
RNA Multiple Structural Alignment
with Longest Common Subsequences�

Sergey Bereg1 and Binhai Zhu2

1 Department of Computer Science, University of Texas at Dallas
Richardson, TX 75083-0688, USA

besp@utdallas.edu
2 Department of Computer Science, Montana State University

Bozeman, MT 59717-3880, USA
bhz@cs.montana.edu

Abstract. In this paper, we present a new model for RNA multiple
sequence structural alignment based on the longest common subsequence.
We consider both the off-line and on-line cases. For the off-line case, i.e.,
when the longest common subsequence is given as a linear graph with n
vertices, we first present a polynomial O(n2) time algorithm to compute
its maximum nested loop. We then consider a slightly different problem –
the Maximum Loop Chain problem and present a factor-2 approximation
which runs in O(n2.5) time. For the on-line case, i.e., given m RNA
sequences of lengths n, compute the longest common subsequence of
them such that this subsequence either induces a maximum nested loop
or the maximum number of matches, we present efficient algorithms using
dynamic programming when m is small.

1 Introduction

In the study of noncoding RNA (ncRNA), it is well known that the corresponding
genes are very active among genomic DNA. There are four such genes (polymers
of nucleotides): A, C, G and U. Different from regular genes, ncRNAs fold di-
rectly into secondary and tertiary structures and the stability of the foldings are
mainly determined by A-U, C-G and G-U bonds.

However, it is still not completely known how such a ncRNA folds into sec-
ondary and tertiary structures. One of the method is to take a multiple sequence
of ncRNAs and investigate their common folding patterns or secondary struc-
tures [4, 19, 20]. In [4], it is proposed that the largest common nested linear
subgraph of m given linear graphs (induced by m ncRNA sequences of length
n) presents a solution for this problem. This problem is NP-complete and the
authors presented an O(log2 n) approximation for this problem [4].

In this paper, we follow the general methodology of [4]. However, we think
that computing largest common nested linear subgraph cannot perfectly solve

� This research is partially supported by EPSCOR Visiting Scholar’s Program and
MSU Short-term Professional Development Program.

L. Wang (Ed.): COCOON 2005, LNCS 3595, pp. 32–41, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

RNA Multiple Structural Alignment with Longest Common Subsequences 33

the problem in many situations. For example, if we have two ncRNA sequences:
AGUU and CAGG, even though they induce the same largest common nested
linear subgraph, the corresponding bonds and letters are completely different.
(A letter cannot form a bond or match with a neighboring letter.)

The above idea forms the basis of our research. In this paper, we propose
to use the Longest Common Subsequence (LCS) of m given ncRNA sequences
as the basis to tackle this problem. We consider two general cases: off-line and
on-line cases. In the off-line case, the LCS is already given and we want to find
meaningful properties of such a LCS, namely, whether this LCS admits a special
kind of fold. In the on-line case, we want to compute the LCS which admits
certain kind of folding.

In general, the longest common subsequence of two sequences is not unique.
Rick [17] developed an algorithm for finding all longest common subsequences.
The number of longest common subsequences can be quite large. Greenberg [9]
proved an exponential lower bound for the maximum number of distinct longest
common subsequences of two sequences of length n. Therefore, in a lot of biolog-
ical applications we believe that merely finding a longest common subsequence is
not quite meaningful. In fact, finding a longest common subsequence satisfying
a useful property is the goal of this paper. To the best of our knowledge, this has
never done before, though there have been a lot of related work on identifying a
(sub)string which is close to a set of given strings [13, 14] and close to a set of
‘bad’ strings and far from a set of ‘good’ strings [5].

In this paper, we mainly focus on three kinds of folding: maximum nested
loop, maximum loop chains and maximum number of total matches. For the
off-line case the problem is more of a graph theoretical one and we present both
exact and approximation solutions. For the on-line case, the problem is NP-
complete in general as computing LCS of multiple sequences, even without any
other constraints, is NP-complete. We try to present efficient algorithms for cases
when m is relatively small.

