
form function (it depends on the orientation of the partitioning planes). We
conducted empirical tests that show that in many instances the evenly oriented
partitioning planes are better than the mostly axis orthogonal planes that have
been mostly studied prior to this. In addition, our experiments indicate that
our bound is tight in some respects: it converges to empirical values for evenly
oriented planes, and that a natural modification to tighten it (our conjecture
that sin(θmin) factor can be removed) is wrong.

Having bounds on the aspect ratio can be useful in ways other than solving
queries faster. For example, PBAR trees can be used to efficiently compute the
density of a region around a given point. This can be useful in detecting density
based outliers. We want to explore this and other possible applications of PBAR
trees in spatial data mining.
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Abstract. We study practically efficient methods for performing combinatorial
group testing. We present efficient non-adaptive and two-stage combinatorial
group testing algorithms, which identify the at most d items out of a given set
of n items that are defective, using fewer tests for all practical set sizes. For ex-
ample, our two-stage algorithm matches the information theoretic lower bound
for the number of tests in a combinatorial group testing regimen.

Keywords: combinatorial group testing, Chinese remaindering, Bloom filters.

1 Introduction

The problem of combinatorial group testing dates back to World War II, for the prob-
lem of determining which in a group of n blood samples contain the syphilis antigen
(hence, are contaminated). Formally, in combinatorial group testing, we are given a set
of n items, at most d of which are defective (or contaminated), and we are interested in
identifying exactly which of the n items are defective. In addition, items can be “sam-
pled” and these samples can be “mixed” together, so tests for contamination can be
applied to arbitrary subsets of these items. The result of a test may be positive, indicat-
ing that at least one of the items of that subset is defective, or negative, indicating that
all items in that subset are good. Example applications that fit this framework include:

– Screening blood samples for diseases. In this application, items are blood samples
and tests are disease detections done on mixtures taken from selected samples.

– Screening vaccines for contamination. In this case, items are vaccines and tests are
cultures done on mixtures of samples taken from selected vaccines.

– Clone libraries for a DNA sequence. Here, the items are DNA subsequences (called
clones) and tests are done on pools of clones to determine which clones contain a
particular DNA sequence (called a probe) [8].

– Data forensics. In this case, items are documents and the tests are applications of
one-way hash functions with known expected values applied to selected collections
of documents.

The primary goal of a testing algorithm is to identify all defective items using as
few tests as possible. That is, we wish to minimize the following function:

– t(n, d): The number of tests needed to identify up to d defectives among n items.

F. Dehne, A. López-Ortiz, and J.-R. Sack (Eds.): WADS 2005, LNCS 3608, pp. 86–98, 2005.
c©Springer-Verlag Berlin Heidelberg 2005
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This minimization may be subject to possibly additional constraints, as well. For exam-
ple, we may wish to identify all the defective items in a single (non-adaptive) round of
testing, we may wish to do this in two (partially-adaptive) rounds, or we may wish to
perform the tests sequentially one after the other in a fully adaptive fashion.

In this paper we are interested in efficient solutions to combinatorial group testing
problems for realistic problem sizes, which could be applied to solve the motivating
examples given above. That is, we wish solutions that minimize t(n, d) for practical
values of n and d as well as asymptotically. Because of the inherent delays that are
built into fully adaptive, sequential solutions, we are interested only in solutions that
can be completed in one or two rounds. Moreover, we desire solutions that are efficient
not only in terms of the total number of tests performed, but also for the following
measures:

– A(n, t): The analysis time needed to determine which items are defective.
– S(n, d): The sampling rate—the maximum number of tests any item may be in-

cluded in.

An analysis algorithm is said to be efficient if A(n, t) is O(tn), where n is the number
of items and t is the number of tests conducted. It is time-optimal if A(n, t) is O(t).
Likewise, we desire efficient sampling rates for our algorithms; that is, we desire that
S(n, d) be O(t(n, d)/d). Moreover, we are interested in this paper in solutions that im-
prove previous results, either asymptotically or by constant factors, for realistic problem
sizes. We do not define such “realistic” problem sizes formally, but we may wish to con-
sider as unrealistic a problem that is larger than the total memory capacity (in bytes) of
all CDs and DVDs in the world (< 1025), the number of atomic particles in the earth
(< 1050), or the number of atomic particles in the universe (< 1080).

Viewing Testing Regimens as Matrices. A single round in a combinatorial group testing
algorithm consists of a test regimen and an analysis algorithm (which, in a non-adaptive
(one-stage) algorithm, must identify all the defectives). The test regimen can be mod-
eled by a t × n Boolean matrix, M . Each of the n columns of M corresponds to one
of the n items. Each of the t rows of M represents a test of items whose corresponding
column has a 1-entry in that row. All tests are conducted before the results of any test is
made available. The analysis algorithm uses the results of the t tests to determine which
of the n items are defective.

As described by Du and Hwang [5](p. 133), the matrix M is d-disjunct if the
Boolean sum of any d columns does not contain any other column. In the analysis
of a d-disjunct testing algorithm, items included in a test with negative outcome can be
identified as pure. Using a d-disjunct matrix enables the conclusion that if there are d
or fewer items that cannot be identified as pure in this manner then all those items must
be defective and there are no other defective items. If more than d items remain then at
least d + 1 of them are defective. Thus, using a d-disjunct matrix enables an efficient
analysis algorithm, with A(n, t) being O(tn).

M is d-separable (d-separable) if the Boolean sums of d (up to d) columns are
all distinct. The d-separable property implies that each selection of up to d defective
items induces a different set of tests with positive outcomes. Thus, it is possible to
identify which are the up to d defective items by checking, for each possible selection,
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whether its induced positive test set is exactly the obtained positive outcomes. However,
it might not be possible to detect that there are more than d defective items. This analysis
algorithm takes time Θ(nd) or requires a large table mapping t-subsets to d-subsets.

Generally, d-separable matrices can be constructed with fewer rows than can d-
disjunct matrices having the same number of columns. Although the analysis algorithm
described above for d-separable matrices is not efficient, some d-separable matrices that
are not d-disjunct have an efficient analysis algorithm.

Previous Related Work. Combinatorial group testing is a rich research area with many
applications to many other areas, including communications, cryptography, and net-
working [3]. For an excellent discussion of this topic, the reader is referred to the book
by Du and Hwang [5]. For general d, Du and Hwang [5](p. 149) describe a slight modi-
fication of the analysis of a construction due to Hwang and Sós [9] that results in a t×n

d-disjunct matrix, with n ≥ (2/3)3t/16d2
, and so t ≤ 16d2(1 + log3 2 + (log3 2) lg n).

For two-stage testing, Debonis et al. [4] provide a scheme that achieves a number of
tests within a factor of 7.54(1 + o(1)) of the information-theoretic lower bound of
d log(n/d). For d = 2, Kautz and Singleton [10] construct a 2-disjunct matrix with
t = 3q+1 and n = 32q

, for any positive integer q. Macula and Reuter [11] describe a
2-separable matrix and a time-optimal analysis algorithm with t = (q2 + 3q)/2 and
n = 2q − 1, for any positive integer q. For d = 3, Du and Hwang [5](p. 159) describe
the construction of a 3-separable matrix (but do not describe the analysis algorithm)
with t = 4

(3q
2

)
= 18q2 − 6q and n = 2q − 1, for any positive integer q.

Our Results. In this paper, we consider problems of identifying defectives using non-
adaptive or two-stage protocols with efficient analysis algorithms. We present several
such algorithms that require fewer tests than do previous algorithms for practical-sized
sets, although we omit the proofs of some supporting lemmas in this paper, due to
space constraints. Our general case algorithm, which is based on a method we call
the Chinese Remainder Sieve, improves the construction of Hwang and Sós [9] for all
values of d for real-world problem instances as well as for d ≥ n1/5 and n ≥ e10. Our
two-stage algorithm achieves a bound for t(n, d) that is within a factor of 4(1 + o(1))
of the information-theoretic lower bound. This bound improves the bound achieved by
Debonis et al. [4] by almost a factor of 2. Likewise, our algorithm for d = 2 improves
on the number of tests required for all real-world problem sizes and is time-optimal (that
is, with A(n, t) ∈ O(t)). Our algorithm for d = 3 is the first known time-optimal testing
algorithm for that d-value. Moreover, our algorithms all have efficient sampling rates.

2 The Chinese Remainder Sieve

In this section, we present a solution to the problem for determining which items are de-
fective when we know that there are at most d < n defectives. Using a simple number-
theoretic method, which we call the Chinese Remainder Sieve method, we describe the
construction of a d-disjunct matrix with t = O(d2 log2 n/(log d + log log n)). As we
will show, our bound is superior to that of the method of Hwang and Sós [9], for all
realistic instances of the combinatorial group testing problem.
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Suppose we are given n items, numbered 0, 1, . . . ,n − 1, such that at most d <
n are defective. Let {pe1

1 , pe2
2 , . . . , pek

k } be a sequence of powers of distinct primes,
multiplying to at least nd. That is,

∏
j p

ej

j ≥ nd. We construct a t × n matrix M as
the vertical concatenation of k submatrices, M1,M2, . . . , Mk. Each submatrix Mj is
a tj × n testing matrix, where tj = p

ej

j ; hence, t =
∑k

j=1 p
ej

j . We form each row
of Mj by associating it with a non-negative value x less than p

ej

j . Specifically, for
each x, 0 ≤ x < p

ej

j , form a test in Mj consisting of the item indices (in the range
0, 1, . . . ,n − 1) that equal x (mod p

ej

j ). For example, if x = 2 and p
ej

j = 32, then the
row for x in Mj has a 1 only in columns 2, 11, 20, and so on.

The following lemma shows that the test matrix M is d-disjunct.

Lemma 1. If there are at most d defective items, and all tests in M are positive for i,
then i is defective.

Proof. If all k tests for i (one for each prime power p
ej

j ) are positive, then there exists
at least one defective item. With each positive test that includes i (that is, it has a 1 in
column i), let p

ej

j be the modulus used for this test, and associate with j a defective
index ij that was included in that test (choosing ij arbitrarily in case test j includes
multiple defective indices). For any defective index i′, let Pi′ =

∏
j s.t. ij=i′ p

ej

j . That
is, Pi′ is the product of all the prime powers such that i′ caused a positive test that in-
cluded i for that prime power. Since there are k tests that are positive for i, each p

ej

j

appears in exactly one of these products, Pi′ . So
∏

Pi′ =
∏

p
ej

j ≥ nd. Moreover,

there are at most d products, Pi′ . Therefore, maxi′ Pi′ ≥ (nd)1/d = n; hence, there
exists at least one defective index i′ for which Pi′ ≥ n. By construction, i′ is congru-
ent to the same values to which i is congruent, modulo each of the prime powers in
Pi′ . By the Chinese Remainder Theorem, the solution to these common congruences is
unique modulo the least common multiple of these prime powers, which is Pi′ itself.
Therefore, i is equal to i′ modulo a number that is at least n, so i = i′; hence, i is
defective.

The important role of the Chinese Remainder Theorem in the proof of the above
lemma gives rise to our name for this construction—the Chinese Remainder Sieve.

Analysis. As mentioned above, the total number of tests, t(n, d), constructed in the
Chinese Remainder Sieve is

∑k
j=1 p

ej

j , where
∏

p
ej

j ≥ nd. If we let each ej = 1,

we can simplify our analysis to note that t(n, d) =
∑k

j=1 pj , where pj denotes the

j-th prime number and k is chosen so that
∏k

j=1 pj ≥ nd. To produce a closed-form
upper bound for t(n, d), we make use of the prime counting function, π(x), which is
the number of primes less than or equal to x. We also use the well-known Chebyshev
function, θ(x) =

∑π(x)
j=1 ln pj . In addition, we make use of the following (less well-

known) prime summation function, σ(x) =
∑π(x)

j=1 pj . Using these functions, we bound
the number of tests in the Chinese Remainder Sieve method as t(n, d) ≤ σ(x), where x
is chosen so that θ(x) ≥ d lnn, since ln

∏
pj≤x pj = θ(x). For the Chebyshev function,

it can be shown [1] that θ(x) ≥ x/2 for x > 4 and that θ(x) ∼ x for large x. So if
we let x = �2d ln n�, then θ(x) ≥ d ln n. Thus, we can bound the number of tests in
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our method as t(n, d) ≤ σ(�2d ln n�). To further bound t(n, d), we use the following
lemma, which may be of mild independent interest.

Lemma 2. For integer x ≥ 2,

σ(x) <
x2

2 ln x

(
1 +

1.2762
lnx

)
.

Proof. Let n = π(x). Dusart [6, 7] shows that, for n ≥ 799, (1/n)
∑n

j=1 pj < pn/2;
that is, the average of the first n primes is half the value of the nth prime. Thus,

σ(x) =
π(x)∑
j=1

pj <
π(x)

2
pn ≤ π(x)

2
x,

for integer x ≥ 6131 (the 799th prime). Dusart [6, 7] also shows that

π(x) <
x

lnx

(
1 +

1.2762
lnx

)
,

for x ≥ 2. Therefore, for integer x ≥ 6131,

σ(x) <
x2

lnx

(
1 +

1.2762
lnx

)
.

In addition, we have verified by an exhaustive computer search that this inequality also
holds for all integers 2 ≤ x < 6131. This completes the proof.

Thus, we can characterize the Chinese Remainder Sieve method as follows.

Theorem 1. Given a set of n items, at most d of which are defective, the Chinese Re-
mainder Sieve method can identify the defective items using a number of tests

t(n, d) <
�2d ln n�2

2 ln�2d ln n�

(
1 +

1.2762
ln�2d ln n�

)
.

By calculating the exact numbers of tests required by the Chinese Remainder Sieve
method for particular parameter values and comparing these numbers to the claimed
bounds for Hwang and Sós [9], we see that our algorithm is an improvement when:

• d = 2 and n ≤ 1057 • d = 3 and n ≤ 1066

• d = 4 and n ≤ 1070 • d = 5 and n ≤ 1074

• d = 6 and n ≤ 1077 • d ≥ 7 and n ≤ 1080.

Of course, these are the most likely cases for any expected actual instance of the
combinatorial group testing problem. In addition, our analysis shows that our method
is superior to the claimed bounds of Hwang and Sós [9] for d ≥ n1/5 and n ≥ e10.
Less precisely, we can say that t(n, d) is O(d2 log2 n/(log d + log log n)), that S(n, d)
is O(d log n/(log d+log log n), and A(n, t) is O(tn), which is O(d2n log2 n/(log d+
log log n)).
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3 A Two-Stage Rake-and-Winnow Protocol

In this section, we present a randomized construction for two-stage group testing. This
two-stage method uses a number of tests within a constant factor of the information-
theoretic lower bound. It improves previous upper bounds [4] by almost a factor of 2.
In addition, it has an efficient sampling rate, with S(n, d) being only O(log(n/d)). All
the constant factors “hiding” behind the big-ohs in these bounds are small.

Preliminaries. One of the important tools we use in our analysis is the following lemma
for bounding the tail of a certain distribution. It is a form of Chernoff bound [12].

Lemma 3. Let X be the sum of n independent indicator random variables, such that
X =

∑n
i=1 Xi, where each Xi = 1 with probability pi, for i = 1, 2, . . . ,n. If E[X] =∑n

i=1 pi ≤ μ̂ < 1, then, for any integer k > 0, Pr(X ≥ k) ≤ (eμ̂/k)k.

Proof. Let μ = E[X] be the actual expected value of X . Then, by a well-known Cher-
noff bound [12], for any δ > 0,

Pr[X ≥ (1 + δ)μ] ≤
[

eδ

(1 + δ)1+δ

]μ

.

(The bound in [12] is for strict inequality, but the same bound holds for nonstrict in-
equality.) We are interested in the case when (1 + δ)μ = k, that is, when 1 + δ = k/μ.
Observing that δ < 1 + δ, we can therefore deduce that

Pr(X ≥ k) ≤
[

ek/μ

(k/μ)k/μ

]μ

=
ek

(k/μ)k
=
(eμ

k

)k

.

Finally, noting that μ ≤ μ̂, Pr(X ≥ k) ≤ (eμ̂/k)k.

Lemma 4. If d < n, then
(
n
d

)
< (en/d)d.

Identifying Defective Items in Two Stages. As with our Chinese Remainder Sieve
method, our randomized combinatorial group testing construction is based on the use of
a Boolean matrix M where columns correspond to items and rows correspond to tests,
so that if M [i, j] = 1, then item j is included in test j. Let C denote the set of columns
of M . Given a set D of d columns in M , and a specific column j ∈ C − D, we say
that j is distinguishable from D if there is a row i of M such that M [i, j] = 1 but i
contains a 0 in each of the columns in D. Such a property is useful in the context of
group testing, for the set D could correspond to the defective items and if a column j
is distinguishable from the set D, then there would be a test in our regimen that would
determine that the item corresponding to column j is not defective.

An alternate and equivalent definition [5](p. 165) for a matrix M to be d-disjunct
is if, for any d-sized subset D of C, each column in C − D is distinguishable from
D. Such a matrix determines a powerful group testing regimen, but, unfortunately,
building such a matrix requires M to have Ω(d2 log n/ log d) rows, by a result of
Ruszinkó [13](see also [5], p. 139). The best known constructions have Θ(d2 log(n/d))
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rows [5], which is a factor of d greater than information-theoretic lower bound, which
is Ω(d log(n/d)).

Instead of trying to use a matrix M to determine all the defectives immediately, we
will settle for a weaker property for M , which nevertheless is still powerful enough to
define a good group testing regimen. We say that M is (d, k)-resolvable if, for any d-
sized subset D of C, there are fewer than k columns in C−D that are not distinguishable
from D. Such a matrix defines a powerful group testing regimen, for defining tests
according to the rows of a d-resolvable matrix allows us to restrict the set of defective
items to a group D′ of smaller than d + k size. Given this set, we can then perform an
additional round of individual tests on all the items in D′. This two-stage approach is
sometimes called the trivial two-stage algorithm; we refer to this two-stage algorithm
as the rake-and-winnow approach.

Thus, a (d, k)-resolvable matrix determines a powerful group testing regimen. Of
course, a matrix is d-disjunct if and only if it is (d, 1)-resolvable. Unfortunately, as
mentioned above, constructing a (d, 1)-resolvable matrix requires that the number of
rows (which correspond to tests) be significantly greater than the information theoretical
lower bound. Nevertheless, if we are willing to use a (d, k)-resolvable matrix, for a
reasonably small value of k, we can come within a constant factor of the information
theoretical lower bound.

Our construction of a (d, k)-resolvable matrix is based on a simple, randomized
sample-injection strategy, which itself is based on the approach popularized by the
Bloom filter [2]. This novel approach also allows us to provide a strong worst-case
bound for the sample rate, S(n, d), of our method. Given a parameter t, which is a
multiple of d that will be set in the analysis, we construct a 2t × n matrix M in a
column-wise fashion. For each column j of M , we choose t/d rows at random and we
set the values of these entries to 1. The other entries in column j are set to 0. In other
words, we “inject” the sample j into each of the t/d random tests we pick for the cor-
responding column (since rows of M correspond to tests and the columns correspond
to samples). Note, then, that for any set of d defective samples, there are at most t tests
that will have positive outcomes and, therefore, at least t tests that will have negative
outcomes. The columns that correspond to samples that are distinguishable from the de-
fectives ones can be immediately identified. The remaining issue, then, is to determine
the value of t needed so that, for a given value of k, M is a (d, k)-resolvable matrix
with high probability.

Let D be a fixed set of d defectives samples. For each (column) item i in C −D, let
Xi denote the indicator random variable that is 1 if i is falsely identified as a positive
sample by M (that is, i is not included in the set of (negative) items distinguished from
those in D), and is 0 otherwise. Observe that the Xi’s are independent, since Xi depends
only on whether the choice of rows we picked for column i collide with the at most t
rows of M that we picked for the columns corresponding to items in D. Furthermore,
this observation implies that any Xi is 1 (a false positive) with probability at most 2−t/d.
Therefore, the expected value of X , E[X], is at most μ̂ = n/2t/d. This fact allows us to
apply Lemma 3 to bound the probability that M does not satisfy the (d, k)-resolvable
property for this particular choice, D, of d defective samples. In particular,
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Pr(X ≥ k) ≤
(

eμ̂

k

)k

=

(
en
k

)k

2(t/d)k .

Note that this bound immediately implies that if k = 1 and t ≥ d(e + 1) log n, then M
will be completely (d, 1)-resolvable with high probability (1 − 1/n) for any particular
set of defective items, D.

We are interested, however, in a bound implying that for any subset D of d defectives
(of which there are

(
n
d

)
< (en/d)d, by Lemma 4), our matrix M is (d, k)-resolvable

with high probability, that is, probability at least 1 − 1/n. That is, we are interested in
the value of t such that the above probability bound is (en/d)−d/n. From the above
probability bound, therefore, we are interested in a value of t such that

2(t/d)k ≥
(en

d

)d (en

k

)k

n.

This bound will hold whenever t ≥ (d2/k) log(en/d) + d log(en/k) + (d/k) log n.
Thus, we have the following.

Theorem 2. If t ≥ (d2/k) log(en/d)+d log(en/k)+(d/k) log n, then a 2t×n random
matrix M constructed by sample-injection is (d, k)-resolvable with high probability,
that is, with probability at least 1 − 1/n.

As mentioned above, a productive way of using the sample-injection construction is
to build a (d, k)-resolvable matrix M for a reasonably small value of k. We can then use
this matrix as the first round in a two-round rake-and-winnow testing strategy, where
the second round simply involves our individual testing of the at most d + k samples
left as potential positive samples from the first round.

Corollary 1. If t ≥ 2d log(en/d)+log n, then the 2t×n random matrix M constructed
by sample-injection is (d, d)-resolvable with high probability.

This corollary implies that we can construct a rake-and-winnow algorithm where
the first stage involves performing O(d log(n/d)) tests, which is within a (small) con-
stant factor of the information theoretic lower bound, and the second round involves
individually testing at most 2d samples.

4 Improved Bounds for Small d Values

In this section, we consider efficient algorithms for the special cases when d = 2 and
d = 3. We present time-optimal algorithms for these cases; that is, with A(n, t) being
O(t). Our algorithm for d = 3 is the first known such algorithm.

Finding up to Two Defectives. Consider the problem of determining which items are
defective when we know that there are at most two defectives. We describe a 2-separable
matrix and a time-optimal analysis algorithm with t = (q2 +5q)/2 and n = 3q, for any
positive integer q.

Let the number of items be n = 3q, and let the item indices be expressed in radix 3.
Index X = Xq−1 · · ·X0, where each digit Xp ∈ {0, 1, 2}.
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Hereafter, X ranges over the item index numbers {0, . . .n − 1}, p ranges over the
radix positions {0, . . . q − 1}, and v ranges over the digit values {0, 1, 2}.

For our construction, matrix M is partitioned into submatrices B and C. Matrix B
is the submatrix of M consisting of its first 3q rows. Row 〈p, v〉 of B is associated with
radix position p and value v. B[〈p, v〉, X] = 1 iff Xp = v.

Matrix C is the submatrix of M consisting of its last
(
q
2

)
rows. Row 〈p, p′〉 of C is

associated with distinct radix positions p and p′, where p < p′. C[〈p, p′〉, X] = 1 iff
Xp = Xp′ .

Let testB(p, v) be the result (1 for positive, 0 for negative) of the test of items
having a 1-entry in row 〈p, v〉 in B. Similarly, let testC(p, p′) be the result of testing
row 〈p, p′〉 in C. Let test1(p) be the number of different values held by defectives in
radix position p. test1(p) can be computed by testB(p, 0)+ testB(p, 1)+ testB(p, 2).

The analysis algorithm is shown in the Appendix in Figure 1.
It is easy to determine how many defective items are present. There are no defective

items when test1(0) = 0. There is only one defective item when test1(p) = 1 for all
p, since if there were two defective items then there must be at least one position p in
which their indices differ and test1(p) would then have value 2. The one defective item
has index D = Dq−1 · · ·D0, where digit Dp is the value v for which testB(p, v) = 1.

Otherwise, there must be 2 defective items, D = Dq−1 · · ·D0 and E =
Eq−1 · · ·E0. We iteratively determine the values of the digits of indices D and E.

For radix positions in which defective items exist for only one value of that digit,
both D and E must have that value for that digit. For each other radix position, two
distinct values for that digit occur in the defective items.

The first radix position in which D and E differ is recorded in the variable p∗ and
the value of that digit in D (respectively, E) is recorded in v∗

1 (respectively, v∗
2).

For any subsequent position p in which D and E differ, the digit values of the
defectives in that position are va and vb, which are two distinct values from {0, 1, 2},
as are v∗1 and v∗

2 , and therefore there must be at least one value in common between
{va, vb} and {v∗

1 , v∗
2}.

Let a common value be va and, without loss of generality, let va = v∗
1 .

Lemma 5. The digit assignment for p is Dp = va and Ep = vb iff testC(p∗, p) = 1.

We have determined the values of defectives D and E for all positions – those where
they are the same and those where they differ. For each position, only a constant amount
of work is required to determine the assignment of digit values. Therefore, we have
proven the following theorem.

Theorem 3. A 2-separable matrix that has a time-optimal analysis algorithm can be
constructed with t = (q2 + 5q)/2 and n = 3q , for any positive integer q.

Comparison of the Number of Tests Required for d = 2 Method. For all n ≤ 363, our
d = 2 algorithm uses the smallest number of tests. For higher values of n ≤ 3130,
the Kautz/Singleton and our d = 2 and general (Chinese Remainder Sieve) algorithms
alternate being dominant. For all n ≥ 3131, the Hwang/Sós algorithm uses the fewest
tests.
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Finding up to Three Defectives. Consider the problem of determining which items
are defective when we know that there are at most three defectives. We describe a 3-
separable matrix and a time-optimal analysis algorithm with t = 2q2 − 2q and n = 2q,
for any positive integer q.

Let the number of items be n = 2q, and let the item indices be expressed in radix 2.
Index X = Xq−1 · · ·X0, where each digit Xp ∈ {0, 1}.

Hereafter, X ranges over the item index numbers {0, . . .n − 1}, p ranges over the
radix positions {0, . . . q − 1}, and v ranges over the digit values {0, 1}.

Matrix M has 2q2 − 2q rows. Row 〈p, p′, v, v′〉 of M is associated with distinct
radix positions p and p′, where p < p′, and with values v and v′, each of which is in
{0,1}. M [〈p, p′, v, v′〉, X] = 1 iff Xp = v and Xp′ = v′.

Let testM (p, p′, v, v′) be the result (1 for positive, 0 for negative) of testing items
having a 1-entry in row 〈p, p′, v, v′〉 in M . For p′ > p, define testM (p′, p, v′, v) =
testM (p, p′, v, v′).

The following three functions can be computed in terms of testM .

– testB(p, v) has value 1 (0) if there are (not) any defectives having value v in radix
position p. Hence, testB(0, v) = 0 if testM (0, 1, v, 0)+ testM (0, 1, v, 1) = 0, and
1 otherwise. For p > 0, testB(p, v) = 0 if testM (p, 0, v, 0)+testM (p, 0, v, 1) = 0,
and 1 otherwise.

– test1(p) is the number of different binary values held by defectives in radix position
p. Thus, test1(p) = testB(p, 0) + testB(p, 1).

– test2(p, p′) is the number of different ordered pairs of binary values held by defec-
tives in the designated ordered pair of radix positions. Therefore, test2(p, p′) =
testM (p, p′, 0, 0) + testM (p, p′, 0, 1) + testM (p, p′, 1, 0) + testM (p, p′, 1, 1).

The analysis algorithm is shown in the Appendix in Figure 1.
We determine the number of defective items and the value of their digits. There are

no defective items when test1(0) = 0. At each radix position p in which test1(p) = 1,
all defective items have the same value of that digit. If all defectives agree on all digit
values, then there is only one defective. Otherwise there are at least two defectives, and
we need to consider how to assign digit values for only the set of positions P in which
there is at least one defective having each of the two possible binary digit values.

Lemma 6. There are only two defectives if and only if, for p, p′ ∈ P, test2(p, p′) = 2.

Accordingly, if there is no pair of positions for which test2 has value 3, we can
conclude that there are only two defectives. Otherwise, there are positions p1, p2 for
which test2(p1, p2) = 3, and one of the four combinations of two binary values will
not appear. Let that missing combination be v1, v2. Thus, while position p1 uniquely
identifies one defective, say D, as the only defective having value v1 at that position,
position p2 uniquely identifies one of the other defectives, say E, as having value v2.

Lemma 7. If the position p∗ uniquely identifies the defective X to have value v∗, then
the value of the defective X at any other position p will be that value v such that
testM (p∗, p, v∗, v) = 1.
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if test1(0) = 0 then
return there are no defective items

p∗ ← −1
for p ← 0 to q − 1 do

if test1(p) = 1 then
Let Dp and Ep be the (same)

value v such that testB(p, v) = 1
else // test1(p) has value 2

Let v1, v2 be the two values
of v such that testB(p, v) = 1

if p∗ < 0 then
p∗ ← p
v∗
1 ← Dp ← v1

v∗
2 ← Ep ← v2

else
if testC(p∗, p) = 1

and ( v∗
1 = v1 or v∗

2 = v2 ) then
Dp ← v1

Ep ← v2

else
Dp ← v2

Ep ← v1

if p∗ < 0 then
return one defective, D

else
return two defectives, D and E

if test1(0) = 0 then
return there are no defective items

P ← ∅
for p ← 0 to q − 1 do

if test1(p) = 1 then
Let Dp, Ep, and Fp be the (same)

value v such that testB(p, v) = 1
else P ← P ∪ {p}

if P = ∅ then return there is one defective item D
if test2(p1, p2) = 2 for all p1, p2 ∈ P then

p∗ ← −1
for p ∈ P do

if p∗ < 0 then
p∗ ← p
v∗ ← Dp ← 0

else if testM (p∗, p, v∗, 0) = 1 then
Dp ← 0

else Dp ← 1
Ep ← 1 − Dp

return there are two defective items D, E
else

Let p1, p2 be positions s.t. test2(p1, p2) = 3
Let v1, v2 be values s.t. testM (p1, p2, v1, v2) = 0
Dp1 ← v1

Fp1 ← Ep1 ← 1 − v1

Ep2 ← v2

Fp2 ← Dp2 ← 1 − v2

for p ∈ P − {p1, p2} do
if testM (p1, p, v1, 0) = 1 then

Dp ← 0
else Dp ← 1
if testM (p2, p, v2, 0) = 1 then

Ep ← 0
else Ep ← 1
v ← Ep

if testM (p1, p, 1 − v1, 1 − v) = 1 then
Fp ← 1 − v

else Fp ← v
return there are three defective items D, E, and F

(a) (b)

Fig. 1. Analysis algorithms. (a) for up to 2 defectives; (b) for up to 3 defectives

Since we have positions that uniquely identify D and E, we can determine the values
of all their other digits and the only remaining problem is to determine the values of the
digits of defective F .
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Since position p1 uniquely identifies D, we know that Fp1 = v1. For any other
position p, after determining that Ep = v, we note that if testM (p1, p, v1, v) = 1 then
there must be at least one defective, X , for which Xp1 = v1 and Xp = v. Defective D
is ruled out since Dp1 = v1, and defective E is ruled out since Ep = v. Therefore, it
must be that Fp = v. Otherwise, if that testM = 0 then Fp = v, since Fp = v would
have caused testM = 1.

We have determined the values of defectives D, E and F for all positions. For each
position, only a constant amount of work is required to determine the assignment of
digit values. Therefore, we have proven the following theorem.

Theorem 4. A 3-separable matrix that has a time-optimal analysis algorithm can be
constructed with t = 2q2 − 2q and n = 2q, for any positive integer q.

Comparison of the Number of Tests Required for d = 3 Method. The general d al-
gorithm due to Hwang and Sós [9] requires fewer tests than does the algorithm for
d = 3 suggested by Du and Hwang [5]. For n < 1010, our (d = 3) algorithm requires
even fewer tests and our general (Chinese Remainder Sieve) algorithm fewest. How-
ever, asymptotically Hwang/Sós uses the fewest tests. We note that, unlike these other
efficient algorithms, our (d = 3) algorithm is time-optimal.
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Abstract. We examine the general problem of covering graphs by graphs:
given a graph G, a collection P of graphs each on at most p vertices, and
an integer r, is there a collection C of subgraphs of G, each belonging to
P, such that the removal of the graphs in C from G creates a graph none
of whose components have more than r vertices? We can also require
that the graphs in C be disjoint (forming a “matching”). This framework
generalizes vertex cover, edge dominating set, and minimal maximum
matching. In this paper, we examine the parameterized complexity of the
counting version of the above general problem. In particular, we show
how to count the solutions of size at most k of the covering and matching
problems in time O(n ·r(pk+r)+2f(k,p,r)), where n is the number of ver-
tices in G and f is a simple polynomial. In order to achieve the additive
relation between the polynomial and the non-polynomial parts of the
time complexity of our algorithms, we use the compactor technique, the
counting analogue of kernelization for parameterized decision problems.

1 Introduction

Parameterized algorithms offer an approach to solving NP-hard problems through
the observation that many such problems come with one or more natural pa-
rameters which may be small in practice, and so algorithms that are polynomial
in the input size but exponential in the parameters may be of practical use. The
considerable literature on parameterized complexity provides both algorithms
for certain problems (e.g. vertex cover, where the parameter k is the size of the
cover) and evidence (in the form of completeness results) that other problems
(e.g. clique) do not have efficient parameterized algorithms.

One common technique in designing parameterized algorithms is to find a
problem kernel. This consists of reducing an instance of a problem to a smaller
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instance of size dependent only on the parameters, such that the smaller instance
has a solution if and only if the original instance does. Inefficient algorithms
(e.g. brute force search) can then be used on the kernel. While this approach is
appealing, it may be difficult to find a kernel for a given problem.

Our focus in this paper is on counting the number of solutions constrained by
the parameters (e.g. the number of vertex covers of size at most k), as first consid-
ered by Flum and Grohe [FG04]. Fernau [Fer02] defines fixed-parameter enumer-
ability, and considers the two problems of enumerating all solutions (producing
each one, as opposed to counting the total), and of enumerating all optimal so-
lutions. But for many problems (e.g. vertex cover) enumerating all solutions is
not fixed-parameter enumerable, as there are too many solutions. This naturally
suggests our approach of counting the solutions without enumerating them.

We consider a different sort of kernel-like structure from that used in tra-
ditional parameterized algorithms, one specialized for counting. Such a kernel
comes with a function mapping a solution in the original instance to one in
the kernel, in a fashion that allows us to compute the size of each preimage.
That way, we reduce the problem of counting the solutions of the original prob-
lem to the problem of enumerating the solutions in the kernel. We count so-
lutions in the original instance by using a (possibly inefficient) algorithm to
enumerate solutions in the kernel and summing the sizes of preimages. This
method was used by Dı́az, Serna, and Thilikos [DST04a, DST04b] in the con-
text of colouring problems; here we apply it to covering and matching prob-
lems. This method is a departure from previous work on parameterized count-
ing [Fer02, Dam04, AR02, DST04b]. Our goal is to obtain running times with an
additive relation between the part that is polynomial in the input size and the
part that is possibly exponential in the parameters.

Our problems are defined by a graph G, a collection P of graphs each on at
most p vertices, an integer r, and a parameter k. We wish to “cover” G by k
graphs chosen from P, such that the connected subgraphs left uncovered have
no more than r vertices each. That is, we ask whether or not there is a collection
C of subgraphs of G (with |C| ≤ k), each belonging to P, such that the removal
of the graphs in C from G creates a graph none of whose components have more
than r vertices. In this formulation, we allow the graphs in C to overlap, forming
a “covering”. Another variation of the problem requires that the graphs in C be
disjoint, forming a “matching”.

This framework generalizes vertex cover, edge dominating set, and minimal
maximum matching. For vertex cover, P contains only the graph with one ver-
tex, and r = 1; for edge dominating set, P contains only the graph with two
connected vertices, and r = 1; for minimal maximum matching, we add the
constraint that the graphs in C must be disjoint. Interestingly, minimum maxi-
mal maximal matching and edge dominating set are polynomially equivalent as
decision problems, but not as counting problems. In this paper, we show how
to count the number of solutions of the general covering and matching prob-
lems problems in time O(n · r(pk + r) + 2O(pkr(pk+r))) where n is the number
of vertices in G.



Parameterized Counting Algorithms for General Graph Covering Problems 101

2 Basic Definitions

All graphs in this paper are undirected, loopless and without multiple edges. For
each graph G considered, we will denote as V (G) and E(G) its vertex and edge
set, respectively. Given a set S ⊆ V (G) we define NG(S) as the set of all vertices
v ∈ V (G)−S such that v has a neighbour in S. For a set of graphs C, we denote
as V(C) the set of all vertices of the graphs in C, i.e. V(C) =

⋃
G∈C V (G).

For p a fixed constant and P a fixed set of graphs of no more than p vertices,
we define the following parameterized problems:

(k, r)-Minimum Covering by Graphs in P ((k, r)-MCG-(P))
Input: A graph G, a collection of graphs P, and an integer r.
Parameter: A non-negative integer k.
Question: Does G contain a collection C of k subgraphs each isomorphic
to some graph in P and such that G[V (G) − V(C))] has no component
of size more than r?

If in the above problem we demand that the graphs in C be pairwise dis-
joint (i.e. no vertices in common) then we define the (k, r)-Minimum Maximal
Matching by Graphs in P ((k, r)-MMM-(P)).

We denote by MCGk(G) the set of solutions of the (k, r)-MCG-(P) problem
when the input is G and the parameter is k. Similarly, we define MMMk(G) and
notice that MCGk(G) ⊆ MMMk(G). Also we define mcgk(G) = |MCGk(G)|
and mmmk(G) = |MMMk(G)|.

In what follows we will give a parameterized counting algorithm for each
of the above problems. In particular, we will give two algorithms that output
mcgk(G) and mmmk(G), respectively, in O(n · r(pk + r) + 2O(pkr(pk+r))).

A basic tool for our algorithms is the notion of (a, b)-central set. In particular,
we say that a subset P of V (G) is an (a, b)-central set (or central set for short) if
|P | ≤ a and each connected component of G[V (G) − P ] has at most b vertices.
Notice that a vertex cover of size at most k is a (k, 1)-central set and vice
versa. For convenience, we refer to the connected components of G[V (G) − P ]
as satellite graphs. Of particular interest are those satellite graphs that have
neighbours in P ; we will call these dependent satellite graphs and all others
independent satellite graphs.

To form our counting algorithms, we use the notion of compactor enumeration
as introduced by Dı́az, Serna, and Thilikos [DST04a, DST04b]. The idea is to find
a particular kind of kernel for a parameterized problem such that any solution of
the problem can be mapped to a solution within the kernel. If we can enumerate
all the solutions within the kernel, and for each one, compute (in a reasonable
amount of time) the number of preimages of general solutions mapping to it,
we can count the number of general solutions of the problem. More formally,
a compactor Cmp(Π, k) for a parameterized problem Π with parameter k and
set of solutions Sol(Π, k) has the following properties: |Cmp(Π, k)| is a function
that depends only on k; Cmp(Π, k) can be enumerated with an algorithm whose
complexity depends only on k; there is a surjective function m : Sol(Π, k) →
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Cmp(Π, k); and for any C ∈ Cmp(Π, k), |m−1(C)| can be computed within time
O(f(k)nc).

3 Central Sets

The notion of a central set plays a key role in our algorithms, as a necessary
condition for a nonzero number of solutions (Lemma 1) and as an important
step towards forming a compactor.

Lemma 1. If for a graph G mcgk(G) > 0 or mmmk(G) > 0, then G contains a
(pk, r)-central set.

Proof. We present the proof for the case mcgk(G) > 0, as the proof for the case
mmmk(G) > 0 is identical. Since there is at least one solution to the problem, we
let C be one such solution. By definition, the collection C consists of k subgraphs
each isomorphic to a graph in P, and hence the total number of vertices in V(C)
is at most pk. Moreover, again by the definition of the problem, G[V (G)−V(C))]
has no component of size more than r. This implies that C is a (pk, r)-central
set, as claimed.

As central sets are used in our covering and matching algorithms, the com-
plexity of finding an (a, b)-central set for a graph G has an impact on the com-
plexity of our counting algorithms. The problem of determining whether G has
an (a, b)-central set is NP-hard when a and b are both part of the input, as for
b = 1 the problem is vertex cover. If a is fixed, the brute-force checking of all
O(na) candidate solutions constitutes a polynomial-time algorithm. For the case
in which b is fixed, the problem can be shown to be NP-hard using a reduction
from vertex cover in which G is transformed into a graph G′ by attaching an
b-clique to each vertex v ∈ V (G): then G has a vertex cover of size a if and only
if G′ has an (a, b)-central set. Our parameterized solution follows.

Lemma 2. An (a, b)-central set of a graph G can be found, if it exists, in time
O(n(a + b) + (ab(a + b − 1) + a)(b + 1)a), where n is the number of vertices
in G; otherwise, in the same time bound it can be determined that G has no
(a, b)-central set.

Proof. We present an algorithm, FIND-CENTRAL-SET(a, b,G), that deter-
mines whether G has an (a, b)-central set and, if so, returns one (a, b)-central
set. We first observe that if a vertex v of G has degree greater than a + b − 1,
it must be in the (a, b)-central set C, as otherwise the placement of any a of its
neighbours in C would leave a graph of size at least b+1 in G[V (G)−C] (namely
v and its remaining neighbours), violating the definition of an (a, b)-central set.
Consequently, if there are more than a such high-degree vertices, since the size of
the (a, b)-central set is at most a, we can conclude that we have a NO-instance,
as indicated in Step 1 below.
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FIND-CENTRAL-SET(a, b,G)
1. Let A contain all vertices of G that have degree greater than a+b−1.
If |A| > a then return NO.
2. Let G′ = G[V (G) − A] and a′ = a − |A|. Let G∗ be the union
of the connected components of G′ that have more than b vertices. If
|V (G∗)| > a′b(a + b − 1) + a′ then return NO.
3. If ST-CENTRAL-SET(a′, b, G∗) returns NO, return NO and re-
turn; otherwise, let C be the (a′, b)-central set of G∗ that is returned.
4. return YES and A ∪ C as an (a, b)-central set of G.

We can then reduce the problem to that of finding an (a′, b)-central set in
a graph G∗ of degree at most a + b − 1 in Steps 2 and 3, where a′ is a minus
the number of high-degree vertices found in the previous paragraph. We observe
that if G′ = G[V (G) − A] is a YES-instance, there can be at most a′(a + b − 1)
dependent satellite graphs, since each of the a′ vertices in the (a′, b)-central set
have at most a + b − 1 neighbours. As each dependent satellite graph has at
most b vertices and the central set has at most a′, the size of G∗ can be at
most a′b(a + b − 1) + a′. Having obtained a graph of size dependent only on
the parameters a and b, it is now possible to obtain a solution using the search-
tree based routine ST-CENTRAL-SET(a, b,G) below. The routine consists
of checking if all connected components are of size at most b for the base case
a = 0, and otherwise choosing b + 1 vertices that share a component and trying
each as a possible member of the central set.

We first determine the running time of ST-CENTRAL-SET(a′, b, G∗), ob-
serving that the depth of the recursion will be at most a′. We can find connected
components in time linear in the size of G∗, or in time O(a′b(a + b − 1) + a′).
In Step 3, the routine is called b + 1 times, giving a total running time of
O((a′b(a + b − 1) + a′)(b + 1)a′

) = O((ab(a + b − 1) + a)(b + 1)a).

ST-CENTRAL-SET(a, b,G)
1. If a = 0, check whether each connected component of G has at most
b vertices; if so, return YES, and if not, return NO.
2. Let K be any set of b + 1 vertices inducing a connected subgraph of
G. If no such K can be found, return YES.
3. For each v ∈ K, determine ST-CENTRAL-SET(a− 1, b, G′) where
G′ = G[V (G) − {v}]. If any answer is YES, return YES and the set
of vertices removed in the sequence of calls leading to the YES answer.
Otherwise, return NO.

The running time of FIND-CENTRAL-SET(a, b,G) can be determined
as follows. Step 1 requires checking at most a + b neighbours of each of the
n nodes, in total time O(n(a + b)). Determining the connected components of
G′ and counting the number of vertices in components of size more than b can
be completed in linear time, O(n). Thus, using the result above for Step 3, we
conclude that the total running time is O(n(a+ b)+ (ab(a+ b− 1)+ a)(b+1)a).
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4 Forming a Compactor

The compactor for mcgk(G) is based on the fact that our graph can be viewed
as a central set surrounded by satellite graphs. We first group satellite graphs
into equivalence classes and then prune the classes to form a reduced graph
G′. In each counting algorithm, the number of solutions in G is computed by
determining the number of solutions in G represented by each solution in G′.

To be able to substitute a satellite graph in an equivalence class by another
graph in the same class, satellite graphs in the same equivalence class should be
isomorphic to each other, have the same neighbourhood in the central set, and
have the same attachments to those neighbours. More formally, we first define the
graphs formed by the satellites and their neighbours, and then formally define
the necessary property. For H a subgraph of G, we denote as ∂G(H) the graph
G[V (H)∪NG(V (H))]. Then, for G a graph and G1 and G2 subgraphs of G, we
say that G1 and G2 are friends for G if the following conditions are satisfied.

1. NG(V (G1)) = NG(V (G2)),
2. There is an isomorphism φ from ∂G(G1) to ∂G(G2) where for each v ∈

NG(V (G1)), φ(v) = v.

The counting algorithms proceed by finding a (pk, r)-central set, grouping
satellites into equivalence classes, pruning the graph G to form a graph G′ by
reducing the size of each sufficiently large equivalence class, solving the problem
on G′, and then counting the number of solutions to G represented by the so-
lutions found for G′. The pruned graph G′ plays the role of the compactor in
the formalization in Section 2. Crucial to the algorithm is the formation of G′,
identifying for each equivalence class S which graphs are to be retained (RS)
and how many have been omitted (oS).

Lemma 3. Given a graph G and a (pk, r)-central set C of G, it is possible to
determine the following, where C is the set of connected components of G[V (G)−
C], S is a partition of C such that any two graphs in the same part are friends,
and S∗ is the collection of sets in S with more than pk + 1 graphs:

RS : a set of pk + 1 graphs from S.
oS : the number of graphs that have been omitted from S to form RS , namely

|S| − pk − 1.
G′ : the graph formed by removing graphs associated with each S, namely G′ =

G[V (G) −
⋃

S∈S∗ V(S −RS)].

for each S ∈ S∗ in time O(nr(pk + r) + 2r(pk+r)), where |S∗| ∈ O(2r(pk+r)).

Proof. The algorithmCREATE-KERNEL-SETS(p, k, r, C,G)partitions satel-
lites into equivalence classes based on an arbitrary ordering on the vertices in
the central set C and each satellite in C (Steps 1 and 2) and a bit vector used to
indicate the edges that exist both in the satellite and between the satellite and
the central set. In particular, each bit vector has one entry for each potential
edge between vertices in the satellite (at most

(
r
2

)
in total) and for each potential
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edge between a vertex in the satellite and a vertex in the (pk, r)-central set (at
most pkr in total). Satellites with the same bit vectors will be placed in the same
equivalence class.

It is worth noting that the algorithm does not guarantee that friends are in
the same part, only that graphs in the same part are friends. This is due to the
fact that we are choosing arbitrary orderings of vertices in satellites; if different
orderings are chosen, friends will appear in different parts of the partition. We
settle for this finer partition in order to realize the goal of having the relation be-
tween the polynomial and the exponential parts of the running time be additive.

As we identify the equivalence classes to which satellites belong, we keep
track of the number of satellites in each class, retaining the first pk + 1 in each
class by marking the vertices for inclusion in G′ (Step 5). It then follows that
G′ will consist of all marked vertices and C, RS will be a set of pk + 1 retained
satellites, and oS will be the number of satellites seen minus pk + 1 to indicate
how many have been omitted.

CREATE-KERNEL-SETS(p, k, r, C,G)
1. Arbitrarily label the vertices in C from 1 through pk.
2. For each component D ∈ C, arbitrarily label the vertices in D from
pk + 1 through pk + |V (D)| ≤ pk + r.
3. Create σ to map the integers 1 through d = pkr +

(
r
2

)
to the pairs

(i, j) where 1 ≤ i ≤ pk + r and pk + 1 ≤ j ≤ pk + r.
4. Create an array R of size 2d with each entry storing an integer and a
pointer.
5. For each component D form a bit vector of size d, where entry  is
set to 1 if and only if σ() = (i, j) such that there is an edge between
the vertices with labels i and j in D and (if i ≤ pk) C. Using the value
of the bit vector as an index to R, increment the entry in R; if the entry
in R is now at most pk + 1, add D to the linked list at R and mark all
vertices in D.
6. Form oS by subtracting pk + 1 from each value in R of size greater
than pk + 1.
7. Create G′ by marking all vertices in C and forming the subgraph of
G induced on the marked vertices.
8. Return as RS all linked lists of entries of R with values greater than
pk + 1, all values oS , and G′.

To see that the running time is as claimed, we observe that the labels in Steps
1 and 2 can be created in time O(n) for n the number of vertices in G, and in
Step 3 σ can be created in time O(d) = O(r(pk + r)). As there are at most n
components D and each bit vector is of length d, bit vector formation and mark-
ing of vertices in Step 5 can be executed in O(nd) time. As there are 2d entries
in R, Step 6 can be executed in time O(2d). Finally, since Step 7 will require
at most O(n) time, the running time of the algorithm is at most O(nd + 2d) =
O(nr(pk + r) + 2r(pk+r)). We observe that |S∗| ≤ 2d and thus is in O(2r(pk+r)).
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5 Counting Coverings and Matchings

The following theorems present algorithms that make use of the compactor de-
fined in the previous section.

Theorem 1. The value mcgk(G) can be determined in time

O(n · r(pk + r) + rpk(pk + 1)pk2pkr(pk+r)(r(pk + 1)2r(pk+r) + 2p2 · (p + 3)!)).

Proof. The algorithm below makes use of the earlier subroutines to find a central
set (Step 1) and construct G′ by removing all but pk + 1 remaining satellites in
each part of a partition (Step 3); it then finds the solution in G′ (Step 4), and
counts the number of solutions in G (Step 5).

COMPUTE-mcg-k(p, r,G)
1. Use FIND-CENTRAL-SET(pk, r,G) to check whether G contains
a (pk, r)-central set. If the answer is NO then return 0.
2. Let C be the (pk, r)-central set of G. Let C be the set of connected
components of G[V (G) − C]. Recall that each graph in C has at most r
vertices.
3. Use CREATE-KERNEL-SETS(p, k, r, C,G) to obtain remaining
graphs RS , numbers of removed graphs oS , and G′.
4. Compute MCGk(G′) using brute force.
5. Compute and return the following number, for jH,S = |{J ∈ RS |
V (J) ∩ V (H) �= ∅}|:

∑
G∈MCGk(G′)

∏
S∈S∗

∑
G′⊆G

∏
H∈G′

(
jH,S + oS

jH,S

)
.

The correctness of Step 1 follows from Lemma 1, as any graph G with a non-
zero solution will have a (pk, r)-central set. In forming G′, we need to ensure
that in any solution, there is at least one satellite with no vertex in the solution
(in essence, representing all the pruned satellites). As any solution will be of at
most k graphs of at most p vertices each, the entire solution will consist of at
most pk vertices; retaining pk+1 satellites will thus satisfy the needed condition.

The correctness of the algorithm depends on the counting in Step 5, summing
over each solution G in the reduced graph the number of solutions in the origi-
nal graph that are represented by G. In particular, graphs involving remaining
satellites (i.e., those in RS) in a particular equivalence class can be replaced by
graphs involving satellites that were omitted from the class to form the reduced
graph. To count all such possibilities for a particular solution, we consider one
particular pruned equivalence class S, and observe that our total result will be
formed by taking the product of all such values; this is because the effects of
making such alterations are independent for each equivalence class.

For a fixed solution G and equivalence class S, we consider all possible ways
of exchanging a subset G′ of the collection of graphs forming the solution for
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satellites that have been omitted. This entails summing over all subsets G′ of
graphs in G, and then for each graph H in the subset G′ counting all the ways
of making exchanges. The graph H may use more than one satellite in the set
RS , where a graph J is used by H precisely when it is a remaining graph (and
hence in RS) and includes at least one vertex of H (and hence V (J) ∩ V (H)).
The number jH,S of graphs used is thus jH,S = |{J ∈ RS | V (J) ∩ V (H) �= ∅}|,
and we need to count the number of ways to choose jH,S such graphs out of the
ones used plus the set OS , in order to count the solutions in the general graph
represented by this one.

To see that we are not overcounting or undercounting the number of solutions
in the complete graph that are represented by a solution in the reduced graph,
we first impose an arbitrary ordering on all graphs in each equivalence class and
for each choose an isomorphism as defined in the term friends. We now observe
that if there is more than one way to map the same part of H to a particular
satellite, each of the mappings entails a different solution in the reduced graph,
and hence we count these different possibilities by our counting ways of swapping
satellites for the other solutions.

To determining the running time of the algorithm, we first observe that due
to Lemma 2, the running time of Step 1 is in O(n(pk + r) + pkr(pk + r − 1) +
pk)(r + 1)pk). Finding connected components in Step 2 will take linear time.
The running time of Step 3, O(nr(pk + r) + 2r(pk+r)), is a direct consequence of
Lemma 3.

A brute-force approach for Step 4 will consist of trying all possible choices of
a collection C of k subgraphs of G′ such that each subgraph is isomorphic to a
graph in P and such that the graph obtained by removing C has no component of
size more than r. This can be accomplished by first choosing k subsets of vertices
of V (G′), each of size at most p, and then checking that each subset induces a
graph that contains a graph P ∈ P as a subset, where each vertex in the subset is
in P . More formally, we choose k subsets S1, . . . , Sk of vertices of V (G′) of size at
most p; there are O(mp) choices for each subset, and O(mpk) choices for the set
of k subsets, where m = |V (G′)| (for the matching problem, we ensure that the
subsets are disjoint). Checking if a particular graph P ∈ P is a subgraph of the
graph induced on a set Si can be accomplished by trying all possible mappings
of vertices to vertices and then checking for all edges, or O(p2p!) time in total.
Finally, to check that no component is of size greater than r, we use a linear
number of steps. In total, the number of steps will thus be O(mpk(m+|P|p2p!)) =
O(mpk(m + |P|(p + 3)!)). We observe that since G′ contains the central set and
at most pk + 1 satellites in each equivalence class, since there are 2d = 2pkr+(r

2)

equivalence classes and each satellite has at most r vertices, the size of m is at
most pk+r(pk+1)2pkr+(r

2) = O(r(pk+1)2r(pk+r)). Thus Step 4 can be executed
in time O(rpk(pk + 1)pk2pkr(pk+r)(r(pk + 1)2r(pk+r) + |P|(p + 3)!)).

Finally, we determine the running time of Step 5. By the argument in the pre-
vious paragraph, the number of possible solutions in MCGk(G′) is in O(mpk) =
O(rpk(pk +1)pk2pkr(pk+r)). The size of S∗ is no greater than the number of pos-
sible equivalence classes, which was shown in Lemma 3 to be in O(2r(pk+r)).
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There are O(2k) subsets of G, as |G| ≤ k, and at most k choices of H for the
same reason. The cost of computing the binomial coefficient is pk + 1 = |RS |,
assuming constant-time arithmetic operations. The total cost of Step 5 will thus
be O(rpk(pk + 1)pk2pkr(pk+r)2r(pk+r)2kk(pk + 1)).

The dominating steps are Steps 3 and 4; using the fact that |P| ≤ 2(p
2) ≤ 2p2

,
we obtain the claimed time bound of

O(n · r(pk + r) + rpk(pk + 1)pk2pkr(pk+r)(r(pk + 1)2r(pk+r) + 2p2 · (p + 3)!)).

We are able to count matchings by making a small modification in the algo-
rithm of the previous theorem.

Theorem 2. The value mmmk(G) can be determined in time

O(n · r(pk + r) + rpk(pk + 1)pk2pkr(pk+r)(r(pk + 1)2r(pk+r) + 2p2 · (p + 3)!)).

Proof. The proof of the theorem follows from the proof of Theorem 1 and the fact
that we can compute mmmk(G) by replacing the last two lines of the algorithm
COMPUTE-mcg-k(p, r,G) with the following lines.

COMPUTE-mmmk(p, r,G)
4. Compute MMMk(G′) using brute force.
5. Compute and return the following number:

∑
G∈MCGk(G′)

∏
S∈S∗

∑
G′⊆G

(
oS + |{J ∈ RS : V (J) ∩ V(G′) �= ∅}|

|{J ∈ RS : V (J) ∩ V(G′) �= ∅}|

)
.

Here we cannot replace each graph in the solution independently; instead we
choose a subset G′ to replace and then consider all ways of choosing the right
number of satellites in each class either from the remaining or the omitted satel-
lites. The analysis is very similar to that given in the proof of Theorem 1.

6 Conclusions

Our primary concern in developing the algorithms was to maintain an additive,
rather than multiplicative, relationship between the polynomial (on n) and non-
polynomial (on the parameters) parts of the running time. We also stress that
our analysis for determining the super-polynomial part of the time complexity is
a worst-case analysis, and the algorithm should be expected to run even faster
in practice, at least for small values of k.

We observe that the algorithm COMPUTE-mcg-k(p, r,G) can be used to
determine the existence of a (k, r)-central set, as the problems are equivalent for
p = 1. We can thus count the number of (k, r)-central sets in a graph in time
O(n · r(k + r) + 2O(kr(k+r))).

We leave as an open problem the question of whether enumerating all optimal
solutions of the covering and matching problems is fixed-parameter enumerable.
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Abstract. In this paper, we consider the weighted online set k-
multicover problem. In this problem, we have an universe V of elements,
a family S of subsets of V with a positive real cost for every S ∈ S,
and a “coverage factor” (positive integer) k. A subset {i0, i1, . . .} ⊆ V
of elements are presented online in an arbitrary order. When each ele-
ment ip is presented, we are also told the collection of all (at least k)
sets Sip ⊆ S and their costs in which ip belongs and we need to select
additional sets from Sip if necessary such that our collection of selected
sets contains at least k sets that contain the element ip. The goal is to
minimize the total cost of the selected sets1. In this paper, we describe
a new randomized algorithm for the online multicover problem based on
the randomized winnowing approach of [11]. This algorithm generalizes
and improves some earlier results in [1]. We also discuss lower bounds
on competitive ratios for deterministic algorithms for general k based on
the approaches in [1].

1 Introduction

In this paper, we consider the Weighted Online Set k-multicover problem (abbre-
viated as WOSCk) defined as follows. We have an universe V = {1, 2, . . . ,n} of
elements, a family S of subsets of U with a cost (positive real number) cS for ev-
ery S ∈ S, and a “coverage factor” (positive integer) k. A subset {i0, i1, . . .} ⊆ V
of elements are presented in an arbitrary order. When each element ip is pre-
sented, we are also told the collection of all (at least k) sets Sip

⊆ S in which ip
belongs and we need to select additional sets from Sip

, if necessary, such that our
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collection of sets contains at least k sets that contain the element ip. The goal
is to minimize the total cost of the selected sets. The special case of k = 1 will
be simply denoted by WOSC (Weighted Online Set Cover). The unweighted
versions of these problems, when the cost any set is one, will be denoted by
OSCk or OSC.

The performance of any online algorithm can be measured by the competitive
ratio, i.e., the ratio of the total cost of the online algorithm to that of an optimal
offline algorithm that knows the entire input in advance; for randomized algo-
rithms, we measure the performance by the expected competitive ratio, i.e., the
ratio of the expected cost of the solution found by our algorithm to the optimum
cost computed by an adversary that knows the entire input sequence and has no
limits on computational power, but who is not familiar with our random choices.

The following notations will be used uniformly throughout the rest of the
paper unless otherwise stated explicitly:

– V is the universe of elements;
– m = max

i∈V
|{S ∈ S | i ∈ S}| is the maximum frequency, i.e., the maximum

number of sets in which any element of V belongs;
– d = max

S∈S
|S| is the maximum set size;

– k is the coverage factor.

None of m, d or |V | is known to the online algorithm in advance.

1.1 Motivations and Applications

There are several applications for investigating the online settings in WOSCk.
Below we mention two such applications:

Client/Server Protocols [1]: Such a situation is modeled by the problem
WOSC in which there is a network of servers, clients arrive one-by-one
in arbitrary order, and the each client can be served by a subset of the
servers based on their geographical distance from the client. An extension
to WOSCkhandles the scenario in which a client must be attended to by at
least a minimum number of servers for, say, reliability, robustness and im-
proved response time. In addition, in our motivation, we want a distributed
algorithm for the various servers, namely an algorithm in which each server
locally decide about the requests without communicating with the other
servers or knowing their actions (and, thus for example, not allowed to main-
tain a potential function based on a subset of the servers such as in [1]).

Reverse Engineering of Gene/Protein Networks [2, 4, 6, 9, 10, 14, 15]:
We briefly explain this motivation here due to lack of space; the reader
may consult the references for more details. This motivation concerns un-
raveling (or “reverse engineering”) the web of interactions among the com-
ponents of complex protein and genetic regulatory networks by observing
global changes to derive interactions between individual nodes. In one such
setup, one assumes that the time evolution of a vector of state variables
x(t) = (x1(t), . . . , xn(t)) is described by a system of differential equations:
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∂x

∂t
= f(x,p) ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂x1
∂t = f1(x1, . . . , xn, p1, . . . , pm)

∂x2
∂t = f2(x1, . . . , xn, p1, . . . , pm)

...
∂xn

∂t = fn(x1, . . . , xn, p1, . . . , pm)

where p = (p1, . . . , pm) is a vector of parameters, such as levels of hormones
or of enzymes, whose half-lives are long compared to the rate at which the
variables evolve and which can be manipulated but remain constant during
any given experiment. The components xi(t) of the state vector represent
quantities that can be in principle measured, such as levels of activity of
selected proteins or transcription rates of certain genes. There is a reference
value p̄ of p, which represents “wild type” (that is, normal) conditions, and
a corresponding steady state x̄ of x, such that f(x̄, p̄) = 0. We are interested
in obtaining information about the Jacobian of the vector field f evaluated
at (x̄, p̄), or at least about the signs of the derivatives ∂fi/∂xj(x̄, p̄). For
example, if ∂fi/∂xj > 0, this means that xj has a positive (catalytic) effect
upon the rate of formation of xi. The critical assumption is that, while we
may not know the form of f , we often do know that certain parameters pj

do not directly affect certain variables xi. This amounts to a priori biolog-
ical knowledge of specificity of enzymes and similar data. Consequently, an
“online” experimental protocol to achieve the above goal, that gives rise to
the problems WOSCk and OSCk is as follows:

– Change one parameter, say pk.
– Measure the resulting steady state vector x = ξ(p). Experimentally,

this may for instance mean that the concentration of a certain chemical
represented by pk is kept are a slightly altered level, compared to the
default value p̄k; then, the system is allowed to relax to steady state,
after which the complete state x is measured, for example by means of
a suitable biological reporting mechanism, such as a microarray used to
measure the expression profile of the variables xi.

– For each of the possible m experiments, in which a given pj is perturbed,
we may estimate the n “sensitivities”

bij =
∂ξi

∂pj
(p̄) ≈ 1

p̄j − pj
(ξi(p̄ + pjej) − ξi(p̄))

for i = 1, . . . ,n (where ej ∈ Rm is the jth canonical basis vector).
From these data, via some linear-algebraic reductions and depending on
whether each experiment has the same or different cost, one can arrive at
the problems WOSCk and OSCk with “large” k, e.g., when k ≈ |V |.

1.2 Summary of Prior Work

Offline versions SC1 and SCk of the problems WOSCk and OSCk, in which
all the |V | elements are presented at the same time, have been well studied in
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the literature. Assuming NP �⊆ DTIME(nlog log n), the SC1 problem cannot
be approximated to within a factor of (1 − ε) ln |V | for any constant 0 < ε < 1
in polynomial time [7]; a slightly weaker lower bound under the more standard
complexity-theoretic assumption of P�=NP was obtained by Raz and Safra [13]
who showed that there is a constant c such that it is NP-hard to approximate
the SC1 problem to within a factor of c ln |V |. An instance of the SCk problem
can be (1+ln d)-approximated in O(|V | · |S| ·k) time by a simple greedy heuristic
that, at every step, selects a new set that covers the maximum number of those
elements that has not been covered at least k times yet [8, 16]; these results
was recently improved upon in [4] who provided a randomized approximation
algorithm with an expected performance ratio that about ln(d/k) when d/k is
at least about e2 ≈ 7.39, and for smaller values of d/k it decreases towards 1 as
a linear function of

√
d/k.

Regarding previous results for the online versions, the authors in [1] consid-
ered the WOSC problem and provided both a deterministic algorithm with a
competitive ratio of O(log m log |V |) and an almost matching lower bound of
Ω
(

log |S| log |V |
log log |S|+log log |V |

)
on the competitive ratio for any deterministic algorithm

for almost all values2 of |V | and |S|. The authors in [3] provided an efficient ran-
domized online approximation algorithm and a corresponding matching lower
bound (for any randomized algorithm) for a different version of the online set-
cover problem in which one is allowed to pick at most k sets for a given k and
the goal is to maximize the number of presented elements for which at least one
set containing them was selected on or before the element was presented. To the
best of our knowledge, there are no prior non-trivial results for either WOSCk

or OSCk for general k > 1.

1.3 Summary of Our Results and Techniques

Let r(m, d, k) denote the competitive ratio of any online algorithm for WOSCk

as a function of m, d and k. In this paper, we describe a new randomized al-
gorithm for the online multicover problem based on the randomized winnowing
approach of [11]. Our main contributions are then as follows:

– We first provide an uniform analysis of our algorithm for all cases of the
online set multicover problems. As a corrolary of our analysis, we observe
the following.
• For OSC, WOSC and WOSCk our randomized algorithm has

E [r(m, d, k)] equal to log2 m ln d plus small lower order terms. While
the authors in [1] did obtain a deterministic algorithm for OSC with
O(log m log |V |) competitive ratio, the advantages of our approach are
more uniform algorithm with simpler analysis, as well as better constant
factors and usage of the maximum set size d rather than the larger uni-
verse size |V | in the competitive ratio bound. Unlike the approach in [1],

2 To be precise, when log2 |V | ≤ |S| ≤ e|V |
1
2−δ

for any fixed δ > 0; we will refer to
similar bounds as “almost all values” of these parameters in the sequel.
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our algorithm does not need to maintain a global potential function over
a subcollection of sets.

• For (the unweighted version) OSCk for general k the expected compet-
itive ratio E [r(m, d, k)] decreases logarithmically with increasing k with
a value of roughly 5 log2 m in the limit for all sufficiently large k.

– We next provide an improved analysis of E [r(m, d, 1)] for OSC with better
constants.

– We next provide an improved analysis of E [r(m, d, k)] for OSCk with better
constants and asymptotic limit for large k. The case of large k is important
for its application in reverse engineering of biological networks as outlined
in Section 1.1. More precisely, we show that E [r(m, d, 1)] is at most( 1

2 + log2 m
)
·
(
2 ln d

k + 3.4
)

+ 1 + 2 log2 m, if k ≤ (2e) · d
1 + 2 log2 m, otherwise

– Finally, we discuss lower bounds on competitive ratios for deterministic al-
gorithms for OSCk and WOSCk general k using the approaches in [1]. The

lower bounds obtained are Ω

(
max

{
1,

log |S|
k log |V |

k

log log |S|
k +log log |V |

k

})
for OSCk and

Ω
(

log |S| log |V |
log log |S|+log log |V |

)
for WOSCk for almost all values of the parameters.

All proofs omitted due to space limitations will appear in the full version of
the paper.

2 A Generic Randomized Winnowing Algorithm

We first describe a generic randomized winnowing algorithm A-Universal be-
low in Fig. 1. The winnowing algorithm has two scaling factors: a multiplicative
scaling factor μ

cS
that depends on the particular set S containing i and another

additive scaling factor |Si|−1 that depends on the number of sets that contain i.
These scaling factors quantify the appropriate level of “promotion” in the win-
nowing approach. In the next few sections, we will analyze the above algorithm
for the various online set-multicover problems. The following notations will be
used uniformly throughout the analysis:

– J ⊆ V be the set of elements received in a run of the algorithm.
– T ∗ be an optimum solution.

2.1 Probabilistic Preliminaries

For the analysis of Algorithm A-Universal, we will use the following combina-
torial and probabilistic facts and results.

Fact 1. If f is a non-negative integer random function, then E [f ] =
∑∞

i=1
Pr [f ≥ i] .
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// definition //
D1 for (i ∈ V )
D2 Si ← {s ∈ S : i ∈ S}

// initialization //
I1 T ← ∅ // T is our collection of selected sets //
I2 for (S ∈ S)
I3 αp[S] ← 0 // accumulated probability of each set //

// after receiving an element i //
A1 deficit ← k − |Si ∩ T | // k is the coverage factor //
A2 if deficit = 0 // we need deficit more sets for i //
A3 finish the processing of i
A4 A ← ∅
A5 repeat deficit times
A6 S ←least cost set from Si − T −A
A7 insert S to A
A8 μ ← cS // μ is the cost of the last set added to A //
A9 for (S ∈ Si − T )

A10 p[S] ← min
{

μ
cS

(
αp[S] + |Si|−1

)
, 1
}

// probability for this step //

A11 αp[S] ← αp[S] + p[S] // accumulated probability //
A12 with probability p[S]
A13 insert S to T // randomized selection //
A14 deficit ← k − |Si ∩ T |
A15 repeat deficit times // greedy selection //
A16 insert a least cost set from Si − T to T

Fig. 1. Algorithm A-Universal

Fact 2. The function f(x) = xe−x is maximized for x = 1.

The subsequent lemmas deal with N independent 0-1 random functions
τ1, . . . , τN called trials with event{τi = 1} is the success of trial number i and
s =

∑N
i=1 τi is the number of successful trials. Let xi = Pr [τi = 1] = E [τi] and

X =
∑N

i=1 xi = E [s].

Lemma 3. If 0 ≤ α ≤ X/2 then Pr [s ≤ α] < e−XXα/α!.

3 An Uniform Analysis of Algorithm A-Universal

In this section, we present an uniform analysis of Algorithm A-Universal that
applies to all versions of the online set multicover problems, i.e., OSC, OSCk,
WOSC and WOSCk. Abusing notations slightly, define c(S ′) =

∑
S∈S′ cS for

any subcollection of sets S ′ ⊆ S. Our bound on the competitive ratio will be

influenced by the parameter κ defined as: κ = min
i∈J & S∈Si∩T ∗

{
c(Si ∩ T ∗)

cS

}
. It



116 P. Berman and B. DasGupta

is easy to check that κ =

⎧⎨
⎩

1 for OSC and WOSC
k for OSCk

≥ 1 for WOSCk

. The main result proved

in this section is the following theorem.
Theorem 1. The expected competitive ratio E [r(m, d, k)] of Algorithm
A-Universal is at most

max
{

1 + 5(log2(m + 1) + 1), 1 + (1 + log2(m + 1))
(

2 + ln
(

d

κ(log2(m + 1) + 1)

))}

Corollary 4

(a) For OSC, WOSCand WOSCk, setting κ = 1 we obtain E [r(m, d, k)] to
be at most log2 m ln d plus lower order terms.
(b) For OSCk, setting κ = k, we obtain E [r(m, d, k)] to be at most

max
{

6 + 5 log2(m + 1), 1 + (1 + log2(m + 1))
(

2 + ln
(

d

k log2(m + 1)

))}
.

In the next few subsections we prove the above theorem.

3.1 The Overall Scheme

We first roughly describe the overall scheme of our analysis. The average cost
of a run of A-Universal is the sum of average costs that are incurred when
elements i ∈ J are received. We will account for these costs by dividing these
costs into three parts cost1 +

∑
i∈J costi

2 +
∑

i∈J costi
3 where:

cost1 ≤ c(T ∗) upper bounds the total cost incurred by the algorithm for select-
ing sets in T ∩ T ∗.

costi
2 is the cost of selecting sets from Si − T ∗ in line A13 for each i ∈ J .

costi
3 is the cost of selecting sets from Si − T ∗ in line A16 for each i ∈ J .

We will use the accounting scheme to count these costs by creating the following
three types of accounts:

account(T ∗);
account(S) for each set S ∈ T ∗ − T ;
account(i) for each received element i ∈ J .

cost1 obviously adds at most 1 to the average competitive ratio; we will charge
this cost to account(T ∗). The other two kinds of costs, namely costi

2+costi
3 for

each i, will be distributed to the remaining two accounts. Let L(m) be a func-
tion of m satisfying L(m) ≤ 1 + log2(m + 1) and let D = d

κ(log2(m+1)+1) . The
distribution of charges to these two accounts will satisfy the following:

–
∑

i∈J account(i)≤ L(m) · c(T ∗). This claim in turn will be satisfied by:
• dividing the optimal cost c(T ∗) into pieces ci(T ∗) for each i ∈ J such

that
∑

i∈J ci(T ∗) ≤ c(T ∗); and
• showing that, for each i ∈ J , account(i)≤ L(m) · ci(T ∗).

–
∑

S∈T ∗account(S)≤ L(m) · max{4, ln D + 1} · c(T ∗).
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This will obviously prove an expected competitive ratio of at most the maxi-
mum of 1 + 5(log2(m + 1) + 1) and 1 + (log2(m + 1) + 1)(2 + lnD), as promised.

We will perform our analysis from the point of view of each received element
i ∈ J . To define and analyze the charges we will define several quantities:

μ(i) the value of μ calculated in line A8 after receiving i
ξ(i) the sum of αp[S]’s over S ∈ Si − T ∗ at the time when i is received
a(i) |T ∩ Si − T ∗| at the time when i is received
Λ(S) log2(m · αp[S] + 1) for each S ∈ S; it changes during the execution of

A-Universal

Finally, let Δ(X) denote the amount of change (increase or decrease) of a
quantity X when an element i is processed.

3.2 The Role of Λ(S)

Our goal is to ensure that
∑

S∈T ∗−T account(S) is bounded by at most max{4,
lnD +1} times

∑
S∈T ∗ cSΛ(S). For a S ∈ Si ∩T ∗−T corresponding to the case

when element i ∈ J is processed, we will do this by ensuring that Δ(account(S)),
the change in account(S), is at most a suitable multiple of Δ(cSΛ(S)). Roughly,
we will partition the sets in T ∗ − T into the so-called “heavy” and “light” sets
that we will define later and show that

– for a light set, Δ(account(S)) will be at most Δ(cSΛ(S)), and
– for a heavy set Δ(account(S)) will be at most max{4, ln D + 1}Δ(cSΛ(S)).

The general approach to prove that Δ(account(S)) is at least some multiple of
Δ(cSΛ(S)) will generally involve two steps:

– Δ(cSΛ(S)) ≥ min{cS , μ(i)};
– Δ(account(S)) is at most a multiple of min{cS , μ(i)}.

Of course, such an approach makes sense only if we can prove an upper bound
on E [Λ(S)]. As a first attempt, the following lemma seems useful.

Lemma 5. E [Λ(S)] ≤ log2(m + 1).

How does Λ(S) increase when A-Universal handles its element i? A preliminary
glance at tha algorithm suggests the following. First we calculate μ in line A8,
then we calculate p[S] in line A10 to be at least μ(i)

cS

1
m (m · αp[S] + 1), then we

increase αp[S] by p[S], thus we increase m · αp[S] + 1 by a factor of at least
1+ μ(i)

cS
. Therefore log2(m ·αp[S]+1) seems to increase by at least log2(1+ μ(i)

cS
).

However, some corrections may need to be made to the upper bound of
AveΛ(S) in Lemma 5 to ensure that log2(m · αp[S] + 1) increases by at least
log2(1 + μ(i)

cS
) for the very last time p[S] and consequently αp[S] is updated.

The reason for this is that in line A10 of algorithm AUn we calculate p[S] ←
min

{
μ
cS

(
αp[S] + |Si|−1

)
, 1
}

instead of calculating just p[S] ← μ
cS

(
αp[S]+

|Si|−1
)

and it may be the case that μ
cS

(
αp[S] + |Si|−1

)
> 1. Note that for each
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S such a problem may occur only once and for the last increment since if we
calculate p[S] = 1 then S is surely inserted to T . Thus, the very last increment of
Λ(S) = log2(m ·αp[S]+1) may be smaller than log2(1+ μ(i)

cS
) (and, consequently,

the very last increment of cSΛ(S) may be smaller than cS log2(1+ μ(i)
cS

)). Intead
of separately arguing for this case repeatedly at various places, we handle this
by extending the upper bound for E [Λ(S)] in Lemma 5 so that we can consider
this last increment of cS log2(m · αp[S] + 1) also to be at least cS log2(1 + μ(i)

cS
).

We omit the details here, but to summarize, we can alter the definition of Λ(S)
so that for S ∈ Si ∩ T ∗ − T

– if cS ≥ μ(i), Δ(Λ(S)) ≥ log2(1 + μ
cS

);
– if cS ≤ μ(i), Δ(Λ(S)) ≥ 1;
– the expected final value of Λ(S) is L(m) < 1 + log2(m + 1).

Now we are able to prove the following lemma.

Lemma 6. If S ∈ Si ∩ T ∗ − T then Δ(cSΛ(S)) ≥ min{cS , μ(i)}.

3.3 Definition of Light/Heavy Sets and Charges to Light Sets

When an element i is received, we will make charges to account(S) for S ∈
Si ∩ T ∗ − T . Note that these are accounts of at least deficit + a(i) many sets.
We number these sets as S(1), S(2), . . . in nondecreasing order of their costs
with. We will define the last a(i) + 1 sets in this ordering as heavy and the rest
as light.

Consider the sets inserted to A in lines A5-7, say A(1), . . . , A(deficit). We
pessimistically assume that except for its last — and most costly — element, A
is inserted to T in line A16. We charge the cost of that to the accounts of light
sets — these sets will not receive any other charges. More specifically, we charge
cA(j) to account(S(j)). Because cA(j) ≤ min{cS(j), μ(i)}, this charge is not larger
than Δ(cS(j)Λ(S(j))) by Lemma 6.

3.4 Charges to Account(i)

The sum of charges to accounts of heavy set and account(i) can be estimated
as μ(i)ξ(i) + 2μ(i), where the part μ(i)ξ(i) + μ(i) refers to line A13 and the
remaining part μ(i) refers to the cost of line A16 that is not attributed to the
accounts of light sets. To simplify our calculations, we rescale the costs of sets
so μ(i) = 1 and thus cS ≥ 1 for each heavy set S and the sum of charges to
accounts of heavy set and account(i) is simply ξ(i) + 2.

We associate with i a piece ci(T ∗) of the optimum cost c(T ∗):

ci(T ∗) =
∑

S∈Si∩T ∗
cS/|S| ≤ 1

d
c(Si ∩ T ∗) ≤ κ

d
μ(i) = κ/d.

It is then easy to verify that
∑

i∈J ci(T ∗) ≤
∑

i∈J
1
dc(Si ∩ T ∗) ≤ c(T ∩ T ∗) ≤

c(T ∗). As explained in the overview of this approach, we will charge account(i)
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in such a way that on average it receives D−1 = L(m)κ/d. We will define a
random events E(i, a) so that the probability of event E(i, a) is a function of
the form p(ξ(i), a) and when such an event happens, we charge account(i) with
some f(ξ(i), a). We will show in the next subsection that the event E(i, a) can
be appropriately defined such that the expected sum of charges is sufficiently
small, i.e., that

∑
a p(X, a)f(X, a) < D−1.

3.5 Charges to Heavy Sets

Let ψ = max {1, ln D − 1}. Suppose that we charge each heavy set S with an
amount of ψ of ξ plus the two additional amounts, for a total of max {3, ln D + 1}.
Then, Δ(cSΛ(S)) ≥ min{1, cS} ≥ 1 and the maximum charge is within a factor
max {3, ln D + 1} of Δ(cSΛ(S)).

If ψ(a(i)+1) ≥ ξ(i) we have no problem because we charge a(i)+1 accounts,
each with at most ψ. Otherwise we need to charge account(i) with ξ(i)−ψ(a(i)+
1). We describe this case using the following events: E(i, a) means that a(i) ≤ a.

Let us identify E(i, a) with a zero-one random funtion, and charge(i, ψ, , x)
is the formula for the charge to account(i) assuming we use ψ, ψ ≤ X ≤ (+1)ψ
and ξ(i) = x. If E(i, − 1) happens, we have to charge account(i) with x− ψ; if
E(i, − 2) happens than E(i, a− 1) also happens, so we charged x− ψ, but we
need to charge account(i) with another ψ. One can see that for each a ≤  − 2,
if E(i, a) happens we charge account(i) with ψ. One can see that

charge(i, ψ, , x) = E(i,  − 1)(ξ(i) − ψ) + ψ

�−2∑
j=0

E(i, ψ, j).

Let C(ψ, , x) be the estimate of E [charge(i, ψ, , x)] that uses Lemma 3:

C(ψ, , x) = e−x

⎛
⎝ x�−1

(k − 1)!
(x − ψ) + ψ

�−2∑
j=0

xj

j!

⎞
⎠ .

Lemma 7. If ψ ≥ 2, x ≥ 1 and  = �x/ψ� then C(ψ, , x) ≤ e−(ψ+1).

As a result of the above lemma, setting ψ = max{2, ln D − 1} we conclude
that the average charge to account(i) is at most D−1.

4 Improved Analysis of Algorithm A-Universal for
Unweighted Cases

In this section, we provide improved analysis of the expected competitive ratios
of Algorithm A-Universal or its minor variation for the unweighted cases of
the online set multicover problems. These improvements pertain to providing
improved constants in the bound for E [r(m, d, k)].
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4.1 Improved Performance Bounds for OSC

Theorem 2. E [r(m, d, 1)] ≤ log2 m ln d, if m > 15( 1
2 + log2 m

)
(1 + ln d), otherwise

4.2 Improved Performance Bounds for OSCk

Note that for OSCk we substitute μ = cS = 1 in the psuedocode of Algorithm A-
Universal and that deficit ∈ {0, 1, 2, . . . , k}. For improved analysis, we change
Algorithm A-Universalslightly, namely, line A10 (with μ = cS = 1)

A10 p[S] ← min
{(

αp[S] + |Si|−1
)
, 1
}

// probability for this step //

is changed to

A10’ p[S]←min
{(

αp[S]+deficit · |Si|−1
)
, 1
}

// probability for this step //

Theorem 3. With the above modification of Algorithm A-Universal,

E [r(m, d, k)] ≤
( 1

2 + log2 m
)
·
(
2 ln d

k + 3.4
)

+ 1 + 2 log2 m if k ≤ (2e) · d
1 + 2 log2 m otherwise

4.3 Lower Bounds on Competitive Ratios for OSCk and WOSCk

Lemma 1. For any k, there exists an instance of OSCk and WOSCk for
almost all values of |V | and |S| such that any deterministic algorithm must

have a competitive ratio of Ω

(
max

{
1,

log |S|
k log |V |

k

log log |S|
k +log log |V |

k

})
for OSCk and

Ω
(

log |S| log |V |
log log |S|+log log |V |

)
for WOSCk.
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Abstract. A tree t-spanner T of a graph G is a spanning tree of G
whose max-stretch is t, i.e., the distance between any two vertices in T
is at most t times their distance in G. If G has a tree t-spanner but not
a tree (t − 1)-spanner, then G is said to have max-stretch of t. In this
paper, we study the Max-Stretch Reduction Problem: for an unweighted
graph G = (V, E), find a set of edges not in E originally whose insertion
into G can decrease the max-stretch of G. Our results are as follows:
(i) For a ring graph, we give a linear-time algorithm which inserts k
edges improving the max-stretch optimally. (ii) For a grid graph, we give
a nearly optimal max-stretch reduction algorithm which preserves the
structure of the grid. (iii) In the general case, we show that it is NP-
hard to decide, for a given graph G and its spanning tree of max-stretch
t, whether or not one-edge insertion can decrease the max-stretch to t−1.
(iv) Finally, we show that the max-stretch of an arbitrary graph on n
vertices can be reduced to s′ ≥ 2 by inserting O(n/s′) edges, which can
be determined in linear time, and observe that this number of edges is
optimal up to a constant.

1 Introduction

If a communication network is a tree, then we can enjoy countless merits. For
example, we can design optimal routing schemes with succinct routing tables
[1, 9, 17, 15, 16], there are several labeling schemes which allow us to deduce useful
information such as distance and adjacency only from vertex labels [12], efficient
broadcasting [3], and many more (see, e.g., [6]). This naturally leads us to the
idea that we first construct a spanning tree for the (complicated) network we
encounter and then do our tasks on this tree. Since the spanning tree covers all
the vertices, we can do virtually everything in theory.

One drawback of this idea is that the distance between two vertices in the
original network is not preserved in the spanning tree. For example, although two
vertices are connected directly by an edge on the original network, they may be
far apart on its spanning tree; a packet is forced to make a long detour if we use
the spanning tree for routing. The notion of tree t-spanners was thus introduced
to relax this demerit. A tree t-spanner is a spanning tree such that the distance
between any two vertices on the tree is at most t times their distance on the

F. Dehne, A. López-Ortiz, and J.-R. Sack (Eds.): WADS 2005, LNCS 3608, pp. 122–133, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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original graph. The value t is usually called the max-stretch. Thus our main goal
is to find, given a graph G, its spanning tree whose max-stretch is as small as
possible.

As easily expected, however, this problem is not so easy. For many cases it
is NP-hard [6] to achieve an optimal max-stretch, and the best approximation
factor known is O(log n) at present [7]. Even more seriously for application pur-
poses, many graphs do not admit a small max-stretch; for such graphs we can
never attain our goal. Fortunately, it is also true that in many cases the max-
stretch can be greatly improved by adding a reasonable number of new edges.
This rather general approach, i.e., adding new edges to improve graph parame-
ters, has always been popular in the field of graph algorithms; a typical example
is to increase a connectivity of a graph for which there is a huge literature (see
e.g., [11]). In this paper we investigate how to add edges to improve (reduce)
the max-stretch of given graphs. This, little surprisingly, has not been discussed
in the literature but for a related problem on hotlink assignments in [4] and a
related problem for geometric graphs in [10] very recently.

Our Contribution. Our problem is called the Max-Stretch Reduction problem,
which is to find, given a (connected, unweighted) graph G, a set of edges which
are not in G originally and whose insertion to G reduces its max-stretch. Since
complete graphs has a max-stretch of two, max-stretch reduction is obviously
possible if we insert many edges. Thus our goal is to find as few such edges as
possible to decrease max-stretch as much as possible. Our results include: (i) For
a ring graph, we give a linear-time algorithm which finds, given an integer k, k
edges whose insertion improves the max-stretch optimally. (ii) For a grid graph,
we give a nearly optimal max-stretch reduction algorithm which preserves the
structure of the grid. (iii) For a general graph, we assume that its spanning tree
of max-stretch t is also given. Even so, we can show that it is NP-complete
to decide whether or not a spanning tree of max-stretch at most t − 1 can be
obtained by adding a single edge. (iv) Furthermore, we can demonstrate an
infinite family of graphs with n vertices and max-stretch s which require Ω(n/s)
edge insertions to decrease the max-stretch at least by one. On the positive
side, we can show that the max-stretch of an arbitrary graph on n vertices can
be reduced to s′ ≥ 2 by inserting O(n/s′) edges and that these edges can be
determined in time O(n).

Previous Work. A spanning subgraph (which may not be a tree) with max-
stretch t was first studied in [14]. Finding sparse spanning subgraphs with max-
stretch t is intractable in general [5], but for some restricted cases, there are
polynomial time algorithms [2]. For the spanning tree case, the problem is called
the Minimum Max-Stretch Spanning Tree (MMST) problem. Its NP-hardness
was established in [6]. Several tractability results for restricted problems are
found in [8]. Emek and Peleg first obtained a nontrivial approximation algorithm
for MMST, whose approximation factor is O(log n) [7]. Their paper also gives a
very nice exposition of the history of this problem. For applications of MMSTs,
see [6].
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2 Preliminaries

In this paper, a graph G(V,E) is unweighted and connected. We always use n
for |V | and m for |E|. Let distG(u, v) denote the distance between vertices u and
v in G. For a tree T , let pathT (u, v) denote the path between vertices u and v
in T .

A t-spanner of a graph G is a spanning subgraph G′ in which the distance
between every pair of vertices is at most t times their distance in G. The value t
is called the max-stretch of G′. If a graph G has a spanning tree of max-stretch
t, but not of max-stretch t− 1, then it is said that the max-stretch of G is t. For
a graph G, its spanning tree T and an edge e ∈ E, e = {u, v}, it is said that
e has a stretch of t if distT (u, v) = t. If e is included in T , then its stretch is
obviously one. Following lemma is useful when the graph is unweighted [13].

Lemma 1. For an unweighted graph G = (V,E), the subgraph G′ = (V,E′) is
a t-spanner of G iff for every {u, v} ∈ E, distG′(u, v) ≤ t. ��

Thus, the max-stretch of T is equal to the maximal stretch of edges. The Mini-
mum Max-Stretch Spanning Tree (MMST) problem is to find the spanning tree
T that minimizes its max-stretch. The problem was shown to be NP-hard in
[6]. For a given graph G and a positive integer k, the Max-Stretch Reduction
problem is to find a set S of k edges which are not included in G originally such
that G′ = (V,E ∪ S) has a max-stretch which is less than that of G.

Let E+ denote the set of edges which are added to G to obtain the spanning
tree of reduced max-stretch. As shown later, we can assume without loss of
generality that T includes all the edges in E+. E− denotes the set of edges
in E which are not included in T . An edge ē in E− is called a non-tree edge
and sometimes the cycle consisting of such an edge ē and edges in T is called a
fundamental cycle. Conversely, a fundamental cycle c̄ includes a unique non-tree
edge ē.

3 Edge Insertion for Ring Graphs

Let G = (V,E) be a ring graph on n vertices, i.e., a simple cycle on n vertices. We
may assume w.l.o.g that G is embedded in the plane and has vertices v1, v2, ..., vn,
and edges {v1, v2}, ..., {vn−1, vn}, {vn, v0} in the clockwise direction. The max-
stretch of G is obviously n − 1, since its spanning tree must have n − 1 edges
out of the n ones. This max-stretch is quite large, but our approach really works
well for this graph, namely the max-stretch is reduced approximately by a factor
of 1/k by adding k edges. The idea of our approach is simply to improve the
diameter of the graph by adding few edges, and then take a shortest spanning
tree of the augmented graph. Our algorithm, called InsertRing(G) is as follows:

1. Let α = �n−2
k+1 � + 1, select any integer β such that 0 ≤ β ≤ �n−2

k+1 �, and let
γ = α − β − 1.

2. Select an arbitrary vertex u1 on the ring and then select v1 which is α apart
from u1 in the clockwise direction.
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Fig. 1. Ring graph(n = 8)

C2

C1

C3

C4

Fig. 2. MMST and its fun-
damental cycles

v1(= v2 = . . . = vk)

Fig. 3. Bad case of β = 0

3. Set E+ =
{
{u1, v1}

}
. For i = 2 to k,

(a) select vertex vi which is β apart from vi−1 in the clockwise direction,
(b) select vertex ui which is γ apart from ui−1 to in the anti-clockwise di-

rection, and
(c) insert a new edge {ui, vi} and let E+ = E+ ∪

{
{ui, vi}

}
.

4. Let E− = φ. For i = 1 to k− 1, select an arbitrary edge on the path from ui

to ui+1 and add it to E−. Similarly select two edges, one on the path of the
ring from v1 to u1 and the other on the path from vk to uk, and add them
to E−. Let T = (E ∪ E+) − E−.

Remark. Recall that β can be any integer between 0 and �n−2
k+1 �. If we select

β = 0 or �n−2
k+1 �, then all the inserted edges in E+ share the single vertex v1(=

v2 = . . . = vk) (See Fig. 3) or u1. For the routing purposes, this might not be
too good since much load is concentrated to this single vertex. For the remaining
values of β the maximum degree of the resulting tree spanner is just three.

Theorem 1. The spanning tree T obtained by InsertRing(G) is an MMST
of G′ = (V,E ∪ E+) whose max-stretch is �n−2

k+1 � + 1. These k edge insertions
performed by InsertRing(G) are optimal since for any graph Gk resulting from
inserting k new edges into G its max-stretch is at least �n−2

k+1 �+1. InsertRing(G)
runs in linear time.

Proof. Obviously T is an MMST. Consider k + 1 cycles, C1, C2, . . . , Ck+1, in G′

as shown in Fig.2. One can see that the length of C1 = α + 1. The length of
C2, . . . , Ck is all the same, which is β + γ + 2 = α + 1. Finally the length of
Ck+1 is n− {α + 1 + (k − 1)(β + γ)}+ 2 = n− k(α− 1) ≤ α + 1. Note that the
length of all those k + 1 cycles is at most α + 1. Each cycle includes exactly one
(deleted) edge in E−, so the max-stretch is at most α = �n−2

k+1 � + 1.
For the optimality, we first show the following observation about the relation

between the added edges and the fundamental cycles: let X be any MMST for
Gk. Without loss of generality, we can assume X includes all the inserted edges
(otherwise, we can achieve the same stretch with k − 1 or less inserted edges).
Let e be an edge in X. By removing this e from X, X is decomposed into two
trees Xl and Xr (one of them might be a single vertex). Now we give a label
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l (r, respectively.) to all the vertices connected by Xl (Xr, respectively.). Since
X is a spanning tree, every vertex has a label l or r and not both. Since the
original graph G = (V,E) is a ring, there are at least two edges, say e1 and e2,
in E whose two endpoints are labeled differently. If the originally selected edge
e is an inserted edge, i.e., in E+, then both of these e1 and e2 must be removed
edges, i.e., in E− and the two fundamental cycles for e1 and e2 must go through
e. If is e in E ∩ X, one of e1 and e2, say e1, can be the original e. Then the
fundamental cycle for e2 must go through e. As a result: if e is in E+ (in E ∩X,
respectively.), then e is included in at least two (one, respectively.) fundamental
cycle(s).

Now consider the total length of fundamental cycles. As shown above, fun-
damental cycles go through each edge in E ∩X (their number is n− (k + 1)) at
least once and each edge in E+ (their number is k) at least twice, which implies
that the total length is at least n− (k +1)+2k = n+k−1. Since the number of
non-tree edges is k + 1, the average length of each fundamental cycle is n+k−1

k+1 ,
i.e., n−2

k+1 + 1. Therefore, the tree spanner, constructed by any k-insertion algo-
rithm, has at least one fundamental cycle whose length is greater than or equal
to n−2

k+1 + 1. This gives the lower bound of the max-stretch by the k-insertion
algorithm for ring graphs.

Clearly, InsertRing(G) can be implemented in linear time.

4 Edge Insertion for Grid Graphs

In this section, we assume that g =
√

n is an integer and G is a g × g grid
graph. Vertices are denoted as vi

j for each i, j ∈ {1, . . . , g} and there exist edges
{vi

j , v
i+1
j } and {vi

j , v
i
j+1} for every i, j ∈ {1, . . . , g − 1}. Suppose that we can

insert k edges into the grid graph G. As in the previous section, we follow the
idea of reducing the diameter of G as much as possible by such k edge insertions.
One way of doing so is illustrated in Fig.4. Namely, the whole graph is divided
into

√
k + 1 ×

√
k + 1 small grids, each has a size (= the number of vertices) of

g√
k+1

× g√
k+1

. (When k = 3, it is 2 × 2 = 4 small grids as shown in Fig. 4).

g

g

g√
k+1

g√
k+1

base station

Fig. 4. MMST of grid graph

s = 2g − 1

Fig. 5. Comb MMST



Max-stretch Reduction for Tree Spanners 127

Then we select a single vertex called a base station for each small grid, and insert
k− 1 edges between the base station of the upper-left corner and all other k− 1
base stations. To construct an MMST T , we include all the inserted edges into
T . Furthermore we construct a shortest-path tree from the base station in each
small grid and include all those edges constituting the tree into T . By a simple
calculation, this construction achieves a stretch factor of 2�

√
n

k+1�+ 4 (k ≥ 3),

which is (almost) optimal as shown later. Thus the construction is simple and
efficient, but the resulting MMST no longer preserves the structure of the grid.

Another method is to apply the grid structure recursively. We first fix some
scheme for constructing an MMST for a grid. For simplicity, we consider the
comb MMST as shown in Fig.5. This scheme gives us a stretch factor of 2g − 1,
which is almost twice as bad as more sophisticated schemes like the shortest-
path scheme (constructing a shortest-path tree from the center of the mesh).
However, the following argument does not change at all for such better schemes.
(We can choose any scheme if its radius is not too large. For example, the snake
MMST has the same stretch as comb, but its radius is Ω(g2), which is too large
for our purpose.) Now suppose again that we insert k edges. Then we divide the
whole grid into

√
k + 1 ×

√
k + 1 small grids and select a base station for each

small grid, as before. Now we construct a comb MMST for each small grid and
for the set of base stations as shown in Fig.6. The latter MMST is called an
MMST at a higher level. It is not hard to see that the resulting MMST achieves
a stretch factor of 2

√
k + 1−1+3 g√

k+1
+2 ≤ O(

√
n

k+1 ), if k is at most g =
√

n.
If k is larger than g, then the stretch for the higher level MMST becomes

larger than the stretch for the small grid, by which the total stretch increases as k
grows. This can be avoided by providing more higher-level MMSTs. For example,
suppose that n1/2 ≤ k ≤ n2/3. Then, we first construct

√
k + 1 ×

√
k + 1 small

grids as before. Note that the size of each small grid is
√

n
k+1 ×

√
n

k+1 . To make
a balance with this size, we then construct a middle-sized grid each of which
consists of

√
n

k+1 ×
√

n
k+1 small grids (= base stations). Finally we construct

the highest level MMST for these middle-sized grids whose size (= the number
of base stations for middle-sized grids) is at most

√
n

k+1 ×
√

n
k+1 . One can easily

higher level MMST

lower level MMSTs

Fig. 6. Recursive construction of MMST

highest level MMST

Fig. 7. Example for n = 93(g = 27)
and k = 80
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see that the stretch factor is O(
√

n
k+1 ). The case that n = 93(g = 27) and k = 80

is illustrated in Fig.7. Although details are omitted, one can extend this method
to work for furthermore larger k by introducing more levels.

Theorem 2. The recursive insertion achieves the max-stretch of O(
√

n
k+1 ) if

k ≤ nd for some constant 0 < d < 1, and this is within an O(
√

k) factor from
the optimum.

Proof. The upper bound follows from straightforward calculations.
For the lower bound, let E′ be an optimal set of k edges to insert, and let

T ′ be the MMST of the augmented graph. By removing E′ from T ′, we obtain
k + 1 subtrees T ′

0, . . . , T
′
k of T ′. Note that each of these subtrees is embedded

in the grid without crossings. For i = 0, ..., k, let border(T ′
i ) be the set of ver-

tices in T ′
i that are incident to non-tree edges having their other endpoint in

another tree T ′
j . By the planar embedding in the grid, we can observe that (i)

|border(T ′
i )| = Ω(

√
|T ′

i |) holds for i = 0, ..., k. Furthermore, by a straightforward
fraction argument, (ii) there must exist a subtree T ′

l such that the proportion
between |T ′

l | and the number of vertices in T ′
l adjacent to at least one of the k

inserted edges is Ω( n
k+1 ). By (i), |border(T ′

l )| = Ω(
√

nq
k+1 ) holds where q is the

number of vertices in T ′
l incident to the inserted edges. Now, cluster the vertices

in border(T ′
l ) into q clusters according to their minimum distance to a vertex

in T ′
l adjacent to an inserted edge. It follows that there is a cluster, say C, for

which |border(C)| = Ω(
√

n
q(k+1) ) holds. By a simple geometric case analysis,

there is a vertex v in C such that (a) v is incident to a non-tree edge going
to another subtree T ′

j , (b) the minimum distance between v and a vertex in T ′
l

incident to an inserted edge is Ω(
√

n
q(k+1) ). This yields the Ω(

√
n

k(k+1) ) bound

on the max-stretch.

5 Intractability for General Graphs

5.1 NP-Completeness of Stretch Reducibility

As mentioned before, the MMST problem itself was shown to be NP-hard in
[6], where the authors gave a graph G(s) for which to construct an MMST with
stretch s(≥ 5) is easy but to construct one with stretch s − 1 is hard. Using
this fact, we can show that the most basic version of our current problem is also
intractable even if an optimal MMST for the original graph is given. We consider
the following problem called MSR1 (Max-Stretch Reduction by adding one edge):

Instance: A graph G and its MMST T of max-stretch s.
Question: Is it possible to achieve a max-stretch of less than s by adding one
edge?
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G′

G(s)

Fig. 8. Graph for NP-hard

Theorem 3. MSR1 is NP-hard.

Proof. Let G(s) be the above mentioned graph in [6], which consists of the center
vertex and petal-like subgraphs around it as illustrated in Fig.8. The idea is to
add a graph G′, which consists of two rings of length s+1 with two edges shared,
to G(s) as shown in Fig.8.

Consider an MMST for the whole graph G obtained by removing a single edge
from each ring combined with an (easy) MMST of stretch s for the portion of
G(s). Since the max-stretch of the single ring is at least s, this MMST, denoted
by T , of stretch s for G is optimal. Thus we are given the graph G and its
(optimal) MMST T , and try to reduce its max-stretch by adding one edge.

Now consider inserting one edge e to G such that e shortcuts the two edges
shared by the two rings. By doing this, we can reduce the stretch of the G′

portion by one, namely from s to s−1. Furthermore, one can see that this is the
only way of getting such a max-stretch reduction. (Especially, we cannot obtain
any stretch reduction of the G′ portion by adding an edge between G and G′.)
This means that whether or not we can reduce the stretch of the whole graph
G by inserting one edge is exactly depend on whether or not we can reduce the
stretch of the G(s) part without adding any edge. The latter is hard as mentioned
before. ��

5.2 Approximation Factors

The natural optimization version of MSR1 is the problem to obtain, given a
graph G = (V,E), a pair of vertices {u, v}(/∈ E) such that the insertion of the
edge {u, v} reduces max-stretch as much as possible. Approximability of this
problem appears to be interesting. We observe the following simple upper and
lower bounds on the approximability of this problem.

Theorem 4. The optimization version of MSR1 admits a 2-approximation and
does not admit a 1.25 approximation unless P = NP.

Proof. First we show that one-edge insertion cannot reduce max-stretch to less
than one half, which is enough to claim the upper bound of 2.0. Let G′ be the
graph which is obtained from the original graph G by adding an (optimal) edge
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ē

adding edge e

c̄

≤ 2(|c̄| − 1)≤ |c̄| − 1

Original GG′

Fig. 9. Stretch change by adding edge

e, and T ′ be its corresponding MMST. We shall show that the max-stretch of
the original graph is at most twice that of G′. Let c̄ be a longest fundamental
cycle including e with respect to T ′, and ē be its non-tree edge. If |c̄| = p, then
the max-stretch of G′ is obviously at least p − 1. Now construct an MMST T
of the original graph G by setting T = (T ′ − e) ∪ ē. Then a fundamental cycle
which goes through e in G′ must detour in G as shown in Fig.9. However, since
c̄ is the longest fundamental cycle including e, the length of the detoured cycle
is obviously less than twice |c̄|.

To show the lower bound, we can use the graph G described in the above
theorem. Suppose that s = 5. Then if we have an algorithm whose approximation
factor is less than 1.25, we can obtain an MMST of max-stretch 4 iff G(5) has an
MMST of max-stretch 4 in polynomial time. This contradicts the intractability
result in [6].

6 General Algorithms for Stretch Reduction

Even though the optimal one-edge insertion to arbitrary graphs is NP-hard, we
can still find some sufficient conditions in the case of general graphs. We discuss
a multi-edge insertion algorithm to reduce the max-stretch of the graph under
the assumption that the MMST of the graph is given.

Theorem 5. For any sufficiently large n and s ≥ 3, where n is divisible by s,
one can construct a graph G such that the stretch of its MMST tree is s and G
has to be augmented by Ω(n/s) edges in order to reduce the stretch s at least by
one.

Proof. Let k = n/s. The graph G is simply composed of k simple cycles on s+1
vertices so that the ith cycle shares a single vertex with the (i mod k) + 1th for
i = 1, 2, ..., k. In any spanning tree of G, there is at least one cycle in which one
edge is not included and all others are included in the spanning tree. (Otherwise,
the spanner would not be a connected graph, a contradiction.) Therefore it must
have stretch at least s. To reduce the stretch, conversely, at least two edges of
each cycle must not be included in the spanning tree. In the original graph, there
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are k cycles and k edges are not already included in the spanning tree and so at
least k = n/s new edges must be inserted.

We shall show that the following procedure not only provides an upper bound
on the number of edge augmentations matching the lower bound given in The-
orem 5 but also can yield a stretch reduction by a constant fraction.

procedure Cut-stretch(T, s’)

Input: A spanning tree T of a graph G with max-stretch at most s and some
even integer s′, where s > s′ ≥ 2.

Output: A graph G′ resulting from inserting O(n/s′) edges into G and its
spanning tree T ′ having max-stretch at most s′.

begin

1. G′ ← G; T ′ ← T ;
2. Root T ′ at some vertex r;
3. while there is a leaf in T ′ which has a s′/2 − 1 distant ancestor in T ′ −

{r and its neighbors} then select such a leaf and “hang” its s′/2 − 1
distant ancestor on r, i.e., connect it with the root of T ′ by inserting a
new edge;

4. Insert the edges of T ′ not appearing in G into G′, and output the resulting
graph G′ and the tree T ′;

end.

Lemma 2. The number of iterations of the while block in Cut-stretch(T, s’) is
at most 2n/s′.

Proof. When a vertex v is to be hanged on the root of T ′, neither v nor any of
its nearest s′/2 − 1 descendants could have been hanged on the root before or
can be hanged on the root afterwards. Hence, with each iteration of the while
block a distinct set of at least s′/2 vertices of G can be associated uniquely.

Lemma 3. Cut-stretch(T, s’) inserts at most 2n/s′ edges in G and outputs a
spanning tree of the resulting graph having max-stretch at most s′. It runs in
time O(n).

Proof. The first part follows from Lemma 2. When there is no leaf in T ′ satisfying
the condition of the while instruction then T ′ has to have height at most s′/2.
Otherwise, there would be a path from the root to a leaf of T ′ having length at
least s′/2 + 1 and the leaf would satisfy this condition, a contradiction. Hence,
any vertex is at most s′ distant from another vertex in T ′ and T ′ has max-stretch
at most s′.

Each iteration of the while block in Cut-stretch(T, s’) can be performed in
time O(s). The leaf selections can be implemented by using a dynamic list of
relevant leaves given with their depth which takes O(n) preprocessing time and
has processing time proportional to the number of iterations of the while block.
Hence, Lemma 2 yields the O(n) running time of this algorithm.
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By Lemma 3, we obtain our main result in this section.

Theorem 6. For any graph with n vertices and its spanning tree of max-stretch
s > 2, and even integer s′ satisfying s > s′ ≥ 2, O(n/s′) edge augmentations are
sufficient to reduce the stretch s to s′. The edge augmentations can be found in
time O(n).

Corollary 1. For any graph with n vertices and its spanning tree of max-stretch
s > 2, O(n/s) edge augmentations are sufficient to reduce the stretch s to 2s/3.
The edge augmentations can be found in time O(n).

Proof. Set s′ = 2�s/3� in Theorem 6 and observe that n/s′ = O(n/s).

7 Final Remark

It seems that our max-stretch reduction algorithm for grid graphs is optimal up
to a constant. We are currently working on getting rid off the 1√

k
factor in our

corresponding lower bound (see Theorem 2).
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Abstract. We consider the problem of designing succinct geometric
data structures while maintaining efficient navigation operations. A data
structure is said succinct if the asymptotic amount of space it uses
matches the entropy of the class of structures represented.

For the case of planar triangulations with a boundary we propose a
succinct representation of the combinatorial information that improves to
2.175 bits per triangle the asymptotic amount of space required and that
supports the navigation between adjacent triangles in constant time (as
well as other standard operations). For triangulations with m faces of a
surface with genus g, our representation requires asymptotically an extra
amount of 36(g−1) lg m bits (which is negligible as long as g  m/ lg m).

1 Introduction

The problem of representing compactly the connectivity information of a two-
dimensional triangulation has been largely addressed for compression purpose [2].
Indeed for a triangulation with m triangles and n vertices, the usual description
of the incidence relations between faces, vertices and edges involves 6m + n
pointers (each triangle knows its neighbors and its incident vertices, and each
vertex has a reference to an incident triangle). In practice, this connectivity in-
formation uses 32 × 7 = 224 bits/triangle, or in theory 7 log m bits/triangle (as
for a triangle mesh it holds n < m), that is much more than the cost of point
coordinates [4]. The enumeration of all different structures that the connectivity
can assume shows that for the case of planar triangulations (with degree 3 faces)
an encoding requires asymptotically 1.62 bits/triangle (or 3.24 bits/vertex, see
[12] for a recent optimal encoding). Similarly, 2.175 bits per triangle are needed
to code triangulations when a larger boundary of arbitrary size is allowed (in
[1] the entropy of this class of triangulations is computed). In this paper, our
purpose is not to compress the data for storage or network transmission, but to
design a compact representation that can be used in main memory and supports
navigation queries. Since we care for coming down to the entropy bound, this
work pertains to the algorithmics of succinct data structures, as discussed below.
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Contribution. At a conceptual level, our contribution is to show that two-
dimensional geometric objects have nice local neighborhood relations that allow
to apply a direct hierarchical approach to represent them succinctly, without
even using separators or canonical orders. More precisely, given a triangulation
of m triangles, we propose a structure that uses 2.175m + O

(
m lg lg m

lg m

)
bits and

supports access from a triangle to its neighbors in O(1) worst case time.
This storage is asymptotically optimal for the class of planar triangulations

with a boundary. To our knowledge this is the first optimal representation sup-
porting queries in constant time for geometric data structures.

Our approach extends directly to the more general case of triangulations
with m triangles of a surface with genus g. In this case, the structure uses
2.175m + 36(g − 1) lg m + O

(
m lg lg m

lg m + g lg lg m
)

bits, which remains asymp-
totically optimal for g = o(m/ lg m). For g = Θ(m), we still have an explicit
dominant term, which is of the same order as the cost of a pointer-based rep-
resentation. Finally, our approach allows to take advantage of low diversity in
the local structure: for instance, when applied to the class of triangulations with
vertex degree at most 10, our construction automatically adjusts to the corre-
sponding entropy.

Related Work on Compact Representations of Graphs. A first approach
to design better geometric data structures is, as done in [9], to look from the pro-
gramming point of view for practical solutions that improve by a constant factor
on usual representations [4]. From a theoretical point of view however, standard
representations are intrinsically non optimal since they use global pointers across
the structure: Θ(m log m) bits are needed to index m triangles.

The seminal work of Jacobson [8] showed that it is possible to represent
planar graphs with O(n) bits, allowing adjacency queries in O(lg n) time. The
result is based on a compact representation for balanced parenthesis systems,
and on the four page decomposition of planar graphs. This two step approach
was pushed further by improving on the representation of parenthesis systems
or by using alternative graph encodings. Munro and Raman [10] achieve O(1)
time for adjacency between vertices and degree queries: for planar triangulations
with e edges and n vertices only 2e+8n bits are asymptotically required, that is,
in terms of the number m of faces, between 7m and 12m bits depending on the
boundary size. The best result for triangulations is due to Chuang et al. [6] 2e+n
bits (which is equivalent to 3.5m for triangulations with a triangular boundary),
with slightly different navigation primitives than ours. For the general case of
planar graphs, Chiang at al. further extended and improved this result [5].

Although this literature is mainly focused on the asymptotic behaviors, it
has been demonstrated by Blandford et al. [3] that O(n) data structures can
be competitive in practice: using graph separators and local labellings, they
propose a compact representation for separable graphs that supports adjacency
and degree queries in constant time and saves space already for middle size
graphs. The design of compact data structures ultimately relies on partitioning
into small regions, inside which local labels can be used, and on describing effi-
ciently inter-region relations. A compact data structure is called succinct when
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its space requirement matches asymptotically the entropy bound at first order.
For the previous approach to yield a succinct data structure, the partitioning
must be done without increase of entropy, and the inter-region relations must be
described within sub-linear space. To our knowledge, this was done successfully
only for simpler structures like bit vectors, dictionaries or trees [13, 10, 11].

Overview of our Structure. As opposed to the previous approaches for tri-
angulations, we apply the partitioning process directly to the triangulation, fol-
lowing a three level scheme similar to what was done for trees in [11].

The initial triangulation of m triangles is divided in pieces (small triangu-
lations) having Θ(lg2 m) triangles, and each small triangulation is then divided
into planar sub-triangulations (tiny triangulations) of size Θ(lg m). Any such
subdivision is acceptable for our approach. We produce one in linear time using
a tree partitioning algorithm on a spanning tree of the dual graph.

Then we construct a three level structure. The first level is a graph linking the
Θ
(

m
lg2 m

)
small triangulations. This graph is classically represented with pointers

of size O(lg m), and in view of its number of nodes and edges, its storage requires
o(m) bits. The second level consists in a graph linking the tiny triangulations, or
more precisely a map, since the relative order of neighbors around a tiny trian-
gulation matters here. The nodes of this map are grouped according to the small
triangulation they belong to. This allows to use local pointers of size O(lg lg m)
to store adjacencies between tiny triangulations. The combinatorial information
of a tiny triangulation is not explicitly stored at this second level, we just store
a pointer to the third level: the catalog of all possible tiny triangulations. The
whole size of all these pointers to the third level can be proved to be 2.175 bits
per triangle and all other informations are sub-linear.

As such, the structure would not describe completely the initial triangulation:
the combinatorics of combining tiny triangulations into a big triangulation is
more involved than, e.g., the combinatorics of combining subtrees into a big tree
as in [11]. The second level must therefore be enriched with a coloring of the
vertices on the boundary of tiny triangulations according to the number of tiny
triangulations they belongs to. This coloring describes how the boundary edges
of a tiny triangulation are distributed between its neighbors (which are given by
the second level map). Like its combinatorial description, the coloring of a tiny
triangulation is encoded through a pointer to a catalog of all possible border
colorings. The subtle point is that the total size of these pointers is sub-linear,
even though the total length of the borders themselves can be linear (recall no
assumption is made on the quality of the decomposition in tiny triangulations).
The space requirement is dictated by the cost of the pointers to tiny pieces: since
these are planar triangulations with boundary the representation is succinct
for this class. On the other hand, restraining the catalog to a subclass (like
triangulations with degree at most 10) immediately cuts the pointer sizes and
reduces the cost to the associated entropy.

The construction of our representation can be performed in linear time and
a complete analysis is provided in [1].

L. Castelli Aleardi
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2 Preliminaries

Model of Computation. As in previous works about succinct representations
of binary trees, our model of computation is a RAM machine with O(1) time ac-
cess and arithmetic operation on words of size log2 m. Any element in a memory
word can be accessed in constant time, once we are given a pointer to a word and
an integer index inside. The machine word size matches the problem size, in the
sense that a word is large enough to store the input problem size. We use lg m to
denote �log2(1 + m)�. From now on, when we speak about the time complexity
of an algorithm we refer to the number of elementary operations on words of
size lg m, and about storage we refer to the size of an object in term of bits.

Notations and Vocabulary. The initial triangulation is denoted T and its
size m (from now on the size of any triangulation is its number of triangles).
When the triangulation T is not planar, we denote by g its genus. The small
triangulations, of size between 1

3 lg2 m and lg2 m, are denoted ST i. Finally the
tiny triangulations, of size between 1

12 lg m and 1
4 lg m, are denoted T T j .

All tiny triangulations shall be planar triangulations with one boundary cy-
cle. As subtriangulations of T , these tiny triangulations will share their boundary
edges. More precisely a boundary edge can be shared by two different tiny tri-
angulations or can also appear twice on the boundary of one tiny triangulation.
We call multiple vertices those vertices that are incident to at least 3 boundary
edges (generically they are shared by more than two tiny triangulations, but self-
intersections of boundaries also create multiple vertices). A side of a tiny trian-
gulation T T j is a sequence of consecutive boundary edges between two multiple
vertices: edges of a same side are shared by T T j with a same tiny triangulation
T T j′ (possibly with j′ = j). The boundary of a tiny triangulation is divided in
this way in a cyclic sequence of sides, called the coloring of the boundary. As
just seen, this coloring is induced by the distinction multiple/normal vertices.

The exhaustive set of all possible tiny triangulations with at most 1
4 lg m

triangles is stored in a structure denoted A while the set of all colorings of
a boundary with less than 1

4 lg m vertices is stored in a structure called B.
The adjacencies between the small triangulations ST i are stored in a graph
denoted F , those between tiny triangulations T T j in a graph G. The part of
G corresponding to pieces of ST i is denoted Gi. To be more precise G must be
a map: at each node the set of incident arcs (one for each side) is stored in an
array, sorted to reflect the circular arrangement of the sides of the triangulation.
For F we could content with a graph structure, but it is convenient, as discussed
in Appendix A, to construct both F and G by the same simplification process:
in particular, although F and G can have loops (corresponding to boundary self
intersections) and multiple arcs (corresponding to two subtriangulations sharing
different sides), their number of edges is linearly bounded in the genus and
number of vertices because they are constructed with all faces of degree at least 3.

For the sake of clarity, from now on we will use the word arcs and nodes to
refer to edges and vertices of the maps F , G and Gi, and keep the word edges
and vertices only for the edges and vertices of T and of the subtriangulations.
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Operations on the Triangulation. The following primitive operations are
supported by our representation in O(1) time.

• Triangle(v): returns a triangle incident to vertex v;
• Index(�, v): returns the index of vertex v in triangle �;
• Neighbor(�, v): returns the triangle adjacent to � opposite to vertex v of �;
• V ertex(�, i): returns the vertex of � of index i.

With marginal modifications, the structure could also allow for other local op-
erations, like degree queries or adjacency between vertices in constant time.

3 Exhaustive List of ll Tiny Triangulations

All possible triangulations having i triangles (i ≤ 1
4 lg m) are generated and their

explicit representations are stored in a collection A of tables Ai. A reference to
a tiny triangulation in Ai costs asymptotically 2.175i bits because there are at
most 22.175i triangulations with i triangles (for more details refer to [1]).

In the rest of this section we describe the organization of the structure (see
also Figure 1) and we analyze the storage. The construction of the structure can
be done in sub-linear time (see [1]).

Description of the Representation
• A is a table of size 1

4 lg m, in which the ith element is a pointer to Table Ai.
• Ai is a table containing all possible triangulations having exactly i triangles.
The jth element is a pointer to an explicit representation Aexplicit

i,j of the trian-
gulation Ai,j .
• Aexplicit

i,j contains at least two fields:
— Aexplicit

i,j .vertices is the table of the vertices of Ai,j . Each vertex just con-
tains the index of an incident triangle in Table Aexplicit

i,j .triangles. By convention,
the boundary vertices appear first in that table, and are stored in the counter-
clockwise order of the boundary of Ai,j . For boundary vertices, the incident
triangle stored is required to be the one incident to next edge on the boundary.

— Aexplicit
i,j .triangles is the table of the triangles of Ai,j . Each triangle con-

tains the indices of its vertices in Aexplicit
i,j .vertices and of its neighbors in

Aexplicit
i,j .triangles. Triangles on the boundary have null neighbors.

Storage Analysis. The storage of Table A, and of all the information associ-
ated with Tables Ai requires asymptotically O(m0.55) bits.
• A is a table of size 1

4 lg m of pointers of size lg m and thus costs O(lg2 m).
• Ai is a table of at most 22.175i pointers on lg m bits, thus the storage of Ai

requires less than O(22.175i lg m) bits.
• The explicit representation Aexplicit

i,j :
— Aexplicit

i,j .triangles (resp. Aexplicit
i,j .vertices) is a table of size less than

i ≤ lg m (resp. less than i + 2 ≤ lg m + 2). Each element consists in several
indices of value less than i, thus representable on lg lg m bits.

, O. Devillers, and G. SchaefferL. Castelli Aleardi
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A

Ai
all size i triangulations

explicit
representation

12
3

4

Fig. 1. Storage of all tiny triangulations

Thus the size of one Aexplicit
i,j is O(lg m lg lg m) bits and the total size of the

Aexplicit
i,j indexed in Table Ai is less than O(22.175i lg m lg lg m) bits.

Finally the storage requirement for the whole structure A is obtained by
summing over i, which yields O(22.175 1

4 lg m lg m lg lg m) = O(m0.55).

4 Boundary Descriptions

As already explained, we need to distinguish some vertices on the boundary
of each tiny triangulation. This will be done with the help of a structure es-
sentially equivalent to a bit vector supporting rank and select operations in
constant time. This problem was addressed very much in detail in the liter-
ature and compact solutions have been proposed (see [14], [13], [7] and ref.
therein). Since the bit vectors we use have size at most 1

4 lg m, we can con-
tent with a simple explicit encoding of all bit-vectors of size p and weight q in
a collection B of tables Bpq. Then Bpq contains

(
p
q

)
elements and a reference

to one entry of Bpq has size lg
(
p
q

)
≤ min(q lg p, p) bits (observe that the size

of a reference is at most 1
4 lg m, which allows to index in tables Bpq in O(1)

time). In the rest of this section we provide the description and analysis of the
structure.

Description of the Representation
• B is a bi-dimensional array of size 1

4 lg m × 1
4 lg m: each entry B(p, q) is a

pointer to Table Bpq.
• Bpq is a table containing for the kth bit-vector of size p and weight q a pointer
to a structure BRS

pqk allowing Rank/Select in constant time.
• BRS

pqk is a table of length p with two fields storing the precomputed result for
Rank1 and Select1:

— BRS
pqk(i).rank is the number of ’1’s that precede the i-th bit.

— BRS
pqk(i).select is the position of the i-th ’1’ in the vector.

Storage Analysis. The storage of Table B, and of all the information associ-
ated with Tables Bpqk requires asymptotically O(m

1
4 lg m lg lg m) bits.

• B is a table of (1
4 lg m)2 pointers of size lg m, its size is O(lg3 m) bits.



140

• Bpq is a table containing
(
p
q

)
pointers of size O(lg m).

• BRS
pqk(i).rank, BRS

pqk(i).select are all integers less than 1
4 lg m and then repre-

sentable on lg lg m bits. The size of BRS
pqk is O(lg m lg lg m).

The total amount of space required for storing all the bit-vectors of size (and
weight)less than 1

4 lg m is then
∑

p,q

(
p
q

)
O(lg m lg lg m) =

(∑
p 2q

)
O(lg m lg lg m),

which is bounded by 2
1
4 lg m+1O(lg m lg lg m) = O(m

1
4 lg m lg lg m)).

5 Map of Tiny Triangulations

The main triangulation is split into small triangulations which are themselves
split into tiny triangulations. In this section we describe the map G that stores
the incidences between tiny triangulations. The memory for this map is organized
by gathering nodes of G that correspond to tiny triangulations that are part of
the same small triangulation ST i in a sub-map Gi. The purpose of this partition
is to allow for the use of local pointers of small size for references inside a given
sub-map Gi.

The map G may have multiple arcs or loops but all its faces have degree ≥ 3.
Each arc of G between T T j and T T j′ corresponds to a side shared by T T j

and T T j′ .

Description of the Representation. The memory dedicated to G is orga-
nized in a sequence of variable size zones, each dedicated to a Gi. The memory
requirements are analyzed afterward.

In the zone for Gi, for each node Gi,j corresponding to a tiny triangulation
T T i,j , we have the following informations:

— Gt
i,j is the number of triangles in T T i,j .

— Gb
i,j is the size of the boundary of T T i,j .

— GA
i,j is the index of the explicit representation of T T i,j in Table AGt

i,j
.

— Gs
i,j is the degree of the node Gi,j (it is also the number of sides of T T i,j)

— GB
i,j is the index in Table BGb

i,j
,Gs

i,j
of a bit vector of size Gb

i,j and weight
Gs

i,j . (This bit vector encodes the way the boundary of T T i,j splits into sides:
the ith bit is 0 if the ith vertex on the boundary of T T i,j is inside a side, or 1
if this is a multiple vertex that separates two sides)

— Each of the Gs
i,j arcs of Gi that are incident to Gi,j is described by some

additional information (beware that loops appear twice). Assume that the kth
such arc connects Gi,j to a neighbor Gi′,j′ in G, then we store:

— Gaddress
i,j,k the relative address of the first bit concerning the node of the

neighbor in the memory zone associated to its small triangulation Gi′ .
— Gback

i,j,k the index k′ of the side corresponding to the current arc in the
numbering of sides at the opposite node Gi′,j′ .

— Gsmall
i,j,k the index of the small triangulation Gi′ in the table of the

neighbors of Gi in the main map F (if i′ = i then this index is set to 0).
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pointer to tiny
triangulation
of size t

pointer to rank-select
of size b and weight s

t, b, s

split small
into tiny

first vertex

0
1

0
10 1

0

1 0

1
0

0

0

Fig. 2. This Figure shows the decomposition of a small triangulation into tiny trian-
gulations and the map Gi that describes their adjacency relations

Storage Analysis. The storage of map G requires asymptotically 2.175m +
O(g lg lg m) + O

(
m lg lg m

lg m

)
bits.

For each node:

— Gt
i,j , Gb

i,j and Gs
i,j are less than 1

4 lg m: each is stored in lg lg m bits.
— GA

i,j is an index in Table AGt
i,j

stored in 2.175Gt
i,j bits (see Section 3)

— GB
i,j is an index in BGb

i,j
,Gs

i,j
stored in Gs

i,j lg Gb
i,j bits (see Section 4)

— The number of tiny triangulations neighboring Gi,j is Gs
i,j < 1

4 lg m. We
have for each:

— the pointers Gaddress
i,j,k are stored in K lg lg m bits (K chosen below).

— Gback
i,j,k is less than 1

4 lg m and thus can be stored in lg lg m bits.
— Gsmall

i,j,k requires 2 lg lg m bits of storage: indeed a small triangulation
has at most lg2 m triangles, hence at most lg2 m edges on its boundary, thus the
table of the neighbors of Gi in F has less than lg2 m entries.

Since each arc appears on at most two nodes, the cost per arc can be evaluated
independently as 2(K + 3) lg lg m bits per arc. It then remains for node Gi,j of
Gi a cost of 3 lg lg m + 2.175Gt

i,j + Gs
i,j lg Gb

i,j .
The number of nodes is at most 12 lg m and the number of arcs (including

arcs directed to other Gi′) is bounded by the number of edges of T incident to
triangles of ST i, that is by lg2 m.

The cost for Gi is thus Ci ≤ 2(K + 3) lg2 m lg lg m + 12 lg m(3 lg lg m +
2.1751

4 lg m + 1
4 lg m lg lg m). Taking K = 5, we have lg Ci < K lg lg m for all

m ≥ 2, which validates our hypothesis for the storage of Gaddress
i,j,k .

The overall cost for the complete map G is obtained by summing over i, j:∑
i

∑
j

(
3 lg lg m + 2.175Gt

i,j + Gs
i,j(lg Gb

i,j) + Gs
i,j · 8 lg lg m

)
≤ 2.175

∑
i,j

Gt
i,j + 9 lg lg m

∑
i,j

Gs
i,j + 3 lg lg m · 12

m

lg m
.
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The sum over Gt
i,j is the total number of triangles, i.e. m. The sum over Gs

i,j

is the sum of the degrees of the nodes of the map G, or equivalently, twice its
number of arcs.

Since G has only faces of degree ≥ 3, its number a of arcs linearly bounds
its number f of faces: 2a =

∑
f d(f) ≥ 3f . Euler’s formula can then be written

(with n for the number of nodes and g for the genus of G which is also the genus
of T ):

3(a + 2) = 3n + 3f + 6g ⇔ a ≤ 3n + 6(g − 1).

Finally the number n of nodes of G is bounded by 12m/ lg m, so that the cost
of representing G is

C = 2.175m + 9 lg lg m · 2
(

3 · 12
m

lg m
+ 6(g − 1)

)
+ 3 lg lg m · 12

m

lg m
,

and the lemma follows. Observe also that the bound g ≤ 1
2m + 1 yields lg C ≤

2 lg m + 8 for all m which will be used in the next section.

6 Graph of Small Triangulations

The last data structure needed is a graph F that describes the adjacency re-
lations between small triangulations. The circular arrangement of neighbors is
not used here so do not need a map structure as for G. However, F is obtained
by construction as a map and it is convenient for the storage analysis to ob-
serve that, as a map, F has a genus smaller or equal to the genus of G and
contains no faces of degree less than 3. We adopt here an explicit pointer based
representation.

Description of the Representation. We store for each node of F its degree,
a link to the corresponding part of G and the list of its neighbors. More precisely,
for a node Fi corresponding to a small triangulation ST i:

• F s
i is the degree of node Fi in the map F (it corresponds to the number of

small triangulations adjacent to ST i);
• FG

i is a pointer to the sub-map Gi of G that is associated to the small trian-
gulation ST i.
• A table of pointers to neighbors: F address

i,k is the address of the kth neighbor
of Fi in F .

Storage Analysis. The graph F uses 36(g − 1) lg m + O
(

m
lg m

)
bits.

Recall that a small triangulation contains between 1
3 lg2 m and lg2 m trian-

gles, thus map F has at most 3m/lg2 m nodes.

• F s
i is less than lg2 m, and thus representable on 2 lg lg m bits.

• the address of Gi is a pointer of size bounded by 2 lg m + 8.
• the pointers F address

i,k are stored on K ′ lg m bits each (K ′ chosen below).
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Fig. 3. Going to the neighbor

Summing on all the small triangulations we obtain that the bit size of F is
(2 lg m + 8) · 3m/ lg2 m + K ′ lg m

∑
i F s

i . The sum of the F s
i is the sum of the

degrees of nodes of F , which is also twice its number of arcs.
In analogy with what was done for the map G, the number of arcs of F can

be bounded more precisely by three times its number of nodes, which is less
than 3m/ lg2 m, plus six times the genus minus one of F , which is bounded by
the genus of T . Using the bound g < 1

2m + 1 on the genus, the value K ′ = 3 is
seen to satisfy the constraints for m ≥ 5. Finally the total bit cost for F is thus:
36(g − 1) lg m + O(m/ lg m).

7 Navigation

Triangle and Vertex Representations. In our structure, a triangle t is rep-
resented by a triple (Fi, a, w) where Fi is a node of F such that t ∈ ST i, a is the
address of Gij in the memory zone of Gi such that t ∈ T T ij and w is the index
of the triangle corresponding to t in Aexplicit

κ,λ where Aκ,λ is the triangulation to
which Gij points.

Similarly a vertex is represented by a triple (Fi, a, v). Observe that, as such,
the representation of a vertex is not unique since, as opposed to triangles, vertices
may be shared by several tiny triangulations. As sketched in Section 8, upon
adding a negligible amount of information in the map G, a unique representation
could be defined if needed (e.g. to test adjacency of vertices in constant time, or
to attach data to vertices). However this is not needed for the four operations
we have chosen to describe.

Operations on the Triangulation. Given a triangle (Fi, a, w) or a vertex
(Fi, a, v) the operations Triangle, Index and V ertex are implemented directly
by performing the operation in the explicit representation Aexplicit

κ,λ .
The difficulty is with Neighbor((Fi, a, w), (Fi, a, v)).

- Check if the corresponding neighbor w′ of w exists in the explicit represen-
tation Aκ,λ: if it does return (Fi, a, w′).

Otherwise, the neighbor must be found across the boundary of the current
tiny triangulation:
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— Find in Aexplicit
κ,λ the vertex vcw following v in clockwise order around w.

— Compute l = Rank1(vcw) + 1 in the bit vector associated to Gij : it says
that we are on the lth side of T T ij (l = 3 in Figure 3);

— Compute l′ = Select1(l) − vcw: it says that vcw is l′th vertex before the
end of the side; (l′ = 1 in Figure 3); recall that Select1(l) gives the position of
the last vertex of the current lth side.

— Let x = Gaddress
i,j,l , y = Gback

i,j,l and z = Gsmall
i,j,l .

— If z > 0 then we must change also small triangulation: let Gi′ be the
sub-map of G pointed at by the zth neighbor Fi′ of Fi in F .

Otherwise (that is, z = 0) let Gi′ be equal to Gi.
— Let Gi′,j′ be the node of G at address x in the memory zone of Gi′ and

Aexplicit
κ′,λ′ the tiny triangulation it points at (y = 5 in Figure 3, the yth side of

Gi′,j′ matches the lth side of Gi,j).
— Let v′

cw = Select1(y − 1) + l′ in the bit vector associated to Gi′,j′ : then
v′

cw in Aexplicit
κ′,λ′ matches vcw in Aexplicit

κ,λ .
— Let w′ be the triangle pointed at by v′

cw in Aexplicit
κ′,λ′ .

— Return triangle (Fi′ , x, w′).

8 Concluding Remarks

Unique representation for vertices A vertex on boundary of a tiny triangulation
has several representations (Fi, a, v). To show how to test that two such repre-
sentations correspond to the same vertex of T in constant time, let us distinguish
three types of ambiguous vertices: vertices incident to only two boundary edges,
multiple vertices incident to at most two small triangulations, and multiple ver-
tices incident to at least three small triangulations. Identity can already be tested
for the first type. For the O(n/ lg n) vertices of the second type, a lg lg n labelling
(local to each Ti) can be used to describe the multiple vertices on the boundary
of T T ij in an ordered array at each Gij , and with the boundary description this
allows to test identity. Finally upon listing in a table F vertex

i the vertices of the
third type appearing in each ST i, O(lg lg n) indices to this table can be added
in Gij to allow for the test. The extra storage is negligible at first order.

Attaching information. The proposed structure represents only the connectivity
of the triangulation. One may want to attach information to vertices or triangles,
such as vertices coordinates (or colors. . . ). This should be done by adding the
information to nodes of G. For instance one can add to Gi,j a table Gcoordinate

i,j

describing the coordinates of the vertices of T T i,j . This Table contains the
coordinates of all the internal vertices of T T i,j and a selection of its boundary
vertices, so that vertices lying on the side between two tiny triangulations are
stored only once. To retrieve vertices shared by several tiny triangulations, one
uses the above unique representation. Basic compression on these coordinates
can be obtained by giving them in a frame local to Gi,j .
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Practical implementation. The result here is mainly theoretical: if m is one bil-
lion, 1

4 lg m is only 7. However the value 1
4 is chosen to ensure that the table A

can be constructed in sub-linear time: looking at the actual number of triangu-
lations with p faces for small p, one can check that constructing the table of all
tiny triangulations up to size 13 is actually be feasible. In particular Table A
can be computed once and for all and stored. We intend to implement and test
a simplified version of this work, by gathering triangles in small groups of 3 to
5 triangles and making a map of these groups.
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Abstract. We present a space-efficient algorithm for reporting all k in-
tersections induced by a set of n line segments in the place. Our algorithm
is an in-place variant of Balaban’s algorithm and runs in O(n log2

2 n+ k)
time using O(1) extra words of memory over and above the space used
for the input to the algorithm.

1 Introduction

Researchers have studied space-efficient algorithms since the early 70’s. Exam-
ples include merging, (multiset) sorting, and partitioning problems; see [8, 9, 11].
Brönnimann et al. [5] were the first to consider space-efficient geometric algo-
rithms and showed how to compute the convex hull of a planar set of n points in
O(n log2 h) time using O(1) extra space, where h denotes the size of the output.
Recently, Brönnimann et al. [4] developed some space-efficient data structures
and used them to solve a number of geometric problems such as convex hull,
Delaunay triangulation and nearest neighbor queries. Bose et al. [3] developed
a general framework for geometric divide-and-conquer algorithmus and derived
space-efficient algorithms for the nearest neighbor, bichromatic nearest neighbor,
and orthogonal line segment intersection problems, and Chen and Chan [7] pre-
sented an algorithm for the general line segment intersection problem: to report
all k intersections induced by a set of n line segments in the plane.

The Model. The goal is to design algorithms that use very little extra space over
and above the space used for the input to the algorithm. The input is assumed
to be stored in an array A of size n, thereby allowing random access. We assume
that a constant size memory can hold a constant number of words. Each word
can hold one pointer, or an O(log2 n) bit integer, and a constant number of words
can hold one element of the input array. The extra memory used by an algorithm
is measured in terms of the number of extra words. In certain cases, the output
may be much larger than the size of the input. For example, given a set of n line
segments, the number k of intersections may be as large as Ω(n2). We consider
the output memory to be write-only space that is usable for output but cannot
be used as extra storage space by the algorithm. This model has been used
by Chen and Chan [7] for variable size output, space-efficient algorithms and
accurately models algorithms that have output streams with write-only buffer

F. Dehne, A. López-Ortiz, and J.-R. Sack (Eds.): WADS 2005, LNCS 3608, pp. 146–157, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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space. In the space-efficient model, an algorithm is said to work in-place iff it
uses O(1) extra words of memory.

Related Work. There is a large number of algorithms for the line segment in-
tersection problem that are not in-place, and we refer the reader to the recent
survey by Mount [12]. In the space-efficient model of computation, Bose et al. [3]
have presented an optimal in-place algorithm for the restricted setting when the
input consists of only horizontal and vertical segments. Their algorithm runs in
O(n log2 n + k) time and uses O(1) words of extra memory. Chen and Chan [7]
modified the well-known algorithm of Bentley and Ottmann [2] and obtained a
space-efficient algorithm that runs in O((n + k) log2

2 n) time and uses O(log2
2 n)

extra words of memory.1 We will improve these bounds to O(n log2
2 n + k) time

and O(1) extra space thus making the algorithm in-place and establishing an
optimal linear dependency on the number k of intersections reported.

2 The Algorithm

Our algorithm is an in-place version of the optimal O(n log2 n + k) algorithm
proposed by Balaban [1]. Balaban obtained this complexity by first developing
an intermediate algorithm with running time O(n log2

2 n + k) and then applying
the well-known concept of fractional cascading [6]. As fractional cascading relies
on explicitly maintained copies of certain elements, this concept can only applied
with O(n) extra space which is prohibitive for an in-place algorithm. Thus, we
build upon the (suboptimal) intermediate algorithm.

2.1 Divide-and-Conquer and the Recursion Tree

Balaban’s intermediate algorithm is a clever combination of plane-sweeping and
divide-and-conquer; the plane is subdivided into two vertical strips each con-
taining the same number of segment endpoints, and each strip is (recursively)
processed from left to right—see Figure 1. While doing so, the algorithm main-
tains the following invariants:

Invariant 1: Prior to processing a strip, all segments crossing the left strip
boundary are vertically ordered at the x-coordinate of the left strip bound-
ary.

Invariant 2: During the sweep over a strip, all intersections inside the strip are
reported.

Invariant 3: After having processed a strip, the segments crossing the right
strip boundary are rearranged such that they are vertically ordered at the
x-coordinate of the right strip boundary.

The base of recursion is the case when a set L of line segments spans a
vertical strip 〈b, e〉 := [b, e]×IR that does not contain any endpoint of a segment.

1 If the model is changed such that the input can be destroyed, the bounds can be
improved to O((n + k) log2 n) time and O(1) extra space.
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Invariant 1 implies that this set of segments is sorted according to <b, the vertical
order at x-coordinate b.

Balaban explains his algorithm based upon the
intuition that the recursive calls of a divide-and-
conquer algorithm can be modelled as a recursion
tree where each node is assigned the subproblem
to be solved in the corresponding recursive call.
The recursion starts at the root node of the re-
cursion tree T , and hence the algorithm can been
said to process the nodes (and hence the strips)
along an Euler tour of T . A closer look at the al-
gorithm will reveal that, during the execution of
the algorithm, some of the intersections detected
while processing a strip corresponding to a node
v ∈ T are found while v is being visited for the
first time whereas some of these intersections are
found while v is being visited for the last time.
This in turn implies that the algorithm follows
a divide-and-conquer strategy similar to the one

1 2

3

4 5

6

7

Fig. 1. Processing the recur-
sion tree. Numbers indicate
the order in which the strips
are finished

described in Algorithm 1:

Algorithm 1. Recursive(A, b, e): Recursive divide-and-conquer [3]
1: if e − b ≤ s where s is the size of the recursion base. then
2: Base-Code(A, b, e) {Code for solving small instances}
3: else
4: Pre-Code(A, b, e) {Setup Subproblem 1 in A[b, . . . , �e/2� − 1]}
5: Recursive(A, b, �e/2�) {First recursive call}
6: Mid-Code(A, b, e) {Setup Subproblem 2 in A[�e/2�, . . . , e − 1]}
7: Recursive(A, �e/2�, e) {Second recursive call}
8: Post-Code(A, b, e) {Merge Subproblems 1 and 2 in A[b, . . . , e − 1]}

This algorithm operates on an array A[0, . . . , n − 1] and makes calls to 4
subroutines: Base-Code is used to solve small instances, Pre-Code is executed
before any recursive calls, Mid-Code is executed after the first recursive call but
before the second, and Post-Code is executed after the second recursive call.
In our previous work, we have shown that this general template can be realized
in-place [3]. In the following subsections, we will demonstrate how both the
subroutines and the partitioning of the segments to be processed can be realized
using only O(1) extra space.

2.2 The Base of Recursion

As mentioned above, the base of recursion is the case when a set L of line
segments spans a vertical strip 〈b, e〉 := [b, e] × IR that does not contain any
endpoint of a segment. By Invariant 1, the set L of segments is sorted according
to <b, the vertical order at x-coordinate b.
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Algorithm 2. The algorithm Splitb,e(L,Q,L′) [1]
Require: L = (s1, . . . , sm) is ordered by <b.
Ensure: L′ and Q are ordered by <b; Q is complete relative to 〈b, e〉.
1: Q := ∅; L′ := ∅;
2: for j = 1 to m do
3: if sj spans 〈b, e〉 and does not intersect the last segment of Q within 〈b, e〉 then
4: Q ← sj .
5: else
6: L′ ← sj .

Algorithm 2 partitions L into two sets Q and L′ =
L \ Q such that both sets are sorted according to <b,
that there are no intersections induced by the segments
in Q (Q is called a staircase), and that Q is maximal:
that is, complete relative to 〈b, e〉.
The correctness of the algorithms depends on the invari-
ant that both the staircase Q and the remaining subset
L′ remain ordered by <b. This condition cannot be en-
forced with a linear-time in-place algorithm as the only
known such algorithm for stable partitioning [11] is a
variant of {0, 1}-sorting. This implies that the algorithm
has to be able to decide for any given element whether
it should belong to Q or L′—independent of whether
the algorithm has seen any other element before and
independent of the processing order of the elements. As
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Fig. 2. Base of recur-
sion. Fat lines indicate
a maximal staircase

constructing a staircase has to be done incrementally, using this non-incremental
stable in-place partitioning is not feasible.

Let us for the moment, however, assume that such an in-place partitioning
algorithm exists, and let us see how it can be used as a subroutine. Algorithm 3
recursively uses Split to partition a set L of segments spanning 〈b, e〉 and sorted
by <b such that the set Intb,e(L) of intersections induced by L and falling into
the strip 〈b, e〉 can be found easily using a synchronized scan over the staircase
Q and the set L′, both of which are ordered by <b. As a side effect, Algorithm 3
reorders the segments in L such that they are sorted according to <e. This
implies that, in the process of sweeping the plane, L can be used as the input
for processing an adjacent strip 〈b′, e′〉, i.e. a strip 〈b′, e′〉 for which b′ = e.

The running time of Algorithm 3 is linear in the number of segments in
L and the number of intersections reported. To see this, note that Steps 1,
3, and 7 run in time linear in |L| and that Step 5 runs in time linear in |L|
plus the number of intersections reported. For the recursive calls, observe that
a segment is not assigned to a staircase (during the executing of Algorithm 2)
hence being processed in a recursive call iff there exists at least one intersection
with a staircase. The effects of the recursive calls to Split are reverted by the
repeated calls to Merge (Line 7 of Algorithm 3). This operation is a linear-time
operation as both Q and R′ are ordered by <e, and using the algorithm by
Geffert et al. [9], it can also be performed in-place.
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Algorithm 3. The algorithm SearchInStripb,e(L,R) [1]
Require: L = (s1, . . . , sk) is ordered by <b; each si spans 〈b, e〉.
Ensure: R = (sπ(1), . . . , sπ(k)) is ordered by <e.
1: Splitb,e(L,Q,L′). {Partition L into (a staircase) Q and L′ = L \ Q.}
2: if L′ = ∅ then
3: R := Q. {Base of recursion: No intersections within L; R is ordered by <b.}
4: else
5: Find all intersections of Q and L′ inside 〈b, e〉 using a synchronized scan.
6: SearchInStripb,e(L′,R′). {Recursively find intersections within L′.}
7: R := Mergee(Q,R′). {Both Q and R′ are ordered by <e.}

We have noted [3] that, due to the use of a recursion stack, algorithms that
use recursion generally are not in-place. However, if we assume the existence of
an in-place partitioning algorithm InPlaceSplit(A, b, e, �b, �e) that partitions
L := A[�b, . . . , �e − 1] into L′ := A[�b, . . . , �c − 1] and Q := A[�c, . . . , �e − 1]
and returns the split index �c, Algorithm 3, can be made in-place using this
subroutine inside a simple repeat-until-loop (see Algorithm 4):

Algorithm 4. Algorithm InPlaceSearchInStrip(A, b, e, �b, �e)
Require: A[�b, . . . , �e − 1] is ordered by <b; each si spans 〈b, e〉.
Ensure: A[�b, . . . , �e − 1] is ordered by <e.
1: Let �c := �e.
2: repeat
3: Let � := �c.
4: �c := InPlaceSplit(A, b, e, �b, �) {L′ = A[�b, . . . , �c − 1];Q = A[�c, . . . , � − 1]}
5: if �c > �b then
6: Find all intersections of Q and L′ inside 〈b, e〉 using a synchronized scan.
7: until �c = �b

8: Repeatedly identify and merge staircases into R = A[�b, . . . , �e − 1].

Because Algorithm InPlaceSplit partitions the set L (that is the subarray
A[�b, . . . , �e−1]) such that the elements of the non-staircase set L′ always appear
in the front of the subarray, Algorithm 4 only needs to maintain the following
pointers: one pointer to the beginning and the end of the original set L, say �b

and �e, and one pointer � to the end of the current set L. The final merging
step is implemented as follows: starting from � and advancing towards at most
�e, we find the index �′ denoting the end of the next staircase to be merged
by exploiting the fact that each staircase is sorted according to <e. We then
merge the staircases A[�b, . . . , � − 1] and A[�, . . . , �′ − 1] according to <e using
an in-place merging algorithm [9], update � with the value of �′, and repeat the
merging process as long as � < �e. By the argument used above, the overall
runtime for merging all staircases is linear in |L| + |Intb,e(L)|.

Let us now come back to the problem of finding a stable in-place partitioning
of L = L′ + Q. In order to still obtain both sets in sorted order, we proceed as
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follows: we implement InPlaceSplit such as to use the approach of Algorithm
SortedSubsetSelection [3] to stably move the non-stairs, i.e. the set L′ to
the front of L. We can do so incrementally, as we only need to keep track of the
(position of the) topmost stair in order to decide whether the next segment in
question can be added to the staircase or not. We then sort the segments in Q
using an in-place sorting algorithm, e.g. heapsort [8].

Lemma 1. Algorithm InPlaceSplit, when invoked at a node v of the recur-
sion tree T , runs in time O(|L|+|Intb,e(L)|+Hv) where

∑
v∈T Hv ∈ O(n log2 n).

Proof. Selecting the non-stairs can be done in-place in linear time using Sor-
tedSubsetSelection, and each segment not added to a staircase and thus
considered in another pass can be charged to (at least) one intersection with the
topmost stair. Each segment appears in a staircase exactly once, so the overall
running time of sorting all staircases is in O(n log2 n).

2.3 The “Divide” and “Conquer” Phases

The main concept of Balaban’s algorithm is to report a pair (s, t) of intersecting
segment at the highest node v in the recursion tree where one of the segments,
say s, is part of the staircase Qv spanning the strip 〈b, e〉 assigned to v and where
the intersection point lies within 〈b, e〉. The other segment t cannot be part of
the staircase at v because segments in the same staircase do not intersect. There
are three possible situations: (1) t crosses the left boundary of 〈b, e〉, (2) t lies
completely within 〈b, e〉, or (3) t crosses the right boundary of 〈b, e〉.2

Invariant 1 implies that, upon entering a node v, all segments intersecting
the left boundary of the strip 〈b, e〉 are available in the form of an ordered
set Lv that is sorted according to <b. Similarly, Invariant 3 requires the exis-
tence of an ordered set Rv (which, in the parameter list of Balaban’s algorithm
(Algorithm 5) is a reference parameter to be modified by the algorithm) that
contains the segments crossing the right strip boundary—again in sorted order.
The unordered set Iv contains all segments that lie completely within the strip
〈b, e〉. Handling Situations (1)–(3) then consists of computing Intb,e(Qv,Lv),
Intb,e(Qv, Iv), and Intb,e(Qv,Rv), the sets of intersections inside 〈b, e〉 and in-
duced by segments in the staircase Qv and in the sets Lv, Iv, and Rv, respec-
tively. The intersections inside 〈b, e〉 that do not involve any s ∈ Qv are found
recursively.

To obtain a logarithmic depth of recursion, Balaban subdivides the set of
segments that are not part of the staircase at the current node in such a way
that the same number of endpoints is processed in each of the recursive call.
Under the simplifying assumption that the x-coordinates of the segments are the

2 There might be segments appearing both in Situation (1) and Situation (3); we
can detect (and skip) those segments when handling Situation (3) because these
segments are exactly the segments crossing both strip boundaries.
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integers [1 . . . 2n],3 this corresponds to subdividing with respect to the median
c := �(b + e)/2�, and the Balaban’s algorithm can be stated as follows (LSON(v)
and RSON(v) denote the left and right child of v, respectively):

Algorithm 5. The algorithm TreeSearch(Lv, Iv, b, e,Rv) [1]
1: if e − b = 1 then
2: SearchInStripb,e(Lv,Rv);
3: else
4: Splitb,e(Lv,Qv,LLSON(v)); {Compute staircase.}
5: Compute Intb,e(Qv,LLSON(v)). {Handle Situation (1).}
6: c := �(b + e)/2�;
7: Construct ILSON(v) and IRSON(v) from Iv;
8: TreeSearch(LLSON(v), ILSON(v), b, c,RLSON(v));
9: Construct LRSON(v) from RLSON(v) by insertion/deletion;

10: TreeSearch(LRSON(v), IRSON(v), c, e,RRSON(v));
11: Compute Intb,e(Qv,RRSON(v)). {Handle Situation (3).}
12: Compute Loc(Qv, {s}) for each s ∈ Iv.
13: Compute Int(Qv, Iv) based upon Loc(Qv, Iv). {Handle Situation (2).}
14: Rv := Mergee(Qv,RRSON(v)); {Establish Invariant (3).}

There are several issues that complicate making this algorithm in-place: First
of all, like in any recursive algorithm that has to be transformed into an in-place
algorithm, one has to keep track of the subarrays processed in each recursive
call. It is not feasible to keep the start and end indices on a stack as this would
result in using Ω(log2 n) extra words of memory. The second issue to be resolved
is how to partition the data prior to “going into recursion”. Whereas algorithms
working on point data can easily subdivide the data based upon, say, the x-
coordinate by first sorting and then halving the point set, subdividing a set of
segments such that the same number of endpoints appear on each side of the
dividing line, seems impossible to do without splitting or copying the segments.
Both splitting and copying, however, is infeasible in an in-place setting.

To guarantee both the correctness of the algorithm and the property that
is uses only O(1) extra space, we will require the following invariants to be
established at each invocation InPlaceTreeSearch(A, b, e, �b, �e):

Invariant A: All segments that cross the left boundary of 〈b, e〉 are stored in
sorted <b order at the front of A[�b, . . . , �e − 1] (see Invariant (1)).

Invariant B: A[�b, . . . , �e − 1] contains all segments in A that have at least one
endpoint inside 〈b, e〉.

Additionally, we will require the following invariants to be established when-
ever we return from a call to InPlaceTreeSearch(A, b, e, �b, �e):

3 This assumption is impossible to make in an in-place setting as one would need an
extra lookup-table for translating the integer i to the x-coordinate with rank i.
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Invariant C: The strip boundaries 〈b′, e′〉 of the “parent strip” are known.
Invariant D: There exists an integer i ∈ {0, . . . �b − �e} such that all segments

of A[�b, �e − 1] that do not cross the right strip boundary are stored in
A[�b, . . . , �b+i−1] and that all other segments are stored in A[�b+i, . . . , �e−1]
sorted according to <e (see Invariant (3)).

Establishing Invariant (C) in-place is one of the most crucial steps of the algo-
rithm. We will establish this invariant as follows: Prior to “going into recursion”,
we select the segments qb and qe whose endpoints define the strip boundary and
move it (using a linear number of swaps) to the front of the staircase Qv. When
moving these segments, however, it is important to keep in mind that they might
be part of the staircase (Fig. 3 (a)), part of Lv and/or Rv (Fig. 3 (b)), identical
(Fig. 3 (c)), or not intersecting the interior of 〈b, e〉 at all (Fig. 3 (d)), and that
qb and qe need to be handled accordingly when looking for intersections.

(a) (b) (c) (d)

Fig. 3. Some of the configurations of segments whose endpoints define 〈b, e〉

Any combination of these configurations is possible, but as the overall number
of combinations is constant, a constant number of bits is sufficient to encode the
specific combination. Thus a “configuration” stack C of O(log2 n) bits, i.e. using
O(1) extra space, can be used to store the information necessary to recover the
subset(s) into which qb and qe have to be reinserted when returning from the
“recursive” calls.

We first use Algorithm InPlaceSplit to compute the staircase Qv and in-
terchange the subarrays containing L′ and Qv

4 such that the subarray looks as
follows:

. . . qb qe Qv L′ Iv ∪Rv . . .
�b �e

We also maintain a “staircase” stack S of depth O(log2 n) to indicate whether
Qv contains zero, one, or more segments in addition to (qb ∪ qe) ∩ Qv. This
information can be encoded using O(1) bits per entry, i.e. using O(1) extra space
in total. We then establish Invariant (A) by shifting Qv in front of qb, and prior
to going into the “left recursion” we also prepare for establishing Invariant (C):

4 Interchanging two blocks A[x0, . . . , x1 − 1] and A[x1, . . . , x2 − 1] can be done in-place
and in linear time by first using swaps to revert the order of the elements in each
of the blocks separately and by then reverting the order of A[x0, . . . , x2 − 1] again
using swaps. Katajainen and Pasanen [11] attribute this to “computer folklore”.
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We determine the segment qc whose endpoint induces the right boundary of
the left subslab (see Section 2.4 for the details of how to do this in-place) and
shift the segments qe, qb, and qc in front of LLSON(v) := L′. We then establish
Invariant (B) by moving all elements in ILSON(v) ∪ RLSON(v) to immediately
behind LLSON(v) using simple swaps (we use Nv to denote the set of segments
not moved). We also update �b to point to the first element in LLSON(v) and
update �e to point to the first segment not in ILSON(v) ∪RLSON(v):

. . . Qv qe qb qc LLSON(v) ILSON(v) ∪RLSON(v) Nv . . .
�b �e

By Invariant (D), we know that upon returning from the “left recursive”
call, the array has the following form (OLSON(v) denotes the segments whose
right endpoint lies inside the left subslab):

. . . Qv qe qb qc OLSON(v) RLSON(v) Nv . . .
�b �e �

We can recover qe, hence establishing Invariant (C), by simply looking at the
at most three entries in front of A[�b] (depending on the configuration encoded
by the topmost element of the configuration stack C). As doing this we have also
recovered the old value of e, the index � which corresponds to the old value of
�e prior to going into the “left recursion” can be recovered by scanning forward
from �e until we find the first segment not intersecting 〈b, e〉 (or reach the end of
the array). We interchange RLSON(v) ∪Nv and OLSON(v). Note that RLSON(v) =
LRSON(v) in our setting as these sets only differ by the segment qc which is stored
separately. Also, relative to the subslab at RSON(v), Nv = IRSON(v) ∪ RRSON(v).
We update �e to point to the first element in Ov, and shift qe, qb, and qc.

. . . Qv qb qc qe LRSON(v) IRSON(v) ∪RRSON(v) OLSON(v) . . .
�b �e �

By Invariant (D), we know that upon returning from the “right recursive”
call, the array has the following form:

. . . Qv qb qc qe ORSON(v) RRSON(v) OLSON(v) . . .
�b �e �

Again, we recover the values of b and e, and find the index � by scanning
forward from �e. Depending of whether qc crosses the right boundary of 〈b, e〉
or not, we insert qc into RRSON(v) or into ORSON(v). Scanning backward from �b

and using the information on top of the staircase stack S as well as the fact that
the segments in Qv span 〈b, e〉, are non-intersecting, and are ordered by <b, we
determine the start of the subarray in which Qv is stored. We then interchange
the blocks such that OLSON(v) and ORSON(v) as well as Qv and RRSON(v) appear
next to each other. Finally, we use an in-place merging algorithm [9] to construct
Rv(= RRSON(v))∪Qv, thus establishing Invariant (D). Note that all interchang-
ing, shifting, and scanning done so far takes time linear in |Lv ∪ Iv ∪Rv|.
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. . . qb qe Ov Qv ∪Rv . . .
�b �e

As all invariants can be established for the base case of the recursion, we
conclude that the invariants can be established for each “recursive call”, and
thus we have established the correctness of the following algorithm:

Algorithm 6. Algorithm InPlaceTreeSearch(A, b, e, �b, �e)
1: if 〈b, e〉 does not contain any endpoint of a segment s ∈ A[�b, . . . , �e − 1] then
2: InPlaceSearchInStrip(A, b, e, �b, �e);
3: else
4: Let �l be the index of the first segment in A[�b, . . . , �e − 1] that does not cross

the left strip boundary. {Lv = A[�b, . . . , �l − 1]}
5: �c := InPlaceSplit(A, b, e, �b, �l). {L′ = A[�b, . . . , �c − 1];Qv = A[�c, . . . , �l − 1]}
6: Stably exchange the subarrays A[�b, . . . , �c − 1] and A[�c, . . . , �l − 1].
7: Compute Intb,e(Qv,L′). {Handle Situation (1).}
8: for each segment s ∈ A[�l, . . . , �e − 1] than lies inside 〈b, e〉 do
9: Using binary search, locate the lower endpoint of s w.r.t. the stairs of Qv and

compute Intb,e(Qv, {s}). {Handle Situation (2).}
10: Find the index of the median of the endpoints inside the current strip. Let c be

the x-coordinate of this endpoint.
11: Establish Invariants (A) and (B), update �b and �e.
12: InPlaceTreeSearch(A, b, c, �b, �e);
13: Recover the old values of e and �e. Establish Invariants (A) and (B), update �b

and �e.
14: InPlaceTreeSearch(A, c, e, �b, �e);
15: Recover the old values of b and �e.
16: Compute Intb,e(Qv,R′). {Handle Situation (3); check for duplicates.}
17: Rv := Mergee(Qv,RRSON(v)); Establish Invariant (D).

Due to space constraints, the above description does not explicitly contains
code for simulating the two “recursive” calls to InPlaceTreeSearch, since we
have shown previously [3] that it is possible to handle these calls using a stack
of O(log2 n) bits, that is using O(1) extra space. To do so we need to be able
to retrieve the subset to work with upon returning from a recursive call using
only O(1) extra space, and this is guaranteed by Invariant (C). We also did not
include the code for handling the segments qb, qe, and qc. We need, however, to
fill in the details of how to select the endpoint with median x-coordinate.

2.4 Selecting the Median In-Place

When selecting the median of the endpoints in line 10 of Algorithm 6, we have
to do so while maintaining the set L′ in sorted order.

To make sure that the overall cost of median-finding does not depend on
the number k of intersections reported by the algorithm, we make sure to only
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process segments not spanning 〈b, e〉. Doing so, we can guarantee that each
segment participates in O(log2 n) invocations of median-finding, namely in O(1)
such invocations on each level of the recursion tree. To make the algorithm
reflect this, we use SortedSubsetSelection to stably select the segments of
L′ spanning 〈b, e〉. The segments that have at least one endpoint in 〈b, e〉 are
then stored consecutively in A[�b + i, . . . , �e − 1] (for some i ∈ {0, . . . , �e − �b}).

Lemma 2. Given m segments and a strip 〈b, e〉, the k-th endpoint in sorted
order inside 〈b, e〉 can be found in-place in O(m log2 m) time.

Proof. We simulate a plane-sweep over the set of segments and maintain the
current x-coordinate ξ as well as the number o of endpoints inside 〈b, e〉 that
have already be swept over. The segments are maintained in-place in a heap-
based priority queue H, the priority of s being the smallest x-coordinate of s’s
endpoints that still is at least ξ. When deleting the minimal element s from H we
increment o iff ξ ∈ [b, e] and re-insert s iff the x-coordinate of its right endpoint
is larger than ξ. If o = k, we report s and ξ, else we continue. As there are at
most 2m priority queue operations, the algorithm runs in time O(m log2 m).

After we have found the median using the algorithm implied by Lemma 2, we
need to restore L′ in sorted <b order. To this end, we then select the elements
from A[�b + i, . . . , �e − 1] that cross the left strip boundary, sort them in-place
by <b, and then merge them in-place with the segments in A[�b, . . . , �b + i − 1].

Lemma 3. The global cost incurred by median-finding is O(n log2
2 n).

Proof. The median-finding algorithm considers only those segments that have
at least one endpoint in the current strip. Hence, on each level of recursion, each
segment is considered at most twice, so we can charge each segment s O(log2 n)
cost per level for median-finding (see Lemma 2). We charge s an additional
O(log2 n) cost per level for the at most one sorting step it participates in (when
restoring L′). As all other operations require only linear time per level, the global
cost incurred by median-finding is O(n log2

2 n) as claimed.

2.5 Analysis of the Running Time

For the main part of the analysis, Balaban’s results carry over. Using the notation
Sv = Lv ∪ Iv ∪Rv, the following theorem holds for the recursion tree T :

Theorem 1 (Theorem 2 in [1]).
∑

v∈T |Sv| ≤ n
4 log2 n + 5� + 2k.

To make the algorithm in-place, we had to resort to some algorithmic tech-
niques not captured in Balaban’s analysis. The global extra cost for making the
algorithm Split in-place is O(n log2 n) (see Lemma 1). From Theorem 1 follows
that the overall extra cost for establishing the invariants is O(n log2 n + k) as
all operations performed at a node v ∈ T take time linear in |Sv|. Finally, we
had to realize the median-finding in-place and restoring the original order of the
elements. By Lemma 3, the overall cost for this is in O(n log2

2 n). The last com-
ponent of the analysis is the for-loop in Line 8 of Algorithm 4: Each iteration
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of this loop takes O(log2 |Qv|) ⊆ O(log2 n) time, and each of the n segments
can be part of Iw for O(log2 n) nodes w ∈ T . Combining this with Balaban’s
original analysis, we obtain the main result of this paper:

Theorem 2. All k intersections induced by a set of n segments in the plane can
be computed in O(n log2

2 n + k) time using O(1) extra words of memory.

We conclude with the obvious open problem: Is it possible to compute all k
intersections induced by a set of n segments in the plane in-place and in optimal
time O(n log2 n + k)?
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Abstract. Settling a ten years open question, we show that the NP-
complete Feedback Vertex Set problem is deterministically solvable
in O(ck ·m) time, where m denotes the number of graph edges, k denotes
the size of the feedback vertex set searched for, and c is a constant.
As a second result, we present a fixed-parameter algorithm for the NP-
complete Edge Bipartization problem with runtime O(2k · m2).

1 Introduction

In feedback set problems the task is, given a graph G and a collection C of cycles
in G, to find a minimum size set of vertices or edges that meets all cycles in C.
We refer to Festa, Pardalos, and Resende [9] for a 1999 survey. In this work we
restrict our attention to undirected and unweighted graphs, giving significantly
improved exact algorithms for two NP-complete feedback set problems.

– Feedback Vertex Set (FVS): Here, the task is to find a minimum cardi-
nality set of vertices that meets all cycles in the graph.

– Edge Bipartization: Here, the task is to find a minimum cardinality set
of edges that meets all odd-length cycles in the graph.1

Concerning the FVS problem, it is known that an optimal solution can be
approximated to a factor of 2 in polynomial time [1]. FVS is MaxSNP-hard [15]
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(hence, there is no hope for polynomial-time approximation schemes). A ques-
tion of similar importance as approximability is to ask how fast one can find an
optimal feedback vertex set. There is a very simple randomized algorithm due
to Becker et al. [3] which solves the FVS problem in O(c · 4k · kn) time by find-
ing a feedback vertex set of size k with probability at least 1 − (1 − 4−k)c4k

for
an arbitrary constant c. Note that this means that by choosing an appropriate
value for c, one can achieve any constant error probability independent of k. As
to deterministic algorithms, Bodlaender [4] and Downey and Fellows [6] were
the first to show that the problem is fixed-parameter tractable. An exact algo-
rithm with runtime O((2k + 1)k · n2) was described by Downey and Fellows [7].
In 2002, Raman, Saurabh, and Subramanian [20] made a significant step forward
by proving the upper bound O(max{12k, (4 log k)k} · nω) (nω denotes the time
to multiply two n × n matrices). Recently, this bound was slightly improved
to O((2 log k + 2 log log k + 18)k · n2) by Kanj, Pelsmajer, and Schaefer [14] us-
ing results from extremal graph theory. Lastly, Raman et al. [21] published an
algorithm running in O((12 log k/log log k + 6)k · nω) time.

The central question left open for more than ten years is whether there is
an O(ck · nO(1)) time algorithm for FVS for some constant c. We settle this open
problem by giving an O(ck ·mn) time algorithm. Independently, this result was
also shown by Dehne et al. [5], proving the constant c ≈ 10.6. Surprisingly,
although both studies were performed completely independent of each other,
the developed algorithms turn out to be quite similar. The advantage of the
result by Dehne et al. is a better upper bound on the constant c, whereas our
advantage seems to be a more compact, easier accessible presentation of the
algorithm. Since it seems hard to bring the constant c close to the constant 4
achieved by Becker et al., the described deterministic algorithms for FVS are of
more theoretical interest.

Compared with Dehne et al. our algorithm also shows that FVS can be solved
deterministically in linear time for constant k, a property which also holds for
the randomized algorithm. Hence, with our corresponding O(ck ·m) algorithm we
can conclude that FVS is “linear-time fixed-parameter tractable.” Very recently,
Fiorini et al. [10] showed, by significant technical expenditure, the analogous
result concerning the Graph Bipartization problem (which is basically the
same problem as Edge Bipartization, only deleting vertices instead of edges)
restricted to planar graphs.

We now turn our attention to the Edge Bipartization problem. This prob-
lem is known to be MaxSNP-hard [18] and can be approximated to a factor
of O(log n) in polynomial time [11]. It has applications in genome sequence as-
sembly [19] and VLSI chip design [13]. In a recent breakthrough paper, Reed,
Smith, and Vetta [22] proved that the Graph Bipartization problem is solv-
able in O(4k · kmn) time, where k denotes the number of vertices to be deleted
for making the graph bipartite. (Actually, it is straightforward to observe that
the exponential factor 4k can be lowered to 3k by a more careful analysis of the
algorithm [12].) Since there is a “parameter-preserving” reduction from Edge
Bipartization to Graph Bipartization [23], one can use the algorithm by
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Reed et al. to directly obtain a runtime of O(3k · k3m2n) for Edge Bipartiza-
tion, k denoting the size of the set of edges to be deleted. In this work our main
concern is to shrink the combinatorial explosion and the polynomial complex-
ity related with the fixed-parameter tractability of Edge Bipartization. We
achieve an algorithm running in O(2k · m2) time. This shows that we can save
a cubic-time factor k3 as well as a linear-time factor n, and that we can shrink
the combinatorial explosion from 3k to 2k.

2 Preliminaries and Previous Work

This work considers undirected graphs G = (V,E) with n := |V | and m := |E|.
Given a set E′ ⊆ E of edges, V (E′) denotes the set

⋃
{u,v}∈E′{u, v} of endpoints.

We use G[X] to denote the subgraph of G induced by the vertices X ⊆ V . For a set
of edges E′ ⊆ E, wewrite G\E′ for the graph (V,E\E′). Foru ∈ V , we use N(u) to
denote the neighbor set {v ∈ V | {u, v} ∈ E}. With a side of a bipartite graph G,
we mean one of the two classes of an arbitrary but fixed two-coloring of G.

The two problems we study are formally defined as follows:

Feedback Vertex Set (FVS)
Given an undirected graph G = (V,E) and a nonnegative integer k, find
a subset V ′ ⊆ V of vertices with |V ′| ≤ k such that each cycle in G
contains at least one vertex from V ′. (The removal of all vertices in V ′

from G therefore results in a forest.)

Edge Bipartization
Given an undirected graph G = (V,E) and a nonnegative integer k, find
a subset E′ ⊆ E of edges with |E′| ≤ k such that each odd-length cycle
in G contains at least one edge from E′. (The removal of all edges in E′

from G therefore results in a bipartite graph.)

We investigate FVS and Edge Bipartization in the context of parame-
terized complexity [7, 17] (see [8, 16] for surveys). A parameterized problem is
fixed-parameter tractable if it can be solved in f(k)·nO(1) time, where f is a com-
putable function solely depending on the parameter k, not on the input size n.

To the best of our knowledge, Reed et al. [22] were the first to make the
following simple observation: To show that a minimization problem is fixed-
parameter tractable with respect to the size of the solution k, it suffices to give
a fixed-parameter algorithm which, given a size-(k + 1) solution, proves that
there is no size-k solution or constructs one. Starting with a trivial instance
and inductively applying this compression step a linear number of rounds to
larger instances, one obtains the fixed-parameter tractability of the problem.
This method is called iterative compression. The main challenge of applying it
lies in showing that there is a “fixed-parameter compression algorithm.” It is
this hard part where Reed et al. achieved a breakthrough concerning Graph
Bipartization. The compression step, however, is highly problem-specific and
no universal standard techniques are known.
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3 Algorithm for Feedback Vertex Set

In this section we show that Feedback Vertex Set can be solved in O(ck ·m)
time for a constant c by presenting an algorithm based on iterative compression.
The following lemma provides the compression step.

Lemma 1. Given a graph G and a size-(k+1) feedback vertex set (fvs) X for G,
we can decide in O(ck ·m) time for some constant c whether there exists a size-k
fvs X ′ for G and if so provide one.

Proof. Consider the smaller fvs X ′ as a modification of the larger fvs X. The
smaller fvs retains some vertices Y ⊆ X while the other vertices S := X \ Y
are replaced with |S| − 1 new vertices from V \ X. The idea is to try by brute
force all 2|X| partitions of X into such sets Y and S. In each case, we then
have significant information about a possible smaller fvs X ′—it contains Y , but
not S—and it turns out that there is only a “small” set V ′ of candidate vertices
to draw from in order to complete Y to X ′. More precisely, we later show in
Lemma 4 that the size of V ′ is bounded by 14 · |S| and that, given S, we can
compute V ′ in O(m) time. Since |S| ≤ k + 1, |V ′| thus only depends on the
problem parameter k and not on the input size. We again use brute force and
consider each of the at most

(14·|S|
|S|−1

)
possible choices of vertices from V ′ that

can be added to Y to form X ′. The test whether a choice of vertices from V ′

together with Y forms an fvs can be easily done in O(m) time. We can now
bound the overall runtime T , where the index i corresponds to a partition of X
into Y and S with |Y | = i and |S| = |X| − i:

T = O

(
k∑

i=0

(
|X|
i

)
·
(

O(m) +
(

14 · (|X| − i)
|X| − i − 1

)
· O(m)

))
.

With Stirling’s inequality, we arrive at the lemma’s claim with c ≈ 37.7.2 ��

Theorem 2. Feedback Vertex Set can be solved in O(ck · mn) time for a
constant c.

Proof. Given as input a graph G with vertex set {v1, . . . , vn}, we can apply
iterative compression to solve Feedback Vertex Set for G by iteratively
considering the subgraphs Gi := G[{v1, . . . , vi}]. For i = 1, the optimal fvs is
empty. For i > 1, assume that an optimal fvs Xi for Gi is known. Obviously,
Xi ∪ {vi+1} is an fvs for Gi+1. Using Lemma 1, we can in O(ck · m) time either
determine that Xi ∪ {vi+1} is an optimal fvs for Gi+1, or, if not, compute an
optimal fvs for Gi+1. For i = n, we thus have computed an optimal fvs for G in
O(ck · mn) time. ��

2 The value of c can be significantly improved by a more careful analysis in Lemma 4.
Indeed, Dehne et al. [5] achieve c ≈ 10.6.
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Theorem 2 shows that FVS is fixed-parameter tractable with the combina-
torial explosion bounded from above by ck for some constant c. Next, we show
that FVS is also linear-time fixed-parameter tractable (with the combinatorial
explosion bounded by ck for a larger constant c). The result of Fiorini et al. [10],
accepting a much worse combinatorial explosion compared to [22], is to show the
analogous result for Graph Bipartization restricted to planar graphs.

Theorem 3. Feedback Vertex Set can be solved in O(ck · m) time for a
constant c.

Proof. We first calculate in O(m) time a factor-4 approximation as described by
Bar-Yehuda et al. [2]. This gives us the precondition for Lemma 1 with |X| = 4k
instead of |X| = k + 1. Now, we can employ the same techniques as in the proof
of Lemma 1 to obtain the desired runtime: we examine 24k partitions S ∪̇ Y
of X, and—by applying the arguments from Lemma 4—for each there is some
constant c′ such that the number of candidate vertices is bounded from above
by c′ · |S|. In summary, there is some constant c such that the runtime of the
compression step is bounded from above by O(ck ·m). Since one of the 24k par-
titions must lead to the optimal solution of size k, we need only one compression
step to obtain an optimal solution, which proves the claimed runtime bound. ��

Note that any improvement of the approximation factor of a linear-time ap-
proximation algorithm for Feedback Vertex Set below 4 will immediately
improve the runtime of the exact algorithm described in Theorem 3.

It remains to show the size bound of the “candidate vertices set” V ′ for fixed
partition Y and S of a size-(k+1) fvs X. To this end, we make use of two simple
data reduction rules.

Lemma 4. Given a graph G = (V,E), a size-(k+1) fvs X for G, and a partition
of X into two sets Y and S. Let X ′ denote a size-k fvs for G with X ′ ∩ X = Y
and X ′ ∩ S = ∅. In O(m) time, we can either decide that no such X ′ exists or
compute a subset V ′ of V \ X with |V ′| < 14 · |S| such that there exists an X ′

as desired consisting of |S| − 1 vertices from V ′ and all vertices from Y .

Proof. The idea of the proof is to use a well-known data reduction technique
for FVS to get rid of degree-1 and degree-2 vertices and to show that if the
resulting instance is too large as compared to the part S (whose vertices we are
not allowed to add to X ′), then there exists no set X ′ as desired.

First, check that S does not induce a cycle; otherwise, no X ′ with X ′ ∩ S = ∅
can be an fvs for G. Then, remove in G all vertices from Y as they are determined
to be in X ′. Finally, apply a standard data reduction to the vertices in V \X (the
vertices in S remain unmodified): remove degree-1 vertices and successively by-
pass any degree-2 vertex by a new edge between its neighbors (thereby removing
the bypassed degree-2 vertex). There are two exceptions to note: One exception
is that we do not bypass a degree-2 vertex which has two neighbors in S. The
other exception is the way to deal with parallel edges. If we create two parallel
edges between two vertices during the data reduction process—these two edges
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form a length-two cycle—, then exactly one of the two endpoints of these edges
has to be in S since S is an fvs of G[V \Y ] and G[S] contains no cycle. Thus, we
have to delete the other endpoint and add it to X ′ since we are not allowed to
add vertices from S to X ′. Given an appropriate graph data structure, all of the
above steps can be accomplished in O(m) time. Proofs for the correctness and
the time bound of the data reduction technique are basically straightforward
and omitted here.

In the following we use G′ = (V ′∪S,E′) with V ′ ⊆ V \X to denote the graph
resulting after exhaustive application of the data reduction described above; note
that none of the vertices in S have been removed during the data reduction
process. In order to prove that |V ′| < 14 · |S|, we partition V ′ into three subsets,
each of which will have a provable size bound linearly depending on |S| (the
partition is illustrated in Fig. 1):

A := {v ∈ V ′ | |N(v) ∩ S| ≥ 2},
B := {v ∈ V ′ \ A | |N(v) ∩ V ′| ≥ 3},
C := V ′ \ (A ∪ B).

A
B
C

S

Fig. 1. Partition of the vertices in V ′ into three disjoint subsets A, B, and C

To bound the number of vertices in A, consider the bipartite subgraph
GA = (A ∪ S,EA) of G′ = (V ′ ∪ S,E′) with EA := (A × S) ∩ E′. Observe
that if there are more than |S| − 1 vertices in A, then there is a cycle in GA:
If GA is acyclic, then GA is a forest, and, thus, |EA| ≤ |S| + |A| − 1. Moreover,
since each vertex in A has at least two incident edges in GA, |EA| ≥ 2|A|, which
implies that |A| ≤ |S|−1 if GA is acyclic. It follows directly that if |A| ≥ 2|S|, it
is impossible to delete at most |S| vertices from A such that G′[A∪S] is acyclic.

To bound the number of vertices in B, observe that G′[V ′] is a forest. Fur-
thermore, all leaves of the trees in G′[V ′] are from A since G′ is reduced with
respect to the above data reduction rules. By the definition of B, each vertex
in B has at least three vertices in V ′ as neighbors. Thus, there cannot be more
vertices in B than in A, and therefore |B| < 2|S|.

Finally, consider the vertices in C. By the definitions of A and B, and since G
is reduced, each vertex in C has degree two in G′[V ′] and exactly one neighbor
in S. Hence, graph G′[C] is a forest consisting of paths and isolated vertices. We
now separately bound the number of isolated vertices and those participating in
paths.
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Each of the isolated vertices in G′[C] connects two vertices from A ∪ B
in G′[V ′]. Since G′[V ′] is acyclic, the number of isolated vertices in G′[C] cannot
exceed |A ∪ B| − 1 < 4|S|. The total number of vertices participating in paths
in G′[C] can be bounded as follows: Consider the subgraph G′[C ∪S]. Each edge
in G′[C] creates a path between two vertices in S, that is, if |E(G′[C])| ≥ |S|,
then there exists a cycle in G′[C ∪ S]. By an analogous argument to the one
that bounded the size of A (and considering that removing a vertex from G′[C]
destroys at most two edges), the total number of edges in G′[C] may thus not
exceed |S| + 2|S|, bounding the total number of vertices participating in paths
in G′[C] by 6|S|.

Altogether, |V ′| = |A| + |B| + |C| < 2|S| + 2|S| + (4|S| + 6|S|) = 14|S|. ��

4 Algorithm for Edge Bipartization

In this section we present a new algorithm for Edge Bipartization which is
based on iterative compression and runs in O(2k · m2) time. The algorithm is
structurally similar to the O(4k·kmn) time algorithm for Graph Bipartization
given by Reed et al. [22]: Their compression routine starts by enumerating all
partitions of the known solution into two parts, one containing vertices to keep
in the solution and one containing the vertices to exchange. This is followed
by a second step that tries to find a compressed bipartization set under this
constraint. Our algorithm for Edge Bipartization does not need the first step
by enforcing that the smaller solution is disjoint from the known one, thereby
gaining a factor of O(2k) in the runtime.

We note that a similar runtime of O(2k·|G|O(1)) for Edge Bipartization can
be achieved by first reducing the input instance to Graph Bipartization [23],
and exploiting a solution disjointness property analogously to the presented algo-
rithm. This, however, involves several nontrivial modifications to the algorithm
of Reed et al., whereas we give a self-contained presentation here. Moreover, our
proof reveals details about the structure of Edge Bipartization that might be
of independent interest.

The following lemma provides some central insight into the structure of a
minimal edge bipartization set. (Note that in this section, we always use the
notion of paths in which every vertex is allowed to occur at most once.)

Lemma 5. Given a graph G = (V,E) with a minimal edge bipartization set X
for G, the following two properties hold:

1. For every odd-length cycle C in G, |E(C) ∩ X| is odd.
2. For every even-length cycle C in G, |E(C) ∩ X| is even.

Proof. For each edge e = {u, v} ∈ X, note that u and v are on the same side of
the bipartite graph G \ X, since otherwise we do not need e to be in X and X
would not be minimal. Consider a cycle C in G. The edges in E(C) \ X are all
between the two sides of G\X, while the edges in E(C)∩X are between vertices
of the same side as argued above. In order for C to be a cycle, however, this
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implies that |E(C) \ X| is even. Since |E(C)| = |E(C) \ X| + |E(C) ∩ X|, we
conclude that |E(C)| and |E(C) ∩ X| have the same parity. ��

When subdividing all edges in a graph G that are contained in an edge bipar-
tization set X for G by two vertices, we can assume without loss of generality
that an edge bipartization set smaller than X is disjoint from X. This input
transformation is formalized in the following definition.

Definition 6. For a graph G = (V,E) with minimal edge bipartization X, let
the corresponding edge-extension graph G̃ := (Ṽ , Ẽ) be given by

Ṽ := V ∪ {ue, ve | e ∈ X} and

Ẽ := (E \ X) ∪ {{u, ue}, {ue, ve}, {ve, v} | e = {u, v} ∈ X}.

Let X̃ := {{ue, ve} | e ∈ X}. A mapping Φ : V (X̃) → {A,B} is called valid
2-partition of V (X̃) if for each {ue, ve} ∈ X̃, either Φ(ue) = A and Φ(ve) = B
or Φ(ue) = B and Φ(ve) = A.

An illustration of edge-extension graphs is given in Fig. 2. It is easy to see
that G̃ has an edge bipartization with k edges if and only if G has an edge
bipartization with k edges. Observe that, hence, the set X̃ as defined above
constitutes a minimal edge bipartization for G̃.

e

g

f

G :

ue

ve

uf

vf

vg

ug

G̃ :

Fig. 2. Left: Graph G with a minimal edge bipartization marked by dashed lines.
Right: Edge-extension graph G̃ of G with the corresponding edge bipartization X̃
marked by dashed lines. The mapping Φ which maps Φ(ue) = Φ(uf ) = Φ(ug) = A, and
Φ(ve) = Φ(vf ) = Φ(vg) = B is a valid 2-partition of V (X̃). Note that when choosing
this valid 2-partition Φ, then the dotted edges are an edge cut between the A-vertices
and the B-vertices in G̃ \ X̃. Therefore, the dotted edges are an edge bipartization for
the graph on the left (Lemma 7)

Lemma 7. Consider an edge-extension graph G = (V,E) and a minimal edge
bipartization X for G. For a set of edges Y ⊆ E with X ∩ Y = ∅, the following
are equivalent:

(1) Y is an edge bipartization for G.
(2) There is a valid 2-partition Φ of V (X) such that Y is an edge cut between

AΦ := Φ−1(A) and BΦ := Φ−1(B) in G \ X (see Fig. 2).

Proof. (2) ⇒ (1): Consider any odd-length cycle C in G. We show that E(C)∩
Y �= ∅. Let s := |E(C) ∩ X|. By Property 1 in Lemma 5, s is odd. Without loss
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of generality, we assume that E(C) ∩ X = {{u0, v0}, {u1, v1}, . . . , {us−1, vs−1}}
with vertices vi and u(i+1) mod s being connected by a path in C \ X. Since Φ is
a valid 2-partition, we have Φ(ui) �= Φ(vi) for all 0 ≤ i < s. With s being odd,
this implies that there is a pair vi, u(i+1) mod s such that Φ(vi) �= Φ(u(i+1) mod s).
Since the removal of Y destroys all paths in G \ X between AΦ and BΦ, we
obtain that E(C) ∩ Y �= ∅.

(1) ⇒ (2): Let CX : V → {A,B} be a two-coloring of the bipartite graph G \X
and CY : V → {A,B} a two-coloring of the bipartite graph G \ Y . Define

Φ : V → {A,B}, v �→
{

A if CX(v) = CY (v)
B otherwise.

We show that Φ|V (X) (that is, Φ with domain restricted to V (X)) is a valid
2-partition with the desired property.

First we show that Φ|V (X) is a valid 2-partition. Consider an edge {u, v} ∈ X.
There must be at least one even path in G \ X from u to v, or {u, v} would be
redundant; therefore CX(u) = CX(v). In G\Y , the vertices u and v are connected
by an edge, and therefore CY (u) �= CY (v). It follows that Φ(u) �= Φ(v).

Since both CX and CY change in value when going from a vertex to its
neighbor in G\(X∪Y ), the value of Φ is constant along any path in G\(X∪Y ).
Therefore, there can be no path from any u ∈ AΦ to any v ∈ BΦ in G \ (X ∪Y ),
that is, Y is an edge cut between AΦ and BΦ in G \ X. ��

Theorem 8. Edge Bipartization can be solved in O(2k · m2) time.

Proof. Through Lemma 7 we obtain the compression step that, from a given min-
imal edge bipartization X, computes a smaller edge bipartization Y in O(2k ·km)
time or proves that no such Y exists: We enumerate all 2k valid 2-partitions Φ
of V (X) and determine a minimum edge cut between AΦ and BΦ until we find
an edge cut Y of size k − 1 (see Fig. 2). Note that the condition of Lemma 7
that Y ∩X = ∅ does not restrict generality: Since G is an edge extension graph
(Definition 6), we can replace each edge in Y ∩X by one of its two adjacent edges
in G. Each of the minimum cut problems can individually be solved in O(km)
time with the Ford-Fulkerson method that finds and augments a flow augment-
ing path k times. By Lemma 7, Y is an edge bipartization; furthermore, if no
such Y is found, we know that |X| is minimum.

Given as input a graph G with edge set {e1, . . . , em}, we can apply itera-
tive compression to solve Edge Bipartization for G by iteratively considering
the graphs Gi containing edges {e1, . . . , ei}, for i = 1, . . . , m. For i = 1, the
optimal edge bipartization is empty. For i > 1, assume that an optimal edge
bipartization Xi−1 with |Xi−1| ≤ k for Gi−1 is known. If Xi−1 is not an edge
bipartization for Gi, then we consider the set Xi−1 ∪ {ei}, which obviously is a
minimal edge bipartization for Gi. Using Lemma 7, we can in O(2k′ · k′i) time
(where k′ := |Xi−1∪{ei}| ≤ k+1) either determine that Xi−1∪{ei} is an optimal
edge bipartization for Gi or, if not, compute an optimal edge bipartization Xi

for Gi. This process can be stopped if |Xi| > k.
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Summing over all iterations, we have an algorithm that computes an optimal
edge bipartization for G in O(

∑m
i=1 2k · ki) = O(2k · km2) time.

With the same technique used by Hüffner [12] to improve the runtime of the
iterative compression algorithm for Graph Bipartization, the runtime here
can also be improved to O(2k ·m2). For this, one uses a Gray code to enumerate
the valid 2-partitions in such a way that consecutive 2-partitions differ in only
one element. For each of these (but the first one), one can then solve the flow
problem by a constant number of augmentation operations on the previous flow
network in O(m) time. ��

5 Conclusion

We present significantly improved results on the fixed-parameter tractability of
Feedback Vertex Set and Edge Bipartization. To our belief, the iterative
compression strategy due to Reed et al. employed in this work will become an
important tool in the design of efficient fixed-parameter algorithms.

We succeeded in proving that FVS is even solvable in linear time for con-
stant parameter value k. Employing a completely different technique, a similar
result could very recently be shown for Graph Bipartization restricted to pla-
nar graphs (where the problem remains NP-complete) [10]. For general Graph
Bipartization as well as for Edge Bipartization, this remains open.

Finally, it remains a long-standing open problem whether Feedback Ver-
tex Set on directed graphs is fixed-parameter tractable. The answer to this
question would mean a significant breakthrough in the field.
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Abstract. We give processor-allocation algorithms for grid architec-
tures, where the objective is to select processors from a set of available
processors to minimize the average number of communication hops.

The associated clustering problem is as follows: Given n points in
�d, find a size-k subset with minimum average pairwise L1 distance.
We present a natural approximation algorithm and show that it is a 7

4
-

approximation for 2D grids. In d dimensions, the approximation
guarantee is 2 − 1

2d
, which is tight. We also give a polynomial-time

approximation scheme (PTAS) for constant dimension d and report on
experimental results.

1 Introduction

We give processor-allocation algorithms for grid architectures. Our objective
is to select processors to run a job from a set of available processors so that the
average number of communication hops between processors assigned to the job
is minimized. Our problem is restated as follows: given a set P of n points in
�d, find a subset S of k points with minimum average pairwise L1 distance.

� Extended Abstract. A full version is available as [5].
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Motivation: Processor Allocation in Supercomputers. Our algorithmic work is
motivated by a problem in the operation of supercomputers. The supercomputer
for which we targeted our simulations and experiments is called Computational
Plant or Cplant [7, 25], a commodity-based supercomputer developed at San-
dia National Laboratories. In Cplant, a scheduler selects the next job to run
based on priority. The allocator then independently places the job on a set of
processors which exclusively run that job to completion. Security constraints
forbid migration, preemption, or multitasking. To obtain maximum throughput
in a network-limited computing system, the processors allocated to a single job
should be physically near each other. This placement reduces communication
costs and avoids bandwidth contention caused by overlapping jobs. Experiments
have shown that processor allocation affects throughput on a range of architec-
tures [3,17,20,21,23]. Several papers suggest that minimizing the average number
of communication hops is an appropriate metric for job placement [20, 21, 16].
Experiments with a communication test suite demonstrate that this metric cor-
relates with a job’s completion time [17].

Early processor-allocation algorithms allocate only convex sets of processors
to each job [18, 9, 29, 6]. For such allocations, each job’s communication can
be routed entirely within processors assigned to that job, so jobs contend only
with themselves. But requiring convex allocations reduces the achievable system
utilization to levels unacceptable for a government-audited system [15,26].

Recent work [19,22,8,17,26] allows discontiguous allocation of processors but
tries to cluster them and minimize contention with previously allocated jobs.
Mache, Lo, and Windisch [22] propose the MC algorithm for grid architectures:
For each free processor, algorithm MC evaluates the quality of an allocation
centered on that processor. It counts the number of free processors within a
submesh of the requested size centered on the given processor and within “shells”
of processors around this submesh. The cost of the allocation is the sum of the
shell numbers in which free processors occur; see Figure 1 reproduced from [22].
MC chooses the allocation with lowest cost. Since users of Cplant do not request
processors in a particular shape, in this paper, we consider MC1x1, a variant in
which shell 0 is 1 × 1 and subsequent shells grow in the same way as in MC.

Until recently, processor allocation on the Cplant system was not based on
the locations of the free processors. The allocator simply verified that enough
processors were free before dispatching a job. The current allocator uses space-
filling curves and 1D bin-packing techniques based upon work of Leung
et al. [17].

A Free processor

Allocated processor

Fig. 1. Illustration of MC: Shells around processor A for a 3 × 1 request
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Fig. 2. (Left) Optimal unconstrained clusters for small values of k; numbers shown
are the average L1 distances, with truncated decimal values. (Right) Plot from [4] of a
quarter of the optimal limiting boundary curve; the dotted line is a circle

RelatedAlgorithmicWork. Krumkeet al. [16] consider a generalizationof ourprob-
lem on arbitrary topologies for several measures of locality, motivated by allocation
on the CM5. They prove it is NP-hard to approximate average pairwise distance in
general, but give a 2-approximation for distances obeying the triangle inequality.

A natural special case of the allocation problem is the unconstrained problem,
in the absence of occupied processors: For any number k, find k grid points
minimizing average pairwise L1 distance. For moderate values of k, these sets
can be found by exhaustive search; see Figure 2. The resulting shapes appear to
approximate some “ideal” rounded shape, with better and better approximation
for growing k. Karp et al. [14] and Bender et al. [4] study the exact nature of
this shape. Surprisingly, the resulting convex curve can only be described by
a differential equation; the closed-form solution is unknown. The complexity of
this special case remains open, but its mathematical difficulty emphasizes the
hardness of obtaining good solutions for the general constrained problem.

In reconfigurable computing on field-programmable gate arrays (FPGAs),
varying processor sizes give rise to a generalization of our problem: place a
set of rectangular modules on a grid to minimize the overall weighted sum of
L1 distances between modules. Ahmadinia et al. [1] give an optimal Θ(n log n)
algorithm for finding an optimal feasible location for a module given a set of
n existing modules. At this point, no results are known for the general off-line
problem (place n modules simultaneously) or for on-line versions.

Another related problem is min-sum k-clustering : separate a graph into k
clusters to minimize the sum of distances between nodes in the same cluster. For
general graphs, Sahni and Gonzalez [24] show it is NP-hard to approximate this
problem to within any constant factor for k ≥ 3. In a metric space, Guttmann-
Beck and Hassin [12] give a 2-approximation, Indyk [13] gives a PTAS for k = 2,
and Bartel et al. [2] give an O((1/ε) log1+ε n)-approximation for general k.

Fekete and Meijer [11] consider the problem of maximizing the average L1
distance. They give a PTAS for this dispersion problem in �d for constant d,
and show that an optimal set of any fixed size can be found in O(n) time.
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Our Results. We develop algorithms for minimizing the average L1 distance be-
tween allocated processors in a mesh supercomputer. A greedy heuristic we an-
alyze called MM and a 3D version of MC1x1 have been implemented on Cplant.
In particular, we give the following results:
– We prove that MM is a 7

4 -approximation algorithm for 2D grids, reducing
the previous best factor of 2 [16], and we show that this analysis is tight.

– We present a simple generalization to general d-dimensional space with fixed
d and prove that the algorithm gives a 2− 1

2d -approximation algorithm, which
is tight.

– We give an efficient polynomial-time approximation scheme (PTAS) for
points in �d for constant d.

– Using simulations, we compare the allocation performance of our algorithm
to that of other algorithms. As a byproduct, we get insight on how to place
a stream of jobs in an online setting.

In addition, we have a number of other results whose details are omitted due
to space constraints: We have a linear-time exact algorithm for the 1D case based
on dynamic programming. We prove that the d-dimensional version of MC1x1
has approximation factor at most d times that of MM. We have an algorithm to
solve the 2-dimensional case for k = 3 in time O(n log n).

2 Manhattan Median Algorithm for Two-Dimensional
Point Sets

2.1 Median-Based Algorithms

Given a set S of k points in the plane, a point that minimizes the total L1 distance
to these points is called an (L1) median. Given the nature of L1 distances, this
is a point whose x-coordinate (resp. y-coordinate) is the median of the x (resp.
y) values of the given point set. We can always pick a median whose coordinates
are from the coordinates in S. There is a unique median if k is odd; if k is even,
possible median coordinates may form intervals.

The natural greedy algorithm for our clustering problem is as follows:

Consider the O(n2) intersection points of the horizontal and vertical lines
through the points in P . For each of these points p do:

1. Take the k points closest to p (using the L1 metric), breaking ties
arbitrarily.

2. Compute the total pairwise distance between all k points.

Return the set of k points with smallest total pairwise distance.

We call this strategy MM, for Manhattan Median. We prove that MM is a
7
4 -approximation on 2D meshes. (Note that Krumke et al. [16] call this algorithm
Gen-Alg and show it is a 2-approximation in arbitrary metric spaces.)
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2.2 Analysis of the Algorithm

For S ⊆ P , let |S| denote the sum of L1 distances between points in S. For
a point p in the plane, we use px and py to denote its x- and y-coordinates
respectively.

Lemma 1. MM is not better than a 7/4 approximation.

Proof. For a class of examples establishing the lower bound, consider the situa-
tion shown in Figure 3. For any ε > 0, it has clusters of k/2 points at (0, 0) and
(1, 0). In addition, it has clusters of k/8 points at (0,±(1 − ε)), (1,±(1 − ε)),
(2− ε, 0), and (−1+ ε, 0). The best choices of median are (0, 0) and (1, 0), which
yield a total distance of 7k2(1−Θ(ε))/16. The optimal solution is the points at
(0, 0) and (1, 0), which yield a total distance of k2/4. ��

k/8 points

k/2 points
(1, 1 − ε)(0, 1 − ε)

(1, 0)(0, 0)

(0, −1 + ε) (1, −1 + ε)

(2 − ε, 0)(−1 + ε, 0)

Fig. 3. A class of examples where MM yields a ratio of 7/4

Now we show that 7/4 is indeed the worst-case bound. We focus on pos-
sible worst-case arrangements and use local optimality to restrict the possible
arrangements until the claim follows.

Let OPT be a subset of P of size k for which |OPT| is minimum. Without
loss of generality assume that the origin is a median point of OPT. This means
that the number of points of OPT with positive or negative x- or y-coordinates
is at most k/2. Let MM be the set of k points closest to the origin. (Since this
is one candidate solution for the algorithm, its sum of pairwise distances is at
least as high as that of the solution returned by the algorithm.)

Without loss of generality, assume that the largest distance of a point in MM
to the origin is 1, so MM lies in the unit circle C. We say that points are either
inside C, on C, or outside C. All points of P inside C are in MM and at least
some points on C are in MM. If there are more than k points on and inside C,
we select all points inside C plus those points on C maximizing |MM|.

Clearly 1 ≤ |MM|/|OPT|. Let ρk be the supremum of |MM|/|OPT| over all
input configurations P . By assuming that ties are broken badly, we can assume
that there is a configuration S ⊆ P for which |MM|/|OPT| = ρk:

Lemma 2. For any n and k, there are point sets P with |P | = n for which
|MM|/|OPT| attains the value ρk.
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Proof. The set of arrangements of n points in the unit circle C is a compact set
in 2d-dimensional space. By our assumption on breaking ties, |MM|/|OPT| is
upper semi-continuous, so it attains a maximum. ��

For k ≤ 8n/11 we show |MM| is at most 7/4 times larger than |OPT|.
Lemma 3. For k ≤ 8n/11 we have ρk ≤ 7/4.

Sketch of Proof. We assume that we have a point set P for which ρk is equal to
7/4. We can assume without loss of generality that P = MM ∪ OPT. If there
is a point p ∈ P that does not lie in a corner of C or on the origin, we look at
all points that lie on the axis-parallel rectangle through p with corners on C.
We move these points simultaneously, in such a way that they stay on an axis-
parallel rectangle with corners on C. This move changes |MM| by some small
amount δa and |OPT| by some amount δo. However if we move all points in the
opposite direction |MM| and |OPT| change by −δa and −δo respectively. So if
δa/δo �= ρk, one of these two moves increases |MM|/|OPT|, which is impossible.
If δa/δo = ρk we keep moving the points in the same direction until there is a
combinatorial change in P . We can then repeat this argument until all points of
P lie on a corner of C or on the origin.

It is now not too hard to show that the ratio MM/OPT is maximal if there
are k/2 points at the origin, k/2 points in one corner of C and k/8 points at
each of the other three corners. So we have |MM|/|OPT| = 7/4. Notice that n
has to be at least 11k/8 for this value to be obtained. ��

For larger values of k it can be shown that ρk decreases, so we summarize:

Theorem 1. MM is a 7/4-approximation algorithm for minimizing the sum of
pairwise L1 distances in a 2D mesh.

3 PTAS for Two Dimensions

Let w(S, T ) be the sum of all the distances from points in S to points in T . Let
wx(S, T ) and wy(S, T ) be the sum of x- and y- distances from points in S to
points in T , respectively. So w(S, T ) = wx(S, T )+wy(S, T ). Let w(S) = w(S, S),
wx(S) = wx(S, S), and wy(S) = wy(S, S). We call w(S) the weight of S.

Let S = {s0, s1, . . . , sk−1} be a minimum-weight subset of P , where k is an
integer greater than 1. We label the x- and y-coordinates of a point s ∈ S by
some (xa, yb) with 0 ≤ a < k and 0 ≤ b < k such that x0 ≤ x1 ≤ . . . ≤ xk−1 and
y0 ≤ y1 ≤ . . . ≤ yk−1. (Note that in general, a �= b for a point s = (xa, yb).) We
can derive the following equations: wx(S) = (k−1)(xk−1−x0)+(k−3)(xk−2−
x1) + . . . and wy(S) = (k − 1)(yk−1 − y0) + (k − 3)(yk−2 − y1) + . . . We
show that there is a polynomial-time approximation scheme (PTAS), i.e., for
any fixed positive m = 1/ε, there is a polynomial approximation algorithm that
finds a solution within (1 + ε) of the optimum.

The basic idea is similar to the one used by Fekete and Meijer [11] to select a
set of points maximizing the overall distance: We find (by enumeration) a subdi-
vision of an optimal solution into m×m rectangular cells Cij , each containing a
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Fig. 4. Dividing the point set in horizontal and vertical strips

specific number kij of selected points. The points from each cell Cij are selected
in a way that minimizes the total distance to all other cells except for the m− 1
cells in the same “horizontal” strip or the m−1 cells in the same “vertical” strip.
As it turns out, this can be done in a way that the total neglected distance within
the strips is bounded by a small fraction of the weight of an optimal solution,
yielding the desired approximation property. See Figure 4 for the setup.

For ease of presentation, we assume that k is a multiple of m and m > 2.
Approximation algorithms for other values of k can be constructed in a similar
fashion. Consider a division of the plane by a set of m+1 x-coordinates ξ0 ≤ ξ1 ≤
. . . ≤ ξm. Let Xi := {p = (x, y) | ξi ≤ x ≤ ξi+1} be the vertical strip between
coordinates ξi and ξi+1. By enumeration of possible values of ξ0, . . . , ξm we may
assume that each of the m strips Xi contains precisely k/m points of an optimal
solution. (A small perturbation does not change optimality or approximation
properties of solutions. Thus, without loss of generality, we assume that no pair
of points share either x-coordinate or y-coordinate.)

In a similar manner, assume we know m+1 y-coordinates η0 ≤ η1 ≤ . . . ≤ ηm

so that an optimal solution has precisely k/m points in each horizontal strip
Yi := {p = (x, y) | ηi ≤ y ≤ ηi+1}.