2 Preliminaries

Two characters (letters) a, b ∈ {A, C, G, U} match or form a bond if {a, b} =
{A, U}, or {a, b} = {C, G}, or {a, b} = {G, U}. Given a sequence t = a1a2...an,
ai ∈ {A, C, G, U}, the corresponding linear graph G(t) is defined as follows.
The vertices of G(t) are integers 1, 2, ..., n and there is an edge between i and
j(j > i + 1) if ai and aj match each other. For the obvious reason ai cannot
match ai+1 for i = 1, 2, ..., n− 1. In other words, there is no edge between i and
i + 1 for i = 1, 2, ..., n − 1. This linear graph certainly characterizes the general
folding possibilities of all the letters in t. In [7], a similar graph called contact
map graph is also used for identifying protein structure similarity.

Given two edges e1, e2 in G(t) and the intervals I1 = [a, b], I2 = [c, d] spanned
by them, we say e1 intersects e2 if exactly one of a, b lies on [c, d] and vice
versa. Therefore, if e1 does not intersect e2, then either I1 and I2 are disjoint
or I1 is contained in I2 (assuming I2 is longer). For the latter case we simply

34 Sergey Bereg and Binhai Zhu

denote I1 ⊂ I2 with the understanding that e1 does not intersect e2. A set
of edges e1, e2, ..., ep in G(t) form a nested loop with depth p if the intervals
I1, I2, ..., Ip spanned by e1, e2, ...ep is properly contained in one another, i.e.,
I1 ⊂ I2 ⊂ · · · ⊂ Ip (Figure 1 (1)).

A A U UC GC A C U UA G G UA A U U

A

A

C

G

U

U

C

A

A

G

C

U

U A
A

G

U

U
U

(1) (2)

Fig. 1. An illustration of ncRNA folding with maximum loop and maximum loop
chains.

Given a linear graph G(t), two loops overlap if the edges in one loop L1

intersect all the edges in the other loop L2. Such an overlap is legal if no two
edges from L1, L2 share the same vertex in G(t). We define a chain of loops (or
loop chains) as a set of loops L1, L2, ..., Lw such that Li overlaps with Li+1 but
does not overlap with Li+x for i ≤ w − 1, x > 1; moreover, each overlap is legal.
The motivation behind this is that a chain of (relatively deep) loops provide a
special kind of stable folding for a given ncRNA sequence (Figure 1 (2)).

In this paper, we propose to study several problems based on the Longest
Common Subsequence (LCS). The LCS problem has been throughly studied
in Hirschberg’s PhD thesis [10]. Its application in computational biology dated
back to 1960s [2, 3]. Some other applications of LCS in computational biology
can be found in [11, 18]. Basically, for a set of m (m being a constant) sequences
of length n, the corresponding LCS can be computed in O(nm) time. If m is
not a constant, then the problem is NP-complete; moreover, if the alphabet is
unbounded then it is difficult to find an approximation solution (in fact, as hard
as approximating the Maximum Clique problem) [12].

3 The Off-Line Case: When the LCS Is Already Given

For the ncRNA multiple structural alignment problem, in general we want to
compute a LCS with some additional constraints. In this section, we consider

RNA Multiple Structural Alignment with Longest Common Subsequences 35

the off-line case when a LCS of some ncRNA sequences is already computed.
The first problem is based on the idea that the (maximum) deepest nested loop
is likely to occur in ncRNA folding (Figure 1 (1)). The second problem is based
on the idea that a chain of loops is likely to fold compactly with some specified
regions (Figure 1 (2)).

3.1 The Maximum Nested Loop Problem

Given a sequence (which is the LCS of some ncRNA sequences) t = a1a2...an, ai∈
{A, C, G, U}, and the corresponding linear graph G(t), compute the maximum
or the deepest nested loop (MNL) in G(t). We have the following theorem.

Theorem 1. Given a sequence t = a1a2...an, ai ∈ {A, C, G, U}, and the corre-
sponding linear graph G(t), the maximum nested loop can be computed in O(n2)
time.

Proof. For 1 ≤ i ≤ j ≤ n, let ti,j denote the sequence ai, ai+1, . . . , aj . Let S be
a two-dimensional array where S[i, j] is the maximum depth of a nested loop in
the sequence ti,j . The values of the array S can be computed as follows. For any
1 ≤ i ≤ n, S[i, i] = 0.

Suppose that, for 1 ≤ i < j ≤ n, ai and aj match. Then there is a maximum
nested loop of ti,j that contains the edge (ai, aj). Thus S[i, j] = S[i+1, j−1]+1.