Let Cij := Xi ∩ Yj , and let kij be the number of points in OPT that are
chosen from Cij . Since for all i, j ∈ {1, 2, . . . , m},∑

0≤l<m

klj =
∑

0≤l<m

kil = k/m,

we may assume by enumeration over the O(km) possible partitions of k/m into
m pieces that we know all the numbers kij .

Finally, define the vector ∇ij := ((2i + 1 − m)k/m, (2j + 1 − m)k/m). Our
approximation algorithm is as follows: from each cell Cij , choose kij points that
are minimum in direction ∇ij , i.e., select points p = (x, y) for which (x(2i + 1−
m)k/m, y(2j + 1 − m)k/m) is minimum. For an illustration, see Figure 5.

It can be shown that selecting points of Cij this way minimizes the sum of
x-distances to points not in Xi and the sum of y-distances to points not in Yj .
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Fig. 5. Selecting points in cell C12

The details are somewhat technical and are described in the full version of the
paper [5]. We summarize:

Theorem 2. The problem of selecting a subset of minimum total L1 distance
for a set of points in �2 allows a PTAS.

4 Higher-Dimensional Spaces

Using the same techniques, we also generalize our results to higher dimensions.
We start by describing the performance of MM.

4.1
(
2 − 1

2d

)
-Approximation

As in two-dimensional space, MM enumerates over the O(nd) possible medians.
For each median, it constructs a candidate solution of the k closest points.

Lemma 4. MM is not better than a 2 − 1/(2d) approximation.

Proof. We construct an example based on the cross-polytope in d dimensions,
i.e., the d-dimensional L1 unit ball. Let ε > 0. Denote the origin with O and
the ith unit vector with ei. The example has k/2 points at O and O + e1. In
addition, there are k/(4d) points at O − (1 − ε)e1, O + (2 − ε)e1, O ± (1 − ε)ei

for i = 2, . . . , d, and O + e1 ± (1 − ε)ei for i = 2, . . . , d. MM does best with O
or O + e1 as median, giving a total distance of (k2/4) (2 − 1/(2d)) (1 + Θ(ε)).
Optimal is the points at O and O + e1, giving a total distance of k2/4. ��

Establishing a matching upper bound can be done analogously to Section 2.
Lemma 2 holds for general dimensions. The rest is based on the following lemma:

Lemma 5. Worst-case arrangements for MM can be assumed to have all points
at positions (0, . . . , 0) and ±ei, where ei is the ith unit vector.

Sketch of Proof. Consider a worst-case arrangement within the cross-polytope
centered at the origin with radius 1. Local moves consist of continuous changes in
point coordinates, performed in such a way that the number of coordinate values
is kept. This means that to move a point having a coordinate value different from
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0, 1,−1, then all other points sharing that coordinate value are moved to keep
the identical coordinates the same, analogous to the proof of Lemma 3.

Note that under these moves, the functions OPT and MM are locally linear,
so the ratio of MM and OPT is locally constant, strictly increasing, or strictly
decreasing. If a move decreases the ratio, the opposite move increases it, contra-
dicting the assumption that the arrangement is worst-case.

If the ratio is locally constant during a move, it will continue to be extremal
until an event occurs, i.e., when the number of coordinate identities between
points increases, or the number of point coordinates at 0, 1,−1 increase. While
there are points with coordinates different from 0, 1,−1, there is always a move
that decreases the total degrees of freedom, until all dn degrees of freedom have
been eliminated. Thus, we can always reach an arrangement with point coordi-
nates values from the set {0, 1,−1}. These leaves the origin and the 2d positions
±ei as only positions within the cross-polytope. ��

The restricted set of arrangements can be evaluated with symmetry to yield

Theorem 3. For points lying in d-dimensional space, MM is a 2−1/2d-approxi-
mation algorithm, which is tight.

4.2 PTAS for General Dimensions

Theorem 4. For any fixed d, the problem of selecting a subset of minimum total
L1 distance for a set of points in �d allows a PTAS.

Sketch of Proof. For m = Θ(1/ε), we subdivide the set of n points with d(m+1)
axis-aligned hyperplanes, such that (m + 1) are normal for each coordinate di-
rection. Moreover, any set of (m+1) hyperplanes normal to the same coordinate
axis is assumed to subdivide the optimal solution into k/m equal subsets, called
slices. Enumeration of all possible structures of this type yields a total of nm

choices of hyperplanes in each coordinate, for a total of nmd possible choices.
For each choice, we have a total of md cells, each containing between 0 and k
points; thus, there are O(mkd) different distributions of cardinalities to the dif-
ferent cells. As in the two-dimensional case, each cell picks the assigned number
of points extremal in its gradient direction.

It is easily seen that for each coordinate xi, the above choice minimizes the
total sum of xi-distances between points not in the same xi-slice. The remain-
ing technical part (showing that the sum of distances within slices are small
compared to the distances between different slices) is analogous to the details
described in the full version of the paper [5] and omitted. ��

5 Experiments

The work discussed so far is motivated by the allocation of a single job. In the
following, we examine how well our algorithms allocate streams of jobs; now the
set of free processors available for each job depends on previous allocations.
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Table 1. Average sum of pairwise distances when the decision algorithm makes allo-
cations with input provided by the situation algorithm

Situation Decision Algorithm
Algorithm MC1x1 MM MM+Inc HilbertBF
MC1x1 5256 5218 5207 5432
MM 5323 5285 5276 5531
MM+Inc 5319 5281 5269 5495
HilbertBF 5090 5059 5046 5207

To understand the interaction between the quality of an individual allocation
and the quality of future allocations, we ran a simulation involving pairs of algo-
rithms. One algorithm, the situation algorithm, places each job. This determines
the free processors available for the next job. Each allocation decision serves as
an input to the other algorithm, the decision algorithm. Each entry in Table 1
represents the average sum of pairwise distances for the decision algorithm with
processor availability determined by the situation algorithm.

Our simulation used the algorithms MC1x1, MM, MM+Inc, and HilbertBF.
MM+Inc uses local improvement on the allocation of MM, replacing an allocated
processor with an excluded processor that improves average pairwise distance
until it reaches a local minimum. HilbertBF is the 1-dimensional strategy of
Leung et al. [17] used on Cplant. The simulation used the LLNL Cray T3D
trace1 from the Parallel Workloads Archive [10]. This trace has 21323 jobs run
on a machine with 256 processors, treated as a 16 × 16 mesh in the simulation.

In each row, the algorithms are ranked in the order MM+Inc, MM, MC1x1,
and HilbertBF. This is consistent with the worst-case performance bounds; MM
is a 7/4-approximation, MC1x1 is a 7/2-approximation, and HilbertBF has an
unbounded ratio2.

6 Conclusions

The algorithmic work described in this paper is one step toward developing
algorithms for scheduling mesh-connected network-limited multiprocessors. We
have given provably good algorithms to allocate a single job. The next step is to
study the allocation of job sequences, a markedly different algorithmic challenge.

The difference between making a single allocation and a sequence of alloca-
tions is already illustrated by the diagonal entries in Table 1, where the free
processors depend on the same algorithm’s previous decisions. These give the
ranking (from best to worst) HilbertBF, MC1x1, MM+Inc, and MM. The lo-
cally better decisions of MM+Inc seem to paint the algorithm into a corner over
time. Figures 1 and 2 help explain why. When starting on an empty grid, MC

1 We thank Moe Jette and Bill Nitzberg for providing the LLNL and NASA Ames
iPSC/860 traces, respectively, to the Parallel Workloads Archive.

2 On an N × N mesh, the approximation ratio can be Ω(N).
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produces connected rectangular shapes. Locally, these shapes are slightly worse
than the round shapes produced by MM, but rectangles have better packing
properties because they avoid small patches of isolated grid nodes.

We confirmed this behavior over an entire trace using Procsimity [27, 28],
which simulates messages moving through the network. We ran the NASA Ames
iPSC/860 trace from the Parallel Workloads Archive [10], scaling down the
number of processors for each job by a factor of 4. This made the trace run
on a machine with 32 processors, allowing us to find the greedy placement that
minimizes average pairwise distance at that step. For average job flow time,
MC1x1 was best, followed by MM, and then greedy. We did not run MM+Inc
in this simulation. HilbertBF was much worse than all three of the algorithms
mentioned in part due to difficulties using it on a nonsquare mesh.

Thus, the online problem in an iterated scenario is the most interesting open
problem. We believe that a natural attack may be to consider online packing of
rectangular shapes of given area. We plan to pursue this in future work.
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Abstract. Consider a directed rooted tree T = (V, E) representing a
collection V of n web pages connected via a set E of links all reachable
from a source home page, represented by the root of T . Each web page i
carries a weight wi representative of the frequency with which it is visited.
By adding hotlinks, shortcuts from a node to one of its descendents, we
are interested in minimizing the expected number of steps needed to visit
pages from the home page. We give the first linear time algorithm for
assigning hotlinks so that the number of steps to accede to a page i from
the root of the tree reaches the entropy bound, i.e. is at most O(log W

wi
)

where W = i∈T wi. The best previously known algorithm for this
task runs in time O(n2). We also give the first efficient data structure
for maintaining hotlinks when nodes are added, deleted or their weights
modified, in amortized time O(log W

wi
) per update. The data structure

can be made adaptative, i.e. reaches the entropy bound in the amortized
sense without knowing the weights wi in advance.

1 Introduction

Since the discovery of the Internet by the general public, the growth of the World
Wide Web reached an incredible speed and the quantity of information available
for all became extraordinary large. By this fact, many inherent problems for con-
sulting of this mass of data appeared, and methods were developed to facilitate
and accelerate the search on the web, such as promoting and demoting pages,
highlighting links, and clustering related pages in an adaptive fashion depending
on user access patterns [15, 6]. In this article we consider the strategy of adding
hotlinks, i.e. shortcuts from web pages to popular pages accessible from them.

A web site can be modeled as a directed graph G = (V, E) where the nodes
V correspond to the web pages and the edges E represent the links. Each node
carries a weight representative of its access frequency. We assume that all web
pages are reached starting from the homepage r. Our goal in adding hotlinks
(directed edges from a node to one accessible from it) is to minimize the expected
number steps to reach a page from the homepage r.

The idea of hotlinks was suggested by Perkowitz and Etzioni [15] and studied
later by Bose et al. [2] who proved that finding the optimal hotlink assignment
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for a DAG is NP-hard, and analyzed several heuristics for assigning hotlinks.
More recently, a 2-approximation algorithm for the archivable gain running in a
polynomial time was presented by Matichin and Peleg [13].

The problem might become easier when the graph considered is a rooted tree.
Kranakis, Krizanc and Shende [12] give a quadratic time algorithm for assigning
one hotlink per node so that the expected number of steps to search a node
from the root of the tree attain the entropy bound. Several results on adding
hotlinks to nodes of d-regular complete trees are also reported by Fuhrmann
et al. [8]. Recently, Gerstel et al.[10], and A.A. Pessoa et al. [16] independently
discovered a polynomial time dynamic programming algorithm for finding the
optimal placement of hotlinks on a tree whose depth is logarithmic in the number
of nodes. Experimental results showing the validity of the hotlinks approach are
given in [5], and a software tool to structure websites efficiently by automatic
assignment of hotlinks has been developed [11].

The concept of hotlinks can be applied to other problems than that of web
structuring. For instance, Bose et al.[3] use hotlink assignments to design efficient
asymmetric communication protocols. Hotlinks can also be used to design data
structures as was demonstrated by Brnnimann, Cazals and Durand [4] with their
jumplist dynamic dictionary data structure. The jumplist structure can be seen
as randomized hotlink assignment on a list, and is meant as a simplification of
the skiplist structure [17]. A detreministic version of the randomized jumplist of
Brnnimann was developed by Elmasry [7].

In this article, we consider rooted directed trees T with n nodes and maxi-
mum degree d. Every node i in T is associated with a weight wi representative
of its access frequency, and W =

∑
i∈T wi. Following the greedy user model as-

sumption, we assume that the user always takes the hotlink from a node that
leads him to a closer point on the path to the desired destination. Due to that,
we consider that the assignment of one hotlink which points to a node i can be
see as the deletion of any other hyperlink that ends in i. Let T A be the tree
resulting from an assignment A of hotlinks. A measure of the average access
time to the nodes is E[T A, p] =

∑n
i=1 dA(i)pi, where dA(i) is the distance of the

node i from the root, and p =< pi = wi/W : i = 1, . . . , n > is the probability
distribution on the nodes of the original tree T . We are interested in finding an
assignment A which minimizes E[T A, p].

A lower bound on the average access time E[T A, p] was given in [2] using
information theory [14]. Let H(p) be the entropy of the probability distribution
p, defined by H(p) =

∑n
i=1 pi log(1/pi), then for any assignment of at most δ

hotlinks per node the expected number of steps to reach a node from the root
of the tree is at least H(p)

log(d+δ) . This bound is achieved up to a constant factor if
dA(i) = O(log(W/wi)). We show:

Theorem 1. Given an arbitrary weighted rooted tree with n nodes and of total
weight W . There is an algorithm that runs in O(n) time, which assigns one
hotlink per node in such a way that the expected number of steps to reach a node
i of weight wi in the tree from the root is O(log W

wi
).
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This algorithm constitutes a considerable improvement over the previous O(n2)
time algorithm [12]. Furthermore, we present an efficient data structure for dy-
namically maintaining hotlinks on a tree:

Theorem 2. There exists a data structure for maintaining hotlinks in a weighted
tree T , allowing the insertion and deletion of leaves of weight 1 in T , and the
incrementation or decrementation of the weight of any node of T . All updates
on a node i of weight wi run in amortized time O(log W

wi
), and the shortest path

to any node i of weight wi is O(log W
wi

) worst case, where W =
∑

i wi.

In particular, if the weight of a node is incremented every time that node
is accessed, the running time of any sequence of accesses will be bounded by
the entropy bound (amortized) without knowing the probability distribution in
advance. The proof of the two preceding theorem will be given later in this paper.
A weighted and amortized version of the Jumplist data structure is presented
in the next section, it is developed for the application of hotlinks assignment to
arbitrary trees. In section 3 we give a linear time algorithm to assign hotlinks to
trees so that the number of steps to accede to a page from the root of the tree
reaches the entropy bound. In Section 4, the dynamic hotlink assignment data
structure is described.

2 Jumplists

The data structure named Jumplist [4] is a linked list whose nodes are endowed
with an additional pointer, the jump pointer. Algorithms on the jumplist are
based on the jump-and-walk strategy: whenever possible use the jump pointer
to speed up the search, and walk along the list otherwise. This data structure
provides the usual dictionary operations, i.e. SEARCH, INSERT and DELETE.

To each element x of a jumplist is associated a key[x], a next[x] pointer like
an ordinary list structure and also an additional jump[x] pointer which points
to a successor of x in the list. Note that the jumplists we discuss here only allow
insertions/deletions at the end of the list. This restriction greatly simplifies the
presentation of the algorithm and is sufficient for its application to the hotlinks
problem for trees.

The original version of the jumplists developed by Brnnimann et al. did not
consider the access frequencies of the elements of a jumplist. In this paper we
develop an enhanced jumplist structure by associating a weight wx with each
element x, proportional to its access frequency, and where the access times reach
the entropy bound. In such a situation we would like that the more frequently
needed elements be accessed faster than the less frequently needed ones. A mea-
sure of the average access time for a jumplist C is∑

x∈C

wx

W
dx,
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Fig. 1. Weight distribution of a weighted jumplist

where W =
∑

x∈C wx is the sum of the weights of the elements in the sublists
of C and dx is the depth in the jumplist of the element x, i.e. the minimum
number of pointers needed to reach element x. We are interested in finding an
assignment of the jump pointers for C which minimizes the average access time.

We use the notation C = (v, N, J) for the (sub)list C with first element v
followed by the next sublist N , and the jump sublist J . We write |C| for the
number of elements in C, and W (C) for the sum of the weights of the elements
contained in C, i.e. W (C) = wv + W (N) + W (J). Also, W ′(C) = W (C) − wv.
See figure 1.

2.1 Jump Pointer Assignment

Lemma 1. Given an arbitrary weighted jumplist containing n elements
of weights w1, . . . , wn, and W =

∑n
i=1 wi. There is an algorithm which in

O(n) time assigns the jump pointers for the jumplist in such a way that di ≤
�log2

W
wi

� + 1 for i = 1, . . . , n.

Proof. Constructing a jumplist from a list with weighted elements consists in
choosing the jump pointer of the header, and recursively building the next and
jump sublists. In order to reach the entropy bound, the jump pointer of the
header will point to an element splitting the list into two sublists of roughly
equal weight. In other words, the sum of the weights of the elements belonging
to the next sublist and that of the jump sublist must be at most equal to half
of the total weight of the sublists. Thus for the jumplist C = (v, N, J), the
condition of the weighted jumplists will be:

W (N) =
k−1∑
i=2

wi ≤ W/2 and W ′(J) =
n∑

i=k+1

wi ≤ W/2. (1)

The problem is to efficiently determine a good element k that satisfies the
condition. For this, we first build a table from the jumplist, in time O(n). The
ith entry of the table will correspond to the ith element in the jumplist and will
contain the value si =

∑i
j=1 wj . Thus, the table is sorted in increasing order

and has distinct elements.
Once the table built, we can use exponential search to find the kth element

satisfying the condition (1). After this element is found, it will be necessary to
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reiterate the process recursively on both sublists. Note that it is not necessary
to rebuild tables for that, it is sufficient to use segments of the table built during
the first stage.

To improve the speed of the search in the table for the element satisfy-
ing the condition (1), we carry out a double exponential search in parallel
from both sides of the table, in time O(log(min {k, n − k + 1})), where k is
the position of the sought element. We can consequently express the complex-
ity of this algorithm, after construction of the table, by the recurrence t(n) =
O(log(min {i, n − i + 1})) + t(i − 1) + t(n − i) = O(n). ��

2.2 Dynamic Weighted Jumplists

One way to dynamize the weighted jumplist is to use the concept of tolerance. It
is a method which consists in requiring that any jumplist C = (v, N, J) satisfies
the following relaxed version of condition (1):

W (N) ≤ W ′(C)(1 + τ)/2 and W ′(J) ≤ W ′(C)(1 + τ)/2 (2)

where 0 < τ < 1 is a constant tolerance factor. The condition of the tolerant
weighted jumplists, eq.(2) described above will be checked recursively by the
sublists N and J .

The methods used here are similar to the ones used by Elmasry [7], except
for the fact that our structure doesn’t need extra informations to maintain the
jumplist (such as the number of elements in the next and the jump sublist of
each element in the jumplist) and the elements are weighted. The only extra
values the dynamic data structure needs to remember are W , the total weight
of the entire jumplist, and max W , the maximal value of W since the last time
the jumplist was completely rebuilt.

Searching. The basic search algorithms on jumplist are based on the jump-and-
walk strategy: Whenever possible use the jump pointer to speed up the search,
and walk along the list otherwise (if the jumplist is ordered, it will be trivial to
determine if the jump pointer improve or not the speed of the search. Else, in the
case where all the elements are arbitrary ordered, we make the assumption that
the user knows implicitly which pointer is good to use). For a tolerant weighted
jumplist that observes the condition eq.(2), we can determine an upper bound
to the number of steps to reach an element from the header of the jumplist.

Theorem 3. Consider an arbitrary tolerant weighted jumplist C of tolerance
factor τ whose total sum of the weights of the elements is W , the number of
steps to reach an element i from the header of the jumplist is at most

�log(W/wi)/ log(2/(1 + τ))� + 1.

Proof. We know that the jumplist C and all its sublists observe the condition
of the tolerant weighted jumplist. Let us define Ck = (vk, Nk, Jk) as the sublist
considered after the kth step of the search for element i. That is, C0 = C, and
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if at step k the element i is in the next sublist then Ck = Nk−1, otherwise
Ck = Jk−1. The value of W ′(Ck) can be bounded as a function of W ′(Ck−1)
using equation (2):

W ′(Nk−1) ≤ W (Nk−1) ≤ W ′(Ck−1)
1 + τ

2
and W ′(Jk−1) ≤ W ′(Ck−1)

1 + τ

2
so

W ′(Ck) ≤ max{W ′(Jk−1), W ′(Nk−1)} ≤ W ′(Ck−1)(1 + τ)/2.

The resolution of the recurrence gives W ′(Ck) ≤ W
( 1+τ

2

)k. Step k of the algo-

rithm will not be performed unless, wi ≤ W ′(Ck−1) ≤ W
( 1+τ

2

)k−1. This implies
that the number of steps k is bounded by k ≤ log(W/wi)/ log(2/(1+ τ))+1. ��

Thus, the maximum depth an element x can have in a tolerant weighted
jumplist of weight W and tolerance factor τ is

dτ (x, W ) = �log(W/wx)/ log(2/(1 + τ)))� + 1.

An element x for which the depth exceeds the value dτ (x, W ) will be called a
deep element. The presence of a deep element clearly implies that the jumplist
does not satisfy the condition eq.(2).

Insertion We here describe how to insert an element of weight 1 at the end of
the list. The insertion operation first uses the jump-and-walk algorithm to find
the position of the last element in the jumplist. In the following, we will consider
the search sequence (C = C0, C1, . . . , Ck), with Cj = (xj , Nj, Jj) and Cj+1 = Jj

reaching the last element xk of the jumplist in k steps (and so Nk and Jk are
empty). During an insertion of a new element z, the element is placed in Nk,
we increment W , and update max W to the maximum of W and max W . If
the newly inserted element is deep, i.e. k + 1 > dτ (z, W ), then one of the lists
Cj containing it does not satisfy eq.(2). We reassign the jump pointers of the
jumplist as follows. We climb the jumplist, examining xk, xk−1,. . . until we find
an element xi whose sublist Ci does not satisfy the condition (2). Since xk is
at the end of the jumplist, W (Nk) = 1, and W (Ck) = wxk

+ 1. We compute
W (Cj) using the formula W (Cj) = wxj + W (Nj) + W (Cj+1), where W (Nj) is
computed in time O(|Nj |) by walking the list from element xj to xj+1. Thus the
total cost for finding xi is O(|Ci|).

We call xi the scapegoat element in reference to the lazy rebalancing schemes
for binary search trees developped independently by Andersson and Lai [1], and
by Galperin and Rivest [9]. Once the scapegoat element xi is found, we have
to verify that the reconstruction of its sublist Ci will not create deep nodes. If
i ≤ log(W/W (Ci))/ log(2/(1+ τ)), then the reconstruction of the jump pointers
in Ci will not introduce new deep nodes since the number of links to follow
from xi to any element y will be at most log(W (Ci)/wy)/ log(2/(1 + τ)) in
the reconstructed structure. The jump pointers of the sublist Ci can then be
reassigned in time O(|Ci|) using Lemma 1. Otherwise, we continue the search
for another scapegoat node xi′ with i′ < i.
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Let us now consider a sequence of insert operations in a tolerant weighted
jumplist whose total weight is W , we wish to show that the amortized com-
plexity per insert is O(log(W/wi)). We begin by defining a nonnegative po-
tential function for the jumplist. Consider the sublist C = (v, N, J), and let
Φ(v) = max(0, W (N) − W (C)/2, W (J) − W (C)/2) be the potential of the el-
ement v. We see that an element whose sublists are perfectly balanced have a
potential of 0, and an element that does not satisfy the condition eq.(2) have a
potential of Ω(W (C)). The potential of the jumplist is the sum of the potentials
of its elements.

It is easy to see that by increasing their cost by only a constant factor, the
insertion operations pay for the increase in potential of the elements. That is,
whenever we pass by an element x to insert a new element as a descendant of x,
we can pay for the increased potential in x that may be required by the resulting
increase in Φ(x).

The potential of the scapegoat element xi, like all the elements that do not
observe the condition eq.(2), is Ω(W (Ci)). Therefore, this potential is sufficient
to pay for finding the scapegoat element and reassigning the jump pointers of
the sublist of which it is the header. These two operations have complexity
O(|Ci|) = O(W (Ci)).

Deletion. The deletion operation consists of removing the last element of the
jumplist, the weight of this element must be equal to 1. We will again use the
jump-and-walk algorithm to reach this last element. Once the element removed,
we update W . Then, if W < max W (1+τ)/2, we reassign all the jump pointers of
the entire jumplist[C], and we reset max W to W . If we restate the analysis above
ignoring the deletions, the search time is at most dτ (x, max W ) ≤ dτ (x, W )+1.

Since we perform Ω(n) operations between two successive rebuilds due to
delete operations we can pay for them in the amortized sense (with n equal to
the number of elements in the jumplist). Thus for a sequence of delete operations,
the amortized complexity per deletion of the last element i of a tolerant weighted
jumplist is equal to O(log(W/wi)).

Reweighting. The reweighting operation allows to increment or decrement the
weight of an element by one unit. To find the element to be modified, we again use
the jump-and-walk algorithm. Then, for incrementing, we use the same technique
as during an insertion: We modify the weight of the element, we check that it does
not become deep. If it does, we seek the scapegoat element and we reassign the
jump pointers of its sublists. For decrementing, we act as during a deletion: We
modify the weight of the element, we update W . Then, if W < max W (1+τ)/2,
we reassign all the jump pointers of the jumplist, and we reset max W to W .

The reweight operation is based on the operation of insertion and deletion.
We have by this fact same complexities as those, i.e. an amortized complexity per
reweight of an element i of a tolerant weighted jumplist equal to O(log(W/wi)).
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3 Hotlinks

The hotlink assignment algorithm for a tree T will proceed by first decomposing
the tree into heavy paths (see fig. 2), and then finding hotlink (jump pointers)
assignments on the paths viewed as weighted linked lists. In the following, we
write Tx for the subtree of T rooted at x, W (Tx) the sum of the weights of all
elements in Tx, and W ′(Tx) = W (Tx) − wx.

Fig. 2. Example of decomposition of a
tree into heavy paths

Fig. 3. Example of search into heavy
paths of a tree

3.1 Decomposition into Heavy Paths

Following the classical heavy path decomposition scheme [18], we connect each
node to its heaviest child, i.e., we pick next[x] among the children of x if

W (Tnext[x]) ≥ W (Ty) ∀y child of x. (3)

In particular, this implies W (Ty) ≤ W ′(Tx)/2 ∀y �= next[x] child of x. The
chosen edges (x, next[x]) naturally decompose the tree into paths. This method
of determination of lists is realized in time O(n) with n the number of elements
in the tree T , because that decomposition can be done in a single bottom-up
tranversal, at the same time as computing the weight of all subtrees.

3.2 Hotlink Assignment

Once the tree is decomposed into heavy paths, we must just apply Lemma 1
to assign the hotlinks (jump pointers) to the paths viewed as jumplists. The
weight zx of an element x in a heavy path will be equal to the weight wx of the
node associated to it plus the sum of the nodes contained in all the subtrees
indicated by the children of x except next[x] i.e. zx = W (Tx) − W (Tnext[x]).
The weighted jumplist assignment algorithm is applied on each list using the
weights zx. This method is linear in the number of elements present in each list,
so the sum of the assignment complexity for all heavy paths in the tree is O(n).
Theorem 4 in the next section shows that this hotlink assignment achieves the
entropy bound.
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4 Dynamic Hotlinks

In this section we present a data structure for maintaining hotlinks in a weighted
tree when leaves are added or deleted and weights modified. Like in the previous
section, the tree will be decomposed into paths, and each path will be managed
like a jumplist. These jumplists will be managed dynamically using the structure
described in section 2. The dynamic determination of the paths in the tree will
require some extra work. Indeed, a sequence of update operations can lead the
tree to stop satisfying condition (3). Similarily as for the tolerant jumplists, we
will use a relaxed version of condition (3):

W (Ty) ≤ W ′(Tx)(1 + τ)/2 ∀y �= next[x] child of x, (4)

where 0 < τ < 1 is the tolerance factor.

Lemma 2. The tolerant method of decomposition of the tree T into heavy paths
guarantee that maximum number of paths visited during a search for node x is
at most �log(W/wx)/ log(2/(1 + τ))� .

Proof. To determine the maximum number of levels of paths in the decompo-
sition of a tolerant hotlink tree, we must count the maximum number of times
k that we can pass from a list to another. Let Ci be the ith list visited during
a search. Every time we follow a link from a node x from one list Ci to the
head y of another list Ci+1, i.e. y is a child of x but y �= next[x], we know from
condition (4) that W (Ci+1) = W (Ty) ≤ W ′(Tx)(1 + τ)/2 ≤ W (Ci)(1 + τ)/2.

The recurrence solves to: W (Ck) ≤ W
( 1+τ

2

)k and wx ≤ W (Ck). ��

Searching. An implicit assumption underlying the common hierarchical ap-
proach is that at any node along the search in the tree, the user is able to select
the correct link leading towards the desired node. When hotlinks are added,
there will exist multiple alternative paths for certain destinations. Again, an un-
derlying assumption at the basis of hotlink idea is that faced with a hotlink in
the current node, the user will be able to tell whether or not this hotlink may
lead it to a closer point on the path to the desired destination. This has been
referred to as the greedy user model. Otherwise, we can remark that with the
clairvoyant user model, we make the assumption that the user somehow knows
the topology of the enhanced structure. So, he will always choose the shortest
path to reach the desired destination. But, with the method used in this paper,
the two models will lead to the same choice of links because no two hotlinks will
ever cross. We can now bound the maximum number of steps during a search
operation:

Theorem 4. Consider an arbitrary weighted rooted tree T with W the sum of
weights of all its nodes. If one hotlink per node is assigned using a tolerant path
decomposition and tolerant jumplists with tolerance 0 < τ < 1, then there is
a constant aτ so that the number of steps to reach an element x is at most
d′τ (x, W ) ≤ aτ log(W/wx).
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Proof. The search of an node in a tree, can be seen as a succession of search
operations in multiple heavy paths composing the tree. The complexity of a
search operation in the heavy paths is given by theorem 3. Consider a search
entering the ith path at node ui, and leaving it at node vi to enter the (i + 1)th

path at node ui+1, with u0 being the root of T and vk = x is the element we
are looking for. See Fig.3. Then number of links followed on the ith path is at
most �log(W (Tui)/zvi)/ log(2/(1 + τ))� + 1 and zvi = W (Tvi) − W (Tnext[vi]) ≥
W (Tui+1). So the total number of links followed along heavy paths and hotlinks
is at most:

t ≤ k + [log
W (Tu1)

zv1

+ log
W (Tu2)

zv2

+ · · · + log
W (Tuk

)
zvk

]/ log(2/(1 + τ))

≤ k + [log
W

W (Tu2)
+ log

W (Tu2)
W (Tu3)

+ · · · + log
W (Tuk

)
wx

]/ log(2/(1 + τ))

= k + log(W/wx)/ log(2/(1 + τ)).

We must still add to that the number of links between the lists, which is also
bounded by k=�log(W/wx)/ log(2/(1 + τ))� (see lemma 2). Thus d′τ (x, W ) ≤
2k + log(W/wx)/ log(2/(1 + τ)) = aτ log(W/wx). where aτ = 3/ log(2/(1 +
τ)). ��

To allow update operations, we must store in each node x of the tree an integer
between 1 and the outdegree of the node to identify next[x]. We furthermore
maintain the global value W which is the sum of the weight of the nodes present
in the all tree and max W which is the maximal value of W since the last time
that the hotlinks structure was completely rebuilt.

Inserting. We give in this section an algorithm to insert a leaf x of weight
wx = 1. The shortest path x0, . . . , xk from the root to the leaf to be inserted
is a succession of k hotlinks, heavy tree links, and non-heavy tree links. After
finding the shortest path to the parent of the leaf to be inserted, we create the
leaf and we check if it is deep, that is, if k > d′τ (x, W ). If it is, then there must be
some node on the path that does not satisfy one of the equations (2) or (4). We
then walk up the path verifying those conditions. When walking up from node
xi+1 to node xi with xi+1 = next[xi] (heavy tree link) or when xi+1 = jump[xi]
(hotlink) we verify eq.(2), and otherwise (non heavy tree link) we verify eq.(4).

To verify condition (2), we must first find the end of the sublist starting at xi.
Let j be the largest integer < i such that xj+1 �= jump[xj ]. If xj+1 = next[xj ],
then the sublist starting at xi can be constructed by following the next pointers
from xi until the element jump[xj ] is found (see figure 4). Otherwise, xj+1 is
the head of the heavy path containing xi, and the sublist starting at xi can
be constructed by following the next pointers until a leaf is reached. Once the
path constructed, the weights of the sublists can be computed by exploring
exhaustively the subtrees of their elements. To verify condition (4), we explore
the subtrees of the children of xi. Once the scapegoat (node not satisfying one of
the conditions) xi is found, we can consider reconstructing a sublist containing
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Fig. 4. How to find the end of a sublist Fig. 5. Determination of the subtree to
reconstruct

it. The sublist to reconstruct is the sublist starting at xi in the first two cases
(jumplist violations). We still have to verify that for all next pointers in that
sublist, eq.(4) is satisfied. If it is the case, only the jump pointers in that sublist
will have to be reassigned. Otherwise, we are in the last case.

For the last case, eq.(4), we will have to reconstruct an entire subtree. Let j
be the largest integer < i such that (xj , xj+1) is a non-heavy tree link, and let
j′ be the smallest integer j < j′ < i such that xj′+1 = next[xj′ ] if it exists, and
otherwise j′ = i. That is, xj′ is the first element in the heavy path of xi for which
the next pointer is used, if it exists (See the figure 5). The subtree to reconstruct
in this case is the subtree starting at xj′ . This is to ensure that no jump pointer
will point to elements no longer in the same heavy path after the reconstruction.
It is easy to see that in this case the weight of the subtree to reconstruct is no
more than roughly twice the weight under the scapegoat element. Indeed, we
know that the element jump[xj′ ] is a descendant of the node xi, thus the jump
sublist of xj′ has a smaller weight than the weight under the scapegoat element.
As the weighted jumplists guarantee a balance between the weight of the jump
and the next sublists, we can conclude that the weight of the jumplist defined
by xj′ (equal to W (Txj′ )) is no more than roughly 2W (Txi).

Let Ci be the jump sublist or subtree starting at xi we want to reconstruct.
Before reconstructing it, we have to verify that its reconstruction will not leave
deep nodes in its subtree. If i ≤ aτ log(W/W (Ci)), then we know the reconstruc-
tion of the sublist will guarantee that no nodes be deep after the reconstruction,
since the length of a search for x in the reconstructed sublist/subtree will be at
most aτ log(W (Ci)/wx). Otherwise, we know there is another scapegoat element
higher along the path to the root and we can afford to continue looking for it.

Let us now consider a sequence of insert operations beginning with a tree
whose total weight is W , we wish to show that the amortized complexity per
insert is O(log W ). We begin by defining a nonnegative potential function for the
hotlinks tree T . Let Φ(x) = ϕ1 +ϕ2 be the potential of the element x. Where ϕ1
is the potential function relative to the reassignation of hotlinks in heavy paths
(see section 2.2) and ϕ2 is the potential function relative to the reassignation of
hotlinks in subtree. Thus let y1, . . . , yl be the children of x and let its potential
be equal to ϕ2(x) = max(0, max

i
W (Tyi)−W ′(Tx)/2). Thus a node that indicates

the heaviest tree as its next element has a potential of 0, and a node that does



Dynamic Hotlinks 193

not satisfy the condition eq.(4) has a potential of Ω(W ′(Tx)). The potential of
the tree is the sum of the potential of its nodes.

It is easy to see that by increasing their cost by only a constant factor,
the insertion operations pay for the increase in potential of the nodes. That is,
whenever we pass by an element x to insert a new node as a descendant of x, we
can pay for the increased potential in x that may be required by the resulting
increase in Φ(x). The potential of the scapegoat node xi, like all the nodes that
do not observe the condition eq.(4), is Θ(W ′(Txi)). Therefore, this potential is
sufficient to pay for finding the scapegoat element and reassigning the hotlinks
of the sublist or subtree that has to be reconstructed. These operations have
complexity Θ(size(xi)) < Θ(W (xi)) (where size is the number of elements in a
sublist or a subtree).

Deletion. The deletion operation consists of removing a leaf node x of the tree
of weight 1. We first search the node x in the tree then we removed it, and we
update W [C]. Then, if W < max W/2, we reassign all the hotlinks of the tree,
and we reset max W to W . This method does not affect the search time t by
much: aτ log(max W/wx) ≤ aτ (log(W/wx) + 1).

Since we perform Ω(n) operations between two successive rebuilds due to
delete operations we can pay for them in the amortized sense (with n equal to
the number of elements in the tree). Thus for a sequence of delete operations, the
amortized complexity per deletion of a leaf node i with the dynamic assignment
method is equal to O(log(W/wi)).

Reweighting. This operation is exactly the same as the insertion and the dele-
tion except that we do not actually insert or delete a node. See section 2.2.
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Abstract. Motivated by optimization problems in sensor coverage, we
formulate and study the Minimum-Area Spanning Tree (mast) problem:
Given a set P of n points in the plane, find a spanning tree of P of mini-
mum “area,” where the area of a spanning tree T is the area of the union
of the n − 1 disks whose diameters are the edges in T . We prove that
the Euclidean minimum spanning tree of P is a constant-factor approx-
imation for mast. We then apply this result to obtain constant-factor
approximations for the Minimum-Area Range Assignment (mara) prob-
lem, for the Minimum-Area Connected Disk Graph (macdg) problem,
and for the Minimum-Area Tour (mat) problem. The first problem is a
variant of the power assignment problem in radio networks, the second
problem is a related natural problem, and the third problem is a variant
of the traveling salesman problem.

1 Introduction

We introduce and study the Minimum-Area Spanning Tree (mast) problem.
Given a set P of n points in the plane, find a spanning tree of P of minimum
area, where the area of a spanning tree T of P is defined as follows. For each
edge e in T draw the disk whose diameter is e. The area of T is then the area
of the union of these n− 1 disks. Although this problem seems natural (see also
applications below), we are not aware of any previous work on it.

One of the main results of this paper (presented in Section 2) is that the
minimum spanning tree of P is a constant-factor approximation for mast. This
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is an important property of the minimum spanning tree as is shown below. (See,
e.g., [7, 9] for background on the minimum spanning tree.)

We apply the result above to three problems from a class of problems that has
received considerable attention. The first problem is a variant of the power as-
signment problem (also called the range assignment problem). Let P be a set of
n points in the plane, representing n transmitters-receivers (or transmitters for
short). In the standard version of the power assignment problem one needs to as-
sign transmission ranges to the transmitters in P, so that (i) the resulting com-
munication graph is strongly connected (that is, the graph in which there exists a
directed edge from pi ∈ P to pj ∈ P if and only if pj lies in the disk Dpi

is strongly
connected, where the radius of Dpi

is the transmission range, ri, assigned to pi),
and (ii) the total power consumption (i.e., the cost of the assignment of ranges) is
minimal, where the total power consumption is

∑
pi∈P area(Dpi

).
The power assignment problem is known to be NP-hard (see Kirousis et

al. [10] and Clementi et al. [6]). Kirousis et al. [10] also obtain a 2-approximation
for this problem, based on the minimum spanning tree of P, and this is the best
approximation known.

Consider now the variant of the power assignment problem in which the second
requirement above is replacedby (ii’) the area of the union of the disksDp1 , . . . , Dpn

is minimum. We refer to this problem as the Minimum-Area Range Assignment
(mara) problem. In general, the presence of a foreign receiver (whether friendly
or hostile) in the region Dp1 ∪ · · · ∪ Dpn

is undesirable, and the smaller the area
of this region, the lower the probability that such a foreign receiver is present. In
Section 3 we prove that the range assignment of Kirousis et al. (that is based on the
minimum spanning tree) is also a constant-factor approximation for mara.

Another related and natural problem for which we obtain a constant-factor
approximation (in Section 4) is the following. Let P be a set of n points in the
plane. For each point p ∈ P, draw a disk Dpi

of radius 0 or more, such that (i)
the resulting disk graph is connected (that is, the graph in which there exists an
edge between pi ∈ P and pj ∈ P if and only if Dpi

∩Dpj
�= ∅ is connected), and

(ii) the area of the union of the disks Dp1 , . . . , Dpn
is minimized. We refer to

this problem as the Minimum-Area Connected Disk Graph (macdg) problem.
(See, e.g., [8, 11] for background on intersection graphs and on disk graphs in
particular.)

The last problem for which we obtain a constant-factor approximation (in
Section 5) is a variant of the well-known traveling salesman problem. Given a
set P of n points in the plane, find a tour of P of minimum area, where the
area of a tour T is the area of the n disks whose diameters are the edges of the
tour. We refer to this problem as the Minimum-Area Tour (mat) problem. The
constant-factor approximation that we obtain for this problem is also based on
results concerning the traveling salesman problem with a parameterized triangle
inequality.

A potentially interesting property concerning the area of the minimum span-
ning tree that is obtained as an intermediate result in Section 2 is that the depth
of the arrangement of the disks corresponding to the edges of the minimum span-
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ning tree is bounded by some constant. Notice that this property does not follow
immediately from the fact that the degree of the minimum spanning tree is at
most 6, as is shown in Figure 2.

Finally, all the above results hold in any fixed dimension d (with small mod-
ifications).

2 mst is a Constant-Factor Approximation for mast

Let T be any spanning tree of P. For an edge e in T , let D(e) denote the disk
whose diameter is e. Put D(T ) = {D(e) | e is an edge in T },

⋃
T =

⋃
e∈T D(e),

and σT =
∑

e∈T area(D(e)). Let mst be a minimum spanning tree of P. mst is
not necessarily a solution for the Minimum-Area Spanning Tree (mast) problem;
see Figure 1. In this section we prove that mst is a constant-factor approximation
for mast, that is, area(

⋃
mst) = O(area(

⋃
opt)), where opt is an optimal

spanning tree, i.e., a solution to mast.
We begin by showing another interesting property of mst, namely, that the

depth of any point p in the interior of a cell of the arrangement of the disks in
D(mst) is bounded by a small constant. This property does not follow directly
from the fact that the degree of mst is bounded by 6; see Figure 2. Let mstp be
a minimum spanning tree for P ∪ {p}. We need the following known and easy
claim.

Claim 1. We may assume that there is no edge (a, b) in mstp, such that (a, b)
is not in mst and both a and b are points of P.

Proof. Assume there is such an edge (a, b) in mstp. Consider the path in mst
between a and b. At least one of the edges along this path is not in mstp. Let

1

1

1
1

1

1 − ε

1 − ε

1

1 − ε

11

11

1 − ε

(a) (b)

Fig. 1. A minimum spanning tree is not necessarily a minimum-area spanning tree. (a)
The minimum spanning tree. (b) A minimum-area spanning tree
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q

Fig. 2. A spanning tree T of degree 3, and a point q (in the interior of a cell of the
arrangement of the disks in D(T )) of depth O(n)

e be such an edge. |e| ≤ |(a, b)|, since otherwise (a, b) would have been chosen
by the algorithm that computed mst (e.g., Kruskal’s minimum spanning tree
algorithm [5]). Therefore, we may replace the edge (a, b) in mstp by e, without
increasing the total weight of the tree.

An immediate corollary of this claim is that we may assume that if e is an
edge in mstp but not in mst, then one of e’s endpoints is p.

Lemma 1. σmst ≤ 5 area(
⋃

mst).

Proof. We prove that p belongs to at most 5 of the disks in D(mst). Let D(q1, q2)
be a disk in D(mst), such that p ∈ D(q1, q2). (Notice that p is not on the
boundary of D(q1, q2), since p is in the interior of a cell of the arrangement of
the disks in D(mst).) We show that the edge (q1, q2) is not in mstp. If it is,
then either the path from q1 to p or the path from q2 to p includes the edge
(q1, q2) (but not both). Assume, e.g., that the path from q1 to p includes the
edge (q1, q2). Then, since (q1, p) is shorter than (q1, q2), we can decrease the total
weight of mstp by replacing (q1, q2) in mstp by (q1, p). We conclude that (q1, q2)
is not in mstp.

Thus, by the corollary immediately preceding the lemma, each disk D ∈
D(mst) such that p ∈ D, induces a distinct edge in mstp that is connected to
p. But the degree of p is at most 6 (this is true for any vertex of any Euclidean
minimum spanning tree), so there can be at most 5 disks covering p, since one of
the edges connected to p is present due to the increase in the number of points
(i.e., p was added to P).

Remark. Ábrego et al. [1] have shown that the constant 5 can be improved to
a constant 3, with a significantly more delicate argument. Their result appeared
in an earlier (unpublished) draft of their manuscript.

Let opt be an optimal spanning tree of P, i.e., a solution to mast. We use
opt to construct another spanning tree, st, of P. Initially st is empty. Let e1
be the longest edge in opt. Draw two concentric disks C1 and C3

1 around the
mid point of e1 of diameters |e1| and 3|e1|, respectively. Compute a minimum
spanning tree of the points of P lying in C3

1 , using Kruskal’s algorithm [5].
Whenever an edge is chosen by Kruskal’s algorithm, it is immediately added to
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st. See Figure 3. Let S1 denote the set of edges that have been added to st in
this (first) iteration.

Next, let e2 be the longest edge in opt, such that at least one of its endpoints
lies outside C3

1 . As for e1, draw two concentric disks C2 and C3
2 around the mid

point of e2 of diameters |e2| and 3|e2|, respectively. Apply Kruskal’s minimum
spanning algorithm to the points of P lying in C3

2 with the following modification.
The next edge in the sorted list of potential edges is chosen by the algorithm if
and only if it is not already in st and its addition to st does not create a cycle in
st. Moreover, when an edge is chosen by the algorithm it is immediately added

C1

C3
1

e1

Fig. 3. st after choosing e1

C1

C3
1C3

2

C2

e1
e2

(a)

C1

C3
1

C3
2

C2

e1
e2

(b)

Fig. 4. st after choosing e1 and e2. (a) One of the end points of e2 is in C3
1 . (b) Both

endpoints of e2 are not in C3
1
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to st; see Figure 4 (a) and (b). Let S2 denote the set of edges that have been
added to st in this iteration.

In the i’th iteration, let ei be the longest edge in opt, such that there is
no path yet in st between its endpoints. Draw two concentric circles Ci and
C3

i around the mid point of ei, and apply Kruskal’s minimum spanning tree
algorithm with the modification above to the points of P lying in C3

i . Let Si

denote the set of edges that have been added to st in this iteration. The process
ends when for each edge e in opt there already exists a path in st between the
endpoints of e.

Claim 2. For each i, Si is a subset of the edge set of the minimum spanning tree
msti that is obtained by applying Kruskal’s algorithm, without the modification
above, to the points in C3

i .

Proof. Let e be an edge that was added to st during the i’th iteration. If e is
not chosen by Kruskal’s algorithm (without the modification above), it is only
because, when considering e, a path between its two endpoints already existed
in msti. But this implies that e could not have been added to st, since, any edge
already in msti was either also added to st or was not added since there already
existed a path in st between its two endpoints. Thus, when e was considered by
the modified algorithm it should have been rejected. We conclude that e must
be in msti.

Claim 3. st is a spanning tree of P.

Proof. Since only edges that do not create a cycle in st were added to st, there
are no cycles in st. Also, st is connected, since otherwise there still exists an
edge in opt that forces another iteration of the construction algorithm.

Let C denote the set of the disks C1, . . . , Ck, and let C3 denote the set of the
disks C3

1 , . . . , C3
k , where k is the number of iterations in the construction of st.

Claim 4. For any pair of disks Ci, Cj in C, i �= j, it holds that Ci ∩ Cj = ∅.

Proof. Let Ci be any disk in C. We show that for any disk Cj ∈ C such that
j > i, Ci ∩Cj = ∅. From the construction of st it follows that |ej |, the diameter
of Cj , is smaller or equal to |ei|, the diameter of Ci. Moreover, at least one of
the endpoints of ej lies outside C3

i (since if both endpoints of ej lie in C3
i , then,

by the end of the i’th iteration, a path connecting between these endpoints must
already exist in st). Therefore, Cj whose center coincides with the mid point of
ej , cannot intersect Ci.

Claim 5. σst = O(area(
⋃

opt)).

Proof. Recall that σst = ΣiσSi
, where σSi

= Σe∈Si
area(D(e)). We first show

by the sequence of inequalities below that σSi
= O(area(Ci)).

σSi
≤1 σmsti

≤2 5 area(
⋃

msti

) =3 O(area(C3
i )) =4 O(area(Ci)) .
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The first inequality follows immediately from Claim 2. The second inequality is
true by Lemma 1. Consider Equality 3. Since all edges in msti are contained in
C3

i , it holds that
⋃

msti
is contained in a disk that is obtained by expanding C3

i by
some constant factor. It follows that area(

⋃
msti

) = O(area(C3
i )) = O(area(Ci)).

Therefore,
σst = ΣiσSi

= ΣiO(area(Ci)) .

But according to Claim 4, the latter expression is equal to O(area(
⋃

C)), and,
since C is a subset of D(opt), we conclude that σst = O(area(

⋃
opt)).

We are now ready to prove the main result of this section.

Theorem 1. mst is a constant-factor approximation for mast, i.e., area
(
⋃

mst) ≤ c · area(
⋃

opt), for some constant c.

Proof.
area(

⋃
mst

) ≤1 σmst ≤2 σst ≤3 c · area(
⋃
opt

) .

The first inequality is trivial. The second inequality holds for any spanning tree
of P; that is, for any spanning tree T , σmst ≤ σT . (Since if the lengths |e| of
the edges are replaced with weights π|e|2/2, we remain with the same minimum
spanning tree.) The third inequality is proven in Claim 5.

3 A Constant-Factor Approximation for mara

mst induces an assignment of ranges to the points of P. Let pi ∈ P and let ri be
the length of the longest edge in mst that is connected to pi, then the range that
is assigned to pi is ri. Put ra = {Dp1 , . . . , Dpn

}, where Dpi
is the disk of radius

ri centered at pi. In this section we apply the main result of the previous section
(i.e., mst is a constant-factor approximation for mast), in order to prove that
the range assignment that is induced by mst is a constant-factor approximation
for the Minimum-Area Range Assignment (mara) problem. That is, (i) the
corresponding (directed) communication graph is strongly connected, and (ii)
the area of the union of the disks in ra is bounded by some constant times the
area of the union of the transmission disks in an optimal range assignment, i.e.,
a solution to mara.

The first requirement above was already proven by Kirousis et al. [10], who
showed that the range assignment induced by mst is a 2-approximation for the
standard range assignment problem. Let optR denote an optimal range assign-
ment, i.e., a solution to mara. It remains to prove the second requirement above.

Claim 6. area(
⋃

RA) ≤ 9 area(
⋃

mst).

Proof. We define an auxiliary set of disks. For each edge e in mst, draw a disk of
diameter |3e| centered at the mid point of e. Let D3(mst) denote the set of these
n − 1 disks; see Figure 5. We now observe that area(

⋃
RA) ≤ area(

⋃
D3(mst)).
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pk

pj

D(pi, pj)

Dpi (pi, pj)

D3(pi, pj)

Dpj (pj , pk)

pi

Fig. 5. (pi, pj) ∈ mst; D(pi, pj) ∈ D(mst); Dpi(pi, pj), Dpj (pj , pk) ∈ ra; D3(pi, pj) ∈
D3(mst)

This is true since for each pi ∈ P, Dpi
= Dpi

(pi, pj) for some point pj ∈ P that
is connected to pi (in mst) by an edge, and Dpi

(pi, pj) is contained in the disk of
D3(mst) corresponding to the edge (pi, pj). Finally, clearly area(

⋃
D3(mst)) ≤

9 area(
⋃

mst).

Theorem 2. ra is a constant-factor approximation for mara, i.e., area(
⋃

ra) ≤
c′ · area(

⋃
optR), for some constant c′.

Proof. The proof is based on the observation that the (directed) communication
graph corresponding to optR contains a spanning tree, and on the main result
of Section 2. Let p be any point in P. We construct a spanning tree T of P as
follows. For each point q ∈ P, q �= p, compute a shortest (in terms of number of
hops) directed path from q to p, and add the edges in this path to T . Now make
all edges in T undirected. T is a spanning tree of P. For each edge (pi, pj) in T ,
the disk D(pi, pj) is contained either in the transmission disk of pi (in optR),
or in the transmission disk of pj (in optR). Hence,

⋃
T ⊆

⋃
optR .

The following sequence of inequalities completes the proof. (opt denotes a
solution to mast.)

area(
⋃
ra

) ≤1 9 area(
⋃
mst

) ≤2 9c · area(
⋃
opt

) ≤3 9c · area(
⋃
T

) ≤4 9c · area(
⋃

optR

) .

The first inequality follows from Claim 6; the second inequality follows from
Theorem 1; the third inequality follows from the definition of opt; the fourth
inequality was shown above.

4 A Constant-Factor Approximation for macdg

mst induces an assignment of radii to the points of P. Let pi ∈ P and let ri

be the length of the longest edge in mst connected to pi, then the radius that
is assigned to pi is ri/2. Put dg = {Dp1 , . . . , Dpn

}, where Dpi
is the disk of
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radius ri/2 centered at pi. In this section we apply the main result of Section 2,
in order to prove that dg is a constant-factor approximation for the Minimum-
Area Connected Disk Graph (macdg) problem. That is, (i) viewing dg as an
intersection graph, dg is connected, and (ii) the area of the union of the disks
in dg is bounded by some constant times the area of the union of the disks in
an optimal assignment of radii, i.e., a solution to macdg.

The first requirement above clearly holds, since each edge in mst is also an
edge in dg. Let optD denote an optimal assignment of radii, i.e., a solution to
macdg. It remains to prove the second requirement above.

Theorem 3. dg is a constant-factor approximation for macdg, i.e., area
(
⋃

dg) ≤ c′′ · area(
⋃

optD ), for some constant c′′.

Proof. We only outline the proof, since it is very similar to the proof of the
previous section. We first claim that area(

⋃
dg) ≤ 9 area(

⋃
mst). This follows

immediately from Claim 6, since
⋃

dg ⊆
⋃

ra. Next, we observe that if one
doubles the radius of each of the disks in optD, then the resulting set of disks
contains the set of disks of some spanning tree T of P. Thus, by Theorem 1,
area(

⋃
mst) ≤ c · area(

⋃
optD ). We complete the proof by putting the two

inequalities together.

5 A Constant-Factor Approximation for mat

Consider the complete graph induced by P. We assign weights to the edges of
the graph, such that the weight w(e) of an edge e is |e|2. Let G2 denote this
graph. Define the weight w(F ) of a subset F of the edge-set of G2 to be the sum
of the weights of the edges in F .

Notice that the triangle inequality does not hold in G2. However, the triangle
inequality “almost” holds, in that |uv|2 ≤ 2 · (|uw|2 + |wv|2). For distance func-
tions such that d(u, v) ≤ τ · (d(u,w) + d(w, v)), constant-factor approximation
algorithms for the TSP are known: Andreae and Bandelt [3] give a (3τ2/2+τ/2)-
approximation, which was refined by Andrea [2] to a (τ2 + τ)-approximation,
and Bender and Chekuri [4] give a 4τ -approximation. For our case (τ = 2), this
implies that there is a 6-approximation.

Andreae and Bandelt actually compute a tour T in G2, such that w(T ) ≤
c · w(mstG2), where mstG2 is the minimum spanning tree of G2 and c is some
constant. We show that T is a constant-factor approximation for the Minimum-
Area Tour (mat) problem.

For an edge e in T , let D(e) denote the disk whose diameter is e. Put D(T ) =
{D(e) | e is an edge in T},

⋃
T =

⋃
e∈T D(e), and σT =

∑
e∈T area(D(e)). Let

optT be an optimal tour, i.e., a solution to mat. Clearly area(
⋃

optT ) ≥
area(

⋃
optS ), where optS is a solution to the Minimum Area Spanning Tree

(mast) problem. We need to show that area(
⋃

T ) = O(area(
⋃

optT )). Indeed

area(
⋃
T

) ≤ σT ≤ w(T ) ≤ c · w(mstG2) .
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But w(mstG2) =
∑

e∈mst |e|2, where mst is the minimum spanning tree of P
(since both trees are identical in terms of edges). So

area(
⋃
T

) = O(
∑

e∈mst
|e|2) = O(σmst) = O(area(

⋃
mst

)) ,

where the latter equality follows from Lemma 1. And, by the main result of
Section 2,

O(area(
⋃
mst

)) = O(area(
⋃

optS

)) = O(area(
⋃

optT

)) .

The following theorem summarizes the result of this section.

Theorem 4. T is a constant-factor approximation for mat, i.e., area(
⋃

T ) ≤
ĉ · area(

⋃
optT ), for some constant ĉ.
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Abstract. This paper presents a general family of 3D hinged dissections
for polypolyhedra, i.e., connected 3D solids formed by joining several rigid
copies of the same polyhedron along identical faces. (Such joinings are
possible only for reflectionally symmetric faces.) Each hinged dissection
consists of a linear number of solid polyhedral pieces hinged along their
edges to form a flexible closed chain (cycle). For each base polyhedron P
and each positive integer n, a single hinged dissection has folded config-
urations corresponding to all possible polypolyhedra formed by joining
n copies of the polyhedron P . In particular, these results settle the open
problem posed in [7] about the special case of polycubes (where P is
a cube) and extend analogous results from 2D [7]. Along the way, we
present hinged dissections for polyplatonics (where P is a platonic solid)
that are particularly efficient: among a type of hinged dissection, they
use the fewest possible pieces.

1 Introduction

A dissection of a set of figures (solid 2D or 3D shapes, e.g., polygons or poly-
hedra) is a way to cut one of the figures into finitely many (compact) pieces
such that it can be transformed into any other of the figures by moving the
pieces rigidly. Dissections have been studied extensively, particularly in 2D [12,
15]. It is well-known that any two polygons of the same area have a dissec-
tion [5, 12, 16]. By transitivity, it is easy to extend this result to a dissection
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of any finite set of polygons. Thus, in this context, the main interest is in
finding the dissection of the polygons that uses the fewest possible pieces. On
the other hand, not every two polyhedra of the same volume have a dissec-
tion: for example, there is no dissection of a regular tetrahedron and an equal-
volume cube [5]. This result was a solution to Hilbert’s Third Problem [5].

Fig. 1. Hinged dissection
of square and equilat-
eral triangle [8]. Differ-
ent shades show different
folded states

A hinged dissection of a set of figures is a dissec-
tion in which the pieces are hinged together at points
(in 2D or 3D) or along edges (in 3D), and there is a
motion between any two of the figures that adheres to
the hinging, keeping the hinge connections between
pieces intact. While a few hinged dissections such as
the one in Figure 1 are quite old [8], hinged dissec-
tions have received most of their study in the last few
years [3, 7, 9, 13]. It remains open whether every two
polygons of the same area have a hinged dissection, or
whether every two polyhedra that have a dissection
also have a hinged dissection. It also remains open
whether hinge-dissectability is transitive.

In this paper we develop a broad family of 3D
hinged dissections for a class of polyhedra called poly-
polyhedra. For a polyhedron P with labeled faces, a
polypolyhedron of type P is an interior-connected non-
self-intersecting solid formed by joining several rigid
copies of P wholly along identically labeled faces. See Figure 2. These joinings
must perfectly match two opposite orientations of the same face of P , so join-
ings can occur only along faces with reflectional symmetry. We call P the base
polyhedron. If a polypolyhedron consists of n rigid copies of P , we call it an
n-polyhedron of type P . Examples of polypolyhedra include polycubes (where P
is a cube) or more generally polyplatonics (where P is any fixed platonic solid);
in any of these cases, any pair of faces can be joined because of the regular
symmetry of the platonic solids. See Figure 3 for some examples of polycubes.

Fig. 2. Joining two rigid copies of a
tetrahedron. The face of joining is
reflectionally symmetric

For every polyhedron P and positive in-
teger n, we develop one hinged dissection
that folds into all (exponentially many) n-
polyhedra of type P . This result is superior
to having one hinged dissection between ev-
ery pair of n-polyhedra of type P . The num-
ber of pieces in the hinged dissection is linear
in n and the combinatorial complexity of P .
For polyplatonics, we give particularly effi-
cient hinged dissections, tuning the number
of pieces to the minimum possible among a
natural class of “regular” hinged dissections
of polypolyhedra. For polyparallelepipeds (where P is any fixed parallelepiped),
we give hinged dissections in which every piece is a scaled copy of P . All of
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our hinged dissections are hinged along edges and form a cyclic chain of pieces,
which can be broken into a linear chain of pieces.

Fig. 3. Two polycubes of order 8,
which have a 24-piece edge-hinged
dissection by our results

Our solution combines several techniques
to obtain increasingly more general families
of hinged dissections. We reduce the problem
of finding a hinged dissection of polypolyhe-
dra of type P to finding a hinged dissection
of P that has “exposed hinges” at certain lo-
cations on its surface. We find the first such
hinged dissection for every platonic solid, ex-
ploiting that such a solid is star-shaped and
has a Hamiltonian cycle on its faces. Then
we relax the star-shaped constraint, general-
izing P to be any solid with a Hamiltonian
cycle on its faces, using a more general re-
finement scheme based on the straight skeleton. Then we relax the Hamiltonic-
ity constraint by using a Hamiltonian refinement scheme. Finally, we show how
faces with more than a single reflectional symmetry can be joined even when
their labeled rotations are not equal. This step uses a general “twister” gadget,
a hinged dissection that can rotate by any angle that is a multiple of 360◦/k for
fixed k.

Our results generalize analogous results about hinged dissections of “poly-
forms” in 2D [7]. For a polygon P with labeled edges, a polyform of type P is an
interior-connected non-self-intersecting planar region formed by joining several
rigid copies of P wholly along identically labeled edges. In particular, polyforms
include polyominoes (where P is a square) and polyiamonds (where P is an equi-
lateral triangle). In 2D, edges are always reflectionally symmetric (about their
midpoint), so a polyform can join any pair of identically labeled edges. For any
polygon P and positive integer n, [7] develops a single vertex-hinged dissection
that folds into all n-forms of type P . The same paper asks whether analogous
dissections exist in 3D, in particular for polycubes; we solve this open problem,
building on the general inductive approach of [7].

We do not know whether our hinged dissections can be folded from one config-
uration to another without self-intersection. (The same is true of most previous
theoretical work in hinged dissections [3, 7, 9].) However, we demonstrate such
motions for the most complicated gadget, the twister.

Our results have applications in self-assembly and nanomanufacturing, and
may find applications in self-reconfigurable robotics. Existing reconfigurable
robots (see, e.g., [19]) consist of units that can attach and detach from each
other, and this mechanism is complicated; 3D hinged dissection may offer a way
to avoid this complication and still achieve arbitrary reconfiguration.1 In self-
assembly, recent progress has enabled chemists to build millimeter-scale “self-

1 This idea was suggested by Joseph O’Rourke in personal communication,
Nov. 2004.
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working” 2D hinged dissections [17]. An analog for 3D hinged dissections may
enable building a complex 3D structure out of a chain of units. If the process is
programmable, we could even envision an object that can re-assemble itself into
different 3D structures on demand. These directions have recently been explored
(so far at a more macroscale) using ideas from this paper [14].

2 Polyplatonics

In this section we demonstrate our approach for constructing a hinged dissection
of polypolyhedra of type P in the special case that P is a platonic solid. Although
several of the details change in more general settings in later sections, the overall
approach remains the same.

First, we find a suitable hinged dissection of the base polyhedron P . The
exact constraints on this dissection vary, but two necessary properties are that
the hinged dissection must be (1) cyclic, forming a closed chain (cycle) of pieces
in which there is a single hinge connecting every consecutive pair of pieces and
there are no other hinges, and (2) exposed in the sense that, for every face of P ,
there is a hinge in H that lies on the face (either interior to the face or on its
boundary). For platonic solids, these hinges will be edges of the polyhedron.
Second, we repeat n copies of this hinged dissection of P , spliced together into
one long closed chain. Finally, we prove that this new hinged dissection can fold
into all n-polyhedra of type P , by induction on n.

2.1 Exposed Cyclic Hinged Dissections of Platonic Solids

We construct an exposed cyclic hinged dissection of any platonic solid as follows.
First we carve the platonic solid into a cycle of face-based pyramids with the

Fig. 4. Carving a regular tetrahedron into four
face-based pyramids

platonic solid’s centroid as the
apex. Thus, a refined tetrahe-
dron consists of four triangle-
based pyramids (irregular tetra-
hedra); a refined cube consists
of six square-based pyramids; a
refined octahedron consists of
eight triangle-based pyramids; a
refined dodecahedron consists of
twelve pentagon-based pyramids; and a refined icosahedron consists of twenty
triangle-based pyramids. Every platonic solid has a Hamiltonian cycle on its
faces. Consequently, the pieces in the refinement can be hinged together in a
cycle, following the Hamiltonian path on the faces. Figure 5 shows unfoldings of
these hinged dissections, in particular illustrating the Hamiltonian cycle.

Because there is a hinge dual to every edge in the Hamiltonian path on
the faces, every face of the platonic solid has exactly two hinges. Therefore,
the hinged dissection is exposed. Even more, we can merge adjacent pairs of
pyramids along a face, halving the number of pieces, and leave exactly one hinge
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cube

icosahedron

tetrahedron

octahedron

dodecahedron

Fig. 5. Unfolded exposed cyclic hinged dissections of the platonic solids. The bold
lines indicate a pair of edges that are joined by a hinge but have been separated in this
figure to permit unfolding. The dashed lines denote all other hinges between pieces. In
the unfolding, the bases of all of the pyramid pieces lie on a plane, and the apexes lie
above that plane (closer to the viewer)

per face of the platonic solid. Now two faces share every hinge, but still the
hinged dissection is exposed because every face has a hinge along its boundary.
Thus we have proved

Theorem 1. The platonic solid with f faces has an exposed cyclic hinged dis-
section of f/2 pieces in which every hinge is an edge of the platonic solid.

These exposed hinged dissections have the fewest possible pieces, subject to
the exposure constraint, because a hinge can simultaneously satisfy at most two
faces of the original polyhedron.

2.2 Inductive Hinged Dissection

Next we show how to build a hinged dissection of all n-platonics of type P based
on a repeatable hinged dissection of a platonic solid P . The hinged dissection
is essentially n repetitions of the exposed hinged dissection from the previous
section. Specifically, the nth repetition of a cyclic hinged dissection is the result of
cutting the cyclic hinged dissection at an arbitrary hinge to form an open chain,
repeating this open chain n times, and then reconnecting the ends to restore a
closed chain. Thus, if there are k pieces H1,H2, . . . , Hk connected in that order
(and cyclically) in a cyclic hinged dissection, then the nth repetition consists
of nk pieces H1, . . . , Hk,H1, . . . , Hk, . . . . . . H1, . . . , Hk connected in that order
(and cyclically). (Although the order H1, . . . , Hk depends on where we cut the
cyclic order, the resulting nth repetition is independent of this cut.)

We prove that this hinged dissection has the desired foldings by an induc-
tive/incremental construction based on the following tool, similar to [7, Prop. 1]:

Lemma 1. Every n-polyhedron of type P has a copy of P whose removal results
in a (connected) (n − 1)-polyhedron, provided n > 1.
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Proof. The graph of adjacencies between copies of P in an n-polyhedron is a
connected graph on n vertices. Any spanning tree of this graph has at least two
leaves, and the removal of either leaf leaves the original graph connected. The
resulting pruned graph is the adjacency graph of a (n − 1)-polyhedron. �

Reversing the inductive process of this lemma implies that any n-polyhedron
of P can be built up by adding one copy of P at a time, yielding a connected
1-, 2-, . . . , and (n − 1)-polyhedron along the way.

Theorem 2. Given an exposed cyclic hinged dissection of the platonic solid P
in which exactly one piece is incident to each face of P , the nth repetition of this
hinged dissection can fold into any n-platonic of type P .

Proof. The proof is by induction. The base case of n = 1 is trivial: there is only
one 1-platonic of type P , namely P itself. The exposed hinged dissection satisfies
all the desired properties.

Consider an n-platonic Q of type P . By Lemma 1, one copy P1 of P can be
removed from Q to produce an (n − 1)-platonic Q′. By induction, the (n − 1)st
repetition of the exposed hinged dissection can fold into Q′. Also, P1 itself can
be decomposed into an instance of the exposed hinged dissection. Our goal is to
merge these two hinged dissections.

Let P2 denote a copy of P in Q′ that shares a face f with P1. Suppose the
exposed cyclic hinged dissection of P consists of pieces H1,H2, . . . , Hk in that
order. Let Hi denote the piece in the hinged dissection of P2 incident to face f .
Let h be a hinge incident to f (which must be an edge of f) and thus incident
to Hi. Suppose by symmetry that the other piece in Q′ incident to hinge h
is Hi+1.

Then we rotate P1 so that its piece Hi+1 is flush against the Hi piece in
P2, along the shared face f between P1 and P2. We further rotate P1 so that
the hinge h′ between pieces Hi and Hi+1 in P1 aligns with the hinge h between
pieces Hi and Hi+1 in P2. We then replace hinges h and h′ with two hinges,
one from Hi in P2 to Hi+1 in P1, and the other from Hi in P1 to Hi+1 in P2.
The resulting hinged dissection is a single cycle, and every instance of piece Hi

hinges to pieces Hi−1 and Hi+1, so the resulting hinged dissection is a folding
of the nth repetition of H1,H2, . . . , Hk as desired. �

Corollary 1. If P is the platonic solid with f faces, then there is an (nf/2)-
piece cyclic hinged dissection that can fold into all n-platonics of type P .

3 Generalized Interior Dissection

The proof of hinged dissections for polyplatonics consists of two main parts:
(1) the construction of an exposed cyclic hinged dissection of a single platonic
solid, with the property that at most one piece is incident to each face, and (2) an
inductive argument about the nth repetition. In this section we generalize the
first part to any polyhedron with a Hamiltonian cycle on its faces. The second
part will remain restrictive until future sections.
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3.1 Exposed Cyclic Hinged Dissections of Hamiltonian Polyhedra

The exposed cyclic hinged dissection for platonic solids from Section 2.1 essen-
tially exploited that platonic solids, like all convex polyhedra, are “star-shaped”.
A polyhedron is star-shaped if it has at least one point c in its interior from which
the line segment to any point on the polyhedron’s surface remains interior to the
polyhedron. Any star-shaped polyhedron can be carved into face-based pyramids
with apexes at c. These pyramids can be hinged together cyclically at the edges
of the polyhedron crossed by the Hamiltonian cycle on the faces.

Dissection of a polyhedron into face-based pyramids with a common apex is
possible precisely when the polyhedron is star-shaped. However, it is not hard
to obtain a dissection of an arbitrary polyhedron into one piece per face, though
the pieces are no longer pyramids. One approach is to use the straight skele-
ton [2, 1, 10, 6]. The straight skeleton is normally defined as a particular one-
dimensional tree structure contained in a given two-dimensional polygon. For
our purposes, the relevant property is that the tree structure subdivides the
polygon into exactly one region per polygon edge, and only that region is inci-
dent to that polygon edge [2].

The straight skeleton can be generalized to 3D as a decomposition of a given
polyhedron into exactly one cell per facet, and only that cell is incident to that
facet. We imagine sweeping every facet perpendicularly inwards at the same
speed in parallel. Faces change geometry as they are inset by clipping or extend-
ing to where they meet adjacent faces. Faces may become disconnected, in which
case the sweep continues with each piece, or disappear, in which case the sweep
continues without that face. In the end, the entire polyhedron is swept, and
the regions swept by individual faces form a partition with the desired property
that exactly one region is incident to each facet. Erickson [11] points out that
the straight skeleton is no longer well-defined in 3D: there are choices during the
offset process that can be resolved multiple ways. However, for our purposes, we
just need a single straight skeleton, with an arbitrary decision for each choice,
for a suitable decomposition.

As before, the pieces can be hinged together cyclically at the edges of the
polyhedron crossed by the Hamiltonian cycle. Thus, for any polyhedron with
a Hamiltonian cycle on its n faces, we obtain an n-piece exposed cyclic hinged
dissection with the property that each face of the polyhedron is incident to
exactly one piece.

3.2 Inductive Hinged Dissection

The second part of the argument is the inductive construction. The key steps
here are the two rotations of an added piece P1. The first rotation ensures that
the next piece in the hinging of P1 (Hi+1) is against the piece to which we want
to join P1 (Hi of P2). The second rotation ensures that the exposed hinges of
these two pieces coincide.

These rotations enforce restrictions on what types of polypolyhedra we can
build. The first rotation essentially requires that all faces of P “look the same” (in
addition to having the same shape): the rotation that brings any face to any other
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face should result in an identical copy of P (but with faces relabeled). The second
rotation requires that all orientations of a face look the same. Unfortunately,
these two restrictions force P to be a platonic solid. The goal of the remaining
sections is to remove these restrictions, in addition to the restriction that P has
a Hamiltonian cycle on its faces.

4 Surface Refinement

In this section we remove two constraints on the base polyhedron P : the require-
ment that P has a Hamiltonian cycle on its faces, and the requirement that all

Fig. 6. Hamiltonian refinement of
five faces in a hypothetical poly-
hedron, shown here unfolded. Bold
lines outline faces. Dashed lines
show triangulations and are not
cuts. Thin solid lines are cuts. The
curved line shows a Hamiltonian cy-
cle induced by the spanning tree of
this unfolding

faces of P look the same. We achieve both
of these generalizations by subdividing each
face of P by a collection of linear cuts.

First, we divide each reflectionally sym-
metric face of P along one of its lines of sym-
metry. Recall that joinings between copies of
P are possible only along reflectionally sym-
metric faces. Now if we can arrange for these
symmetry lines to be hinges in an exposed
cyclic hinged dissection of the new polyhe-
dron P ′, then whenever we attempt to at-
tach a new piece P ′

1, we are guaranteed that
the two consecutive pieces Hi and Hi+1 of
the hinging that we need to place against

each other are in fact the two reflectional
halves of the original face. Thus the first ro-
tation in the induction construction does ex-
actly what we want: it brings together the
two identically labeled faces of P .

Second, we divide each face of P ′ so that
any spanning tree of the faces in P ′ trans-
lates into a Hamiltonian cycle in the result-
ing polyhedron P ′′. This reduction is similar
to the Hamiltonian triangulation result of [4] as well as a refinement for hinged
dissection of 2D polyforms [7, Section 6]. We conceptually triangulate each face
f of P ′ using chords (though we do not cut along the edges of that triangula-
tion). Then, for each triangle, we cut from an arbitrarily chosen interior point to
the midpoints of the three edges. Figure 6 shows an example of this process. For
any spanning tree of the faces of P ′, we can walk around the tree (i.e., follow an
Eulerian tour) and produce a Hamiltonian cycle on the faces of P ′′.

In particular, we can start from the matching on the faces of P ′ from the
reflectionally symmetric pairing, and choose a spanning tree on the faces of P ′

that contains this matching. Then the resulting Hamiltonian cycle in P ′′ crosses
a subdivided edge of every line of symmetry. (In fact, the Hamiltonian cycle
crosses every subdivided edge of every line of symmetry.) Thus, in the exposed
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cyclic hinged dissection of the Hamiltonian polyhedron P ′′, there is an exposed
hinge along every line of symmetry. Therefore all joinings between copies of
P ′′ can use these hinges, which means that the first rotation in the induction
construction happens automatically from joining along corresponding faces.

5 Mutually Rotated Base Polyhedra: Twisters

The last generalization concerns the second rotation in the inductive construc-
tion. If every reflectionally symmetric face has only one line of symmetry, this
second rotation is automatic just from making the faces meet geometrically.
However, if a face has more than one line of symmetry, the polypolyhedron may
require different rotations of the two base polyhedra around their common face.

To enable these kinds of joinings, we introduce the twister gadget shown in
Figure 7. This gadget allows the top face to rotate by any integer multiple of
360◦/k with respect to the bottom face. The volume occupied by the twister
gadget is a prism with a regular k-gon as a base.

To construct the pieces, we slice this prism in half parallel to the base, leaving
two identical prisms, one stacked atop the other. Then we divide each prism by
making several planar cuts perpendicular to the base: in projection of a regular
k-gon, we cut from the center to every vertex, to the midpoint of every edge,
and to each quarter point between a vertex and an edge midpoint. The resulting
8k pieces are all triangular prisms.

A
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A
4

B1
B2

B4

B4

B4

B3

B3

B3

A1 A2 A
3

A
3

A2A1

A2
A4

A1A3

(d)

(a)

(b)

(c)

Fig. 7. The twister gadget with k = 4: 32 pieces allowing any between none and three
quarter turns. For visual clarity, the two layers are drawn substantially separated in
(a) and slightly separated in (b) and (c); in fact they are flush. (d) shows the result of
unfolding along the perimeter hinges. (c) shows a refolding that achieves a half turn
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We hinge these prisms together cyclicly as follows. Two hinges connect the
top and bottom levels, lying (in projection) along a cut from the center to an
edge midpoint. For each remaining cut from the center to an edge midpoint (in
projection), and for each cut from the center to a vertex (in projection), there
is a hinge connecting the two incident pieces on the “inside” (on the bottom of
the top prism and on the top of the bottom prism). For each cut from the center
to a quarter point (in projection), there is a hinge connecting the two incident
pieces on the perimeter of the regular k-gon.

The perimeter hinges enable the twister to unfold as shown in Figure 7(d)
to make all the inside hinges parallel. The inside hinges allow the twister to be
further unfolded from this state into a convex three-dimensional “ring”. Then
we can reverse the process, collapsing the 3D ring back down along the inside
hinges to a nearly flat unfolding like Figure 7(d), and folding it back along the
perimeter hinges into the regular k-gon configuration. In between the unfolding
and folding, by rotating the ring state, we can change which pieces are ultimately
on which layer as shown in Figure 7(c).

Specifically, by this continuous folding process, we can move any multiple of
4 pieces from the top layer to the bottom layer on one side of the gap where the
layers connect, and the same number of pieces from the bottom layer to the top
layer on the other side of the gap. If we move 4j pieces on either side, we rotate
the top regular k-gon by j · 360◦/k relative to the bottom regular k-gon. If we
restrict j to satisfy 0 ≤ j < k (which suffices for the desired set of k possible
rotations), then there are four pieces A1, A2, A3, A4 that always remain on the
top layer and four pieces B1, B2, B3, B4 that always remain on the bottom layer.

To allow the twister gadget to attach to other pieces on its top and bottom,
we need to add exposed hinges. We remove the inner hinge connecting A2 and
A3, which in projection connects the center to a vertex of the regular k-gon, and
replace it with a corresponding outer hinge on the top side of the twister gadget.
Similarly, we remove the inner hinge connecting B2 and B3, whose projection
connects the center to the same vertex of the regular k-gon, and replace it with a
corresponding outer hinge on the bottom side of the twister gadget. The modified
twister gadget can be folded continuously as before, except that now we keep
A2 rigidly attached to A3 and B2 rigidly attached to B3 when opening up into
a three-dimensional ring, not folding the two outer hinges at all.

We embed the modified twister gadget in each face of the base polyhedron
P that has k-fold symmetry for k ≥ 3. More precisely, we carve out of P a thin
prism with a small regular k-gon base, centered at the symmetry center of the
face, and infuse this carved space with a twister gadget. Then we construct the
refinement P ′′ of P as before, choosing an arbitrary line of symmetry of a k-fold
symmetric face for the subdivision and resulting matching. The line of symmetry
actually now “bends” slightly to dip underneath the thin twister gadget at the
center. Normally the hinged dissection of P ′′ would have a hinge along this line
of symmetry, connecting the two incident pieces C and D. Instead, we rotate
the embedded twister gadget so that its outer hinges (those between A2 and A3
and between B2 and B3) align with this chosen line of symmetry, and so that
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B2 is atop C and B3 is atop D. Then we replace the outer hinge between B2
and B3 with a hinge between B2 and C and a hinge between B3 and D. (All
three of these hinges lie geometrically along the same line segment in the folded
configuration.)

In the inductive construction of an n-polyhedron of type P , we use the outer
hinge between pieces A2 and A3 to combine two copies of P ′′′ along a k-fold
symmetric face, k ≥ 3. This hinge lies along the chosen line of symmetry, in the
middle of the face, and therefore can be aligned between the two copies. Note
that the resulting construction has two copies of the twister gadget joined along
their top sides, which is redundant because it allows up to two full turns of the
faces, but we cannot easily remove this redundancy while having two identical
copies of a single hinged dissection.

Two copies of P ′′′ joined along a face of k-fold symmetry can now rotate with
respect to each other by j · 360◦/k, for any desired 0 ≤ j < k. This property is
exactly what we need to perform the second rotation in the inductive argument
of hinged dissectibility.

This completes our construction of a hinged dissection that folds into all
n-polyhedra of type P , for any positive integer n and for any polyhedron P .

6 Self-similar Hinged Dissections

This section considers a related side problem from the main line of the paper,
called “self-similar hinged dissections”. A hinged dissection is self-similar if every
piece is similar to (a scaled copy of) the base polyhedron P . Self-similar dissec-
tions (without hingings) are well-studied in recreational mathematics, usually in
2D, so it is natural to consider their hinged, 3D counterparts.

Figure 8 gives a self-similar exposed hinged dissection of a cube, which by
our techniques leads to a self-similar hinged dissection of all n-cubes, for any n.
The dissection is simple, dividing the cube into a 2 × 2 × 2 array of identical
subcubes. The hinging is less trivial because of the requirement that every face
of the original cube has an exposed hinge. The hinges are always between the
midpoint of an original edge to the center of an original face, so two hinges
between adjacent cubes can always be brought into alignment, after possible
rotation around the shared face, during the merging process in the inductive
construction.

The resulting dissection of n-cubes uses 8n pieces (compared to 3n pieces
from Corollary 1):

Theorem 3. The nth repetition of the cyclic hinged dissection in Figure 8 con-
sists of 8n identical cubes and folds into all n-cubes.

This hinged dissection of a cube is clearly the smallest exposed self-similar
hinged dissection of the cube, and hence is optimal among such dissections.
The hinged dissection also applies more generally to any parallelepiped (e.g., an
x × y × z box) as the base shape P .
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Fig. 8. A hinged dissection of a cube into a 2× 2× 2 array of 8 subcubes. This hinged
dissection can be used in place of that in Figure 5; every face has (at least) one exposed
hinge. Top-left: The dissection. Top-right: The cyclic hinging. Bottom: Unfolded after
cutting one hinge. Hinges are drawn bold

This extension has been used in an interactive sculpture [18] consisting of
roughly a thousand identical wooden blocks (boxes) hinged together according to
Figure 8. (For manipulation purposes, the chain was broken into small segments.)
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Abstract. A coloring of a tree is convex if the vertices that pertain to
any color induce a connected subtree. Convex colorings of trees arise in
areas such as phylogenetics, linguistics, etc. e.g., a perfect phylogenetic
tree is one in which the states of each character induce a convex coloring
of the tree.

When a coloring of a tree is not convex, it is desirable to know
”how far” it is from a convex one, and what are the convex colorings
which are ”closest” to it. In this paper we study a natural definition of
this distance - the recoloring distance, which is the minimal number of
color changes at the vertices needed to make the coloring convex. We
show that finding this distance is NP-hard even for a path, and for some
other interesting variants of the problem. In the positive side, we present
algorithms for computing the recoloring distance under some natural
generalizations of this concept: the uniform weighted model and the non-
uniform model. Our first algorithms find optimal convex recolorings of
strings and bounded degree trees under the non-uniform model in linear
time for any fixed number of colors. Next we improve these algorithms
for the uniform model to run in linear time for any fixed number of
bad colors. Finally, we generalize the above result to hold for trees of
unbounded degree.

1 Introduction

A phylogenetic tree is a tree which represents the course of evolution for a given
set of species. The leaves of the tree are labelled with the given species. Internal
vertices correspond to hypothesized, extinct species. A character is a biologi-
cal attribute shared among all the species under consideration, although every
species may exhibit a different character state. Mathematically, if X is the set of
species under consideration, a character on X is a function C from X into a set C
of character states. A character on a set of species can be viewed as a coloring of
the species, where each color represents one of the character’s states. A natural
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biological constraint is that the reconstructed phylogeny have the property that
each of the characters could have evolved without reverse or convergent transi-
tions: In a reverse transition some species regains a character state of some old
ancestor whilst its direct ancestor has lost this state. A convergent transition
occurs if two species posses the same character state, while their least common
ancestor possesses a different state.

In graph theoretic terms, the lack of reverse and convergent transitions means
that the character is convex on the tree: for each state of this character, all
species (extant and extinct) possessing that state induce a single block, which
is a maximal monochromatic subtree. Thus, the above discussion implies that
in a phylogenetic tree, each character is likely to be convex or ”almost convex”.
This make convexity a fundamental property in the context of phylogenetic trees
to which a lot of research has been dedicated throughout the years. The Per-
fect Phylogeny (PP) problem, whose complexity was extensively studied (e.g.
[10, 12, 1, 13, 4, 17]), receives a set of characters on a set of species and seeks
for a phylogenetic tree on these species, that is simultaneously convex on each
of the characters. Maximum parsimony (MP) [8, 15] is a very popular tree re-
construction method that seeks for a tree which minimizes the parsimony score
defined as the number of mutated edges summed over all characters (therefore,
PP is a special case of MP). [9] introduce another criterion to estimate the dis-
tance of a phylogeny from convexity. They define the phylogenetic number as
the maximum number of connected components a single state induces on the
given phylogeny (obviously, phylogenetic number one corresponds to a perfect
phylogeny). However, both the parsimony score and the phylogenetic number
of a tree do not specify a distance to some concrete convex coloring of the
given tree: there are colored trees with large phylogenetic numbers (and large
parsimony scores) that can be transformed to convex coloring by changing the
color of a single vertex, while other trees with smaller phylogenetic numbers
can be transformed to convex colorings only by changing the colors of many
vertices.

Convexity is a desired property in other areas of classification, beside phylo-
genetics. For instance, in [3, 2] a method called TNoM is used to classify genes,
based on data from gene expression extracted from two types of tumor tissues.
The method finds a separator on a binary vector, which minimizes the number
of “1” in one side and “0” in the other, and thus defines a convex vector of mini-
mum Hamming distance to the given binary vector. Algorithms which finds this
distance for vectors with any number of letters, in order to handle more types
of tumor tissues, are given by the optimal string recoloring algorithms in this
paper. In [11], distance from convexity is used (although not explicitly) to show
strong connection between strains of Tuberculosis and their human carriers.

In this work we define and study a natural distance from a colored tree to
a convex one: the recoloring distance. In the simplest, unweighted model, this
distance is the minimum number of color changes at the vertices needed to make
the given coloring convex (for strings this reduces to Hamming distance from a
closest convex coloring). This measure generalizes to a weighted model, where
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changing the color of vertex v costs a nonnegative weight w(v). These weighted
and unweighted models are uniform, in the sense that the cost of changing the
color of a vertex is independent of the colors involved. The most general model
we study is the non-uniform model, where the cost of coloring vertex v by a
color d is an arbitrary nonnegative number cost(v, d).

We show that finding the recoloring distance in the unweighted model is
NP-hard even for a string (a tree with two leaves), and also for the case where
character states are given only at the leaves (so that changes on extinct species
are not counted); we also address a variant of the problem, in which a block-
recoloring is considered as an atomic operation. This operation changes the color
of all the vertices in a given input block. We show that finding the minimum
number of block-recolorings needed to obtain convexity is NP-Hard as well.

On the positive side, we present few algorithms for minimal convex recoloring
of strings and trees. The first algorithms solve the problem in the non-uniform
model. The running time of these algorithms for bounded degree trees is expo-
nential in the number of colors, but for each fixed number of colors is linear in
the input size. Then we improve these algorithms for the uniform model, so that
the running time is exponential only in the number of bad colors, which are col-
ors that violate convexity (to be defined precisely). These algorithms are noted
to be fixed parameter tractable algorithms ([5]) for bounded degree trees, where
the parameter is taken to be the recoloring distance. Finally, we eliminate the
dependence on the degree of the tree in both the non-uniform and the uniform
versions of the algorithms.

Due to space limitation, figures, proofs of theorems and some of the
results were removed. However, all of these can be found at the full paper
at http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi?2004/CS/
CS-2004-14

The rest of the paper is organized as follows. In the next section we present
the notations used and define the unweighted, weighted and non-uniform versions
of the problem. In Section 3 we show our NP-Hardness results and in Section 4
we present the algorithms. We conclude and point out future research directions
in Section 5.

2 Preliminaries

A colored tree is a pair (T,C) where T = (V,E) is a tree with vertex set V =
{v1, . . . , vn}, and C is a coloring of T , i.e. - a function from V onto a set of colors
C. For a set U ⊆ V , C|U denotes the restriction of C to the vertices of U , and
C(U) denotes the set {C(u) : u ∈ U}. For a subtree T ′ = (V (T ′), E(T ′)) of T ,
C(T ′) denotes the set C(V (T ′)). A block in a colored tree is a maximal set of
vertices which induces a monochromatic subtree. A d-block is a block of color d.
The number of d-blocks is denoted by nb(C, d), or nb(d) when C is clear from
the context. A coloring C is said to be convex if nb(C, d) = 1 for every color
d ∈ C. The number of d-violations in the coloring C is nb(C, d)−1, and the total
number of violations of C is

∑
c∈C(nb(C, d) − 1). Thus a coloring C is convex



Convex Recolorings of Strings and Trees 221

iff the total number of violations of C is zero (in [7] the above sum, taken over
all characters, is used as a measure of the distance of a given phylogenetic tree
from perfect phylogeny).

The definition of convex coloring is extended to partially colored trees, in
which the coloring C assigns colors to some subset of vertices U ⊆ V , which
is denoted by Domain(C). A partial coloring is said to be convex if it can be
extended to a total convex coloring (see [16]). Convexity of partial and total
coloring have simple characterization by the concept of carriers: For a subset
U of V , carrier(U) is the minimal subtree that contains U . for a colored tree
(T,C) and a color d ∈ C, carrierT (C, d) (or carrier(C, d) when T is clear) is
the carrier of C−1(d). We say that C has the disjointness property if for each
pair of colors {d, d′} it holds that carrier(C, d) ∩ carrier(C, d′) = ∅. It is easy
to see that a total or partial coloring C is convex iff it satisfies the disjointness
property (in [6] convexity is actually defined by the disjointness property).

When some (total or partial) input coloring (C, T ) is given, any other coloring
C ′ of T is viewed as a recoloring of the input coloring C. We say that a recoloring
C ′ of C retains (the color of) a vertex v if C(v) = C ′(v), otherwise C ′ overwrites
v. Specifically, a recoloring C ′ of C overwrites a vertex v either by changing the
color of v, or just by uncoloring v. We say that C ′ retains (overwrites) a set of
vertices U if it retains (overwrites resp.) every vertex in U . For a recoloring C ′ of
an input coloring C, XC(C ′) (or just X (C ′)) is the set of the vertices overwritten
by C ′, i.e.

XC(C ′)={v∈V : [v ∈ Domain(C)]
∧

[(v /∈ Domain(C ′) ) ∨ (C(v) �= C ′(v) )]}.

With each recoloring C ′ of C we associate a cost, denoted as costC(C ′) (or
cost(C ′) when C is understood), which is the number of vertices overwritten by
C ′, i.e. costC(C ′) = |XC(C ′)|. A coloring C∗ is an optimal convex recoloring of C,
or in short an optimal recoloring of C, and costC(C∗) is denoted by OPT (T,C),
if C∗ is a convex coloring of T , and costC(C∗) ≤ costC(C ′) for any other convex
coloring C ′ of C.

The above cost function naturally generalizes to the weighted version: the
input is a triplet (T,C,w), where w : V → R+ ∪ {0} is a weight function which
assigns to each vertex v a nonnegative weight w(v). For a set of vertices X,
w(X) =

∑
v∈X w(v). The cost of a convex recoloring C ′ of C is costC(C ′) =

w(X (C ′)), and C ′ is an optimal convex recoloring if it minimizes this cost.
The above unweighted and weighted cost models are uniform, in the sense

that the cost of a recoloring is determined by the set of overwritten vertices,
regardless the specific colors involved. A yet further generalization allows non-
uniform cost functions. This version, motivated by weighted maximum parsi-
mony [15], assumes that the cost of assigning color d to vertex v is given by
an arbitrary nonnegative number cost(v, d) (note that, formally, no initial col-
oring C is assumed in this cost model). In this model cost(C ′) is defined only
for a total recoloring C ′, and is given by the sum

∑
v∈V cost(v, C ′(v)). The

non-uniform cost model appears to be more subtle than the uniform ones. Un-
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less otherwise stated, our results assume the uniform, weighted and unweighted,
models.

We complete this section with a definition and a simple observation which
will be useful in the sequel. Let (T,C) be a colored tree. A coloring C∗ is an
expanding recoloring of C if in each block of C∗ at least one vertex v is retained
(i.e., C(v) = C∗(v)).

Observation 1. let (T,C) be a colored tree. Then there exists an expanding
optimal convex recoloring of C.

Proof. Let C ′ be an optimal recoloring of C which uses a minimum number
of colors (i.e. |C ′(V )| is minimized). We shall prove that C ′ is an expanding
recoloring of C.

If C ′ uses just one color d, then by the optimality of C ′, there must be a vertex
v such that C(v) = d and the claim is proved. Assume for contradiction that C ′

uses at least two colors, and that for some color d used by C ′, there is no vertex
v s.t. C(v) = C ′(v) = d. Then there must be an edge (u, v) such that C ′(u) = d
but C ′(v) = d′ �= d. Therefore, in the uniform cost model, the coloring C ′′ which is
identical to C ′ except that all vertices colored d are now colored by d′ is an optimal
recoloring of C which uses a smaller number of colors - a contradiction.

3 NP-Hardness Results

The main result of this section is that unweighted minimum convex recoloring
of strings is NP-Hard. Then we use reductions from this problem to prove that
the unweighted versions of minimal convex recoloring of leaves, and a natural
variant of the problem called minimal convex block recoloring, in which an atomic
operation changes the color of a complete block, are NP-Hard as well.

3.1 Minimal Convex Recoloring of Strings is NP-Hard

A string S = (v1, . . . , vn) is a simple tree with V = {v1, . . . , vn} and E =
{(vi, vi+1)|i = 1, . . . , n − 1}. In a colored string (S,C), a d-block is simply a
maximal sequence of consecutive vertices colored by d.

A nice property of optimal convex recoloring of strings is given below:

Claim. Let (S,C) be a colored string, and let C∗ be an optimal recoloring of C.
Then eachblock ofC is either completely retained or completely overwritten byC∗.

Proof. Suppose, for contradiction, that B′ is a d-block in C that is partially
overwritten by C∗. Let C ′ be a recoloring identical to C∗ except that C ′ retains
the block B′. Then C ′ is convex and cost(C ′) < cost(C∗) - a contradiction.

We prove that the problem is NP-Hard by reducing the 3 satisfiability prob-
lem to the following decision version of minimal convex recoloring:
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Minimal Convex Recoloring of Strings:
Input: A colored string (S,C) and an integer k.
Question: Is there a convex recoloring C∗ of C such that costC(C∗) ≤ k.

Let formula F be an input to the 3 satisfiability problem, F = D1
∧

...
∧

Dm,
where Di = (li1 ∨ li2 ∨ li3) is a clause of three literals, each of which is either a
variable xj or its negation ¬xj , 1 ≤ j ≤ n. We describe below a polynomial time
reduction of F to a colored string (S,C) and an integer k, such that there is a
convex coloring C∗ of C with costC(C∗) ≤ k iff F is satisfiable.

In the reduction we define block sizes using parameters A and B, where A and
B are integers satisfying A > m−2 and B > 2mA. k is set to n(2m+1)B+2mA
(e.g., possible values are A = 3m, B = 9m2, and k = 3m2(6mn + 3n + 2)).

We describe the coloring C of S as a sequence of segments, where each seg-
ment consists of one or more consecutive blocks. There will be 2n+m informative
segments: one for each clause and one for each literal, and 2n + m− 1 junk seg-
ments separating the informative segments. Each junk segment consists of a
unique block of k + 1 vertices colored by a distinct color, thus 2n + m− 1 colors
are used for the junk segments. It is easy to see that in any convex recoloring
that is at most at distance k from C, non of the junk segments is recolored,
what implies that the order of the segments, informative and non informative,
does not matter. The informative segments will use additional n variable colors
d1, . . . , dn and 2nm literal colors {ci,xj

, ci,¬xj
|i = 1, . . . , m; j = 1, . . . n}.

For each clause Di = (l1 ∨ l2 ∨ l3) there is a clause segment SDi
of size 3A,

obtained by A repetitions of the pattern ci,�1 , ci,�2 , ci,�3

for each non-negated literal xj there is a literal segment Sxj
, which consists

of 2m + 1 consecutive blocks of the same size B. All the m + 1 odd numbered
blocks are dj-blocks, called variable blocks. The m even numbered blocks are
literal blocks, colored by ci,xj

, i = 1, . . . , m. Similarly, for each negated literal
¬xj we have a literal segment S¬xJ

, which is similar to Sxj
except that the

colors of the literal blocks are ci,¬xj
, i = 1, . . . , m (note that each of the literal

segments Sxj
and S¬xj

contain m + 1 dj-blocks).

Theorem 2. Let (S,C) be the colored string defined by the above reduction.
Then OPT (S,C) ≤ k iff F is satisfiable.

The following two results pertain to restricted versions of the original problem
which model specific problem in phylogenetics:

Theorem 3. Minimal unweighted convex recoloring of a tree is NP-Complete
even when the coloring is restricted to the leaves of the tree only.

Theorem 4. Minimal unweighted convex recoloring of a totally colored tree is
NP-Hard even when recoloring a complete block is considered as a single opera-
tion.

Note: In a Zebra string, overwriting a single vertex is also a block recoloring.
Thus Theorem 4 also implies that the problem of minimizing the total number
of vertex recoloring and block recoloring needed to transform a colored string to
convex one is NP-Hard.
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4 Optimal Convex Recoloring Algorithms

In this section we present dynamic programming algorithms for optimal convex
recoloring of totally colored strings or trees. The input is either a totally colored
string (S,C) or a totally colored tree (T,C), which will be clear from the context.
The optimal convex recolorings returned by the algorithms will be either total
or partial, as will be detailed.

The basic ingredient in all the algorithms is coloring with forbidden colors: A
convex recoloring of the whole tree is constructed by extending convex recolorings
of smaller subtrees, and in order to maintain convexity of the coloring, in each
subtree certain colors cannot be used.

The computational costs of the algorithms depend either on nc, the total
number of colors used, or on n∗

c , the number of colors which violate convexity in
the input tree, defined as follows: A color d is a good color for a totally colored
tree (T,C) if (T,C) contains a unique d-block. Else d is a bad color. The set of
bad colors for the input (T,C) is denoted by C∗, and |C∗| is denoted by n∗

c .
We start with basic algorithms which are valid for the general non-uniform

cost model, and their time complexity in bounded degree trees is Poly(n)Exp(nc).
We then modify these algorithms to run in time Poly(n)Exp(n∗

c) in the uniform
weighted model. Finally, we remove the degree bound and modify the algorithms
to run in Poly(n)Exp(n∗

c) time for arbitrary trees.

4.1 Basic Algorithms for the Non-uniform Cost Model

Our first algorithms find optimal convex recoloring of strings and trees in the
non-uniform model, where for each vertex v and each color d ∈ C, the cost of
coloring v by d is an arbitrary nonnegative number cost(v, d). The running times
of both algorithms are governed by 2nc , the number of subsets of the set of col-
ors C. First we present an algorithm for colored strings, and then extend it to
colored trees.

Non-uniform Optimal Convex Recoloring of Strings. Throughout this
section (S,C) is a fixed, n-long input colored string, where S = (v1, . . . , vn).
The algorithm scans the string from left to right. After processing vertex vi, it
keeps for each subset of colors D ⊆ C, and for each color d /∈ D, the cost of the
optimal coloring of the i leftmost vertices v1, . . . , vi which does not use colors
from D, and the rightmost vertex vi is colored by d. We define this more formally
now:

Definition 1. Let D ⊆ C be a set of colors and i ∈ {1, . . . , n}. A coloring C ′

is a (D, i)-coloring (of the string S = (v1, . . . , vn)) if it is a convex coloring
of (v1, . . . , vi), the i leftmost vertices of S, such that C ′({v1, . . . , vi}) ∩ D = ∅.
opt(D, i) is the cost of an optimal (D, i)-recoloring of (S,C).

It is easy to see that by the above definition, opt(∅, n) is the cost of an optimal
convex recoloring of (S,C).
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Definition 2. For a set of colors D, a color d, and i ∈ {1, . . . , n}, a coloring C ′

is a (D, d, i)-coloring if it is a (D, i)-coloring and C ′(vi) = d. opt(D, d, i) is the
cost of an optimal (D, d, i)-coloring. opt(D, d, i) = ∞ when no (D, d, i)-coloring
exists (eg when d ∈ D).

Observation 5. opt(D, i) = min
d∈C

opt(D, d, i).

For the recursive calculation of opt(D, d, i) we use the following function R,
defined for a color set D ⊆ C, a color d ∈ C and i ∈ {1, . . . , n}:

R(D, d, i) = min{opt(D ∪ {d}, i), opt(D \ {d}, d, i)}

That is, R(D, d, i) is the minimal cost of a convex recoloring of the leftmost
i vertices, which does not use colors from D \ {d}, and may use the color d
only as the color of the last (rightmost) block in (v1, . . . , vi). By convention,
opt(D, d, 0) = 0 for all D ⊆ C and d /∈ D. Note that R(D, d, i) = R(D∪{d}, d, i) =
R(D \ {d}, d, i); we will usually use this function when d /∈ D.

Theorem 6. For a color set D, a color d /∈ D and i ∈ {1, . . . , n}:

opt(D, d, i) = cost(vi, d) + R(D, d, i − 1)

Theorem 6 yields the following dynamic programming algorithm for the min-
imal convex string recoloring:

Non-Uniform Optimal Convex String Recoloring

1. for every D ⊆ C and for every d /∈ D, opt(D, d, 0) ← 0
2. for i = 1 to n

for every D ⊆ C
(a) for every d /∈ D, opt(D, d, i) ← cost(vi, d) + R(D, d, i − 1)
(b) opt(D, i) ← min

d
opt(D, d, i).

3. return opt(∅, n)

Each of the n iterations of the algorithms requires O(nc · 2nc) time. So the
running time of the above algorithm is O (n · nc2nc).

Non-uniform Optimal Convex Recoloring of Trees. We extend the algo-
rithm of the previous section for optimal convex recoloring of trees. First, we
root the tree at some vertex r. For each vertex v ∈ V , Tv is the subtree rooted at
v. A convex recoloring of Tv denotes a convex recoloring of the colored subtree
(Tv, C|V (Tv)). We extend the definitions of the previous section to handle trees:

Definition 3. Let D ⊆ C be a set of colors and v ∈ V . Then a coloring C ′ is a
(D, Tv)-coloring if it is a recoloring of Tv s.t. C ′(V (Tv)) ∩ D = ∅. opt(D, Tv) is
the cost of an optimal (D, Tv)-coloring.

Again, a (D, Tv)-coloring is a (convex) coloring on Tv that does not use any color
of D. Thus opt(∅, Tr) is the cost of an optimal coloring of T = Tr.
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Definition 4. For a set of colors D ⊆ C, a color d ∈ V and v ∈ V , a color-
ing C ′ is a (D, d, Tv)-coloring if it is a (D, Tv)-coloring such that C ′(v) = d.
opt(D, d, Tv) is the cost of an optimal (D, d, Tv)-coloring; in particular, if d ∈ D
then opt(D, d, Tv) = ∞.

If v is a leaf and d /∈ D, then opt(D, d, Tv) = cost(v, d). For the recursive calcu-
lation of opt(D, d, Tv) at internal vertices we need the following generalization of
the function R used for the string algorithm:

R(D, d, Tv) = min{opt(D ∪ {d}, Tv), opt(D \ {d}, d, Tv)}

That is, R(D, d, Tv) is the minimal cost of a convex recoloring of Tv, which
uses no colors from D\{d} and does not include a d-block which is disjoint from
the root v.

The calculation of opt(D, d, Tv) at an internal vertex with k children v1, . . . , vk

uses the notion of k-ordered partition of a set S, which is a k-tuple (S1, . . . , Sk),
where each Si is a (possibly empty) subset of S, s.t. Si ∩ Sj = ∅ for i �= j
and ∪k

i=1Si = S. The set of k|S| k-ordered partitions of a set S is denoted by
PART k(S).

Theorem 7. Let v be an internal vertex with children v1, . . . , vk. Then, for a
color set D and a color d /∈ D:

opt(D, d, Tv) = cost(v, d) + min
(E1,...,Ek)∈PART k(C\(D∪{d})

k∑
i=1

R(C \ Ei, d, Tvi
)

Theorem 7 above leads to a straightforward dynamic programming algorithm.
In order to compute opt(D, d, Tv) for each D ⊆ C and d /∈ D, we only need the
corresponding values at v’s children. This can be achieved by a post order visit
of the vertices, starting at r. To evaluate the complexity of the algorithm, we
first note that each subset of colors D and a k-ordered partition (E1, . . . , Ek)
of C \ (D ∪ {d}) corresponds to the (k + 1)-ordered partition (D, E1, . . . , Ek) of
C \ {d}. For each such ordered partition, O(k) computation step are needed. As
there are nc colors, the total time for the computation at vertex v with k children
is O(knc(k + 1)nc−1). Since k ≤ Δ− 1, the time complexity of the algorithm for
trees with bounded degree Δ is O(n · nc · Δnc).

We conclude this section by presenting a simpler linear time algorithm for
optimal recoloring of a tree by two colors d1, d2. For this, we compute for i = 1, 2
the minimal cost convex recoloring Ci which sets the color of the root to di (i.e.
Ci(r) = di). The required optimal convex recoloring is either C1 or C2. The
computation of C1 can be done as follows:
Compute for each vertex v �= r a cost defined by

cost(v) =
∑

v′∈Tv

cost(v′, d2) +
∑

v′ 	∈Tv

cost(v′, d1))

This can be done by one post order traversal of the tree. Then, select the vertex v0
which minimizes this cost, and set C1(w) = d2 for each w ∈ Tv0 , and C1(w) = d1
otherwise.
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4.2 Enhanced Algorithms for the Uniform Cost Model

The running times of the algorithms in Section 4.1 do not improve even when
the input coloring is convex. However, for the uniform cost model, we can modify
these algorithms so that their running time on convex or nearly convex input
(string or tree) is substantially smaller. The new algorithms, instead of returning
a total coloring, return a convex partial coloring, in which some of the new colors
assigned to the vertices are unspecified. For the presentation of the algorithms
we need the notion of convex cover which we define next.

A set of vertices X is a convex cover (or just a cover) for a colored tree (T,C)
if the (partial) coloring CX = C|[V \X] is convex (i.e., C can be transformed
to a convex coloring by overwriting the vertices in X). Thus, if C ′ is a convex
recoloring of (T,C), then XC(C ′), the set of vertices overwritten by C ′, is a cover
for (T,C). Moreover, deciding whether a subset X ⊆ V is a cover for (T,C), and
constructing a total convex recoloring C ′ of C such that X (C ′) ⊆ X in case it
is, can be done in O(n · nc) time. Also, in the uniform cost model, the cost of a
recoloring C ′ is w(X (C ′)). Therefore, in this model, finding an optimal convex
total recoloring of C is polynomially equivalent to finding an optimal cover X,
or equivalently a partial convex recoloring C ′ of C so that w(X (C ′)) = w(X) is
minimized.

Optimal String Recoloring via Relaxed Convex Recoloring
The enhanced algorithm for the string, makes use of the fact that partially col-
ored strings can be characterized by the following property of “local convexity”:

Definition 5. A color d is locally convex for a partially colored tree (T,C) iff
C(carrier(C, d)) = {d}, that is carrier(C, d) does not contain a vertex of color
different from d.

Observation 8. A partially colored string (S,C) is convex iff it is locally convex
for each color d ∈ C.

Note that Observation 8 does not hold for partially colored trees, since every
leaf-colored tree is locally convex for each of its colors.

Given a colored string (S,C) and a color d, (S,C) is a d-relaxed convex
coloring if it can be completed to total coloring such that for every color d′ �= d
there is a unique d′-block.

Observation 9. C is a d-relaxed convex coloring of a string S if and only if
each color d′ �= d is locally convex for (S,C).

Given a colored string (S,C), we transform C to a coloring Ĉ as follows:
For every vertex v ∈ V (S):

Ĉ(v) =
{

d̂ if C(v) is a good color
C(v) otherwise.

where d̂ is a new color.
A set of vertices X ⊆ V is a d-relaxed cover of (S,C) if the partial coloring

C|V \X , denoted CX , is a d-relaxed convex coloring of (S,C).
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Theorem 10. Let (S,C) and Ĉ be as above. Then X ⊆ V is a cover for (S,C)
if and only if X is a d̂-relaxed cover for (S, Ĉ).

Theorem 10 implies that an optimal convex cover (and hence an optimal
convex recoloring) of (S,C) can be obtained as follows: transform C to Ĉ, and
then compute an optimal d̂-relaxed convex recoloring, C ′, for (S, Ĉ). The d̂-
relaxed cover defined by C ′ is an optimal cover of (S,C). An optimal convex
recoloring of (S, Ĉ) can be obtained by replacing step 2(a)of the non-uniform
string recoloring algorithm of Section 4.1 by:

opt(D, d, i) ← w(v)δC(vi),d +
{

opt(D, i − 1) if d = d̂
R(D, d, i − 1) otherwise.

where R is defined in Section 4.1, and where δd,d′ is the complement of
Kronecker delta:

δd,d′ =
{

1 if d �= d′

0 otherwise

The improved algorithm has running time of O
(
n∗

cn2n∗
c

)
. In particular, for

each fixed value of n∗
c the running time is polynomial in the input size.

Extension for Trees
The technique of getting convex recoloring by treating all good colors as a special
color d̂ and then finding a d̂-relaxed cover does not apply to trees.

Let (T = (V,E), C) be a colored tree. For a vertex v ∈ V , let C∗
v = C∗ ∪

{C(v)} (note that if C(v) ∈ C∗ then C∗
v = C∗). Assume that the children of v

are v1, . . . , vk. The crucial observation for our improved algorithm for convex
recoloring of trees is that only colors from C∗

v may appear in more than one
subtree Tvi

of Tv. This observation enables us to modify the recursive calculation
of the algorithm of Section 4.1 so that instead of computing opt(D, d, Tv) for all
subsets D of C and each d /∈ D, it computes similar values only for subsets D ⊆ C∗

v

and d ∈ C∗
v\D, and thus to reduce the exponential factor in the complexity bound

from 2nc to 2n∗
c .

To enable the bookkeeping needed for the algorithm, it considers only optimal
partial recolorings of (T,C), which use good colors in a very restricted way: no
vertex is overwritten by a good color (ie vertices are either retained, or uncolored,
or overwritten by bad colors), and good colors are either retained or overwritten
(by bad colors), but are never uncolored. The formal definition is given below.

Definition 6. A partial convex recoloring C ′ of the input coloring C is conser-
vative if it satisfies the following:

1. If C ′(v) �= C(v) then C ′(v) ∈ C∗ (a color can be overwritten only by a bad
color).

2. If C(v) /∈ C∗ then v ∈ Domain(C ′) and C ′(v) ∈ {C(v)} ∪ C∗ (a good color
is either retained or overwritten by a bad color, but not uncolored).

3. For every d ∈ C, C
′−1(d) is connected (if a vertex is left uncolored then it

does not belong to any carrier of C ′).
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The fact that a conservative recoloring of minimum possible cost is an opti-
mal convex recoloring follows from the following lemma, which seems to be of
independent interest:

Lemma 1. Let X be a convex cover of a colored tree (T,C). Then there is a
convex total recoloring Ĉ of (T,C) so that X (Ĉ) ⊆ X and for each vertex v for
which C(v) /∈ C∗, Ĉ(v) = C(v) or Ĉ(v) ∈ C∗ (that is, Ĉ does not overwrite a good
color by another good color). In particular, there is an optimal total recoloring
Ĉ of (T,C) which never overwrites a good color by another good color.

Let Ĉ be a convex total recoloring satisfying Lemma 1. Then it can be easily
verified that the partial coloring obtained from Ĉ by uncoloring all the vertices
v for which Ĉ(v) �= C(v) and Ĉ(v) /∈ C∗, is a conservative recoloring. Hence a
conservative recoloring of minimum possible cost is an optimal convex recoloring.

For our algorithm we need variants of the functions opt and R, adapted
for conservative recolorings, which we define next. A coloring C ′ is a (D, Tv)-
conservative recoloring if it is a conservative recoloring of Tv which does not use
colors from D. If in addition C ′(v) = d, then C ′ is a (D, d, Tv)-conservative re-
coloring; a (D, Tv)-conservative recoloring in which v is uncolored is a (D, ∗, Tv)-
conservative recoloring. Note that for certain combinations of D ⊆ C, f ∈ (C \
D)∪ {∗}, and v ∈ V , no (D, f, Tv)-conservative recoloring exists (eg, when C(v)
and f are two distinct good colors).

For f ∈ C ∪ {∗}, a set of colors D ⊆ C and v ∈ V , ôpt(D, f, Tv) is the cost of
an optimal (D, f, Tv)-conservative recoloring (ôpt(D, f, Tv) = ∞ if no (D, f, Tv)-
conservative recoloring exists). ôpt(D, Tv), the optimal cost of a conservative
recoloring of Tv which does not use colors from D, is given by minf ôpt(D, f, Tv).
By Lemma 1, the cost of an optimal recoloring of a colored tree (T,C) is given
by ôpt(Tr, ∅), where r is the root of T . The recursive computation of this value
uses the function R̂, given by

R̂(D, d, Tv) = min{ôpt(D ∪ {d}, Tv), ôpt(D \ {d}, d, Tv)}

Recall that C∗
v = C∗∪{C(v)}. Rather than computing the functions ôpt (and R̂)

at each vertex v for all subsets D of C, our algorithm computes ôpt(D, f, Tv) at a
vertex v only for subsets of C∗

v . The correctness and complexity of the algorithm
follows from following two lemmas.

Lemma 2. For a vertex v with children v1, . . . , vk, a set of colors D ⊆ C∗
v , and

a color d ∈ C∗
v :

1. If d ∈ D then ôpt(D, d, Tv) = ∞. If d ∈ C∗
v \ D then:

ôpt(D, d, Tv) = w(v)δC(v),d + min
(E1,...,Ek)∈PART k(C∗

v\(D∪{d}))

k∑
i=1

R̂(C∗
v \ Ei, d, Tvi)
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2. If C(v) /∈ C∗ then ôpt(D, ∗, Tv) = ∞. Else (ie C(v) ∈ C∗ and C∗
v = C∗):

ôpt(D, ∗, Tv) = w(v) + min
(E1,...,Ek)∈PART k(C∗

v\D)

k∑
i=1

ôpt(C∗
v \ Ei, Tvi

)

Lemma 2 implies a dynamic programming algorithm similar to the one pre-
sented in Section 4.1. The algorithm computes for each vertex v, for each subset
of colors D ⊆ C∗

v and for each f ∈ (C∗
v \ D) ∪ {∗}, the values of ôpt(D, d, Tv).

when v is a leaf, this value for each D ⊆ C∗
v and each d ∈ D is given by

ôpt(D, d, Tv) = w(v)δC(v),d, and the value of ôpt(D, ∗, Tv) when C(v) ∈ C∗ is
w(v). So it remains to show that these values can be computed at internal ver-
tices, assuming they were previously computed at their children.

For an internal vertex v with children v1, . . . , vk, the algorithm uses Lemma
2(1) to compute the values ôpt(D, d, Tv) for each D ⊆ C∗

v and for each d ∈ C∗
v \D.

If C(v) ∈ C∗, then Lemma 2(2) is used to compute the value of ôpt(D, ∗, Tv).
There is however a subtle point in the realization of this algorithm, which stems
from the fact that the sets C∗

v which define the values computed at each vertex
v may vary from vertex to vertex. The following claim guarantees that all the
values needed for the calculations at an internal vertex v are calculated by its
children v1, . . . , vk.

Lemma 3. Let v be an internal vertex with children v1, . . . , vk, and assume
that v is visited by the algorithm after its children. Then for each subset of colors
D ⊆ C∗

v and each f ∈ C∗
v ∪{∗}, all the values required for computing ôpt(D, f, Tv)

by Lemma 2 (1) and (2) are computed by v1, . . . , vk.

Combining the results so far, we have

Theorem 11. Optimal convex recoloring of totally colored trees with n vertices
can be computed in O(n · n∗

cΔ
n∗

c+2) time, where n∗
c is the number of bad colors

and Δ is the maximum degree of vertices in T .

5 Discussion and Future Work

In this work we studied the complexity of computing the distance from a given
coloring of a tree or string to a convex coloring, motivated by the scenario of
introducing a new character to an existing phylogenetic tree. We considered
few natural definitions for that distance, along with few model variants of the
problem, and proved that the problem is NP-Hard in each of them. We then
presented exact algorithms to solve the problem under the non-uniform and the
uniform cost models.

Few interesting research directions which suggest themselves are:

– Similarly to the generalization of the small parsimony question to the general
one: Given a set of characters (colorings) such that the number of colors of
each character is bounded by a fixed small constant, is there an efficient
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algorithm which computes a phylogenetic tree of minimum distance from a
perfect phylogeny, where the distance is taken as the number of color changes
needed to achieve perfect phylogeny? Note that, as in maximum parsimony,
this problem is trivial for one character.

– Similarly to the above, but rather than bounding the number of colors,
the bound now is on the number of color changes, which is the recoloring
distance from convexity. The goal is to decide whether there is a tree within
this distance from a perfect phylogeny over the given set of characters. This
corresponds to a fixed parameter tractable algorithm for constructing an
optimal tree.

– Can our results for the uniform cost model from Section 4.2 be extended for
the non-uniform cost model.

– Phylogenetic network are accumulating popularity as a model for describing
evolutionary history. This trend, motivates the extension of our problem to
more generic cases such are directed acyclic graphs or general graphs. It would
be interesting to explore the properties of convexity on these types of graphs.
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Abstract. In this paper we consider a generalization of the edge domi-
nating set (EDS) problem, in which each edge e needs to be covered be

times and refer to this as the b-EDS problem. We present an exact linear
time primal dual algorithm for the weighted b-EDS problem on trees with
be ∈ {0, 1}, and our algorithm generates an optimal dual solution as well.
We also present an exact linear time algorithm for the unweighted b-EDS
problem on trees. For general graphs we exhibit a relationship between
this problem and the maximum weight matching problem. We exploit
this relationship to show that a known linear time 1

2
-approximation al-

gorithm for the weighted matching problem is also a 2-approximation
algorithm for the unweighted b-EDS problem on general graphs.

1 Introduction

Domination problems in graphs have been subject of many studies in graph the-
ory, and have many applications in operations research, e.g. in resource allocation
and network routing as well as in coding theory.

In this paper we consider a generalization of the edge dominating set (EDS)
problem. Given a graph G = (V,E), a function b : E → N and a weight function
c : E → Q+, a b-EDS is a subset F ⊆ E together with a multiplicity me ∈ N+

for each e ∈ F , so that each edge in E is adjacent to at least be = b(e) edges
in F , counting multiplicities. The b-EDS problem is then to find a b-EDS which
minimizes

∑
e∈F me in the unweighted and

∑
e∈F c(e) ·me in the weighted case.

The b-EDS problem generalizes the EDS problem in much the same way that
the set multicover problem generalizes the set cover problem [17].

When be = 1 for all e ∈ E this is the edge dominating set problem (EDS),
which is one of the four natural covering problems in graphs: edge cover (cover V
with elements from E), vertex cover (E with V ), dominating set (V with V ), and
EDS (E with E). In fact, weighted EDS is a common generalization of weighted
edge cover and weighted vertex cover [1] and is equivalent to a restricted total
covering problem in which E ∪ V must be covered by a minimum weight set of
elements from E ∪ V [13].

The unweighted version of EDS is NP-complete even for planar and bipartite
graphs of maximum degree 3 [18] as well as for several other families of graphs [8].

F. Dehne, A. López-Ortiz, and J.-R. Sack (Eds.): WADS 2005, LNCS 3608, pp. 233–243, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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However, there are also families of graphs for which the unweighted EDS problem
is polynomial-time solvable [8, 16]. In particular, linear time algorithms for the
unweighted version are known for trees [10] and block graphs [9].

Much less is known about the weighted version of the problem. Recently
Fujito and Nagamochi [4] and Parekh [12] independently discovered a 2-approx-
imation for the weighted EDS problem; the latter also showed that weighted EDS
restricted to bipartite graphs is no easier to approximate than weighted vertex
cover, which is MAX-SNP-hard [11] and is suspected to have no polynomial time
approximation algorithm with approximation ratio asymptotically less than 2.
Thus a 2-approximation for b-EDS may be the best we can hope for.

When be ∈ {0, 1} for all e ∈ E we call the resulting problem {0, 1}-EDS. The
weighted version of {0, 1}-EDS is particularly interesting since it is equivalent to
the generalization of weighted vertex cover in which in addition to single vertices,
weights may also be assigned to pairs, {u, v}, of vertices (by adding an edge uv
with buv = 0 if one does not already exist). This generalization may be used to
model a limited economy of scale in existing applications of vertex cover: for a
pair of vertices {u, v} one may stipulate that selecting both u and v costs less
than the sum of the individual costs of u and v.

Our main contributions are linear-time algorithms for three special cases of
the b-EDS problem. To the best of our knowledge an exact linear time algorithm
was not known for even the special case of weighted EDS on trees. Table 1 gives
an overview of known results and new results from this paper.

Table 1. Approximation ratios for variants of the EDS problem (∗ denotes a linear
time algorithm)

unweighted EDS weighted EDS unweighted b-EDS weighted b-EDS
general graphs 2∗ 2 [4, 12] 2∗ (Cor. 2) 8/3 [13]
bipartite graphs ,, ,, ,, 2 [13]
trees 1∗ [10] 1∗ (Thm. 3) 1∗ (Thm. 2) 1 (Thm. 1)

In Section 2 we expose a relationship between the maximum weighted match-
ing problem and the unweighted b-EDS problem; we use this relationship to
analyze an algorithm of Preis [14] and show that it is also a linear time 2-
approximation for the unweighted b-EDS problem. This generalizes a known re-
lationship between maximal matchings and (unweighted) edge dominating sets.

In Section 3 we show that the weighted b-EDS is solvable in polynomial
time on trees. We also present exact linear-time algorithms which solve the
unweighted b-EDS problem, and the weighted {0, 1}-EDS problem on trees. The
latter is a primal dual algorithm which also generates an optimal dual solution.
If the weights ce are integral for all e ∈ E, then the dual solution is integral as
well and is a maximum size set of edges such that each edge e has at most ce

edges adjacent to it. This problem is a common generalization of the maximum
independent set problem and the maximum strong matching problem. An exact
linear time algorithm for the latter on trees is known [2].
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Notation. We will use the following notation for a simple undirected graph G =
(V,E). The neighbors of a vertex v ∈ V are denoted by δ(v) = {u ∈ V : ∃uv ∈
E}. The edges incident upon the vertex v ∈ V are denoted by N(v) and the set
of edges adjacent with an edge e ∈ E plus the edge e itself is denoted by N(e),
i.e. N(uv) = N(u) ∪ N(v) for any uv ∈ E.

2 The Unweighted b-EDS Problem for General Graphs

For general graphs, the weighted EDS problem admits a 2 1
10 -approximation

based on a natural linear program relaxation of the problem, whose integral-
ity gap is also 2 1

10 [1]. A corresponding linear relaxation for the weighted b-EDS
problem yields an 8

3 -approximation for general graphs and a 2-approximation
for bipartite graphs [13]. This relaxation can be strengthened to yield a 2-
approximation for weighted EDS [4, 12]; however, the corresponding strength-
ening fails to deliver a 2-approximation for weighted b-EDS.

The unweighted EDS and b-EDS problems, however, can be approximated
more easily due to their relation to matching problems. Harary’s book [6] demon-
strates that there always exists a minimum cardinality EDS which is also a max-
imal matching. Since any maximal matching is also an EDS, the minimum car-
dinality maximal matching and the unweighted EDS problems are equivalent.
In contrast Fujito [3] showed that the minimum weighted maximal matching
problem is much more difficult than weighted EDS. Any maximal matching in a
graph has size at least one half times the size of a maximum matching. Therefore,
finding any maximal matching, which can be easily done in linear time, yields a
2-approximation for the unweighted EDS problem.

An issue with extending the relationship described above to the minimum
unweighted b-EDS problem is that a maximal matching is not necessarily a
feasible b-EDS. Using the resemblance of the maximum weight matching problem
to the dual of a natural linear formulation for b-EDS, we exhibit a connection
between weighted matchings and b-edge dominating sets that generalizes the
relationship between maximal matchings and edge dominating sets. Given a
matching M and a vector b ∈ N|E|, let b|M ∈ N|E| denote the vector which for
each component e ∈ M has value be, and has value 0 for all other components.

Lemma 1. For any matching M and any vector b ∈ N|E|,
∑

e∈M be is at most
twice the weight of a minimum size (counting multiplicities) b-EDS.

Proof. Consider the following pair of dual LP’s, LP 1 being the linear program-
ming relaxation for the unweighted b-EDS problem and LP 2 being the relaxation
for the weighted strong matching problem.

We call P and R the sets of feasible fractional solutions of LP 1 and LP 2,
respectively. By setting the dual variables to ye = 1/2 for each e ∈ M , and to

LP 1: Min · x, subject to LP 2: Max b · y, subject to

x(N(e)) ≥ be for all e ∈ E y(N(e)) ≤ 1 for all e ∈ E
xe ≥ 0 for all e ∈ E ye ≥ 0 for all e ∈ E
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ye = 0 for each e ∈ E \ M , we obtain such a feasible solution y ∈ R to LP 2, since
each edge e ∈ E can be adjacent with at most two edges from M . Using duality we
have

b(M)/2 = b · y ≤ Maxy∈Rb · y = Minx∈P · x ≤ OPT.

Hence the weight b(M) of the solution we return is at most 2 · OPT . ��

Corollary 1. For any matching M and any vector b ∈ N|E|, if b|M is a feasible
b-EDS then it is a 2-approximate unweighted b-EDS.

Corollary 1 motivates the following definition: we say a matching M is b-
feasible if b|M is a feasible b-EDS. Thus any matching algorithm that returns a
b-feasible matching M is a 2-approximation for the unweighted b-EDS problem.
Before presenting a linear time algorithm, we present a very simple O(|E|·log |V |)
2-approximation for unweighted b-EDS.

Proposition 1. The greedy algorithm for the maximum weight matching prob-
lem (with weights b ∈ N|E|) that repeatedly selects the edge of greatest weight
that maintains a matching, always returns a matching that is also b-feasible.

Proof. The greedy algorithm also satisfies Lemma 2 below and thus the proof is
the same as the proof of Lemma 3. ��

It is not difficult to see that any matching of maximum weight with respect
to b is b-feasible. Lemma 1 also implies that any feasible b-EDS has size at
least 1

2 the cost of a maximum weight matching with respect to b, thus if a
b-EDS algorithm always returns a b-EDS that is a matching when copies of an
edge are removed, then the algorithm is a 1

2 -approximation for the maximum
weight matching problem.

Preis [14] gave a linear time algorithm, which, given a weighted graph, com-
putes a maximal matching with weight at least one half times the weight of any
matching. The algorithm incrementally adds edges to a matching M . A vertex u
is called free (w.r.t. to M), if u is not incident with any edge in M . We will use the
following lemma, which gives a necessary condition for an edge to be added to the
matching, to show that Preis’s algorithm always generates a b-feasible matching.

Lemma 2 ([14–Lemma 3]). If an edge uv is added to M during the algorithm,
then u and v are free and neither u nor v are adjacent to a free vertex with an
edge of higher weight than the weight of the edge uv.

Lemma 3. Preis’s algorithm always generates a b-feasible matching.

Proof. First, note that each edge e ∈ M is covered be times by itself. Since M is
a maximal matching, any edge e = uv in E \ M must be adjacent to some edge
f = vw in M . If bf ≥ be, then e is covered. Otherwise, Lemma 2 says that u was
not a free vertex at the time when f was added to M . But then there must be an
edge tu ∈ M , which was added to M before f , i.e. t, u and v were free vertices
at the time tu was considered. Using Lemma 2 again, we must have btu ≥ be. ��

Corollary 2. The unweighted b-EDS problem on general graphs can be 2-ap-
proximated in linear time.



Linear Time Algorithms for Generalized Edge Dominating Set Problems 237

3 The b-EDS Problem for Trees

3.1 The General Case

Many problems which are hard to solve optimally or even approximate for general
graphs become a lot easier when restricted to a small family of graphs. The same
is true for the weighted b-EDS problem when we restrict the possible inputs to
trees.

In this section we will show that the weighted b-EDS problem on trees can
be solved optimally as a linear program. A square matrix A is called totally
unimodular if every square sub-matrix of A has determinant +1, -1 or 0. Totally
unimodular matrices play an important role in linear programming due to the
following lemma.

Lemma 4 ([7, 15]). If A ∈ Zmxn is a totally unimodular matrix and b ∈ Zm,
then every extreme point of the polyhedron {x ∈ Rn : Ax ≤ b, x ≥ 0} �= ∅ has
integer coordinates.

Ghouila-Houri [5] gave the following sufficient condition for a matrix to be
totally unimodular.

Lemma 5. A m × n matrix A with entries in {1, 0,−1} is totally unimodular
if for every J ⊆ {1, . . . , n} there exist a partition J = J1 ∪ J2 such that for any
1 ≤ j ≤ m it holds that |

∑
i∈J1

aij −
∑

i∈J2
aij | ≤ 1.

For completeness we include a proof for the fact that the constraint matrix
for the EDS problem for any tree is totally unimodular.

Lemma 6. Let T = (V,E) be a tree on n vertices. Let A = (aij) be the edge-
edge adjacency matrix of T with 1’s on the diagonal, i.e. aij = 1 for all ij ∈ E,
aij = 0 for all ij /∈ E and aii = 1 for all 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 1 and i �= j.
Then A is totally unimodular.

Proof. According to Lemma 5 it is enough to show that we can partition any
E′ ⊆ E into two sets of edges E1 and E2, so that for any e ∈ E we have
|N(e) ∩ E1| − |N(e) ∩ E2| ∈ {−1, 0, 1}. This is equivalent to say that for any
E′ ⊆ E there is a labeling π : E → {1, 0,−1} such that π(e) = 0 if and only if
e ∈ E \ E′ and such that Π(e) := |

∑
f∈N(e) π(f)| ≤ 1 for any e ∈ E.

We will prove by induction on |V | that such a labeling exists for any E′ ⊆ E
and that it also satisfies |Π(v)| ≤ 1 where Π(v) :=

∑
f∈N(v) π(f) for any v ∈ V .

Note that if such a labeling π exists, than −π clearly also satisfies the condition.
The base case |V | = 1 is trivial. Let now |V | ≥ 2 and let v0 ∈ V be an

arbitrary vertex of T . Let Ti = (Vi, Ei) (1 ≤ i ≤ k) be the connected components
of T − {v}, which are trees as well. Let vi be the neighbor of v in Ti and
ei = v0vi. For every 1 ≤ i ≤ k let πi be a labeling of Ei with πi(e) = 0 if
and only if e ∈ Ei \ E′, which exist by the inductive hypothesis. They also
satisfy |Πi(vi)| ≤ 1 for every 1 ≤ i ≤ k. If we set π(ei) = 0 for 1 ≤ i ≤ k and
π(e) = πi(e) whenever e ∈ Ei, we obtain a labeling π : E → {1, 0,−1} such
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that Π(ei) = |Πi(vi)| ≤ 1 and Π(v0) = 0, i.e. π satisfies the claim. However, the
edges incident with v0 which are in E′ are falsely labeled 0. We will show how
to label these edges with 1 or −1 and maintain the desired properties.

We can assume w.l.o.g. that for some 0 ≤ s ≤ k we have that {e1, . . . , es} ⊆
E′ and that {es+1, . . . , ek} ⊆ E \ E′. Further assume that |Π(vi)| = 1 for
1 ≤ i ≤ s0 and that |Π(vi)| = 0 for s0 < i ≤ s for some 0 ≤ s0 ≤ s.

We will switch the labelings πi for 1 ≤ i ≤ s0 if necessary to obtain Π(vi) = 1
for 1 ≤ i ≤ �s0/2� and Π(vi) = −1 for �s0/2� < i ≤ s0. Then we define
π(ei) = −1 for 1 ≤ i ≤ �s0/2� and π(ei) = 1 for �s0/2� < i ≤ s0. The edges
es0+1, . . . , es will be labeled with 1 and −1 so that we have Π(v0) ∈ {0, 1}. The
numbers of edges labeled 1 and −1, respectively, will depend on the parity of s
and s0 and differ by at most 1. If Π(v0) = 1, then we also switch the labelings πi

of those trees Ti with i > s for which Π(vi) = 1 to −πi to ensure that Π(ei) ≤ 1
for those indices i.

It is easy to check that the conditions on π remain true for all edges and
vertices of T . ��

Using Lemma 4 and Lemma 6 we immediately have

Theorem 1. The b-EDS problem on weighted trees can be solved optimally in
strongly polynomial time.

The algorithm to solve the b-EDS problem on trees relies on solving a linear
program. However, we would prefer a combinatorial algorithm, ideally running in
linear time. This is indeed possible if we restrict the trees to have either uniform
weights (Section 3.2) or if we restrict ourselves to the {0, 1}-EDS problem on
weighted trees.

3.2 The Unweighted b-EDS Problem for Trees

A linear time algorithm for the unweighted EDS problem on trees was first
given by Mitchell and Hedetniemi [10] and later simplified by Yannakakis and
Gavril [18]. The unweighted b-EDS problem on trees can also be solved by an
easy greedy algorithm in linear time. Call an edge e of a tree a leaf edge if it is
incident with a leaf.

For any tree T there will always be an optimal solution to the b-EDS problem
which does not use any leaf edges (unless T is a star), since any edge adjacent
with a leaf edge covers at least those edges covered by the leaf edge.

Therefore we can recursively solve the problem by first finding a vertex v
which is incident with exactly one non-leaf edge e, then setting the multiplicity
of e to the maximum b-value of the leaf edges incident with v and finally removing
those leaf edges and updating the b-values of e and those edges adjacent with e
in the remaining tree.

Any optimal solution to the b-EDS problem on that updated tree plus the
multiplicity of the edge e as determined before will give an optimal solution to
the original instance. A formal proof of this fact is straightforward and we omit
it in this abstract.
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Theorem 2. The unweighted b-EDS problem on trees can be solved optimally
in linear time.

3.3 The Weighted {0, 1}-EDS Problem for Trees

To the best of our knowledge no linear time algorithm for the weighted EDS
problem on trees has appeared in the literature. Algorithm 1 is a linear time
primal-dual algorithm which solves the weighted {0, 1}-EDS problem on trees
(indeed a generalization of the weighted EDS problem) optimally in linear time.
This problem generalizes the weighted b-vertex cover problem on trees as
follows:

Lemma 7. The weighted vertex cover problem for trees can be solved optimally
in linear time by solving a weighted {0, 1}-EDS instance on a tree in linear
time.

Proof. Let T = (V,E), cv ∈ R+ for all v ∈ V be an instance of the weighted
vertex cover problem for trees. We build a tree T ′ = (V ∪ V ′, E ∪ E′) with
V ′ = {v′ : v ∈ V } and E′ = {vv′ : v ∈ V }, i.e. we add an extra edge incident
with each vertex of T . We set be = 1 for every e ∈ E and be = 0 for every e ∈ E′.
Furthermore, we set c′vv′ = cv for all v ∈ V and c′e = ∞ for all e ∈ E. Then any
b-EDS of T ′ of finite weight corresponds to a vertex cover of T having the same
weight, and vice versa (an edge vv′ ∈ E′ is in the b-EDS if and only if v is in the
vertex cover). ��

We now present our primal-dual algorithm for the weighted {0, 1}-EDS prob-
lem for trees. In a nutshell the algorithm works as follows. We first pick some
arbitrary vertex of the tree as the root. Then we determine an optimal dual solu-
tion by raising dual variables from the leaves up to the root, making at least one
constraint of the dual problem tight whenever we raise a dual variable. Finally,
we recover a primal solution from the root down to the leaves, which satisfies
the complementary slackness conditions with the dual solution.

We denote by dT (v, u) the (combinatorial) distance between v and u in T ,
i.e. the number of edges on the path between v and u in T . If T is rooted at v0,
then by denoting an edge by e = vu we implicitly mean that v is closer to the
root, i.e. dT (v, v0) = dT (u, v0) − 1. For a vertex v �= v0 p(v) denotes the parent
of v, i.e. the unique vertex on the path from v to v0 which is adjacent to v. The
set of children of v is denoted δ(v) = δ(v) \ {p(v)}.

Theorem 3. Algorithm 1 solves the weighted {0, 1}-EDS problem on trees op-
timally in linear time.

Proof. We will argue that both x and y are feasible solutions to the following LP’s
and that they satisfy complementary slackness and hence are optimal solutions.
Here we let D = {e ∈ E : be = 1}.
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Algorithm 1: {0, 1}-EDS on weighted trees

Input: A tree T = (V,E), c : E → R+ ∪ {0},
. b : E → {0, 1} and a root v0 ∈ V .
1. Set K := maxv∈V dT (v, v0).
% Construct the dual solution from the leaves to the root.
2. FROM i = K DOWNTO 0 DO

FOR ALL v ∈ V with dT (v, v0) = i DO
IF v is a leaf THEN yv := cp(v)v
ELSE

c := minu∈δ(v) cvu

FOR EVERY u ∈ δ(v) with bvu = 1 DO
yvu := min{yu, c}
c := c − yvu

y :=
∑

u∈δ(v) yvu

yv := minu∈δ(v)(cvu − y)
IF v �= v0 THEN cp(v)v := cp(v)v − y

% Construct the primal solution from the root to the leaves.
% e ∈ E is ’tight’, if y(N(e)) = ce

3. F := ∅
4. Whenever an edge vu is added to F , set xv = 1 and xu = 1.
5. IF yv0v = 0 for all v ∈ δ(v0) THEN add all tight edges incident with v0

to F ELSE add one tight edge incident with v0 to F .
6. FROM i = 1 to K − 1 DO

FOR ALL v ∈ V with dT (v, v0) = i DO
e := p(v)v

Case 1 IF ye > 0 and xe = 0 and xp(v) = 0 THEN add ONE arbitrary
tight edge incident with v to F

Case 2 IF yvu = 0 for all u ∈ δ(v) and (be = 0 or ye = 0) THEN add
ALL tight edges incident with v to F

Case 3 IF yvu > 0 for some u ∈ δ(v) and
(
(be = 0 and xe = 0) or

ye = 0
)

add ONE arbitrary tight edge incident with v to F

Case 4 In the remaining cases no edges are added to the primal solu-
tion F .

% Remark: If in any of the cases there is no tight edge incident
upon v then F remains unchanged.

7. RETURN F .

First note that y is feasible for LP 2, i.e. y ∈ R. The variable yv always
contains the maximum value that any y-value of an edge incident with v can be
increased by to maintain a feasible solution to LP 2. Using this and the fact that
any positively set y-value for an edge vu is at most cvu′ , where u′ ∈ δ(v), we see
that y is a feasible solution to LP 2.
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The primary solution x constructed in steps 5 and 6 is chosen so that it
satisfies the complementary slackness conditions with y. First, only tight edges
are chosen to be in the solution F , i.e. whenever xe > 0 then y(N(e)) = ce.
Second, if ye > 0 for some e = p(v)v with be = 1, and v is considered in step
6, then we only add edges to F in Case 2 with the additional conditions xe=0
and xp(v) = 0. But this means no edge incident with p(v) is already in F and we
add at most one edge incident with v to F , i.e. x(N(e)) ≤ 1. As we will show
below x is a feasible solution to LP 1 and therefore x(N(e)) = 1. Thus x and y
satisfy the complementary slackness conditions.

LP 1: Min c · x, subject to LP 2: Max · y, subject to

x(N(e)) ≥ 1 for all e ∈ D y(N(e)) ≤ ce for all e ∈ E
xe ≥ 0 for all e ∈ E ye ≥ 0 for all e ∈ D

To show that x is a feasible solution for the primal LP let e = vu ∈ D where
v = p(u) and assume to the contrary that for all x(N(e)) = 0. For now assume
e is not incident with a leaf or with the root.

Let f = p(v)v denote the parent edge of e. The sibling edges of e are all edges
vu′ ∈ E with u′ �= u and u′ �= p(v); the children edges of e are all edges uw ∈ E
with w �= v. We claim that neither any of the children edges and sibling edges
of e nor e itself have a tight dual inequality. If one of them did, then it was not
added to F during step 6 because f imposed a constraint on the complementary
slackness condition, i.e. f ∈ D and yf > 0. However, we can only have yf > 0 if
none of the sibling edges of e and e itself were tight when yf was considered to
be increased in step 2. This means at least one of the children edges of e must
be tight and if neither f nor e nor any of the sibling edges of e are in F , then
this child edge of e must be in F , a contradiction to our assumption.

Hence none of the sibling edges and children edges of e and e itself are tight.
Therefore, the only reason ye was not increased any further must be that f was
tight already after e was considered. Consequently, none of the sister edges of f
which are in D nor the parent of f (if it has one) can have a positive y-value.
This finally contradicts our assumption, since then we should have picked f for
the primal solution in step 6 (Case 2).

We now consider the cases that e is incident with a leaf or with the root. If e
is incident with a leaf, then certainly one of its sister edges or e itself must be
tight. Hence for the parent edge f of e either f /∈ D or yf = 0, hence at least
one of the tight children edges of f must be in F and hence we again have a
contradiction.

Finally, when e is incident with the root and neither e nor any of the other
edges incident with the root are in F , then it must be that all edges incident
with the root are not tight. But then, if e is not incident with a leaf at the same
time, at least one of e’s children must be tight and should be added to F during
the algorithm.

Noting that each edge of the tree is considered at most three times in step 2
and at most twice in step 6, we conclude that the algorithm runs in O(|E|) =
O(|V |) time. ��
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The ideas from Section 3.2 for the b-EDS problem on unweighted trees also
lead to a recursive linear time algorithm for the weighted {0, 1}-EDS problem
on trees. It is conceptually a bit easier than Algorithm 1, but the proof for
the optimality of the solution involves some case analysis as well. Moreover, it
does not explicitly provide an optimal dual solution and as with Algorithm 1,
it cannot be generalized to solve the general weighted b-EDS problem on trees.
However, we do conjecture the following.

Conjecture 1. The weighted b-EDS problem on trees can be solved optimally in
linear time.
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Rolf Klein2,†, and Günter Rote3

1 Computer Science, University of Wisconsin-Milwaukee, 3200 N. Cramer Street,
Milwaukee, WI 53211, USA

ad@cs.uwm.edu
2 Universität Bonn, Institut für Informatik I, D-53117 Bonn, Germany

{ebbers, gruene, rolf.klein}@cs.uni-bonn.de
3 Freie Universität Berlin, Institut für Informatik,

Takustraße 9, D-14195 Berlin, Germany
rote@inf.fu-berlin.de

Abstract. Let G be an embedded planar graph whose edges may be
curves. The detour between two points, p and q (on edges or vertices) of
G, is the ratio between the shortest path in G between p and q and their
Euclidean distance. The supremum over all pairs of points of all these
ratios is called the geometric dilation of G. Our research is motivated by
the problem of designing graphs of low dilation. We provide a characteri-
zation of closed curves of constant halving distance (i.e., curves for which
all chords dividing the curve length in half are of constant length) which
are useful in this context. We then relate the halving distance of curves
to other geometric quantities such as area and width. Among others,
this enables us to derive a new upper bound on the geometric dilation
of closed curves, as a function of D/w, where D and w are the diameter
and width, respectively. We further give lower bounds on the geometric
dilation of polygons with n sides as a function of n. Our bounds are tight
for centrally symmetric convex polygons.

1 Introduction

Consider a planar graph G embedded in 2, whose edges are curves that do not
intersect. Such graphs arise naturally in the study of transportation networks,
like waterways, railroads or streets. For two points, p and q (on edges or vertices)
of G, the detour between p and q in G is defined as δG(p, q) = dG(p,q)

|pq| where
dG(p, q) is the shortest path length in G between p and q and |pq| denotes the
Euclidean distance. Good transportation networks should have small detour val-
ues. To measure the quality of e.g. a network of streets in a city we have to take
into account not only the vertices of the graph but all the points on its edges,
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because access to the streets is possible from everywhere. The resulting supre-
mum value is the geometric dilation of G. For example the geometric dilation of
a square, or that of a square divided into 100 congruent squares is 2.

Ebbers-Baumann et al. [5] recently considered the problem of constructing a
graph of lowest possible geometric dilation containing a given finite point set on
its edges. They pointed out that even for three points this is a difficult task and
proved that there exist point sets which require graphs with dilation at least
π/2. They conjectured that this lower bound is not best possible, which was
recently confirmed by Dumitrescu et al. in [4].

Ebbers-Baumann et al. have also shown that for any finite point set there
exists a grid-like planar graph that contains the given points and whose geomet-
ric dilation is at most 1.678, thereby improving on

√
3, the geometric dilation

obtained by embedding the points in a hexagonal grid. Their design uses a cer-
tain closed curve of constant halving distance, see Figure 4. Understanding such
curves and their properties is a key point in designing networks with a small ge-
ometric dilation and is our current focus in this paper. Due to space limitations,
some of our proofs are omitted.

2 Basic Definitions and Properties

Throughout this paper we consider finite, simple1, closed curves in the Euclidean
plane. We call them closed curves or cycles for short. For simplicity, we assume
that they are piecewise continuously differentiable, but most of the proofs work
for less restrictive differentiability conditions.

By |C| we denote the length of a closed curve. Shortest path distance dC(p, q),
detour δC(p, q) and geometric dilation δ(C) are defined like in the case of arbi-
trary graphs.

Ebbers-Baumann, Grüne and Klein [6] introduced halving pairs to facilitate
the dilation analysis of closed curves. For a given point p ∈ C, the unique
halving partner p̂ of p is given by dC(p, p̂) = |C|/2. This means that both paths
connecting p and p̂ on C have equal length. The pair (p, p̂) is called halving pair
and the connecting line segment pp̂ is a halving chord. The length of a halving
chord is the corresponding halving distance. By h and H we will denote the
minimum and maximum halving distance of a given closed curve.

Furthermore, we will consider the diameter D := max{|pq|, p, q ∈ C} of a
closed curve C and the width w of a convex cycle C which is the minimum
distance of two parallel lines enclosing C.

The following lemma is the main reason why halving pairs play a crucial role
in the dilation analysis of closed curves.

Lemma 1. [6–Lemma 11] If C is a closed convex curve, its dilation δ(C) is
attained by a halving pair, i.e. δ(C) = |C|/2h.

1 A curve is called simple if it has no self-intersections.
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(a) (b)
C

M

C∗

h

H

p

p̂

C

D

w

H
h

|C|
2

Fig. 1. (a) Diameter D, width w, minimum and maximum halving distance h and H of
an isosceles, right-angled triangle (b) An equilateral triangle C and the derived curves
M and C∗

In [4] Dumitrescu, Grüne and Rote have introduced a decomposition of a
cycle C into two curves C∗ and M , see Figure 1(b) for an illustration. Let
c : [0, |C|) → C be an arc-length parameterization of C. Then, the two curves
are defined by the parameterizations

m(t) :=
1
2

(
c(t) + c

(
t +

|C|
2

))
, c∗(t) :=

1
2

(
c(t) − c

(
t +

|C|
2

))
(1)

The midpoint curve M is formed by the midpoints of the halving chords. It will
turn out to be useful in the analysis of curves of constant halving distance. The
curve C∗ is the result of applying the halving pair transformation (defined in [6])
to C. It is obtained by moving the midpoint of every halving chord to the origin.

3 Closed Curves of Constant Halving Distance

Closed curves of constant halving distance turn up naturally if one wants to
construct graphs of low dilation (compare to [5]). Lemma 1 shows that the
dilation of any convex curve of constant halving distance is attained by all its
halving pairs. Hence, it is difficult to improve (decrease) the dilation of such
cycles, because local changes decrease h or they increase |C|.

Theorem 21 in [6] or the proof of Lemma 1 in [4] show that only curves with
constant m(t) and constant halving distance can attain the global dilation min-
imum of π/2. It is easy to see that only circles satisfy both conditions (compare
to [6–Corollary 23], [1–Corollary 3.3], [9], [7]).

What happens if only one of the conditions is satisfied? Clearly, m(t) is
constant if and only if C is centrally symmetric. The class of closed curves
of constant halving distance is not as easy to describe. One could guess —
incorrectly — that it consists only of circles. The “Rounded Triangle” C

shown in Figure 2 is a counterexample, and could be seen as an analogy to
the Reuleaux triangle [2], the most popular representative of curves of constant
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C


M

−0.6 −0.2 0.2 0.6

−0.6

0.2

0.4

0.6

−0.4

x

y

30◦

p

q

Fig. 2. The “Rounded Triangle”, a curve of constant halving distance

width. It seems to be a somehow prominent example, because two groups of the
authors of this paper discovered it independently.

We construct C
 by starting with a pair of points p := (0, 0.5) and q :=
(0,−0.5). Next, we move p to the right along a horizontal line. Simultaneously,
q moves to the left such that the distance |pq| = 1 is preserved and both points
move with equal speed. It can be shown that these conditions lead to a differential
equation whose solution defines the path of q uniquely. We move p and q like
this until the connecting line segment pq forms an angle of 30◦ with the y-
axis. Next, we swap the roles of p and q. Now, q moves along a line with the
direction of its last movement, and p moves with equal speed on the unique
curve which guarantees |pq| = 1, until pq has rotated with another 30◦. In this
way we concatenate six straight line and six curved pieces to build the Rounded
Triangle C
 depicted in Figure 2.

We have to omit the details of the differential equation and its solution. Here,
we mention only that the perimeter of C
 equals 3 ln 3. By Lemma 1 this results
in

δ(C
) = |C
|/(2h(C
)) =
3
2

ln 3 ≈ 1.6479 .

The midpoint curve of C
 is built from six congruent pieces that are arcs of a
tractrix, which we will discuss in the end of this section. First, we give a necessary
and sufficient condition for curves of constant halving distance.

Theorem 1. Let C be a planar closed curve, and let c : [0, |C|) → C be an
arc-length parameterization. Then, the following two statements are equivalent:

1. If c is differentiable in t and in t + |C|/2, ṁ(t) �= 0, and ċ∗(t) �= 0, then the
halving chord c(t)c(t + |C|/2) is tangent to the midpoint curve at m(t). And
if the midpoint stays at m ∈ 2 on a whole interval (t1, t2), the halving pairs
are located on the circle with radius h(C)/2 and center point m.

2. The closed curve C is a cycle of constant halving distance.
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Proof. “2. ⇒ 1.”
Let C have constant halving distance. If c is differentiable in t and t + |C|/2,

c∗ and m are differentiable in t. And due to |c∗| ≡ h(C)/2 it follows that ċ∗(t)
must be orthogonal to c∗(t) which can be shown by

0 =
d
dt

|c∗(t)|2 =
d
dt

〈c∗(t), c∗(t)〉 = 2 〈c∗(t), ċ∗(t)〉 . (2)

On the other hand, by using the linearity of the scalar product and |ċ(t)| = 1,
we obtain

〈ṁ(t), ċ∗(t)〉 (1)
=

1
4

〈
ċ(t) + ċ

(
t +

|C|
2

)
, ċ(t) − ċ

(
t +

|C|
2

)〉
(3)

=
1
4

(
|ċ(t)|2 −

∣∣∣∣ċ
(

t +
|C|
2

)∣∣∣∣
2
)

=
1
4
(1 − 1) = 0.

The derivative vectors ṁ(t) and ċ∗(t) are orthogonal. Hence, ṁ(t) �= 0 �= ċ∗(t)
implies ṁ(t) ‖ c∗(t) and the first condition of 1. is proven. The second condition
follows trivially from c(t) = m(t) + c∗(t).

“1. ⇒ 2.”
Let us assume that both conditions of 1. hold. We have to show that |c∗(t)|

is constant.
First, we consider an interval (t1, t2) ⊆ [0, |C|), where m(t) is constant (= m)

and the halving pairs are located on a circle with radius h(C)/2 and center m.
This immediately implies that |c∗| is constant on (t1, t2).

If (t1, t2) ⊆ [0, |C|) denotes an interval where |c∗(t)| = 0, then obviously |c∗|
is constant.

Now, let (t1, t2) ⊆ [0, |C|) be an open interval where c(t) and c
(
t + |C|

2

)
are

differentiable and ṁ(t) �= 0 and ċ∗(t) �= 0 for every t ∈ (t1, t2). We follow the
proof of “2. ⇒ 1.” in the opposite direction. Equation (3) shows that ċ∗(t) ⊥ ṁ(t)
and the first condition of 1. gives c∗(t) ‖ ṁ(t). Combining both statements results
in ċ∗(t) ⊥ c∗(t) which by (2) yields that |c∗(t)| is constant.

The range [0, |C|/2) can be divided into countably many disjoint intervals
[ti, ti+1) where m and c∗ are differentiable on the open interval (ti, ti+1), and
one of the three conditions ṁ(t) = 0, ċ∗(t) = 0 or ṁ(t) �= 0 �= ċ∗(t) holds for
the whole interval (ti, ti+1). We have shown that |c∗| must be constant on all
these open intervals. Thus, due to c∗ being continuous on [0, |C|/2), |c∗| must
be globally constant. ��

The theorem shows that curves of constant halving distance can consist of three
types of parts; parts where the halving chords lie tangentially to the midpoint
curve, circular arcs of radius h(C)/2, and parts where ċ∗(t) = 0 and the halving
pairs are only moved by the translation due to m, i.e., for every τ1 and τ2 within
such a part we have c(τ2)−c(τ1) = c(τ2 + |C|/2)−c(τ1 + |C|/2) = m(τ2)−m(τ1).
For convex cycles of constant halving distance, the translation parts cannot
occur:
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Lemma 2. Let C be a closed convex curve of constant halving distance. Then
there exists no non-empty interval (t1, t2) ⊂ [0, |C|) such that c∗ is constant on
(t1, t2).

Proof. Assume that c∗ is constant on (t1, t2) and choose s1, s2 with t1 < s1 <
s2 < t2 and s2 < s1 + |C|/2. If the four points p1 = C(s1), p2 = C(s2),
p3 = C(s2 + |C|/2), p4 = C(s1 + |C|/2) don’t lie on a line, they form a parallel-
ogram in which p1p4 and p2p3 are parallel sides. However, these points appear
on C in the cyclic order p1p2p4p3, which is different from their convex hull order
p1p2p3p4 (or its reverse), a contradiction. The case when the four points lie on
a line � can be dismissed easily (convexity of C implies that the whole curve
C would have to lie on �, but then C could not be a curve of constant halving
distance). ��

CT

M

Fig. 3. CT consists of transla-
tion parts and circular arcs

60◦

CF

M r R

h(CF )
2

R

Fig. 4. The “Flower” from [5] is a non-convex
cycle of constant halving distance

Figures 3 and 4 show examples of non-convex cycles of constant halving
distance. The first one, CT , demonstrates that such closed curves can indeed
include translation parts. The second one, CF , was used in [5] to build a grid of
low dilation. It turned out that the non-convex parts were useful for this purpose
although the dilation of this “Flower” is2 δ(CF ) = 1.6787 . . ., which is somewhat
larger than the dilation of the Rounded Triangle.

Now we show that the midpoint curve of the Rounded Triangle C
 is built
from six tractrix pieces. The tractrix is illustrated in Figure 5. A watch is placed
on a table, say at the origin (0, 0) and the end of its watchchain of length 1 is
pulled along the horizontal edge of the table starting at (0, 1), either to the left
or to the right. As the watch is towed in the direction of the chain, the chain is
always tangential to the path of the watch, the tractrix. There are several known

2 Of course, the dilation of the “Flower” depends on the values of r and R. The radii
chosen in [5] result in the cited dilation value.
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−2 −1 1 2
−0.4

0.8

1.2

tractrix

end of chain
watchchain

watch

edge of table

Fig. 5. The tractrix, the curve of a watch on a table town with its watchchain (the
curve is symmetric about the y-axis)

parameterizations. We will use one of them in the end of section 4.1 to calculate
the area of C
.

From the definition it is clear that the midpoint curve of the cycle C
 consists
of such tractrix pieces, scaled by 1/2, because by definition and Theorem 1 its
halving chords are always tangential to the midpoint curve, always one of the
points of these pairs is moving on a straight line, and its distance to the midpoint
curve stays 1/2.

4 Relating Halving Distance to Other Geometric
Quantities

One of the most important topics in convex geometry is the relation between
different geometric quantities of convex bodies like area A and diameter D. Scott
and Awyong [10] give a short survey of basic inequalities in 2. For example, it
is known that 4A ≤ πD2, and equality is attained only by circles, the so-called
extremal set of this inequality.

In this context the minimum and maximum halving distance h and H give rise
to some new interesting questions, namely the relation to other basic quantities.
As the inequality h ≤ w is immediate from definition, the known upper bounds
on w hold for h as well. However, not all of them are tight for h. One counter-
example (A ≥ w2/

√
3 ≥ h2/

√
3) will be discussed in the following subsection.

4.1 Minimum Halving Distance and Area

Here, we consider the relation between the minimum halving distance h and the
area A (for convex cycles). Clearly, the area can get arbitrarily big while h stays
constant. For instance this is the case for a rectangle of smaller side length h
where the bigger side length tends to infinity.

How small the area A can get for a given minimum halving distance h? A
first answer A ≥ h2/

√
3 is easy to prove, because it is known [11–ex. 6.4, p.221]

that A ≥ w2/
√

3, and we combine this with w ≥ h. This bound is not tight since
the equilateral triangle is the only closed curve attaining A = w2/

√
3 and its
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1

1

1
2

1
2

√
3

2

harea = 1√
2

hperim. = 3
4

A =
√

3
4hperim. = harea

A = π

= 2

Fig. 6. The equilateral triangle has a smaller ratio A/h2
perim. = 4/(3

√
3) ≈ 0.770 and

a bigger ratio A/h2
area =

√
3/2 ≈ 0.866 than the circle (π/4 ≈ 0.785)

C

p

p̂x 1

Fig. 7. By decreasing x
we can make the area of
this closed curve arbitrarily
small while h stays bounded

C5

2 1

M5

1
1
1 1

Fig. 8. The midpoint curve of a rounded pentagon,
constructed analogously to C� of Figure 2, contains
regions with winding number 2 and regions with
winding number 1

width w =
√

3/2 ≈ 0.866 (for side length 1) is strictly bigger than its minimum
halving distance h = 3/4 = 0.75.

For the analogous problem considering chords bisecting the area instead of
chords halving the perimeter, Santaló conjectured3that A ≥ (π/4)h2

area (see [3–
A26, p.37]). Note that equality is attained by a circular disk. As pointed out
earlier, in the case of perimeter halving distance this inequality does not hold: the
equilateral triangle gives a counterexample, A/h2 =

√
3

4 / 9
16 ≈ 0.770 < 0.785 ≈

π
4 , see Figure 6. But we do not know if the equilateral triangle is the convex
cycle minimizing A/h2. On the other hand A/h2 can become arbitrarily small if
we drop the convexity condition, see Figure 7.

Not only the equilateral triangle attains a smaller ratio A/h2 than the circle,
so does every curve of constant halving distance.

Lemma 3. If C is a convex cycle of constant halving distance h, its area satis-
fies A = (π/4)h2−2A(M) where A(M) denotes the area bounded by the midpoint
curve M . In A(M), the area of any region encircled several times by M is counted

3 We would like to thank Salvador Segura Gomis for pointing this out.
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with the multiplicity of the corresponding winding number, see Figure 8 for an
example. In particular, A ≤ (π/4)h2.

The idea (proof omitted here) is: assuming h = 2, we consider parameterizations
c∗(α) = (cos α, sin α) and ṁ(α) = v(α)(cos α, sin α) which exist by Theorem 1
and Lemma 2. Then, we calculate A =

∫
xdy for both curves, C and M , and

take advantage of the periodicity of v.
The theorem shows that the circle is the cycle of constant halving distance

attaining maximum area. But which cycle of constant halving distance attains
minimum area? We conjecture that the answer is the Rounded Triangle C
.
Lemma 3 helps us to calculate its area A(C
). The tractrix-construction of the
midpoint curve M makes it possible to get a closed form for A(M). It results in

A(C
) = π
h2

4
− 2A(M) = (π − 2 · 0.01976 . . .)

h2

4
= 0.7755 . . . · h2.

4.2 Minimum Halving Distance and Width

In order to achieve a lower bound to h in terms of w, we examine the relation
of both quantities to the area A and the diameter D. The following inequality
was first proved by Kubota [8] in 1923 and is listed in [10].

Lemma 4 (Kubota [8]). If C is a convex curve, then A ≥ Dw/2.

We will combine this known inequality with the following new result.

Lemma 5. If C is a convex curve, then A ≤ hD.

Proof. Without loss of generality we assume that a halving chord pq of minimum
length h lies on the y-axis, p on top and q at the bottom (see Figure 9). Let
C− be the part of C with negative x-coordinate and let C+ := C \ C− be the
remainder. We have |C−| = |C+| = |C|/2 because pq is a halving chord.

h

y(x)

−x1 0 x1 x x2

�1

�2

p

q

a

b

L1

L2

C

1

z

h

w

α

x

(b)(a)

Fig. 9. (a) Proving by contradiction that y(x) ≤ h for every x in [x1, x2]. (b) In a thin
isosceles triangle h/w ↘ 1/2 if α → 0
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Let −x1 and x2 denote the minimum and maximum x-coordinate of C. Note
that x1 has a positive value. We assume that x2 > x1. Otherwise we could mirror
the situation at the y-axis. Let y(x) be the length of the vertical line segment
of x-coordinate x inside C, for every x ∈ [−x1, x2]. These definitions result in
x1 + x2 ≤ D and A =

∫ x2

−x1
y(x)dx. Furthermore, the convexity of C implies

∀x ∈ [0, x1] : y(−x) + y(x) ≤ 2h . (4)

As a next step, we want to show that

∀x ∈ [x1, x2] : y(x) ≤ h . (5)

We assume that y(x) > h. Let ab be the vertical segment of x-coordinate x inside
C, a on top and b at the bottom. Then, we consider the lines �1 through p and
a and �2 through q and b. Let L1 (L2) be the length of the piece of �1 (�2) in
the x-interval [0, x1]. By construction the corresponding lengths in the x-interval
[−x1, 0] are equal. Then, by the convexity of C, we have |C−| ≤ L1 + L2 + h <
L1 + L2 + y(x) ≤ |C+|. This contradicts to pq being a halving chord, and the
proof of (5) is completed.

Now we can plug everything together and get

A =

x2∫
−x1

y(x)dx =

x1∫
0

y(−x) + y(x)dx +

x2∫
x1

y(x)dx

(4),(5)
≤ x1 · 2h + (x2 − x1)h = (x1 + x2)h ≤ Dh . ��

Finally, we obtain the desired inequality relating h and w.

Lemma 6. If C is a convex curve, then h ≥ w/2. This bound cannot be im-
proved.

Proof. The inequality follows directly from Lemma 4 and Lemma 5. To see
that the bound is tight, consider a thin isosceles triangle like that depicted in
Figure 9(b) and let α tend to 0. ��

5 Dilation Bounds

5.1 Upper Bound on Geometric Dilation

Our Lemma 6 leads to a new upper bound depending only on the ratio D/w.
This complements the lower bound

δ(C) ≥ arcsin
(w

D

)
+

√(
D

w

)2

− 1 (6)

of Ebbers-Baumann et al.[6–Theorem 22]. The new upper bound is stated in the
following theorem.
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Theorem 2. If C is a convex curve, then

δ(C) ≤ 2

⎛
⎝D

w
arcsin

(w

D

)
+

√(
D

w

)2

− 1

⎞
⎠ .

Proof. Kubota [8] (see also [10]) showed that

|C| ≤ 2D arcsin
(w

D

)
+ 2

√
D2 − w2 . (7)

Combining this with Lemma 6 and Lemma 1 yields

δ(C) Lem.1=
|C|
2h

Lem.6
≤ |C|

w

(7)
≤ 2

⎛
⎝D

w
arcsin

(w

D

)
+

√(
D

w

)2

− 1

⎞
⎠ . ��

5.2 Lower Bounds on the Geometric Dilation of Polygons

In this subsection we apply the lower bound (6) of Ebbers-Baumann et al.[6] to
deduce lower bounds on the dilation of polygons with n sides (in special cases we
proceed directly). We start with the case of a triangle (and skip the easy proof):

Lemma 7. For any triangle C, δ(C) ≥ 2. This bound cannot be improved.

Note that plugging the well-known inequality D/w ≥ 2/
√

3 into (6) would
only give δ(C) ≥ π/3 + 1/

√
3 ≈ 1.624. We continue with the case of centrally

symmetric convex polygons, for which we obtain a tight bound.

Theorem 3. If C is a centrally symmetric convex n-gon (n even), then

δ(C) ≥ n

2
tan

π

n
.

This bound cannot be improved.

Proof. We adapt the proof of Theorem 22 in [6], which proves inequality (6) for
closed curves. Since C is centrally symmetric, it must contain a circle of radius
r = h/2. It can easily be shown (using the convexity of the tangent function)
that the shortest n-gon containing such a circle is a regular n-gon. Its length
equals 2rn tan π/n which further implies that

δ(C) Lemma 1=
|C|
2h

≥
2rn tan π

n

2r
=

n

2
tan

π

n
. (8)

The bound is tight for a regular n-gon. ��
In the last part of this section we address the case of arbitrary (not necessarily

convex) polygons. Let C be a polygon with n vertices, and let C ′ = conv(C).
Clearly C ′ has at most n vertices. By Lemma 9 in [6], δ(C) ≥ δ(C ′). Further on,
consider C ′′ = C′+(−C′)

2 , the convex curve obtained by central symmetrization
from C ′ (see [11, 6]). It is easy to check that C ′′ is a convex polygon, whose
number of vertices is at most twice that of C ′, therefore at most 2n. One can
now replace n by 2n in (8) to obtain a lower bound on the geometric dilation
for any polygon with n sides.
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Corollary 1. The geometric dilation of any polygon C with n sides satisfies

δ(C) ≥ n tan
π

2n
.

References

1. A. Abrams, J. Cantarella, J. Fu, M. Ghomi, and R. Howard. Circles minimize most
knot energies. Topology, 42(2):381–394, 2002.

2. G.D. Chakerian and H. Groemer. Convex bodies of constant width. Convexity and
its Applications, pages 49–96, 1983.

3. H.P. Croft, K. J. Falconer, and R.K. Guy. Unsolved Problems in Geometry.
Springer-Verlag, 1991.
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Orthogonal Subdivisions with
Low Stabbing Numbers
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Abstract. It is shown that for any orthogonal subdivision of size n in a
d-dimensional Euclidean space, d ∈ N, d ≥ 2, there is an axis-parallel line
that stabs at least Ω(log1/(d−1) n) boxes. For any integer k, 1 ≤ k < d,
there is also an axis-aligned k-flat that stabs at least Ω(log1/�(d−1)/k	 n)
boxes of the subdivision. These bounds cannot be improved.

1 Introduction

We say that a line (or a k-flat1) stabs an object b in the d-dimensional Euclidean
space Rd if it intersects the relative interior of b but does not contain b. The
stabbing number (k-stabbing number) of a family of objects in Rd is the maximal
number of objects stabbed by any line (k-flat). Structures such as spanning trees,
triangulations, R-trees, among others, of low stabbing number have versatile
applications in computational geometry. They were used for devising efficient
algorithms for simplex range searching [11], ray shooting [1], motion planning
and collision detection [1, 17], dynamic point location [7]. They are also related
to geometric tomography [9] and the shadow problem [4].

Geometric data structures are often represented as subdivisions of the space
(e.g., triangulations, Kd-trees, BSPs, etc.). Instead of studying specific subdivi-
sions with low stabbing numbers obtained for some geometric input, we focus
on a more fundamental, combinatorial problem: What is the minimum stab-
bing number of a subdivision of size n? Chazelle, Edelsbrunner, and Guibas [10]
considered convex subdivisions. They showed that for any subdivision of the
plane into n convex cells, there is a line that stabs Ω(log n/ log log n) cells; and
for any n ∈ N, there is a subdivision of n convex cells where every line stabs
O(log n/ log log n) cells. No nontrivial bound is known for higher dimensional
convex subdivisions.

In this paper, we obtain tight bounds on the axis-aligned stabbing numbers of
orthogonal subdivisions in d-dimensional Euclidean spaces, for any fixed d ∈ N.
For a subdivision B of Rd into axis-aligned boxes, we denote by sd,k(B) the
axis-aligned k-stabbing number of B, which is the maximum number of boxes
stabbed by an axis-aligned k-flat. For an integer n ∈ N, we let

1 A k-flat is a k-dimensional affine subspace in Rd.

F. Dehne, A. López-Ortiz, and J.-R. Sack (Eds.): WADS 2005, LNCS 3608, pp. 256–268, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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sd,k(n) = min{sd,k(B) : |B| = n,B is an axis-aligned subdivision of Rd}.
We summarize our results as follows. We start out Section 2 with a tight

bound s2,1(n) = Θ(log n) that follows from the Erdős-Szekeres Theorem and a
result by de Berg and van Kreveld [8]. We then generalize the proof technique
to arbitrary dimensions:

Theorem 1. For any fixed d, k ∈ N, d/2 ≤ k < d, we have sd,k(n) = Θ(log n).

In Section 3, we pursue the axis-parallel 1-stabbing number of higher dimen-
sional orthogonal subdivisions. We develop nontrivial techniques to prove our
upper and lower bounds. Our result here is the following.

Theorem 2. For any fixed d ∈ N, d ≥ 2, we have sd,1(n) = Θ(log
1

d−1 n).

In other words, if any axis-parallel line stabs at most i boxes of a d-dimensional
orthogonal subdivision B, then |B| = O(2id−1

), and this bound is tight in the
worst case. Theorem 1 indicates that we cannot prove Theorem 2 by simple
induction on the dimension: By Theorem 1, there is an orthogonal subdivision
of size n in R3 such that any axis-aligned plane intersects only O(log n) boxes,
but Theorem 2 says that there is an axis-parallel line stabbing Ω(

√
log n) boxes.

Simple orthogonal projection is not a promising proof technique, either: The
projection of a d-dimensional axis-aligned subdivision along a coordinate axis is
not a subdivision in Rd−1.

We generalize our techniques for the axis-aligned k-stabbing number for any
k ∈ N, 1 ≤ k < d/2. Combined with Theorem 1, our bounds can be formulated
for any k and d in the following theorem.

Theorem 3. For any fixed d, k ∈ N, 1 ≤ k < d, we have

sd,k(n) = Θ
(
log�

d−1
k �−1

n
)

.

1.1 Related Work

In a pivotal result, Chazelle and Welzl [11, 23] proved that for any n points in
Rd, for any fixed d ∈ N, there is a spanning tree such that any hyperplane crosses
O(n1− 1

d ) edges, and this bound is best possible. Matoušek [20] proved that for
any r, 1 ≤ rd ≤ n, a set of n points in Rd can be partitioned into rd subsets of
size Θ( n

rd ) such that every hyperplane stabs the convex hull of O(rd−1) subsets.
If the points are uniformly distributed in a cube, then a subdivision into rd

congruent cubes gives such a partition. The partition in [20], however, does not
typically correspond to a subdivision of the space.

Researchers have also considered subdivisions with low stabbing number.
Agarwal, Aronov, and Suri [2] proved that n points in R2 and in R3 can be
triangulated (with Steiner points) such that any line stabs O(

√
n·log n) simplices.

They also presented point sets in general position where the stabbing number of
any triangulation is Ω(

√
n). The stabbing number of a Delaunay triangulation

of n points in d-space, however, may be Θ(n�d/2) in the worst case [22].
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Hershberger and Suri [18] studied a stabbing number restricted to polygons:
They showed that every simple polygon with n vertices has a triangulation (with
Steiner points) of size O(n) such that any segment lying entirely in the polygon
stabs O(log n) triangles. De Berg and van Kreveld [8] proved that every simple
rectilinear polygon with n vertices can be subdivided into O(n) rectangles such
that any axis-parallel line segment lying in the polygon stabs O(log n) rectangles.
The restrictions on the stabbing segment are necessary: A line may cross Θ(n)
triangles in any triangulation of a comb polygon with n vertices, and a line
segment with slope 1 may intersect Θ(n) tiles in any rectangular subdivision of
a staircase polygon with n vertices.

Instead of the stabbing number of triangulations in Rd, one can consider
the stabbing number of lower dimensional but non-crossing simplices on a fixed
vertex set. Pach [21] asked what is the k-stabbing number of e distinct r-simplices
with disjoint relative interiors and with n distinct vertices in Rd, for 1 ≤ r <
k ≤ d. Some initial bounds were obtained by Dey and Pach [12].

Orthogonal box configurations with low axis-aligned stabbing number were
studied in various contexts. Agarwal et al. [3] constructed an axis-aligned rectan-
gle hierarchy with stabbing number O(log2 n) for an input of n disjoint rectangles
in the plane. Gaur et al. [16] gave a d-approximation algorithm for computing
the minimum number of axis-aligned hyperplanes that stab a set of input rect-
angles in Rd. De Berg et al. [7] studied axis-aligned R-trees with low stabbing
number for moving objects in Rd.

Our bounds for the stabbing number depend on the size of the subdivisions
only. We do not attempt to compute or approximate the stabbing number of
specific orthogonal subdivisions. Fekete, Lübbecke, and Meijer [15] have recently
proved that it is NP-complete to compute the (axis-parallel) stabbing number
of matchings or triangulations for an input set of points in the plane. Aronov
and Fortune [6] and Aronov et al. [5] consider the average stabbing number of
triangulations of polygonal scenes instead of the worst case stabbing number.

1.2 Definitions

Every logarithm in this paper has base 2, and we define the exponential function
as exp(x) = 2x. For two integers, n1, n2 ∈ N, n1 ≤ n2, we denote by [n1, n2] =
{i ∈ N : n1 ≤ i ≤ n2} the set of integers from n1 to n2. For two reals a, b ∈ R,
I = (a, c) denotes the open interval between a and c, and I is the closure of an
interval I. An axis-aligned box (for short, box) in Rd is the cross product of d

(possibly infinite) closed intervals: b =
∏d

i=1 (ai, ci), where ai ∈ {−∞} ∪ R and
ci ∈ R ∪ {∞} for i ∈ [1, d]. The interval (ai, ci), i ∈ [1, d], is the i-th extent of b.

A subdivision B in Rd is a set of interior disjoint boxes whose union is Rd.
We denote by |B| the size of B. For a subdivision B and a box b, let B|b :=
{b ∩ b′ : b′ ∈ B, int(b ∩ b′) �= ∅} denote the restriction of B to the box b. For any
k ∈ [1, d−1], we say that a k-flat f stabs a d-dimensional box b if f intersects the
interior of b. In our upper bound constructions, we define subdivisions restricted
to a cube—of course, all such subdivisions can be extended to fill the space with
the same number of boxes and the same axis-aligned stabbing numbers.
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2 k-Stabbing Number for d/2 ≤ k < d

In this section we show that s2,1(n) = Θ(log n) by an easy combination of known
results, then we generalize the proof to obtain Theorem 1.

2.1 Stabbing Number of Planar Subdivisions

De Berg and van Kreveld [8] proved that a staircase polygon with n vertices can
be subdivided into at least n/2 rectangles so that the stabbing number of the
subdivision is O(log n), and the stabbing number of every orthogonal subdivision
of the staircase polygon with n vertices is Ω(log n).

For s2,1(n) = Ω(log n), we consider an orthogonal subdivision of the plane
into n boxes. Choose a reference point on the boundary of each box. If there
are log n collinear reference points, then s2,1(B) ≥ 1

2 log n, so we may assume
that there are n/ log n reference points with distinct x- and y-coordinates. We
apply the Erdős-Szekeres Theorem [14], which says that every set of N points
in the plane contains a sequence of 


√
N� points with monotone increasing x-

coordinates and monotone (increasing or decreasing) y-coordinates. It follows
that there is a sequence R of 


√
n/ log n� reference points with strictly monotone

(increasing or decreasing) x- and y-coordinates. Let γ be a rectilinear curve with
2

√

n/ log n� − 1 vertices whose upper-left vertices are the points of R and that
partition the plane into two region. Let F be the region below γ. Observe that
every tile of B|F is a rectangle. By [8], there is an axis-parallel line stabbing
Ω(log(2


√
n�/ log n − 1)) = Ω(log n) rectangles of B|F .

For s2,1(n) = O(log n), partition the plane into two halfplanes by a recti-
linear staircase curve with n vertices. Subdivide either halfplane into at least
n/2 rectangles with stabbing number O(log n) by [8]. The union B of the two
subdivisions has size at least n and stabbing number O(log n). For a suitable
rectangle b, the subset B|b has size exactly n and stabbing number O(log n).

2.2 Proof of Theorem 1

Both the Erdős-Szekeres Theorem and the argument of De Berg and van Kreveld
generalize to higher dimensions if d/2 ≤ k. De Bruijn [19] generalized the Erdős-
Szekeres Theorem (his result follows from Dilworth’s Theorem [13], as well):

Theorem 4 (De Bruijn). Every n element sequence of m-dimensional vectors
has a subsequence of size n2−m

which is monotone in each coordinate. This bound
is tight in the worst case.

Corollary 1. For any orthogonal subdivision B of size n in Rd, d ≥ 2, there is
a coordinate-wise strictly monotone sequence R = (ri : i = 1, 2, . . . , 
n21−d�) of
points lying in the interior of distinct boxes of B.

Proof. Choose a reference point in the interior of every box such that all coor-
dinates are pairwise distinct. Order the reference points according to their first
coordinate. By Theorem 4, there is a subsequence of size 
n21−d� which is strictly
monotone in each coordinate. ��



260 C. D. Tóth

Lemma 1. For any fixed d, k ∈ N, d/2 ≤ k < d, we have sd,k = Ω(log n).

Proof. Consider a coordinate-wise strictly monotone sequence R = (ri : i =
1, 2, . . . , 
n21−d�) of reference points provided by Corollary 1. We choose m to
be the largest power of 2 such that m ≤ 
n21−d� < 2m. Let b(i, j) denote the
box spanned by rj and rj+2i−1 for every i ∈ [0, log m] and j ∈ [1,m − 2i + 1].
(See Fig. 1, left.) We choose two axis-aligned k-flats X and Y such that they
span the entire space Rd. Finally, let x(i, j) (resp., y(i, j)) denote the maximal
number of boxes of B|b(i, j) stabbed by a k-flat which is parallel to X (resp., Y )
and passes through a reference point of R ∩ b(i, j).

We show by induction that i ≤ x(i, j) + y(i, j) for every i and j. This im-
mediately implies that sd,k(B) ≥ max(x(log m, 1), y(log m, 1)) ≥ 1

2 (x(log m, 1)+
y(log m, 1)) ≥ 1

2 log m = Ω(log n).
We proceed by induction on i. Since b(0, j) is a single point in the interior of

one box of B, we have x(0, j) = y(0, j) = 1 for every j ∈ [1,m]. Suppose that
i′ ≤ x(i′, j) + y(i′, j) holds for every i′ ≤ i. Consider a box b(i + 1, j) for some
j ∈ [1,m−2i+1+1]. It contains the disjoint boxes b(i, j) and b(i, j+2i). Let h1 and
v1 be k-flats parallel to X and Y through reference points of R∩b(i, j) attaining
x(i, j) and y(i, j). Similarly, let h2 and v2 be k-flats through reference points of
R∩b(i, j +2i), that attain x(i, j +2i) and y(i, j +2i). If h1 and v1 jointly stab at
least i+1 boxes in B|b(i+1, j), then i+1 ≤ x(i+1, j)+y(i+1, j) and the induction
step is complete. Otherwise, h1 and v1 jointly stab exactly x(i, j) + y(i, j) boxes
in B|b(i + 1, j). In this case, the portion h1 ∩ (b(i + 1, j) \ b(i, j)) of the k-flat
h1 lies in a box b ∈ B which intersects b(i, j). Observe that b is disjoint from
b(i, j +2i) because any box intersecting both b(i, j) and b(i, j +2i) must contain
the reference points rj+2i−1 and rj+2i , which are in distinct boxes of B. Note
also that the intersection of h1 and v2 is a point in b(i + 1, j) but not in b(i, j).
Therefore v2 must intersect b ∈ B in b(i + 1, j) \ b(i, j). We conclude that v2
intersects at least y(i, j + 2i) + 1 boxes of B|b(i + 1, j). So h2 and v2 jointly
intersects at least i + 1 boxes in B|b(i + 1, j). ��

The upper bound sd,k(n) = O(log n) follows from a trivial construction ob-
tained by repeatedly subdividing a box along one of its diagonals.

Fig. 1. Boxes b(i, j) spanned by reference points (left). Upper bound construction
(middle). The size of a monotone sequence of reference points is at most

√
n (right)
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Lemma 2. sd,k(n) = O(log n) for every 1 ≤ k ≤ d.

Proof. We iteratively construct orthogonal subdivisions Bi, i ∈ N, of a d-dimen-
sional cube C. Let B1 = {C}, and let e be a diagonal of C. Once Bi is defined,
we can construct Bi+1: Consider every box b ∈ Bi whose interior intersects e.
Choose a point pb ∈ int(b) ∩ e and split b into 2d boxes along the d axis-aligned
hyperplanes through pb. (Fig. 1, middle.)

By induction, the line e intersects the interior of 2i−1 boxes of Bi. In one
iteration, each of these boxes is split into 2d pieces, so |Bi+1|−|Bi| = (2d−1)2i−1.
We have, by induction, |Bi| = (2d − 1)(2i−1 − 1) + 1. On the other hand, every
axis-aligned k-flat, 0 ≤ k ≤ d − 1, stabs only i(2k − 1) + 1 boxes of Bi. ��

3 Stabbing Number in Higher Dimensions

In this section we prove Theorem 2 about the axis-parallel stabbing number of
orthogonal subdivisions.

3.1 Lower Bound

Lemma 3. For every fixed d ∈ N, 2 ≤ d, we have sd,1 = Ω(log
1

d−1 n).

Proof. We apply induction on d. The base case d = 2 is established in Lemma 1.
Assume that sd′,1 = Ω(log

1
d′−1 n) for every d′ ∈ N, 2 ≤ d′ < d, and consider an

orthogonal subdivision B of size n in Rd. Let R = (ri : i ∈ [1, 
n21−d�]) be a
coordinate-wise strictly monotone sequence of reference points chosen from the
interior of distinct boxes as in Corollary 1.

We choose m to be the largest power of 2 such that m ≤ 
n21−d� < 2m. For
i ∈ [0, log m] and j ∈ [1,m − 2i + 1], we denote by b(i, j) the box spanned by
the reference points rj and rj+2i−1. For every box b(i, j), we define a function
β(i, j) as follows:

Fix a box b(i, j). Let H(i, j) = H be a set of lines h� parallel to the x1-axis
through the reference points r� ∈ R ∩ b(i, j) for � ∈ [j, j + 2i − 1]}. Let Vl and
Vr be hyperplanes orthogonal to the x1-axis through the reference points rj and
rj+2i−1. We define an equivalence relation on the lines of H(i, j): We say that
hs, ht ∈ H are equivalent in b(i, j) if and only if the both intersection points
hs∩V1 and ht∩V1 lie in one box of B and also both hs∩V2 and ht∩V2 lie in one
box of B. This equivalence relation partitions H into u = u(i, j) ∈ N equivalence
classes H = H1 ∪∗ H2 ∪∗ . . . ∪∗ Hu. Clearly, every equivalence class contains
elements with consecutive indices: Hk = {h� : � ∈ Ik} for every k ∈ [1, u(i, j)].
For every equivalence class Hk, we define y(k) to be the average number of boxes
of B|b(i, j) stabbed by a line in Hk. Now we let

β(i, j) :=
u(i,j)∑
k=1

exp
(
y(k) · log

d−2
d−1 n

)
=

u(i,j)∑
k=1

(
2log

d−2
d−1 n

)y(k)

. (1)
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We show by induction the following claim.

Claim 1. At least one of the following two statements holds true:
(a) a hyperplane orthogonal to the x1-axis stabs at least

exp(log
d−2
d−1 n) boxes of B;

(b) For every i ∈ [0, log m] and j ∈ [1,m − 2i + 1], we have

2i ≤ β(i, j). (2)

We first show that Claim 1 implies sd,1(B) = Ω(log
1

d−1 n). If a hyperplane
stabs at least exp(log

d−2
d−1 n) boxes of B, then by induction on the dimension, there

is a line in that hyperplane that stabs Ω(log
1

d−2 exp(log
d−2
d−1 n)) = Ω(log

1
d−1 n)

boxes of B. Otherwise, there are at most exp(log
d−2
d−1 n) equivalence classes in

H(log m, 1) and Eq. (2) holds for β(log m, 1). We have

Θ(n) = 2log m ≤
u(i,j)∑
k=1

exp
(
y(k) · log

d−2
d−1 n

)
≤ exp

(
(1 +

u(i,j)
max
k=1

y(k)) · log
d−2
d−1 n

)
.

Θ(log n) ≤
(

1 +
u(i,j)
max
k=1

y(k)
)

log
d−2
d−1 n. (3)

Therefore, Θ(log
1

d−1 n) ≤ maxu(i,j)
k=1 y(k), and so there is an equivalence class Hk

where Θ(log
1

d−1 n) ≤ y(k). By definition of y(k), there is a line parallel to the
x1-axis stabbing Θ(log

1
d−1 n) boxes of B.

If Claim 1 (a) does not hold, we prove Claim 1 (b) by induction on i. In the
base case that i = 0, we have u(0, j) = 1 equivalence class and the line h1 stabs a
unique box of b(0, j). So y(1) = 1 and Eq. 2 trivially holds. Suppose that it holds
for every i′, 0 ≤ i′ ≤ i. Consider a box b(i+1, j) for some j ∈ [1,m−2i+1 +1]. It
contains the disjoint boxes b(i, j) and b(i, j +2i). If the set of equivalence classes
of H(i+1, j) is the union the equivalence classes of H(i, j) and H(i, j +2i) then
Eq. (2) holds because the values y(k) cannot decrease in any class.

We now consider the case where some of the classes of H(i+1, j) are different
from the classes of H(i, j) and H(i, j + 2i) (e.g., several classes of H(i, j) and
H(i, j + 2i) are merged into one class of H(i + 1, j)). Since we assumed that
Claim 1 (a) does not hold, there are at most exp(log

d−2
d−1 n) classes in each of

H(i, j) and H(i, j + 2i). Let F ⊂ H(i + 1, j) be a minimal set of lines such that
F is the union of equivalence classes of H(i + 1, j), and it is also the union of
equivalence classes of H(i, j) and H(i, j + 2i).

Claim 2. If F is not a single equivalence class of both H(i + 1, j) and
H(i, j)∪H(i, j+2i), then every line of F stabs more boxes in B|b(i+1, j)
than in B|b(i, j) ∪ B|b(i, j + 2i).

Claim 2 immediately establishes the induction step and proves Claim 1 because,
by our assumption, at most exp(log

d−2
d−1 n) classes can merge into one class.
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Fig. 2. The equivalence classes of H(1, 1) and H(1, 3) on the left side of the bounding
box, the equivalence classes of H(2, 1) on the right for the cases (i), (ii), and (iii).

We prove Claim 2 by elementary geometry. Case (i): F is a single equivalence
class in H(i, j) or H(i, j + 2i), which is split into several classes in H(i + 1, j).
Suppose w.l.o.g. that F is a class of H(i, j). None of the boxes b ∈ B containing
the intersection points {Vj+2i+1−1 ∩ h� : h� ∈ F}, intersect b(i, j), because all
points {Vj+2i−1 ∩ h� : h� ∈ F} are in one box of B. So every such h� stabs one
more box in b(i + 1, j) then in b(i, j).
Case (ii): F contains two consecutive classes Ha and Hc of H(i, j). (We can
argue analogously if both Ha and Hc are in H(i, j + 2i).) By the minimality
of F , a class of H(i + 1, j) contains lines from both Ha and Hc. That is, a
box b ∈ B contains Vj+2i+1−1 ∩ ha and Vj+2i+1−1 ∩ hc for some ha ∈ Ha and
hc ∈ Hc. Therefore none of the boxes of B containing the intersection points
{Vj ∩ h� : h� ∈ Ha ∪ Hc} intersect b(i, j). So every line in Ha ∪ Hc stabs one
more box in b(i + 1, j) than in b(i, j).
Case (iii): F contains two consecutive classes Ha ⊆ H(i, j) and Hc ⊆ H(i, j+2i).
By the minimality of F , a class of H(i+1, j) contains lines ha ∈ Ha and hc ∈ Hc.
There are boxes b1, b2 ∈ B such that {Vj ∩ ha, Vj ∩ hc} ⊂ b1 and {Vj+2i+1−1 ∩
ha, Vj+2i+1−1 ∩ hc} ⊂ b2. Notice that Vj ∩ ha ∈ b(i, j) and Vj+2i+1−1 ∩ hc ∈
b(i, j+2i), so b1∩b(i, j) �= ∅ and b2∩b(i, j+2i) �= ∅. Neither b1 nor b2 can intersect
both b(i, j) and b(i, j +2i), because any box intersecting both would contain the
reference points rj+2i−1 and rj+2i , which lie in distinct boxes of B. Therefore
none of the boxes of B containing the intersection points {Vj ∩h� : h� ∈ Hc} can
intersect b(i, j); and none of the boxes of B containing the intersection points
{Vj+2i+1−1 ∩ h� : h� ∈ Ha} can intersect b(i, j + 2i). Every line in Ha ∪Hc stabs
one more box in b(i + 1, j) than in b(i, j) and in b(i, j + 2i). ��

3.2 Upper Bound Construction

Our Lemma 2 provided a planar construction for s2,1(n) = O(log n). In higher
dimensions, we construct orthogonal subdivisions with low stabbing numbers by
induction on the dimension. In every dimension d, we define a set of auxiliary
subdivisions Bd,i, i ∈ N, which are then used to construct subdivision Dd,n

with n boxes and sd,1(Dd,n) = O(log
1

d−1 n). A crucial property of the auxiliary
subdivisions relies on the concept of shadows defined here.
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Definition 1. For two axis-aligned boxes C and U , U ⊂ C, we call the shadow
of U the volume between U and its orthogonal projection to a side of C. U may
have 2d shadows (one for each side of U). A shadow of U to a side of C is empty
if this side contains a side of U .

We collect the properties of the two families of subdivisions in two lemmas.

Lemma 4. For every d, i ∈ N, 3 ≤ d, a d-dimensional cube has an orthogonal
subdivision Bd,i of size Ω(2i) with the following properties: (i) a diagonal e stabs
2i − 1 congruent cubes of Bd,i, which we call diagonal boxes; (ii) every shadow
of every diagonal box is an element of Bd,i; (iii) sd,1(Bd,i) = O(i

1
d−2 ).

Lemma 5. For every d, n ∈ N, 3 ≤ d, a d-dimensional cube has an orthogonal
subdivision Dd,n with the following properties: (a) a diagonal e stabs n congruent
cubes of Dd,n; (b) sd,1(Dd,n) = O(exp(log

1
d−1 n)).

We construct both subdivisions by double induction. The induction on the
dimension d is interdependent in the two proofs: For every d ∈ N, 4 ≤ d, the
construction Bd,i assumes that Lemma 5 holds for d′ = d − 1 and for every n.
The construction of Dd,n assumes that Lemma 4 holds for the same d ∈ N and
for every i ∈ N.

Proof (of Lemma 4). We apply double induction in d and i. For i = 0, let Bd,0
be the d-dimensional unit cube. When constructing Bd,i for 3 ≤ d and 1 ≤ i, we
assume that Lemma 4 holds for d and i−1; and Lemma 5 hold for d−1 if 4 ≤ d
and for n = 2i−1 − 1.

We construct Bd,i as an orthogonal subdivision of the cube Cd,i = (0, 2i−1)d.
Let e be a diagonal of Cd,i and let U be the central unit cube of Cd,i. The 2d
hyperplanes along the sides of U partition Cd,i into 3d regions. (See Fig. 3, left.)
Let R0, and R1 denote the regions adjacent to the two endpoints of the diagonal
e. Let S0 denote the union of R0 and its 2d nonempty shadows to sides of Cd,i

(we define S1 analogously for R1). Notice that S0 (resp., S1) is the union of
1 + 2d regions out of 3d. We further subdivide S0 and S1; while the remaining
3d − 2(2d + 1) regions of Cd,i (including U) are boxes of Bd,k.

We describe the subdivision of S0 (we can analogously subdivide S1). We
place a copy of Bd,i−1 into R0. S0 \ R0 consists of d nonempty shadows of R0,
each having one common face with R0. We describe the subdivision in one of
these boxes, R0,1, whose common face with R0 is orthogonal to the x1-axis. The
subdivisions in the other d − 1 components of S0 \ R0 are analogous.

Consider the copy of Bd,i−1 in R0. Along the diagonal e, it contains a set
of 2i−1 − 1 unit cubes, which we denote by {U� : � ∈ [1, 2k−1 − 1]}. For each
unit cube U�, let us denote by U�,1 the shadow of U� between U� and its x1-
projection to the common side of R0 and R0,1. (Note that the shadow may have
empty interior if U� has a common side with R0.) We extend the x1 extent of
U�,1 ∈ Bd,i−1 by the full x1-extent of R0,1. (Fig. 3, right.) Let the extended
boxes {U ′

�,1 : � ∈ [1, 2k−1 − 1]} be elements of Bd,i. It remains to describe the

subdivision of R0,1 \
(⋃2k−1−1

�=1 U ′
�

)
. We subdivide this volume into boxes that
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S0

R0

R1

R0,1

R0,2

S1

S0

Fig. 3. The partition of C3,4 into 27 regions (left). The diagonal boxes in S0 and their
shadows extended to R0,1, R0,2, and R0,3 for the construction of B3,4 (right).

are fully contained in R0,1 and whose x1-extent is the same as that of R0,1. Since
their x1 extent is the same, it is enough to describe their x1-projections.

Consider the (d − 1)-dimensional orthogonal x1-projection of R0,1. The pro-
jection of {U ′

�,1 : � ∈ [1, 2i−1−1]} is a set of 2i−1−1 unit cubes along the diagonal
of (0, 2i−1 − 1)d−1. If d = 3, then the complement of these unit squares can be
subdivided into O(2i) boxes such that any axis-parallel line stabs at most O(i) of
them. If 4 ≤ d, then we can apply Lemma 5 in dimension d−1 with n = 2i−1−1
by induction. The complement of the diagonal unit cubes in (d−1)-space can be
subdivided into boxes such that any axis-parallel line crosses at most O(i

1
d−2 )

of them. This completes the description of Bd,i.
Finally we check that that Bd,i satisfies conditions (i)–(iii). Conditions (i)

and (ii) are clearly satisfied. For (iii), consider an axis-parallel line f stabbing
Cd,i. If f stabs the unit cube U , then it stabs exactly 3 boxes of Bd,i. If f

stabs R0, then it stabs O
(
(i − 1)

1
d−2

)
boxes of Bd,i−1 in R0 by induction on

i, and at most one more box of Bd,i in S0 \ R0. We argue similarly if f stabs
R1. Otherwise, f may stab both S0 \ R0 and S1 \ R1. In either region, f stabs
O
(
log

1
d−2 (2i−1 − 1)

)
= O

(
(i − 1)

1
d−1

)
boxes by Lemma 5; and f can also stab

at most 3 boxes in Cd,i \ (S0 ∪ S1). ��

Proof (of Lemma 5). For a given n ∈ N and d ∈ N, 3 ≤ d, we assume that
Lemma 4 holds for d and for every i. If n < 22d−1

, then we let Dd,n be a sub-
construction of the subdivision described in Lemma 2 spanned by n congruent
cubes along the diagonal. The stabbing number in this case is at most 2
log n�2 ·
2d−1 = O(1). For the following iterative construction, we assume n ≥ 22d−1

.
Let n′ be the smallest integer such that n ≤ n′ and log

1
d−1 n′ ∈ N. Let m =

log
1

d−1 n′ and M = md−2. For every i ∈ N, we define iteratively a subdivision
D(i). Let D(0) = Bd,M . For every i, 1 ≤ i, we obtain D(i) from D(i − 1) as
follows. Consider a construction Bd,M and place a scaled copy of D(i − 1) in
each of the 2M − 1 unit boxes along the diagonal of Bd,M .
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Now, we are in the position to define Dd,n: Consider the subdivision D(2m).
The number of congruent cubes along the diagonal of D(2m) is

(
2(log

d−2
d−1 n) − 1

)2 log
1

d−1 n

≥ 2log n ≥ n.

Let Dd,n be a subdivision spanned by n consecutive congruent cubes along
the diagonal of D(2m). Now Dd,n has exactly n cubes along its diagonal.

We show that sd,1(D(2m)) = O(m). Consider an axis-parallel line f . Let
j ∈ N be the smallest index such that f stabs a box U along the diagonal in a copy
of Bd,M (which was placed into a unit cube in the j-th iteration). By Lemma 4, f

stabs O(M
1

d−2 ) = O(m) boxes inside U . Outside U , it can stab 2(m−j) = O(m)
boxes because it may stab two new shadow boxes constructed in each of the last
m − j iterations. Finally, sd,1(Dd,n) ≤ sd,1(Dd,n′) = sd,1(D(2m)) = O(m) =
O(exp(log

1
d−1 n′)) = O(exp(log

1
d−1 n)), as required. ��

4 k-Stabbing Number in Higher Dimensions

The proof techniques of the previous section generalize to the case where we
count the number of boxes stabbed by axis-aligned k-flats. Combined with The-
orem 1, we obtain a formula for the axis-aligned k-stabbing number of a d-
dimensional orthogonal subdivision. For any fixed k, d ∈ N, 1 ≤ k < d, we have
sd,k = Θ

(
log�

d−1
k �−1

n
)
.

For the lower bound, we follow the proof of Lemma 3. We choose an axis-
aligned k-flat X, and let h� be the k-flat parallel to X through the reference
point r�. Similarly, we let V� be the (d − k)-flat orthogonal to h� though r�.

For the upper bound, we extend the proof of Lemmas 4 and 5. Along with
Definition 1 (the one-dimensional shadow of a cube U in a box C), we define
inductively j-shadows for j ∈ [1, k]. For any j > 1, the j-shadow of U is the 1-
shadow of the (j−1)-shadow of U . We can define the subdivisions Bd,i similarly
to Lemma 4. We split a d-dimensional cube Cd,i into 3d regions and place copies
of Bd,i−1 into two regions at opposite corners. Either region then determines the
subdivision in their respective k-shadows, which are disjoint as long as k < d/2.

5 Possible Extensions and Open Problems

In this paper, we studied the axis-aligned k-stabbing number of orthogonal sub-
divisions. One could, as well, consider the k-stabbing number with arbitrary
k-flats, and convex subdivisions instead of orthogonal subdivisions. It is easy
to determine the axis-aligned stabbing number of arbitrary convex subdivisions.
For any d ≤ � and n ∈ N, there are convex subdivisions with n cells in Rd whose
axis-parallel stabbing number is k. (E.g., consider a thin cylinder along a diago-
nal of a cube: partition the cylinder into d−1 tiny cells, and fill the complement
of the cylinder by d convex cells.)
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For orthogonal subdivisions and arbitrary stabbing k-flats, all our lower
bounds remain valid. It is possible that they are tight for this variant of the
problem. For convex subdivisions and arbitrary stabbing k-flats, there are better
bounds than ours already in the plane: Chazelle, Edelsbrunner, and Guibas [10]
proved that the stabbing number of any convex subdivision in the plane is
Θ(log n/ log log n). No nontrivial bound is known for the stabbing numbers of
convex subdivision in 3- or higher dimensions.
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Abstract. Let S be a set of n moving points in the plane. We present
a kinetic and dynamic (randomized) data structure for maintaining the
convex hull of S. The structure uses O(n) space, and processes an ex-
pected number of O(n2βs+2(n) log n) critical events, each in O(log 2n)
expected time, including O(n) insertions, deletions, and changes in the
flight plans of the points. Here s is the maximum number of times where
any specific triple of points can become collinear, βs(q) = λs(q)/q, and
λs(q) is the maximum length of Davenport-Schinzel sequences of order
s on n symbols. Compared with the previous solution of Basch et al. [2],
our structure uses simpler certificates, uses roughly the same resources,
and is also dynamic.

1 Introduction

The Kinetic Data Structure (KDS) framework, introduced by Basch et al. [2],
proposes an algorithmic approach, together with several quality criteria, for
maintaining certain geometric configurations determined by a set of objects,
each moving along a semi-algebraic trajectory of constant description complex-
ity (see below for a precise definition); see [5].

A kinetic data structure maintains some configuration (e.g. convex hull, clos-
est pair) of moving objects. It does so by finding a set of certificates that, on one
hand, ensure the correctness of the configuration currently being maintained,
and, on the other hand, are inexpensive to maintain. When the motion starts,
we can compute the closest failure time of any of the certificates, and insert
these times into a global event queue. When the time of the next event in the
queue matches the current time, we invoke the KDS repair mechanism, which
fixes the configuration and the failing certificate(s). In doing so, the mechanism
will typically delete from the queue failure times that are no longer relevant, and
insert new failure times into it.

To analyze the efficiency of a KDS, we distinguish between two types of
events: internal and external. External events are events associated with real
(combinatorial) changes in the configuration, thus forcing a change in the output.
Internal events, on the other hand, are events where some certificate fails, but
the overall desired configuration still remains valid. These events arise because
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of our specific choice of the certificates, and are essentially an overhead incurred
by the data structure. If the ratio between the number of internal events to (an
upper bound on) the number of external events is no more than polylogarithmic
in the number of input objects, the KDS is said to be efficient.

Other parameters of the KDS that one would like to minimize are the fol-
lowing. We say that the KDS is responsive if the processing time of a critical
event by the repair mechanism is polylogarithmic in the number of input objects.
The KDS is local if each object is associated with a polylogarithmic number of
events in the event queue. Locality allows efficient flight plan changes. The KDS
is compact if it occupies space which is larger than the number of input objects
by at most a polylogarithmic factor.