Suppose that ai and aj do not match. Then either ai or aj is not an endpoint
of the outermost edge of a maximum nested loop of ti,j . Thus, S[i, j] = max(S[i+
1, j], S[i, j − 1]). We summarize all the cases in pseudo-code (Algorithm MNL).

The depth of maximum nested loop in the input sequence is S[1, n]. In or-
der to compute the nested loop we store auxiliary arrays A and B such that
(A[i, j], B[i, j]) is the outermost edge of a maximum nested loop of ti,j . The
values A[i, j] and B[i, j] can be updated at the time when S[i, j] is updated.

The algorithm clearly takes O(n2) in the worst case. ��

A slightly different O(n3) time result on loop matching in programming lan-
guage research was known long time ago [16]. That result has been used in RNA
folding [4]. Although the Maximum Nested Loop problem is slightly more easier
to solve, in biology it could be a very important subroutine. In ncRNAs, A-U,
C-G and G-U bonds almost always occur in a nested fashion [4]; so finding such
maximum nested loop is very meaningful, at least it will allow biologists to try
different alternatives in folding.

3.2 The Maximum Loop Chain Problem

In this subsection we investigate a slightly different problem. When a ncRNA
sequence (with its corresponding linear graph) and a set of nested loops are
given, we have the following problem of computing the maximum loop chain.

36 Sergey Bereg and Binhai Zhu

Algorithm MNL
for l = 1 to n

for i = 1 to n − l + 1
j = i + l − 1
if l = 1 then

S[l, l] = 0
elseif ai and aj match then

S[i, j] = S[i + 1, j − 1] + 1
A[i, j] = i
B[i, j] = j

elseif S[i + 1, j] > S[i, j − 1] then
S[i, j] = S[i + 1, j]
A[i, j] = A[i + 1, j]
B[i, j] = B[i + 1, j]

else
S[i, j] = S[i, j − 1]
A[i, j] = A[i, j − 1]
B[i, j] = B[i, j − 1]

The Maximum Loop Chain problem: Given a ncRNA sequence t = a1a2...
an, ai ∈ {A, C, G, U}, the corresponding linear graph G(t) and a set of nested
loops in G(t), compute a loop chain out of these loops such that its size is
maximized.

The size of a loop chain is the sum of depths of those loops in it. The moti-
vation of this problem is that between two overlapping loops some edges might
share the same vertices (i.e., illegal), which violates rules in ncRNA bonding
(Figure 2). In the case of Figure 2, there is one node (corresponding to U) in the

A C U UA G G UA A

A

A

U

G

U

G

A
A

G

C
G

U

violation

Fig. 2. A violation in ncRNA folding with two loop chains.

RNA Multiple Structural Alignment with Longest Common Subsequences 37

corresponding linear graph which is shared by two overlapping loops. Among
the edges (A, U), (U, G) we can only pick up one of them. So the problem is a
matter of identifying the right loops and eliminating illegal edges in them.

It is not known yet whether this problem is NP-complete. We have the fol-
lowing approximation results.

Theorem 2. The Maximum Loop Chain problem can be approximated in the
following sense: in O(n2.5) time a loop chain can be computed whose size is at
least 1

2 of the corresponding optimum.

Given a set of nested loops we can construct a graph G′ as follows: each node
vi corresponds to a nested loop Li, there is an edge eij between two nodes vi, vj

if their corresponding loops Li, Lj overlap. Given two nested loops Li, Lj with
depths |Li|, |Lj | respectively, let |Li∩Lj | be the number of nodes (letters) shared
by edges in Li, Lj . The weight of eij can be defined as |Li| + |Lj | − |Li ∩ Lj|.

Then, the Maximum Loop Chain problem is to compute a path in G′ such
that between two neighboring nodes vi and vj , we need to throw away at most
|Li ∩ Lj| edges in either Li or Lj (to obtain two new, smaller loops) such that
eventually no two neighboring loops overlap illegally and the total number of
edges in the loop chain is maximized. Notice that the weights on the edges in
the final path corresponding to the maximum loop chain might not be the same
as those initially in G′. It is very much a longest (heaviest) path problem with
varying edge weights. We believe that this problem is NP-complete.