In addition, which is one of the central issues considered in this paper, one
might wish to design a KDS that is also dynamic, meaning that it can also
efficiently support insertions and deletions of objects.

In their paper, Basch et al. [2] developed a KDS that maintains the convex
hull of a set of moving points in the plane, which is compact, efficient, local,
and responsive. Specifically, their structure processes O(n2+ε) events, for any
ε > 0, each in O(log2 n) time. (The number of events has been slightly improved
in a later work [1], to O(nλs(n)), where s is the number of times any fixed
triple of points can become collinear.) To achieve locality, their algorithm uses
a fairly complicated set of certificates. Furthermore, Basch et al. have focussed
only on kinetization, and did not consider insertions and deletions of points. The
motivation for our work has been twofold: (i) to simplify the certificates used
by [2], and (ii) to obtain a dynamic algorithm that still meets the four quality
criteria mentioned above.

Our results. In this paper we present an efficient dynamic KDS for maintaining
the convex hull of a set of n moving points in the plane. Our certificates are
simpler than those of [2], and the performance of our algorithm is comparable
with that of [2]. Specifically, write βq(n) = λq(n)/n, where q is any constant, and
where λq(n) is the maximum length of a Devenport-Schinzel sequence of order
q on n symbols (see [8]). We show that, for m ≥ n insertions and deletions, our
structure processes an expected number of O(mnβs+2(n) log n) events, each in
O(log 2n) expected time, that it has size O(n), and that each line participates
in only O(log n) “certificates” maintained by the structure. In the terminology
defined above, our structure is compact, efficient, local, and responsive.

We assume that each moving point i is given as a pair (ai(t), bi(t)) of semi-
algebraic functions of time of constant description complexity. That is, each
function is defined as a Boolean combination of a constant number of predicates
involving polynomials of constant maximum degree. We present our result in
the dual plane, where each point is mapped to the moving non-vertical line
y = ai(t)x + bi(t), and the goal is to maintain the upper and lower envelopes of
this set of moving lines. For simplicity, and without loss of generality, we will
only consider the maintenance of the upper envelope.

The main idea in our solution is to maintain the lines sorted by slope in
a data structure similar to the stationary data structure of Overmars and van
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Leeuwen [6]. This is in contrast with the data structure of Basch et al. [2] that
keeps the lines in a tree in some arbitrary order.

Because of some technical difficulties in the analysis, which are discussed at
the end of Section 3 (these difficulties arise due to lack of tight bounds on the
complexity of a single level in planar arrangements), we have to use a treap
[7] as the underlying tree. Our data structure is therefore randomized, and its
performance bounds hold only in expectation.

We present the algorithm in three stages. First, we describe the classical
dynamic algorithm of Overmars and van Leeuwen for stationary lines [6], upon
which our solution is built. Second, we make this algorithm kinetic, by designing
a set of simple certificates and an efficient algorithm for maintaining them as the
lines move. Third, we make the algorithm dynamic, by showing how to perform
insertions and deletions efficiently, adapting and enhancing the basic technique
of [6]. Due to space limitations some proofs are omitted.

2 Preliminaries

In this section we introduce our framework and notation, by briefly reviewing
the data structure of Overmars and van Leeuwen [6] for dynamically maintaining
the upper envelope of a set of lines. We describe this structure here in its original
stationary context.

We denote by S = {�1, . . . �n} the set of lines in the data structure, sorted
in order of increasing slopes, so that �k is the line with the k-th smallest slope.
We store the lines at the leaves of a balanced binary search tree T in this order.
Slightly abusing the notation, we also use �k to denote the node of T containing
�k. Later, we take T to be a treap (see [7] and below), but for now any kind
of balanced search tree will do. Denote the root of T by r. For a node v ∈ T ,
denote the left and right children of v by �(v) and r(v), respectively, and denote
the parent of v by p(v). Denote the set of lines in the leaves of the subtree of v
by S(v).

Each node v ∈ T stores a sorted list of the lines that appear in the upper
envelope E(v) of S(v), in their left-to-right order along the envelope, which is
the same as the increasing order of their slopes. To facilitate fast implementa-
tion of searching, splitting, and concatenation of upper envelopes, we represent
each such sorted list as a balanced search tree. Abusing the notation slightly,
we denote by E(v) both the upper envelope of the lines in S(v) and the tree
representing it. Overmars and van Leeuwen [6] exploit the simple property that,
for two sets of lines L and R, such that any line in L has a smaller slope than
that of any line in R, the upper envelopes of L and R have exactly one common
intersection point q. The envelope is attained by lines of L to the left of q, and
by lines of R to the right of q.

After sorting the lines of S in the increasing order of their slopes, we build T
and the secondary structures E(v), for each v ∈ T , in the following bottom-up
recursive manner. For a node v, we build E(v) from E(�(v)) and E(r(v)): First
we compute the intersection q(v) of E(�(v)) and E(r(v)), by simultaneous binary
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search over E(�(v)) and E(r(v)), in the manner described in [6]. Then we split
E(�(v)) and E(r(v)) at q(v), and concatenate the part of E(�(v)) that lies to
the left of q(v) with the part of E(r(v)) that lies to the right of q(v), to obtain
E(v).

To save space, Overmars and van Leeuwen [6] store at each node v only the
part of E(v) that does not appear on E(p(v)). One can then reconstruct E(v) on
the fly from E(p(v)), and from the piece stored at v.

The operations of finding q(v), splitting and concatenating E(�(v)) and
E(r(v)), take O(log n) time each. Therefore, we can build the entire structure
in O(n log n) time. The size of the primary tree T , including the portions of the
envelopes E(v) stored at each node v, is O(n) [6].

To support insertions and deletions of lines, each time we traverse an edge of
the tree from a node v to one of its children, we construct the envelopes E(�(v))
and E(r(v)) from E(v). Later on when we traverse the same edge going from the
child back to v we reconstruct E(v) from the potentially new values of E(�(v))
and E(r(v)). The overall cost of an insertion or deletion is O(log2 n).

To simplify the presentation in the subsequent sections, we will consider upper
envelopes stored at various nodes of the structure as if they are stored there in
full, and will ignore the issues related to this more space-efficient representation.
Nevertheless, the bounds that we will state will take this improved representation
into account.

3 Making the Data Structure Kinetic

We now show how to maintain the upper envelope E of S, using the structure of
Section 2, when the lines are moving along trajectories known to the algorithm.
Note that now the increasing slope order of the lines �1, . . . , �n may change over
time. So when we refer to �k we mean the line with the kth smallest slope at
some particular time, which will always be clear from the context.

Fix an internal node v ∈ T . Denote the two lines from E(�(v)) and E(r(v))
that intersect at q(v) as μ�(v) and μr(v), respectively. Denote the line in E(�(v))
immediately preceding (resp., succeeding) μ�(v) as μ−

� (v) (resp., μ+
� (v)). Simi-

larly, we denote the lines immediately preceding and succeeding μr(v) in E(r(v))
by μ−

r (v) and μ+
r (v), respectively; see Figure 1(a). We denote the intersection

point of two lines a and b by ab. We write ab <x cd if the x-coordinate of ab is
smaller than the x-coordinate of cd.

To ensure the validity of the structure as the lines are moving, we use
two types of certificates, denoted by CT and CE. For each pair of consecu-
tive lines �k, �k+1 in T , we have a CT-certificate that asserts that the slope of
�k is smaller than or equal to the slope of �k+1. For each node v, we main-
tain the following (at most) four CE-certificates that assert the following in-
equalities (1) μ�(v)μr(v) <x μr(v)μ+

r (v), (2) μ�(v)μr(v) <x μ�(v)μ+
� (v), (3)

μ�(v)μr(v) >x μr(v)μ−
r (v), (4) μ�(v)μr(v) >x μ�(v)μ−

� (v). (see Figure 1(a)); re-
call that μ�(v)μr(v) = q(v). The proof of the following lemma is straightforward.
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μ+
r (v)

μ−
r (v)

μr(v)

CE1 certificate: μ�(v)μr(v) <x μ�(v)μ+
� (v)

μ−
� (v)

μ�(v)

q(v)

μ+
� (v)

u

w

�k �k+1

(a) (b)

Fig. 1. (a) One of the four CE-certificates for guaranteeing the validity of E(v). (b)
Handling a CT event, at which the slope order at two consecutive leaves changes

Lemma 1. As long as all CT and CE certificates are valid, the lines are stored
at the leaves of T from left to right in increasing order of their slopes, and, for
each node v ∈ T , E(v) stores the correct upper envelope of S(v). ��

Each certificate contributes a critical event to a global event queue Q, which
is the first future time when the certificate becomes invalid (if there is such a
time). In the next section we describe how to handle each such event.

Handling critical events: By a CT or CE critical event we mean a failure
event of one of the current CT or CE certificates. A CT certificate fails when
the slopes of two consecutive lines �k and �k+1 in T become equal. If, right after
the failure, the slope of �k+1 becomes smaller than the slope of �k, we have to
update T as follows. Let w = LCA(�k, �k+1) be the lowest common ancestor of
the two leaves containing �k and �k+1 (see Figure 1(b)).

We swap �k and �k+1, and then delete from Q the two CT events associated
with �k and �k−1, and with �k+1 and �k+2, and add to Q up to three new CT
events: between �k−1 and the new �k, between the new �k+1 and �k+2, and
between �k and �k+1, if their slopes become equal again at some future time. In
addition, this swap might affect upper envelopes at the nodes on the two paths
from �k and from �k+1 to the root. Hence, for each node u on either of the paths,
we recompute E(u) from scratch in a bottom-up fashion. In particular, it means
that, for each such node u at which E(u) has changed, we may have to delete
from Q the at most four CE events associated with u, and replace them by at
most four new CE events.

When a CE certificate fails at some node v, E(v) is no longer valid. The
following changes can take place: If the certificate μ�(v)μr(v) <x μr(v)μ+

r (v)
fails, the line μr(v) is removed from E(v). If μ�(v)μr(v) <x μ�(v)μ+

� (v) fails, the
line μ+

� (v) is added to E(v) between μ�(v) and μr(v). Similarly, if μ�(v)μr(v) >x

μr(v)μ−
r (v) fails, the line μ−

r (v) is added to E(v) between μ�(v) and μr(v), and
if μ�(v)μr(v) >x μ�(v)μ−

� (v) fails, the line μ�(v) is removed from E(v). Because
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of the continuity of the motion of the lines, only these local changes can occur
at a failure of a CE certificate.

We restore E(v) by inserting or deleting the appropriate line at the appro-
priate location. We replace the four old CE certificates associated with v by four
new certificates, to reflect the fact that either μr(v) or μ�(v) has changed, as did
its predecessor and successor in the respective sub-envelope. We also delete from
Q the failure times of the old certificates, and insert into Q the failure times of
the new certificates.

The change in E(v) may also cause E(w) to change at ancestors w of v. We
propagate the change from v up towards the root, until we reach an ancestor w
of v for which E(w) is not affected by the change at v. Let w be an ancestor
of v at which E(w) changes. Let p(w) be the parent of w, and let s(w) be the
sibling of w. If the line that joins or leaves E(w) also joins or leaves E(p(w)), we
change E(p(w)) accordingly. In addition, if the change replaces the line in E(w)
on which the intersection of E(w) and E(s(w)) occurs, or one of lines adjacent to
it on E(w), we also replace the CE certificates associated with p(w), and replace
the corresponding failure times in Q.

Performance analysis: Using the terminology of [2], it is quite easy to show
that the data structure is compact, local, and responsive. Clearly, we have a
linear number of CT certificates, and a linear number of CE certificates, so
our event queue Q is of linear size. The size of the primary tree T and of all
the trees E(v) is O(n), if we store partial envelopes in the manner outlined in
Section 2. Therefore our KDS can be implemented in linear space, and is thus
compact. Locality follows since each line � participates in only two CT certificates,
and O(log n) CE-certificates in its ancestors in T . Responsiveness follows since
the time needed to process a critical event is O(log2 n). This includes the time
to update O(log n) envelopes that are affect by the change, and the time for
replacing O(log n) events in Q.

The most interesting and involved part of the analysis is to show that the
data structure is efficient, in the sense of obtaining an upper bound on the total
number of critical events that is comparable with the bound on the total number
of real combinatorial changes in the overall upper envelope.

Bounding the number of critical events: To analyze the total number of
critical events that our data structure processes, we refine a technique of Basch
et al. [2], in which time is considered as an additional (static) dimension, which
allows us to represent each critical event as a vertex of an appropriate upper
envelope of bivariate functions, where these envelopes are the graphs of the sub-
envelopes E(v), as they evolve over time.

In more detail, we parameterize the moving lines as surfaces in the
3-dimensional xty-space. For each line � ∈ S, its surface σ� is the locus of all
points (x, t, y), such that (x, y) lies on � at time t. Note that σ� is a ruled surface,
and that it is xt-monotone, so that we can regard it as the graph of a function
of x and t, which, with a slight abuse of notation, we denote as y = σ�(x, t).
For any node v of T , we denote by E3(v) the upper envelope of the bivariate
functions σ�, for � ∈ S(v).
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If we assume that the motions of the lines are semi-algebraic of constant
description complexity, then the surfaces σ� are also semi-algebraic of constant
description complexity. The intersection curve of a pair of surfaces is the trace of
the moving intersection point between the two respective lines, and an intersec-
tion point of three surfaces represents an event where the three respective lines
become concurrent. It follows that the number of changes in the time-evolving
upper envelope of the lines is upper bounded by the combinatorial complexity
of the upper envelope of their surfaces. Note that the above assumptions on the
motion of the lines, including the assumption of general position, imply that any
triple of surfaces intersect in at most s points, where s is some constant.

Using standard techniques, we prove that the complexity of the upper enve-
lope of n such surfaces is O(n2βs+2(n)). (In case the lines correspond to moving
points in the dual plane this can be reduced to O(n2βs(n)) as in [1].)

We next derive an upper bound on the number of events that our data
structure handles (the so-called internal events), which is not much larger than
O(n2βs+2(n)). By our assumption on the motion, the slopes of two lines can
coincide at most O(1) times. Therefore, the total number of CT events is O(n2).

The main part of the analysis is to bound the number of CE events. Consider
such an event that occurs when a CE certificate at some node v of T fails.
Note that, at this event, three lines of S(v) become concurrent, and the point of
concurrency lies on the upper envelope E(v). Hence, we can charge the event to
a vertex of the corresponding bivariate upper envelope E3(v).

Not every vertex of E3(v) corresponds to a CE event at v. Each charged vertex
is an intersection of three surfaces, such that at least one of them corresponds to
a line in S(�(v)), and at least one of them corresponds to a line in S(r(v)). Recall
that the intersection corresponds to the event where the three lines defining these
surfaces become concurrent, at a point on the upper envelope E(v). To bound the
number of CE events at v, we need to bound the number of such “bichromatic”
vertices of E3(v).

Let P (v) denote the multiset of pairs of lines (�, �′), for which there exists
some time at which � ∈ S(�(v)) and �′ ∈ S(r(v)) simultaneously. The multiplicity
of a pair (�, �′) in P (v) is taken to be the number of maximal connected time
intervals during which (�, �′) ∈ S(�(v)) × S(r(v)). The following main technical
lemma, whose proof is omitted, bounds the total number of events encountered
in v, in terms of |P (v)|.

Lemma 2. Let P (v) be the multiset of pairs of lines (�, �′) ∈ S(�(v))×S(r(v)),
as defined above. Let m be the maximum number of lines under v at any fixed
time. Let s be the maximum number of times a triple of lines become concurrent.
Then the total number of CE events that are encountered at v is
O(|P (v)|βs+2(m)).

A technical difficulty: The next goal is to bound the quantities |P (v)|. Since
the lines keep swapping between the nodes of T , the sets P (v) keep acquiring
new pairs. The difficulty in the analysis stems from the fact that if a line � enters,
say, the left subtree �(v) of a node v, it creates |S(r(v))| new pairs with the lines
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stored at r(v), all of which are to be added to P (v). That is the sum
∑

v |P (v)|,
over all nodes v of T , is O (

∑
v M(v)|S(v)|), where M(v) is the number of swaps

performed between the left and right subtrees of v.
To appreciate the difficulty in bounding this sum, consider the slopes of the

lines as functions of time. These n functions define an arrangement A in the
slope-versus-time plane. Each swap of lines between the k-th and the (k + 1)-st
leaves of T corresponds to a vertex of A where the k-th and the (k + 1)-st levels
of A meet. Now even in the simplest case, where the slopes are linear functions
of time, the best upper bound known for the complexity of the k-th level is
O(nk1/3) [4], and the situation becomes much worse for classes of more general
curves (see, e.g., [3]). Thus, at the root v, this leads, by Lemma 2, to a too weak
upper bound of O(n7/3) or worse, which is much larger than the near-quadratic
bound on the number of external events.

3.1 Treaps

The preceding discussion means that, with a lack of good bounds on the com-
plexity of any single level in an arrangement A of functions of low complexity in
the plane (namely, our slope-versus-time functions), our approach falls short of
proving a good bound on the number of internal events, if the underlying tree T
causes levels of A with large complexity to appear near the root. To overcome
this difficulty, and exploit the fact that, on average, levels have linear size, we
make T a treap [7]. Intuitively, using a treap allows us to make the height of a
“bad level” in T a random variable, so that, on average (over the choice of the
priorities that define the treap), swaps at that level would occur rather low in
the tree, and consequently would not be too expensive.

In more details, a treap is a randomized search tree with optimal expected
behavior. Each node v in the treap has two fields rank(v) and priority(v). The
treap is a search tree with respect to the ranks, and a heap with respect to the
priorities. We use integer ranks from 1 to n, that index the given lines in the
increasing order of their slopes. We assume that the priorities are drawn indepen-
dently and uniformly at random from an appropriate continuous distribution,
so that with probability 1, the set of priorities defines a random permutation of
the nodes, and therefore the resulting treap T is uniquely determined.

We turn our underlying tree T into a treap as follows. A node v of rank k
stores the line μ(v) = �k, which is the line with the k-th smallest slope. We now
denote by S(v) the set of lines stored at all nodes in the subtree rooted at v,
including μ(v) itself, and we define E(v) to be the upper envelope of the new set
of lines S(v).

Since now every node of T stores a line, rather than just the leaves, we need
to slightly modify the algorithm, so that each node v maintains certificates that
encode the interaction between E(�(v)), E(r(v)), and μ(v); we omit the easy
details in this version.

Handling critical events: The main modification of the preceding analysis
for the case of treaps is in handling CT events. Consider a CT event, involving
a swap between two lines �k and �k+1 whose slopes are equal at the critical
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time t. Let v be the node containing �k, and v′ the node containing �k+1; then
rank(v) = k and rank(v′) = k + 1. It follows that either v′ is the leftmost
descendant of r(v), or v is the rightmost descendant of �(v′). When processing
the swap, we place �k+1 in v and �k in v′, without changing the structure of
the treap. Then we recompute the envelopes E(w), for all nodes w on the path
between v and v′, and update the CE events associated with each such node
w. Finally, we delete from Q the CT events previously associated with �k and
�k+1, and insert into Q new CT events between �k and �k+2, between �k+1 and
�k−1, and between �k and �k+1 (if their slopes become equal again at some future
time). Handling CE events is done in essentially the same way as in Section 3,
and we omit the easy details.

Performance analysis for treaps: The same argument as in Section 3 shows
that our data structure can be implemented in linear space. The analysis of [7]
shows that the depth of any node in a treap is on average (over the draw of
the priorities) O(log n). This fact immediately implies that any line participates
in an expected number of O(log n) certificates at any given time, and that, in
any CT or CE critical event, the expected number of nodes v that need to be
updated is O(log n), and thus the expected time it takes to process a critical
event, or a change in the flight plan of a line, is O(log2 n). Hence, the new data
structure is compact, local, and responsive, in an expected sense.
Number of critical events in the case of treaps: We bound the expected
number of critical events using the approach suggested in Section 3. The following
version of Lemma 2 holds when a line is stored at every node of T . The proof
follows that of Lemma 2.

Lemma 3. Let P (v) be the multiset of pairs of lines (�, �′), such that (i) � �= �′,
(ii) � ∈ S(�(v)) or � = μ(v), and (iii) �′ ∈ S(r(v)) or �′ = μ(v), where the
multiplicity of a pair is the number of maximal connected time intervals during
which (�, �′) satisfy (i)–(iii). Let m be the maximum number of lines under v
at any fixed time (including also μ(v)). Let s be the maximum number of times
where any fixed triple of lines becomes concurrent. Then the total number of CE
events that are encountered at v is O(|P (v)|βs+2(m)).

This lemma reduces the problem of bounding the expected number of events
to the problem of bounding the expected value of the sum P =

∑
v∈T |P (v)| of

the sizes of the multisets P (v), over all nodes v. Recall that the sets P (v) are
affected only by swaps that take place at CT critical events.

We perform the analysis in two steps. First, we bound the expected initial
value of P. Then we bound the expected contribution of each swap to P. We
denote by π the permutation of the nodes when we order them by increasing
priority. Specifically, π(v) is the number of nodes with priorities smaller than
the priority of v. In the following we refer to a line �k simply by its index k,
that is, by its rank in the list of lines sorted by slope. We also denote by v(k)
the node containing line k, which is the node of rank k of the treap. Note that
v(k) is always the same node but the line that it contains may change over time
through swaps.
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Bounding the initial value of P is trivial. Indeed, a pair (i, j), with i < j,
appears in exactly one set P (v): If i is a descendant of j then (i, j) belongs
(only) to P (v(j)). Symmetrically, if j is a descendant of i then (i, j) belongs
(only) to P (v(i)). Finally, if neither of them is a descendant of the other, then
(i, j) belongs only to P (v), where v is the lowest common ancestor of i and j.
Hence, initially, we have

∑
v |P (v)| =

(
n
2

)
.

We now estimate the expected contribution of a swap between two consecu-
tive lines, say, m − 1 and m, to P (recall that m − 1 and m denote the ranks of
these lines, and not the lines themselves). Clearly, either m− 1 is the rightmost
leaf descendant of �(m), or m is the leftmost leaf descendant of r(m − 1). The
two cases are symmetric, so we only handle the first case. See Figure 2(a).
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Fig. 2. (a) m creates new pairs with lines in the subtree of �(m). (b) A rotation around
the edge (u, v). The new nodes u and v retain the identities of the old nodes, as shown

The swap of m − 1 and m creates a new pair of m with every line j in the
subtree of �(m), other than m − 1, which are added to P (v(k)), where k is the
lowest common ancestor of j and m after the swap. Similarly, for every j in
the subtree of �(m), other than m − 1, we get a new pair of m − 1 and j that
contributes to P (v(m)) after the swap. Therefore we will estimate the expected
number of new pairs created by m−1 (in its new location); the expected number
of new pairs created by m (in its new location) will be the same. Moreover, as is
easily verified, no new pairs are formed with elements j > m, nor with elements
j to the left of the subtree of �(m).

For j < m−1 < m, define Aj,m to be an indicator random variable, that is 1 if
and only if v(j) is a descendant of v(m). As just argued, if j and m−1 form a new
pair in P (v(m)) (again, recall that line m−1 resides in v(m) after the swap), then
j must be a descendant of that node, and vice versa. Hence, the expected number
of new pairs created by m is

∑
j|j<m−1 E(Aj,m). To compute E(Aj,m), we have

to calculate the probability that v(j) is a descendant of v(m). This happens
if and only if π(y) < π(m), for all nodes y such that j ≤ rank(y) ≤ m − 1.
This probability is equal to the probability that the nodes of ranks between j
and m (inclusive) are arranged in π such that m is last. That is, E(Aj,m) =
(m − j)!/(m − j + 1)! = 1/(m − j + 1). The expected number of new pairs is
then
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∑
j|j<m−1

E(Aj,m) =
∑

j|j<m−1

1
m − j + 1

=
∑

3≤j<m

1
j

= O(log m) = O(log n).

Since the number of new pairs created by m−1 is the same as the number of new
pairs created by m, we conclude that the expected contribution of each swap to
P is O(log n).

Our assumptions on the motion implies that the total number swaps is
O(n2). Therefore, we get that all swaps generate O(n2 log n) additional pairs,
so in total P = O(n2 log n). Using Lemma 3, our structure thus processes
O(n2βs+2(n) log n) events, and is therefore efficient.

So far, this matches (but, as we argue, simplifies) the KDS structure of [2].
In the main contribution of the paper, presented in the next section, we make
this KDS dynamic.

4 Making the Data Structure Kinetic and Dynamic

First, we review the algorithms in [7] for inserting and deleting elements into/from
a treap. To insert a new line �, we create a new leaf, in a position determined by its
rank. Then we draw a random priority for � from the given distribution, and rotate
the node storing � up the tree, as long as its priority is larger than the priority of
its parent. While rotating the node of � up, we also re-compute the envelope of
every node involved in a rotation from the envelopes of its children and from the
line that it stores. After � is located in its right place, we recompute the envelopes
on the path from � to the root in a bottom-up manner. The expected logarithmic
depth of the treap implies that insertion takes O(log2 n) expected time.

The implementation of a delete operation is similar. Let m be the line to be
deleted. We keep rotating the edge connecting m to its child of largest priority,
until m becomes a leaf. We then discard m and recompute the envelopes of all
nodes involved in the rotations, in a bottom-up manner, until we reach the first
node that did not contain m on it envelope or we reach the root. As in the case
of insertion, deletion also takes O(log2 n) expected time.

Consider for example a right rotation around an edge (v, u = p(v)) as shown
in Figure 2(b). Node v before the rotation changes its right child to be u, and
node u changes its left child to be y, previously the right child of v. The rota-
tion introduces new pairs associated with v (and removes pairs associated with
u). Therefore, we need to re-analyze the efficiency of the data structure, when
insertions and deletions are allowed, to take these changes into account. Using
Lemma 3, we need to estimate the number of new pairs that are generated during
an insertion or a deletion. We show below that the expected number of such pairs
is O(n), for each update operation. Hence, if m such operations are performed,
starting with the empty set, they generate an expected number of O(mn) pairs,
and thus create only O(mnβs+2(n)) new CE events. This bound applies to both
internal and external events.

We analyze deletion in detail; the analysis of insertion is analogous and hence
omitted. Assume that m is the line to be deleted. We examine the rotations that
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bring m down, and bound the expected number of new pairs created by these
rotations. Let v be the node containing the line m. Let σ� denote the rightmost
path from �(v) to a leaf, and let σr denote the leftmost path from r(v) to a
leaf. Each edge on σ� and σr corresponds to a rotation. That is, a right rotation
around the edge between v and �(v) changes the left child of v to the next node
on σ�. In this case, for each line x in S(�(�(v))), including μ(�(v)), and for each
line y in S(r(v)), the rotation introduces a new pair (x, y) in P (�(v)). These
are the only new pairs that are generated. A left rotation around (v, r(v)) has a
symmetric effect, and it changes the right child of v to be the next node along
σr. Therefore, regardless of the order of the rotations, the total number of new
pairs is dominated by |S(�(v)) × S(r(v))|.

For i < m < j, define Bi,m,j to be an indicator random variable, which is 1 if
and only node v(m) is the lowest common ancestor of v(i) and v(j). The expected
size of S(�(v(m)))×S(r(v(m))), for a fixed node v(m), is

∑
i,j|i<m<j E(Bi,m,j).

For Bi,m,j to be 1, v(m) must have the largest priority among all nodes x, such
that i ≤ rank(x) ≤ j. The probability of this event is equal to the probability
that v(m) ends up last in a random permutation of the nodes {x | i ≤ rank(x) ≤
j}. That is, E(Bi,m,j) = (j − i)!/(j − i + 1)! = 1(j − i + 1), for any i < m < j.
Summing up over all such pairs i and j, we get that

∑
i,j|i<m<j

E(Bi,m,j) =
∑

i,j|i<m<j

1
j − i + 1

≤
∑

2≤k≤n

(k − 1)
1

k + 1
= O(n).

That is, we have shown that the expected increase in the sum
∑

v |P (v)|, caused
by inserting or deleting an element (at place m) is O(n). Following the preceding
discussion, and the duality between points and lines, we thus obtain:

Theorem 1. Let S be a fully dynamic set of n lines (points) moving in the
plane. Assuming that S undergoes m ≥ n insertions and deletions, and that the
motion of each line (point) is semi-algebraic of constant description complexity,
we can maintain the upper envelope (convex hull) of S in a randomized structure
of linear size, that processes an expected number of O(mnβs+2(n) log n) events,
each in O(log2 n) expected time, where s is the number of times where any fixed
triple of lines (points) can become concurrent (collinear). Each line (point) par-
ticipates at any given time in O(log n) certificates that the structure maintains.

References

1. P. K. Agarwal, L. Guibas, J. Hershberger, and E. Veach, Maintaining the extent of
a moving point set, Discrete Comput. Geom. 26 (2001), 353–374.

2. J. Basch, L. J. Guibas, and J. Hershberger, Data structures for mobile data, J.
Algorithms 31 (1999), 1–28.

3. T.M. Chan, On levels in arrangements of curves, II: A simple inequality and its
consequences, Proc. 44th IEEE Sympos. Foundat. Comput. Sci., 2003, 544–550.

4. T. Dey, Improved bounds for planar k-sets and related problems, Discrete Comput.
Geom. 19 (1998), 373–382.



Kinetic and Dynamic Data Structures 281

5. L. Guibas, Kinetic data structures: a state of the art report. Robotics: the Algorith-
mic Perspective (WAFR 1998), 191–209, A.K. Peters, Natick, MA, 1998.

6. M. H. Overmars and J. van Leeuwen, Maintenance of configurations in the plane,
J. Computer Syst. Sci. 23 (1981), 166–204.

7. R. Seidel and C. R. Aragon, Randomized search trees, Algorithmica 16 (1996),
464-497.

8. M. Sharir and P.K. Agarwal, Davenport-Schinzel Sequences and Their Geometric
Applications, Cambridge University Press, New York, 1995.



Approximation Algorithms for Forests
Augmentation Ensuring Two Disjoint Paths

of Bounded Length

Victor Chepoi, Bertrand Estellon, and Yann Vaxès

Laboratoire d’Informatique Fondamentale de Marseille,
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Abstract. Given a forest F = (V, E) and a positive integer D, we con-
sider the problem of finding a minimum number of new edges E′ such
that in the augmented graph H = (V, E ∪ E′) any pair of vertices can
be connected by two vertex-disjoint paths of length ≤ D. We show that
this problem and some of its variants are NP-hard, and we present ap-
proximation algorithms with worst-case bounds 6 and 4.

1 Introduction and Preliminaries

Biconnectivity is a fundamental requirement to the topology of communication
networks: a biconnected network survives any single link or node failure (the
probability of two or several simultaneous failures in most networks is reasonably
small). On the other hand, the communication performances of a network depend
of the communication delay between any two nodes of the network. Since the
delay of sending a message from one node to another is roughly proportional
to the number of nodes (or links) the message has to traverse, it is desirable to
route the messages along short paths or paths of bounded length. Therefore a
network in which any pair of nodes can be connected by two disjoint paths of
bounded length ensure a low communication delay even in case of a single link
or node failure. In this paper, we consider the problem of optimal augmentation
of networks (more precisely, of their underlying graphs) so that the resulting
networks satisfy this connectivity requirement. We show that this augmentation
problem is NP-hard even in the case of forests. On the other hand, we provide
efficient approximation algorithms for this problem and its variants if the input
graph is a forest. Our work continues the research started in [4, 10].

Several other models have been proposed in the literature to study fault-
tolerant networks whose reliability and communication performances survive
node or edge failures. For instance, Farley and Proskurowski [8] study the class
of self-repairing graphs which consists of 2-connected graphs such that the re-
moval of any single vertex results in no increasing in distance between any
pair of vertices in the graph. Another interesting model has been proposed by
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Dolev et al. [6]. Given a graph G, a fixed routing and a set of faults F, they
define a surviving route graph consisting of all non-faulty nodes in the network
with two nodes being connected by an edge if and only if the route between
them avoid F. Then, the problem is to obtain a routing such that for any set
of faults of a given cardinality, the surviving route graph has a small diameter.
Note that, since this diameter represents the number of routes along which a
message must travel between any two non-faulty nodes, it can be viewed as an
estimate of the fault-tolerance of the routing.

The problem of augmenting a graph to reach biconnectivity by adding a
minimum number of new edges is an important graph-algorithmic problem with
applications to network reliability and fault-tolerant computing. Eswaran and
Tarjan [7] introduced this problem and established that its basic version can be
solved efficiently. Subject to additional constraints, the biconnectivity augmen-
tation problem becomes difficult: for example, both the weighted augmentation
problem and the optimal augmentation of a planar graph to a biconnected pla-
nar graph are NP-hard [7, 11]; for both problems there exist constant factor
approximation polynomial algorithms.

The problem of augmenting a graph G = (V,E) to a graph H = (V,E ∪ E′)
of a given diameter D by adding a minimum number of edges is NP-hard for any
D ≥ 2 [4, 12, 13] (and is at least as difficult to approximate as SET COVER). The
complexity status of this problem is unknown if the input graph is a forest (or a
tree). In this case, [4] presents a factor 2 algorithm for even D and [10] presents a
factor 8 algorithm for odd D (recently, a factor 2+ 1

δ for any δ > 0 approximation
algorithm in the case of odd D was proposed in [3]). Chung and Garey [5]
established that if G is a path with n vertices, then the minimum number of
added edges is at least (n − D − 1)/(D + 1) and at most (n − D + 2)/(D − 2);
for some other related bounds see [1]. If, additionally to be of diameter D,
the resulting graph H must be biconnected, then the resulting augmentation
problem is NP-hard even if the input graph is a tree [4]. For forests, [4] presents a
factor 3 approximation algorithm in case of even D and a factor 6 approximation
algorithm for odd D. The last result has been improved by Ishii, Yamamoto, and
Nagamochi [10] to a factor 4 (plus 2 edges) approximation algorithm. Notice that
for trees the performance guarantees of all mentioned algorithms should be much
better, however the bottleneck in analyzing them is the difficulty of establishing
better lower bounds for the minimum number of added edges; for example, the
proof of the above mentioned lower bound for paths [5] is already quite involved.

In this note, we consider three variants of the augmentation problem with
additional distance constraints:

Problem A2VDBP (Augmentation with 2 Vertex-Disjoint Bounded length

Paths): given a graph G = (V,E) and a positive integer D, add a minimum
number of new edges E′ such that any pair of vertices can be connected in the
augmented graph H = (V,E ∪ E′) by two vertex-disjoint paths of length ≤ D.

Problem A2EDBP (Augmentation with 2 Edge-Disjoint Bounded length

Paths): given a graph G = (V,E) and a positive integer D, add a minimum
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number of new edges E′ such that any pair of vertices can be connected in the
augmented graph H = (V,E ∪ E′) by two edge-disjoint paths of length ≤ D.

Problem ADCE (Augmentation with Diameter Constraints in the aug-

mented graph minus an Edge): given a graph G = (V,E) and a positive integer
D, add a minimum number of new edges E′ such that for any edge e ∈ E ∪ E′

the diameter of the augmented graph H minus e is at most D.

The problems A2VDBP, A2EDBP, and ADCE are not equivalent: any feasible
augmentation for A2VDBP is a feasible solution to A2EDBP and any feasible
solution to A2EDBP is a feasible solution of ADCE but not vice versa, as the
following example shows. Let H be a graph consisting of a cycle of length 2R +
2 plus a diagonal cc′ connecting two opposite vertices c and c′ of this cycle.
Removing any edge from H results into a graph of diameter at most 2R − 1,
however the neighbors a and b of c different from c′ cannot be connected in H
by two vertex- or edge-disjoint paths of length ≤ 2R − 1.

In Section 2 we will prove that the problems A2VDBP, A2EDBP, and ADCE
are NP-hard already when the input graph is a forest. Based on lower bounds
established in Section 3, in Section 4 we present a factor 6 approximation algo-
rithm for all three problems. In Section 5, this algorithm is improved to a factor
4 approximation algorithm for ADCE. Due to space limitations, we will present
full proofs and analysis of both algorithms only in the case D = 2R − 1.

We conclude this introductory section with a few necessary definitions. A
polynomial algorithm is called an α-factor approximation algorithm for a min-
imization problem Π if for each instance I of Π, it returns a solution whose
value is at most α times the optimal value OPTΠ(I) of Π on I plus a con-
stant not depending of I; see [14]. For a graph G = (V,E), the length of a
path between two vertices is the number of edges in this path. The distance
d(u, v) := dG(u, v) between two vertices u, v of G is the length of the shortest
path between these vertices (if u and v are in distinct connected components
of G we will set d(u, v) = ∞). The diameter diam(G) of G is the largest dis-
tance between two vertices of G. For a positive integer k and a vertex u ∈ V let
B(u, k) = {v ∈ V : d(u, v) ≤ k} denote the ball of radius k centered at u. (For
other graph-theoretical notions and notations used but not defined in this text,
see [15].) For two vertices u, v of a tree T = (V,E) denote by P (u, v) the unique
path of T between u and v. For a vertex x in a rooted tree T with root r, any
vertex y �= x on the path P (r, x) is called an ancestor of x. If y is an ancestor of
x, then x is a descendant of y. For a subset S of vertices of T, the set of direct
descendants of a vertex v ∈ V consists of all descendants u ∈ S of v such that
the path P (u, v) does not contain any other vertex from S.

2 NP-Completeness

The decision variants of the problems A2VDBP, A2EDBP, and ADCE belong
to the class NP. To establish that these problems are NP-complete on forests,
we present pseudo-polynomial transformations from the strongly NP-complete
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problem 3-PARTITION. Then Lemma 4.1 of [9] implies that the augmentation
problems are NP-complete as well. Our construction is similar to that used in
[4] with one difference: we use an additional path in order to force the structure
of the augmented graph.

Theorem 1. The problems A2VDBP, A2EDBP, and ADCE are NP-complete
on forests.

Proof. We will describe a pseudo-polynomial transformation from 3-PARTITION
[9] to A2VDBP. Let an instance of 3-PARTITION be given, i.e., a set A of 3m
elements a1, . . . , a3m, a bound (8 ≤)B ∈ Z+, and a size s(ai) ∈ Z+ for each
ai ∈ A such that B/4 < s(ai) < B/2 and

∑
ai∈A s(a) = mB. We construct

a forest F = (V,E) as follows: for each ai ∈ A introduce a path Pi of length
s(ai)(> 2), additionally consider a path P0 of length B, and a “bistar” formed
by a path P of length B + 6 plus m + 1 leaves at each end of this path; see Fig.
1. We assert that the set A can be partitioned into m disjoint sets A1, . . . , Am

such that
∑

ai∈Aj
s(ai) = B for every 1 ≤ j ≤ m if and only if there exists a

feasible solution to the problem A2VDBP with D := 2B + 10 using at most
4m + 2 edges.

The forest F has 8m + 4 leaves. Since a feasible augmentation of F results
into a biconnected graph, any leaf of F must be incident to a new edge, therefore
this augmentation must contain at least 4m + 2 edges. If the optimal solution
E′ of A2VDBP uses exactly 4m + 2 edges, then both ends of added edges are
leaves of F . It can be easily seen that the graph H = (V,E ∪E′) obtained from
F by adding 4m + 2 edges E′ consists of the path P and m + 1 ears. An ear
Eari is a path of H between x and y consisting of the edges xxi, yyi and 0,1, or
several paths Pj (j ∈ {0, 1, . . . , 3m}) and some new edges connecting either the
end-vertices of two paths or an end-vertex of a path with xi or yi.

Let Ear0 be the ear containing the path P0. We assert that Ear0 does not
contain other paths of F. By using the feasibility of E′, one can prove that Ear0
does not contain other paths of F, and thus, Ear0 has length B + 4. We will
show now that each of the ears Ear1, . . . ,Earm has length B + 6. Suppose by
way of contradiction that Eari has length ≥ B + 7. Due to the structure of H,
there exists a unique path between xi and x′ not passing via x : it consists of
the subpath of P between x′ and y, and the subpath of Eari between y and
xi. The length of this path is ≥ B + 5 + B + 6 = 2B + 11 > D, therefore all
paths of length ≤ D between xi and x′ pass via x, contrary to the admissibility
of H. Thus every Eari has length B + 6, i.e., Eari is composed of exactly three
paths of F of total length B (recall that the length of every path of the forest
F is comprised between B/4 and B/2). The corresponding triplets of A yield a
feasible 3-partition.

Conversely, given a feasible solution to 3-PARTITION, we can biconnect F
by adding 4m + 2 edges in such a way that in the augmented graph H, Ear0
has length B + 4 and every other ear Eari (i = 1, . . . , m) has length B + 6. We
claim that H is a feasible solution of the problem A2VDBP. This establishes the
NP-completeness of A2VDBP.
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(a) Forest F (b) Augmented graph H

Fig. 1. NP-completeness of the problem A2VDBP for forests

The NP-completeness of ADCE and A2EDBP can be also established by
using a pseudo-polynomial transformation from 3-PARTITION. �

3 Lower Bounds

For a graph G = (V,E) and a positive integer k, a vertex k-dominating set is a
set of vertices C ⊆ V such that ∪c∈CB(c, k) = V. Analogously, C ⊆ V is an edge
k-dominating set if the two end-vertices of any edge of G belong to a common
ball of radius k centered at a vertex of C. Finding a minimum vertex or edge
k-dominating set in a graph is NP-hard, however for trees (and forests) these
problems can be solved in linear time [2]. The algorithm can be easily modified
to find in linear time a minimum vertex k-dominating set V Ck or a minimum
edge k-dominating set ECk of a forest F with the additional constraint that C
contains the set L of all leaves of F. Let vck(F ) := |V Ck| and eck(F ) := |ECk|.

Proposition 1. For a forest F,

(i) vcR−1(F )/2 ≤ OPTADCE(F ) ≤ OPTA2EDBP (F ) ≤ OPTA2V DBP (F ) if
D = 2R − 1.

(ii) ecR(F )/2 ≤ OPTADCE(F ) ≤ OPTA2EDBP (F ) ≤ OPTA2V DBP (F ) if D =
2R.

Proof. In both cases it suffices to establish only the leftmost inequality, because
the inequalities OPTADCE(F ) ≤ OPTA2EDBP (F ) ≤ OPTA2V DBP (F ) trivially
hold for all graphs. Let E′ be an optimal augmentation for the problem ADCE,
and let C denote the set of end-vertices of the edges from E′. Notice that any leaf
x of the forest F belongs to C, otherwise the paths in the graph H = (V,E∪E′)
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issued from x will use the unique edge e of H incident to x, contrary to the fact
that H is a solution of ADCE. Thus L ⊆ C. We assert that if D = 2R − 1,
then every vertex of F is covered by a ball of radius R − 1 centered at C, and
if D = 2R, then the end-vertices of every edge of F are at distance ≤ R from a
vertex of C. Suppose by way of contradiction that in the case D = 2R− 1 there
exists a vertex u /∈ ∪{BR−1(c) : c ∈ C}. Obviously, u is not a leaf of F . Pick a
neighbor v of u in F and let e = uv. From the choice of u one conclude that the
closest to v vertex of C is at distance ≥ R− 1 in F. Since the closest to u vertex
of C is at distance ≥ R and any path between u and v of the graph H − e uses
at least one added edge, we deduce that the distance between u and v in the
graph H−e is at least R+1+(R−1) = 2R, contrary to the assumption that E′

is a feasible augmentation for ADCE. Hence ∪{BR−1(c) : c ∈ C} = V, yielding
vcR−1(F ) ≤ |C| (analogously one can show that ecR(F ) ≤ |C| if D = 2R). Since
|C| ≤ 2|E′| (the worst case occurs when E′ is a matching on C), we obtain the
required inequality. �

An immediate consequence of Proposition 3.1 is that any feasible augmenta-
tion for A2VDBP using at most 3vcR−1(F ) edges for D = 2R − 1 and at most
3ecR(F ) edges for D = 2R would provide a factor 6 approximation algorithm for
each of the problems A2VDBP, A2EDBP, and ADCE. Next section is devoted
to the description and analysis of such an algorithm.

4 A Factor 6 Approximation Algorithm

We describe and justify the augmentation algorithm for D = 2R − 1 and only
outline the changes for the case D = 2R. Assume without loss of generality that
the input forest F = (V,E) contains at least one edge, otherwise we simply run
the algorithm on the forest obtained from F by adding an arbitrary edge. Let L
be the set of leaves of F and let L0 ⊂ L be the set of leaves constituting one-
vertex trees of F. For the rest of this paper, we denote by d(u, v) the distance in
the forest F between two vertices u, v ∈ V. Suppose that every tree of the forest
F containing at least two vertices is rooted at some leaf. Let S be the set of all
such roots. The algorithm picks an arbitrary root r ∈ S and the neighbor r′ of
r. At the next stage, a minimum vertex (R − 1)-dominating set C of the forest
F containing r′ and the set L of leaves is computed. The algorithm proceeds
each rooted tree level-by-level starting from its root, and for current vertex
c ∈ (C − L) ∪ S it computes the list Dc of its direct descendants in C sorted in
increasing order with respect to the distances to c. For each vertex c′ ∈ Dc, the
algorithm selects 0,1, or 2 vertices (this number depends of the distance d(c′, c))
on the path P (c, c′) between c and c′. The set consisting of C and all selected
vertices is grouped into two classes A and A′ such that every vertex of the forest
F can be connected by two vertex-disjoint paths of length ≤ R − 2, one going
to a vertex of A and another to a vertex of A′ (the one-vertex components of F
are included in both A and A′, while S is included only in A). The algorithm
returns the augmentation consisting of all edges of the form ra for a ∈ A and
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Fig. 2. Illustration of Algorithm A2VDBP(F,D)

r′a′ for a′ ∈ A′. In the case D = 2R, the algorithm is completely analogous,
except that C is the minimum edge R-dominating set of F containing L ∪ {r′}.

Algorithm A2VDBP(F,D)
Input: A forest F = (V, E) with E �= ∅ and an odd integer D = 2R − 1 ≥ 9.
Output: A set E′ of new edges, such that any u, v ∈ V can be connected
in H = (V, E ∪ E′) by two vertex-disjoint paths of length ≤ D and |E′| ≤
6 · OPTA2V DBP (F ).

Phase 0: Root every tree with at least two vertices at some leaf and denote by S
the set of such roots. Set A := L0 ∪ S and A′ := L0. Pick r ∈ S and the neighbor
r′ of r.

Phase 1: Compute a minimum vertex (R−1)-dominating set C with L∪{r′} ⊆ C.

Phase 2: For each c ∈ (C − L) ∪ S compute the list Dc of direct descendants of c
in C and sort Dc in increasing order of the distances to c.

Phase 3: Proceed every rooted tree level-by-level. For current vertex c ∈ (C−L)∪S
traverse the list Dc and to each vertex c′ ∈ Dc apply one of the following rules:

case d(c, c′) ≤ R − 2: if c ∈ A, then insert c′ in A′, else insert c′ in A.
case R − 1 ≤ d(c, c′) ≤ 2R − 4: pick the vertex c1 ∈ P (c, c′) at distance R−2
to c′. If c ∈ A, then insert c1 in A′ and c′ in A, else insert c1 in A and c′ in A′.
case d(c, c′) ≥ 2R − 3: pick the vertices c1, c2 ∈ P (c, c′), c1 at distance R−2
and c2 at distance 2R−4 to c′. Find a closest to c2 vertex c′′ of C which is not
a descendant of c2. If c′′ ∈ A, then insert c2, c

′ in A′, and c1 in A, else insert
c2, c

′ in A, and c1 in A′.
Phase 4: Return E′ = {ra : a ∈ A − {r}} ∪ {r′a′ : a′ ∈ A′ − {r′}} ∪ {rr′}.

Next we establish that any pair u, v of vertices can be connected in the
augmented graph H = (V,E ∪ E′) by two vertex-disjoint paths of length ≤ D.

Lemma 1. For any vertex x ∈ V there exists two vertices a ∈ A and a′ ∈ A′

such that d(x, a) ≤ R− 2, d(x, a′) ≤ R− 2, P (a, a′)∩C ⊆ {a, a′}, and x belongs
to the (possibly degenerated) path P (a, a′).

Proof. The result trivially holds if x ∈ L0, because L0 ⊆ A ∩ A′ and we can set
a := x =: a′. If x ∈ S, then x ∈ A and we can set a := x. Let c′ be the closest to x
vertex of C. According to the algorithm, we can set a′ := c′ if d(x, c′) ≤ R−2 and



Approximation Algorithms for Forests Augmentation 289

a′ := c1 if R− 1 ≤ d(x, c′) ≤ 2R− 4. In the remaining case d(c, c′) ≥ 2R− 3, the
role of a′ is played by the vertex c2 described in the algorithm. If x ∈ C−S, then
x is a direct descendant of some vertex c ∈ C, and, according to the algorithm,
we can define {a, a′} := {x, c} if d(x, c) ≤ R−2 and {a, a′} := {x, c1} otherwise.

So, assume that x /∈ C ∪ L0. Let c be the closest to x ancestor from C and
let c′ be the closest to x descendant from C. Clearly c′ is a direct descendant of
c. If d(c, c′) ≤ R − 2, then we can set {a, a′} := {c, c′} because c and c′ belong
to distinct sets A,A′. On the other hand, if R − 1 ≤ d(c, c′) ≤ 2R − 4, then
set {a, a′} := {c, c1} if x ∈ P (c, c1) and set {a, a′} := {c1, c

′} if x ∈ P (c1, c
′).

From the algorithm we infer that the vertices c, c′ belong to one set A,A′ and
c1 belongs to another set, establishing the assertion.

Finally suppose that d(c, c′) ≥ 2R − 3, i.e., we are in the third case of Phase
3. Recall that the algorithm picks two vertices c1, c2 ∈ P (c, c′), c1 at distance
R−2 and c2 at distance 2R−4 to c′ and considers a closest in C non-descendant
c′′ of c2. The vertices c′, c2 belong to one set A,A′, while c1 and c2 (as well as
c′′ and c2) belong to distinct sets. Therefore we can assume that x ∈ P (c2, c),
otherwise the proof is immediate by setting {a, a′} = {c′, c1} if x ∈ P (c′, c1) and
{a, a′} = {c1, c2} if x ∈ P (c1, c2). Let z be the vertex of P (x, c′) at distance R
to c′ (z ∈ P (c1, c2) because R ≥ 5, thus z �= x). Denote by ĉ ∈ C any closest to
z center of an (R − 1)-ball covering z. Since d(z, ĉ) ≤ R − 1 < R = d(z, c′), the
choice of c′ implies that ĉ cannot be a descendant of z. For the same reason, ĉ
cannot be a descendant of x either. Hence d(z, ĉ) = d(z, c2) + d(c2, ĉ), d(z, c′′) =
d(z, c2)+d(c2, c

′′), and d(c2, c
′′) ≤ d(c2, ĉ) by the choice of c′′, yielding d(z, c′′) ≤

d(z, ĉ) ≤ R−1. The choice of ĉ implies d(z, c′′) = d(z, ĉ), therefore c′′ can play the
role of ĉ. In particular, this implies that c′′ is not a descendant of x. Thus R−1 ≥
d(z, c′′) = d(z, c2)+d(c2, x)+d(x, c′′) ≥ R−4+d(c2, x) because d(z, c2) = R−4,
yielding d(c2, x) ≤ 3 ≤ R−2. Notice also that d(x, c′′) < d(z, c′′) ≤ R−1 because
x ∈ P (z, c′′)−{z}, i.e., d(x, c′′) ≤ R−2. Finally, we assert that d(c, c′′) < d(c, c′).
This is obviously true if c′′ ∈ P (c, x) ⊂ P (c, c′) (in fact, c′′ = c.) Otherwise, let
y be the nearest common ancestor of c′′ and x. Then d(y, c′′) ≤ R − 3 while
d(y, c′) = d(y, x) + d(x, c2) + d(c2, c

′) ≥ 1 + 2R − 4 = 2R − 3 > R − 3. Thus
d(c, c′′) < d(c, c′), and at the moment when the algorithm analyzes the pair c, c′,
the vertex c′′ is already affected to A or A′. Since c2 and c′′ belong to distinct sets
A,A′, we can set {a, a′} := {c′′, c2}. Indeed d(x, c2) ≤ R − 2, d(x, c′′) ≤ R − 2,
and x ∈ P (c2, c

′′), thus completing the proof. �

Lemma 2. Any pair u, v of distinct vertices can be connected in the augmented
graph H = (V,E ∪ E′) by two vertex-disjoint paths P1 and P2 of length at most
D = 2R − 1.

Proof. By Lemma 4.1, there exist four vertices a, b ∈ A and a′, b′ ∈ A′ such
that max{d(a, u), d(a′, u), d(b, v), d(b′, v)} ≤ R− 2 and u ∈ P (a, a′), v ∈ P (b, b′).
Moreover, P (a, a′) ∩ C ⊆ {a, a′} and P (b, b′) ∩ C ⊆ {b, b′}. Then the vertices r
and r′ may occur in the paths P (a, a′) and P (b, b′) only as their end-vertices,
namely, r′ ∈ P (a, a′) implies that r′ = a′, while r ∈ P (a, a′) implies that r = a
and u ∈ {r, r′}.
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If {u, v} = {r, r′}, then P1 and P2 are the two parallel edges between r and r′.
On the other hand, if u ∈ {r, r′}, v /∈ {r, r′}, then as P1 and P2 we take the two
paths between u and v in the simple cycle of length at most 2R−4+3 = 2R−1
formed by the path P (b, b′) and the new edges br, rr′, and r′b′ (if r′ �= b′). So,
assume that r, r′ /∈ {u, v}. If the paths P (a, a′) and P (b, b′) are disjoint, then as
P1 we take the path formed by P (u, a), P (b, v), and the new edges ar, rb, while
as P2 we take the path formed by P (u, a′), P (b′, v), and the new edges a′r′ (if
r′ �= a′), r′b′ (if r′ �= b′). These paths have length at most 2R−4+2 = 2R−2 < D.
They are disjoint because they may intersect only in r and r′ and it is easy to
see that r /∈ P2 and r′ /∈ P1. Now, consider the case when P (a, a′)∩P (b, b′) �= ∅.
Then the length of the path P (u, v) is at most D because d(u, t) + d(t, v) ≤
R − 2 + R − 2 < D for any vertex t ∈ P (a, a′) ∩ P (b, b′). Set P1 := P (u, v). It
remains to specify the second path P2. First suppose that r′ ∈ P (u, v). Then
a′ = r′ = b′ because r′ may appear only as an end-vertex on the paths P (a, a′)
and P (b, b′). Therefore (P (u, a)∪P (v, b))∩P (u, v) = {u, v}. Since r /∈ P1, we take
as P2 the path of H consisting of P (u, a), the new edges ar and rb, and the path
P (b, v). Its length is at most R−2+2+R−2 = 2R−2 < D. Hence, let r′ /∈ P (u, v).
If P (u, v)∩P (u, a) = {u}, then set Q1 := P (u, a), α1 := a, β1 := r. Otherwise, we
have P (u, v)∩ P (u, a′) = {u}, and set Q1 := P (u, a′), α1 := a′, β1 := r′. In both
cases, Q1 ∩ P (u, v) = {u} and the length of Q1 is at most R − 2. Analogously,
if P (u, v) ∩ P (v, b) = {v}, then set Q2 := P (v, b), α2 := b, β2 := r otherwise set
Q2 := P (v, b′), α2 := b′, β2 := r′. Again, in both cases Q2 ∩ P (u, v) = {v} and
the length of Q2 is at most R− 2. The paths Q1 and Q2 are disjoint, because all
vertices of Q1 ∩ Q2 would lie on the unique path of F connecting u and v and
we know that P (u, v) intersects Q1 ∪Q2 only in the vertices u, v. We take as P2
the path of H consisting of Q1, the edges α1β1, β1β2 (if β1 �= β2), α2β2, and the
path Q2. Its length is at most 2(R− 2) + 3 = 2R− 1 = D and P1 ∩P2 = {u, v}.
This establishes that indeed H is a feasible solution to the problem A2VDBP.�

Lemma 3. |A| + |A′| ≤ 3|C| − 4.

Proof. In Phase 3, for vertex c ∈ (C − L) ∪ S and each its direct descendant
c′ in C, the algorithm insert in A ∪ A′ at most two new vertices (if c = r and
c′ = r′, then no new vertex is added). Any vertex c′ ∈ C − S either belongs to
L0 or is a direct descendant of a unique vertex of (C−L)∪S. Hence the number
of new vertices is at most 2(|C| − |S| − |L0|) − 2. Since the vertices of L0 are
included in both sets A and A′ and the remaining vertices of C in only one such
set, we conclude that |A|+ |A′| ≤ 2(|C| − |S| − |L0|)− 2 + 2|L0|+ (|C| − |L0|) =
3|C| − 2|S| − |L0| − 2 ≤ 3|C| − 4. �

Hence the number of edges added by the algorithm is |A1|+|A2|+1 ≤ 3|C|−3.
From Proposition 3.1 and Lemma 4.2 we obtain the following result:

Theorem 2. Algorithm A2VDBP is a factor 6 approximation algorithm for the
problems A2VDBP, A2EDBP, and ADCE on forests F = (V,E) for any D ≥ 9.
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5 A Factor 4 Approximation Algorithm for ADCE

In this section, we modify (and simplify) the algorithm A2VDBP in order to
return feasible solutions of smaller size for the problem ADCE (we assume D =
2R−1). We use the same notations and conventions as in the algorithm A2VDBP,
except that we do not need the vertex r′ and instead of sets A,A′ we will use one
multiset A (A contains two copies of each vertex from L0 ∪ S − {r}). Namely,
given a minimum vertex (R − 1)-dominating set C of F containing the set of
leaves L, we proceed each rooted tree of F and complete C to a set A with
the property that for every vertex x there exist two vertices a, a′ ∈ A such that
x ∈ P (a, a′) and d(x, a) ≤ R − 2, d(x, a′) ≤ R − 1. The algorithm returns the
augmentation E′ = {ar : a ∈ A}. Every element of A gives rise to an added
edge, therefore r will be connected with every vertex of L0 ∪ (S − {r}) by two
parallel edges.

Algorithm ADCE(F,D)
Input: A forest F = (V, E) and an odd integer D = 2R − 1 ≥ 5.
Output: A set E′ of new edges, such that diam(H − e) ≤ D for any e ∈ E ∪ E′

where H = (V, E ∪ E′) and |E′| ≤ 4 · OPTADCE(F ).
Phase 0: Root every tree containing at least two vertices at some leaf. Denote by
S the list of such roots and pick r ∈ S.
Phase 1: Compute a minimum vertex (R − 1)-dominating set C with L ⊆ C. Set
A := (C − {r}) ∪ (L0 ∪ (S − {r})).
Phase 2: For each vertex c ∈ C − (L0 ∪ S), find the closest in C ancestor c′ of c.
If d(c, c′) ≥ R, then find c1 ∈ P (c, c′) at distance R − 1 to c and insert c1 in A.
Phase 3: Return E′ = {ra : a ∈ A}.

We present several auxiliary results establishing the feasibility of the aug-
mentation E′.

Lemma 4. For any vertex x ∈ V −{r}, there exists two different elements a, a′

of the multiset A such that x ∈ P (a, a′) and d(x, a) ≤ d(x, a′) ≤ R − 1.

Proof. First, let x ∈ V − S. The result straightforwardly follows from the algo-
rithm if x is a vertex of C or if x has been inserted in A. So, let x /∈ A, and let
c be a closest to x vertex of C (clearly, d(c, x) ≤ R − 1). If x is an ancestor of
c, then c and one of the vertices c′ or c1 described in Phase 2 form the required
pair {a, a′}. Now, assume that c is not a descendant of x. Suppose by way of
contradiction that all descendants of x in A are located at distance ≥ R from
x. Consider an arbitrary direct descendant a of x in A. Since d(x, a) ≥ R, from
the algorithm we infer that a ∈ A − C. Hence a is at distance R − 1 from some
descendant b ∈ C, i.e. d(x, b) ≥ R + (R − 1) = 2R − 1. From this we can deduce
that x is at distance ≥ 2R−1 from all its descendants from C. Pick a descendant
x′ of x satisfying d(x, x′) = R− 1. Since any descendant of x′ in C is at distance
≥ (2R − 1) − (R − 1) = R from x′ and d(x, x′) = R − 1, the center c′′ ∈ C of
any (R− 1)-ball covering x′ is a descendant of x but not a descendant of x′. Let
x′′ be the nearest common ancestor of x′ and c′′. Then d(c′′, x′′) ≤ R − 2 and
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d(x, x′′) ≤ R − 2, yielding d(x, c′′) ≤ 2R − 4 < 2R − 1, contrary to the fact that
x is at distance ≥ 2R−1 from any of its descendants from C. This contradiction
completes the proof of the case x ∈ V − S. If x ∈ S − {r} ∪ L0, we can take as
a and a′ the two occurrences of x in A. �

Lemma 5. For any vertex x ∈ V − {r}, there exists a ∈ A such that d(x, a) ≤
R − 2.

Proof. Let x /∈ L0 ∪ S, otherwise we can set a = x by definition of A. Suppose
by way of contradiction that all vertices of A are at distance ≥ R−1 from x and
pick a vertex c′ ∈ C ⊆ A at distance R − 1 to x. If c′ is a descendant of x, then
x will be inserted in A when c′ will be analyzed in Phase 2 of the algorithm, a
contradiction. So, all descendants of x from C are at distance ≥ R to x. Let x′

be the son of x and let c′′ be any closest to x′ vertex of C. Since d(x, c′′) ≥ R−1,
c′′ must be a descendant of x′. Thus d(x′, c′′) = R − 1 by what has been shown
about x. As P (c′′, x) ∩ C = {c′′}, the vertex x′ will be inserted in A when c′′

will be analyzed. Since R ≥ 3, we get a contradiction with the choice of x. �

Lemma 6. For any edge e ∈ E ∪ E′, we have diam(H − e) ≤ D.

Proof. Pick two arbitrary vertices u, v ∈ V. Combining Lemmata 5.1 and 5.2
we can conclude that there exist four elements a, a′, b, b′ ∈ A such that a �=
a′, b �= b′, u ∈ P (a, a′), v ∈ P (b, b′), d(u, a) ≤ R − 2, d(u, a′) ≤ R − 1, and
d(v, b) ≤ R−2, d(v, b′) ≤ R−1. If r ∈ {u, v} then obviously we have two disjoint
paths of length at most R between u or v in H. Now, suppose that r /∈ {u, v}. For
any edge e, the distances in H − e between u and r and between v and r are at
most R. If one of these two distances is at most R−1, we are done. Otherwise, we
must have either a = b and e = ar ∈ E′ or e belong to P (u, a)∩P (v, b). In the first
case, e does not belong to the path P (u, v) and the length of this path is at most
D, because d(u, v) ≤ d(u, a)+d(v, b) ≤ 2R−4 ≤ D. Now, suppose that e belong
to P (u, a)∩P (v, b). Then u and v belong to the same tree component T of F. If e
does not belong to P (u, v), then d(u, v) ≤ d(u, a)+d(v, b) ≤ 2R−4. Otherwise, if
e ∈ P (u, v)∩P (u, a)∩P (v, b) then the pairs u, b and v, a lie in different connected
components of T − e. Therefore d(v, a)+ d(u, b) ≤ d(u, a)+ d(v, b) ≤ 2R− 4 and
the smallest of the distances d(v, a) and d(u, b), say the first, is at most R − 2.
Thus dH−e(u, v) ≤ dH−e(u, r)+dH−e(r, a)+dH−e(a, v) ≤ R+1+R−2 = 2R−1,
yielding diam(H − e) ≤ 2R − 1 = D for every edge e ∈ E ∪ E′. �

The next lemma follows immediately from the analysis of the algorithm:

Lemma 7. |A| ≤ 2|C|.

From Proposition 3.1 and previous lemmata, we obtain the following result
(the algorithm for the case D = 2R is similar, the correctness proof follows the
same lines, however this proof is technically more involved, and is not given here
due to space limitation):

Theorem 3. Algorithm ADCE is a factor 4 approximation algorithm for the
problem ADCE on forests F = (V,E) for any D ≥ 5.
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The algorithms A2VDBP and ADCE can be implemented in O(|V |log|V |)
time. Phase 1 of both algorithms takes linear time, while Phase 2 of A2VDBP
can be easily performed in O(|V |log|V |) time. In order to find the vertices of
type c1 and c2, one can use mergeable heaps (supporting each of the operations
Insert, Minimum, Extract-Min, and Union in O(log|V |) time), i.e. in overall
O(|V |log|V |) time. Finally, the vertices c′′ occurring in third case of Phase 3 of
A2VDBP can be computed in total linear time.

In most of the cases occurring in the proof of Lemma 5.3, the algorithm
ADCE returns two edge-disjoint paths of length ≤ D. Nevertheless, the solu-
tions returned by this algorithm are not always feasible augmentations for the
problem A2EDBP. This leads to the question of finding a factor 4 approximation
algorithm for the problem A2EDBP.
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Abstract. As defined by Muller (Muller, Ph.D. thesis, Georgia Tech,
1988) and Kannan, Naor, and Rudich (Kannan et al., SIAM J Disc Math,
1992), an adjacency labelling scheme labels the vertices of a graph so the
adjacency of two vertices can be deduced implicitly from their labels. In
general, the labels used in adjacency labelling schemes cannot be tweaked
to reflect small changes in the graph.

Motivated by the necessity for further exploration of dynamic (im-
plicit) adjacency labelling schemes we introduce the concept of error de-
tection, discuss metrics for judging the quality of such dynamic schemes,
and develop a dynamic scheme for line graphs that allows the addition
and deletion of vertices and edges. The labels used in this scheme re-
quire O(log n) bits and updates can be performed in O(e) time, where
e is the number of edges added to or deleted from the line graph. This
compares to the best known (static) adjacency labelling scheme for line
graphs which uses O(log n) bit labels and requires Θ(n) time to generate
a labelling even when provided with the line graph representation.

1 Introduction

Consider a finite simple undirected graph G = (VG, EG) with n vertices and m
edges; typically, we represent G using an adjacency matrix, labelling the vertices
from 1 to n. These labels distinguish between the vertices but tell us nothing
about G. Moreover, the matrix is usually maintained as a global resource.

What if we could determine the adjacency of two vertices of G in a more local
manner, that is, by using only their labels? One such way is to use an adjacency
labelling scheme as defined by Muller [1] and Kannan et al. [2]. An adjacency
labelling scheme of a family G of finite graphs is a pair (M,D) for which

– M is a vertex labelling algorithm (marker) whose input is a member of G.
– D is a polynomial time evaluation algorithm (decoder) which correctly de-

termines the adjacency of two vertices using only their labels (we will say
that D is adjacency-correct).

In essence, an adjacency labelling scheme is a distributed data structure
that allows us to quickly determine adjacency from local information. Allowing
sufficiently large labels we can create an adjacency labelling scheme for any
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family of graphs; for instance, we can use adjacency lists or the rows of adjacency
matrices to generate adjacency labelling schemes with O(n log n) and Θ(n) bit
labels, respectively, for any graph class. Typically, however, properties of the
graph class allow us to use smaller labels. To date, space-optimal adjacency
labelling schemes have been developed for a variety of graph classes, such as
bounded arboricity graphs, line graphs, and interval graphs [1, 2].

For example, consider the following adjacency labelling scheme for interval
graphs [1]. Each interval graph on n vertices has an interval representation in
which each vertex is assigned a closed interval of reals with unique endpoints
in {1, . . . , 2n}, with adjacency determined according to the intersection of the
intervals. The marker labels each vertex with the two endpoints of its associated
interval while the decoder determines adjacency in O(1) time by comparing
these integers just as it would two intervals (throughout this work we assume
a word-level RAM computation model for the marker and decoder). Given that
there are 2Ω(n log n) unlabelled interval graphs on n vertices [3], any adjacency
labelling scheme requires Ω(n log n) bits to represent a graph (as the adjacency
function uniquely determines the graph). Having used O(log n) bits per vertex,
the aforementioned adjacency labelling scheme is space optimal.

Adjacency can be replaced by any function f defined on sets of vertices; in
turn, for any set S of vertices on which f is defined, D must output the correct
value of f on S using only the labels of the vertices in S. By setting adjacency
labelling schemes in the larger context of informative labelling schemes, Peleg [4]
rejuvenated interest in the idea of space efficient distributed data structures as
introduced by Muller [1] and Kannan, Naor, and Rudich [2]. To date, informative
labelling schemes have been developed for a variety of functions including dis-
tance, routing, center of three vertices, ancestor, and nearest common ancestor.
A survey of such labelling schemes can be found in [5], and detailed discussions
of their applications to XML search engines and communication networks can
be found in [6], [7], [8], [9], and [10].

In many applications the underlying topology is constantly changing and we
desire algorithms which can accommodate these changes. At present, algorithms
for finding informative labelling schemes are static, that is, if a graph is changed
then the algorithm must devise a labelling of the new graph from scratch. The
dynamic version of adjacency labelling schemes was mentioned in [2], however,
Kannan et al. did not consider the problem in any detail. The first paper to
address this dynamic problem is that of Brodal and Fagerberg [11] who develop a
dynamic adjacency labelling scheme for graphs of bounded arboricity, providing
the graph operations do not cause the arboricity bound to be violated. More
recently, the papers of Korman and Peleg [12] and Korman, Peleg, and Rodeh
[13] have considered the dynamic problem for trees in the context of distributed
computing. Cohen, Kaplan, and Milo [14] consider dynamic ancestor labellings
of XML trees with persistent labels, that is, the label of a vertex cannot be
changed once it has been assigned; in contrast, our labels can change over time.
By not using persistent labels it is possible to reduce label size as we can change
the labels as required, or, as desired.
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As a continuation of [11], [12], [13], and [14] there is a need for further discus-
sion on, and development of, dynamic schemes. In particular, algorithms devel-
oped for dynamic schemes should incorporate some form of error detection; that
is, the algorithms should recognize when the modified graph is no longer a mem-
ber of the family under consideration. In Section 2 we discuss dynamic (implicit)
adjacency labelling schemes and in Section 3 we present a dynamic (implicit)
adjacency labelling scheme for line graphs, a class of graphs fundamental in the
study of intersection graph theory [15].

2 Dynamic Implicit Adjacency Labelling Schemes

A dynamic implicit adjacency labelling scheme is the natural dynamization of
an adjacency labelling scheme (note the inclusion of “implicit” which underlines
the fact that adjacency is implicitly deduced from the vertex labels). Let f be
a function defined on sets of vertices. A dynamic implicit adjacency labelling
scheme of a family G of finite graphs is a tuple (M,D,Δ, R) for which

– (M,D) is an adjacency labelling scheme of G.
– Δ is a set of functions which map graphs in G to other graphs.
– R is a polynomial time relabelling algorithm (relabeller) which, using only

a vertex labelling, maintains an adjacency-correct labelling while a dynamic
graph operation in Δ acts on a member of G, providing the operation pro-
duces another graph in G. Moreover, we say that the dynamic scheme is
error-detecting if R can determine when a dynamic graph operation pro-
duces a graph that does not belong to G.

In a less formal context, R can be considered as the composition of algorithms
required by the graph operations found in Δ. For instance, if Δ permitted the
addition or deletion of any edge from a graph, we might consider R to be com-
prised of two algorithms, AddEdge(e,LG) and DeleteEdge(e,LG), which use
a labelling LG to relabel G + e and G − e, respectively. Again, note that the
algorithms AddEdge and DeleteEdge do not directly receive G as input,
rather, they are provided with LG (if we maintained an adjacency matrix or
adjacency lists to represent G then there would be no need for the adjacency
labelling scheme!). Moreover, in practice we are not interested in maintaining a
labelling for every graph in the family, rather, we use the labelling of a graph to
determine a labelling of a slightly modified graph, discarding the labelling of the
original graph in the process. That is, the above algorithms might be presented
as AddEdge(e) and DeleteEdge(e).

Just as an adjacency labelling scheme can be created for any graph class
when we allow sufficiently large labels, sufficiently weak choices of M , Δ, and R
will result in a dynamic implicit adjacency labelling scheme for any class; again,
consider using adjacency lists or the rows of an adjacency matrix. As a result,
there are several ways in which one might judge the quality of a dynamic im-
plicit adjacency labelling scheme. First of all, we might judge a dynamic scheme
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according to the time taken by R relative to the time taken by the fastest marker
of a (static) adjacency labelling scheme. Secondly, since a dynamic implicit ad-
jacency labelling scheme includes an adjacency labelling scheme, we might also
judge a dynamic scheme according to the size of the labels generated by M and
R. Finally, we might judge a dynamic scheme according to the range of oper-
ations contained in Δ. The importance of each of these metrics is dependent
on the domain in which the scheme is required; for our purposes we will try to
generate space-optimal labels using M and R while allowing the addition and
deletion of vertices and edges in an error-detecting scheme.

One might also be interested in how the effects of a dynamic change permeate
through the graph; perhaps, depending on the domain, this could be a more
important metric than those described above. To measure this change we define
a quantity called the modification locality. The modification locality of R is the
maximum value over all operations in Δ and all possible labellings produced in
the dynamic implicit adjacency labelling scheme, of the maximum distance to
the set of vertices with changed neighbourhoods from a vertex whose label has
changed, but whose neighbourhood has not. In essence, the modification locality
measures the distance between the vertices whose labels we expected to change
and the vertices whose labels we did not expect to change.

To illustrate how modification locality is calculated, consider the relabelling
depicted in Figure 1. The neighbourhoods of b, c, and e change whereas the labels
of d and h are modified, but their neighbourhoods do not change. Therefore, the
modification locality of this relabelling is,

max
x∈{d,h}

{distG(x, {b, c}), distδ(G)(x, {b, c, e})} = distG(h, {b, c}) = 2.

Having considered the relabeller to be the composition of several smaller rela-
belling algorithms, we can consider its modification locality in terms of these
smaller algorithms. Not only will this help us calculate the modification locality,
this will also help us better understand the effect of specific dynamic changes on
the labelling of the graph.

δ(G)

d(4) c(0)

a(4)
h(1)

b(−2)

c(0)

e(2)
b(0)

h(7)
a(4)

d(7)

G

Fig. 1. Adding a vertex to a graph (labels in brackets)

Like their static counterparts, we can consider dynamic implicit adjacency
labelling schemes in the larger context of dynamic implicit informative labelling
schemes. Replacing adjacency with any function f defined on sets of vertices, we
can develop analogous measures of quality, including modification locality.
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3 Error-Detecting Dynamic Implicit Adjacency Labelling
Schemes for Line Graphs

In the remainder of this work we consider error-detecting dynamic implicit ad-
jacency labelling schemes for line graphs. Line graphs are defined as follows [15].

Definition 1. Given a graph G = (VG, EG), its line graph is the graph L(G) =
(EG, EL(G)) for which {u, v} ∈ EL(G) if and only if u and v are incident in G.

We observe that by adding isolated vertices to G we obtain infinitely many
graphs with the same line graph. As such, if a graph G has no isolated vertices
we will refer to it as a base of L(G). In [16] Whitney has shown that every
connected line graph has a unique base, up to isomorphism, except for K3 which
has two bases, namely, K3 and K1,3. Just as a graph “generates” a line graph, we
can can say that an edge labelled graph “generates” a vertex labelled line graph.
For this reason, we will also use the term “base” to refer to an edge labelled
graph which “generates” a particular vertex labelled line graph.

Our work on line graphs requires a concept similar to that of isomorphism, but
involving edge labellings of base graphs. Given an edge labelling ψ of a graph (in
which each label is unique), for each edge label α we let Pψ

α denote the partition
of the labels incident with α that is determined by the endpoints of α. We define
two bases of a vertex labelled line graph L(G), having edge labellings ψ1 and ψ2,
to be partition isomorphic if the bases are isomorphic and Pψ1

α = Pψ2
α , for all

edge labels α. For example, the two bases shown in Figure 2(b) are not partition
isomorphic. When we consider the theorem of Whitney in the context of labelled
line graphs we arrive at the following theorem which we present without proof.

Theorem 1. Every vertex labelled connected line graph, except those shown in
Figure 2(a), has a unique (edge labelled) base, up to partition isomorphism. For
each of the four exceptions, a vertex labelled graph has two bases that are not
partition isomorphic.

(a) The only connected line graphs
with two (edge labelled) bases that
are not partition isomorphic.

c
d a

b

c
a d

b

(b) Two bases of a vertex labelled line
graph, namely K4−e, that are not par-
tition isomorphic.

Fig. 2. Partition isomorphism of graphs
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In [1], Muller presents a space-optimal implicit adjacency labelling scheme
for the class of line graphs. Consider a line graph L(G) on n vertices, with
base graph G. To each vertex in G the marker assigns a unique prelabel from
{1, . . . , |VG|} then labels each vertex v of L(G) as (ep0, ep1), where ep0 and ep1
are the prelabels of the endpoints of the edge of G corresponding to v. Since
the base graph has no isolated vertices, |VG| ≤ 2|EG| = 2|VL(G)| = 2n, so each
vertex label uses O(log n) bits. Presumably, the marker knows the structure of
G, as well as the correspondence between edges in G and vertices in L(G), so
it can generate this labelling in Θ(n) time. If the marker does not have this
information then it must determine G from L(G) using an algorithm like those
found in [17] or [18] which have running time at best Θ(m+n). The decoder can
determine the adjacency of two vertices, with labels (ep0, ep1) and (ep2, ep3), in
O(1) time by checking if {ep0, ep1} ∩ {ep2, ep3} = ∅.

Our dynamic labelling is similar to that of Muller, but we also incorporate
circular doubly linked lists of the edges incident with each vertex in the base
graph. Specifically, the labels used in our dynamic scheme will be comprised of
the following information.

pre: Each vertex of the line graph will be assigned a unique prelabel from
{1, . . . , |VL(G)|}; pre is the prelabel of the vertex. For simplicity, we refer to
a vertex by its prelabel. Since each vertex in the line graph corresponds to
an edge in the base, pre will also be used to refer to the edge of the base
corresponding to pre.

pre.ep0 , pre.ep1 : Each vertex of the base will be assigned a unique prelabel
from {1, . . . , |VG|}. Considered as an edge in the base, pre has two endpoints;
pre.ep0 and pre.ep1 are the prelabels of these endpoints.

pre.nn0 , pre.nn1 : The values of |N(pre.ep0 ) | and |N(pre.ep1 )| (in the base),
respectively, where N(x) denotes the open neighbourhood of the vertex x.

pre.prev0 , pre.prev1 , pre.nx0 , pre.nx1 : With pre as the current edge in the cir-
cular doubly linked lists about pre.epi , the prelabels of the previous and next
edges are pre.previ and pre.nxi , respectively.

In particular, the label of a vertex is (pre: pre.ep0 ; pre.ep1 ; pre.nn0 ; pre.nn1 ;
pre.prev0 ; pre.nx0 ; pre.prev1 ; pre.nx1 ); an example of this labelling is presented
in Figure 3. Like the static scheme of Muller, we assume that the marker knows
the structure of G, so it can generate an initial labelling in Θ(n) time; otherwise,
it must use an algorithm like that found in [17] or [18]. Again, the decoder can
determine the adjacency v1 and v2 in O(1) time by checking if {v1.ep0 , v1 .ep1}∩
{v2 .ep0 , v2 .ep1} = ∅.

Consider a line graph with n vertices. If l(string) denotes the number of bits
required to represent string then the number of bits used in the label of pre is

l(pre) +
1∑

i=0

(
l(pre.epi) + l(pre.nni) + l(pre.previ) + l(pre.nxi)

)
.

Observe that if the graph had been obtained by the deletion of vertices then it is
possible that the largest prelabel of a vertex might be larger than n; as such, let
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e
a

34

1 2b

c

d

(a) G (� denotes the order of
the circular linked list).

(e : 1; 4; 3; 2; a; b; d; d)

(a : 1; 3; 3; 3; b; e; d; c)

(b : 1; 2; 3; 2; e; a; c; c)

(c : 2; 3; 2; 3; b; b; a; d)

(d : 3; 4; 3; 2; c; a; e; e)

(b) Labels of L(G).

Fig. 3. Our dynamic implicit adjacency labelling scheme for line graphs

the largest prelabel of a vertex in the line graph be L and let the largest prelabel
of a vertex in the base graph be B. Thereby, l(pre), l(pre.previ), l(pre.nxi) ∈
O(log L) and l(pre.epi) ∈ O(log B). Moreover, |VG| ≤ 2n, so l(pre.nni) ∈
O(log n) and the label of pre uses O(log L + log B + log n) bits. If L,B ∈ O(n),
which we assume hereafter, then this reduces to O(log n). That is, the graph
is represented using O(n log n) bits. Using an argument found in Spinrad [19]
(p. 18), we can show that there are 2Ω(n log n) labelled line graphs on n vertices,
thereby proving the dynamic scheme space-optimal for labelled line graphs. This
scheme may also be space-optimal for unlabelled line graphs, however, this lower
bound has not yet been established in the unlabelled case.

3.1 Algorithms Used in the Dynamic Scheme

In the remainder of this work we discuss the graph operations included in our
dynamic implicit adjacency labelling scheme for line graphs. In particular, we
permit the addition or deletion of a single vertex (along with its incident edges)
and the addition or deletion of a single edge. In this work, we present pseudocode
only for the algorithm which deals with the deletion of a vertex; the pseudocode
for the other algorithms has been omitted due to their length.

Deleting a Vertex from the Line Graph. One change we can make is to
delete a vertex along with its incident edges. As with all of our graph modifi-
cations, it is imperative to understand how a change in the line graph causes
a change in the base. By deleting a vertex from the line graph we delete the
corresponding edge in the base. Letting pre be the vertex of the line graph to be
deleted, DeleteVertex, the algorithm presented in Figure 4, traverses the cir-
cular linked lists at each of the endpoints of pre (in the base) so as to decrement
by one the the number of edges incident with these endpoints, then removes pre
from the circular linked lists of its endpoints, and frees the prelabel pre for future
use. DeleteVertex runs in O(|N(pre)|) time, where |N(pre)| ∈ O(n) (we also
assume a word-level RAM computation model for the relabeller). Recall that,
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DeleteVertex(pre)
1 for i ← 0 to 1 do
2 if pre.nni = 1 then
3 FreeBase(pre.epi)
4 else DecrementList(pre, i)
5 RemoveFromList(pre, i)
6 FreeLine(pre)

DecrementList(x, xend)
1 x.nnxend ← x.nnxend − 1
2 u ← x
3 uend ← xend
4 while u.nxuend �= x do
5 u ← u.nxuend

6 uend ← End(u, x.epxend)
7 u.nnuend ← u.nnuend − 1

RemoveFromList(x, xend)
1 y ← x .nxxend

2 z ← x .prevxend

3 yend ← End(y, x .epxend)
4 zend ← End(y, x .epxend)
5 y .nxyend ← z
6 z .nxyend ← y

End(e, v)
1 if e.ep0 = v then
2 return 0
3 else return 1

FreeBase(bpre)
1 free prelabel bpre for future

FreeLine(lpre)
1 free prelabel lpre for future

Fig. 4. The algorithm DeleteVertex used to delete a vertex from a line graph

by the definition of a dynamic implicit informative labelling scheme, DeleteV-
ertex is input with the entire labelling of the graph, which uses Θ(n log n) bits,
thereby, the running time of DeleteVertex is polynomial in the size of its
inputs (this would have also been true even if we had assumed a log-cost RAM
computation model in determining the running time of the relabeller). More-
over, DeleteVertex is error-detecting because any vertex induced subgraph
of a line graph is also a line graph (hereditary).

Proposition 1. The modification locality of DeleteVertex is zero.

Proof. First, observe that the set of vertices whose neighbourhoods change is
NL(G)[pre], the closed neighbourhood of pre in L(G). Vertex labels are only
modified during a call of RemoveFromList where, in particular, if the label of
a vertex v is modified, then its corresponding edge in the base had been in one
of the circular linked lists about an endpoint of pre (in the base, G). That is,
v ∈ NL(G)[pre]. Therefore the set of vertices with modified labels is a subset of
the set of vertices whose neighbourhoods change, giving the desired result. �

Adding a Vertex to the Line Graph. Adding a vertex, along with its inci-
dent edges, to the line graph is equivalent to adding an edge to the base graph.
In adding the vertex pre to the line graph we must specify the set of neigh-
bours of pre. The endpoints of pre (in the base) must cover N(pre) (as edges in
the base), moreover, these endpoints must be incident only with these edges. If
N(pre) = ∅, then AddVertex creates two new vertices in the base and puts
pre between them. If N(pre) �= ∅ then we are looking for a set S of vertices in
the base for which each of the following conditions hold.
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– 1 ≤ |S| ≤ 2.
– each edge of N(pre) (in the base) has exactly one endpoint in S.
– no edge of the base not in N(pre) has an endpoint in S.

We will call such a set S valid.
To find a valid set AddVertex calls FindValid. FindValid selects an

edge of the base, edge0 , from N(pre) and tries to include edge0 .ep0 in a valid
set. Letting X be the subset of edges in N(pre) that are not incident with
edge0 .ep0 , we observe that if we require another vertex in the valid set then
it must come from an edge in X. We initially set X to N(pre), then traverse
the circular linked list structure about edge0 .ep0 to eliminate edges from X. If
at any point we find an edge which does not belong to N(pre) then edge0 .ep0

cannot be in the valid set, so we backtrack and try endpoint 1. If endpoint
1 is similarly problematic then the base will not yield a valid set. However,
before concluding that pre cannot be added to the line graph we must deter-
mine if the component of the line graph containing edge0 has another base
which is not partition isomorphic. If so, we repeat our efforts on edge0 using this
new base.

Providing some endpoint of edge0 can be added to the valid set, FindValid
now selects an edge, edge1 , from X and tries to include edge1 .ep0 in the valid
set. Letting X1 be the subset of edges of X that are not incident with edge1 .ep0 ,
we observe that edge1 .ep0 can be added to complete the valid set if and only
if all of the edges found in the circular linked list about edge1 .ep0 belong to X
and X1 = ∅. We determine X1 in a manner similar to that described for finding
X above, then backtrack if necessary. By backtracking, FindValid exhausts
all combinations of bases and endpoints in finding a valid set. In particular,
backtracking first tries a new endpoint then, if necessary, a new base.

If a valid set is found then we add pre to the base graph using the ver-
tices in the valid set. AddVertex then inserts pre into the circular linked lists
about its endpoints and traverses these circular linked lists in order to adjust
the .nn fields of the labels to reflect the addition of pre. Since N [pre] contains
all the vertices whose labels change, the modification locality of AddVertex
is zero.

From Theorem 1 we see that any component of the line graph with two bases
that are not partition isomorphic has O(1) vertices. Therefore, FindValid re-
quires at most O(1) backtracks, where each base change takes O(1) time, so
the running time of FindValid is dominated by the time taken to traverse
the circular linked lists when eliminating edges from X and X1. Consequently,
FindValid runs in O(|N(pre)|) time, as does AddVertex. As per our com-
ments earlier in this section, the running time of AddVertex is polynomial in
the size of the input. Moreover, AddVertex is error-detecting since our use of
backtracking guarantees that a valid set will be found, providing one exists.

Deleting an Edge from the Line Graph. Consider the act of deleting an
edge from a line graph; this is equivalent to “pulling apart” two incident edges
in the base. If there are additional edges incident with the vertex of the base at
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Table 1. Possible cases for deleting an edge from (or adding an edge to) a line graph.
In each case the edge {a, b} is deleted from the line graph. The use of ellipses indicates
that the line graph extends arbitrarily from the indicated vertex
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which these two incident edges were joined, then it becomes increasingly difficult
to determine the new base graph. Fortunately, there are a finite number of cases
to be considered; we classify these cases in the following theorem whose lengthy
proof has been omitted.

Theorem 2. Table 1 classifies all of the possible base graphs, up to symmetry,
for which the edge {a, b} can be deleted from the corresponding line graph to
produce a new line graph. For each base graph G the base graph of the new line
graph is given by G′.

Since the circular linked list structure distributes the information about the
neighbourhood of a vertex across the labels of its neighbourhood, the vertex
labels are sufficient to determine the local structures depicted in Table 1 (in
fact, we can perform both depth first and breadth first search on the line graph
and its base). Consequently, DeleteEdge needs only identify the structure of
the base graph then alter the labels to represent the new base graph.

From Table 1 we see that only edges of the base whose endpoints change are
those which are incident with a or b; which is to say that the only vertices of the
line graph whose labels change are those which are adjacent to a or b (as vertices
in the line graph). As such, the modification locality of DeleteEdge is one.
Moreover, given that the degrees of all the modified vertices is O(1), the running
time of DeleteEdge is O(1), which is sub-linear in the size of its inputs (we
don’t actually need access to all the labels).

Adding an Edge to the Line Graph. Since the process of adding an edge
is exactly the reverse of deleting an edge, Table 1 classifies all the possibilities.
Again, the labels of the vertices in the line graph are sufficient to determine the
local structures depicted in Table 1 so the algorithm AddVertex needs only
identify the structure of the base graph, then alter the labels to represent the
new structure. Like DeleteEdge, AddVertex runs in O(1) time and has a
modification locality of one.

4 Conclusion

In this work we have discussed the concept of a dynamic implicit adjacency
labelling scheme and presented a scheme for line graphs that allows the addition
and deletion of a vertex or edge. In developing this dynamic scheme we have used
circular doubly linked lists to distribute information about the neighbourhood
of a vertex across the labels of the vertices in that neighbourhood.

Future research will reveal dynamic schemes for additional classes of graphs,
as well as for functions other than adjacency. Preliminary research indicates that
the technique of using circular linked lists to store information about the vertices
can also be used to design dynamic schemes for other classes defined by maximal
cliques [20] and maximal vertex induced complete bipartite subgraphs.
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Abstract. We consider two on-line versions of the asymmetric traveling
salesman problem with triangle inequality. For the homing version, in
which the salesman is required to return in the city where it started
from, we give a 3+

√
5

2
-competitive algorithm and prove that this is best

possible. For the nomadic version, the on-line analogue of the shortest
asymmetric hamiltonian path problem, we show that the competitive
ratio of any on-line algorithm has to depend on the amount of asymmetry
of the space in which the salesman moves. We also give bounds on the
competitive ratio of on-line algorithms that are zealous, that is, in which
the salesman cannot stay idle when some city can be served.

1 Introduction

In the classical traveling salesman problem, a set of cities has to be visited in a
single tour with the objective of minimizing the total length of the tour. This is
one of the most studied problems in combinatorial optimization, together with
its dozens of variations [9, 14]. In the asymmetric version of the problem, the
distance from one point to another in a given space can be different from the
inverse distance. This variation, known as the Asymmetric Traveling Salesman
Problem (ATSP) arises in many applications; for example, one can think of a
delivery vehicle traveling through one-way streets in a city, or of gasoline costs
when traveling through mountain roads.

The ATSP has been much studied from the point of view of approximation
algorithms. However, if the condition is that every city or place has to be visited
exactly once, the problem is NPO-complete and thus no approximation is at all
possible in polynomial time, unless P=NP [17]. Instead, in the case where every
city or place given in the input has to be visited at least once or, equivalently, the
distance function satisfies the triangular inequality, approximation algorithms
exist. In particular, the best algorithms known have an approximation ratio of
O(log n) [8, 11]. The problem is also known to be APX-hard [16]. The question
of the existence of an algorithm with a constant approximation ratio for the
asymmetric case is still open after more than two decades.

Here we are interested in the on-line version of the ATSP, named OL-ATSP.
The on-line versions of a number of vehicle routing problems, including the

F. Dehne, A. López-Ortiz, and J.-R. Sack (Eds.): WADS 2005, LNCS 3608, pp. 306–317, 2005.
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standard TSP, the traveling repairman problem, the quota TSP and dial-a-ride
problems have been studied recently [2, 3, 4, 6, 12, 13, 15]. In the on-line TSP and
ATSP, the places to visit in the space are requested over time and a server (the
salesman or vehicle) has to decide in what order to serve them, without knowing
the entire sequence of requests beforehand. The objective is to minimize the
completion time of the server. We use the established framework of competitive
analysis [5, 7, 18], where the cost of the algorithm being studied is compared to
that of an ideal optimum off-line server, knowing in advance the entire sequence
of requests (notice, however, that even the off-line server cannot serve a request
before it is released). The ratio between the on-line and the off-line costs is called
the competitive ratio of the algorithm and is a measure of the loss of efficacy due
to the absence of information on the future.

As we will see, the asymmetric TSP is substantially harder than the normal
TSP when considered from an on-line point of view; in other words, OL-ATSP is
not a trivial extension of OL-TSP. In fact, as Table 2 shows, most bounds on the
competitive ratio are strictly higher than the corresponding bounds for OL-TSP,
and in particular in the nomadic case there cannot be on-line algorithms with a
constant competitive ratio.

The rest of this paper is organized as follows. After the necessary definitions
and the discussion of the model, we study in Section 3 the homing case of the
problem, in which the server is required to finish its tour in the same place
where it started; we give a 3+

√
5

2 -competitive algorithm and show that this is
also best possible. In Section 4, we address the nomadic version, also known
as the wandering traveling salesman problem [10], in which the server is not
required to finish its tour in the origin. For this case we show that in general an
on-line algorithm with a competitive ratio independent of the space cannot exist;
indeed, we show that the competitive ratio is a precise function of the amount
of asymmetry of the space. In Section 5 we explain how our algorithms can be
combined with polynomial time approximation algorithms. In the last section,
we give our conclusions and discuss some open problems.

2 The Model

An input for the OL-ATSP consists of a space M from the class M defined
below, a distinguished point O ∈ M , called the origin, and a sequence of requests
ri = (ti, xi) where xi is a point of M and ti ∈ R+ is the time when the request
is presented. The sequence is ordered so that i < j implies ti ≤ tj .

The server is located at the origin O at time 0 and the distances are scaled
so that, without loss of generality, the server can move at most at unit speed.

We will consider two versions of the problem. In the nomadic version, the
server can end its route anywhere in the space; the objective is just to minimize
the completion time required to serve all presented requests. In the homing
version, the objective is to minimize the completion time required to serve all
presented requests and return to the origin.
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An on-line algorithm for the OL-ATSP has to determine the behavior of the
server at a certain moment t as a function only of the requests (ti, xi) such that
ti ≤ t. Thus, an on-line algorithm does not have knowledge about the number of
requests or about the time when the last request is released. We will use pOL(t)
to denote the position of the on-line server at time t. Sometimes we will let T
be some tour or route over a subset of the requests; in this case, |T | will be the
length of that tour.

We will use ZOL to denote the completion time of the solution produced by
a generic on-line algorithm OL, while Z∗ will be the completion time of the
optimal off-line solution. An on-line algorithm OL is c-competitive if, for any
sequence of requests, ZOL ≤ cZ∗.

A word is in order about the spaces that we are going to allow for our prob-
lems. Usually, in the context of the on-line TSP, path-metric spaces are consid-
ered [3]. However, here the main issue is precisely asymmetry, so we have to drop
the requisite that for every x and y, d(x, y) = d(y, x). Thus we obtain path-quasi-
metric spaces. We review here the definitions. A set M , equipped with a distance
function d : M2 → R+, is called a quasi-metric space if, for all x, y, z ∈ M :

(i) d(x, y) = 0 if and only if x = y;1
(ii) d(x, y) ≤ d(x, z) + d(z, y).

We call a space M path-metric if, for any x, y ∈ M , there is a function
f : [0, 1] → M such that f(0) = x, f(1) = y and f is continuous, in the following
sense: d(f(a), f(b)) = (b − a)d(x, y) for any 0 ≤ a ≤ b ≤ 1. This function
represents a shortest path from x to y. Notice that the path-metric property
implies connectivity.

We will use M to denote the class of path-quasi-metric spaces. Notice that
discrete metrics (i.e., those with a finite number of points) are not path-metric.
However, we can always make a space path-metric by adding (an infinity of)
extra points between pairs of vertices.

In particular, to see how a directed graph with positive weights on the arcs
can define a path-quasi-metric space, consider the all-pairs shortest paths matrix
of the graph. This defines a finite quasi-metric. Now we add, for every ordered
pair of nodes x and y, an infinity of points πγ , indexed by a parameter γ ∈ (0, 1).
Let π0 and π1 denote x and y respectively. We extend the distance function d
so that:

d(πγ , πγ′) = (γ′ − γ)d(x, y) for all 0 ≤ γ < γ′ ≤ 1.

It can be verified that π represents a shortest path from x to y. For γ /∈ {0, 1},
the distance from a point πγ to a point z not in π is defined as d(πγ , z) =
d(πγ , y) + d(y, z); that is, the shortest path from πγ to z passes through y.
Viceversa, the distance from z to πγ is defined as d(z, πγ) = d(z, x) + d(x, πγ).
Finally,

d(πγ′ , πγ) = (1 − (γ′ − γ))d(x, y) + d(y, x) for all 0 ≤ γ < γ′ ≤ 1.

1 This condition is not strictly essential; we could consider quasi-pseudo-metric spaces,
for which this condition is relaxed to d(x, x) = 0 for all x ∈ M .
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We say that such a space is induced by the original directed weighted graph. We
remark that our model, differently from the originally proposed one [3], allows
to model the case in which the server is not allowed to do U-turns.

It will be useful to have a measure of the amount of asymmetry of a space.
Define as the maximum asymmetry of a space M ∈ M the value

Ψ(M) = sup
x,y∈M

d(x, y)
d(y, x)

.

We will say that a space M has bounded asymmetry when Ψ(M) < ∞.

3 Homing OL-ATSP

In this section we consider the homing version of the on-line ATSP, in which
the objective is to minimize the completion time required to serve all presented
requests and return to the origin. We establish a lower bound of about 2.618
and a matching upper bound. Note that in the case of symmetric on-line TSP,
the corresponding bounds are both equal to 2 [3, 12].

Let φ denote the golden ratio, that is, the unique positive solution to x =
1 + 1/x. In closed form, φ = 1+

√
5

2 # 1.618.

Theorem 1. The competitive ratio of any on-line algorithm for homing OL-
ATSP is at least 1 + φ.

Proof. Fix any ε > 0. The space used in the proof is the one induced by the
graph depicted in Figure 1. The graph has 7 + 4n nodes, where n = 1 + 
φ−1

ε �,
and the length of every arc is ε, except for those labeled otherwise. Observe
that the space is symmetric with respect to an imaginary vertical axis passing
through O. Thus, we can assume without loss of generality that, at time 1, the
on-line server is in the left half of the space. Then at time 1 a request is given in
point A, in the other half. Now let t be the first time at which the on-line server
reaches point D or E.

If t ≥ φ, no further request is given. In this case ZOL ≥ t + 1 + 2ε while
Z∗ ≤ 1 + 3ε so that, when ε approaches zero, ZOL/Z∗ approaches 1 + t ≥ 1 + φ.

Otherwise, if t ∈ [1, φ], at time t, we can assume that the on-line server has
just reached E (again, by symmetry). At this time, the adversary gives a request
in Bi, where i = 
 t−1

ε �. Now the on-line server has to traverse the entire arc EC
before it can go serve Bi, thus

ZOL ≥ t + 1 + 3ε + 1 + ε
⌈ t − 1

ε

⌉
+ 2ε ≥ 2t + 1 + 5ε.

Instead, the adversary server will have moved from O to Bi in time at most t+2ε
and then served Bi and A, achieving the optimal cost Z∗ ≤ t + 4ε. Thus, when
ε approaches zero, ZOL/Z∗ approaches 2 + 1

t ≥ 1 + φ. ��
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O
A

B0

D

B1 . . . Bn−1

C

E

1

1

1

1

Fig. 1. The space used in the homing lower bound proof

To prove a matching upper bound on the competitive ratio, we use a variation
of algorithm smartstart, first introduced by Ascheuer et al. [1].

Algorithm. smartstart(α)
The algorithm keeps track, at every time t, of the length of an optimal tour
T ∗(t) over the unserved requests. At the first instant t such that t ≥ α|T ∗(t)|,
the server starts following at full speed the currently optimal tour, ignoring
temporarily every new request. When the server is back in the origin, it stops
and returns monitoring the value |T ∗(t)|, starting as before when necessary. As
we will soon see, the best value of α is α∗ = φ.

Theorem 2. smartstart(φ) is (1 + φ)-competitive for homing OL-ATSP.

Proof. We distinguish two cases depending if the last request arrives while the
server is waiting in the origin or not.

In the first case, let t be the release time of the last request. If the server
starts immediately at time t, it will follow a tour of length |T ∗(t)| ≤ t/α, ending
at time at most (1+1/α)t, while the adversary pays at least t, so the competitive
ratio is at most 1 + 1/α. Otherwise, the server will start at a time t′ > t such
that t′ = α|T ∗(t)| (since T ∗ does not change after time t) and pay (1+α)|T ∗(t)|,
so the competitive ratio is at most 1 + α.

In the second case, let T ∗(t) be the tour that the server is following while
the last request arrives; that is, we take t to be the starting time of that tour.
Let T ′(t) be an optimal tour over the requests released after time t. If the server
has time to wait in the origin when it finishes following T ∗(t), the analysis is
the same as in the first case. Otherwise, the completion time of smartstart is
t+ |T ∗(t)|+ |T ′(t)|. Since smartstart has started following T ∗(t) at time t, we
have t ≥ α|T ∗(t)|. Then

t + |T ∗(t)| ≤ (1 + 1/α)t.

Also, if rf = (tf , xf ) is the first request served by the adversary having release
time at least t, we have that |T ′(t)| ≤ d(O, xf ) + Z∗ − t since a possibility for
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T ′ is to go to xf and then do the same as the adversary (subtracting t from the
cost since we are computing a length, not a completion time, and on the other
hand the adversary will not serve rf at a time earlier than t).

By putting everything together, we have that smartstart pays at most

(1 + 1/α)t + d(O, xf ) + Z∗ − t

and since two obvious lower bounds on Z∗ are t and d(O, xf ), this is easily seen
to be at most (2 + 1/α)Z∗.

Now max{1 + α, 2 + 1
α} is minimum when α = α∗ = φ. For this value of the

parameter the competitive ratio is 1 + φ. ��

3.1 Zealous Algorithms

In the previous section we have seen that the optimum performance is achieved
by an algorithm that before starting to serve requests, waits until a convenient
starting time is reached. In this section we consider instead the performance that
can be achieved by zealous algorithms [4]. A zealous algorithm does not change
the direction of its server unless a new request becomes known, or the server is
in the origin or at a request that has just been served; furthermore, a zealous
algorithm moves its server always at full (that is, unit) speed.

We show that, for zealous algorithms, the competitive ratio has to be at least
3 and, on the other hand, we give a matching upper bound.

Theorem 3. The competitive ratio of any zealous on-line algorithm for homing
OL-ATSP is at least 3.

Proof. We use the same space used in the lower bound for general algorithms
(Figure 1). At time 1, the server has to be in the origin and the adversary gives
a request in A. Thus, at time 1 + ε the server will have reached w.l.o.g. E (by
symmetry) and the adversary gives a request in B0. The completion time of the
on-line algorithm is at least 3 + 6ε, while Z∗ ≤ 1 + 3ε. The result follows by
taking a sufficiently small ε. ��

The following algorithm is best possible among the zealous algorithms for
homing OL-ATSP.

Algorithm. plan at home
When the server is in the origin and there are unserved requests, the algorithm
computes an optimal tour over the set of unserved requests and the server starts
following it, ignoring temporarily every new request, until it finishes its tour in
the origin. Then it waits in the origin as before.

Theorem 4. plan at home is zealous and 3-competitive for homing OL-ATSP.

Proof. Let t be the release time of the last request. If p(t) is the position of plan
at home at time t and T is the tour it was following at that time, we have that
plan at home finishes following T at time t′ ≤ t + |T |. At that time, it will
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eventually start again following a tour over the requests which remain unserved
at time t′. Let us call T ′ this other tour. The total cost payed by plan at home
will be then at most t + |T |+ |T ′|. But t ≤ Z∗, since even the off-line adversary
cannot serve the last request before it is released, and on the other hand both
T and T ′ have length at most Z∗, since the off-line adversary has to serve all of
the requests served in T and T ′. Thus, t + |T | + |T ′| ≤ 3Z∗. ��

4 Nomadic OL-ATSP

In this section we consider the nomadic version of the on-line ATSP, in which
the server can end its route anywhere in the space. We show that no on-line
algorithm can have a constant competitive ratio (that is, independent of the
underlying space). Then we show, for spaces with a maximum asymmetry K,
a lower bound

√
K and an upper bound 1 +

√
K + 1. Note that in the case of

symmetric nomadic on-line TSP, the best lower and upper bounds are 2.03 and
1 +

√
2, respectively [15].

Theorem 5. For every L > 0, there is a space M ∈ M such that the competitive
ratio of any on-line algorithm for nomadic OL-ATSP on M is at least L.

Proof. For a fixed ε > 0, consider the space induced by a directed cycle on
n = 
L

ε � nodes, where every arc has length ε (Figure 2). At time 0 a request is
given in node A3. Let t be the first time the on-line algorithm reaches node A2.

Now if t ≥ 1, the adversary does not release any other request so that Z∗ = 2ε,
ZOL ≥ 1 + ε and ZOL/Z∗ ≥ 1

2ε + 1
2 .

Otherwise, if t ≤ 1, at time t the adversary releases a request in the origin. It
is easily seen that Z∗ ≤ t+2ε and ZOL ≥ t+ ε(
L

ε �−1) ≥ t+2ε+L−3ε so that

ZOL/Z∗ ≥ 1 +
L − 3ε

t + 2ε
≥ 1 +

L − 3ε

1 + 2ε
.

ε

A1 ≡ O

A2

A3

An

Fig. 2. The space used in the nomadic lower bound proof
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By taking ε close to zero we see that in the first case the competitive ratio
grows indefinitely while in the second case it approaches L. ��

Corollary 1. There is no on-line algorithm for nomadic OL-ATSP on all spaces
M ∈ M with a constant competitive ratio.

We also observe that the same lower bound can be used when the objective
function is the sum of completion times.

Thus, we cannot hope for an on-line algorithm which is competitive for all
spaces in M. Indeed, we will now show that the amount of asymmetry of a space
is related to the competitive ratio of any on-line algorithm for that space.

Theorem 6. For every K ≥ 1, there is a space M ∈ M with maximum asym-
metry K such that any on-line algorithm for nomadic OL-ATSP on M has
competitive ratio at least

√
K.

Proof. Consider a set of points M = {xγ : γ ∈ [0, 1]} with a distance function

d(xγ , xγ′) =
{

γ′ − γ if γ ≤ γ′

K(γ − γ′) if γ ≥ γ′.

The origin is x0. The adversary releases a request at time 1 in point x1. Let t be
the time the on-line algorithm serves this request. If t ≥

√
K, no more requests

are released and ZOL ≥
√

K, Z∗ = 1, ZOL/Z∗ ≥
√

K.
Otherwise, if t ≤

√
K, at time t a request is given in the origin. Now ZOL ≥

t + K, Z∗ ≤ t + 1 and

ZOL/Z∗ ≥ t + K

t + 1
= 1+

K − 1
t + 1

≥ 1+
K − 1√
K + 1

=
√

K. ��

A natural algorithm, on the lines of the best known algorithm for the symmet-
ric version of the problem [15], gives a competitive ratio which is asymptotically
the same as that of this lower bound.

Algorithm. return home(α)
At any moment at which a new request is released, the server returns to the
origin via the shortest path. Once in the origin at time t, it computes an optimal
route T over all requests presented up to time t and then starts following this
route, staying within distance αt′ of the origin at any time t′, by reducing the
speed at the latest possible time.

Theorem 7. For every space M ∈ M with maximum asymmetry K, there is a
value of α such that return home(α) is (1 +

√
K + 1)-competitive on M .

Proof. There are two cases to consider. In the first case return home does not
need to reduce its speed after the last request is released. In this case, if t is the
release time of the last request, we have

ZRH ≤ t + Kαt + |T | ≤ Z∗ + KαZ∗ + Z∗ = (2 + Kα)Z∗.
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In the second case, let t be the last time return home is moving at reduced
speed. At that time, return home has to be serving some request; let x be
the location of that request. Since return home is moving at reduced speed
we must have d(O, x) = αt; afterwards return home will follow the remaining
part Tx of the route at full speed. Thus

ZRH ≤ t + |Tx| = (1/α)d(O, x) + |Tx|.

On the other hand, Z∗ ≥ |T | ≥ d(O, x)+ |Tx|. Thus, in this case, the competitive
ratio is at most 1/α.

Obviously, we can choose α in order to minimize max{2 + Kα, 1/α}. This
gives a value of α∗ =

√
K+1−1

K , for which we obtain the competitive ratio of the
theorem. ��

4.1 Zealous Algorithms

Also in the case of the nomadic version of the on-line ATSP, we wish to consider
the performance of zealous algorithms. Of course, no zealous algorithm will be
competitive for spaces with unbounded asymmetry. Here we show that the gap
between non-zealous and zealous algorithms is much higher than in the homing
case, increasing from Θ(

√
K) to Θ(K).

Theorem 8. For every K ≥ 1, there is a space M ∈ M with maximum asym-
metry K such that the competitive ratio of any zealous on-line algorithm for
nomadic OL-ATSP on M is at least 1

2 (K + 1).

Proof. We use the same space used in the proof of Theorem 6 (Figure 2). At
time 0, the adversary releases a request in point x1. The on-line server will be
at point x1 exactly at time 1. Then, at time 1, the adversary releases a request
in point x0. It is easy to see that ZOL ≥ 1 + K, while Z∗ = 2. ��

We finally observe that return home(1) is a zealous algorithm for nomadic
OL-ATSP and, by the proof of Theorem 7, it has competitive ratio K + 2.

5 Polynomial Time Algorithms

None of the algorithms that we have proposed in the previous sections runs in
polynomial time, since all of them need to compute optimal tours on some subsets
of the requests. On the other hand, a polynomial time on-line algorithm with a
constant competitive ratio could be used as an approximation algorithm for the
ATSP, and thus we do not expect to find one easily. However, our algorithms use
off-line optimization as a black box and thus can use approximation algorithms as
subroutines in order to give polynomial time on-line algorithms, the competitive
ratio depending of course on the approximation ratio.

The basic problem that has to be solved in the homing version is the off-line
ATSP. The best polynomial time algorithm for this problem has an approxi-
mation ratio of ρ # 0.842 log n [11]. For the nomadic version, the correspond-
ing off-line problem is the shortest asymmetric hamiltonian path. We are not
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Table 1. The competitive ratio as a function of ρ and K

Problem Algorithm Competitive ratio

Homing OL-ATSP smartstart(α∗)
(1 + 2ρ +

√
1 + 4ρ)/2 if ρ ≤ 2

2ρ if ρ ≥ 2
Homing OL-ATSP plan at home 1 + 2ρ

Nomadic OL-ATSP return home(α∗) 2K(
√

(1 + ρ)2 + 4K − (1 + ρ))−1

Nomadic OL-ATSP return home(1) 1 + ρ + K

aware of studies about algorithms with a guaranteed approximation ratio for
this problem; however, for spaces with bounded asymmetry, an algorithm with
approximation ratio ρ = (1 + K)ρT can be easily obtained by using the solution
found by any algorithm for ATSP with an approximation ratio of ρT .

We do not repeat here the proofs of our theorems taking into account the
approximation ratio of the off-line solvers, since they are quite straightforward.
However, we give the competitive ratio of our algorithms as a function of ρ, the
approximation ratio, and K, the maximum asymmetry of the space, in Table 1.

6 Conclusions

We have examined some of the on-line variations of the asymmetric traveling
salesman problem. Table 2 compares the bounds on the competitive ratio of the
problems considered in this paper with those of the corresponding symmetric
variations. The table confirms that the asymmetric problems are indeed harder
and not simply extensions than their symmetric counterparts.

The main conclusion is that, as usual in on-line vehicle routing when minimiz-
ing the completion time, waiting can improve the competitive ratio a lot. This
is particularly evident in the case of nomadic ATSP on spaces with bounded

Table 2. The competitive ratio of symmetric and asymmetric routing problems

Problem Best Lower Best Upper References
Bound Bound

Homing OL-TSP 2 2 [3, 12]
Homing OL-ATSP 2.618 2.618
Homing OL-TSP (zealous) 2 2 [3]
Homing OL-ATSP (zealous) 3 3
Nomadic OL-TSP 2.03 2.414 [15]
Nomadic OL-ATSP

√
K 1 +

√
K + 1

Nomadic OL-TSP (zealous) 2.05 2.5 [3, 15]
Nomadic OL-ATSP (zealous) 1

2
(K + 1) 2 + K
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asymmetry, where zealous algorithms have competitive ratio Ω(K) while re-
turn home is O(

√
K)-competitive.

We expect the competitive ratio of the homing OL-ATSP to be somewhat
lower than 1 + φ when the space has bounded asymmetry. Also, since the proof
that no on-line algorithm can have a constant competitive ratio in the nomadic
case also applies to the on-line asymmetric traveling repairman problem, it would
be interesting to investigate this problem in spaces with bounded asymmetry.

Finally, we remark that the existence of polynomial time O(1)-competitive
algorithms is indissolubly tied to the existence of an O(1)-approximation algo-
rithm for the off-line ATSP.
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Abstract. We describe an O(n3/ log n)-time algorithm for the all-pairs-
shortest-paths problem for a real-weighted directed graph with n vertices.
This slightly improves a series of previous, slightly subcubic algorithms
by Fredman (1976), Takaoka (1992), Dobosiewicz (1990), Han (2004),
Takaoka (2004), and Zwick (2004). The new algorithm is surprisingly
simple and different from previous ones.

1 Introduction

The all-pairs-shortest-paths problem (APSP) is of course one of the most well-
studied problems in algorithm design. We consider here the general case where
the input is a weighted directed graph and edge weights are arbitrary real num-
bers. The problem is to compute the shortest-path distance between every pair
of vertices, together with a representation of these shortest paths (so that the
shortest path for any given vertex pair can be retrieved in time linear in its
length).

The classical Floyd–Warshall algorithm [6] solves the APSP problem in
O(n3) time for a graph with n vertices. Fredman [10] was the first to real-
ize that subcubic running time is attainable: he gave an algorithm with an
impressive-looking time bound of O(n3(log log n/ log n)1/3). Later, Takaoka [19]
and Dobosiewicz [7] refined Fredman’s approach and reduced the bound to
O(n3

√
log log n/ log n) and O(n3/

√
log n) respectively. Just last year, several

interesting, independent developments have occurred: first Han [12] announced
an improved O(n3(log log n/ log n)5/7)-time algorithm, then Takaoka [20] an-
nounced an even better O(n3(log log n)2/ log n)-time algorithm, and finally
Zwick [23] found the algorithm with the current record of O(n3√log log n/ log n)
time. The record turns out to be short-lived—in this note, we obtain yet another
algorithm with a further improved running time of O(n3/ log n).

Related work. For sparse graphs, a more efficient solution to APSP is to
apply Dijkstra’s single-source algorithm n times, as described in any decent
algorithm textbook [6]. Using a Fibonacci-heap implementation (with John-
son’s preprocessing step if negative weights are allowed), the running time is
O(n2 log n + mn), where m denotes the number of edges. For a long time, this

F. Dehne, A. López-Ortiz, and J.-R. Sack (Eds.): WADS 2005, LNCS 3608, pp. 318–324, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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was the best result known, until recently Pettie and Ramachandran [14] and
Pettie [13] have managed to bring the time bounds down to O(mn log α(m,n))
and O(n2 log log n + mn) for undirected and directed graphs, respectively, using
rather complicated techniques.

A flurry of activities in the last decade has concentrated on the case of graphs
with small integer weights (and, in particular, unweighted graphs), where a num-
ber of genuinely subcubic algorithms [2, 11, 16, 17, 22] have been developed using
known methods for matrix multiplication over rings [5, 18]. Currently, the best
such APSP algorithms for undirected and directed graphs run in O(n2.376M)
and O(n2.575M0.681) time respectively [17, 22], where M denotes the maximum
edge weight (in absolute value). Note that these running times are subcubic only
when M $ n0.634. It is not known whether such matrix multiplication methods
can help for APSP in the case of real weights, or for that matter, integer weights
from the range {0, 1, . . . , n}. (Even if the answer is affirmative, algorithms that
involve so-called “fast” matrix multiplication are not necessarily attractive from
a practical point of view.) Feder and Motwani [9] described an O(n3/ log n)-time
algorithm that avoids fast matrix multiplication but their algorithm works only
for unweighted, undirected graphs.

About the new algorithm. We confess that our result represents only a
minute improvement over previous slightly subcubic algorithms in the general
real-weight case—a mere

√
log log n-factor speedup over the previous result by

Zwick! However, we believe that our algorithm is interesting, because (i) it is
conceptually very simple (note the length of the paper) and (ii) it is markedly
different from previous approaches:

The approach originated by Fredman [10] (and later continued by
Takaoka [19]) broke the O(n3) barrier by relying on table-lookup tricks (stor-
ing solutions to all small-sized subproblems in an array for later retrieval in con-
stant time). Dobosiewicz’s approach [7] avoided explicit table lookups by exploit-
ing word-RAM operations (specifically, performing bitwise-logical operations on
(log n)-bit words in unit time). The recent algorithms by Han [12], Takaoka [20],
and Zwick [23] all involved even more complicated combinations of approaches.
For example, Zwick [23] nontrivially combined Dobosiewicz’s approach with a
known table-lookup technique for Boolean matrix multiplication [3], resulting
in an algorithm that uses both table lookups and word-RAM operations. In
contrast, our approach uses neither table lookups nor word operations! In fact,
our algorithm is readily implementable within the pointer-machine model.1 Cu-
riously, our approach is geometrically inspired (based on a multidimensional
divide-and-conquer technique commonly seen in computational geometry). Con-
sidering the long history of the APSP problem, it is amusing that this little idea
alone can beat all previous algorithms for arbitrary, real-weighted, dense graphs.

1 To be fair, we should mention that some algorithms based on table lookups can
be modified to run on pointer machines, for example, by using variants of radix
sort [4]. The same could be true for some of the previous APSP algorithms, but such
a modification would seem to require much additional effort.
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2 A Geometric Subproblem

We begin with what may at first appear to be a complete digression: a problem
in computational geometry, concerning a special case of off-line orthogonal range
searching (also similar to the “maxima” problem) [15]. The problem is to find all
dominating pairs between a red point set and a blue point set in d-dimensional
space, where a red point p = (p1, . . . , pd) ∈ IRd and a blue point q = (q1, . . . , qd) ∈
IRd are said to form a dominating pair iff pk ≤ qk for all k = 1, . . . , d. The
algorithm in the lemma below is standard [15], but unlike traditional analysis
in computational geometry, we are interested in the case where the dimension is
not a constant.

Lemma 1. Given n red/blue points in IRd, we can report all K dominating pairs
in O(cd

εn
1+ε + K) time for any constant ε ∈ (0, 1), where cε := 2ε/(2ε − 1).

Proof. We describe a simple divide-and-conquer algorithm. If n = 1, we stop. If
d = 0, we just output all pairs of red and blue points. Otherwise, we compute
the median z of the d-th coordinates of all points and let Pleft,γ (resp. Pright,γ)
denote the subset of all points of color γ with d-th coordinates at most z (resp.
at least z). (Note that we can avoid a linear-time median-finding algorithm if
we pre-sort all the d-th coordinates.) We then recursively solve the problem
for Pleft,red ∪ Pleft,blue, for Pright,red ∪ Pright,blue, and finally for the projection
of Pleft,red ∪ Pright,blue to the first d − 1 coordinates. (Note that we can avoid
actually projecting the points, by just ignoring the d-th coordinates.) Correctness
is immediate.

Excluding the output cost, the running time obeys the recurrence

Td(n) ≤ 2Td(n/2) + Td−1(n) + O(n),

with Td(1) = O(1) and T0(n) = O(n). The additional output cost is bounded by
O(K), since each pair is reported once.

Naively, one can establish by induction on d that Td(n) = O(n logd n), yield-
ing an O(n logd n + K)-time algorithm. This result is already known. (In fact, it
is known that one can save one or two logarithmic factors by handling the base
cases d = 1 and d = 2 directly.)

We offer an alternative analysis of the recurrence that is better for certain
non-constant values of d and is thus slightly more effective for the application in
the next section. We make a change of variable: fixing a parameter b and letting
T ′(N) := maxbdn≤N Td(n), we have

T ′(N) ≤ 2T ′(N/2) + T ′(N/b) + cN,

for some constant c. This single-variable recurrence can be solved by standard
techniques. For example, by induction, the bound T ′(N) ≤ c′[N1+ε −N ] follows
from T ′(N) ≤ 2c′[(N/2)1+ε − N/2] + c′[(N/b)1+ε − N/b] + cN , as long as the
constant c′ is sufficiently large, and

2/21+ε + 1/b1+ε = 1,
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which holds by setting b := c
1/(1+ε)
ε . Thus, T ′(N) = O(N1+ε), implying Td(n) =

O((bdn)1+ε) = O(cd
εn

1+ε), and the lemma follows. �

(We note in passing that the above two-variable recurrence can also be recast
to fit the type studied by Eppstein [8], by considering the exponential function
T ′′(r, d) := Td(2r).)

3 The APSP Algorithm

We are now ready to present our new APSP algorithm. Like previous algorithms,
we employ a well-known reduction from APSP to the computation of the dis-
tance product (also known as the min-plus product) of two n×n matrices: given
matrices A = 〈aik〉i,k=1,...,n and B = 〈bkj〉k,j=1,...,n, the result of this multipli-
cation is defined as the matrix C = 〈cij〉i,j=1,...,n with cij := mink(aik + bkj).
Given an algorithm for the distance product, we can solve the APSP problem
by repeated squaring [6], but this would increase the running time by a logarith-
mic factor (which we obviously cannot afford); instead, we apply the reduction
described in the text by Aho et al. [1–Section 5.9, Corollary 2], which avoids the
extra logarithmic factor. It is thus sufficient to upper-bound the complexity of
the distance product problem. We emphasize that Strassen’s matrix multiplica-
tion method and its relatives cannot be applied directly, because in the min-plus
case, elements only form a semi-ring.

For notational simplicity, we assume that the minimum term in the expression
mink(aik + bkj) is unique. (General perturbation techniques can ensure this but
are not necessary if we break ties in a consistent manner.) We note that our
algorithm can automatically identify the index k attaining the minimum for
each cij . (This property is required so that one can not only determine each
shortest path distance but retrieve each shortest path.)

In the following lemma, we reveal the key connection between our earlier
geometric problem and distance products of rectangular matrices:

Lemma 2. We can compute the distance product of an n × d matrix A and a
d × n matrix B in O(dcd

εn
1+ε + n2) time.

Proof. The outline of the algorithm is simple: For each k = 1, . . . , d, we compute
the set of pairs Xk = {(i, j) | ∀k′ = 1, . . . , d, aik + bkj ≤ aik′ + bk′j}; we then
set cij = aik + bkj for every (i, j) ∈ Xk.

We first make an obvious observation (used also in previous approaches):
aik + bkj ≤ aik′ + bk′j is equivalent to aik − aik′ ≤ bk′j − bkj . We now make
the next observation (which was missed in previous approaches): computing Xk

for a fixed k corresponds exactly to computing all dominating pairs between the
two d-dimensional point sets

{(aik − ai1, aik − ai2, . . . , aik − aid)}i=1,...,n and
{(b1j − bkj , b2j − bkj , . . . , bdj − bkj)}j=1,...,n.
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(The dimension is actually d − 1, since the k-th coordinates are all 0’s.) By
Lemma 1, this computation takes O(cd

εn
1+ε + |Xk|) time for each k. Since∑d

k=1 |Xk| = n2, the lemma follows. �

The highlight of our approach is already over. To get a subcubic algorithm
for the distance product of square matrices, and consequently for APSP, all that
remains is to choose an appropriate value for the dimensional parameter d:

Theorem 1. We can compute the distance product of two n × n matrices in
O(n3/ log n) time.

Proof. We split the first matrix into n/d matrices A1, . . . , An/d of dimension n×
d, and the second matrix into n/d matrices B1, . . . , Bn/d of dimension d×n. We
compute the distance product of A� and B� for each � = 1, . . . , n/d, by Lemma 2,
and return the element-wise minimum of these n/d matrices of dimension n×n.
The total time is at most the time bound of Lemma 2 multiplied by n/d, i.e.,

O

(
cd
εn

2+ε +
n3

d

)
.

The theorem follows by choosing d to be log n times a sufficiently small constant
(depending on ε ∈ (0, 1)). For example, we can set ε ≈ 0.38 (with cε ≈ 4.32) and
d ≈ 0.42 ln n, to minimize the constant factor in the dominant term. �

Corollary 1. We can solve the APSP problem in O(n3/ log n) time.

We conclude by mentioning how easy it is to adapt our algorithm to run on
pointer machines: Lemma 1 poses no problem by using linked lists. In Lemma 2,
for each pair (i, j) ∈ Xk, we cannot directly set the value of cij since random
access is forbidden; instead, we insert the pair (j, k) into i’s “bucket”. Afterwards,
for each i, we sort its bucket according to the j value (by scanning through all
pairs (j, k) in the bucket, putting the index k into j’s “slot”, and collecting all
slots at the end). We can then set cij for every i and j, all within O(n2) time.

4 Discussion

We have demonstrated that a slightly subcubic time bound for the general APSP
problem with real weights can be obtained without “cheating” on the RAM via
table lookups or word operations, and without algebraic techniques for fast ma-
trix multiplication. Although we have taken a geometric approach, the resulting
algorithm shares some similarities with previous algorithms: for example, like
in our proof of Lemma 2, Fredman’s algorithm and its successors use the same
primitive operation on the weights (comparing values each of which is the differ-
ence of two entries from a common row or column); in addition, Dobosiewicz’s
algorithm also goes through each index k and compute the same set Xk of index
pairs (but in a different way, of course).
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Among the series of slightly sub-cubic upper bounds obtained, O(n3/ log n)
looks the most “natural”, and it is interesting to contemplate whether we have
reached the limit, at least as far as nonalgebraic algorithms are concerned. In
any case, reducing the running time further by more than a logarithmic factor
would be difficult: even for the simpler problem of Boolean matrix multiplication,
the best known algorithm without algebraic techniques [3] runs in O(n3/ log2 n)
time and has not be improved for over three decades.

Although our algorithm is simple enough for implementation, it is primarily
of theoretical interest. Some preliminary experiments seem to indicate that even
for n about 1000 (where the size of the graph is on the order of a million), the
best choice of d is still 2 (i.e., the dimension for the geometric subproblems is
1). Compared to the naive cubic method for computing distance products, the
log n-factor speedup can only be “felt” when the input size is very large, but in
such cases, caching and other issues become more important.

An interesting theoretical question is whether a similar log-factor-type
speedup is possible for sparse graphs. For example, for the simpler problem
of computing the transitive closure of an unweighted directed graph, Yuster
and Zwick in a recent paper [21] asked for an o(mn)-time algorithm, but an
O(mn/ log n+n2) time bound is actually easy to get on the word RAM.2 Can a
similar o(mn) running time be obtained for APSP for real-weighted graphs? (The
author has recently made progress on this question for the case of unweighted,
undirected graphs.)

Finally, we remark that in his original paper [10], Fredman was concerned
with decision-tree complexities and found a (nonalgorithmic) way to solve the
general APSP problem using O(n2.5) comparisons of sums of edge weights (which
then led to his slightly subcubic algorithmic result). It remains an open problem
to find improved upper bounds or nontrivial lower bounds on the number of
comparisons required.

Acknowledgement. I thank a reviewer for bringing up references [12, 20] to
my attention. This work has been supported by NSERC.

References

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, MA, 1974.

2. N. Alon, Z. Galil, and O. Margalit. On the exponent of the all pairs shortest path
problem. J. Comput. Sys. Sci., 54:255–262, 1997.

2 Proof: Assume that the graph is acyclic, since we can precompute the strongly
connected components in linear time and contract each component. We want to find
the set Su of all vertices reachable from each vertex u. For each vertex u in reverse
topological order, we can compute Su by taking the union of Sv over all vertices
v incident from u. Each of these O(m) set-union operations can be carried out in
O(n/ log n) time by representing a set as an (n/ log n)-word vector and by using the
bitwise-or operation.



324 T.M. Chan

3. V. L. Arlazarov, E. C. Dinic, M. A. Kronrod, and I. A. Faradzev. On economical
construction of the transitive closure of a directed graph. Soviet Math. Dokl.,
11:1209–1210, 1970.

4. A. L. Buchsbaum, H. Kaplan, A. Rogers, and J. R. Westbrook. Linear-time
pointer-machine algorithms for least common ancestors, MST verification, and
dominators. In Proc. 30th ACM Sympos. Theory Comput., pages 279–288, 1998.

5. D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progres-
sions. J. Symbolic Comput., 9:251–280, 1990.

6. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. McGraw-Hill, 2nd ed., 2001.

7. W. Dobosiewicz. A more efficient algorithm for the min-plus multiplication. Int.
J. Computer Math., 32:49–60, 1990.

8. D. Eppstein. Quasiconvex analysis of backtracking algorithms. In Proc. 15th
ACM-SIAM Sympos. Discrete Algorithms, pages 788–797, 2004.

9. T. Feder and R. Motwani. Clique partitions, graph compression and speeding-up
algorithms. J. Comput. Sys. Sci., 51:261–272, 1995.

10. M. L. Fredman. New bounds on the complexity of the shortest path problem.
SIAM J. Comput., 5:49–60, 1976.

11. Z. Galil and O. Margalit. All pairs shortest paths for graphs with small integer
length edges. J. Comput. Sys. Sci., 54:243–254, 1997.

12. Y. Han. Improved algorithm for all pairs shortest paths. Inform. Process. Lett.,
91:245–250, 2004.

13. S. Pettie. A new approach to all-pairs shortest paths on real-weighted graphs.
Theoret. Comput. Sci., 312:47–74, 2004.

14. S. Pettie and V. Ramachandran. A shortest path algorithm for real-weighted
undirected graphs. SIAM J. Comput., to appear.

15. F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction.
Springer-Verlag, New York, 1985.

16. R. Seidel. On the all-pairs-shortest-path problem in unweighted undirected graphs.
J. Comput. Sys. Sci., 51:400–403, 1995.

17. A. Shoshan and U. Zwick. All pairs shortest paths in undirected graphs with integer
weights. In Proc. 40th IEEE Sympos. Found. Comput. Sci., pages 605–614, 1999.

18. V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik,
13:354–356, 1969.

19. T. Takaoka. A new upper bound on the complexity of the all pairs shortest path
problem. Inform. Process. Lett., 43:195–199, 1992.

20. T. Takaoka. A faster algorithm for the all-pairs shortest path problem and its
application. In Proc. 10th Int. Conf. Comput. Comb., Lect. Notes Comput. Sci.,
vol. 3106, Springer-Verlag, pages 278–289, 2004.

21. R. Yuster and U. Zwick. Fast sparse matrix multiplication. In Proc. 12th European
Sympos. Algorithms, Lect. Notes Comput. Sci., vol. 3221, Springer-Verlag, pages
604–615, 2004.

22. U. Zwick. All-pairs shortest paths using bridging sets and rectangular matrix
multiplication. J. ACM, 49:289–317, 2002.

23. U. Zwick. A slightly improved sub-cubic algorithm for the all pairs shortest
paths problem with real edge lengths. In Proc. 15th Int. Sympos. Algorithms and
Computation, Lect. Notes Comput. Sci., vol. 3341, Springer-Verlag, pages 921–932,
2004.



k-Link Shortest Paths in Weighted Subdivisions

Ovidiu Daescu1,�, Joseph S.B. Mitchell2,��, Simeon Ntafos1,
James D. Palmer1, and Chee K. Yap3,� � �

1 Department of Computer Science, University of Texas at Dallas,
Richardson, TX 75080, USA

{daescu, ntafos, jdp011100}@utdallas.edu
2 Department of Applied Mathematics and Statistics,
Stony Brook University, Stony Brook, NY 11794, USA

jsbm@ams.sunysb.edu
3 Department of Computer Science,

New York University, New York, NY 10012, USA
yap@cs.nyu.edu

Abstract. We study the shortest path problem in weighted polygonal
subdivisions of the plane, with the additional constraint of an upper
bound, k, on the number of links (segments) in the path. We prove
structural properties of optimal paths and utilize these results to ob-
tain approximation algorithms that yield a path having O(k) links and
weighted length at most (1 + ε) times the weighted length of an optimal
k-link path, for any fixed ε > 0. Some of our results make use of a new
solution for the 1-link case, based on computing optimal solutions for a
special sum-of-fractionals (SOF) problem. We have implemented a sys-
tem, based on the CORE library, for computing optimal 1-link paths;
we experimentally compare our new solution with a previous method for
1-link optimal paths based on a prune-and-search scheme.

1 Introduction

A weighted subdivision R in the plane is a decomposition of the plane into
polygonal regions, each with an associated nonnegative weight. The weighted
length of a line segment, ab, joining two points a and b within the same region
Ri ∈ R is defined as the product of the weight wi of region Ri and the Euclidean
length |ab| of the line segment ab. For a polygonal path p, the weighted length
is given by a finite sum of subsegment (Euclidean) lengths, each multiplied by
the weight of the region containing the subsegment.

We are motivated by applications that require paths that are optimal with
respect to more than one criterion. For example, in emergency and medical
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interventions, in military route planning, and in air traffic applications, one may
desire polygonal paths having only a few links (turns), while also having a small
(weighted) length. A minimum-weight path may have unacceptably many turns.

In this paper we study the k-link shortest path problem in weighted regions,
in which we place an upper bound, k, on the number of links (edges) in the
polygonal path, while minimizing the weighted length of the path. We com-
pute paths from a given source region Rs to a target region Rt in a weighted
subdivision R. An important special case, which arises as a subproblem in our
approach, is that of computing a 1-link shortest path from a source to a target.

Related Work. In the unweighted setting, approximation algorithms are known
for k-link shortest paths inside simple polygons and polygons with holes [16]. In
weighted subdivisions, turn-constrained optimal paths have been studied in the
context of air traffic routing (using a grid-based dynamic programming algo-
rithm) [10] and, very recently, in the context of mine avoidance routing (using
a genetic algorithm) [13]; neither of these approaches gives approximation al-
gorithm guarantees. The 1-link shortest path problem to compute an optimal
“link” (or “penetration”) in weighted subdivisions has been studied in [2, 3, 6],
where it is shown that the special structure of the optimal solution allows for
efficient search for solutions.

Without a bound on the number of links, several results are known for com-
puting shortest paths in weighted regions [1, 9, 11, 12, 14, 15, 19], beginning with
the first polynomial-time results of Mitchell and Papadimitriou [15], who com-
pute (1 + ε)-approximate geodesic shortest paths on weighted terrains.

Our Results. We present the following results. (1) We prove there exists a
(2k − 1)-link path p from source Rs to target Rt that turns only on the edges
of R, such that the weighted length of p is at most that of an optimal k-link
path p∗ from Rs to Rt. (2) We give two approximation algorithms for computing
k-link shortest paths in weighted regions. The first one requires the computation
of 1-link shortest paths and produces a (5k−2)-link path whose weight is within
factor (1 + ε) of optimal. The second algorithm relies only on computation of
(1+ ε/6)-approximate 1-link shortest paths and produces a 14k-link path whose
weight is within factor (1 + ε) of optimal. (3) We give a new (in this context)
algorithm for computing 1-link shortest paths, based on solving a variant of
the sum-of-linear-fractionals (SOLF) problem [8]. (4) We have implemented a
system, based on the CORE library [5], for computing 1-link shortest paths.
We compare experimentally two algorithms for 1-link shortest paths: one based
on our variant of the SOLF problem, and one based on a prune-and-search
scheme [6].

Preliminaries. Let R be a planar weighted subdivision with a total of n vertices
and a set E of O(n) edges. Without loss of generality, we assume R is triangu-
lated, the source and target regions can be separated by a vertical line, and the
vertices of R are in general position (no three collinear). For a path p, we let |p|
denote the Euclidean length of p and ||p|| the weighted length of p. A polygonal
path p whose turn points all lie on the edge set E is said to be edge-restricted.
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Consider a link (line segment) l between two edges es and et of R, with es and
et not bounding the same (triangular) face (otherwise, the problem is trivial).
The weighted length of the link l is d(l) =

∑
i:l∩Ri 	=∅ widi(l), where wi is the

weight of Ri and di(l) is the Euclidean length of l within the region Ri ∈ R.
Let the equation of the line supporting l be y = mx + b. Let Ri be a region

intersected by l, with s1
i and s2

i the two sides of Ri that intersect l, at points
v1

i (x1
i , y

1
i ) and v2

i (x2
i , y

2
i ), respectively. From di(l) =

√
1 + m2|x2

i −x1
i |, we have

that

d(l) =
√

1 + m2
∑

i:l∩Ri 	=∅
wi|x2

i − x1
i | =

√
1 + m2

∑
i

σiwi
bi − b

m − mi
(1)

where σi is +1 or -1, mi and bi are constants, and the number of terms in
the summation is O(n). If l is rotated and translated, while keeping its end-
points on es and et, the expression for d(l) does not change as long as no ver-
tex of R is crossed by l. The corresponding set of pairs (m, b) defines a two-
dimensional convex domain D whose edges correspond to l being tangent to a
vertex of R and whose vertices correspond to l passing through two vertices of
R [2]. The region swept by l, while maintaining its combinatorial type, is called

Rs

Rt

l

Fig. 1. An hourglass for which the formula
for d(l) does not change

an hourglass (Fig. 1). For a fixed
slope m, we see from (1) that d(l)
is linear in b as l varies within the
hourglass; thus, there exists a seg-
ment l minimizing d(l), over the
hourglass, passing through a vertex
v of R [6]. For a fixed choice of the
vertex v of an hourglass, the expres-
sion for d(l) depends only on the
slope m of the line through l:

d(l) =
√

1 + m2(d0 +
∑

i

ai

m + bi
), (2)

where d0, ai and bi are constants. Note that d(l) is bounded and positive.

2 Approximating k-Link Shortest Paths

Lemma 1. Let p be a shortest k-link path between edges es and et of R. Then,
each link of p has an endpoint on an edge of R or goes through a vertex of R.

Proof. The proof is by contradiction. Let p be a k-link path between es and
et, let l1, l2 and l3 be three consecutive links of p and refer to Figure 2. Assume
that p makes two consecutive region interior turns, one at the common endpoint
of the links l1 and l2 and the other at the common endpoint of the links l2 and
l3 (Figure 2 (a)). Assume also that the turn for l1 and l2 is inside the region R1,
the turn for l2 and l3 is inside the region R2, and extend l1 and l3 to intersect
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3l
1l 2l

(d)(c)(a) (b)

Fig. 2. (a) Three consecutive links l1, l2, and l3; (b) the middle link ends on edges; (c)
an inside region turn with a link ending on an edge and (d) an inside turn with a link
stopped at a vertex of the subdivision

the boundaries of R1 and R2, respectively. If we slide l2 parallel to itself (i.e.,
the slope of l2 is fixed) then the length of p changes only locally, corresponding
to the changes in length for l1, l2, and l3. The change in length for l2 is a linear
function of the intercept of the line supporting l2. It can also be shown that the
changes for l1 and l3 are linear functions of the same variable. Thus, p can be
improved locally by sliding l2 until either it hits a vertex of R or an intersection
point of l1 ∩ R1 or l3 ∩ R2. Figure 2 (b), (c) and (d) shows three possible cases
for consecutive links on an optimal path p. The other cases can be obtained by
symmetry. The rest follows by induction on the number of links on the path. �

Theorem 1. There exists a path p between es and et with at most (2k−1)-links
that turns only on the edges of R and such that the weighted length of p is at
most that of a k-link shortest path p∗ from es to et.

We now show how to modify previous discretization schemes (e.g., [1, 19]) in
order to approximate edge-restricted k-link shortest paths. We say a path p from
source point s to destination point t is an ε-good approximate shortest path if
||p|| ≤ (1 + ε)||pk(s, t)||, where pk(s, t) is an edge-restricted k-link shortest path
from s to t.

Let E be the set of boundary edges of R. Let E(v) be the set of subdivision
edges having endpoint v, and let d(v) be the minimum distance between v and
the edges in E \ E(v). (Note that if v is not a vertex of R, then E(v) = ∅.)
For each edge e ∈ E , let d(e) = supx∈e d(x). Let v(e) be a point on e such
that d(v(e)) = d(e). For each vertex v ∈ R, let r(v) = εd(v)

5 . We refer to r(v)
as the vertex radius for v. The disk of radius r(v) centered at v defines the
vertex-vicinity S(v) of the vertex v.

We now describe how the Steiner points on an edge e = v1v2 are chosen.
Each vertex vi, where i = 1, 2, has a vertex-vicinity S(vi) of radius r(vi) and
the Steiner points vi,1, . . ., vi,ji

are placed on e such that |vivi,1| = r(v1) and
|vi,mvi,m+1| = εd(vi,m), m = 1, 2, . . . , ji − 1. The value of ji is such that vi,ji

=
vi(e). We call the line segment formed by two adjacent Steiner points vi,m and
vi,m+1 a Steiner edge. The pairing of any two Steiner edges forms a quadrilateral
shape called a Steiner strip. The shape could be degenerate if the Steiner edges
are on the same boundary edge. In [19], it has been shown such a discretization
scheme can be used to guarantee a 3ε-good approximate shortest path. With δ
the maximum number of Steiner points placed on an edge, this discretization
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scheme gives δ = O( 1
ε log 1

ε ). (It is important to note that δ also depends on
some geometric parameters of R, such as the longest edge; see [1].)

Let (ei, ej) be a pair of edges of the subdivision and assume a k-link edge-
restricted shortest path has a turn on ei and the next turn on ej . Then, the short-
est path link l∗ between ei and ej is contained in an hourglass corresponding to
one of the O(n2) 1-link shortest path subproblems defined by the pair (ei, ej) (see
Fig. 1). Each of the two endpoints of the shortest path link l∗ lies between either
two Steiner points or a vertex and a Steiner point. Assume each endpoint is be-
tween two Steiner points. Let l be one of the four line segments between ei and ej

that are defined by the four Steiner points and further assume that l is fully con-
tained in the same hourglass as l∗. Then, d(l) and d(l∗) have similar description
and d(l)−d(l∗) =

∑m
i=1 widi(l)−

∑m
i=1 widi(l∗) =

∑m
i=1 wi(di(l)−di(l∗)) where

m = O(n) and, without loss of generality, we assume that l and l∗ intersect the
regions R1, R2, . . . , Rm of subdivision R. Asking that

∑m
i=1 wi(di(l) − di(l∗)) ≤

εd(l∗) implies
∑m

i=1 wi(di(l)−di(l∗)) ≤ ε
∑m

i=1 widi(l∗) and thus
∑m

i=1 widi(l) ≤∑m
i=1 wi((1 + ε)di(l∗)). Thus, the Steiner points on the edges ei and ej should

be such that di(l) ≤ (1 + ε)di(l∗), i = 1, 2, . . . , m.
Clearly, if l∗ passes very close to a vertex v of R and intersects two or

more edges incident to v, a discretization scheme cannot guarantee that di(l) ≤
(1+ ε)di(l∗), for the corresponding distances. More generally, a similar situation
appears when the optimal path has multiple turns very close to v, e.g., with link
endpoints between a vertex and a Steiner point (Fig. 3 (a)). Another potential
problem is that it is possible that none of the four line segments joining the
points that define the Steiner strip between ei and ej is fully contained in the
same hourglass as l∗, implying that l and l∗ intersect different subsets of regions
of R. The challenge, then, is to formulate approximation schemes that either
avoid or address these problems.

We address the first problem using normalization. A path p is said to be
normalized if it does not turn on edges within a vertex-vicinity. In Lemma 1 of
[19], Sun and Reif show that for any path p from s to t, there is a normalized
path p̂ from s to t such that ||p̂|| = (1 + ε

2 )||p||. For k-link edge-restricted paths
we have the following related lemma.

Lemma 2. For any k-link edge-restricted path pk from s to t, there is a nor-
malized path p̂ from s to t such that ||p̂|| = (1 + ε/2)||pk||.
Proof. We observe that p need not be an optimal path for Sun and Reif’s
Lemma 1 to hold. Thus, the same proof holds for a k-link path, pk. However,
there is no guarantee that p̂ has only k links. �

We would like to bound the number of links that may be “added” to p̂ relative
to pk. Let u′′

1 be the boundary point where pk first enters a region adjacent to
v and let u′′

2 be the boundary point where pk leaves a region adjacent to v. Let
u′

1 ∈ pk be the boundary point on the cheapest region intersected by pk before
entering the vicinity of v and let u′

2 ∈ pk be the boundary point on the cheapest
region intersected by the last link of pk that has nonempty intersection with the
vicinity of v (see Fig. 3 (a)). In constructing p̂, we may remove zero or more
links in pk completely contained in the vertex-vicinity (link u1u2 in Fig. 3 (a))
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(a) (b)

Fig. 3. (a) The solid line path is part of an optimal k-link path. The dotted path
represents a normalized path. (b) The solid line path represents a single turn in an
optimal k-link path. The dotted path represents a normalized path

and then add up to two additional links that begin outside the vertex-vicinity
and pass through v (links u′

1v and vu′
2 in Fig. 3 (a)). Fig. 3 (a) represents a

situation in which the number of links in the subpath p[u′′
1 , u′′

2 ] in the original
path pk is one more than in the normalized path, p̂. Fig. 3 (b) is representative
of the worst case, where two links are added and none are removed.

Lemma 3. For any k-link path pk from s to t, there is a normalized edge-
restricted path p̂ such that ||p̂|| = (1 + ε/2)||pk|| and p̂ has at most 3k − 2 links.

Proof. We observe that at most two links need to be added for each link of pk

when constructing a normalized path p̂ from a path pk. Let k1 be the number of
links that need normalization. Then, they are replaced by 3k1−2 links. Let k2 be
the remaining links (i.e., k = k1 + k2). These links may have an endpoint that is
not on a vertex or edge of R. From Theorem 1, at most 2k2−1 links are required
to create an approximating path restricted to edges. Note that each of the at
most k2 −1 links that are within a triangle of R may also require normalization,
which would add k2 − 1 extra links. Thus, in a normalized edge restricted path
the k2 links are replaced by at most 3k2 − 2 links. �

An approximation using exact optimal links. Recall that we refer to the
line segment formed by two adjacent Steiner points vi,j and vi,j+1 on an edge
incident to vertex vi ∈ R as a Steiner edge. The pairing of any two Steiner edges
forms a Steiner strip. The pairing of a Steiner edge with a vertex of R forms a
Steiner-vertex strip. The pairing of any two vertices of R forms a vertex-pair.

Consider a shortest normalized k-link path, pk, that only turns on edges.
Each link li in pk is “captured” either by a Steiner strip, a Steiner-vertex strip,
or a vertex-pair.

If li is captured by a vertex-pair (u, v) the weighted length of li can be easily
computed as ||uv||. Then, the difficulty in approximating the weighted length of
li is when li is captured by either a Steiner strip or a Steiner-vertex strip, where
the Steiner strip is the more general case.
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e1

e2
s(e1, e2)

l∗ili

Fig. 4. The dotted line path represents an optimal k-link path. The solid line path
represents a 2k approximation made up of optimal links and “small” connecting, edge-
crawling links

Let s(e1, e2) be a Steiner strip that captures li, where e1 and e2 are the Steiner
edges at which li originates and terminates, respectively. Although li forms part
of an optimal k-link path, li is not necessarily an optimal link between e1 and e2.
This suggests one could try to replace li with the optimal link l∗i between e1 and
e2. We show in the next lemma (proof omitted here) that using k optimal links
and k “small” connecting links we can construct an approximating path with 2k
links that provides an ε-good approximation of pk. We define an edge-crawling
link as a link along an edge of R and contained within a Steiner edge (see Fig. 4).

Lemma 4. A normalized k-link path, pk, that turns on edges can be approx-
imated by an ε-good 2k-link path made up of k optimal links connected by k
edge-crawling links.

Theorem 2. For sufficiently small positive ε, a k-link shortest path can be ap-
proximated with a normalized ε-good (5k − 2)-link edge restricted path.
Proof. It follows from Lemma 3 that there is a normalized edge-restricted path
with 3k − 2 links. When applying Lemma 4, only 2k optimal links on this path
need small edge crawling links. The approximation factor is (1 + ε/2)(1 + ε) =
(1 + 3ε/2 + ε2/2) ≤ (1 + 2ε), assuming ε ≤ 1/2. Then, we can use ε = ε/2 when
generating the Steiner points to get the claimed result (we will no longer mention
this in the remaining proofs). �

We now show how to use this discretization scheme to construct a weighted
graph Gε(V,E) that captures approximate paths. Each node v ∈ V corresponds
to a vertex of R or a Steiner edge in our discretization scheme. Each edge e ∈ E
corresponds to either a Steiner strip, a Steiner-vertex strip or a vertex-pair. The
weight of e is the weighted length of a shortest 1-link path through the respective
Steiner strip, Steiner-vertex strip or vertex-pair. (Some other geometric informa-
tions are associated with Gε; we defer this to the full paper.) This differs from
the discretization graph in [1, 19], where V is formed of Steiner points and E is
made up of links between Steiner points.

The number of vertices in V is O(δn) and the number of edges in E is
O((δn)2). Computing a single edge in Gε corresponds to solving a 1-link shortest
path problem for a specific hourglass. Let this time be Th(n). Thus, the time
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to compute Gε is O((δn)2Th(n)). Once Gε is constructed, we can use dynamic
programming to find a k-link shortest path in Gε in O(k(δn)4) time.

Theorem 3. There exists a path approximation graph Gε of size O((δn)2), that
can be constructed in O((δn)2Th(n)) time, and can be used to report in O(k(δn)4)
time a (5k − 2)-link path that (1 + ε)-approximates a k-link shortest path.

An approximation using approximate optimal links. Finding optimal
1-link paths can be computationally expensive (e.g., see Section 3). We now
describe a technique for computing approximate optimal 1-link paths for the
subproblems that arise in building the path approximation graph.

Observe that a link l between two Steiner edges e1 and e2 may intersect
several Steiner edges placed on the edges of each region l crosses. Each region
that l intersects captures part of l in a Steiner strip with one exception. If l
passes within the vertex-vicinity of a vertex in R then part of l is not captured.
Furthermore, l could intersect O(n) vertex-vicinities.

We would like to find an approximating path that has no vertex-vicinity
intersections. However, as we have seen earlier, avoiding a vertex vicinity could
add two extra links on the approximating path. To reduce the increase in the
number of links on the approximating path we then need to reduce the number
of vertex-vicinities that can be intersected by a single link.

We accomplish this by changing the discretization scheme slightly. Let T
be the set of all possible vertex triplets formed by the vertices in R. O(n3)
such triplets exist that correspond to O(n3) triangles. For each vertex in each
triangle we can compute the minimum distance to the opposite edge. Let γi be
the minimum such distance obtained from a triplet containing the vertex vi, and
let γ = min{γi/2 | i = 1, 2, . . . , n}. By a recent result in [7], γi can be found in
O(n log n) time and thus γ can be computed in O(n2 log n) time.

R1

R3

R2

(a)

e1

e2

l1
l2

li
R1

R3

R2

(b)

e1

e2

l2
l1

li

Fig. 5. A Steiner strip formed by lines l1
and l2 may intersect edges that are more
coarsely (a) or more finely (b) sampled

Let the new vertex-vicinity radius,
r′(vi), be min(r(vi), γ). The first Steiner
point after a vertex vi is placed such
that |vivi,1| = r′(vi). A path p is said
to be γ-normalized if each link in p does
not turn within a vertex-vicinity or pass
through a vertex-vicinity without also
passing through the vertex.

The proofs of Lemmas 5-8 are deferred
to the full paper.

Lemma 5. For any k-link path pk from
s to t, there is a γ-normalized edge-
restricted path p̂ from s to t such that (1)
||p̂|| = (1+ ε

2 )||pk|| and (2) p̂ has no more
than eight times as many links as pk.

Next, we consider the computation of a single link. Fig. 5 (a) illustrates a sit-
uation in which a Steiner strip intersects one or more edges with sparsely placed
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Steiner points. Fig. 5 (b) illustrates a situation where a Steiner strip intersects
one or more edges with densely placed Steiner points. In Fig. 5 (a), the line seg-
ments l1 and l2 provide an ε-good approximation for all line segments captured
between l1 and l2. In Fig. 5 (b), l1 and l2 only provide ε-good approximations
for the lines that pass between the same Steiner points as l1 and l2.

The number of possible approximating 1-link paths for a pair of edges is
O((δn)2). The complexity to store both every possible approximation and the
ranges over which those approximations are valid for the entire subdivision is
then O((δn)4).

Lemma 6. Let l̂ be an optimal γ-normalized link between two edges e1 and e2.
A single (1 + ε)-factor approximating link can be computed in O(n(δn)2) time.

Lemma 7. For sufficiently small positive ε, a k-link shortest path can be ap-
proximated with a γ-normalized ε-good (14k)-link edge restricted path.

Lemma 8. The path approximation graph Gε has size O((δn)2) and can be con-
structed in O(n(δn)4) time.

Using a dynamic programming algorithm for computing k-link shortest paths
in weighted graphs, one can find an approximate solution for the k-link shortest
path using Gε in O(k(δn)4) time.

Theorem 4. There exists a path approximation graph Gε of size O((δn)2), that
can be constructed in O(n(δn)4) time, and can be used to report in O(k(δn)4)
time a 14k-link path that (1 + ε)-approximates a k-link shortest path.

3 Optimal 1-Links: A Sum of Fractionals Approach

To compute 1-link shortest paths, we adapt an algorithm for minimizing a sum of
linear fractional functions (SOLF) [8], to the sum of fractional functions (SOF)
problem that describes an optimal 1-link path. In order to find a 1-link short-
est path one needs to solve a number of optimization problems of the form
minx∈S{

∑m
i=1

√
1 + x2 ai

bix+ci
} = minx∈S{

∑m
i=1 ri(x)}, where b1 = 0, bi = 1,

i = 2, 3, . . . , m, ai, ci are constants and bix + ci > 0 over S, i = 1, 2, . . . m.
Thus, the functions we try to optimize are 1-dimensional SOFs with generic
term ri(x) =

√
1 + x2(ai/(bix + ci)) rather than 1-dimensional SOLFs, where

the generic term would have the form ri(x) = ai/(x + ci). While in general
one may not be able to apply the d-dimensional SOLF algorithm in [8] for a
SOF problem, we will show below that this is possible for our objective func-
tion. Our choice of method is based on the results in [4], which show that the
one-dimensional SOLF algorithm is very fast in practice. Since our function is a
one-dimensional SOF, adapting the SOLF method for SOF functions may lead
to similar results.

The only place in the SOLF algorithm where the expression of the ratio
ri(x) is important is in the optimization subproblems that require to minimize
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(or maximize) ri(x) over a convex domain (an interval in our case). For a 1-
dimensional SOLF, this reduces to minimizing a linear function over an interval
and thus takes constant time.

Lemma 9. The function r(x) =
√

1 + x2 ai

bix+ci
is unimodal if bix + ci > 0 (or

bix + ci < 0), with extremal value obtained at x∗ = 1/ci.

From Lemma 9 it follows that for the SOF problems associated with the 1-
link shortest path, the optimization subproblems for ri(x) can be solved exactly
in constant time each and thus we can apply the SOLF algorithm for these
SOFs. As shown in [4], an iteration of the algorithm can be implemented to run
in O(m) time for the 1-dimensional case, while some special steps (executed in
case of a stall) require altogether O(m2) time.

One way to speed up the computation is to process each of the SOF problems
in turn, temporarily suspending the processing of the current SOF before k has
been incremented (i.e. before the execution of Step 5). Each time an upper or
lower bound is updated, we can use the new bound to remove or cull SOF prob-
lems from the problem space. Experimental results suggest this culling process
very quickly removes many subproblems that will not lead to an optimal solu-
tion. A hybrid implementation where the subdivision algorithm in [6] is applied
to stalled regions would also fit into this framework.

4 Implementation and Experiments
We have implemented two algorithms for solving the weighted region 1-link
shortest path problem. The first one is based on the prune-and-search scheme
in [6] and the second one is based on the SOF algorithm in Section 3. Our results
show that both algorithms are fast on random generated subdivisions. To ensure
robustness for the special cases when a source-to-target link is close to an edge
or vertex of R our implementation uses the CORE library [5].

(a) (b) (c)

Fig. 6. (a) The original transverse CT scan, (b) a trace of structural elements in the
scan and (c) the triangulation of that structure
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(a) (b) (c)

Fig. 7. Prune-and-search progress after (a) zero, (b) one, and (c) twenty one steps

We exemplify our software package on a problem inspired by biomedicine.
Consider the CT scan in Fig. 6 (a) which was taken from the Visible Human
Project [17]. The source image is made up of pixels which are samples from the
CT process. Fig. 6 (b) shows one possible “trace” of this data which emphasizes
certain structures. Using Shewchuk’s triangulator each region can be tessellated
into triangles using different constraints [18]. This is illustrated in Fig. 6 (c) where
we have chosen to make the area constraints on the interior regions greater than
those of the exterior region.

Fig. 7 shows the source and target regions we chose for this example. There are
over 1500 triangles in this mesh, but far fewer are of interest after the bounding
box is applied. The prune-and-search technique begins by enumerating possi-
ble optimization subproblems, with each subproblem corresponding to a double
wedge through a vertex of R. The initial double wedges are represented as dotted
lines in Fig. 7 (a). 37 wedges are found initially for the example in Fig. 7 but
after only one round of culling based on the upper and lower bounds for each
subproblem, there are only four wedges at step two (see Fig. 7 (b)). The number
of wedges continues to grow and shrink in next steps, and for our example the
algorithm terminates in twenty one steps (see Fig. 7 (c)).

Fig. 8. The wedge count at each step repre-
sents the number of active problems

While in general this algorithm
performs well, the difficulty in as-
sessing it is that it has very good
best-case behavior and very bad
worst-case behavior. In the worst
case, the algorithm may continue
subdividing a double wedge region
over which the value of the objective
function changes extremely slowly,
such that subdivided double wedges
cannot be culled. Fig. 8 shows an ex-
ample of the best, worst and average
number of subproblems competing
in each step.
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In applying the SOF technique to the same problem we find similar variabili-
ties in performance. In some instances the SOF technique approaches a solution
faster than the subdivision approach and in other instances the SOF technique
stalls and fails to progress. If the SOF algorithm stalls, it is often necessary to
run the SOF algorithm recursively on a subdivided problem. Unfortunately it
is possible the SOF algorithm will then continue to stall. When the SOF algo-
rithm was applied directly to each of the subproblems in the series, we found
that 61.71% of the subproblems stalled. An average of 23.9 iteration steps and
7.64 recursive calls were required to solve each subproblem. If we consider only
the subproblems which did not stall, we find that on average only 2.4 iterations
were required. One improvement that has shown some success is the adoption
of a hybrid solution where a SOF approach is used until a stall is detected and
then in that case we revert to the subdivision technique in order to avoid a re-
cursive stall. However, more experiments are needed to decide which of the two
algorithms performs better in practice.
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Abstract. We study the problem of non-preemptive scheduling to mini-
mize energy consumption for devices that allow dynamic voltage scaling.
Specifically, consider a device that can process jobs in a non-preemptive
manner. The input consists of (i) the set R of available speeds of the
device, (ii) a set J of jobs, and (iii) a precedence constraint Π among J .
Each job j in J , defined by its arrival time aj , deadline dj , and amount of
computation cj , is supposed to be processed by the device at a speed in
R. Under the assumption that a higher speed means higher energy con-
sumption, the power-saving scheduling problem is to compute a feasible
schedule with speed assignment for the jobs in J such that the required
energy consumption is minimized.

This paper focuses on the setting of weakly dynamic voltage scaling,
i.e., speed change is not allowed in the middle of processing a job. To
demonstrate that this restriction on many portable power-aware devices
introduces hardness to the power-saving scheduling problem, we prove
that the problem is NP-hard even if aj = aj′ and dj = dj′ hold for all
j, j′ ∈ J and |R| = 2. If |R| < ∞, we also give fully polynomial-time
approximation schemes for two cases of the general NP-hard problem:
(a) all jobs share a common arrival time, and (b) Π = ∅ and for any
j, j′ ∈ J , aj ≤ aj′ implies dj ≤ dj′ . To the best of our knowledge, there
is no previously known approximation algorithm for any special case of
the NP-hard problem.

1 Introduction

With the increasing popularity of portable systems, energy efficiency has become a
major design issue in hardware and software implementations [4, 9, 16, 21, 22, 27].
Power-aware resource management for portable devices is a critical design factor
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since most of them are driven by their own power sources (e.g., batteries). Energy-
efficient electronic circuit designs, e.g., [1, 34], were proposed in the past decade,
and various vendors have provided processors, memory chips, storage devices, or
even motherboards equipped with the voltage scaling technology. For example, the
flash-memory chip designed by the Intel Corp. [12] supports several voltage levels
for operations. Because of the characteristics of many similar storage devices, the
supply voltage for an I/O operation remains unchanged for the entire duration of
the operation. Non-preemptivity in operation scheduling is also the inherent na-
ture of many I/O devices. Besides, for performance-sensitive devices, the balance
between performance and energy consumption must be taken into considerations.
We consider power savings on a device capable of supporting several levels of sup-
ply voltages with predictable execution times and energy consumption to process
jobs.

Let XR be a device that processes jobs one at a time in a non-preemptive
manner, where R consists of the available speeds of XR. As restricted for most
portable devices, speed change is not allowed in the middle of processing a job,
e.g., in the flash-memory chip [12]. The energy-consumption rate of XR is a
function φ over R such that the energy required for XR to process a job at speed
r ∈ R for t time units is φ(r) · t. The rest of the paper makes the physically
reasonable assumption that the function φ(r)/r is monotonically increasing, i.e.,
r > r′ implies φ(r)

r > φ(r′)
r′ .

For any set S, let |S| denote the cardinality of S. All numbers throughout
the paper are rational. Let J consist of jobs 1, 2, . . . , |J | to be processed by XR.
For each j ∈ J , let cj be the time required for XR to process job j at speed 1,
let dj be the deadline for completing job j, and let aj be the arrival time for job
j. If the precedence constraint Π is present on J , a schedule cannot execute job
j′ before j when j′ is a successor to j. It is reasonable to assume that dj ≤ dj′ if
j′ is a successor to j. For notational brevity, let d1 ≤ d2 ≤ · · · ≤ d|J|. If dj = dj′

and aj < aj′ , then j < j′. Without loss of generality, we assume minj∈J aj = 0.
A schedule s for J is feasible if each job j ∈ J is assigned a speed sj ∈ R and
processed after aj and before dj without speed change, preemption, or violating
the precedence constraints. We say that s is an earliest-deadline-first schedule
for J (with respect to XR) if each job j ∈ J is processed by XR before jobs
j + 1, . . . , |J | as early as possible. It is well known (e.g., [8–§A5.1]) that if the
jobs in J have arbitrary arrival times and deadlines, determining whether the
jobs in J can be scheduled to meet all deadlines is strongly NP-complete even if
|R| = 1. The time required for XR to process job j at speed r ∈ R is assumed
being cj/r. The energy consumption Φ(s) of a schedule s is

∑
j∈J φ(sj)cj/sj .

The Power-Saving Scheduling problem is to find a feasible schedule s for
J with minimum Φ(s). Clearly, if the energy-consumption rate of XR is linear,
which is highly unlikely in practice, then any schedule for J has the same energy
consumption.

Regardless of the property of the energy consumption function, it is not
hard to show that the Power-Saving Scheduling problem does not admit
any polynomial-time approximation algorithm unless P = NP, when jobs have
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arbitrary arrival times and deadlines. Assuming that there exists a polynomial-
time approximation algorithm K for the Power-Saving Scheduling problem,
algorithm K can be used to solve the following NP-complete 3-PARTITION
problem [8] in polynomial time: Given a set A of 3M elements, a bound B ∈
Z+, and a size w(a) ∈ Z+ for each a ∈ A, where B/4 < w(a) < B/2 and∑

a∈A w(a) = MB, the 3-PARTITION problem is to find a partition of A into
M disjoint sets A1, A2, · · · , AM such that

∑
a∈Aj

w(a) = B for 1 ≤ j ≤ M .
For each element a ∈ A, a unique job j is created by setting aj = 0, dj =
(M + 1)B − 1, and cj = s|R| · w(a). Another job set J ′ is also constructed
by creating M − 1 jobs, where aj = (j + 1)B − 1, dj = (j + 1)B, and cj =
s|R| for the j-th job in J ′. It is clear that there exists a feasible schedule for
the resulting job set above if and only if there exists a partition for the 3-
PARTITION problem. Since K is a polynomial-time approximation algorithm
the Power-Saving Scheduling problem, K can be applied to determine the
3-PARTITION problem in polynomial time by examining the feasibility of the
derived schedule of K. This contradicts the assumption that P �= NP.

Our contribution We investigate the intractability of the problem. Moreover, we
give a fully polynomial-time approximation scheme for two practically important
cases: (a) all jobs share a common arrival time, and (b) Π = ∅ and for any
j, j′ ∈ J , aj ≤ aj′ implies dj ≤ dj′ (aj ≤ aj′ if j < j′).

Let basic case stand for the situation that |R| = 2 and that all jobs in J
have a common deadline d and a common arrival time 0. We show that the
Power-Saving Scheduling problem is NP-complete even for the basic case.
The hardness comes from the dis-allowance of speed change on devices with a
finite set of speeds to select from. Moreover, we give a fully polynomial-time
approximation scheme for the Power-Saving Scheduling problem when (a)
all jobs share a common arrival time, and (b) Π = ∅ and for any j, j′ ∈ J ,
aj ≤ aj′ implies dj ≤ dj′ , based upon standard techniques of dynamic program-
ming and rounding. Specifically, we first show that a special case of the problem
can be solved in pseudopolynomial-time algorithm by a dynamic program. (We
comment that the dynamic programs studied by Chen, Lu, and Tang [5] would
have sufficed if their schedules were not allowed to violate deadlines.) To turn
a pseudopolynomial-time algorithm into a fully polynomial-time approximation
scheme via rounding, we need the following lemma to obtain a good estimate of
the minimum energy consumption.

Lemma 1 (Yao, Demers, and Shenker [35]). Let R be the set of non-
negative rational numbers. Then, given a set of jobs with arbitrary arrival times
and deadlines, a feasible schedule for J on XR allowing preemption with mini-
mum energy consumption can be solved in O(|J | log2 |J |) time.

Comment: the result stated in Lemma 1 requires that the energy consumption
rate function φ is convex and increasing, which is implied by the global assump-
tion of the present paper that φ(r)/r is monotonically increasing.

Related work In [14], a 3-approximation algorithm is proposed for off-line job
scheduling, when processors have a special state sleep. If a processor has multiple
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special states beside running, (e.g., idle, sleep, and standby), processors could
consume much less energy while no job is processing. Although special states
provide more flexibility for energy-aware job scheduling, overheads on energy
consumption and time latencies for state transitions must be considered. The
on-line competitive algorithm proposed by Yao, et al. [35] is extended to handle
processors with a single sleep state in [14] or multiple special states in [13].

Ishihara and Yasuura [15] show that the minimum energy consumption prob-
lem can be formulated as an integer linear program, when |R| is finite, speed
change is allowed, and all jobs have the same arrival time and deadline. They
show that there exists an optimal schedule with at most two processor speeds
and at most one job is processed at two different processor speeds. However the
proofs in [15] consider only a specific processor model which is proposed in [1, 34].
In [3], the results in [15] are extended for any convex function. Energy-efficient
scheduling has been extensively studied in off-line, e.g., [10, 19, 26], or on-line,
e.g., [17, 23–25, 28–31], fashions. Algorithms considering time-cost trade-offs on
scheduling are proposed in [6, 7, 32, 33].

The results on minimization of energy consumption on processors could not
be applied directly to I/O devices. Generally, processors can process jobs in a
preemptive manner. In contrast, I/O devices might perform operations in a non-
preemptive manner, and no speed change is allowed in the middle of processing
an operation. Chang, Kuo, and Lo [2] propose an adjustment mechanism to dy-
namically adjust the supply voltage for a flash memory to reduce the energy
consumption. The proposed heuristic algorithm is efficient but the optimality is
not proved. Hong, Kirovski, Qu, Potkonjak, and Srivastava [10] propose a heuris-
tic algorithm for minimization of the energy consumption on a non-preemptive
device, where the supply voltages of the device are available between two given
positive thresholds. Besides, Manzak and Chakrabarti [20] consider a minimum
energy consumption problem on a system equipped with non-preemptive I/O
devices capable of supporting multiple levels of voltages, where voltage switch
introduces overheads in energy and time. On-line algorithms are proposed to
minimize the energy consumption for executions of real-time tasks, provided
that there is a given feasible schedule as an input. Although the derived sched-
ules are feasible and power savings were achieved in the experimental results, the
optimality is not shown. To the best of our knowledge, no previous scheduling
algorithm to minimize the energy consumption for XR is known with theoretical
analysis of optimality for energy consumption or power savings.

For the remainder of the paper, define R =
{
r1, r2, . . . , r|R|

}
with r1 < r2 <

· · · < r|R|.The rest of thepaper is organizedas follows. Section2addresses thebasic
case. Section 3 shows our approximation scheme. Section 4 concludes this paper.

2 Basic Case

In this section, we show that finding a schedule with minimum energy consump-
tion is NP-complete for the basic case. We then present a fully polynomial-time
approximation scheme for the basic case as a warm-up. For any subset I of J ,
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let s(I) be the schedule s for J with si = r1 for each i ∈ I and si = r2 for each
i ∈ J − I. Clearly, we have

Φ(s(I)) =
∑
i∈I

φ(r1)ci/r1 +
∑

i∈J−I

φ(r2)ci/r2.

Theorem 1. The Power-Saving Scheduling problem for XR is NP-complete
even for the basic case.

Proof. It is clear that the Power-Saving Scheduling problem is in NP. It
suffices to show the NP-hardness by a reduction from the following NP-complete
Subset Sum problem [8]: Given a number wj for each index j ∈ J and another
arbitrary number w, the problem is to determine whether there is a subset I of
J with

∑
i∈I wi = w.

An instance for the basic case of the Power-Saving Scheduling problem is
constructed as follows: For each index j ∈ J , we create a job j with cj = r1r2wj .
Let the common deadline d be w(r2 − r1) + r1

∑
j∈J wj . Clearly, the set J of

jobs is feasible. Also, for any subset I of J , we have

Φ(s(I)) = r2φ(r1)
∑
i∈I

wi+r1φ(r2)
∑

i∈J−I

wi = (r2φ(r1)−r1φ(r2))
∑
i∈I

wi+r1φ(r2)
∑
j∈J

wj .

(1)
We show that there is a set I ⊆ J with

∑
i∈I wi = w if and only if the set J of jobs

admits a feasible schedule s with Φ(s) = w(r2φ(r1)−r1φ(r2))+r1φ(r2)
∑

j∈J wj .
As for the if-part, let I consist of the jobs i with si = r1, which implies s(I) = s.
By Equation (1) and Φ(s) = w(r2φ(r1) − r1φ(r2)) + r1φ(r2)

∑
j∈J wj , we know

(r2φ(r1)− r1φ(r2))
∑

i∈I wi = w(r2φ(r1)− r1φ(r2)). Since r2φ(r1) < r1φ(r2), we
have

∑
i∈I wi = w. As for the only-if-part, let s = s(I). One can easily see the fea-

sibility of s by verifying that
∑

i∈I wi = w implies
∑

i∈I ci/r1 +
∑

i∈J−I ci/r2 =
r2

∑
i∈I wi + r1

∑
i∈J−I wi = d. By

∑
i∈I wi = w and Equation (1), we have

Φ(s) = w(r2φ(r1) − r1φ(r2)) + r1φ(1)
∑

j∈J wj .

Given a number wj for each index j ∈ J and another arbitrary number w, the
Maximum Subset Sum problem is to find a subset I of J with

∑
i∈I wi ≤ w

such that
∑

i∈I wi is maximized. For the rest of the section, we show how to
obtain a fully polynomial-time approximation scheme for the basic case of the
Power-Saving Scheduling problem based upon the following lemma.

Lemma 2 (Ibarra and Kim [11]). The Maximum Subset Sum problem ad-
mits a fully polynomial-time 1

(1−δ) -approximation algorithm subset(w1, w2, . . . ,

w|J|, w, δ) for any 0 < δ < 1.

Given the algorithm shown in Algorithm 1, we have the following lemma.

Lemma 3. Algorithm 1 is a (1 + ε)-approximation for the basic case of the
Power-Saving Scheduling problem for any ε > 0.

Proof. Let I∗ be a subset of J with
∑

i∈I∗ ci ≤ c such that
∑

i∈I∗ ci is maximized.
By the choice of c, one can verify that both s(I) and s(I∗) are feasible schedules
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Algorithm 1
Input: J, r1, r2, d, ε;
Output: A feasible schedule s with almost minimum energy consumption;
1: let c = r1(r2d −

∑
j∈J cj)/(r2 − r1);

2: let I be the subset returned by subset(c1, c2, . . . , c|J|, c, δ), where δ = εr2φ(r1)
r1φ(r2)

;
3: output s(I);

for J . Moreover, s(I∗) is an optimal schedule. We show Φ(s(I)) ≤ (1+ε)Φ(s(I∗))
as follows. By Lemma 2, we have

∑
i∈I ci ≤

∑
i∈I∗ ci ≤

∑
i∈I ci/(1−δ). It follows

that

Φ(s(I)) − Φ(s(I∗)) = φ(r1)(
∑
i∈I

ci −
∑
i∈I∗

ci)/r1 + φ(r2)(
∑
i∈I∗

ci −
∑
i∈I

ci)/r2

≤ φ(r2)(
∑
i∈I∗

ci −
∑
i∈I

ci)/r2 ≤ δ
∑
i∈I∗

φ(r2) · ci/r2

= ε
∑
i∈I∗

φ(r1) · ci/r1 ≤ ε · Φ(s(I∗)).

The lemma is proved.

3 Our Approximation Scheme

Recall that R =
{
r1, r2, . . . , r|R|

}
, where r1 < r2 < · · · < r|R|. Define

γ = max
2≤i≤|R|

ri−1 · φ(ri)
ri · φ(ri−1)

.

An execution sequence is said to be optimal if any feasible schedule can be
translated into such a sequence without increasing the energy consumption. Let
s∗ be a feasible schedule s for the input job set J with minimum Φ(s). We
propose our approximation scheme based on the following lemma which ignores
the precedence constraint Π first.

Lemma 4. Suppose that we are given a schedule ŝ satisfying Φ(s∗) ≤ Φ(ŝ) ≤
γΦ(s∗), the earliest-deadline-first execution sequence is optimal, and Π = ∅,
then it takes O(|R||J |2(ε−1 + log γ)) time and O(ε−1|R||J |2) space to compute a
(1 + ε)-optimal solution for the Power-Saving Scheduling problem for any
parameter 0 < ε ≤ 1.

Proof. Our approximation scheme is based upon the standard rounding tech-
nique. For each j ∈ J and each r ∈ R, let ψ(j, r) denote the energy con-
sumption φ(r)cj/r required by XR for processing job j at speed r. That is,
Φ(s) =

∑
j∈J ψ(j, sj) for any schedule s. For any positive number q, define

ψq(j, r) =

q · ψ(j, r)�

q
for any j ∈ J and r ∈ R;
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Φq(s) =
∑
j∈J

ψq(j, sj) for any schedule s for J .

Clearly, q · ψq(j, r) is an integer and ψ(j, r) ≤ ψq(j, r) ≤ ψ(j, r) + 1
q holds for

each j ∈ J and r ∈ R. Therefore,

Φ(s) ≤ Φq(s) ≤ Φ(s) +
|J |
q

(2)

holds for any schedule s of J . In other words, Φq(s) is the “rounded-up” energy
consumption, which can be a good estimate for Φ(s) as long as q is sufficiently
large. Finding s∗ is NP-hard, but a feasible schedule sq for J with minimum
Φq(sq) can be computed via the standard technique of dynamic programming as
follows.

For any index j ∈ J and any nonnegative k, let τ(j, k) = ∞ signify that
Φq(s) > k holds for any feasible schedule s for the job subset {1, 2, . . . , j}. If
τ(j, k) �= ∞, let τ(j, k) be the minimum completion time required by any feasible
schedule s for the job subset {1, 2, . . . , j} with Φq(s) ≤ k/q. For notational
brevity, define

τ(0, k) =
{

0 if k ≥ 0;
∞ otherwise (3)

for any integer k. By the optimality of the earliest-deadline-first execution
sequence, it is not difficult to verify that the following recurrence relation holds
for any j ∈ J and any positive integer k:

τ(j, k) = min
r∈R

⎧⎨
⎩

max(τ(j − 1, k − q · ψq(j, r)), aj) if max(τ(j − 1, k − q · ψq(j, r)), aj)
+cj/r +cj/r ≤ dj ;

∞ otherwise.
(4)

Let kq be the minimum k with τ(|J |, k) < ∞. Clearly, Φq(s) = kq/q. Since
each q · ψq(j, r) is an integer, a feasible schedule sq for J with minimum Φq(sq)
can be obtained by a standard dynamic-programming algorithm, based upon
Equations (3) and (4), in

O(|R||J | · kq) = O(|R||J | · Φq(sq) · q) (5)

time and space. By Equation (2) and the optimality of s∗ (respectively, sq) with
respect to Φ (respectively, Φq), we have

Φ(s∗) ≤ Φ(sq) ≤ Φq(sq) ≤ Φq(s∗) ≤ Φ(s∗) +
|J |
q

. (6)

It remains to determine q. Clearly, we want q to be sufficiently large so that
Φ(sq) can be close enough to Φ(s∗). For example, by ε ≤ 1, we can prove that

q ≥ 2|J |
ε · Φq(sq)

(7)
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implies Φ(sq) ≤ (1+ ε) ·Φ(s∗) as follows. By Equation (7) and the last inequality
in Equation (6), we have

|J |
q

≤ ε · Φq(sq)
2

≤ ε · Φ(s∗)
2

+
ε · |J |

2q
.

It follows that
|J |
q

≤ ε · Φ(s∗)
2 − ε

≤ ε · Φ(s∗),

which by Equation (6) implies Φ(sq) ≤ (1 + ε) · Φ(s∗).
Of course the immediate problem is that schedule sq depends on the value of

q. That is, we need to know the value of q in order to compute sq, so it seems
difficult to enforce q ≥ 2|J|

ε·Φq(sq) at one shot. Fortunately, we can use the following
trick of “doubling the value of q in each iteration”: Initially, we let q be

q′ =
|J |

ε · Φ(ŝ)
. (8)

In each iteration, we first compute sq. If Equation (7) holds, we output the
current sq as a (1 + ε)-optimal solution. Otherwise, we double the value of q
and then proceed to the next iteration. Let q′′ be the value of q in the last
iteration.

What is the required running time? By Equations (5) and (6) we know that
the first iteration runs in O(|J |2|R|/ε) time and space. Therefore, we focus on
the case that the above procedure runs for more than one iteration. By Equa-
tions (5) and (6), we know that each iteration runs in O(|R||J |(q · Φ(s∗) + |J |))
time and space. Since the value of q is doubled in each iteration, the overall
running time is

O

(
|R||J |

(
q′′ · Φ(s∗) + |J | log

q′′

q′

))
.

Since Equation (7) does not hold in the second-to-last iteration, we have

q′′

2
<

2|J |
ε · Φq′′/2(sq′′/2)

. (9)

Besides, by Equation (6), we know

Φ(s∗) ≤ Φq′′/2(sq′′/2). (10)

Combining Equations (6), (9), and (10), we know q′′ · Φ(s∗) = O(|J |/ε). By
Equations (9) and (10) we have

q′′ <
4|J |

ε · Φ(s∗)
. (11)

Combining the given relation of Φ(s∗) and Φ(ŝ), Equations (8) and (11), we
have
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log2
q′′

q′
< log2

4Φ(ŝ)
Φ(s∗)

= O(log γ).

The theorem is proved.
Since log γ is polynomial in the number of bits required to encode the input

r and φ(r) for all r ∈ R, Lemma 4 provides a fully polynomial-time approxima-
tion scheme for the Power-Saving Scheduling problem when we are given
a schedule ŝ satisfying Φ(s∗) ≤ Φ(ŝ) ≤ Φ(s∗) · γ and the earliest-deadline-first
sequence is known to be optimal, if there are no precedence constraints on J .
Let XR′ be the (imaginary) device with R′ = {r | r1 ≤ r ≤ r|R|} for any energy
consumption function φ′ that coincides with φ at all speeds in R. We need the
following lemma to derive ŝ.

Lemma 5. If preemption is allowed for the Power-Saving Scheduling prob-
lem, then there exists a polynomial-time algorithm to derive an optimal schedule
on XR′ .

Proof. Let s′ be the schedule obtained by applying Lemma 1. That is, job j
is to be executed at speed s′j according to schedule s′. We now transform s′

into s̄ so that s̄ is optimal and feasible on XR′ . We define Jl as {j | s′j ≥ r1}.
For each job j ∈ Jl, s̄ just copies the schedule of j on s′, including the speed
setting and processing time intervals. For each job j ∈ J − Jl, if s′ executes j in
the interval [z1, z2] (there could be more than one interval), then s̄ executes j

in the interval [z1, z1 + s′
j(z2−z1)

r1
]. It is clear that only one job in s̄ is processed

at one time. Therefore, s̄ is feasible. We adopt the terminologies used in [35]
to prove the optimality of s̄: g(I) for a time interval I = [z, z′] is defined as

g(I) =
∑

j∈RI
ci

z′−z , where RI is the set of jobs satisfying aj ≥ z and dj ≤ z′. A
critical interval I∗ satisfies g(I∗) ≥ g(I) for any interval I. Theorem 1 in [35]
shows that there exists an optimal schedule S, which executes every job in RI∗

at the speed g(I∗) completely within I∗ and executes no other jobs during I∗.
The algorithm for achieving Lemma 1 is obtained by computing a sequence of
critical intervals iteratively. Therefore, it is clear that if the input job set J is
feasible on XR, g(I∗) must be no larger than r|R|. We know that s̄ is a feasible
schedule on XR′ (allow preemption). Besides, the optimality of Theorem 1 in
[35] fails on XR′ only when g(I∗) < r1. However, executing jobs at the speed r1
results in an optimal solution in this situation. Therefore, s̄ is optimal on XR′

and obtainable in O(|J | log2 |J |) time if preemption is allowed.

Theorem 2. The Power-Saving Scheduling problem admits a fully
polynomial-time approximation scheme when (a) all jobs share a common ar-
rival time, and (b) Π = ∅ and for any j, j′ ∈ J , aj ≤ aj′ implies dj ≤ dj′ .

Proof. We first consider only the timing constraints of J in this paragraph.
Based on Lemma 4, we just have to show that we can derive a schedule ŝ sat-
isfying Φ(s∗) ≤ Φ(ŝ) ≤ Φ(s∗) · γ efficiently and prove the optimality of the
earliest-deadline-first execution sequence for these job sets. The preemptive ear-
liest deadline first rule is defined in [18]: If a job arrives or is completed at time
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t, execute an arrived (ready) job with the earliest deadline at time t. Given a
feasible schedule s, it is also feasible to schedule jobs according to the preemp-
tive earliest-deadline-first rule by setting the processing speed of job j as sj [18]
(if preemption is allowed). Since the job sets under considerations satisfy the
condition aj ≤ aj′ and dj ≤ dj′ if j′ > j, it is clear that each job in the resulting
schedule following the preemptive earliest-deadline-first rule is non-preempted.
The energy consumption for the resulting schedule remains, because sj does
not be increased or decreased. Therefore, the earliest-deadline-first sequence is
known to be optimal for the Power-Saving Scheduling problem. Let s̄ be
the resulting schedule from Lemma 5. Let s′ be the schedule for J defined by
letting s′j be the smallest r ∈ R with s̄j ≤ r for each j ∈ J and schedule
jobs according to the earliest-deadline-first execution sequence. It is clear that
Φ(s̄) ≤ Φ(s∗) ≤ Φ(s′) ≤ Φ(s̄) · γ ≤ Φ(s∗) · γ. If Π = ∅, the fully polynomial-time
approximation scheme is obtained by setting ŝ = s′.

In the following, we shall show how to deal with Π (aj = 0 for all j ∈ J).
Given an earliest-deadline-first feasible schedule s for J , we claim that we can
transform s into another schedule s′′ in O(|J |2) time such that Φ(s′′) = Φ(s)
and s′′ satisfies the precedence and timing constraints. If this claim stands, we
can transform the derived schedule sq in Lemma 4 (respectively, s′ and s∗ in the
previous paragraph) into a feasible schedule without increasing Φ(sq) (respec-
tively, Φ(s′) and Φ(s∗)). This implies the existence of a fully polynomial-time
approximation scheme. Initially, we let s′′ be s. We consider a job j from job
2 to |J |. While considering job j, we look backward if there is a successor k to
j is executed before j in s′′ such that the ordered jobs Jkj executed between
k and j are not successors to j. If such a job k exists, the execution sequence
is modified by delaying k to be executed immediately after j finishes. Because
all jobs are ready at time 0, job j and jobs in Jjk complete earlier. Since k
is a successor to j (dk ≥ dj) and all jobs are ready at time 0, the resulting
schedule is feasible while considering jobs j, k, and Jkj . We repeat the previous
procedure until no such a job k exists, and let s′′ be the final schedule. It is
clear that s′′ is feasible for the job sets {1, 2, . . . , j} after we perform the above
rescheduling by considering job j. After we consider job |J |, s′′ satisfies the prece-
dence and timing constraints. The time complexity for the above rescheduling
is O(|J |2).

4 Conclusion

Thispaper targetsnon-preemptive scheduling forminimizationof energyconsump-
tion on devices that allow weakly dynamic voltage scaling. The problem is shown to
beNP-hard even if the device has only two speeds and all jobs share the same arrival
time and deadline. Moreover, we provide a fully polynomial-time approximation
scheme of the NP-hard problem for two cases: (a) all jobs share a common arrival
time, and (b) Π = ∅ and for any j, j′ ∈ J , aj ≤ aj′ implies dj ≤ dj′ .

An interesting direction for future research is to extend our approximation
scheme to handle the overheads on voltage/speed switches.
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7. V. G. Děıneko and G. J. Woeginger. Hardness of approximation of the discrete
time-cost tradeoff problem. Operations Research Letters, 29(5):207–210, 2001.

8. M. R. Garey and D. S. Johnson. Computers and intractability: A guide to the
theory of NP-completeness. W. H. Freeman and Co., 1979.

9. V. Gutnik and A. P. Chandrakasan. Embedded power supply for low-power DSP.
IEEE Transactions on VLSI Systems, 5(4):425–435, 1997.

10. I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Srivastava. Power opti-
mization of variable voltage core-based systems. In Proceedings of the 35th Annual
Conference on Design Automation Conference, pages 176–181. ACM Press, 1998.

11. O. H. Ibarra and C. E. Kim. Fast approximation algorithms for the knapsack and
sum of subsets problems. Journal of the ACM, 22(4):463–468, 1975.

12. Intel Corporation. 28F016S5 5-Volt FlashFile Flash Memory Datasheet, 1999.
13. S. Irani, S. Shukla, and R. Gupta. Competitive analysis of dynamic power man-

agement strategies for systems with multiple saving states. In Proceedings of the
Design Automation and Test Europe Conference, 2002.

14. S. Irani, S. Shukla, and R. Gupta. Algorithms for power savings. In Proceedings
of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
37–46. Society for Industrial and Applied Mathematics, 2003.

15. T. Ishihara and H. Yasuura. Voltage scheduling problems for dynamically variable
voltage processors. In Proceedings of the International Symposium on Low Power
Electroncs and Design, pages 197–202, 1998.

16. W.-B. Jone, J. S. Wang, H.-I. Lu, I. P. Hsu, and J.-Y. Chen. Design theory
and implementation for low-power segmented bus systems. ACM Transactions on
Design Automation of Electronic Systems, 8(1):38–54, 2003.

17. S. Lee and T. Sakurai. Run-time voltage hopping for low-power real-time systems.
In Proceedings of the 37th Conference on Design Automation, pages 806–809. ACM
Press, 2000.

18. C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a
hard-real-time environment. Journal of the ACM, 20(1):46–61, 1973.

19. A. Manzak and C. Chakrabarti. Variable voltage task scheduling algorithms for
minimizing energy. In Proceedings of the 2001 International Symposium on Low
Power Electronics and Design, pages 279–282. ACM Press, 2001.



Power-Saving Scheduling for Weakly Dynamic Voltage Scaling Devices 349

20. A. Manzak and C. Chakrabarti. Energy-conscious, deterministic I/O device
scheduling in hard real-time systems. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, 22(7):847–858, 2003.

21. A. Manzak and C. Chakrabarti. Variable voltage task scheduling algorithms for
minimizing energy/power. IEEE Transactions on VLSI Systems, 11(2):270–276,
2003.

22. M. Pedram and J. M. Rabaey. Power Aware Design Methodologies. Kluwer Aca-
demic Publishers, 2002.

23. T. Pering, T. Burd, and R. Brodersen. The simulation and evaluation of dynamic
voltage scaling algorithms. In Proceedings of the 1998 International Symposium
on Low Power Electronics and Design, pages 76–81. ACM Press, 1998.

24. T. Pering, T. Burd, and R. Brodersen. Voltage scheduling in the iparm micropro-
cessor system. In Proceedings of the 2000 International Symposium on Low Power
Electronics and Design, pages 96–101. ACM Press, 2000.

25. J. Pouwelse, K. Langendoen, and H. Sips. Energy priority scheduling for variable
voltage processors. In Proceedings of the 2001 International Symposium on Low
Power Electronics and Design, pages 28–33. ACM Press, 2001.

26. G. Quan and X. Hu. Energy efficient fixed-priority scheduling for real-time systems
on variable voltage processors. In Proceedings of the 38th Conference on Design
Automation, pages 828–833. ACM Press, 2001.

27. V. Raghunathan, M. B. Srivastava, and R. K. Gupta. A survey of techniques for
energy efficient on-chip communication. In Proceedings of the 40th Conference on
Design Automation, pages 900–905. ACM Press, 2003.

28. D. Shin and J. Kim. A profile-based energy-efficient intra-task voltage schedul-
ing algorithm for real-time applications. In Proceedings of the 2001 International
Symposium on Low Power Electronics and Design, pages 271–274. ACM Press,
2001.

29. D. Shin, J. Kim, and S. Lee. Low-energy intra-task voltage scheduling using static
timing analysis. In Proceedings of the 38th Conference on Design Automation,
pages 438–443. ACM Press, 2001.

30. Y. Shin and K. Choi. Power conscious fixed priority scheduling for hard real-time
systems. In Proceedings of the 36th ACM/IEEE Conference on Design Automation
Conference, pages 134–139. ACM Press, 1999.

31. Y. Shin, K. Choi, and T. Sakurai. Power optimization of real-time embedded
systems on variable speed processors. In Proceedings of the 2000 IEEE/ACM
International Conference on Computer-Aided Design, pages 365–368. IEEE Press,
2000.

32. M. Skutella. Approximation algorithms for the discrete time-cost tradeoff prob-
lem. In Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 501–508. Society for Industrial and Applied Mathematics, 1997.

33. M. Skutella. Approximation algorithms for the discrete time-cost tradeoff problem.
Mathematics of Operations Research, 23(4):909–929, 1998.

34. M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for reduced CPU
energy. In Proceedings of Symposium on Operating Systems Design and Implemen-
tation, pages 13–23, 1994.

35. F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced CPU energy. In
Proceedings of the 36th Annual Symposium on Foundations of Computer Science,
pages 374–382. IEEE, 1995.



Improved Approximation Algorithms for
Metric Maximum ATSP and

Maximum 3-Cycle Cover Problems
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Abstract. We consider an APX-hard variant (Δ-Max-ATSP) and an
APX-hard relaxation (Max-3-DCC) of the classical traveling salesman
problem. Δ-Max-ATSP is the following problem: Given an edge-weighted
complete loopless directed graph G such that the edge weights fulfill the
triangle inequality, find a maximum weight Hamiltonian tour of G. We
present a 31

40
-approximation algorithm for Δ-Max-ATSP with polyno-

mial running time. Max-3-DCC is the following problem: Given an edge-
weighted complete loopless directed graph, compute a spanning collec-
tion of node-disjoint cycles, each of length at least three, whose weight
is maximum among all such collections. We present a 3

4
-approximation

algorithm for this problem with polynomial running time. In both cases,
we improve on the previous best approximation performances. The re-
sults are obtained via a new decomposition technique for the fractional
solution of an LP formulation of Max-3-DCC.

1 Introduction

Travelling salesman problems have been studied for many decades. Classically,
one deals with minimization variants, that is, one wants to compute a shortest
(i.e., minimum weight) Hamiltonian tour. But also the corresponding maximiza-
tion variants have been investigated. At a first glance, computing a tour of
maximum weight seems to be unnatural, but this problems has its applications
for instance in maximum latency delivery problems [5] or in the computation of
shortest common superstrings [4].

1.1 Notations and Definitions

Let G = (V,E) be a complete loopless directed graph and w : E → Q≥0 be a
weight function that assigns each edge a nonnegative weight. A cycle of G is a
(strongly) connected subgraph such that each node has indegree and outdegree
one. (Since G has no loops, every cycle has length at least two.) The weight w(c)
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of a cycle c is the sum of weigths of the edges contained in it. A Hamiltonian
tour of G is a cycle that contains all nodes of G. The problem of finding a
Hamiltonian tour of minimum weight is the well-studied asymmetric traveling
salesman problem (ATSP). The problem is called asymmetric, since G is directed.
The special case that G is undirected or, equivalently, that w is symmetric has
received even more attention. But also the maximization variant—given G, find
a Hamiltonian tour of maximum weight—has been studied. This problem is for
instance used for maximum latency delivery problems [5] and as a blackbox in
shortest common superstring computations [4]. We here study the variant of
Maximum ATSP where w in addition fulfills the triangle inequality, that is,

w(u, v) + w(v, x) ≥ w(u, x) for all nodes u, v, x.

We call this problem Δ-Max-ATSP.
A cycle cover of G is a collection of node-disjoint cycles such that each node

is part of exactly one cycle. Every Hamiltonian tour is obviously a cycle cover.
We call a cycle a k-cycle if it has exactly k edges (and nodes). A cycle cover is a
k-cycle cover if each cycle in the cover has at least k edges. We call the problem
of finding a maximum weight 3-cycle cover Max-3-DCC. Note that we here do
not require w to fulfill the triangle inequality.

1.2 Previous Results

For the general Maximum ATSP, Nemhauser, Fisher, and Wolsey [6] present a
1
2 -approximation algorithm with polynomial time. Kosaraju, Park, and Stein [8],
Bläser [1], Levenstein and Sviridenko [10], and Kaplan et al. [7] improve on this
by giving polynomial time approximation algorithm with performances 38

63 , 8
13 ,

5
8 , and 2

3 , respectively. For Δ-Max-ATSP, Kostochka and Serdyukov [9] provide
a 3

4 -approximation algorithm with polynomial running time. Kaplan et al. [7]
improve on this by giving a polynomial time 10

13 -approximation algorithm.
Δ-Max-ATSP is APX-hard, even if the weight function is {1, 2}-valued. This

follows basically from the hardness proof of the corresponding minization variant
given by Papadimitriou and Yannakakis [12]

The problem of computing a maximum weight 2-cycle cover is solvable in
polynomial time, see Section 2.1. But already the problem of computing max-
imum weight 3-cycle covers is APX-hard, even if w attains only two different
values [3]. Bläser and Manthey [2] give a 3

5 -approximation algorithm with poly-
nomial running time for Max-3-DCC. Kaplan et al. [7] improve on this by giving
a 2

3 -approximation algorithm with polynomial running time.

1.3 New Results

As a main technical contribution, we present a new decomposition technique for
the fractional solution of an LP for computing maximum weight 3-cycle covers.
The new idea is to ignore the directions of the edges and decompose the fractional
solution into undirected cycle covers, that means, that after ignoring directions,
the subgraph is a cycle cover. This has of course the drawback that viewed as a
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directed graph, the edges of the cycles might not point into the same direction.
The advantage, on the other hand is, that all cycles in the cycle covers obtained
have length at least three. In previous approaches such a fractional solution
always was decomposed into directed cycle covers in which every cycle could have
length two (but one had some additional knowledge about the distribution of the
2-cycles in the covers.) We apply this method to Δ-Max-ATSP and Max-3-DCC.

For Δ-Max-ATSP, this results in a 31
40 -approximation algorithm improving

on the previous best algorithm which has approximation performance 10
13 . Note

that 31
40 = 0.775 and 10

13 ≈ 0.769.
For Max-3-DCC, we get a 3

4 -approximation algorithm. This improves the
previous best algorithm which has performance 2

3 .

2 Computing Undirected 3-Cycle Covers

Let G be a complete directed graph without loops with n nodes and let w be a
weight function on the edges of G.

2.1 LP for 3-Cycle Covers

Maximum weight cycle covers can be computed by solving the following well-
known LP:

Maximize
∑
(u,v)

w(u, v)xu,v subject to

∑
u∈V

xu,v = 1 for all v ∈ V , (indegree constraints)

∑
v∈V

xu,v = 1 for all u ∈ V , (outdegree constraints)

xu,v ≥ 0 for all (u, v).

(1)

The variable xu,v is the indicator variable of the edge (u, v). The matrix cor-
responding to (1) is totally unimodular (see e.g. [11]), thus any optimum basic
solution of (1) is integer valued (indeed {0, 1} valued). When one wants to use
cycle covers as a relaxation for approximating Hamiltonian tours, the worst case
is a cycle cover that consists solely of cycles of length two, so-called 2-cycles. To
avoid this, one can add 2-cycle elimination constraints to the LP:

xu,v + xv,u ≤ 1 for all (u, v) (2-cycle elimination) (2)

These constraints are a subset of the so-called subtour elimination constraints.
If we consider the LP above as an integer LP, then the 2-cycle elimination

constraints ensure that there are no 2-cycles in a feasible solution. However,
after adding the 2-cycle elimination constraints, the basic feasible solutions of
the relaxed LP may not be integral anymore.
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2.2 Decomposition Into Directed 2-Cycle Covers

Let (x�
u,v) denote an optimal fractional solution of the relaxed LP (1) together

with (2). Let W � be its weight. Let N be the smallest common multiple of
all denominators of the x�

u,v. From (x�
u,v), we build a directed multigraph M�:

Each edge (u, v) in M� has multiplicity x�
u,v ·N . By using standard scaling and

rounding we may also assume that N is a power of two, i.e. N = 2ν for some
integer ν polynomially bounded in the input length (see the journal version of
[7] for details).

We change the solution (x�
u,v) and corresponding multigraph M� in the fol-

lowing way. Construct undirected graph H by defining an undirected edge {u, v}
if M� contains edges between vertices u and v in both directions. If H contains a
cycle C then M� contains two corresponding oppositely oriented cycles C1 and
C2 of length ≥ 3. The multiplicity of those cycles is min{x�

u,v : (u, v) ∈ C1} · N
and min{x�

u,v : (u, v) ∈ C2} ·N . W.l.o.g assume that the weight of C1 is no more
than the weight of C2. We delete min{x�

u,v : (u, v) ∈ C1} · N copies of C1 from
M� and add min{x�

u,v : (u, v) ∈ C1} ·N copies of C2. We also change the current
solution (x�

u,v) to reflect the change in M�. The new solution is also an optimal
solution of the LP (1) together with (2) since we did not decrease the value of
the solution and did not violate the LP constraints during the transformation.
Repeating the procedure O(n2) times we could guarantee that we have an opti-
mal solution (x�

u,v) such that graph M� does not have oppositely oriented cycles
of length larger than two.

Lewenstein and Sviridenko [10] showed how to compute a collection of cycle
covers C1, . . . , CN from M� with the following properties:

(P1) M� is the union of C1, . . . , CN , considered as a multigraph. Thus the total
weight of C1, . . . , CN equals N · W �.

(P2) Between any pair of nodes u and v, the total number of edges in C1, . . . , CN

between u and v is at most N .

The number N might be exponential, however, Lewenstein and Sviridenko also
gave a succinct representation consisting of at most n2 cycle covers with appro-
priate multiplicities. This will be sufficient for our algorithms.

The discussion above implies that C1, . . . , CN , fulfill the additional property:

(P3) Let H be the undirected graph that contains an edge {u, v} iff u and v are
contained in a 2-cycle in at least one of C1, . . . , CN . Then H is acyclic.

2.3 Decomposition Into Undirected 3-Cycle Covers

For our algorithms, we now redistribute the edges of C1, . . . , CN . Each copy of
an edge (u, v) in M� appears in exactly one of the C1, . . . , CN . Color an edge
of M� red, if it occurs in a 2-cycle in the particular Ci. Otherwise color it blue.
Note that by (P3), red edges cannot form a cycle of length strictly larger than
two.

Lemma 1. Let U be an undirected 2N -regular multigraph that has at most N
copies of any edge where N = 2ν is a power of two. Then there are undirected
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3-cycle covers D1, . . . , DN such that U is the union of D1, . . . , DN . This decom-
position can be performed in polynomial time.

Proof. The proof is by induction on N : If N = 1, then U is a 3-cycle cover.
Assume that N > 1. We will now decompose U into two N -regular multigraph

U1 and U2, each of them containing at most N/2 copies of each edge. By the
induction hypothesis, these multigraphs can be decomposed into N/2 3-cycle
covers each. This proves the lemma.

Let e be an edge of U and let m be its multiplicity. We move �m/2� copies to
U1 and �m/2� to U2. If m is even, this distributes all copies of e between U1 and
U2. If m is odd, then one copy remains, that is, the multigraph U ′ that remains
after treating all edges in this way is indeed a graph. Since U is 2N -regular and
we remove an even number of copies of each edge, the degree of each node in U ′

is even. Therefore, each connected component of U ′ is Eulerian. For each such
component, we compute an Eulerian tour. We take the edges of each component
of U ′ in the order induced by the Eulerian tour and move them in an alternating
fashion to U1 and U2. In this way, the degree at each node in U ′ is “halved”,
therefore both U1 and U2 are N -regular.