We will use the maximum weighted matching in G′ to obtain an approxima-
tion solution for this problem. We claim that this provides at least 1

2 number
of bonds in the optimal loop chain. First assume that G′ is also laid out from
left to right on a line L: the vertex in G′ which corresponds to a loop touching
the leftmost vertex in G(t) is the leftmost on L and a tie is broken arbitrar-
ily. The optimal loop chain then corresponds to a path with length k in G′:
< v11, v12, ..., v1k >. If we take edges along this path at odd (even) positions
(these two subsets of edges are disjoint), one subset of them contains at least
half of the total bonds (edges in G(t)) in the optimal solution. Certainly the
solution from the maximum weighted matching in G′ is at least half of the total
bonds (edges in G(t)) in the optimal solution for maximum loop chain.

Given a weighted graph with |V | vertices and |E| edges, the maximum
weighted matching can be constructed in O(|V |3) time by Gabow [8], this was
further improved to O(

√|V ||E|) time by Micali and Vazirani [15]. In our prob-
lem, G′ clearly has O(n) vertices and O(n2) edges as we are only interested in
maximal nested loops. So the running time for computing the maximum weighted
matching is O(n2.5).

4 The On-Line Case: When the LCS Is Not Given

In this section, we study the problem when the LCS of a set of m ncRNA se-
quences are not given in advance. We study two versions of this general problem:
LCSMNL and LCSBM. As computing LCS for multiple sequences is in general

38 Sergey Bereg and Binhai Zhu

NP-complete, both of these problems are NP-complete. We are interested in ef-
ficient solutions when m is relatively small. Recall that there might be too many
LCS’s for some given sequences, our goal is to identify a LCS with some useful
property.

4.1 LCSMNL

We first consider the problem of computing the longest common subsequence
with maximum nested loop (LCSMNL).
LCSMNL Problem. Given a set S of strings s1, s2, . . . , sm, each of length n,
where si = ai1ai2 . . . ain and aij ∈ {A, C, G, U}, compute the longest common
subsequence s = b1b2 . . . bK of s1, s2, ..., sm such that the maximum nested loop
induced by s is at least L.

Theorem 3. The LCSMNL problem can be solved in O(nm+2) time. When
m = 2, the problem can be solved in O(n4) time.

Proof. We show the algorithm for m = 2 only. It is straightforward to ex-
tend it to general m ≥ 2. We use a simplified notation s1 = a1, a2, . . . , an

and s2 = b1, b2, . . . , bn. Let ai,j , resp. bi,j, denote the substring ai, ai+1, . . . , aj ,
resp. bi, bi+1, . . . , bj . We store four four-dimensional arrays L, D, A, B defined as
follows. For 1 ≤ i ≤ j ≤ n and 1 ≤ k ≤ l ≤ n, let Ξ(i, j, k, l) denote the set of
all longest common subsequences of ai,j and bk,l. Then

• L[i, j, k, l] is the length of the longest common subsequence of ai,j and bk,l,
• D[i, j, k, l] is the depth of the maximum nested loop induced by a sequence

ξ ∈ Ξ(i, j, k, l),
• (A[i, j, k, l], B[i, j, k, l]) is an outermost edge of a maximum nested loop in-

duced by a sequence ξ ∈ Ξ(i, j, k, l).

The items of the array L[] can be computed in the same way as the computa-
tion of longest common subsequences. The value of D[i, j, k, l] can be computed
as in the pseudo-code shown in Algorithm LCSMNL. The theorem follows. ��

4.2 LCSBM

Finally, we study the problem of computing a LCS which induces the maximum
number of total matches, or longest common subsequence with bounded matches
(LCSBM).
LCSBM Problem. Given a set S of strings s1, s2, . . . , sm, each of length n,
where si = ai1ai2 . . . ain and aij ∈ {A, C, G, U}, compute the longest common
subsequence s = b1b2 . . . bK of s1, s2, ..., sm such that the total number of matches
among non-adjacent bi and bj is at least Q.

We assume that m = 2, and the algorithm can be easily extended to m ≥ 3.
We use a simplified notation s1 = a1, a2, . . . , an and s2 = b1, b2, . . . , bn. Let
b : {A, C, G, U} → {A, C, G, U} be the mapping between a character and another

RNA Multiple Structural Alignment with Longest Common Subsequences 39

one such that they form a bond. Then, b(A) = U, b(C) = G, b(G) = U and vice
versa. Adding another character x ∈ {A, C, G, U} to the end of a string, x induces
a number of matches to its non-adjacent characters following the above setting.

Algorithm LCSMNL
// Initialize L[..]
for i = 1 to n

for j = i − 1 to n
for k = 1 to n

L[i, j, k, k − 1] = 0
L[k, k − 1, i, j] = 0

// Compute L[..]
for i = 1 to n

for j = i to n
for k = 1 to n

for l = k to n
if aj = bk then

L[i, j, k, l] = L[i, j − 1, k, l − 1] + 1
else L[i, j, k, l] = max(L[i, j − 1, k, l], L[i, j, k, l− 1])

// Compute D[..]
for l1 = 1 to n

for i = 1 to n − l1 + 1
j = i + l1 − 1
for l2 = 1 to n

for k = 1 to n
l = k + l2 − 1
if j = i or k = l then

D[i, j, k, l] = 0
elseif ai 	= bk then

D[i, j, k, l] = max(D[i + 1, j, k, l], D[i, j, k + 1, l])
elseif aj 	= bl then

D[i, j, k, l] = max(D[i, j − 1, k, l], D[i, j, k, l − 1])
elseif ai matches aj then

D[i, j, k, l] = D[i + 1, j − 1, k + 1, l − 1] + 1
else

D[i, j, k, l] = D[i + 1, j − 1, k + 1, l − 1]

Let LCS[i, j] be the length of the longest common subsequence of the se-
quences s1 = a1a2 . . . ai and s2 = b1b2 . . . bj. The array LCS[i, j] can be com-
puted in O(n2) time [1].

Let a, c, g and u be integers and x be any letter from {A, C, G, U}. A sequence
s is called (a, c, g, u, x)-sequence if s contains a letters A, c letters C, g letters
G, u letters U and the last letter of s is x.

We use 6-dimensional array M [n, n, n, n, n, 4] whose elements are defined
as follows. Let 1 ≤ i, j, k ≤ n and x ∈ {A, C, G, U} and l = LCS[i, j]. Let

40 Sergey Bereg and Binhai Zhu

0 ≤ a, c, g ≤ l be any integers such that u = l − a − c − g ∈ [0, l]. The value
M [i, j, a, c, g, x] is -1 if there is there is no (a, c, g, u, x)-sequence s of length l that
is the common subsequence of a1, a2, . . . , ai and b1, b2, . . . , bj such that the last
letter of s is x. If such a subsequence exists, then M [i, j, a, c, g, x] is the maximum
number of matches of s. The pseudo-code is listed as Algorithm LCSBM.

Algorithm LCSBM
Initialize M [i, j, i1, j1, k1, x] to -1 if i ≥ 1 or j ≥ 1 and to 0 if i = 0 or j = 0.
Compute LCS[]
for i = 1 to n

for j = 1 to n
l = LCS[i, j]
for a = 0 to l // a is the number of A in LCS

for c = 0 to l − a // c is the number of C in LCS
for g = 0 to l − a − c // g is the number of U in LCS

u = l − a − c // u is the numbers of U in LCS
if ai = bj and ai is counted at least one time in (a, c, g, u) then

Let (a′, c′, g′, u′) be the the same numbers as (a, c, g, u)
with one letter ai removed

for each x ∈ {A, C, G, U}
if M [i, j, a′, c′, g′, x] ≥ 0 then

Let z be the total matches induced by ai

if added to a (a′, c′, g′, u′, x)-sequence
M [i, j, a, c, g, ai] = max(M [i, j, a, c, g, ai], M [i, j, a′, c′, g′, x] + z)

if ai 	= bj then
for each x ∈ {A, C, G, U}

M [i, j, a, c, g, x] = max(M [i − 1, j, a, c, g, x], M [i, j − 1, a, c, g, x])

Theorem 4. The LCSBM problem can be solved in O(nm+3) time. When m =
2, the problem can be solved in O(n5) time.