It remains to show that every edge in U1 and U2, respectively, has multiplicity
at most N/2. This is clearly true if the multiplicity m of an edge e in U was even.
If m is odd, then m < N , since N is even. Thus U1 and U2 get �m/2� < N/2
copies. The last copy is then either moved to U1 or U2, but in both cases, the
multiplicity is thereafter ≤ N/2. ��

Let W2 be the average weight of all 2-cycles and W3 be the average weight
of all cycles of length at least three in C1, . . . , CN .

We now consider M� as an undirected graph. It is 2N -regular and by (P2),
there are at most N edges between any pair of nodes. By Lemma 1, we can
decompose M� into undirected 3-cycle covers D1, . . . , DN . As already mentioned,
none of the cycles in D1, . . . , DN solely consists of red edges. Now we view
D1, . . . , Dn as directed graphs again. They may not be directed cycle covers
anymore, since the cycles may not be directed cycles. For all i and for any
red edge in Di, we add the other edge of the corresponding 2-cycle to Di. Let
D̂1, . . . , D̂N be the resulting graphs. The average weight of D̂1, . . . , D̂N is

w(D̂1) + · · · + w(D̂N )
N

= 2W2 + W3, (3)

because every edge in a 2-cycle was added a second time.

3 Metric Maximum ATSP

Throughout this section, we assume that w fulfills the triangle inequality, i.e.,

w(u, v) + w(v, x) ≥ w(u, x) for all nodes u, v, x.

Our goal is to find a Hamiltonian tour of maximum weight.
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3.1 First Algorithm

By exploiting an algorithm due to Kostochka and Serdyukov [9], Kaplan et al.
[7] show how to compute a Hamiltonian tour of weight at least 3

4W2 + 5
6W3.

Theorem 1. There is an algorithm with polynomial running time that given
C1, . . . , CN , computes a Hamiltonian tour of weight 3

4W2 + 5
6W3. ��

This will be the first algorithm that we use. It is favorable if W2 is small.
Next we design an algorithm that works well if W2 is large.

3.2 Second Algorithm

Lemma 2. Let K be a connected component of D̂i. After deleting one blue edge
of K, we can construct in polynomial time two node-disjoint directed paths P1
and P2 such that

1. P1 and P2 span the same nodes as K,
2. P1 can be transformed into P2 by reversing all directions of its edges and

vice versa,
3. except the discarded blue edge, all edges of K are in P1 ∪ P2, and
4. the discarded edge connects the two end-points of P1 and P2, respectively.

Proof. The component corresponding to K in Di is an undirected cycle. At
least one of the edges on this cycle is blue by (P3). Discard one blue edge. Let
v1, . . . , v� be the nodes of K (in this order) and assume that the edge between
v� and v1 was discarded. Between any two nodes vλ and vλ+1, there are at most
two edges and if there are two edges, then these edges are red and point into
different directions, since we added the other edge of the 2-cycles. Therefore,
the paths v1, v2, . . . , v� and v�, v�−1, . . . , v1 contain all edges of K except the one
that we discarded. ��

By applying Lemma 2 to each component of D̂i, we obtain two collections
of node-disjoint paths Pi,1 and Pi,2 such that each connected component of D̂i

corresponds to two oppositely directed paths in Pi,1 and Pi,2 respectively. Next
we are going to construct Hamiltonian tours Hi,1 and Hi,2 out of Pi,1 and Pi,2.

Lemma 3. Given Pi,1 and Pi,2, we can construct in polynomial time, two Hamil-
tonian tours Hi,1 and Hi,2 such that Hi,1 and Hi,2 contain all the weight of the
red edges and 1/2 of the weight of the blue edges of D̂i.

Proof. Let pj,1, . . . , pj,k be the paths of Pi,j for j = 1, 2. Assume that p1,κ and
p2,κ span the same nodes but have opposite directions. Let p1,κ be the path that
forms a cycle with the discarded blue edge.

We first describe a randomized algorithm. We first select paths q1, . . . , qk: qκ

is p1,κ or p2,κ, both with probability 1/2. All coin flips are independent. The
cycle Hi,1 is obtained by patching the paths together in the order q1, . . . , qk, and
the cycle Hi,2 by patching the paths together in the opposite order qk, . . . , q1.
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With the exception of the discarded blue edges in Lemma 2, an edge of D̂i is
included twice with probability 1/2, namely once in Hi,1 and once in Hi,2. Thus
we get all the weight of these edges in expectation.

We now show that we can get some weight of the discarded blue edges back
(in expectation) during the patching process. Figure 3.2 shows two discarded
blue edges e and f . There are four possibilities how the corresponding paths
can be directed. Each occurs with probability 1/4. The edges introduced by the
patching are xj and yj , respectively. The expected weight we get is

1
4 (w(x1) + w(y1) + w(x2) + w(y2) + w(x3) + w(y3) + w(x4) + w(y4)).

By the triangle inequality, we have

w(e) ≤ w(x1) + w(y2),
w(e) ≤ w(x2) + w(y1),
w(f) ≤ w(x3) + w(y1),
w(f) ≤ w(x1) + w(y3).

Thus we recover 1
4 (w(e) + w(f)) in expectation.1 But we will recover 1

4w(e)
on the lefthand side of the path of e and 1

4w(f) on the righthand side of the
path of f . Thus the total weight is 1/2 of the weight of the discarded blue edges.

The above randomized procedure can be easily derandomized by exploiting
the method of conditional expectations. ��

Theorem 2. There is an algorithm with polynomial running time that given
C1, . . . , CN , computes a Hamiltonian tour of weight at least W2 + 1

4W3.

Proof. The algorithm computes the graphs D̂1, . . . , D̂N and decomposes them
into 2N collections of paths P1,1, P1,2, . . . , PN,1, PN,2 as in Lemma 2. From each
pair Pi,1, Pi,2, it computes Hamiltonian tours Hi,1 and Hi,2 as in Lemma 3. It
then outputs the tour with the largest weight. By (3), D̂1, . . . , D̂N have weight
N ·(2W2+W3). When constructing the collections of paths, we might loose up to
weight N ·W3. But when forming the tours, we get half of it back by Lemma 3.
Altogether, there are 2N Hamiltonian tours. The heaviest of them has weight
at least W2 + 1

4W3. ��

3.3 Final Algorithm

Theorem 3. There is a 31
40 -approximation algorithm for Δ-Max-ATSP with

polynomial running time.

Proof. The algorithm runs the algorithms of Theorems 1 and 2 and outputs
the heavier tour. Balancing the approximation performances of both algorithms

1 Note that we need w(x1) and w(y1) twice, but w(x4) and w(y4) is not of any use for
us.
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Fig. 1. Two discarded blue edges e and f (drawn solid) of two consecutive path (drawn
dashed). There are four possibilities how the paths can be chosen. xj and yj are the
edges used for the patching, the xj are used when patching from left to right, the yj

when patching from right to left

yields the desired result. This is easiliy seen by the following probabilistic argu-
ment: Choose the output of the first algorithm with probability 9/10 and the
output of the second one with probability 1/10. An easy calculation shows that
the expected weight is 31

40 (W2 + W3). The weight of the heavier tour is certainly
at least as large as the expected weight. ��

4 Maximum 3-Cycle Cover

In this section, we only assume that w is nonnegative. In particular, w is not
required to fulfill the triangle inequality. Our goal is to compute a directed 3-
cycle cover of maximum weight.
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4.1 First Algorithm

Bläser and Manthey [2] show how to compute a 3-cycle cover of weight 1
2W2+W3.

Theorem 4. There is an algorithm with polynomial running time that given
C1, . . . , CN , computes a 3-cycle cover of weight 1

2W2 + W3. ��

This will be our first algorithm. In the next subsection, we design an algorithm
that is favorable if W2 is large.

4.2 Second Algorithm

Lemma 4. Let K be a connected component of D̂i. We can construct in poly-
nomial time two node-disjoint directed cycles Z1 and Z2 such that

1. Z1 and Z2 span the same nodes as K,
2. Z1 can be transformed into Z2 by reversing all directions of its edges and

vice versa,
3. all edges of K are in Z1 ∪ Z2,
4. and the length of Z1 and Z2 is at least three.

Proof. The component corresponding to K in Di is an undirected cycle of length
at least three. After possibly adding some edges to K, K consists of two oppo-
sitely oriented directed cycles of length at least three. ��

Theorem 5. There is an algorithm with polynomial running time that given
C1, . . . , CN , computes a 3-cycle cover of weight W2 + 1

2W3.

Proof. The algorithm computes the graphs D̂1, . . . , D̂N and decomposes them
into 2N collections of 3-cycle covers by treating each component as in Lemma 4.
It then outputs the 3-cycle cover with the largest weight. By (3), D̂1, . . . , D̂N

have weight N · (2W2 + W3). There are 2N 3-cycle covers. The heaviest of them
has weight at least W2 + 1

2W3. ��

4.3 Final Algorithm

Theorem 6. There is a 3
4 -approximation algorithm for Max-3-DCC with poly-

nomial running time.

Proof. The algorithm runs the algorithms of Theorems 4 and 5 and outputs
the heavier 3-cycle cover. Balancing the approximation performances of both
algorithms yields the desired result. ��
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Abstract. In the Vehicle Routing Problem (VRP), as in the Traveling
Salesman Problem (TSP), we have a metric space of customer points,
and we have to visits all customers. Additionally, every customer has
a demand, a quantity of a commodity that has to be delivered in our
vehicle from a single point called the depot. Because the vehicle capacity
is bounded, we need to return to the depot each time we run out of the
commodity to distribute. We describe a fully polynomial time algorithm
with approximation 2.5, we also modify this algorithm for the on-line
version of VRP, the randomized version has competitive ratio of 2.5 on
the average, and the deterministic version has ratio 4. We also describe
2 approximation for a restricted version of the problem.

1 Introduction

In general, the VRP seeks to determine the minimum cost (length) route for a
vehicle to deliver goods to (or pick up goods from) a set of n customers. The route
is divided into trips that start and end at the supply depot,1 with the constraint
that the cumulative weight of goods delivered to customers (alternatively, the
cumulative weight of collected goods) on a single trip does not exceed a certain
bound, which we set to 1 w.l.o.g. In literature it is often assumed that demands
are integer and that vehicle capacity is some Q — in our setting, this means
that the demands are integer multiples of some 1/Q.

An instance of VRP is defined by the distance matrix C for the set of points
{0, . . . , n} where 0 is the location of the depot and the other points are the
customer locations, and the vector d for the customer demands. We assume that
the distances satisfy the triangle inequality. The objective is to minimize the total
distance traveled by the vehicle while satisfying demand at all the customers.
(Note that fulfillment of a customer demand might require visiting the custumer
on more than one trip).

Haimovich et al. [9] gave the first approximation algorithm for the VRP. Their
Optimal Tour Partition (OTP) heuristic approximates the solution with a ratio

1 Charikar et al. [5] consider a version of VRP with multiple sources of goods rather
than a single depot.
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of τ + �n/Q
n/(Q−τ) , assuming a τ -optimal2 solution to the TSP. In later work, they

described improved OTP algorithm that is (τ + 1 − 3
2Q )-optimal. The running

time of OTP was not discussed, but it can be seen to be O(nQ).
Note that the best known values of τ are 1.5 for the general case (see

Christofides [6]) and 1 + ε if distances represent Lp metric in Rk for a finite
k (see Arora [1]).

A VRP where one or more of the parameters are random variables is re-
ferred to as a stochastic VRP (SVRP). Some examples are VRPSD (VRP with
Stochasic Demands) and VRPSCD (VRP with Stochastic Customers and De-
mands). The application that gave birth to SVRP in the academic literature
was refuelling of terminal tankage facilities from a refinery, with demand at the
tanks a random variable (Charnes and Cooper [4]). Many other applications are
described by Bertsimas [3], Secomandi [11] and Gendreau et al. [7]. One can see
that it is very typical in logistics to serve many customers from a single depot,
when the actual demands of the customers are either unknown or are subject to
random fluctuations.

With his Cyclic Heuristic (CH) for the VRPSD, Bertsimas [3] obtains an
approximation ratio of τ + 1 + O(1/n) for the case of i.i.d. demands and Q + 1
for the case of non-i.i.d. demands. CH, the stochastic counterpart of OTP, deter-
mines the best tour on the basis of the expected lengths of the tours. Assuming
that the maximum demand K is not larger than Q, CH requires O(n3K2) time,
a bound later improved to O(n2KQ) by Gendreau et al. [7].

We make the following contributions to this problem. In the general off-
line case we obtain the same approximation ratio of τ + 1 as in [10] but our
approximation algorithm is fully polynomial. In the on-line case in which the
demand of a customer is known only when the vehicle visits it, we get the
same ratio of τ + 1 and this subsumes any possible random distribution of the
demands, thus improving upon [3]. We also show competitive ratio 2τ +1 against
an adaptive adversary. All of these results are in Sec. 3. Finally, in Sec. 4 we
describe a 2-optimal algorithm for a restricted version of the problem. While
this version is a practical problem in its own right we hope that the primal-
dual technique that we describe will lead to an improvement for the the general
version as well.

2 Linear Program for VRP

The multiset of edges used by all trips can be viewed as a vector x in a linear
space with one base vector for each edge. In this section we will describe a linear
program with the necessary conditions for a valid solution and consequently, the
corresponding dual linear program that provides valid lower bounds for the cost
of an optimal solution.

We use notation V = {0, 1, . . . , n} (set of nodes), P(V ) = {S : S ⊆ V },
E = {e ∈ P(V ) : |e| = 2} (set of edges); for S ∈ P(V ) we have dS =

∑
i∈S di;

2 We use “τ -optimal” as a synonim for “with approximation ratio τ”.
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we also define a 0 -1 matrix Δ with a column β(e) for every edge and a row δ(S)
for every S ∈ P(V ); ΔS,e = δ(S)e = β(e)S = 1 iff |e ∩ S| = 1. The following
linear program is a fractional relaxation of VRP:

Minimize cx
subject to

xT ≥ 0 or xe ≥ 0 for every e ∈ E (2.1)
ΔxT ≥ 2
d�T or δ(S)xe ≥ 2
dS� for every S ∈ P(V ) (2.2)

Even an integral solution to this linear program may fail to correspond to
a valid solution. However, to prove approximation (or competitive) ratio of an
algorithm we can use solutions of the following dual linear program:

Maximize 2
d�y
subject to

yT ≥ 0 or yS ≥ 0 for every S ∈ P(V ) (2.3)
ΔT yT ≤ cT or β(e)y ≤ ce for every e ∈ E (2.4)

Assume that c0,1 ≤ c0,2 ≤ . . . c0,n and let S(i) = {i, . . . , n}. Define yRB
S(i) =

c0,i − c0,i−1, and for every other S define yRB
S = 0. The triangle inequality

implies that β(i, j)yRB = |c0,i − c0,j | ≤ ci,j , hence yRB satisfies (2.3) and (2.4),
which proves the validity of the radial lower bound RB = 2dyRB = 2

∑
i dic0,i.

Here, RB is a lower bound for the solution cost that is based solely on “radial”
distances from the depot to the customers.

3 From TSP Solution to VRP Solution

We simplify OTP of [9, 10] so its running time becomes strongly polynomial and
it can be easily adapted to the on-line cases. First, we add a customer with a
demand d0 at the depot location to ensure that (a) the tour of the customer
sites includes the depot and (b) the sum of demands is integer. Our algorithm
will choose some θ such that 0 < θ ≤ 1 and load the vehicle with θ units of the
commodity for the first trip. The vehicle returns to the depot only if it runs out
of the commodity or if all customer demands are satisfied. Any subsequent trip
after the first commences with a load of 1 unit of the commodity and starts with
a visit to the last customer on the immediately preceding trip if that customer
was not completely served, and starts with the next customer otherwise.

Let Di =
∑i−1

j=0 dj . We can work out the condition that within the solution
that was determined by θ we make a roundtrip between node i and node 0: for
some integer k, Di < k+θ and Di+1 ≥ k+θ; equivalently, �Di−θ� < �Di+di−θ�.
In other words, we make f(i, θ) = �Di + di − θ� − �Di − θ� roundtrips between
i and 0. Therefore the cost of this solution is the TSP cost plus

F (θ) = 2
n∑

i=1

f(i, θ)c0,i.
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Observation 1. As a function of θ, f(i, θ) is piecewise linear, with one or two
non-zero pieces. E.g. if Di = 5.7 and di = 0.4 then f(i, θ) = 1 if 0 ≤ θ ≤ 0.1 or
0.7 < θ < 1.

Obs. 1 allows us to calculate the minimum of F (θ) in time n log n. If we add
this calculation as a post-processing step to a τ -optimal TSP algorithm, we get
a strongly polynomial (τ + 1)-optimal VRP algorithm. This proves

Theorem 1. There exists a deterministic polynomial time algorithm for the
VRP with approximation ratio 2.5.

Observation 2. If we pick θ uniformly at random, E[f(i, θ)] = di; consequently,
E[F (θ)] = RB. Thus, with no prior knowledge of d, we can fill the vehicle with
random amount θ and start following the TSP tour making roundtrips to the
depot whenever the vehicle runs out of the commodity that is being distributed;
this results in average (or expected) additional cost being equal to RB.

Because in this randomized algorithm we do not need to know the demands,
this proves

Theorem 2. There exists a randomized polynomial time algorithm for on-line
VRP problem with competitive ratio 2.5.

This result is similar to the one by Bertsimas [3], but stronger and simpler.

Observation 3. If t is the cost of the TSP tour that is the basis of our algorithm,
then F (θ′) − F (θ) ≤ t for every θ and θ′.

To see that Obs. 3 is true, compare solutions determined by θ and θ′. The
former splits the tour of cost t into pieces and given such a path, say, from node
i to j, it adds a traversal from depot node to i and from j to the depot node.
The latter picks a node, say k, in every path created by the former, say from i
to j. We could extend the path from k to the depot node by the path fragment
from i to k, and the path to k can be extended to j. By the triangle inequality,
the cost of transformation is not greater than the path length; by adding over all
paths, we transform solution determined by θ to the one determined by θ′ with
the extra cost no greater than t. Because we can pick θ′ = 0 we can see that

Theorem 3. There exists a deterministic polynomial time algorithm for on-
line VRP problem with competitive ratio 2τ + 1, which equals 4 if we use the
Christofides algorithm.

4 Restricted VRP

In this section, we obtain an approximation ratio 2 for a restricted version of
VRP. We will assume that every demand is either large or small, and that in an
optimum solution at most one customer with large demand is visited on each
trip, while there is no restriction on the number of small demands that can be
satisfied on a single trip.
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This situation arises in practice, for instance, for a representative of a com-
pany that sells and maintains X-ray machines. One vehicle can carry no more
than one such machine; however, any number of service visits can be undertaken
by a given vehicle.

We can model this by picking a very small number z, setting each large
demand to 1 − nz and each small demand to z. As a result, if S �= ∅, 
dS� =
max(|S ∩ L|, 1) where L is the set of nodes with large demands. With these
assumptions, we can use linear program (2.1-2) and the dual linear program
(2.3-4). We will refer to small demands as zero demands and to large demands
as one demands.

4.1 Zero Demands

We now consider the case with zero-demands only, so that 
d� is a vector of all
1’s. In this case the primal program (2.1-2) and the dual program (2.3-4) are
very similar to those used by Agrawal et al. [2] (see also [8]) for the Steiner Tree
Problem, and we will adapt their Colliding Trees method for our purposes. We
describe the solution in some detail because later we incorporate it into the more
general case.

For simplicity we present the algorithm in a form that is rather inefficient
but that still runs in polynomial time (the simple algorithm explicitly maintains
the values of all dual variables; the efficient version described by [2] has a data
structure that allows us to update many such values in a single operation). The
algorithm uses a data structure Π that represents a partition of {0, . . . , n} and
it considers only those subsets3 S ⊂ {0, . . . , n} that are or were present in Π.
For any such set S we define

yS — the dual variable of S;
LBS =

∑
U⊂S yU — the part of the lower bound attributable to set S;

aS — boolean variable indicating the status of S in our algorithm, we identify
true with 1 and false with 0, if aS is true we say that S is active;

pS — the “anchor point” of S, the tour traversing the minimum cost spanning
tree of S ∪ {pS} is considered a possible part of our solution.

The algorithm is shown in Fig. 1.
When the algorithm terminates, every set S has aS = false, and pS is defined.

Moreover, by following the method of [2] one can prove that TS is a spanning
tree for S ∪ {pS} with cost at most 2LBS .

In particular, we can define a radius ri of point i as the sum of yS ’s such that
i ∈ S. Iterations of the algorithm preserve the following invariants:

(a) all elements of active sets (S with aS true) have the same radius ractive,
(b) all elements of a set S (active or not) have the same radius rS ≤ ractive,
(c) tree TS spans S with cost at most 2(LBS − rS),
(d) if S is not active, tree TS spans S ∪ {pS} with cost at most 2LBS .

3 We use ⊂ to denote a proper subset, i.e. one that is not equal.
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initialize Π with sets {0}, . . . , {n}
for 0 ≤ u ≤ n

a{u} ← true, T{u} ← ∅
a{0} ← false
while a �= 0 do

find maximal ε such that β(e)(y + εa) ≤ ce for every edge e
y ← y + εa
for every e = {u, v} such that β(e)y = ce

U ← FindΠ(u), V ← FindΠ(v)
if aU and aV

W ← UnionΠ(U, V )
aW ← true
TW ← TU ∪ TV ∪ {e}

if aU

T U ← TU ∪ {e}
pU ← v
aU ← false

if aV

T V ← TV ∪ {e}
pV ← u
aV ← false

Fig. 1. Algorithm for zero demands

When the algorithm terminates the union of TS trees forms a spanning tree
of all the points, and the constructed vector y proves that the cost of this tree
is within factor 2 of the minimal cost of a Steiner tree. The lower bound for
TSP implied by the dual program is twice that for a Steiner tree, and we obtain
a valid tour by traversing each edge of each TS twice. Thus we have a factor
two approximation. Importantly, trees of the form TS will be used as parts of
the (primal) solution and LBS ’s will be used as terms in the lower bound (dual
solution).

4.2 One Demands

If we have only one-demands we make a separate trip to every customer and the
resulting cost is 2

∑n
i=1 c0,i = RB (see Sec. 2). Because RB is a lower bound, in

this case we have an optimum solution.
If we are content with approximation ratio 2, we can relax the restriction on

the size of demands so that each is at least 1/2. The solution will remain the
same, while RB will decrease by a factor not larger than 2.

4.3 Zero-One Demands

We now combine the ideas of the previous two subsections. A valid solution is
a set of tours originating at 0 that collectively visit all the customer points, but
with at most one node from L per trip.
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We proceed in two phases. Phase 1 is similar to our algorithm for zero de-
mands. The difference is that if i ∈ L, we treat i in the same way as the depot,
i.e. we initialize a{i} = false and p{i} = i. When Phase 1 terminates, the union
of TS trees forms a spanning forest with one tree containing the depot and each
of the other trees containing at most one node from L.

Vector y defines for every edge e its residual length ce − bey. The notion
of residual length can be naturally extended to paths. The minimum residual
length of a path from a point p to the depot will be called the residual distance
of p, denoted ry(p).

In phase 2 we reduce some of the coefficients yS ; if yS is reduced and positive
we say that S is reduced, if yS is reduced to zero we say that S is nixed, otherwise
S is not reduced. We will maintain two properties:

➀ if S ⊂ U and S is reduced then U is nixed;
➁ if S ⊂ U and U is reduced then S is not reduced.

The goal of Phase 2 is to find a set P of 2|L| paths such that

➂ for each i ∈ L the set P has two paths from 0 to i with the minimum residual
length;

➃ if S is not nixed then at most one path from P goes through a point in S;
➄ if no path from P goes through a point in S then S is not reduced.

Lemma 1. If conditions ➀-➄ hold then we can efficiently find a solution to
VRP that has cost within factor 2 of the optimum.

Proof. Let A(y) be the set of maximal non-nixed sets, and let S(P) be the sets
of points in the paths from P.

The sum 2
∑

S∈A(y) LBS plus the sum of residual lengths of paths in P forms
a lower bound TB(y) for the cost of a solution to our VRP instance. To show
this, we extend the vector y to form the corresponding dual solution; assume that
points in L have the following nondecreasing set of residual distances: a1, ..., ak,
while a0 = 0. We define S(i) = {p ∈ V : ry(p) ≥ ai} and we set yS(i) = ai−ai−1.
Because we use residual distances, the inequalities (2.4) are still satisfied.

Note that 1
2TB(y) =

∑
S∈A(y) LB(S) +

∑
p∈L ry(p). From now on, we will

consider only dual solutions in which sets have coefficients not exceeding those
from Phase 1, and use the last expression for the implied lower bound.

We now modify the dual solution and the set of paths P so that the sum∑
P∈P

residual length of P + 4
∑

S∈A(y)

LB(S)

does not increase, and eventually every S is nixed. Consider first S ∈ A(y) that
intersects S(P). Let e1 and e2 be the first and last edges of P with a point in
S and z = yS . Suppose that between e1 and e2 path P departs from S and
re-enters; because P has the minimal residual length, this is possible only if S
and all sets visited in that detour are non-reduced. In this case we replace this
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portion of P with a traversal in TS properties ➀-➄ are preserved. Now we nix
S; 4LBS is decreased by 4z and the residual length of P increases by 2z.

Now every set S that intersects S(P) is nixed and every S without such a
point is not reduced. This implies that every point in V − S(P) belongs to a
non-reduced set. For each non-reduced set S we add to our solution the cyclic
path that traverses edges of TS twice. The cost of these paths is bounded by
4
∑

S∈A(y) LB(S) so it suffices to show that the graph formed by the paths of
our solution is connected.

Since every point p ∈ V − S(P) is on a cyclic path, it suffices to show that
each TS defining such a cyclic path is connected, perhaps indirectly, to S(P).
We can show it by induction on the time when aS becomes false.

At the time when aS became false the anchor point pS was defined. If pS

belongs to some U such that aU became false earlier, we use the inductive hy-
pothesis. Suppose not, then aU became false at the same time as aS , which
means that these two sets are siblings. Because the parent of S and U is nixed,
S ∪ U intersects S(P), and because S does not intersect S(P), U does. This
means that U is nixed. Now, either pS ∈ S(P) and we are done, or pS belongs to
a subset of U , say W , that is not nixed, and for which aW became false earlier. ❐

Network flow formulation of properties ➀-➃
Below we define a network NW1(y) such that if it has a flow with value 2|L|
we can satisfy properties ➀-➃, and if it has a cut of capacity below 2|L| we can
decrease yS ’s of some sets from A(y) and increase the lower bound TB(y).

1. The nodes are: source node s, sink node t, node p for each p ∈ L, and for
each S ∈ A(y) we have Sin and Sout.

2. For each p ∈ L we have edge (s, p) with capacity 2;
3. For each S ∈ A(y) we have edge (Sin, Sout) with capacity 1;
4. If a path from p ∈ L to 0 with the minimum residual length has an edge

(q, r) then we have a network edge (q, r) with capacity ∞ where
– if q = p ∈ L then q = p,
– if q ∈ S ∈ A(y) then q = Sout,
– if r = 0 then r = t,
– if r ∈ S ∈ A(y) then r = Sin.

Lemma 2. Assume that y satisfies properties ➀-➁ and in NW1(y) there exists
a flow with value 2|L|. Then there exists a set of paths P with properties ➂-➃.

Proof. Because all capacities in NW1(y) are integer, we can decompose the flow
into 2|L| unit flows, each following a simple path.

Suppose that one of these paths is (s, p, t). This means that p ∈ L and the
residual length of (p, 0) is the same as the original length. Thus we can place in
P two copies of the 1-edge path (p, 0).

Now consider a path (s, p, S1
in, S1

out, . . . , S
k
in, Sk

out, t). Assume that (p, q1) is
the shortest edge from p to S1, (ri−1, qi) is the shortest edge from Si−1 to
Si and (rk, 0) is the shortest edge from Sk to 0. We get a path prototype
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(p, q1, r1, . . . , qk, rk, 0). We convert this prototype to a path for our set P by
replacing each (qi, ri) with the unique path from qi to ri in the tree TSi .

Our paths use only the edges from paths of smallest residual length and
edges of residual length 0, hence they satisfy ➂. Property ➃ is ensured by the
unit capacity of (Sin, Sout) edges. ❐

Lemma 3. Assume that y satisfies properties ➀-➁ and in NW1(y) there exists
a cut with capacity lower than 2|L|. Then there exists B ⊂ A(y) such that after
subtracting sufficiently small ε from yS for each S ∈ B we increase TB(y) by at
least 2ε, while y still satisfies ➀-➁.

Proof. Consider a cut C that has capacity lower than 2|L|. Let K = {p ∈
L : (s, p) ∈ C} and B = {S ∈ A(y) : (Sin, Sout) ∈ C}. Because 2|K|+|B| < 2|L|,
|B| < 2|L − K|. Subtract a small ε from yS for each S ∈ B. The sum of LBS ’s
decreases by |B|ε, rp increases by 2ε for each p ∈ L−K while rp cannot decrease
for p ∈ L. Thus 1

2TB(y) increases by (2|L − K| − |B|)ε ≥ ε. ❐

There are two considerations that limit ε in the last lemma. First, we cannot
decrease any yS below zero. Second, as we make some of the current shortest
paths longer, some competing paths may become shortest as well. In either case,
the network NW1(y) would have to be altered.

To limit the number of repetitions of this process we can restrict all distances
to a small set of integers, say from 0 to n2; this involves a very small increase of
the approximation ratio. This way in polynomially many steps we get y and P
that satisfy conditions ➀-➃.

Network flow formulation of properties ➀-➄
We now assume that we have y such that NW1(y) has flow with value 2|L|, which
by Lem. 2 can be converted into a set P of 2|L| paths that satisfy properties
➀-➃. P fails to satisfy property ➄ if there is a reduced yS such that no path goes
through the flow does not use edge (Sin, Sout). This means that in the network
NW1 we not only bound the flow through some edges from above but also in
some (Sin, Sout) edges we request exactly unit flow. Another way we may fail
property ➄ is if the flow does not use any edge through some singleton set {i}
that is nixed.

Note that if i does not belong to any shortest path from L to 0 we can increase
y{i}. Otherwise we insert {i} to A(y) and we create {i}in, {i}out as for other sets
in A(y), except the capacity of ({i}in, {i}out) is ∞.

Now we request that the minimum flow through the edges of reduced or nixed
sets is 1. The question of whether such a flow exists can be translated into a
normal maximum-flow question in another network NW2(y) as follows:

Let R(y) be the set of S’s such that yS is reduced. To create NW2(y) from
NW1(y), we (a) introduce a new sink node t′ and an edge (t, t′) of capacity 2|L|,
and (b) for each S ∈ R(y), subtract 1 from the capacity of (Sin, Sout) and add
two edges (s, Sout) and (Sin, t′), each of capacity 1. Note that in (b) the capacity
can be reduced from 1 to 0 or from ∞ to ∞ (if S is a nixed singleton).
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Lemma 4. Assume that y satisfies ➀-➁ and in NW2(y) there exists a flow with
value 2|L| + |R(y)|. Then there exists a flow in NW1(y) with value 2|L| which
has value 1 for each edge (Sin, Sout) such that S ∈ R(y).

Proof. Note that the total capacity of edges that leave s is 2|L| + |R(y)|, and
that the total capacity of edges that enter t′ is the same. Hence in our flow all
these edges have flow equal to the capacity.

Now, step by step we can transform the network back to NW1(y). For S ∈
R(y) we (a) subtract 1 from the flow in (s, Sout) and (Sin, t′), (b) add 1 to the
flow in edge (Sin, Sout). After completion of all such steps, we get the desired
flow in NW1(y). ❐

Lemma 5. Assume that y satisfies ➀-➁ and in NW2(y) there exists a cut with
capacity lower than 2|L|+ |R(y)|. Then there exist sets B ⊂ A(y) and D ⊂ R(y)
such that for a sufficiently small ε we can increase yS by ε for every S ∈ D and
decrease yS by ε for every S ∈ B, and we will obtain a valid solution to the dual
program that satisfies ➀-➁, while TB(y) increases by at least 2ε.

Proof. Assume that C is the cut in NW2(y) with capacity lower than 2|L| +
|R(y)|. For the sake of brevity, in the extended abstract we consider only the
case then (t, t′) �∈ C. We use C to define the following sets:

K = {p ∈ L : (s, p) ∈ C}
B0 = {S ∈ R(y) : (s, Sout) ∈ C and (Sin, t′) ∈ C}
B1 = {S ∈ A(y) −R(y) : (Sin, Sout) ∈ C}
D = {S ∈ R(y) : (s, Sout) �∈ C and (Sin, t′) �∈ C}

N← = {S ∈ R(y) : (s, Sout) ∈ C and (Sin, t′) �∈ C}
N→ = {S ∈ R(y) : (s, Sout) �∈ C and (Sin, t′) ∈ C}
B = B0 ∪ B1 and N = N← ∪N→

Note that we never increase yS beyond its value from Phase 1, i.e. we never
increase yS if S ∈ A(y) −R(y). This is possible because D ⊆ R(y) and we can
choose a sufficiently small ε.

Changing yS as described in the lemma decreases
∑

yS/ε by |B| − |D|. We
need to show that the increase of

∑
p∈L rp/ε is larger. We consider two cases.

Case: (t, t′) ∈ C. This case is depicted in the upper right diagram of Fig. 2.
From a node in p ∈ L − K we cannot go to D directly; instead, before each
visit to D we must traverse a set from B; as a result rp cannot become smaller
— traversals through D decrease the residual distance by 2ε, and the traversals
through B increase it by 2ε, and we must have at least as many of the latter as
we have of the former.

For p ∈ K, we can go directly to B, but later the same reasoning holds, so
we may decrease rp by at most 2ε. Therefore

∑
p∈L rp/ε decreases by at most

2|K|. It suffices to show that |D| − |B| − 2|K| > 0, or that |B| + 2|K| < |D|.
The capacity of the cut equals 2|K| + 2|B0| + |B1| + |N | + 2|L|, where the

first four terms can be seen in the left diagram of Fig. 2 and the last term is
the capacity of (t, t′). According to our assumption, this capacity is lower than
|L| + |B0| + |D| + |N |, hence 2|K| + |B0| + |B1| + |L| < |D|.
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K
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t

t

Fig. 2. On the left we depict the position of nodes in NW2(y) in respect to cut C.
The cut consists of edges that go out from the gray rectangle. For each class of sets the
gray edge indicates the position of (Sin, Sout) edges; they are dashed if their capacity
is decreased. Note that we cannot have infinite capacity edges in the cut, which limits
possible shortest paths from sets that have Sout in the gray rectangle. These limits are
depicted in the diagrams on the right. In these diagrams wide short arrows indicates
that a shortest path from the respective sets can go anywhere, whereas longer thin
arrows indicate all possibilities for the respective sets. The upper right diagram is valid
if (t, t′) is in the cut (so t is inside the gray rectangle), and the lower right diagram is
valid if (t, t′) is not in the cut

Case: (t, t′) �∈ C. This case is depicted in the lower right diagram of Fig. 2, and
the reasoning for that case differs from the case above in only two aspects. We
can increase the estimate of each new rp by 2ε because on a path from L to t we
must visit B, and after each visit to D we must have another visit to D, as we
cannot go from D ∪ N← ∪ L − K to {t} ∪ N→ without traversing B first. Thus
it suffices to show that |D| − |B| + 2|L − K| > 0. The second difference is that
the capacity of the cut equals 2|K|+2|B0|+ |B1|+ |N |. The effects of these two
differences cancel each other. ❐

Conclusion for zero-one demands.

Theorem 4. For every ε > 0 there exists a polynomial time approximation
algorithm for VRP with demands zero or one with approximation ratio 2 + ε.

Proof. We can start by finding an approximate solution with cost x that is
at most 2.5 times the optimum. Then we can rescale the edge lengths so that
x = 5n2/ε. Next we round down up each edge cost to the nearest integer; because
we have at most n trips, we use edges at most n2 times, so we increase the
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optimum solution cost by less than n2; because the optimum is at least 2n2/ε,
this is an increase by factor smaller than 1 + 1

2ε. Now it suffices to provide in
polynomial time a solution within factor 2 of the optimum.

We start from Phase 1 and keep on increasing the lower bound TB(y) by
finding a small cut in NW1(y) or in NW2(y) and using Lem. 3 or Lem. 5. If the
lower bound cannot be increased we obtain a flow in NW2(y) that satisfies the
assumptions of Lem. 4. This flow can be converted into a flow in NW1(y) that
satisfies ➀-➄, and by Lem. 2 it can in turn be converted into a valid solution
within factor 2 of the optimum. Restriction of the edge lengths to integers ensures
that the increases of the lower bound are integer, and the small range of these
integers ensures that we will have a polynomial number of iterations. ❐
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The Structure of Optimal Prefix-Free
Codes in Restricted Languages:
The Uniform Probability Case

(Extended Abstract)�

Mordecai J. Golin and Zhenming Liu

Abstract. In this paper we discuss the problem of constructing
minimum-cost, prefix-free codes for equiprobable words under the as-
sumption that all codewords are restricted to belonging to an arbitrary
language L and extend the classes of languages to which L can belong.

Varn Codes are minimum-cost prefix-free codes for equiprobable words when the
encoding alphabet has unequal-cost letters. They can be modelled by the leaf-set
of minimum external-path length lopsided trees, which are trees in which different
edges have different lengths, corresponding to the costs of the different letters of
the encoding alphabet. There is a very large literature in the information theory
and algorithmic literature devoted to analyzing the cost [24] [18] [10] [11] [3] [16]
[21] [1] [7] [22] [7] [22] of such codes/trees and designing efficient algorithms for
building them [16] [8] [26] [9] [20] [15] [7].

It was recently shown [13] that the Varn coding problem can be rewritten as
the problem of constructing a minimum-cost prefix-free code for equiprobable
words, under the assumption that all codewords are restricted to belonging to an
arbitrary language L, where L is a special type of language, specifically a regular
language accepted by a DFA with only one accepting state. Furthermore, [13]
showed that the techniques developed for constructing Varn Codes could then be
used to construct optimal codes restricted to any regular L that is accepted by
a DFA with only one accepting state. Examples of such languages are where L
is “all words in Σ∗ ending with a particular given string P ∈ Σ∗,” i.e., L = Σ∗P
(the simplest case of such a language are the 1-ended codes, L = (0+1)∗1 [4, 5]).
A major question left open was how to construct minimum-cost prefix-free codes
for equiprobable words restricted to L when L does not fit this criterion.

In this paper we solve this open problem for all regular L, i.e., languages
accepted by Deterministic Finite Automaton, as long as the language satisfies a
very general non-degeneracy criterion. Examples of such languages are L of the
type, L is all words in Σ∗ ending with one of the given strings P1, P2, . . . , Pn ∈
Σ∗. More generally our technique will work when L is a language accepted by
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A1 = {aabca, babca, cabca, dabca}, A2 = {01, 0011, 1100, 1010, 1001}
B1 = {aabca, babca, cabca, aaabca}, B2 = {01, 10, 0011, 101010, 000111}

Fig. 1. Examples of optimal (A1, A2) and non-optimal (B1, B2) codes in L1 and L2.
cost(A1) = 20; cost(B1) = 21; cost(A2) = 18; cost(B2) = 20

any Deterministic Automaton, even automaton with a countably infinite number
of states, as long as the number of accepting states in the automaton is finite.

Our major result is a combinatorial theorem that, given language L accepted
by a Deterministic Automaton, exactly describes the general structure of all
optimal prefix-free codes restricted to L. This theorem immediately leads to a
simple algorithm for constructing such codes given the restriction language L
and the number of leaves n.

0.1 Formal Statement of the Problem

We start with a quick review of basic definitions. Let Σ be a finite alphabet, e.g.,
Σ = {0, 1}, or Σ = {a, b, c}. A code is a set of words C = {w1, w2, . . . , wn} ⊂
Σ∗. A word w = σ1σ2 . . . σl is a prefix of another word w′ = σ′

1σ
′
2 . . . σ′

l′ if w is
the start of w′. For example 01 is a prefix of 010011. Finally, a code is said to
be prefix-free if for all pairs w,w′ ∈ C, w is not a prefix of w′.

Let P = {p1, p2, p3, . . . , pn} be a discrete probability distribution, that is,
∀i, 0 ≤ pi ≤ 1 and

∑
i pi = 1. The cost of code C with distribution P is

cost(C,P ) =
∑

i |wi|·pi where |w| is the length of word w; cost(C,P ) is therefore
the average length of a word under probability distribution P. The prefix-coding
problem is, given P, to find a prefix-free code C that minimizes cost(C,P ). This
problem is well-studied and can easily and efficiently be solved by the well-
known Huffman-coding algorithm When the codewords are equiprobable, i.e., ∀i,
pi = 1/n, then cost(C,P ) = 1

n

∑
i |wi| = 1

ncost(C) where cost(C) =
∑

i |wi|.
cost(C,P ) is then minimized when cost(C) is minimized. We will call such a
code an optimal uniform-cost code.

In this paper we are interested in what happens to the uniform-cost code
problem when it is restricted so that all of the words in C must be contained
in some language L ⊆ Σ∗,. As examples consider L = L1, the set of all words
in {a, b, c}∗ that end with the pattern abca and L = L2, the set of all words in
{0, 1}∗ in which the number of ‘0’s is equal to the number of ‘1’s.

In Figure 1, the codes Ai are optimal prefix-free codes (for 4/5) words in Li

(i=1,2). That is, no codes with the same number of words in Li have smaller
cost than the Ai. The Bi are non-optimal codes in the same languages.

Let language L be fixed. We would like to answer the questions:

– What is the optimal (min-cost) prefix-free code Cn containing n words in L?
– How does Cn change with n?

We call this the L-restricted prefix-coding problem. Our major tools for attacking
this problem are generalized lopsided trees.

Note: In this extended abstract we only state our main results and provide
intuition as to why they are correct. The full proofs are omitted.
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A version of this paper with more diagrams and worked examples can be found
as 2005 HKUST Theoretical Computer Science Group research report HKUST-
TCSC-2005-04 at http://www.cs.ust.hk/tcsc/RR.

1 Generalized Lopsided Trees

Definition 1. See Figures 2 and 3.
We are given a finite set T = {t1, t2, ..., tk} and two functions

cost(·, ·) : T × N+ → N+ and type(·, ·) : T × N+ → T

where N+ is the set of nonnegative integers; T , cost() and type() are the tree
parameters.

– A generalized lopsided tree for T, cost(·, ·) and type(·, ·) is a tree (of
possibly unbounded node-degree) in which every node is labelled with one
element T .

– The label of a node is its type; equivalently, a node of type ti is a ti-node.
– By convention, unless otherwise explicitly stated, the root of a generalized

lopsided tree must be a t1-node.
– The jth child of a ti node, if it exists, will have type type(ti, j). The length

(weight) of the edge from a ti-node to its jth child, will be cost(ti, j). By
convention, we will assume that if j ≤ j′, then cost(ti, j) ≤ cost(ti, j′) .

Note that it is possible that a type ti ∈ T node could be restricted to have at
most a finite number k of possible defined children. In this case, cost(ti, j) and
type(ti, j) are undefined for j > k.

Note too that it is possible for a node to be “missing” its middle children, e.g,
the 1st and 3rd child of a node might be in the tree, but the 2nd child might not.

When designing an algorithm for constructing optimal trees we will assume
that the values cost(ti, j), type(ti, j) and Num(i,m, h) = |{j : cost(ti, j) =
h and type(ti, j) = tm}|, can all be returned in O(1) time by some oracle.

Finally, we point out that our definition restricts cost(·, ·) to be nonnegative
integers. If cost(·, ·) were arbitrary nonnegative rationals they could be scaled to
be integers and the problem would not change. Allowing cost(·, ·) to be nonneg-
ative irrationals would change the problem and require modifying many of the
lemmas and theorems in this paper. In this extended abstract we restrict our-
selves to the simpler integer case since, as we will soon see, restricted languages
can be modelled using integer costs.

Definition 2. See Figures 2 and 3. Let u be a node and T r be a generalized
lopsided tree.

– depth(u) is the sum of the lengths of the edges on the path connecting the
root to u.

– The height of T r is H(T r) = maxu∈Tr depth(u).
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0

1

2

3

4

5

α1

α2 α3

α2 α3

α1

α3

Fig. 2. Example: Using a lopsided tree (with only one type of node) to model a Varn
code with letter costs c1 = 1, c2 = c3 = 2. Edge costs are represented by verti-
cal distances in the diagram. Let T = {t}. Then cost(t, 1) = 1, and cost(t, 2) =
cost(t, 3) = 2. The code represented by the tree is the set of all external paths, which
is α1α2, α1α3, α2, α3α1, α3α3. The cost of the tree is 2 + 3 + 3 + 3 + 4 = 15; its
height is 4

– The leaf set of T r is leaf(T r), the set of leaves of T r.
– The cost of T r is its external path length or C(T r) =

∑
v∈leaf(Tr) depth(v)

Tree T r is optimal if it has minimum external path length over all trees with
|leaf(T r)| leaves, i.e.,

cost(T r) = min{cost(T r′) : T r′ a tree with |leaf(T r′)| = |leaf(T r)|}

Definition 3. opt(n) denotes an arbitrary generalized lopsided tree that has
minimum cost among all generalized lopsided trees with n leaves.

For given T , cost, and type the problem in which we are interested is: Given
n, characterize the combinatorial structure of opt(n) and propose an
algorithm for the construction of opt(n).

Figure 2 illustrates a case in which |T | = 1 and Figure 3 a case in which
|T | = 2.

The |T | = 1 case has been extensively studied in the literature under the
name lopsided trees (hence, generalized lopsided trees for the extension studied
here). The name lopsided trees was introduced in 1989 by Kapoor and Reingold
[16] but the trees themselves have been implicitly present in the literature at
least since 1961 when Karp [17] used them to model minimum-cost prefix-free
(Huffman) codes in which the length of the edge of the letters in the encoding
alphabet were unequal; ci represented the length of the ith letter in the encoding
alphabet (the idea of such codes was already present in Shannon [24]).

A major motivation for analyzing lopsided trees was the study of Varn-codes
[26] [21]. Suppose that we wish to construct a prefix-free encoding of n symbols
using an encoding alphabet of r letters, Σ = {α1, . . . , αr} in which the length of
character αi is ci, where the cis may all be different.



376 M.J. Golin and Z. Liu

0

1

2

3

4

5

6

7

0

1

2

3

4

0

1

2

3

4

type(sq, 1) = circ cost(sq, 1) = 1
type(sq, 2) = sq cost(sq, 1) = 2
type(sq, 3) = sq cost(sq, 1) = 3

type(circ, 1) = sq cost(circ, 1) = 1
type(circ, 2) = circ cost(circ, 2) = 2
type(circ, 3) = sq cost(circ, 2) = 2
type(circ, 4) = circ cost(circ, 3) = 4

Fig. 3. A Generalized Lopsided tree (on the top) with T = {circle(circ), square(sq)}.
Cost of the tree is 3 · 3 + 5 · 4 + 4 · 5 + 6 = 51; height is 6. The two trees on the
bottom describe the functions cost and type on the two types of nodes, (sq) and (circ).
For comparison’s sake, the functions are also explicitly written out. Note that the
second child of the root is missing

If a symbol is encoded using string ω = αi1αi2 . . . αil
, then cost(ω) =

∑
j≤l cij

is the length of the string. For example if r = 2, Σ = {0, 1} and c1 = c2 = 1
then the cost of the string is just the number of bits it contains. This last case
is the basic one encountered in regular Huffman encoding.

Now suppose that the n symbols to be encoded are known to occur with
equal frequency. The cost of the code is then defined to be

∑
i≤n cost(ωi) (which

divided by n is the average cost of transmitting or length of a symbol). Given
c1 ≤ c2 ≤ · · · ≤ cr, a Varn-code for n symbols is a minimum-cost code. Varn



The Structure of Optimal Prefix-Free Codes in Restricted Languages 377

codes have been extensively studied in the compression and coding literature([21]
[2] both contain large bibliographies).

Such codes can be naturally modelled by lopsided trees in which the length of
the edge from a node to its ith child is ci. See Figure 2. Suppose that v is a leaf
in a lopsided tree and the unique path from the tree’s root to v first traverses an
ist1 edge then an ind

2 edge and so on up to an ithl edge. We can then associate with
this leaf the codeword ω = αi1αi2 . . . αil

. The cost of this codeword is exactly
the same as the depth of v in the tree, i.e.,

∑
j≤l cij

. Using this correspondence,
every tree with n leaves corresponds to a prefix-free set of n codewords and
vice-versa; the cost of the code is exactly equal to the external path length of
the tree which we will henceforth call the cost of the tree. This correspondence
is extensively used, for example, in the analysis of Huffman codes.

A lopsided tree with minimal cost for n leaves will be called an optimal
(lopsided) tree.

With this correspondence and notation we see that the problems of construct-
ing a Varn code and calculating its cost are equivalent to those of constructing
an optimal (lopsided) tree and calculating its cost. This is what was studied by
most of the papers listed in the first paragraph of this note and this problem is
now essentially fully understood.

[13] noted that if Σ = {α1, . . . , αr} and the ci are all integral then the
Varn coding problem can be modelled by introducing new alphabet Σ′ =
{x1, x2, . . . , xr} and Varn language L = (xc1

1 + xc2
2 + . . . + xcr

r )∗ ⊆ Σ′∗. A 1-
1 correspondence between character αi and string xci

i shows that there is a 1-1
correspondence between Varn codes and prefix-codes restricted to L and, simi-
larly, between lopsided trees and prefix-codes restricted to L. Thus, the problem
of finding the smallest cost prefix-code restricted to L is equivalent to finding
a min-cost lopsided tree. [13] then noted that this was true not just for codes
restricted to Varn-languages but that codes restricted to any regular L accepted
by a DFA with one accepting state (like Varn Languages) could also (almost) be
modelled by lopsided trees, thus permitting using the same techniques to find
the cost of such codes. For example let L = Σ∗P for some fixed P ∈ Σ∗, i.e., L
is all words that end in P. Such a L is always accepted by some DFA with one
accepting state, so the results in [13] permit finding optimal codes of n words
restricted to such L.

A problem that was left open in [13] was how to solve this problem if L is not
in this restricted form. For example, let Σ = {0, 1}. The simple regular language
L = Σ∗(000 + 111)Σ∗ of all words containing at least one occurance of 000 or
111 is not accepted by any DFA with only one accepting state. Another example
of a regular language not accepted by any DFA with only one accepting state
is L = 0∗1(0000∗1)∗0∗ the language containing all words in which every two
consecutive ones are separated by at least 3 zeros.

We now see that the L-restricted prefix-coding problem can be modelled using
generalized lopsided trees for regular languages L. Let L be accepted by some
Deterministic Automaton M with accepting states A = {a1, a2, ..., an}. Without
loss of generality we may assume that the empty string ε ∈ L, so the start
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state of M is in A. Now define the parameters of the lopsided tree as follows:
T = {t1, ..., tk} where ti corresponds to state ai. For any fixed i enumerate, by
increasing length (breaking ties arbitrarily) all paths in M that start at ai and
end at some node aj ∈ A, without passing through any other node in A in the
interior of the path. Let these paths be p

(1)
i , p

(2)
i , .... Set end(p) = j, where aj

terminates path p. We complete the remaining parameters of the generalized
trees by defining the functions

type(ti, j) = t
end

(
p
(j)
i

), cost(ti, j) = length
(
p
(j)
i

)
. (1)

There is then a simple one-one correspondence between prefix-free codes re-
stricted to L and the leaves of the defined generalized lopsided tree with the
cost of the code being equal to the cost (external path length) of the tree. Thus,
finding the min-cost prefix free code with n words restricted to L is exactly
equivalent to finding the min-cost generalized lopsided tree with n leaves. The
remainder of this paper will therefore be devoted to analyzing generalized lop-
sided trees and how they change as n grows.

As mentioned, the case of regular lopsided trees, i.e., when |T | = 1, is well-
understood. The difficulty in extending the results on the growth of lopsided
trees to that of generalized lopsided trees is that there is a fundamental difference
between |T | = 1 and |T | > 1. Let opt(n) be the optimal lopsided tree with n
nodes and In the set of internal (non-leaf) nodes in opt(n). In [7] it was shown
that, even though it is not necessarily true that opt(n) ⊂ opt(n + 1), i.e., the
trees can not be grown greedily, it is always true that In ⊆ In+1. So, with a little
more analysis, one can “incrementally” construct the trees by greedily growing
the set of internal nodes. Because of the interactions between the various types
of nodes, this last property is not true for generalized lopsided trees. We therefore
have to develop a new set of tools to analyze these trees, which is the purpose
of this paper.

Note: our correspondence only required that L be accepted by a Deterministic
Automaton with a finite set of accepting states. Since all regular languages are
accepted by Deterministic Finite Automatons our technique will suffice to analyze
all restrictions to regular languages.

We point out that there are many non-regular languages accepted by Non-
finite Deterministic Automata (automaton that can have countable infinite
states) with a finite set of accepting states. For example, the language L2, the
set of all words in {0, 1}∗ in which the number of “0”s is equal to the number of
“1”s, has this property. Since these can also be modelled by generalized lopsided
trees, our technique will work for restrictions to those languages as well.

2 Definitions

In this section, we introduce definitions that will be used in the sequel. In what
follows T, cost and type will be assumed fixed and given.
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Definition 4. Let T r be a generalized lopsided tree and v a node in T r.

– internal(T r) is the set of internal nodes of T r.
– type(v) is the type of v
– parent(v) is the parent of v;note that the parent of the root is undefined

Our main technique will involve building a larger tree T r′ out of smaller tree
T r by replacing some leaf v ∈ leaf(T r) with some new tree T2 rooted at a type(v)-
node. The increase in the number of leaves from T r to T r′ is |leaf(T2)| − 1. The
average cost cost(T2)/(|leaf(T2)| − 1) of the new leaves will be crucial to our
analysis and we therefore define

Definition 5. The average replacement cost of tree T r is

ravg(T r) = cost(T r)/(|leaf(T r) − 1).

Intuitively, we prefer to use the subtree with smallest ravg to expand the
existing lopsided tree. This motivates us to study the trees with minimum ravg.
Recall that the set T represents the collection of types.

Definition 6. Let tk ∈ T . Set

MinS(tk) = min{ravg(T r), : type(root(T r)) = tk}. (2)

The corresponding tree attaining MinS(tk) is denoted by MinS(tk).

Note that this definition does not depend upon n, but only upon T , cost(), and
type(). There might be more than one tree that attains1 the minimum cost. In
such a case, we select an arbitrary tree attaining the minimum that contains the
least number of nodes.

We can now define certain essential quantities regulating the growth of lop-
sided trees.

Definition 7. Let l be an integer. Set bottom(l) = l + mini{�MinS(ti)�} and

levtk
(l) =

{
bottom(l) − MinS(tk) if MinS(tk) is an integer;
�bottom(l) + 1 − MinS(tk)� if MinS(tk) is not an integer. (3)

In our analysis we often manipulate unused or free nodes. In order to do so,
we must first introduce a reference tree containing all nodes.

Definition 8. The Infinite Generalized Lopsided Tree (ILT) is the rooted
infinite tree such that for each node v in the tree, the ith child’s type is type(v, i);
the length of the edge connecting v and its ith child is cost(v, i), i.e., every node
contains all of its legally defined children.

We can now define

1 It is easy to prove that the minimum is attained but we do not do so in this extended
abstract.
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Definition 9. A leaf v in the infinite lopsided tree is free with respect to tree
T r, if v /∈ T r and parent(v) ∈ T r; the free set of T r is

free(T r) = {v : v is free with respect to T r}.

In our study of lopsided trees we need to somehow avoid repeated paths that
do not contribute any benefit to the tree. We therefore define:

Definition 10. An improper lopsided tree is a tree containing a path p1p2....pk,
where k > |T | in which each pi has only one child (that is, p1 has only child p2,
p2 has only child p3, ...). A proper lopsided tree is a tree which is not improper.

It is not difficult to see that improper trees can not be optimal. We may therefore
restrict ourselves to studying proper trees. Note that a proper tree with n leaves
can only contain O(n) nodes in total (where the constant in the O() depends
upon the tree parameters); we will need this fact in the sequel.

We need one more definition:

Definition 11. Lopsided Tree parameters T , cost(), and type() are non-
degenerate if they satisfy the following condition:
There exists N > 0 such that, ∀l ≥ N ; if the number of nodes on level l in
ILT is �= 0 then the number of nodes on level (bottom(l) + 1) in ILT is ≥
maxi{|leaf(MinS(ti))|}.

Essentially, the parameters are non-degenerate if deep enough into the infinite
tree, the number of nodes per level can’t get too small. A technicality occurs
because it is quite easy to construct languages in which many levels of the infinite
tree have no nodes, e.g., the language of all words in w ∈ {0, 1}∗ in which # of
0’s in w equals # of 1’s in w. In this language all words have even length, so
all odd levels are empty. The condition is stated to handle such cases as well.
While the non-degeneracy definition is quite technical, it is usually quite easy
to show that most interesting classes of languages satisfy it. For example, L of
the type, L is “all words in Σ∗ containing at least one of the specified patterns
P1, P2, . . . , Pk ∈ Σ∗” always satisfy this condition.

3 The Structure of Optimal Generalized Trees

Theorem 1. Let T r be any optimal tree, v1, v2 two nodes in in T r with
type(v1) = type(v2). Then if v1 is internal in T r and v2 is a leaf then
depth(v1) ≤ depth(v2). Furthermore, there exists a constant N , dependent only
upon the tree parameters, such that if T r has n ≥ N leaves then

1. if v is a leaf in T r, then H(T r) − depth(v) ≤ 
MinS(type(v))� and
2. if v is internal in T r, then H(T r) − depth(v) ≥ 
MinS(type(v))� − 1

This lemma can be read as saying that opt(n) always has a layered structure,
i.e., there exists integers l1, ...l|T |, such that (i) all ti nodes on or above level li
are internal (ii) all ti nodes below level li + 1 are leaves and (ii) ti nodes on level
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li+1 could be either internal or leaves. Furthermore, H(T r)−(li+
MinS(ti)�) ∈
{0, 1} so (up to an additive factor of 1), it is independent of n.

The proof of this theorem is a quite technical case-by-case one and is omitted
from this extended abstract. The basic intuition behind it is quite simple, though.
First, it is easy to see that, for fixed type ti, there must be some level li above
which all ti-nodes are internal and below which all ti-nodes are leaves; otherwise,
we can swap a higher leaf with a lower internal to get a cheaper tree with the same
number of leaves. The actual location of li is derived by (i) calculations noting
that if a leaf v is higher than the given level, then the tree can be improved by
turning v into an internal node by rooting a MinST(ti) tree at it and removing
|leaf(MinST(ti))| leaves from the bottom level of the tree; and (ii) calculations
noting that if an internal node v is lower than the specified level then it and all
of its descendents can be removed and replaced by new free leaves located at the
bottom level or one level below the bottom. The existence of the nodes in (i) to
remove and nodes in (ii) to add follows from the non-degeneracy condition.

Definition 12. Set

V (l) = {v ∈ ILT |depth(v) ≤ levtype(v)(l)},

that is, for each i, V (l) contains exactly all of the ti nodes with depth ≤ levti
(l).

Now set

TreeA(l) = V (l)∪{v|v ∈ ILT and parent(v) ∈ V (l) and depth(v) ≤ bottom(l)}

and

TreeB(l) = V (l) ∪ {v|v ∈ ILT and parent(v) ∈ V (l) and depth(v) ≤ bottom(l) + 1}
=TreeA(l) ∪ {v|v∈ ILT and parent(v)∈V (l) and depth(v)=bottom(l)+1}

Note that V (l) is the set of internal nodes of TreeA(l) and also the set of internal
nodes of TreeB(l).

Lemma 1. Let l be an integer, then

|leaf(TreeA(l))| ≤ |leaf(TreeB(l))| ≤ |leaf(TreeA(l + 1))|.

Even though it is possible that, for some l, |leaf(TreeA(l))| =
|leaf(TreeA(l + 1))| it is not difficult to see that, if the non-degeneracy con-
dition is satisfied, liml→∞ |leaf(TreeA(l))| = ∞ so, for every n we can find an l
such that |leaf(TreeA(l))| ≤ n < |leaf(TreeA(l + 1))|.

We can now state our main theorem:

Theorem 2. Suppose parameters T , cost(), and type() are non-degenerate.
For a given integer l, set A(l) = leaf(TreeA(l)) and B(l) = leaf(TreeB(l))
Then

1. If n = |A(l)|, then the tree TreeA(l) is optimal.
2. If |A(l)| < n ≤ |B(l)|, then the tree obtained by appending the n − |A(l)|

highest free (with respect to TreeA(l)) leaves to TreeA(l) is optimal.
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3. If |B(l)| < n < |A(l + 1)|,
– All nodes in V (l) are internal in opt(n).
– No ti-node whose depth is greater than levti

(l) + 1 is internal in opt(n).

This suggests how to find opt(n) given n. First, find l such that A(l) ≤ n <
A(l + 1). Then, calculate B(l). If A(l) ≤ n ≤ B(l) then opt(n) is just T reeA(l)
with the highest n − A(l) free leaves in T reeA(l) added to it. The complicated
part is when B(l) < n < A(l + 1). In this case Theorem 2 tells us that the set
of ti internal nodes in opt(n) is all of the ti nodes on or above depth levti

(l) + 1
plus some ti nodes at depth levti

(l)+1. If we exactly knew the set of all internal
nodes we can easily construct the tree by appending the n highest leaves. So,
our problem reduces down to finding exactly how many ti internal nodes there
are on levti

(l) + 1. We therefore define a vector that represents these numbers:

Definition 13. Let n and l be such that B(l) < n < A(l + 1) and Let opt(n) be
an optimal tree for n leaves and vi be the number of ti-internal nodes exactly at
depth levti

(l) + 1. The feature vector for opt(n) is v = (v1, v2, ..., v|T |).

Theorem 2, our combinatorial structure theorem, now immediately yields a
straightforward algorithm for constructing opt(n). The first stage of the algo-
rithm is to find l such that A(l) ≤ n < A(l + 1). Note that this can be done
in O(|T |2l2) time by iteratively building A(1), A(2), . . . , A(l + 1) (l is the first
integer such that n < A(l + 1)). This is done not by building the actual tree
but by constructing an encoding of the tree that, on each level, keeps track of
how many ti-leaves and ti internals there are on each level. So, an encoding of
a height i tree uses O(|T |i) space. From the definition of TreeA(i) it is easy to
see that its encoding can be built from the encoding of TreeA(i−1) in O(|T |2i)
time so l can be found in

∑
i≤l+1 O(|T |2i) = O(|T |2l2).

Now note that, because the tree is proper, the total number of nodes in
opt(n) is O(n) (where the constants in the O() depend upon the parameters of
the lopsided tree) so all of the vi = O(n). In particular, this means that there
are at most O(n|T |) possible feature vectors.

Given n, l and some vector v it is easy to check, in O(|T |2l) time, whether
a tree with feature vector v actually exists. This can be done by starting with
the encoding of TreeA(l) and then, working from level l|T | down, using the
given v to decide whether there are enough type-ti leaves available on level li to
transform into internals and, if there are, then transforming them. While doing
this, we always remember how many leaves L exist above the current level. After
finishing processing level l1, we then add the highest available n−L leaves below
l1 if they exist, or find that no such tree exists. If such a tree can be built, then,
in O(|T |l) time, its cost can be calculated from the encoding.

Combining the above then gives an O
(
|T |2l2n|T |) algorithm for constructing

opt(n). Simply try every possible feature vector and return the one that gives
the minimal cost. The fact that the tree is proper implies that l = O(n) so, in
the worst case, this is an O

(
|T |2 n|T |+2

)
algorithm. In many interesting cases,

e.g., when all nodes have a bounded number of defined children, l = O(log n) so
this beomes an O

(
log2 n |T |2 n|T |) algorithm.
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{gerth, gabi}@daimi.au.dk

Abstract. Branch mispredictions is an important factor affecting the
running time in practice. In this paper we consider tradeoffs between
the number of branch mispredictions and the number of comparisons for
sorting algorithms in the comparison model. We prove that a sorting
algorithm using O(dn log n) comparisons performs Ω(n logd n) branch
mispredictions. We show that Multiway MergeSort achieves this tradeoff
by adopting a multiway merger with a low number of branch mispredic-
tions. For adaptive sorting algorithms we similarly obtain that an algo-
rithm performing O(dn(1 + log(1 + Inv/n))) comparisons must perform
Ω(n logd(1 + Inv/n)) branch mispredictions, where Inv is the number
of inversions in the input. This tradeoff can be achieved by GenericSort
by Estivill-Castro and Wood by adopting a multiway division proto-
col and a multiway merging algorithm with a low number of branch
mispredictions.

1 Introduction

Modern CPUs include branch predictors in their architecture. Increased CPU
pipelines enforce the prediction of conditional branches that enter the execution
pipeline. Incorrect predictions determine the pipeline to be flushed with the
consequence of a significant performance loss (more details on branch prediction
schemes can be found in Section 2).

In this paper we consider comparison based sorting algorithms, where we
assume that all element comparisons are followed by a conditional branch on the
outcome of the comparison. Most sorting algorithms satisfy this property. Our
contributions consist of tradeoffs between the number of comparisons required
and the number of branch mispredictions performed by deterministic comparison
based sorting and adaptive sorting algorithms.

We prove that a comparison based sorting algorithm performing O(dn log n)
comparisons uses Ω(n logd n) branch mispredictions. We show that a variant

� Supported by the Carlsberg Foundation (contract number ANS-0257/20) and the
Danish Natural Science Foundation (SNF).

�� Basic Research in Computer Science, www.brics.dk, funded by the Danish National
Research Foundation.
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of Multiway MergeSort adopting a d-way merger with a low number of branch
mispredictions can achieve this tradeoff.

A well known result concerning sorting is that an optimal comparison based
sorting algorithm performs Θ(n log n) comparisons [4–Section 9.1]. However, in
practice, there is often the case that the input sequence is nearly sorted. In such
cases, one would expect a sorting algorithm to be faster than on random input
inputs. To quantify the presortedness of a given sequence, several measures of
presortedness have been proposed. A common measure of presortedness is the
number of inversions in the input, Inv, formally defined by Inv(X) = |{(i, j) |
i < j ∧ xi > xj}| for a sequence X = (x1, . . . , xn).

A sorting algorithm is denoted adaptive if its time complexity is a function
that depends both on the size of the input sequence and the presortedness exis-
tent in the input [14]. For a survey concerning adaptive sorting algorithms and
definitions of different measures of presortedness refer to [6].

For comparison based adaptive sorting algorithms we prove that an algorithm
that uses O(dn(1 + log(1 + Inv/n))) comparisons performs Ω(n logd(1 + Inv/n))
branch mispredictions. This tradeoff is achieved by GenericSort introduced by
Estivill-Castro and Wood [5] by adopting a d-way division protocol and d-way
merging that performs a low number of branch mispredictions. The division pro-
tocol is a d-way generalization of the binary greedy division protocol considered
in [1].

In [2] it was shown that the number of mispredictions performed by standard
binary MergeSort is adaptive with respect to the measure Inv. The number of
comparisons and branches performed is O(n log n) but the number of branch
mispredictions is O(n log(Inv/n)), assuming a dynamic prediction scheme that
predicts the next outcome of a branch based on the previous outcomes of the
same branch.

Sanders and Winkel [15] presented a version of distribution sort that exploited
special machine instructions to circumvent the assumption that each compari-
son is followed by a conditional branch. E.g. does the Intel Itanium 2 have a
wide variety of predicated instructions, i.e. instructions that are executed even
if its predicate is false, but the results of that instruction are not committed
into program state if the predicate is false. Using predicated instructions Heap-
Sort [7, 16] can be implemented to perform O(n log n) comparisons, O(n log n)
predicated increment operations, and O(n) branch mispredictions (assuming a
static prediction scheme, see Section 2), by simply using a predicated increment
operation for choosing the right child of a node during the bubble-down phase
of a deletemin operation.

The rest of the paper is structured as follows. In Section 2 we give an overview
of the different branch predictions schemes implemented in the nowadays CPUs.
In Section 3 we prove lower bound tradeoffs between the number of compar-
isons and the number of branch mispredictions for comparison based sorting
and adaptive sorting algorithms. Matching upper bounds are provided in Sec-
tions 4 and 5, where we show how variants of multiway MergeSort and Generic-
Sort, respectively, achieve the optimal tradeoffs between comparisons and branch
mispredictions.
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2 Branch Prediction Schemes

Branch mispredictions are an important factor affecting the running time in prac-
tice [9]. Nowadays CPUs have high memory bandwidth and increased pipelines,
e.g. Intel Pentium IV Prescott has a 31 stage pipeline. The high memory band-
width severely lowers the effect of caching over the actual running time when
computation takes place in the internal memory.

When a conditional branch enters the execution pipeline of the CPU, its out-
come is not known and therefore must be predicted. If the prediction is incorrect,
the pipeline is flushed as it contains instructions corresponding to a wrong exe-
cution path. Obviously, each branch misprediction results in performance losses,
which increase with the length of the pipeline.

Several branch prediction schemes have been proposed. A classification of the
branch prediction schemes is given in Figure 1.

GAg

Static

Local

Dynamic

Global

gshare

Branch prediction schemes

gselect · · ·

Fig. 1. A classification of the branch prediction schemes. The most popular branch
predictors in each category are emphasized

In a static prediction scheme, every branch is predicted in the same direction
every time according to some simple heuristics, e.g. all forward branches taken,
all backward branches not taken. Although simple to implement, their accuracy
is low and therefore they are not widely used in practice.

The dynamic schemes use the execution history when predicting a given
branch. In the local branch prediction scheme (see Figure 2, left) the direction of
a branch is predicted using its past outputs. It uses a pattern history table (PHT )
to store the last branch outcomes, indexed after the lower n bytes of the address
of the branch instruction. However, the direction of a branch might depend on the
output of other previous branch instructions and the local prediction schemes
do not take advantage of it. To deal with this issue global branch prediction
schemes were introduced [17]. They use a branch history register (BHR) that
stores the outcome of the most recent branches. The different global prediction
schemes vary only in the way the prediction table is looked up.

Three global branch prediction schemes proved very effective and are widely
implemented in practice [13]. The GAg (Figure 2, middle) uses only the last m



388 G.S Brodal and G. Moruz

n m m n

outcomeoutcomeoutcome

predictionpredictionprediction

PCBHRBHRPC

PHT PHTPHT

XOR

gsharelocal GAg

Fig. 2. Branch misprediction schemes

bits of the BHR to index the pattern history table, while gshare address the PHT
by xor-ing the last bits n of the branch address with the last m bits of the BHR.
Finally gselect concatenates the BHR with the lower bits of the branch address
to obtain the index for the PHT.

The predictions corresponding to the entries in the PHT are usually obtained
by the means of two-bit saturating counters. A two-bit saturating counter is an
automaton consisting of four states, as shown in Figure 3.

Note that for the dynamic branch prediction schemes the same index in
the PHT might correspond to several branches which would affect each other’s
predictions, constructively or destructively. This is known as the aliasing effect
and reducing its negative effects is one of the main research areas in branch
prediction schemes design.

Much research has been done on modeling branch mispredictions, especially
in static analysis for upper bounding the worst case execution time (also known
as WCET) [3, 11]. However, the techniques proposed involve too many hardware
details and are too complicated to be used for giving branch misprediction com-
plexities for algorithms. For the algorithms introduced in this paper, we show
that even using a static branch prediction scheme, we can yield algorithms that
achieve the lower bound tradeoffs between the number of comparisons and the
number of branch mispredictions performed.

Not taken Not taken Not taken Not taken

TakenTakenTakenTaken

Predicted Taken Predicted not taken

00011011

Fig. 3. Two-bit saturating counter
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3 Lower Bounds for Sorting

In this section we consider deterministic comparison based sorting algorithms
and prove lower bound tradeoffs between the number of comparisons and the
number of branch mispredictions performed, under the assumption that each
comparison between two elements in the input is immediately followed by a
conditional branch that might be predicted or mispredicted. This property is
satisfied by most sorting algorithms.

Theorem 1 introduces a worst case tradeoff between the number of compar-
isons and the number of branch mispredictions performed by sorting algorithms.

Theorem 1. Consider a deterministic comparison based sorting algorithm A
that sorts input sequences of size n using O(dn log n) comparisons, d > 1. The
number of branch mispredictions performed by A is Ω(n logd n).

Proof. Let T be the decision tree corresponding to A (for a definition of decision
trees see e.g. [4–Section 9.1]). By assumption, each node in the tree corresponds
to a branch that can be either predicted or mispredicted. We label the edges
corresponding to mispredicted branches with 1 and the edges corresponding to
correctly predicted branches with 0. Each leaf is uniquely labeled with the labels
on the path from the root to the given leaf. Assuming the depth of the decision
tree is at most D and the number of branch mispredictions allowed is k, each
leaf is labeled by a sequence of at most D 0’s and 1’s, containing at most k 1’s.
By padding the label with 0’s and 1’s we can assume all leaf labels have length
exactly D + k and contain exactly k 1’s. It follows that the number of labelings
is at most the binomial coefficient

(
D+k

k

)
and therefore the number of leaves is

at most
(
D+k

k

)
.

Denoting the number of leaves by N ≥ n!, we obtain that
(
D+k

k

)
≥ N , which

implies log
(
D+k

k

)
≥ log N . Using log

(
D+k

k

)
≤ k(O(1) + log D

k ) we obtain that:

k

(
O(1) + log

D

k

)
≥ log N . (1)

Consider D = δ log N and k = ε log N , where δ ≥ 1 and ε ≥ 0. We obtain:

ε log N

(
O(1) + log

δ

ε

)
≥ log N ,

and therefore ε
(
O(1) + log δ

ε

)
≥ 1. Using δ = O(d) we obtain ε = Ω(1/ log d).

Taking into account that log N ≥ log(n!) = n log n − O(n) we obtain k =
Ω(n logd n). ��

Manilla [12] introduced the concept of optimal adaptive sorting algorithms.
Given an input sequence X and some measure of presortedness M , consider
the set below(X,M) of all permutations Y of X such that M(Y ) ≤ M(X).
Considering only inputs in below(X,M), a comparison based sorting algorithm
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Measure Comparisons Branch mispredictions
Dis O(dn(1 + log(1 + Dis))) Ω(n logd(1 + Dis))
Exc O(dn(1 + Exc log(1 + Exc))) Ω(nExc logd(1 + Exc))
Enc O(dn(1 + log(1 + Enc))) Ω(n logd(1 + Enc))
Inv O(dn(1 + log(1 + Inv/n))) Ω(n logd(1 + Inv/n))
Max O(dn(1 + log(1 + Max))) Ω(n logd(1 + Max))
Osc O(dn(1 + log(1 + Osc/n))) Ω(n logd(1 + Osc/n))
Reg O(dn(1 + log(1 + Reg))) Ω(n logd(1 + Reg))
Rem O(dn(1 + Rem log(1 + Rem))) Ω(nRem logd(1 + Rem))
Runs O(dn(1 + log(1 + Runs))) Ω(n logd(1 + Runs))
SMS O(dn(1 + log(1 + SMS))) Ω(n logd(1 + SMS))
SUS O(dn(1 + log(1 + SUS))) Ω(n logd(1 + SUS))

Fig. 4. Lower bounds on the number of branch mispredictions for deterministic com-
parison based adaptive sorting algorithms for different measures of presortedness, given
the upper bounds on the number of comparisons

performs at least log |below(X,M)| comparisons in the worst case. In particu-
lar, an adaptive sorting algorithm that is optimal with respect to measure Inv
performs O(n(1 + log(1 + Inv/n))) comparisons [6].

Theorem 2 introduces a worst case tradeoff between the number of compar-
isons and the number of branch mispredictions for comparison based sorting
algorithms that are adaptive with respect to measure Inv.

Theorem 2. Consider a deterministic comparison based sorting algorithm A
that sorts an input sequence of size n using O(dn(1 + log(1 + Inv/n))) compar-
isons, where Inv denotes the number of inversions in the input. The number of
branch mispredictions performed by A is Ω(n logd(1 + Inv/n)).

Proof. We reuse the proof of Theorem 1 by letting N = |below(X,M)|, for an
input sequence X.

Using (1), with the decision tree depth D = δn(1 + log(1 + Inv/n)) when
restricted to inputs in below(X,M), k = εn(1 + log(1 + Inv/n)) branch mispre-
dictions, and log N = Ω(n(1 + log(1 + Inv/n))) [8], we obtain:

εn

(
1 + log

(
1 +

Inv
n

))(
O(1) + log

δ

ε

)
= Ω

(
n

(
1 + log

(
1 +

Inv
n

)))
.

This leads to:

ε

(
O(1) + log

δ

ε

)
= Ω(1) ,

and therefore ε = Ω (1/ log δ). Taking into account that δ = O(d) we obtain that
ε = Ω(1/ log d), which leads to k = Ω(n logd(1 + Inv/n)). ��

Using a similar technique, lower bounds for other measures of presortedness
can be obtained. For comparison based adaptive sorting algorithms, Figure 4
states lower bounds on the number of branch mispredictions performed in the
worst case, assuming the given upper bounds on the number of comparisons. For
definitions of different measures of presortedness, refer to [6].
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4 An Optimal Sorting Algorithm

In this section we introduce Insertion d-way MergeSort. It is a variant of d-way
MergeSort that achieves the tradeoff stated in Theorem 1 by using an insertion
sort like procedure for implementing the d-way merger. The merger is proven to
perform a linear number of branch mispredictions.

We maintain two auxiliary vectors of size d. One of them stores a permutation
π = (π1, . . . , πd) of (1, . . . , d) and the other one stores the indices in the input
of the current element in each subsequence i = (iπ1 , . . . , iπd

), such that the
sequence (xiπ1

, . . . , xiπd
) is sorted. During the merging, xiπ1

is appended to the
output sequence and iπ1 is incremented by 1 and then inserted in the vector i
in a manner that resembles insertion sort: in a scan the value y = xiπ1

to be
inserted is compared against the smallest elements of the sorted sequence until
an element larger than y is encountered. This way, the property that the elements
in the input sequence having indices iπ1 , . . . , iπd

are in sorted order holds at all
times. We also note that for each insertion the merger performs O(1) branch
mispredictions, even using a static branch prediction scheme.

Theorem 3. Insertion d-way MergeSort performs O(dn log n) comparisons and
O(n logd n) branch mispredictions.

Proof. For the simplicity of the proof, we consider a static prediction scheme
where for the merging phase the element to be inserted is predicted to be larger
than the minimum in the indices vector.

The number of comparisons performed at each level of recursion is O(dn),
since in the worst case each element is in the worst case compared against d− 1
elements at each level. Taking into account that the number of recursion levels
is 
logd n�, the total number of comparisons is O(dn logd n) = O(dn log n).

In what concerns the number of branch mispredictions, for each element In-
sertion d-way MergeSort performs O(1) branch mispredictions for each recursion
level. That is because each element is inserted at most once in the indices array
i at a given recursion level and for insertion sort each insertion is performed by
using a constant number of branch mispredictions. Therefore we conclude that
Insertion d-way MergeSort performs O(n logd n) branch mispredictions. ��

We stress that Theorem 3 states an optimal tradeoff between the number of
comparisons and the number of branch mispredictions. This allows tuning the
parameter d, such that Insertion d-way Mergesort can achieve the best running
time on different architectures depending on the CPU characteristics, i.e. the
clock speed and the pipeline length.

5 Optimal Adaptive Sorting

In this section we describe how d-way merging introduced in Section 4 can be
integrated within GenericSort by Estivill-Castro and Wood [5], using a greedy-
like division protocol. The resulting algorithm is proved to achieve the tradeoff
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between the number of comparisons and the number of branch mispredictions
stated in Theorem 2.

GenericSort is based on MergeSort and works as follows: if the input is
small, it is sorted using some alternate sorting algorithm; if the input is already
sorted, the algorithm returns. Otherwise, it splits the input sequence into d
subsequences of roughly equal sizes according to some division protocol, after
which the subsequences are recursively sorted and finally merged to provide the
sorted output.

The division protocol that we use, GreedySplit, is a generalization of the
binary division protocol introduced in [1]. It partitions the input in d + 1 sub-
sequences S0, . . . , Sd, where S0 is sorted and S1, . . . , Sd have balanced sizes. In
a single scan from left to right we build S0 in a greedy manner while distribut-
ing the other elements to subsequences S1, . . . , Sd as follows: each element is
compared to the last element of S0, if it is larger, it is appended to S0; if not,
it is distributed to an Sj such that at all times the ith element in the input
that is not in S0 is distributed to S1+i mod d. It is easy to see that S0 is sorted
and S1, . . . , Sd have balanced sizes. For merging we use the insertion sort based
merger introduced in Section 4.

Lemma 1 generalizes Lemma 3 in [1] to the case of d-way splitting.
Lemma 1. If GreedySplit splits an input sequence X in d + 1 subsequences
S0, . . . , Sd, where S0 is sorted and d ≥ 2, then

Inv(X) ≥ Inv(S1) + · · · + Inv(Sd) +
d − 1

4
(Inv(S1) + · · · + Inv(Sd)) .

Proof. Let X = (x1, . . . , xn) and Si = (si1, . . . , sit), for 1 ≤ i ≤ d. For each sij

denote by δij its index in the input. By construction, Si is a subsequence of X.
For some subsequence Si consider an inversion sii1 > sii2 , with i1 < i2. By

construction we know that for each subsequence Sk, with k �= i, there exists
some sk� ∈ Sk such that in the input sequence we have δii1 < δk� < δii2 , see
Figure 5. We prove that there exists at least an inversion between sk� and sii1 or
sii2 in X. If sk� < sii2 < sii1 then there is an inversion between sk� and sii1 ; if
sii2 < sk� < sii1 then there are inversions in the input between sk� and both sii1

and sii2 ; finally, if sii2 < sii1 < sk�, there is an inversion between sk� and sii2 .
Let sk�1 , . . . , sk�z

be all the elements in Sk such that i1 < δk�1 < · · · < δk�z
< i2,

i.e. all the elements from Sk that appear in the input between ranks δii1 and δii2 .
We proved that there is an inversion between sk��(1+z)/2	 and at least one of

sii1 and sii2 . Therefore, for the inversion (sii1 , sii2) in Si we have identified an
inversion in X between an element in Sk and an element in Si that is not present
in any of S1, . . . , Sd. But this inversion can be counted for at most two different
pairs in Si, namely (sii1 , sii2) and (sii1 , si(i2+1)) if there is an inversion between
sii1 and sk��(1+z)/2	 or (sii1 , sii2) and (si(i1−1), sii2) otherwise. In a similar manner
in Sk the same inversion can be counted two times. Therefore, we obtain that
for each inversion in Si there is an inversion between Si and Sk that can be
counted four times. Taking into account that all the inversions in S1, . . . , Sd are
also in X, we obtain:
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Inv(X) ≥ Inv(S1) + · · · + Inv(Sd) + d−1
4 (Inv(S1) + · · · + Inv(Sd)) . ��

Theorem 4. GreedySort performs O(dn(1 + log(1 + Inv/n))) comparisons and
O(n logd(1 + Inv/n)) branch mispredictions.

Proof. We assume a static branch prediction scheme. For the division protocol
we assume that at all times the elements are smaller than the maximum of S0,
meaning that branch mispredictions occur when elements are appended to the
sorted sequences. This leads to a total of O(1) branch mispredictions per element
for the division protocol, because the sorted sequences are not sorted recursively.
For the merger, the element to be inserted is predicted to be larger than the
minimum in the indices vector at all times. Following the proof of Theorem 3, we
obtain that splitting and merging take O(1) branch mispredictions per element
for each level of recursion.

We follow the proof in [10]. First we show that at the first levels of recursion,
until the number of inversions gets under n/d, GreedySort performs O(dn(1 +
log(1+Inv/n)) comparisons and O(n(1+logd(1+Inv/n)) branch mispredictions.
Afterwards, we show that the remaining levels consume a linear number of branch
mispredictions and comparisons.

We first find the level � for which the number of inversions gets below n/d.
Denote by Invi the total number of inversions in the subsequences at level i.

Using the result in Lemma 1, we obtain Invi ≤
(

4
d+3

)i

Inv. The level � should
therefore satisfy: (

4
d + 3

)�

Inv ≤ n

d
,

implying � ≥ log d+3
4

Inv·d
n .

Taking into account that at each level of recursion the algorithm performs
O(dn) comparisons and O(n) branch mispredictions, we obtain that for the first
� = 
log d+3

4

Inv·d
n � levels we perform O(dn logd(Inv/n)) = O(dn log(Inv/n)) com-

parisons and O(n logd(Inv/n)) branch mispredictions.
We prove that for the remaining levels we perform a linear number of com-

parisons and branch mispredictions.

SkSi

X

δii2δii1

sii1 sii2

δk	

sk	

i1 i2 �

Fig. 5. Greedy division protocol. Between any two elements in Si there is at least one
element in Sk in the input sequence
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Let L(x) be the recursion level where some element x is placed in a sorted
sequence and L(x) ≥ �. For each level of recursion j, where � ≤ j < L(x), x is
smaller than the maximum in the sorted subsequence S0 and therefore there
is an inversion between x and the maximum in S0 that does not exist in the
recursive levels j +1, j +2, . . .. It follows that L(x)−� is bounded by the number
of inversions with x at level �.

Taking into account that the total number of inversions at level � is at
most n/d and that for each element at a level we perform O(d) comparisons, we
obtain that the total number of comparisons performed at the levels �+1, �+2, . . .
is O(n). Similarly, using the fact that for each element at each level O(1) mispre-
dictions are performed, we obtain that the total number of branch mispredictions
performed for the levels below � is O(n/d). ��
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Based Algorithms�
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Abstract. We present two results on derandomization of randomized algorithms.
The first result is a derandomization of the Johnson-Lindenstrauss (JL) lemma
based randomized dimensionality reduction algorithm. Our algorithm is simpler
and faster than known algorithms. It is based on deriving a pessimistic estimator
of the probability of failure. The second result is a general technique for deran-
domizing semidefinite programming (SDP) based approximation algorithms. We
apply this technique to the randomized algorithm for Max Cut. Once again the
algorithm is faster than known deterministic algorithms for the same approxima-
tion ratio. For this problem we present a technique to approximate probabilities
with bounded error.

1 Introduction

We present two results in derandomization. The first result is a derandomization of the
JL lemma based randomized dimensionality reduction algorithm. Derandomization is
achieved with the help of a pessimistic estimator for the probability of failure. The
second is a general technique to derandomize SDP based approximation algorithms.
The derandomization here, is achieved by approximately computing probabilities with
bounded error. The two techniques are independent of each other. Both the derandom-
izations use the method of conditional probabilities and these probabilities are upper-
bounded or approximated rather than computed exactly.

First, we look at the JL lemma. Given a set of n points in d dimensional Euclidean
space, the lemma guarantees an embedding of the n points in O(log n) dimensional Eu-
clidean space such that the Euclidean distances between all pairs of points is conserved
to an arbitrarily small constant factor.

There are many proofs of the JL lemma [JL84, IM98, AV99, DG03, A01, FM88].
Indyk and Motwani [IM98] proposed using a random matrix to project vectors in high
dimensions to lower dimensions, where each entry in the matrix is a standard normal
r.v. Arriaga and Vempala [AV99] proposed using a projection matrix but with each
entry chosen to be ±1 with equal probability. Achlioptas [A01] proved the lemma for
±1 valued r.v.’s. It is striking that ±1 valued r.v.’s of [AV99, A01] give the same error
bounds as normal r.v.’s of [IM98].
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There are two known derandomizations of randomized JL lemma constructions.
Sivakumar [S02] gives a general derandomization technique, that can be applied to the
randomized construction of [A01], but has a runtime in the order of n100. Engebretsen,
Indyk and O’Donnell [EIO02] give a derandomization for the version of [IM98], i.e.
the one based on normal r.v.’s, and their algorithm runs in O(dn2 logO(1) n) time. It
was generally felt that derandomization of the algorithm of [A01], which is based on
±1 valued r.v.’s is hard.

We present a derandomization of the algorithm of [A01]. Our algorithm runs in
O(dn2 log n) time. It is faster than the algorithm of [EIO02]. Our algorithm is extremely
simple to program. We were able to program it in about 200 lines of C instructions. In
section 2 we start with a general outline of this derandomization. The proofs may be
found in the full version.

The second problem that we look at is the derandomization of SDP based approx-
imation algorithms [GW94, KMS94, AK95, FJ95]. Such an algorithm first computes a
set of vectors in a multi-dimensional space that is a solution to an SDP. Next, the algo-
rithm generates a set of random vectors from a multivariate standard normal distribution
and uses these random vectors to round the solution. There are analytical arguments that
bound the expected performance of the algorithm. Our goal is to derandomize these al-
gorithms based on such a statement of expectation, which has the following generic
probability,

P[A · X ≥ 0 and B · X < 0], (1)

where A and B are vectors in a Euclidean space and X is a normally distributed r.v. in
that space. The vectors A and B are computed by the underlying SDP. In some SDP
formulations the statement of expectation is merely a sum of terms of the generic form
in (1) while in others it may be a sum of products of such terms. Derandomization of
randomized algorithms that use semidefinite programming boils down to computing (1)
in polynomial time and the ability to maximize/minimize this expression when condi-
tioned on some variable.

Engebretsen, Indyk and O’Donnell [EIO02] approximate semidefinite approxima-
tions and achieve derandomization for Max Cut [GW94] in O(n3+o(1) +n22logO(1)(1/ε)

) time, and they achieve approximation of (1−ε)Δ, where Δ is the value guaranteed by
the randomized algorithm. Their algorithm is based on projecting the vector solution of
the SDP down to a constant number of dimensions while incurring a loss in the approxi-
mation factor. The derandomization runs in polynomial time only if ε is a constant. This
means that their approximation ratio is always a constant factor poorer. We and [MR95]
also achieve an approximation ratio (1 − ε)Δ for this problem; however, we can make
ε a small factor, such as 1/n2, at a small increase in speed. Our algorithm is faster and
has a sharper approximation guarantee than that of [EIO02].

Mahajan and Ramesh [MR95] compute (1) by numerically evaluating integrals, as
a result their algorithm is quite inefficient. In section 3 we show how the quantity in (1)
can be approximated by low degree polynomials to sufficient accuracy, and then how
to minimize or maximize it by finding the roots of polynomials. Using this procedure
we have designed a deterministic Õ(n3) time algorithm for approximating Max Cut to
a factor of 0.878.
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2 Derandomization of Dimensionality Reduction

Randomized Algorithm. We project a given set of m vectors, α1, . . . , αm ∈ Rd into
k dimensions while preserving the �2 norm of each vector approximately. Let Y be a
random matrix selected uniformly at random from {+1,−1}d×k. Y is a linear projec-
tion matrix from Rd to Rk. The randomized dimensionality reduction algorithm [A01]
takes any vector α ∈ Rd and maps it to αY/

√
k in Rk. The projection preserves the

square of the �2 norm of a vector.

Lemma 1. If Y is selected u.a.r. from {1,−1}d×k and k ≥
(

ε2

4 − ε3

6

)−1
log 2

δ , ε ≤ 1

then for any α ∈ Rd, where k, d are intergers and δ, ε are reals.

P
[
‖α‖2

2(1 − ε) ≤ ‖ 1√
k

αY ‖2
2 ≤ ‖α‖2

2(1 + ε)
]

> 1 − δ.

We set the parameter δ (in lemma 1) to equal 1/m. This means that the lemma will hold
for k = 2

ε2 log 2m dimensions. Thus there exists a projection matrix Y that preserves
all m vector lengths approximately with a distortion of at most (1 + ε)/(1 − ε), while
projecting the vectors into 2

ε2 log 2m dimensions.

Conditional Probabilities. The goal is to deterministically construct the matrix Y in
an efficient manner. For each vector αi, 1 ≤ i ≤ m let B+

i and B−
i be events defined

as follows, B+
i : 1

k‖αiY ‖2
2 > (1 + ε)‖αi‖2;B−

i : 1
k‖αiY ‖2

2 < (1 − ε)‖αi‖2. B+
i

and B−
i denote the violation of the conditions in lemma 1, the upper and lower bounds

respectively. In addition, we abbreviate B+
i ∪B−

i as Bi. Let B be the event that any of
the events, B1, . . . , Bm, occurs. Therefore, P[B] ≤ P[B1] + · · · + P[Bm] = P[B+

1 ] +
P[B−

1 ]+· · ·+P[B+
m]+P[B−

m]. The reader can visualize the set of all possible outcomes
of the randomized projection as a binary tree. The root of this tree is at depth 0 and the
leaves are at depth kd, i.e., one level for each random variable. There are 2kd leaves in
this tree, i.e., one leaf for each possible value of Y ∈ {+1,−1}kd. At each internal node
of the tree, there are two children. One child corresponds to setting the random variable
corresponding to that level to +1 and the other to −1. We derandomize entries of matrix
Y one by one, by the conditional probability method [MR95b]. The sequence can be
chosen arbitrarily. Here, we choose the following order, Y1,1, Y1,2, . . . , Y1,d, Y2,1, . . . ,
Y2,d, . . . , Yk,1, . . . , Yk,d. The leaf nodes of this tree are of two types. There are leaves
at which B holds, i.e., at least one of the vectors violates the 1± ε bound, and the good
leaves, which are of interest to us, where all the bounds hold.

Suppose that we have derandomized the following r.v.’s, Y1,1 = y1,1, . . . , Ys,j−1 =
ys,j−1. This corresponds to some path, π, starting at the root of the tree. We abbreviate
the conditional probability P[B|Y1,1 = y1,1, . . . , Ys,j−1 = ys,j−1] as P[B|π]. We are
at some internal node of the tree, which is succintly defined by π and it is known that
P[B|π] < 1. If we could compute the quantities P[B|π,+1] and P[B|π,−1] then we
merely need to take that path which corresponds to the lesser of the two because it
will be less than 1. This follows from, P[B|π] < 1 and P[B|π] = P[B|π,+1]/2 +
P[B|π,−1]/2. If it is possible to compute P[B|π,+1] and P[B|π,−1] then all we need
to do is set ys,j to +1 if the former probability is the lesser of the two or to −1 if the
latter probability is the lesser of the two.
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Pessimistic Estimator. Our derandomization would be complete but for the fact that
computing P[B|π] is hard. In order to get around this we derive a pessimistic estimator
for P[B|π]. We denote this estimator by Q[π]. The estimator, Q[π] is a function that
maps from the set of nodes in the tree to reals. In order that the estimate Q is usable in
place of the exact probability the function Q must satisfy the following properties for
all paths π in the tree [R88],

(a) Q[ε] < 1;
(b) P[B|π] ≤ Q[π]; and
(c) Q[π,+1] + Q[π,−1] ≤ 2Q[π],

where, ε denotes a null path, i.e. the root of the tree. If there is a function Q that satis-
fies the above conditions then it is called a pessimistic estimator [MR95b]. Condition
(a) ensures that there exists at least one good leaf in the tree. Condition (b) states that
at any node in the tree, denoted by π which is also the path to that node from the
root, if the estimator, Q[π] < 1 then at least one descendant leaf of that node is good.
Condition (c) establishes that the estimator can be used to select which child is guaran-
teed to have a good descendant leaf. It states that the estimator of one of the children
is bound to be at most the estimator of the parent. We now derive an estimator that
satisfies the three conditions (a), (b), and (c). The estimator is an upper bound, so:
P[B|π] ≤

∑m
i=1 P[B+

i |π] + P[B−
i |π] ≤

∑m
i=1 Q+

i [π] + Q−
i [π] = Q[π]. The estimator

Q is the sum of 2m terms that are upper bounds to the lower and upper tail probabili-
ties. Using Markov’s inequality and the moment generating function (see [AV99, A01])
it follows that,

P[B+
i |π] ≤ e−ti‖αi‖2

2(1+ε)k
k∏

l=1

E[eti(αi·Yl)
2
|π] ≤ Q+

i [π], and

P[B−
i |π] ≤ eti‖αi‖2

2(1−ε)k
k∏

l=1

E[e−ti(αi·Yl)
2
|π] ≤ Q−

i [π],

(2)

where, ti = ε/(2‖αi‖2
2(1 + ε)) and the estimators that we wish to derive, Q+

i and Q−
i

must be upper bounds. We define the estimator functions Q+
i [π] and Q−

i [π] and show
that Q satisfies conditions (a), (b) and (c). We assume that Y1,1 to Ys,j−1 have been
fixed corresponding to the path denoted by π. The upper bounds on the probability are a
product of k expectations: Q+

i [π] =
∏k

l=1 Q+
i,l[π], Q−

i [π] =
∏k

l=1 Q−
i,l[π]. The overall

structure of the estimator for P[B|π] is as follows,

Q[π] =
m∑

i=1

(
k∏

l=1

Q+
i,l[π] +

k∏
l=1

Q−
i,l[π]

)
≥

m∑
i=1

P[B+
i |π] + P[B−

i |π] ≥ P[B|π].

Next, we define each of the Q+
i,l and Q−

i,l’s in the following three cases.
Case l < s: Contribution from random vectors that have been covered by π,

E[eti(αi·Yl)2 |π] = E[eti(αi·Yl)2 |Yl = yl] = eti(αi·yl)2 ,

Q+
i,l[π] = e−ti‖αi‖2

2(1+ε)eti(αi·yl)2 ,

Q−
i,l[π] = eti‖αi‖2

2(1−ε)e−ti(αi·yl)2 .
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Case l > s: Contribution from random vectors that are not covered by π,

E[eti(αi·Yl)2 |π] = E[eti(αi·Yl)2 ] ≤ (1 − 2‖αi‖2
2ti)

−1/2, (from lem. 2)

E[e−ti(αi·Yl)2 |π] = E[e−ti(αi·Yl)2 ] ≤ 1 − ‖αi‖2
2ti + 3‖αi‖4

2t
2
i /2, (from lem. 2)

Q+
i,l[π] = e−ti‖αi‖2

2(1+ε)(1 − 2‖αi‖2
2ti)

−1/2,

Q−
i,l[π] = eti‖αi‖2

2(1−ε)(1 − ‖αi‖2
2ti + 3‖αi‖4

2t
2
i /2).

Case l = s: Contribution from random vectors that have partly been covered by π, let
a2

i,j = α2
i,j + · · · + α2

i,d and let cs,i,j = αi,1ys,1 + · · · + αi,j−1ys,j−1.

E[eti(αi·Ys)2 |π] = E[eti(αi·Ys)2 |Ys,1 = ys,1, . . . , Ys,j−1 = ys,j−1]

≤ exp(
c2
s,i,jti

1 − 2a2
i,jti

)(1 − 2a2
i,jti)

−1/2, (from lem. 2)

E[e−ti(αi·Ys)2 |π] = E[e−ti(αi·Ys)2 |Ys,1 = ys,1, . . . , Ys,j−1 = ys,j−1]

≤ 1 − ti(c2
s,i,j + a2

i,j) + t2i (3a4
i,j + 6a2

i,jc
2
s,i,j + c4

s,i,j)/2, (from lem. 2)

Q+
i,l[π] = e−ti‖αi‖2

2(1+ε) exp(
c2
s,i,jti

1 − 2a2
i,jti

)(1 − 2a2
i,jti)

−1/2,

Q−
i,l[π] = eti‖αi‖2

2(1−ε) (1 − ti(c2
s,i,j + a2

i,j) + t2i (3a4
i,j + 6a2

i,jc
2
s,i,j + c4

s,i,j)/2
)
.

See lemma 2 for proofs of the upper-bounds used above. This completes the definition
of the estimator Q. In order that property (a) is satisfied, we select k and ε appropriately
at the outset. Property (b) holds because we use upper bounds for the expectations in
(2). To show that property (c) holds we need to show that the case l = s type of term
of the estimator satisfies property (c). This is sufficient because the other terms are
constants when Ys,j is being derandomized. The estimators after we derandomize Ys,j

to ys,j are,

Q+
i,l[π, ys,j ] = e−ti‖αi‖2

2(1+ε) exp(
(cs,i,j + αi,jys,j)2ti
1 − 2(a2

i,j − α2
i,j)ti

)(1 − 2(a2
i,j − α2

i,j)ti)
−1/2,

Q−
i,l[π, ys,j ] = eti‖αi‖2

2(1−ε)
(
1 − ti((cs,i,j + αi,jys,j)2 + a2

i,j − α2
i,j)+

t2i (3(a2
i,j − α2

i,j)
2 + 6(a2

i,j − α2
i,j)(cs,i,j + αi,jys,j)2 + (cs,i,j + αi,jys,j)4)/2

)
.

We can simplify the expressions by defining two functions, q1(c, a, t) = exp ( c2t
1−2a2t )

1√
1−2a2t

, and q2(c, a, t) = 1 − (c2 + a2)t + (c4 + 6c2a2 + 3a4) t2

2 . Then for Q+
i,l,

Q+
i,l[π] = e−ti‖αi‖2

2(1+ε)q1(cs,i,j , ai,j , ti),

Q+
i,l[π,+1] = e−ti‖αi‖2

2(1+ε)q1(cs,i,j + αi,j ,
√

a2
i,j − α2

i,j , ti),

Q+
i,l[π,−1] = e−ti‖αi‖2

2(1+ε)q1(cs,i,j − αi,j ,
√

a2
i,j − α2

i,j , ti).