5 Concluding Remarks

In this paper, we study several versions of the problem for RNA multiple struc-
tural alignment using a LCS model. There are several interesting open problems
related to this work: (1) When a sequence t (say, the LCS of m RNA sequences)
and a set of nested loops from the inducing linear graph are given, is the problem
of computing Maximum Loop Chain NP-complete? (2) In [4], given a multiple
number of linear graphs, each with n vertices, computing the maximum common
non-intersecting subgraph was shown to be NP-complete. But the O(log2 n) ap-
proximation factor is too high to make the result practically meaningful. Can it
be further reduced?

RNA Multiple Structural Alignment with Longest Common Subsequences 41

References

1. T. Cormen, C. Leiserson, R. Rivest, C. Stein. Introduction to Algorithms, second
edition, MIT Press, 2001.

2. M. Dayhoff. Computer aids to protein sequence determination. J. Theoret. Biology,
8(1):97-112, 1965.

3. M. Dayhoff. Computer analysis of protein evolution. Scientific American,
221(1):86-95, 1969.

4. E. Davydov and S. Batzoglu. A computational model for RNA multiple structural
alignment. Proc. 15th Ann. Symp. Combinatorial Pattern Matching, LNCS 3109,
pp. 254-269, 2004.

5. X. Deng, G. Li, Z. Li, B. Ma and L. Wang. A PTAS for distinguishing (sub)string
selection. Proc. ICALP’02, pp. 740-751, 2002.

6. S.R. Eddy. Computational genomics of noncoding RNA genes. Cell, 109:137-140,
2002.

7. D. Goldman, S. Istrail and C. Papadimitriou. Algorithmic aspects of protein
structure similarity. Proc. 40th Ann. Symp. Foundations of Computer Science
(FOCS’99), pp. 512-522, 1999.

8. H. Gabow. An efficient implementation of Edmond’s algorithm for maximum
matching on graphs. J. ACM, 23(2):221-234, 1976.

9. R. I. Greenberg. Bounds on the Number of the Longest Common Subsequence
Problem. CoRR cs.DM/0301030, 2003.

10. D. Hirschberg. The longest common subsequence problem. PhD Thesis, Princeton
University, 1975.

11. W.J. Hsu and M.W. Du. Computing a longest common subsequence for a set of
strings. BIT, 24:45-59, 1984.

12. T. Jiang and M. Li. On the approximation of shortest common supersequences and
longest common subsequences. SIAM J. Comput., 24(5):1122-1139, 1995.

13. K. Lanctot, M. Li, B. Ma, S. Wang and L. Zhang. Distinguishing string selection
problems. Proc. 6th Ann. ACM-SIAM Symp. on Discrete Algorithms, pp. 633-642,
1999.

14. M. Li, B. Ma and L. Wang. Finding similar regions in many strings. Proc. 31st
ACM Symp. on Theory of Computing (STOC’99), pp. 473-482, 1999.

15. S. Micali and V. Vazirani. An O(
√|V ||E|2) algorithm for finding maximum match-

ing in general graphs. Proc. 21st Ann. Symp. Foundations of Computer Science
(FOCS’80), pp. 17-27, 1980.

16. R. Nussinov, G. Pieczenik, J. Griggs and D. Kleitman. Algorithms for loop match-
ing. SIAM J. Applied Math., 35:68-82, 1978.

17. C. Rick. Efficient Computation of All Longest Common Subsequences. Proc. 7th
Scandinavian Workshop on Algorithm Theory (SWAT’00), pp. 407-418, 2000.

18. T.F. Smith and M.S. Waterman. Identification of common molecular subsequences.
J. Molecular Biology, 147:195-197, 1981.

19. M. Zucker and P. Stiegler. Optimal computer folding of large RNA sequences
using thermodynamics and auxiliary information. Nucleic Acids Research, 9:133-
148, 1981.

20. M. Zucker. Computer prediction of RNA structure. Methods in Enzymology,
180:262-288, 1989.

	RNA Multiple Structural Alignment with Longest Common Subsequences
	1 Introduction
	2 Preliminaries
	3 The Off-Line Case: When the LCS Is Already Given
	3.1 The Maximum Nested Loop Problem
	3.2 The Maximum Loop Chain Problem

	4 The On-Line Case: When the LCS Is Not Given
	4.1 LCSMNL
	4.2 LCSBM

	5 Concluding Remarks
	References