Derandomization of Dimensionality Reduction and SDP Based Algorithms 401

There are a similar set of three expressions for Q−
i,l, In order that property (c) hold for

Q it is sufficient to show that the following two inequalities hold for all i, l, and π,

Q+
i,l[π,+1] + Q+

i,l[π,−1] ≤ 2Q+
i,l[π],Q−

i,l[π,+1] + Q−
i,l[π,−1] ≤ 2Q−

i,l[π].

This can be simplified further by requiring that (c) holds for Q provided that the fol-
lowing is true about functions q1 and q2,

q1(c + x,
√

a2 − x2, t) + q1(c − x,
√

a2 − x2, t) ≤ 2q1(c, a, t),

q2(c + x,
√

a2 − x2, t) + q2(c − x,
√

a2 − x2, t) ≤ 2q2(c, a, t),

where c is any real, 0 ≤ |x| ≤ a and 2a2t < 1 and t > 0. Lemma 3 shows that this is
true and therefore that property (c) does indeed hold for Q.

Since Q satisfies all three properties we can use it to derandomize the random pro-
jection matrix by the method of conditional probabilities.

There are dk r.v.’s. In order to derandomize each r.v. we must compute two estima-
tors which takes O(m) time. Therefore, the derandomization algorithm runs in O(mdk)
time. As an example, consider some n points in d dimensional space. The JL lemma
guarantees that they can be embedded into O(log n) dimensional space with constant
distortion. Here, m = O(n2), if we wish to preserve all-pair distances. So, our deran-
domization will run in O(dn2 log n).
Technical Lemmas.

Lemma 2. If Y is an r.v. which is selected u.a.r. from {+1,−1}d and α ∈ Rd then for
any reals t ≥ 0 and c,

E[et(α·Y +c)2 ] ≤ exp(
c2t

1 − 2‖α‖2
2t

)
1√

1 − 2‖α‖2t
,

E[e−t(α·Y +c)2 ] ≤ 1 − (c2 + ‖α‖2
2)t + (c4 + 6c2‖α‖2

2 + 3‖α‖4
2)

t2

2
.

Lemma 3. If c, a, t ≥ 0 are reals and q1(c, a) = exp( c2t
1−2a2t )

1√
1−2a2t

, q2(c, a) =

1 − (c2 + a2)t + (c4 + 6c2a2 + 3a4) t2

2 , and x is any real then

q1(c + x,
√

a2 − x2) + q1(c − x,
√

a2 − x2) ≤ 2q1(c, a),

q2(c + x,
√

a2 − x2) + q2(c − x,
√

a2 − x2) ≤ 2q2(c, a).

3 Derandomization of SDP Based Approximation Algorithms

Approximating Conditional Probabilities in Poly-log Time
The crux of derandomization by conditional probability lies in computing the proba-
bility that a particular choice leads to a favorable outcome. Here, the event of interest
is when a random vector with a multi-dimensional standard normal distribution falls
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inside the ‘wedge’ formed by two given planes. Lemma 4 describes how the probability
of this event can be computed in poly-logarithmic time provided that we know cer-
tain things about the planes before hand. The three necessary parameters are the angle
between the two planes, and the distances of the two planes from the origin.

(a)
O x0 x X

Y

θ

a

b

dx S
O

A

B

C

D
�

(b)

Lemma 4. If X1, . . . , Xn are i.i.d. standard normal r.v.’s and a1, . . . , an, b1, . . . , bn, c
and d are real numbers, then

P [a1X1 + · · · + anXn ≥ c and b1X1 + · · · + bnXn ≥ d] (3)

can be approximated to within an additive error of O(ε) by a polynomial of degree
O(− log ε), and this polynomial can be constructed in O(log2 ε) time provided that we
are given parameters a, b and θ, where, a = c√

a2
1+...+a2

n

, b = d√
b21+...+b2n

, and cos θ =(
a1b1+...+anbn√

a2
1+...+a2

n

√
b21+...+b2n

)
.

Proof. Each condition inside the probability describes a plane in Rn. Due to the spher-
ical symmetry of the distribution of (X1, . . . , Xn) in Rn we can rotate the coordinate
axes such that we are left with the problem of computing the probability inside a wedge
in the first two dimensions (figure (a)), thereby reducing the problem to two dimensions,
where we know the angle between the two lines is θ and the distances of the two lines
from the origin are a and b. Note that θ, a and b are invariant under rotation. Since the
wedge is convex, 0 ≤ θ ≤ π. Rotate the wedge such that one of the lines is parallel to
the X-axis (figure (a)). The equations of the two lines are y = a and x sin θ−y cos θ = b.
There are four different pairs of lines possible, depending upon the signs of a and b.
There are four different wedges formed by each pair of lines, any one of these 16 choices
could be the quantity of interest (in (3)). We proceed with one of these instances where
the wedge, W (a, b, θ), is the set, {(x, y) : y ≥ a and x sin θ− y cos θ ≥ b}. Analogous
arguments can be recreated for the other 15 cases. Assume that the signs of a and b are
correctly chosen and the shaded region in figure (a) is equal to the quantity in (3). Then
the quantity in (3) is equal to P[(X,Y ) ∈ W (a, b, θ)], where X,Y are i.i.d. standard
normal r.v.’s. We denote this quantity by P (a, b, θ) = 1

2π

∫
W (a,b,θ) e−(x2+y2)/2dy dx.

Let N(z) = 1/
√

2π
∫∞

z
e−z2/2dz. Let x0 = b csc θ + a cot θ. (x0, a) is the coordinate

of the point at which the two lines that define the wedge meet. Observe that the follow-
ing identities hold, P (a, b, θ)+P (a,−b, π−θ) = N(a), P (a, b, π

2 ) = N(a)N(b), and
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P (a, b, π
2 − θ) + P (x0,−b, θ) = P (a, x0,

π
2 ). Therefore we can restrict the analysis

to when θ ∈ [0, π/4]. We use the Maclaurin series expansion of ez to approximate the
integral. The rate of convergence of the series is dependent on the absolute value of z.
For larger z more terms are needed. However, the normal distribution rapidly drops for
large z. We show that O(− log ε) terms in the expansion of ez , where z2 ≤ −2 log ε,
suffice for an accuracy of O(ε). The Maclaurin series expansion for ez is

∑∞
i=0 zi/i!.

For brevity, let Δ2 = −2 log ε. Δ is a positive quantity. Consider the probability mea-
sure of the set W ∩ {(x, y) : x2 ≥ Δ2}. This is at most the probability measure of the
set {(x, y) : x2 ≥ Δ2} which is

2√
2π

∫ ∞

Δ

e−x2/2dx <
2√
2π

∫ ∞

Δ

xe−x2/2dx ≤ 2√
2π

ε,

provided that, Δ2 > 1, which amounts to ε < e−1/2. Similarly, the probability measure
of W ∩ {(x, y) : y2 ≥ Δ2} is less than 2ε/

√
2π. Let S = {(x, y) : x2 ≤ Δ2 and y2 ≤

Δ2}. There exists a δ1 where |δ1| ≤ 4ε/
√

2π, such that,

P (a, b, θ) =
1
2π

∫
S∩W (a,b,θ)

e−x2/2e−y2/2dy dx + δ1.

It follows from the Maclaurin expansion that, e−z2/2 =
∑−c log ε

i=0
(−1)iz2i

2ii! +δ2, where c
is a constant. If we apply the ratio test to ith and the i+1th terms, we get z2/(2i+2) ≤
z2/(2i) ≤ − log ε/i ≤ 1/c, for all i larger than c log n and all z2 ≤ Δ2, and we get
an error term δ2 ≤ (c/(c + 1))(Δ2)−c log ε/(2−c log ε(−c log ε)!). Then there exists a
constant c such that |δ2| is O(ε). We can now substitute the expansions and evaluate the
integrals,

P (a, b, θ) =
1
2π

∫
S∩W (a,b,θ)

(−c log ε∑
i=0

(−1)iy2i

2ii!

)(−c log ε∑
i=0

(−1)ix2i

2ii!

)
dy dx + δ3,

where, δ3 is O(ε
√
− log ε). The

√
− log ε factor is due to the second integral, where

we must integrate the error of the first integral. Depending on the geometric shape of
S ∩ W (a, b, θ) we may have to split the integration into two parts. On integrating and
substituting the limits of the definite integrals we get a polynomial in a and b. Some
terms need to be expanded using the binomial expansion. In the end we are left with a
polynomial in a and b of degree −4c log ε + 2. Therefore, P (a, b, θ) is approximable
by a polynomial in a and b of degree O(− log ε) to an accuracy of O(ε

√
− log ε), when

θ ∈ [0, π/4]. It remains to show that P (a, b, π/2) is expressible as a polynomial in a
and b, to a reasonable accuracy. We assume that both a and b are less than Δ. If this is
not the case then the integral is negligible anyway, so in that case it can be approximated
by 0.

P (a, b, π/2) =
1
2π

(∫ ∞

a

e−x2/2dx

)(∫ ∞

b

e−y2/2dy

)
=

1
2π

(∫ Δ

max{a,−Δ}
e−x2/2dx

)(∫ Δ

max{b,−Δ}
e−y2/2dy

)
+ δ4,
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where, δ4 is O(ε). Using the same Maclaurin series expansion as before we get,

P (a, b, π/2) =
1
2π

[−c log ε∑
i=0

(−1)ix2i+1

2ii!(2i + 1)

]Δ

max{a,−Δ}

[−c log ε∑
i=0

(−1)iy2i+1

2ii!(2i + 1)

]Δ

max{b,−Δ}

+δ5,

where, δ5 is O(ε
√
− log ε). A subcase of the above argument shows that N(a) is ex-

pressible as a polynomial in a with degree O(− log ε) and with error O(ε
√
− log ε).

We have shown that with an error of O(ε
√
− log ε) we can approximate the condi-

tional probability with a polynomial of degree O(− log ε) and in time O(log2 ε). The
time follows from the fact that we have to multiply two polynomials each of degree
O(− log ε). The statement can be reworded to say that with an error of O(ε) we can
approximate the conditional probability with a polynomial of degree O(− log ε) and in
time O(log2 ε). This is at the cost of a constant factor in the degree of the polynomial.
Therefore, the lemma holds.

Piecewise Approximation of Conditional Probability
In the process of derandomizing by conditional probability we are interested in the
conditional probability,

P[a · X ≥ 0 and b · X ≥ 0|X1 = x1, . . . , Xj−1 = xj−1, Xj = x],

where, X = (X1, . . . , Xn), is a multivariate standard normal r.v., a and b are vec-
tors in Rn, x1, . . . , xj−1 are constants in R and x is a variable. The probability is a
function of x. Let it be p(x). If we are given an x then lemma 4 states that p(x) is
approximable by a polynomial q(x) of degree O(− log ε) that achieves bounded error,
p(x) = q(x)+ δ, where |δ| is O(ε). The polynomial q(x) is defined by a wedge formed
in two dimensions. The distances of two lines (the lines that describe the wedge) from
the origin and the angle between the two lines (the angle of the wedge) are resepctively:
a1x1+···+aj−1xj−1+ajx

a2
j+1+···+a2

n
,

b1x1+···+bj−1xj−1+bjx

b2j+1+···+b2n
, cos−1 aj+1bj+1+···+anbn√

a2
j+1+···+a2

n

√
b2j+1+···+b2n

. Note

that the angle of the wedge does not depend upon x. However the distances from the
origin are linear in x. Effectively, this implies that as x changes the wedge moves along
a line. See figure (b). The line � is the path along which the wedge moves with chang-
ing x. Its orientation and angle are constant, i.e., independent of x. As the wedge travels
along some arbitrary line � in the 2d plane, its intersection with the square S changes.
Recall that the square S is the region in which our Maclaurin expansion is convergent,
and outside S the probability density of the normal distribution is negligibly small.
The example in figure (b) shows 5 intervals in which p(x) is approximable by different
polynomials. The intervals are (−∞, A), (A,B), (B,C), (C,D) and (D,∞). Within
each of these intervals, lemma 4 gives the same polynomial q(x). Across intervals the
polynomial is different. In general, � may be any arbitrary line on the 2d plane, and
the intervals may be different. Independent of the orientation of line �, the number of
distinct intervals is bounded by a constant. Effectively, p(x) is piecewise approximable
with a constant sized set of polynomials. We state this formally in the following lemma,
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Lemma 5. If X ∈ Rn is a standard normal random vector, a, b ∈ Rn, c1, c2, d1, d2 ∈
R and x is a variable, then there exists a constant k and the interval (−∞,∞) can
be partitioned into intervals {I1, . . . , Ik}, such that P[a · X ≥ c1 + c2x and b · X ≥
d1 + d2x] can be expressed as follows,

P[a · X ≥ c1 + c2x and b · X ≥ d1 + d2x] = q1(x) + δ1 if x ∈ I1,

...

= qk(x) + δk if x ∈ Ik,

where, |δ1|, . . . , |δk| are O(ε) and q1(x), . . . , qk(x) are polynomials of degree O(− log
ε) that can be constructed in O(log2 ε) time provided that |a|, |b| and a · b are known.

Derandomization of Maximum Cut
Problems like Max Cut, Max Dicut and Max 2SAT [GW94], share the randomized strat-
egy of using one randomly chosen plane to create a partition, and can be derandomized
in essentially the same way. The following discussion looks at the Max Cut problem.
Given a weighted undirected graph G = (V,E), the Max Cut problem seeks to partition
the set of vertexes, V , into two subsets such that the weight of edges that cross the par-
tition is maximized. We derandomize the 0.878 approximation algorithm of Goemans
and Williamson [GW94]. A relaxation of the Max Cut problem can be formulated as
a semidefinite program. Let n be the number of vertexes in the set V and let there be
an n-dimensional real vector, xu associated with each vertex u ∈ V . Let wu,v be the
weight of edge (u, v). Then the relaxed Max Cut formulation [GW94] is

maximize
1
2

∑
(u,v)∈E

u<v

wu,v(1 − xu · xv), s.t. ∀u ∈ V, xu ∈ Rn and |xu| = 1. (4)

Let the superscript ∗ denote values that maximize the objective function, that is,
∀u ∈ V , if xu = x∗

u then the objective function is maximum. The randomized algorithm
selects a normally distributed random vector X from Rn. All vertex vectors that form
an acute angle with this random vector are placed in one set of the partition, while the
ones that form an obtuse angle are placed in the other set of the partition. The cut is the
set of edges that cross the partition. The expected size of the cut is

∑
(u,v)∈E

wu,v P[x∗
u · X ≥ 0 and x∗

v · X < 0] ≥ (0.878 − ε′)W ∗, (5)

where, W ∗ is the maximum value of the objective function in (4) and ε′ captures the
accuracy of solving the SDP in (4).

The derandomized algorithm fixes one dimension at a time. If the first i− 1 dimen-
sions have been derandomized, i.e., X1 = x1, . . . , Xi−1 = xi−1 then we minimize the
summation,∑
(u,v)∈E

wu,v P[x∗
u·X ≥ 0 and x∗

v ·X < 0 : X1 = x1, . . . , Xi−1 = xi−1, Xi = x], (6)
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over all values of x and set xi, the derandomized value of Xi, to that x which gave the
least sum. The process repeats till all the dimensions are derandomized. The minimiza-
tion is done by approximating the probability with a polynomial, and then minimizing
this polynomial. Since we are approximating the probability n times, once for each di-
mension derandomized, we need an accuracy of ε/n for every approximation, so that
the total error is no more than ε. At the ith step, let the probability inside the summa-
tion in (6) be pu,v(x). We know from lemma 5 that pu,v(x) is approximable by some
constant k(u, v) sized set of polynomials of degree log n/ε, over different ranges of x,

pu,v(x) ≈ q1
u,v(x), if x ∈ I1

u,v

...

≈ qk(u,v)
u,v (x), if x ∈ Ik(u,v)

u,v .

The range of x, i.e., (−∞,∞), can be partitioned into O(|E|) different intervals, I1, I2,
. . . IO(|E|), such that in any interval Ij , ∀x, y ∈ Ij the approximation of every pu,v(x)
and pu,v(y) is the same polynomial. The intervals Ij are simply defined by all the end
points of all the O(|E|) intervals, Ik

u,v . We proceed in a left to right order. For I1 we sum
all the polynomials. This first step takes O(|E|) time. Since the degree of each polyno-
mial is O(log n/ε) we end up with a sum that is a polynomial of degree O(log n/ε).
Let this polynomial be q1. We then proceed to the next interval, I2, where one of the
polynomials which was a good approximation in I1 is not a good approximation any
more. We discard this by subtracting it from q1 and adding in its replacement (one that
is a good approximation in interval I2), giving us q2. We compute the minima of q2 in I2
and then proceed to the next interval. The process repeats till all the intervals have been
minimized. Out of the O(|E| log n/ε) minimia, we select the one which is the least.
The whole process takes O(|E| log3 n/ε) time. The logarithmic factor in our analysis
is not tight. Recall that the time needed to construct each polynomial is O(log2 n/ε). In
addition, we utilize the fact that given a polynomial of degree d it is possible to find all
its roots within an accuracy of δ in O(d2(log2 d − log d log δ)) time [P97].

The algorithm runs in O(n3 log3(n/ε)) time and guarantees that the cut found is
within εW ∗ of what is guaranteed by the randomized algorithm.

4 Conclusion

We have derived a simple pessimistic estimator for derandomizing the JL lemma based
randomized projection algorithm. The construction is faster than known derandomiza-
tions. This kind of pessimistic estimator may yield insight into the kind of estimators
needed to derandomize randomized projection algorithms for embedding �2 into �1, or
the more general �2 into �p using ±1 valued r.v.’s [MS80].

We have also presented a general technique for derandomizing SDP based approxi-
mation algorithms. When applied to Max Cut our algorithm is faster than known tech-
niques. This technique is applicable to other SDP based approximations, such as Max
2SAT, Max Dicut, the coloring algorithm of [KMS94], the independent set algorithm
of [AK95] and the max k-cut algorithm of [FJ95].
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Abstract. We obtain subquadratic algorithms for 3SUM on integers
and rationals in several models. On a standard word RAM with w-bit
words, we obtain a running time of O(n2/ max{ w

lg2 w
, lg2 n

(lg lg n)2
}). In the

circuit RAM with one nonstandard AC0 operation, we obtain O(n2/ w2

lg2 w
).

In external memory, we achieve O(n2/(MB)), even under the standard
assumption of data indivisibility. Cache-obliviously, we obtain a running
time of O(n2/ MB

lg2 M
). In all cases, our speedup is almost quadratic in the

parallelism the model can afford, which may be the best possible. Our
algorithms are Las Vegas randomized; time bounds hold in expectation,
and in most cases, with high probability.

1 Introduction

The 3SUM problem can be formulated as follows: given three sets A,B,C of
cardinalities at most n, determine whether there exists a triplet (a, b, c) ∈ A ×
B × C, with a + b = c. This problem has a simple O(n2)-time algorithm, which
is generally believed to be the best possible. Erickson [7] proved an Ω(n2) lower
bound in the restricted linear decision tree model. Many problems have been
shown to be 3SUM-hard (reducible from 3SUM), suggesting that they too require
Ω(n2) time; see, for example, the seminal work of [8]. This body of work is
perhaps the most successful attempt at understanding complexity inside P.

In this paper, we consider the 3SUM problem on integers and rationals. We
consider several models of computation, and achieve o(n2) running times in
all of them. Our algorithms use Las Vegas randomization. The only previously
known subquadratic bound is an FFT-based algorithm which can solve 3SUM on
integers in the range [0, u] in O(u lg u) time [4–Ex. 30.1-7]. However, this bound
is subquadratic in n only when u = o(n2/ lg n), whereas our algorithm improves
on the simple O(n2) solution for all values of n and u.

It is perhaps not surprising that 3SUM should admit slightly subquadratic
algorithms. However, our solution requires ideas beyond just bit tricks, and we
believe that our techniques are interesting in their own right. In addition, observe
that in all cases our speedups are quadratic or nearly quadratic in the parallelism
that the model can afford. If the current intuition about the quadratic nature of
the 3SUM problem turns out to be correct, such improvements may be the best
possible.

F. Dehne, A. López-Ortiz, and J.-R. Sack (Eds.): WADS 2005, LNCS 3608, pp. 409–421, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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The Circuit RAM. The transdichotomous RAM (Random Access Machine) as-
sumes memory cells have a size of w bits, where w grows with n. Input integers
must fit in a machine word, and so must the problem size n (so that the entire
memory can be addressed by word-size pointers); as a consequence, w = Ω(lg n).
Operations are allowed to touch a constant number of machine words at a time.

It remains to specify the operations and their costs. The circuit RAM allows
any operation which has a polynomial-size (in w) circuit, with unbounded fan-in
gates. The cost (time) of the operation is its depth; thus, unit-cost operations are
those with an AC0 implementation. The model tries to address the thorny issue
of what is a “good” set of unit-cost operations. Allowing any operation from
a complexity-theoretic class eliminates the sensitivity of the model to arbitrary
choices in the instruction set. The depth of the circuit is a restrictive and realistic
definition for the time it should take to execute the operation, making the model
theoretically interesting. Previously, the circuit RAM was used to study the
predecessor and dictionary problems, as well as sorting (see, e.g. [2, 3, 9]).

There are AC0 implementations for all common arithmetic and boolean oper-
ations, except multiplication and division. Multiplication requires depth (in this
model, time) Θ( lg w

lg lg w ). However, the model allows other arbitrary operations,
and we shall use this power by considering one nonstandard AC0 operation.
Note that the previous investigations of the model also considered nonstandard
operations. Our operation, word-3sum solves the 3SUM problem on small sets
of small integers, in the sense that they can be packed in a word. For a fixed
s = Θ(lg w), word-3sum takes three input words which are viewed as sets of
O(w/s) s-bit integers. The output is a bit which specifies whether there is a
triplet satisfying a + b = c (mod 2)s with a, b, c in these sets, respectively.

It is easy to see that word-3sum is in AC0, because addition is in AC0, and
all O(( w

lg w )3) additions can be performed in parallel. On a RAM augmented with

this operation, we achieve a running time of O(n2 · lg2 w
w2 + n · lg w

lg lg w + sort(n)).
The first term dominates for any reasonable w and we essentially get a speedup
of w2

lg2 w
. The term O(n lg w

lg lg w ) comes from evaluating O(n) multiplicative hash
functions, and sort(n) is the time it takes to sort n values (sort(n) = O(n lg lg n)
by [9]; note that this is also O(n lg w)).

The Word RAM. Perhaps the most natural model for our problem is the com-
mon word RAM. This model allows as unit-time operations the usual arithmetic
and bitwise operations, including multiplication. In this model, we achieve a
running time of O(n2/max{ lg2 n

(lg lg n)2 , w
lg2 w

} + sort(n)).
To achieve the speedup by a roughly lg2 n factor, we use the algorithm for

the circuit RAM. We restrict word-3sum to inputs of ε lg n bits, so that it
can be implemented using a lookup table of size n3ε = o(n), which is initial-
ized in negligible time. One could hope to implement word-3sum using bit
tricks, not a lookup table, and achieve a speedup of roughly w2. However, if the
current conjecture about the hardness of 3SUM is true, any circuit for word-
3sum should require Ω(w2/poly(lg w)) gates (regardless of depth). On the other
hand, the standard operations for the word RAM have implementations with
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O(w poly(lg w)) gates (for instance, using FFT for multiplication), so we cannot
hope to implement word-3sum efficiently using bit tricks.

We can still take advantage of a higher word size, although our speedup is
just linear in w. This result uses bit tricks, but, to optimize the running time, it
uses a slightly different strategy than implementing word-3sum.

External Memory. Finally, we consider the external-memory model, with pages
of size B, and a cache of size M . Both these quantities are measured in data items
(cells); alternatively, the cache has M/B pages. As is standard in this model,
we assume that data items are indivisible, so we do not try to use bit blasting
inside the cells inside each page. If desired, our algorithms can be adapted easily
to obtain a speedup both in terms of w and in terms of M and B.

In this model, we achieve a running time of O( n2

MB +sort(n)), where sort(n) is
known to be Θ( n

B lgM/B
n
B ). Note that even though the external-memory model

allows us to consider M data items at a time, reloading Ω(M) items is not a
unit-cost operation, but requires Ω(M/B) page reads. Thus, it is reasonable that
the speedup we achieve is only MB, and not, say, M2.

The Cache-Oblivious Model. This model is identical to the external-memory
model, except that the algorithm does not know M or B. For a survey of results
in this model, see [5]. Under the standard tall-cache assumption (M = B1+Ω(1)),
we achieve a running time of O(n2/ MB

lg2 M
+ sort(n) lg n). This bound is almost

as good as the bound for external memory.

Organization. In Section 2, we discuss a first main idea of our work, which is
needed as a subroutine of the final algorithm. In Section 3, we discuss a second
important idea, leading to the final algorithm. These sections only consider the
integer problem, and the discussion of all models is interwoven, since the basic
ideas are unitary. Section 4 presents some extensions: the rational case, testing
approximate satisfiability, and obtaining time bounds with high probability.

2 Searching for a Given Sum

We first consider the problem of searching for a pair with a given sum. We are
given sets A and B, which we must preprocess efficiently. Later we are given a
query σ, and we must determine if there exists (a, b) ∈ A × B : a + b = σ. The
3SUM problem can be solved by making n queries, for all σ ∈ C.

Our solution is based on the following linear time algorithm for answering
a query. In the preprocessing phase, we just sort A and B in increasing order.
In the query phase, we simultaneously scan A upwards and B downwards. Let
i be the current index in A, and j the current index in B. At every step, the
algorithm compares A[i] + B[j] to σ. If they are equal, we are done. If A[i] +
B[j] < σ, we know that A[t] + B[j] < σ for all t ≤ i (because the numbers are
sorted). Therefore, we can increment i and we do not lose a solution. Similarly,
if A[i] + B[j] > σ, j can advance to j − 1.
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Lemma 1. In external memory, searching for a given sum requires O(n/B)
time, given preprocessing time O(sort(n)).

Proof. Immediate, since the query algorithm relies on scanning. ��

Our goal now is to achieve a similar speedup, which is roughly linear in w, for
the RAM models. The idea behind this is to replace each element with a hash
code of Θ(lg w) bits, which enables us to pack P = O(min{ w

lg w , n}) elements in
a word. A query maintains indices i and j as above. The difference is that at
every step we advance either i or j by P positions (one word at a time). We
explain below how to take two chunks A[i . . (i + P − 1)] and B[(j − P + 1) . . j],
both packed in a word, and efficiently determine whether there is a pair sum-
ming to σ. If no such pair exists, we compare A[i + P − 1] + B[j − P + 1] to
σ (using the actual values, not the hash codes). If the first quantity is larger,
we know that A[q] + B[r] > σ for all q ≥ i + P − 1 and r ≥ j − P + 1. Also,
we know that A[q] + B[r] �= σ for all q ≤ i + P − 1 and r ≥ j − P + 1. It
follows that no value B[r] with r ≥ j − P + 1 can be part of a good pair, so we
advance j to j − P . Similarly, if A[i + P − 1] + B[j − P + 1] < σ, we advance i
to i + P .

2.1 Linear Hashing

We now describe how to test whether any pair from two chunks of P values
sums to σ. We hash each value into s = Θ(lg w) bits (then, P is chosen so that
P · s ≤ w). In order to maintain the 3SUM constraint through hashing, the
hash function must be linear. We use a very interesting family of hash functions,
which originates in [6]. Pick a random odd integer a on w bits; the hash function
maps x to (a*x)>>(w-s). This should be understood as C notation, with the
shift done on unsigned integers. In other words, we multiply x by a on w bits,
and keep the high order s bits of the result. This function is almost linear. In
particular h(x)⊕h(y)⊕h(z) ∈ h(x+y+z)'{0, 1, 2}, where circled operators are
modulo 2s. This is because multiplying by a is linear (even in the ring modulo
2w), and ignoring the low order w−s bits can only influence the result by losing
the carry from the low order bits. When adding three values, the carry across
any bit boundary is at most 2.

Reformulate the test x+y = σ as testing whether z = x+y−σ is zero. If z = 0,
we have h(x) ⊕ h(y) ⊕ h(−σ) ∈ {0,−1,−2}, because h(0) = 0 for any a. If, on
the other hand, z �= 0, we want to argue that h(x)⊕h(y)⊕h(−σ) ∈ {0,−1,−2}
is only true with small probability. We know that h(x)⊕h(y)⊕h(−σ) is at most
2 away from h(z). So if h(z) /∈ {0,±1,±2}, we are fine. Since z �= 0, it is equal
to b · 2c, for odd b. Multiplying b · 2c with a random odd number a will yield a
uniformly random odd value on the high order w − c bits, followed by c zeros.
The hash function retains the high order s bits. We now have the following cases:

w − c > s: h(z) is uniformly random, so it hits {0,±1,±2} with probability 5
2s .

w − c = s: the low order bit of h(z) is one, and the rest are uniformly random.
Then h(z) can only hit ±1, and this happens with probability 2

2s−1 .
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w − c = s − 1: the low order bit h(z) is zero, the second lowest is one, and
the rest are random. Then h(z) can only hit ±2, and this happens with
probability 2

2s−2 .
w − c ≤ s − 2: the two low order bits of h(z) are zero, and h(z) is never zero, so

the bad values are never attained.

We have thus shown that testing whether h(x)⊕h(y)⊕h(−σ) ∈ {0,−1,−2}
is a good filter for the condition x + y = σ. If the condition is true, the filter is
always true. Otherwise, the filter is true with probability O(1)

2s . When considering
two word-packed arrays of P values, the probability that we see a false positive
is at most P 2 · O(1)

2s , by a union bound over all P 2 pairs which could generate a
false positive through the hash function. For s = Θ(lg P ) = Θ(lg w), this can be
made 1/poly(P ), for any desired polynomial.

2.2 Implementation in the RAM Models

We now return to testing if any pair from two chunks of P values sums to σ. If
for all pairs (x, y), we have h(x) ⊕ h(y) ⊕ h(−σ) /∈ {0,−1,−2}, then we know
for sure that no pair sums to σ. On the circuit RAM, this test takes constant
time: this is the word-3sum operation, where the third set is h(−σ) ' {0, 1, 2}
(mod 2)s (so the third set has size 3).

If the filter is passed, we have two possible cases. If there is a false positive,
we can afford time poly(P ), because a false positive happens with 1/poly(P )
probability. In particular, we can run the simple linear-time algorithm on the
two chunks, taking time O(P ). The second case is when we actually have a good
pair, and the algorithm will stop upon detecting the pair. In this case, we cannot
afford O(P ) time, because this could end up dominating the running time of a
query for large w. To avoid this, we find one pair which looks good after hashing
in O(lg P ) = O(lg n) time, which is vanishing. We binary search for an element
in the first chunk which is part of a good pair. Throw away half of the first
word, and ask again if a good pair exists. If so, continue searching in this half;
otherwise, continue searching in the other half. After we are down to one element
in the first chunk, we binary search in the second. When we find a pair that looks
good after hashing, we test whether the actual values sum to σ. If so, we stop,
and we have spent negligible time. Otherwise, we have a false positive, and we
run the O(P ) algorithm (this is necessary because there might be both a false
positive, and a match in the same word). The expected running time of this step
is o(1) because false positives happen with small probability.

Lemma 2. On a circuit RAM, searching for a given sum takes O(n · lg w
w ) ex-

pected time, given preprocessing time O(n · lg w
lg lg w + sort(n)).

Proof. Follows from the above. Note that the preprocessing phase needs to com-
pute O(n) hash values using multiplication. ��

Lemma 3. On a word RAM, searching for a sum takes O(n ·min{ lg2 w
w , lg lg n

lg n })
expected time, given preprocessing time O(sort(n)).
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Proof. All we have to do is efficiently implement the test for h(x)⊕h(y)⊕h(−σ) ∈
{0,−1,−2} for all pairs (x, y) from two word-packed sets (a special case of word-
3sum). We use a series of bit tricks to do this in O(lg w) time. Of course, if we
only fill words up to ε lg n bits, we can perform this test in constant time using
table lookup, which gives the second term of the running time.

Hash codes are packed in a word, with a spacing bit of zero between values.
We begin by replacing each h(A[q]) from the first word with −h(−σ)' h(A[q]).
Consider a (s + 1)-bit quantity z with the low s bits being −h(−σ), and the
high bit being one. We multiply z by a constant pattern with a one bit for every
logical position in the packed arrays, generating P replicas of z. The set high
order bits of z overlap with the spacing zero bits in the word-packed array. Now,
we subtract the word containing elements of A from the word containing copies
of z. This accomplished a parallel subtraction modulo 2s. Because each (s+1)-st
bit was set in z, we don’t get carries between the elements. Some of these bits
may remain set, if subtractions do not wrap around zero. We can and the result
with a constant cleaning pattern, to force these spacing bits to zero.

Now we have one word with h(B[r]) and one with −h(−σ) ' h(A[q]). We
must test whether there is a value −h(−σ) ' h(A[q]) at most 2 greater than
some h(B[r]). To do this, we concatenate the two words (this is possible if we
only fill half of each word in the beginning). Then, we sort the 2P values in this
word-packed array (see below). Now, in principle, we only have to test whether
two consecutive elements in the sorted order are at distance ≤ 2. We shift the
word by s + 1 bits to the left, and subtract it from itself. This subtracts each
element from the next one in sorted order. A parallel comparison with 2 can be
achieved by subtracting the word from a word with 2P copies of 2s + 2, and
testing which high order bits are reset. There are two more things that we need
to worry about. First, we also need to check the first and the last elements in
sorted order (because we are in a cyclic group), which is easily done in O(1)
time. Then, we need to consider only consecutive elements such that the first
comes from h(B[r]) and the second from −h(−σ) ' h(A[q]). Before sorting, we
attach an additional bit to each value, identifying its origin. This should be zero
for h(B[r]) and it should be treated as the low order bit for sorting purposes
(this insures that equal pairs are sorted with h(B[r]) first). Then, we can easily
mask away the results from consecutive pairs which don’t have the marker bits
in a zero-one sequence.

To sort a word-packed array, we simulate a bitonic sorting network as in [1–
Sec. 3]. It is known (and easy to see) that one step of a comparison network
can be simulated in O(1) time using word-level parallelism. Because a bitonic
sorting network on 2P elements has depth O(lg P ), this algorithm sorts a bitonic
sequence in O(lg P ) = O(lg w) time. However, we must ensure that the origi-
nal sequence is bitonic. Observe that we are free to pack the hash codes in a
word in arbitrary order (we don’t care that positions of the hash values in a
word correspond to indices in the array). Hence, we can pack each word of B
in increasing order of hash codes, ensuring that the values h(B[r]) appear in
increasing order. We can also pack h(A[q]) values in decreasing order. When we
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apply a subtraction modulo 2s, the resulting sequence is always a cyclic shift of
a monotonic sequence, which is bitonic (the definition of bitonicity allows cyclic
shifts). Thus we can first sort the values coming from A using the bitonic sort-
ing network, then concatenate with the second word, and sort again using the
bitonic sorting network. There is one small problem that this scheme introduces:
when we find a pair which looks good after hashing, we do not know which
real elements generated this pair, because hash values are resorted. But we can
attach O(lg P ) = O(lg w) bits of additional information to each value, which is
carried along through sorting and identifies the original element. ��

3 The General Algorithm

By running the query algorithm from the previous section n times, for every ele-
ment in C, we obtain a speedup which is roughly linear in the parallelism in the
machine. The subproblem that is being solved in parallel is a small instance of
3SUM with |C| = O(1). We can make better use of the parallelism if we instead
solve 3SUM subproblems with A, B, and C roughly the same size. The linear
scan from the previous section does not work because it may proceed differently
for different elements of C. Instead, we use another level of linear hashing to
break up the problem instance into small subproblems. We hash all elements to
o(n) buckets and the linearity of the hash function ensures that for every pair
of buckets, all of the sums of two elements from them are contained in O(1)
buckets. The algorithm then solves the subproblems for every pair of buckets.

3.1 A Hashing Lemma

We intend to map n elements into n/m buckets, where m is specified below.
Without loss of generality, assume n/m is a power of two. The algorithm picks
a random hash function, from the same almost linear family as before, with an
output of lg(n/m) bits. A bucket contains elements with the same hash value.
In any fixed bucket, we expect m elements. Later, we will need to bound the
expected number of elements which are in buckets with more than O(m) ele-
ments. By a Markov bound, we could easily conclude that the expected number
of elements in buckets of size ≥ mt decreases linearly in t. A sharper bound
is usually obtained with k-wise independent hashing, but a family of (almost)
linear hash functions cannot even achieve strong universality (2-independence):
consider hashing x and 2x. Fortunately, we are saved by the following slightly
unusual lemma:

Lemma 4. Consider a family of universal hash functions {h : U → [ n
m ]}, which

guarantees that (∀)x �= y : Prh[h(x) = h(y)] ≤ m
n . For a given set S, |S| = n,

let B(x) = {y ∈ S | h(y) = h(x)}. Then the expected number of elements x ∈ S
with |B(x)| ≥ t is at most 2n

t−2m+2 .

Proof. Pick x ∈ S randomly. It suffices to show that p = Prh,x[|B(x)| ≥ s] ≤
2

s−2m+1 . Now pick y ∈ S \ {x} randomly, and consider the collision probability
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q = Prx,y,h[h(x) = h(y)]. By universality, q ≤ m
n . Let qh = Prx,y[h(x) = h(y)]

and ph = Prx[|B(x)| ≥ s].
We want to evaluate qh as a function of ph. Clearly, Pr[h(x) = h(y) | |B(x)| ≥

s] ≥ s−1
n . Now consider S′ = {x | |B(x)| < s}; we have |S′| = (1 − ph)n. If

x ∈ S′ and we have a collision, then y ∈ S′ too. By convexity of the square
function, the collision probability of two random elements from S′ is minimized
when the same number of elements from S′ hash to any hash code. In this case,
|B(x)| ≥ � |S′|

n/m� ≥ (1− ph)m− 1. So Pr[h(x) = h(y) | x ∈ S′] ≥ (1−ph)m−2
n . Now

qh ≥ ph
s−1
n +(1−ph) (1−ph)m−2

n ≥ 1
n (ph(s−1)+(1−2ph)m−2(1−ph)) = 1

n (ph(s−
2m + 2) + m− 2). But we have q = E[qh] ≤ m

n , so ph(s− 2m + 2) + m− 2 ≤ m,
which implies ph ≤ 2

s−2m+2 . ��

The lemma implies that in expectation, O( n
m ) elements are in buckets of

size greater than 3m. It is easy to construct a universal family showing that
the linear dependence on t is optimal, so the analysis is sharp. Note that the
lemma is highly sensitive on the constant in the definition of universality. If we
only know that Prh[h(x) = h(y)] ≤ O(1)·m

n , the probability that an element is
in a bucket larger than t decreases just as m

t (by the Markov bound). Again,
we can construct families showing that this result is optimal, so the constant is
unusually important in our application. Fortunately, the universal family that
we considered achieves a constant of 1.

3.2 The Algorithm

The idea of the algorithm is now simple. We hash the three sets A,B,C sep-
arately, each into n/m buckets. Consider a pair of buckets (BA,BB) from A
and B, respectively. Then, there exist just two buckets BC

1 ,BC
2 of C, such

(∀)(x, y) ∈ BA × BB , if x + y ∈ C, then x + y ∈ BC
1 ∪ BC

2 . This follows by
the almost linearity of our hash functions: if x+y = z, then h(z) ∈ h(x)⊕h(y)⊕
{0, 1}.

The algorithm iterates through all pairs of buckets from A and B, and for
each one looks for the sum in two buckets of C. This corresponds to solving
n2/m2 independent 3SUM subproblems, where the size of each subproblem is
the total size of the four buckets involved. The expected size of each bucket is
m, but this does not suffice to get a good bound, because the running times are
quadratic in the size of the buckets. Here, we use the Lemma 4, which states that
the expected number of elements which are in buckets of size more than 3m is
O(n/m). The algorithm caps all buckets to 3m elements, and applies the above
reasoning on these capped buckets. The elements that overflow are handled by
the algorithms from the previous section: for each overflowing element, we run
a query looking for a pair of values from the other two sets, which satisfy the
linear constraint. Thus, we have n2/m2 subproblems of worst-case size O(m),
and O(n/m) additional queries in expectation.

Theorem 5. The 3SUM problem can be solved in O(n2· lg
2 w

w2 +n· lg w
lg lg w +sort(n))

expected time on a circuit RAM.
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Proof. Choose m = O(min{ w
lg w ,

√
n}). We use a second level of hashing inside

each bucket: replace elements by an O(lg w)-bit hash value, and pack each bucket
into a word. For buckets of C, we pack two values per element: h(z) and h(z)'1.
Now we can test whether there is a solution in a triplet of buckets in constant
time, using word-3sum. If we see a solution, we verify the actual elements of
the buckets using O(m2) time. When we find a solution, we have an additive
cost of O(m2) = O(n). The time spent on useless verification is o(1) since the
probability of a false positive is 1/poly(w). We also need to run O(n/ w

lg w ) queries
in the structure of Lemma 2. ��

Theorem 6. The 3SUM problem can be solved in O(n2/max{ lg2 n
(lg lg n)2 , w

lg2 w
}+

sort(n)) expected time on a word RAM.

Proof. As above, but we only choose m = O( lg n
lg lg n ) and we implement word-

3sum using a lookup table. ��

Theorem 7. In external memory, 3SUM can be solved in expected time O( n2

MB +
sort(n)).

Proof. Choose m = O(M), so that each subproblem fits in cache, and it can be
solved without memory transfers. Loading a bucket into cache requires Θ(M

B )
page transfers, so the running time for all subproblems is O( n2

MB ). We must also
run O( n

M ) additional queries, taking O( n
B ) time each, by Lemma 1. The startup

phases only require time to sort. ��

Theorem 8. There is a cache-oblivious algorithm for the 3SUM problem run-
ning in expected time O(n2 · lg2 M

MB + sort(n) lg n).

Proof. This requires some variations on the previous approach. First, we hash
all values using our almost linear hash functions into the universe {0, . . . , n−1}.
We store a redundant representation of each of the 3 sets; consider A for con-
creteness. We construct a perfect binary tree T A over n leaves (we can assume
n is a power of two). The hash code h(x) of an element x ∈ A is associated
with leaf h(x). For some node u of T A, let s(u) be the number of elements of
A with a hash code that lies below u. Also, let �(u) be the number of leaves of
T A under u. Each node u stores a set S(u) with elements having hash codes
under u, such that |S(u)| ≤ min{s(u), 3�(u)}. Let v, w be the children of u.
Then S(v) ⊆ S(u), S(w) ⊆ S(u). If exactly one child has s(·) > 3�(·), u has
a chance to store more elements than S(v) ∪ S(w). The additional elements
are chosen arbitrarily. Now, the representation of A consists of all nodes, with
elements stored in them, listed in a preorder traversal. The set S(·) of each
node is sorted by element values. Elements which appear for the first time in
S(u), i.e. they are in S(u) \ (S(v) ∪ S(w)), are specially marked. Note that
the representation of A has size O(n lg n), and it is easy to construct in time
O(sort(n) · lg n).
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We now give a recursive procedure, which is given three vertices vA, vB , vC

and checks whether there is a 3SUM solution in S(vA) × S(vB) × S(vC). It is
easy to calculate the allowable interval of hash codes that are under a vertex. If,
looking at the three intervals, it is mathematically impossible to find a solution,
the procedure returns immediately. Otherwise, it calls itself recursively for all 8
combinations of children. Finally, it must take care of the elements which appear
for the first time in one of S(vA), S(vB), S(vC). Say we have such an x ∈ S(vA)
which does not appear in the sets of the children of vA. Then, we can run the
linear-scan algorithm to test for a sum of x in S(vB) × S(vC). These sets are
conveniently sorted.

As usual in the cache-oblivious model, we analyze the algorithm by construct-
ing an ideal paging strategy (because real paging strategies are O(1)-competitive,
under constant-factor resource augmentation). Consider the depth threshold
where �(v) ≤ ε M

lg M . Observe that the representation for v and all nodes be-
low it has size O(�(v) lg �(v)) = O(M) in the worst-case. Furthermore, these
items appear in consecutive order. When the algorithm considers a triplet of
vertices under the depth threshold, the pager loads all data for the vertices and
their descendents into cache. Until the recursion under those vertices finishes,
there need not be any more page transfers. Thus, the number of page transfers
required by vertices below the threshold is O((n/ M

lg M )2 · M
B ) = O(n2 lg2 M

MB ). This
is because the triples that we consider are only those which could contain a sum
(due to the recursion pruning), and there are O((n/ M

lg M )2) such triplets.
For a vertex u above the threshold, we only need to worry about the elements

which appear for the first time in S(u). If we define each vertex at the threshold
depth to be a bucket, in the sense of Lemma 4, these are elements which overflow
their buckets. Thus, we expect O(n/ M

lg M ) such elements. An element which is
first represented at level i is considered at most twice in conjunction with any
vertex on level i. Each time, a linear scan is made through the set of such a
vertex; the cost is one plus the number of full pages read. Then, handling such
an element requires O( n

B + n M
lg M ). The first term comes from summing the full

pages, and the second comes from the startup cost of one for each vertex on
level i. In total for all elements that appear above the threshold, we spend time
O(n2 · lg M

M ( lg M
M + 1

B )). Under the standard tall-cache assumption, lg M
M = o( 1

B ),
and we obtain the stated time bound. ��

4 Further Results

The Rational Case. Up to now, we have only discussed the integer case, but the
rational case can be solved by reduction. Let d be the least common denominator
of all fractions. We replace each fraction a

b by adb−1, which is an integer. The
new problem is equivalent to the old one, but the integers can be rather large
(up to 2wn). To avoid this, we take all integers modulo a random prime between
3 and O(wnc lg(wn)), for some constant c. Consider a triplet of integers x, y, z.
If x+y = z, certainly x+y = z (mod p). If x+y− c �= 0, the Chinese remainder
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theorem guarantees that x + y − z = 0 (mod p) for less than wn primes. By the
density of primes, there are Θ(wnc) primes in our range, so with high probability
a non-solution does not become a solution modulo p. By a union bound over all
triples, the prime does not introduce any false positive with high probability.
Note that our primes have O(lg w + lg n) = O(w) bits, so the problem becomes
solvable by the integer algorithm. We also need to check that a reported solution
really is a solution, but the time spent verifying false positives is o(1). Also
note that in a1db−1

1 + a2db−1
2 = a3db−1

3 (mod p) we can eliminate d, because
d �= 0, so we don’t actually need to compute the least common denominator.
We simply replace a

b with ab−1 (mod p). Inverses modulo p can be computed in
O(poly(lg n, lg w)) time.

Bounds with High Probability. We describe a general paradigm for making our
bounds hold with high probability, for reasonable w,M,B (when the overall time
bounds are not too close to linear). The higher level of hashing is easy to handle:
repeat choosing hash functions until the total number of elements overflowing
their buckets is only twice the expectation. Rehashing takes roughly linear time,
so repeating this step O(lg n) times (which is sufficient with high probability)
is not significant. For the RAM, we have two more places where randomness
is used. First, all n2

m2 pairs of buckets are checked by packing hash values in a
word. The trouble is that these pairs are not independent, because the same hash
function is used. However, after going through nε buckets in the outer loop, we
choose a different hash function and reconstruct the word-packed representation
of all buckets. Reconstruction takes linear time, so this is usually a lower order
term. However, the total running time is now the sum of n1−ε/m independent
components, and we achieve a with high probability guarantee by a Chernoff
bound. Note that each term has a strict upper bound of poly(m) times its mean,
so we need n1−ε/m to be bigger than a polynomial in m to cover the possible
variance of the terms. We also have expected time bounds in searching for a
given sum. Since we perform O( n

m ) queries, we can reuse the same trick: recon-
struct the word-packed representations every nε queries, giving nε independent
terms.

Approximate Linear Satisfaction. We can also approximate the minimum triplet
sum in absolute value (i.e., mina,b,c |a + b + c|), within a 1 + ε factor. The
running time increases by O(lg w) for any constant ε (also, the dependence
on 1

ε can be made logarithmic). We consider a threshold 3SUM problem: for
a given T , the problem is to find a triplet with sum in the interval [−T, T ],
or report that none exists. It is straightforward to verify that all algorithms
from above can solve this more general problem in the same time bounds, when
T = O(1).

To approximate the minimum sum, we first test whether the sum is zero
(classic 3SUM). If not, we want to find some e ∈ [0, w/ lg(1 + ε)] such that
there is a sum with absolute value less than (1 + ε)e, and none with absolute
value less than (1+ ε)e−1. We show how to perform a binary search for e, which
adds an O(lg w) factor to the running time. We must be able to discern the
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case when the minimum sum is at least (1 + ε)L (for some L) versus when it
is at most L. We divide all numbers by (εL)/6 and take the floor. Then we
use threshold 3SUM with T = 6/ε + 3. Suppose a triplet x, y, z has sum in
[−L,L]. Then the modified triplet has a sum whose absolute value is bounded
by L(6/(εL)) + 3; the term of 3 comes from a possible deviation by at most 1
for every floor operation. But this bound is exactly T , so we always find a good
triplet. Suppose on the other hand that all triplets have a sum whose absolute
value is at least (1 + ε)L. Then the modified triplets have sums with absolute
values larger than (1 + ε)L(6/(εL)) − 3 > T , so we never report a bad triplet.
Note that this algorithm also works in the rational case, because we take a floor
at an early stage; the only difference is that we must also allow e to be negative,
up to −w/ lg(1 + ε).

5 Conclusions

An interesting open problem is whether it is possible to obtain a subquadratic
algorithm for finding collinear triples of points in the plane (the original moti-
vation for studying 3SUM). This problem seems hard for a fundamental reason:
there are no results on using bit tricks in relation to slopes. For example, the
best bound for static planar point location is still the comparison-based O(lg n),
despite attempts by several researchers.

Another interesting question is what improvements are possible for the r-SUM
problem. There, the classic bounds are Õ(n�r/2) by a meet-in-the-middle attack.
Unfortunately, our techniques don’t mix well with this strategy, and we cannot
achieve a speedup that grows with r.

Acknowledgments. We thank Jeff Erickson and Rasmus Pagh for helpful discus-
sions.
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Abstract. We present efficient approximation algorithms for a number
of problems that call for computing the prices that maximize the rev-
enue of the seller on a set of items. Algorithms for such problems enable
the design of auctions and related pricing mechanisms [3]. In light of
the fact that the problems we address are APX-hard in general [5], we
design near-linear and near-cubic time approximation schemes under the
assumption that the number of distinct items for sale is constant.

1 Introduction

Imagine a software provider that is about to release a new product in student,
standard, and professional editions. How should the editions be priced? Natu-
rally, high prices lead to more revenue per sale, whereas lower prices lead to more
sales. There is also interplay between the prices on the different versions, e.g., a
consumer willing to pay a high price for the professional version might be lured
away by a bargain price on the standard version. Given consumer preferences
over a set of items for sale, how can the items be priced to give the optimal
profit?

Consumer preferences are rich in combinatorial structure and this leads to
much of the difficulty in price optimization. General combinatorial preferences
might have aspects of both substitutability and complementarity. As an example,
a vacationer might like either a plane ticket to Hawaii together with a beach-
front hotel, or a ticket to Paris with a hotel on Ile St. Louis. We address the
pure complements case (i.e., single-minded consumers that want a set bundle of
products for a specific price) and the pure substitutes case (i.e., unit-demand
consumers that want exactly one unit of any of the offered products and have
different valuations on the products). In the above software pricing scenario, it
is natural to assume that consumers are unit-demand. See the following sections
for definitions.

These variants of the pricing problem are considered by Guruswami et al. [5]
who show that even in simple special cases, these pricing problems are APX-hard.
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(That is, there is no polynomial time approximation scheme given standard com-
plexity assumptions.) They give a logarithmic factor approximation algorithm
and leave the problem of obtaining a better approximation factor open. Unfor-
tunately, the logarithmic approximation does not yield any insight on questions
like the pricing problem faced by the software company in our opening exam-
ple; it would recommend selling all editions of the software at the same, albeit
optimally chosen, price. Obviously, this defeats the purpose of making different
editions of the software and is thus inadequate.

In this paper we consider the above pricing problems under the assumption
that the number of distinct items for sale is constant. As is illustrated by the
software pricing example, this assumption is pertinent to many real-life scenar-
ios. A brute-force exact algorithm exists, but is exponential in the number of
items for sale and generally impractical. We present approximation schemes with
significantly superior running times. As the APX-hardness of the problems in-
dicates, simplifying assumptions such as this are necessary for the achievement
of such results.

In the unlimited supply case in which the seller is able to sell any num-
ber of units of each item, we give near-linear time approximation schemes for
both the pure substitutes problem and the pure complements problem. Specif-
ically, for unit-demand consumers a (1 + ε)-approximation is achieved in time
O
(
n log

( 1
ε log n

ε

)
+
( 1

ε log n
ε

)m(m+1)
)

for n consumers, m = O(1) items, and an
arbitrarily small ε > 0. For single-minded consumers a (1 + ε)-approximation is
achieved in time O

((
n +

( 1
ε log n

ε

)m)
log

( 1
ε log n

ε

))
.

The more general limited supply case requires more care. In particular, we
demand that the computed prices satisfy an explicit fairness criterion called envy-
freedom [5] that makes sure that the prices are such that no item is oversold.1

For unit-demand consumers we give a (1 + ε)-approximation algorithm for the
limited supply (envy-free) pricing problem that runs in time O(n3 logm

1+ε n).
Part of the motivation for considering these pricing problems comes from auc-

tion mechanism design problems. In mechanism design it is pointedly assumed
that the seller does not know the consumer preferences in advance. Instead, an
auction must compute payments that encourage the consumers to reveal their
preferences. Intuitively, however, understanding how to optimally price items
given known preferences is necessary for the more difficult problem of running
an auction when the preferences are unknown in advance. For the unlimited
supply unit-demand scenario, Goldberg and Hartline [3] made this connection
concrete by giving a reduction from the game theoretic auction design problem
to the algorithmic price optimization problem. They left the problem of comput-
ing optimal or approximately optimal prices from known consumer preferences
in polynomial time open. This is one of the questions addressed by our work.

1 Envy-freedom is implicit in the definition of unlimited supply pricing problem since
we require that the identical units of each item be sold at the same price and that
each consumer pick their desired items after the prices are set.
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This paper is organized as follows. In Sections 2 and 3 we describe the unlim-
ited supply algorithms for the pure substitutes and pure complements problems,
respectively. In Section 4 we formally define envy-freedom, give background ma-
terial, and present the approximation algorithm for the limited supply pure
substitutes problem. We conclude in Section 5 with a discussion of the difficulty
in generalizing our approach to combinatorial preferences that contain both sub-
stitutes and complements.

2 Unlimited Supply, Unit-Demand Consumers

We assume that the seller has m distinct items for sale, each available in unlimited
supply. There are n consumers each of whom wishes to purchase at most one item
(i.e., there is unit-demand). We define a consumer’s valuation for an item as the
value assigned by the consumer to obtaining one unit of the item. For consumer
i and item j, let vij denote this valuation. Given a price pj for item j, consumer
i’s utility for this item is uij = vij −pj . We assume that a consumer’s only goal is
to maximize this utility. Therefore, given a pricing of all items, p = (p1, . . . , pm),
consumer i will choose one of the items j such that vij − pj ≥ vij′ − pj′ for all
j′ �= j, or no item if vij < pj for all j.

The pricing problem we address asks for computing, given the consumer
valuations, a pricing that is seller optimal, i.e., the price vector that maximizes
the sum of the prices of all the units of items sold, also called the seller’s profit.
For a given price vector p, let Profitp be the profit obtained from p. Let p̄ be
the price vector with the maximum profit and set OPT = Profitp̄. The following
assumption is natural in many context (See Section 4) and insures that Profitp is
well defined: a consumer indifferent between several items will choose following
the discression of the pricing algorithm. For our goal of unlimited supply profit
maximization we assume that indifferent consumers consumers choose the item
with the higher price.

This problem was first posed in [3]. Both Guruswami et al. [5] and Aggarwal
et al. [1] give logarithmic approximations and APX-hardness proofs that hold
even for the special case where vij ∈ {0, 1, 2}. For the case where the number of
distinct items for sale is constant we get the following result.

Theorem 1. For any ε < 1, an envy-free pricing that gives profit at least
OPT /(1 + ε) can be computed in time O(n log(Mm2) + m2m+1Mm+1), where
M = O(mm logm

1+ε
n
ε )). For constant m, the running time is

O

(
n log

(
1
ε

log
n

ε

)
+
(

1
ε

log
n

ε

)m(m+1)
)

.

In brief synopsis, the analysis proceeds as follows. We first show that there
is an approximately optimal price vector p̃ that satisfies Profitp̃ ≥ (1 − δ)OPT
with the property that for all j, p̃j ∈ [ δh

n , h] where h = maxi,j vij is the highest
valuation of any user for any item. We then show that we can cover the space
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of price vectors [ δh
n , h]m with a “small” set of price vectors W, such that there

exists p ∈ W with Profitp ≥ Profitp̃ /(1 + δ). A brute-force search over W can
find the optimal such vector p ∈ W in time O(nm |W|) which is O(n log n) for
constant ε and m. A more clever search yields the stated runtime O(n log log n).
From a practical standpoint the brute-force approach may be more desirable due
to its great simplicity of implementation.

Lemma 1. There exists p̃ with p̃j ∈ [ δh
n , h]m for all j and Profitp̃ ≥ (1−δ)OPT.

Proof. First, we can assume that p̄ satisfies p̄j ≤ h as setting a price above the
highest valuation cannot increase the profit. Indeed, the revenue from an item
priced this way can only be zero. Consider p̃ with p̃j = max(p̄j ,

δh
n ). Let J ′ be the

set of items with p̃j = p̄j (all other items have price p̃j = δh
n > p̄j). Any consumer

that prefers an item from J ′ under pricing p̄ prefers the same item under p̃. This
is because we kept the price of this preferred item fixed and only raised prices of
other items. On the other hand, the total profit from consumers that preferred
items with p̄j < δh

n is at most δh ≤ δ OPT. (Here we note that OPT ≥ h,
since for h = vij , setting the price of all items to h ensures that consumer i will
purchase item j, yielding profit at least h.) Even if we assume no revenue from
these consumers under p̃, the profit is still Profitp̃ ≥ (1 − δ)OPT. �

We define below a grid of prices W parameterized by δ > 0 to fill a region
slightly larger than [ δh

n , h]m such that there is a grid point p ∈ W that gives
a profit close to the optimal price vector p̃ for the region [ δh

n , h]m. For integer
0 ≤ i < log1+δ

n
δ and 0 ≤ k < (2 + δ)m, let Z be the

⌈
log1+δ

n
δ

⌉
values of

Zi = δh
n (1 + δ)i on the interval [ δh

n , h) and let Wi be the 
(2 + δ)m� values
of the form Zi−1 + Zi−1

δk
m on the interval [Zi−1, Zi+1). Let W =

⋃
i Wi for

i with Zi ∈ Z. Define the sets W = Wm and Z = Zm. Let M = |W| =(

(2 + δ)m�

⌈
log1+δ

n
δ

⌉)m.

Lemma 2. For any p̃ ∈ [ δh
n , h]m, there exists p ∈ W such that Profitp ≥

Profitp̃ /(1 + δ).

Proof. Reindex the items so that p̃j ≤ p̃j+1 for all j. For each j, let Zij
(resp.,

wj) be the price obtained by rounding p̃j down to the nearest value in Z
(resp., in Wij

). Set dj = δ
mZij

and consider the price vector p defined with
pj = wj − jdj ∈ Wij

. We show that p ∈ W satisfies the statement of the
lemma.

We claim that no consumer that prefers an item j under p̃ would prefer an
item j′ < j under pricing p (i.e., one with a lesser price). In going from prices
p̃ to p, the increase p̃j − pj in a consumer’s utility for item j, is higher than the
increase p̃j′ − pj′ for item j′. Given j′ + 1 ≤ j we have:

p̃j ≥ wj p̃j′ < wj′ + dj′

p̃j − pj ≥ jdj p̃j′ − pj′ < (j′ + 1)dj′ .

Since dj ≥ dj′ and therefore jdj ≥ (j′ + 1)dj′ , the desired inequality is estab-
lished.
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Since pj ≥ p̃j/(1 + δ) and no consumer changes preference to a cheaper item
under p, we have Profitp ≥ Profitp̃ /(1 + δ). �

Combining Lemmas 1 and 2 and taking ε = Θ(δ), we conclude that there
exists p ∈ W such that Profitp ≥ Profitp̄ /(1 + ε).

It remains to show that the optimal price vector from W can be found effi-
ciently. The trivial algorithm enumerates all p ∈ W and computes the profit of
each, which takes time O(Mmn). Below is an improved algorithm that utilizes
the assumption that n ( M , which suggests the possibility of preprocessing the
consumer valuations into a data structure that can be queried at each p ∈ W.

A given price vector p divides Rm (which we view as the space of consumer
valuation vectors) into m+1 regions, each corresponding to how a consumer val-
uation relates to the given prices. Given p, each consumer prefers one of m items
or none. The boundaries of all the regions are delimited by O(m2) hyperplanes.
For all M price vectors in W we have a total of O(Mm2) hyperplanes. We use
the fact that an arrangement of K hyperplanes in Rm can be preprocessed in
time O(Km/ logm K), such that a point location query can be performed in time
O(log K) [2].

Definition 1 (Unlimited Supply Pricing Algorithm).

1. Preprocess the hyperplane arrangement defined by the M price points into
a point location data structure. Associate a counter with each arrangement
cell, initially set to zero. Analysis: O((Mm2)m/ logm(Mm2)) time.

2. For each consumer, query the point location data structure with the con-
sumer’s valuation vector. Increment the counter associated with the located
cell. Analysis: O(n log(Mm2)) time.

3. For each p ∈ W, iterate over all arrangement cells. In each cell, multiply
the value of the associated counter by the price yielded by the preferred item
for that cell (if any), and add this to the profit associated with p. Analysis:
O(Mm(Mm2)m) time.

4. Output p ∈ W with highest profit.

The total runtime of the unlimited supply pricing algorithm is O(n log(Mm2)+
Mm(Mm2)m). Taking m to be a constant, M = O(logm

1+ε
n
ε ) and we have a to-

tal runtime of O(n log
( 1

ε log n
ε

)
+
( 1

ε log n
ε

)m(m+1)). This concludes the proof of
Theorem 1.

3 Unlimited Supply, Single-Minded Consumers

As in the unit-demand case of the preceding section, we assume that the seller
has m distinct items available for sale, each in unlimited supply. Each of the
n consumers is interested in purchasing a particular bundle Si ⊆ {1, . . . , m}
of items. Denote consumer i’s valuation for their desired bundle by vi and let
h = maxi vi. We assume that if the total cost of the items in Si is at most vi, the
consumer will purchase all of Si, otherwise the consumer will purchase nothing.
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Given the valuations vi, we wish to compute a pricing that maximizes the seller’s
profit. Define Profitp, p̄, and OPT as in the previous section.

Guruswami et al. [5] give an algorithm for computing a logarithmic approxi-
mations to OPT and an APX-hardness proof that hold evens for the special case
where vi = 1 and |Si| ≤ 2. For the case where the number of distinct items for
sale is constant we get the following result.

Theorem 2. For any ε < 1, a pricing that gives profit at least OPT /(1 + ε)
can be computed in time O((n + 2mM) log M), where M = O(logm

1+ε
n
ε )). For

constant m, the running time is

O

((
n +

(
1
ε

log
n

ε

)m)
log

(
1
ε

log
n

ε

))
.

Lemma 3. There exists p̃ with p̃j ∈ {0 ∪ [ δh
nm , h]}m for all j and Profitp̃ ≥

(1 − δ)OPT.

Proof. As in Lemma 1, we can assume that p̄ satisfies p̄j ≤ h. Consider p̃ with
p̃j = 0 if p̄j ≤ δh

nm and p̃j = p̄j otherwise. It is clear that the overall profit
decreases by at most δh when prices shift from p̄ to p̃. It is easy to see that
OPT ≥ h and thus Profitp̃ ≥ (1 − δ)OPT. �

For integer 0 ≤ i <
⌈
log1+δ

nm
δ

⌉
, define Z to be the

⌈
log1+δ

nm
δ

⌉
values

of Zi = δh
nm (1 + δ)i on the interval [ δh

nm , h), augmented by the value 0. Define
Z = Zm. Let M = |Z| = O(logm

1+δ(
nm
δ )).

Lemma 4. For any p̃ ∈ [ δh
nm , h]m, there exists p ∈ Z such that Profitp ≥

Profitp̃ /(1 + δ).

Proof. Let p ∈ Z be the price vector obtained by taking the coordinates of p̃
and rounding each of them down to the nearest value in Z. Since the price of
any bundle under p is at least the price of this bundle under p̃ divided by 1+ δ,
we have Profitp ≥ Profitp̃ /(1 + δ). �

We conclude that by setting δ = Θ(ε), there exists p ∈ Z such that Profitp ≥
Profitp̄ /(1+ε). The following algorithm computes the optimal price vector from
Z.

Definition 2 (Single-Minded Consumers Pricing Algorithm).

1. Compute the profit for each bundle and price vector, (S,p) ∈ 2{1,...,m} ×Z:
(a) Compute total cost of S given p:

∑
j∈S pj.

(b) For each S sort p ∈ Z by total cost. Associate a counter for each price
vector in this sorted array.

(c) For each consumer i, consider the sorted array associated with Si and in-
crement the counter on the price vector in this array that has the highest
total cost that is at most vi.
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(d) The seller’s profit for S and p is the sum of the counters for price vectors
with total cost at least that of p on S.

Analysis: O(n log M + 2mM log M)
2. For each p ∈ Z, sum profits from all bundles. Analysis: O(2mM)
3. Output optimal p ∈ Z.

Thetotal runtimeof theunlimited supplypricingalgorithmisO((n+2mM)log M).
For m = O(1), the running time is O

((
n +

( 1
ε log n

ε

)m)
log

( 1
ε log n

ε

))
. This con-

cludes the proof of Theorem 2.

4 Limited Supply, Unit-Demand Consumers

We now consider the limited supply case of the unit-demand pricing problem.
In this case the seller can only offer a limited number of units of each of the m
items available for sale. For limited supply pricing problems not all pricings lead
to well defined outcomes. For example, an item might be priced so low that the
demand for the item exceeds the supply. To avoid this problem, and to make our
pricing algorithms useful in auction design problems, we restrict our attention
to computing prices that are envy-free. We review envy-freedom as well as some
concepts from Economics literature below.

4.1 Notation and Background

Index the items 1, . . . , m and let J represent the multiset of items the seller is
offering. There are n consumers each of whom wishes to purchase at most one
item. Define a consumer’s valuation for an item as the value assigned by the
consumer to obtaining one unit of the item. For consumer i and item j, let vij

denote this valuation and V the matrix of consumer valuations. Given a price pj

for item j, consumer i’s utility for this item (at its price) is uij = vij −pj . Given
a pricing of all items, p = (p1, . . . , pm), consumer i will choose one of the items
that maximize their utility, i.e., an item j such that vij − pj ≥ vij′ − pj′ for all
j′ �= j, or no item if vij < pj for all j. We say that a consumer is happy with an
item they would choose in this way. Under a particular pricing, we refer to the set
of items that a consumer is happy with as the demand set. A consumer’s utility
under a pricing, denoted ui for consumer i, is the utility they would obtain for
any item in this set.

A pricing p is envy-free if there is an assignment of items to consumers such
that (a) no item is oversold, and (b) all consumers with positive utility under the
pricing obtain an item in their demand set. Given the demand sets, computing
such an assignment or determining that none exists is a simple bipartite matching
problem.

The pricing problem we address is that of computing, when given the con-
sumer valuations, the envy-free pricing that is seller optimal. This is the price
vector that maximizes the seller’s profit (i.e., the sum of the prices of all the
units of items sold) subject to the condition that the pricing is envy-free.
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Envy-free pricing for unit-demand problems is closely related to Walrasian
equilibria [6]. When restricted to unit-demand problems Walrasian equilibria are
precisely those pricings that are both envy-free and satisfy the additional condi-
tion that unsold items have price zero. Let MWMV (J) denote the value of the
maximum weighted matching on the bipartite graph induced by the consumers’
valuations V on item multiset J . Gul and Stacchetti [4] give the following algo-
rithm for computing the Walrasian equilibrium that gives the seller the maximum
profit.

Definition 3 (Maximum Walrasian Prices Algorithm, MaxWalEq). Sell
item j at price pj = MWMV (J) − MWMV (J \ {j}).

It is easy to see that MaxWalEq can be computed in time O(m3n3), since
the initial maximum weighted matching solution MWMV (J) can be computed
in time O(m3n3) and then MWMV (J \ {j}) can be computed for each j ∈
{1, . . . , m} that is matched in time O(m2n2).

The difference between the seller optimal Walresian equilibrium (as computed
by MaxWalEq) and the seller optimal envy-free prices is that in the former all
unsold items must have price zero. This constrant results in a total seller profit
for MaxWalEq that in general is lower than that obtained in the optimal envy-
free pricing. In the special case that the optimal envy-free pricing happens to
sell all available items then it gives a Walrasian equilibrum (since all unsold
items have price zero). Thus, under the assumption that all items are sold in
the optimal envy-free pricing, MaxWalEq computes this optimal pricing. We use
this fact below to search for the optimal subset of items to sell, J ′ ⊆ J , using
MaxWalEq to obtain prices for each subset.

4.2 The Algorithm

The following algorithm gives an exact optimal envy free pricing for the limited
supply case. It runs in cubic time assuming that the total number of units for
sale, m′, is constant.

Definition 4 (Limited Supply Pricing Algorithm). For each subset J ′ of
the J items for sale, compute MaxWalEq(J ′). Output the prices that give the
highest profit.

In the case that the number of units m′ for sale is constant, then we make
2m′

calls to MaxWalEq giving a total runtime of O(m3n32m′
), which is cubic

for constant m′.
We next give give a simple algorithm for computing approximately optimal

within a factor of (1 + ε) envy-free prices when the number of distinct items for
sale is a constant (but with an arbitrary number of units of each item). This
algorithm runs in time O(m3n3 logm

1+ε n). First a lemma.

Lemma 5. Consider multisets J and J ′, such that J ′ ⊂ J . For item j ∈ J ′,
let pj (resp., p′j) be the price for j in MaxWalEq(J) (resp., in MaxWalEq(J ′)).
Then p′j ≥ pj.



430 J.D. Hartline and V. Koltun

Proof. Given J ′ ⊂ J , we are arguing that MWMV (J) − MWMV (J \ {j}) ≤
MWMV (J ′) − MWMV (J ′ \ {j}) for all j ∈ J ′. We note in passing that this is
equivalent to showing that MWMV (·) is a submodular function. We rearrange
the statement to show that MWMV (J) + MWMV (J ′ \ {j}) ≤ MWMV (J ′) +
MWMV (J \ {j}). Letting A = J \ {j} and B = J ′ we have A∩B = J ′ \ {j} and
A ∪ B = J making our goal to prove that MWMV (A ∩ B) + MWMV (A ∪ B) ≤
MWMV (A)+MWMV (B), the familiar definition of submodularity. We will show
this for arbitrary sets A and B. We proceed by showing that given the matched
edges of MWMV (A ∩ B) and MWMV (A ∪ B) we can assign them to either
matchings of A or B. Of course MWMV (A) will be at least the sum of the
weights of edges assigned to the matching of A and MWMV (B) at least that for
B proving the result.

Consider putting the matchings MWMV (A ∩ B) and MWMV (A ∪ B) to-
gether; we get single edges, double edges, cycles, and paths. We now show how
to use all the edges that make up these components to construct a matching of
A and a matching of B. Single edges incident on A \B go in the matching of A,
single edges incident on B\A go in the matching of B, and double edges incident
on A∩B go one to each of A and B. A cycle can only have edges incident upon
MWMV (A ∩ B); we assign its odd edges to the matching of A and even edges
to the matching of B (say). As for paths, note that a path has every other edge
from MWMV (A ∩ B) and MWMV (A ∪ B). Thus a path cannot have both end-
points at vertices representing items in A⊗B as it would then have even length
requiring one of the endpoints to have an incident edge from MWMV (A ∩ B), a
contradiction. Thus we can simply assign every other edge in each path to the
matching of A or B making sure that if the path has an end point in A \ B
(resp., B \ A) then the incident edge on this vertex is assigned to the matching
of A (resp., B). �

Definition 5 (General Approximate Pricing Algorithm, GAPA). For
each subset J ′ of the J items for sale with the property that the multiplicity
of each distinct item is either 0 or a power of (1 + ε) (rounded down), compute
MaxWalEq(J ′). Output the prices that give the highest profit.

We need only consider having at most n copies of each item. There are at most⌊
log1+ε n

⌋
+1 multiplicities as described in the definition. Considering all possible

combinations of these multiplicities across the distinct items gives at most (1 +
log1+ε n)m calls to MaxWalEq. This gives a total runtime of O(n3 logm

1+ε n),
which is near-cubic for a constant m.

We now show that this algorithm computes a (1 + ε)-approximation to the
optimal envy-free pricing. Let J∗ be the set of items sold by the optimal envy-free
pricing. Let nj be the number of items of type j sold by J∗ and let pj be their
prices. The optimal envy-free profit is thus

∑
j njpj . Round the multiplicities

of J∗ down to the nearest power of (1 + ε) (or to zero) and note that GAPA
gets at least the profit of MaxWalEq on this smaller set of items. Let p′j and
n′

j be the resulting prices and number of items sold. We have n′
j ≥ nj/(1 + ε)

and by Lemma 5, p′j > pj . Thus the profit of GAPA is at least
∑

j n′
jp

′
j ≥∑

j njpj/(1 + ε) = OPT /(1 + ε).



Near-Optimal Pricing in Near-Linear Time 431

5 Conclusion

In this paper we have shown that it is possible to approximate the optimal
pricing in near-linear or near-cubic time for several natural pricing problems.
One of the techniques we utilize is based on forming a small grid of prices that is
guaranteed to contain an approximate optimum. Another technique is to guess
how many of each item are sold in the optimal solution and use the seller optimal
Walrasian equilibrium prices for this set of items.

It is our hope that these ideas can be extended to address the unlimited
supply problem for general combinatorial consumers, described in [5]. There are
several difficulties in proceeding in this direction. First, we have to show that a
price vector in some smaller space, such as ({0} ∪ [ δh

n , h])m is close to optimal.
This is not trivial, since when the items are complements, e.g., in the single-
minded case, it is natural to round prices in (0, δh

n ) down to zero; whereas when
the items are substitutes, as in the unit-demand case, it is natural to round these
prices up to δh

n . Second, a small grid has to be generated such that for any point
in our reduced price space we can find a grid point that is almost as good. For
single-minded consumers this task is simplified by the fact that each consumer
only wants one particular product bundle, and rounding item prices down cannot
cause them to switch to a drastically different set of products. For unit-demand
consumers it is more complicated, and a locally linear grid has to be generated
so that when we round down to a grid point we give up more for higher priced
items, thus ensuring that a consumer only switches to a higher priced item.
General combinatorial consumers, however, may want to switch from one set to
a completely different set of items. These two sets may have different cardinality
and consist of differently priced items. Further elaboration of our ideas seems
necessary to address these challenges.

Another problem left for future work is the design of efficient algorithms for
the limited supply case when the consumers are single-minded.
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Abstract. We consider the well known problem of matching two planar
point sets under rigid transformations so as to minimize the directed
Hausdorff distance. This is a well studied problem in computational
geometry. Goodrich, Mitchell, and Orletsky [GMO94] presented a very
simple approximation algorithm for this problem, which computes trans-
formations based on aligning pairs of points. They showed that their
algorithm achieves an approximation ratio of 4. We consider a minor
modification to their algorithm, which is based on aligning midpoints
rather than endpoints. We show that this algorithm achieves an approx-
imation ratio not greater than 3.13. Our analysis is sensitive to the ratio
between the diameter of the pattern set and the Hausdorff distance, and
we show that the approximation ratio approaches 3 in the limit. Finally,
we provide lower bounds that show that our approximation bounds are
nearly tight.

1 Introduction

Geometric pattern matching problem is a fundamental computational problem
and has numerous applications in areas such as computer vision [MNM99], image
or video compression [ASG02], model-based object recognition [HHW92], and
computational chemistry [FKL+97]. In general, we are given two point sets, a
pattern set P and background set Q from some geometric space. The goal is
to compute the transformation E from some geometric group that minimizes
some distance measure from EP to Q. Throughout, we will consider point sets
in the Euclidean plane under rigid transformations (translation and rotation).
Distances between two point sets P and Q will be measured by the directed
Hausdorff distance, denoted h(P,Q), which is defined to be

h(P,Q) = max
p∈P

min
q∈Q

‖pq‖,
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where ‖pq‖ denotes the Euclidean distance between points p and q. Through-
out, unless otherwise specified, we use the term Hausdorff distance to denote
the directed Hausdorff distance. Thus, our objective is to compute the rigid
transformation E that minimizes h(EP,Q).

The problem of point pattern matching has been widely studied. We will focus
on methods from the field of computational geometry. Excellent surveys can be
found in [AG96] and [Vel01]. There are many variants of this problem, depending
on the nature of the inputs, the allowable group of aligning transformations, and
the distance function employed. A number of approaches have been proposed for
matching points under the Hausdorff distance [AAR94, CGH+97, HKS93]. The
computational complexity can be quite high. For example, the best-known algo-
rithm for determining the translation and rotation that minimize the directed
Hausdorff distance between sets P and Q of sizes m and n, respectively, runs in
O(m3n2 log2 mn) time [CGH+97].

Because of the high complexity of exact point pattern matching, approxima-
tion algorithms have been considered. Heffernan and Schirra [HS94] proposed an
approximate decision algorithm that tests for congruence within a user-supplied
absolute error ε. Alt, Aichholzer and Rote [AAR94] presented a 1.43-factor ap-
proximation algorithm for planar point pattern matching under similarity trans-
formations under the bidirectional Hausdorff distance (which is defined to be
max(h(P,Q), h(Q,P ))). Neither of these is applicable to our problem, since the
cost functions require that every point of Q has a close match in P .

The starting point of this work is the alignment-based approximation algo-
rithms given by Goodrich, Mitchell, and Orletsky [GMO94]. They presented a
very simple approximation algorithm for a number of pattern matching formula-
tions, including ours. This is arguably the simplest and most easily implemented
algorithm for approximate pattern matching. It operates by computing the trans-
formation that aligns a diametrical pair of points of P with all possible pairs of
Q, and then returning the transformation with the minimum Hausdorff distance.
(We will present the algorithm below.) It runs in O(n2m log n) time, and they
prove that it achieves an approximation ratio of 4, that is, it returns a transfor-
mation whose Hausdorff distance is at most a factor 4 larger than the optimal
Hausdorff distance.

Another closely related piece of work is by Indyk, Motwani, and Venkatasub-
ramanian [IMV99]. They considered the error model of Heffernan and Schirra.
They presented an approximation algorithm whose running time is sensitive to
the spread Δ of the point set, which is defined to be the ratio of the distances
between the farthest and closest pairs of points. They showed that, for any fixed
β > 0, an (1 + β)-approximation can be computed in time O(n4/3Δ1/3 log n).
Cardoze and Schulman [CS98] presented a randomized approximation algorithm
based on computing convolutions, whose running time is O(n2 log n+logO(1) Δ)
for any fixed precision parameter and any fixed success probability. Although
these approaches are asymptotically superior to that of Goodrich et al., they
lack its simplicity and ease of implementation.
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In this paper, we reconsider the issue of the approximation ratio for the
alignment-based algorithm of Goodrich, Mitchell, and Orletsky. We show that
it is possible to improve on the approximation ratio of 4 without altering the
simplicity of the algorithm. Our approach is identical in spirit and running time
to theirs, but is based on a minor modification of the way in which the align-
ing transformation is computed. We call our modification symmetric alignment
because it is based on aligning midpoints, rather than endpoints. We show that
the resulting approximation ratio is never more than 3.13 (a quantity resulting
from the numerical solution of an equation).

We also analyze the approximation ratio as a function of a parameter that
depends on the closeness of the optimal match. Let ρ be half the ratio of the
diameter of P to the minimum Hausdorff distance. We show that our algorithm
achieves an approximation ratio of at most 3+ 1√

3 ρ
. In many applications ρ can

be quite large. Examples include document analysis and satellite image analysis,
where the ratio of diameter of the pattern ranges from tens to hundreds of pixels,
while the expected digitization error is roughly one pixel. For these applications,
the approximation ratio will be quite close to 3. We also show that for sufficiently
large ρ, the approximation factor is at least 3 + 1

10ρ2 .
It is worth noting that the more sophisticated approximation algorithm of

Indyk, et al. [IMV99] uses the simple alignment algorithm as a subroutine. The
running time of their algorithm has a cubic dependence on the approximation
ratio of the alignment algorithm. So, an improvement in the approximation ratio
has the effect of reducing the running time of their algorithm as well.

The remainder of the paper is organized as follows. In Section 2 we present
the algorithm of [GMO94], which we call the serial alignment algorithm and
review the derivation of its approximation bounds. Next, we will introduce the
symmetric alignment algorithm, and derive a crude analysis of its approximation
ratio. In Section 3, we will present a more accurate analysis of the approximation
bound. Finally, in Section 4 we give concluding remarks.

2 The Serial and Symmetric Alignment Algorithms

In this section we present a description of the serial alignment algorithm of
Goodrich, Mitchell, and Orletsky [GMO94] and review its approximation bound.
We also described our modification of this algorithm, called symmetric align-
ment. Recall that P = {p1, . . . , pm} is the pattern set and Q = {q1, . . . , qn}
is the background set to search, and we seek a rigid transformation of P that
minimizes the Hausdorff distance with Q.

The serial alignment algorithm proceeds as follows. Let (p1, p2) denote a
pair of points having the greatest distance in P , that is, a diametrical pair. For
each distinct pair (q1, q2) in Q, the algorithm computes a rigid transformation
matching (p1, p2) with (q1, q2) as follows. First, it determines a translation that
maps p1 to q1 and then a rotation about p1 that aligns the directed line segment
−−→p1p2 with −−→q1q2. The composition of these two transformations is then applied to
the entire pattern set P , and the Hausdorff distance is computed. At the end, the
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algorithm returns the rigid transformation that achieves the minimum Hausdorff
distance. The running time of this algorithm is O(n2m log n) because, for each
of the n(n− 1) distinct pairs of Q, we compute the aligning transformation E in
O(1) time, and then, for each point p ∈ P , we compute the distance from E(p)
to its nearest neighbor in Q. Nearest neighbors queries in a planar set Q can be
answered in time O(log n) after O(n log n) preprocessing [dBvKOS00]. Goodrich,
Mitchell, and Orletsky prove that this algorithm achieves an approximation ratio
of 4. For completeness let us summarize their argument.

Lemma 1. (Goodrich, Mitchell, and Orletsky [GMO94]) The serial alignment
algorithm has an approximation ratio of at most 4.

Proof. For simplicity of notation, let us assume that P has been presented to
the algorithm in its optimal position with respect to Q. Let hopt denote the
optimal Hausdorff distance from P to Q. This means that for each point of P
there exists a point of Q within distance hopt. Now, we run the above algorithm
and bound the maximum distance by which any point of P is displaced relative
to its original (optimal) position.

Clearly, in the process of translation, each point of the pattern set P moves
by at most hopt. To determine the displacement due to rotation, it suffices to
consider p2 since it is the farthest point from p1. The point p2 was initially
within distance hopt of its corresponding points of Q, denoted q2, and the above
translation moves it by an additional distance of at most hopt. Thus, rotating
p2 into alignment with q2 moves it by a distance of at most 2hopt. Therefore,
given that it started within distance hopt of some point of Q, it follows that its
contribution to the Hausdorff distance is at most hopt + 2hopt + hopt = 4hopt,
and the approximation bound follows directly. �

There are two obvious shortcomings with this algorithm and its analysis.
The first is that the algorithm does not optimally align the pair (p1, p2) with
the pair (q1, q2) with respect to Hausdorff distance. One would expect such an
optimal alignment to provide a better approximation bound. This observation
is the basis of our algorithm. The second shortcoming is that the analysis fails
to account for the fact that the displacement distances due to translation and
rotation are functions of the points’ relative position to p1 and p2, and so share
some dependency.

Next, we describe our approach, called symmetric alignment. The algorithm
differs only in how the aligning transformation is computed, given the pairs
(p1, p2) in P and (q1, q2) in Q. Let mp and mq denote the respective midpoints
of line segments p1p2 and q1q2. First, translate P to map mp to mq and then
rotate P about mp to align the directed segments −−→p1p2 with −−→q1q2. Thus, the
only difference is that we align and rotate around the midpoints rather than p1.
Observe that this alignment transformation minimizes the Hausdorff distance
between the pairs (p1, p2) and (q1, q2).

Before giving our detailed analysis of the approximation bound, we establish
a crude approximation bound, which justifies the benefit of symmetric alignment.
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Lemma 2. The symmetric alignment algorithm has an approximation ratio of
at most (2 +

√
3) ≈ 3.732.

Proof. We will apply the same approach used in the analysis of serial alignment.
As before, let us assume that P has been presented to the algorithm in its
optimal position with respect to Q. (Note that the algorithm’s final alignment
is independent of the initial point placement.) Let v1 and v2 denote the vector
forms of −−→p1q1 and −−→p2q2, respectively. To match the midpoints mp and mq, we
translate the pattern set P by (v1 + v2)/2. Let T denote this translation. The
distance between T (p1) and q1 is ‖v1 − (v1 +v2)/2‖ = ‖(v1 −v2)/2‖ ≤ hopt. By
symmetry, the same bound applies to the distance from T (p2) to q2. Therefore,
T (p1) will move by at most hopt during the rotation process.

Because (p1, p2) is a diametrical pair, it follows that all the points of P lie in
a lune defined by the intersection of two discs, both of radius ‖p1p2‖, centered
at these points. Thus, no point of P is farther from the midpoint mp than
the apex of the lune, which is at distance (

√
3/2)‖p1p2‖. Since this rotation

moves p1 (or equivalently p2) by a distance of at most hopt, and p1 is within
distance (1/2)‖p1p2‖ of mp, it follows that any point p ∈ P is moved by at
most

√
3hopt. Given that p started within distance hopt of some point of Q, its

final contribution to the Hausdorff distance is at most hopt +
√

3hopt + hopt =
(2 +

√
3)hopt ≈ 3.732hopt. �

This crude bound is already an improvement; however, the analysis suffers
from the same problem as that for serial alignmnment in that it does not consider
the geometric relationship between the translation and rotation vectors.

3 Main Results

In this section, we derive a tightly approximation bound for symmetric align-
ment. As before, let hopt denote the optimal Hausdorff distance between P and
Q achievable under any rigid transformation of P . Let Asym(ρ) denote the ap-
proximate ratio for symmetric alignment.

Theorem 1. Consider two planar point sets P and Q whose optimal Hausdorff
distance under rigid transformations is hopt. Let ρ = 1

2diam(P )/hopt, where
diam(P ) denotes the diameter of P . Then the for all ρ > 0, the approximation
ratio of symmetric alignment satisfies:

Asym(ρ) ≤ min
(

3 +
1√
3 ρ

,
√

4ρ2 + 2ρ + 1
)

.

In typical applications where ρ is relatively large, this shows that the approx-
imation bound is nearly 3. The remainder of this section is devoted to proving
this theorem. As usual, it will simplify notation to assume that P has been
transformed to its optimal placement with respect to Q, and we will bound the
amount of additional displacement of each point of P relative to this placement.
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Without loss of generality we may scale space uniformly so that hopt = 1, imply-
ing that for each point of P there exists at least one point of Q within distance 1.
The algorithm starts by computing a pair (p1, p2) of points of P with the great-
est distance. Let (q1, q2) denote the corresponding pair of points of Q. From our
scaling it follows that for i ∈ {1, 2}, qi lies within a unit disc centered at pi.
(See Fig. 1.) Let mp and mq denote the respective midpoints of the segments
p1p2 and q1q2. Note that ρ is just the distance from mp to either p1 or p2. Let α
denote the absolute acute angle between the directed lines supporting the seg-
ments −−→p1q1 and −−→p2q2. Without loss of generality, we may assume this angle is
acute. If ρ > 1, then the two unit discs do not intersect, and it follows easily
that 0 ≤ sin α ≤ 1/ρ.

p1 p2mpρ

α

q2

mq hop
t

q1

hopt

Fig. 1. The positions of the point sets prior to running the algorithm

Here is a brief overview of the proof. We establish two approximation bounds,
each a function of ρ. One bound is better for small ρ and the other better for high
ρ. We shall show that the crossover value of these two functions, denoted ρ∗, is
approximately 1.26. Due to space limitations, we only present the approximation
bound for the more interesting case, when ρ > ρ∗.

We begin by considering the space of possible translations that align mp with
mq. It will make matters a bit simpler to think of translating Q to align mq with
mp, but of course any bounds on the distance of translation will apply to case of
translating P . The following lemma bounds the translation distance, which we
will denote by ‖T‖, as a function of ρ and α.

Lemma 3. The symmetric alignment’s translation transformation displaces any
point of P by a vector T = Tρ(α) satisfying ‖T‖ ≤

√
1 − ρ2 sin2 α.

p1

h

ρ

α

s1 s2
q1

q2

s

mq

mp

ρ cos α

� r1 r2q2
q1 r1

r2

mq

mp

p2

Fig. 2. The analysis of the midpoint translation
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Proof. Consider a line passing through mp that is parallel to q1q2. Let r1 and r2
be the respective orthogonal projections of p1 and p2 onto the line q1q2 and let
s1 and s2 denote the signed distances ‖−−→r1q1‖ and ‖−−→r2q2‖, respectively. Consider
a coordinate system centered at mp whose positive s-axis is located along a line
� that is directed in the sense of −−→q2q1, and whose positive h-axis is perpendicular
to this and directed away from � towards the line q1q2. In this coordinate system
we have mp = (0, 0), q1 = (s1+ρ cos α, h), and q2 = (s2−ρ cos α, h). Thus, mq =
((s1+s2)/2, h), and the translation vector T is mq−mp = mq. By straightforward
calculations we have |s1| ≤

√
1 − (ρ sin α + h)2 and |s2| ≤

√
(1 − (ρ sin α + h)2.

Therefore,

‖T‖2 = s2 + h2 =
(

s1 + s2

2

)2

+ h2 =
1
2
(s2

1 + s2
2) −

1
4
(s1 − s2)2 + h2

≤ 1
2
(s2

1 + s2
2) + h2 ≤ 1

2
{(1 − (ρ sin α + h)2) + (1 − (ρ sin α − h)2)} + h2

= 1 − ρ2 sin2 α.

Observe that the translation is maximized when s1 = s2, and this means that
the line q1q2 passes through mp. �

Next we consider the effect of rotation on the approximation error. Unlike
translation we need to consider the placement of points in P because the distance
by which a point is moved by rotation is determined by both the rotation angle
α and the distance from this point to the center of rotation. As mentioned in the
proof of Lemma 2 every point of P lies within a lune formed by the intersection
of two discs of radius 2ρ centered at p1 and p2. (See Fig. 3.) The following
lemma describes the possible displacements of a point of P under the rotational
part of the aligning transformation. This is done relative to a coordinate system
centered at mp, whose x-axis is directed towards p2.

Lemma 4. The symmetric alignment’s rotation transformation displaces any
point of P by a vector R = Rρ(α) satisfying ‖R‖ ≤ 2

√
3ρ sin α

2 .

Proof. Let pθ be any point of P such that the signed angle from −−−→mpp2 to −−−→mppθ

is θ. Let p′θ denote the point after rotating pθ counterclockwise about mp by

p2ρ

α
p1 mp

pθ θ
p′θ

Fig. 3. The proof of rotation
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angle α. By simple trigonometry and the observation that *mppθp
′
θ is isosceles,

it follows that the length of the displacement
−−→
pθp

′
θ, which we denote by ‖R‖, is

‖mppθ‖ · 2 sin α
2 . The farthest point of the lune from mp is easily seen to be the

apex, which is at distance
√

3ρ. Thus, ‖R‖ is at most 2
√

3ρ sin α
2 . �

We are now ready to derive the approximation bound on the symmetric
alignment algorithm by combining the bounds on the translational and rotational
displacements. Recall that at the start of the algorithm, the points are assumed
to placed in the optimal positions and that space has been scaled so that hopt = 1.
It follows that each point of P has been displaced from its initial position within
unit distance of a point of Q to a new position that is now within distance
‖Tρ(α) + Rρ(α)‖+ 1 of some point of Q. For any fixed value of ρ it follows that
the approximation bound Asym(ρ) satisfies

Asym(ρ) ≤ max
α

‖Tρ(α) + Rρ(α)‖ + 1.

Recall that 0 ≤ sin α ≤ 1/ρ.
Unfortunately, determining this length bound exactly would involve solving

a relatively high order equation involving trigonometric functions. Instead, we
will compute an upper bound by applying the triangle inequality to separate
the translation and rotation components. From Lemmas 3 and 4 we see that
Asym(ρ) is at most

max
α

(‖Tρ(α)‖ + ‖Rρ(α)‖) + 1 = max
α

(√
1 − ρ2 sin2 α + 2

√
3ρ sin

α

2

)
+ 1.

Substituting x = cos α, it follows that the quantity to be maximized is

fρ(x) =
√

1 − ρ2(1 − x2) +
√

6ρ
√

1 − x + 1, where
√

1 − 1
ρ2 ≤ x ≤ 1.

To find the maximum of fρ, we take the partial derivative with respect to x.

∂fρ

∂x
= −

√
3ρ√

2
√

1 − x
+

ρ2x√
1 − ρ2(1 − x2)

.

By our earlier assumption that ρ ≥ ρ∗ ≈ 1.26, it follows by symbolic manipula-
tions that ∂fρ/∂x = 0 has a single real root for ρ ≥ ρ∗, which is

x0 =
1
6

(
−1 + c1(ρ) +

1
c1(ρ)

)
,

where c1(ρ) =
ρ2

(161ρ6 + 18ρ4
√

c2(ρ) − 162ρ4)1/3

and c2(ρ) = 80ρ4 − 161ρ2 + 81.

By an analysis of this derivative it follows that the function fρ achieves its
maximum value when x = x0, and so the final approximation bound is fρ(x0) =
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√
1 − ρ2(1 − x2

0)+
√

6ρ
√

1 − x0+1. By computing the partial derivation of fρ(x)
with respect to ρ that, for any fixed x, this function is a monotonically decreasing
function of ρ.

Unfortunately, this function is too complex to reason about easily. Nonethe-
less, we can evaluate it for any fixed value of ρ. The resulting approximation
bound (together with the alternate bound for low ρ) is plotted as a function of ρ
in Fig. 4 below. The figure shows that as ρ increases, the approximation bound
converges to 3. The following result establishes this asymptotic convergence by
proving a somewhat weaker approximation bound.

0 2 4 6 8 10
ρ

1

2

3

4

A
pp

ro
x.

 F
ac

to
r

Fig. 4. The approximation bound for symmetric alignment as a function of ρ

Lemma 5. If ρ > ρ∗ then the approximation bound of the symmetric alignment
algorithm, Asym(ρ), is at most 3 + 1√

3ρ
.

Proof. Before presenting the general case, we consider the simpler limiting case
when ρ tends to ∞. Since 0 ≤ sin α ≤ 1/ρ, in the limit α approaches 0. Using
the fact of limα→0

sin α
α = 1 we have

Asym(∞) = lim
ρ→∞

Asym(ρ) = lim
ρ→∞

√
1 − ρ2 sin2 α + 2

√
3ρ sin

α

2
+ 1

=
√

1 − ρ2α2 +
√

3ρα + 1.

Let x = ρα. In the limit we have 0 ≤ x ≤ 1 and so

Asym(∞) ≤ max
0≤x≤1

(√
1 − x2 +

√
3x + 1

)
.

It is easy to verify that Asym(∞) achieves a maximum value of 3 when x =
√

3/2.
Next, we consider the general case. Since ρ > ρ∗ and sinα ≤ 1/ρ, it follows

that 0 ≤ x < 1.16. We have two cases, 0 ≤ x ≤ 1 and 1 < x < 1.16. We present
only the first case, due to space limitations. To simplify Asym(ρ), we use a Taylor
series expansion and the fact that Asym(∞) ≤ 3.

Asym(ρ) ≤ max
α

(√
1 − ρ2 sin2 α + 2

√
3ρ sin

α

2
+ 1

)

≤ max
α

(√
1 − ρ2 (α − α3/6)2 +

√
3ρα + 1

)
.
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Asym(ρ) ≤ max
α

(√
1 − ρ2 (α−α3/6)2+

√
3ρα−

(√
1 − ρ2α2+

√
3ρα+1

)
+3+1

)

= max
α

(√
1 − ρ2 (α − α3/6)2 −

√
1 − ρ2α2 + 3

)
.

Substituting x = ρα, let

g(x) =

√
1 − x2

(
1 − x2

6ρ2

)2

−
√

1 − x2 + 3.

For all fixed ρ, this is a monotonically increasing function in x. Thus, since x ≤ 1,
this function achieves its maximum value at x = 1 of

g(1) = 3 +

√
1 −

(
1 − 1

6ρ2

)2

= 3 +
√

1
3ρ2 − 1

36ρ4 ≤ 3 +
1√
3ρ

. �

3.1 A Lower Bound for Symmetric Alignment

It is natural to wonder whether the upper bounds on the approximation ratio
Asym proved in Theorem 1 are tight. Next, we prove that this approximation
bound is close to tight. We show that for all sufficiently large ρ the approximation
factor is strictly greater than 3, and approaches 3 in the limit.

Lemma 6. For all ρ > 2Asym, there exists an input on which symmetric achieves
an approximation factor of at least 3 + 1

10ρ2 .

The remainder of this section is devoted to proving this. We consider two
configurations of points. Consider a fixed value ρ > 2Asym. We define the pattern
point set P = {p1, p2, p3, p4}, where the first three points form an equilateral
triangle of side length 2ρ, and place p4 at the midpoint of p1p2. (See Fig. 5.) By
an infinitesimal perturbation of the points, we may assume that the pair (p1, p2)
is the unique diametrical pair for P .

sin α =
√

3
2ρ

q3

p2
C2

q1

p2

p3

q1

t

p1

p1

q2 q2

q4

p4

p4 = q4
C1

p3
C3

C2

C1

C3

r
q3 u

t r
u

Fig. 5. The lower bound on Asym
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Next, to define the locations of the other background set Q = {q1, q2, q3, q4},
let Ci denote a circle of unit radius centered pi. Consider a line passing through
p4 (the midpoint of p1p2) forming an angle α with line p1p2, where sin α =

√
3

2ρ .
Place q1 and q2 at the rightmost intersection points of the line and C1 and
C2, respectively. Let t and r denote the translation and rotation displacement
vectors resulting from symmetric alignment, respectively. (They are described
below.) Let q3 = p3 + u, where u is a unit length vector whose direction
is chosen to be directly opposite that of t + r. Finally, place q4 at the mid-
point of q1q2. Observe that for each pi, the corresponding point qi lies within
distance 1.

For this placement, the directed Hausdorff distance is exactly 1, and so
hopt ≤ 1. We run the symmetric alignment algorithm on P and Q, and con-
sider the displacement distance of p3 relative to q3. The fact that ρ > 2Asym

and the presence of p4 and q4 imply that the final matching chosen by sym-
metric alignment results by aligning (p1, p2) with (q1, q2). The reason is that
any other choice will result in p4 having no point within distance Asym, thus
leading to a contradiction. (Details have been omitted due to space
limitations.)

By adapting the analyses of Lemmas 3 and 4, it can be seen that this config-
uration achieves the worst case for these two lemmas. In particular, the length
of the translation displacement is ‖t‖ =

√
1 − ρ2 sin2 α =

√
1 − (3/4) = 1/2,

and the length of the rotation displacement is ‖r‖ = 2
√

3ρ sin α
2 . Furthermore,

it is easy to show that the angle between these two vectors is α
2 .

To complete the analysis, we decompose the rotation displacement vector
r into two components, r1 is parallel to t and r2 is perpendicular to it, and
apply the fact that the angle between these vectors is α/2. After some algebraic
manipulations, it follows that the squared magnitude of the final displacement
is at least 4 + 27

64ρ2 , and under the assumption that ρ > 2Asym ≥ 2, the bound
given in the statement of the lemma follows. Details have been omitted due to
space limitations.

4 Concluding Remarks

We have presented a simple modification to the alignment-based algorithm of
Goodrich, Mitchell, and Orletsky [GMO94]. Our modification has the same run-
ning time and retains the simplicity of the original algorithm. We have shown
that, in contrast to the factor-4 approximation bound proved in [GMO94], our
approach has an approximation ratio that is never larger than 3.13, and con-
verges to 3 in the limit as the ratio ρ between the pattern set diameter and the
Hausdorff distance increases. We have also shown that the bound is nearly tight.
This paper opens the question of what are the performance limits of approxi-
mations based on point alignments. It is natural to consider generalizations of
this approach to higher dimensions, to matchings based on alignments of more
than two points, and to other sorts of distance measures and transformation
groups.
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